Sample records for extracellular matrix regulations

  1. Regulation of corneal stroma extracellular matrix assembly.

    PubMed

    Chen, Shoujun; Mienaltowski, Michael J; Birk, David E

    2015-04-01

    The transparent cornea is the major refractive element of the eye. A finely controlled assembly of the stromal extracellular matrix is critical to corneal function, as well as in establishing the appropriate mechanical stability required to maintain corneal shape and curvature. In the stroma, homogeneous, small diameter collagen fibrils, regularly packed with a highly ordered hierarchical organization, are essential for function. This review focuses on corneal stroma assembly and the regulation of collagen fibrillogenesis. Corneal collagen fibrillogenesis involves multiple molecules interacting in sequential steps, as well as interactions between keratocytes and stroma matrix components. The stroma has the highest collagen V:I ratio in the body. Collagen V regulates the nucleation of protofibril assembly, thus controlling the number of fibrils and assembly of smaller diameter fibrils in the stroma. The corneal stroma is also enriched in small leucine-rich proteoglycans (SLRPs) that cooperate in a temporal and spatial manner to regulate linear and lateral collagen fibril growth. In addition, the fibril-associated collagens (FACITs) such as collagen XII and collagen XIV have roles in the regulation of fibril packing and inter-lamellar interactions. A communicating keratocyte network contributes to the overall and long-range regulation of stromal extracellular matrix assembly, by creating micro-domains where the sequential steps in stromal matrix assembly are controlled. Keratocytes control the synthesis of extracellular matrix components, which interact with the keratocytes dynamically to coordinate the regulatory steps into a cohesive process. Mutations or deficiencies in stromal regulatory molecules result in altered interactions and deficiencies in both transparency and refraction, leading to corneal stroma pathobiology such as stromal dystrophies, cornea plana and keratoconus. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Regulation of Corneal Stroma Extracellular Matrix Assembly

    PubMed Central

    Chen, Shoujun; Mienaltowski, Michael J.; Birk, David E.

    2014-01-01

    The transparent cornea is the major refractive element of the eye. A finely controlled assembly of the stromal extracellular matrix is critical to corneal function, as well as in establishing the appropriate mechanical stability required to maintain corneal shape and curvature. In the stroma, homogeneous, small diameter collagen fibrils, regularly packed with a highly ordered hierarchical organization, are essential for function. This review focuses on corneal stroma assembly and the regulation of collagen fibrillogenesis. Corneal collagen fibrillogenesis involves multiple molecules interacting in sequential steps, as well as interactions between keratocytes and stroma matrix components. The stroma has the highest collagen V:I ratio in the body. Collagen V regulates the nucleation of protofibril assembly, thus controlling the number of fibrils and assembly of smaller diameter fibrils in the stroma. The corneal stroma is also enriched in small leucine-rich proteoglycans (SLRPs) that cooperate in a temporal and spatial manner to regulate linear and lateral collagen fibril growth. In addition, the fibril-associated collagens (FACITs) such as collagen XII and collagen XIV have roles in the regulation of fibril packing and inter-lamellar interactions. A communicating keratocyte network contributes to the overall and long-range regulation of stromal extracellular matrix assembly, by creating micro-domains where the sequential steps in stromal matrix assembly are controlled. Keratocytes control the synthesis of extracellular matrix components, which interact with the keratocytes dynamically to coordinate the regulatory steps into a cohesive process. Mutations or deficiencies in stromal regulatory molecules result in altered interactions and deficiencies in both transparency and refraction, leading to corneal stroma pathobiology such as stromal dystrophies, cornea plana and keratoconus. PMID:25819456

  3. The Extracellular Matrix Regulates Granuloma Necrosis in Tuberculosis.

    PubMed

    Al Shammari, Basim; Shiomi, Takayuki; Tezera, Liku; Bielecka, Magdalena K; Workman, Victoria; Sathyamoorthy, Tarangini; Mauri, Francesco; Jayasinghe, Suwan N; Robertson, Brian D; D'Armiento, Jeanine; Friedland, Jon S; Elkington, Paul T

    2015-08-01

    A central tenet of tuberculosis pathogenesis is that caseous necrosis leads to extracellular matrix destruction and bacterial transmission. We reconsider the underlying mechanism of tuberculosis pathology and demonstrate that collagen destruction may be a critical initial event, causing caseous necrosis as opposed to resulting from it. In human tuberculosis granulomas, regions of extracellular matrix destruction map to areas of caseous necrosis. In mice, transgenic expression of human matrix metalloproteinase 1 causes caseous necrosis, the pathological hallmark of human tuberculosis. Collagen destruction is the principal pathological difference between humanised mice and wild-type mice with tuberculosis, whereas the release of proinflammatory cytokines does not differ, demonstrating that collagen breakdown may lead to cell death and caseation. To investigate this hypothesis, we developed a 3-dimensional cell culture model of tuberculosis granuloma formation, using bioelectrospray technology. Collagen improved survival of Mycobacterium tuberculosis-infected cells analyzed on the basis of a lactate dehydrogenase release assay, propidium iodide staining, and measurement of the total number of viable cells. Taken together, these findings suggest that collagen destruction is an initial event in tuberculosis immunopathology, leading to caseous necrosis and compromising the immune response, revealing a previously unappreciated role for the extracellular matrix in regulating the host-pathogen interaction. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. MAGP1, the extracellular matrix, and metabolism

    PubMed Central

    Craft, Clarissa S

    2014-01-01

    Adipose tissue and the extracellular matrix were once considered passive players in regulating physiological processes. Now, both entities are acknowledged for their capacity to engage signal transduction pathways, and for their involvement in maintaining normal tissue homeostasis. We recently published a series of studies that identified a novel mechanism whereby an extracellular matrix molecule, MAGP1 (microfibril associated glycoprotein 1), can regulate energy metabolism in adipose tissue. MAGP1 is a component of extracellular microfibrils and plays a supportive role in maintaining thermoregulation by indirectly regulating expression of the thermogenic uncoupling proteins (UCPs). The focus of this commentary is to draw attention to the role of the extracellular matrix in regulating the bioavailability of signaling molecules, like transforming growth factor β (TGFβ), and exemplify that a better understanding of the extracellular matrix's biological properties could unveil a new source of therapeutic targets for metabolic diseases. PMID:26167404

  5. MAGP1, the extracellular matrix, and metabolism.

    PubMed

    Craft, Clarissa S

    2015-01-01

    Adipose tissue and the extracellular matrix were once considered passive players in regulating physiological processes. Now, both entities are acknowledged for their capacity to engage signal transduction pathways, and for their involvement in maintaining normal tissue homeostasis. We recently published a series of studies that identified a novel mechanism whereby an extracellular matrix molecule, MAGP1 (microfibril associated glycoprotein 1), can regulate energy metabolism in adipose tissue. MAGP1 is a component of extracellular microfibrils and plays a supportive role in maintaining thermoregulation by indirectly regulating expression of the thermogenic uncoupling proteins (UCPs). The focus of this commentary is to draw attention to the role of the extracellular matrix in regulating the bioavailability of signaling molecules, like transforming growth factor β (TGFβ), and exemplify that a better understanding of the extracellular matrix's biological properties could unveil a new source of therapeutic targets for metabolic diseases.

  6. MT1-MMP regulates the turnover and endocytosis of extracellular matrix fibronectin

    PubMed Central

    Shi, Feng; Sottile, Jane

    2011-01-01

    The extracellular matrix (ECM) is dynamically remodeled by cells during development, normal tissue homeostasis and in a variety of disease processes. We previously showed that fibronectin is an important regulator of ECM remodeling. The deposition and/or polymerization of fibronectin into the ECM controls the deposition and stability of other ECM molecules. In addition, agents that inhibit fibronectin polymerization promote the turnover of fibronectin fibrils and enhance ECM fibronectin endocytosis and intracellular degradation. Endocytosis of ECM fibronectin is regulated by β1 integrins, including α5β1 integrin. We have examined the role of extracellular proteases in regulating ECM fibronectin turnover. Our data show that membrane type matrix metalloproteinase 1 (MT1-MMP; also known as MMP14) is a crucial regulator of fibronectin turnover. Cells lacking MT1-MMP show reduced turnover and endocytosis of ECM fibronectin. MT1-MMP regulates ECM fibronectin remodeling by promoting extracellular cleavage of fibronectin and by regulating α5β1-integrin endocytosis. Our data also show that fibronectin polymerization stabilizes fibronectin fibrils and inhibits ECM fibronectin endocytosis by inhibiting α5β1-integrin endocytosis. These data are the first to show that an ECM protein and its modifying enzyme can regulate integrin endocytosis. These data also show that integrin trafficking plays a major role in modulating ECM fibronectin remodeling. The dual dependence of ECM fibronectin turnover on extracellular proteolysis and endocytosis highlights the complex regulatory mechanisms that control ECM remodeling to ensure maintenance of proper tissue function. PMID:22159414

  7. Regulation of Osteoblast Survival by the Extracellular Matrix and Gravity

    NASA Technical Reports Server (NTRS)

    Globus. Ruth K.; Almeida, Eduardo A. C.; Searby, Nancy D.; Bowley, Susan M. (Technical Monitor)

    2000-01-01

    Spaceflight adversely affects the skeleton, posing a substantial risk to astronaut's health during long duration missions. The reduced bone mass observed in growing animals following spaceflight is due at least in part to inadequate bone formation by osteoblasts. Thus, it is of central importance to identify basic cellular mechanisms underlying normal bone formation. The fundamental ideas underlying our research are that interactions between extracellular matrix proteins, integrin adhesion receptors, cytoplasmic signaling and cytoskeletal proteins are key ingredients for the proper functioning of osteoblasts, and that gravity impacts these interactions. As an in vitro model system we used primary fetal rat calvarial cells which faithfully recapitulate osteoblast differentiation characteristically observed in vivo. We showed that specific integrin receptors ((alpha)3(beta)1), ((alpha)5(beta)1), ((alpha)8(betal)1) and extracellular matrix proteins (fibronectin, laminin) were needed for the differentiation of immature osteoblasts. In the course of maturation, cultured osteoblasts switched from depending on fibronectin and laminin for differentiation to depending on these proteins for their very survival. Furthermore, we found that manipulating the gravity vector using ground-based models resulted in activation of key intracellular survival signals generated by integrin/extracellular matrix interactions. We are currently testing the in vivo relevance of some of these observations using targeted transgenic technology. In conclusion, mechanical factors including gravity may participate in regulating survival via cellular interactions with the extracellular matrix. This leads us to speculate that microgravity adversely affects the survival of osteoblasts and contributes to spaceflight-induced osteoporosis.

  8. Pulmonary immunity and extracellular matrix interactions.

    PubMed

    O'Dwyer, David N; Gurczynski, Stephen J; Moore, Bethany B

    2018-04-09

    The lung harbors a complex immune system composed of both innate and adaptive immune cells. Recognition of infection and injury by receptors on lung innate immune cells is crucial for generation of antigen-specific responses by adaptive immune cells. The extracellular matrix of the lung, comprising the interstitium and basement membrane, plays a key role in the regulation of these immune systems. The matrix consists of several hundred assembled proteins that interact to form a bioactive scaffold. This template, modified by enzymes, acts to facilitate cell function and differentiation and changes dynamically with age and lung disease. Herein, we explore relationships between innate and adaptive immunity and the lung extracellular matrix. We discuss the interactions between extracellular matrix proteins, including glycosaminoglycans, with prominent effects on innate immune signaling effectors such as toll-like receptors. We describe the relationship of extracellular matrix proteins with adaptive immunity and leukocyte migration to sites of injury within the lung. Further study of these interactions will lead to greater knowledge of the role of matrix biology in lung immunity. The development of novel therapies for acute and chronic lung disease is dependent on a comprehensive understanding of these complex matrix-immunity interactions. Copyright © 2017 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  9. Mitochondrial function in engineered cardiac tissues is regulated by extracellular matrix elasticity and tissue alignment.

    PubMed

    Lyra-Leite, Davi M; Andres, Allen M; Petersen, Andrew P; Ariyasinghe, Nethika R; Cho, Nathan; Lee, Jezell A; Gottlieb, Roberta A; McCain, Megan L

    2017-10-01

    Mitochondria in cardiac myocytes are critical for generating ATP to meet the high metabolic demands associated with sarcomere shortening. Distinct remodeling of mitochondrial structure and function occur in cardiac myocytes in both developmental and pathological settings. However, the factors that underlie these changes are poorly understood. Because remodeling of tissue architecture and extracellular matrix (ECM) elasticity are also hallmarks of ventricular development and disease, we hypothesize that these environmental factors regulate mitochondrial function in cardiac myocytes. To test this, we developed a new procedure to transfer tunable polydimethylsiloxane disks microcontact-printed with fibronectin into cell culture microplates. We cultured Sprague-Dawley neonatal rat ventricular myocytes within the wells, which consistently formed tissues following the printed fibronectin, and measured oxygen consumption rate using a Seahorse extracellular flux analyzer. Our data indicate that parameters associated with baseline metabolism are predominantly regulated by ECM elasticity, whereas the ability of tissues to adapt to metabolic stress is regulated by both ECM elasticity and tissue alignment. Furthermore, bioenergetic health index, which reflects both the positive and negative aspects of oxygen consumption, was highest in aligned tissues on the most rigid substrate, suggesting that overall mitochondrial function is regulated by both ECM elasticity and tissue alignment. Our results demonstrate that mitochondrial function is regulated by both ECM elasticity and myofibril architecture in cardiac myocytes. This provides novel insight into how extracellular cues impact mitochondrial function in the context of cardiac development and disease. NEW & NOTEWORTHY A new methodology has been developed to measure O 2 consumption rates in engineered cardiac tissues with independent control over tissue alignment and matrix elasticity. This led to the findings that matrix

  10. Endocytosis of collagen by hepatic stellate cells regulates extracellular matrix dynamics

    PubMed Central

    Bi, Yan; Mukhopadhyay, Dhriti; Drinane, Mary; Ji, Baoan; Li, Xing; Cao, Sheng

    2014-01-01

    Hepatic stellate cells (HSCs) generate matrix, which in turn may also regulate HSCs function during liver fibrosis. We hypothesized that HSCs may endocytose matrix proteins to sense and respond to changes in microenvironment. Primary human HSCs, LX2, or mouse embryonic fibroblasts (MEFs) [wild-type; c-abl−/−; or Yes, Src, and Fyn knockout mice (YSF−/−)] were incubated with fluorescent-labeled collagen or gelatin. Fluorescence-activated cell sorting analysis and confocal microscopy were used for measuring cellular internalization of matrix proteins. Targeted PCR array and quantitative real-time PCR were used to evaluate gene expression changes. HSCs and LX2 cells endocytose collagens in a concentration- and time-dependent manner. Endocytosed collagen colocalized with Dextran 10K, a marker of macropinocytosis, and 5-ethylisopropyl amiloride, an inhibitor of macropinocytosis, reduced collagen internalization by 46%. Cytochalasin D and ML7 blocked collagen internalization by 47% and 45%, respectively, indicating that actin and myosin are critical for collagen endocytosis. Wortmannin and AKT inhibitor blocked collagen internalization by 70% and 89%, respectively, indicating that matrix macropinocytosis requires phosphoinositide-3-kinase (PI3K)/AKT signaling. Overexpression of dominant-negative dynamin-2 K44A blocked matrix internalization by 77%, indicating a role for dynamin-2 in matrix macropinocytosis. Whereas c-abl−/− MEF showed impaired matrix endocytosis, YSF−/− MEF surprisingly showed increased matrix endocytosis. It was also associated with complex gene regulations that related with matrix dynamics, including increased matrix metalloproteinase 9 (MMP-9) mRNA levels and zymographic activity. HSCs endocytose matrix proteins through macropinocytosis that requires a signaling network composed of PI3K/AKT, dynamin-2, and c-abl. Interaction with extracellular matrix regulates matrix dynamics through modulating multiple gene expressions including MMP-9

  11. Endocytosis of collagen by hepatic stellate cells regulates extracellular matrix dynamics.

    PubMed

    Bi, Yan; Mukhopadhyay, Dhriti; Drinane, Mary; Ji, Baoan; Li, Xing; Cao, Sheng; Shah, Vijay H

    2014-10-01

    Hepatic stellate cells (HSCs) generate matrix, which in turn may also regulate HSCs function during liver fibrosis. We hypothesized that HSCs may endocytose matrix proteins to sense and respond to changes in microenvironment. Primary human HSCs, LX2, or mouse embryonic fibroblasts (MEFs) [wild-type; c-abl(-/-); or Yes, Src, and Fyn knockout mice (YSF(-/-))] were incubated with fluorescent-labeled collagen or gelatin. Fluorescence-activated cell sorting analysis and confocal microscopy were used for measuring cellular internalization of matrix proteins. Targeted PCR array and quantitative real-time PCR were used to evaluate gene expression changes. HSCs and LX2 cells endocytose collagens in a concentration- and time-dependent manner. Endocytosed collagen colocalized with Dextran 10K, a marker of macropinocytosis, and 5-ethylisopropyl amiloride, an inhibitor of macropinocytosis, reduced collagen internalization by 46%. Cytochalasin D and ML7 blocked collagen internalization by 47% and 45%, respectively, indicating that actin and myosin are critical for collagen endocytosis. Wortmannin and AKT inhibitor blocked collagen internalization by 70% and 89%, respectively, indicating that matrix macropinocytosis requires phosphoinositide-3-kinase (PI3K)/AKT signaling. Overexpression of dominant-negative dynamin-2 K44A blocked matrix internalization by 77%, indicating a role for dynamin-2 in matrix macropinocytosis. Whereas c-abl(-/-) MEF showed impaired matrix endocytosis, YSF(-/-) MEF surprisingly showed increased matrix endocytosis. It was also associated with complex gene regulations that related with matrix dynamics, including increased matrix metalloproteinase 9 (MMP-9) mRNA levels and zymographic activity. HSCs endocytose matrix proteins through macropinocytosis that requires a signaling network composed of PI3K/AKT, dynamin-2, and c-abl. Interaction with extracellular matrix regulates matrix dynamics through modulating multiple gene expressions including MMP-9

  12. [Extracellular matrix--regulation of cancer invasion and metastasis].

    PubMed

    Watanabe, Hideto

    2010-11-01

    Cancer cell invasion comprises steps in the destruction of the basement membrane and migration of cells into the connective tissue. These cells further migrate into lymph ducts and small vessels to reach metastasis. The extracellular matrix (ECM) provides a microenvironment for cells, and its destruction is associated with cancer cell invasion. Among matrix metalloproteinases (MMPs), both MMP-2 and 9 digest type IV collagen, a major component of the basement membrane, and MMP-14/MT1-MMP, a membrane-type MMP, activates MMP-2. Thus, these MMPs play a central role in cancer cell invasion. MMPs also cleave latent forms of growth factors and signaling molecules, releasing and activating them, which influence neo-vascularization and cancer apoptosis. Like proteins, carbohydrates are known to be involved in cancer invasion. Hyaluronan is known to both stimulate and inhibit cancer invasion, depending on its molecular size. Heparanase, which digests heparan sulfate, is known to facilitate cancer invasion and metastasis. In summary, ECM provides a microenvironment that regulates cell behavior and its structure altered by MMPs affects cancer cell invasion.

  13. Regulation of Extracellular Matrix Remodeling Proteins by Osteoblasts in Titanium Nanoparticle-Induced Aseptic Loosening Model.

    PubMed

    Xie, Jing; Hou, Yanhua; Fu, Na; Cai, Xiaoxiao; Li, Guo; Peng, Qiang; Lin, Yunfeng

    2015-10-01

    Titanium (Ti)-wear particles, formed at the bone-implant interface, are responsible for aseptic loosening, which is a main cause of total joint replacement failure. There have been many studies on Ti particle-induced function changes in mono-cultured osteoblasts and synovial cells. However, little is known on extracellular matrix remodeling displayed by osteoblasts when in coexistence with Synovial cells. To further mimic the bone-implant interface environment, we firstly established a nanoscaled-Ti particle-induced aseptic loosening system by co-culturing osteoblasts and Synovial cells. We then explored the impact of the Synovial cells on Ti particle-engulfed osteoblasts in the mimicked flamed niche. The matrix metalloproteinases and lysyl oxidases expression levels, two protein families which are critical in osseointegration, were examined under induction by tumor necrosis factor-alpha. It was found that the co-culture between the osteoblasts and Synovial cells markedly increased the migration and proliferation of the osteoblasts, even in the Ti-particle engulfed osteoblasts. Importantly, the Ti-particle engulfed osteoblasts, induced by TNF-alpha after the co-culture, enhanced the release of the matrix metalloproteinases and reduced the expressions of lysyl oxidases. The regulation of extracellular matrix remodeling at the protein level was further assessed by investigations on gene expression of the matrix metalloproteinases and lysyl oxidases, which also suggested that the regulation started at the genetic level. Our research work has therefore revealed the critical role of multi cell-type interactions in the extracellular matrix remodeling within the peri-prosthetic tissues, which provides new insights on aseptic loosening and brings new clues about incomplete osseointegration between the implantation materials and their surrounding bones.

  14. Mechanical forces regulate the interactions of fibronectin and collagen I in extracellular matrix.

    PubMed

    Kubow, Kristopher E; Vukmirovic, Radmila; Zhe, Lin; Klotzsch, Enrico; Smith, Michael L; Gourdon, Delphine; Luna, Sheila; Vogel, Viola

    2015-08-14

    Despite the crucial role of extracellular matrix (ECM) in directing cell fate in healthy and diseased tissues--particularly in development, wound healing, tissue regeneration and cancer--the mechanisms that direct the assembly and regulate hierarchical architectures of ECM are poorly understood. Collagen I matrix assembly in vivo requires active fibronectin (Fn) fibrillogenesis by cells. Here we exploit Fn-FRET probes as mechanical strain sensors and demonstrate that collagen I fibres preferentially co-localize with more-relaxed Fn fibrils in the ECM of fibroblasts in cell culture. Fibre stretch-assay studies reveal that collagen I's Fn-binding domain is responsible for the mechano-regulated interaction. Furthermore, we show that Fn-collagen interactions are reciprocal: relaxed Fn fibrils act as multivalent templates for collagen assembly, but once assembled, collagen fibres shield Fn fibres from being stretched by cellular traction forces. Thus, in addition to the well-recognized, force-regulated, cell-matrix interactions, forces also tune the interactions between different structural ECM components.

  15. Regulation of extracellular matrix vesicles via rapid responses to steroid hormones during endochondral bone formation.

    PubMed

    Asmussen, Niels; Lin, Zhao; McClure, Michael J; Schwartz, Zvi; Boyan, Barbara D

    2017-12-09

    Endochondral bone formation is a precise and highly ordered process whose exact regulatory framework is still being elucidated. Multiple regulatory pathways are known to be involved. In some cases, regulation impacts gene expression, resulting in changes in chondrocyte phenotypic expression and extracellular matrix synthesis. Rapid regulatory mechanisms are also involved, resulting in release of enzymes, factors and micro RNAs stored in extracellular matrisomes called matrix vesicles. Vitamin D metabolites modulate endochondral development via both genomic and rapid membrane-associated signaling pathways. 1α,25-dihydroxyvitamin D3 [1α,25(OH) 2 D 3 ] acts through the vitamin D receptor (VDR) and a membrane associated receptor, protein disulfide isomerase A3 (PDIA3). 24R,25-dihydroxyvitamin D3 [24R,25(OH) 2 D 3 ] affects primarily chondrocytes in the resting zone (RC) of the growth plate, whereas 1α,25(OH) 2 D 3 affects cells in the prehypertrophic and upper hypertrophic cell zones (GC). This includes genomically directing the cells to produce matrix vesicles with zone specific characteristics. In addition, vitamin D metabolites produced by the cells interact directly with the matrix vesicle membrane via rapid signal transduction pathways, modulating their activity in the matrix. The matrix vesicle payload is able to rapidly impact the extracellular matrix via matrix processing enzymes as well as providing a feedback mechanism to the cells themselves via the contained micro RNAs. Copyright © 2017. Published by Elsevier Inc.

  16. Hepatocyte growth factor: a regulator of extracellular matrix genes in mouse mesangial cells.

    PubMed

    Laping, N J; Olson, B A; Ho, T; Ziyadeh, F N; Albrightson, C R

    2000-04-01

    The potential role of hepatocyte growth factor (HGF) in regulating extracellular matrix in mouse mesangial cells (MMC) was evaluated. Functional HGF receptors were deed in MMC by HGF-induced extracellular acidification, a response that was inhibited by the HGF inhibitor HGF/NK2, a splice variant expressing the N-terminal domain through the second kringle domain HGF also increased fibronectin and collagen alpha1 (IV) mRNA levels in these cells; the increases were associated with a concentration-dependent increase in transcriptional activity of the collagen alpha1 (IV) gene. HGF also stimulated fibronectin and collagen alpha1 (IV) mRNA levels in primary rabbit proximal tubule epithelial cells To evaluate the potential consequences of chronic elevation of HGF on renal fuction, HGF was administered continuously for 18 days to normal and diabetic C57BLKS/J lepr(db) mice. In the diabetic mice, HGF reduced creatinine clearance and increased microalbuminuria, indicating that chronic exposure to HGF impairs renal function. Thus, chronically elevated HGF may contribute to the progression of chronic renal disease in diabetes by decreasing the glomerular filtration rate and possibly promoting the accumulation of extracellular matrix.

  17. Extracellular matrix structure.

    PubMed

    Theocharis, Achilleas D; Skandalis, Spyros S; Gialeli, Chrysostomi; Karamanos, Nikos K

    2016-02-01

    Extracellular matrix (ECM) is a non-cellular three-dimensional macromolecular network composed of collagens, proteoglycans/glycosaminoglycans, elastin, fibronectin, laminins, and several other glycoproteins. Matrix components bind each other as well as cell adhesion receptors forming a complex network into which cells reside in all tissues and organs. Cell surface receptors transduce signals into cells from ECM, which regulate diverse cellular functions, such as survival, growth, migration, and differentiation, and are vital for maintaining normal homeostasis. ECM is a highly dynamic structural network that continuously undergoes remodeling mediated by several matrix-degrading enzymes during normal and pathological conditions. Deregulation of ECM composition and structure is associated with the development and progression of several pathologic conditions. This article emphasizes in the complex ECM structure as to provide a better understanding of its dynamic structural and functional multipotency. Where relevant, the implication of the various families of ECM macromolecules in health and disease is also presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Modeling extracellular matrix degradation balance with proteinase/transglutaminase cycle.

    PubMed

    Larreta-Garde, Veronique; Berry, Hugues

    2002-07-07

    Extracellular matrix mass balance is implied in many physiological and pathological events, such as metastasis dissemination. Widely studied, its destructive part is mainly catalysed by extracellular proteinases. Conversely, the properties of the constructive part are less obvious, cellular neo-synthesis being usually considered as its only element. In this paper, we introduce the action of transglutaminase in a mathematical model for extracellular matrix remodeling. This extracellular enzyme, catalysing intermolecular protein cross-linking, is considered here as a reverse proteinase as far as the extracellular matrix physical state is concerned. The model is based on a proteinase/transglutaminase cycle interconverting insoluble matrix and soluble proteolysis fragments, with regulation of cellular proteinase expression by the fragments. Under "closed" (batch) conditions, i.e. neglecting matrix influx and fragment efflux from the system, the model is bistable, with reversible hysteresis. Extracellular matrix proteins concentration abruptly switches from low to high levels when transglutaminase activity exceeds a threshold value. Proteinase concentration usually follows the reverse complementary kinetics, but can become apparently uncoupled from extracellular matrix concentration for some parameter values. When matrix production by the cells and fragment degradation are taken into account, the dynamics change to sustained oscillations because of the emergence of a stable limit cycle. Transitions out of and into oscillation areas are controlled by the model parameters. Biological interpretation indicates that these oscillations could represent the normal homeostatic situation, whereas the other exhibited dynamics can be related to pathologies such as tumor invasion or fibrosis. These results allow to discuss the insights that the model could contribute to the comprehension of these complex biological events.

  19. Lung extracellular matrix and redox regulation.

    PubMed

    Watson, Walter H; Ritzenthaler, Jeffrey D; Roman, Jesse

    2016-08-01

    Pulmonary fibrosis affects millions worldwide and, even though there has been a significant investment in understanding the processes involved in wound healing and maladaptive repair, a complete understanding of the mechanisms responsible for lung fibrogenesis eludes us, and interventions capable of reversing or halting disease progression are not available. Pulmonary fibrosis is characterized by the excessive expression and uncontrolled deposition of extracellular matrix (ECM) proteins resulting in erosion of the tissue structure. Initially considered an 'end-stage' process elicited after injury, these events are now considered pathogenic and are believed to contribute to the course of the disease. By interacting with integrins capable of signal transduction and by influencing tissue mechanics, ECM proteins modulate processes ranging from cell adhesion and migration to differentiation and growth factor expression. In doing so, ECM proteins help orchestrate complex developmental processes and maintain tissue homeostasis. However, poorly controlled deposition of ECM proteins promotes inflammation, fibroproliferation, and aberrant differentiation of cells, and has been implicated in the pathogenesis of pulmonary fibrosis, atherosclerosis and cancer. Considering their vital functions, ECM proteins are the target of investigation, and oxidation-reduction (redox) reactions have emerged as important regulators of the ECM. Oxidative stress invariably accompanies lung disease and promotes ECM expression directly or through the overproduction of pro-fibrotic growth factors, while affecting integrin binding and activation. In vitro and in vivo investigations point to redox reactions as targets for intervention in pulmonary fibrosis and related disorders, but studies in humans have been disappointing probably due to the narrow impact of the interventions tested, and our poor understanding of the factors that regulate these complex reactions. This review is not meant to

  20. Lung extracellular matrix and redox regulation

    PubMed Central

    Watson, Walter H.; Ritzenthaler, Jeffrey D.; Roman, Jesse

    2016-01-01

    Pulmonary fibrosis affects millions worldwide and, even though there has been a significant investment in understanding the processes involved in wound healing and maladaptive repair, a complete understanding of the mechanisms responsible for lung fibrogenesis eludes us, and interventions capable of reversing or halting disease progression are not available. Pulmonary fibrosis is characterized by the excessive expression and uncontrolled deposition of extracellular matrix (ECM) proteins resulting in erosion of the tissue structure. Initially considered an ‘end-stage’ process elicited after injury, these events are now considered pathogenic and are believed to contribute to the course of the disease. By interacting with integrins capable of signal transduction and by influencing tissue mechanics, ECM proteins modulate processes ranging from cell adhesion and migration to differentiation and growth factor expression. In doing so, ECM proteins help orchestrate complex developmental processes and maintain tissue homeostasis. However, poorly controlled deposition of ECM proteins promotes inflammation, fibroproliferation, and aberrant differentiation of cells, and has been implicated in the pathogenesis of pulmonary fibrosis, atherosclerosis and cancer. Considering their vital functions, ECM proteins are the target of investigation, and oxidation–reduction (redox) reactions have emerged as important regulators of the ECM. Oxidative stress invariably accompanies lung disease and promotes ECM expression directly or through the overproduction of pro-fibrotic growth factors, while affecting integrin binding and activation. In vitro and in vivo investigations point to redox reactions as targets for intervention in pulmonary fibrosis and related disorders, but studies in humans have been disappointing probably due to the narrow impact of the interventions tested, and our poor understanding of the factors that regulate these complex reactions. This review is not meant to

  1. Peroxidase enzymes regulate collagen extracellular matrix biosynthesis.

    PubMed

    DeNichilo, Mark O; Panagopoulos, Vasilios; Rayner, Timothy E; Borowicz, Romana A; Greenwood, John E; Evdokiou, Andreas

    2015-05-01

    Myeloperoxidase and eosinophil peroxidase are heme-containing enzymes often physically associated with fibrotic tissue and cancer in various organs, without any direct involvement in promoting fibroblast recruitment and extracellular matrix (ECM) biosynthesis at these sites. We report herein novel findings that show peroxidase enzymes possess a well-conserved profibrogenic capacity to stimulate the migration of fibroblastic cells and promote their ability to secrete collagenous proteins to generate a functional ECM both in vitro and in vivo. Mechanistic studies conducted using cultured fibroblasts show that these cells are capable of rapidly binding and internalizing both myeloperoxidase and eosinophil peroxidase. Peroxidase enzymes stimulate collagen biosynthesis at a post-translational level in a prolyl 4-hydroxylase-dependent manner that does not require ascorbic acid. This response was blocked by the irreversible myeloperoxidase inhibitor 4-amino-benzoic acid hydrazide, indicating peroxidase catalytic activity is essential for collagen biosynthesis. These results suggest that peroxidase enzymes, such as myeloperoxidase and eosinophil peroxidase, may play a fundamental role in regulating the recruitment of fibroblast and the biosynthesis of collagen ECM at sites of normal tissue repair and fibrosis, with enormous implications for many disease states where infiltrating inflammatory cells deposit peroxidases. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  2. Extracellular Matrix as a Regulator of Epidermal Stem Cell Fate.

    PubMed

    Chermnykh, Elina; Kalabusheva, Ekaterina; Vorotelyak, Ekaterina

    2018-03-27

    Epidermal stem cells reside within the specific anatomic location, called niche, which is a microenvironment that interacts with stem cells to regulate their fate. Regulation of many important processes, including maintenance of stem cell quiescence, self-renewal, and homeostasis, as well as the regulation of division and differentiation, are common functions of the stem cell niche. As it was shown in multiple studies, extracellular matrix (ECM) contributes a lot to stem cell niches in various tissues, including that of skin. In epidermis, ECM is represented, primarily, by a highly specialized ECM structure, basement membrane (BM), which separates the epidermal and dermal compartments. Epidermal stem cells contact with BM, but when they lose the contact and migrate to the overlying layers, they undergo terminal differentiation. When considering all of these factors, ECM is of fundamental importance in regulating epidermal stem cells maintenance, proper mobilization, and differentiation. Here, we summarize the remarkable progress that has recently been made in the research of ECM role in regulating epidermal stem cell fate, paying special attention to the hair follicle stem cell niche. We show that the destruction of ECM components impairs epidermal stem cell morphogenesis and homeostasis. A deep understanding of ECM molecular structure as well as the development of in vitro system for stem cell maintaining by ECM proteins may bring us to developing new approaches for regenerative medicine.

  3. Baicalin Down-Regulates IL-1β-Stimulated Extracellular Matrix Production in Nasal Fibroblasts

    PubMed Central

    Shin, Jae-Min; Kang, Ju-Hyung; Lee, Seoung-Ae; Park, Il-Ho; Lee, Heung-Man

    2016-01-01

    Purpose Baicalin, a Chinese herbal medicine, has anti-fibrotic and anti-inflammatory effects. The aims of present study were to investigate the effects of baicalin on the myofibroblast differentiation, extracellular matrix production, migration, and collagen contraction of interleukin (IL)-1β-stimulated nasal fibroblasts and to determine the molecular mechanism of baicalin in nasal fibroblasts. Methods Nasal fibroblasts were isolated from the inferior turbinate of patients. Baicalin was used to treat IL-1β-stimulated nasal fibroblasts. To evaluate cytotoxicity, a 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide assay was used. The expression levels of α-smooth muscle actin (SMA), fibronectin, phospho-mitogen-activated protein kinase (p-MAPK), p-Akt, p-p50, p-p65, and p-IκBα were measured by western blotting, reverse transcription-polymerase chain reaction (RT—PCR),or immunofluorescence staining. Fibroblast migration was analyzed with scratch assays and transwell migration assays. Total collagen was evaluated with the Sircol collagen assay. Contractile activity was measured with a collagen gel contraction assay. Results Baicalin (0–50 μM) had no significant cytotoxic effects in nasal fibroblasts. The expression of α–SMA and fibronectin were significantly down-regulated in baicalin-treated nasal fibroblasts. Migration, collagen production, and contraction of IL-1β-stimulated nasal fibroblasts were significantly inhibited by baicalin treatment. Baicalin also significantly down-regulated p-MAPK, p-Akt, p-p50, p-p65, and p-IκBα in IL-1β-stimulated nasal fibroblasts. Conclusions We showed that baicalin down-regulated myofibroblast differentiation, extracellular matrix production, migration, and collagen contraction via the MAPK and Akt/ NF-κB pathways in IL-1β-stimulated nasal fibroblasts. PMID:28002421

  4. The emerging role of skeletal muscle extracellular matrix remodelling in obesity and exercise.

    PubMed

    Martinez-Huenchullan, S; McLennan, S V; Verhoeven, A; Twigg, S M; Tam, C S

    2017-07-01

    Skeletal muscle extracellular matrix remodelling has been proposed as a new feature associated with obesity and metabolic dysfunction. Exercise training improves muscle function in obesity, which may be mediated by regulatory effects on the muscle extracellular matrix. This review examined available literature on skeletal muscle extracellular matrix remodelling during obesity and the effects of exercise. A non-systematic literature review was performed on PubMed of publications from 1970 to 2015. A total of 37 studies from humans and animals were retained. Studies reported overall increases in gene and protein expression of different types of collagen, growth factors and enzymatic regulators of the skeletal muscle extracellular matrix in obesity. Only two studies investigated the effects of exercise on skeletal muscle extracellular matrix during obesity, with both suggesting a regulatory effect of exercise. The effects of exercise on muscle extracellular matrix seem to be influenced by the duration and type of exercise training with variable effects from a single session compared with a longer duration of exercise. More studies are needed to elucidate the mechanisms behind skeletal muscle extracellular matrix remodelling during obesity and the effects of exercise. © 2017 World Obesity Federation.

  5. VANGL2 interacts with integrin αv to regulate matrix metalloproteinase activity and cell adhesion to the extracellular matrix.

    PubMed

    Jessen, Tammy N; Jessen, Jason R

    2017-12-15

    Planar cell polarity (PCP) proteins are implicated in a variety of morphogenetic processes including embryonic cell migration and potentially cancer progression. During zebrafish gastrulation, the transmembrane protein Vang-like 2 (VANGL2) is required for PCP and directed cell migration. These cell behaviors occur in the context of a fibrillar extracellular matrix (ECM). While it is thought that interactions with the ECM regulate cell migration, it is unclear how PCP proteins such as VANGL2 influence these events. Using an in vitro cell culture model system, we previously showed that human VANGL2 negatively regulates membrane type-1 matrix metalloproteinase (MMP14) and activation of secreted matrix metalloproteinase 2 (MMP2). Here, we investigated the functional relationship between VANGL2, integrin αvβ3, and MMP2 activation. We provide evidence that VANGL2 regulates cell surface integrin αvβ3 expression and adhesion to fibronectin, laminin, and vitronectin. Inhibition of MMP14/MMP2 activity suppressed the cell adhesion defect in VANGL2 knockdown cells. Furthermore, our data show that MMP14 and integrin αv are required for increased proteolysis by VANGL2 knockdown cells. Lastly, we have identified integrin αvβ3 as a novel VANGL2 binding partner. Together, these findings begin to dissect the molecular underpinnings of how VANGL2 regulates MMP activity and cell adhesion to the ECM. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. An extracellular-matrix-specific GEF-GAP interaction regulates Rho GTPase crosstalk for 3D collagen migration.

    PubMed

    Kutys, Matthew L; Yamada, Kenneth M

    2014-09-01

    Rho-family GTPases govern distinct types of cell migration on different extracellular matrix proteins in tissue culture or three-dimensional (3D) matrices. We searched for mechanisms selectively regulating 3D cell migration in different matrix environments and discovered a form of Cdc42-RhoA crosstalk governing cell migration through a specific pair of GTPase activator and inhibitor molecules. We first identified βPix, a guanine nucleotide exchange factor (GEF), as a specific regulator of migration in 3D collagen using an affinity-precipitation-based GEF screen. Knockdown of βPix specifically blocks cell migration in fibrillar collagen microenvironments, leading to hyperactive cellular protrusion accompanied by increased collagen matrix contraction. Live FRET imaging and RNAi knockdown linked this βPix knockdown phenotype to loss of polarized Cdc42 but not Rac1 activity, accompanied by enhanced, de-localized RhoA activity. Mechanistically, collagen phospho-regulates βPix, leading to its association with srGAP1, a GTPase-activating protein (GAP), needed to suppress RhoA activity. Our results reveal a matrix-specific pathway controlling migration involving a GEF-GAP interaction of βPix with srGAP1 that is critical for maintaining suppressive crosstalk between Cdc42 and RhoA during 3D collagen migration.

  7. Mef2c Regulates Transcription of the Extracellular Matrix Protein Cartilage Link Protein 1 in the Developing Murine Heart

    PubMed Central

    Phelps, Aimee L.; Ghatnekar, Angela V.; Barth, Jeremy L.; Norris, Russell A.; Wessels, Andy

    2013-01-01

    Cartilage Link Protein 1 (Crtl1) is an extracellular matrix (ECM) protein that stabilizes the interaction between hyaluronan and versican and is expressed in endocardial and endocardially-derived cells in the developing heart, including cells in the atrioventricular (AV) and outflow tract (OFT) cushions. Previous investigations into the transcriptional regulation of the Crtl1 gene have shown that Sox9 regulates Crtl1 expression in both cartilage and the AV valves. The cardiac transcription factor Mef2c is involved in the regulation of gene expression in cardiac and skeletal muscle cell lineages. In this study we have investigated the potential role of Mef2c in the regulation of ECM production in the endocardial and mesenchymal cell lineages of the developing heart. We demonstrate that the Crtl1 5′ flanking region contains two highly conserved Mef2 binding sites and that Mef2c is able to bind to these sites in vivo during cardiovascular development. Additionally, we show that Crtl1 transcription is dependent on Mef2c expression in fetal mitral valve interstitial cells (VICs). Combined, these findings highlight a new role for Mef2c in cardiac development and the regulation of cardiac extracellular matrix protein expression. PMID:23468913

  8. An Ichor-dependent apical extracellular matrix regulates seamless tube shape and integrity

    PubMed Central

    Rosa, Jeffrey B.; Metzstein, Mark M.

    2018-01-01

    During sprouting angiogenesis in the vertebrate vascular system, and primary branching in the Drosophila tracheal system, specialized tip cells direct branch outgrowth and network formation. When tip cells lumenize, they form subcellular (seamless) tubes. How these seamless tubes are made, shaped and maintained remains poorly understood. Here we characterize a Drosophila mutant called ichor (ich), and show that ich is essential for the integrity and shape of seamless tubes in tracheal terminal cells. We find that Ich regulates seamless tubulogenesis via its role in promoting the formation of a mature apical extracellular matrix (aECM) lining the lumen of the seamless tubes. We determined that ich encodes a zinc finger protein (CG11966) that acts, as a transcriptional activator required for the expression of multiple aECM factors, including a novel membrane-anchored trypsin protease (CG8213). Thus, the integrity and shape of seamless tubes are regulated by the aECM that lines their lumens. PMID:29309404

  9. Niche Extracellular Matrix Components and Their Influence on HSC.

    PubMed

    Domingues, Mélanie J; Cao, Huimin; Heazlewood, Shen Y; Cao, Benjamin; Nilsson, Susan K

    2017-08-01

    Maintenance of hematopoietic stem cells (HSC) takes place in a highly specialized microenvironment within the bone marrow. Technological improvements, especially in the field of in vivo imaging, have helped unravel the complexity of the niche microenvironment and have completely changed the classical concept from what was previously believed to be a static supportive platform, to a dynamic microenvironment tightly regulating HSC homeostasis through the complex interplay between diverse cell types, secreted factors, extracellular matrix molecules, and the expression of different transmembrane receptors. To add to the complexity, non-protein based metabolites have also been recognized as a component of the bone marrow niche. The objective of this review is to discuss the current understanding on how the different extracellular matrix components of the niche regulate HSC fate, both during embryonic development and in adulthood. Special attention will be provided to the description of non-protein metabolites, such as lipids and metal ions, which contribute to the regulation of HSC behavior. J. Cell. Biochem. 118: 1984-1993, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Tendon Functional Extracellular Matrix

    PubMed Central

    Screen, H.R.C.; Birk, D.E.; Kadler, K.E.; Ramirez, F; Young, M.F.

    2015-01-01

    This article is one of a series, summarising views expressed at the Orthopaedic Research Society New Frontiers in Tendon Research Conference. This particular article reviews the three workshops held under the “Functional Extracellular Matrix” stream. The workshops focused on the roles of the tendon extracellular matrix, such as performing the mechanical functions of tendon, creating the local cell environment and providing cellular cues. Tendon is a complex network of matrix and cells, and its biological functions are influenced by widely-varying extrinsic and intrinsic factors such as age, nutrition, exercise levels and biomechanics. Consequently, tendon adapts dynamically during development, ageing and injury. The workshop discussions identified research directions associated with understanding cell-matrix interactions to be of prime importance for developing novel strategies to target tendon healing or repair. PMID:25640030

  11. Redox Signaling in Diabetic Wound Healing Regulates Extracellular Matrix Deposition.

    PubMed

    Kunkemoeller, Britta; Kyriakides, Themis R

    2017-10-20

    Impaired wound healing is a major complication of diabetes, and can lead to development of chronic foot ulcers in a significant number of patients. Despite the danger posed by poor healing, very few specific therapies exist, leaving patients at risk of hospitalization, amputation, and further decline in overall health. Recent Advances: Redox signaling is a key regulator of wound healing, especially through its influence on the extracellular matrix (ECM). Normal redox signaling is disrupted in diabetes leading to several pathological mechanisms that alter the balance between reactive oxygen species (ROS) generation and scavenging. Importantly, pathological oxidative stress can alter ECM structure and function. There is limited understanding of the specific role of altered redox signaling in the diabetic wound, although there is evidence that ROS are involved in the underlying pathology. Preclinical studies of antioxidant-based therapies for diabetic wound healing have yielded promising results. Redox-based therapeutics constitute a novel approach for the treatment of wounds in diabetes patients that deserve further investigation. Antioxid. Redox Signal. 27, 823-838.

  12. Extracellular Matrix and Liver Disease

    PubMed Central

    Arriazu, Elena; Ruiz de Galarreta, Marina; Cubero, Francisco Javier; Varela-Rey, Marta; Pérez de Obanos, María Pilar; Leung, Tung Ming; Lopategi, Aritz; Benedicto, Aitor; Abraham-Enachescu, Ioana

    2014-01-01

    Abstract Significance: The extracellular matrix (ECM) is a dynamic microenvironment that undergoes continuous remodeling, particularly during injury and wound healing. Chronic liver injury of many different etiologies such as viral hepatitis, alcohol abuse, drug-induced liver injury, obesity and insulin resistance, metabolic disorders, and autoimmune disease is characterized by excessive deposition of ECM proteins in response to persistent liver damage. Critical Issues: This review describes the main collagenous and noncollagenous components from the ECM that play a significant role in pathological matrix deposition during liver disease. We define how increased myofibroblasts (MF) from different origins are at the forefront of liver fibrosis and how liver cell-specific regulation of the complex scarring process occurs. Recent Advances: Particular attention is paid to the role of cytokines, growth factors, reactive oxygen species, and newly identified matricellular proteins in the regulation of fibrillar type I collagen, a field to which our laboratory has significantly contributed over the years. We compile data from recent literature on the potential mechanisms driving fibrosis resolution such as MF’ apoptosis, senescence, and reversal to quiescence. Future Directions: We conclude with a brief description of how epigenetics, an evolving field, can regulate the behavior of MF and of how new “omics” tools may advance our understanding of the mechanisms by which the fibrogenic response to liver injury occurs. Antioxid. Redox Signal. 21, 1078–1097. PMID:24219114

  13. Extracellular matrix and hormones transcriptionally regulate bovine. beta. -casein 5 prime sequences in stably transfected mouse mammary cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidhauser, C. Bissell, M.J.; Myers, C.A.; Casperson, G.F.

    1990-12-01

    Milk protein regulation involves synergistic action of lactogenic hormones and extracellular matrix (ECM). It is well established that substratum has a dramatic effect on morphology and function of mammary cells. The molecular mechanisms that regulate the ECM- and hormone-dependent gene expression, however, have not been resolved. To address this question, a subpopulation (designated CID 9) of the mouse mammary epithelial cell strain COMMA-2D has been developed in which more than 35% of the cells express {beta}-casein, form alveoli-like structures when plated onto a reconstituted basement membrane, and secrete {beta}-casein undirectionally into a lumen. These cells were stably transfected with amore » series of chloramphenicol acetyltransferase (CAT) fusion genes to study transcriptional regulation of the bovine {beta}-casein gene. The expression of CAT in these lines demonstrated a striking matrix and hormone dependency. This regulation occurered primarily at the transcriptional level and was dependent on the length of the 5{prime} flanking region of the {beta}-casein promotor. Both matrix and hormonal control of transcription occurred within at least the first 1790 base pairs upstream and/or 42 base pairs downstream of the transcriptional initiation site. The ECM effect was independent of glucocorticoid stimulation. However, prolactin was essential and hydrocortisone further increased CAT expression. Endogenous {beta}-casein expression in these lines was similar to that of the parent CID 9 cells. Our data indicate the existence of matrix-dependent elements that regulate transcription.« less

  14. The Progressive Ankylosis Protein Regulates Cementum Apposition and Extracellular Matrix Composition

    PubMed Central

    Foster, B.L.; Nagatomo, K.J.; Bamashmous, S.O.; Tompkins, K.A.; Fong, H.; Dunn, D.; Chu, E.Y.; Guenther, C.; Kingsley, D.M.; Rutherford, R.B.; Somerman, M.J.

    2011-01-01

    Background/Aims Tooth root cementum is sensitive to modulation of inorganic pyrophosphate (PPi), an inhibitor of hydroxyapatite precipitation. Factors increasing PPi include progressive ankylosis protein (ANK) and ectonucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) while tissue nonspecific alkaline phosphatase hydrolyzes PPi. Studies here aimed to define the role of ANK in root and cementum by analyzing tooth development in Ank knock-out (KO) mice versus wild type. Materials and Methods: Periodontal development in KO versus control mice was analyzed by histology, histomorphometry, immunohistochemistry, in situ hybridization, electron microscopy, and nanoindentation. Cementoblast cultures were used in vitro to provide mechanistic underpinnings for PPi modulation of cell function. Results Over the course of root development, Ank KO cervical cementum became 8- to 12-fold thicker than control cervical cementum. Periodontal ligament width was maintained and other dentoalveolar tissues, including apical cementum, were unaltered. Cervical cementum uncharacteristically included numerous cells, from rapid cementogenesis. Ank KO increased osteopontin and dentin matrix protein 1 gene and protein expression, and markedly increased NPP1 protein expression in cementoblasts but not in other cell types. Conditional ablation of Ank in joints and periodontia confirmed a local role for ANK in cementogenesis. In vitro studies employing cementoblasts indicated that Ank and Enpp1 mRNA levels increased in step with mineral nodule formation, supporting a role for these factors in regulation of cementum matrix mineralization. Conclusion: ANK, by modulating local PPi, controls cervical cementum apposition and extracellular matrix. Loss of ANK created a local environment conducive to rapid cementogenesis; therefore, approaches modulating PPi in periodontal tissues have potential to promote cementum regeneration. PMID:21389671

  15. Substance P up-regulates matrix metalloproteinase-1 and down-regulates collagen in human lung fibroblast.

    PubMed

    Ramos, Carlos; Montaño, Martha; Cisneros, Jose; Sommer, Bettina; Delgado, Javier; Gonzalez-Avila, Georgina

    2007-01-01

    Substance P is involved in inflammatory processes, but its effect on extracellular matrix metabolism has not been studied; therefore, the authors evaluated its effect on collagen synthesis and degradation, expression of pro-alpha1(I) collagen, matrix metalloproteinase-1 and -2, and tissue inhibitor of metalloproteinase-1 and -2 in normal human lung fibroblast strains. Substance P induced a decrease in collagen biosynthesis, concomitant to a down-regulation of pro-alpha1(I) collagen mRNA. In contrast, an increase in collagen degradation was observed, accompanied with an up-regulation of matrix metalloproteinase-1. Substance P did not influence tissue inhibitor of metalloproteinase-1 and -2 or matrix metalloproteinase-2 expression. The results suggest that substance P participates in extracellular matrix metabolism.

  16. Interplay of matrix metalloproteinases, tissue inhibitors of metalloproteinases and their regulators in cardiac matrix remodeling.

    PubMed

    Li, Y Y; McTiernan, C F; Feldman, A M

    2000-05-01

    Myocardial fibrosis due to maladaptive extracellular matrix remodeling contributes to dysfunction of the failing heart. Further elucidation of the mechanism by which myocardial fibrosis and dilatation can be prevented or even reversed remains of great interest as a potential means to limit myocardial remodeling and dysfunction. Matrix metalloproteinases (MMPs) are the driving force behind extracellular matrix degradation during remodeling and are increased in the failing human heart. MMPs are regulated by a variety of growth factors, cytokines, and matrix fragments such as matrikines. In the present report, we discuss the regulation of MMPs, the role of MMPs in the development of cardiac fibrosis, and the modulation of MMP activity using gene transfer and knockout technologies. We also present recent findings from our laboratory on the regulation of the extracellular MMP inducer (EMMPRIN), MMPs, and transforming growth factor-beta(1) in the failing human heart before and after left ventricular assist device support, as well as the possibility of preventing ventricular fibrosis using different anti-MMP strategies. Several studies suggest that such modulation of MMP activity can alter ventricular remodeling, myocardial dysfunction, and the progression of heart failure. It is therefore suggested that the interplay of MMPs and their regulators is important in the development of the heart failure phenotype, and myocardial fibrosis in heart failure may be modified by modulating MMP activity.

  17. The extracellular matrix in myocardial injury, repair, and remodeling

    PubMed Central

    2017-01-01

    The cardiac extracellular matrix (ECM) not only provides mechanical support, but also transduces essential molecular signals in health and disease. Following myocardial infarction, dynamic ECM changes drive inflammation and repair. Early generation of bioactive matrix fragments activates proinflammatory signaling. The formation of a highly plastic provisional matrix facilitates leukocyte infiltration and activates infarct myofibroblasts. Deposition of matricellular proteins modulates growth factor signaling and contributes to the spatial and temporal regulation of the reparative response. Mechanical stress due to pressure and volume overload and metabolic dysfunction also induce profound changes in ECM composition that contribute to the pathogenesis of heart failure. This manuscript reviews the role of the ECM in cardiac repair and remodeling and discusses matrix-based therapies that may attenuate remodeling while promoting repair and regeneration. PMID:28459429

  18. Quantitative proteomics reveals altered expression of extracellular matrix related proteins of human primary dermal fibroblasts in response to sulfated hyaluronan and collagen applied as artificial extracellular matrix.

    PubMed

    Müller, Stephan A; van der Smissen, Anja; von Feilitzsch, Margarete; Anderegg, Ulf; Kalkhof, Stefan; von Bergen, Martin

    2012-12-01

    Fibroblasts are the main matrix producing cells of the dermis and are also strongly regulated by their matrix environment which can be used to improve and guide skin wound healing processes. Here, we systematically investigated the molecular effects on primary dermal fibroblasts in response to high-sulfated hyaluronan [HA] (hsHA) by quantitative proteomics. The comparison of non- and high-sulfated HA revealed regulation of 84 of more than 1,200 quantified proteins. Based on gene enrichment we found that sulfation of HA alters extracellular matrix remodeling. The collagen degrading enzymes cathepsin K, matrix metalloproteinases-2 and -14 were found to be down-regulated on hsHA. Additionally protein expression of thrombospondin-1, decorin, collagen types I and XII were reduced, whereas the expression of trophoblast glycoprotein and collagen type VI were slightly increased. This study demonstrates that global proteomics provides a valuable tool for revealing proteins involved in molecular effects of growth substrates for further material optimization.

  19. Thalidomide Accelerates the Degradation of Extracellular Matrix in Rat Hepatic Cirrhosis via Down-Regulation of Transforming Growth Factor-β1

    PubMed Central

    Meng, Qingshun; Liu, Jie; Wang, Chuanfang

    2015-01-01

    Purpose The degradation of the extracellular matrix has been shown to play an important role in the treatment of hepatic cirrhosis. In this study, the effect of thalidomide on the degradation of extracellular matrix was evaluated in a rat model of hepatic cirrhosis. Materials and Methods Cirrhosis was induced in Wistar rats by intraperitoneal injection of carbon tetrachloride (CCl4) three times weekly for 8 weeks. Then CCl4 was discontinued and thalidomide (100 mg/kg) or its vehicle was administered daily by gavage for 6 weeks. Serum hyaluronic acid, laminin, procollagen type III, and collagen type IV were examined by using a radioimmunoassay. Matrix metalloproteinase-13 (MMP-13), tissue inhibitor of metalloproteinase-1 (TIMP-1), and α-smooth muscle actin (α-SMA) protein in the liver, transforming growth factor β1 (TGF-β1) protein in cytoplasm by using immunohistochemistry and Western blot analysis, and MMP-13, TIMP-1, and TGF-β1 mRNA levels in the liver were studied using reverse transcriptase polymerase chain reaction. Results Liver histopathology was significantly better in rats given thalidomide than in the untreated model group. The levels of TIMP-1 and TGF-β1 mRNA and protein expressions were decreased significantly and MMP-13 mRNA and protein in the liver were significantly elevated in the thalidomide-treated group. Conclusion Thalidomide may exert its effects on the regulation of MMP-13 and TIMP-1 via inhibition of the TGF-β1 signaling pathway, which enhances the degradation of extracellular matrix and accelerates the regression of hepatic cirrhosis in rats. PMID:26446639

  20. Extracellular redox state regulates features associated with prostate cancer cell invasion.

    PubMed

    Chaiswing, Luksana; Zhong, Weixiong; Cullen, Joseph J; Oberley, Larry W; Oberley, Terry D

    2008-07-15

    We have examined the possible role of extracellular reduction-oxidation (redox) state in regulation of biological/biochemical features associated with prostate cancer cell invasion. DU145, PC-3, and RWPE1-derived human prostate cancer (WPE1-NB26) cell lines were used for the present in vitro analysis. Increasing levels of nitric oxide using S-nitroso-N-acetylpenicillamine resulted in a decrease in cell invasion ability, whereas increasing levels of extracellular superoxide radical (O(2)(*-)) using xanthine/xanthine oxidase resulted in an increase in cell invasion ability in these three cell lines. WPE1-NB26 cells exhibited an increased glutathione/glutathione disulfide ratio in the medium in comparison with RWPE1 cells (immortalized but nonmalignant prostate epithelial cells), suggesting an alteration of extracellular redox state of WPE1-NB26 cells. We hypothesized that O(2)(*-) production at or near the plasma membrane or in the adjacent extracellular matrix at least partially regulated prostate cancer cell invasion. Using adenovirus-mediated extracellular superoxide dismutase (EC-SOD) gene transduction to enzymatically decrease O(2)(*-) levels, we showed that in the presence of heparin, adenovirus EC-SOD gene transduction resulted in an increase in the expression of EC-SOD outside the cells with resultant inhibition of cell invasion ability. This inhibition correlated with reduced metalloproteinase [matrix metalloproteinase (MMP) 2/membrane type 1-MMP] activities and increased levels of extracellular nitrite. Our results suggest a prominent role of extracellular redox status in regulation of cell invasion, which may provide opportunities for therapeutic interventions.

  1. The role of extracellular matrix metalloproteinase inducer (EMMPRIN) in the regulation of bovine endometrial cell functions.

    PubMed

    Mishra, Birendra; Kizaki, Keiichiro; Sato, Takashi; Ito, Akira; Hashizume, Kazuyoshi

    2012-06-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) is a cell surface glycoprotein that stimulates the production of several matrix metalloproteinases (MMPs) for tissue remodeling. Previously, we detected EMMPRIN in the bovine endometrium, and it is mainly expressed in the luminal and glandular epithelium whereas MMPs are expressed in the underlying stroma. From this expression pattern, we hypothesized that EMMPRIN may regulate stromal MMPs in endometrial cell functions. To test this hypothesis, a coculture of epithelial and stromal cells was performed using a transwell system. In the coculture, epithelial cells were cultured on the insert membrane and stromal cell on the surface of well plates. Expression of stromal MMP-2 and MMP-14 was significantly higher in coculture with epithelial cell. Further, with the addition of anti-EMMPRIN antibody into the epithelial cell compartment, the expression of stromal EMMPRIN and MMP-2 and MMP-14 was decreased. To identify the active site of EMMPRIN for the augmentation of MMPs, EMMPRIN synthetic peptides that correspond to the extracellular loop domain-I (EM1, EM2, EM3, and EM4) were added into the epithelial cell compartment, and only EM2 at a higher dose interfered with EMMPRIN-mediated expression of MMP-14. Next, we examined the effects of progesterone and/or estrogen on the expression of EMMPRIN, MMP-2, and MMP-14. Progesterone (300 nM) significantly stimulated the expression of EMMPRIN but had no effects on any of the MMPs. These results suggest that EMMPRIN derived from epithelial cells regulates MMPs in the endometrium under progesterone-rich conditions and may thereby modulate bovine endometrial cell functions during gestation.

  2. Targeting extracellular matrix remodeling in disease: Could resveratrol be a potential candidate?

    PubMed

    Agarwal, Renu; Agarwal, Puneet

    2017-02-01

    Disturbances of extracellular matrix homeostasis are associated with a number of pathological conditions. The ability of extracellular matrix to provide contextual information and hence control the individual or collective cellular behavior is increasingly being recognized. Hence, newer therapeutic approaches targeting extracellular matrix remodeling are widely investigated. We reviewed the current literature showing the effects of resveratrol on various aspects of extracellular matrix remodeling. This review presents a summary of the effects of resveratrol on extracellular matrix deposition and breakdown. Mechanisms of action of resveratrol in extracellular matrix deposition involving growth factors and their signaling pathways are discussed. Involvement of phosphoinositol-3-kinase/Akt and mitogen-activated protein kinase pathways and role of transcription factors and sirtuins on the effects of resveratrol on extracellular matrix homeostasis are summarized. It is evident from the literature presented in this review that resveratrol has significant effects on both the synthesis and breakdown of extracellular matrix. The major molecular targets of the action of resveratrol are growth factors and their signaling pathways, phosphoinositol-3-kinase/Akt and mitogen-activated protein kinase pathways, transcription factors, and SIRT-1. The effects of resveratrol on extracellular matrix and the molecular targets appear to be related to experimental models, experimental environment as well as the doses.

  3. Targeting extracellular matrix remodeling in disease: Could resveratrol be a potential candidate?

    PubMed Central

    Agarwal, Puneet

    2016-01-01

    Disturbances of extracellular matrix homeostasis are associated with a number of pathological conditions. The ability of extracellular matrix to provide contextual information and hence control the individual or collective cellular behavior is increasingly being recognized. Hence, newer therapeutic approaches targeting extracellular matrix remodeling are widely investigated. We reviewed the current literature showing the effects of resveratrol on various aspects of extracellular matrix remodeling. This review presents a summary of the effects of resveratrol on extracellular matrix deposition and breakdown. Mechanisms of action of resveratrol in extracellular matrix deposition involving growth factors and their signaling pathways are discussed. Involvement of phosphoinositol-3-kinase/Akt and mitogen-activated protein kinase pathways and role of transcription factors and sirtuins on the effects of resveratrol on extracellular matrix homeostasis are summarized. It is evident from the literature presented in this review that resveratrol has significant effects on both the synthesis and breakdown of extracellular matrix. The major molecular targets of the action of resveratrol are growth factors and their signaling pathways, phosphoinositol-3-kinase/Akt and mitogen-activated protein kinase pathways, transcription factors, and SIRT-1. The effects of resveratrol on extracellular matrix and the molecular targets appear to be related to experimental models, experimental environment as well as the doses. PMID:27798117

  4. Clonorchis sinensis excretory-secretory products regulate migration and invasion in cholangiocarcinoma cells via extracellular signal-regulated kinase 1/2/nuclear factor-κB-dependent matrix metalloproteinase-9 expression.

    PubMed

    Pak, Jhang Ho; Shin, Jimin; Song, In-Sung; Shim, Sungbo; Jang, Sung-Wuk

    2017-01-01

    Matrix metalloproteinase-9 plays an important role in the invasion and metastasis of various types of cancer cells. We have previously reported that excretory-secretory products from Clonorchis sinensis increases matrix metalloproteinase-9 expression. However, the regulatory mechanisms through which matrix metalloproteinase-9 expression affects cholangiocarcinoma development remain unclear. In the current study, we examined the potential role of excretory-secretory products in regulating the migration and invasion of various cholangiocarcinoma cell lines. We demonstrated that excretory-secretory products significantly induced matrix metalloproteinase-9 expression and activity in a concentration-dependent manner. Reporter gene and chromatin immunoprecipitation assays showed that excretory-secretory products induced matrix metalloproteinase-9 expression by enhancing the activity of nuclear factor-kappa B. Moreover, excretory-secretory products induced the degradation and phosphorylation of IκBα and stimulated nuclear factor-kappa B p65 nuclear translocation, which was regulated by extracellular signal-regulated kinase 1/2. Taken together, our findings indicated that the excretory-secretory product-dependent enhancement of matrix metalloproteinase-9 activity and subsequent induction of IκBα and nuclear factor-kappa B activities may contribute to the progression of cholangiocarcinoma. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  5. Extracellular matrix protein 1, a direct targeting molecule of parathyroid hormone-related peptide, negatively regulates chondrogenesis and endochondral ossification via associating with progranulin growth factor.

    PubMed

    Kong, Li; Zhao, Yun-Peng; Tian, Qing-Yun; Feng, Jian-Quan; Kobayashi, Tatsuya; Merregaert, Joseph; Liu, Chuan-Ju

    2016-08-01

    Chondrogenesis and endochondral ossification are precisely controlled by cellular interactions with surrounding matrix proteins and growth factors that mediate cellular signaling pathways. Here, we report that extracellular matrix protein 1 (ECM1) is a previously unrecognized regulator of chondrogenesis. ECM1 is induced in the course of chondrogenesis and its expression in chondrocytes strictly depends on parathyroid hormone-related peptide (PTHrP) signaling pathway. Overexpression of ECM1 suppresses, whereas suppression of ECM1 enhances, chondrocyte differentiation and hypertrophy in vitro and ex vivo In addition, target transgene of ECM1 in chondrocytes or osteoblasts in mice leads to striking defects in cartilage development and endochondral bone formation. Of importance, ECM1 seems to be critical for PTHrP action in chondrogenesis, as blockage of ECM1 nearly abolishes PTHrP regulation of chondrocyte hypertrophy, and overexpression of ECM1 rescues disorganized growth plates of PTHrP-null mice. Furthermore, ECM1 and progranulin chondrogenic growth factor constitute an interaction network and act in concert in the regulation of chondrogenesis.-Kong, L., Zhao, Y.-P., Tian, Q.-Y., Feng, J.-Q., Kobayashi, T., Merregaert, J., Liu, C.-J. Extracellular matrix protein 1, a direct targeting molecule of parathyroid hormone-related peptide, negatively regulates chondrogenesis and endochondral ossification via associating with progranulin growth factor. © FASEB.

  6. Hypoxic stellate cells of pancreatic cancer stroma regulate extracellular matrix fiber organization and cancer cell motility.

    PubMed

    Sada, Masafumi; Ohuchida, Kenoki; Horioka, Kohei; Okumura, Takashi; Moriyama, Taiki; Miyasaka, Yoshihiro; Ohtsuka, Takao; Mizumoto, Kazuhiro; Oda, Yoshinao; Nakamura, Masafumi

    2016-03-28

    Desmoplasia and hypoxia in pancreatic cancer mutually affect each other and create a tumor-supportive microenvironment. Here, we show that microenvironment remodeling by hypoxic pancreatic stellate cells (PSCs) promotes cancer cell motility through alteration of extracellular matrix (ECM) fiber architecture. Three-dimensional (3-D) matrices derived from PSCs under hypoxia exhibited highly organized parallel-patterned matrix fibers compared with 3-D matrices derived from PSCs under normoxia, and promoted cancer cell motility by inducing directional migration of cancer cells due to the parallel fiber architecture. Microarray analysis revealed that procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2) in PSCs was the gene that potentially regulates ECM fiber architecture under hypoxia. Stromal PLOD2 expression in surgical specimens of pancreatic cancer was confirmed by immunohistochemistry. RNA interference-mediated knockdown of PLOD2 in PSCs blocked parallel fiber architecture of 3-D matrices, leading to decreased directional migration of cancer cells within the matrices. In conclusion, these findings indicate that hypoxia-induced PLOD2 expression in PSCs creates a permissive microenvironment for migration of cancer cells through architectural regulation of stromal ECM in pancreatic cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Hypoxic Regulation of Functional Extracellular Matrix Elaboration by Nucleus Pulposus Cells in Long-Term Agarose Culture

    PubMed Central

    Gorth, Deborah J; Lothstein, Katherine E; Chiaro, Joseph A; Farrell, Megan J; Dodge, George R; Elliott, Dawn M; Malhotra, Neil R; Mauck, Robert L; Smith, Lachlan J

    2015-01-01

    Degeneration of the intervertebral discs is strongly implicated as a cause of low back pain. Since current treatments for discogenic low back pain show poor long-term efficacy, a number of new, biological strategies are being pursued. For such therapies to succeed, it is critical that they be validated in conditions that mimic the unique biochemical microenvironment of the nucleus pulposus (NP), which include low oxygen tension. Therefore, the objective of this study was to investigate the effects of oxygen tension on NP cell functional extracellular matrix elaboration in 3D culture. Bovine NP cells were encapsulated in agarose constructs and cultured for 14 or 42 days in either 20% or 2% oxygen in defined media containing transforming growth factor beta-3. At each time point, extracellular matrix composition, biomechanics and mRNA expression of key phenotypic markers were evaluated. Results showed that while bulk mechanics and composition were largely independent of oxygen level, low oxygen promoted improved restoration of the NP phenotype, higher mRNA expression of extracellular matrix and NP specific markers, and more uniform matrix elaboration. These findings indicate that culture under physiological oxygen levels is an important consideration for successful development of cell and growth factor-based regenerative strategies for the disc. PMID:25640328

  8. The Extracellular Matrix of Candida albicans Biofilms Impairs Formation of Neutrophil Extracellular Traps.

    PubMed

    Johnson, Chad J; Cabezas-Olcoz, Jonathan; Kernien, John F; Wang, Steven X; Beebe, David J; Huttenlocher, Anna; Ansari, Hamayail; Nett, Jeniel E

    2016-09-01

    Neutrophils release extracellular traps (NETs) in response to planktonic C. albicans. These complexes composed of DNA, histones, and proteins inhibit Candida growth and dissemination. Considering the resilience of Candida biofilms to host defenses, we examined the neutrophil response to C. albicans during biofilm growth. In contrast to planktonic C. albicans, biofilms triggered negligible release of NETs. Time lapse imaging confirmed the impairment in NET release and revealed neutrophils adhering to hyphae and migrating on the biofilm. NET inhibition depended on an intact extracellular biofilm matrix as physical or genetic disruption of this component resulted in NET release. Biofilm inhibition of NETosis could not be overcome by protein kinase C activation via phorbol myristate acetate (PMA) and was associated with suppression of neutrophil reactive oxygen species (ROS) production. The degree of impaired NET release correlated with resistance to neutrophil attack. The clinical relevance of the role for extracellular matrix in diminishing NET production was corroborated in vivo using a rat catheter model. The C. albicans pmr1Δ/Δ, defective in production of matrix mannan, appeared to elicit a greater abundance of NETs by scanning electron microscopy imaging, which correlated with a decreased fungal burden. Together, these findings show that C. albicans biofilms impair neutrophil response through an inhibitory pathway induced by the extracellular matrix.

  9. Gonadotropin-releasing hormone analogues inhibit leiomyoma extracellular matrix despite presence of gonadal hormones.

    PubMed

    Malik, Minnie; Britten, Joy; Cox, Jeris; Patel, Amrita; Catherino, William H

    2016-01-01

    To determine the effect of GnRH analogues (GnRH-a) leuprolide acetate (LA) and cetrorelix acetate on gonadal hormone-regulated expression of extracellular matrix in uterine leiomyoma three-dimensional (3D) cultures. Laboratory study. University research laboratory. Women undergoing hysterectomy for symptomatic leiomyomas. The 3D cell cultures, protein analysis, Western blot, immunohistochemistry. Expression of extracellular matrix proteins, collagen 1, fibronectin, and versican in leiomyoma cells 3D cultures exposed to E2, P, LA, cetrorelix acetate, and combinations for 24- and 72-hour time points. The 3D leiomyoma cultures exposed to E2 for 24 hours demonstrated an increased expression of collagen-1 and fibronectin, which was maintained for up to 72 hours, a time point at which versican was up-regulated significantly. Although P up-regulated collagen-1 protein (1.29 ± 0.04) within 24 hours of exposure, significant increase in all extracellular matrix (ECM) proteins was observed when the gonadal hormones were used concomitantly. Significant decrease in the amount of ECM proteins was observed on use of GnRH-a, LA and cetrorelix, with 24-hour exposure. Both the compounds also significantly decreased ECM protein concentration despite the presence of E2 or both gonadal hormones. This study demonstrates that GnRH-a directly affect the gonadal hormone-regulated collagen-1, fibronectin, and versican production in their presence. These findings suggest that localized therapy with GnRH-a may inhibit leiomyoma growth even in the presence of endogenous gonadal hormone exposure, thereby providing a mechanism to eliminate the hypoestrogenic side effects associated with GnRH-a therapy. Published by Elsevier Inc.

  10. Remodelling the extracellular matrix in development and disease

    PubMed Central

    Bonnans, Caroline; Chou, Jonathan; Werb, Zena

    2015-01-01

    The extracellular matrix (ECM) is a highly dynamic structure that is present in all tissues and continuously undergoes controlled remodelling. This process involves quantitative and qualitative changes in the ECM, mediated by specific enzymes that are responsible for ECM degradation, such as metalloproteinases. The ECM interacts with cells to regulate diverse functions, including proliferation, migration and differentiation. ECM remodelling is crucial for regulating the morphogenesis of the intestine and lungs, as well as of the mammary and submandibular glands. Dysregulation of ECM composition, structure, stiffness and abundance contributes to several pathological conditions, such as fibrosis and invasive cancer. A better understanding of how the ECM regulates organ structure and function and of how ECM remodelling affects disease progression will contribute to the development of new therapeutics. PMID:25415508

  11. Innate Immune Cytokines, Fibroblast Phenotypes, and Regulation of Extracellular Matrix in Lung.

    PubMed

    Richards, Carl D

    2017-02-01

    Chronic inflammation can be caused by adaptive immune responses in autoimmune and allergic conditions, driven by a T lymphocyte subset balance (TH1, TH2, Th17, Th22, and/or Treg) and skewed cellular profiles in an antigen-specific manner. However, several chronic inflammatory diseases have no clearly defined adaptive immune mechanisms that drive chronicity. These conditions include those that affect the lung such as nonatopic asthma or idiopathic pulmonary fibrosis comprising significant health problems. The remodeling of extracellular matrix (ECM) causes organ dysfunction, and it is largely generated by fibroblasts as the major cell controlling net ECM. As such, these are potential targets of treatment approaches in the context of ECM pathology. Fibroblast phenotypes contribute to ECM and inflammatory cell accumulation, and they are integrated into chronic disease mechanisms including cancer. Evidence suggests that innate cytokine responses may be critical in nonallergic/nonautoimmune disease, and they enable environmental agent exposure mechanisms that are independent of adaptive immunity. Innate immune cytokines derived from macrophage subsets (M1/M2) and innate lymphoid cell (ILC) subsets can directly regulate fibroblast function. We also suggest that STAT3-activating gp130 cytokines can sensitize fibroblasts to the innate cytokine milieu to drive phenotypes and exacerbate existing adaptive responses. Here, we review evidence exploring innate cytokine regulation of fibroblast behavior.

  12. Nectin-like molecule 1 inhibits the migration and invasion of U251 glioma cells by regulating the expression of an extracellular matrix protein osteopontin.

    PubMed

    Yin, Bin; Li, Ke-han; An, Tai; Chen, Tao; Peng, Xiao-zhong

    2010-06-01

    To investigate the molecular mechanism of nectin-like molecule 1 (NECL1) inhibiting the migration and invasion of U251 glioma cells. We infected U251 glioma cells with adeno-nectin-like molecule 1 (Ad-NECL1) or empty adenovirus (Ad). Transwell and wound healing assays were performed to observe the migration of U251 cells incubated with the cell supernatant from Ad-NECL1 or Ad infected U251 cells. DNA microarray was applied to screen the gene expression profile after the restoration of NECL1 in U251 glioma cell lines. The differential expression of osteopontin (OPN), a gene related to migration and invasion, was further analyzed with semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR), Western blot, and immunohistochemistry. The restoration of NECL1 inhibited migration of U251 cells significantly (P<0.05). Altogether 195 genes were found differentially expressed by microarray, in which 175 were up-regulated and 20 down-regulated, including 9 extracellular matrix proteins involved in the migration of cells. Both mRNA and protein expressions of OPN, the most markedly reduced extracellular matrix protein, were found decreased in U251 cells after restoration of NECL1. Immunohistochemical assay also detected an increase of OPN in glioma tissues, related with the progressing of malignant grade. A link might exist between NECL1 and the extracellular matrix protein OPN in inhibiting the migration and invasion of U251 glioma cells.

  13. Extracellular matrix protein 1, a direct targeting molecule of parathyroid hormone–related peptide, negatively regulates chondrogenesis and endochondral ossification via associating with progranulin growth factor

    PubMed Central

    Kong, Li; Zhao, Yun-Peng; Tian, Qing-Yun; Feng, Jian-Quan; Kobayashi, Tatsuya; Merregaert, Joseph; Liu, Chuan-Ju

    2016-01-01

    Chondrogenesis and endochondral ossification are precisely controlled by cellular interactions with surrounding matrix proteins and growth factors that mediate cellular signaling pathways. Here, we report that extracellular matrix protein 1 (ECM1) is a previously unrecognized regulator of chondrogenesis. ECM1 is induced in the course of chondrogenesis and its expression in chondrocytes strictly depends on parathyroid hormone–related peptide (PTHrP) signaling pathway. Overexpression of ECM1 suppresses, whereas suppression of ECM1 enhances, chondrocyte differentiation and hypertrophy in vitro and ex vivo. In addition, target transgene of ECM1 in chondrocytes or osteoblasts in mice leads to striking defects in cartilage development and endochondral bone formation. Of importance, ECM1 seems to be critical for PTHrP action in chondrogenesis, as blockage of ECM1 nearly abolishes PTHrP regulation of chondrocyte hypertrophy, and overexpression of ECM1 rescues disorganized growth plates of PTHrP-null mice. Furthermore, ECM1 and progranulin chondrogenic growth factor constitute an interaction network and act in concert in the regulation of chondrogenesis.—Kong, L., Zhao, Y.-P., Tian, Q.-Y., Feng, J.-Q., Kobayashi, T., Merregaert, J., Liu, C.-J. Extracellular matrix protein 1, a direct targeting molecule of parathyroid hormone–related peptide, negatively regulates chondrogenesis and endochondral ossification via associating with progranulin growth factor. PMID:27075243

  14. Degradation of extracellular matrix by mouse trophoblast outgrowths: a model for implantation

    PubMed Central

    Glass, RH; Aggeler, J; Spindle, A; Pederson, RA; Werb, Z

    1983-01-01

    During implantation the embryo attaches to the endometrial surface and trophoblast traverses the uterine epithelium, anchoring in the uterine connective tissue. To determine whether trophoblast can facilitate invasion of the uterus by degrading components of normal uterine extracellular matrix, mouse blastocysts were cultured on a radio-labeled extracellular matrix that contained glycoproteins, elastin, and collagen. The embryos attached to the matrix, and trophoblast spread over the surface. Starting on day 5 of culture there was a release of labeled peptides into the medium. The radioactive peptides released from the matrix by the embryos had molecular weights ranging from more than 25,000 to more than 200. By day 7 there were areas where individual trophoblast cells had separated from one another, revealing the underlying substratum that was cleared of matrix. When trophoblast cells were lysed with NH(4)OH on day 8, it was apparent that the area underneath the trophoblast outgrowth had been cleared of matrix. Scanning electron microscopy and time-lapse cinemicrography confirmed that the digestion of matrix was highly localized, taking place only underneath the trophoblast, with no evidence of digestion of the matrix beyond the periphery of the trophoblast outgrowth. The sharp boundaries of degredation observed may be due to localized proteinase secretion by trophoblast, to membrane proteinases on the surface of trophoblast, or to endocytosis. Digestion of the matrix was not dependent on plasminogen, thus ruling out a role for plasminogen activator. Digestion was not inhibited by a variety of hormones and inhibitors, including progesterone, 17β-estradiol, leupeptin, EDTA, colchicine, NH(4)Cl, or ε-aminocaproic acid. This system of culturing embryos on extracellular matrix may be useful in determining the processes that regulate trophoblast migration and invasion into the maternal tissues during implantation.0 PMID:6339525

  15. The Extracellular Matrix of Candida albicans Biofilms Impairs Formation of Neutrophil Extracellular Traps

    PubMed Central

    Cabezas-Olcoz, Jonathan; Wang, Steven X.; Huttenlocher, Anna; Ansari, Hamayail; Nett, Jeniel E.

    2016-01-01

    Neutrophils release extracellular traps (NETs) in response to planktonic C. albicans. These complexes composed of DNA, histones, and proteins inhibit Candida growth and dissemination. Considering the resilience of Candida biofilms to host defenses, we examined the neutrophil response to C. albicans during biofilm growth. In contrast to planktonic C. albicans, biofilms triggered negligible release of NETs. Time lapse imaging confirmed the impairment in NET release and revealed neutrophils adhering to hyphae and migrating on the biofilm. NET inhibition depended on an intact extracellular biofilm matrix as physical or genetic disruption of this component resulted in NET release. Biofilm inhibition of NETosis could not be overcome by protein kinase C activation via phorbol myristate acetate (PMA) and was associated with suppression of neutrophil reactive oxygen species (ROS) production. The degree of impaired NET release correlated with resistance to neutrophil attack. The clinical relevance of the role for extracellular matrix in diminishing NET production was corroborated in vivo using a rat catheter model. The C. albicans pmr1Δ/Δ, defective in production of matrix mannan, appeared to elicit a greater abundance of NETs by scanning electron microscopy imaging, which correlated with a decreased fungal burden. Together, these findings show that C. albicans biofilms impair neutrophil response through an inhibitory pathway induced by the extracellular matrix. PMID:27622514

  16. Cell adhesion molecules, the extracellular matrix and oral squamous carcinoma.

    PubMed

    Lyons, A J; Jones, J

    2007-08-01

    Carcinomas are characterized by invasion of malignant cells into the underlying connective tissue and migration of malignant cells to form metastases at distant sites. These processes require alterations in cell-cell and cell-extracellular matrix interactions. As cell adhesion molecules play a role in cell-cell and cell-extracellular matrix adhesion and interactions they are involved in the process of tumour invasion and metastases. In epithelial tissues, receptors of the integrin family mediate adhesion to the adjacent matrix whereas cadherins largely mediate intercellular adhesion. These and other cell adhesion molecules such as intercellular adhesion molecule-1, CD44, dystroglycans and selectins, are involved and undergo changes in carcinomas, which provide possible targets for anti-cancer drug treatments. In the extracellular matrix that is associated with tumours, laminin 5, oncofetal fibronectin and tenascin C appear. The degree of expression of some of these moieties indicates prognosis in oral cancer and offer targets for antibody-directed radiotherapy. Metalloproteases which degrade the extracellular matrix are increased in carcinomas, and their activity is necessary for tumour angiogenesis and consequent invasion and metastases. Metalloprotease inhibitors have begun to produce decreases in mortality in clinical trials. This report provides a brief overview of our current understanding of cell adhesion molecules, the extracellular matrix, tumour invasion and metastasis.

  17. Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms.

    PubMed

    Klein, Marlise I; Hwang, Geelsu; Santos, Paulo H S; Campanella, Osvaldo H; Koo, Hyun

    2015-01-01

    Biofilms are highly structured microbial communities that are enmeshed in a self-produced extracellular matrix. Within the complex oral microbiome, Streptococcus mutans is a major producer of extracellular polymeric substances including exopolysaccharides (EPS), eDNA, and lipoteichoic acid (LTA). EPS produced by S. mutans-derived exoenzymes promote local accumulation of microbes on the teeth, while forming a spatially heterogeneous and diffusion-limiting matrix that protects embedded bacteria. The EPS-rich matrix provides mechanical stability/cohesiveness and facilitates the creation of highly acidic microenvironments, which are critical for the pathogenesis of dental caries. In parallel, S. mutans also releases eDNA and LTA, which can contribute with matrix development. eDNA enhances EPS (glucan) synthesis locally, increasing the adhesion of S. mutans to saliva-coated apatitic surfaces and the assembly of highly cohesive biofilms. eDNA and other extracellular substances, acting in concert with EPS, may impact the functional properties of the matrix and the virulence of cariogenic biofilms. Enhanced understanding about the assembly principles of the matrix may lead to efficacious approaches to control biofilm-related diseases.

  18. Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms

    PubMed Central

    Klein, Marlise I.; Hwang, Geelsu; Santos, Paulo H. S.; Campanella, Osvaldo H.; Koo, Hyun

    2015-01-01

    Biofilms are highly structured microbial communities that are enmeshed in a self-produced extracellular matrix. Within the complex oral microbiome, Streptococcus mutans is a major producer of extracellular polymeric substances including exopolysaccharides (EPS), eDNA, and lipoteichoic acid (LTA). EPS produced by S. mutans-derived exoenzymes promote local accumulation of microbes on the teeth, while forming a spatially heterogeneous and diffusion-limiting matrix that protects embedded bacteria. The EPS-rich matrix provides mechanical stability/cohesiveness and facilitates the creation of highly acidic microenvironments, which are critical for the pathogenesis of dental caries. In parallel, S. mutans also releases eDNA and LTA, which can contribute with matrix development. eDNA enhances EPS (glucan) synthesis locally, increasing the adhesion of S. mutans to saliva-coated apatitic surfaces and the assembly of highly cohesive biofilms. eDNA and other extracellular substances, acting in concert with EPS, may impact the functional properties of the matrix and the virulence of cariogenic biofilms. Enhanced understanding about the assembly principles of the matrix may lead to efficacious approaches to control biofilm-related diseases. PMID:25763359

  19. Planar cell polarity proteins differentially regulate extracellular matrix organization and assembly during zebrafish gastrulation.

    PubMed

    Dohn, Michael R; Mundell, Nathan A; Sawyer, Leah M; Dunlap, Julie A; Jessen, Jason R

    2013-11-01

    Zebrafish gastrulation cell movements occur in the context of dynamic changes in extracellular matrix (ECM) organization and require the concerted action of planar cell polarity (PCP) proteins that regulate cell elongation and mediolateral alignment. Data obtained using Xenopus laevis gastrulae have shown that integrin-fibronectin interactions underlie the formation of polarized cell protrusions necessary for PCP and have implicated PCP proteins themselves as regulators of ECM. By contrast, the relationship between establishment of PCP and ECM assembly/remodeling during zebrafish gastrulation is unclear. We previously showed that zebrafish embryos carrying a null mutation in the four-pass transmembrane PCP protein vang-like 2 (vangl2) exhibit increased matrix metalloproteinase activity and decreased immunolabeling of fibronectin. These data implicated for the first time a core PCP protein in the regulation of pericellular proteolysis of ECM substrates and raised the question of whether other zebrafish PCP proteins also impact ECM organization. In Drosophila melanogaster, the cytoplasmic PCP protein Prickle binds Van Gogh and regulates its function. Here we report that similar to vangl2, loss of zebrafish prickle1a decreases fibronectin protein levels in gastrula embryos. We further show that Prickle1a physically binds Vangl2 and regulates both the subcellular distribution and total protein level of Vangl2. These data suggest that the ability of Prickle1a to impact fibronectin organization is at least partly due to effects on Vangl2. In contrast to loss of either Vangl2 or Prickle1a function, we find that glypican4 (a Wnt co-receptor) and frizzled7 mutant gastrula embryos with disrupted non-canonical Wnt signaling exhibit the opposite phenotype, namely increased fibronectin assembly. Our data show that glypican4 mutants do not have decreased proteolysis of ECM substrates, but instead have increased cell surface cadherin protein expression and increased intercellular

  20. Extracellular matrix components in breast cancer progression and metastasis.

    PubMed

    Oskarsson, Thordur

    2013-08-01

    The extracellular matrix (ECM) is composed of highly variable and dynamic components that regulate cell behavior. The protein composition and physical properties of the ECM govern cell fate through biochemical and biomechanical mechanisms. This requires a carefully orchestrated and thorough regulation considering that a disturbed ECM can have serious consequences and lead to pathological conditions like cancer. In breast cancer, many ECM proteins are significantly deregulated and specific matrix components promote tumor progression and metastatic spread. Intriguingly, several ECM proteins that are associated with breast cancer development, overlap substantially with a group of ECM proteins induced during the state of tissue remodeling such as mammary gland involution. Fibrillar collagens, fibronectin, hyaluronan and matricellular proteins are matrix components that are common to both involution and cancer. Moreover, some of these proteins have in recent years been identified as important constituents of metastatic niches in breast cancer. In addition, specific ECM molecules, their receptors or enzymatic modifiers are significantly involved in resistance to therapeutic intervention. Further analysis of these ECM proteins and the downstream ECM mediated signaling pathways may provide a range of possibilities to identify druggable targets against advanced breast cancer. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Extracellular matrix and cell shape: potential control points for inhibition of angiogenesis

    NASA Technical Reports Server (NTRS)

    Ingber, D.

    1991-01-01

    Capillary endothelial (CE) cells require two extracellular signals in order to switch from quiescence to growth and back to differentiation during angiogenesis: soluble angiogenic factors and insoluble extracellular matrix (ECM) molecules. Soluble endothelial mitogens, such as basic fibroblast growth factor (FGF), act over large distances to trigger capillary growth, whereas ECM molecules act locally to modulate cell responsiveness to these soluble cues. Recent studies reveal that ECM molecules regulate CE cell growth and differentiation by modulating cell shape and by activating intracellular chemical signaling pathways inside the cell. Recognition of the importance of ECM and cell shape during capillary morphogenesis has led to the identification of a series of new angiogenesis inhibitors. Elucidation of the molecular mechanism of capillary regulation may result in development of even more potent angiogenesis modulators in the future.

  2. KinD is a checkpoint protein linking spore formation to extracellular-matrix production in Bacillus subtilis biofilms.

    PubMed

    Aguilar, Claudio; Vlamakis, Hera; Guzman, Alejandra; Losick, Richard; Kolter, Roberto

    2010-05-18

    Bacillus subtilis cells form multicellular biofilm communities in which spatiotemporal regulation of gene expression occurs, leading to differentiation of multiple coexisting cell types. These cell types include matrix-producing and sporulating cells. Extracellular matrix production and sporulation are linked in that a mutant unable to produce matrix is delayed for sporulation. Here, we show that the delay in sporulation is not due to a growth advantage of the matrix-deficient mutant under these conditions. Instead, we show that the link between matrix production and sporulation is through the Spo0A signaling pathway. Both processes are regulated by the phosphorylated form of the master transcriptional regulator Spo0A. When cells have low levels of phosphorylated Spo0A (Spo0A~P), matrix genes are expressed; however, at higher levels of Spo0A~P, sporulation commences. We have found that Spo0A~P levels are maintained at low levels in the matrix-deficient mutant, thereby delaying expression of sporulation-specific genes. This is due to the activity of one of the components of the Spo0A phosphotransfer network, KinD. A deletion of kinD suppresses the sporulation defect of matrix mutants, while its overproduction delays sporulation. Our data indicate that KinD displays a dual role as a phosphatase or a kinase and that its activity is linked to the presence of extracellular matrix in the biofilms. We propose a novel role for KinD in biofilms as a checkpoint protein that regulates the onset of sporulation by inhibiting the activity of Spo0A until matrix, or a component therein, is sensed.

  3. KinD Is a Checkpoint Protein Linking Spore Formation to Extracellular-Matrix Production in Bacillus subtilis Biofilms

    PubMed Central

    Aguilar, Claudio; Vlamakis, Hera; Guzman, Alejandra; Losick, Richard; Kolter, Roberto

    2010-01-01

    ABSTRACT Bacillus subtilis cells form multicellular biofilm communities in which spatiotemporal regulation of gene expression occurs, leading to differentiation of multiple coexisting cell types. These cell types include matrix-producing and sporulating cells. Extracellular matrix production and sporulation are linked in that a mutant unable to produce matrix is delayed for sporulation. Here, we show that the delay in sporulation is not due to a growth advantage of the matrix-deficient mutant under these conditions. Instead, we show that the link between matrix production and sporulation is through the Spo0A signaling pathway. Both processes are regulated by the phosphorylated form of the master transcriptional regulator Spo0A. When cells have low levels of phosphorylated Spo0A (Spo0A~P), matrix genes are expressed; however, at higher levels of Spo0A~P, sporulation commences. We have found that Spo0A~P levels are maintained at low levels in the matrix-deficient mutant, thereby delaying expression of sporulation-specific genes. This is due to the activity of one of the components of the Spo0A phosphotransfer network, KinD. A deletion of kinD suppresses the sporulation defect of matrix mutants, while its overproduction delays sporulation. Our data indicate that KinD displays a dual role as a phosphatase or a kinase and that its activity is linked to the presence of extracellular matrix in the biofilms. We propose a novel role for KinD in biofilms as a checkpoint protein that regulates the onset of sporulation by inhibiting the activity of Spo0A until matrix, or a component therein, is sensed. PMID:20689749

  4. Effects of boron derivatives on extracellular matrix formation.

    PubMed

    Benderdour, M; Van Bui, T; Hess, K; Dicko, A; Belleville, F; Dousset, B

    2000-10-01

    Boric acid solution (3%) dramatically improves wound healing through action on the extracellular matrix, a finding that has been obtained in vitro. Consequently, investigations are presently underway to produce boronated compounds having a therapeutical effectiveness similar to that of boric acid. On the basis of experimental results obtained with boric acid, we examined the effects of boron derivatives on extracellular matrix formation and degradation and analyzed their potential toxicity by using two biological models (chick embryo cartilage and human fibroblasts). The four boron derivatives tested in this study (triethanolamine borate; N-diethyl-phosphoramidate-propylboronique acid; 2,2 dimethylhexyl-1,3-propanediol-aminopropylboronate and 1,2 propanediol-aminopropylboronate) mimicked the effects of boric acid. They induced a decrease of intracellular concentrations in extracellular matrix macromolecules (proteoglycans, proteins)-associated with an increase of their release in culture medium and stimulated the activity of intra- and extracellular proteases. Similarly to boric acid, these actions occurred after exposure of the cells to concentrations of all boron derivatives without apparent toxic effects. The compounds were found to be more toxic than boric acid itself when concentrations were calculated according to their molecular weight. Nevertheless, these in vitro preliminary results demonstrate effects of boron derivatives that may be of therapeutic benefit in wound repair.

  5. Extracellular matrix mineralization in periodontal tissues: Noncollagenous matrix proteins, enzymes, and relationship to hypophosphatasia and X-linked hypophosphatemia

    PubMed Central

    McKee, Marc D.; Hoac, Betty; Addison, William N.; Barros, Nilana M.T.; Millán, José Luis; Chaussain, Catherine

    2013-01-01

    As broadly demonstrated for the formation of a functional skeleton, proper mineralization of periodontal alveolar bone and teeth – where calcium phosphate crystals are deposited and grow within an extracellular matrix – is essential to dental function. Mineralization defects in tooth dentin and cementum of the periodontium invariably lead to a weak (soft or brittle) dentition such that teeth become loose and prone to infection and are lost prematurely. Mineralization of the extremities of periodontal ligament fibres (Sharpey's fibres) where they insert into tooth cementum and alveolar bone is also essential for the function of the tooth suspensory apparatus in occlusion and mastication. Molecular determinants of mineralization in these tissues include mineral ion concentrations (phosphate and calcium), pyrophosphate, small integrin-binding ligand N-linked glycoproteins (SIBLINGs), and matrix vesicles. Amongst the enzymes important in regulating these mineralization determinants, two are discussed at length here with clinical examples given, namely tissue-nonspecific alkaline phosphatase (TNAP) and phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PHEX). Inactivating mutations in these enzymes in humans and in mouse models lead to the soft bones and teeth characteristic of hypophosphatasia (HPP) and X-linked hypophosphatemia (XLH), respectively, where levels of local and systemic circulating mineralization determinants are perturbed. In XLH, in addition to renal phosphate wasting causing low circulating phosphate levels, phosphorylated mineralization-regulating SIBLING proteins such as matrix extracellular phosphoglycoprotein (MEPE) and osteopontin (OPN), and the phosphorylated peptides proteolytically released from them such as the acidic serine- and aspartate-rich motif (ASARM) peptide, may accumulate locally to impair mineralization in this disease. PMID:23931057

  6. Extracellular matrix in lung development, homeostasis and disease

    DOE PAGES

    Zhou, Yong; Horowitz, Jeffrey C.; Naba, Alexandra; ...

    2018-03-08

    Here, the lung's unique extracellular matrix (ECM), while providing structural support for cells, is critical in the regulation of developmental organogenesis, homeostasis and injury-repair responses. The ECM, via biochemical or biomechanical cues, regulates diverse cell functions, fate and phenotype. The composition and function of lung ECM become markedly deranged in pathological tissue remodeling. ECM-based therapeutics and bioengineering approaches represent promising novel strategies for regeneration/repair of the lung and treatment of chronic lung diseases. In this review, we assess the current state of lung ECM biology, including fundamental advances in ECM composition, dynamics, topography, and biomechanics; the role of the ECMmore » in normal and aberrant lung development, adult lung diseases and autoimmunity; and ECM in the regulation of the stem cell niche. We identify opportunities to advance the field of lung ECM biology and provide a set recommendations for research priorities to advance knowledge that would inform novel approaches to the pathogenesis, diagnosis, and treatment of chronic lung diseases.« less

  7. Extracellular matrix in lung development, homeostasis and disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yong; Horowitz, Jeffrey C.; Naba, Alexandra

    Here, the lung's unique extracellular matrix (ECM), while providing structural support for cells, is critical in the regulation of developmental organogenesis, homeostasis and injury-repair responses. The ECM, via biochemical or biomechanical cues, regulates diverse cell functions, fate and phenotype. The composition and function of lung ECM become markedly deranged in pathological tissue remodeling. ECM-based therapeutics and bioengineering approaches represent promising novel strategies for regeneration/repair of the lung and treatment of chronic lung diseases. In this review, we assess the current state of lung ECM biology, including fundamental advances in ECM composition, dynamics, topography, and biomechanics; the role of the ECMmore » in normal and aberrant lung development, adult lung diseases and autoimmunity; and ECM in the regulation of the stem cell niche. We identify opportunities to advance the field of lung ECM biology and provide a set recommendations for research priorities to advance knowledge that would inform novel approaches to the pathogenesis, diagnosis, and treatment of chronic lung diseases.« less

  8. Extracellular matrix in lung development, homeostasis and disease

    DOE PAGES

    Zhou, Yong; Horowitz, Jeffrey C.; Naba, Alexandra; ...

    2018-03-08

    The lung's unique extracellular matrix (ECM), while providing structural support for cells, is critical in the regulation of developmental organogenesis, homeostasis and injury-repair responses. The ECM, via biochemical or biomechanical cues, regulates diverse cell functions, fate and phenotype. The composition and function of lung ECM become markedly deranged in pathological tissue remodeling. ECM-based therapeutics and bioengineering approaches represent promising novel strategies for regeneration/repair of the lung and treatment of chronic lung diseases. In this paper, we assess the current state of lung ECM biology, including fundamental advances in ECM composition, dynamics, topography, and biomechanics; the role of the ECM inmore » normal and aberrant lung development, adult lung diseases and autoimmunity; and ECM in the regulation of the stem cell niche. Finally, we identify opportunities to advance the field of lung ECM biology and provide a set recommendations for research priorities to advance knowledge that would inform novel approaches to the pathogenesis, diagnosis, and treatment of chronic lung diseases.« less

  9. Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix

    PubMed Central

    Borlee, Bradley R; Goldman, Aaron D; Murakami, Keiji; Samudrala, Ram; Wozniak, Daniel J; Parsek, Matthew R

    2010-01-01

    Pseudomonas aeruginosa, the principal pathogen of cystic fibrosis patients, forms antibiotic-resistant biofilms promoting chronic colonization of the airways. The extracellular (EPS) matrix is a crucial component of biofilms that provides the community multiple benefits. Recent work suggests that the secondary messenger, cyclic-di-GMP, promotes biofilm formation. An analysis of factors specifically expressed in P. aeruginosa under conditions of elevated c-di-GMP, revealed functions involved in the production and maintenance of the biofilm extracellular matrix. We have characterized one of these components, encoded by the PA4625 gene, as a putative adhesin and designated it cdrA. CdrA shares structural similarities to extracellular adhesins that belong to two-partner secretion systems. The cdrA gene is in a two gene operon that also encodes a putative outer membrane transporter, CdrB. The cdrA gene encodes a 220 KDa protein that is predicted to be rod-shaped protein harbouring a β-helix structural motif. Western analysis indicates that the CdrA is produced as a 220 kDa proprotein and processed to 150 kDa before secretion into the extracellular medium. We demonstrated that cdrAB expression is minimal in liquid culture, but is elevated in biofilm cultures. CdrAB expression was found to promote biofilm formation and auto-aggregation in liquid culture. Aggregation mediated by CdrA is dependent on the Psl polysaccharide and can be disrupted by adding mannose, a key structural component of Psl. Immunoprecipitation of Psl present in culture supernatants resulted in co-immunoprecipitation of CdrA, providing additional evidence that CdrA directly binds to Psl. A mutation in cdrA caused a decrease in biofilm biomass and resulted in the formation of biofilms exhibiting decreased structural integrity. Psl-specific lectin staining suggests that CdrA either cross-links Psl polysaccharide polymers and/or tethers Psl to the cells, resulting in increased biofilm structural

  10. Myostatin regulates proliferation and extracellular matrix mRNA expression in NIH3T3 fibroblasts.

    PubMed

    Z Hosaka, Yoshinao; Ishibashi, Mika; Wakamatsu, Jun-Ichi; Uehara, Masato; Nishimura, Takanori

    2012-12-01

    The aim of this study was to clarify the effects of myostatin, which is a negative regulator of skeletal muscle mass, on the proliferation of NIH3T3 fibroblasts and the synthesis of extracellular matrix (ECM) by them. A proliferation assay revealed that myostatin attenuated cell growth at any of the doses used. High doses of myostatin strongly inhibited cell proliferation. Moreover, myostatin receptor, activin receptor type-2B (ActRIIB), was found to be distributed on cells and it was also clarified that myostatin increased the expression of cyclin-dependent kinase inhibitor p21 (p21). These results suggested that a high dose of myostatin inhibits fibroblast proliferation by the same mechanism as that for inhibition of myoblast proliferation. We then examined the effects of myostatin on the mRNA expression of ECM molecules (decorin, biglycan, type I collagen, type III collagen, type IV collagen and type V collagen) by real-time PCR. Real-time PCR showed that myostatin increased the mRNA of decorin, biglycan and collagen (types I, IV and V) in fibroblasts. The results suggest that myostatin regulates ECM synthesis in cultured fibroblasts.

  11. Macromolecularly crowded in vitro microenvironments accelerate the production of extracellular matrix-rich supramolecular assemblies

    PubMed Central

    Kumar, Pramod; Satyam, Abhigyan; Fan, Xingliang; Collin, Estelle; Rochev, Yury; Rodriguez, Brian J.; Gorelov, Alexander; Dillon, Simon; Joshi, Lokesh; Raghunath, Michael; Pandit, Abhay; Zeugolis, Dimitrios I.

    2015-01-01

    Therapeutic strategies based on the principles of tissue engineering by self-assembly put forward the notion that functional regeneration can be achieved by utilising the inherent capacity of cells to create highly sophisticated supramolecular assemblies. However, in dilute ex vivo microenvironments, prolonged culture time is required to develop an extracellular matrix-rich implantable device. Herein, we assessed the influence of macromolecular crowding, a biophysical phenomenon that regulates intra- and extra-cellular activities in multicellular organisms, in human corneal fibroblast culture. In the presence of macromolecules, abundant extracellular matrix deposition was evidenced as fast as 48 h in culture, even at low serum concentration. Temperature responsive copolymers allowed the detachment of dense and cohesive supramolecularly assembled living substitutes within 6 days in culture. Morphological, histological, gene and protein analysis assays demonstrated maintenance of tissue-specific function. Macromolecular crowding opens new avenues for a more rational design in engineering of clinically relevant tissue modules in vitro. PMID:25736020

  12. Macromolecularly crowded in vitro microenvironments accelerate the production of extracellular matrix-rich supramolecular assemblies.

    PubMed

    Kumar, Pramod; Satyam, Abhigyan; Fan, Xingliang; Collin, Estelle; Rochev, Yury; Rodriguez, Brian J; Gorelov, Alexander; Dillon, Simon; Joshi, Lokesh; Raghunath, Michael; Pandit, Abhay; Zeugolis, Dimitrios I

    2015-03-04

    Therapeutic strategies based on the principles of tissue engineering by self-assembly put forward the notion that functional regeneration can be achieved by utilising the inherent capacity of cells to create highly sophisticated supramolecular assemblies. However, in dilute ex vivo microenvironments, prolonged culture time is required to develop an extracellular matrix-rich implantable device. Herein, we assessed the influence of macromolecular crowding, a biophysical phenomenon that regulates intra- and extra-cellular activities in multicellular organisms, in human corneal fibroblast culture. In the presence of macromolecules, abundant extracellular matrix deposition was evidenced as fast as 48 h in culture, even at low serum concentration. Temperature responsive copolymers allowed the detachment of dense and cohesive supramolecularly assembled living substitutes within 6 days in culture. Morphological, histological, gene and protein analysis assays demonstrated maintenance of tissue-specific function. Macromolecular crowding opens new avenues for a more rational design in engineering of clinically relevant tissue modules in vitro.

  13. The extracellular matrix: Structure, composition, age-related differences, tools for analysis and applications for tissue engineering.

    PubMed

    Kular, Jaspreet K; Basu, Shouvik; Sharma, Ram I

    2014-01-01

    The extracellular matrix is a structural support network made up of diverse proteins, sugars and other components. It influences a wide number of cellular processes including migration, wound healing and differentiation, all of which is of particular interest to researchers in the field of tissue engineering. Understanding the composition and structure of the extracellular matrix will aid in exploring the ways the extracellular matrix can be utilised in tissue engineering applications especially as a scaffold. This review summarises the current knowledge of the composition, structure and functions of the extracellular matrix and introduces the effect of ageing on extracellular matrix remodelling and its contribution to cellular functions. Additionally, the current analytical technologies to study the extracellular matrix and extracellular matrix-related cellular processes are also reviewed.

  14. SIGMAR1 Regulates Membrane Electrical Activity in Response to Extracellular Matrix Stimulation to Drive Cancer Cell Invasiveness.

    PubMed

    Crottès, David; Rapetti-Mauss, Raphael; Alcaraz-Perez, Francisca; Tichet, Mélanie; Gariano, Giuseppina; Martial, Sonia; Guizouarn, Hélène; Pellissier, Bernard; Loubat, Agnès; Popa, Alexandra; Paquet, Agnès; Presta, Marco; Tartare-Deckert, Sophie; Cayuela, Maria Luisa; Martin, Patrick; Borgese, Franck; Soriani, Olivier

    2016-02-01

    The sigma 1 receptor (Sig1R) is a stress-activated chaperone that regulates ion channels and is associated with pathologic conditions, such as stroke, neurodegenerative diseases, and addiction. Aberrant expression levels of ion channels and Sig1R have been detected in tumors and cancer cells, such as myeloid leukemia and colorectal cancer, but the link between ion channel regulation and Sig1R overexpression during malignancy has not been established. In this study, we found that Sig1R dynamically controls the membrane expression of the human voltage-dependent K(+) channel human ether-à-go-go-related gene (hERG) in myeloid leukemia and colorectal cancer cell lines. Sig1R promoted the formation of hERG/β1-integrin signaling complexes upon extracellular matrix stimulation, triggering the activation of the PI3K/AKT pathway. Consequently, the presence of Sig1R in cancer cells increased motility and VEGF secretion. In vivo, Sig1R expression enhanced the aggressiveness of tumor cells by potentiating invasion and angiogenesis, leading to poor survival. Collectively, our findings highlight a novel function for Sig1R in mediating cross-talk between cancer cells and their microenvironment, thus driving oncogenesis by shaping cellular electrical activity in response to extracellular signals. Given the involvement of ion channels in promoting several hallmarks of cancer, our study also offers a potential strategy to therapeutically target ion channel function through Sig1R inhibition. ©2015 American Association for Cancer Research.

  15. Elasticity-mediated nematiclike bacterial organization in model extracellular DNA matrix.

    PubMed

    Smalyukh, Ivan I; Butler, John; Shrout, Joshua D; Parsek, Matthew R; Wong, Gerard C L

    2008-09-01

    DNA is a common extracellular matrix component of bacterial biofilms. We find that bacteria can spontaneously order in a matrix of aligned concentrated DNA, in which rod-shaped cells of Pseudomonas aeruginosa follow the orientation of extended DNA chains. The alignment of bacteria is ensured by elasticity and liquid crystalline properties of the DNA matrix. These findings show how behavior of planktonic bacteria may be modified in extracellular polymeric substances of biofilms and illustrate the potential of using complex fluids to manipulate embedded nanosized and microsized active particles.

  16. Semicarbazide-sensitive amine oxidase and extracellular matrix deposition by smooth-muscle cells

    NASA Technical Reports Server (NTRS)

    Langford, Shannon D.; Trent, Margaret B.; Boor, Paul J.

    2002-01-01

    We have recently reported in vivo disruption of collagen and elastin architecture within blood vessel walls resulting from the selective inhibition of the enzyme semicarbazide-sensitive amine oxidase (SSAO). This study further investigates the effects of SSAO inhibition on extracellular matrix deposition by smooth-muscle cells (SMCs) cultured from neonatal rat hearts. SMCs were characterized, SSAO activity was measured, and soluble and insoluble collagen and elastin in the extracellular matrix (ECM) were quantified. Cultured neonatal rat heart SMC exhibited a monotypic synthetic phenotype that likely represents a myofibroblast. Detectable levels of SSAO activity present throughout 30-d culture peaked at 7-14 d, coinciding with the production of ECM. The addition of enzyme inhibitors and alternate SSAO substrates (benzylamine) produced varied and, in some cases, marked changes in SSAO activity as well as in the composition of mature and soluble matrix components. Similar to our previous in vivo findings, in vitro SSAO inhibition produced aberrations in collagen and elastin deposition by heart SMC. Because changes in SSAO activity are associated with cardiovascular pathologic states, this enzyme may play a protective or modulating role by regulating ECM production during pathologic insult.

  17. The Extracellular Matrix of Fungal Biofilms.

    PubMed

    Mitchell, Kaitlin F; Zarnowski, Robert; Andes, David R

    A key feature of biofilms is their production of an extracellular matrix. This material covers the biofilm cells, providing a protective barrier to the surrounding environment. During an infection setting, this can include such offenses as host cells and products of the immune system as well as drugs used for treatment. Studies over the past two decades have revealed the matrix from different biofilm species to be as diverse as the microbes themselves. This chapter will review the composition and roles of matrix from fungal biofilms, with primary focus on Candida species, Saccharomyces cerevisiae, Aspergillus fumigatus, and Cryptococcus neoformans. Additional coverage will be provided on the antifungal resistance proffered by the Candida albicans matrix, which has been studied in the most depth. A brief section on the matrix produced by bacterial biofilms will be provided for comparison. Current tools for studying the matrix will also be discussed, as well as suggestions for areas of future study in this field.

  18. Engineering hydrogels as extracellular matrix mimics

    PubMed Central

    Geckil, Hikmet; Xu, Feng; Zhang, Xiaohui; Moon, SangJun

    2010-01-01

    Extracellular matrix (ECM) is a complex cellular environment consisting of proteins, proteoglycans, and other soluble molecules. ECM provides structural support to mammalian cells and a regulatory milieu with a variety of important cell functions, including assembling cells into various tissues and organs, regulating growth and cell–cell communication. Developing a tailored in vitro cell culture environment that mimics the intricate and organized nanoscale meshwork of native ECM is desirable. Recent studies have shown the potential of hydrogels to mimic native ECM. Such an engineered native-like ECM is more likely to provide cells with rational cues for diagnostic and therapeutic studies. The research for novel biomaterials has led to an extension of the scope and techniques used to fabricate biomimetic hydrogel scaffolds for tissue engineering and regenerative medicine applications. In this article, we detail the progress of the current state-of-the-art engineering methods to create cell-encapsulating hydrogel tissue constructs as well as their applications in in vitro models in biomedicine. PMID:20394538

  19. Effects of Ethanol on Brain Extracellular Matrix: Implications for Alcohol Use Disorder

    PubMed Central

    Lasek, Amy W.

    2016-01-01

    The brain extracellular matrix (ECM) occupies the space between cells and is involved in cell-matrix and cell-cell adhesion. However, in addition to providing structural support to brain tissue, the ECM activates cell signaling and controls synaptic transmission. The expression and activity of brain ECM components are regulated by alcohol exposure. This review will discuss what is currently known about the effects of alcohol on the activity and expression of brain ECM components. An interpretation of how these changes might promote alcohol use disorder (AUD) will be also provided. Ethanol exposure decreases levels of structural proteins involved in the interstitial matrix and basement membrane, with a concomitant increase in proteolytic enzymes that degrade these components. In contrast, ethanol exposure generally increases perineuronal net (PN) components. Because the ECM has been shown to regulate both synaptic plasticity and behavioral responses to drugs of abuse, regulation of the brain ECM by alcohol may be relevant to the development of alcoholism. Although investigation of the function of brain ECM in alcohol abuse is still in early stages, a greater understanding of the interplay between ECM and alcohol might lead to novel therapeutic strategies for treating AUD. PMID:27581478

  20. Matrix metalloproteinase processing of signaling molecules to regulate inflammation.

    PubMed

    Butler, Georgina S; Overall, Christopher M

    2013-10-01

    Inflammation is a complex and highly regulated process that facilitates the clearance of pathogens and mediates tissue repair. Failure to resolve inflammation can lead to chronic inflammatory diseases such as periodontitis. Matrix metalloproteinases are generally thought to be detrimental in disease because degradation of extracellular matrix contributes to pathology. However, proteomic techniques (degradomics) are revealing that matrix metalloproteinases process a diverse array of substrates and therefore have a broad range of functions. Many matrix metalloproteinase substrates modulate inflammation and hence, by processing these proteins, matrix metalloproteinases can orchestrate the inflammatory response. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Extracellular Matrix Degradation and Remodeling in Development and Disease

    PubMed Central

    Lu, Pengfei; Takai, Ken; Weaver, Valerie M.; Werb, Zena

    2011-01-01

    The extracellular matrix (ECM) serves diverse functions and is a major component of the cellular microenvironment. The ECM is a highly dynamic structure, constantly undergoing a remodeling process where ECM components are deposited, degraded, or otherwise modified. ECM dynamics are indispensible during restructuring of tissue architecture. ECM remodeling is an important mechanism whereby cell differentiation can be regulated, including processes such as the establishment and maintenance of stem cell niches, branching morphogenesis, angiogenesis, bone remodeling, and wound repair. In contrast, abnormal ECM dynamics lead to deregulated cell proliferation and invasion, failure of cell death, and loss of cell differentiation, resulting in congenital defects and pathological processes including tissue fibrosis and cancer. Understanding the mechanisms of ECM remodeling and its regulation, therefore, is essential for developing new therapeutic interventions for diseases and novel strategies for tissue engineering and regenerative medicine. PMID:21917992

  2. Immunohistochemical evidence of rapid extracellular matrix remodeling after iron-particle irradiation of mouse mammary gland

    NASA Technical Reports Server (NTRS)

    Ehrhart, E. J.; Gillette, E. L.; Barcellos-Hoff, M. H.; Chaterjee, A. (Principal Investigator)

    1996-01-01

    High-LET radiation has unique physical and biological properties compared to sparsely ionizing radiation. Recent studies demonstrate that sparsely ionizing radiation rapidly alters the pattern of extracellular matrix expression in several tissues, but little is known about the effect of heavy-ion radiation. This study investigates densely ionizing radiation-induced changes in extracellular matrix localization in the mammary glands of adult female BALB/c mice after whole-body irradiation with 0.8 Gy 600 MeV iron particles. The basement membrane and interstitial extracellular matrix proteins of the mammary gland stroma were mapped with respect to time postirradiation using immunofluorescence. Collagen III was induced in the adipose stroma within 1 day, continued to increase through day 9 and was resolved by day 14. Immunoreactive tenascin was induced in the epithelium by day 1, was evident at the epithelial-stromal interface by day 5-9 and persisted as a condensed layer beneath the basement membrane through day 14. These findings parallel similar changes induced by gamma irradiation but demonstrate different onset and chronicity. In contrast, the integrity of epithelial basement membrane, which was unaffected by sparsely ionizing radiation, was disrupted by iron-particle irradiation. Laminin immunoreactivity was mildly irregular at 1 h postirradiation and showed discontinuities and thickening from days 1 to 9. Continuity was restored by day 14. Thus high-LET radiation, like sparsely ionizing radiation, induces rapid-remodeling of the stromal extracellular matrix but also appears to alter the integrity of the epithelial basement membrane, which is an important regulator of epithelial cell proliferation and differentiation.

  3. Extracellular matrix as a solid-state regulator in angiogenesis: identification of new targets for anti-cancer therapy

    NASA Technical Reports Server (NTRS)

    Ingber, D. E.

    1992-01-01

    Angiogenesis, the growth of blood capillaries, is regulated by soluble growth factors and insoluble extracellular matrix (ECM) molecules. Soluble angiogenic mitogens act over large distances to initiate capillary growth whereas changes in ECM govern whether individual cells will grow, differentiate, or involute in response to these stimuli in the local tissue microenvironment. Analysis of this local control mechanism has revealed that ECM molecules switch capillary endothelial cells between differentiation and growth by both binding specific transmembrane integrin receptors and physically resisting cell-generated mechanical loads that are applied to these receptors. Control of capillary endothelial cell form and function therefore may be exerted by altering the mechanical properties of the ECM as well as its chemical composition. Understanding of this mechanochemical control mechanism has led to the development of new angiogenesis inhibitors that may be useful for the treatment of cancer.

  4. Matrix Metalloproteinases as Regulators of Periodontal Inflammation

    PubMed Central

    Franco, Cavalla; Patricia, Hernández-Ríos; Timo, Sorsa; Claudia, Biguetti; Marcela, Hernández

    2017-01-01

    Periodontitis are infectious diseases characterized by immune-mediated destruction of periodontal supporting tissues and tooth loss. Matrix metalloproteinases (MMPs) are key proteases involved in destructive periodontal diseases. The study and interest in MMP has been fuelled by emerging evidence demonstrating the broad spectrum of molecules that can be cleaved by them and the myriad of biological processes that they can potentially regulate. The huge complexity of MMP functions within the ‘protease web’ is crucial for many physiologic and pathologic processes, including immunity, inflammation, bone resorption, and wound healing. Evidence points out that MMPs assemble in activation cascades and besides their classical extracellular matrix substrates, they cleave several signalling molecules—such as cytokines, chemokines, and growth factors, among others—regulating their biological functions and/or bioavailability during periodontal diseases. In this review, we provide an overview of emerging evidence of MMPs as regulators of periodontal inflammation. PMID:28218665

  5. Matrix Metalloproteinases as Regulators of Periodontal Inflammation.

    PubMed

    Franco, Cavalla; Patricia, Hernández-Ríos; Timo, Sorsa; Claudia, Biguetti; Marcela, Hernández

    2017-02-17

    Periodontitis are infectious diseases characterized by immune-mediated destruction of periodontal supporting tissues and tooth loss. Matrix metalloproteinases (MMPs) are key proteases involved in destructive periodontal diseases. The study and interest in MMP has been fuelled by emerging evidence demonstrating the broad spectrum of molecules that can be cleaved by them and the myriad of biological processes that they can potentially regulate. The huge complexity of MMP functions within the 'protease web' is crucial for many physiologic and pathologic processes, including immunity, inflammation, bone resorption, and wound healing. Evidence points out that MMPs assemble in activation cascades and besides their classical extracellular matrix substrates, they cleave several signalling molecules-such as cytokines, chemokines, and growth factors, among others-regulating their biological functions and/or bioavailability during periodontal diseases. In this review, we provide an overview of emerging evidence of MMPs as regulators of periodontal inflammation.

  6. Extracellular matrix stiffness causes systematic variations in proliferation and chemosensitivity in myeloid leukemias.

    PubMed

    Shin, Jae-Won; Mooney, David J

    2016-10-25

    Extracellular matrix stiffness influences biological functions of some tumors. However, it remains unclear how cancer subtypes with different oncogenic mutations respond to matrix stiffness. In addition, the relevance of matrix stiffness to in vivo tumor growth kinetics and drug efficacy remains elusive. Here, we designed 3D hydrogels with physical parameters relevant to hematopoietic tissues and adapted them to a quantitative high-throughput screening format to facilitate mechanistic investigations into the role of matrix stiffness on myeloid leukemias. Matrix stiffness regulates proliferation of some acute myeloid leukemia types, including MLL-AF9 + MOLM-14 cells, in a biphasic manner by autocrine regulation, whereas it decreases that of chronic myeloid leukemia BCR-ABL + K-562 cells. Although Arg-Gly-Asp (RGD) integrin ligand and matrix softening confer resistance to a number of drugs, cells become sensitive to drugs against protein kinase B (PKB or AKT) and rapidly accelerated fibrosarcoma (RAF) proteins regardless of matrix stiffness when MLL-AF9 and BCR-ABL are overexpressed in K-562 and MOLM-14 cells, respectively. By adapting the same hydrogels to a xenograft model of extramedullary leukemias, we confirm the pathological relevance of matrix stiffness in growth kinetics and drug sensitivity against standard chemotherapy in vivo. The results thus demonstrate the importance of incorporating 3D mechanical cues into screening for anticancer drugs.

  7. Role of non-mulberry silk fibroin in deposition and regulation of extracellular matrix towards accelerated wound healing.

    PubMed

    Chouhan, Dimple; Chakraborty, Bijayshree; Nandi, Samit K; Mandal, Biman B

    2017-01-15

    Bombyx mori silk fibroin (BMSF) as biopolymer has been extensively explored in wound healing applications. However, limited study is available on the potential of silk fibroin (SF) from non-mulberry (Antheraea assama and Philosamia ricini) silk variety. Herein, we have developed non-mulberry SF (NMSF) based electrospun mats functionalized with epidermal growth factor (EGF) and ciprofloxacin HCl as potential wound dressing. The NMSF based mats exhibited essential properties of wound dressing like biocompatibility, high water retention capacity (440%), water vapor transmission rate (∼2330gm -2 day -1 ), high elasticity (∼2.6MPa), sustained drug release and antibacterial activity. Functionalized NMSF mats enhanced the proliferation of human dermal fibroblasts and HaCaT cells in vitro as compared to non-functionalized mats (p⩽0.01) showing effective delivery of EGF. Extensive in vivo wound healing assesment demonstrated accelerated wound healing, enhanced re-epithelialization, highly vascularized granulation tissue and higher wound maturity as compared to BMSF based mats. NMSF mats treated wounds showed regulated deposition of mature elastin, collagen and reticulin fibers in the extracellular matrix of skin. Presence of skin appendages and isotropic collagen fibers in the regenerated skin also demonstrated scar-less healing and aesthetic wound repair. A facile fabrication of a ready-to-use bioactive wound dressing capable of concomitantly accelerating the healing process as well as deposition of the extracellular matrix (ECM) to circumvent further scarring complicacies has become a focal point of research. In this backdrop, our present work is based on non-mulberry silk fibroin (NMSF) electrospun antibiotic loaded semi-occlusive mats, mimicking the ECM of skin in terms of morphology, topology, microporous structure and mechanical stiffness. Regulation of ECM deposition and isotropic orientation evinced the potential of the mat as an instructive platform for skin

  8. Effects of Ethanol on Brain Extracellular Matrix: Implications for Alcohol Use Disorder.

    PubMed

    Lasek, Amy W

    2016-10-01

    The brain extracellular matrix (ECM) occupies the space between cells and is involved in cell-matrix and cell-cell adhesion. However, in addition to providing structural support to brain tissue, the ECM activates cell signaling and controls synaptic transmission. The expression and activity of brain ECM components are regulated by alcohol exposure. This review will discuss what is currently known about the effects of alcohol on the activity and expression of brain ECM components. An interpretation of how these changes might promote alcohol use disorder (AUD) will be also provided. Ethanol (EtOH) exposure decreases levels of structural proteins involved in the interstitial matrix and basement membrane, with a concomitant increase in proteolytic enzymes that degrade these components. In contrast, EtOH exposure generally increases perineuronal net components. Because the ECM has been shown to regulate both synaptic plasticity and behavioral responses to drugs of abuse, regulation of the brain ECM by alcohol may be relevant to the development of alcoholism. Although investigation of the function of brain ECM in alcohol abuse is still in early stages, a greater understanding of the interplay between ECM and alcohol might lead to novel therapeutic strategies for treating AUD. Copyright © 2016 by the Research Society on Alcoholism.

  9. The planar cell polarity protein VANGL2 coordinates remodeling of the extracellular matrix.

    PubMed

    Williams, B Blairanne; Mundell, Nathan; Dunlap, Julie; Jessen, Jason

    2012-07-01

    Understanding how planar cell polarity (PCP) is established, maintained, and coordinated in migrating cell populations is an important area of research with implications for both embryonic morphogenesis and tumor cell invasion. We recently reported that the PCP protein Vang-like 2 (VANGL2) regulates the endocytosis and cell surface level of membrane type-1 matrix metalloproteinase (MMP14 or MT1-MMP). Here, we further discuss these findings in terms of extracellular matrix (ECM) remodeling, cell migration, and zebrafish gastrulation. We also demonstrate that VANGL2 function impacts the focal degradation of ECM by human cancer cells including the formation or stability of invadopodia. Together, our findings implicate MMP14 as a downstream effector of VANGL2 signaling and suggest a model whereby the regulation of pericellular proteolysis is a fundamental aspect of PCP in migrating cells.

  10. The planar cell polarity protein VANGL2 coordinates remodeling of the extracellular matrix

    PubMed Central

    Williams, B. Blairanne; Mundell, Nathan; Dunlap, Julie; Jessen, Jason

    2012-01-01

    Understanding how planar cell polarity (PCP) is established, maintained, and coordinated in migrating cell populations is an important area of research with implications for both embryonic morphogenesis and tumor cell invasion. We recently reported that the PCP protein Vang-like 2 (VANGL2) regulates the endocytosis and cell surface level of membrane type-1 matrix metalloproteinase (MMP14 or MT1-MMP). Here, we further discuss these findings in terms of extracellular matrix (ECM) remodeling, cell migration, and zebrafish gastrulation. We also demonstrate that VANGL2 function impacts the focal degradation of ECM by human cancer cells including the formation or stability of invadopodia. Together, our findings implicate MMP14 as a downstream effector of VANGL2 signaling and suggest a model whereby the regulation of pericellular proteolysis is a fundamental aspect of PCP in migrating cells. PMID:23060953

  11. Extracellular matrix components direct porcine muscle stem cell behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilschut, Karlijn J.; Haagsman, Henk P.; Roelen, Bernard A.J., E-mail: b.a.j.roelen@uu.nl

    2010-02-01

    In muscle tissue, extracellular matrix proteins, together with the vasculature system, muscle-residence cells and muscle fibers, create the niche for muscle stem cells. The niche is important in controlling proliferation and directing differentiation of muscle stem cells to sustain muscle tissue. Mimicking the extracellular muscle environment improves tools exploring the behavior of primary muscle cells. Optimizing cell culture conditions to maintain muscle commitment is important in stem cell-based studies concerning toxicology screening, ex vivo skeletal muscle tissue engineering and in the enhancement of clinical efficiency. We used the muscle extracellular matrix proteins collagen type I, fibronectin, laminin, and also gelatinmore » and Matrigel as surface coatings of tissue culture plastic to resemble the muscle extracellular matrix. Several important factors that determine myogenic commitment of the primary muscle cells were characterized by quantitative real-time RT-PCR and immunofluorescence. Adhesion of high PAX7 expressing satellite cells was improved if the cells were cultured on fibronectin or laminin coatings. Cells cultured on Matrigel and laminin coatings showed dominant integrin expression levels and exhibited an activated Wnt pathway. Under these conditions both stem cell proliferation and myogenic differentiation capacity were superior if compared to cells cultured on collagen type I, fibronectin and gelatin. In conclusion, Matrigel and laminin are the preferred coatings to sustain the proliferation and myogenic differentiation capacity of the primary porcine muscle stem cells, when cells are removed from their natural environment for in vitro culture.« less

  12. Extracellular Matrix Signaling from the Cellular Membrane Skeleton to the Nuclear Skeleton: A Model of Gene Regulation

    PubMed Central

    Lelièvre, Sophie; Weaver, Valerie M.; Bissell, Mina J.

    2010-01-01

    It is well established that cells must interact with their microenvironment and that such interaction is crucial for coordinated function and homeostasis. However, how cells receive and integrate external signals leading to gene regulation is far from understood. It is now appreciated that two classes of cooperative signals are implicated: a soluble class including hormones and growth factors and a class of insoluble signals emanating from the extracellular matrix (ECM) directly through contact with the cell surface. Using 3-dimensional culture systems and transgenic mice, we have been able to identify some of the elements of this ECM-signaling pathway responsible for gene regulation in rodent mammary gland differentiation and involution. Our major observations are 1) the requirement for a laminin-rich basement membrane; 2) the existence of a cooperative signaling pathway between basement membrane and the lactogenic hormone prolactin (PRL); 3) the importance of β1-integrins and bHLH transcription factor(s) and the presence of DNA response elements (exemplified by BCE-1, located on a milk protein gene, β-casein); and 4) the induction of mammary epithelial cell programmed cell death following degradation of basement membrane. We hypothesize that this cooperative signaling between ECM and PRL may be achieved through integrin- and laminin-directed restructuring of the cytoskeleton leading to profound changes in nuclear architecture and transcription factor localization. We postulate that the latter changes allow the prolactin signal to activate transcription of the β-casein gene. To further understand the molecular mechanisms underlying ECM and hormonal cooperative signaling, we are currently investigating ECM regulation of a “solid-state” signaling pathway including ECM fiber proteins, plasma membrane receptors, cytoskeleton, nuclear matrix and chromatin. We further postulate that disruption of such a pathway may be implicated in cell disorders including

  13. Regulation of extracellular matrix elements and sarcomerogenesis in response to different periods of passive stretching in the soleus muscle of rats.

    PubMed

    Peviani, Sabrina M; Guzzoni, Vinicius; Pinheiro-Dardis, Clara M; Silva, Yara P da; Fioravante, Alisson C R; Sagawa, Adriana H; Delfino, Gabriel B; Durigan, João L Q; Salvini, Tania F

    2018-06-13

    Stretching is a common method used to prevent muscle shortening and improve limited mobility. However, the effect of different time periods on stretching-induced adaptation of the extracellular matrix and its regulatory elements have yet to be investigated. We aimed to evaluate the expression of fibrillar collagens, sarcomerogenesis, metalloproteinase (MMP) activity and gene expression of the extracellular matrix (ECM) regulators in the soleus (SOL) muscle of rats submitted to different stretching periods. The soleus muscles were submitted to 10 sets of passive stretching over 10 (St 10d) or 15 days (St 15d) (1 min per set, with 30 seconds' rest between sets). Sarcomerogenesis, muscle cross-sectional area (CSA), and MMP activity and mRNA levels in collagen (type I, III and IV), connective tissue growth factor (CTGF), growth factor-beta (TGF-β), and lysyl oxidase (LOX) were analyzed. Passive stretching over both time periods mitigated COL-I deposition in the SOL muscle of rats. Paradoxically, 10 days of passive stretching induced COL-I and COL-III synthesis, with concomitant upregulation of TGF-β1 and CTGF at a transcriptional level. These responses may be associated with lower LOX mRNA levels in SOL muscles submitted to 10 passive stretching sessions. Moreover, sarcomerogenesis was observed after 15 days of stretching, suggesting that stretching-induced muscle adaptations are time-dependent responses.

  14. Myogenic Progenitor Cells Control Extracellular Matrix Production by Fibroblasts during Skeletal Muscle Hypertrophy.

    PubMed

    Fry, Christopher S; Kirby, Tyler J; Kosmac, Kate; McCarthy, John J; Peterson, Charlotte A

    2017-01-05

    Satellite cells, the predominant stem cell population in adult skeletal muscle, are activated in response to hypertrophic stimuli and give rise to myogenic progenitor cells (MPCs) within the extracellular matrix (ECM) that surrounds myofibers. This ECM is composed largely of collagens secreted by interstitial fibrogenic cells, which influence satellite cell activity and muscle repair during hypertrophy and aging. Here we show that MPCs interact with interstitial fibrogenic cells to ensure proper ECM deposition and optimal muscle remodeling in response to hypertrophic stimuli. MPC-dependent ECM remodeling during the first week of a growth stimulus is sufficient to ensure long-term myofiber hypertrophy. MPCs secrete exosomes containing miR-206, which represses Rrbp1, a master regulator of collagen biosynthesis, in fibrogenic cells to prevent excessive ECM deposition. These findings provide insights into how skeletal stem and progenitor cells interact with other cell types to actively regulate their extracellular environments for tissue maintenance and adaptation. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Fibronectin Matrix Polymerization Regulates Smooth Muscle Cell Phenotype through a Rac1 Dependent Mechanism

    PubMed Central

    Shi, Feng; Long, Xiaochun; Hendershot, Allison; Miano, Joseph M.; Sottile, Jane

    2014-01-01

    Smooth muscle cells are maintained in a differentiated state in the vessel wall, but can be modulated to a synthetic phenotype following injury. Smooth muscle phenotypic modulation is thought to play an important role in the pathology of vascular occlusive diseases. Phenotypically modulated smooth muscle cells exhibit increased proliferative and migratory properties that accompany the downregulation of smooth muscle cell marker proteins. Extracellular matrix proteins, including fibronectin, can regulate the smooth muscle phenotype when used as adhesive substrates. However, cells produce and organize a 3-dimensional fibrillar extracellular matrix, which can affect cell behavior in distinct ways from the protomeric 2-dimensional matrix proteins that are used as adhesive substrates. We previously showed that the deposition/polymerization of fibronectin into the extracellular matrix can regulate the deposition and organization of other extracellular matrix molecules in vitro. Further, our published data show that the presence of a fibronectin polymerization inhibitor results in increased expression of smooth muscle cell differentiation proteins and inhibits vascular remodeling in vivo. In this manuscript, we used an in vitro cell culture system to determine the mechanism by which fibronectin polymerization affects smooth muscle phenotypic modulation. Our data show that fibronectin polymerization decreases the mRNA levels of multiple smooth muscle differentiation genes, and downregulates the levels of smooth muscle α-actin and calponin proteins by a Rac1-dependent mechanism. The expression of smooth muscle genes is transcriptionally regulated by fibronectin polymerization, as evidenced by the increased activity of luciferase reporter constructs in the presence of a fibronectin polymerization inhibitor. Fibronectin polymerization also promotes smooth muscle cell growth, and decreases the levels of actin stress fibers. These data define a Rac1-dependent pathway wherein

  16. Extracellular Matrix and Redox Signaling in Cellular Responses to Stress.

    PubMed

    Roberts, David D

    2017-10-20

    Cells in multicellular organisms communicate extensively with neighboring cells and distant organs using a variety of secreted proteins and small molecules. Cells also reside in a structural extracellular matrix (ECM), and changes in its composition, mechanical properties, and post-translational modifications provide additional layers of communication. This Forum addresses emerging mechanisms by which redox signaling controls and is controlled by changes in the ECM, focusing on the roles of matricellular proteins. These proteins engage specific cell surface signaling receptors, integrins, and proteoglycans to regulate the biosynthesis and catabolism of redox signaling molecules and the activation of their signal transducers. These signaling pathways, in turn, regulate the composition of ECM and its function. Covalent post-translational modifications of ECM by redox molecules further regulate its structure and function. Recent studies of acute injuries and chronic disease have identified important pathophysiological roles for this cross-talk and new therapeutic opportunities. Antioxid. Redox Signal. 27, 771-773.

  17. Bioengineering Human Myocardium on Native Extracellular Matrix

    PubMed Central

    Guyette, Jacques P.; Charest, Jonathan M; Mills, Robert W; Jank, Bernhard J.; Moser, Philipp T.; Gilpin, Sarah E.; Gershlak, Joshua R.; Okamoto, Tatsuya; Gonzalez, Gabriel; Milan, David J.; Gaudette, Glenn R.; Ott, Harald C.

    2015-01-01

    Rationale More than 25 million individuals suffer from heart failure worldwide, with nearly 4,000 patients currently awaiting heart transplantation in the United States. Donor organ shortage and allograft rejection remain major limitations with only about 2,500 hearts transplanted each year. As a theoretical alternative to allotransplantation, patient-derived bioartificial myocardium could provide functional support and ultimately impact the treatment of heart failure. Objective The objective of this study is to translate previous work to human scale and clinically relevant cells, for the bioengineering of functional myocardial tissue based on the combination of human cardiac matrix and human iPS-derived cardiac myocytes. Methods and Results To provide a clinically relevant tissue scaffold, we translated perfusion-decellularization to human scale and obtained biocompatible human acellular cardiac scaffolds with preserved extracellular matrix composition, architecture, and perfusable coronary vasculature. We then repopulated this native human cardiac matrix with cardiac myocytes derived from non-transgenic human induced pluripotent stem cells (iPSCs) and generated tissues of increasing three-dimensional complexity. We maintained such cardiac tissue constructs in culture for 120 days to demonstrate definitive sarcomeric structure, cell and matrix deformation, contractile force, and electrical conduction. To show that functional myocardial tissue of human scale can be built on this platform, we then partially recellularized human whole heart scaffolds with human iPSC-derived cardiac myocytes. Under biomimetic culture, the seeded constructs developed force-generating human myocardial tissue, showed electrical conductivity, left ventricular pressure development, and metabolic function. Conclusions Native cardiac extracellular matrix scaffolds maintain matrix components and structure to support the seeding and engraftment of human iPS-derived cardiac myocytes, and enable

  18. Limitation of Cell Adhesion by the Elasticity of the Extracellular Matrix

    PubMed Central

    Nicolas, Alice; Safran, Samuel. A.

    2006-01-01

    Cell/matrix adhesions are modulated by cytoskeletal or external stresses and adapt to the mechanical properties of the extracellular matrix. We propose that this mechanosensitivity arises from the activation of a mechanosensor located within the adhesion itself. We show that this mechanism accounts for the observed directional growth of focal adhesions and the reduction or even cessation of their growth when cells adhere to a soft extracellular matrix. We predict quantitatively that both the elasticity and the thickness of the matrix play a key role in the dynamics of focal adhesions. Two different types of dynamics are expected depending on whether the thickness of the matrix is of order of or much larger than the adhesion size. In the latter situation, we predict that the adhesion region reaches a saturation size that can be tuned by the mechanical properties of the matrix. PMID:16581840

  19. Regulation of Hematopoietic Stem Cell Behavior by the Nanostructured Presentation of Extracellular Matrix Components

    PubMed Central

    Muth, Christine Anna; Steinl, Carolin; Klein, Gerd; Lee-Thedieck, Cornelia

    2013-01-01

    Hematopoietic stem cells (HSCs) are maintained in stem cell niches, which regulate stem cell fate. Extracellular matrix (ECM) molecules, which are an essential part of these niches, can actively modulate cell functions. However, only little is known on the impact of ECM ligands on HSCs in a biomimetic environment defined on the nanometer-scale level. Here, we show that human hematopoietic stem and progenitor cell (HSPC) adhesion depends on the type of ligand, i.e., the type of ECM molecule, and the lateral, nanometer-scaled distance between the ligands (while the ligand type influenced the dependency on the latter). For small fibronectin (FN)–derived peptide ligands such as RGD and LDV the critical adhesive interligand distance for HSPCs was below 45 nm. FN-derived (FN type III 7–10) and osteopontin-derived protein domains also supported cell adhesion at greater distances. We found that the expression of the ECM protein thrombospondin-2 (THBS2) in HSPCs depends on the presence of the ligand type and its nanostructured presentation. Functionally, THBS2 proved to mediate adhesion of HSPCs. In conclusion, the present study shows that HSPCs are sensitive to the nanostructure of their microenvironment and that they are able to actively modulate their environment by secreting ECM factors. PMID:23405094

  20. Towards integrating extracellular matrix and immunological pathways.

    PubMed

    Boyd, David F; Thomas, Paul G

    2017-10-01

    The extracellular matrix (ECM) is a complex and dynamic structure made up of an estimated 300 different proteins. The ECM is also a rich source of cytokines and growth factors in addition to numerous bioactive ECM degradation products that influence cell migration, proliferation, and differentiation. The ECM is constantly being remodeled during homeostasis and in a wide range of pathological contexts. Changes in the ECM modulate immune responses, which in turn regulate repair and regeneration of tissues. Here, we review the many components of the ECM, enzymes involved in ECM remodeling, and the signals that feed into immunological pathways in the context of a dynamic ECM. We highlight studies that have taken an integrative approach to studying immune responses in the context of the ECM and studies that use novel proteomic strategies. Finally, we discuss research challenges relevant to the integration of immune and ECM networks and propose experimental and translational approaches to resolve these issues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Modulation of extracellular matrix/adhesion molecule expression by BRG1 is associated with increased melanoma invasiveness.

    PubMed

    Saladi, Srinivas Vinod; Keenen, Bridget; Marathe, Himangi G; Qi, Huiling; Chin, Khew-Voon; de la Serna, Ivana L

    2010-10-22

    Metastatic melanoma is an aggressive malignancy that is resistant to therapy and has a poor prognosis. The progression of primary melanoma to metastatic disease is a multi-step process that requires dynamic regulation of gene expression through currently uncharacterized epigenetic mechanisms. Epigenetic regulation of gene expression often involves changes in chromatin structure that are catalyzed by chromatin remodeling enzymes. Understanding the mechanisms involved in the regulation of gene expression during metastasis is important for developing an effective strategy to treat metastatic melanoma. SWI/SNF enzymes are multisubunit complexes that contain either BRG1 or BRM as the catalytic subunit. We previously demonstrated that heterogeneous SWI/SNF complexes containing either BRG1 or BRM are epigenetic modulators that regulate important aspects of the melanoma phenotype and are required for melanoma tumorigenicity in vitro. To characterize BRG1 expression during melanoma progression, we assayed expression of BRG1 in patient derived normal skin and in melanoma specimen. BRG1 mRNA levels were significantly higher in stage IV melanomas compared to stage III tumors and to normal skin. To determine the role of BRG1 in regulating the expression of genes involved in melanoma metastasis, we expressed BRG1 in a melanoma cell line that lacks BRG1 expression and examined changes in extracellular matrix and adhesion molecule expression. We found that BRG1 modulated the expression of a subset of extracellular matrix remodeling enzymes and adhesion proteins. Furthermore, BRG1 altered melanoma adhesion to different extracellular matrix components. Expression of BRG1 in melanoma cells that lack BRG1 increased invasive ability while down-regulation of BRG1 inhibited invasive ability in vitro. Activation of metalloproteinase (MMP) 2 expression greatly contributed to the BRG1 induced increase in melanoma invasiveness. We found that BRG1 is recruited to the MMP2 promoter and

  2. SHIP, a novel factor to ameliorate extracellular matrix accumulation via suppressing PI3K/Akt/CTGF signaling in diabetic kidney disease.

    PubMed

    Li, Fan; Li, Lisha; Cheng, Meijuan; Wang, Xiumin; Hao, Jun; Liu, Shuxia; Duan, Huijun

    2017-01-22

    Tubular interstitial extracellular matrix accumulation, which plays a key role in the pathogenesis and progression of diabetic kidney disease (DKD), is believed to be mediated by activation of PI3K/Akt signal pathway. However, it is still not clear whether SH2 domain-containing inositol 5'-phosphatase (SHIP), known as a negative regulator of PI3K/Akt pathway is also involved in extracellular matrix metabolism of diabetic kidney. In the present study, decreased SHIP and increased phospho-Akt (Ser 473, Thr 308) were found in renal tubular cells of diabetic mice accompanied by overexpression of connective tissue growth factor (CTGF) and extracellular matrix deposition versus normal mice. Again, high glucose attenuated SHIP expression in a time-dependent manner, concomitant with activation of PI3K/Akt signaling and extracellular matrix production in human renal proximal tubular epithelial cells (HK2) cultured in vitro, which was significantly prevented by transfection of M90-SHIP vector. Furthermore, in vivo delivery of rAd-INPP5D vector (SHIP expression vector) via intraperitoneal injection in diabetic mice increased SHIP expression by 3.36 times followed by 65.26%, 70.38% and 46.71% decreases of phospho-Akt (Ser 473), phospho-Akt (Thr 308) and CTGF expression versus diabetic mice receiving rAd-EGFP vector. Meanwhile, increased renal extracellular matrix accumulation of diabetic mice was also inhibited with intraperitoneal injection of rAd-INPP5D vector. These above data suggested that overexpression of SHIP might be a potent method to lessen renal extracellular matrix accumulation via inactivation of PI3K/Akt pathway and suppression of CTGF expression in DKD. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Escherichia coli Biofilms Have an Organized and Complex Extracellular Matrix Structure

    PubMed Central

    Hung, Chia; Zhou, Yizhou; Pinkner, Jerome S.; Dodson, Karen W.; Crowley, Jan R.; Heuser, John; Chapman, Matthew R.; Hadjifrangiskou, Maria; Henderson, Jeffrey P.; Hultgren, Scott J.

    2013-01-01

    ABSTRACT Bacterial biofilms are ubiquitous in nature, and their resilience is derived in part from a complex extracellular matrix that can be tailored to meet environmental demands. Although common developmental stages leading to biofilm formation have been described, how the extracellular components are organized to allow three-dimensional biofilm development is not well understood. Here we show that uropathogenic Escherichia coli (UPEC) strains produce a biofilm with a highly ordered and complex extracellular matrix (ECM). We used electron microscopy (EM) techniques to image floating biofilms (pellicles) formed by UPEC. EM revealed intricately constructed substructures within the ECM that encase individual, spatially segregated bacteria with a distinctive morphology. Mutational and biochemical analyses of these biofilms confirmed curli as a major matrix component and revealed important roles for cellulose, flagella, and type 1 pili in pellicle integrity and ECM infrastructure. Collectively, the findings of this study elucidated that UPEC pellicles have a highly organized ultrastructure that varies spatially across the multicellular community. PMID:24023384

  4. Disruption of mechanical stress in extracellular matrix is related to Stanford type A aortic dissection through down-regulation of Yes-associated protein.

    PubMed

    Jiang, Wen-Jian; Ren, Wei-Hong; Liu, Xu-Jie; Liu, Yan; Wu, Fu-Jian; Sun, Li-Zhong; Lan, Feng; Du, Jie; Zhang, Hong-Jia

    2016-09-05

    In this study, we assessed whether the down-regulation of Yes-associated protein (YAP) is involved in the pathogenesis of extracellular matrix (ECM) mechanical stress-induced Stanford type A aortic dissection (STAAD). Human aortic samples were obtained from heart transplantation donors as normal controls and from STAAD patients undergoing surgical replacement of the ascending aorta. Decreased maximum aortic wall velocity, ECM disorders, increased VSMC apoptosis, and YAP down-regulation were identified in STAAD samples. In a mouse model of STAAD, YAP was down-regulated over time during the development of ECM damage, and increased VSMC apoptosis was also observed. YAP knockdown induced VSMC apoptosis under static conditions in vitro , and the change in mechanical stress induced YAP down-regulation and VSMC apoptosis. This study provides evidence that YAP down-regulation caused by the disruption of mechanical stress is associated with the development of STAAD via the induction of apoptosis in aortic VSMCs. As STAAD is among the most elusive and life-threatening vascular diseases, better understanding of the molecular pathogenesis of STAAD is critical to improve clinical outcome.

  5. Hypoxia-driven angiogenesis: role of tip cells and extracellular matrix scaffolding.

    PubMed

    Germain, Stéphane; Monnot, Catherine; Muller, Laurent; Eichmann, Anne

    2010-05-01

    Angiogenesis is a highly coordinated tissue remodeling process leading to blood vessel formation. Hypoxia triggers angiogenesis via induction of expression of growth factors such as vascular endothelial growth factor (VEGF). VEGF instructs endothelial cells to form tip cells, which lead outgrowing capillary sprouts, whereas Notch signaling inhibits sprout formation. Basement membrane deposition and mechanical cues from the extracellular matrix (ECM) induced by hypoxia may participate to coordinated vessel sprouting in conjunction with the VEGF and Notch signaling pathways. Hypoxia regulates ECM composition, deposition, posttranslational modifications and rearrangement. In particular, hypoxia-driven vascular remodeling is dynamically regulated through modulation of ECM-modifying enzyme activities that eventually affect both matricellular proteins and growth factor availability. Better understanding of the complex interplay between endothelial cells and soluble growth factors and mechanical factors from the ECM will certainly have significant implications for understanding the regulation of developmental and pathological angiogenesis driven by hypoxia.

  6. Basic components of connective tissues and extracellular matrix: elastin, fibrillin, fibulins, fibrinogen, fibronectin, laminin, tenascins and thrombospondins.

    PubMed

    Halper, Jaroslava; Kjaer, Michael

    2014-01-01

    Collagens are the most abundant components of the extracellular matrix and many types of soft tissues. Elastin is another major component of certain soft tissues, such as arterial walls and ligaments. Many other molecules, though lower in quantity, function as essential components of the extracellular matrix in soft tissues. Some of these are reviewed in this chapter. Besides their basic structure, biochemistry and physiology, their roles in disorders of soft tissues are discussed only briefly as most chapters in this volume deal with relevant individual compounds. Fibronectin with its muldomain structure plays a role of "master organizer" in matrix assembly as it forms a bridge between cell surface receptors, e.g., integrins, and compounds such collagen, proteoglycans and other focal adhesion molecules. It also plays an essential role in the assembly of fibrillin-1 into a structured network. Laminins contribute to the structure of the extracellular matrix (ECM) and modulate cellular functions such as adhesion, differentiation, migration, stability of phenotype, and resistance towards apoptosis. Though the primary role of fibrinogen is in clot formation, after conversion to fibrin by thrombin, it also binds to a variety of compounds, particularly to various growth factors, and as such fibrinogen is a player in cardiovascular and extracellular matrix physiology. Elastin, an insoluble polymer of the monomeric soluble precursor tropoelastin, is the main component of elastic fibers in matrix tissue where it provides elastic recoil and resilience to a variety of connective tissues, e.g., aorta and ligaments. Elastic fibers regulate activity of TGFβs through their association with fibrillin microfibrils. Elastin also plays a role in cell adhesion, cell migration, and has the ability to participate in cell signaling. Mutations in the elastin gene lead to cutis laxa. Fibrillins represent the predominant core of the microfibrils in elastic as well as non

  7. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink

    PubMed Central

    Pati, Falguni; Jang, Jinah; Ha, Dong-Heon; Won Kim, Sung; Rhie, Jong-Won; Shim, Jin-Hyung; Kim, Deok-Ho; Cho, Dong-Woo

    2014-01-01

    The ability to print and pattern all the components that make up a tissue (cells and matrix materials) in three dimensions to generate structures similar to tissues is an exciting prospect of bioprinting. However, the majority of the matrix materials used so far for bioprinting cannot represent the complexity of natural extracellular matrix (ECM) and thus are unable to reconstitute the intrinsic cellular morphologies and functions. Here, we develop a method for the bioprinting of cell-laden constructs with novel decellularized extracellular matrix (dECM) bioink capable of providing an optimized microenvironment conducive to the growth of three-dimensional structured tissue. We show the versatility and flexibility of the developed bioprinting process using tissue-specific dECM bioinks, including adipose, cartilage and heart tissues, capable of providing crucial cues for cells engraftment, survival and long-term function. We achieve high cell viability and functionality of the printed dECM structures using our bioprinting method. PMID:24887553

  8. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink

    NASA Astrophysics Data System (ADS)

    Pati, Falguni; Jang, Jinah; Ha, Dong-Heon; Won Kim, Sung; Rhie, Jong-Won; Shim, Jin-Hyung; Kim, Deok-Ho; Cho, Dong-Woo

    2014-06-01

    The ability to print and pattern all the components that make up a tissue (cells and matrix materials) in three dimensions to generate structures similar to tissues is an exciting prospect of bioprinting. However, the majority of the matrix materials used so far for bioprinting cannot represent the complexity of natural extracellular matrix (ECM) and thus are unable to reconstitute the intrinsic cellular morphologies and functions. Here, we develop a method for the bioprinting of cell-laden constructs with novel decellularized extracellular matrix (dECM) bioink capable of providing an optimized microenvironment conducive to the growth of three-dimensional structured tissue. We show the versatility and flexibility of the developed bioprinting process using tissue-specific dECM bioinks, including adipose, cartilage and heart tissues, capable of providing crucial cues for cells engraftment, survival and long-term function. We achieve high cell viability and functionality of the printed dECM structures using our bioprinting method.

  9. Bi-directional signaling: Extracellular Matrix and Integrin Regulation of Breast Tumor Progression

    PubMed Central

    Gehler, Scott; Ponik, Suzanne M.; Riching, Kristin M; Keely, Patricia J.

    2016-01-01

    Cell transformation and tumor progression involves a common set of acquired capabilities, including increased proliferation, failure of cell death, self-sufficiency in growth, angiogenesis, and tumor cell invasion and metastasis (1). The stromal environment consists of many cell types, including fibroblasts, macrophages, and endothelial cells, in addition to various extracellular matrix (ECM) proteins that function to support normal tissue maintenance, but have also been implicated in tumor progression (2). Both the chemical and mechanical properties of the ECM have been shown to influence normal and malignant cell behavior. For instance, mesenchymal stem cells differentiate into specific lineages that are dependent on matrix stiffness (3), while tumor cells undergo changes in cell behavior and gene expression in response to matrix stiffness (4). ECM remodeling is implicated in tumor progression and includes changes in both the chemical and mechanical properties of the ECM (5) that can be a result of 1.) increased deposition of stromal ECM, 2.) enhanced contraction of ECM fibrils, and 3.) altered collagen alignment and ECM stiffness. In addition, remodeling of the ECM may alter whether tumor cells employ proteolytic degradation mechanisms during invasion and metastasis. Tumor cells respond to such changes in ECM remodeling through altered intracellular signaling and cell cycle control that lead to enhanced proliferation, loss of normal tissue architecture, and local tumor cell migration and invasion into the surrounding stromal tissue (6). This review will focus on the bi-directional interplay between the mechanical properties of the ECM and changes in integrin-mediated signal transduction events in an effort to elucidate cell behaviors during tumor progression. PMID:23582036

  10. Extracellular matrix scaffold as a tubular graft for ascending aorta aneurysm repair.

    PubMed

    Abu Saleh, Walid K; Al Jabbari, Odeaa; Grande-Allen, Jane; Ramchandani, Mahesh

    2015-08-01

    Although extracellular xenograft repair has produced encouraging results when applied to cardiac, valvular, and specific aortic defects, its employment as a tube graft to replace the ascending aorta has not been reported. We describe a patient who underwent resection and replacement of an infected ascending aortic graft with an extracellular matrix conduit. The patient did well, but 14 months later developed a pseudoaneurysm from the staple line used to construct the extracellular matrix conduit. The patient underwent a repeat sternotomy and removal of the graft. Because of the increased risk of graft failure, a homograft was felt to be more appropriate in this setting. Ultimately, we were unable to implant the homograft because it was too small for the aortic root; therefore we decided to construct a tubular graft from Cormatrix extracellular matrix (CorMatrix, Roswell, GA, USA). Fourteen months later, he presented with shortness of breath. Computed tomography scan revealed a 3.5 cm pseudoaneurysm of the ascending aorta. It appeared as if there was a disruption of the staple line in the extra cellular matrix graft. The plan was to replace it with a Dacron graft. The Cormatrix graft material was removed and sent for culture and histological analysis. A 28-mm Gel weave graft (Terumo Cardiovascular Systems, Ann Arbor, MI, USA) was implanted. The patient tolerated the procedure well with good hemodynamics. Our experience suggests that the superior strength, handling characteristics, and resistance to infection make extra cellular matrix scaffold a possible alternative conduit to cryopreserved homografts. Applicability as an aortic conduit merits further investigation to better understand behavior of extra cellular matrix in this situation. © 2015 Wiley Periodicals, Inc.

  11. [Three-dimensional parallel collagen scaffold promotes tendon extracellular matrix formation].

    PubMed

    Zheng, Zefeng; Shen, Weiliang; Le, Huihui; Dai, Xuesong; Ouyang, Hongwei; Chen, Weishan

    2016-03-01

    To investigate the effects of three-dimensional parallel collagen scaffold on the cell shape, arrangement and extracellular matrix formation of tendon stem cells. Parallel collagen scaffold was fabricated by unidirectional freezing technique, while random collagen scaffold was fabricated by freeze-drying technique. The effects of two scaffolds on cell shape and extracellular matrix formation were investigated in vitro by seeding tendon stem/progenitor cells and in vivo by ectopic implantation. Parallel and random collagen scaffolds were produced successfully. Parallel collagen scaffold was more akin to tendon than random collagen scaffold. Tendon stem/progenitor cells were spindle-shaped and unified orientated in parallel collagen scaffold, while cells on random collagen scaffold had disorder orientation. Two weeks after ectopic implantation, cells had nearly the same orientation with the collagen substance. In parallel collagen scaffold, cells had parallel arrangement, and more spindly cells were observed. By contrast, cells in random collagen scaffold were disorder. Parallel collagen scaffold can induce cells to be in spindly and parallel arrangement, and promote parallel extracellular matrix formation; while random collagen scaffold can induce cells in random arrangement. The results indicate that parallel collagen scaffold is an ideal structure to promote tendon repairing.

  12. The anchorless adhesin Eap (extracellular adherence protein) from Staphylococcus aureus selectively recognizes extracellular matrix aggregates but binds promiscuously to monomeric matrix macromolecules.

    PubMed

    Hansen, Uwe; Hussain, Muzaffar; Villone, Daniela; Herrmann, Mathias; Robenek, Horst; Peters, Georg; Sinha, Bhanu; Bruckner, Peter

    2006-05-01

    Besides a number of cell wall-anchored adhesins, the majority of Staphylococcus aureus strains produce anchorless, cell wall-associated proteins, such as Eap (extracellular adherence protein). Eap contains four to six tandem repeat (EAP)-domains. Eap mediates diverse biological functions, including adherence and immunomodulation, thus contributing to S. aureus pathogenesis. Eap binding to host macromolecules is unusually promiscuous and includes matrix or matricellular proteins as well as plasma proteins. The structural basis of this promiscuity is poorly understood. Here, we show that in spite of the preferential location of the binding epitopes within triple helical regions in some collagens there is a striking specificity of Eap binding to different collagen types. Collagen I, but not collagen II, is a binding substrate in monomolecular form. However, collagen I is virtually unrecognized by Eap when incorporated into banded fibrils. By contrast, microfibrils containing collagen VI as well as basement membrane-associated networks containing collagen IV, or aggregates containing fibronectin bound Eap as effectively as the monomeric proteins. Therefore, Eap-binding to extracellular matrix ligands is promiscuous at the molecular level but not indiscriminate with respect to supramolecular structures containing the same macromolecules. In addition, Eap bound to banded fibrils after their partial disintegration by matrix-degrading proteinases, including matrix metalloproteinase 1. Therefore, adherence to matrix suprastructures by S. aureus can be supported by inflammatory reactions.

  13. The Dynamic Sclera: Extracellular Matrix Remodeling in Normal Ocular Growth and Myopia Development

    PubMed Central

    Harper, Angelica R.; Summers, Jody A.

    2014-01-01

    Myopia is a common ocular condition, characterized by excessive elongation of the ocular globe. The prevalence of myopia continues to increase, particularly among highly educated groups, now exceeding 80% in some groups. In parallel with the increased prevalence of myopia, are increases in associated blinding ocular conditions including glaucoma, retinal detachment and macular degeneration, making myopia a significant global health concern. The elongation of the eye is closely related to the biomechanical properties of the sclera, which in turn are largely dependent on the composition of the scleral extracellular matrix. Therefore an understanding of the cellular and extracellular events involved in the regulation of scleral growth and remodeling during childhood and young adulthood will provide future avenues for the treatment of myopia and its associated ocular complications. PMID:25819458

  14. Extracellular matrix directions estimation of the heart on micro-focus x-ray CT volumes

    NASA Astrophysics Data System (ADS)

    Oda, Hirohisa; Oda, Masahiro; Kitasaka, Takayuki; Akita, Toshiaki; Mori, Kensaku

    2017-03-01

    In this paper we propose an estimation method of extracellular matrix directions of the heart. Myofiber are surrounded by the myocardial cell sheets whose directions have strong correspondence between heart failure. Estimation of the myocardial cell sheet directions is difficult since they are very thin. Therefore, we estimate the extracellular matrices which are touching to the sheets as if piled up. First, we perform a segmentation of the extracellular matrices by using the Hessian analysis. Each extracellular matrix region has sheet-like shape. We estimate the direction of each extracellular matrix region by the principal component analysis (PCA). In our experiments, mean inclination angles of two normal canine hearts were 50.6 and 46.2 degrees, while the angle of a failing canine heart was 57.4 degrees. This results well fit the anatomical knowledge that failing hearts tend to have vertical myocardical cell sheets.

  15. The regulation of growth and metabolism of kidney stem cells with regional specificity using extracellular matrix derived from kidney.

    PubMed

    O'Neill, John D; Freytes, Donald O; Anandappa, Annabelle J; Oliver, Juan A; Vunjak-Novakovic, Gordana V

    2013-12-01

    Native extracellular matrix (ECM) that is secreted and maintained by resident cells is of great interest for cell culture and cell delivery. We hypothesized that specialized bioengineered niches for stem cells can be established using ECM-derived scaffolding materials. Kidney was selected as a model system because of the high regional diversification of renal tissue matrix. By preparing the ECM from three specialized regions of the kidney (cortex, medulla, and papilla; whole kidney, heart, and bladder as controls) in three forms: (i) intact sheets of decellularized ECM, (ii) ECM hydrogels, and (iii) solubilized ECM, we investigated how the structure and composition of ECM affect the function of kidney stem cells (with mesenchymal stem cells, MSCs, as controls). All three forms of the ECM regulated KSC function, with differential structural and compositional effects. KSCs cultured on papilla ECM consistently displayed lower proliferation, higher metabolic activity, and differences in cell morphology, alignment, and structure formation as compared to KSCs on cortex and medulla ECM, effects not observed in corresponding MSC cultures. These data suggest that tissue- and region-specific ECM can provide an effective substrate for in vitro studies of therapeutic stem cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Matrix Rigidity Regulates Cancer Cell Growth and Cellular Phenotype

    PubMed Central

    Tilghman, Robert W.; Cowan, Catharine R.; Mih, Justin D.; Koryakina, Yulia; Gioeli, Daniel; Slack-Davis, Jill K.; Blackman, Brett R.; Tschumperlin, Daniel J.; Parsons, J. Thomas

    2010-01-01

    Background The mechanical properties of the extracellular matrix have an important role in cell growth and differentiation. However, it is unclear as to what extent cancer cells respond to changes in the mechanical properties (rigidity/stiffness) of the microenvironment and how this response varies among cancer cell lines. Methodology/Principal Findings In this study we used a recently developed 96-well plate system that arrays extracellular matrix-conjugated polyacrylamide gels that increase in stiffness by at least 50-fold across the plate. This plate was used to determine how changes in the rigidity of the extracellular matrix modulate the biological properties of tumor cells. The cell lines tested fall into one of two categories based on their proliferation on substrates of differing stiffness: “rigidity dependent” (those which show an increase in cell growth as extracellular rigidity is increased), and “rigidity independent” (those which grow equally on both soft and stiff substrates). Cells which grew poorly on soft gels also showed decreased spreading and migration under these conditions. More importantly, seeding the cell lines into the lungs of nude mice revealed that the ability of cells to grow on soft gels in vitro correlated with their ability to grow in a soft tissue environment in vivo. The lung carcinoma line A549 responded to culture on soft gels by expressing the differentiated epithelial marker E-cadherin and decreasing the expression of the mesenchymal transcription factor Slug. Conclusions/Significance These observations suggest that the mechanical properties of the matrix environment play a significant role in regulating the proliferation and the morphological properties of cancer cells. Further, the multiwell format of the soft-plate assay is a useful and effective adjunct to established 3-dimensional cell culture models. PMID:20886123

  17. Six Years Experience with Porcine Extracellular Matrix: A New Paradigm for Pelvic Floor Repair

    DTIC Science & Technology

    2017-05-06

    MDW/SGVU SUBJECT: Profess ional Presentation Approval 20 APR 20 17 1. Your paper, entitled Six Years Experience with Porcine Extracellular Matrix: A...NIA 6. TITLE OF MATERIAL TO BE PUBLISHED OR PRESENTED: Six Years Experience with Porcine Extracellular Matrix: A New Paradigm for Pelvic Floor Repair

  18. Progesterone and gravidity differentially regulate expression of extracellular matrix components in the pregnant rat myometrium.

    PubMed

    Shynlova, Oksana; Mitchell, Jennifer A; Tsampalieros, Anne; Langille, B Lowell; Lye, Stephen J

    2004-04-01

    Myometrial growth and remodeling during pregnancy depends on increased synthesis of interstitial matrix proteins. We hypothesize that the presence of mechanical tension in a specific hormonal environment regulates the expression of extracellular matrix (ECM) components in the uterus. Myometrial tissue was collected from pregnant rats on Gestational Days 0, 12, 15, 17, 19, 21, 22, 23 (labor), and 1 day postpartum and ECM expression was analyzed by Northern blotting. Expression of fibronectin, laminin beta2, and collagen IV mRNA was low during early gestation but increased dramatically on Day 23 during labor. Expression of fibrillar collagens (type I and III) peaked Day 19 and decreased near term. In contrast, elastin mRNA remained elevated from midgestation onward. Injection of progesterone (P4) on Days 20-23 (to maintain elevated plasma P4 levels) delayed the onset of labor, caused dramatic reductions in the levels of fibronectin and laminin mRNA, and prevented the fall of collagen III mRNA levels on Day 23. Treatment of pregnant rats with the progesterone receptor antagonist RU486 on Day 19 induced preterm labor on Day 20 and a premature increase in mRNA levels of collagen IV, fibronectin, and laminin. Analysis of the uterine tissue from unilaterally pregnant rats revealed that most of the changes in ECM gene expression occurred specifically in the gravid horn. Our results show a decrease in expression of fibrillar collagens and a coordinated temporal increase in expression of components of the basement membrane near term associated with decreased P4 and increased mechanical tension. These ECM changes contribute to myometrial growth and remodeling during late pregnancy and the preparation for the synchronized contractions of labor.

  19. Large-scale production and isolation of Candida biofilm extracellular matrix.

    PubMed

    Zarnowski, Robert; Sanchez, Hiram; Andes, David R

    2016-12-01

    The extracellular matrix of biofilm is unique to the biofilm lifestyle, and it has key roles in community survival. A complete understanding of the biochemical nature of the matrix is integral to the understanding of the roles of matrix components. This knowledge is a first step toward the development of novel therapeutics and diagnostics to address persistent biofilm infections. Many of the assay methods needed for refined matrix composition analysis require milligram amounts of material that is separated from the cellular components of these complex communities. The protocol described here explains the large-scale production and isolation of the Candida biofilm extracellular matrix. To our knowledge, the proposed procedure is the only currently available approach in the field that yields milligram amounts of biofilm matrix. This procedure first requires biofilms to be seeded in large-surface-area roller bottles, followed by cell adhesion and biofilm maturation during continuous movement of the medium across the surface of the rotating bottle. The formed matrix is then separated from the entire biomass using sonication, which efficiently removes the matrix without perturbing the fungal cell wall. Subsequent filtration, dialysis and lyophilization steps result in a purified matrix product sufficient for biochemical, structural and functional assays. The overall protocol takes ∼11 d to complete. This protocol has been used for Candida species, but, using the troubleshooting guide provided, it could be adapted for other fungi or bacteria.

  20. Matrix Rigidity Activates Wnt Signaling through Down-regulation of Dickkopf-1 Protein*

    PubMed Central

    Barbolina, Maria V.; Liu, Yiuying; Gurler, Hilal; Kim, Mijung; Kajdacsy-Balla, Andre A.; Rooper, Lisa; Shepard, Jaclyn; Weiss, Michael; Shea, Lonnie D.; Penzes, Peter; Ravosa, Matthew J.; Stack, M. Sharon

    2013-01-01

    Cells respond to changes in the physical properties of the extracellular matrix with altered behavior and gene expression, highlighting the important role of the microenvironment in the regulation of cell function. In the current study, culture of epithelial ovarian cancer cells on three-dimensional collagen I gels led to a dramatic down-regulation of the Wnt signaling inhibitor dickkopf-1 with a concomitant increase in nuclear β-catenin and enhanced β-catenin/Tcf/Lef transcriptional activity. Increased three-dimensional collagen gel invasion was accompanied by transcriptional up-regulation of the membrane-tethered collagenase membrane type 1 matrix metalloproteinase, and an inverse relationship between dickkopf-1 and membrane type 1 matrix metalloproteinase was observed in human epithelial ovarian cancer specimens. Similar results were obtained in other tissue-invasive cells such as vascular endothelial cells, suggesting a novel mechanism for functional coupling of matrix adhesion with Wnt signaling. PMID:23152495

  1. Matrix rigidity activates Wnt signaling through down-regulation of Dickkopf-1 protein.

    PubMed

    Barbolina, Maria V; Liu, Yiuying; Gurler, Hilal; Kim, Mijung; Kajdacsy-Balla, Andre A; Rooper, Lisa; Shepard, Jaclyn; Weiss, Michael; Shea, Lonnie D; Penzes, Peter; Ravosa, Matthew J; Stack, M Sharon

    2013-01-04

    Cells respond to changes in the physical properties of the extracellular matrix with altered behavior and gene expression, highlighting the important role of the microenvironment in the regulation of cell function. In the current study, culture of epithelial ovarian cancer cells on three-dimensional collagen I gels led to a dramatic down-regulation of the Wnt signaling inhibitor dickkopf-1 with a concomitant increase in nuclear β-catenin and enhanced β-catenin/Tcf/Lef transcriptional activity. Increased three-dimensional collagen gel invasion was accompanied by transcriptional up-regulation of the membrane-tethered collagenase membrane type 1 matrix metalloproteinase, and an inverse relationship between dickkopf-1 and membrane type 1 matrix metalloproteinase was observed in human epithelial ovarian cancer specimens. Similar results were obtained in other tissue-invasive cells such as vascular endothelial cells, suggesting a novel mechanism for functional coupling of matrix adhesion with Wnt signaling.

  2. Extracellular matrix controls tubulin monomer levels in hepatocytes by regulating protein turnover

    NASA Technical Reports Server (NTRS)

    Mooney, D. J.; Hansen, L. K.; Langer, R.; Vacanti, J. P.; Ingber, D. E.

    1994-01-01

    Cells have evolved an autoregulatory mechanism to dampen variations in the concentration of tubulin monomer that is available to polymerize into microtubules (MTs), a process that is known as tubulin autoregulation. However, thermodynamic analysis of MT polymerization predicts that the concentration of free tubulin monomer must vary if MTs are to remain stable under different mechanical loads that result from changes in cell adhesion to the extracellular matrix (ECM). To determine how these seemingly contradictory regulatory mechanisms coexist in cells, we measured changes in the masses of tubulin monomer and polymer that resulted from altering cell-ECM contacts. Primary rat hepatocytes were cultured in chemically defined medium on bacteriological petri dishes that were precoated with different densities of laminin (LM). Increasing the LM density from low to high (1-1000 ng/cm2), promoted cell spreading (average projected cell area increased from 1200 to 6000 microns2) and resulted in formation of a greatly extended MT network. Nevertheless, the steady-state mass of tubulin polymer was similar at 48 h, regardless of cell shape or ECM density. In contrast, round hepatocytes on low LM contained a threefold higher mass of tubulin monomer when compared with spread cells on high LM. Furthermore, similar results were obtained whether LM, fibronectin, or type I collagen were used for cell attachment. Tubulin autoregulation appeared to function normally in these cells because tubulin mRNA levels and protein synthetic rates were greatly depressed in round cells that contained the highest level of free tubulin monomer. However, the rate of tubulin protein degradation slowed, causing the tubulin half-life to increase from approximately 24 to 55 h as the LM density was lowered from high to low and cell rounding was promoted. These results indicate that the set-point for the tubulin monomer mass in hepatocytes can be regulated by altering the density of ECM contacts and

  3. Epidermal growth factor-containing fibulin-like extracellular matrix protein 1 expression and regulation in uterine leiomyoma.

    PubMed

    Marsh, Erica E; Chibber, Shani; Wu, Ju; Siegersma, Kendra; Kim, Julie; Bulun, Serdar

    2016-04-01

    To determine the presence, differential expression, and regulation of epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) in uterine leiomyomas. Laboratory in vivo and in vitro study with the use of human leiomyoma and myometrial tissue and primary cells. Academic medical center. Leiomyoma and myometrial tissue samples and cultured cells. 5-Aza-2'-deoxycytidine (5-aza-dC) treatment. Fold-change difference between EFEMP1 and fibulin-3 expression in leiomyoma tissue and cells compared with matched myometrial samples, and fold-change difference in EFEMP1 expression with 5-Aza-dC treatment. In vivo, EFEMP1 expression was 3.19-fold higher in myometrial tissue than in leiomyoma tissue. EFEMP1 expression in vitro was 5.03-fold higher in myometrial cells than in leiomyoma cells. Western blot and immunohistochemistry staining of tissue and cells confirmed similar findings in protein expression. Treatment of leiomyoma cells with 5-Aza-dC resulted in increased expression of EFEMP1 in vitro. The EFEMP1 gene and its protein product, fibulin-3, are both significantly down-regulated in leiomyoma compared with myometrium when studied both in vivo and in vitro. The increase in EFEMP1 expression in leiomyoma cells with 5-Aza-dC treatment suggest that differential methylation is responsible, in part, for the differences seen in gene expression. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  4. Specialisation of extracellular matrix for function in tendons and ligaments

    PubMed Central

    Birch, Helen L.; Thorpe, Chavaunne T.; Rumian, Adam P.

    2013-01-01

    Summary Tendons and ligaments are similar structures in terms of their composition, organisation and mechanical properties. The distinction between them stems from their anatomical location; tendons form a link between muscle and bone while ligaments link bones to bones. A range of overlapping functions can be assigned to tendon and ligaments and each structure has specific mechanical properties which appear to be suited for particular in vivo function. The extracellular matrix in tendon and ligament varies in accordance with function, providing appropriate mechanical properties. The most useful framework in which to consider extracellular matrix differences therefore is that of function rather than anatomical location. In this review we discuss what is known about the relationship between functional requirements, structural properties from molecular to gross level, cellular gene expression and matrix turnover. The relevance of this information is considered by reviewing clinical aspects of tendon and ligament repair and reconstructive procedures. PMID:23885341

  5. Extracellular regulation of VEGF: isoforms, proteolysis, and vascular patterning

    PubMed Central

    Vempati, Prakash; Popel, Aleksander S.; Mac Gabhann, Feilim

    2014-01-01

    The regulation of vascular endothelial growth factor A (VEGF) is critical to neovascularization in numerous tissues under physiological and pathological conditions. VEGF has multiple isoforms, created by alternative splicing or proteolytic cleavage, and characterized by different receptor-binding and matrix-binding properties. These isoforms are known to give rise to a spectrum of angiogenesis patterns marked by differences in branching, which has functional implications for tissues. In this review, we detail the extensive extracellular regulation of VEGF and the ability of VEGF to dictate the vascular phenotype. We explore the role of VEGF-releasing proteases and soluble carrier molecules on VEGF activity. While proteases such as MMP9 can ‘release’ matrix-bound VEGF and promote angiogenesis, for example as a key step in carcinogenesis, proteases can also suppress VEGF’s angiogenic effects. We explore what dictates pro- or anti-angiogenic behavior. We also seek to understand the phenomenon of VEGF gradient formation. Strong VEGF gradients are thought to be due to decreased rates of diffusion from reversible matrix binding, however theoretical studies show that this scenario cannot give rise to lasting VEGF gradients in vivo. We propose that gradients are formed through degradation of sequestered VEGF. Finally, we review how different aspects of the VEGF signal, such as its concentration, gradient, matrix-binding, and NRP1-binding can differentially affect angiogenesis. We explore how this allows VEGF to regulate the formation of vascular networks across a spectrum of high to low branching densities, and from normal to pathological angiogenesis. A better understanding of the control of angiogenesis is necessary to improve upon limitations of current angiogenic therapies. PMID:24332926

  6. Tissue architecture and breast cancer: the role of extracellular matrix and steroid hormones

    PubMed Central

    Hansen, R K; Bissell, M J

    2010-01-01

    The changes in tissue architecture that accompany the development of breast cancer have been the focus of investigations aimed at developing new cancer therapeutics. As we learn more about the normal mammary gland, we have begun to understand the complex signaling pathways underlying the dramatic shifts in the structure and function of breast tissue. Integrin-, growth factor-, and steroid hormone-signaling pathways all play an important part in maintaining tissue architecture; disruption of the delicate balance of signaling results in dramatic changes in the way cells interact with each other and with the extracellular matrix, leading to breast cancer. The extracellular matrix itself plays a central role in coordinating these signaling processes. In this review, we consider the interrelationships between the extracellular matrix, integrins, growth factors, and steroid hormones in mammary gland development and function. PMID:10903527

  7. Escherichia coli biofilms have an organized and complex extracellular matrix structure.

    PubMed

    Hung, Chia; Zhou, Yizhou; Pinkner, Jerome S; Dodson, Karen W; Crowley, Jan R; Heuser, John; Chapman, Matthew R; Hadjifrangiskou, Maria; Henderson, Jeffrey P; Hultgren, Scott J

    2013-09-10

    Bacterial biofilms are ubiquitous in nature, and their resilience is derived in part from a complex extracellular matrix that can be tailored to meet environmental demands. Although common developmental stages leading to biofilm formation have been described, how the extracellular components are organized to allow three-dimensional biofilm development is not well understood. Here we show that uropathogenic Escherichia coli (UPEC) strains produce a biofilm with a highly ordered and complex extracellular matrix (ECM). We used electron microscopy (EM) techniques to image floating biofilms (pellicles) formed by UPEC. EM revealed intricately constructed substructures within the ECM that encase individual, spatially segregated bacteria with a distinctive morphology. Mutational and biochemical analyses of these biofilms confirmed curli as a major matrix component and revealed important roles for cellulose, flagella, and type 1 pili in pellicle integrity and ECM infrastructure. Collectively, the findings of this study elucidated that UPEC pellicles have a highly organized ultrastructure that varies spatially across the multicellular community. Bacteria can form biofilms in diverse niches, including abiotic surfaces, living cells, and at the air-liquid interface of liquid media. Encasing these cellular communities is a self-produced extracellular matrix (ECM) that can be composed of proteins, polysaccharides, and nucleic acids. The ECM protects biofilm bacteria from environmental insults and also makes the dissolution of biofilms very challenging. As a result, formation of biofilms within humans (during infection) or on industrial material (such as water pipes) has detrimental and costly effects. In order to combat bacterial biofilms, a better understanding of components required for biofilm formation and the ECM is required. This study defined the ECM composition and architecture of floating pellicle biofilms formed by Escherichia coli.

  8. Role of extracellular matrix in regulation of staurosporine-induced apoptosis in breast cancer cells.

    PubMed

    Vasaturo, F; Malacrino, C; Sallusti, E; Coppotelli, G; Birarelli, P; Giuffrida, A; Albonici, L; Simonelli, L; Modesti, A; Modesti, M; Scarpa, S

    2005-04-01

    Autocrine and paracrine mechanisms modulate the synthesis and secretion of extracellular matrix (ECM); moreover, each component of the ECM is capable of modulating the synthesis and release of other ECM molecules. Therefore, the synthesis of ECM glycoprotein fibronectin and laminin was studied in the human breast cancer cell lines MCF7 and MDA MB 23, plated on different ECM. Our results showed that the cells plated on a fibronectin substrate increased laminin synthesis: this event correlated with an increase in alpha2 and alpha3 integrin subunits. Staurosporine-induced apoptosis was then analyzed in the cell lines plated on different ECM. Staurosporine treatment determined the apoptosis of 35 and 33% respectively of MDA MB 231 and MCF7; these values increased to 60 and 64% in cells plated on laminin, to 48 and 63% in cells plated on fibronectin and to 64 and 69% in cells plated on matrigel. Moreover, staurosporine treatment decreased bcl-2 expression in the cells plated on fibronectin and laminin. Yet, staurosporine treatment determined PARP cleavage and PARP partial disappearance when the cells were plated on matrigel. Finally, a partial loss of function mutant Ras protein that activated only Raf pathway, was expressed in MCF7, in order to identify whether the increase of apoptosis induced by extracellular matrix involved the Raf/MAP kinase pathway. The increase of apoptosis of the cells plated on matrigel suggested that the activation of the Raf pathway is probably involved in the decrease of survival on matrigel. These data demonstrate that the modification of ECM modulates the apoptotic process of breast cancer cells and suggest that it is worthwhile to dissect the role of ECM in the control of apoptotic process.

  9. Aberrant Epicardial Adipose Tissue Extracellular Matrix Remodeling in Patients with Severe Ischemic Cardiomyopathy: Insight from Comparative Quantitative Proteomics.

    PubMed

    Jiang, Ding-Sheng; Zeng, Hao-Long; Li, Rui; Huo, Bo; Su, Yun-Shu; Fang, Jing; Yang, Qing; Liu, Li-Gang; Hu, Min; Cheng, Cai; Zhu, Xue-Hai; Yi, Xin; Wei, Xiang

    2017-03-03

    There is ample evidence indicating that epicardial adipose tissue (EAT) volume and thickness is positively associated with coronary artery disease (CAD). However, the exact pathological changes in the human EAT after myocardial ischemia remains largely unclear. In the current study, we applied a comparative quantitative proteomics to elucidate the altered biological processes in the EAT of ischemic cardiomyopathy (ICM) patients. A total of 1649 proteins were successfully quantified in our study, among which 165 proteins were significantly changed (ratio <0.8 or >1.2 fold and p < 0.05 in both repetitions) in EAT of ICM individuals. Gene ontology (GO) enrichment analysis revealed that cardiac structure and cellular metabolism were over-represented among these regulated proteins. The hypertrophic cardiomyopathy, adrenergic signaling in cardiomyocytes, extracellular matrix (ECM)-receptor interaction, phagosome, Glycolysis/Gluconeogenesis, and PPAR signaling pathway were highlighted by the KEGG PATHWAY analysis. More importantly, we found that the proteins responsible for extracellular matrix organization were dramatically increased in EAT of ICM patients. In addition, the picrosirius red (PSR) staining results showed that the collagen fiber content was prominently increased, which indicated the EAT of ICM individuals underwent extracellular matrix remodeling and ERK1/2 activation maybe responsible for these pathological changes partially.

  10. Extracellular matrix family proteins that are potential targets of Dd-STATa in Dictyostelium discoideum.

    PubMed

    Shimada, Nao; Nishio, Keiko; Maeda, Mineko; Urushihara, Hideko; Kawata, Takefumi

    2004-10-01

    Dd-STATa is a functional Dictyostelium homologue of metazoan STAT (signal transducers and activators of transcription) proteins, which is activated by cAMP and is thereby translocated into the nuclei of anterior tip cells of the prestalk region of the slug. By using in situ hybridization analyses, we found that the SLF308 cDNA clone, which contains the ecmF gene that encodes a putative extracellular matrix protein and is expressed in the anterior tip cells, was greatly down-regulated in the Dd-STATa-null mutant. Disruption of the ecmF gene, however, resulted in almost no phenotypic change. The absence of any obvious mutant phenotype in the ecmF-null mutant could be due to a redundancy of similar genes. In fact, a search of the Dictyostelium whole genome database demonstrates the existence of an additional 16 homologues, all of which contain a cellulose-binding module. Among these homologues, four genes show Dd-STATa-dependent expression, while the others are Dd-STATa-independent. We discuss the potential role of Dd-STATa in morphogenesis via its effect on the interaction between cellulose and these extracellular matrix family proteins.

  11. Microfluidic vascularized bone tissue model with hydroxyapatite-incorporated extracellular matrix.

    PubMed

    Jusoh, Norhana; Oh, Soojung; Kim, Sudong; Kim, Jangho; Jeon, Noo Li

    2015-10-21

    Current in vitro systems mimicking bone tissues fail to fully integrate the three-dimensional (3D) microvasculature and bone tissue microenvironments, decreasing their similarity to in vivo conditions. Here, we propose 3D microvascular networks in a hydroxyapatite (HA)-incorporated extracellular matrix (ECM) for designing and manipulating a vascularized bone tissue model in a microfluidic device. Incorporation of HA of various concentrations resulted in ECM with varying mechanical properties. Sprouting angiogenesis was affected by mechanically modulated HA-extracellular matrix interactions, generating a model of vascularized bone microenvironment. Using this platform, we observed that hydroxyapatite enhanced angiogenic properties such as sprout length, sprouting speed, sprout number, and lumen diameter. This new platform integrates fibrin ECM with the synthetic bone mineral HA to provide in vivo-like microenvironments for bone vessel sprouting.

  12. Engineering Three-dimensional Epithelial Tissues Embedded within Extracellular Matrix.

    PubMed

    Piotrowski-Daspit, Alexandra S; Nelson, Celeste M

    2016-07-10

    The architecture of branched organs such as the lungs, kidneys, and mammary glands arises through the developmental process of branching morphogenesis, which is regulated by a variety of soluble and physical signals in the microenvironment. Described here is a method created to study the process of branching morphogenesis by forming engineered three-dimensional (3D) epithelial tissues of defined shape and size that are completely embedded within an extracellular matrix (ECM). This method enables the formation of arrays of identical tissues and enables the control of a variety of environmental factors, including tissue geometry, spacing, and ECM composition. This method can also be combined with widely used techniques such as traction force microscopy (TFM) to gain more information about the interactions between cells and their surrounding ECM. The protocol can be used to investigate a variety of cell and tissue processes beyond branching morphogenesis, including cancer invasion.

  13. Engineering a collagen matrix that replicates the biological properties of native extracellular matrix.

    PubMed

    Nam, Kwangwoo; Sakai, Yuuki; Funamoto, Seiichi; Kimura, Tsuyoshi; Kishida, Akio

    2011-01-01

    In this study, we aimed to replicate the function of native tissues that can be used in tissue engineering and regenerative medicine. The key to such replication is the preparation of an artificial collagen matrix that possesses a structure resembling that of the extracellular matrix. We, therefore, prepared a collagen matrix by fibrillogenesis in a NaCl/Na(2)HPO(4) aqueous solution using a dialysis cassette and investigated its biological behavior in vitro and in vivo. The in vitro cell adhesion and proliferation did not show any significant differences. The degradation rate in the living body could be controlled according to the preparation condition, where the collagen matrix with high water content (F-collagen matrix, >98%) showed fast degradation and collagen matrix with lower water content (T-collagen matrix, >80%) showed no degradation for 8 weeks. The degradation did not affect the inflammatory response at all and relatively faster wound healing response was observed. Comparing this result with that of collagen gel and decellularized cornea, it can be concluded that the structural factor is very important and no cell abnormal behavior would be observed for quaternary structured collagen matrix.

  14. A collagen-based scaffold delivering exogenous microrna-29B to modulate extracellular matrix remodeling.

    PubMed

    Monaghan, Michael; Browne, Shane; Schenke-Layland, Katja; Pandit, Abhay

    2014-04-01

    Directing appropriate extracellular matrix remodeling is a key aim of regenerative medicine strategies. Thus, antifibrotic interfering RNA (RNAi) therapy with exogenous microRNA (miR)-29B was proposed as a method to modulate extracellular matrix remodeling following cutaneous injury. It was hypothesized that delivery of miR-29B from a collagen scaffold will efficiently modulate the extracellular matrix remodeling response and reduce maladaptive remodeling such as aggressive deposition of collagen type I after injury. The release of RNA from the scaffold was assessed and its ability to silence collagen type I and collagen type III expression was evaluated in vitro. When primary fibroblasts were cultured with scaffolds doped with miR-29B, reduced levels of collagen type I and collagen type III mRNA expression were observed for up to 2 weeks of culture. When the scaffolds were applied to full thickness wounds in vivo, reduced wound contraction, improved collagen type III/I ratios and a significantly higher matrix metalloproteinase (MMP)-8: tissue inhibitor of metalloproteinase (TIMP)-1 ratio were detected when the scaffolds were functionalized with miR-29B. Furthermore, these effects were significantly influenced by the dose of miR-29B in the collagen scaffold (0.5 versus 5 μg). This study shows a potential of combining exogenous miRs with collagen scaffolds to improve extracellular matrix remodeling following injury.

  15. Characterization of carboxypeptidase A6, an extracellular matrix peptidase.

    PubMed

    Lyons, Peter J; Callaway, Myrasol B; Fricker, Lloyd D

    2008-03-14

    Carboxypeptidase A6 (CPA6) is a member of the M14 metallocarboxypeptidase family that is highly expressed in the adult mouse olfactory bulb and broadly expressed in embryonic brain and other tissues. A disruption in the human CPA6 gene is linked to Duane syndrome, a defect in the abducens nerve/lateral rectus muscle connection. In this study the cellular distribution, processing, and substrate specificity of human CPA6 were investigated. The 50-kDa pro-CPA6 is routed through the constitutive secretory pathway, processed by furin or a furin-like enzyme into the 37-kDa active form, and secreted into the extracellular matrix. CPA6 cleaves the C-terminal residue from a range of substrates, including small synthetic substrates, larger peptides, and proteins. CPA6 has a preference for large hydrophobic C-terminal amino acids as well as histidine. Peptides with a penultimate glycine or proline are very poorly cleaved. Several neuropeptides were found to be processed by CPA6, including Met- and Leu-enkephalin, angiotensin I, and neurotensin. Whereas CPA6 converts enkephalin and neurotensin into forms known to be inactive toward their receptors, CPA6 converts inactive angiotensin I into the biologically active angiotensin II. Taken together, these data suggest a role for CPA6 in the regulation of neuropeptides in the extracellular environment within the olfactory bulb and other parts of the brain.

  16. Characterization of the Vibrio cholerae extracellular matrix: a top-down solid-state NMR approach.

    PubMed

    Reichhardt, Courtney; Fong, Jiunn C N; Yildiz, Fitnat; Cegelski, Lynette

    2015-01-01

    Bacterial biofilms are communities of bacterial cells surrounded by a self-secreted extracellular matrix. Biofilm formation by Vibrio cholerae, the human pathogen responsible for cholera, contributes to its environmental survival and infectivity. Important genetic and molecular requirements have been identified for V. cholerae biofilm formation, yet a compositional accounting of these parts in the intact biofilm or extracellular matrix has not been described. As insoluble and non-crystalline assemblies, determinations of biofilm composition pose a challenge to conventional biochemical and biophysical analyses. The V. cholerae extracellular matrix composition is particularly complex with several proteins, complex polysaccharides, and other biomolecules having been identified as matrix parts. We developed a new top-down solid-state NMR approach to spectroscopically assign and quantify the carbon pools of the intact V. cholerae extracellular matrix using ¹³C CPMAS and ¹³C{(¹⁵N}, ¹⁵N{³¹P}, and ¹³C{³¹P}REDOR. General sugar, lipid, and amino acid pools were first profiled and then further annotated and quantified as specific carbon types, including carbonyls, amides, glycyl carbons, and anomerics. In addition, ¹⁵N profiling revealed a large amine pool relative to amide contributions, reflecting the prevalence of molecular modifications with free amine groups. Our top-down approach could be implemented immediately to examine the extracellular matrix from mutant strains that might alter polysaccharide production or lipid release beyond the cell surface; or to monitor changes that may accompany environmental variations and stressors such as altered nutrient composition, oxidative stress or antibiotics. More generally, our analysis has demonstrated that solid-state NMR is a valuable tool to characterize complex biofilm systems. Copyright © 2014. Published by Elsevier B.V.

  17. Platelet activation by extracellular matrix proteins in haemostasis and thrombosis.

    PubMed

    Watson, Steve P

    2009-01-01

    The prevention of excessive blood loss to avoid fatal haemorrhage is a pivotal process for all organisms possessing a circulatory system. Increased circulating blood volume and pressure, as required in larger animals, make this process all the more important and challenging. It is essential to have a powerful and rapid system to detect damage and generate an effective seal, and which is also exquisitely regulated to prevent unwanted, excessive or systemic activation so as to avoid blockage of vessels. Thus, a highly specialised and efficient haemostatic system has evolved that consists of cellular (platelets) and protein (coagulation factors) components. Importantly, this is able to support haemostasis in both the low shear environment of the venous system and the high shear environment of the arterial system. Endothelial cells, lining the entire circulation system, play a crucial role in the delicate balance between activation and inhibition of the haemostatic system. An intact and healthy endothelium supports blood flow by preventing attachment of cells and proteins which is required for initiation of coagulation and platelet activation. Endothelial cells produce and release the two powerful soluble inhibitors of platelet activation, nitric oxide and prostacyclin, and express high levels of CD39 which rapidly metabolises the major platelet feedback agonist, ADP. This antithrombotic environment however can rapidly change following activation or removal of endothelial cells through injury or rupture of atherosclerotic plaques. Loss of endothelial cells exposes the subendothelial extracellular matrix which creates strong signals for activation of the haemostatic system including powerful platelet adhesion and activation. Quantitative and qualitative changes in the composition of the subendothelial extracellular matrix influence these prothrombotic characteristics with life threatening thrombotic and bleeding complications, as illustrated by formation of

  18. Smad4 regulates growth plate matrix production and chondrocyte polarity.

    PubMed

    Whitaker, Amanda T; Berthet, Ellora; Cantu, Andrea; Laird, Diana J; Alliston, Tamara

    2017-03-15

    Smad4 is an intracellular effector of the TGFβ family that has been implicated in Myhre syndrome, a skeletal dysplasia characterized by short stature, brachydactyly and stiff joints. The TGFβ pathway also plays a critical role in the development, organization and proliferation of the growth plate, although the exact mechanisms remain unclear. Skeletal phenotypes in Myhre syndrome overlap with processes regulated by the TGFβ pathway, including organization and proliferation of the growth plate and polarity of the chondrocyte. We used in vitro and in vivo models of Smad4 deficiency in chondrocytes to test the hypothesis that deregulated TGFβ signaling leads to aberrant extracellular matrix production and loss of chondrocyte polarity. Specifically, we evaluated growth plate chondrocyte polarity in tibiae of Col2-Cre +/- ;Smad4 fl/fl mice and in chondrocyte pellet cultures. In vitro and in vivo , Smad4 deficiency decreased aggrecan expression and increased MMP13 expression. Smad4 deficiency disrupted the balance of cartilage matrix synthesis and degradation, even though the sequential expression of growth plate chondrocyte markers was intact. Chondrocytes in Smad4-deficient growth plates also showed evidence of polarity defects, with impaired proliferation and ability to undergo the characteristic changes in shape, size and orientation as they differentiated from resting to hypertrophic chondrocytes. Therefore, we show that Smad4 controls chondrocyte proliferation, orientation, and hypertrophy and is important in regulating the extracellular matrix composition of the growth plate. © 2017. Published by The Company of Biologists Ltd.

  19. Smad4 regulates growth plate matrix production and chondrocyte polarity

    PubMed Central

    Whitaker, Amanda T.; Berthet, Ellora; Cantu, Andrea; Laird, Diana J.

    2017-01-01

    ABSTRACT Smad4 is an intracellular effector of the TGFβ family that has been implicated in Myhre syndrome, a skeletal dysplasia characterized by short stature, brachydactyly and stiff joints. The TGFβ pathway also plays a critical role in the development, organization and proliferation of the growth plate, although the exact mechanisms remain unclear. Skeletal phenotypes in Myhre syndrome overlap with processes regulated by the TGFβ pathway, including organization and proliferation of the growth plate and polarity of the chondrocyte. We used in vitro and in vivo models of Smad4 deficiency in chondrocytes to test the hypothesis that deregulated TGFβ signaling leads to aberrant extracellular matrix production and loss of chondrocyte polarity. Specifically, we evaluated growth plate chondrocyte polarity in tibiae of Col2-Cre+/−;Smad4fl/fl mice and in chondrocyte pellet cultures. In vitro and in vivo, Smad4 deficiency decreased aggrecan expression and increased MMP13 expression. Smad4 deficiency disrupted the balance of cartilage matrix synthesis and degradation, even though the sequential expression of growth plate chondrocyte markers was intact. Chondrocytes in Smad4-deficient growth plates also showed evidence of polarity defects, with impaired proliferation and ability to undergo the characteristic changes in shape, size and orientation as they differentiated from resting to hypertrophic chondrocytes. Therefore, we show that Smad4 controls chondrocyte proliferation, orientation, and hypertrophy and is important in regulating the extracellular matrix composition of the growth plate. PMID:28167493

  20. Extracellular Matrix-Inspired Growth Factor Delivery Systems for Skin Wound Healing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briquez, Priscilla S.; Hubbell, Jeffrey A.; Martino, Mikaël M.

    2015-08-01

    Blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular, the spatial localizationmore » of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.« less

  1. Presynaptic neurones may contribute a unique glycoprotein to the extracellular matrix at the synapse

    NASA Astrophysics Data System (ADS)

    Caroni, Pico; Carlson, Steven S.; Schweitzer, Erik; Kelly, Regis B.

    1985-04-01

    As the extracellular matrix at the original site of a neuromuscular junction seems to play a major part in the specificity of synaptic regeneration1-5, considerable attention has been paid to unique molecules localized to this region6-11. Here we describe an extracellular matrix glycoprotein of the elasmobranch electric organ that is localized near the nerve endings. By immunological criteria, it is synthesized in the cell bodies, transported down the axons and is related to a glycoprotein in the synaptic vesicles of the neurones that innervate the electric organ. It is apparently specific for these neurones, as it cannot be detected elsewhere in the nervous system of the fish. Therefore, neurones seem to contribute unique extracellular matrix glycoproteins to the synaptic region. Synaptic vesicles could be involved in transporting these glycoproteins to or from the nerve terminal surface.

  2. Expression of small leucine-rich extracellular matrix proteoglycans biglycan and lumican reveals oral lichen planus malignant potential.

    PubMed

    Lončar-Brzak, Božana; Klobučar, Marko; Veliki-Dalić, Irena; Sabol, Ivan; Kraljević Pavelić, Sandra; Krušlin, Božo; Mravak-Stipetić, Marinka

    2018-03-01

    The aim of this study was to examine molecular alterations on the protein level in lesions of oral lichen planus (OLP), oral squamous cell carcinoma (OSCC) and healthy mucosa. Global protein profiling methods based on liquid chromatography coupled to mass spectrometry (LC-MS) were used, with a special emphasis on evaluation of deregulated extracellular matrix molecules expression, as well as on analyses of IG2F and IGFR2 expression in healthy mucosa, OLP and OSCC tissues by comparative semi-quantitative immunohistochemistry. Mass spectrometry-based proteomics profiling of healthy mucosa, OLP and OSCC tissues (and accompanied histologically unaltered tissues, respectively) identified 55 extracellular matrix proteins. Twenty among identified proteins were common to all groups of samples. Expression of small leucine-rich extracellular matrix proteoglycans lumican and biglycan was found both in OSCC and OLP and they were validated by Western blot analysis as putative biomarkers. A significant increase (p < 0.05) of biglycan expression in OLP-AT group was determined in comparison with OLP-T group, while lumican showed significant up-regulation (p < 0.05) in OLP-T and OSCC-T groups vs. adjacent and control tissue groups. Biglycan expression was only determined in OSCC-AT group. Immunohistochemical analysis of IGF2 and IG2FR expression revealed no significant difference among groups of samples. Biglycan and lumican were identified as important pathogenesis biomarkers of OLP that point to its malignant potential.

  3. Fibronectin Deposition Participates in Extracellular Matrix Assembly and Vascular Morphogenesis

    PubMed Central

    Hielscher, Abigail; Ellis, Kim; Qiu, Connie; Porterfield, Josh; Gerecht, Sharon

    2016-01-01

    The extracellular matrix (ECM) has been demonstrated to facilitate angiogenesis. In particular, fibronectin has been documented to activate endothelial cells, resulting in their transition from a quiescent state to an active state in which the cells exhibit enhanced migration and proliferation. The goal of this study is to examine the role of polymerized fibronectin during vascular tubulogenesis using a 3 dimensional (3D) cell-derived de-cellularized matrix. A fibronectin-rich 3D de-cellularized ECM was used as a scaffold to study vascular morphogenesis of endothelial cells (ECs). Confocal analyses of several matrix proteins reveal high intra- and extra-cellular deposition of fibronectin in formed vascular structures. Using a small peptide inhibitor of fibronectin polymerization, we demonstrate that inhibition of fibronectin fibrillogenesis in ECs cultured atop de-cellularized ECM resulted in decreased vascular morphogenesis. Further, immunofluorescence and ultrastructural analyses reveal decreased expression of stromal matrix proteins in the absence of polymerized fibronectin with high co-localization of matrix proteins found in association with polymerized fibronectin. Evaluating vascular kinetics, live cell imaging showed that migration, migration velocity, and mean square displacement, are disrupted in structures grown in the absence of polymerized fibronectin. Additionally, vascular organization failed to occur in the absence of a polymerized fibronectin matrix. Consistent with these observations, we tested vascular morphogenesis following the disruption of EC adhesion to polymerized fibronectin, demonstrating that block of integrins α5β1 and αvβ3, abrogated vascular morphogenesis. Overall, fibronectin deposition in a 3D cell-derived de-cellularized ECM appears to be imperative for matrix assembly and vascular morphogenesis. PMID:26811931

  4. Mechanical phenotyping of cells and extracellular matrix as grade and stage markers of lung tumor tissues.

    PubMed

    Panzetta, Valeria; Musella, Ida; Rapa, Ida; Volante, Marco; Netti, Paolo A; Fusco, Sabato

    2017-07-15

    The mechanical cross-talk between cells and the extra-cellular matrix (ECM) regulates the properties, functions and healthiness of the tissues. When this is disturbed it changes the mechanical state of the tissue components, singularly or together, and cancer, along with other diseases, may start and progress. However, the bi-univocal mechanical interplay between cells and the ECM is still not properly understood. In this study we show how a microrheology technique gives us the opportunity to evaluate the mechanics of cells and the ECM at the same time. The mechanical phenotyping was performed on the surgically removed tissues of 10 patients affected by adenocarcinoma of the lung. A correlation between the mechanics and the grade and stage of the tumor was reported and compared to the mechanical characteristics of the healthy tissue. Our findings suggest a sort of asymmetric modification of the mechanical properties of the cells and the extra-cellular matrix in the tumor, being the more compliant cell even though it resides in a stiffer matrix. Overall, the simultaneous mechanical characterization of the tissues constituents (cells and ECM) provided new support for diagnosis and offered alternative points of analysis for cancer mechanobiology. When the integrity of the mechanical cross-talk between cells and the extra-cellular matrix is disturbed cancer, along with other diseases, may initiate and progress. Here, we show how a new technique gives the opportunity to evaluate the mechanics of cells and the ECM at the same time. It was applied on surgically removed tissues of 10 patients affected by adenocarcinoma of the lung and a correlation between the mechanics and the grade and stage of the tumor was reported and compared to the mechanical characteristics of the healthy tissue. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Examination of the Abscission-Associated Transcriptomes for Soybean, Tomato, and Arabidopsis Highlights the Conserved Biosynthesis of an Extensible Extracellular Matrix and Boundary Layer.

    PubMed

    Kim, Joonyup; Sundaresan, Srivignesh; Philosoph-Hadas, Sonia; Yang, Ronghui; Meir, Shimon; Tucker, Mark L

    2015-01-01

    Abscission zone (AZ) development and the progression of abscission (detachment of plant organs) have been roughly separated into four stages: first, AZ differentiation; second, competence to respond to abscission signals; third, activation of abscission; and fourth, formation of a protective layer and post-abscission trans-differentiation. Stage three, activation of abscission, is when changes in the cell wall and extracellular matrix occur to support successful organ separation. Most abscission research has focused on gene expression for enzymes that disassemble the cell wall within the AZ and changes in phytohormones and other signaling events that regulate their expression. Here, transcriptome data for soybean, tomato and Arabidopsis were examined and compared with a focus not only on genes associated with disassembly of the cell wall but also on gene expression linked to the biosynthesis of a new extracellular matrix. AZ-specific up-regulation of genes associated with cell wall disassembly including cellulases (beta-1,4-endoglucanases, CELs), polygalacturonases (PGs), and expansins (EXPs) were much as expected; however, curiously, changes in expression of xyloglucan endotransglucosylase/hydrolases (XTHs) were not AZ-specific in soybean. Unexpectedly, we identified an early increase in the expression of genes underlying the synthesis of a waxy-like cuticle. Based on the expression data, we propose that the early up-regulation of an abundance of small pathogenesis-related (PR) genes is more closely linked to structural changes in the extracellular matrix of separating cells than an enzymatic role in pathogen resistance. Furthermore, these observations led us to propose that, in addition to cell wall loosening enzymes, abscission requires (or is enhanced by) biosynthesis and secretion of small proteins (15-25 kDa) and waxes that form an extensible extracellular matrix and boundary layer on the surface of separating cells. The synthesis of the boundary layer

  6. Knockdown of stem cell regulator Oct4A in ovarian cancer reveals cellular reprogramming associated with key regulators of cytoskeleton-extracellular matrix remodelling

    PubMed Central

    Samardzija, Chantel; Greening, David W.; Escalona, Ruth; Chen, Maoshan; Bilandzic, Maree; Luwor, Rodney; Kannourakis, George; Findlay, Jock K.; Ahmed, Nuzhat

    2017-01-01

    Oct4A is a master regulator of self-renewal and pluripotency in embryonic stem cells. It is a well-established marker for cancer stem cell (CSC) in malignancies. Recently, using a loss of function studies, we have demonstrated key roles for Oct4A in tumor cell survival, metastasis and chemoresistance in in vitro and in vivo models of ovarian cancer. In an effort to understand the regulatory role of Oct4A in tumor biology, we employed the use of an ovarian cancer shRNA Oct4A knockdown cell line (HEY Oct4A KD) and a global mass spectrometry (MS)-based proteomic analysis to investigate novel biological targets of Oct4A in HEY samples (cell lysates, secretomes and mouse tumor xenografts). Based on significant differential expression, pathway and protein network analyses, and comprehensive literature search we identified key proteins involved with biologically relevant functions of Oct4A in tumor biology. Across all preparations of HEY Oct4A KD samples significant alterations in protein networks associated with cytoskeleton, extracellular matrix (ECM), proliferation, adhesion, metabolism, epithelial-mesenchymal transition (EMT), cancer stem cells (CSCs) and drug resistance was observed. This comprehensive proteomics study for the first time presents the Oct4A associated proteome and expands our understanding on the biological role of this stem cell regulator in carcinomas. PMID:28406185

  7. Extracellular matrix regenerative graft attenuates the negative impact of polypropylene prolapse mesh on vagina in rhesus macaque

    PubMed Central

    Liang, Rui; Knight, Katrina; Barone, William; Powers, Robert W.; Nolfi, Alexis; Palcsey, Stacy; Abramowitch, Steven; Moalli, Pamela A.

    2016-01-01

    BACKGROUND The use of wide pore lightweight polypropylene mesh to improve anatomical outcomes in the surgical repair of prolapse has been hampered by mesh complications. One of the prototype prolapse meshes has been found to negatively impact the vagina by inducing a decrease in smooth muscle volume and contractility and the degradation of key structural proteins (collagen and elastin), resulting in vaginal degeneration. Recently, bioscaffolds derived from extracellular matrix have been used to mediate tissue regeneration and have been widely adopted in tissue engineering applications. OBJECTIVE Here we aimed to: (1) define whether augmentation of a polypropylene prolapse mesh with an extracellular matrix regenerative graft in a primate sacrocolpopexy model could mitigate the degenerative changes; and (2) determine the impact of the extracellular matrix graft on vagina when implanted alone. STUDY DESIGN A polypropylene-extracellular matrix composite graft (n = 9) and a 6-layered extracellular matrix graft alone (n = 8) were implanted in 17 middle-aged parous rhesus macaques via sacrocolpopexy and compared to historical data obtained from sham (n = 12) and the polypropylene mesh (n = 12) implanted by the same method. Vaginal function was measured in passive (ball-burst test) and active (smooth muscle contractility) mechanical tests. Vaginal histomorphologic/ biochemical assessments included hematoxylin-eosin and trichrome staining, immunofluorescent labeling of α-smooth muscle actin and apoptotic cells, measurement of total collagen, collagen subtypes (ratio III/ I), mature elastin, and sulfated glycosaminoglycans. Statistical analyses included 1-way analysis of variance, Kruskal-Wallis, and appropriate posthoc tests. RESULTS The host inflammatory response in the composite mesh-implanted vagina was reduced compared to that following implantation with the polypropylene mesh alone. The increase in apoptotic cells observed with the polypropylene mesh was blunted in

  8. Effect of spaceflight on the extracellular matrix of skeletal muscle after a crush injury

    NASA Technical Reports Server (NTRS)

    Stauber, W. T.; Fritz, V. K.; Burkovskaia, T. E.; Il'ina-Kakueva, E. I.

    1992-01-01

    The organization and composition of the extracellular matrix were studied in the crush-injured gastrocnemius muscle of rats subjected to 0 G. After 14 days of flight on Cosmos 2044, the gastrocnemius muscle was removed and evaluated by histochemical and immunohistochemical techniques from the five injured flight rodents and various earth-based treatment groups. In general, the repair process was similar in all injured muscle samples with regard to the organization of the extracellular matrix and myofibers. Small and large myofibers were present within an expanded extracellular matrix, indicative of myogenesis and muscle regeneration. In the tail-suspended animals, a more complete repair was observed with nonenlarged area of nonmuscle cells or matrix material visible. In contrast, the muscle samples from the flight animals were less well organized and contained more macrophages and blood vessels in the repair region, indicative of a delayed repair process, but did not demonstrate any chronic inflammation. Myofiber repair did vary in muscles from the different groups, being slowest in the flight animals and most complete in the tail-suspended ones.

  9. Extracellular-matrix-mediated osmotic pressure drives Vibrio cholerae biofilm expansion and cheater exclusion.

    PubMed

    Yan, Jing; Nadell, Carey D; Stone, Howard A; Wingreen, Ned S; Bassler, Bonnie L

    2017-08-23

    Biofilms, surface-attached communities of bacteria encased in an extracellular matrix, are a major mode of bacterial life. How the material properties of the matrix contribute to biofilm growth and robustness is largely unexplored, in particular in response to environmental perturbations such as changes in osmotic pressure. Here, using Vibrio cholerae as our model organism, we show that during active cell growth, matrix production enables biofilm-dwelling bacterial cells to establish an osmotic pressure difference between the biofilm and the external environment. This pressure difference promotes biofilm expansion on nutritious surfaces by physically swelling the colony, which enhances nutrient uptake, and enables matrix-producing cells to outcompete non-matrix-producing cheaters via physical exclusion. Osmotic pressure together with crosslinking of the matrix also controls the growth of submerged biofilms and their susceptibility to invasion by planktonic cells. As the basic physicochemical principles of matrix crosslinking and osmotic swelling are universal, our findings may have implications for other biofilm-forming bacterial species.Most bacteria live in biofilms, surface-attached communities encased in an extracellular matrix. Here, Yan et al. show that matrix production in Vibrio cholerae increases the osmotic pressure within the biofilm, promoting biofilm expansion and physical exclusion of non-matrix producing cheaters.

  10. Omentin-1 prevents cartilage matrix destruction by regulating matrix metalloproteinases.

    PubMed

    Li, Zhigang; Liu, Baoyi; Zhao, Dewei; Wang, BenJie; Liu, Yupeng; Zhang, Yao; Li, Borui; Tian, Fengde

    2017-08-01

    Matrix metalloproteinases (MMPs) play a crucial role in the degradation of the extracellular matrix and pathological progression of osteoarthritis (OA). Omentin-1 is a newly identified anti-inflammatory adipokine. Little information regarding the protective effects of omentin-1 in OA has been reported before. In the current study, our results indicated that omentin-1 suppressed expression of MMP-1, MMP-3, and MMP-13 induced by the proinflammatory cytokine interleukin-1β (IL-1β) at both the mRNA and protein levels in human chondrocytes. Importantly, administration of omentin-1 abolished IL-1β-induced degradation of type II collagen (Col II) and aggrecan, the two major extracellular matrix components in articular cartilage, in a dose-dependent manner. Mechanistically, omentin-1 ameliorated the expression of interferon regulatory factor 1 (IRF-1) by blocking the JAK-2/STAT3 pathway. Our results indicate that omentin-1 may have a potential chondroprotective therapeutic capacity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Neural cell adhesion molecule-deficient beta-cell tumorigenesis results in diminished extracellular matrix molecule expression and tumour cell-matrix adhesion.

    PubMed

    Håkansson, Joakim; Xian, Xiaojie; He, Liqun; Ståhlberg, Anders; Nelander, Sven; Samuelsson, Tore; Kubista, Mikael; Semb, Henrik

    2005-01-01

    To understand by which mechanism neural cell adhesion molecule (N-CAM) limits beta tumour cell disaggregation and dissemination, we searched for potential downstream genes of N-CAM during beta tumour cell progression by gene expression profiling. Here, we show that N-CAM-deficient beta-cell tumorigenesis is associated with changes in the expression of genes involved in cell-matrix adhesion and cytoskeletal dynamics, biological processes known to affect the invasive and metastatic behaviour of tumour cells. The extracellular matrix (ECM) molecules emerged as the primary target, i.e. N-CAM deficiency resulted in down-regulated mRNA expression of a broad range of ECM molecules. Consistent with this result, deficient deposition of major ECM stromal components, such as fibronectin, laminin 1 and collagen IV, was observed. Moreover, N-CAM-deficient tumour cells displayed defective matrix adhesion. These results offer a potential mechanism for tumour cell disaggregation during N-CAM-deficient beta tumour cell progression. Prospective consequences of these findings for the role of N-CAM in beta tumour cell dissemination are discussed.

  12. The Aarskog-Scott Syndrome Protein Fgd1 Regulates Podosome Formation and Extracellular Matrix Remodeling in Transforming Growth Factor β-Stimulated Aortic Endothelial Cells ▿

    PubMed Central

    Daubon, Thomas; Buccione, Roberto; Génot, Elisabeth

    2011-01-01

    Podosomes are dynamic actin-rich adhesion plasma membrane microdomains endowed with extracellular matrix-degrading activities. In aortic endothelial cells, podosomes are induced by transforming growth factor β (TGF-β), but how this occurs is largely unknown. It is thought that, in endothelial cells, podosomes play a role in vessel remodeling and/or in breaching anatomical barriers. We demonstrate here that, in bovine aortic endothelial cells, that the Cdc42-specific guanine exchange factor (GEF) Fgd1 is expressed and regulated by TGF-β to induce Cdc42-dependent podosome assembly. Within 15 min of TGF-β stimulation, Fgd1, but none of the other tested Cdc42 GEFs, undergoes tyrosine phosphorylation, associates with Cdc42, and translocates to the subcortical cytoskeleton via a cortactin-dependent mechanism. Small interfering RNA-mediated Fgd1 knockdown inhibits TGF-β-induced Cdc42 activation. Fgd1 depletion also reduces podosome formation and associated matrix degradation and these defects are rescued by reexpression of Fgd1. Although overexpression of Fgd1 does not promote podosome formation per se, it enhances TGF-β-induced matrix degradation. Our results identify Fgd1 as a TGF-β-regulated GEF and, as such, the first GEF to be involved in the process of cytokine-induced podosome formation. Our findings reveal the involvement of Fgd1 in endothelial cell biology and open up new avenues to study its role in vascular pathophysiology. PMID:21911474

  13. Clinical Usage of an Extracellular, Collagen-rich Matrix: A Case Series.

    PubMed

    AbouIssa, Abdelfatah; Mari, Walid; Simman, Richard

    2015-11-01

    OASIS Ultra (Smith and Nephew, St. Petersburg, FL) is an extracellular, collagen-rich matrix derived from submucosa of porcine intestine. It is composed of collagen type I, glycosaminoglycan, and proteoglycans. This extracellular matrix (ECM) differs from the single layer in thickness and offers ease of handling and application. It also stimulates cell migration and structural support, provides moisture environment, decreases inflammation, and induces cell proliferation and cellular attachments. In this case series, the authors present their experience with this product in various clinical scenarios. The authors used the product in a variety of wounds with different etiologies to test the clinical outcome of the ECM. This was an observational case series with prospective review of 6 different patients with different types of wounds who received treatment with the ECM during their treatment. The product was applied on the following types of wounds: chronic venous ulcer, nonhealing Achilles tendon vasculitic wound, Marjolin's ulcer, posttraumatic wound, stage IV sacral-coccygeal pressure wound, and complicated transmetatarsal amputation of gangrenous left forefoot diabetic wound. All of these wounds healed within the expected time periods and without complications. In general, healing was achieved in 4-16 weeks using 1-12 applications of the ECM. Wounds with different etiologies were successfully treated with an extracellular, collagen-rich matrix. By replacing the lost ECM to guide cellular growth and migration, this product did ultimately hasten the healing process.

  14. Mifepristone inhibits extracellular matrix formation in uterine leiomyoma.

    PubMed

    Patel, Amrita; Malik, Minnie; Britten, Joy; Cox, Jeris; Catherino, William H

    2016-04-01

    To characterize the efficacy of mifepristone treatment on extracellular matrix (ECM) production in leiomyomas. Laboratory study. University research laboratory. None. Treatment of human immortalized two-dimensional (2D) and three-dimensional (3D) leiomyoma and myometrial cells with mifepristone and the progestin promegestone (R5020). Expression of COL1A1, fibronectin, versican variant V0, and dermatopontin in treated leiomyoma cells by Western blot analysis and confirmatory immunohistochemistry staining of treated 3D cultures. Treatment with progestin stimulated production of COL1A1, fibronectin, versican, and dermatopontin. Mifepristone treatment inhibited protein production of these genes, most notably with versican expression. Combination treatment with both the agonist and antagonist further inhibited protein expression of these genes. Immunohistochemistry performed on 3D cultures demonstrated generalized inhibition of ECM protein concentration. Our study demonstrated that the progesterone agonist R5020 directly stimulated extracellular matrix components COL1A1, fibronectin, versican, and dermatopontin production in human leiomyoma cells. Progesterone antagonist mifepristone decreased protein production of these genes to levels comparable with untreated leiomyoma cells. Published by Elsevier Inc.

  15. Regulation of aortic extracellular matrix synthesis via noradrenergic system and angiotensin II in juvenile rats.

    PubMed

    Dab, Houcine; Hachani, Rafik; Dhaouadi, Nedra; Sakly, Mohsen; Hodroj, Wassim; Randon, Jacques; Bricca, Giampiero; Kacem, Kamel

    2012-10-01

    Extracellular matrix (ECM) synthesis regulation by sympathetic nervous system (SNS) or angiotensin II (ANG II) was widely reported, but interaction between the two systems on ECM synthesis needs further investigation. We tested implication of SNS and ANG II on ECM synthesis in juvenile rat aorta. Sympathectomy with guanethidine (50 mg/kg, subcutaneous) and blockade of the ANG II AT1 receptors (AT1R) blocker with losartan (20 mg/kg/day in drinking water) were performed alone or in combination in rats. mRNA and protein synthesis of collagen and elastin were examined by Q-RT-PCR and immunoblotting. Collagen type I and III mRNA were increased respectively by 62 and 43% after sympathectomy and decreased respectively by 31 and 60% after AT1R blockade. Combined treatment increased collagen type III by 36% but not collagen type I. The same tendency of collagen expression was observed at mRNA and protein levels after the three treatments. mRNA and protein level of elastin was decreased respectively by 63 and 39% and increased by 158 and 15% after losartan treatment. Combined treatment abrogates changes induced by single treatments. The two systems act as antagonists on ECM expression in the aorta and combined inhibition of the two systems prevents imbalance of mRNA and protein level of collagen I and elastin induced by single treatment. Combined inhibition of the two systems prevents deposit or excessive reduction of ECM and can more prevent cardiovascular disorders.

  16. The Effects of Extracellular Matrix Proteins on Neutrophil-Endothelial Interaction ― A Roadway To Multiple Therapeutic Opportunities

    PubMed Central

    Padmanabhan, Jagannath; Gonzalez, Anjelica L.

    2012-01-01

    Polymorphoneuclear leukocytes or neutrophils, a major component of white blood cells, contribute to the innate immune response in humans. Upon sensing changes in the microenvironment, neutrophils adhere to the vascular wall, migrate through the endothelial cell (EC)-pericyte bilayer, and subsequently through the extracellular matrix to reach the site of inflammation. These cells are capable of destroying microbes, cell debris, and foreign proteins by oxidative and non-oxidative processes. While primarily mediators of tissue homeostasis, there are an increasing number of studies indicating that neutrophil recruitment and transmigration can also lead to host-tissue injury and subsequently inflammation-related diseases. Neutrophil-induced tissue injury is highly regulated by the microenvironment of the infiltrated tissue, which includes cytokines, chemokines, and the provisional extracellular matrix, remodeled through increased vascular permeability and other cellular infiltrates. Thus, investigation of the effects of matrix proteins on neutrophil-EC interaction and neutrophil transmigration may help identify the proteins that induce pro- or anti-inflammatory responses. This area of research presents an opportunity to identify therapeutic targets in inflammation-related diseases. This review will summarize recent literature on the role of neutrophils and the effects of matrix proteins on neutrophil-EC interactions, with focus on three different disease models: 1) atherosclerosis, 2) COPD, and 3) tumor growth and progression. For each disease model, inflammatory molecules released by neutrophils, important regulatory matrix proteins, current anti-inflammatory treatments, and the scope for further research will be summarized. PMID:22737047

  17. Sequenced response of extracellular matrix deadhesion and fibrotic regulators after muscle damage is involved in protection against future injury in human skeletal muscle

    PubMed Central

    Mackey, Abigail L.; Brandstetter, Simon; Schjerling, Peter; Bojsen-Moller, Jens; Qvortrup, Klaus; Pedersen, Mette M.; Doessing, Simon; Kjaer, Michael; Magnusson, S. Peter; Langberg, Henning

    2011-01-01

    The purpose of this study was to test the hypothesis that remodeling of skeletal muscle extracellular matrix (ECM) is involved in protecting human muscle against injury. Biopsies were obtained from medial gastrocnemius muscles after a single bout of electrical stimulation (B) or a repeated bout (RB) 30 d later, or 30 d after a single stimulation bout (RBc). A muscle biopsy was collected from the control leg for comparison with the stimulated leg. Satellite cell content, tenascin C, and muscle regeneration were assessed by immunohistochemistry; real-time PCR was used to measure mRNA levels of collagens, laminins, heat-shock proteins (HSPs), inflammation, and related growth factors. The large responses of HSPs, CCL2, and tenascin C detected 48 h after a single bout were attenuated in the RB trial, indicative of protection against injury. Satellite cell content and 12 target genes, including IGF-1, were elevated 30 d after a single bout. Among those displaying the greatest difference vs. control muscle, ECM laminin-β1 and collagen types I and III were elevated ∼6- to 9-fold (P<0.001). The findings indicate that the sequenced events of load-induced early deadhesion and later strengthening of skeletal muscle ECM play a role in protecting human muscle against future injury.—Mackey, A. L., Brandstetter, S., Schjerling, P., Bojsen-Moller, J., Qvortrup, K., Pedersen, M. M., Doessing, S. Kjaer, M., Magnusson, S. P., Langberg, H. Sequenced response of extracellular matrix deadhesion and fibrotic regulators after muscle damage is involved in protection against future injury in human skeletal muscle. PMID:21368102

  18. Fibroblasts and the extracellular matrix in right ventricular disease.

    PubMed

    Frangogiannis, Nikolaos G

    2017-10-01

    Right ventricular failure predicts adverse outcome in patients with pulmonary hypertension (PH), and in subjects with left ventricular heart failure and is associated with interstitial fibrosis. This review manuscript discusses the cellular effectors and molecular mechanisms implicated in right ventricular fibrosis. The right ventricular interstitium contains vascular cells, fibroblasts, and immune cells, enmeshed in a collagen-based matrix. Right ventricular pressure overload in PH is associated with the expansion of the fibroblast population, myofibroblast activation, and secretion of extracellular matrix proteins. Mechanosensitive transduction of adrenergic signalling and stimulation of the renin-angiotensin-aldosterone cascade trigger the activation of right ventricular fibroblasts. Inflammatory cytokines and chemokines may contribute to expansion and activation of macrophages that may serve as a source of fibrogenic growth factors, such as transforming growth factor (TGF)-β. Endothelin-1, TGF-βs, and matricellular proteins co-operate to activate cardiac myofibroblasts, and promote synthesis of matrix proteins. In comparison with the left ventricle, the RV tolerates well volume overload and ischemia; whether the right ventricular interstitial cells and matrix are implicated in these favourable responses remains unknown. Expansion of fibroblasts and extracellular matrix protein deposition are prominent features of arrhythmogenic right ventricular cardiomyopathies and may be implicated in the pathogenesis of arrhythmic events. Prevailing conceptual paradigms on right ventricular remodelling are based on extrapolation of findings in models of left ventricular injury. Considering the unique embryologic, morphological, and physiologic properties of the RV and the clinical significance of right ventricular failure, there is a need further to dissect RV-specific mechanisms of fibrosis and interstitial remodelling. Published on behalf of the European Society of

  19. Interaction of Munc18c and syntaxin4 facilitates invadopodium formation and extracellular matrix invasion of tumor cells.

    PubMed

    Brasher, Megan I; Martynowicz, David M; Grafinger, Olivia R; Hucik, Andrea; Shanks-Skinner, Emma; Uniacke, James; Coppolino, Marc G

    2017-09-29

    Tumor cell invasion involves targeted localization of proteins required for interactions with the extracellular matrix and for proteolysis. The localization of many proteins during these cell-extracellular matrix interactions relies on membrane trafficking mediated in part by SNAREs. The SNARE protein syntaxin4 (Stx4) is involved in the formation of invasive structures called invadopodia; however, it is unclear how Stx4 function is regulated during tumor cell invasion. Munc18c is known to regulate Stx4 activity, and here we show that Munc18c is required for Stx4-mediated invadopodium formation and cell invasion. Biochemical and microscopic analyses revealed a physical association between Munc18c and Stx4, which was enhanced during invadopodium formation, and that a reduction in Munc18c expression decreases invadopodium formation. We also found that an N-terminal Stx4-derived peptide associates with Munc18c and inhibits endogenous interactions of Stx4 with synaptosome-associated protein 23 (SNAP23) and vesicle-associated membrane protein 2 (VAMP2). Furthermore, expression of the Stx4 N-terminal peptide decreased invadopodium formation and cell invasion in vitro Of note, cells expressing the Stx4 N-terminal peptide exhibited impaired trafficking of membrane type 1 matrix metalloproteinase (MT1-MMP) and EGF receptor (EGFR) to the cell surface during invadopodium formation. Our findings implicate Munc18c as a regulator of Stx4-mediated trafficking of MT1-MMP and EGFR, advancing our understanding of the role of SNARE function in the localization of proteins that drive tumor cell invasion. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Vesicoureteral reflux and the extracellular matrix connection

    PubMed Central

    Tokhmafshan, Fatima; Brophy, Patrick D.; Gbadegesin, Rasheed A.

    2017-01-01

    Primary vesicoureteral reflux (VUR) is a common pediatric condition due to a developmental defect in the ureterovesical junction. The prevalence of VUR among individuals with connective tissue disorders, as well as the importance of the ureter and bladder wall musculature for the anti-reflux mechanism, suggest that defects in the extracellular matrix (ECM) within the ureterovesical junction may result in VUR. This review will discuss the function of the smooth muscle and its supporting ECM microenvironment with respect to VUR, and explore the association of VUR with mutations in ECM-related genes. PMID:27139901

  1. Cell-Extracellular Matrix Mechanobiology: Forceful Tools and Emerging Needs for Basic and Translational Research.

    PubMed

    Holle, Andrew W; Young, Jennifer L; Van Vliet, Krystyn J; Kamm, Roger D; Discher, Dennis; Janmey, Paul; Spatz, Joachim P; Saif, Taher

    2018-01-10

    Extracellular biophysical cues have a profound influence on a wide range of cell behaviors, including growth, motility, differentiation, apoptosis, gene expression, adhesion, and signal transduction. Cells not only respond to definitively mechanical cues from the extracellular matrix (ECM) but can also sometimes alter the mechanical properties of the matrix and hence influence subsequent matrix-based cues in both physiological and pathological processes. Interactions between cells and materials in vitro can modify cell phenotype and ECM structure, whether intentionally or inadvertently. Interactions between cell and matrix mechanics in vivo are of particular importance in a wide variety of disorders, including cancer, central nervous system injury, fibrotic diseases, and myocardial infarction. Both the in vitro and in vivo effects of this coupling between mechanics and biology hold important implications for clinical applications.

  2. Pirfenidone inhibits transforming growth factor β1-induced extracellular matrix production in nasal polyp-derived fibroblasts.

    PubMed

    Shin, Jae-Min; Park, Joo-Hoo; Park, Il-Ho; Lee, Heung-Man

    2015-01-01

    Pirfenidone has been shown to have antifibrotic and anti-inflammatory effects in the lungs. The purpose of this study was to evaluate the inhibitory effects of pirfenidone on transforming growth factor (TGF)-β1-induced myofibroblast differentiation and extracellular matrix accumulation. We also determined the molecular mechanisms of pirfenidone in nasal polyp-derived fibroblasts (NPDF). NPDFs were isolated from nasal polyps from eight patients who had chronic rhinosinusitis with nasal polyp. Pirfenidone was used to treat TGF-β1-induced NPDFs. Cytotoxicity was evaluated by using a 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide assay. Fibroblast migration was evaluated with scratch assays. Expression levels of α-smooth muscle actin (SMA), fibronectin, and phosphorylated Smad2/3 were determined by Western blot and/or reverse transcription-polymerase chain reaction and immunofluorescent staining. Total collagen production was analyzed with the Sircol collagen assay and contractile activity was measured by a collagen gel contraction assay. Pirfenidone (0-2 mg/mL) has no significant cytotoxic effects in TGF-β1-induced NPDFs. Migration of NPDFs was significantly inhibited by pirfenidone treatment. The expression levels of α-SMA and fibronectin were significantly reduced in pirfenidone-treated NPDFs. Collagen contraction and production were also significantly decreased by pirfenidone treatment. Finally, pirfenidone significantly inhibited phosphorylation of the Smad2/3 pathway in TGF-β1-induced NPDFs. Pirfenidone has an inhibitory effect on TGF-β1-induced migration, myofibroblast differentiation (α-SMA), extracellular matrix accumulation, and collagen contraction by blocking the phosphorylation of Smad2/3 pathways in NPDFs. Thus, pirfenidone may inhibit TGF-β1-induced extracellular matrix by regulating Smad2/3.

  3. Liarozole inhibits transforming growth factor-β3–mediated extracellular matrix formation in human three-dimensional leiomyoma cultures

    PubMed Central

    Levy, Gary; Malik, Minnie; Britten, Joy; Gilden, Melissa; Segars, James; Catherino, William H.

    2014-01-01

    Objective To investigate the impact of liarozole on transforming growth factor-β3 (TGF-β3) expression, TGF-β3 controlled profibrotic cytokines, and extracellular matrix formation in a three-dimensional (3D) leiomyoma model system. Design Molecular and immunohistochemical analysis in a cell line evaluated in a three-dimensional culture. Setting Laboratory study. Patient(s) None. Intervention(s) Treatment of leiomyoma and myometrial cells with liarozole and TGF-β3 in a three-dimensional culture system. Main Outcome Measure(s) Quantitative real-time reverse-transcriptase polymerase chain reaction and Western blotting to assess fold gene and protein expression of TGF-β3 and TGF-β3 regulated fibrotic cytokines: collagen 1A1 (COL1A1), fibronectin, and versican before and after treatment with liarozole, and confirmatory immunohistochemical stains of treated three-dimensional cultures. Result(s) Both TGF-β3 gene and protein expression were elevated in leiomyoma cells compared with myometrium in two-dimensional and 3D cultures. Treatment with liarozole decreased TGF-β3 gene and protein expression. Extracellular matrix components versican, COL1A1, and fibronectin were also decreased by liarozole treatment in 3D cultures. Treatment of 3D cultures with TGF-β3 increased gene expression and protein production of COL1A1, fibronectin, and versican. Conclusion(s) Liarozole decreased TGF-β3 and TGF-β3–mediated extracellular matrix expression in a 3D uterine leiomyoma culture system. PMID:24825427

  4. Detection of extracellular matrix modification in cancer models with inverse spectroscopic optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Spicer, Graham L. C.; Azarin, Samira M.; Yi, Ji; Young, Scott T.; Ellis, Ronald; Bauer, Greta M.; Shea, Lonnie D.; Backman, Vadim

    2016-10-01

    In cancer biology, there has been a recent effort to understand tumor formation in the context of the tissue microenvironment. In particular, recent progress has explored the mechanisms behind how changes in the cell-extracellular matrix ensemble influence progression of the disease. The extensive use of in vitro tissue culture models in simulant matrix has proven effective at studying such interactions, but modalities for non-invasively quantifying aspects of these systems are scant. We present the novel application of an imaging technique, Inverse Spectroscopic Optical Coherence Tomography, for the non-destructive measurement of in vitro biological samples during matrix remodeling. Our findings indicate that the nanoscale-sensitive mass density correlation shape factor D of cancer cells increases in response to a more crosslinked matrix. We present a facile technique for the non-invasive, quantitative study of the micro- and nano-scale structure of the extracellular matrix and its host cells.

  5. Astrocytes and extracellular matrix in extrasynaptic volume transmission.

    PubMed

    Vargová, Lýdia; Syková, Eva

    2014-10-19

    Volume transmission is a form of intercellular communication that does not require synapses; it is based on the diffusion of neuroactive substances across the brain extracellular space (ECS) and their binding to extrasynaptic high-affinity receptors on neurons or glia. Extracellular diffusion is restricted by the limited volume of the ECS, which is described by the ECS volume fraction α, and the presence of diffusion barriers, reflected by tortuosity λ, that are created, for example, by fine astrocytic processes or extracellular matrix (ECM) molecules. Organized astrocytic processes, ECM scaffolds or myelin sheets channel the extracellular diffusion so that it is facilitated in a certain direction, i.e. anisotropic. The diffusion properties of the ECS are profoundly influenced by various processes such as the swelling and morphological rebuilding of astrocytes during either transient or persisting physiological or pathological states, or the remodelling of the ECM in tumorous or epileptogenic tissue, during Alzheimer's disease, after enzymatic treatment or in transgenic animals. The changing diffusion properties of the ECM influence neuron-glia interaction, learning abilities, the extent of neuronal damage and even cell migration. From a clinical point of view, diffusion parameter changes occurring during pathological states could be important for diagnosis, drug delivery and treatment. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  6. The extracellular matrix remodeled

    PubMed Central

    Kirmse, Robert; Otto, Hannes

    2012-01-01

    Membrane Type-1 Matrix Metalloproteinase (MT1-MMP, MMP-14) is regarded as the prototype of a membrane- tethered protease. It drives fundamental biological processes ranging from embryogenesis to cancer metastasis. The proteolytic cleavage of proteins by MT1-MMP can rapidly alter the biophysical properties of a cell’s microenvironment. Cell’s must thus be able to sense and react to these alterations and transduce these effectively in biochemical signals and cell responses. Although many cells react as acutely to such physical stimuli as they do to chemical ones, the regulatory effects of these have been less extensively explored. In order to investigate a possible interdependency of proteolytic matrix cleavage by MT1-MMP and the generation and sensing of force by cells, a model system was established which exploits the properties of a matrix array of parallel collagen-I fibers. The resulting an-isotropy of the matrix with high tensile strength along the fibers and high mobility perpendicular to it allows the convenient detection of bundling and cleavage of the collagen fibers, as well as spreading and durotaxis of the cells. In summary, we have demonstrated that cell adhesion, force generation, and force sensing are vital for the regulation of MT1-MMP for efficient cleavage of collagen-I. PMID:22482015

  7. Contribution of α-smooth muscle actin and extracellular matrix to the in vitro reorganization of cardiomyocyte contractile system.

    PubMed

    Bildyug, Natalya; Bozhokina, Ekaterina; Khaitlina, Sofia

    2016-04-01

    Cardiomyocytes in culture undergo reversible rearrangement of their contractile apparatus with the conversion of typical myofibrils into the structures of non-muscle type and the loss of contractility. Along with these transformations, the cardiomyocytes gain the capacity to synthesize extracellular matrix. Here we show that during cultivation of rat neonatal cardiomyocytes, the inherent α-cardiac actin isoform is transiently replaced by α-smooth-muscle actin, whose expression is accompanied by transformation of myofibrils into stress-fiber-like structures. The following down-regulation of α-smooth muscle actin parallels restoration of myofibrillar system and correlates with the accumulation of extracellular collagen and laminin, initially missing from the cardiomyocytes culture. © 2016 International Federation for Cell Biology.

  8. Extracellular matrix-associated proteins form an integral and dynamic system during Pseudomonas aeruginosa biofilm development.

    PubMed

    Zhang, Weipeng; Sun, Jin; Ding, Wei; Lin, Jinshui; Tian, Renmao; Lu, Liang; Liu, Xiaofen; Shen, Xihui; Qian, Pei-Yuan

    2015-01-01

    Though the essential role of extracellular matrix in biofilm development has been extensively documented, the function of matrix-associated proteins is elusive. Determining the dynamics of matrix-associated proteins would be a useful way to reveal their functions in biofilm development. Therefore, we applied iTRAQ-based quantitative proteomics to evaluate matrix-associated proteins isolated from different phases of Pseudomonas aeruginosa ATCC27853 biofilms. Among the identified 389 proteins, 54 changed their abundance significantly. The increased abundance of stress resistance and nutrient metabolism-related proteins over the period of biofilm development was consistent with the hypothesis that biofilm matrix forms micro-environments in which cells are optimally organized to resist stress and use available nutrients. Secreted proteins, including novel putative effectors of the type III secretion system were identified, suggesting that the dynamics of pathogenesis-related proteins in the matrix are associated with biofilm development. Interestingly, there was a good correlation between the abundance changes of matrix-associated proteins and their expression. Further analysis revealed complex interactions among these modulated proteins, and the mutation of selected proteins attenuated biofilm development. Collectively, this work presents the first dynamic picture of matrix-associated proteins during biofilm development, and provides evidences that the matrix-associated proteins may form an integral and well regulated system that contributes to stress resistance, nutrient acquisition, pathogenesis and the stability of the biofilm.

  9. Adhesion to the extracellular matrix is positively regulated by retinoic acid in HepG2 cells.

    PubMed

    Massimi, Mara; Devirgiliis, Laura Conti

    2007-02-01

    In this work, we aimed to investigate the possible modulation of cell-matrix interactions by retinoic acid (RA), in view of the well-known role of the extracellular matrix (ECM) and integrins in hepatocyte differentiation and proliferation. For this purpose, we analysed the adhesion ability of HepG2 cells on different substrates in the presence and absence of RA evaluating both the expression and cellular localisation of major proteins involved in focal contacts, using Western blot and confocal microscopy. A positive and substrate-dependent effect of RA on cell-matrix adhesion was observed after long-term culture. The increased adhesiveness in the treated cells was accompanied by an enhanced expression of beta1 and alpha3 integrin subunits, together with a redistribution of beta1 receptors clustered at the basal surface. In contrast, the levels of focal adhesion kinase (FAK), paxillin and alpha-actinin were unchanged, as was the phosphorylation state of FAK. Nonetheless, a stronger association between beta1 integrin and intracytoplasmatic proteins of focal contacts was observed in coimmunoprecipitation experiments after RA treatment, suggesting improved connection with the actin cytoskeleton. These results are consistent with previously described antiproliferative and differentiative effects of RA on transformed hepatocytes, and confirm the hypothesis of a direct influence of RA on specific adhesion molecules.

  10. Characterization of cell surface and extracellular matrix remodeling of Azospirillum brasilense chemotaxis-like 1 signal transduction pathway mutants by atomic force microscopy.

    PubMed

    Edwards, Amanda Nicole; Siuti, Piro; Bible, Amber N; Alexandre, Gladys; Retterer, Scott T; Doktycz, Mitchel J; Morrell-Falvey, Jennifer L

    2011-01-01

    To compete in complex microbial communities, bacteria must sense environmental changes and adjust cellular functions for optimal growth. Chemotaxis-like signal transduction pathways are implicated in the regulation of multiple behaviors in response to changes in the environment, including motility patterns, exopolysaccharide production, and cell-to-cell interactions. In Azospirillum brasilense, cell surface properties, including exopolysaccharide production, are thought to play a direct role in promoting flocculation. Recently, the Che1 chemotaxis-like pathway from A. brasilense was shown to modulate flocculation, suggesting an associated modulation of cell surface properties. Using atomic force microscopy, distinct changes in the surface morphology of flocculating A. brasilense Che1 mutant strains were detected. Whereas the wild-type strain produces a smooth mucosal extracellular matrix after 24 h, the flocculating Che1 mutant strains produce distinctive extracellular fibril structures. Further analyses using flocculation inhibition, lectin-binding assays, and comparison of lipopolysaccharides profiles suggest that the extracellular matrix differs between the cheA1 and the cheY1 mutants, despite an apparent similarity in the macroscopic floc structures. Collectively, these data indicate that disruption of the Che1 pathway is correlated with distinctive changes in the extracellular matrix, which likely result from changes in surface polysaccharides structure and/or composition. FEMS Microbiology Letters © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. No claim to original US government works.

  11. The emergence of extracellular matrix mechanics and cell traction forces as important regulators of cellular self-organization.

    PubMed

    Checa, Sara; Rausch, Manuel K; Petersen, Ansgar; Kuhl, Ellen; Duda, Georg N

    2015-01-01

    Physical cues play a fundamental role in a wide range of biological processes, such as embryogenesis, wound healing, tumour invasion and connective tissue morphogenesis. Although it is well known that during these processes, cells continuously interact with the local extracellular matrix (ECM) through cell traction forces, the role of these mechanical interactions on large scale cellular and matrix organization remains largely unknown. In this study, we use a simple theoretical model to investigate cellular and matrix organization as a result of mechanical feedback signals between cells and the surrounding ECM. The model includes bi-directional coupling through cellular traction forces to deform the ECM and through matrix deformation to trigger cellular migration. In addition, we incorporate the mechanical contribution of matrix fibres and their reorganization by the cells. We show that a group of contractile cells will self-polarize at a large scale, even in homogeneous environments. In addition, our simulations mimic the experimentally observed alignment of cells in the direction of maximum stiffness and the building up of tension as a consequence of cell and fibre reorganization. Moreover, we demonstrate that cellular organization is tightly linked to the mechanical feedback loop between cells and matrix. Cells with a preference for stiff environments have a tendency to form chains, while cells with a tendency for soft environments tend to form clusters. The model presented here illustrates the potential of simple physical cues and their impact on cellular self-organization. It can be used in applications where cell-matrix interactions play a key role, such as in the design of tissue engineering scaffolds and to gain a basic understanding of pattern formation in organogenesis or tissue regeneration.

  12. Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine

    DOE PAGES

    Martino, Mikael M.; Brkic, Sime; Bovo, Emmanuela; ...

    2015-04-01

    In this study, blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular,more » the spatial localization of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.« less

  13. Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, Mikael M.; Brkic, Sime; Bovo, Emmanuela

    In this study, blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular,more » the spatial localization of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.« less

  14. Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, Mikael M.; Brkic, Sime; Bovo, Emmanuela

    Blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular, the spatial localizationmore » of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.« less

  15. Assembly and remodeling of the fibrillar fibronectin extracellular matrix during gastrulation and neurulation in Xenopus laevis.

    PubMed

    Davidson, Lance A; Keller, Raymond; DeSimone, Douglas W

    2004-12-01

    Fibronectin, a major component of the extracellular matrix is critical for processes of cell traction and cell motility. Whole-mount confocal imaging of the three-dimensional architecture of the extracellular matrix is used to describe dynamic assembly and remodeling of fibronectin fibrils during gastrulation and neurulation in the early frog embryo. As previously reported, fibrils first appear under the prospective ectoderm. We describe here the first evidence for regulated assembly of fibrils along the somitic mesoderm/endoderm boundary as well as at the notochord/somitic mesoderm boundary and clearing of fibrils from the dorsal and ventral surfaces of the notochord that occurs over the course of a few hours. As gastrulation proceeds, fibrils are restored to the dorsal surface of the notochord, where the notochord contacts the prospective floor plate. As the neural folds form, fibrils are again remodeled as deep neural plate cells move medially. The process of neural tube closure leaves a region of the ectoderm overlying the neural crest transiently bare of fibrils. Fibrils are assembled surrounding the dorsal surface of the neural tube as the neural tube lumen is restored. Copyright (c) 2004 Wiley-Liss, Inc.

  16. Extracellular matrix motion and early morphogenesis

    PubMed Central

    Loganathan, Rajprasad; Rongish, Brenda J.; Smith, Christopher M.; Filla, Michael B.; Czirok, Andras; Bénazéraf, Bertrand

    2016-01-01

    For over a century, embryologists who studied cellular motion in early amniotes generally assumed that morphogenetic movement reflected migration relative to a static extracellular matrix (ECM) scaffold. However, as we discuss in this Review, recent investigations reveal that the ECM is also moving during morphogenesis. Time-lapse studies show how convective tissue displacement patterns, as visualized by ECM markers, contribute to morphogenesis and organogenesis. Computational image analysis distinguishes between cell-autonomous (active) displacements and convection caused by large-scale (composite) tissue movements. Modern quantification of large-scale ‘total’ cellular motion and the accompanying ECM motion in the embryo demonstrates that a dynamic ECM is required for generation of the emergent motion patterns that drive amniote morphogenesis. PMID:27302396

  17. Integrin-extracellular matrix interactions in connective tissue remodeling and osteoblast differentiation

    NASA Technical Reports Server (NTRS)

    Globus, R. K.; Moursi, A.; Zimmerman, D.; Lull, J.; Damsky, C.

    1995-01-01

    The differentiaton of bone cells is a complex multistep process. Bone is somewhat unusual in that it is very actively and continually remodeled in the adult and that maintenance of its mass in the mature organism is exquisitely sensitive to mechanical as well as chemical signals. Bone is also unique because it consists of a very large amount of extracellular matrix (ECM) that is mineralized. The integrin family of ECM receptors has been shown to play an important role in tissue morphogenesis in several systems. Our studies on the regulation of matrix remodeling enzymes by integrins in rabbit synovial fibroblasts show that two b1 integrin fibronectin (FN) receptor complexes (alpha 5 beta 1 and alpha 4 beta 1) cooperate in detecting subtle changes in the composition of the ECM. As a result of signal transduction by these integrins, the levels of mRNA and protein for several members of the metalloproteinase family are regulated in these cells. We have also used antibody and RGD peptide perturbation studies to determine the significance of cell/ECM interactions to normal osteogenesis. We found that interactions between the cell binding domain of FN and integrins are required for both normal morphogenesis and gene expression in cultured osteoblasts that differentiate to form bone-like tissue in culture. These data lead us to propose that beta 1 integrins play an important role in osteoblast differentiation as well as in bone remodeling.

  18. Arnica montana Stimulates Extracellular Matrix Gene Expression in a Macrophage Cell Line Differentiated to Wound-Healing Phenotype.

    PubMed

    Marzotto, Marta; Bonafini, Clara; Olioso, Debora; Baruzzi, Anna; Bettinetti, Laura; Di Leva, Francesca; Galbiati, Elisabetta; Bellavite, Paolo

    2016-01-01

    Arnica montana (Arnica m.) is used for its purported anti-inflammatory and tissue healing actions after trauma, bruises, or tissue injuries, but its cellular and molecular mechanisms are largely unknown. This work tested Arnica m. effects on gene expression using an in vitro model of macrophages polarized towards a "wound-healing" phenotype. The monocyte-macrophage human THP-1 cell line was cultured and differentiated with phorbol-myristate acetate and Interleukin-4, then exposed for 24h to Arnica m. centesimal (c) dilutions 2c, 3c, 5c, 9c, 15c or Control. Total RNA was isolated and cDNA libraries were sequenced with a NextSeq500 sequencer. Genes with significantly positive (up-regulated) or negative (down-regulated) fold changes were defined as differentially expressed genes (DEGs). A total of 20 DEGs were identified in Arnica m. 2c treated cells. Of these, 7 genes were up-regulated and 13 were down-regulated. The most significantly up-regulated function concerned 4 genes with a conserved site of epidermal growth factor-like region (p<0.001) and three genes of proteinaceous extracellular matrix, including heparin sulphate proteoglycan 2 (HSPG2), fibrillin 2 (FBN2), and fibronectin (FN1) (p<0.01). Protein assay confirmed a statistically significant increase of fibronectin production (p<0.05). The down-regulated transcripts derived from mitochondrial genes coding for some components of electron transport chain. The same groups of genes were also regulated by increasing dilutions of Arnica m. (3c, 5c, 9c, 15c), although with a lower effect size. We further tested the healing potential of Arnica m. 2c in a scratch model of wound closure based on the motility of bone marrow-derived macrophages and found evidence of an accelerating effect on cell migration in this system. The results of this work, taken together, provide new insights into the action of Arnica m. in tissue healing and repair, and identify extracellular matrix regulation by macrophages as a therapeutic

  19. Arnica montana Stimulates Extracellular Matrix Gene Expression in a Macrophage Cell Line Differentiated to Wound-Healing Phenotype

    PubMed Central

    Marzotto, Marta; Bonafini, Clara; Olioso, Debora; Baruzzi, Anna; Bettinetti, Laura; Di Leva, Francesca; Galbiati, Elisabetta; Bellavite, Paolo

    2016-01-01

    Arnica montana (Arnica m.) is used for its purported anti-inflammatory and tissue healing actions after trauma, bruises, or tissue injuries, but its cellular and molecular mechanisms are largely unknown. This work tested Arnica m. effects on gene expression using an in vitro model of macrophages polarized towards a “wound-healing” phenotype. The monocyte-macrophage human THP-1 cell line was cultured and differentiated with phorbol-myristate acetate and Interleukin-4, then exposed for 24h to Arnica m. centesimal (c) dilutions 2c, 3c, 5c, 9c, 15c or Control. Total RNA was isolated and cDNA libraries were sequenced with a NextSeq500 sequencer. Genes with significantly positive (up-regulated) or negative (down-regulated) fold changes were defined as differentially expressed genes (DEGs). A total of 20 DEGs were identified in Arnica m. 2c treated cells. Of these, 7 genes were up-regulated and 13 were down-regulated. The most significantly up-regulated function concerned 4 genes with a conserved site of epidermal growth factor-like region (p<0.001) and three genes of proteinaceous extracellular matrix, including heparin sulphate proteoglycan 2 (HSPG2), fibrillin 2 (FBN2), and fibronectin (FN1) (p<0.01). Protein assay confirmed a statistically significant increase of fibronectin production (p<0.05). The down-regulated transcripts derived from mitochondrial genes coding for some components of electron transport chain. The same groups of genes were also regulated by increasing dilutions of Arnica m. (3c, 5c, 9c, 15c), although with a lower effect size. We further tested the healing potential of Arnica m. 2c in a scratch model of wound closure based on the motility of bone marrow-derived macrophages and found evidence of an accelerating effect on cell migration in this system. The results of this work, taken together, provide new insights into the action of Arnica m. in tissue healing and repair, and identify extracellular matrix regulation by macrophages as a

  20. Interaction between the extracellular matrix and lymphatics - consequences for lymphangiogenesis and lymphatic function

    PubMed Central

    Wiig, Helge; Keskin, Doruk; Kalluri, Raghu

    2014-01-01

    The lymphatic system is important for body fluid balance as well as immunological surveillance. Due to the identification of new molecular markers during the last decade, there has been a recent dramatic increase in our knowledge on the molecular mechanisms involved in lymphatic vessel growth (lymphangiogenesis) and lymphatic function. Here we review data showing that although it is often overlooked, the extracellular matrix plays an important role in the generation of new lymphatic vessels as a response to physiological and pathological stimuli. Extracellular matrix-lymphatic interactions as well as biophysical characteristics of the stroma have consequences for tumor formation, growth and metastasis. During the recent years, anti-lymphangiogenesis has emerged as an additional therapeutic modality to the clinically applied anti-angiogenesis strategy. Oppositely, enhancement of lymphangiogenesis in situations of lymph accumulation is seen as a promising strategy to a set of conditions where few therapeutic avenues are available. Knowledge on the interaction between the extracellular matrix and the lymphatics may enhance our understanding of the underlying mechanisms and may ultimately lead to better therapies for conditions where reduced or increased lymphatic function is the therapeutic target PMID:20727409

  1. Matrix elasticity regulates the optimal cardiac myocyte shape for contractility

    PubMed Central

    McCain, Megan L.; Yuan, Hongyan; Pasqualini, Francesco S.; Campbell, Patrick H.

    2014-01-01

    Concentric hypertrophy is characterized by ventricular wall thickening, fibrosis, and decreased myocyte length-to-width aspect ratio. Ventricular thickening is considered compensatory because it reduces wall stress, but the functional consequences of cell shape remodeling in this pathological setting are unknown. We hypothesized that decreases in myocyte aspect ratio allow myocytes to maximize contractility when the extracellular matrix becomes stiffer due to conditions such as fibrosis. To test this, we engineered neonatal rat ventricular myocytes into rectangles mimicking the 2-D profiles of healthy and hypertrophied myocytes on hydrogels with moderate (13 kPa) and high (90 kPa) elastic moduli. Actin alignment was unaffected by matrix elasticity, but sarcomere content was typically higher on stiff gels. Microtubule polymerization was higher on stiff gels, implying increased intracellular elastic modulus. On moderate gels, myocytes with moderate aspect ratios (∼7:1) generated the most peak systolic work compared with other cell shapes. However, on stiffer gels, low aspect ratios (∼2:1) generated the most peak systolic work. To compare the relative contributions of intracellular vs. extracellular elasticity to contractility, we developed an analytical model and used our experimental data to fit unknown parameters. Our model predicted that matrix elasticity dominates over intracellular elasticity, suggesting that the extracellular matrix may potentially be a more effective therapeutic target than microtubules. Our data and model suggest that myocytes with lower aspect ratios have a functional advantage when the elasticity of the extracellular matrix decreases due to conditions such as fibrosis, highlighting the role of the extracellular matrix in cardiac disease. PMID:24682394

  2. Depressed immune surveillance against cancer: role of deficient T cell: extracellular matrix interactions.

    PubMed

    Górski, A; Castronovo, V; Stepień-Sopniewska, B; Grieb, P; Ryba, M; Mrowiec, T; Korczak-Kowalska, G; Wierzbicki, P; Matysiak, W; Dybowska, B

    1994-07-01

    Although T cells infiltrate malignant tumors, the local immune response is usually inefficient and tumors escape destruction. While extracellular matrix proteins strongly costimulate T cell responses in normal individuals, our studies indicate that peripheral blood T cells from cancer patients and tumor infiltrating cells respond poorly or are resistant to stimulative signals mediated by collagen I and IV and fibronectin. Moreover, the adhesive properties of cancer T cells are markedly depressed. Those functional deficiencies are paralleled by variable deficits in integrin and non-integrin T cell receptors for extracellular matrix. Immunotherapy with BCG causes a dramatic but transient increase in T cell: ECM interactions.

  3. Cell stiffness, contractile stress and the role of extracellular matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Steven S., E-mail: san@jhsph.edu; Kim, Jina; Ahn, Kwangmi

    Here we have assessed the effects of extracellular matrix (ECM) composition and rigidity on mechanical properties of the human airway smooth muscle (ASM) cell. Cell stiffness and contractile stress showed appreciable changes from the most relaxed state to the most contracted state: we refer to the maximal range of these changes as the cell contractile scope. The contractile scope was least when the cell was adherent upon collagen V, followed by collagen IV, laminin, and collagen I, and greatest for fibronectin. Regardless of ECM composition, upon adherence to increasingly rigid substrates, the ASM cell positively regulated expression of antioxidant genesmore » in the glutathione pathway and heme oxygenase, and disruption of a redox-sensitive transcription factor, nuclear erythroid 2 p45-related factor (Nrf2), culminated in greater contractile scope. These findings provide biophysical evidence that ECM differentially modulates muscle contractility and, for the first time, demonstrate a link between muscle contractility and Nrf2-directed responses.« less

  4. Tissue architecture and breast cancer: the role of extracellular matrix and steroid hormones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, R K; Bissell, M J

    The changes in tissue architecture that accompany the development of breast cancer have been the focus of investigations aimed at developing new cancer therapeutics. As we learn more about the normal mammary gland, we have begun to understand the complex signaling pathways underlying the dramatic shifts in the structure and function of breast tissue. Integrin-, growth factor-, and steroid hormone-signaling pathways all play an important part in maintaining tissue architecture; disruption of the delicate balance of signaling results in dramatic changes in the way cells interact with each other and with the extracellular matrix, leading to breast cancer. The extracellularmore » matrix itself plays a central role in coordinating these signaling processes. In this review, we consider the interrelationships between the extracellular matrix, integrins, growth factors, and steroid hormones in mammary gland development and function.« less

  5. A combinatorial extracellular matrix platform identifies cell-extracellular matrix interactions that correlate with metastasis

    PubMed Central

    Reticker-Flynn, Nathan E.; Braga Malta, David F.; Winslow, Monte M.; Lamar, John M.; Xu, Mary J.; Underhill, Gregory H.; Hynes, Richard O.; Jacks, Tyler E.; Bhatia, Sangeeta N.

    2013-01-01

    Extracellular matrix interactions play essential roles in normal physiology and many pathological processes. While the importance of ECM interactions in metastasis is well documented, systematic approaches to identify their roles in distinct stages of tumorigenesis have not been described. Here we report a novel screening platform capable of measuring phenotypic responses to combinations of ECM molecules. Using a genetic mouse model of lung adenocarcinoma, we measure the ECM-dependent adhesion of tumor-derived cells. Hierarchical clustering of the adhesion profiles differentiates metastatic cell lines from primary tumor lines. Furthermore, we uncovered that metastatic cells selectively associate with fibronectin when in combination with galectin-3, galectin-8, or laminin. We show that these molecules correlate with human disease and that their interactions are mediated in part by α3β1 integrin. Thus, our platform allowed us to interrogate interactions between metastatic cells and their microenvironments, and identified ECM and integrin interactions that could serve as therapeutic targets. PMID:23047680

  6. Mechanical influence of tissue culture plates and extracellular matrix on mesenchymal stem cell behavior: A topical review.

    PubMed

    Tatullo, Marco; Marrelli, Massimo; Falisi, Giovanni; Rastelli, Claudio; Palmieri, Francesca; Gargari, Marco; Zavan, Barbara; Paduano, Francesco; Benagiano, Vincenzo

    2016-03-01

    Tissue engineering applications need a continuous development of new biomaterials able to generate an ideal cell-extracellular matrix interaction. The stem cell fate is regulated by several factors, such as growth factors or transcription factors. The most recent literature has reported several publications able to demonstrate that environmental factors also contribute to the regulation of stem cell behavior, leading to the opinion that the environment plays the major role in the cell differentiation.The interaction between mesenchymal stem cells (MSCs) and extracellular environment has been widely described, and it has a crucial role in regulating the cell phenotype. In our laboratory (Tecnologica Research Institute, Crotone, Italy), we have recently studied how several physical factors influence the distribution and the morphology of MSCs isolated from dental pulp, and how they are able to regulate stem cell differentiation. Mechanical and geometrical factors are only a small part of the environmental factors able to influence stem cell behavior, however, this influence should be properly known: in fact, this assumption must be clearly considered during those studies involving MSCs; furthermore, these interactions should be considered as an important bias that involves an high number of studies on the MSCs, since in worldwide laboratories the scientists mostly use tissue culture plates for their experiments. © The Author(s) 2015.

  7. Defining the extracellular matrix using proteomics

    PubMed Central

    Byron, Adam; Humphries, Jonathan D; Humphries, Martin J

    2013-01-01

    The cell microenvironment has a profound influence on the behaviour, growth and survival of cells. The extracellular matrix (ECM) provides not only mechanical and structural support to cells and tissues but also binds soluble ligands and transmembrane receptors to provide spatial coordination of signalling processes. The ability of cells to sense the chemical, mechanical and topographical features of the ECM enables them to integrate complex, multiparametric information into a coherent response to the surrounding microenvironment. Consequently, dysregulation or mutation of ECM components results in a broad range of pathological conditions. Characterization of the composition of ECM derived from various cells has begun to reveal insights into ECM structure and function, and mechanisms of disease. Proteomic methodologies permit the global analysis of subcellular systems, but extracellular and transmembrane proteins present analytical difficulties to proteomic strategies owing to the particular biochemical properties of these molecules. Here, we review advances in proteomic approaches that have been applied to furthering our understanding of the ECM microenvironment. We survey recent studies that have addressed challenges in the analysis of ECM and discuss major outcomes in the context of health and disease. In addition, we summarize efforts to progress towards a systems-level understanding of ECM biology. PMID:23419153

  8. Targeting the extracellular matrix of ovarian cancer using functionalized, drug loaded lyophilisomes.

    PubMed

    van der Steen, Sophieke C H A; Raavé, René; Langerak, Sjoerd; van Houdt, Laurens; van Duijnhoven, Sander M J; van Lith, Sanne A M; Massuger, Leon F A G; Daamen, Willeke F; Leenders, William P; van Kuppevelt, Toin H

    2017-04-01

    Epithelial ovarian cancer is characterized by a high mortality rate and is in need for novel therapeutic avenues to improve patient outcome. The tumor's extracellular matrix ("stroma") offers new possibilities for targeted drug-delivery. Recently we identified highly sulfated chondroitin sulfate (CS-E) as a component abundantly present in the ovarian cancer extracellular matrix, and as a novel target for anti-cancer therapy. Here, we report on the functionalization of drug-loaded lyophilisomes (albumin-based biocapsules) to specifically target the stroma of ovarian carcinomas with the potential to eliminate cancer cells. To achieve specific targeting, we conjugated single chain antibodies reactive with CS-E to lyophilisomes using a two-step approach comprising sortase-mediated ligation and bioorthogonal click chemistry. Antibody-functionalized lyophilisomes specifically targeted the ovarian cancer stroma through CS-E. In a CS-E rich micro-environment in vitro lyophilisomes induced cell death by extracellular release of doxorubicin which localized to the nucleus. Immunohistochemistry identified CS-E rich stroma in a variety of solid tumors other than ovarian cancer, including breast, lung and colon cancer indicating the potential versatility of matrix therapy and the use of highly sulfated chondroitin sulfates in cancer stroma as a micro-environmental hook for targeted drug delivery. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Extracellular matrix structure governs invasion resistance in bacterial biofilms.

    PubMed

    Nadell, Carey D; Drescher, Knut; Wingreen, Ned S; Bassler, Bonnie L

    2015-08-01

    Many bacteria are highly adapted for life in communities, or biofilms. A defining feature of biofilms is the production of extracellular matrix that binds cells together. The biofilm matrix provides numerous fitness benefits, including protection from environmental stresses and enhanced nutrient availability. Here we investigate defense against biofilm invasion using the model bacterium Vibrio cholerae. We demonstrate that immotile cells, including those identical to the biofilm resident strain, are completely excluded from entry into resident biofilms. Motile cells can colonize and grow on the biofilm exterior, but are readily removed by shear forces. Protection from invasion into the biofilm interior is mediated by the secreted protein RbmA, which binds mother-daughter cell pairs to each other and to polysaccharide components of the matrix. RbmA, and the invasion protection it confers, strongly localize to the cell lineages that produce it.

  10. Extracellular matrix regenerative graft attenuates the negative impact of polypropylene prolapse mesh on vagina in rhesus macaque.

    PubMed

    Liang, Rui; Knight, Katrina; Barone, William; Powers, Robert W; Nolfi, Alexis; Palcsey, Stacy; Abramowitch, Steven; Moalli, Pamela A

    2017-02-01

    The use of wide pore lightweight polypropylene mesh to improve anatomical outcomes in the surgical repair of prolapse has been hampered by mesh complications. One of the prototype prolapse meshes has been found to negatively impact the vagina by inducing a decrease in smooth muscle volume and contractility and the degradation of key structural proteins (collagen and elastin), resulting in vaginal degeneration. Recently, bioscaffolds derived from extracellular matrix have been used to mediate tissue regeneration and have been widely adopted in tissue engineering applications. Here we aimed to: (1) define whether augmentation of a polypropylene prolapse mesh with an extracellular matrix regenerative graft in a primate sacrocolpopexy model could mitigate the degenerative changes; and (2) determine the impact of the extracellular matrix graft on vagina when implanted alone. A polypropylene-extracellular matrix composite graft (n = 9) and a 6-layered extracellular matrix graft alone (n = 8) were implanted in 17 middle-aged parous rhesus macaques via sacrocolpopexy and compared to historical data obtained from sham (n = 12) and the polypropylene mesh (n = 12) implanted by the same method. Vaginal function was measured in passive (ball-burst test) and active (smooth muscle contractility) mechanical tests. Vaginal histomorphologic/biochemical assessments included hematoxylin-eosin and trichrome staining, immunofluorescent labeling of α-smooth muscle actin and apoptotic cells, measurement of total collagen, collagen subtypes (ratio III/I), mature elastin, and sulfated glycosaminoglycans. Statistical analyses included 1-way analysis of variance, Kruskal-Wallis, and appropriate post-hoc tests. The host inflammatory response in the composite mesh-implanted vagina was reduced compared to that following implantation with the polypropylene mesh alone. The increase in apoptotic cells observed with the polypropylene mesh was blunted in the composite (overall P < .001). Passive

  11. Extracellular matrix metalloproteinase inducer expression in the baboon endometrium: menstrual cycle and endometriosis

    PubMed Central

    Braundmeier, A G; Fazleabas, A T; Nowak, R A

    2016-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN; BSG) regulates tissue remodeling through matrix metalloproteinases (MMPs). In human and non-human primates, endometrial remodeling is important for menstruation and the pathogenesis of endometriosis. We hypothesized that as in humans, BSG and MMPs are expressed in the endometrium of cycling baboons, and their expression is hormonally regulated by ovarian hormones, but endometriosis disrupts this regulation. BSG expression was evaluated in the baboon endometrium by q-PCR and immunohistochemistry. In the endometrium of control cycling animals, BSG mRNA levels were highest in late secretory stage tissue. BSG protein localized to glandular epithelial cells during the proliferative phase; whereas, secretory stage tissues expressed BSG in glandular and luminal epithelia with weak stromal staining. Several MMPs were differentially expressed throughout the menstrual cycle with the highest levels found during menstruation. In ovariectomized animals, BSG endometrial mRNA levels were highest with treatment of both estrogen and progesterone than that with only estrogen. Estrogen alone resulted in BSG protein localization primarily in the endometrial glandular epithelia, while estrogen and progesterone treatment displayed BSG protein localization in both the glandular and stromal cells. Exogenous hormone treatment resulted in differential expression patterns of all MMPs compared with the control cycling animals. In the eutopic endometrium of endometriotic animals, BSG mRNA levels and protein were elevated early but decreased later in disease progression. Endometriosis elevated the expression of all MMPs except MMP7 compared with the control animals. In baboons, BSG and MMP endometrial expression is regulated by both ovarian hormones, and their expression patterns are dysregulated in endometriotic animals. PMID:20841363

  12. Teaching the Extracellular Matrix and Introducing Online Databases within a Multidisciplinary Course with i-Cell-MATRIX: A Student-Centered Approach

    ERIC Educational Resources Information Center

    Sousa, Joao Carlos; Costa, Manuel Joao; Palha, Joana Almeida

    2010-01-01

    The biochemistry and molecular biology of the extracellular matrix (ECM) is difficult to convey to students in a classroom setting in ways that capture their interest. The understanding of the matrix's roles in physiological and pathological conditions study will presumably be hampered by insufficient knowledge of its molecular structure.…

  13. [Effect of electroacupuncture intervention on expression of extracellular matrix collagen and metabolic enzymes].

    PubMed

    Liao, Jun; Zhang, Le; Ke, Mei-gui; Xu, Teng

    2013-12-01

    To observe the effect of electroacupuncture (EA) at "Dazhui" (GV 14) on the contents of extracellular matrix (ECM), collagen type II (COL-II), collagen type V (COL-V), matrix metalloproteinase (MMP)-13, tissue inhibitor of metalloproteinase (TIMP)-1 in rats with cervicovertebral disc degeneration so as to explore its mechanism underlying relief of intervertebral disc degeneration. A total of 28 SD rats were randomly divided into sham group (n = 7), model group (n = 7), EA group (n = 7) and medication group (n = 7). The model of cervical intervertebral disc degeneration was established by trans-section of the deep neck splenius, the longest muscles of head, neck costocervicalis, head semi-spinatus muscle, supraspinous ligament and interspinal ligaments of cervical 2-7 segments, etc. to produce imbalance between the dynamic and static force. EA was applied to "Dazhui" (GV 14) for 30 min, once daily for 28 days, with a 2 days' interval between two courses. Animals of the medication group were treated by oral administration of meloxicam tablets (0.75 mg/kg) once daily for 28 days, with a 2 days' interval between two courses. Immunohistochemistry was used to measure the expression of ECM, COL- II, COL-V, MMP-13 and TIMP-1 in the cervicovertebral disc tissue. Compared with the sham group, the expression levels of ECM and COL-II proteins in the cervicovertebral disc tissue were significantly decreased in the model group (P < 0.01), while COL-V and MMP-13 expression levels in the model group were significantly increased (P < 0.01, P < 0.05). Compared with the model group, both ECM and COL-Il expression levels were considerably increased in the EA group and medication group (P < 0.01), while COL-V and MMP-13 expression levels were considerably down-regulated (P < 0.01, P < 0.05). No significant differences were found among the four groups in TIMP-1 expression levels (P > 0.05). EA of "Dazhui" (GV 14) can effectively regulate extracellular matrix system in rats with cervical

  14. Fibroblast extracellular matrix gene expression in response to keratinocyte-releasable stratifin.

    PubMed

    Ghaffari, Abdi; Li, Yunyaun; Karami, Ali; Ghaffari, Mazyar; Tredget, Edward E; Ghahary, Aziz

    2006-05-15

    Termination of wound-healing process requires a fine balance between connective tissue deposition and its hydrolysis. Previously, we have demonstrated that keratinocyte-releasable stratifin, also known as 14-3-3 sigma protein, stimulates collagenase (MMP-1) expression in dermal fibroblasts. However, role of extracellular stratifin in regulation of extracellular matrix (ECM) factors and other matrix metalloproteinases (MMPs) in dermal fibroblast remains unexplored. To address this question, large-scale ECM gene expression profile were analyzed in human dermal fibroblasts co-cultured with keratinocytes or treated with recombinant stratifin. Superarray pathway-specific microarrays were utilized to identify upregulation or downregulation of 96 human ECM and adhesion molecule genes. RT-PCR and Western blot were used to validate microarray expression profiles of selected genes. Comparison of gene profiles with the appropriate controls showed a significant (more than twofold) increase in expression of collagenase-1, stromelysin-1 and -2, neutrophil collagenase, and membrane type 5 MMP in dermal fibroblasts treated with stratifin or co-cultured with keratinocytes. Expression of type I collagen and fibronectin genes decreased in the same fibroblasts. The results of a dose-response experiment showed that stratifin stimulates the expression of stromelysin-1 (MMP-3) mRNA by dermal fibroblasts in a concentration-dependent fashion. Furthermore, Western blot analysis of fibroblast-conditioned medium showed a peak in MMP-3 protein levels 48 h following treatment with recombinant stratifin. In a lasting-effect study, MMP-3 protein was detected in fibroblast-condition medium for up to 72 h post removal of stratifin. In conclusion, our results suggest that keratinocyte-releasable stratifin plays a major role in induction of ECM degradation by dermal fibroblasts through stimulation of key MMPs, such as MMP-1 and MMP-3. Therefore, stratifin protein may prove to be a useful target for

  15. The extracellular matrix of rat pacinian corpuscles: an analysis of its fine structure.

    PubMed

    Dubový, P; Bednárová, J

    1999-12-01

    The Pacinian corpuscle consists of a sensory axon terminal that is enveloped by two different structures, the inner core and the capsule. Since proteoglycans are extremely water soluble and are extracted by conventional methods for electron microscopy, the current picture of the structural composition of the extracellular matrix in the inner core and the capsule of the Pacinian corpuscle is incomplete. To study the structural composition of the extracellular matrix of the Pacinian corpuscles, cationic dyes (ruthenium red, alcian blue, acridine orange) and tannic acid were applied simultaneously with the aldehyde fixation. The interosseal Pacinian corpuscles of the rat were fixed either in 2% formaldehyde and 1.5% glutaraldehyde, with the addition of one of these cationic dyes or, in Zamboni's fixative, with tannic acid added. The cationic dyes and tannic acid revealed a different structural pattern of proteoglycans in the extracellular matrix in the inner core and in the capsule of the rat Pacinian corpuscles. The inner core surrounding the sensory axon terminal is a compartment containing proteoglycans that were distributed not only in the extracellular matrix but also in the cytoplasm of the lamellae. In addition, this excitable domain was separated from the capsular fluid by a thick layer of proteoglycans on its surface. An enlarged interlamellar space of the capsule contained large amounts of proteoglycans that were removed by digestion with chondroitinase-ABC. Ruthenium red and alcian blue provided only electron dense granules, probably corresponding to collapsed monomeric proteoglycan molecules. Acridine orange and tannic acid preserved proteoglycans very well and made it possible to visualize them as "bottlebrush" structures in the electron microscope. These results show that the inner core and the capsule of rat Pacinian corpuscles have different structural patterns of proteoglycans, which are probably involved in different functions.

  16. Extracellular matrix motion and early morphogenesis.

    PubMed

    Loganathan, Rajprasad; Rongish, Brenda J; Smith, Christopher M; Filla, Michael B; Czirok, Andras; Bénazéraf, Bertrand; Little, Charles D

    2016-06-15

    For over a century, embryologists who studied cellular motion in early amniotes generally assumed that morphogenetic movement reflected migration relative to a static extracellular matrix (ECM) scaffold. However, as we discuss in this Review, recent investigations reveal that the ECM is also moving during morphogenesis. Time-lapse studies show how convective tissue displacement patterns, as visualized by ECM markers, contribute to morphogenesis and organogenesis. Computational image analysis distinguishes between cell-autonomous (active) displacements and convection caused by large-scale (composite) tissue movements. Modern quantification of large-scale 'total' cellular motion and the accompanying ECM motion in the embryo demonstrates that a dynamic ECM is required for generation of the emergent motion patterns that drive amniote morphogenesis. © 2016. Published by The Company of Biologists Ltd.

  17. Extracellular matrix control of dendritic spine and synapse structure and plasticity in adulthood

    PubMed Central

    Levy, Aaron D.; Omar, Mitchell H.; Koleske, Anthony J.

    2014-01-01

    Dendritic spines are the receptive contacts at most excitatory synapses in the central nervous system. Spines are dynamic in the developing brain, changing shape as they mature as well as appearing and disappearing as they make and break connections. Spines become much more stable in adulthood, and spine structure must be actively maintained to support established circuit function. At the same time, adult spines must retain some plasticity so their structure can be modified by activity and experience. As such, the regulation of spine stability and remodeling in the adult animal is critical for normal function, and disruption of these processes is associated with a variety of late onset diseases including schizophrenia and Alzheimer’s disease. The extracellular matrix (ECM), composed of a meshwork of proteins and proteoglycans, is a critical regulator of spine and synapse stability and plasticity. While the role of ECM receptors in spine regulation has been extensively studied, considerably less research has focused directly on the role of specific ECM ligands. Here, we review the evidence for a role of several brain ECM ligands and remodeling proteases in the regulation of dendritic spine and synapse formation, plasticity, and stability in adults. PMID:25368556

  18. Genetics of the extracellular matrix in aortic aneurysmal diseases.

    PubMed

    Lin, Chien-Jung; Lin, Chieh-Yu; Stitziel, Nathan O

    2018-04-12

    Aortic aneurysms are morbid conditions that can lead to rupture or dissection and are categorized as thoracic (TAA) or abdominal aortic aneurysms (AAA) depending on their location. While AAA shares overlapping risk factors with atherosclerotic cardiovascular disease, TAA exhibits strong heritability. Human genetic studies in the past two decades have successfully identified numerous genes involved in both familial and sporadic forms of aortic aneurysm. In this review we will discuss the genetic basis of aortic aneurysm, focusing on the extracellular matrix and how insights from these studies have informed our understanding of human biology and disease pathogenesis. Copyright © 2017 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  19. The interplay of extracellular matrix and microbiome in urothelial bladder cancer.

    PubMed

    Alfano, Massimo; Canducci, Filippo; Nebuloni, Manuela; Clementi, Massimo; Montorsi, Francesco; Salonia, Andrea

    2016-02-01

    Many pathological changes in solid tumours are caused by the accumulation of genetic mutations and epigenetic molecular alterations. In addition, tumour progression is profoundly influenced by the environment surrounding the transformed cells. The interplay between tumour cells and their microenvironment has been recognized as one of the key determinants of cancer development and is being extensively investigated. Data suggest that both the extracellular matrix and the microbiota represent microenvironments that contribute to the onset and progression of tumours. Through the introduction of omics technologies and pyrosequencing analyses, a detailed investigation of these two microenvironments is now possible. In urological research, assessment of their dysregulation has become increasingly important to provide diagnostic, prognostic and predictive biomarkers for urothelial bladder cancer. Understanding the roles of the extracellular matrix and microbiota, two key components of the urothelial mucosa, in the sequelae of pathogenic events that occur in the development and progression of urothelial carcinomas will be important to overcome the shortcomings in current bladder cancer treatment strategies.

  20. Small intestinal submucosa extracellular matrix (CorMatrix®) in cardiovascular surgery: a systematic review

    PubMed Central

    Mosala Nezhad, Zahra; Poncelet, Alain; de Kerchove, Laurent; Gianello, Pierre; Fervaille, Caroline; El Khoury, Gebrine

    2016-01-01

    Extracellular matrix (ECM) derived from small intestinal submucosa (SIS) is widely used in clinical applications as a scaffold for tissue repair. Recently, CorMatrix® porcine SIS-ECM (CorMatrix Cardiovascular, Inc., Roswell, GA, USA) has gained popularity for ‘next-generation’ cardiovascular tissue engineering due to its ease of use, remodelling properties, lack of immunogenicity, absorbability and potential to promote native tissue growth. Here, we provide an overview of the biology of porcine SIS-ECM and systematically review the preclinical and clinical literature on its use in cardiovascular surgery. CorMatrix® has been used in a variety of cardiovascular surgical applications, and since it is the most widely used SIS-ECM, this material is the focus of this review. Since CorMatrix® is a relatively new product for cardiovascular surgery, some clinical and preclinical studies published lack systematic reporting of functional and pathological findings in sufficient numbers of subjects. There are also emerging reports to suggest that, contrary to expectations, an undesirable inflammatory response may occur in CorMatrix® implants in humans and longer-term outcomes at particular sites, such as the heart valves, may be suboptimal. Large-scale clinical studies are needed driven by robust protocols that aim to quantify the pathological process of tissue repair. PMID:26912574

  1. Calreticulin--an endoplasmic reticulum protein with calcium-binding activity is also found in the extracellular matrix.

    PubMed

    Somogyi, Eszter; Petersson, Ulrika; Hultenby, Kjell; Wendel, Mikael

    2003-04-01

    Previous studies have reported that calreticulin (CRT), a calcium-binding and chaperoning protein, is expressed only in the endoplasmatic reticulum, nucleus and at the cell surface. In this study we clearly show that odontoblasts and predentin matrix contain CRT. To our knowledge, this is the first time CRT has been described in the extracellular matrix. The expression of CRT was studied by immunohistochemistry, ultrastructural immunocytochemistry and in situ hybridization in developing rat teeth. CRT was detected as a 59-kDa protein in rat pulp cell culture medium and dentin extracellular matrix extract by Western blotting. The presence of the protein was shown in rat odontoblasts and predentin with immunohistochemistry. At the ultrastructural level, the labeling was distributed in the rat odontoblasts, ameloblasts and predentin. Northern blotting showed the presence of CRT mRNA in rat molars, which was confirmed by in situ hybridization in odontoblasts and ameloblasts. We now present the first convincing evidence that CRT is found in extracellular matrix where it may play an important role in mineralization.

  2. Vinculin is required for cell polarization, migration, and extracellular matrix remodeling in 3D collagen

    PubMed Central

    Thievessen, Ingo; Fakhri, Nikta; Steinwachs, Julian; Kraus, Viola; McIsaac, R. Scott; Gao, Liang; Chen, Bi-Chang; Baird, Michelle A.; Davidson, Michael W.; Betzig, Eric; Oldenbourg, Rudolf; Waterman, Clare M.; Fabry, Ben

    2015-01-01

    Vinculin is filamentous (F)-actin-binding protein enriched in integrin-based adhesions to the extracellular matrix (ECM). Whereas studies in 2-dimensional (2D) tissue culture models have suggested that vinculin negatively regulates cell migration by promoting cytoskeleton–ECM coupling to strengthen and stabilize adhesions, its role in regulating cell migration in more physiologic, 3-dimensional (3D) environments is unclear. To address the role of vinculin in 3D cell migration, we analyzed the morphodynamics, migration, and ECM remodeling of primary murine embryonic fibroblasts (MEFs) with cre/loxP-mediated vinculin gene disruption in 3D collagen I cultures. We found that vinculin promoted 3D cell migration by increasing directional persistence. Vinculin was necessary for persistent cell protrusion, cell elongation, and stable cell orientation in 3D collagen, but was dispensable for lamellipodia formation, suggesting that vinculin-mediated cell adhesion to the ECM is needed to convert actin-based cell protrusion into persistent cell shape change and migration. Consistent with this finding, vinculin was necessary for efficient traction force generation in 3D collagen without affecting myosin II activity and promoted 3D collagen fiber alignment and macroscopical gel contraction. Our results suggest that vinculin promotes directionally persistent cell migration and tension-dependent ECM remodeling in complex 3D environments by increasing cell–ECM adhesion and traction force generation.—Thievessen, I., Fakhri, N., Steinwachs, J., Kraus, V., McIsaac, R. S., Gao, L., Chen, B.-C., Baird, M. A., Davidson, M. W., Betzig, E., Oldenbourg, R., Waterman, C., M., Fabry, B. Vinculin is required for cell polarization, migration, and extracellular matrix remodeling in 3D collagen. PMID:26195589

  3. Stretching the boundaries of extracellular matrix research.

    PubMed

    Hynes, Richard O

    2014-12-01

    Extracellular matrix (ECM) proteins constitute >1% of the proteome and interact with many modifiers and growth factors to affect most aspects of cellular behaviour during development and normal physiology, as well as in diseases such as fibroses, cancer and many genetic disorders. In addition to biochemical signals provided to cells by ECM proteins, important cell–ECM interactions involve bidirectional mechanotransduction influences, which are dependent on the physical structure and organization of the ECM. These are beginning to be understood using twenty-first-century approaches, including biophysics, nanotechnology, biological engineering and modern microscopy. Articles in this issue of Nature Reviews Molecular Cell Biology review progress in our understanding of the ECM.

  4. The extracellular matrix controls gap junction protein expression and function in postnatal hippocampal neural progenitor cells

    PubMed Central

    Imbeault, Sophie; Gauvin, Lianne G; Toeg, Hadi D; Pettit, Alexandra; Sorbara, Catherine D; Migahed, Lamiaa; DesRoches, Rebecca; Menzies, A Sheila; Nishii, Kiyomasa; Paul, David L; Simon, Alexander M; Bennett, Steffany AL

    2009-01-01

    Background Gap junction protein and extracellular matrix signalling systems act in concert to influence developmental specification of neural stem and progenitor cells. It is not known how these two signalling systems interact. Here, we examined the role of ECM components in regulating connexin expression and function in postnatal hippocampal progenitor cells. Results We found that Cx26, Cx29, Cx30, Cx37, Cx40, Cx43, Cx45, and Cx47 mRNA and protein but only Cx32 and Cx36 mRNA are detected in distinct neural progenitor cell populations cultured in the absence of exogenous ECM. Multipotential Type 1 cells express Cx26, Cx30, and Cx43 protein. Their Type 2a progeny but not Type 2b and 3 neuronally committed progenitor cells additionally express Cx37, Cx40, and Cx45. Cx29 and Cx47 protein is detected in early oligodendrocyte progenitors and mature oligodendrocytes respectively. Engagement with a laminin substrate markedly increases Cx26 protein expression, decreases Cx40, Cx43, Cx45, and Cx47 protein expression, and alters subcellular localization of Cx30. These changes are associated with decreased neurogenesis. Further, laminin elicits the appearance of Cx32 protein in early oligodendrocyte progenitors and Cx36 protein in immature neurons. These changes impact upon functional connexin-mediated hemichannel activity but not gap junctional intercellular communication. Conclusion Together, these findings demonstrate a new role for extracellular matrix-cell interaction, specifically laminin, in the regulation of intrinsic connexin expression and function in postnatal neural progenitor cells. PMID:19236721

  5. Right ventricular function after repair of tetralogy of Fallot: a comparison between bovine pericardium and porcine small intestinal extracellular matrix.

    PubMed

    Naik, Ronak; Johnson, Jason; Kumar, T K S; Philip, Ranjit; Boston, Umar; Knott-Craig, Christopher J

    2017-05-29

    The porcine small intestinal extracellular matrix reportedly has the potential to differentiate into viable myocardial cells. When used in tetralogy of Fallot repair, it may improve right ventricular function. We evaluated right ventricular function after repair of tetralogy of Fallot with extracellular matrix versus bovine pericardium. Subjects with non-transannular repair of tetralogy of Fallot with at least 1 year of follow-up were selected. The extracellular matrix and bovine pericardium groups were compared. We used three-dimensional right ventricular ejection fraction, right ventricle global longitudinal strain, and tricuspid annular plane systolic excursion to assess right ventricular function. The extracellular matrix group had 11 patients, whereas the bovine pericardium group had 10 patients. No differences between the groups were found regarding sex ratio, age at surgery, and cardiopulmonary bypass time. The follow-up period was 28±12.6 months in the extracellular matrix group and 50.05±17.6 months in the bovine pericardium group (p=0.001). The mean three-dimensional right ventricular ejection fraction (55.7±5.0% versus 55.3±5.2%, p=0.73), right ventricular global longitudinal strain (-18.5±3.0% versus -18.0±2.2%, p=0.44), and tricuspid annular plane systolic excursions (1.59±0.16 versus 1.59±0.2, p=0.93) were similar in the extracellular matrix group and in the bovine pericardium group, respectively. Right ventricular global longitudinal strain in healthy children is reported at -29±3% in literature. In a small cohort of the patients undergoing non-transannular repair of tetralogy of Fallot, there was no significant difference in right ventricular function between groups having extracellular matrix versus bovine pericardium patches followed-up for more than 1 year. Lower right ventricular longitudinal strain noted in both the groups compared to healthy children.

  6. Large-scale investigation of Leishmania interaction networks with host extracellular matrix by surface plasmon resonance imaging.

    PubMed

    Fatoux-Ardore, Marie; Peysselon, Franck; Weiss, Anthony; Bastien, Patrick; Pratlong, Francine; Ricard-Blum, Sylvie

    2014-02-01

    We have set up an assay to study the interactions of live pathogens with their hosts by using protein and glycosaminoglycan arrays probed by surface plasmon resonance imaging. We have used this assay to characterize the interactions of Leishmania promastigotes with ~70 mammalian host biomolecules (extracellular proteins, glycosaminoglycans, growth factors, cell surface receptors). We have identified, in total, 27 new partners (23 proteins, 4 glycosaminoglycans) of procyclic promastigotes of six Leishmania species and 18 partners (15 proteins, 3 glycosaminoglycans) of three species of stationary-phase promastigotes for all the strains tested. The diversity of the interaction repertoires of Leishmania parasites reflects their dynamic and complex interplay with their mammalian hosts, which depends mostly on the species and strains of Leishmania. Stationary-phase Leishmania parasites target extracellular matrix proteins and glycosaminoglycans, which are highly connected in the extracellular interaction network. Heparin and heparan sulfate bind to most Leishmania strains tested, and 6-O-sulfate groups play a crucial role in these interactions. Numerous Leishmania strains bind to tropoelastin, and some strains are even able to degrade it. Several strains interact with collagen VI, which is expressed by macrophages. Most Leishmania promastigotes interact with several regulators of angiogenesis, including antiangiogenic factors (endostatin, anastellin) and proangiogenic factors (ECM-1, VEGF, and TEM8 [also known as anthrax toxin receptor 1]), which are regulated by hypoxia. Since hypoxia modulates the infection of macrophages by the parasites, these interactions might influence the infection of host cells by Leishmania.

  7. Large-Scale Investigation of Leishmania Interaction Networks with Host Extracellular Matrix by Surface Plasmon Resonance Imaging

    PubMed Central

    Fatoux-Ardore, Marie; Peysselon, Franck; Weiss, Anthony; Bastien, Patrick; Pratlong, Francine

    2014-01-01

    We have set up an assay to study the interactions of live pathogens with their hosts by using protein and glycosaminoglycan arrays probed by surface plasmon resonance imaging. We have used this assay to characterize the interactions of Leishmania promastigotes with ∼70 mammalian host biomolecules (extracellular proteins, glycosaminoglycans, growth factors, cell surface receptors). We have identified, in total, 27 new partners (23 proteins, 4 glycosaminoglycans) of procyclic promastigotes of six Leishmania species and 18 partners (15 proteins, 3 glycosaminoglycans) of three species of stationary-phase promastigotes for all the strains tested. The diversity of the interaction repertoires of Leishmania parasites reflects their dynamic and complex interplay with their mammalian hosts, which depends mostly on the species and strains of Leishmania. Stationary-phase Leishmania parasites target extracellular matrix proteins and glycosaminoglycans, which are highly connected in the extracellular interaction network. Heparin and heparan sulfate bind to most Leishmania strains tested, and 6-O-sulfate groups play a crucial role in these interactions. Numerous Leishmania strains bind to tropoelastin, and some strains are even able to degrade it. Several strains interact with collagen VI, which is expressed by macrophages. Most Leishmania promastigotes interact with several regulators of angiogenesis, including antiangiogenic factors (endostatin, anastellin) and proangiogenic factors (ECM-1, VEGF, and TEM8 [also known as anthrax toxin receptor 1]), which are regulated by hypoxia. Since hypoxia modulates the infection of macrophages by the parasites, these interactions might influence the infection of host cells by Leishmania. PMID:24478075

  8. Shell extracts from the marine bivalve Pecten maximus regulate the synthesis of extracellular matrix in primary cultured human skin fibroblasts.

    PubMed

    Latire, Thomas; Legendre, Florence; Bigot, Nicolas; Carduner, Ludovic; Kellouche, Sabrina; Bouyoucef, Mouloud; Carreiras, Franck; Marin, Frédéric; Lebel, Jean-Marc; Galéra, Philippe; Serpentini, Antoine

    2014-01-01

    Mollusc shells are composed of more than 95% calcium carbonate and less than 5% of an organic matrix consisting mostly of proteins, glycoproteins and polysaccharides. Previous studies have elucidated the biological activities of the shell matrices from bivalve molluscs on skin, especially on the expression of the extracellular matrix components of fibroblasts. In this work, we have investigated the potential biological activities of shell matrix components extracted from the shell of the scallop Pecten maximus on human fibroblasts in primary culture. Firstly, we demonstrated that shell matrix components had different effects on general cellular activities. Secondly, we have shown that the shell matrix components stimulate the synthesis of type I and III collagens, as well as that of sulphated GAGs. The increased expression of type I collagen is likely mediated by the recruitment of transactivating factors (Sp1, Sp3 and human c-Krox) in the -112/-61 bp COL1A1 promoter region. Finally, contrarily to what was obtained in previous works, we demonstrated that the scallop shell extracts have only a small effect on cell migration during in vitro wound tests and have no effect on cell proliferation. Thus, our research emphasizes the potential use of shell matrix of Pecten maximus for dermo-cosmetic applications.

  9. Shell Extracts from the Marine Bivalve Pecten maximus Regulate the Synthesis of Extracellular Matrix in Primary Cultured Human Skin Fibroblasts

    PubMed Central

    Latire, Thomas; Legendre, Florence; Bigot, Nicolas; Carduner, Ludovic; Kellouche, Sabrina; Bouyoucef, Mouloud; Carreiras, Franck; Marin, Frédéric; Lebel, Jean-Marc; Galéra, Philippe; Serpentini, Antoine

    2014-01-01

    Mollusc shells are composed of more than 95% calcium carbonate and less than 5% of an organic matrix consisting mostly of proteins, glycoproteins and polysaccharides. Previous studies have elucidated the biological activities of the shell matrices from bivalve molluscs on skin, especially on the expression of the extracellular matrix components of fibroblasts. In this work, we have investigated the potential biological activities of shell matrix components extracted from the shell of the scallop Pecten maximus on human fibroblasts in primary culture. Firstly, we demonstrated that shell matrix components had different effects on general cellular activities. Secondly, we have shown that the shell matrix components stimulate the synthesis of type I and III collagens, as well as that of sulphated GAGs. The increased expression of type I collagen is likely mediated by the recruitment of transactivating factors (Sp1, Sp3 and human c-Krox) in the −112/−61 bp COL1A1 promoter region. Finally, contrarily to what was obtained in previous works, we demonstrated that the scallop shell extracts have only a small effect on cell migration during in vitro wound tests and have no effect on cell proliferation. Thus, our research emphasizes the potential use of shell matrix of Pecten maximus for dermo-cosmetic applications. PMID:24949635

  10. Roles and regulation of the matrix metalloproteinase system in parturition.

    PubMed

    Geng, Junnan; Huang, Cong; Jiang, Siwen

    2016-04-01

    Significant tissue destruction, repair, and remodeling are involved in parturition, which involves fetal membrane rupture, cervical ripening, and uterine contraction and its subsequent involution. Extracellular matrix degradation and remodeling by proteolytic enzymes, such as matrix metalloproteinases (MMPs), are required for the final steps of parturition. MMPs participate in physiological degradation and remodeling through their proteolytic activities on specific substrates, and are balanced by the action of their inhibitors. Disruption to this balance can result in pathological stress that ends with preterm or post-term birth or pre-eclampsia. In this review, we examine the roles and regulation of the MMP system in physiological and pathological labor, and propose a model that illustrates the mechanisms by which the MMP system contributes to these processes. © 2016 Wiley Periodicals, Inc.

  11. Inhibitory effect of ginsenoside Rg1 on extracellular matrix production via extracellular signal-regulated protein kinase/activator protein 1 pathway in nasal polyp-derived fibroblasts.

    PubMed

    Cho, Jung-Sun; Moon, You-Mi; Um, Ji-Young; Moon, Jun-Hyeok; Park, Il-Ho; Lee, Heung-Man

    2012-06-01

    Nasal polyps are associated with chronic inflammation of the sinonasal mucosa and are involved in myofibroblast differentiation and extracellular matrix (ECM) accumulation. Ginsenoside Rg1, a compound derived from Panax ginseng, shows antifibrotic and anticancer effects. However, the molecular effects of Rg1 on myofibroblast differentiation and ECM production remain unknown. The aims of this study were to investigate the effect of Rg1 on transforming growth factor (TGF)-β1-induced myofibroblast differentiation and ECM production and to determine the molecular mechanism of Rg1 in nasal polyp-derived fibroblasts (NPDFs). NPDFs were isolated from nasal polyps of seven patients who had chronic rhinosinusitis with nasal polyp. NPDFs were exposed to TGF-β1 with or without Rg1. Expression levels of α-smooth muscle actin (SMA), fibronectin and collagen type Iα1 were determined by reverse transcription polymerase chain reaction, Western blot and immunofluorescent staining. TGF-β1 signaling molecules, including Smad2/3, extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 were analyzed by Western blotting. Transcription factors involved with TGF-β1 signaling, nuclear factor (NF)-κB and activator protein 1 (AP-1) were also assessed by Western blot. The cytotoxic effect of Rg1 was measured by an established viability assay. The mRNA and protein expression levels of α-SMA, fibronectin and collagen type Iα1 were increased in TGF-β1-induced NPDFs. Rg1 inhibited these effects. The inhibitory molecular mechanism of Rg1 was involved in the ERK pathway. Rg1 inhibited the transcription factor activation of AP-1. Rg1 itself was not cytotoxic. The ginsenoside Rg1 has inhibitory effects on myofibroblast differentiation and ECM production. The inhibitory mechanism of Rg1 is involved with the ERK and AP-1 signaling pathways. Rg1 may be useful as an inhibitor of ECM deposition, and has potential to be used as a novel treatment option for nasal

  12. The Extracellular Matrix of the Lateral Pharyngeal Wall in Obstructive Sleep Apnea

    PubMed Central

    Dantas, Danielle Andrade da Silva; Mauad, Thais; Silva, Luiz F. F.; Lorenzi-Filho, Geraldo; Formigoni, Gilberto G. S.; Cahali, Michel B.

    2012-01-01

    Study Objectives: To compare the components of the extracellular matrix in the lateral pharyngeal muscular wall in patients with and without obstructive sleep apnea (OSA). This may help to explain the origin of the increased collapsibility of the pharynx in patients with OSA. Design: Specimens from the superior pharyngeal constrictor muscle, obtained during pharyngeal surgeries, were evaluated using histochemical and immunohistochemical analyses to determine the fractional area of collagen types I and III, elastic fibers, versican, fibronectin, and matrix metalloproteinases 1 and 2 in the endomysium. Setting: Academic tertiary center. Patiens: A total of 51 nonobese adult patients, divided into 38 patients with OSA and 13 nonsnoring control subjects without OSA. Interventions: Postintervention study performed on tissues from patients after elective surgery. Measurements and Results: Pharyngeal muscles of patients with OSA had significantly more collagen type I than pharyngeal muscles in control subjects. Collagen type I was correlated positively and independently with age. The other tested components of the extracellular matrix did not differ significantly between groups. In a logistic regression, an additive effect of both the increase of collagen type I and the increase in age with the presence of OSA was observed (odds ratio (OR), 2.06; 95% confidence interval (CI), 1.17-3.63), when compared with the effect of increased age alone (OR, 1.11; 95% CI, 1.03-1.20). Conclusion: Collagen type I in the superior pharyngeal constrictor muscle was more prevalent in patients with OSA and also increased with age. It was hypothesized that this increase could delay contractile-relaxant responses in the superior pharyngeal constrictor muscle at the expiratory-inspiratory phase transition, thus increasing pharyngeal collapsibility. Citation: Dantas DAS; Mauad T; Silva LFF; Lorenzi-Filho G; Formigoni GGS; Cahali MB. The extracellular matrix of the lateral pharyngeal wall in

  13. Modeling the formation of cell-matrix adhesions on a single 3D matrix fiber.

    PubMed

    Escribano, J; Sánchez, M T; García-Aznar, J M

    2015-11-07

    Cell-matrix adhesions are crucial in different biological processes like tissue morphogenesis, cell motility, and extracellular matrix remodeling. These interactions that link cell cytoskeleton and matrix fibers are built through protein clutches, generally known as adhesion complexes. The adhesion formation process has been deeply studied in two-dimensional (2D) cases; however, the knowledge is limited for three-dimensional (3D) cases. In this work, we simulate different local extracellular matrix properties in order to unravel the fundamental mechanisms that regulate the formation of cell-matrix adhesions in 3D. We aim to study the mechanical interaction of these biological structures through a three dimensional discrete approach, reproducing the transmission pattern force between the cytoskeleton and a single extracellular matrix fiber. This numerical model provides a discrete analysis of the proteins involved including spatial distribution, interaction between them, and study of the different phenomena, such as protein clutches unbinding or protein unfolding. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Engineering the extracellular matrix for clinical applications: endoderm, mesoderm, and ectoderm.

    PubMed

    Williams, Miguel L; Bhatia, Sujata K

    2014-03-01

    Tissue engineering is rapidly progressing from a research-based discipline to clinical applications. Emerging technologies could be utilized to develop therapeutics for a wide range of diseases, but many are contingent on a cell scaffold that can produce proper tissue ultrastructure. The extracellular matrix, which a cell scaffold simulates, is not merely a foundation for tissue growth but a dynamic participant in cellular crosstalk and organ homeostasis. Cells change their growth rates, recruitment, and differentiation in response to the composition, modulus, and patterning of the substrate on which they reside. Cell scaffolds can regulate these factors through precision design, functionalization, and application. The ideal therapy would utilize highly specialized cell scaffolds to best mimic the tissue of interest. This paper discusses advantages and challenges of optimized cell scaffold design in the endoderm, mesoderm, and ectoderm for clinical applications in tracheal transplant, cardiac regeneration, and skin grafts, respectively. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Tumor cell-driven extracellular matrix remodeling drives haptotaxis during metastatic progression

    PubMed Central

    Oudin, Madeleine J.; Jonas, Oliver; Kosciuk, Tatsiana; Broye, Liliane C.; Guido, Bruna C.; Wyckoff, Jeff; Riquelme, Daisy; Lamar, John M.; Asokan, Sreeja B.; Whittaker, Charlie; Ma, Duanduan; Langer, Robert; Cima, Michael J.; Wisinski, Kari B.; Hynes, Richard O.; Lauffenburger, Douglas A.; Keely, Patricia J.; Bear, James E.; Gertler, Frank B.

    2016-01-01

    Fibronectin (FN) is a major component of the tumor microenvironment, but its role in promoting metastasis is incompletely understood. Here we show that FN gradients elicit directional movement of breast cancer cells, in vitro and in vivo. Haptotaxis on FN gradients requires direct interaction between α5β1 integrin and Mena, an actin regulator, and involves increases in focal complex signaling and tumor-cell-mediated extracellular matrix (ECM) remodeling. Compared to Mena, higher levels of the pro-metastatic MenaINV isoform associate with α5, which enables 3D haptotaxis of tumor cells towards the high FN concentrations typically present in perivascular space and in the periphery of breast tumor tissue. MenaINV and FN levels were correlated in two breast cancer cohorts, and high levels of MenaINV were significantly associated with increased tumor recurrence as well as decreased patient survival. Our results identify a novel tumor-cell-intrinsic mechanism that promotes metastasis through ECM remodeling and ECM guided directional migration. PMID:26811325

  16. Oxidation modifies the structure and function of the extracellular matrix generated by human coronary artery endothelial cells.

    PubMed

    Chuang, Christine Y; Degendorfer, Georg; Hammer, Astrid; Whitelock, John M; Malle, Ernst; Davies, Michael J

    2014-04-15

    ECM (extracellular matrix) materials, such as laminin, perlecan, type IV collagen and fibronectin, play a key role in determining the structure of the arterial wall and the properties of cells that interact with the ECM. The aim of the present study was to investigate the effect of peroxynitrous acid, an oxidant generated by activated macrophages, on the structure and function of the ECM laid down by HCAECs (human coronary artery endothelial cells) in vitro and in vivo. We show that exposure of HCAEC-derived native matrix components to peroxynitrous acid (but not decomposed oxidant) at concentrations >1 μM results in a loss of antibody recognition of perlecan, collagen IV, and cell-binding sites on laminin and fibronectin. Loss of recognition was accompanied by decreased HCAEC adhesion. Real-time PCR showed up-regulation of inflammation-associated genes, including MMP7 (matrix metalloproteinase 7) and MMP13, as well as down-regulation of the laminin α2 chain, in HCAECs cultured on peroxynitrous acid-treated matrix compared with native matrix. Immunohistochemical studies provided evidence of co-localization of laminin with 3-nitrotyrosine, a biomarker of peroxynitrous acid damage, in type II-III/IV human atherosclerotic lesions, consistent with matrix damage occurring during disease development in vivo. The results of the present study suggest a mechanism through which peroxynitrous acid modifies endothelial cell-derived native ECM proteins of the arterial basement membrane in atherosclerotic lesions. These changes to ECM and particularly perlecan and laminin may be important in inducing cellular dysfunction and contribute to atherogenesis.

  17. The kinesin KIF9 and reggie/flotillin proteins regulate matrix degradation by macrophage podosomes

    PubMed Central

    Cornfine, Susanne; Himmel, Mirko; Kopp, Petra; el Azzouzi, Karim; Wiesner, Christiane; Krüger, Marcus; Rudel, Thomas; Linder, Stefan

    2011-01-01

    Podosomes are actin-based matrix contacts in a variety of cell types, most notably monocytic cells, and are characterized by their ability to lyse extracellular matrix material. Besides their dependence on actin regulation, podosomes are also influenced by microtubules and microtubule-dependent transport processes. Here we describe a novel role for KIF9, a previously little-characterized member of the kinesin motor family, in the regulation of podosomes in primary human macrophages. We find that small interfering RNA (siRNA)/short-hairpin RNA–induced knockdown of KIF9 significantly affects both numbers and matrix degradation of podosomes. Overexpression and microinjection experiments reveal that the unique C-terminal region of KIF9 is crucial for these effects, presumably through binding of specific interactors. Indeed, we further identify reggie-1/flotillin-2, a signaling mediator between intracellular vesicles and the cell periphery, as an interactor of the KIF9 C-terminus. Reggie-1 dynamically colocalizes with KIF9 in living cells, and, consistent with KIF9-mediated effects, siRNA-induced knockdown of reggies/flotillins significantly impairs matrix degradation by podosomes. In sum, we identify the kinesin KIF9 and reggie/flotillin proteins as novel regulators of macrophage podosomes and show that their interaction is critical for the matrix-degrading ability of these structures. PMID:21119006

  18. Synthetic osteogenic extracellular matrix formed by coated silicon dioxide nanosprings

    PubMed Central

    2012-01-01

    Background The design of biomimetic materials that parallel the morphology and biology of extracellular matrixes is key to the ability to grow functional tissues in vitro and to enhance the integration of biomaterial implants into existing tissues in vivo. Special attention has been put into mimicking the nanostructures of the extracellular matrix of bone, as there is a need to find biomaterials that can enhance the bonding between orthopedic devices and this tissue. Methods We have tested the ability of normal human osteoblasts to propagate and differentiate on silicon dioxide nanosprings, which can be easily grown on practically any surface. In addition, we tested different metals and metal alloys as coats for the nanosprings in tissue culture experiments with bone cells. Results Normal human osteoblasts grown on coated nanosprings exhibited an enhanced rate of propagation, differentiation into bone forming cells and mineralization. While osteoblasts did not attach effectively to bare nanowires grown on glass, these cells propagated successfully on nanosprings coated with titanium oxide and gold. We observed a 270 fold increase in the division rate of osteoblasts when grow on titanium/gold coated nanosprings. This effect was shown to be dependent on the nanosprings, as the coating by themselves did not alter the growth rate of osteoblast. We also observed that titanium/zinc/gold coated nanosprings increased the levels of osteoblast production of alkaline phosphatase seven folds. This result indicates that osteoblasts grown on this metal alloy coated nanosprings are differentiating to mature bone making cells. Consistent with this hypothesis, we showed that osteoblasts grown on the same metal alloy coated nanosprings have an enhanced ability to deposit calcium salt. Conclusion We have established that metal/metal alloy coated silicon dioxide nanosprings can be used as a biomimetic material paralleling the morphology and biology of osteogenic extracellular matrix

  19. Deposition of tropoelastin into the extracellular matrix requires a competent elastic fiber scaffold but not live cells.

    PubMed

    Kozel, Beth A; Ciliberto, Christopher H; Mecham, Robert P

    2004-04-01

    The initial steps of elastic fiber assembly were investigated using an in vitro assembly model in which purified recombinant tropoelastin (rbTE) was added to cultures of live or dead cells. The ability of tropoelastin to associate with preexisting elastic fibers or microfibrils in the extracellular matrix was then assessed by immunofluorescence microscopy using species-specific tropoelastin antibodies. Results show that rbTE can associate with elastic fiber components in the absence of live cells through a process that does not depend on crosslink formation. Time course studies show a transformation of the deposited protein from an initial globular appearance early in culture to a more fibrous structure as the matrix matures. Deposition required the C-terminal region of tropoelastin and correlated with the presence of preexisting elastic fibers or microfibrils. Association of exogenously added tropoelastin to the cellular extracellular matrix was inhibited by the addition of heparan sulfate but not chondroitin sulfate sugars. Together, these results suggest that the matrix elaborated by the cell is sufficient for the initial deposition of tropoelastin in the extracellular space and that elastin assembly may be influenced by the composition of sulfated proteoglycans in the matrix.

  20. Extracellular matrix hydrogels from decellularized tissues: Structure and function.

    PubMed

    Saldin, Lindsey T; Cramer, Madeline C; Velankar, Sachin S; White, Lisa J; Badylak, Stephen F

    2017-02-01

    Extracellular matrix (ECM) bioscaffolds prepared from decellularized tissues have been used to facilitate constructive and functional tissue remodeling in a variety of clinical applications. The discovery that these ECM materials could be solubilized and subsequently manipulated to form hydrogels expanded their potential in vitro and in vivo utility; i.e. as culture substrates comparable to collagen or Matrigel, and as injectable materials that fill irregularly-shaped defects. The mechanisms by which ECM hydrogels direct cell behavior and influence remodeling outcomes are only partially understood, but likely include structural and biological signals retained from the native source tissue. The present review describes the utility, formation, and physical and biological characterization of ECM hydrogels. Two examples of clinical application are presented to demonstrate in vivo utility of ECM hydrogels in different organ systems. Finally, new research directions and clinical translation of ECM hydrogels are discussed. More than 70 papers have been published on extracellular matrix (ECM) hydrogels created from source tissue in almost every organ system. The present manuscript represents a review of ECM hydrogels and attempts to identify structure-function relationships that influence the tissue remodeling outcomes and gaps in the understanding thereof. There is a Phase 1 clinical trial now in progress for an ECM hydrogel. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Tubulointerstitial nephritis antigen: an extracellular matrix protein that selectively regulates tubulogenesis vs. glomerulogenesis during mammalian renal development.

    PubMed

    Kanwar, Y S; Kumar, A; Yang, Q; Tian, Y; Wada, J; Kashihara, N; Wallner, E I

    1999-09-28

    Tubulointerstitial nephritis antigen (TIN-ag) is an extracellular matrix protein and is expressed in the renal tubular basement membranes. Its role in metanephric development was investigated. TIN-ag cDNA, isolated from the newborn mouse library, had an ORF of 1,425 nucleotides, a putative signal sequence, and an ATP/GTP-binding site. The translated sequence had approximately 80% identity with rabbit TIN-ag. Among various tissues, TIN-ag mRNA was primarily expressed in the newborn kidney. In the embryonic metanephros, TIN-ag expression was confined to the distal convolution or pole of the S-shaped body, the segment of the nascent nephron that is the progenitor of renal tubules. Treatment with TIN-ag antisense oligodeoxynucleotide induced dysmorphogenesis of the embryonic metanephroi, malformation of the S-shaped body, and a decrease in the tubular population, whereas the glomeruli were unaffected. Treatment also led to a decrease of TIN-Ag mRNA, de novo synthesis of TIN-ag protein, and its antibody reactivity. The mRNA expression of glomerular epithelial protein 1 (a marker for renal podocytes), anti-heparan-sulfate-proteoglycan antibody reactivity, and wheat germ agglutinin lectin staining of the metanephros were unaffected. The anti-TIN-ag antibody treatment also caused deformation of the S-shaped body and a reduction in the tubular population, whereas the glomeruli were unchanged. The data suggest that the TIN-ag, unlike other basement membrane proteins, selectively regulates tubulogenesis, whereas glomerulogenesis is largely unaffected.

  2. Soluble extracellular matrix metalloproteinase inducer (EMMPRIN, EMN) regulates cancer-related cellular functions by homotypic interactions with surface CD147.

    PubMed

    Knutti, Nadine; Kuepper, Michael; Friedrich, Karlheinz

    2015-11-01

    EMMPRIN (extracellular matrix metalloproteinase inducer) is a widely expressed glycoprotein and a member of the immunoglobulin superfamily which exists in both a membrane-spanning and a soluble form. Homotypic interactions of EMMPRIN underlie its multiple roles in normal development and pathological situations such as viral infections, Alzheimer's disease and cancer. This study employed a recombinant soluble, fully glycosylated EMMPRIN domain (rhsEMN) as a tool to characterize the structural basis of EMMPRIN-EMMPRIN receptor (EMNR) contacts and their functional effects on MCF-7 breast carcinoma cells. rhsEMN did not form dimers in solution but bound to surface EMMPRIN (EMN) on MCF-7 cells with high affinity and was readily internalized. The interaction interface for the homotypic contact was localized to the N-terminal Ig domain. rhsEMN exerted a stimulatory effect on proliferation of MCF-7 cells whereas it reduced cell migration in a dose-dependent manner. These effects were accompanied by an upregulation of endogenous EMMPRIN as well as of matrix metalloproteinase-14 (MMP-14), a membrane-bound protease involved in the extracellular release of soluble EMMPRIN, indicating a regulatory feedback mechanism. The proliferation-promoting activity of rhsEMN was mimicked by a novel functional antibody directed to EMMPRIN, underscoring that crosslinking of cell surface EMMPRIN (EMNR) is crucial for eliciting intracellular signalling. Addressing malignancy-related signal transduction in HEK-293 cells, we could show that rhsEMN triggers the oncogenic Wnt pathway. © 2015 FEBS.

  3. Preliminary results of recurrent cubital tunnel syndrome treated with neurolysis and porcine extracellular matrix nerve wrap.

    PubMed

    Papatheodorou, Loukia K; Williams, Benjamin G; Sotereanos, Dean G

    2015-05-01

    To evaluate the clinical results of revision neurolysis and wrapping with porcine extracellular matrix (AxoGuard Nerve Protector, AxoGen Inc., Alachua, FL) for cubital tunnel syndrome after one previous surgical decompression. Twelve patients with recurrent cubital tunnel syndrome were treated with decompression, porcine extracellular matrix nerve wrap, and minimal medial epicondylectomy (if not previously performed). The average follow-up period was 41 months (range, 24-61 mo). All patients had recurrent symptoms after having previously undergone one surgical decompression. The mean patient age was 45 years (range, 30-58 y). All patients were evaluated subjectively and objectively (pain, satisfaction, static 2-point discrimination, grip strength, and pinch strength). A significant improvement was demonstrated in postoperative pain levels (from 8.5 to 1.7), grip strength (from 41% to 86% of the unaffected side), and pinch strength (from 64% to 83% of the unaffected side). Static 2-point discrimination improved from an average 10.4 mm preoperatively to 7.6 mm postoperatively. Eleven of 12 patients demonstrated 2 mm or more improvement in 2-point discrimination postoperatively. There were no complications related to the use of the porcine extracellular matrix for nerve wrapping. This study found that secondary decompression combined with porcine extracellular matrix nerve wrapping was an effective and safe treatment for patients with recurrent cubital tunnel syndrome. Therapeutic IV. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  4. Hydrogels Derived from Central Nervous System Extracellular Matrix

    PubMed Central

    Medberry, Christopher J.; Crapo, Peter M.; Siu, Bernard F.; Carruthers, Christopher A.; Wolf, Matthew T.; Nagarkar, Shailesh P.; Agrawal, Vineet; Jones, Kristen E.; Kelly, Jeremy; Johnson, Scott A.; Velankar, Sachin S.; Watkins, Simon C.; Modo, Michel

    2012-01-01

    Biologic scaffolds composed of extracellular matrix (ECM) are commonly used repair devices in preclinical and clinical settings; however the use of these scaffolds for peripheral and central nervous system (CNS) repair has been limited. Biologic scaffolds developed from brain and spinal cord tissue have recently been described, yet the conformation of the harvested ECM limits therapeutic utility. An injectable CNS-ECM derived hydrogel capable of in vivo polymerization and conformation to irregular lesion geometries may aid in tissue reconstruction efforts following complex neurologic trauma. The objectives of the present study were to develop hydrogel forms of brain and spinal cord ECM and compare the resulting biochemical composition, mechanical properties, and neurotrophic potential of a brain derived cell line to a non-CNS-ECM hydrogel, urinary bladder matrix. Results showed distinct differences between compositions of brain ECM, spinal cord ECM, and urinary bladder matrix. The rheologic modulus of spinal cord ECM hydrogel was greater than that of brain ECM and urinary bladder matrix. All ECMs increased the number of cells expressing neurites, but only brain ECM increased neurite length, suggesting a possible tissue-specific effect. All hydrogels promoted three-dimensional uni- or bi-polar neurite outgrowth following 7 days in culture. These results suggest that CNS-ECM hydrogels may provide supportive scaffolding to promote in vivo axonal repair. PMID:23158935

  5. Differential effect of extracellular matrix derived from papillary and reticular fibroblasts on epidermal development in vitro.

    PubMed

    Janson, David; Rietveld, Marion; Mahé, Christian; Saintigny, Gaëlle; El Ghalbzouri, Abdoelwaheb

    2017-06-01

    Papillary and reticular fibroblasts have different effects on keratinocyte proliferation and differentiation. The aim of this study was to investigate whether these effects are caused by differential secretion of soluble factors or by differential generation of extracellular matrix from papillary and reticular fibroblasts. To study the effect of soluble factors, keratinocyte monolayer cultures were grown in papillary or reticular fibroblast-conditioned medium. To study the effect of extracellular matrix, keratinocytes were grown on papillary or reticular-derived matrix. Conditioned medium from papillary or reticular fibroblasts did not differentially affect keratinocyte viability or epidermal development. However, keratinocyte viability was increased when grown on matrix derived from papillary, compared with reticular, fibroblasts. In addition, the longevity of the epidermis was increased when cultured on papillary fibroblast-derived matrix skin equivalents compared with reticular-derived matrix skin equivalents. The findings indicate that the matrix secreted by papillary and reticular fibroblasts is the main causal factor to account for the differences in keratinocyte growth and viability observed in our study. Differences in response to soluble factors between both populations were less significant. Matrix components specific to the papillary dermis may account for the preferential growth of keratinocytes on papillary dermis.

  6. Aortic Wall Extracellular Matrix Proteins Correlate with Syntax Score in Patients Undergoing Coronary Artery Bypass Surgery

    PubMed Central

    Chiong, Terri; Cheow, Esther S. H.; Woo, Chin C.; Lin, Xiao Y.; Khin, Lay W.; Lee, Chuen N.; Hartman, Mikael; Sze, Siu K.; Sorokin, Vitaly A.

    2016-01-01

    Aims: The SYNTAX score correlate with major cardiovascular events post-revascularization, although the histopathological basis is unclear. We aim to evaluate the association between syntax score and extracellular matrix histological characteristics of aortic punch tissue obtained during coronary artery bypass surgery (CABG). This analysis compares coronary artery bypass surgery patients with High and Low syntax score which were followed up for one year period. Methods and Results: Patients with High (score ≥ 33, (n=77)) and Low Syntax Scores (score ≤ 22, (n=71)) undergoing elective CABG were recruited prospectively. Baseline clinical characteristics and surgical risks were well matched. At 1 year, EMACCE (Sum of cardiovascular death, stroke, congestive cardiac failure, and limb, gut and myocardial ischemia) was significantly elevated in the High syntax group (P=0.022). Mass spectrometry (MS)-based quantitative iTRAQ proteomic results validated on independent cohort by immunohistochemistry (IHC) revealed that the High syntax group had significantly upraised Collagen I (P<0.0001) and Elastin (P<0.0001) content in ascending aortic wall. Conclusion: This study shows that aortic extracellular matrix (ECM) differ between High and Low syntax groups with up-regulation of Collagen I and Elastin level in High Syntax Score group. This identifies aortic punches collected during CABG as another biomarker source related with atherosclerosis severity and possible clinical outcome. PMID:27347220

  7. Accumulation of Extracellular Matrix in Advanced Lesions of Canine Distemper Demyelinating Encephalitis

    PubMed Central

    Seehusen, Frauke; Al-Azreg, Seham A.; Raddatz, Barbara B.; Haist, Verena; Puff, Christina; Spitzbarth, Ingo; Ulrich, Reiner; Baumgärtner, Wolfgang

    2016-01-01

    In demyelinating diseases, changes in the quality and quantity of the extracellular matrix (ECM) may contribute to demyelination and failure of myelin repair and axonal sprouting, especially in chronic lesions. To characterize changes in the ECM in canine distemper demyelinating leukoencephalitis (DL), histochemical and immunohistochemical investigations of formalin-fixed paraffin-embedded cerebella using azan, picrosirius red and Gomori`s silver stain as well as antibodies directed against aggrecan, type I and IV collagen, fibronectin, laminin and phosphacan showed alterations of the ECM in CDV-infected dogs. A significantly increased amount of aggrecan was detected in early and late white matter lesions. In addition, the positive signal for collagens I and IV as well as fibronectin was significantly increased in late lesions. Conversely, the expression of phosphacan was significantly decreased in early and more pronounced in late lesions compared to controls. Furthermore, a set of genes involved in ECM was extracted from a publically available microarray data set and was analyzed for differential gene expression. Gene expression of ECM molecules, their biosynthesis pathways, and pro-fibrotic factors was mildly up-regulated whereas expression of matrix remodeling enzymes was up-regulated to a relatively higher extent. Summarized, the observed findings indicate that changes in the quality and content of ECM molecules represent important, mainly post-transcriptional features in advanced canine distemper lesions. Considering the insufficiency of morphological regeneration in chronic distemper lesions, the accumulated ECM seems to play a crucial role upon regenerative processes and may explain the relatively small regenerative potential in late stages of this disease. PMID:27441688

  8. Accumulation of Extracellular Matrix in Advanced Lesions of Canine Distemper Demyelinating Encephalitis.

    PubMed

    Seehusen, Frauke; Al-Azreg, Seham A; Raddatz, Barbara B; Haist, Verena; Puff, Christina; Spitzbarth, Ingo; Ulrich, Reiner; Baumgärtner, Wolfgang

    2016-01-01

    In demyelinating diseases, changes in the quality and quantity of the extracellular matrix (ECM) may contribute to demyelination and failure of myelin repair and axonal sprouting, especially in chronic lesions. To characterize changes in the ECM in canine distemper demyelinating leukoencephalitis (DL), histochemical and immunohistochemical investigations of formalin-fixed paraffin-embedded cerebella using azan, picrosirius red and Gomori`s silver stain as well as antibodies directed against aggrecan, type I and IV collagen, fibronectin, laminin and phosphacan showed alterations of the ECM in CDV-infected dogs. A significantly increased amount of aggrecan was detected in early and late white matter lesions. In addition, the positive signal for collagens I and IV as well as fibronectin was significantly increased in late lesions. Conversely, the expression of phosphacan was significantly decreased in early and more pronounced in late lesions compared to controls. Furthermore, a set of genes involved in ECM was extracted from a publically available microarray data set and was analyzed for differential gene expression. Gene expression of ECM molecules, their biosynthesis pathways, and pro-fibrotic factors was mildly up-regulated whereas expression of matrix remodeling enzymes was up-regulated to a relatively higher extent. Summarized, the observed findings indicate that changes in the quality and content of ECM molecules represent important, mainly post-transcriptional features in advanced canine distemper lesions. Considering the insufficiency of morphological regeneration in chronic distemper lesions, the accumulated ECM seems to play a crucial role upon regenerative processes and may explain the relatively small regenerative potential in late stages of this disease.

  9. The role of the extracellular matrix in primary myelofibrosis

    PubMed Central

    Leiva, O; Ng, S K; Chitalia, S; Balduini, A; Matsuura, S; Ravid, K

    2017-01-01

    Primary myelofibrosis (PMF) is a myeloproliferative neoplasm that arises from clonal proliferation of hematopoietic stem cells and leads to progressive bone marrow (BM) fibrosis. While cellular mutations involved in the development of PMF have been heavily investigated, noteworthy is the important role the extracellular matrix (ECM) plays in the progression of BM fibrosis. This review surveys ECM proteins contributors of PMF, and highlights how better understanding of the control of the ECM within the BM niche may lead to combined therapeutic options in PMF. PMID:28157219

  10. Gene evolution and functions of extracellular matrix proteins in teeth

    PubMed Central

    Yoshizaki, Keigo; Yamada, Yoshihiko

    2013-01-01

    The extracellular matrix (ECM) not only provides physical support for tissues, but it is also critical for tissue development, homeostasis and disease. Over 300 ECM molecules have been defined as comprising the “core matrisome” in mammals through the analysis of whole genome sequences. During tooth development, the structure and functions of the ECM dynamically change. In the early stages, basement membranes (BMs) separate two cell layers of the dental epithelium and the mesenchyme. Later in the differentiation stages, the BM layer is replaced with the enamel matrix and the dentin matrix, which are secreted by ameloblasts and odontoblasts, respectively. The enamel matrix genes and the dentin matrix genes are each clustered in two closed regions located on human chromosome 4 (mouse chromosome 5), except for the gene coded for amelogenin, the major enamel matrix protein, which is located on the sex chromosomes. These genes for enamel and dentin matrix proteins are derived from a common ancestral gene, but as a result of evolution, they diverged in terms of their specific functions. These matrix proteins play important roles in cell adhesion, polarity, and differentiation and mineralization of enamel and dentin matrices. Mutations of these genes cause diseases such as odontogenesis imperfect (OI) and amelogenesis imperfect (AI). In this review, we discuss the recently defined terms matrisome and matrixome for ECMs, as well as focus on genes and functions of enamel and dentin matrix proteins. PMID:23539364

  11. Inhibition of extracellular matrix mediated TGF-β signalling suppresses endometrial cancer metastasis

    PubMed Central

    Sahoo, Subhransu S.; Quah, Min Yuan; Nielsen, Sarah; Atkins, Joshua; Au, Gough G.; Cairns, Murray J.; Nahar, Pravin; Lombard, Janine M.; Tanwar, Pradeep S.

    2017-01-01

    Although aggressive invasion and distant metastases are an important cause of morbidity and mortality in patients with endometrial cancer (EC), the requisite events determining this propensity are currently unknown. Using organotypic three-dimensional culture of endometrial cancer cell lines, we demonstrated anti-correlated TGF-β signalling gene expression patterns that arise among extracellular matrix (ECM)-attached cells. TGF-β pathway seemed to be active in EC cells forming non-glandular colonies in 3D-matrix but weaker in glandular colonies. Functionally we found that out of several ECM proteins, fibronectin relatively promotes Smad phosphorylation suggesting a potential role in regulating TGF-β signalling in non-glandular colonies. Importantly, alteration of TGF-β pathway induced EMT and MET in both type of colonies through slug protein. The results exemplify a crucial role of TGF-β pathway during EC metastasis in human patients and inhibition of the pathway in a murine model impaired tumour cell invasion and metastasis depicting an attractive target for therapeutic intervention of malignant tumour progression. These findings provide key insights into the role of ECM-derived TGF-β signalling to promote endometrial cancer metastasis and offer an avenue for therapeutic targeting of microenvironment derived signals along with tumour cells. PMID:29069715

  12. Ultrasound Technologies for the Spatial Patterning of Cells and Extracellular Matrix Proteins and the Vascularization of Engineered Tissue

    NASA Astrophysics Data System (ADS)

    Garvin, Kelley A.

    Technological advancements in the field of tissue engineering could save the lives of thousands of organ transplant patients who die each year while waiting for donor organs. Currently, two of the primary challenges preventing tissue engineers from developing functional replacement tissues and organs are the need to recreate complex cell and extracellular microenvironments and to vascularize the tissue to maintain cell viability and function. Ultrasound is a form of mechanical energy that can noninvasively and nondestructively interact with tissues at the cell and protein level. In this thesis, novel ultrasound-based technologies were developed for the spatial patterning of cells and extracellular matrix proteins and the vascularization of three-dimensional engineered tissue constructs. Acoustic radiation forces associated with ultrasound standing wave fields were utilized to noninvasively control the spatial organization of cells and cell-bound extracellular matrix proteins within collagen-based engineered tissue. Additionally, ultrasound induced thermal mechanisms were exploited to site-specifically pattern various extracellular matrix collagen microstructures within a single engineered tissue construct. Finally, ultrasound standing wave field technology was used to promote the rapid and extensive vascularization of three-dimensional tissue constructs. As such, the ultrasound technologies developed in these studies have the potential to provide the field of tissue engineering with novel strategies to spatially pattern cells and extracellular matrix components and to vascularize engineered tissue, and thus, could advance the fabrication of functional replacement tissues and organs in the field of tissue engineering.

  13. HTRA1, an age-related macular degeneration protease, processes extracellular matrix proteins EFEMP1 and TSP1.

    PubMed

    Lin, Michael K; Yang, Jin; Hsu, Chun Wei; Gore, Anuradha; Bassuk, Alexander G; Brown, Lewis M; Colligan, Ryan; Sengillo, Jesse D; Mahajan, Vinit B; Tsang, Stephen H

    2018-05-05

    High-temperature requirement protein A1 (HTRA1) is a serine protease secreted by a number of tissues including retinal pigment epithelium (RPE). A promoter variant of the gene encoding HTRA1 is part of a mutant allele that causes increased HTRA1 expression and contributed to age-related macular degeneration (AMD) in genomewide association studies. AMD is characterized by pathological development of drusen, extracellular deposits of proteins and lipids on the basal side of RPE. The molecular pathogenesis of AMD is not well understood, and understanding dysregulation of the extracellular matrix may be key. We assess the high-risk genotype at 10q26 by proteomic comparison of protein levels of RPE cells with and without the mutation. We show HTRA1 protein level is increased in high-risk RPE cells along with several extracellular matrix proteins, including known HTRA1 cleavage targets LTBP-1 and clusterin. In addition, two novel targets of HTRA1 have been identified: EFEMP1, an extracellular matrix protein mutated in Doyne honeycomb retinal dystrophy, a genetic eye disease similar to AMD, and thrombospondin 1 (TSP1), an inhibitor of angiogenesis. Our data support the role of RPE extracellular deposition with potential effects in compromised barrier to neovascularization in exudative AMD. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  14. Dynamic interactions between cells and their extracellular matrix mediate embryonic development.

    PubMed

    Goody, Michelle F; Henry, Clarissa A

    2010-06-01

    Cells and their surrounding extracellular matrix microenvironment interact throughout all stages of life. Understanding the continuously changing scope of cell-matrix interactions in vivo is crucial to garner insights into both congenital birth defects and disease progression. A current challenge in the field of developmental biology is to adapt in vitro tools and rapidly evolving imaging technology to study cell-matrix interactions in a complex 4-D environment. In this review, we highlight the dynamic modulation of cell-matrix interactions during development. We propose that individual cell-matrix adhesion proteins are best considered as complex proteins that can play multiple, often seemingly contradictory roles, depending upon the context of the microenvironment. In addition, cell-matrix proteins can also exert different short versus long term effects. It is thus important to consider cell behavior in light of the microenvironment because of the constant and dynamic reciprocal interactions occurring between them. Finally, we suggest that analysis of cell-matrix interactions at multiple levels (molecules, cells, tissues) in vivo is critical for an integrated understanding because different information can be acquired from all size scales. Copyright 2010 Wiley-Liss, Inc.

  15. ERK-regulated αB-crystallin induction by matrix detachment inhibits anoikis and promotes lung metastasis in vivo.

    PubMed

    Malin, D; Strekalova, E; Petrovic, V; Rajanala, H; Sharma, B; Ugolkov, A; Gradishar, W J; Cryns, V L

    2015-11-05

    Evasion of extracellular matrix detachment-induced apoptosis ('anoikis') is a defining characteristic of metastatic tumor cells. The ability of metastatic carcinoma cells to survive matrix detachment and escape anoikis enables them to disseminate as viable circulating tumor cells and seed distant organs. Here we report that αB-crystallin, an antiapoptotic molecular chaperone implicated in the pathogenesis of diverse poor-prognosis solid tumors, is induced by matrix detachment and confers anoikis resistance. Specifically, we demonstrate that matrix detachment downregulates extracellular signal-regulated kinase (ERK) activity and increases αB-crystallin protein and messenger RNA (mRNA) levels. Moreover, we show that ERK inhibition in adherent cancer cells mimics matrix detachment by increasing αB-crystallin protein and mRNA levels, whereas constitutive ERK activation suppresses αB-crystallin induction during matrix detachment. These findings indicate that ERK inhibition is both necessary and sufficient for αB-crystallin induction by matrix detachment. To examine the functional consequences of αB-crystallin induction in anoikis, we stably silenced αB-crystallin in two different metastatic carcinoma cell lines. Strikingly, silencing αB-crystallin increased matrix detachment-induced caspase activation and apoptosis but did not affect cell viability of adherent cancer cells. In addition, silencing αB-crystallin in metastatic carcinoma cells reduced the number of viable circulating tumor cells and inhibited lung metastasis in two orthotopic models, but had little or no effect on primary tumor growth. Taken together, our findings point to αB-crystallin as a novel regulator of anoikis resistance that is induced by matrix detachment-mediated suppression of ERK signaling and promotes lung metastasis. Our results also suggest that αB-crystallin represents a promising molecular target for antimetastatic therapies.

  16. Co-regulation of primary mouse hepatocyte viability and function by oxygen and matrix.

    PubMed

    Buck, Lorenna D; Inman, S Walker; Rusyn, Ivan; Griffith, Linda G

    2014-05-01

    Although oxygen and extracellular matrix cues both influence differentiation state and metabolic function of primary rat and human hepatocytes, relatively little is known about how these factors together regulate behaviors of primary mouse hepatocytes in culture. To determine the effects of pericellular oxygen tension on hepatocellular function, we employed two methods of altering oxygen concentration in the local cellular microenvironment of cells cultured in the presence or absence of an extracellular matrix (Matrigel) supplement. By systematically altering medium depth and gas phase oxygen tension, we created multiple oxygen regimes (hypoxic, normoxic, and hyperoxic) and measured the local oxygen concentrations in the pericellular environment using custom-designed oxygen microprobes. From these measurements of oxygen concentrations, we derived values of oxygen consumption rates under a spectrum of environmental contexts, thus providing the first reported estimates of these values for primary mouse hepatocytes. Oxygen tension and matrix microenvironment were found to synergistically regulate hepatocellular survival and function as assessed using quantitative image analysis for cells stained with vital dyes, and assessment of secretion of albumin. Hepatocellular viability was affected only at strongly hypoxic conditions. Surprisingly, albumin secretion rates were greatest at a moderately supra-physiological oxygen concentration, and this effect was mitigated at still greater supra-physiological concentrations. Matrigel enhanced the effects of oxygen on retention of function. This study underscores the importance of carefully controlling cell density, medium depth, and gas phase oxygen, as the effects of these parameters on local pericellular oxygen tension and subsequent hepatocellular function are profound. © 2014 Wiley Periodicals, Inc.

  17. Co-regulation of Primary Mouse Hepatocyte Viability and Function by Oxygen and Matrix

    PubMed Central

    Buck, Lorenna D.; Inman, S. Walker; Rusyn, Ivan; Griffith, Linda G.

    2014-01-01

    Although oxygen and extracellular matrix cues both influence differentiation state and metabolic function of primary rat and human hepatocytes, relatively little is known about how these factors together regulate behaviors of primary mouse hepatocytes in culture. To determine the effects of pericellular oxygen tension on hepatocellular function, we employed 2 methods of altering oxygen concentration in the local cellular microenvironment of cells cultured in the presence or absence of an extracellular matrix (Matrigel) supplement. By systematically altering medium depth and gas phase oxygen tension, we created multiple oxygen regimes (hypoxic, normoxic, and hyperoxic) and measured the local oxygen concentrations in the pericellular environment using custom-designed oxygen microprobes. From these measurements of oxygen concentrations, we derived values of oxygen consumption rates under a spectrum of environmental contexts, thus providing the first reported estimates of these values for primary mouse hepatocytes. Oxygen tension and matrix microenvironment were found to synergistically regulate hepatocellular survival and function as assessed using quantitative image analysis for cells stained with vital dyes, and assessment of secretion of albumin. Hepatocellular viability was affected only at strongly hypoxic conditions. Surprisingly, albumin secretion rates were greatest at a moderately supra-physiological oxygen concentration, and this effect was mitigated at still greater supra-physiological concentrations. Matrigel enhanced the effects of oxygen on retention of function. This study underscores the importance of carefully controlling cell density, medium depth and gas phase oxygen, as the effects of these parameters on local pericellular oxygen tension and subsequent hepatocellular function are profound. PMID:24222008

  18. Redox-Relevant Aspects of the Extracellular Matrix and Its Cellular Contacts via Integrins

    PubMed Central

    de Rezende, Flávia Figueiredo

    2014-01-01

    Abstract Significance: The extracellular matrix (ECM) fulfills essential functions in multicellular organisms. It provides the mechanical scaffold and environmental cues to cells. Upon cell attachment, the ECM signals into the cells. In this process, reactive oxygen species (ROS) are physiologically used as signalizing molecules. Recent Advances: ECM attachment influences the ROS-production of cells. In turn, ROS affect the production, assembly and turnover of the ECM during wound healing and matrix remodeling. Pathological changes of ROS levels lead to excess ECM production and increased tissue contraction in fibrotic disorders and desmoplastic tumors. Integrins are cell adhesion molecules which mediate cell adhesion and force transmission between cells and the ECM. They have been identified as a target of redox-regulation by ROS. Cysteine-based redox-modifications, together with structural data, highlighted particular regions within integrin heterodimers that may be subject to redox-dependent conformational changes along with an alteration of integrin binding activity. Critical Issues: In a molecular model, a long-range disulfide-bridge within the integrin β-subunit and disulfide bridges within the genu and calf-2 domains of the integrin α-subunit may control the transition between the bent/inactive and upright/active conformation of the integrin ectodomain. These thiol-based intramolecular cross-linkages occur in the stalk domain of both integrin subunits, whereas the ligand-binding integrin headpiece is apparently unaffected by redox-regulation. Future Directions: Redox-regulation of the integrin activation state may explain the effect of ROS in physiological processes. A deeper understanding of the underlying mechanism may open new prospects for the treatment of fibrotic disorders. Antioxid. Redox Signal. 20, 1977–1993. PMID:24040997

  19. Collagen VI disorders: Insights on form and function in the extracellular matrix and beyond.

    PubMed

    Lamandé, Shireen R; Bateman, John F

    2017-12-22

    Mutations in the three canonical collagen VI genes, COL6A1, COL6A2 and COL6A3, cause a spectrum of muscle disease from Bethlem myopathy at the mild end to the severe Ullrich congenital muscular dystrophy. Mutations can be either dominant or recessive and the resulting clinical severity is influenced by the way mutations impact the complex collagen VI assembly process. Most mutations are found towards the N-terminus of the triple helical collagenous domain and compromise extracellular microfibril assembly. Outside the triple helix collagen VI is highly polymorphic and discriminating mutations from rare benign changes remains a major diagnostic challenge. Collagen VI deficiency alters extracellular matrix structure and biomechanical properties and leads to increased apoptosis and oxidative stress, decreased autophagy, and impaired muscle regeneration. Therapies that target these downstream consequences have been tested in a collagen VI null mouse and also in small human trials where they show modest clinical efficacy. An important role for collagen VI in obesity, cancer and diabetes is emerging. A major barrier to developing effective therapies is the paucity of information about how collagen VI deficiency in the extracellular matrix signals the final downstream consequences - the receptors involved and the intracellular messengers await further characterization. Copyright © 2017 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  20. Altered extracellular matrix remodeling and angiogenesis in sponge granulomas of thrombospondin 2-null mice.

    PubMed

    Kyriakides, T R; Zhu, Y H; Yang, Z; Huynh, G; Bornstein, P

    2001-10-01

    The matricellular angiogenesis inhibitor, thrombospondin (TSP) 2, has been shown to be an important modulator of wound healing and the foreign body response. Specifically, TSP2-null mice display improved healing with minimal scarring and form well-vascularized foreign body capsules. In this study we performed subcutaneous implantation of sponges and investigated the resulting angiogenic and fibrogenic responses. Histological and immunohistochemical analysis of sponges, excised at 7, 14, and 21 days after implantation, revealed significant differences between TSP2-null and wild-type mice. Most notably, TSP2-null mice exhibited increased angiogenesis and fibrotic encapsulation of the sponge. However, invasion of dense tissue was compromised, even though its overall density was increased. Furthermore, histomorphometry and biochemical assays demonstrated a significant increase in the extracellular distribution of matrix metalloproteinase (MMP) 2, but no change in the levels of active transforming growth factor-beta(1). The alterations in neovascularization, dense tissue invasion, and MMP2 in TSP2-null mice coincided with the deposition of TSP2 in the extracellular matrix of wild-type animals. These observations support the proposed role of TSP2 as a modulator of angiogenesis and matrix remodeling during tissue repair. In addition, they provide in vivo evidence for a newly proposed function of TSP2 as a modulator of extracellular MMP2 levels.

  1. Cartilage extracellular matrix as a biomaterial for cartilage regeneration.

    PubMed

    Kiyotake, Emi A; Beck, Emily C; Detamore, Michael S

    2016-11-01

    The extracellular matrix (ECM) of various tissues possesses the model characteristics that biomaterials for tissue engineering strive to mimic; however, owing to the intricate hierarchical nature of the ECM, it has yet to be fully characterized and synthetically fabricated. Cartilage repair remains a challenge because the intrinsic properties that enable its durability and long-lasting function also impede regeneration. In the last decade, cartilage ECM has emerged as a promising biomaterial for regenerating cartilage, partly because of its potentially chondroinductive nature. As this research area of cartilage matrix-based biomaterials emerged, investigators facing similar challenges consequently developed convergent solutions in constructing robust and bioactive scaffolds. This review discusses the challenges, emerging trends, and future directions of cartilage ECM scaffolds, including a comparison between two different forms of cartilage matrix: decellularized cartilage (DCC) and devitalized cartilage (DVC). To overcome the low permeability of cartilage matrix, physical fragmentation greatly enhances decellularization, although the process itself may reduce the chondroinductivity of fabricated scaffolds. The less complex processing of a scaffold composed of DVC, which has not been decellularized, appears to have translational advantages and potential chondroinductive and mechanical advantages over DCC, without detrimental immunogenicity, to ultimately enhance cartilage repair in a clinically relevant way. © 2016 New York Academy of Sciences.

  2. Interactions of cytokines, growth factors, and the extracellular matrix in the cellular biology of uterine leiomyomata.

    PubMed

    Sozen, Ibrahim; Arici, Aydin

    2002-07-01

    To review the available information regarding the role of cytokines, growth factors, and the extracellular matrix in the pathophysiology of uterine leiomyomata and to integrate this information in a suggested model of disease at the cellular level. A thorough literature and MEDLINE search was conducted to identify the relevant studies in the English literature published between January, 1966 and October, 2001. A model of disease at the cellular level was developed using the most likely cytokines to be involved in the pathogenesis of leiomyomata as determined by our assessment of the available literature. A number of cytokines and growth factors, including transforming growth factor-beta (TGF-beta), epidermal growth factor, monocyte chemotactic protein-1, insulin-like growth factors 1 and 2, prolactin, parathyroid-hormone-related peptide, basic fibroblast growth factor, platelet-derived growth factor, interleukin-8, and endothelin, have been investigated in myometrium and leiomyoma. Among these cytokines, TGF-beta appears to be the only growth factor that has been shown to be overexpressed in leiomyoma vs. myometrium, be hormonally-regulated both in vivo and in vitro, and be both mitogenic and fibrogenic in these tissues. In addition to the cytokines, extracellular matrix components such as collagen, fibronectin, proteoglycans, matrix metalloproteinases, and tissue inhibitors of metalloproteinases seem to play pivotal roles in the pathogenesis of leiomyomata. We believe that, given the extent and depth of the current research on the cellular biology of leiomyomata, the cellular mechanisms responsible in the pathogenesis of leiomyomata will be identified clearly within the foreseeable future. This will enable researchers to develop therapy directed against the molecules and mechanisms at the cellular level.

  3. Regulation of skeletal myotube formation and alignment by nanotopographically controlled cell-secreted extracellular matrix.

    PubMed

    Jiao, Alex; Moerk, Charles T; Penland, Nisa; Perla, Mikael; Kim, Jinsung; Smith, Alec S T; Murry, Charles E; Kim, Deok-Ho

    2018-06-01

    Skeletal muscle has a well-organized tissue structure comprised of aligned myofibers and an encasing extracellular matrix (ECM) sheath or lamina, within which reside satellite cells. We hypothesize that the organization of skeletal muscle tissues in culture can affect both the structure of the deposited ECM and the differentiation potential of developing myotubes. Furthermore, we posit that cellular and ECM cues can be a strong determinant of myoblast fusion and morphology in 3D tissue culture environments. To test these, we utilized a thermoresponsive nanofabricated substratum to engineer anisotropic sheets of myoblasts which could then be transferred and stacked into multilayered tissues. Within such engineered tissues, we found that myoblasts rapidly sense topography and deposit structurally organized ECM proteins. Furthermore, the initial tissue structure was found to exert significant control over myoblast fusion and eventual myotube organization. These results highlight the importance of ECM structure on myoblast fusion and organization, and provide insights into substrate-mediated control of myotube formation in the development of novel, more effective, engineered skeletal muscle tissues. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1543-1551, 2018. © 2018 Wiley Periodicals, Inc.

  4. Effects of in vivo static compressive loading on aggrecan and type II and X collagens in the rat growth plate extracellular matrix.

    PubMed

    Cancel, Mathilde; Grimard, Guy; Thuillard-Crisinel, Delphine; Moldovan, Florina; Villemure, Isabelle

    2009-02-01

    Mechanical loads are essential to normal bone growth, but excessive loads can lead to progressive deformities. In addition, growth plate extracellular matrix remodelling is essential to regulate the normal longitudinal bone growth process and to ensure physiological bone mineralization. In order to investigate the effects of static compression on growth plate extracellular matrix using an in vivo animal model, a loading device was used to precisely apply a compressive stress of 0.2 MPa for two weeks on the seventh caudal vertebra (Cd7) of rats during the pubertal growth spurt. Control, sham and loaded groups were studied. Growth modulation was quantified based on calcein labelling, and three matrix components (type II and X collagens, and aggrecan) were assessed using immunohistochemistry/safranin-O staining. As well, extracellular matrix components and enzymes (MMP-3 and -13, ADAMTS-4 and -5) were studied by qRT-PCR. Loading reduced Cd7 growth by 29% (p<0.05) and 15% (p=0.07) when compared to controls and shams respectively. No significant change could be observed in the mRNA expression of collagens and the proteolytic enzyme MMP-13. However, MMP-3 was significantly increased in the loaded group as compared to the control group (p<0.05). No change was observed in aggrecan and ADAMTS-4 and -5 expression. Low immunostaining for type II and X collagens was observed in 83% of the loaded rats as compared to the control rats. This in vivo study shows that, during pubertal growth spurt, two-week static compression reduced caudal vertebrae growth rates; this mechanical growth modulation occurred with decreased type II and X collagen proteins in the growth plate.

  5. Changes in muscle fiber contractility and extracellular matrix production during skeletal muscle hypertrophy.

    PubMed

    Mendias, Christopher L; Schwartz, Andrew J; Grekin, Jeremy A; Gumucio, Jonathan P; Sugg, Kristoffer B

    2017-03-01

    Skeletal muscle can adapt to increased mechanical loads by undergoing hypertrophy. Transient reductions in whole muscle force production have been reported during the onset of hypertrophy, but contractile changes in individual muscle fibers have not been previously studied. Additionally, the extracellular matrix (ECM) stores and transmits forces from muscle fibers to tendons and bones, and determining how the ECM changes during hypertrophy is important in understanding the adaptation of muscle tissue to mechanical loading. Using the synergist ablation model, we sought to measure changes in muscle fiber contractility, collagen content, and cross-linking, and in the expression of several genes and activation of signaling proteins that regulate critical components of myogenesis and ECM synthesis and remodeling during muscle hypertrophy. Tissues were harvested 3, 7, and 28 days after induction of hypertrophy, and nonoverloaded rats served as controls. Muscle fiber specific force (sF o ), which is the maximum isometric force normalized to cross-sectional area, was reduced 3 and 7 days after the onset of mechanical overload, but returned to control levels by 28 days. Collagen abundance displayed a similar pattern of change. Nearly a quarter of the transcriptome changed over the course of overload, as well as the activation of signaling pathways related to hypertrophy and atrophy. Overall, this study provides insight into fundamental mechanisms of muscle and ECM growth, and indicates that although muscle fibers appear to have completed remodeling and regeneration 1 mo after synergist ablation, the ECM continues to be actively remodeling at this time point. NEW & NOTEWORTHY This study utilized a rat synergist ablation model to integrate changes in single muscle fiber contractility, extracellular matrix composition, activation of important signaling pathways in muscle adaption, and corresponding changes in the muscle transcriptome to provide novel insight into the basic

  6. Changes in muscle fiber contractility and extracellular matrix production during skeletal muscle hypertrophy

    PubMed Central

    Schwartz, Andrew J.; Grekin, Jeremy A.; Gumucio, Jonathan P.; Sugg, Kristoffer B.

    2017-01-01

    Skeletal muscle can adapt to increased mechanical loads by undergoing hypertrophy. Transient reductions in whole muscle force production have been reported during the onset of hypertrophy, but contractile changes in individual muscle fibers have not been previously studied. Additionally, the extracellular matrix (ECM) stores and transmits forces from muscle fibers to tendons and bones, and determining how the ECM changes during hypertrophy is important in understanding the adaptation of muscle tissue to mechanical loading. Using the synergist ablation model, we sought to measure changes in muscle fiber contractility, collagen content, and cross-linking, and in the expression of several genes and activation of signaling proteins that regulate critical components of myogenesis and ECM synthesis and remodeling during muscle hypertrophy. Tissues were harvested 3, 7, and 28 days after induction of hypertrophy, and nonoverloaded rats served as controls. Muscle fiber specific force (sFo), which is the maximum isometric force normalized to cross-sectional area, was reduced 3 and 7 days after the onset of mechanical overload, but returned to control levels by 28 days. Collagen abundance displayed a similar pattern of change. Nearly a quarter of the transcriptome changed over the course of overload, as well as the activation of signaling pathways related to hypertrophy and atrophy. Overall, this study provides insight into fundamental mechanisms of muscle and ECM growth, and indicates that although muscle fibers appear to have completed remodeling and regeneration 1 mo after synergist ablation, the ECM continues to be actively remodeling at this time point. NEW & NOTEWORTHY This study utilized a rat synergist ablation model to integrate changes in single muscle fiber contractility, extracellular matrix composition, activation of important signaling pathways in muscle adaption, and corresponding changes in the muscle transcriptome to provide novel insight into the basic

  7. Extracellular matrix composition and rigidity regulate invasive behavior and response to PDT in 3D pancreatic tumor models

    NASA Astrophysics Data System (ADS)

    Cramer, Gwendolyn; El-Hamidi, Hamid; Jafari, Seyedehrojin; Jones, Dustin P.; Celli, Jonathan P.

    2016-03-01

    The composition and mechanical compliance of the extracellular matrix (ECM) have been shown to serve as regulators of tumor growth and invasive behavior. These effects may be particularly relevant in tumors of the pancreas, noted for a profound desmoplastic reaction and an abundance of stroma rich in ECM. In view of recent progress in the clinical implementation of photodynamic therapy (PDT) for pancreatic tumors, in this report we examine how ECM composition and rheological properties impact upon invasive behavior and response to PDT in 3D multicellular pancreatic tumor spheroids in ECM environments with characterized rheological properties. Tumor spheroids were cultured initially in attachment-free conditions to form millimeter-sized spheroids that were transplanted into reconstituted ECM microenvironments (Matrigel and Type I Collagen) that were characterized using bulk oscillatory shear rheology. Analysis of growth behavior shows that the soft collagen ECM promoted growth and extensive invasion and this microenvironment was used in subsequent assessment of PDT and chemotherapy response. Evaluation of treatment response revealed that primary tumor nodule growth is inhibited more effectively with PDT, while verteporfin PDT response is significantly enhanced in the ECM-infiltrating populations that are non-responsive to oxaliplatin chemotherapy. This finding is potentially significant, suggesting the potential for PDT to target these clinically problematic invasive populations that are associated with aggressive metastatic progression and chemoresistance. Experiments to further validate and identify the mechanistic basis of this observation are ongoing.

  8. CD44 Promotes Inflammation and Extracellular Matrix Production During Arteriovenous Fistula Maturation.

    PubMed

    Kuwahara, Go; Hashimoto, Takuya; Tsuneki, Masayuki; Yamamoto, Kota; Assi, Roland; Foster, Trenton R; Hanisch, Jesse J; Bai, Hualong; Hu, Haidi; Protack, Clinton D; Hall, Michael R; Schardt, John S; Jay, Steven M; Madri, Joseph A; Kodama, Shohta; Dardik, Alan

    2017-06-01

    Arteriovenous fistulae (AVF) remain the optimal conduit for hemodialysis access but continue to demonstrate poor patency and poor rates of maturation. We hypothesized that CD44, a widely expressed cellular adhesion molecule that serves as a major receptor for extracellular matrix components, promotes wall thickening and extracellular matrix deposition during AVF maturation. AVF were created via needle puncture in wild-type C57BL/6J and CD44 knockout mice. CD44 mRNA and protein expression was increased in wild-type AVF. CD44 knockout mice showed no increase in AVF wall thickness (8.9 versus 26.8 μm; P =0.0114), collagen density, and hyaluronic acid density, but similar elastin density when compared with control AVF. CD44 knockout mice also showed no increase in vascular cell adhesion molecule-1 expression, intercellular adhesion molecule-1 expression, and monocyte chemoattractant protein-1 expression in the AVF compared with controls; there were also no increased M2 macrophage markers (transglutaminase-2: 81.5-fold, P =0.0015; interleukin-10: 7.6-fold, P =0.0450) in CD44 knockout mice. Delivery of monocyte chemoattractant protein-1 to CD44 knockout mice rescued the phenotype with thicker AVF walls (27.2 versus 14.7 μm; P =0.0306), increased collagen density (2.4-fold; P =0.0432), and increased number of M2 macrophages (2.1-fold; P =0.0335). CD44 promotes accumulation of M2 macrophages, extracellular matrix deposition, and wall thickening during AVF maturation. These data show the association of M2 macrophages with wall thickening during AVF maturation and suggest that enhancing CD44 activity may be a strategy to increase AVF maturation. © 2017 American Heart Association, Inc.

  9. Extracellular matrix and its receptors in Drosophila neural development

    PubMed Central

    Broadie, Kendal; Baumgartner, Stefan; Prokop, Andreas

    2011-01-01

    Extracellular matrix (ECM) and matrix receptors are intimately involved in most biological processes. The ECM plays fundamental developmental and physiological roles in health and disease, including processes underlying the development, maintenance and regeneration of the nervous system. To understand the principles of ECM-mediated functions in the nervous system, genetic model organisms like Drosophila provide simple, malleable and powerful experimental platforms. This article provides an overview of ECM proteins and receptors in Drosophila. It then focuses on their roles during three progressive phases of neural development: 1) neural progenitor proliferation, 2) axonal growth and pathfinding and 3) synapse formation and function. Each section highlights known ECM and ECM-receptor components and recent studies done in mutant conditions to reveal their in vivo functions, all illustrating the enormous opportunities provided when merging work on the nervous system with systematic research into ECM-related gene functions. PMID:21688401

  10. Extracellular DNA and lipoteichoic acids interact with exopolysaccharides in the extracellular matrix of Streptococcus mutans biofilms

    PubMed Central

    Castillo Pedraza, Midian C.; Novais, Tatiana F.; Faustoferri, Roberta C.; Quivey, Robert G.; Terekhov, Anton; Hamaker, Bruce R.; Klein, Marlise I.

    2018-01-01

    Streptococcus mutans -derived exopolysaccharides are virulence determinants in the matrix of biofilms that cause caries. Extracellular DNA (eDNA) and lipoteichoic acid (LTA) are found in cariogenic biofilms, but their functions are unclear. Therefore, strains of S. mutans carrying single deletions that would modulate matrix components were used: eDNA – ΔlytS and ΔlytT; LTA – ΔdltA and ΔdltD; and insoluble exopolysaccharide – ΔgtfB. Single-species (parental strain S. mutans UA159 or individual mutant strains) and mixed-species (UA159 or mutant strain, Actinomyces naeslundii and Streptococcus gordonii) biofilms were evaluated. Distinct amounts of matrix components were detected, depending on the inactivated gene. eDNA was found to be cooperative with exopolysaccharide in early phases, while LTA played a larger role in the later phases of biofilm development. The architecture of mutant strains biofilms was distinct (vs UA159), demonstrating that eDNA and LTA influence exopolysaccharide distribution and microcolony organization. Thus, eDNA and LTA may shape exopolysaccharide structure, affecting strategies for controlling pathogenic biofilms. PMID:28946780

  11. Extracellular DNA and lipoteichoic acids interact with exopolysaccharides in the extracellular matrix of Streptococcus mutans biofilms.

    PubMed

    Castillo Pedraza, Midian C; Novais, Tatiana F; Faustoferri, Roberta C; Quivey, Robert G; Terekhov, Anton; Hamaker, Bruce R; Klein, Marlise I

    2017-10-01

    Streptococcus mutans-derived exopolysaccharides are virulence determinants in the matrix of biofilms that cause caries. Extracellular DNA (eDNA) and lipoteichoic acid (LTA) are found in cariogenic biofilms, but their functions are unclear. Therefore, strains of S. mutans carrying single deletions that would modulate matrix components were used: eDNA - ∆lytS and ∆lytT; LTA - ∆dltA and ∆dltD; and insoluble exopolysaccharide - ΔgtfB. Single-species (parental strain S. mutans UA159 or individual mutant strains) and mixed-species (UA159 or mutant strain, Actinomyces naeslundii and Streptococcus gordonii) biofilms were evaluated. Distinct amounts of matrix components were detected, depending on the inactivated gene. eDNA was found to be cooperative with exopolysaccharide in early phases, while LTA played a larger role in the later phases of biofilm development. The architecture of mutant strains biofilms was distinct (vs UA159), demonstrating that eDNA and LTA influence exopolysaccharide distribution and microcolony organization. Thus, eDNA and LTA may shape exopolysaccharide structure, affecting strategies for controlling pathogenic biofilms.

  12. Expression of extracellular matrix metalloproteinase inducer (EMMPRIN) and its expected roles in the bovine endometrium during gestation.

    PubMed

    Mishra, B; Kizaki, K; Koshi, K; Ushizawa, K; Takahashi, T; Hosoe, M; Sato, T; Ito, A; Hashizume, K

    2012-02-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) and its induced matrix metalloproteinases (MMPs) play a crucial role in tissue remodeling during the peri-implantation period. However, the role of EMMPRIN in the bovine placenta is still unclear. We have postulated that EMMPRIN might play a regulatory role in trophoblastic cell functions during gestation by itself or through the regulation of MMP expression. In this study, EMMPRIN mRNA was detected in the bovine placentome and interplacentome throughout gestation, and its expression was significantly higher in the cotyledon during late gestation. In situ hybridization showed that EMMPRIN mRNA was expressed in the caruncular epithelium and the cotyledonary epithelium, including binucleate cells. Western blot analysis detected a band representing a protein of approximately 65 kDa in the caruncular and cotyledonary tissues, and the intensity of its expression was increased in both of these tissues during late gestation. The expression levels of MMP-2 and MMP-14 in the bovine placenta were higher during late gestation, as was observed for EMMPRIN. Therefore, EMMPRIN might regulate trophoblastic cell functions, especially those of binucleate cells, through MMP expression in the bovine placenta. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Incorporation of Tenascin-C into the Extracellular Matrix by Periostin Underlies an Extracellular Meshwork Architecture*

    PubMed Central

    Kii, Isao; Nishiyama, Takashi; Li, Minqi; Matsumoto, Ken-ichi; Saito, Mitsuru; Amizuka, Norio; Kudo, Akira

    2010-01-01

    Extracellular matrix (ECM) underlies a complicated multicellular architecture that is subjected to significant forces from mechanical environment. Although various components of the ECM have been enumerated, mechanisms that evolve the sophisticated ECM architecture remain to be addressed. Here we show that periostin, a matricellular protein, promotes incorporation of tenascin-C into the ECM and organizes a meshwork architecture of the ECM. We found that both periostin null mice and tenascin-C null mice exhibited a similar phenotype, confined tibial periostitis, which possibly corresponds to medial tibial stress syndrome in human sports injuries. Periostin possessed adjacent domains that bind to tenascin-C and the other ECM protein: fibronectin and type I collagen, respectively. These adjacent domains functioned as a bridge between tenascin-C and the ECM, which increased deposition of tenascin-C on the ECM. The deposition of hexabrachions of tenascin-C may stabilize bifurcations of the ECM fibrils, which is integrated into the extracellular meshwork architecture. This study suggests a role for periostin in adaptation of the ECM architecture in the mechanical environment. PMID:19887451

  14. Incorporation of tenascin-C into the extracellular matrix by periostin underlies an extracellular meshwork architecture.

    PubMed

    Kii, Isao; Nishiyama, Takashi; Li, Minqi; Matsumoto, Ken-Ichi; Saito, Mitsuru; Amizuka, Norio; Kudo, Akira

    2010-01-15

    Extracellular matrix (ECM) underlies a complicated multicellular architecture that is subjected to significant forces from mechanical environment. Although various components of the ECM have been enumerated, mechanisms that evolve the sophisticated ECM architecture remain to be addressed. Here we show that periostin, a matricellular protein, promotes incorporation of tenascin-C into the ECM and organizes a meshwork architecture of the ECM. We found that both periostin null mice and tenascin-C null mice exhibited a similar phenotype, confined tibial periostitis, which possibly corresponds to medial tibial stress syndrome in human sports injuries. Periostin possessed adjacent domains that bind to tenascin-C and the other ECM protein: fibronectin and type I collagen, respectively. These adjacent domains functioned as a bridge between tenascin-C and the ECM, which increased deposition of tenascin-C on the ECM. The deposition of hexabrachions of tenascin-C may stabilize bifurcations of the ECM fibrils, which is integrated into the extracellular meshwork architecture. This study suggests a role for periostin in adaptation of the ECM architecture in the mechanical environment.

  15. Tumorigenic Potential of Extracellular Matrix Metalloproteinase Inducer

    PubMed Central

    Zucker, Stanley; Hymowitz, Michelle; Rollo, Ellen E.; Mann, Richard; Conner, Cathleen E.; Cao, Jian; Foda, Hussein D.; Tompkins, David C.; Toole, Bryan P.

    2001-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN), a glycoprotein present on the cancer cell plasma membrane, enhances fibroblast synthesis of matrix metalloproteinases (MMPs). The demonstration that peritumoral fibroblasts synthesize most of the MMPs in human tumors rather than the cancer cells themselves has ignited interest in the role of EMMPRIN in tumor dissemination. In this report we have demonstrated a role for EMMPRIN in cancer progression. Human MDA-MB-436 breast cancer cells, which are tumorigenic but slow growing in vivo, were transfected with EMMPRIN cDNA and injected orthotopically into mammary tissue of female NCr nu/nu mice. Green fluorescent protein was used to visualize metastases. In three experiments, breast cancer cell clones transfected with EMMPRIN cDNA were considerably more tumorigenic and invasive than plasmid-transfected cancer cells. Increased gelatinase A and gelatinase B expression (demonstrated by in situ hybridization and gelatin substrate zymography) was demonstrated in EMMPRIN-enhanced tumors. In contrast to de novo breast cancers in humans, human tumors transplanted into mice elicited minimal stromal or inflammatory cell reactions. Based on these experimental studies and our previous demonstration that EMMPRIN is prominently displayed in human cancer tissue, we propose that EMMPRIN plays an important role in cancer progression by increasing synthesis of MMPs. PMID:11395366

  16. Presynaptic establishment of the synaptic cleft extracellular matrix is required for post-synaptic differentiation

    PubMed Central

    Rohrbough, Jeffrey; Rushton, Emma; Woodruff, Elvin; Fergestad, Tim; Vigneswaran, Krishanthan; Broadie, Kendal

    2007-01-01

    Formation and regulation of excitatory glutamatergic synapses is essential for shaping neural circuits throughout development. In a Drosophila genetic screen for synaptogenesis mutants, we identified mind the gap (mtg), which encodes a secreted, extracellular N-glycosaminoglycan-binding protein. MTG is expressed neuronally and detected in the synaptic cleft, and is required to form the specialized transsynaptic matrix that links the presynaptic active zone with the post-synaptic glutamate receptor (GluR) domain. Null mtg embryonic mutant synapses exhibit greatly reduced GluR function, and a corresponding loss of localized GluR domains. All known post-synaptic signaling/scaffold proteins functioning upstream of GluR localization are also grossly reduced or mislocalized in mtg mutants, including the dPix–dPak–Dock cascade and the Dlg/PSD-95 scaffold. Ubiquitous or neuronally targeted mtg RNA interference (RNAi) similarly reduce post-synaptic assembly, whereas post-synaptically targeted RNAi has no effect, indicating that presynaptic MTG induces and maintains the post-synaptic pathways driving GluR domain formation. These findings suggest that MTG is secreted from the presynaptic terminal to shape the extracellular synaptic cleft domain, and that the cleft domain functions to mediate transsynaptic signals required for post-synaptic development. PMID:17901219

  17. Chondroitinase injection improves keloid pathology by reorganizing the extracellular matrix with regenerated elastic fibers.

    PubMed

    Ishiko, Toshihiro; Naitoh, Motoko; Kubota, Hiroshi; Yamawaki, Satoko; Ikeda, Mika; Yoshikawa, Katsuhiro; Fujita, Hiroshi; Yamaguchi, Hiroaki; Kurahashi, Yasuhiro; Suzuki, Shigehiko

    2013-05-01

    Keloids are a proliferative fibrotic disease characterized by abnormal accumulation of extracellular matrix in the dermis. Keloid lesions lack skin plasticity due to deficiencies in elastic fiber formation in the extracellular matrix. The loss of elastic fiber is caused by excessive accumulation of chondroitin sulfate (CS), a sulfated glycosaminoglycan. However, there is no radical cure for keloids. Using a model system, we show herein that treatment of keloid tissues with chondroitinase ABC, an enzyme that specifically digests CS, improves clinical features of keloids. Keloid tissues obtained from patients were grafted on nude mice, and chondroitinase ABC was injected into the grafted keloid tissues. Chondroitinase ABC treatment significantly reduced the volume of keloid implants concomitant with recovery of elastic fiber formation. These results suggest that chondroitinase ABC injection is an effective therapy for keloid. © 2013 Japanese Dermatological Association.

  18. Impaired extracellular matrix structure resulting from malnutrition in ovariectomized mature rats.

    PubMed

    El Khassawna, Thaqif; Böcker, Wolfgang; Brodsky, Katharina; Weisweiler, David; Govindarajan, Parameswari; Kampschulte, Marian; Thormann, Ulrich; Henss, Anja; Rohnke, Marcus; Bauer, Natali; Müller, Robert; Deutsch, Andreas; Ignatius, Anita; Dürselen, Lutz; Langheinrich, Alexander; Lips, Katrin S; Schnettler, Reinhard; Heiss, Christian

    2015-11-01

    Bone loss is a symptom related to disease and age, which reflects on bone cells and ECM. Discrepant regulation affects cell proliferation and ECM localization. Rat model of osteoporosis (OVX) was investigated against control rats (Sham) at young and old ages. Biophysical, histological and molecular techniques were implemented to examine the underlying cellular and extracellular matrix changes and to assess the mechanisms contributing to bone loss in the context of aging and the widely used osteoporotic models in rats. Bone loss exhibited a compromised function of bone cells and infiltration of adipocytes into bone marrow. However, the expression of genes regulating collagen catabolic process and adipogenesis was chronologically shifted in diseased bone in comparison with aged bone. The data showed the involvement of Wnt signaling inhibition in adipogenesis and bone loss due to over-expression of SOST in both diseased and aged bone. Further, in the OVX animals, an integrin-mediated ERK activation indicated the role of MAPK in osteoblastogenesis and adipogenesis. The increased PTH levels due to calcium and estrogen deficiency activated osteoblastogenesis. Thusly, RANKL-mediated osteoclastogenesis was initiated. Interestingly, the data show the role of MEPE regulating osteoclast-mediated resorption at late stages in osteoporotic bone. The interplay between ECM and bone cells change tissue microstructure and properties. The involvement of Wnt and MAPK pathways in activating cell proliferation has intriguing similarities to oncogenesis and myeloma. The study indicates the importance of targeting both pathways simultaneously to remedy metabolic bone diseases and age-related bone loss.

  19. Osmotic regulation of expression of two extracellular matrix-binding proteins and a haemolysin of Leptospira interrogans: differential effects on LigA and Sph2 extracellular release.

    PubMed

    Matsunaga, James; Medeiros, Marco A; Sanchez, Yolanda; Werneid, Kristian F; Ko, Albert I

    2007-10-01

    The life cycle of the pathogen Leptospira interrogans involves stages outside and inside the host. Entry of L. interrogans from moist environments into the host is likely to be accompanied by the induction of genes encoding virulence determinants and the concomitant repression of genes encoding products required for survival outside of the host. The expression of the adhesin LigA, the haemolysin Sph2 (Lk73.5) and the outer-membrane lipoprotein LipL36 of pathogenic Leptospira species have been reported to be regulated by mammalian host signals. A previous study demonstrated that raising the osmolarity of the leptospiral growth medium to physiological levels encountered in the host by addition of various salts enhanced the levels of cell-associated LigA and LigB and extracellular LigA. In this study, we systematically examined the effects of osmotic upshift with ionic and non-ionic solutes on expression of the known mammalian host-regulated leptospiral genes. The levels of cell-associated LigA, LigB and Sph2 increased at physiological osmolarity, whereas LipL36 levels decreased, corresponding to changes in specific transcript levels. These changes in expression occurred irrespective of whether sodium chloride or sucrose was used as the solute. The increase of cellular LigA, LigB and Sph2 protein levels occurred within hours of adding sodium chloride. Extracellular Sph2 levels increased when either sodium chloride or sucrose was added to achieve physiological osmolarity. In contrast, enhanced levels of extracellular LigA were observed only with an increase in ionic strength. These results indicate that the mechanisms for release of LigA and Sph2 differ during host infection. Thus, osmolarity not only affects leptospiral gene expression by affecting transcript levels of putative virulence determinants but also affects the release of such proteins into the surroundings.

  20. The extracellular matrix of Staphylococcus aureus biofilms comprises cytoplasmic proteins that associate with the cell surface in response to decreasing pH.

    PubMed

    Foulston, Lucy; Elsholz, Alexander K W; DeFrancesco, Alicia S; Losick, Richard

    2014-09-02

    Biofilm formation by Staphylococcus aureus involves the formation of an extracellular matrix, but the composition of this matrix has been uncertain. Here we report that the matrix is largely composed of cytoplasmic proteins that reversibly associate with the cell surface in a manner that depends on pH. We propose a model for biofilm formation in which cytoplasmic proteins are released from cells in stationary phase. These proteins associate with the cell surface in response to decreasing pH during biofilm formation. Rather than utilizing a dedicated matrix protein, S. aureus appears to recycle cytoplasmic proteins that moonlight as components of the extracellular matrix. Staphylococcus aureus is a leading cause of multiantibiotic-resistant nosocomial infections and is often found growing as a biofilm in catheters and chronic wounds. Biofilm formation is an important pathogenicity strategy that enhances resistance to antimicrobials, thereby limiting treatment options and ultimately contributing to increased morbidity and mortality. Cells in a biofilm are held together by an extracellular matrix that consists in whole or in part of protein, but the nature of the proteins in the S. aureus matrix is not well understood. Here we postulate that S. aureus recycles proteins from the cytoplasm to form the extracellular matrix. This strategy, of cytoplasmic proteins moonlighting as matrix proteins, could allow enhanced flexibility and adaptability for S. aureus in forming biofilms under infection conditions and could promote the formation of mixed-species biofilms in chronic wounds. Copyright © 2014 Foulston et al.

  1. Angiogenic Type I Collagen Extracellular Matrix Integrated with Recombinant Bacteriophages Displaying Vascular Endothelial Growth Factors.

    PubMed

    Yoon, Junghyo; Korkmaz Zirpel, Nuriye; Park, Hyun-Ji; Han, Sewoon; Hwang, Kyung Hoon; Shin, Jisoo; Cho, Seung-Woo; Nam, Chang-Hoon; Chung, Seok

    2016-01-21

    Here, a growth-factor-integrated natural extracellular matrix of type I collagen is presented that induces angiogenesis. The developed matrix adapts type I collagen nanofibers integrated with synthetic colloidal particles of recombinant bacteriophages that display vascular endothelial growth factor (VEGF). The integration is achieved during or after gelation of the type I collagen and the matrix enables spatial delivery of VEGF into a desired region. Endothelial cells that contact the VEGF are found to invade into the matrix to form tube-like structures both in vitro and in vivo, proving the angiogenic potential of the matrix. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Membrane glucocorticoid receptors are localised in the extracellular matrix and signal through the MAPK pathway in mammalian skeletal muscle fibres

    PubMed Central

    Boncompagni, Simona; Arthurton, Lewis; Akujuru, Eugene; Pearson, Timothy; Steverding, Dietmar; Protasi, Feliciano; Mutungi, Gabriel

    2015-01-01

    A number of studies have previously proposed the existence of glucocorticoid receptors on the plasma membrane of many cell types, including skeletal muscle fibres. However, their exact localisation and the cellular signalling pathway(s) they utilise to communicate with the rest of the cell are still poorly understood. In this study, we investigated the localisation and the mechanism(s) underlying the non-genomic physiological functions of these receptors in mouse skeletal muscle cells. The results show that the receptors were localised in the cytoplasm in myoblasts, in the nucleus in myotubes, in the extracellular matrix, in satellite cells and in the proximity of mitochondria in adult muscle fibres. Also, they bound laminin in a glucocorticoid-dependent manner. Treating small skeletal muscle fibre bundles with the synthetic glucocorticoid beclomethasone dipropionate increased the phosphorylation (= activation) of extracellular signal-regulated kinases 1 and 2, c-Jun N-terminal kinase and p38 mitogen-activated protein kinase. This occurred within 5 min and depended on the fibre type and the duration of the treatment. It was also abolished by the glucocorticoid receptor inhibitor, mifepristone, and a monoclonal antibody against the receptor. From these results we conclude that the non-genomic/non-canonical physiological functions of glucocorticoids, in adult skeletal muscle fibres, are mediated by a glucocorticoid receptor localised in the extracellular matrix, in satellite cells and close to mitochondria, and involve activation of the mitogen-activated protein kinase pathway. PMID:25846902

  3. The Extracellular Matrix in Photosynthetic Mats: A Cyanobacterial Gingerbread House

    NASA Astrophysics Data System (ADS)

    Stuart, R.; Stannard, W.; Bebout, B.; Pett-Ridge, J.; Mayali, X.; Weber, P. K.; Lipton, M. S.; Lee, J.; Everroad, R. C.; Thelen, M.

    2014-12-01

    Hypersaline laminated cyanobacterial mats are excellent model systems for investigating photoautotrophic contributions to biogeochemical cycling on a millimeter scale. These self-sustaining ecosystems are characterized by steep physiochemical gradients that fluctuate dramatically on hour timescales, providing a dynamic environment to study microbial response. However, elucidating the distribution of energy from light absorption into biomass requires a complete understanding of the various constituents of the mat. Extracellular polymeric substances (EPS), which can be composed of proteins, polysaccharides, lipids and DNA are a major component of these mats and may function in the redistribution of nutrients and metabolites within the community. To test this notion, we established a model mat-building culture for comparison with the phylogenetically diverse natural mat communities. In these two systems we determined how proteins and glycans in the matrix changed as a function of light and tracked nutrient flow from the matrix. Using mass spectrometry metaproteomics analysis, we found homologous proteins in both field and culture extracellular matrix that point to cyanobacterial turnover of amino acids, inorganic nutrients, carbohydrates and nucleic acids from the EPS. Other abundant functions identified included oxidative stress response from both the cyanobacteria and heterotrophs and cyanobacterial structural proteins that may play a role in mat cohesion. Several degradative enzymes also varied in abundance in the EPS in response to light availability, suggesting active secretion. To further test cyanobacterial EPS turnover, we generated isotopically-labeled EPS and used NanoSIMS to trace uptake of this labeled EPS. Our findings suggest Cyanobacteria may facilitate nutrient transfer to other groups, as well as uptake of their own products through degradation of EPS components. This work provides evidence for the essential roles of EPS for storage, structural

  4. Experimental Detection and Visualization of the Extracellular Matrix in Macrocolony Biofilms.

    PubMed

    Serra, Diego O; Hengge, Regine

    2017-01-01

    By adopting elaborate three-dimensional morphologies that vary according to their extracellular matrix composition, macrocolony biofilms offer a unique opportunity to interrogate about the roles of specific matrix components in shaping biofilm architecture. Here, we describe two methods optimized for Escherichia coli that profit from morphology and the high level of structural organization of macrocolonies to gain insight into the production and assembly of amyloid curli and cellulose-the two major biofilm matrix elements of E. coli-in biofilms. The first method, the macrocolony morphology assay, is based on the ability of curli and cellulose-either alone or in combination-to generate specific morphological and Congo Red-staining patterns in E. coli macrocolonies, which can then be used as a direct visual readout for the production of these matrix components. The second method involves thin sectioning of macrocolonies, which along with in situ staining of amyloid curli and cellulose and microscopic imaging allows gaining fine details of the spatial arrangement of both matrix elements inside macrocolonies. Beyond their current use with E. coli and related curli and cellulose-producing Enterobacteriaceae, both the methods offer the potential to be adapted to other bacterial species.

  5. Core-shell hydrogel beads with extracellular matrix for tumor spheroid formation.

    PubMed

    Yu, L; Grist, S M; Nasseri, S S; Cheng, E; Hwang, Y-C E; Ni, C; Cheung, K C

    2015-03-01

    Creating multicellular tumor spheroids is critical for characterizing anticancer treatments since they may provide a better model of the tumor than conventional monolayer culture. Moreover, tumor cell interaction with the extracellular matrix can determine cell organization and behavior. In this work, a microfluidic system was used to form cell-laden core-shell beads which incorporate elements of the extracellular matrix and support the formation of multicellular spheroids. The bead core (comprising a mixture of alginate, collagen, and reconstituted basement membrane, with gelation by temperature control) and shell (comprising alginate hydrogel, with gelation by ionic crosslinking) were simultaneously formed through flow focusing using a cooled flow path into the microfluidic chip. During droplet gelation, the alginate acts as a fast-gelling shell which aids in preventing droplet coalescence and in maintaining spherical droplet geometry during the slower gelation of the collagen and reconstituted basement membrane components as the beads warm up. After droplet gelation, the encapsulated MCF-7 cells proliferated to form uniform spheroids when the beads contained all three components: alginate, collagen, and reconstituted basement membrane. The dose-dependent response of the MCF-7 cell tumor spheroids to two anticancer drugs, docetaxel and tamoxifen, was compared to conventional monolayer culture.

  6. Physical, Spatial, and Molecular Aspects of Extracellular Matrix of In Vivo Niches and Artificial Scaffolds Relevant to Stem Cells Research

    PubMed Central

    Akhmanova, Maria; Osidak, Egor; Domogatsky, Sergey; Rodin, Sergey; Domogatskaya, Anna

    2015-01-01

    Extracellular matrix can influence stem cell choices, such as self-renewal, quiescence, migration, proliferation, phenotype maintenance, differentiation, or apoptosis. Three aspects of extracellular matrix were extensively studied during the last decade: physical properties, spatial presentation of adhesive epitopes, and molecular complexity. Over 15 different parameters have been shown to influence stem cell choices. Physical aspects include stiffness (or elasticity), viscoelasticity, pore size, porosity, amplitude and frequency of static and dynamic deformations applied to the matrix. Spatial aspects include scaffold dimensionality (2D or 3D) and thickness; cell polarity; area, shape, and microscale topography of cell adhesion surface; epitope concentration, epitope clustering characteristics (number of epitopes per cluster, spacing between epitopes within cluster, spacing between separate clusters, cluster patterns, and level of disorder in epitope arrangement), and nanotopography. Biochemical characteristics of natural extracellular matrix molecules regard diversity and structural complexity of matrix molecules, affinity and specificity of epitope interaction with cell receptors, role of non-affinity domains, complexity of supramolecular organization, and co-signaling by growth factors or matrix epitopes. Synergy between several matrix aspects enables stem cells to retain their function in vivo and may be a key to generation of long-term, robust, and effective in vitro stem cell culture systems. PMID:26351461

  7. MMP inhibition as a potential method to augment the healing of skeletal muscle and tendon extracellular matrix

    PubMed Central

    Davis, Max E.; Gumucio, Jonathan P.; Sugg, Kristoffer B.; Bedi, Asheesh

    2013-01-01

    The extracellular matrix (ECM) of skeletal muscle and tendon is composed of different types of collagen molecules that play important roles in the transmission of forces throughout the body, and in the repair and regeneration of injured tissues. Fibroblasts are the primary cells in muscle and tendon that maintain, repair, and modify the ECM in response to mechanical loading, injury, and inactivity. Matrix metalloproteinases (MMPs) are enzymes that digest collagen and other structural molecules, which are synthesized and excreted by fibroblasts. MMPs are required for baseline ECM homeostasis, but disruption of MMP regulation due to injury or disease can alter the normal ECM architecture and prevent proper force transmission. Chronic injuries and diseases of muscles and tendons can be severely debilitating, and current therapeutic modalities to enhance healing are quite limited. This review will discuss the mechanobiology of MMPs, and the potential use of MMP inhibitors to improve the treatment of injured and diseased skeletal muscle and tendon tissue. PMID:23640595

  8. Mimicking the extracellular matrix with functionalized, metal-assembled collagen peptide scaffolds.

    PubMed

    Hernandez-Gordillo, Victor; Chmielewski, Jean

    2014-08-01

    Natural and synthetic three-dimensional (3-D) scaffolds that mimic the microenvironment of the extracellular matrix (ECM), with growth factor storage/release and the display of cell adhesion signals, offer numerous advantages for regenerative medicine and in vitro morphogenesis and oncogenesis modeling. Here we report the design of collagen mimetic peptides (CMPs) that assemble into a highly crosslinked 3-D matrix in response to metal ion stimuli, that may be functionalized with His-tagged cargoes, such as green fluorescent protein (GFP-His8) and human epidermal growth factor (hEGF-His6). The bound hEGF-His6 was found to gradually release from the matrix in vitro and induce cell proliferation in the EGF-dependent cell line MCF10A. The additional incorporation of a cell adhesion sequence (RGDS) at the N-terminus of the CMP creates an environment that facilitated the organization of matrix-encapsulated MCF10A cells into spheroid structures, thus mimicking the ECM environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Adipose extracellular matrix remodelling in obesity and insulin resistance☆

    PubMed Central

    Lin, De; Chun, Tae-Hwa; Kang, Li

    2016-01-01

    The extracellular matrix (ECM) of adipose tissues undergoes constant remodelling to allow adipocytes and their precursor cells to change cell shape and function in adaptation to nutritional cues. Abnormal accumulation of ECM components and their modifiers in adipose tissues has been recently demonstrated to cause obesity-associated insulin resistance, a hallmark of type 2 diabetes. Integrins and other ECM receptors (e.g. CD44) that are expressed in adipose tissues have been shown to regulate insulin sensitivity. It is well understood that a hypoxic response is observed in adipose tissue expansion during obesity progression and that hypoxic response accelerates fibrosis and inflammation in white adipose tissues. The expansion of adipose tissues should require angiogenesis; however, the excess deposition of ECM limits the angiogenic response of white adipose tissues in obesity. While recent studies have focused on the metabolic consequences and the mechanisms of adipose tissue expansion and remodelling, little attention has been paid to the role played by the interaction between peri-adipocyte ECM and their cognate cell surface receptors. This review will address what is currently known about the roles played by adipose ECM, their modifiers, and ECM receptors in obesity and insulin resistance. Understanding how excess ECM deposition in the adipose tissue deteriorates insulin sensitivity would provide us hints to develop a new therapeutic strategy for the treatment of insulin resistance and type 2 diabetes. PMID:27179976

  10. The extracellular matrix glycoprotein tenascin-C and matrix metalloproteinases modify cerebellar structural plasticity by exposure to an enriched environment.

    PubMed

    Stamenkovic, Vera; Stamenkovic, Stefan; Jaworski, Tomasz; Gawlak, Maciej; Jovanovic, Milos; Jakovcevski, Igor; Wilczynski, Grzegorz M; Kaczmarek, Leszek; Schachner, Melitta; Radenovic, Lidija; Andjus, Pavle R

    2017-01-01

    The importance of the extracellular matrix (ECM) glycoprotein tenascin-C (TnC) and the ECM degrading enzymes, matrix metalloproteinases (MMPs) -2 and -9, in cerebellar histogenesis is well established. This study aimed to examine whether there is a functional relationship between these molecules in regulating structural plasticity of the lateral deep cerebellar nucleus. To this end, starting from postnatal day 21, TnC- or MMP-9-deficient mice were exposed to an enriched environment (EE). We show that 8 weeks of exposure to EE leads to reduced lectin-based staining of perineuronal nets (PNNs), reduction in the size of GABAergic and increase in the number and size of glutamatergic synaptic terminals in wild-type mice. Conversely, TnC-deficient mice showed reduced staining of PNNs compared to wild-type mice maintained under standard conditions, and exposure to EE did not further reduce, but even slightly increased PNN staining. EE did not affect the densities of the two types of synaptic terminals in TnC-deficient mice, while the size of inhibitory, but not excitatory synaptic terminals was increased. In the time frame of 4-8 weeks, MMP-9, but not MMP-2, was observed to influence PNN remodeling and cerebellar synaptic plasticity as revealed by measurement of MMP-9 activity and colocalization with PNNs and synaptic markers. These findings were supported by observations on MMP-9-deficient mice. The present study suggests that TnC contributes to the regulation of structural plasticity in the cerebellum and that interactions between TnC and MMP-9 are likely to be important for these processes to occur.

  11. Inhibition of leptin-induced vascular extracellular matrix remodelling by adiponectin.

    PubMed

    Zhang, Zhi; Wang, Fang; Wang, Bing-Jian; Chu, Guang; Cao, Qunan; Sun, Bao-Gui; Dai, Qiu-Yan

    2014-10-01

    Vascular extracellular matrix (ECM) remodelling, which is the result of disruption in the balance of ECM synthesis and degradation, induces vessel fibrosis and thereby leads to hypertension. Leptin is known to promote tissue fibrosis, while adiponectin has recently been demonstrated to be anti-fibrogenic in tissue fibrosis. In this study, we aimed to evaluate the leptin-antagonist function of adiponectin and to further elucidate the mechanisms through which adiponectin dampens leptin signalling in vascular smooth muscle cells, thus preventing excess ECM production, in our already established 3D co-culture vessel models. Our 3D co-culture vessel model, which mimics true blood vessels, is composed of vascular endothelial cells, vascular smooth muscle cells and collagen type I. We validated the profibrogenic effects of leptin and analysed matrix metalloproteinase 2 (MMP2), MMP9, tissue inhibitor of metalloproteinase 1 (TIMP1) and collagen types II/IV secretion in 3D vessel models. The protective/inhibitory effects of adiponectin were re-analysed by inhibiting adiponectin receptor 1 (AdipoR) and AdipoR2 expression in endothelial cells using RNAi technology. In the 3D vessel models, adiponectin blocked the leptin-stimulated secretion of collagen types II/IV and TIMP1 while significantly increasing MMP2/9 activity. In endothelial cells, adiponectin induced phosphorylation of AMPK, thereby suppressing leptin-mediated STAT3 phosphorylation through induction of SOCS3 in smooth muscle cells. Our findings indicate that adiponectin disrupted the leptin-induced vascular ECM remodelling via AdipoR1 and enhanced AMPK signalling in endothelial cells, which, in turn, promoted SOCS3 up-regulation in smooth muscle cells to repress leptin-stimulated phosphorylation of STAT3. © 2014 The authors.

  12. Inhibition of leptin-induced vascular extracellular matrix remodelling by adiponectin

    PubMed Central

    Zhang, Zhi; Wang, Fang; Wang, Bing-jian; Chu, Guang; Cao, Qunan; Sun, Bao-Gui; Dai, Qiu-Yan

    2014-01-01

    Vascular extracellular matrix (ECM) remodelling, which is the result of disruption in the balance of ECM synthesis and degradation, induces vessel fibrosis and thereby leads to hypertension. Leptin is known to promote tissue fibrosis, while adiponectin has recently been demonstrated to be anti-fibrogenic in tissue fibrosis. In this study, we aimed to evaluate the leptin-antagonist function of adiponectin and to further elucidate the mechanisms through which adiponectin dampens leptin signalling in vascular smooth muscle cells, thus preventing excess ECM production, in our already established 3D co-culture vessel models. Our 3D co-culture vessel model, which mimics true blood vessels, is composed of vascular endothelial cells, vascular smooth muscle cells and collagen type I. We validated the profibrogenic effects of leptin and analysed matrix metalloproteinase 2 (MMP2), MMP9, tissue inhibitor of metalloproteinase 1 (TIMP1) and collagen types II/IV secretion in 3D vessel models. The protective/inhibitory effects of adiponectin were re-analysed by inhibiting adiponectin receptor 1 (AdipoR) and AdipoR2 expression in endothelial cells using RNAi technology. In the 3D vessel models, adiponectin blocked the leptin-stimulated secretion of collagen types II/IV and TIMP1 while significantly increasing MMP2/9 activity. In endothelial cells, adiponectin induced phosphorylation of AMPK, thereby suppressing leptin-mediated STAT3 phosphorylation through induction of SOCS3 in smooth muscle cells. Our findings indicate that adiponectin disrupted the leptin-induced vascular ECM remodelling via AdipoR1 and enhanced AMPK signalling in endothelial cells, which, in turn, promoted SOCS3 up-regulation in smooth muscle cells to repress leptin-stimulated phosphorylation of STAT3. PMID:24982243

  13. Co-transfection of decorin and interleukin-10 modulates pro-fibrotic extracellular matrix gene expression in human tenocyte culture

    NASA Astrophysics Data System (ADS)

    Abbah, Sunny A.; Thomas, Dilip; Browne, Shane; O'Brien, Timothy; Pandit, Abhay; Zeugolis, Dimitrios I.

    2016-02-01

    Extracellular matrix synthesis and remodelling are driven by increased activity of transforming growth factor beta 1 (TGF-β1). In tendon tissue repair, increased activity of TGF-β1 leads to progressive fibrosis. Decorin (DCN) and interleukin 10 (IL-10) antagonise pathological collagen synthesis by exerting a neutralising effect via downregulation of TGF-β1. Herein, we report that the delivery of DCN and IL-10 transgenes from a collagen hydrogel system supresses the constitutive expression of TGF-β1 and a range of pro-fibrotic extracellular matrix genes.

  14. Mechanical model for a collagen fibril pair in extracellular matrix.

    PubMed

    Chan, Yue; Cox, Grant M; Haverkamp, Richard G; Hill, James M

    2009-04-01

    In this paper, we model the mechanics of a collagen pair in the connective tissue extracellular matrix that exists in abundance throughout animals, including the human body. This connective tissue comprises repeated units of two main structures, namely collagens as well as axial, parallel and regular anionic glycosaminoglycan between collagens. The collagen fibril can be modeled by Hooke's law whereas anionic glycosaminoglycan behaves more like a rubber-band rod and as such can be better modeled by the worm-like chain model. While both computer simulations and continuum mechanics models have been investigated for the behavior of this connective tissue typically, authors either assume a simple form of the molecular potential energy or entirely ignore the microscopic structure of the connective tissue. Here, we apply basic physical methodologies and simple applied mathematical modeling techniques to describe the collagen pair quantitatively. We found that the growth of fibrils was intimately related to the maximum length of the anionic glycosaminoglycan and the relative displacement of two adjacent fibrils, which in return was closely related to the effectiveness of anionic glycosaminoglycan in transmitting forces between fibrils. These reveal the importance of the anionic glycosaminoglycan in maintaining the structural shape of the connective tissue extracellular matrix and eventually the shape modulus of human tissues. We also found that some macroscopic properties, like the maximum molecular energy and the breaking fraction of the collagen, were also related to the microscopic characteristics of the anionic glycosaminoglycan.

  15. Hypoxia and Redox Signaling on Extracellular Matrix Remodeling: From Mechanisms to Pathological Implications.

    PubMed

    Labrousse-Arias, David; Martínez-Ruiz, Antonio; Calzada, María J

    2017-10-20

    The extracellular matrix (ECM) is an essential modulator of cell behavior that influences tissue organization. It has a strong relevance in homeostasis and translational implications for human disease. In addition to ECM structural proteins, matricellular proteins are important regulators of the ECM that are involved in a myriad of different pathologies. Recent Advances: Biochemical studies, animal models, and study of human diseases have contributed to the knowledge of molecular mechanisms involved in remodeling of the ECM, both in homeostasis and disease. Some of them might help in the development of new therapeutic strategies. This review aims to review what is known about some of the most studied matricellular proteins and their regulation by hypoxia and redox signaling, as well as the pathological implications of such regulation. Matricellular proteins have complex regulatory functions and are modulated by hypoxia and redox signaling through diverse mechanisms, in some cases with controversial effects that can be cell or tissue specific and context dependent. Therefore, a better understanding of these regulatory processes would be of great benefit and will open new avenues of considerable therapeutic potential. Characterizing the specific molecular mechanisms that modulate matricellular proteins in pathological processes that involve hypoxia and redox signaling warrants additional consideration to harness the potential therapeutic value of these regulatory proteins. Antioxid. Redox Signal. 27, 802-822.

  16. Extracellular matrix adaptation of tendon and skeletal muscle to exercise

    PubMed Central

    Kjær, Michael; Magnusson, Peter; Krogsgaard, Michael; Møller, Jens Boysen; Olesen, Jens; Heinemeier, Katja; Hansen, Mette; Haraldsson, Bjarki; Koskinen, Satu; Esmarck, Birgitte; Langberg, Henning

    2006-01-01

    The extracellular matrix (ECM) of connective tissues enables linking to other tissues, and plays a key role in force transmission and tissue structure maintenance in tendons, ligaments, bone and muscle. ECM turnover is influenced by physical activity, and both collagen synthesis and metalloprotease activity increase with mechanical loading. This can be shown by determining propeptide and proteinase activity by microdialysis, as well as by verifying the incorporation of infused stable isotope amino acids in biopsies. Local tissue expression and release of growth factors for ECM such as IGF-1, TGF-beta and IL-6 is enhanced following exercise. For tendons, metabolic activity (e.g. detected by positron emission tomography scanning), circulatory responses (e.g. as measured by near-infrared spectroscopy and dye dilution) and collagen turnover are markedly increased after exercise. Tendon blood flow is regulated by cyclooxygenase-2 (COX-2)-mediated pathways, and glucose uptake is regulated by specific pathways in tendons that differ from those in skeletal muscle. Chronic loading in the form of physical training leads both to increased collagen turnover as well as to some degree of net collagen synthesis. These changes modify the mechanical properties and the viscoelastic characteristics of the tissue, decrease its stress-susceptibility and probably make it more load-resistant. The mechanical properties of tendon fascicles vary within a given human tendon, and even show gender differences. The latter is supported by findings of gender-related differences in the activation of collagen synthesis with exercise. These findings may provide the basis for understanding tissue overloading and injury in both tendons and skeletal muscle. PMID:16637870

  17. Extracellular matrix production by human osteoblasts cultured on biodegradable polymers applicable for tissue engineering.

    PubMed

    El-Amin, S F; Lu, H H; Khan, Y; Burems, J; Mitchell, J; Tuan, R S; Laurencin, C T

    2003-03-01

    The nature of the extracellular matrix (ECM) is crucial in regulating cell functions via cell-matrix interactions, cytoskeletal organization, and integrin-mediated signaling. In bone, the ECM is composed of proteins such as collagen (CO), fibronectin (FN), laminin (LM), vitronectin (VN), osteopontin (OP) and osteonectin (ON). For bone tissue engineering, the ECM should also be considered in terms of its function in mediating cell adhesion to biomaterials. This study examined ECM production, cytoskeletal organization, and adhesion of primary human osteoblastic cells on biodegradable matrices applicable for tissue engineering, namely polylactic-co-glycolic acid 50:50 (PLAGA) and polylactic acid (PLA). We hypothesized that the osteocompatible, biodegradable polymer surfaces promote the production of bone-specific ECM proteins in a manner dependent on polymer composition. We first examined whether the PLAGA and PLA matrices could support human osteoblastic cell growth by measuring cell adhesion at 3, 6 and 12h post-plating. Adhesion on PLAGA was consistently higher than on PLA throughout the duration of the experiment, and comparable to tissue culture polystyrene (TCPS). ECM components, including CO, FN, LM, ON, OP and VN, produced on the surface of the polymers were quantified by ELISA and localized by immunofluorescence staining. All of these proteins were present at significantly higher levels on PLAGA compared to PLA or TCPS surfaces. On PLAGA, OP and ON were the most abundant ECM components, followed by CO, FN, VN and LN. Immunofluorescence revealed an extracellular distribution for CO and FN, whereas OP and ON were found both intracellularly as well as extracellularly on the polymer. In addition, the actin cytoskeletal network was more extensive in osteoblasts cultured on PLAGA than on PLA or TCPS. In summary, we found that osteoblasts plated on PLAGA adhered better to the substrate, produced higher levels of ECM molecules, and showed greater cytoskeletal

  18. Mutations in extracellular matrix genes NID1 and LAMC1 cause autosomal dominant Dandy-Walker malformation and occipital cephaloceles

    PubMed Central

    Darbro, Benjamin W.; Mahajan, Vinit B.; Gakhar, Lokesh; Skeie, Jessica M.; Campbell, Elizabeth; Wu, Shu; Bing, Xinyu; Millen, Kathleen J.; Dobyns, William B.; Kessler, John A.; Jalali, Ali; Cremer, James; Segre, Alberto; Manak, J. Robert; Aldinger, Kimerbly A.; Suzuki, Satoshi; Natsume, Nagato; Ono, Maya; Hai, Huynh Dai; Viet, Le Thi; Loddo, Sara; Valente, Enza M.; Bernardini, Laura; Ghonge, Nitin; Ferguson, Polly J.; Bassuk, Alexander G.

    2013-01-01

    We performed whole-exome sequencing of a family with autosomal dominant Dandy-Walker malformation and occipital cephaloceles (ADDWOC) and detected a mutation in the extracellular matrix protein encoding gene NID1. In a second family, protein interaction network analysis identified a mutation in LAMC1, which encodes a NID1 binding partner. Structural modeling the NID1-LAMC1 complex demonstrated that each mutation disrupts the interaction. These findings implicate the extracellular matrix in the pathogenesis of Dandy-Walker spectrum disorders. PMID:23674478

  19. Detection of HOCl-mediated protein oxidation products in the extracellular matrix of human atherosclerotic plaques.

    PubMed Central

    Woods, Alan A; Linton, Stuart M; Davies, Michael J

    2003-01-01

    Oxidation is believed to play a role in atherosclerosis. Oxidized lipids, sterols and proteins have been detected in early, intermediate and advanced human lesions at elevated levels. The spectrum of oxidized side-chain products detected on proteins from homogenates of advanced human lesions has been interpreted in terms of the occurrence of two oxidative mechanisms, one involving oxygen-derived radicals catalysed by trace transition metal ions, and a second involving chlorinating species (HOCl or Cl2), generated by the haem enzyme myeloperoxidase (MPO). As MPO is released extracellularly by activated monocytes (and possibly macrophages) and is a highly basic protein, it would be expected to associate with polyanions such as the glycosaminoglycans of the extracellular matrix, and might result in damage being localized at such sites. In this study proteins extracted from extracellular matrix material obtained from advanced human atherosclerotic lesions are shown to contain elevated levels of oxidized amino acids [3,4-dihydroxyphenylalanine (DOPA), di-tyrosine, 2-hydroxyphenylalanine ( o-Tyr)] when compared with healthy (human and pig) arterial tissue. These matrix-derived materials account for 83-96% of the total oxidized protein side-chain products detected in these plaques. Oxidation of matrix components extracted from healthy artery tissue, and model proteins, with reagent HOCl is shown to give rise to a similar pattern of products to those detected in advanced human lesions. The detection of elevated levels of DOPA and o-Tyr, which have been previously attributed to the occurrence of oxygen-radical-mediated reactions, by HOCl treatment, suggests an alternative route to the formation of these materials in plaques. This is believed to involve the formation and subsequent decomposition of protein chloramines. PMID:12456264

  20. LRIG1 modulates aggressiveness of head and neck cancers by regulating EGFR-MAPK-SPHK1 signaling and extracellular matrix remodeling.

    PubMed

    Sheu, J J-C; Lee, C-C; Hua, C-H; Li, C-I; Lai, M-T; Lee, S-C; Cheng, J; Chen, C-M; Chan, C; Chao, S C-C; Chen, J-Y; Chang, J-Y; Lee, C-H

    2014-03-13

    EGFR overexpression and chromosome 3p deletion are two frequent events in head and neck cancers. We previously mapped the smallest region of recurrent copy-number loss at 3p12.2-p14.1. LRIG1, a negative regulator of EGFR, was found at 3p14, and its copy-number loss correlated with poor clinical outcome. Inducible expression of LRIG1 in head and neck cancer TW01 cells, a line with low LRIG1 levels, suppressed cell proliferation in vitro and tumor growth in vivo. Gene expression profiling, quantitative RT-PCR, chromatin immunoprecipitation, and western blot analysis demonstrated that LRIG1 modulated extracellular matrix (ECM) remodeling and EGFR-MAPK-SPHK1 transduction pathway by suppressing expression of EGFR ligands/activators, MMPs and SPHK1. In addition, LRIG1 induction triggered cell morphology changes and integrin inactivation, which coupled with reduced SNAI2 expression. By contrast, knockdown of endogenous LRIG1 in TW06 cells, a line with normal LRIG1 levels, significantly enhanced cell proliferation, migration and invasiveness. Such tumor-promoting effects could be abolished by specific MAPK or SPHK1 inhibitors. Our data suggest LRIG1 as a tumor suppressor for head and neck cancers; LRIG1 downregulation in cancer cells enhances EGFR-MAPK-SPHK1 signaling and ECM remodeling activity, leading to malignant phenotypes of head and neck cancers.

  1. Regulation of proximal tubular cell differentiation and proliferation in primary culture by matrix stiffness and ECM components.

    PubMed

    Chen, Wan-Chun; Lin, Hsi-Hui; Tang, Ming-Jer

    2014-09-15

    To explore whether matrix stiffness affects cell differentiation, proliferation, and transforming growth factor (TGF)-β1-induced epithelial-mesenchymal transition (EMT) in primary cultures of mouse proximal tubular epithelial cells (mPTECs), we used a soft matrix made from monomeric collagen type I-coated polyacrylamide gel or matrigel (MG). Both kinds of soft matrix benefited primary mPTECs to retain tubular-like morphology with differentiation and growth arrest and to evade TGF-β1-induced EMT. However, the potent effect of MG on mPTEC differentiation was suppressed by glutaraldehyde-induced cross-linking and subsequently stiffening MG or by an increasing ratio of collagen in the soft mixed gel. Culture media supplemented with MG also helped mPTECs to retain tubular-like morphology and a differentiated phenotype on stiff culture dishes as soft MG did. We further found that the protein level and activity of ERK were scaled with the matrix stiffness. U-0126, a MEK inhibitor, abolished the stiff matrix-induced dedifferentiation and proliferation. These data suggest that the ERK signaling pathway plays a vital role in matrix stiffness-regulated cell growth and differentiation. Taken together, both compliant property and specific MG signals from the matrix are required for the regulation of epithelial differentiation and proliferation. This study provides a basic understanding of how physical and chemical cues derived from the extracellular matrix regulate the physiological function of proximal tubules and the pathological development of renal fibrosis. Copyright © 2014 the American Physiological Society.

  2. Nanoscale Viscoelasticity of Extracellular Matrix Proteins in Soft Tissues: a Multiscale Approach

    PubMed Central

    Miri, Amir K.; Heris, Hossein K.; Mongeau, Luc; Javid, Farhad

    2013-01-01

    We propose that the bulk viscoelasticity of soft tissues results from two length-scale-dependent mechanisms: the time-dependent response of extracellular matrix proteins (ECM) at the nanometer scale and the biophysical interactions between the ECM solid structure and interstitial fluid at the micrometer scale. The latter was modeled using the poroelasticity theory with an assumption of free motion of the interstitial fluid within the porous ECM structure. Following a recent study (Heris, H.K., Miri, A.K., Tripathy, U., Barthelat, F., Mongeau, L., 2013. Journal of the Mechanical Behavior of Biomedical Materials), atomic force microscopy was used to perform creep loading and 50-nm sinusoidal oscillations on porcine vocal folds. The proposed model was calibrated by a finite element model to accurately predict the nanoscale viscoelastic moduli of ECM. A linear correlation was observed between the in-depth distribution of the viscoelastic moduli and that of hyaluronic acids in the vocal fold tissue. We conclude that hyaluronic acids may regulate the vocal fold viscoelasticity at nanoscale. The proposed methodology offers a characterization tool for biomaterials used in vocal fold augmentations. PMID:24317493

  3. High resolution three-dimensional reconstruction of fibrotic skeletal muscle extracellular matrix.

    PubMed

    Gillies, Allison R; Chapman, Mark A; Bushong, Eric A; Deerinck, Thomas J; Ellisman, Mark H; Lieber, Richard L

    2017-02-15

    Fibrosis occurs secondary to many skeletal muscle diseases and injuries, and can alter muscle function. It is unknown how collagen, the most abundant extracellular structural protein, alters its organization during fibrosis. Quantitative and qualitative high-magnification electron microscopy shows that collagen is organized into perimysial cables which increase in number in a model of fibrosis, and cables have unique interactions with collagen-producing cells. Fibrotic muscles are stiffer and have a higher concentration of collagen-producing cells. These results improve our understanding of the organization of fibrotic skeletal muscle extracellular matrix and identify novel structures that might be targeted by antifibrotic therapy. Skeletal muscle extracellular matrix (ECM) structure and organization are not well understood, yet the ECM plays an important role in normal tissue homeostasis and disease processes. Fibrosis is common to many muscle diseases and is typically quantified based on an increase in ECM collagen. Through the use of multiple imaging modalities and quantitative stereology, we describe the structure and composition of wild-type and fibrotic ECM, we show that collagen in the ECM is organized into large bundles of fibrils, or collagen cables, and the number of these cables (but not their size) increases in desmin knockout muscle (a fibrosis model). The increase in cable number is accompanied by increased muscle stiffness and an increase in the number of collagen producing cells. Unique interactions between ECM cells and collagen cables were also observed and reconstructed by serial block face scanning electron microscopy. These results demonstrate that the muscle ECM is more highly organized than previously reported. Therapeutic strategies for skeletal muscle fibrosis should consider the organization of the ECM to target the structures and cells contributing to fibrotic muscle function. © 2016 Rehabilitation Institute of Chicago. The Journal of

  4. High resolution three‐dimensional reconstruction of fibrotic skeletal muscle extracellular matrix

    PubMed Central

    Gillies, Allison R.; Chapman, Mark A.; Bushong, Eric A.; Deerinck, Thomas J.; Ellisman, Mark H.

    2016-01-01

    Key points Fibrosis occurs secondary to many skeletal muscle diseases and injuries, and can alter muscle function.It is unknown how collagen, the most abundant extracellular structural protein, alters its organization during fibrosis.Quantitative and qualitative high‐magnification electron microscopy shows that collagen is organized into perimysial cables which increase in number in a model of fibrosis, and cables have unique interactions with collagen‐producing cells.Fibrotic muscles are stiffer and have a higher concentration of collagen‐producing cells.These results improve our understanding of the organization of fibrotic skeletal muscle extracellular matrix and identify novel structures that might be targeted by antifibrotic therapy. Abstract Skeletal muscle extracellular matrix (ECM) structure and organization are not well understood, yet the ECM plays an important role in normal tissue homeostasis and disease processes. Fibrosis is common to many muscle diseases and is typically quantified based on an increase in ECM collagen. Through the use of multiple imaging modalities and quantitative stereology, we describe the structure and composition of wild‐type and fibrotic ECM, we show that collagen in the ECM is organized into large bundles of fibrils, or collagen cables, and the number of these cables (but not their size) increases in desmin knockout muscle (a fibrosis model). The increase in cable number is accompanied by increased muscle stiffness and an increase in the number of collagen producing cells. Unique interactions between ECM cells and collagen cables were also observed and reconstructed by serial block face scanning electron microscopy. These results demonstrate that the muscle ECM is more highly organized than previously reported. Therapeutic strategies for skeletal muscle fibrosis should consider the organization of the ECM to target the structures and cells contributing to fibrotic muscle function. PMID:27859324

  5. Extracellular matrix remodeling and matrix metalloproteinases (ajMMP-2 like and ajMMP-16 like) characterization during intestine regeneration of sea cucumber Apostichopus japonicus.

    PubMed

    Miao, Ting; Wan, Zixuan; Sun, Lina; Li, Xiaoni; Xing, Lili; Bai, Yucen; Wang, Fang; Yang, Hongsheng

    2017-10-01

    Remodeling of extracellular matrix (ECM) regulated by matrix metalloproteinases (MMPs) is essential for tissue regeneration. In the present study, we used immunohistochemistry (IHC) techniques against ECM components to reveal changes of ECM during intestine regeneration of Apostichopus japonicus. The expression of collagen I and laminin reduced apparently from the eviscerated intestine, while fibronectin exhibited continuous expression in all regeneration stages observed. Meanwhile, we cloned two MMP genes from A. japonicus by RACE PCR. The full-length cDNA of ajMMP-2 like is 2733bp and contains a predicted open reading frame (ORF) of 1716bp encoding 572 amino acids. The full-length cDNA of ajMMP-16 like is 2705bp and contains an ORF of 1452bp encoding 484 amino acids. The predicted protein sequences of each MMP contain two conserved domains, ZnMc_MMP and HX. Homology and phylogenetic analysis revealed that ajMMP-2 like and ajMMP-16 like share high sequence similarity with MMP-2 and MMP-16 from Strongylocentrotus purpuratus, respectively. Then we investigated spatio-temporal expression of ajMMP-2 like and ajMMP-16 like during different regeneration stages by qRT-PCR and IHC. The expression pattern of them showed a roughly opposite trend from that of ECM components. According to our results, a fibronectin-dominate temporary matrix is created in intestine regeneration, and it might provide structural integrity for matrix and promote cell movement. We also hypothesize that ajMMP-2 like and ajMMP-16 like could accelerate cell migration and regulate interaction between ECM components and growth factors. This work provides new evidence of ECM and MMPs involvement in sea cucumber regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Thioredoxin-1 Selectively Activates Transglutaminase 2 in the Extracellular Matrix of the Small Intestine

    PubMed Central

    Plugis, Nicholas M.; Palanski, Brad A.; Weng, Chih-Hisang; Albertelli, Megan; Khosla, Chaitan

    2017-01-01

    Transglutaminase 2 (TG2) catalyzes transamidation or deamidation of its substrates and is ordinarily maintained in a catalytically inactive state in the intestine and other organs. Aberrant TG2 activity is thought to play a role in celiac disease, suggesting that a better understanding of TG2 regulation could help to elucidate the mechanistic basis of this malady. Structural and biochemical analysis has led to the hypothesis that extracellular TG2 activation involves reduction of an allosteric disulfide bond by thioredoxin-1 (TRX), but cellular and in vivo evidence for this proposal is lacking. To test the physiological relevance of this hypothesis, we first showed that macrophages exposed to pro-inflammatory stimuli released TRX in sufficient quantities to activate their extracellular pools of TG2. By using the C35S mutant of TRX, which formed a metastable mixed disulfide bond with TG2, we demonstrated that these proteins specifically recognized each other in the extracellular matrix of fibroblasts. When injected into mice and visualized with antibodies, we observed the C35S TRX mutant bound to endogenous TG2 as its principal protein partner in the small intestine. Control experiments showed no labeling of TG2 knock-out mice. Intravenous administration of recombinant TRX in wild-type mice, but not TG2 knock-out mice, led to a rapid rise in intestinal transglutaminase activity in a manner that could be inhibited by small molecules targeting TG2 or TRX. Our findings support the potential pathophysiological relevance of TRX in celiac disease and establish the Cys370–Cys371 disulfide bond of TG2 as one of clearest examples of an allosteric disulfide bond in mammals. PMID:28003361

  7. Comparison of four decontamination treatments on porcine renal decellularized extracellular matrix structure, composition, and support of human renal cortical tubular epithelium cells.

    PubMed

    Poornejad, Nafiseh; Nielsen, Jeffery J; Morris, Ryan J; Gassman, Jason R; Reynolds, Paul R; Roeder, Beverly L; Cook, Alonzo D

    2016-03-01

    Engineering whole organs from porcine decellularized extracellular matrix and human cells may lead to a plentiful source of implantable organs. Decontaminating the porcine decellularized extracellular matrix scaffolds is an essential step prior to introducing human cells. However, decontamination of whole porcine kidneys is a major challenge because the decontamination agent or irradiation needs to diffuse deep into the structure to eliminate all microbial contamination while minimizing damage to the structure and composition of the decellularized extracellular matrix. In this study, we compared four decontamination treatments that could be applicable to whole porcine kidneys: 70% ethanol, 0.2% peracetic acid in 1 M NaCl, 0.2% peracetic acid in 4% ethanol, and gamma (γ)-irradiation. Porcine kidneys were decellularized by perfusion of 0.5% (w/v) aqueous solution of sodium dodecyl sulfate and the four decontamination treatments were optimized using segments (n = 60) of renal tissue to ensure a consistent comparison. Although all four methods were successful in decontamination, γ-irradiation was very damaging to collagen fibers and glycosaminoglycans, leading to less proliferation of human renal cortical tubular epithelium cells within the porcine decellularized extracellular matrix. The effectiveness of the other three optimized solution treatments were then all confirmed using whole decellularized porcine kidneys (n = 3). An aqueous solution of 0.2% peracetic acid in 1 M NaCl was determined to be the best method for decontamination of porcine decellularized extracellular matrix. © The Author(s) 2015.

  8. Changes in p53 expression in mouse fibroblasts can modify motility and extracellular matrix organization.

    PubMed

    Alexandrova, A; Ivanov, A; Chumakov, P; Kopnin, B; Vasiliev, J

    2000-11-23

    Effects of p53 expression on cell morphology and motility were studied using the derivatives of p53-null 10(1) mouse fibroblasts with tetracycline-regulated expression of exogenous human p53. Induction of p53 expression was accompanied by significant decrease in extracellular matrix (fibronectin) and reduction of matrix fibrils, diminution of the number and size of focal contacts, decrease of cell areas, establishment of more elongated cell shape and alterations of actin cytoskeleton (actin bundles became thinner, their number and size decreased). Expression of His175 and Gln22/ Ser23 p53 mutants caused no such effects. To study the influence of p53 expression on cell motility we used wound technique and videomicroscopy observation of single living cells. It was found that induction of p53 expression led to increase of lamellar activity of cell edge. However, in spite of enhanced lamellar activity p53-expressing cells migrated to shorter distance and filled the narrow wound in longer time as compared with their p53-null counterparts. Possible mechanisms of the influence of p53 expression on cell morphology and motility are discussed.

  9. Solubilized liver extracellular matrix maintains primary rat hepatocyte phenotype in-vitro.

    PubMed

    Loneker, Abigail E; Faulk, Denver M; Hussey, George S; D'Amore, Antonio; Badylak, Stephen F

    2016-04-01

    Whole organ engineering and cell-based regenerative medicine approaches are being investigated as potential therapeutic options for end-stage liver failure. However, a major challenge of these strategies is the loss of hepatic specific function after hepatocytes are removed from their native microenvironment. The objective of the present study was to determine if solubilized liver extracellular matrix (ECM), when used as a media supplement, can better maintain hepatocyte phenotype compared to type I collagen alone or solubilized ECM harvested from a non-liver tissue source. Liver extracellular matrix (LECM) from four different species was isolated via liver tissue decellularization, solubilized, and then used as a media supplement for primary rat hepatocytes (PRH). The four species of LECM investigated were human, porcine, canine and rat. Cell morphology, albumin secretion, and ammonia metabolism were used to assess maintenance of hepatocyte phenotype. Biochemical and mechanical characterization of each LECM were also conducted. Results showed that PRH's supplemented with canine and porcine LECM maintained their phenotype to a greater extent compared to all other groups. PRH's supplemented with canine and porcine LECM showed increased bile production, increased albumin production, and the formation of multinucleate cells. The findings of the present study suggest that solubilized liver ECM can support in-vitro hepatocyte culture and should be considered for therapeutic and diagnostic techniques that utilize hepatocytes. © 2016 Wiley Periodicals, Inc.

  10. The extracellular matrix locally regulates asynchronous concurrent lactation in tammar wallaby (Macropus eugenii).

    PubMed

    Wanyonyi, Stephen S; Lefevre, Christophe; Sharp, Julie A; Nicholas, Kevin R

    2013-08-08

    Asynchronous concurrent lactation (ACL) is an extreme lactation strategy in macropod marsupials including the tammar wallaby, that may hold the key to understanding local control of mammary epithelial cell function. Marsupials have a short gestation and a long lactation consisting of three phases; P2A, P2B and P3, representing early, mid and late lactation respectively and characterised by profound changes in milk composition. A lactating tammar is able to concurrently produce phase 2A and 3 milk from adjacent glands in order to feed a young newborn and an older sibling at heel. Physiological effectors of ACL remain unknown and in this study the extracellular matrix (ECM) is investigated for its role in switching mammary phenotypes between phases of tammar wallaby lactation. Using the level of expression of the genes for the phase specific markers tELP, tWAP, and tLLP-B representing phases 2A, 2B and 3 respectively we show for the first time that tammar wallaby mammary epithelial cells (WallMECs) extracted from P2B acquire P3 phenotype when cultured on P3 ECM. Similarly P2A cells acquire P2B phenotype when cultured on P2B ECM. We further demonstrate that changes in phase phenotype correlate with phase-specific changes in ECM composition. This study shows that progressive changes in ECM composition in individual mammary glands provide a local regulatory mechanism for milk protein gene expression thereby enabling the mammary glands to lactate independently. Copyright © 2013. Published by Elsevier B.V.

  11. Culture temperature affects redifferentiation and cartilaginous extracellular matrix formation in dedifferentiated human chondrocytes.

    PubMed

    Ito, Akira; Aoyama, Tomoki; Iijima, Hirotaka; Tajino, Junichi; Nagai, Momoko; Yamaguchi, Shoki; Zhang, Xiangkai; Kuroki, Hiroshi

    2015-05-01

    To date, there have been few studies on how temperature affects the phenotype and metabolism of human chondrocytes. Thus, the purpose of this study was to elucidate the effects of culture temperature on chondrocyte redifferentiation and extracellular matrix (ECM) formation using dedifferentiated mature human chondrocytes in vitro. Dedifferentiated chondrocytes were cultured in a pellet culture system for up to 21 days. The pellets were randomly divided into three groups with different culture temperature (32, 37, and 41°C). Chondrocyte redifferentiation and ECM formation were evaluated by wet weight, messenger ribonucleic acid (mRNA), histological, and biochemical analyses. The results showed that the wet weight and the mRNA expressions of collagen type II A1 and cartilage oligomeric matrix protein at 37°C were higher than the corresponding values at 32°C. The histological and biochemical analyses revealed that the syntheses of type II collagen and proteoglycan were promoted at 37°C compared to those at 32°C, whereas they were considerably inhibited at 41°C. In conclusion, the results obtained herein indicated that temperature affects chondrocyte redifferentiation and ECM formation, and modulation of temperature might thus represent an advantageous means to regulate the phenotype and biosynthetic activity of chondrocytes. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  12. Bioprinting of 3D Tissue Models Using Decellularized Extracellular Matrix Bioink.

    PubMed

    Pati, Falguni; Cho, Dong-Woo

    2017-01-01

    Bioprinting provides an exciting opportunity to print and pattern all the components that make up a tissue-cells and extracellular matrix (ECM) material-in three dimensions (3D) to generate tissue analogues. A large number of materials have been used for making bioinks; however, majority of them cannot represent the complexity of natural ECM and thus are unable to reconstitute the intrinsic cellular morphologies and functions. We present here a method for making of bioink from decellularized extracellular matrices (dECMs) and a protocol for bioprinting of cell-laden constructs with this novel bioink. The dECM bioink is capable of providing an optimized microenvironment that is conducive to the growth of 3D structured tissue. We have prepared bioinks from different tissues, including adipose, cartilage and heart tissues and achieved high cell viability and functionality of the bioprinted tissue structures using our novel bioink.

  13. Why regenerative medicine needs an extracellular matrix.

    PubMed

    Prestwich, Glenn D; Healy, Kevin E

    2015-01-01

    Regenerative medicine is now coming of age. Many attempts at cell therapy have failed to show significant efficacy, and the umbrella term 'stem cell therapy' is perceived in some quarters as hype or just expensive and unnecessary medical tourism. Here we present a short editorial in three parts. First, we examine the importance of using a semisynthetic extracellular matrix (ECM) mimetic, or sECM, to deliver and retain therapeutic cells at the site of administration. Second, we describe one approach in which biophysical and biochemical properties are tailored to each tissue type, which we call "design for optimal functionality." Third, we describe an alternative approach to sECM design and implementation, called "design for simplicity," in which a deconstructed, minimalist sECM is employed and biology is allowed to perform the customization in situ. We opine that an sECM, whether minimal or instructive, is an essential contributor to improve the outcomes of cell-based therapies.

  14. The ameloblastin extracellular matrix molecule enhances bone fracture resistance and promotes rapid bone fracture healing.

    PubMed

    Lu, Xuanyu; Li, Wenjin; Fukumoto, Satoshi; Yamada, Yoshihiko; Evans, Carla A; Diekwisch, Tom; Luan, Xianghong

    2016-01-01

    The extracellular matrix (ECM) provides structural support, cell migration anchorage, cell differentiation cues, and fine-tuned cell proliferation signals during all stages of bone fracture healing, including cartilaginous callus formation, callus remodeling, and bony bridging of the fracture gap. In the present study we have defined the role of the extracellular matrix protein ameloblastin (AMBN) in fracture resistance and fracture healing of mouse long bones. To this end, long bones from WT and AMBN(Δ5-6) truncation model mice were subjected to biomechanical analysis, fracture healing assays, and stem cell colony formation comparisons. The effect of exogenous AMBN addition to fracture sites was also determined. Our data indicate that lack of a functional AMBN in the bone matrix resulted in 31% decreased femur bone mass and 40% reduced energy to failure. On a cellular level, AMBN function inhibition diminished the proliferative capacity of fracture repair callus cells, as evidenced by a 58% reduction in PCNA and a 40% reduction in Cyclin D1 gene expression, as well as PCNA immunohistochemistry. In terms of fracture healing, AMBN truncation was associated with an enhanced and prolonged chondrogenic phase, resulting in delayed mineralized tissue gene expression and delayed ossification of the fracture repair callus. Underscoring a role of AMBN in fracture healing, there was a 6.9-fold increase in AMBN expression at the fracture site one week after fracture, and distinct AMBN immunolabeling in the fracture gap. Finally, application of exogenous AMBN protein to bone fracture sites accelerated callus formation and bone fracture healing (33% increase in bone volume and 19% increase in bone mineral density), validating the findings of our AMBN loss of function studies. Together, these data demonstrate the functional importance of the AMBN extracellular matrix protein in bone fracture prevention and rapid fracture healing. Copyright © 2016 International Society of

  15. The Ameloblastin extracellular matrix molecule enhances bone fracture resistance and promotes rapid bone fracture healing

    PubMed Central

    Lu, Xuanyu; Li, Wenjin; Fukumoto, Satoshi; Yamada, Yoshihiko; Evans, Carla; Diekwisch, Thomas G.H.; Luan, Xianghong

    2016-01-01

    The extracellular matrix (ECM) provides structural support, cell migration anchorage, cell differentiation cues, and fine-tuned cell proliferation signals during all stages of bone fracture healing, including cartilaginous callus formation, callus remodeling, and bony bridging of the fracture gap. In the present study we have defined the role of the extracellular matrix protein ameloblastin (AMBN) in fracture resistance and fracture healing of mouse long bones. To this end, long bones from WT and AMBNΔ5-6 truncation model mice were subjected to biomechanical analysis, fracture healing assays, and stem cell colony formation comparisons. The effect of exogenous AMBN addition to fracture sites was also determined. Our data indicate that lack of a functional AMBN in the bone matrix resulted in 31% decreased femur bone mass and 40% reduced energy to failure. On a cellular level, AMBN function inhibition diminished the proliferative capacity of fracture repair callus cells, as evidenced by a 58% reduction in PCNA and a 40% reduction in Cyclin D1 gene expression, as well as PCNA immunohistochemistry. In terms of fracture healing, AMBN truncation was associated with an enhanced and prolonged chondrogenic phase, resulting in delayed mineralized tissue gene expression and delayed ossification of the fracture repair callus. Underscoring a role of AMBN in fracture healing, there was a 6.9-fold increase in AMBN expression at the fracture site one week after fracture, and distinct AMBN immunolabeling in the fracture gap. Finally, application of exogenous AMBN protein to bone fracture sites accelerated callus formation and bone fracture healing (33% increase in bone volume and 19% increase in bone mineral density), validating the findings of our AMBN loss of function studies. Together, these data demonstrate the functional importance of the AMBN extracellular matrix protein in bone fracture prevention and rapid fracture healing. PMID:26899203

  16. Proteolytic processing of lysyl oxidase-like-2 in the extracellular matrix is required for crosslinking of basement membrane collagen IV.

    PubMed

    López-Jiménez, Alberto J; Basak, Trayambak; Vanacore, Roberto M

    2017-10-13

    Lysyl oxidase-like-2 (LOXL2) is an enzyme secreted into the extracellular matrix that crosslinks collagens by mediating oxidative deamination of lysine residues. Our previous work demonstrated that this enzyme crosslinks the 7S domain, a structural domain that stabilizes collagen IV scaffolds in the basement membrane. Despite its relevant role in extracellular matrix biosynthesis, little is known about the structural requirements of LOXL2 that enable collagen IV crosslinking. In this study, we demonstrate that LOXL2 is processed extracellularly by serine proteases, generating a 65-kDa form lacking the first two scavenger receptor cysteine-rich domains. Site-specific mutagenesis to prevent proteolytic processing generated a full-length enzyme that is active in vitro toward a soluble substrate, but fails to crosslink insoluble collagen IV within the extracellular matrix. In contrast, the processed form of LOXL2 binds to collagen IV and crosslinks the 7S domain. Together, our data demonstrate that proteolytic processing is an important event that allows LOXL2-mediated crosslinking of basement membrane collagen IV. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Extracellular calmodulin regulates growth and cAMP-mediated chemotaxis in Dictyostelium discoideum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Day, Danton H., E-mail: danton.oday@utoronto.ca; Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd. N., Mississauga, Ontario, Canada L5L 1C6; Huber, Robert J.

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Extracellular calmodulin is present throughout growth and development in Dictyostelium. Black-Right-Pointing-Pointer Extracellular calmodulin localizes within the ECM during development. Black-Right-Pointing-Pointer Extracellular calmodulin inhibits cell proliferation and increases chemotaxis. Black-Right-Pointing-Pointer Extracellular calmodulin exists in eukaryotic microbes. Black-Right-Pointing-Pointer Extracellular calmodulin may be functionally as important as intracellular calmodulin. -- Abstract: The existence of extracellular calmodulin (CaM) has had a long and controversial history. CaM is a ubiquitous calcium-binding protein that has been found in every eukaryotic cell system. Calcium-free apo-CaM and Ca{sup 2+}/CaM exert their effects by binding to and regulating the activity of CaM-binding proteins (CaMBPs). Most of themore » research done to date on CaM and its CaMBPs has focused on their intracellular functions. The presence of extracellular CaM is well established in a number of plants where it functions in proliferation, cell wall regeneration, gene regulation and germination. While CaM has been detected extracellularly in several animal species, including frog, rat, rabbit and human, its extracellular localization and functions are less well established. In contrast the study of extracellular CaM in eukaryotic microbes remains to be done. Here we show that CaM is constitutively expressed and secreted throughout asexual development in Dictyostelium where the presence of extracellular CaM dose-dependently inhibits cell proliferation but increases cAMP mediated chemotaxis. During development, extracellular CaM localizes within the slime sheath where it coexists with at least one CaMBP, the matricellular CaM-binding protein CyrA. Coupled with previous research, this work provides direct evidence for the existence of extracellular CaM in the Dictyostelium and provides insight into its functions in this model

  18. Hypoxia and the extracellular matrix: drivers of tumour metastasis

    PubMed Central

    Gilkes, Daniele M.; Semenza, Gregg L.; Wirtz, Denis

    2014-01-01

    Of the deaths attributed to cancer, 90% are due to metastasis, and treatments that prevent or cure metastasis remain elusive. Emerging data indicate that hypoxia and the extracellular matrix (ECM) might have crucial roles in metastasis. During tumour evolution, changes in the composition and the overall content of the ECM reflect both its biophysical and biological properties and these strongly influence tumour and stromal cell properties, such as proliferation and motility. Originally thought of as independent contributors to metastatic spread, recent studies have established a direct link between hypoxia and the composition and the organization of the ECM, which suggests a new model in which multiple microenvironmental signals might converge to synergistically influence metastatic outcome. PMID:24827502

  19. A role for intracellular and extracellular DEK in regulating hematopoiesis.

    PubMed

    Capitano, Maegan L; Broxmeyer, Hal E

    2017-07-01

    Hematopoietic stem/progenitor cell fate decision during hematopoiesis is regulated by intracellular and extracellular signals such as transcription factors, growth factors, and cell-to-cell interactions. In this review, we explore the function of DEK, a nuclear phosphoprotein, on gene regulation. We also examine how DEK is secreted and internalized by cells, and discuss how both endogenous and extracellular DEK regulates hematopoiesis. Finally, we explore what currently is known about the regulation of DEK during inflammation. DEK negatively regulates the proliferation of early myeloid progenitor cells but has a positive effect on the differentiation of mature myeloid cells. Inflammation regulates intracellular DEK concentrations with inflammatory stimuli enhancing DEK expression. Inflammation-induced nuclear factor-kappa B activation is regulated by DEK, resulting in changes in the production of other inflammatory molecules such as IL-8. Inflammatory stimuli in turn regulates DEK secretion by cells of hematopoietic origin. However, how inflammation-induced expression and secretion of DEK regulates hematopoiesis remains unknown. Understanding how DEK regulates hematopoiesis under both homeostatic and inflammatory conditions may lead to a better understanding of the biology of HSCs and HPCs. Furthering our knowledge of the regulation of hematopoiesis will ultimately lead to new therapeutics that may increase the efficacy of hematopoietic stem cell transplantation.

  20. Force-Induced Unfolding of Fibronectin in the Extracellular Matrix of Living Cells

    PubMed Central

    Smith, Michael L; Gourdon, Delphine; Little, William C; Kubow, Kristopher E; Eguiluz, R. Andresen; Luna-Morris, Sheila; Vogel, Viola

    2007-01-01

    Whether mechanically unfolded fibronectin (Fn) is present within native extracellular matrix fibrils is controversial. Fn extensibility under the influence of cell traction forces has been proposed to originate either from the force-induced lengthening of an initially compact, folded quaternary structure as is found in solution (quaternary structure model, where the dimeric arms of Fn cross each other), or from the force-induced unfolding of type III modules (unfolding model). Clarification of this issue is central to our understanding of the structural arrangement of Fn within fibrils, the mechanism of fibrillogenesis, and whether cryptic sites, which are exposed by partial protein unfolding, can be exposed by cell-derived force. In order to differentiate between these two models, two fluorescence resonance energy transfer schemes to label plasma Fn were applied, with sensitivity to either compact-to-extended conformation (arm separation) without loss of secondary structure or compact-to-unfolded conformation. Fluorescence resonance energy transfer studies revealed that a significant fraction of fibrillar Fn within a three-dimensional human fibroblast matrix is partially unfolded. Complete relaxation of Fn fibrils led to a refolding of Fn. The compactly folded quaternary structure with crossed Fn arms, however, was never detected within extracellular matrix fibrils. We conclude that the resting state of Fn fibrils does not contain Fn molecules with crossed-over arms, and that the several-fold extensibility of Fn fibrils involves the unfolding of type III modules. This could imply that Fn might play a significant role in mechanotransduction processes. PMID:17914904

  1. A fast and mild decellularization protocol for obtaining extracellular matrix.

    PubMed

    Mirzarafie, Ariana; Grainger, Rhian K; Thomas, Ben; Bains, William; Ustok, Fatma I; Lowe, Chris R

    2014-04-01

    Degradation of extracellular matrix (ECM) function with age is a major cause of loss of tissue function with age that we would wish to reverse. Tissue engineering to provide replacement tissue requires an ECM-mimicking scaffold for cell organization. The standard protocols for achieving this take 10 days and include steps that may change the protein structure of the ECM. Here we describe a much shorter protocol for decellularizing chicken muscle, skin, and tendon samples that achieves the same efficiency as the original protocol without protein cross-link interference. Our protocol can be completed in 72 hr.

  2. Detection of abnormal extracellular matrix in the interstitium of regenerating renal tubules.

    PubMed

    Minuth, Will W; Denk, Lucia

    2014-12-15

    Stem/progenitor cells are promising candidates for the regeneration of parenchyma in acute and chronic renal failure. However, recent data exhibit that survival of stem/progenitor cells after implantation in diseased renal parenchyma is restricted. To elaborate basic parameters improving survival, cell seeding was simulated under advanced in vitro conditions. After isolation, renal stem/progenitor cells were mounted in a polyester interstitium for perfusion culture. During generation of tubules, chemically defined CO2 Independent Medium or Leibovitz's L-15 Medium was applied. Specimens were then fixed for transmission electron microscopy to analyze morphological features in generated tubules. Fixation in conventional glutaraldehyde (GA) solution shows development of tubules each exhibiting a polarized epithelium, an intact basal lamina and an inconspicuous interstitium. In contrast, special fixation of specimens in GA solution containing cupromeronic blue, ruthenium red or tannic acid unveils previously not visible extracellular matrix. Control experiments elucidate that a comparable extracellular matrix is not present in the interstitium of the matured kidney. Thus, generation of renal tubules in combination with advanced fixation of specimens for electron microscopy demonstrates that development of abnormal features in the newly developed interstitium has to be considered, when repair of renal parenchyma is performed by implantation of stem/progenitor cells.

  3. Cytoskeletal filament assembly and the control of cell spreading and function by extracellular matrix

    NASA Technical Reports Server (NTRS)

    Mooney, D. J.; Langer, R.; Ingber, D. E.

    1995-01-01

    This study was undertaken to analyze how cell binding to extracellular matrix produces changes in cell shape. We focused on the initial process of cell spreading that follows cell attachment to matrix and, thus, cell 'shape' changes are defined here in terms of alterations in projected cell areas, as determined by computerized image analysis. Cell spreading kinetics and changes in microtubule and actin microfilament mass were simultaneously quantitated in hepatocytes plated on different extracellular matrix substrata. The initial rate of cell spreading was highly dependent on the matrix coating density and decreased from 740 microns 2/h to 50 microns 2/h as the coating density was lowered from 1000 to 1 ng/cm2. At approximately 4 to 6 hours after plating, this initial rapid spreading rate slowed and became independent of the matrix density regardless of whether laminin, fibronectin, type I collagen or type IV collagen was used for cell attachment. Analysis of F-actin mass revealed that cell adhesion to extracellular matrix resulted in a 20-fold increase in polymerized actin within 30 minutes after plating, before any significant change in cell shape was observed. This was followed by a phase of actin microfilament disassembly which correlated with the most rapid phase of cell extension and ended at about 6 hours; F-actin mass remained relatively constant during the slow matrix-independent spreading phase. Microtubule mass increased more slowly in spreading cells, peaking at 4 hours, the time at which the transition between rapid and slow spreading rates was observed. However, inhibition of this early rise in microtubule mass using either nocodazole or cycloheximide did not prevent this transition. Use of cytochalasin D revealed that microfilament integrity was absolutely required for hepatocyte spreading whereas interference with microtubule assembly (using nocodazole or taxol) or protein synthesis (using cycloheximide) only partially suppressed cell extension. In

  4. Vibrio cholerae VpsT Regulates Matrix Production and Motility by Directly Sensing Cyclic di-GMP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasteva, P.; Fong, J; Shikuma, N

    2010-01-01

    Microorganisms can switch from a planktonic, free-swimming life-style to a sessile, colonial state, called a biofilm, which confers resistance to environmental stress. Conversion between the motile and biofilm life-styles has been attributed to increased levels of the prokaryotic second messenger cyclic di-guanosine monophosphate (c-di-GMP), yet the signaling mechanisms mediating such a global switch are poorly understood. Here we show that the transcriptional regulator VpsT from Vibrio cholerae directly senses c-di-GMP to inversely control extracellular matrix production and motility, which identifies VpsT as a master regulator for biofilm formation. Rather than being regulated by phosphorylation, VpsT undergoes a change in oligomerizationmore » on c-di-GMP binding.« less

  5. Collagen and related extracellular matrix proteins in atherosclerotic plaque development.

    PubMed

    Shami, Annelie; Gonçalves, Isabel; Hultgårdh-Nilsson, Anna

    2014-10-01

    The structure, composition and turnover of the extracellular matrix (ECM) as well as cell-matrix interactions are crucial in the developing atherosclerotic plaque. There is a need for further insight into specific proteins in the ECM and their functions in the developing plaque, and during the last few years a number of publications have highlighted this very important field of research. These novel findings will be addressed in the present review. This review covers literature focused on collagen and ECM proteins interacting with collagen, and what their roles may be in plaque development. Acute myocardial infarction and stroke are common diseases that cause disability and mortality, and the underlying mechanism is often the rupture of a vulnerable atherosclerotic plaque. The vascular ECM and the tissue repair in the atherosclerotic lesion are important players in plaque progression. Understanding how specific proteins in the ECM interact with cells in the plaque and affect the fate of the plaque can lead to new treatments for cardiovascular disease.

  6. Cartilaginous extracellular matrix-modified chitosan hydrogels for cartilage tissue engineering.

    PubMed

    Choi, Bogyu; Kim, Soyon; Lin, Brian; Wu, Benjamin M; Lee, Min

    2014-11-26

    Cartilaginous extracellular matrix (ECM) components such as type-II collagen (Col II) and chondroitin sulfate (CS) play a crucial role in chondrogenesis. However, direct clinical use of natural Col II or CS as scaffolds for cartilage tissue engineering is limited by their instability and rapid enzymatic degradation. Here, we investigate the incorporation of Col II and CS into injectable chitosan hydrogels designed to gel upon initiation by exposure to visible blue light (VBL) in the presence of riboflavin. Unmodified chitosan hydrogel supported proliferation and deposition of cartilaginous ECM by encapsulated chondrocytes and mesenchymal stem cells. The incorporation of native Col II or CS into chitosan hydrogels further increased chondrogenesis. The incorporation of Col II, in particular, was found to be responsible for the enhanced cellular condensation and chondrogenesis observed in modified hydrogels. This was mediated by integrin α10 binding to Col II, increasing cell-matrix adhesion. These findings demonstrate the potential of cartilage ECM-modified chitosan hydrogels as biomaterials to promote cartilage regeneration.

  7. Streptococcus pyogenes degrades extracellular matrix in chondrocytes via MMP-13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakurai, Atsuo; Okahashi, Nobuo; Maruyama, Fumito

    2008-08-29

    Group A streptococcus (GAS) causes a wide range of human diseases, including bacterial arthritis. The pathogenesis of arthritis is characterized by synovial proliferation and the destruction of cartilage and subchondral bone in joints. We report here that GAS strain JRS4 invaded a chondrogenic cell line ATDC5 and induced the degradation of the extracellular matrix (ECM), whereas an isogenic mutant of JRS4 lacking a fibronectin-binding protein, SAM1, failed to invade the chondrocytes or degrade the ECM. Reverse transcription-PCR and Western blot analysis revealed that the expression of matrix metalloproteinase (MMP)-13 was strongly elevated during the infection with GAS. A reporter assaymore » revealed that the activation of the AP-1 transcription factor and the phosphorylation of c-Jun terminal kinase participated in MMP-13 expression. These results suggest that MMP-13 plays an important role in the destruction of infected joints during the development of septic arthritis.« less

  8. Domain organizations of modular extracellular matrix proteins and their evolution.

    PubMed

    Engel, J

    1996-11-01

    Multidomain proteins which are composed of modular units are a rather recent invention of evolution. Domains are defined as autonomously folding regions of a protein, and many of them are similar in sequence and structure, indicating common ancestry. Their modular nature is emphasized by frequent repetitions in identical or in different proteins and by a large number of different combinations with other domains. The extracellular matrix is perhaps the largest biological system composed of modular mosaic proteins, and its astonishing complexity and diversity are based on them. A cluster of minireviews on modular proteins is being published in Matrix Biology. These deal with the evolution of modular proteins, the three-dimensional structure of domains and the ways in which these interact in a multidomain protein. They discuss structure-function relationships in calcium binding domains, collagen helices, alpha-helical coiled-coil domains and C-lectins. The present minireview is focused on some general aspects and serves as an introduction to the cluster.

  9. A major protein component of the Bacillus subtilis biofilm matrix.

    PubMed

    Branda, Steven S; Chu, Frances; Kearns, Daniel B; Losick, Richard; Kolter, Roberto

    2006-02-01

    Microbes construct structurally complex multicellular communities (biofilms) through production of an extracellular matrix. Here we present evidence from scanning electron microscopy showing that a wild strain of the Gram positive bacterium Bacillus subtilis builds such a matrix. Genetic, biochemical and cytological evidence indicates that the matrix is composed predominantly of a protein component, TasA, and an exopolysaccharide component. The absence of TasA or the exopolysaccharide resulted in a residual matrix, while the absence of both components led to complete failure to form complex multicellular communities. Extracellular complementation experiments revealed that a functional matrix can be assembled even when TasA and the exopolysaccharide are produced by different cells, reinforcing the view that the components contribute to matrix formation in an extracellular manner. Having defined the major components of the biofilm matrix and the control of their synthesis by the global regulator SinR, we present a working model for how B. subtilis switches between nomadic and sedentary lifestyles.

  10. Non-human Primate and Rat Cardiac Fibroblasts show similar Extracellular Matrix-related and Cellular Adhesion Gene Responses to Substance P

    PubMed Central

    Meléndez, Giselle C.; Manteufel, Edward J.; Dehlin, Heather M.; Register, Thomas C.; Levick, Scott P.

    2015-01-01

    Background The sensory nerve neuropeptide substance P (SP) regulates cardiac fibrosis in rodents under pressure overload conditions. Interestingly, SP induces transient increase expression of specific genes in isolated rat cardiac fibroblasts, without resultant changes in cell function. This suggests that SP ‘primes’ fibroblasts, but does not directly activate them. We investigated whether these unusual findings are specific to rodent fibroblasts or are translatable to a larger animal model more closely related to humans. Methods We compared the effects of SP on genes associated with extracellular matrix (ECM) regulation, cell-cell adhesion, cell-matrix adhesion and ECM in cardiac fibroblasts isolated from a non-human primate and Sprague-Dawley rats. Results We found that rodent and non-human primate cardiac fibroblasts showed similar ECM regulation and cell adhesion gene expression responses to SP. There were, however, large discrepancies in ECM genes which did not result in collagen or laminin synthesis in rat or non-human primate fibroblasts in response to SP. Conclusions This study further supports the notion that SP serves as a ‘primer’ for fibroblasts rather than initiating direct effects and suggests that rodent fibroblasts are a suitable model for studying gene and functional responses to SP in the absence of human or non-human primate fibroblasts. PMID:25550118

  11. CELLULAR CONTROL OF CONNECTIVE TISSUE MATRIX TENSION†

    PubMed Central

    Langevin, Helene M.; Nedergaard, Maiken; Howe, Alan

    2013-01-01

    The biomechanical behavior of connective tissue in response to stretching is generally attributed to the molecular composition and organization of its extracellular matrix. It also is becoming apparent that fibroblasts play an active role in regulating connective tissue tension. In response to static stretching of the tissue, fibroblasts expand within minutes by actively remodeling their cytoskeleton. This dynamic change in fibroblast shape contributes to the drop in tissue tension that occurs during viscoelastic relaxation. We propose that this response of fibroblasts plays a role in regulating extracellular fluid flow into the tissue, and protects against swelling when the matrix is stretched. This article reviews the evidence supporting possible mechanisms underlying this response including autocrine purinergic signaling. We also discuss fibroblast regulation of connective tissue tension with respect to lymphatic flow, immune function and cancer. PMID:23444198

  12. Cellular control of connective tissue matrix tension.

    PubMed

    Langevin, Helene M; Nedergaard, Maiken; Howe, Alan K

    2013-08-01

    The biomechanical behavior of connective tissue in response to stretching is generally attributed to the molecular composition and organization of its extracellular matrix. It also is becoming apparent that fibroblasts play an active role in regulating connective tissue tension. In response to static stretching of the tissue, fibroblasts expand within minutes by actively remodeling their cytoskeleton. This dynamic change in fibroblast shape contributes to the drop in tissue tension that occurs during viscoelastic relaxation. We propose that this response of fibroblasts plays a role in regulating extracellular fluid flow into the tissue, and protects against swelling when the matrix is stretched. This article reviews the evidence supporting possible mechanisms underlying this response including autocrine purinergic signaling. We also discuss fibroblast regulation of connective tissue tension with respect to lymphatic flow, immune function, and cancer. Copyright © 2013 Wiley Periodicals, Inc.

  13. Nonlinear mechanical response of the extracellular matrix: learning from articular cartilage

    NASA Astrophysics Data System (ADS)

    Kearns, Sarah; Das, Moumita

    2015-03-01

    We study the mechanical structure-function relations in the extracellular matrix (ECM) with focus on nonlinear shear and compression response. As a model system, our study focuses on the ECM in articular cartilage tissue which has two major mechanobiological components: a network of the biopolymer collagen that acts as a stiff, reinforcing matrix, and a flexible aggrecan network that facilitates deformability. We model this system as a double network hydrogel made of interpenetrating networks of stiff and flexible biopolymers respectively. We study the linear and nonlinear mechanical response of the model ECM to shear and compression forces using a combination of rigidity percolation theory and energy minimization approaches. Our results may provide useful insights into the design principles of the ECM as well as biomimetic hydrogels that are mechanically robust and can, at the same time, easily adapt to cues in their surroundings.

  14. Soil organic matter and the extracellular microbial matrix show contrasting responses to C and N availability

    PubMed Central

    Redmile-Gordon, M.A.; Evershed, R.P.; Hirsch, P.R.; White, R.P.; Goulding, K.W.T.

    2015-01-01

    An emerging paradigm in soil science suggests microbes can perform ‘N mining’ from recalcitrant soil organic matter (SOM) in conditions of low N availability. However, this requires the production of extracellular structures rich in N (including enzymes and structural components) and thus defies stoichiometric expectation. We set out to extract newly synthesised peptides from the extracellular matrix in soil and compare the amino acid (AA) profiles, N incorporation and AA dynamics in response to labile inputs of contrasting C/N ratio. Glycerol was added both with and without an inorganic source of N (10% 15N labelled NH4NO3) to a soil already containing a large pool of refractory SOM and incubated for 10 days. The resulting total soil peptide (TSP) and extracellular pools were compared using colorimetric methods, gas chromatography, and isotope ratio mass spectrometry. N isotope compositions showed that the extracellular polymeric substance (EPS) contained a greater proportion of products formed de novo than did TSP, with hydrophobic EPS-AAs (leucine, isoleucine, phenylalanine, hydroxyproline and tyrosine) deriving substantially more N from the inorganic source provided. Quantitative comparison between extracts showed that the EPS contained greater relative proportions of alanine, glycine, proline, phenylalanine and tyrosine. The greatest increases in EPS-peptide and EPS-polysaccharide concentrations occurred at the highest C/N ratios. All EPS-AAs responded similarly to treatment whereas the responses of TSP were more complex. The results suggest that extracellular investment of N (as EPS peptides) is a microbial survival mechanism in conditions of low N/high C which, from an evolutionary perspective, must ultimately lead to the tendency for increased N returns to the microbial biomass. A conceptual model is proposed that describes the dynamics of the extracellular matrix in response to the C/N ratio of labile inputs. PMID:26339106

  15. In-depth proteomic analysis of shell matrix proteins of Pinctada fucata

    PubMed Central

    Liu, Chuang; Li, Shiguo; Kong, Jingjing; Liu, Yangjia; Wang, Tianpeng; Xie, Liping; Zhang, Rongqing

    2015-01-01

    The shells of pearl oysters, Pinctada fucata, are composed of calcite and aragonite and possess remarkable mechanical properties. These shells are formed under the regulation of macromolecules, especially shell matrix proteins (SMPs). Identification of diverse SMPs will lay a foundation for understanding biomineralization process. Here, we identified 72 unique SMPs using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of proteins extracted from the shells of P. fucata combined with a draft genome. Of 72 SMPs, 17 SMPs are related to both the prismatic and nacreous layers. Moreover, according to the diverse domains found in the SMPs, we hypothesize that in addition to controlling CaCO3 crystallization and crystal organization, these proteins may potentially regulate the extracellular microenvironment and communicate between cells and the extracellular matrix (ECM). Immunohistological localization techniques identify the SMPs in the mantle, shells and synthetic calcite. Together, these proteomic data increase the repertoires of the shell matrix proteins in P. fucata and suggest that shell formation in P. fucata may involve tight regulation of cellular activities and the extracellular microenvironment. PMID:26608573

  16. Laminin and Matrix metalloproteinase 11 regulate Fibronectin levels in the zebrafish myotendinous junction.

    PubMed

    Jenkins, Molly H; Alrowaished, Sarah S; Goody, Michelle F; Crawford, Bryan D; Henry, Clarissa A

    2016-01-01

    Remodeling of the extracellular matrix (ECM) regulates cell adhesion as well as signaling between cells and their microenvironment. Despite the importance of tightly regulated ECM remodeling for normal muscle development and function, mechanisms underlying ECM remodeling in vivo remain elusive. One excellent paradigm in which to study ECM remodeling in vivo is morphogenesis of the myotendinous junction (MTJ) during zebrafish skeletal muscle development. During MTJ development, there are dramatic shifts in the primary components comprising the MTJ matrix. One such shift involves the replacement of Fibronectin (Fn)-rich matrix, which is essential for both somite and early muscle development, with laminin-rich matrix essential for normal function of the myotome. Here, we investigate the mechanism underlying this transition. We show that laminin polymerization indirectly promotes Fn downregulation at the MTJ, via a matrix metalloproteinase 11 (Mmp11)-dependent mechanism. Laminin deposition and organization is required for localization of Mmp11 to the MTJ, where Mmp11 is both necessary and sufficient for Fn downregulation in vivo. Furthermore, reduction of residual Mmp11 in laminin mutants promotes a Fn-rich MTJ that partially rescues skeletal muscle architecture. These results identify a mechanism for Fn downregulation at the MTJ, highlight crosstalk between laminin and Fn, and identify a new in vivo function for Mmp11. Taken together, our data demonstrate a novel signaling pathway mediating Fn downregulation. Our data revealing new regulatory mechanisms that guide ECM remodeling during morphogenesis in vivo may inform pathological conditions in which Fn is dysregulated.

  17. Cauda equina-derived extracellular matrix for fabrication of nanostructured hybrid scaffolds applied to neural tissue engineering.

    PubMed

    Wen, Xiaoxiao; Wang, Yu; Guo, Zhiyuan; Meng, Haoye; Huang, Jingxiang; Zhang, Li; Zhao, Bin; Zhao, Qing; Zheng, Yudong; Peng, Jiang

    2015-03-01

    Extracellular matrix (ECM) components have become important candidate materials for use as neural scaffolds for neural tissue engineering. In the current study, we prepared cauda equina-derived ECM materials for the production of scaffolds. Natural porcine cauda equina was decellularized using Triton X-100 and sodium deoxycholate, shattered physically, and made into a suspension by differential centrifugation. The decellularization procedure resulted in the removal of >94% of the nuclear material and preserved the extracellular collagen and sulfated glycosaminoglycan. Immunofluorescent staining confirmed the presence of collagen type I, laminin, and fibronectin in the ECM. The cauda equine-derived ECM was blended with poly(l-lactide-co-glycolide) (PLGA) to fabricate nanostructured scaffolds using electrospinning. The incorporation of the ECM increased the hydrophilicity of the scaffolds. Fourier transform infrared spectroscopy and multiphoton-induced autofluorescence images showed the presence of the ECM in the scaffolds. ECM/PLGA scaffolds were beneficial for the survival of Schwann cells compared with scaffolds consisting of PLGA alone, and the aligned fibers could regulate cell morphologic features by modulating cellular orientation. Axons in the dorsal root ganglia explants extended to a greater extent along ECM/PLGA compared with PLGA-alone fibers. The cauda equina ECM might be a promising material for forming scaffolds for use in neural tissue engineering.

  18. Nanoscale viscoelasticity of extracellular matrix proteins in soft tissues: A multiscale approach.

    PubMed

    Miri, Amir K; Heris, Hossein K; Mongeau, Luc; Javid, Farhad

    2014-02-01

    It is hypothesized that the bulk viscoelasticity of soft tissues is determined by two length-scale-dependent mechanisms: the time-dependent response of the extracellular matrix (ECM) proteins at the nanometer scale and the biophysical interactions between the ECM solid structure and interstitial fluid at the micrometer scale. The latter is governed by poroelasticity theory assuming free motion of the interstitial fluid within the porous ECM structure. In a recent study (Heris, H.K., Miri, A.K., Tripathy, U., Barthelat, F., Mongeau, L., 2013. J. Mech. Behav. Biomed. Mater.), atomic force microscopy was used to measure the response of porcine vocal folds to a creep loading and a 50-nm sinusoidal oscillation. A constitutive model was calibrated and verified using a finite element model to accurately predict the nanoscale viscoelastic moduli of ECM. A generally good correlation was obtained between the predicted variation of the viscoelastic moduli with depth and that of hyaluronic acids in vocal fold tissue. We conclude that hyaluronic acids may regulate vocal fold viscoelasticity. The proposed methodology offers a characterization tool for biomaterials used in vocal fold augmentations. © 2013 Elsevier Ltd. All rights reserved.

  19. The extracellular matrix: A dynamic niche in cancer progression

    PubMed Central

    Lu, Pengfei; Weaver, Valerie M.

    2012-01-01

    The local microenvironment, or niche, of a cancer cell plays important roles in cancer development. A major component of the niche is the extracellular matrix (ECM), a complex network of macromolecules with distinctive physical, biochemical, and biomechanical properties. Although tightly controlled during embryonic development and organ homeostasis, the ECM is commonly deregulated and becomes disorganized in diseases such as cancer. Abnormal ECM affects cancer progression by directly promoting cellular transformation and metastasis. Importantly, however, ECM anomalies also deregulate behavior of stromal cells, facilitate tumor-associated angiogenesis and inflammation, and thus lead to generation of a tumorigenic microenvironment. Understanding how ECM composition and topography are maintained and how their deregulation influences cancer progression may help develop new therapeutic interventions by targeting the tumor niche. PMID:22351925

  20. Expression of extracellular matrix metalloproteinase inducer in odontogenic cysts.

    PubMed

    Ali, Mohammad Abdulhadi Abbas

    2008-08-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) is known to induce matrix metalloproteinase (MMP) production. The expression of EMMPRIN in odontogenic cysts has not been previously studied. This study was done to determine the presence and the variability of EMMPRIN expression in various types of odontogenic cysts. An immunohistochemical study using a polyclonal anti-EMMPRIN antibody was done using 48 odontogenic cyst cases: 13 odontogenic keratocysts (OKCs), 18 dentigerous cysts (DCs), and 17 periapical cysts (PAs). Twelve cases of normal dental follicles (DFs) were also included in this study for comparison. EMMPRIN immunoreactivity was detected in all of the cysts and DFs studied. In odontogenic cysts, EMMPRIN immunoreactivity was generally higher in basal cells than in suprabasal cells. The overall EMMPRIN expression in the epithelial lining of the 3 different types of odontogenic cyst was significantly higher than in the DFs. Overall EMMPRIN expression was also found to be significantly higher in the epithelial lining of OKCs than in the other types of cysts. This study confirmed that EMMPRIN is present in odontogenic cysts and DFs. The higher EMMPRIN expression in OKCs suggests that it may be involved in the aggressive behavior of this type of cyst.

  1. Leptospira interrogans induces uterine inflammatory responses and abnormal expression of extracellular matrix proteins in dogs.

    PubMed

    Wang, Wei; Gao, Xuejiao; Guo, Mengyao; Zhang, Wenlong; Song, Xiaojing; Wang, Tiancheng; Zhang, Zecai; Jiang, Haichao; Cao, Yongguo; Zhang, Naisheng

    2014-10-01

    Leptospira interrogans (L. interrogans), a worldwide zoonosis, infect humans and animals. In dogs, four syndromes caused by leptospirosis have been identified: icteric, hemorrhagic, uremic (Stuttgart disease) and reproductive (abortion and premature or weak pups), and also it caused inflammation. Extracellular matrix (ECM) is a complex mixture of matrix molecules that is crucial to the reproduction. Both inflammatory response and ECM are closed relative to reproductive. The aim of this study was to clarify how L. interrogans affected the uterus of dogs, by focusing on the inflammatory responses, and ECM expression in dogs uterine tissue infected by L. interrogans. In the present study, 27 dogs were divided into 3 groups, intrauterine infusion with L. interrogans, to make uterine infection, sterile EMJH, and normal saline as a control, respectively. The uteruses were removed by surgical operation in 10, 20, and 30 days, respectively. The methods of histopathological analysis, ELISA, Western blot and qPCR were used. The results showed that L. interrogans induced significantly inflammatory responses, which were characterized by inflammatory cellular infiltration and high expression levels of tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) in uterine tissue of these dogs. Furthermore, L. interrogans strongly down-regulated the expression of ECM (collagens (CL) IV, fibronectins (FN) and laminins (LN)) in mRNA and protein levels. These data indicated that strongly inflammatory responses, and abnormal regulation of ECM might contribute to the proliferation of dogs infected by L. interrogans. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Nuclear localization of matrix metalloproteinases.

    PubMed

    Mannello, Ferdinando; Medda, Virginia

    2012-03-01

    Matrix metalloproteinases (MMPs) were originally identified as matrixin proteases that act in the extracellular matrix. Recent works have uncovered nontraditional roles for MMPs in the extracellular space as well as in the cytosol and nucleus. There is strong evidence that subspecialized and compartmentalized matrixins participate in many physiological and pathological cellular processes, in which they can act as both degradative and regulatory proteases. In this review, we discuss the transcriptional and translational control of matrixin expression, their regulation of intracellular sorting, and the structural basis of activation and inhibition. In particular, we highlight the emerging roles of various matrixin forms in diseases. The activity of matrix metalloproteinases is regulated at several levels, including enzyme activation, inhibition, complex formation and compartmentalization. Most MMPs are secreted and have their function in the extracellular environment. MMPs are also found inside cells, both in the nucleus, cytosol and organelles. The role of intracellular located MMPs is still poorly understood, although recent studies have unraveled some of their functions. The localization, activation and activity of MMPs are regulated by their interactions with other proteins, proteoglycan core proteins and / or their glycosaminoglycan chains, as well as other molecules. Complexes formed between MMPs and various molecules may also include interactions with noncatalytic sites. Such exosites are regions involved in substrate processing, localized outside the active site, and are potential binding sites of specific MMP inhibitors. Knowledge about regulation of MMP activity is essential for understanding various physiological processes and pathogenesis of diseases, as well as for the development of new MMP targeting drugs. Copyright © 2011 Elsevier GmbH. All rights reserved.

  3. Extracellular matrix remodeling and matrix metalloproteinase inhibition in visceral adipose during weight cycling in mice.

    PubMed

    Caria, Cíntia Rabelo E Paiva; Gotardo, Érica Martins Ferreira; Santos, Paola Souza; Acedo, Simone Coghetto; de Morais, Thainá Rodrigues; Ribeiro, Marcelo Lima; Gambero, Alessandra

    2017-10-15

    Extracellular matrix (ECM) remodeling is necessary for a health adipose tissue (AT) expansion and also has a role during weight loss. We investigate the ECM alteration during weight cycling (WC) in mice and the role of matrix metalloproteinases (MMPs) was assessed using GM6001, an MMP inhibitor, during weight loss (WL). Obesity was induced in mice by a high-fat diet. Obese mice were subject to caloric restriction for WL followed by reintroduction to high-fat diet for weight regain (WR), resulting in a WC protocol. In addition, mice were treated with GM6001 during WL period and the effects were observed after WR. Activity and expression of MMPs was intense during WL. MMP inhibition during WL results in inflammation and collagen content reduction. MMP inhibition during WL period interferes with the period of subsequent expansion of AT resulting in improvements in local inflammation and systemic metabolic alterations induced by obesity. Our results suggest that MMPs inhibition could be an interesting target to improve adipose tissue inflammation during WL and to support weight cyclers. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Mechanoregulatory tumor-stroma crosstalk in pancreatic cancer: Measurements of the effects of extracellular matrix mechanics on tumor growth behavior, and vice-versa, to inform therapeutics

    NASA Astrophysics Data System (ADS)

    Celli, Jonathan; Jones, Dustin; El-Hamidi, Hamid; Cramer, Gwendolyn; Hanna, William; Caide, Andrew; Jafari, Seyedehrojin

    The rheological properties of the extracellular matrix (ECM) have been shown to play key roles in regulating tumor growth behavior through mechanotranduction pathways. The role of the mechanical microenvironment may be particularly important tumors of the pancreas, noted for an abundance of rigid fibrotic stroma, implicated in therapeutic resistance. At the same time, cancer cells and their stromal partners (e.g. tumor associated fibroblasts) continually alter the mechanical microenvironment in response to extracellular physical and biochemical cues as part of a two-way mechanoregulatory dialog. Here, we describe experimental studies using 3D pancreatic cell cultures with customized mechanical properties, combined with optical microrheology to provide insight into tumor-driven matrix remodeling. Quantitative microscopy provides measurements of phenotypic changes accompanying systematic variation of ECM composition in collagen and laminin-rich basement membrane admixtures, while analysis of the trajectories of passive tracer particles embedded in ECM report dynamic changes in heterogeneity, microstructure and local shear modulus accompanying both ECM stiffening (fibrosis) processes, and ECM degradation near invading cells. We gratefully acknowledge funding from the National Cancer Institute, R00CA155045 (PI: Celli).

  5. Altered Liver Proteoglycan/Glycosaminoglycan Structure as a Manifestation of Extracellular Matrix Remodeling upon BCG-induced Granulomatosis in Mice.

    PubMed

    Kim, L B; Shkurupy, V A; Putyatina, A N

    2017-01-01

    Experimental BCG-induced granulomatosis in mice was used to study changes in the dynamics of individual liver proteoglycan components reflecting phasic extracellular matrix remodeling, determined by the host-parasite interaction and associated with granuloma development. In the early BCG-granulomatosis period, the increase in individual proteoglycan components promotes granuloma formation, providing conditions for mycobacteria adhesion to host cells, migration of phagocytic cells from circulation, and cell-cell interaction leading to granuloma development and fibrosis. Later, reduced reserve capacity of the extracellular matrix, development of interstitial fibrosis and granuloma fibrosis can lead to trophic shortage for cells within the granulomas, migration of macrophages out of them, and development of spontaneous necrosis and apoptosis typical of tuberculosis.

  6. Chondrogenic properties of collagen type XI, a component of cartilage extracellular matrix.

    PubMed

    Li, Ang; Wei, Yiyong; Hung, Clark; Vunjak-Novakovic, Gordana

    2018-08-01

    Cartilage extracellular matrix (ECM) has been used for promoting tissue engineering. However, the exact effects of ECM on chondrogenesis and the acting mechanisms are not well understood. In this study, we investigated the chondrogenic effects of cartilage ECM on human mesenchymal stem cells (MSCs) and identified the contributing molecular components. To this end, a preparation of articular cartilage ECM was supplemented to pellets of chondrogenically differentiating MSCs, pellets of human chondrocytes, and bovine articular cartilage explants to evaluate the effects on cell proliferation and the production of cartilaginous matrix. Selective enzymatic digestion and screening of ECM components were conducted to identify matrix molecules with chondrogenic properties. Cartilage ECM promoted MSC proliferation, production of cartilaginous matrix, and maturity of chondrogenic differentiation, and inhibited the hypertrophic differentiation of MSC-derived chondrocytes. Selective digestion of ECM components revealed a contributory role of collagens in promoting chondrogenesis. The screening of various collagen subtypes revealed strong chondrogenic effect of collagen type XI. Finally, collagen XI was found to promote production and inhibit degradation of cartilage matrix in human articular chondrocyte pellets and bovine articular cartilage explants. Our results indicate that cartilage ECM promotes chondrogenesis and inhibits hypertrophic differentiation in MSCs. Collagen type XI is the ECM component that has the strongest effects on enhancing the production and inhibiting the degradation of cartilage matrix. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Extracellular matrix metalloproteinase inducer (EMMPRIN) remodels the extracellular matrix through enhancing matrix metalloproteinases (MMPs) and inhibiting tissue inhibitors of MMPs expression in HPV-positive cervical cancer cells.

    PubMed

    Xu, Q; Cao, X; Pan, J; Ye, Y; Xie, Y; Ohara, N; Ji, H

    2015-01-01

    PUPOSE OF INVESTIGATION: To study the expression of extracellular matrix metalloproteinase inducer (EMMPRIN), matrix metalloproteinases (MMPs), and tissue inhibitors of MMP (TIMPs) in uterine cervical cancer cell lines in vitro. EMMPRIN, MMPs, and TIMPs expression were assessed by Western blot and real-time RT-PCR from cervical carcinoma SiHa, HeLa, and C33-A cells. EMMPRIN recombinant significantly increased MMP-2, MMP-9 protein and mRNA expression in SiHa and Hela cells, but not in C33-A cells by Western blot analysis and real-time RT-PCR. EMMPRIN recombinant significantly inhibited TIMP-1 protein and mRNA levels in SiHa and Hela cells, but not in C33-A cells. There was no difference on the TIMP-2 expression in those cells with the treatment of EMMPRIN recombinant. EMMPRIN RNAi decreased MMP-2 and MMP-9 and increased TIMP-1 expression in SiHa and HeLa cells, but not in C33-A cells. There was no change on the expression of TIMP-2 mRNA levels in SiHa, HeLa and C33-A cells transfected with siEMMPRIN. EMMPRIN may induce MMP-2 and MMP-9, and downregulate TIMP-1 in HPV-positive cervical cancer cells in vitro.

  8. Extracellular Matrix Modulation: Optimizing Skin Care and Rejuvenation Procedures.

    PubMed

    Widgerow, Alan D; Fabi, Sabrina G; Palestine, Roberta F; Rivkin, Alexander; Ortiz, Arisa; Bucay, Vivian W; Chiu, Annie; Naga, Lina; Emer, Jason; Chasan, Paul E

    2016-04-01

    Normal aging and photoaging of the skin are chronic processes that progress gradually. The extracellular matrix (ECM), constituting over 70% of the skin, is the central hub for repair and regeneration of the skin. As such, the ECM is the area where changes related to photodamage are most evident. Degradation of the ECM with fragmentation of proteins significantly affects cross talk and signaling between cells, the matrix, and its constituents. The accumulation of collagen fragments, amorphous elastin agglutinations, and abnormal cross-linkages between the collagen fragments impedes the ECM from its normal repair and regenerative capacity, which manifests as wrinkled, non-elastic skin. Similar to how the chronic wound healing process requires wound bed preparation before therapeutic intervention, treatment of chronic aging of the skin would likely benefit from a "skin bed preparation" to optimize the outcome of rejuvenation procedures and skin maintenance programs. This involves introducing agents that can combat stress-induced oxidation, proteasome dysfunction, and non-enzymatic cross linkages involved in glycation end products, to collectively modulate this damaged ECM, and upregulate neocollagenesis and elastin production. Agents of particular interest are matrikines, peptides originating from the fragmentation of matrix proteins that exhibit a wide range of biological activities. Peptides of this type (tripeptide and hexapeptide) are incorporated in ALASTIN™ Skin Nectar with TriHex™ technology (ALASTIN Skincare, Inc., Carlsbad, CA), which is designed to target ECM modulation with a goal of optimizing results following invasive and non-invasive dermal rejuvenating procedures.

  9. Leg ulcer treatment outcomes with new ovine collagen extracellular matrix dressing: a retrospective case series.

    PubMed

    Bohn, Gregory A; Gass, Kimberly

    2014-10-01

    The purpose of this study was to describe the rate of closure observed in venous leg ulcers during treatment with ovine collagen extracellular matrix dressings and compression. Fourteen patients with 23 wounds were retrospectively evaluated with respect to healing rates, time to closure, and weekly facility charge fees.

  10. Hepatocyte Produced Matrix Metalloproteinases Are Regulated by CD147 in Liver Fibrogenesis

    PubMed Central

    Morgan, Alison J.; Tu, Thomas; Wen, Victoria W.; Yee, Christine; Mridha, Auvro; Lee, Maggie; d'Avigdor, William; Locarnini, Stephen A.; McCaughan, Geoffrey W.; Warner, Fiona J.; McLennan, Susan V.; Shackel, Nicholas A.

    2014-01-01

    Background The classical paradigm of liver injury asserts that hepatic stellate cells (HSC) produce, remodel and turnover the abnormal extracellular matrix (ECM) of fibrosis via matrix metalloproteinases (MMPs). In extrahepatic tissues MMP production is regulated by a number of mechanisms including expression of the glycoprotein CD147. Previously, we have shown that CD147 is expressed on hepatocytes but not within the fibrotic septa in cirrhosis [1]. Therefore, we investigated if hepatocytes produce MMPs, regulated by CD147, which are capable of remodelling fibrotic ECM independent of the HSC. Methods Non-diseased, fibrotic and cirrhotic livers were examined for MMP activity and markers of fibrosis in humans and mice. CD147 expression and MMP activity were co-localised by in-situ zymography. The role of CD147 was studied in-vitro with siRNA to CD147 in hepatocytes and in-vivo in mice with CCl4 induced liver injury using ãCD147 antibody intervention. Results In liver fibrosis in both human and mouse tissue MMP expression and activity (MMP-2, -9, -13 and -14) increased with progressive injury and localised to hepatocytes. Additionally, as expected, MMPs were abundantly expressed by activated HSC. Further, with progressive fibrosis there was expression of CD147, which localised to hepatocytes but not to HSC. Functionally significant in-vitro regulation of hepatocyte MMP production by CD147 was demonstrated using siRNA to CD147 that decreased hepatocyte MMP-2 and -9 expression/activity. Further, in-vivo α-CD147 antibody intervention decreased liver MMP-2, -9, -13, -14, TGF-β and α-SMA expression in CCl4 treated mice compared to controls. Conclusion We have shown that hepatocytes produce active MMPs and that the glycoprotein CD147 regulates hepatocyte MMP expression. Targeting CD147 regulates hepatocyte MMP production both in-vitro and in-vivo, with the net result being reduced fibrotic matrix turnover in-vivo. Therefore, CD147 regulation of hepatocyte MMP is a

  11. Hepatocyte produced matrix metalloproteinases are regulated by CD147 in liver fibrogenesis.

    PubMed

    Calabro, Sarah R; Maczurek, Annette E; Morgan, Alison J; Tu, Thomas; Wen, Victoria W; Yee, Christine; Mridha, Auvro; Lee, Maggie; d'Avigdor, William; Locarnini, Stephen A; McCaughan, Geoffrey W; Warner, Fiona J; McLennan, Susan V; Shackel, Nicholas A

    2014-01-01

    The classical paradigm of liver injury asserts that hepatic stellate cells (HSC) produce, remodel and turnover the abnormal extracellular matrix (ECM) of fibrosis via matrix metalloproteinases (MMPs). In extrahepatic tissues MMP production is regulated by a number of mechanisms including expression of the glycoprotein CD147. Previously, we have shown that CD147 is expressed on hepatocytes but not within the fibrotic septa in cirrhosis [1]. Therefore, we investigated if hepatocytes produce MMPs, regulated by CD147, which are capable of remodelling fibrotic ECM independent of the HSC. Non-diseased, fibrotic and cirrhotic livers were examined for MMP activity and markers of fibrosis in humans and mice. CD147 expression and MMP activity were co-localised by in-situ zymography. The role of CD147 was studied in-vitro with siRNA to CD147 in hepatocytes and in-vivo in mice with CCl4 induced liver injury using ãCD147 antibody intervention. In liver fibrosis in both human and mouse tissue MMP expression and activity (MMP-2, -9, -13 and -14) increased with progressive injury and localised to hepatocytes. Additionally, as expected, MMPs were abundantly expressed by activated HSC. Further, with progressive fibrosis there was expression of CD147, which localised to hepatocytes but not to HSC. Functionally significant in-vitro regulation of hepatocyte MMP production by CD147 was demonstrated using siRNA to CD147 that decreased hepatocyte MMP-2 and -9 expression/activity. Further, in-vivo α-CD147 antibody intervention decreased liver MMP-2, -9, -13, -14, TGF-β and α-SMA expression in CCl4 treated mice compared to controls. We have shown that hepatocytes produce active MMPs and that the glycoprotein CD147 regulates hepatocyte MMP expression. Targeting CD147 regulates hepatocyte MMP production both in-vitro and in-vivo, with the net result being reduced fibrotic matrix turnover in-vivo. Therefore, CD147 regulation of hepatocyte MMP is a novel pathway that could be targeted by

  12. Proteomic Analysis of Altered Extracellular Matrix Turnover in Bleomycin-induced Pulmonary Fibrosis

    PubMed Central

    Decaris, Martin L.; Gatmaitan, Michelle; FlorCruz, Simplicia; Luo, Flora; Li, Kelvin; Holmes, William E.; Hellerstein, Marc K.; Turner, Scott M.; Emson, Claire L.

    2014-01-01

    Fibrotic disease is characterized by the pathological accumulation of extracellular matrix (ECM) proteins. Surprisingly, very little is known about the synthesis and degradation rates of the many proteins and proteoglycans that constitute healthy or pathological extracellular matrix. A comprehensive understanding of altered ECM protein synthesis and degradation during the onset and progression of fibrotic disease would be immensely valuable. We have developed a dynamic proteomics platform that quantifies the fractional synthesis rates of large numbers of proteins via stable isotope labeling and LC/MS-based mass isotopomer analysis. Here, we present the first broad analysis of ECM protein kinetics during the onset of experimental pulmonary fibrosis. Mice were labeled with heavy water for up to 21 days following the induction of lung fibrosis with bleomycin. Lung tissue was subjected to sequential protein extraction to fractionate cellular, guanidine-soluble ECM proteins and residual insoluble ECM proteins. Fractional synthesis rates were calculated for 34 ECM proteins or protein subunits, including collagens, proteoglycans, and microfibrillar proteins. Overall, fractional synthesis rates of guanidine-soluble ECM proteins were faster than those of insoluble ECM proteins, suggesting that the insoluble fraction reflected older, more mature matrix components. This was confirmed through the quantitation of pyridinoline cross-links in each protein fraction. In fibrotic lung tissue, there was a significant increase in the fractional synthesis of unique sets of matrix proteins during early (pre-1 week) and late (post-1 week) fibrotic response. Furthermore, we isolated fast turnover subpopulations of several ECM proteins (e.g. type I collagen) based on guanidine solubility, allowing for accelerated detection of increased synthesis of typically slow-turnover protein populations. This establishes the presence of multiple kinetic pools of pulmonary collagen in vivo with altered

  13. Modulation of keratinocyte motility. Correlation with production of extracellular matrix molecules in response to growth promoting and antiproliferative factors.

    PubMed Central

    Nickoloff, B. J.; Mitra, R. S.; Riser, B. L.; Dixit, V. M.; Varani, J.

    1988-01-01

    Normal human epidermal keratinocytes (KC) grown under conditions that maintain the undifferentiated state are highly motile. Migration of these cells as measured in two different assays (migration out of an agarose drop explant, and into micropore filters in a modified Boyden chamber), is stimulated by fibronectin (FN) and to a lesser extent by thrombospondin (TSP). In contrast, laminin (LN) inhibits KC migration. Cultivation of the cells for 1 day under conditions that induce differentiation (ie, in the presence of 1.4 mM Ca2+) suppresses KC motility. A number of soluble growth modulating polypeptide factors also influence KC migration. Transforming growth factor-beta (TGF-beta) and epidermal growth factor (EGF) stimulate KC motility. These factors simultaneously induce KC production of FN and a significant portion of the stimulated motility can be inhibited with antibodies to FN. EGF and somatomedin-C (SM-C), but not TGF-beta, also stimulate TSP production while EGF and SM-C (but not TGF-beta) induce KC proliferation. In contrast to these factors, interferon-gamma (INF-gamma) inhibits KC production of both FN and TSP and concomitantly inhibits both motility and proliferation. These data suggest that KC properties essential for normal wound healing (ie, motility and proliferation) are regulated by both extracellular matrix molecules and soluble peptide factors. Finally, these effects of various growth promoting and antiproliferative factors on KCs may, in part, be mediated through alteration in the endogenous production of extracellular matrix molecules by KCs. Images Figure 2 PMID:2458044

  14. Analysis of the Aspergillus fumigatus Biofilm Extracellular Matrix by Solid-State Nuclear Magnetic Resonance Spectroscopy.

    PubMed

    Reichhardt, Courtney; Ferreira, Jose A G; Joubert, Lydia-Marie; Clemons, Karl V; Stevens, David A; Cegelski, Lynette

    2015-11-01

    Aspergillus fumigatus is commonly responsible for lethal fungal infections among immunosuppressed individuals. A. fumigatus forms biofilm communities that are of increasing biomedical interest due to the association of biofilms with chronic infections and their increased resistance to antifungal agents and host immune factors. Understanding the composition of microbial biofilms and the extracellular matrix is important to understanding function and, ultimately, to developing strategies to inhibit biofilm formation. We implemented a solid-state nuclear magnetic resonance (NMR) approach to define compositional parameters of the A. fumigatus extracellular matrix (ECM) when biofilms are formed in RPMI 1640 nutrient medium. Whole biofilm and isolated matrix networks were also characterized by electron microscopy, and matrix proteins were identified through protein gel analysis. The (13)C NMR results defined and quantified the carbon contributions in the insoluble ECM, including carbonyls, aromatic carbons, polysaccharide carbons (anomeric and nonanomerics), aliphatics, etc. Additional (15)N and (31)P NMR spectra permitted more specific annotation of the carbon pools according to C-N and C-P couplings. Together these data show that the A. fumigatus ECM produced under these growth conditions contains approximately 40% protein, 43% polysaccharide, 3% aromatic-containing components, and up to 14% lipid. These fundamental chemical parameters are needed to consider the relationships between composition and function in the A. fumigatus ECM and will enable future comparisons with other organisms and with A. fumigatus grown under alternate conditions. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Adaptive evolution of the matrix extracellular phosphoglycoprotein in mammals

    PubMed Central

    2011-01-01

    Background Matrix extracellular phosphoglycoprotein (MEPE) belongs to a family of small integrin-binding ligand N-linked glycoproteins (SIBLINGs) that play a key role in skeleton development, particularly in mineralization, phosphate regulation and osteogenesis. MEPE associated disorders cause various physiological effects, such as loss of bone mass, tumors and disruption of renal function (hypophosphatemia). The study of this developmental gene from an evolutionary perspective could provide valuable insights on the adaptive diversification of morphological phenotypes in vertebrates. Results Here we studied the adaptive evolution of the MEPE gene in 26 Eutherian mammals and three birds. The comparative genomic analyses revealed a high degree of evolutionary conservation of some coding and non-coding regions of the MEPE gene across mammals indicating a possible regulatory or functional role likely related with mineralization and/or phosphate regulation. However, the majority of the coding region had a fast evolutionary rate, particularly within the largest exon (1467 bp). Rodentia and Scandentia had distinct substitution rates with an increased accumulation of both synonymous and non-synonymous mutations compared with other mammalian lineages. Characteristics of the gene (e.g. biochemical, evolutionary rate, and intronic conservation) differed greatly among lineages of the eight mammalian orders. We identified 20 sites with significant positive selection signatures (codon and protein level) outside the main regulatory motifs (dentonin and ASARM) suggestive of an adaptive role. Conversely, we find three sites under selection in the signal peptide and one in the ASARM motif that were supported by at least one selection model. The MEPE protein tends to accumulate amino acids promoting disorder and potential phosphorylation targets. Conclusion MEPE shows a high number of selection signatures, revealing the crucial role of positive selection in the evolution of this

  16. The structure of cell-matrix adhesions: the new frontier.

    PubMed

    Hanein, Dorit; Horwitz, Alan Rick

    2012-02-01

    Adhesions between the cell and the extracellular matrix (ECM) are mechanosensitive multi-protein assemblies that transmit force across the cell membrane and regulate biochemical signals in response to the chemical and mechanical environment. These combined functions in force transduction, signaling and mechanosensing contribute to cellular phenotypes that span development, homeostasis and disease. These adhesions form, mature and disassemble in response to actin organization and physical forces that originate from endogenous myosin activity or external forces by the extracellular matrix. Despite advances in our understanding of the protein composition, interactions and regulation, our understanding of matrix adhesion structure and organization, how forces affect this organization, and how these changes dictate specific signaling events is limited. Insights across multiple structural levels are acutely needed to elucidate adhesion structure and ultimately the molecular basis of signaling and mechanotransduction. Here we describe the challenges and recent advances and prospects for unraveling the structure of cell-matrix adhesions and their response to force. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Extracellular Protease Inhibition Alters the Phenotype of Chondrogenically Differentiating Human Mesenchymal Stem Cells (MSCs) in 3D Collagen Microspheres.

    PubMed

    Han, Sejin; Li, Yuk Yin; Chan, Barbara Pui

    2016-01-01

    Matrix remodeling of cells is highly regulated by proteases and their inhibitors. Nevertheless, how would the chondrogenesis of mesenchymal stem cells (MSCs) be affected, when the balance of the matrix remodeling is disturbed by inhibiting matrix proteases, is incompletely known. Using a previously developed collagen microencapsulation platform, we investigated whether exposing chondrogenically differentiating MSCs to intracellular and extracellular protease inhibitors will affect the extracellular matrix remodeling and hence the outcomes of chondrogenesis. Results showed that inhibition of matrix proteases particularly the extracellular ones favors the phenotype of fibrocartilage rather than hyaline cartilage in chondrogenically differentiating hMSCs by upregulating type I collagen protein deposition and type II collagen gene expression without significantly altering the hypertrophic markers at gene level. This study suggests the potential of manipulating extracellular proteases to alter the outcomes of hMSC chondrogenesis, contributing to future development of differentiation protocols for fibrocartilage tissues for intervertebral disc and meniscus tissue engineering.

  18. Extracellular Protease Inhibition Alters the Phenotype of Chondrogenically Differentiating Human Mesenchymal Stem Cells (MSCs) in 3D Collagen Microspheres

    PubMed Central

    Han, Sejin; Li, Yuk Yin; Chan, Barbara Pui

    2016-01-01

    Matrix remodeling of cells is highly regulated by proteases and their inhibitors. Nevertheless, how would the chondrogenesis of mesenchymal stem cells (MSCs) be affected, when the balance of the matrix remodeling is disturbed by inhibiting matrix proteases, is incompletely known. Using a previously developed collagen microencapsulation platform, we investigated whether exposing chondrogenically differentiating MSCs to intracellular and extracellular protease inhibitors will affect the extracellular matrix remodeling and hence the outcomes of chondrogenesis. Results showed that inhibition of matrix proteases particularly the extracellular ones favors the phenotype of fibrocartilage rather than hyaline cartilage in chondrogenically differentiating hMSCs by upregulating type I collagen protein deposition and type II collagen gene expression without significantly altering the hypertrophic markers at gene level. This study suggests the potential of manipulating extracellular proteases to alter the outcomes of hMSC chondrogenesis, contributing to future development of differentiation protocols for fibrocartilage tissues for intervertebral disc and meniscus tissue engineering. PMID:26760956

  19. Platelets and Plasma Stimulate Sheep Rotator Cuff Tendon Tenocytes When Cultured in an Extracellular Matrix Scaffold

    PubMed Central

    Kelly, Brian A.; Proffen, Benedikt L.; Haslauer, Carla M.; Murray, Martha M.

    2015-01-01

    The addition of platelet-rich plasma (PRP) to rotator cuff repair has not translated into improved outcomes after surgery. However, recent work stimulating ligament healing has demonstrated improved outcomes when PRP or whole blood is combined with an extracellular matrix carrier. The objective of this study was to evaluate the effect of three components of blood (plasma, platelets and macrophages) on the in vitro activity of ovine rotator cuff cells cultured in an extracellular matrix environment. Tenocytes were obtained from six ovine infraspinatus tendons and cultured over 14 days in an extracellular matrix scaffold with the following additives: 1) Plasma (PPP), 2) Plasma and platelets (PAP), 3) Plasma and macrophages (PPPM), 4) Plasma, platelets and macrophages (PAPM), 5) Phosphate buffered saline (PBS), and 6) PBS with macrophages (PBSM). Assays measuring cellular metabolism (AlamarBlue), proliferation (Quantitative DNA assay), synthesis of collagen and cytokines (SIRCOL, TNF-α and IL-10 ELISA, and MMP assay), and collagen gene expression (qPCR) were performed over the duration of the experiment, as well as histology at the conclusion. Plasma was found to stimulate cell attachment and spreading on the scaffold, as well as cellular proliferation. Platelets also stimulated cell proliferation, cellular metabolism, transition of cells to a myofibroblast phenotype and contraction of the scaffolds. The addition of macrophages did not have any significant effect on the sheep rotator cuff cells in vitro. In vivo studies are needed to determine if these changes in cellular function will translate into improved tendon healing. PMID:26419602

  20. Platelets and plasma stimulate sheep rotator cuff tendon tenocytes when cultured in an extracellular matrix scaffold.

    PubMed

    Kelly, Brian A; Proffen, Benedikt L; Haslauer, Carla M; Murray, Martha M

    2016-04-01

    The addition of platelet-rich plasma (PRP) to rotator cuff repair has not translated into improved outcomes after surgery. However, recent work stimulating ligament healing has demonstrated improved outcomes when PRP or whole blood is combined with an extracellular matrix carrier. The objective of this study was to evaluate the effect of three components of blood (plasma, platelets, and macrophages) on the in vitro activity of ovine rotator cuff cells cultured in an extracellular matrix environment. Tenocytes were obtained from six ovine infraspinatus tendons and cultured over 14 days in an extracellular matrix scaffold with the following additives: (1) plasma (PPP), (2) plasma and platelets (PAP), (3) plasma and macrophages (PPPM), (4) plasma, platelets and macrophages (PAPM), (5) phosphate buffered saline (PBS), and (6) PBS with macrophages (PBSM). Assays measuring cellular metabolism (AlamarBlue), proliferation (Quantitative DNA assay), synthesis of collagen and cytokines (SIRCOL, TNF-α and IL-10 ELISA, and MMP assay), and collagen gene expression (qPCR) were performed over the duration of the experiment, as well as histology at the conclusion. Plasma was found to stimulate cell attachment and spreading on the scaffold, as well as cellular proliferation. Platelets also stimulated cell proliferation, cellular metabolism, transition of cells to a myofibroblast phenotype, and contraction of the scaffolds. The addition of macrophages did not have any significant effect on the sheep rotator cuff cells in vitro. In vivo studies are needed to determine whether these changes in cellular function will translate into improved tendon healing. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  1. Extracellular Matrix-Mediated Maturation of Human Pluripotent Stem Cell-Derived Cardiac Monolayer Structure and Electrophysiological Function.

    PubMed

    Herron, Todd J; Rocha, Andre Monteiro Da; Campbell, Katherine F; Ponce-Balbuena, Daniela; Willis, B Cicero; Guerrero-Serna, Guadalupe; Liu, Qinghua; Klos, Matt; Musa, Hassan; Zarzoso, Manuel; Bizy, Alexandra; Furness, Jamie; Anumonwo, Justus; Mironov, Sergey; Jalife, José

    2016-04-01

    Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) monolayers generated to date display an immature embryonic-like functional and structural phenotype that limits their utility for research and cardiac regeneration. In particular, the electrophysiological function of hPSC-CM monolayers and bioengineered constructs used to date are characterized by slow electric impulse propagation velocity and immature action potential profiles. Here, we have identified an optimal extracellular matrix for significant electrophysiological and structural maturation of hPSC-CM monolayers. hPSC-CM plated in the optimal extracellular matrix combination have impulse propagation velocities ≈2× faster than previously reported (43.6±7.0 cm/s; n=9) and have mature cardiomyocyte action potential profiles, including hyperpolarized diastolic potential and rapid action potential upstroke velocity (146.5±17.7 V/s; n=5 monolayers). In addition, the optimal extracellular matrix promoted hypertrophic growth of cardiomyocytes and the expression of key mature sarcolemmal (SCN5A, Kir2.1, and connexin43) and myofilament markers (cardiac troponin I). The maturation process reported here relies on activation of integrin signaling pathways: neutralization of β1 integrin receptors via blocking antibodies and pharmacological blockade of focal adhesion kinase activation prevented structural maturation. Maturation of human stem cell-derived cardiomyocyte monolayers is achieved in a 1-week period by plating cardiomyocytes on PDMS (polydimethylsiloxane) coverslips rather than on conventional 2-dimensional cell culture formats, such as glass coverslips or plastic dishes. Activation of integrin signaling and focal adhesion kinase is essential for significant maturation of human cardiac monolayers. © 2016 American Heart Association, Inc.

  2. Filamin A regulates the organization and remodeling of the pericellular collagen matrix.

    PubMed

    Mezawa, Masaru; Pinto, Vanessa I; Kazembe, Mwayi P; Lee, Wilson S; McCulloch, Christopher A

    2016-10-01

    Extracellular matrix remodeling by cell adhesion-related processes is critical for proliferation and tissue homeostasis, but how adhesions and the cytoskeleton interact to organize the pericellular matrix (PCM) is not understood. We examined the role of the actin-binding protein, filamin A (FLNa), in pericellular collagen remodeling. Compared with wild-type (WT), mice with fibroblast-specific deletion of FLNa exhibited higher density but reduced organization of collagen fibers after increased loading of the periodontal ligament for 2 wk. In cultured fibroblasts, FLNa knockdown (KD) did not affect collagen mRNA, but after 24 h of culture, FLNa WT cells exhibited ∼2-fold higher cell-surface collagen KD cells and 13-fold higher levels of activated β1 integrins. In FLNa WT cells, there was 3-fold more colocalization of talin with pericellular cleaved collagen than in FLNa KD cells. MMP-9 mRNA and protein expression were >2-fold higher in FLNa KD cells than in WT cells. Cathepsin B, which is necessary for intracellular collagen digestion, was >3-fold higher in FLNa WT cells than in KD cells. FLNa WT cells exhibited 2-fold more collagen phagocytosis than KD cells, which involved the FLNa actin-binding domain. Evidently, FLNa regulates PCM remodeling through its effects on degradation pathways that affect the abundance and organization of collagen.-Mezawa, M., Pinto, V. I., Kazembe, M. P., Lee, W. S., McCulloch, C. A. Filamin A regulates the organization and remodeling of the pericellular collagen matrix. © FASEB.

  3. Cells involved in extracellular matrix remodeling after acute myocardial infarction

    PubMed Central

    Garcia, Larissa Ferraz; Mataveli, Fábio D’Aguiar; Mader, Ana Maria Amaral Antônio; Theodoro, Thérèse Rachell; Justo, Giselle Zenker; Pinhal, Maria Aparecida da Silva

    2015-01-01

    Objective Evaluate the effects of VEGF165 gene transfer in the process of remodeling of the extracellular matrix after an acute myocardial infarct. Methods Wistar rats were submitted to myocardial infarction, after the ligation of the left descending artery, and the left ventricle ejection fraction was used to classify the infarcts into large and small. The animals were divided into groups of ten, according to the size of infarcted area (large or small), and received or not VEGF165 treatment. Evaluation of different markers was performed using immunohistochemistry and digital quantification. The primary antibodies used in the analysis were anti-fibronectin, anti-vimentin, anti-CD44, anti-E-cadherin, anti-CD24, anti-alpha-1-actin, and anti-PCNA. The results were expressed as mean and standard error, and analyzed by ANOVA, considering statistically significant if p≤0.05. Results There was a significant increase in the expression of undifferentiated cell markers, such as fibronectin (protein present in the extracellular matrix) and CD44 (glycoprotein present in the endothelial cells). However, there was decreased expression of vimentin and PCNA, indicating a possible decrease in the process of cell proliferation after treatment with VEGF165. Markers of differentiated cells, E-cadherin (adhesion protein between myocardial cells), CD24 (protein present in the blood vessels), and alpha-1-actin (specific myocyte marker), showed higher expression in the groups submitted to gene therapy, compared to non-treated group. The value obtained by the relation between alpha-1-actin and vimentin was approximately three times higher in the groups treated with VEGF165, suggesting greater tissue differentiation. Conclusion The results demonstrated the important role of myocytes in the process of tissue remodeling, confirming that VEGF165 seems to provide a protective effect in the treatment of acute myocardial infarct. PMID:25993074

  4. pH regulators in invadosomal functioning: proton delivery for matrix tasting.

    PubMed

    Brisson, Lucie; Reshkin, Stephan J; Goré, Jacques; Roger, Sébastien

    2012-01-01

    Invadosomes are actin-rich finger-like cellular structures sensing and interacting with the surrounding extracellular matrix (ECM) and involved in its proteolytic remodeling. Invadosomes are structures distinct from other adhesion complexes, and have been identified in normal cells that have to cross tissue barriers to fulfill their function such as leukocytes, osteoclasts and endothelial cells. They also represent features of highly aggressive cancer cells, allowing them to escape from the primary tumor, to invade surrounding tissues and to reach systemic circulation. They are localized to the ventral membrane of cells grown under 2-dimensional conditions and are supposed to be present all around cells grown in 3-dimensional matrices. Indeed invadosomes are key structures in physiological processes such as inflammation and the immune response, bone remodeling, tissue repair, but also in pathological conditions such as osteopetrosis and the development of metastases. Invadosomes are subdivided into podosomes, found in normal cells, and into invadopodia specific for cancer cells. While these two structures exhibit differences in organization, size, number and half-life, they share similarities in molecular composition, participation in cell-matrix adhesion and promoting matrix degradation. A key determinant in invadosomal function is the recruitment and release of proteases, such as matrix metalloproteinases (MMPs), serine proteases and cysteine cathepsins, together with their activation in a tightly controlled and highly acidic microenvironment. Therefore numerous pH regulators such as V-ATPases and Na(+)/H(+) exchangers, are found in invadosomes and are directly involved in their constitution as well as their functioning. This review focuses on the participation of pH regulators in invadosome function in physiological and pathological conditions, with a particular emphasis on ECM remodeling by osteoclasts during bone resorption and by cancer cells. Copyright

  5. Of extracellular matrix, scaffolds, and signaling: Tissuearchitectureregulates development, homeostasis, and cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Celeste M.; Bissell, Mina J.

    2006-03-09

    The microenvironment surrounding cells influences gene expression, such that a cell's behavior is largely determined by its interactions with the extracellular matrix, neighboring cells, and soluble cues released locally or by distant tissues. We describe the essential role of context and organ structure in directing mammary gland development and differentiated function, and in determining response to oncogenic insults including mutations. We expand on the concept of 'dynamic reciprocity' to present an integrated view of development, cancer, and aging, and posit that genes are like piano keys: while essential, it is the context that makes the music.

  6. Regional variations in the distribution and colocalization of extracellular matrix proteins in the juvenile bovine meniscus

    PubMed Central

    Vanderploeg, Eric J; Wilson, Christopher G; Imler, Stacy M; Ling, Carrie Hang-Yin; Levenston, Marc E

    2012-01-01

    A deeper understanding of the composition and organization of extracellular matrix molecules in native, healthy meniscus tissue is required to fully appreciate the degeneration that occurs in joint disease and the intricate environment in which an engineered meniscal graft would need to function. In this study, regional variations in the tissue-level and pericellular distributions of collagen types I, II and VI and the proteoglycans aggrecan, biglycan and decorin were examined in the juvenile bovine meniscus. The collagen networks were extensively, but not completely, colocalized, with tissue-level organization that varied with radial position across the meniscus. Type VI collagen exhibited close association with large bundles composed of type I and II collagen and, in contrast to type I and II collagen, was further concentrated in the pericellular matrix. Aggrecan was detected throughout the inner region of the meniscus but was restricted to the pericellular matrix and sheaths of collagen bundles in the middle and outer regions. The small proteoglycans biglycan and decorin exhibited regional variations in staining intensity but were consistently localized in the intra- and/or peri-cellular compartments. These results provide insight into the complex hierarchy of extracellular matrix organization in the meniscus and provide a framework for better understanding meniscal degeneration and disease progression and evaluating potential repair and regeneration strategies. PMID:22703476

  7. Scleraxis is required for cell lineage differentiation and extracellular matrix remodeling during murine heart valve formation in vivo.

    PubMed

    Levay, Agata K; Peacock, Jacqueline D; Lu, Yinhui; Koch, Manuel; Hinton, Robert B; Kadler, Karl E; Lincoln, Joy

    2008-10-24

    Heart valve structures, derived from mesenchyme precursor cells, are composed of differentiated cell types and extracellular matrix arranged to facilitate valve function. Scleraxis (scx) is a transcription factor required for tendon cell differentiation and matrix organization. This study identified high levels of scx expression in remodeling heart valve structures at embryonic day 15.5 through postnatal stages using scx-GFP reporter mice and determined the in vivo function using mice null for scx. Scx(-/-) mice display significantly thickened heart valve structures from embryonic day 17.5, and valves from mutant mice show alterations in valve precursor cell differentiation and matrix organization. This is indicated by decreased expression of the tendon-related collagen type XIV, increased expression of cartilage-associated genes including sox9, as well as persistent expression of mesenchyme cell markers including msx1 and snai1. In addition, ultrastructure analysis reveals disarray of extracellular matrix and collagen fiber organization within the valve leaflet. Thickened valve structures and increased expression of matrix remodeling genes characteristic of human heart valve disease are observed in juvenile scx(-/-) mice. In addition, excessive collagen deposition in annular structures within the atrioventricular junction is observed. Collectively, our studies have identified an in vivo requirement for scx during valvulogenesis and demonstrate its role in cell lineage differentiation and matrix distribution in remodeling valve structures.

  8. Ultrastructure of the extracellular matrix of bovine dura mater, optic nerve sheath and sclera.

    PubMed

    Raspanti, M; Marchini, M; Della Pasqua, V; Strocchi, R; Ruggeri, A

    1992-10-01

    The sclera, the outermost sheath of the optic nerve and the dura mater have been investigated histologically and ultrastructurally. Although these tissues appear very similar under the light microscope, being dense connective tissues mainly composed of collagen bundles and a limited amount of cells and elastic fibres, they exhibit subtle differences on electron microscopy. In the dura and sclera collagen appears in the form of large, nonuniform fibrils, similar to those commonly found in tendons, while in the optic nerve sheath the fibrils appear smaller and uniform, similar to those commonly observed in reticular tissues, vessel walls and skin. Freeze-fracture also reveals these fibrils to have different subfibrillar architectures, straight or helical, which correspond to 2 distinct forms of collagen fibril previously described (Raspanti et al. 1989). The other extracellular matrix components also vary with the particular collagen fibril structure. Despite their common embryological derivation, the dura mater, optic nerve sheath and sclera exhibit diversification of their extracellular matrix consistent with the mechanical loads to which these tissues are subjected. Our observations indicate that the outermost sheath of the optic nerve resembles the epineurium of peripheral nerves rather than the dura to which it is commonly likened.

  9. Amyloid β-Protein as a Substrate Interacts with Extracellular Matrix to Promote Neurite Outgrowth

    NASA Astrophysics Data System (ADS)

    Koo, Edward H.; Park, Lisa; Selkoe, Dennis J.

    1993-05-01

    Progressive deposition of amyloid β-protein (Aβ) in brain parenchyma and blood vessels is a characteristic feature of Alzheimer disease. Recent evidence suggests that addition of solubilized synthetic Aβ to medium may produce toxic or trophic effects on cultured hippocampal neurons. Because soluble Aβ may not accumulate in significant quantities in brain, we asked whether immobilized Aβ peptide as a substrate alters neurite outgrowth from cultured rat peripheral sensory neurons. This paradigm may closely mimic the conditions in Alzheimer disease brain tissue, in which neurites contact insoluble, extracellular aggregates of β-amyloid. We detected no detrimental effects of Aβ substrate on neurite outgrowth. Rather, Aβ in combination with low doses of laminin or fibronectin enhanced neurite out-growth from these neuronal explants. Our results suggest that insoluble Aβ in the cerebral neuropil may serve as a neurite-promoting matrix, perhaps explaining the apparent regenerative response of neurites observed around amyloid plaques in Alzheimer disease. Moreover, in concert with the recent discovery of Aβ production by cultured neurons, our data suggest that Aβ plays a normal physiological role in brain by complexing with the extracellular matrix.

  10. Extracellular Matrix Scaffold Technology for Bioartificial Pancreas Engineering

    PubMed Central

    Salvatori, Marcus; Katari, Ravi; Patel, Timil; Peloso, Andrea; Mugweru, Jon; Owusu, Kofi

    2014-01-01

    Emergent technologies in regenerative medicine may soon overcome the limitations of conventional diabetes therapies. Collaborative efforts across the subfields of stem cell technology, islet encapsulation, and biomaterial carriers seek to produce a bioengineered pancreas capable of restoring endocrine function in patients with insulin-dependent diabetes. These technologies rely on a robust understanding of the extracellular matrix (ECM), the supportive 3-dimensional network of proteins necessary for cellular attachment, proliferation, and differentiation. Although these functions can be partially approximated by biosynthetic carriers, novel decellularization protocols have allowed researchers to discover the advantages afforded by the native pancreatic ECM. The native ECM has proven to be an optimal platform for recellularization and whole-organ pancreas bioengineering, an exciting new field with the potential to resolve the dire shortage of transplantable organs. This review seeks to contextualize recent findings, discuss current research goals, and identify future challenges of regenerative medicine as it applies to diabetes management. PMID:24876552

  11. Biomechanical regulation of cell orientation and fate

    PubMed Central

    Lopez, JI; Mouw, JK; Weaver, VM

    2009-01-01

    Biomechanical regulation of tumor phenotypes have been noted for several decades, yet the function of mechanics in the co-evolution of the tumor epithelium and altered cancer extracellular matrix has not been appreciated until fairly recently. In this review, we examine the dynamic interaction between the developing epithelia and the extracellular matrix, and discuss how similar interactions are exploited by the genetically modified epithelium during tumor progression. We emphasize the process of mechanoreciprocity, which is a phenomenon observed during epithelial transformation, in which tension generated within the extracellular microenvironment induce and cooperate with opposing reactive forces within transformed epithelium to drive tumor progression and metastasis. We highlight the importance of matrix remodeling, and present a new, emerging paradigm that underscores the importance of tissue morphology as a key regulator of epithelial cell invasion and metastasis. PMID:19029939

  12. The modulation of platelet adhesion and activation by chitosan through plasma and extracellular matrix proteins.

    PubMed

    Lord, Megan S; Cheng, Bill; McCarthy, Simon J; Jung, MoonSun; Whitelock, John M

    2011-10-01

    Chitosan has been shown to promote initial wound closure events to prevent blood loss. Platelet adhesion and activation are crucial early events in these processes after traumatic bleeding leading to thrombus formation. Platelet adhesion to chitosan was found to be enhanced in the presence of adsorbed plasma and extracellular matrix proteins and was found to be primarily mediated by α(IIb)β(3) integrins, while α(2)β(1) integrins were found to be involved in platelet adhesion to collagen and perlecan. Platelets were found to be activated by chitosan, as shown by an increase in the expression of α(IIb)β(3) integrins and P-selectin, while the extent of activation was modulated by the presence of proteins including perlecan and fibrinogen. Collagen-coated chitosan was found to activate platelets to the same extent as either chitosan or collagen alone. These data support the role of plasma and extracellular matrix proteins in promoting chitosan mediated platelet adhesion and activation supporting the hypothesis that chitosan promotes wound healing via these interactions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Pregnancy-induced adaptations in intramuscular extracellular matrix of rat pelvic floor muscles

    PubMed Central

    Alperin, Marianna; Kaddis, Timothy; Pichika, Rajeswari; Esparza, Mary C.; Lieber, Richard L.

    2017-01-01

    BACKGROUND Birth trauma to pelvic floor muscles is a major risk factor for pelvic floor disorders. Intramuscular extracellular matrix determines muscle stiffness, supports contractile component, and shields myofibers from mechanical strain. OBJECTIVE Our goal was to determine whether pregnancy alters extracellular matrix mechanical and biochemical properties in a rat model, which may provide insights into the pathogenesis of pelvic floor muscle birth injury. To examine whether pregnancy effects were unique to pelvic floor muscles, we also studied a hind limb muscle. STUDY DESIGN Passive mechanical properties of coccygeus, iliocaudalis, pubocaudalis, and tibialis anterior were compared among 3-month old Sprague–Dawley virgin, late-pregnant, and postpartum rats. Muscle tangent stiffness was calculated as the slope of the stress–sarcomere length curve between 2.5 and 4.0 μm, obtained from a stress-relaxation protocol at a bundle level. Elastin and collagen isoform concentrations were quantified by the use of enzyme-linked immunosorbent assay. Enzymatic and glycosylated collagen crosslinks were determined by high-performance liquid chromatography. Data were compared by the use of repeated-measures, 2-way analysis of variance with Tukey post-hoc testing. Correlations between mechanical and biochemical parameters were assessed by linear regressions. Significance was set to P < .05. Results are reported as mean ± SEM. RESULTS Pregnancy significantly increased stiffness in coccygeus (P < .05) and pubocaudalis (P < .0001) relative to virgin controls, with no change in iliocaudalis. Postpartum, pelvic floor muscle stiffness did not differ from virgins (P > .3). A substantial increase in collagen V in coccygeus and pubocaudalis was observed in late-pregnant, compared with virgin, animals, (P < .001). Enzymatic crosslinks decreased in coccygeus (P < .0001) and pubocaudalis (P < .02) in pregnancy, whereas glycosylated crosslinks were significantly elevated in late

  14. Global Analysis Reveals the Complexity of the Human Glomerular Extracellular Matrix

    PubMed Central

    Byron, Adam; Humphries, Jonathan D.; Randles, Michael J.; Carisey, Alex; Murphy, Stephanie; Knight, David; Brenchley, Paul E.; Zent, Roy; Humphries, Martin J.

    2014-01-01

    The glomerulus contains unique cellular and extracellular matrix (ECM) components, which are required for intact barrier function. Studies of the cellular components have helped to build understanding of glomerular disease; however, the full composition and regulation of glomerular ECM remains poorly understood. We used mass spectrometry-based proteomics of enriched ECM extracts for a global analysis of human glomerular ECM in vivo and identified a tissue-specific proteome of 144 structural and regulatory ECM proteins. This catalog includes all previously identified glomerular components plus many new and abundant components. Relative protein quantification showed a dominance of collagen IV, collagen I, and laminin isoforms in the glomerular ECM together with abundant collagen VI and TINAGL1. Protein network analysis enabled the creation of a glomerular ECM interactome, which revealed a core of highly connected structural components. More than one half of the glomerular ECM proteome was validated using colocalization studies and data from the Human Protein Atlas. This study yields the greatest number of ECM proteins relative to previous investigations of whole glomerular extracts, highlighting the importance of sample enrichment. It also shows that the composition of glomerular ECM is far more complex than previously appreciated and suggests that many more ECM components may contribute to glomerular development and disease processes. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD000456. PMID:24436468

  15. Quantitative proteomic characterization of the lung extracellular matrix in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis.

    PubMed

    Åhrman, Emma; Hallgren, Oskar; Malmström, Lars; Hedström, Ulf; Malmström, Anders; Bjermer, Leif; Zhou, Xiao-Hong; Westergren-Thorsson, Gunilla; Malmström, Johan

    2018-03-01

    Remodeling of the extracellular matrix (ECM) is a common feature in lung diseases such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Here, we applied a sequential tissue extraction strategy to describe disease-specific remodeling of human lung tissue in disease, using end-stages of COPD and IPF. Our strategy was based on quantitative comparison of the disease proteomes, with specific focus on the matrisome, using data-independent acquisition and targeted data analysis (SWATH-MS). Our work provides an in-depth proteomic characterization of human lung tissue during impaired tissue remodeling. In addition, we show important quantitative and qualitative effects of the solubility of matrisome proteins. COPD was characterized by a disease-specific increase in ECM regulators, metalloproteinase inhibitor 3 (TIMP3) and matrix metalloproteinase 28 (MMP-28), whereas for IPF, impairment in cell adhesion proteins, such as collagen VI and laminins, was most prominent. For both diseases, we identified increased levels of proteins involved in the regulation of endopeptidase activity, with several proteins belonging to the serpin family. The established human lung quantitative proteome inventory and the construction of a tissue-specific protein assay library provides a resource for future quantitative proteomic analyses of human lung tissues. We present a sequential tissue extraction strategy to determine changes in extractability of matrisome proteins in end-stage COPD and IPF compared to healthy control tissue. Extensive quantitative analysis of the proteome changes of the disease states revealed altered solubility of matrisome proteins involved in ECM regulators and cell-ECM communication. The results highlight disease-specific remodeling mechanisms associated with COPD and IPF. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Dentin extracellular matrix (ECM) proteins: comparison to bone ECM and contribution to dynamics of dentinogenesis.

    PubMed

    Butler, William T; Brunn, Jan C; Qin, Chunlin

    2003-01-01

    Dentinogenesis involves the initial odontoblastic synthesis of a collagen-rich extracellular matrix (ECM) and predentin that is converted to dentin when the collagen fibrils become mineralized. Since the width of predentin is rather uniform, we postulate that extracellular events regulate dentinogenesis. Similarly, osteogenesis involves an initial unmineralized osteoid that is mineralized and converted to bone. To gain insights into these two processes, we compared ECM proteins in bone with those in dentin, focusing upon the sialic acid (SA)-rich proteins. We observed qualitative similarities between the SA-rich proteins, but distinct differences in the amounts of osteopontin (OPN) and dentin sialoprotein (DSP). OPN, a predominant protein in bone, was found in much smaller amounts in dentin. Conversely, DSP was abundant in dentin ECM, but found sparingly in bone. Molecular cloning experiments indicate that coding sequences for DSP and dentin phosphoprotein (DPP) are found on the same mRNA. We believe that the initial form of the precursor protein DSPP is inactive in influencing the mineralization process and that it must be activated by cleavage of peptide bonds in conserved regions. Thus, unknown proteinases would act on DSPP, possibly at the mineralization front, and liberate active DPP, which plays an initiation and regulatory role in the formation of apatite crystals. This post-translational processing reaction would represent an important control point in dentinogenesis. Recently, we identified uncleaved DSPP in dentin extracts, which should allow us to test portions of our hypothesis.

  17. The extracellular matrix metalloproteinase inducer EMMPRIN is a target of nitric oxide in myocardial ischemia/reperfusion.

    PubMed

    Tarin, Carlos; Lavin, Begoña; Gomez, Monica; Saura, Marta; Diez-Juan, Antonio; Zaragoza, Carlos

    2011-07-15

    Nitric oxide (NO) is an important defense against myocardial ischemia/reperfusion (I/R) injury. Although matrix metalloproteinase (MMP)-mediated necrosis of cardiac myocytes is well characterized, the role of inducible NO synthase (iNOS)-derived NO in this process is poorly understood. I/R injury was increased in iNOS-deficient mice and in mice treated with 1400 W (a pharmacological iNOS inhibitor) and was associated with significantly increased expression of extracellular matrix metalloproteinase inducer (EMMPRIN) and EMMPRIN-associated MMPs. Transcriptional activity of an EMMPRIN luciferase promoter reporter expressed in cardiac myocytes was inhibited by NO in a cGMP-dependent manner, and this transcriptional inhibition was abolished by mutation of a putative E2F site. Consistent with these findings, EMMPRIN null mice, in which iNOS is normally induced, are partially protected against I/R injury. Pharmacological inhibition of iNOS in EMMPRIN null mice had no additional protective effect, suggesting that EMMPRIN is a downstream target of NO. Administration of anti-EMMPRIN neutralizing antibodies partly reduced the excess heart damage and MMP-9 expression induced by I/R in iNOS null mice, indicating that regulation of EMMPRIN is an important mechanism of NO-mediated cardioprotection. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Novel valve replacement with an extracellular matrix scaffold in an infant with single ventricle physiology.

    PubMed

    Guariento, Alvise; Burke, Redmond; Fedrigo, Marny; Angelini, Annalisa; Maschietto, Nicola; Vida, Vladimiro; Thiene, Gaetano; Stellin, Giovanni; Padalino, Massimo

    2016-01-01

    Valve replacement in children with functionally univentricular hearts remains challenging. The absence of small prostheses, the lack of growth, and the need for anticoagulation limit these procedures. We describe a 1-year follow-up of an extracellular matrix scaffold tube used as systemic atrio-ventricular valve in an infant. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Extracellular matrix proteins in healthy and retained placentas, comparing hemochorial and synepitheliochorial placentas.

    PubMed

    Franczyk, M; Lopucki, M; Stachowicz, N; Morawska, D; Kankofer, M

    2017-02-01

    The placenta expresses structural and biologically active proteins. Their synthesis is mainly regulated by genomic or nongenomic signals and modulated by hormones. These protein profiles are altered during different stages of pregnancy. The biological properties of extracellular matrix (ECM) proteins were defined and described in a number of tissues including placenta. These properties enable them to be the main players in the processes of attachment or invasion into the endometrium during initial placenta formation and its timely separation after delivery and detachment. In this review, we focused on the role of ECM proteins during attachment of the placenta to the uterine wall, its timely separation, and the implications of this process on retained or pathologically attached placenta. Although the amount of published information in this area is relatively scant, some of the key proteins and processes are well defined. We focused on the available data detailing the ECM protein profiles of human (histologically thin; hemochorial) and bovine (histologically thick; epitheliochorial) placentas and compared the shared and unique ECM proteins that are relevant to placental attachment and separation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Extracellular matrix control of mammary gland morphogenesis and tumorigenesis: insights from imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghajar, Cyrus M; Bissell, Mina J

    2008-10-23

    The extracellular matrix (ECM), once thought to solely provide physical support to a tissue, is a key component of a cell's microenvironment responsible for directing cell fate and maintaining tissue specificity. It stands to reason, then, that changes in the ECM itself or in how signals from the ECM are presented to or interpreted by cells can disrupt tissue organization; the latter is a necessary step for malignant progression. In this review, we elaborate on this concept using the mammary gland as an example. We describe how the ECM directs mammary gland formation and function, and discuss how a cell'smore » inability to interpret these signals - whether as a result of genetic insults or physicochemical alterations in the ECM - disorganizes the gland and promotes malignancy. By restoring context and forcing cells to properly interpret these native signals, aberrant behavior can be quelled and organization re-established. Traditional imaging approaches have been a key complement to the standard biochemical, molecular, and cell biology approaches used in these studies. Utilizing imaging modalities with enhanced spatial resolution in live tissues may uncover additional means by which the ECM regulates tissue structure, on different length scales, through its pericellular organization (short-scale) and by biasing morphogenic and morphostatic gradients (long-scale).« less

  1. Extracellular Hsp70 Enhances Mesoangioblast Migration via an Autocrine Signaling Pathway.

    PubMed

    Barreca, Maria M; Spinello, Walter; Cavalieri, Vincenzo; Turturici, Giuseppina; Sconzo, Gabriella; Kaur, Punit; Tinnirello, Rosaria; Asea, Alexzander A A; Geraci, Fabiana

    2017-07-01

    Mouse mesoangioblasts are vessel-associated progenitor stem cells endowed with the ability of multipotent mesoderm differentiation. Therefore, they represent a promising tool in the regeneration of injured tissues. Several studies have demonstrated that homing of mesoangioblasts into blood and injured tissues are mainly controlled by cytokines/chemokines and other inflammatory factors. However, little is known about the molecular mechanisms regulating their ability to traverse the extracellular matrix (ECM). Here, we demonstrate that membrane vesicles released by mesoangioblasts contain Hsp70, and that the released Hsp70 is able to interact by an autocrine mechanism with Toll-like receptor 4 (TLR4) and CD91 to stimulate migration. We further demonstrate that Hsp70 has a positive role in regulating matrix metalloproteinase 2 (MMP2) and MMP9 expression and that MMP2 has a more pronounced effect on cell migration, as compared to MMP9. In addition, the analysis of the intracellular pathways implicated in Hsp70 regulated signal transduction showed the involvement of both PI3K/AKT and NF-κB. Taken together, our findings present a paradigm shift in our understanding of the molecular mechanisms that regulate mesoangioblast stem cells ability to traverse the extracellular matrix (ECM). J. Cell. Physiol. 232: 1845-1861, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Micro- and Macrorheology of Jellyfish Extracellular Matrix

    PubMed Central

    Gambini, Camille; Abou, Bérengère; Ponton, Alain; Cornelissen, Annemiek J.M.

    2012-01-01

    Mechanical properties of the extracellular matrix (ECM) play a key role in tissue organization and morphogenesis. Rheological properties of jellyfish ECM (mesoglea) were measured in vivo at the cellular scale by passive microrheology techniques: microbeads were injected in jellyfish ECM and their Brownian motion was recorded to determine the mechanical properties of the surrounding medium. Microrheology results were compared with macrorheological measurements performed with a shear rheometer on slices of jellyfish mesoglea. We found that the ECM behaved as a viscoelastic gel at the macroscopic scale and as a much softer and heterogeneous viscoelastic structure at the microscopic scale. The fibrous architecture of the mesoglea, as observed by differential interference contrast and scanning electron microscopy, was in accord with these scale-dependent mechanical properties. Furthermore, the evolution of the mechanical properties of the ECM during aging was investigated by measuring microrheological properties at different jellyfish sizes. We measured that the ECM in adult jellyfish was locally stiffer than in juvenile ones. We argue that this stiffening is a consequence of local aggregations of fibers occurring gradually during aging of the jellyfish mesoglea and is enhanced by repetitive muscular contractions of the jellyfish. PMID:22225792

  3. Towards rebuilding vaginal support utilizing an extracellular matrix bioscaffold.

    PubMed

    Liang, Rui; Knight, Katrina; Easley, Deanna; Palcsey, Stacy; Abramowitch, Steven; Moalli, Pamela A

    2017-07-15

    As an alternative to polypropylene mesh, we explored an extracellular matrix (ECM) bioscaffold derived from urinary bladder matrix (MatriStem™) in the repair of vaginal prolapse. We aimed to restore disrupted vaginal support simulating application via transvaginal and transabdominal approaches in a macaque model focusing on the impact on vaginal structure, function, and the host immune response. In 16 macaques, after laparotomy, the uterosacral ligaments and paravaginal attachments to pelvic side wall were completely transected (IACUC# 13081928). 6-ply MatriStem was cut into posterior and anterior templates with a portion covering the vagina and arms simulating uterosacral ligaments and paravaginal attachments, respectively. After surgically exposing the correct anatomical sites, in 8 animals, a vaginal incision was made on the anterior and posterior vagina and the respective scaffolds were passed into the vagina via these incisions (transvaginal insertion) prior to placement. The remaining 8 animals underwent the same surgery without vaginal incisions (transabdominal insertion). Three months post implantation, firm tissue bands extending from vagina to pelvic side wall appeared in both MatriStem groups. Experimental endpoints examining impact of MatriStem on the vagina demonstrated that vaginal biochemical and biomechanical parameters, smooth muscle thickness and contractility, and immune responses were similar in the MatriStem no incision group and sham-operated controls. In the MatriStem incision group, a 41% decrease in vaginal stiffness (P=0.042), a 22% decrease in collagen content (P=0.008) and a 25% increase in collagen subtypes III/I was observed vs. Sham. Active MMP2 was increased in both Matristem groups vs. Sham (both P=0.002). This study presents a novel application of ECM bioscaffolds as a first step towards the rebuilding of vaginal support. Pelvic organ prolapse is a common condition related to failure of the supportive soft tissues of the vagina

  4. Supra-organization and optical anisotropies of the extracellular matrix in the amniotic membrane and limbal stroma before and after explant culture

    PubMed Central

    Valdetaro, Gisele P.; Aldrovani, Marcela; Padua, Ivan R. M.; Cristovam, Priscila C.; Gomes, José A. P.; Laus, José L.

    2016-01-01

    In this research we evaluated the supramolecular organizations and the optical anisotropical properties of the de-epithelialized human amniotic membrane and rabbit limbal stroma, before and after explant culture. Birefringence, monochromatic light spectral absorption and linear dichroism of the main extracellular matrix biopolymers, that is, the fibrillar collagens and proteoglycans, were investigated by polarized light microscopy combined with image analysis. Our results demonstrated that the culture procedure–induced stimuli altered the supra-organizational characteristics (in terms of collagens/proteoglycans spatial orientation and ordered-aggregational state) of the amniotic and limbal extracellular matrix, which led to changes in optical anisotropical properties. PMID:28018719

  5. Effects of osmotic pressure in the extracellular matrix on tissue deformation.

    PubMed

    Lu, Y; Parker, K H; Wang, W

    2006-06-15

    In soft tissues, large molecules such as proteoglycans trapped in the extracellular matrix (ECM) generate high levels of osmotic pressure to counter-balance external pressures. The semi-permeable matrix and fixed negative charges on these molecules serve to promote the swelling of tissues when there is an imbalance of molecular concentrations. Structural molecules, such as collagen fibres, form a network of stretch-resistant matrix, which prevents tissue from over-swelling and keeps tissue integrity. However, collagen makes little contribution to load bearing; the osmotic pressure in the ECM is the main contributor balancing external pressures. Although there have been a number of studies on tissue deformation, there is no rigorous analysis focusing on the contribution of the osmotic pressure in the ECM on the viscoelastic behaviour of soft tissues. Furthermore, most previous works were carried out based on the assumption of infinitesimal deformation, whereas tissue deformation is finite under physiological conditions. In the current study, a simplified mathematical model is proposed. Analytic solutions for solute distribution in the ECM and the free-moving boundary were derived by solving integro-differential equations under constant and dynamic loading conditions. Osmotic pressure in the ECM is found to contribute significantly to the viscoelastic characteristics of soft tissues during their deformation.

  6. RAGE and TGF-β1 Cross-Talk Regulate Extracellular Matrix Turnover and Cytokine Synthesis in AGEs Exposed Fibroblast Cells

    PubMed Central

    Serban, Andreea Iren; Stanca, Loredana; Geicu, Ovidiu Ionut; Munteanu, Maria Cristina; Dinischiotu, Anca

    2016-01-01

    AGEs accumulation in the skin affects extracellular matrix (ECM) turnover and triggers diabetes associated skin conditions and accelerated skin aging. The receptor of AGEs (RAGE) has an essential contribution to cellular dysfunction driven by chronic inflammatory responses while TGF-β1 is critical in both dermal homeostasis and inflammation. We investigated the contribution of RAGE and TGF-β1 to the modulation of inflammatory response and ECM turnover in AGEs milieu, using a normal fibroblast cell line. RAGE, TGF-β1, collagen I and III gene and protein expression were upregulated after exposure to AGEs-BSA, and MMP-2 was activated. AGEs-RAGE was pivotal in NF-κB dependent collagen I expression and joined with TGF-β1 to stimulate collagen III expression, probably via ERK1/2 signaling. AGEs-RAGE axis induced upregulation of TGF-β1, TNF-α and IL-8 cytokines. TNF-α and IL-8 were subjected to TGF-β1 negative regulation. RAGE’s proinflammatory signaling also antagonized AGEs-TGF-β1 induced fibroblast contraction, suggesting the existence of an inhibitory cross-talk mechanism between TGF-β1 and RAGE signaling. RAGE and TGF-β1 stimulated anti-inflammatory cytokines IL-2 and IL-4 expression. GM-CSF and IL-6 expression appeared to be dependent only on TGF-β1 signaling. Our data also indicated that IFN-γ upregulated in AGEs-BSA milieu in a RAGE and TGF-β1 independent mechanism. Our findings raise the possibility that RAGE and TGF-β1 are both involved in fibrosis development in a complex cross-talk mechanism, while also acting on their own individual targets. This study contributes to the understanding of impaired wound healing associated with diabetes complications. PMID:27015414

  7. RAGE and TGF-β1 Cross-Talk Regulate Extracellular Matrix Turnover and Cytokine Synthesis in AGEs Exposed Fibroblast Cells.

    PubMed

    Serban, Andreea Iren; Stanca, Loredana; Geicu, Ovidiu Ionut; Munteanu, Maria Cristina; Dinischiotu, Anca

    2016-01-01

    AGEs accumulation in the skin affects extracellular matrix (ECM) turnover and triggers diabetes associated skin conditions and accelerated skin aging. The receptor of AGEs (RAGE) has an essential contribution to cellular dysfunction driven by chronic inflammatory responses while TGF-β1 is critical in both dermal homeostasis and inflammation. We investigated the contribution of RAGE and TGF-β1 to the modulation of inflammatory response and ECM turnover in AGEs milieu, using a normal fibroblast cell line. RAGE, TGF-β1, collagen I and III gene and protein expression were upregulated after exposure to AGEs-BSA, and MMP-2 was activated. AGEs-RAGE was pivotal in NF-κB dependent collagen I expression and joined with TGF-β1 to stimulate collagen III expression, probably via ERK1/2 signaling. AGEs-RAGE axis induced upregulation of TGF-β1, TNF-α and IL-8 cytokines. TNF-α and IL-8 were subjected to TGF-β1 negative regulation. RAGE's proinflammatory signaling also antagonized AGEs-TGF-β1 induced fibroblast contraction, suggesting the existence of an inhibitory cross-talk mechanism between TGF-β1 and RAGE signaling. RAGE and TGF-β1 stimulated anti-inflammatory cytokines IL-2 and IL-4 expression. GM-CSF and IL-6 expression appeared to be dependent only on TGF-β1 signaling. Our data also indicated that IFN-γ upregulated in AGEs-BSA milieu in a RAGE and TGF-β1 independent mechanism. Our findings raise the possibility that RAGE and TGF-β1 are both involved in fibrosis development in a complex cross-talk mechanism, while also acting on their own individual targets. This study contributes to the understanding of impaired wound healing associated with diabetes complications.

  8. Ubiquitylation Functions in the Calcium Carbonate Biomineralization in the Extracellular Matrix

    PubMed Central

    Fang, Dong; Pan, Cong; Lin, Huijuan; Lin, Ya; Xu, Guangrui; Zhang, Guiyou; Wang, Hongzhong; Xie, Liping; Zhang, Rongqing

    2012-01-01

    Mollusks shell formation is mediated by matrix proteins and many of these proteins have been identified and characterized. However, the mechanisms of protein control remain unknown. Here, we report the ubiquitylation of matrix proteins in the prismatic layer of the pearl oyster, Pinctada fucata. The presence of ubiquitylated proteins in the prismatic layer of the shell was detected with a combination of western blot and immunogold assays. The coupled ubiquitins were separated and identified by Edman degradation and liquid chromatography/mass spectrometry (LC/MS). Antibody injection in vivo resulted in large amounts of calcium carbonate randomly accumulating on the surface of the nacreous layer. These ubiquitylated proteins could bind to specific faces of calcite and aragonite, which are the two main mineral components of the shell. In the in vitro calcium carbonate crystallization assay, they could reduce the rate of calcium carbonate precipitation and induce the calcite formation. Furthermore, when the attached ubiquitins were removed, the functions of the EDTA-soluble matrix of the prismatic layer were changed. Their potency to inhibit precipitation of calcium carbonate was decreased and their influence on the morphology of calcium carbonate crystals was changed. Taken together, ubiquitylation is involved in shell formation. Although the ubiquitylation is supposed to be involved in every aspect of biophysical processes, our work connected the biomineralization-related proteins and the ubiquitylation mechanism in the extracellular matrix for the first time. This would promote our understanding of the shell biomineralization and the ubiquitylation processes. PMID:22558208

  9. Quantitative proteomics identify an association between extracellular matrix degradation and immunopathology of genotype VII Newcastle disease virus in the spleen in chickens.

    PubMed

    Hu, Zenglei; Gu, Han; Hu, Jiao; Hu, Shunlin; Wang, Xiaoquan; Liu, Xiaowen; Jiao, Xinan; Liu, Xiufan

    2018-06-15

    Pathogenesis of genotype VII Newcastle disease virus (NDV) is characterized with remarkable immunopathology in the spleen in chickens. However, the mechanism for this unique pathological phenotype is not fully understood. Previous transcriptomics data showed that genotype VII NDV JS5/05 caused a greater downregulation of extracellular matrix (ECM) genes than genotype IV virus Herts/33 in the spleen. In this study, the role of ECM in pathology of genotype VII NDV was investigated using quantitative proteomics. Pathology studies showed that JS5/05 caused severe immunopathology characterized with remarkable necrosis in the spleen, whereas Herts/33 only induced mild pathological changes. The ECM was firstly enriched from the spleens and ECM proteins of different categories were identified by LC-MS/MS. Quantitative proteomic analysis showed that JS5/05 caused a significant disruption of ECM integrity and molecular composition compared to Herts/33. Particularly, JS5/05 induced a more remarkable collagen breakdown in the spleen compared to Herts/33. Moreover, matrix metalloproteinase (MMP)-13 and -14 were significantly upregulated by JS5/05 infection. KEGG pathway analysis suggested that differential regulation of ECM proteins by JS5/05 and Herts/33 may impact pathology through different pathways. Therefore, our results suggested that MMP upregulation and consequent ECM degradation contribute to immunopathology of genotype VII NDV in the spleen. Pathogenesis of genotype VII NDV is characterized with severe immunopathology in the spleen in chickens. Elucidating the mechanism of this pathology phenotype is critical to understand pathogenesis of genotype VII NDV. Here, we present the proteomic data of an important non-cellular compartment, the extracellular matrix (ECM), in the spleen from chickens infected with genotype VII and IV NDVs. Our results suggest that significant upregulation of matrix metalloproteinases by genotype VII NDV and consequent disruption of ECM

  10. Functional relevance of protein glycosylation to the pro-inflammatory effects of extracellular matrix metalloproteinase inducer (EMMPRIN) on monocytes/macrophages.

    PubMed

    Ge, Heng; Yuan, Wei; Liu, Jidong; He, Qing; Ding, Song; Pu, Jun; He, Ben

    2015-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) is an important pro-inflammatory protein involved in the cellular functions of monocytes/macrophages. We have hypothesized that high-level heterogeneousness of protein glycosylation of EMMPRIN may have functional relevance to its biological effects and affect the inflammatory activity of monocytes/macrophages. The glycosylation patterns of EMMPRIN expressed by monocytes/macrophages (THP-1 cells) in response to different extracellular stimuli were observed, and the structures of different glycosylation forms were identified. After the purification of highly- and less-glycosylated proteins respectively, the impacts of different glycosylation forms on the pro-inflammatory effects of EMMPRIN were examined in various aspects, such as cell adhesion to endothelial cells, cell migrations, cytokine expression, and activation of inflammatory signalling pathway. 1) It was mainly the highly-glycosylated form of EMMPRIN (HG-EMMPRIN) that increased after being exposed to inflammatory signals (PMA and H2O2). 2) Glycosylation of EMMPRIN in monocytes/macrophages led to N-linked-glycans being added to the protein, with the HG form containing complex-type glycans and the less-glycosylated form (LG) the simple type. 3) Only the HG-EMMPRIN but not the LG-EMMPRIN exhibited pro-inflammatory effects and stimulated inflammatory activities of the monocytes/macrophages (i.e., activation of ERK1/2 and NF-κB pathway, enhanced monocyte-endothelium adhesion, cell migration and matrix metalloproteinase -9 expression). Post-transcriptional glycosylation represents an important mechanism that determines the biological effects of EMMPRIN in monocytes/macrophages. Glycosylation of EMMPRIN may serve as a potential target for regulating the inflammatory activities of monocytes/macrophages.

  11. Ovarian carcinoma ascites spheroids adhere to extracellular matrix components and mesothelial cell monolayers.

    PubMed

    Burleson, Kathryn M; Casey, Rachael C; Skubitz, Keith M; Pambuccian, Stephan E; Oegema, Theodore R; Skubitz, Amy P N

    2004-04-01

    Ovarian carcinoma cells form multicellular aggregates, or spheroids, in the peritoneal cavity of patients with advanced disease. The current paradigm that ascites spheroids are non-adhesive leaves their contribution to ovarian carcinoma dissemination undefined. Here, spheroids obtained from ovarian carcinoma patients' ascites were characterized for their ability to adhere to molecules encountered in the peritoneal cavity, with the goal of establishing their potential to contribute to ovarian cancer spread. Spheroids were recovered from the ascites fluid of 11 patients with stage III or stage IV ovarian carcinoma. Adhesion assays to extracellular matrix (ECM) proteins and human mesothelial cell monolayers were performed for each of the ascites spheroid samples. Subsequently, inhibition assays were performed to identify the cell receptors involved. Most ascites samples adhered moderately to fibronectin and type I collagen, with reduced adhesion to type IV collagen and laminin. Monoclonal antibodies against the beta1 integrin subunit partially inhibited this adhesion. Ascites spheroids also adhered to hyaluronan. Additionally, spheroids adhered to live, but not fixed, human mesothelial cell monolayers, and this adhesion was partially mediated by beta1 integrins. The cellular content of the ascites fluid has often been considered non-adhesive, but our findings are the first to suggest that patient-derived ascites spheroids can adhere to mesothelial extracellular matrix via beta1 integrins, indicating that spheroids should not be ignored in the dissemination of ovarian cancer.

  12. Microfabrication of extracellular matrix structures using multipohoton-excited photochemistry: Application to modeling ovarian tissue in vitro

    NASA Astrophysics Data System (ADS)

    Ajeti, Visar

    The extracellular matrix plays a crucial role in tissue development, differentiation and homeostasis by providing the necessary biophysical and biochemical cues for the cells. In tumors, the composition and the structure of the microenvironment is thought to be manipulated by the cancers cells to support proliferative growth and enhanced migration as means of facilitated metastasis. Current in vitro tools to address these mechanistic events in tumor progression are lacking in part due to the difficulty in recapitulating the complexity of the composition and nanoarchitecture of the tumor microenvironment. In this thesis, we explore the feasibility of multiphoton-excited photochemistry as a fabrication tool for generating in vitro scaffolds that are highly repeatable, biologically relevant and relatively affordable in a research setting. The power of this technique lays in the capabilities of crosslinking whole extracellular matrix proteins in three dimensions (3D) to recreate key topographical features of the tissue with sub-micron resolution and high fidelity. The technological developments we present here enable direct translation of matrix topographies by using the high resolution image data of the tissue samples as a fabrication template. To this effect, we have applied the fabrication technique to generate gradients of crosslinked proteins as means of studying the role of haptotaxis in ovarian and breast cancers. Our findings show that cancer cells modulate their migration velocity and persistence in response to the changes in the composition of the extracellular matrix. In addition, we have examined structural features of the stroma in relation to cancer migration dynamics. We find that by recreating highly aligned nanoarchitectural features prevalent in cancer stroma, we see permissive and enhanced cell migration with cell morphologies similar to in vivo. We believe multiphoton fabrication to be an enabling tool in the next generation of tissue scaffolding

  13. The Staphylococcus aureus extracellular matrix protein (Emp) has a fibrous structure and binds to different extracellular matrices.

    PubMed

    Geraci, Jennifer; Neubauer, Svetlana; Pöllath, Christine; Hansen, Uwe; Rizzo, Fabio; Krafft, Christoph; Westermann, Martin; Hussain, Muzaffar; Peters, Georg; Pletz, Mathias W; Löffler, Bettina; Makarewicz, Oliwia; Tuchscherr, Lorena

    2017-10-20

    The extracellular matrix protein Emp of Staphylococcus aureus is a secreted adhesin that mediates interactions between the bacterial surface and extracellular host structures. However, its structure and role in staphylococcal pathogenesis remain unknown. Using multidisciplinary approaches, including circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopy, transmission electron (TEM) and immunogold transmission electron microscopy, functional ELISA assays and in silico techniques, we characterized the Emp protein. We demonstrated that Emp and its truncated forms bind to suprastructures in human skin, cartilage or bone, among which binding activity seems to be higher for skin compounds. The binding domain is located in the C-terminal part of the protein. CD spectroscopy revealed high contents of β-sheets (39.58%) and natively disordered structures (41.2%), and TEM suggested a fibrous structure consisting of Emp polymers. The N-terminus seems to be essential for polymerization. Due to the uncommonly high histidine content, we suggest that Emp represents a novel type of histidine-rich protein sharing structural similarities to leucine-rich repeats proteins as predicted by the I-TASSER algorithm. These new findings suggest a role of Emp in infections of deeper tissue and open new possibilities for the development of novel therapeutic strategies.

  14. Hsp90 Binds Directly to Fibronectin (FN) and Inhibition Reduces the Extracellular Fibronectin Matrix in Breast Cancer Cells

    PubMed Central

    Kenyon, Amy; Dhanani, Karim C. H.; Prinsloo, Earl; Edkins, Adrienne L.

    2014-01-01

    Heat shock protein 90 (Hsp90) has been identified in the extracellular space and has been shown to chaperone a finite number of extracellular proteins involved in cell migration and invasion. We used chemical cross-linking and immunoprecipitation followed by tandem mass spectrometry (MS/MS) to isolate a complex containing Hsp90 and the matrix protein fibronectin (FN) from breast cancer cells. Further analysis showed direct binding of Hsp90 to FN using an in vitro co-immunoprecipitation assay, a solid phase binding assay and surface plasmon resonance (SPR) spectroscopy. Confocal microscopy showed regions of co-localisation of Hsp90 and FN in breast cancer cell lines. Exogenous Hsp90β was shown to increase the formation of extracellular FN matrix in the Hs578T cell line, whilst knockdown or inhibition of Hsp90 led to a reduction in the levels of both soluble and insoluble FN and could be partially rescued by addition of exogenous Hsp90β. Treatment of cells with novobiocin led to internalization of FN into vesicles that were positive for the presence of the lysosomal marker, LAMP-1. Taken together, the direct interaction between FN and Hsp90, as well as the decreased levels of both soluble and insoluble FN upon Hsp90 inhibition or knockdown, suggested that FN may be a new client protein for Hsp90 and that Hsp90 was involved in FN matrix assembly and/or stability. The identification of FN as a putative client protein of Hsp90 suggests a role for Hsp90 in FN matrix stability, which is important for a number of fundamental cellular processes including embryogenesis, wound healing, cell migration and metastasis. PMID:24466266

  15. Hsp90 binds directly to fibronectin (FN) and inhibition reduces the extracellular fibronectin matrix in breast cancer cells.

    PubMed

    Hunter, Morgan C; O'Hagan, Kyle L; Kenyon, Amy; Dhanani, Karim C H; Prinsloo, Earl; Edkins, Adrienne L

    2014-01-01

    Heat shock protein 90 (Hsp90) has been identified in the extracellular space and has been shown to chaperone a finite number of extracellular proteins involved in cell migration and invasion. We used chemical cross-linking and immunoprecipitation followed by tandem mass spectrometry (MS/MS) to isolate a complex containing Hsp90 and the matrix protein fibronectin (FN) from breast cancer cells. Further analysis showed direct binding of Hsp90 to FN using an in vitro co-immunoprecipitation assay, a solid phase binding assay and surface plasmon resonance (SPR) spectroscopy. Confocal microscopy showed regions of co-localisation of Hsp90 and FN in breast cancer cell lines. Exogenous Hsp90β was shown to increase the formation of extracellular FN matrix in the Hs578T cell line, whilst knockdown or inhibition of Hsp90 led to a reduction in the levels of both soluble and insoluble FN and could be partially rescued by addition of exogenous Hsp90β. Treatment of cells with novobiocin led to internalization of FN into vesicles that were positive for the presence of the lysosomal marker, LAMP-1. Taken together, the direct interaction between FN and Hsp90, as well as the decreased levels of both soluble and insoluble FN upon Hsp90 inhibition or knockdown, suggested that FN may be a new client protein for Hsp90 and that Hsp90 was involved in FN matrix assembly and/or stability. The identification of FN as a putative client protein of Hsp90 suggests a role for Hsp90 in FN matrix stability, which is important for a number of fundamental cellular processes including embryogenesis, wound healing, cell migration and metastasis.

  16. Structure and function of ameloblastin as an extracellular matrix protein: adhesion, calcium binding, and CD63 interaction in human and mouse.

    PubMed

    Zhang, Xu; Diekwisch, Thomas G H; Luan, Xianghong

    2011-12-01

    The functional significance of extracellular matrix proteins in the life of vertebrates is underscored by a high level of sequence variability in tandem with a substantial degree of conservation in terms of cell-cell and cell-matrix adhesion interactions. Many extracellular matrix proteins feature multiple adhesion domains for successful attachment to substrates, such as integrin, CD63, and heparin. Here we have used homology and ab initio modeling algorithms to compare mouse ameloblastin (mAMBN) and human ameloblastin (hABMN) isoforms and to analyze their potential for cell adhesion and interaction with other matrix molecules as well as calcium binding. Sequence comparison between mAMBN and hAMBN revealed a 26-amino-acid deletion in mAMBN, corresponding to a helix-loop-helix frameshift. The human AMBN domain (174Q-201G), homologous to the mAMBN 157E-178I helix-loop-helix region, formed a helix-loop motif with an extended loop, suggesting a higher degree of flexibility of hAMBN compared with mAMBN, as confirmed by molecular dynamics simulation. Heparin-binding domains, CD63-interaction domains, and calcium-binding sites in both hAMBN and mAMBN support the concept of AMBN as an extracellular matrix protein. The high level of conservation between AMBN functional domains related to adhesion and differentiation was remarkable when compared with only 61% amino acid sequence homology. © 2011 Eur J Oral Sci.

  17. Matrix Metalloproteinases Are Differentially Regulated and Responsive to Compression Therapy in a Red Duroc Model of Hypertrophic Scar.

    PubMed

    Travis, Taryn E; Ghassemi, Pejhman; Prindeze, Nicholas J; Moffatt, Lauren T; Carney, Bonnie C; Alkhalil, Abdulnaser; Ramella-Roman, Jessica C; Shupp, Jeffrey W

    2018-01-01

    Objective: Proteins of the matrix metalloproteinases family play a vital role in extracellular matrix maintenance and basic physiological processes in tissue homeostasis. The function and activities of matrix metalloproteinases in response to compression therapies have yet to be defined. Here, a swine model of hypertrophic scar was used to profile the transcription of all known 26 matrix metalloproteinases in scars treated with a precise compression dose. Methods: Full-thickness excisional wounds were created. Wounds underwent healing and scar formation. A subset of scars underwent 2 weeks of compression therapy. Biopsy specimens were preserved, and microarrays, reverse transcription-polymerase chain reaction, Western blotting, and immunohistochemistry were performed to characterize the transcription and expression of various matrix metalloproteinase family members. Results: Microarray results showed that 13 of the known 26 matrix metalloproteinases were differentially transcribed in wounds relative to the preinjury skin. The predominant upregulation of these matrix metalloproteinases during early wound-healing stages declined gradually in later stages of wound healing. The use of compression therapy reduced this decline in 10 of the 13 differentially regulated matrix metalloproteinases. Further investigation of MMP7 using reverse transcription-polymerase chain reaction confirmed the effect of compression on transcript levels. Assessment of MMP7 at the protein level using Western blotting and immunohistochemistry was concordant. Conclusions: In a swine model of hypertrophic scar, the application of compression to hypertrophic scar attenuated a trend of decreasing levels of matrix metalloproteinases during the process of hypertrophic wound healing, including MMP7, whose enzyme regulation was confirmed at the protein level.

  18. Extracellular matrix and α5β1 integrin signaling control the maintenance of bone formation capacity by human adipose-derived stromal cells

    PubMed Central

    Di Maggio, Nunzia; Martella, Elisa; Frismantiene, Agne; Resink, Therese J.; Schreiner, Simone; Lucarelli, Enrico; Jaquiery, Claude; Schaefer, Dirk J.; Martin, Ivan; Scherberich, Arnaud

    2017-01-01

    Stromal vascular fraction (SVF) cells of human adipose tissue have the capacity to generate osteogenic grafts with intrinsic vasculogenic properties. However, adipose-derived stromal/stem cells (ASC), even after minimal monolayer expansion, display poor osteogenic capacity in vivo. We investigated whether ASC bone-forming capacity may be maintained by culture within a self-produced extracellular matrix (ECM) that recapitulates the native environment. SVF cells expanded without passaging up to 28 days (Unpass-ASC) deposited a fibronectin-rich extracellular matrix and displayed greater clonogenicity and differentiation potential in vitro compared to ASC expanded only for 6 days (P0-ASC) or for 28 days with regular passaging (Pass-ASC). When implanted subcutaneously, Unpass-ASC produced bone tissue similarly to SVF cells, in contrast to P0- and Pass-ASC, which mainly formed fibrous tissue. Interestingly, clonogenic progenitors from native SVF and Unpass-ASC expressed low levels of the fibronectin receptor α5 integrin (CD49e), which was instead upregulated in P0- and Pass-ASC. Mechanistically, induced activation of α5β1 integrin in Unpass-ASC led to a significant loss of bone formation in vivo. This study shows that ECM and regulation of α5β1-integrin signaling preserve ASC progenitor properties, including bone tissue-forming capacity, during in vitro expansion. PMID:28290502

  19. Ultrastructure of collagen fibers and distribution of extracellular matrix in the temporomandibular disk of the human fetus and adult.

    PubMed

    Takahashi, H; Sato, I

    2001-12-01

    We quantitatively examined the distribution of these differences in extracellular matrices (collagen types I, III, and fibronectin) and elastic fibers under confocal laser scanning microscopy and electron scanning microscopy in terms of their contribution to the mechanics of the TMJ during development and in adults. Elastic fibers were found in the anterior and posterior bands in adults aged 40 years, and a few elastic fibers in the anterior band of the disk in adults aged 80 to 90 years. The extracellular matrix contents of the TMJ disk are shown in various detected levels in the anterior, intermediate, posterior bands of TMJ disk. During development, collagen fibers are arranged in a complex fashion from 28 weeks' gestation. These ultrastructures of the embryonic TMJ are resembled to that of adults aged the 40s, however the difference in extracellular matrix distribution found in embryonic stages and adults. They might reflect the differences in function between mastication and sucking or the changes in shape and form as results of functional disorders of the TMJ.

  20. Changes in the Chondrocyte and Extracellular Matrix Proteome during Post-natal Mouse Cartilage Development*

    PubMed Central

    Wilson, Richard; Norris, Emma L.; Brachvogel, Bent; Angelucci, Constanza; Zivkovic, Snezana; Gordon, Lavinia; Bernardo, Bianca C.; Stermann, Jacek; Sekiguchi, Kiyotoshi; Gorman, Jeffrey J.; Bateman, John F.

    2012-01-01

    Skeletal growth by endochondral ossification involves tightly coordinated chondrocyte differentiation that creates reserve, proliferating, prehypertrophic, and hypertrophic cartilage zones in the growth plate. Many human skeletal disorders result from mutations in cartilage extracellular matrix (ECM) components that compromise both ECM architecture and chondrocyte function. Understanding normal cartilage development, composition, and structure is therefore vital to unravel these disease mechanisms. To study this intricate process in vivo by proteomics, we analyzed mouse femoral head cartilage at developmental stages enriched in either immature chondrocytes or maturing/hypertrophic chondrocytes (post-natal days 3 and 21, respectively). Using LTQ-Orbitrap tandem mass spectrometry, we identified 703 cartilage proteins. Differentially abundant proteins (q < 0.01) included prototypic markers for both early and late chondrocyte differentiation (epiphycan and collagen X, respectively) and novel ECM and cell adhesion proteins with no previously described roles in cartilage development (tenascin X, vitrin, Urb, emilin-1, and the sushi repeat-containing proteins SRPX and SRPX2). Meta-analysis of cartilage development in vivo and an in vitro chondrocyte culture model (Wilson, R., Diseberg, A. F., Gordon, L., Zivkovic, S., Tatarczuch, L., Mackie, E. J., Gorman, J. J., and Bateman, J. F. (2010) Comprehensive profiling of cartilage extracellular matrix formation and maturation using sequential extraction and label-free quantitative proteomics. Mol. Cell. Proteomics 9, 1296–1313) identified components involved in both systems, such as Urb, and components with specific roles in vivo, including vitrin and CILP-2 (cartilage intermediate layer protein-2). Immunolocalization of Urb, vitrin, and CILP-2 indicated specific roles at different maturation stages. In addition to ECM-related changes, we provide the first biochemical evidence of changing endoplasmic reticulum function during

  1. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs.

    PubMed

    Jabłońska-Trypuć, Agata; Matejczyk, Marzena; Rosochacki, Stanisław

    2016-01-01

    The main group of enzymes responsible for the collagen and other protein degradation in extracellular matrix (ECM) are matrix metalloproteinases (MMPs). Collagen is the main structural component of connective tissue and its degradation is a very important process in the development, morphogenesis, tissue remodeling, and repair. Typical structure of MMPs consists of several distinct domains. MMP family can be divided into six groups: collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs, and other non-classified MMPs. MMPs and their inhibitors have multiple biological functions in all stages of cancer development: from initiation to outgrowth of clinically relevant metastases and likewise in apoptosis and angiogenesis. MMPs and their inhibitors are extensively examined as potential anticancer drugs. MMP inhibitors can be divided into two main groups: synthetic and natural inhibitors. Selected synthetic inhibitors are in clinical trials on humans, e.g. synthetic peptides, non-peptidic molecules, chemically modified tetracyclines, and bisphosphonates. Natural MMP inhibitors are mainly isoflavonoids and shark cartilage.

  2. Matrix metalloproteinase-9 is up-regulated by CCL21/CCR7 interaction via extracellular signal-regulated kinase-1/2 signaling and is involved in CCL21-driven B-cell chronic lymphocytic leukemia cell invasion and migration.

    PubMed

    Redondo-Muñoz, Javier; José Terol, María; García-Marco, José A; García-Pardo, Angeles

    2008-01-01

    B-cell chronic lymphocytic leukemia (B-CLL) progression is frequently accompanied by clinical lymphadenopathy, and the CCL21 chemokine may play an important role in this process. Indeed, CCR7 (the CCL21 receptor), as well as matrix metalloproteinase-9 (MMP-9), are overexpressed in infiltrating B-CLL cells. We have studied whether MMP-9 is regulated by CCL21 and participates in CCL21-dependent migration. CCL21 significantly increased B-CLL MMP-9 production, measured by gelatin zymography. This was inhibited by blocking extracellular signal-regulated kinase-1/2 (ERK1/2) activity or by cell transfection with CCR7-siRNA. Accordingly, CCL21/CCR7 interaction activated the ERK1/2/c-Fos pathway and increased MMP-9 mRNA. CCL21-driven B-CLL cell migration through Matrigel or human umbilical vein endothelial cells (HUVEC) was blocked by anti-CCR7 antibodies, CCR7-siRNA transfection, or the ERK1/2 inhibitor U0126, as well as by anti-MMP-9 antibodies or tissue inhibitor of metalloproteinase 1 (TIMP-1). These results strongly suggest that MMP-9 is involved in B-CLL nodal infiltration and expand the roles of MMP-9 and CCR7 in B-CLL progression. Both molecules could thus constitute therapeutic targets for this disease.

  3. Adhesive interactions of human multiple myeloma cell lines with different extracellular matrix molecules.

    PubMed

    Kibler, C; Schermutzki, F; Waller, H D; Timpl, R; Müller, C A; Klein, G

    1998-06-01

    Multiple myeloma represents a human B cell malignancy which is characterized by a predominant localization of the malignant cell clone within the bone marrow. With the exception of the terminal stage of the disease the myeloma tumor cells do not circulate in the peripheral blood. The bone marrow microenvironment is believed to play an important role in homing, proliferation and terminal differentiation of myeloma cells. Here we have studied the expression of several extracellular matrix (ECM) molecules in the bone marrow of multiple myeloma patients and analyzed their adhesive capacities with four different human myeloma-derived cell lines. All ECM molecules analyzed (tenascin, laminin, fibronectin, collagen types I, III, V and VI) could be detected in bone marrow cryostat sections of multiple myeloma patients. Adhesion assays showed that only laminin, the microfibrillar collagen type VI and fibronectin were strong adhesive components for the myeloma cell lines U266, IM-9, OPM-2 and NCI-H929. Tenascin and collagen type I were only weak adhesive substrates for these myeloma cells. Adhesion to laminin and fibronectin was beta 1-integrin-mediated since addition of anti-beta 1-integrin antibodies could inhibit the binding of the four different cell types to both matrix molecules. In contrast, integrins do not seem to be involved in binding of the myeloma cells to collagen type VI. Instead, inhibition of binding by heparin suggested that membrane-bound heparan sulfate proteoglycans are responsible ligands for binding to collagen type VI. Adhesion assays with several B-cell lines resembling earlier differentiation stages revealed only weak interactions with tenascin and no interactions with collagen type VI, laminin or fibronectin. In summary, the interactions of human myeloma cells with the extracellular matrix may explain the specific retention of the plasma cells within the bone marrow.

  4. Endogenous Production of Extracellular Adenosine by Trabecular Meshwork Cells: Potential Role in Outflow Regulation

    PubMed Central

    Wu, Jing; Li, Guorong; Luna, Coralia; Spasojevic, Ivan; Epstein, David L.; Gonzalez, Pedro

    2012-01-01

    Purpose. To investigate the mechanisms for endogenous production of extracellular adenosine in trabecular meshwork (TM) cells and evaluate its physiological relevance to the regulation of aqueous humor outflow facility. Methods. Extra-cellular levels of adenosine monophosphate (AMP) and adenosine in porcine trabecular meshwork (PTM) cells treated with adenosine triphosphate (ATP), AMP, cAMP or forskolin with or without specific inhibitors of phosphodiesterases (IBMX) and CD73 (AMPCP) were determined by high-pressure liquid chromatography fluorometry. Extracellular adenosine was also evaluated in cell cultures subjected to cyclic mechanical stress (CMS) (20% stretching; 1 Hz) and after disruption of lipid rafts with methyl-β-cyclodextrin. Expression of CD39 and CD73 in porcine TM cells and tissue were examined by Q-PCR and Western blot. The effect of inhibition of CD73 on outflow facility was evaluated in perfused living mouse eyes. Results. PTM cells generated extracellular adenosine from extracellular ATP and AMP but not from extracellular cAMP. Increased intracellular cAMP mediated by forskolin led to a significant increase in extracellular adenosine production that was not prevented by IBMX. Inhibition of CD73 resulted, in all cases, in a significant decrease in extracellular adenosine. CMS induced a significant activation of extracellular adenosine production. Inhibition of CD73 activity with AMPCP in living mouse eyes resulted in a significant decrease in outflow facility. Conclusions. These results support the concept that the extracellular adenosine pathway might play an important role in the homeostatic regulation of outflow resistance in the TM, and suggest a novel mechanism by which pathologic alteration of the TM, such as increased tissue rigidity, could lead to abnormal elevation of IOP in glaucoma. PMID:22997289

  5. Study of the relationship between mononuclear inflammatory infiltrate and Ki-67 and basement membrane and extracellular matrix protein expression in radicular cysts.

    PubMed

    Mourão, R V C; Júnior, E C Pinheiro; Barros Silva, P G; Turatti, E; Mota, M R L; Alves, A P N N

    2016-05-01

    To evaluate the relationship between mononuclear inflammatory infiltrate and the expression of a proliferative immunomarker (Ki-67) as well as to evaluate basement membrane and extracellular matrix proteins (laminin and collagen type IV) in radicular cysts and dentigerous cysts (DC). Immunohistochemical analyses were performed in heavily inflamed radicular cysts (HIRC), slightly inflamed radicular cysts (SIRC) and DC (n = 20) using Ki-67 (Dako(®) , 1 : 50), anticollagen type IV (DBS(®) , 1 : 40) and antilaminin (DBS(®) , 1 : 20). The data were analysed using anova/Tukey's test (Ki-67) and Kruskal-Wallis/Dunn's test (collagen type IV and laminin) (P < 0.05). The immunoexpression of Ki-67 was significantly greater in the SIRC group compared with the HIRC and DC (P = 0.0040). Likewise, the immunoexpression of collagen type IV in the basement membrane of the SIRC group was significantly more continuous (P = 0.0475) than in the HIRC group. DC had significantly less collagen type IV in extracellular matrix immunoexpression than HIRC and SIRC (P = 0.0246). Laminin was absent in the basement membrane in the SIRC and DC groups, and the extracellular matrix of the HIRC was weak and punctate. The presence of inflammatory factors in the radicular cyst wall modified the expression of proliferation factors in the epithelial lining and the expression of collagen type IV and laminin in the basement membrane, but did not modify extracellular matrix behaviour in radicular cysts. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  6. Extracellular matrix influence in Streptococcus mutans gene expression in a cariogenic biofilm.

    PubMed

    Florez Salamanca, E J; Klein, M I

    2018-04-01

    Caries etiology is biofilm-diet-dependent. Biofilms are highly dynamic and structured microbial communities enmeshed in a three-dimensional extracellular matrix. The study evaluated the expression dynamics of Streptococcus mutans genes associated with exopolysaccharides (EPS) (gtfBCD, gbpB, dexA), lipoteichoic acids (LTA) (dltABCD, SMU_775c) and extracellular DNA (eDNA) (lytST, lrgAB, ccpA) during matrix development within a mixed-species biofilm of S. mutans, Actinomyces naeslundii and Streptococcus gordonii. Mixed-species biofilms using S. mutans strains UA159 or ΔgtfB formed on saliva-coated hydroxyapatite discs were submitted to a nutritional challenge (providing an abundance of sucrose and starch). Biofilms were removed at eight developmental stages for gene expression analysis by quantitative polymerase chain reaction. The pH of spent culture media remained acidic throughout the experimental periods, being lower after sucrose and starch exposure. All genes were expressed at all biofilm developmental phases. EPS- and LTA-associated genes had a similar expression profile for both biofilms, presenting lower levels of expression at 67, 91 and 115 hours and a peak of expression at 55 hours, but having distinct expression magnitudes, with lower values for ΔgtfB (eg, fold-difference of ~382 for gtfC and ~16 for dltB at 43 hours). The eDNA-associated genes presented different dynamics of expression between both strains. In UA159 biofilms lrgA and lrgB genes were highly expressed at 29 hours (which were ~13 and ~5.4 times vs ΔgtfB, respectively), whereas in ΔgtfB biofilms an inverse relationship between lytS and lrgA and lrgB expression was detected. Therefore, the deletion of gtfB influences dynamics and magnitude of expression of genes associated with matrix main components. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Matrix MetalloProteinases (MMPs) andTissue Inhibitors of MetalloProteinases (TIMPs): positive and negative regulators intumor cell adhesion

    PubMed Central

    Bourboulia, Dimitra; Stetler-Stevenson, William G.

    2010-01-01

    Cells adhere to one another and/or to matrices that surround them. Regulation of cell-cell (intercellular) and cell-matrix adhesion is tightly controlled in normal cells, however, defects in cell adhesion are common in the majority of humancancers. Multilateral communication among tumor cells with the extracellular matrix (ECM) and neighbor cells is accomplished through adhesion molecules, ECM components, proteolytic enzymes and their endogenous inhibitors. There is sufficient evidence to suggest that reduced adherence is a tumor cell propertyengaged during tumor progression. Tumor cells acquire the ability to change shape, detach and easily move through spaces disorganizing the normal tissue architecture. This property is due to changes in expression levels of adhesion molecules and/or due to elevated levels of secreted proteolytic enzymes, including matrix metalloproteinases (MMPs). Among other roles, MMPsdegrade the ECMand, therefore, prepare the path for tumor cells to migrate, invade and spread to distant secondary areas, where they form metastasis. Tissue Inhibitors of Metalloproteinases or TIMPs control MMP activities and, therefore, minimize matrix degradation. Both MMPs and TIMPs are involved in tissue remodeling and decisively regulate tumor cell progression including tumor angiogenesis. In this review, we describe and discuss data that support the important role of MMPs and TIMPs in cancer cell adhesion and tumor progression. PMID:20470890

  8. Matrix Remodeling in Pulmonary Fibrosis and Emphysema

    PubMed Central

    O’Reilly, Philip; Antony, Veena B.; Gaggar, Amit

    2016-01-01

    Pulmonary fibrosis and emphysema are chronic lung diseases characterized by a progressive decline in lung function, resulting in significant morbidity and mortality. A hallmark of these diseases is recurrent or persistent alveolar epithelial injury, typically caused by common environmental exposures such as cigarette smoke. We propose that critical determinants of the outcome of the injury-repair processes that result in fibrosis versus emphysema are mesenchymal cell fate and associated extracellular matrix dynamics. In this review, we explore the concept that regulation of mesenchymal cells under the influence of soluble factors, in particular transforming growth factor-β1, and the extracellular matrix determine the divergent tissue remodeling responses seen in pulmonary fibrosis and emphysema. PMID:26741177

  9. Semitransparent bandages based on chitosan and extracellular matrix for photochemical tissue bonding.

    PubMed

    Frost, Samuel J; Mawad, Damia; Wuhrer, Richard; Myers, Simon; Lauto, Antonio

    2018-01-22

    Extracellular matrices (ECMs) are often used in reconstructive surgery to enhance tissue regeneration and remodeling. Sutures and staples are currently used to fix ECMs to tissue although they can be invasive devices. Other sutureless and less invasive techniques, such as photochemical tissue bonding, cannot be coupled to ECMs because of their intrinsic opacity to light. We succeeded in fabricating a biocompatible and adhesive device that is based on ovine forestomach matrix (OFM) and a chitosan adhesive. The natural opacity of the OFM has been overcome by adding the adhesive into the matrix that allows for the light to effectively penetrate through it. The OFM-chitosan device is semitransparent (attenuation length ~ 106 µm) and can be photoactivated by green light to bond to tissue. This device does not require sutures or staples and guarantees a bonding strength of ~ 23 kPa. A new semitransparent and biocompatible bandage has been successfully fabricated and characterized for sutureless tissue bonding.

  10. Development of biomimetic nanocomposites as bone extracellular matrix for human osteoblastic cells.

    PubMed

    Bhowmick, Arundhati; Mitra, Tapas; Gnanamani, Arumugam; Das, Manas; Kundu, Patit Paban

    2016-05-05

    Here, we have developed biomimetic nanocomposites containing chitosan, poly(vinyl alcohol) and nano-hydroxyapatite-zinc oxide as bone extracellular matrix for human osteoblastic cells and characterized by Fourier transform infrared spectroscopy, powder X-ray diffraction. Scanning electron microscopy images revealed interconnected macroporous structures. Moreover, in this study, the problem related to fabricating a porous composite with good mechanical strength has been resolved by incorporating 5wt% of nano-hydroxyapatite-zinc oxide into chitosan-poly(vinyl alcohol) matrix; the present composite showed high tensile strength (20.25MPa) while maintaining appreciable porosity (65.25%). These values are similar to human cancellous bone. These nanocomposites also showed superior water uptake, antimicrobial and biodegradable properties than the previously reported results. Compatibility with human blood and pH was observed, indicating nontoxicity of these materials to the human body. Moreover, proliferation of osteoblastic MG-63 cells onto the nanocomposites was also observed without having any negative effect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Heparin-induced conformational changes of fibronectin within the extracellular matrix promote hMSC osteogenic differentiation.

    PubMed

    Li, Bojun; Lin, Zhe; Mitsi, Maria; Zhang, Yang; Vogel, Viola

    2015-01-01

    An increasing body of evidence suggests important roles of extracellular matrix (ECM) in regulating stem cell fate. This knowledge can be exploited in tissue engineering applications for the design of ECM scaffolds appropriate to direct stem cell differentiation. By probing the conformation of fibronectin (Fn) using fluorescence resonance energy transfer (FRET), we show here that heparin treatment of the fibroblast-derived ECM scaffolds resulted in more extended conformations of fibrillar Fn in ECM. Since heparin is a highly negatively charged molecule while fibronectin contains segments of positively charged modules, including FnIII13, electrostatic interactions between Fn and heparin might interfere with residual quaternary structure in relaxed fibronectin fibers thereby opening up buried sites. The conformation of modules FnIII12-14 in particular, which contain one of the heparin binding sites as well as binding sites for many growth factors, may be activated by heparin, resulting in alterations in growth factor binding to Fn. Indeed, upregulated osteogenic differentiation was observed when hMSCs were seeded on ECM scaffolds that had been treated with heparin and were subsequently chemically fixed. In contrast, either rigidifying relaxed fibers by fixation alone, or heparin treatment without fixation had no effect. We hypothesize that fibronectin's conformations within the ECM are activated by heparin such as to coordinate with other factors to upregulate hMSC osteogenic differentiation. Thus, the conformational changes of fibronectin within the ECM could serve as a 'converter' to tune hMSC differentiation in extracellular matrices. This knowledge could also be exploited to promote osteogenic stem cell differentiation on biomedical surfaces.

  12. Relationship of biomarkers of extracellular matrix with myocardial function in Type 2 diabetes mellitus.

    PubMed

    Liu, Ju-Hua; Chen, Yan; Zhen, Zhe; Ho, Lai-Ming; Tsang, Anita; Yuen, Michele; Lam, Karen; Tse, Hung-Fat; Yiu, Kai-Hang

    2017-07-01

    The study evaluated the relationship of extracellular matrix and renin angiotensin system with myocardial dysfunction in Type 2 diabetes mellitus. All patients underwent resting and exercise echocardiography, including conventional parameters, E/E' ratio, global longitudinal strain and diastolic function reserve index. Plasma matrix metalloproteinase-1, TIMP-1, amino-terminal propeptide of type I and type III procollagen and renin angiotensin system activity were measured. As patients with diastolic dysfunction had a higher plasma level of TIMP-1 and propeptide of type III procollagen than those with no diastolic dysfunction. After multivariate adjustment, TIMP-1 associated with E/E' (both at rest and stress) and diastolic function reserve index. TIMP-1 is independently associated with myocardial diastolic dysfunction in patients with Type 2 diabetes mellitus.

  13. Basic Components of Vascular Connective Tissue and Extracellular Matrix.

    PubMed

    Halper, Jaroslava

    2018-01-01

    Though the composition of the three layers constituting the blood vessel wall varies among the different types of blood vessels, and some layers may even be missing in capillaries, certain basic components, and properties are shared by all blood vessels, though each histologically distinct layer contains a unique complement of extracellular components, growth factors and cytokines, and cell types as well. The structure and composition of vessel layers informs and is informed by the function of the particular blood vessel. The adaptation of the composition and the resulting function of the extracellular matrix (ECM) to changes in circulation/blood flow and a variety of other extravascular stimuli can be characterized as remodeling spearheaded by vascular cells. There is a surprising amount of cell traffic among the three layers. It starts with endothelial cell mediated transmigration of inflammatory cells from the bloodstream into the subendothelium, and then into tissue adjoining the blood vessel. Smooth muscle cells and a variety of adventitial cells reside in tunica media and tunica externa, respectively. The latter cells are a mixture of progenitor/stem cells, fibroblasts, myofibroblasts, pericytes, macrophages, and dendritic cells and respond to endothelial injury by transdifferentiation as they travel into the two inner layers, intima and media for corrective mission in the ECM composition. This chapter addresses the role of various vascular cell types and ECM components synthesized by them in maintenance of normal structure and in their contribution to major pathological processes, such as atherosclerosis, organ fibrosis, and diabetic retinopathy. © 2018 Elsevier Inc. All rights reserved.

  14. Micro- and macrorheology of jellyfish extracellular matrix.

    PubMed

    Gambini, Camille; Abou, Bérengère; Ponton, Alain; Cornelissen, Annemiek J M

    2012-01-04

    Mechanical properties of the extracellular matrix (ECM) play a key role in tissue organization and morphogenesis. Rheological properties of jellyfish ECM (mesoglea) were measured in vivo at the cellular scale by passive microrheology techniques: microbeads were injected in jellyfish ECM and their Brownian motion was recorded to determine the mechanical properties of the surrounding medium. Microrheology results were compared with macrorheological measurements performed with a shear rheometer on slices of jellyfish mesoglea. We found that the ECM behaved as a viscoelastic gel at the macroscopic scale and as a much softer and heterogeneous viscoelastic structure at the microscopic scale. The fibrous architecture of the mesoglea, as observed by differential interference contrast and scanning electron microscopy, was in accord with these scale-dependent mechanical properties. Furthermore, the evolution of the mechanical properties of the ECM during aging was investigated by measuring microrheological properties at different jellyfish sizes. We measured that the ECM in adult jellyfish was locally stiffer than in juvenile ones. We argue that this stiffening is a consequence of local aggregations of fibers occurring gradually during aging of the jellyfish mesoglea and is enhanced by repetitive muscular contractions of the jellyfish. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. Extracellular matrix dynamics during vertebrate axis formation.

    PubMed

    Czirók, András; Rongish, Brenda J; Little, Charles D

    2004-04-01

    The first evidence for the dynamics of in vivo extracellular matrix (ECM) pattern formation during embryogenesis is presented below. Fibrillin 2 filaments were tracked for 12 h throughout the avian intraembryonic mesoderm using automated light microscopy and algorithms of our design. The data show that these ECM filaments have a reproducible morphogenic destiny that is characterized by directed transport. Fibrillin 2 particles initially deposited in the segmental plate mesoderm are translocated along an unexpected trajectory where they eventually polymerize into an intricate scaffold of cables parallel to the anterior-posterior axis. The cables coalesce near the midline before the appearance of the next-formed somite. Moreover, the ECM filaments define global tissue movements with high precision because the filaments act as passive motion tracers. Quantification of individual and collective filament "behaviors" establish fate maps, trajectories, and velocities. These data reveal a caudally propagating traveling wave pattern in the morphogenetic movements of early axis formation. We conjecture that within vertebrate embryos, long-range mechanical tension fields are coupled to both large-scale patterning and local organization of the ECM. Thus, physical forces or stress fields are essential requirements for executing an emergent developmental pattern-in this case, paraxial fibrillin cable assembly.

  16. Mechanistic understanding of nanoparticles' interactions with extracellular matrix: the cell and immune system.

    PubMed

    Engin, Ayse Basak; Nikitovic, Dragana; Neagu, Monica; Henrich-Noack, Petra; Docea, Anca Oana; Shtilman, Mikhail I; Golokhvast, Kirill; Tsatsakis, Aristidis M

    2017-06-24

    Extracellular matrix (ECM) is an extraordinarily complex and unique meshwork composed of structural proteins and glycosaminoglycans. The ECM provides essential physical scaffolding for the cellular constituents, as well as contributes to crucial biochemical signaling. Importantly, ECM is an indispensable part of all biological barriers and substantially modulates the interchange of the nanotechnology products through these barriers. The interactions of the ECM with nanoparticles (NPs) depend on the morphological characteristics of intercellular matrix and on the physical characteristics of the NPs and may be either deleterious or beneficial. Importantly, an altered expression of ECM molecules ultimately affects all biological processes including inflammation. This review critically discusses the specific behavior of NPs that are within the ECM domain, and passing through the biological barriers. Furthermore, regenerative and toxicological aspects of nanomaterials are debated in terms of the immune cells-NPs interactions.

  17. Regulation of matrix metalloproteinases (MMPs) expression and secretion in MDA-MB-231 breast cancer cells by LIM and SH3 protein 1 (LASP1).

    PubMed

    Endres, Marcel; Kneitz, Susanne; Orth, Martin F; Perera, Ruwan K; Zernecke, Alma; Butt, Elke

    2016-09-27

    The process of tumor invasion requires degradation of extracellular matrix by proteolytic enzymes. Cancer cells form protrusive invadopodia, which produce and release matrix metalloproteinases (MMPs) to degrade the basement membrane thereby enabling metastasis. We investigated the effect of LASP1, a newly identified protein in invadopodia, on expression, secretion and activation of MMPs in invasive breast tumor cell lines.By analyzing microarray data of in-house generated control and LASP1-depleted MDA-MB-231 breast cancer cells, we observed downregulation of MMP1, -3 and -9 upon LASP1 depletion. This was confirmed by Western blot analysis. Conversely, rescue experiments restored in part MMP expression and secretion. The regulatory effect of LASP1 on MMP expression was also observed in BT-20 breast cancer cells as well as in prostate and bladder cancer cell lines.In line with bioinformatic FunRich analysis of our data, which mapped a high regulation of transcription factors by LASP1, public microarray data analysis detected a correlation between high LASP1 expression and enhanced c-Fos levels, a protein that is part of the transcription factor AP-1 and known to regulate MMP expression. Compatibly, in luciferase reporter assays, AP-1 showed a decreased transcriptional activity after LASP1 knockdown.Zymography assays and Western blot analysis revealed an additional promotion of MMP secretion into the extracellular matrix by LASP1, thus, most likely, altering the microenvironment during cancer progression.The newly identified role of LASP1 in regulating matrix degradation by affecting MMP transcription and secretion elucidated the migratory potential of LASP1 overexpressing aggressive tumor cells in earlier studies.

  18. Early Dysregulation of Cell Adhesion and Extracellular Matrix Pathways in Breast Cancer Progression

    PubMed Central

    Emery, Lyndsey A.; Tripathi, Anusri; King, Chialin; Kavanah, Maureen; Mendez, Jane; Stone, Michael D.; de las Morenas, Antonio; Sebastiani, Paola; Rosenberg, Carol L.

    2009-01-01

    Proliferative breast lesions, such as simple ductal hyperplasia (SH) and atypical ductal hyperplasia (ADH), are candidate precursors to ductal carcinoma in situ (DCIS) and invasive cancer. To better understand the relationship of breast lesions to more advanced disease, we used microdissection and DNA microarrays to profile the gene expression of patient-matched histologically normal (HN), ADH, and DCIS from 12 patients with estrogen receptor positive sporadic breast cancer. SH were profiled from a subset of cases. We found 837 differentially expressed genes between DCIS-HN and 447 between ADH-HN, with >90% of the ADH-HN genes also present among the DCIS-HN genes. Only 61 genes were identified between ADH-DCIS. Expression differences were reproduced in an independent cohort of patient-matched lesions by quantitative real-time PCR. Many breast cancer-related genes and pathways were dysregulated in ADH and maintained in DCIS. Particularly, cell adhesion and extracellular matrix interactions were overrepresented. Focal adhesion was the top pathway in each gene set. We conclude that ADH and DCIS share highly similar gene expression and are distinct from HN. In contrast, SH appear more similar to HN. These data provide genetic evidence that ADH (but not SH) are often precursors to cancer and suggest cancer-related genetic changes, particularly adhesion and extracellular matrix pathways, are dysregulated before invasion and even before malignancy is apparent. These findings could lead to novel risk stratification, prevention, and treatment approaches. PMID:19700746

  19. Age-related collagen turnover of the interstitial matrix and basement membrane: Implications of age- and sex-dependent remodeling of the extracellular matrix.

    PubMed

    Kehlet, Stephanie N; Willumsen, Nicholas; Armbrecht, Gabriele; Dietzel, Roswitha; Brix, Susanne; Henriksen, Kim; Karsdal, Morten A

    2018-01-01

    The extracellular matrix (ECM) plays a vital role in maintaining normal tissue function. Collagens are major components of the ECM and there is a tight equilibrium between degradation and formation of these proteins ensuring tissue health and homeostasis. As a consequence of tissue turnover, small collagen fragments are released into the circulation, which act as important biomarkers in the study of certain tissue-related remodeling factors in health and disease. The aim of this study was to establish an age-related collagen turnover profile of the main collagens of the interstitial matrix (type I and III collagen) and basement membrane (type IV collagen) in healthy men and women. By using well-characterized competitive ELISA-assays, we assessed specific fragments of degraded (C1M, C3M, C4M) and formed (PINP, Pro-C3, P4NP7S) type I, III and IV collagen in serum from 617 healthy men and women ranging in ages from 22 to 86. Subjects were divided into 5-year age groups according to their sex and age. Groups were compared using Kruskal-Wallis adjusted for Dunn's multiple comparisons test and Mann-Whitney t-test. Age-specific changes in collagen turnover was most profound for type I collagen. PINP levels decreased in men with advancing age, whereas in women, the level decreased in early adulthood followed by an increase around the age of menopause (age 40-60). Sex-specific changes in type I, III and IV collagen turnover was present at the age around menopause (age 40-60) with women having an increased turnover. In summary, collagen turnover is affected by age and sex with the interstitial matrix and the basement membrane being differently regulated. The observed changes needs to be accounted for when measuring ECM related biomarkers in clinical studies.

  20. Alternatively spliced Spalax heparanase inhibits extracellular matrix degradation, tumor growth, and metastasis

    PubMed Central

    Nasser, Nicola J.; Avivi, Aaron; Shafat, Itay; Edovitsky, Evgeny; Zcharia, Eyal; Ilan, Neta; Vlodavsky, Israel; Nevo, Eviatar

    2009-01-01

    Heparanase is an endoglycosidase that degrades heparan sulfate (HS) at the cell surface and in the extracellular matrix. Heparanase is expressed mainly by cancer cells, and its expression is correlated with increased tumor aggressiveness, metastasis, and angiogenesis. Here, we report the cloning of a unique splice variant (splice 36) of heparanase from the subterranean blind mole rat (Spalax). This splice variant results from skipping part of exon 3, exons 4 and 5, and part of exon 6 and functions as a dominant negative to the wild-type enzyme. It inhibits HS degradation, suppresses glioma tumor growth, and decreases experimental B16–BL6 lung colonization in a mouse model. Intriguingly, Spalax splice variant 7 of heparanase (which results from skipping of exon 7) is devoid of enzymatic activity, but unlike splice 36 it enhances tumor growth. Our results demonstrate that alternative splicing of heparanase regulates its enzymatic activity and might adapt the heparanase function to the fluctuating normoxic–hypoxic subterranean environment that Spalax experiences. Development of anticancer drugs designed to suppress tumor growth, angiogenesis, and metastasis is a major challenge, of which heparanase inhibition is a promising approach. We anticipate that the heparanase splicing model, evolved during 40 million years of Spalacid adaptation to underground life, would pave the way for the development of heparanase-based therapeutic modalities directed against angiogenesis, tumor growth, and metastasis. PMID:19164514

  1. Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs): Positive and negative regulators in tumor cell adhesion.

    PubMed

    Bourboulia, Dimitra; Stetler-Stevenson, William G

    2010-06-01

    Cells adhere to one another and/or to matrices that surround them. Regulation of cell-cell (intercellular) and cell-matrix adhesion is tightly controlled in normal cells, however, defects in cell adhesion are common in the majority of human cancers. Multilateral communication among tumor cells with the extracellular matrix (ECM) and neighbor cells is accomplished through adhesion molecules, ECM components, proteolytic enzymes and their endogenous inhibitors. There is sufficient evidence to suggest that reduced adherence is a tumor cell property engaged during tumor progression. Tumor cells acquire the ability to change shape, detach and easily move through spaces disorganizing the normal tissue architecture. This property is due to changes in expression levels of adhesion molecules and/or due to elevated levels of secreted proteolytic enzymes, including matrix metalloproteinases (MMPs). Among other roles, MMPs degrade the ECM and, therefore, prepare the path for tumor cells to migrate, invade and spread to distant secondary areas, where they form metastasis. Tissue inhibitors of metalloproteinases or TIMPs control MMP activities and, therefore, minimize matrix degradation. Both MMPs and TIMPs are involved in tissue remodeling and decisively regulate tumor cell progression including tumor angiogenesis. In this review, we describe and discuss data that support the important role of MMPs and TIMPs in cancer cell adhesion and tumor progression. Published by Elsevier Ltd.

  2. Perilla frutescens leaves extract ameliorates ultraviolet radiation-induced extracellular matrix damage in human dermal fibroblasts and hairless mice skin.

    PubMed

    Bae, Jung-Soo; Han, Mira; Shin, Hee Soon; Kim, Min-Kyoung; Shin, Chang-Yup; Lee, Dong Hun; Chung, Jin Ho

    2017-01-04

    Perilla frutescens (L.) Britt. (Lamiaceae) is a traditional herb that is consumed in East Asian countries as a traditional medicine. This traditional herb has been documented for centuries to treat various diseases such as depression, allergies, inflammation and asthma. However, the effect of Perilla frutescens on skin has not been characterized well. The present study aimed to investigate the effect of Perilla frutescens leaves extract (PLE) on ultraviolet radiation-induced extracellular matrix damage in human dermal fibroblasts and hairless mice skin. Human dermal fibroblasts and Skh-1 hairless mice were irradiated with UV and treated with PLE. Protein and mRNA levels of various target molecules were analyzed by western blotting and quantitative RT-PCR, respectively. Histological changes of mouse skin were analyzed by H&E staining. To elucidate underlying mechanism of PLE, activator protein-1 (AP-1) DNA binding assay and the measurement of reactive oxygen species (ROS) were performed. PLE significantly inhibited basal and UV-induced MMP-1 and MMP-3 expression dose-dependently, and also decreased UV-induced phosphorylation of extracellular signal-regulated kinases and c-Jun N-terminal kinases. This inhibitory effects of PLE on MMP-1 and MMP-3 were mediated by reduction of ROS generation and AP-1 DNA binding activity induced by UV. Furthermore, PLE promoted type I procollagen production irrespective of UV irradiation. In the UV-irradiated animal model, PLE significantly reduced epidermal skin thickness and MMP-13 expression induced by UV. Our results demonstrate that PLE has the protective effect against UV-induced dermal matrix damage. Therefore, we suggest that PLE can be a potential agent for prevention of skin aging. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Functional Relevance of Protein Glycosylation to the Pro-Inflammatory Effects of Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) on Monocytes/Macrophages

    PubMed Central

    Ge, Heng; Yuan, Wei; Liu, Jidong; He, Qing; Ding, Song; Pu, Jun; He, Ben

    2015-01-01

    Background and Objective Extracellular matrix metalloproteinase inducer (EMMPRIN) is an important pro-inflammatory protein involved in the cellular functions of monocytes/macrophages. We have hypothesized that high-level heterogeneousness of protein glycosylation of EMMPRIN may have functional relevance to its biological effects and affect the inflammatory activity of monocytes/macrophages. Methods The glycosylation patterns of EMMPRIN expressed by monocytes/macrophages (THP-1 cells) in response to different extracellular stimuli were observed, and the structures of different glycosylation forms were identified. After the purification of highly- and less-glycosylated proteins respectively, the impacts of different glycosylation forms on the pro-inflammatory effects of EMMPRIN were examined in various aspects, such as cell adhesion to endothelial cells, cell migrations, cytokine expression, and activation of inflammatory signalling pathway. Results 1) It was mainly the highly-glycosylated form of EMMPRIN (HG-EMMPRIN) that increased after being exposed to inflammatory signals (PMA and H2O2). 2) Glycosylation of EMMPRIN in monocytes/macrophages led to N-linked-glycans being added to the protein, with the HG form containing complex-type glycans and the less-glycosylated form (LG) the simple type. 3) Only the HG-EMMPRIN but not the LG-EMMPRIN exhibited pro-inflammatory effects and stimulated inflammatory activities of the monocytes/macrophages (i.e., activation of ERK1/2 and NF-κB pathway, enhanced monocyte-endothelium adhesion, cell migration and matrix metalloproteinase -9 expression). Conclusions Post-transcriptional glycosylation represents an important mechanism that determines the biological effects of EMMPRIN in monocytes/macrophages. Glycosylation of EMMPRIN may serve as a potential target for regulating the inflammatory activities of monocytes/macrophages. PMID:25658763

  4. Structural and biomechanical characterizations of porcine myocardial extracellular matrix

    PubMed Central

    Wang, Bo; Tedder, Mary E.; Perez, Clara E.; Wang, Guangjun; de Jongh Curry, Amy L.; To, Filip; Elder, Steven H.; Williams, Lakiesha N.; Simionescu, Dan T.; Liao, Jun

    2012-01-01

    Extracellular matrix (ECM) of myocardium plays an important role to maintain a multilayered helical architecture of cardiomyocytes. In this study, we have characterized the structural and biomechanical properties of porcine myocardial ECM. Fresh myocardium were decellularized in a rotating bioreactor using 0.1 % sodium dodecyl sulfate solution. Masson’s trichrome staining and SEM demonstrated the removal of cells and preservation of the interconnected 3D cardiomyocyte lacunae. Movat’s pentachrome staining showed the preservation of cardiac elastin ultrastructure and vascular elastin distribution/alignment. DNA assay result confirmed a 98.59 % reduction in DNA content; the acellular myocardial scaffolds were found completely lack of staining for the porcine α-Gal antigen; and the accelerating enzymatic degradation assessment showed a constant degradation rate. Tensile and shear properties of the acellular myocardial scaffolds were also evaluated. Our observations showed that the acellular myocardial ECM possessed important traits of biodegradable scaffolds, indicating the potentials in cardiac regeneration and whole heart tissue engineering. PMID:22584822

  5. Arabidopsis GRI is involved in the regulation of cell death induced by extracellular ROS.

    PubMed

    Wrzaczek, Michael; Brosché, Mikael; Kollist, Hannes; Kangasjärvi, Jaakko

    2009-03-31

    Reactive oxygen species (ROS) have important functions in plant stress responses and development. In plants, ozone and pathogen infection induce an extracellular oxidative burst that is involved in the regulation of cell death. However, very little is known about how plants can perceive ROS and regulate the initiation and the containment of cell death. We have identified an Arabidopsis thaliana protein, GRIM REAPER (GRI), that is involved in the regulation of cell death induced by extracellular ROS. Plants with an insertion in GRI display an ozone-sensitive phenotype. GRI is an Arabidopsis ortholog of the tobacco flower-specific Stig1 gene. The GRI protein appears to be processed in leaves with a release of an N-terminal fragment of the protein. Infiltration of the N-terminal fragment of the GRI protein into leaves caused cell death in a superoxide- and salicylic acid-dependent manner. Analysis of the extracellular GRI protein yields information on how plants can initiate ROS-induced cell death during stress response and development.

  6. Vinculin is required for cell polarization, migration, and extracellular matrix remodeling in 3D collagen.

    PubMed

    Thievessen, Ingo; Fakhri, Nikta; Steinwachs, Julian; Kraus, Viola; McIsaac, R Scott; Gao, Liang; Chen, Bi-Chang; Baird, Michelle A; Davidson, Michael W; Betzig, Eric; Oldenbourg, Rudolf; Waterman, Clare M; Fabry, Ben

    2015-11-01

    Vinculin is filamentous (F)-actin-binding protein enriched in integrin-based adhesions to the extracellular matrix (ECM). Whereas studies in 2-dimensional (2D) tissue culture models have suggested that vinculin negatively regulates cell migration by promoting cytoskeleton-ECM coupling to strengthen and stabilize adhesions, its role in regulating cell migration in more physiologic, 3-dimensional (3D) environments is unclear. To address the role of vinculin in 3D cell migration, we analyzed the morphodynamics, migration, and ECM remodeling of primary murine embryonic fibroblasts (MEFs) with cre/loxP-mediated vinculin gene disruption in 3D collagen I cultures. We found that vinculin promoted 3D cell migration by increasing directional persistence. Vinculin was necessary for persistent cell protrusion, cell elongation, and stable cell orientation in 3D collagen, but was dispensable for lamellipodia formation, suggesting that vinculin-mediated cell adhesion to the ECM is needed to convert actin-based cell protrusion into persistent cell shape change and migration. Consistent with this finding, vinculin was necessary for efficient traction force generation in 3D collagen without affecting myosin II activity and promoted 3D collagen fiber alignment and macroscopical gel contraction. Our results suggest that vinculin promotes directionally persistent cell migration and tension-dependent ECM remodeling in complex 3D environments by increasing cell-ECM adhesion and traction force generation. © FASEB.

  7. The Bioactivity of Cartilage Extracellular Matrix in Articular Cartilage Regeneration

    PubMed Central

    Sutherland, Amanda J.; Converse, Gabriel L.; Hopkins, Richard A.; Detamore, Michael S.

    2014-01-01

    Cartilage matrix is a particularly promising acellular material for cartilage regeneration given the evidence supporting its chondroinductive character. The ‘raw materials’ of cartilage matrix can serve as building blocks and signals for enhanced tissue regeneration. These matrices can be created by chemical or physical methods: physical methods disrupt cellular membranes and nuclei but may not fully remove all cell components and DNA, whereas chemical methods when combined with physical methods are particularly effective in fully decellularizing such materials. Critical endpoints include no detectable residual DNA or immunogenic antigens. It is important to first delineate between the sources of the cartilage matrix, i.e., derived from matrix produced by cells in vitro or from native tissue, and then to further characterize the cartilage matrix based on the processing method, i.e., decellularization or devitalization. With these distinctions, four types of cartilage matrices exist: decellularized native cartilage (DCC), devitalized native cartilage (DVC), decellularized cell derived matrix (DCCM), and devitalized cell derived matrix (DVCM). Delivery of cartilage matrix may be a straightforward approach without the need for additional cells or growth factors. Without additional biological additives, cartilage matrix may be attractive from a regulatory and commercialization standpoint. Source and delivery method are important considerations for clinical translation. Only one currently marketed cartilage matrix medical device is decellularized, although trends in filed patents suggest additional decellularized products may be available in the future. To choose the most relevant source and processing for cartilage matrix, qualifying testing needs to include targeting the desired application, optimizing delivery of the material, identify relevant FDA regulations, assess availability of raw materials, and immunogenic properties of the product. PMID:25044502

  8. Transepithelial SCFA fluxes link intracellular and extracellular pH regulation of mouse colonocytes.

    PubMed

    Chu, S; Montrose, M H

    1997-10-01

    We have studied pH regulation in both intracellular and extracellular compartments of mouse colonic crypts, using distal colonic mucosa with intact epithelial architecture. In this work, we question how transepithelial SCFA gradients affect intracellular pH (pHi) and examine interactions between extracellular pH (pHo) and pHi regulation in crypts of distal colonic epithelium from mouse. We studied pH regulation in three adjacent compartments of distal colonic epithelium (crypt lumen, crypt epithelial cell cytosol, and lamina propria) with SNARF-1 (a pH sensitive fluorescent dye), digital imaging microscopy (for pHi), and confocal microscopy (for pHo). Combining results from the three compartments allows us to find how pHi and pHo are regulated and related under the influence of physiological transepithelial SCFA gradients, and develop a better understanding of pH regulation mechanisms in colonic crypts. Results suggest a complex interdependency between SCFA fluxes and pHo values, which can directly affect how strongly SCFAs acidify colonocytes.

  9. Ultrastructure of the extracellular matrix of bovine dura mater, optic nerve sheath and sclera.

    PubMed Central

    Raspanti, M; Marchini, M; Della Pasqua, V; Strocchi, R; Ruggeri, A

    1992-01-01

    The sclera, the outermost sheath of the optic nerve and the dura mater have been investigated histologically and ultrastructurally. Although these tissues appear very similar under the light microscope, being dense connective tissues mainly composed of collagen bundles and a limited amount of cells and elastic fibres, they exhibit subtle differences on electron microscopy. In the dura and sclera collagen appears in the form of large, nonuniform fibrils, similar to those commonly found in tendons, while in the optic nerve sheath the fibrils appear smaller and uniform, similar to those commonly observed in reticular tissues, vessel walls and skin. Freeze-fracture also reveals these fibrils to have different subfibrillar architectures, straight or helical, which correspond to 2 distinct forms of collagen fibril previously described (Raspanti et al. 1989). The other extracellular matrix components also vary with the particular collagen fibril structure. Despite their common embryological derivation, the dura mater, optic nerve sheath and sclera exhibit diversification of their extracellular matrix consistent with the mechanical loads to which these tissues are subjected. Our observations indicate that the outermost sheath of the optic nerve resembles the epineurium of peripheral nerves rather than the dura to which it is commonly likened. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 PMID:1295858

  10. A novel functional site of extracellular matrix metalloproteinase inducer (EMMPRIN) that limits the migration of human uterine cervical carcinoma cells.

    PubMed

    Sato, Takashi; Watanabe, Mami; Hashimoto, Kei; Ota, Tomoko; Akimoto, Noriko; Imada, Keisuke; Nomizu, Motoyoshi; Ito, Akira

    2012-01-01

    EMMPRIN (extracellular matrix metalloproteinase inducer)/CD147, a membrane-bound glycoprotein with two extracellular loop domains (termed loops I and II), progresses tumor invasion and metastasis by increasing the production of matrix metalloproteinase (MMP) in peritumoral stoma cells. EMMPRIN has also been associated with the control of migration activity in some tumor cells, but little is known about how EMMPRIN regulates tumor cell migration. In the present study, EMMPRIN siRNA suppressed the gene expression and production of EMMPRIN in human uterine cervical carcinoma SKG-II cells. An in vitro scratch wound assay showed enhancement of migration of EMMPRIN-knockdown SKG-II cells. In addition, the SKG-II cell migration was augmented by adding an E. coli-expressed human EMMPRIN mutant with two extracellular loop domains (eEMP-I/II), which bound to the cell surface of SKG-II cells. However, eEMP-I/II suppressed the native EMMPRIN-mediated augmentation of proMMP-1/procollagenase-1 production in a co-culture of the SKG-II cells and human uterine cervical fibroblasts, indicating that the augmentation of SKG-II cell migration resulted from the interference of native EMMPRIN functions by eEMP-I/II on the cell surface. Furthermore, a systematic peptide screening method using nine synthetic EMMPRIN peptides coding the loop I and II domains (termed EM1-9) revealed that EM9 (170HIENLNMEADPGQYR184) facilitated SKG-II cell migration. Moreover, SKG-II cell migration was enhanced by administration of an antibody against EM9, but not EM1 which is a crucial site for the MMP inducible activity of EMMPRIN. Therefore, these results provide novel evidence that EMMPRIN on the cell surface limits the cell migration of human uterine cervical carcinoma cells through 170HIENLNMEADPGQYR184 in the loop II domain. Finally, these results should provide an increased understanding of the functions of EMMPRIN in malignant cervical carcinoma cells, and could contribute to the development of

  11. Longitudinal measurement of extracellular matrix rigidity in 3D tumor models using particle-tracking microrheology.

    PubMed

    Jones, Dustin P; Hanna, William; El-Hamidi, Hamid; Celli, Jonathan P

    2014-06-10

    The mechanical microenvironment has been shown to act as a crucial regulator of tumor growth behavior and signaling, which is itself remodeled and modified as part of a set of complex, two-way mechanosensitive interactions. While the development of biologically-relevant 3D tumor models have facilitated mechanistic studies on the impact of matrix rheology on tumor growth, the inverse problem of mapping changes in the mechanical environment induced by tumors remains challenging. Here, we describe the implementation of particle-tracking microrheology (PTM) in conjunction with 3D models of pancreatic cancer as part of a robust and viable approach for longitudinally monitoring physical changes in the tumor microenvironment, in situ. The methodology described here integrates a system of preparing in vitro 3D models embedded in a model extracellular matrix (ECM) scaffold of Type I collagen with fluorescently labeled probes uniformly distributed for position- and time-dependent microrheology measurements throughout the specimen. In vitro tumors are plated and probed in parallel conditions using multiwell imaging plates. Drawing on established methods, videos of tracer probe movements are transformed via the Generalized Stokes Einstein Relation (GSER) to report the complex frequency-dependent viscoelastic shear modulus, G*(ω). Because this approach is imaging-based, mechanical characterization is also mapped onto large transmitted-light spatial fields to simultaneously report qualitative changes in 3D tumor size and phenotype. Representative results showing contrasting mechanical response in sub-regions associated with localized invasion-induced matrix degradation as well as system calibration, validation data are presented. Undesirable outcomes from common experimental errors and troubleshooting of these issues are also presented. The 96-well 3D culture plating format implemented in this protocol is conducive to correlation of microrheology measurements with therapeutic

  12. The extracellular matrix Component Psl provides fast-acting antibiotic defense in Pseudomonas aeruginosa biofilms.

    PubMed

    Billings, Nicole; Millan, MariaRamirez; Caldara, Marina; Rusconi, Roberto; Tarasova, Yekaterina; Stocker, Roman; Ribbeck, Katharina

    2013-01-01

    Bacteria within biofilms secrete and surround themselves with an extracellular matrix, which serves as a first line of defense against antibiotic attack. Polysaccharides constitute major elements of the biofilm matrix and are implied in surface adhesion and biofilm organization, but their contributions to the resistance properties of biofilms remain largely elusive. Using a combination of static and continuous-flow biofilm experiments we show that Psl, one major polysaccharide in the Pseudomonas aeruginosa biofilm matrix, provides a generic first line of defense toward antibiotics with diverse biochemical properties during the initial stages of biofilm development. Furthermore, we show with mixed-strain experiments that antibiotic-sensitive "non-producing" cells lacking Psl can gain tolerance by integrating into Psl-containing biofilms. However, non-producers dilute the protective capacity of the matrix and hence, excessive incorporation can result in the collapse of resistance of the entire community. Our data also reveal that Psl mediated protection is extendible to E. coli and S. aureus in co-culture biofilms. Together, our study shows that Psl represents a critical first bottleneck to the antibiotic attack of a biofilm community early in biofilm development.

  13. Extracellular matrix functionalized microcavities to control hematopoietic stem and progenitor cell fate.

    PubMed

    Kurth, Ina; Franke, Katja; Pompe, Tilo; Bornhäuser, Martin; Werner, Carsten

    2011-06-14

    Polymeric microcavities functionalized with extracellular matrix components were used as an experimental in vitro model to investigate principles of hematopoietic stem and progenitor cell (HSPC) fate control. Using human CD133+ HSPC we could demonstrate distinct differences in HSPC cycling and differentiation dependence on the adhesion ligand specificity (i.e., heparin, collagen I) and cytokine levels. The presented microcavity platform provides a powerful in vitro approach to explore the role of exogenous cues in HSPC fate decisions and can therefore be instrumental to progress in stem cell biology and translational research toward new therapies. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. New intracellular activities of matrix metalloproteinases shine in the moonlight.

    PubMed

    Jobin, Parker G; Butler, Georgina S; Overall, Christopher M

    2017-11-01

    Adaption of a single protein to perform multiple independent functions facilitates functional plasticity of the proteome allowing a limited number of protein-coding genes to perform a multitude of cellular processes. Multifunctionality is achievable by post-translational modifications and by modulating subcellular localization. Matrix metalloproteinases (MMPs), classically viewed as degraders of the extracellular matrix (ECM) responsible for matrix protein turnover, are more recently recognized as regulators of a range of extracellular bioactive molecules including chemokines, cytokines, and their binders. However, growing evidence has convincingly identified select MMPs in intracellular compartments with unexpected physiological and pathological roles. Intracellular MMPs have both proteolytic and non-proteolytic functions, including signal transduction and transcription factor activity thereby challenging their traditional designation as extracellular proteases. This review highlights current knowledge of subcellular location and activity of these "moonlighting" MMPs. Intracellular roles herald a new era of MMP research, rejuvenating interest in targeting these proteases in therapeutic strategies. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The Extracellular Protease Matrix Metalloproteinase-9 Is Activated by Inhibitory Avoidance Learning and Required for Long-Term Memory

    ERIC Educational Resources Information Center

    Nagy, Vanja; Bozdagi, Ozlem; Huntley, George W.

    2007-01-01

    Matrix metalloproteinases (MMPs) are a family of extracellularly acting proteolytic enzymes with well-recognized roles in plasticity and remodeling of synaptic circuits during brain development and following brain injury. However, it is now becoming increasingly apparent that MMPs also function in normal, nonpathological synaptic plasticity of the…

  16. [50 years of connective tissue research: from the French Connective Tissue Club to the French Society of Extracellular Matrix Biology].

    PubMed

    Maquart, François-Xavier; Borel, Jacques-Paul

    2012-01-01

    The history of connective tissue research began in the late 18th century. However, it is only 50 years later that the concept of connective tissue was shaped. It took another fifty years before biochemical knowledge of extracellular matrix macromolecules began to emerge in the first half of the 20th century. In 1962, thanks to Ladislas and Barbara Robert, back from the US, the first society called "French Connective Tissue Club" was created in Paris. The first board was constituted of Albert Delaunay, Suzanne Bazin and Ladislas Robert. Very quickly, under the influence of these pioneers, national and international meetings were organized and, in 1967, a "Federation of the European Connective Tissue Clubs" was created at the initiative of Ladislas Robert (Paris) and John Scott (Manchester). It spread rapidly to the major European nations. In 1982 the transformation of "Clubs" in "Societies" occurred, a name more in line with the requirements of the time. In 2008, the "French Connective Tissue Society" became the "French Society of Extracellular Matrix Biology" ("Société Française de Biologie de la Matrice Extracellulaire", SFBMEc), to better highlight the importance of the extracellular matrix in the biology of living organisms. The SFBMEc's mission today is to promote and develop scientific exchanges between academic, industrial, and hospital laboratories involved in research on the extracellular matrix. SFBMEc organizes or subsidizes scientific meetings and awards scholarships to Ph.D. students or post-docs to participate in international conferences. It includes 200 to 250 members from different disciplines, developing strong interactions between scientists, clinicians and pathologists. It is present all around the French territory in many research laboratories. During these last 50 years, the extraordinary advances made possible by the development of new investigation techniques, in particular molecular biology, cell and tissue imaging, molecular modeling

  17. Atypical protein kinase C activity is required for extracellular matrix degradation and invasion by Src-transformed cells.

    PubMed

    Rodriguez, Elena M; Dunham, Elizabeth E; Martin, G Steven

    2009-10-01

    Atypical protein kinase C (aPKC) isoforms have been shown to mediate Src-dependent signaling in response to growth factor stimulation. To determine if aPKC activity contributes to the transformed phenotype of cells expressing oncogenic Src, we have examined the activity and function of aPKCs in 3T3 cells expressing viral Src (v-Src). aPKC activity and tyrosine phosphorylation were found to be elevated in some but not all clones of mouse fibroblasts expressing v-Src. aPKC activity was inhibited either by addition of a membrane-permeable pseudosubstrate, by expression of a dominant-negative aPKC, or by RNAi-mediated knockdown of specific aPKC isoforms. aPKC activity contributes to morphological transformation and stress fiber disruption, and is required for migration of Src-transformed cells and for their ability to polarize at the edge of a monolayer. The lambda isoform of aPKC is specifically required for invasion through extracellular matrix in Boyden chamber assays and for degradation of the extracellular matrix in in situ zymography assays. Tyrosine phosphorylation of aPKClambda is required for its ability to promote cell invasion. The defect in invasion upon aPKC inhibition appears to result from a defect in the assembly and/or function of podosomes, invasive adhesions on the ventral surface of the cell that are sites of protease secretion. aPKC was also found to localize to podosomes of v-Src transformed cells, suggesting a direct role for aPKC in podosome assembly and/or function. We conclude that basal or elevated aPKC activity is required for the ability of Src-transformed cells to degrade and invade the extracellular matrix. Copyright 2009 Wiley-Liss, Inc.

  18. The cnidarian nematocyst: a miniature extracellular matrix within a secretory vesicle.

    PubMed

    Ozbek, Suat

    2011-10-01

    Nematocysts are the taxon-defining features of all cnidarians including jellyfish, sea anemones, and corals. They are highly sophisticated organelles used for the capture of prey and defense. The nematocyst capsule is produced within a giant post-Golgi vesicle, which is continuously fed by proteins from the secretory pathway. Mature nematocysts consist of a hollow capsule body in which a long tubule is coiled up that, upon discharge, is expelled in a harpoon-like fashion. This is accompanied by the release of a toxin cocktail stored in the capsule matrix. Nematocyst discharge, which is one of the fastest processes in biology, is driven by an extreme osmotic pressure of about 150 bar. The molecular analysis of the nematocyst has from the beginning indicated a collagenous nature of the capsule structure. In particular, a large family of unusual minicollagens has been demonstrated to form the highly resistant scaffold of the capsule. Recent findings on the molecular composition of Hydra nematocysts have confirmed the notion of a specialized extracellular matrix, which is assembled during an intracellular secretion process to form the most complex predatory apparatus at the cellular level.

  19. Tissue Extracellular Matrix Nanoparticle Presentation in Electrospun Nanofibers

    PubMed Central

    Gibson, Matt; Mao, Hai-Quan; Elisseeff, Jennifer

    2014-01-01

    Biomaterials derived from the decellularization of mature tissues retain biological and architectural features that profoundly influence cellular activity. However, the clinical utility of such materials remains limited as the shape and physical properties are difficult to control. In contrast, scaffolds based on synthetic polymers can be engineered to exhibit specific physical properties, yet often suffer from limited biological functionality. This study characterizes composite materials that present decellularized extracellular matrix (DECM) particles in combination with synthetic nanofibers and examines the ability of these materials to influence stem cell differentiation. Mechanical processing of decellularized tissues yielded particles with diameters ranging from 71 to 334 nm. Nanofiber scaffolds containing up to 10% DECM particles (wt/wt) derived from six different tissues were engineered and evaluated to confirm DECM particle incorporation and to measure bioactivity. Scaffolds containing bone, cartilage, and fat promoted osteogenesis at 1 and 3 weeks compared to controls. In contrast, spleen and lung DECM significantly reduced osteogenic outcomes compared to controls. These findings highlight the potential to incorporate appropriate source DECM nanoparticles within nanofiber composites to design a scaffold with bioactivity targeted to specific applications. PMID:24971329

  20. New advances in probing cell–extracellular matrix interactions

    PubMed Central

    2017-01-01

    The extracellular matrix (ECM) provides structural and biochemical support to cells within tissues. An emerging body of evidence has established that the ECM plays a key role in cell mechanotransduction – the study of coupling between mechanical inputs and cellular phenotype – through either mediating transmission of forces to the cells, or presenting mechanical cues that guide cellular behaviors. Recent progress in cell mechanotransduction research has been facilitated by advances of experimental tools, particularly microtechnologies, engineered biomaterials, and imaging and analytical methods. Microtechnologies have enabled the design and fabrication of controlled physical microenvironments for the study and measurement of cell–ECM interactions. Advances in engineered biomaterials have allowed researchers to develop synthetic ECMs that mimic tissue microenvironments and investigate the impact of altered physicochemical properties on various cellular processes. Finally, advanced imaging and spectroscopy techniques have facilitated the visualization of the complex interaction between cells and ECM in vitro and in living tissues. This review will highlight the application of recent innovations in these areas to probing cell–ECM interactions. We believe cross-disciplinary approaches, combining aspects of the different technologies reviewed here, will inspire innovative ideas to further elucidate the secrets of ECM-mediated cell control. PMID:28352896

  1. Low-intensity training provokes adaptive extracellular matrix turnover of a muscular dystrophy model

    PubMed Central

    Gaiad, Thaís P.; Oliveira, Murilo X.; Lobo, Adalfredo R.; Libório, Lívia R.; Pinto, Priscilla A.F.; Fernandes, Danielle C.; Santos, Ana Paula; Ambrósio, Carlos Eduardo; Machado, Alex Sander D.

    2017-01-01

    Recommendations of therapeutic exercise in Duchenne muscular dystrophy are still controversial. The hypothesis that a low-intensity training (LIT) protocol leads to muscle adaptations on mdx mice model was tested. Dystrophic male mice with 8 weeks old were separated in exercised (mdxE, n= 8) and sedentary (mdxC, n= 8) groups. Wild-type mice were used as control (WT, n= 8) group. Exercised group underwent a LIT protocol (9 m/min, 30 min, 3 days/wk, 60 days) on a horizontal treadmill. At day 60 all animals were analyzed regarding parameters of markers of muscle lesion and extracellular matrix turnover of muscle tissue by collagens fibers on tibial anterior muscle. Histomorphometry attested that centrally located nuclei fibers and the coefficient of variance of minimal Feret’s diameter was similar in mdxE and mdxC groups (P= 1.000) and both groups presented higher mean values than WT group (P< 0.001). Fraction area of collagen fibers of mdxE group was lower than mdxC group (P= 0,027) and similar to WT group (P= 0,751). Intramuscular area of Col3 of the mdxE group was higher than mdxC and WT groups (P<0.001). Intramuscular area of Col1 on the mdxE group was similar to the mdxC group (P= 1.000) and both groups were higher than WT group (P< 0.001). LIT protocol had not influenced muscle injuries resulting from the dystrophin-deficiency membrane fragility. Although, LIT had provoked adaptations on extracellular matrix bringing higher elastic feature to dystrophic muscle tissue. PMID:29326902

  2. Extracellular nucleases and extracellular DNA play important roles in Vibrio cholerae biofilm formation

    PubMed Central

    Seper, Andrea; Fengler, Vera H I; Roier, Sandro; Wolinski, Heimo; Kohlwein, Sepp D; Bishop, Anne L; Camilli, Andrew; Reidl, Joachim; Schild, Stefan

    2011-01-01

    Biofilms are a preferred mode of survival for many microorganisms including Vibrio cholerae, the causative agent of the severe secretory diarrhoeal disease cholera. The ability of the facultative human pathogen V. cholerae to form biofilms is a key factor for persistence in aquatic ecosystems and biofilms act as a source for new outbreaks. Thus, a better understanding of biofilm formation and transmission of V. cholerae is an important target to control the disease. So far the Vibrio exopolysaccharide was the only known constituent of the biofilm matrix. In this study we identify and characterize extracellular DNA as a component of the Vibrio biofilm matrix. Furthermore, we show that extracellular DNA is modulated and controlled by the two extracellular nucleases Dns and Xds. Our results indicate that extracellular DNA and the extracellular nucleases are involved in diverse processes including the development of a typical biofilm architecture, nutrient acquisition, detachment from biofilms and the colonization fitness of biofilm clumps after ingestion by the host. This study provides new insights into biofilm development and transmission of biofilm-derived V. cholerae. PMID:22032623

  3. Arabidopsis GRI is involved in the regulation of cell death induced by extracellular ROS

    PubMed Central

    Wrzaczek, Michael; Brosché, Mikael; Kollist, Hannes; Kangasjärvi, Jaakko

    2009-01-01

    Reactive oxygen species (ROS) have important functions in plant stress responses and development. In plants, ozone and pathogen infection induce an extracellular oxidative burst that is involved in the regulation of cell death. However, very little is known about how plants can perceive ROS and regulate the initiation and the containment of cell death. We have identified an Arabidopsis thaliana protein, GRIM REAPER (GRI), that is involved in the regulation of cell death induced by extracellular ROS. Plants with an insertion in GRI display an ozone-sensitive phenotype. GRI is an Arabidopsis ortholog of the tobacco flower-specific Stig1 gene. The GRI protein appears to be processed in leaves with a release of an N-terminal fragment of the protein. Infiltration of the N-terminal fragment of the GRI protein into leaves caused cell death in a superoxide- and salicylic acid-dependent manner. Analysis of the extracellular GRI protein yields information on how plants can initiate ROS-induced cell death during stress response and development. PMID:19279211

  4. Expression analysis of extracellular matrix components in brush biopsies of oral lesions.

    PubMed

    Driemel, Oliver; Kosmehl, Hartwig; Rosenhahn, Julia; Berndt, Alexander; Reichert, Torsten E; Zardi, Luciano; Dahse, Regine

    2007-01-01

    Oral brush biopsies have proved to be a promising new non-invasive methodology in the diagnosis of oral lesions. The extracellular matrix (ECM) molecules gamma2 chain of laminin-5 (L5gamma2), tenascin-c (Tn-C) and the fibronectin isoform containing EDB (EDB-fn) are involved in matrix remodeling during malignant transformation in oral carcinoma. Expression of L5gamma2, Tn-C and EDB-fn was analysed in brush biopsy-obtained cells of benign inflammatory or hyperproliferative lesions and primary oral squamous cell carcinoma (OSCC) using the Roche LightCycler 2.0 System. Oral carcinoma are detectable with mRNA resynthesis of the ECM molecules L5gamma2 and Tn-C in oral brush biopsies. EDB-fn mRNA was not detected--the stroma myofibroblasts are apparently a preferential source of EDB-fn and sampling by oral brush biopsy harvests epithelial cells and does not reach the cells which do express EDB-fn. The performance of gene expression analysis in brush biopsies is limited by a high RNase activity in the oral cavity.

  5. Back to basics--how the evolution of the extracellular matrix underpinned vertebrate evolution.

    PubMed

    Huxley-Jones, Julie; Pinney, John W; Archer, John; Robertson, David L; Boot-Handford, Raymond P

    2009-04-01

    The extracellular matrix (ECM) is a complex substrate that is involved in and influences a spectrum of behaviours such as growth and differentiation and is the basis for the structure of tissues. Although a characteristic of all metazoans, the ECM has elaborated into a variety of tissues unique to vertebrates, such as bone, tendon and cartilage. Here we review recent advances in our understanding of the molecular evolution of the ECM. Furthermore, we demonstrate that ECM genes represent a pivotal family of proteins the evolution of which appears to have played an important role in the evolution of vertebrates.

  6. Possible Involvement of Tight Junctions, Extracellular Matrix and Nuclear Receptors in Epithelial Differentiation

    PubMed Central

    Ichikawa-Tomikawa, Naoki; Sugimoto, Kotaro; Satohisa, Seiro; Nishiura, Keisuke; Chiba, Hideki

    2011-01-01

    Tight junctions are intercellular junctions localized at the most apical end of the lateral plasma membrane. They consist of four kinds of transmembrane proteins (occludin, claudins, junctional adhesion molecules, and tricellulin) and huge numbers of scaffolding proteins and contribute to the paracellular barrier and fence function. The mutation and deletion of these proteins impair the functions of tight junctions and cause various human diseases. In this paper, we provide an overview of recent studies on transmembrane proteins of tight junctions and highlight the functional significance of tight junctions, extracellular matrix, and nuclear receptors in epithelial differentiation. PMID:22162632

  7. Inhibitory effect of OPC-15161, a component of fungus Thielavia minor, on proliferation and extracellular matrix production of rat cultured hepatic stellate cells.

    PubMed

    Sugawara, H; Ueno, T; Torimura, T; Inuzuka, S; Tanikawa, K

    1998-03-01

    A component of fungus Thielavia minor, OPC-15161, has been shown to inhibit the proliferation and extracellular matrix production of extracellular matrix-producing mesangial cells in the kidney in vivo. In this study, we examined the effects of OPC-15161 on the proliferation and extracellular matrix production of rat cultured hepatic stellate cells (HSCs). To determine the effect of OPC-15161 on proliferation of HSCs, the cell number and the uptake of [3H]thymidine were investigated in the presence and absence of interleukin-1beta (IL-1beta). IL-1beta significantly increased the uptake of [3H]thymidine in the HSCs, and the addition of OPC-15161 inhibited the uptake in a dose-dependent manner. The cell number of HSCs was also increased by IL-1beta, which was inhibited by OPC-15161. Production of extracellular matrix by OPC-15161 was studied by the production of [3H]-hydroxyproline in the presence and absence of transforming growth factor-beta1 (TGF-beta1). TGF-beta1 significantly increased the production of [3H]-hydroxyproline in the cells, whereas the addition of OPC-15161 inhibited this effect dose dependently. We also investigated the effects of OPC-15161 on Ca2+ mobilization and measured D-myo-inositol 1,4,5-triphosphate (IP3) in the HSCs. IL-1beta induced the increase of intracellular Ca2+ and IP3 concentrations in the HSCs, which were decreased by OPC-15161. Based on these results, we conclude that OPC-1 5161 inhibited the proliferation and production of hydroxyproline in cultured rat HSCs, and thus, it may have a role in prevention of liver fibrosis in vivo.

  8. The endogenous fluorescence of fibroblast in collagen gels as indicator of stiffness of the extracellular matrix

    NASA Astrophysics Data System (ADS)

    Padilla-Martinez, J. P.; Ortega-Martinez, A.; Franco, W.

    2016-03-01

    The stiffness or rigidity of the extracellular matrix (ECM) regulates cell response. Established mechanical tests to measure stiffness, such as indentation and tensile tests, are invasive and destructive to the sample. Endogenous or native molecules to cells and ECM components, like tryptophan and cross-links of collagen, display fluorescence upon irradiation with ultraviolet light. Most likely, the concentration of these endogenous fluorophores changes as the stiffness of the ECM changes. In this work we investigate the endogenous fluorescence of collagen gels containing fibroblasts as a non-invasive non-destructive method to measure stiffness of the ECM. Human fibroblast cells were cultured in three-dimensional gels of type I collagen (50,000 cells/ml). This construct is a simple model of tissue contraction. During contraction, changes in the excitation-emission matrix (a fluorescence map in the 240-520/290-530 nm range) of constructs were measured with a spectrofluoremeter, and changes in stiffness were measured with a standard indentation test over 16 days. Results show that a progressive increase in fluorescence of the 290/340 nm excitation-emission pair correlates with a progressive increase in stiffness (r=0.9, α=0.5). The fluorescence of this excitation-emission pair is ascribed to tryptophan and variations in the fluorescence of this pair correlate with cellular proliferation. In this tissue model, the endogenous functional fluorescence of proliferating fibroblast cells is a biomechanical marker of stiffness of the ECM.

  9. Visualization of extracellular matrix components within sectioned Salmonella biofilms on the surface of human gallstones.

    PubMed

    Marshall, Joanna M; Flechtner, Alan D; La Perle, Krista M; Gunn, John S

    2014-01-01

    Chronic carriage of Salmonella Typhi is mediated primarily through the formation of bacterial biofilms on the surface of cholesterol gallstones. Biofilms, by definition, involve the formation of a bacterial community encased within a protective macromolecular matrix. Previous work has demonstrated the composition of the biofilm matrix to be complex and highly variable in response to altered environmental conditions. Although known to play an important role in bacterial persistence in a variety of contexts, the Salmonella biofilm matrix remains largely uncharacterized under physiological conditions. Initial attempts to study matrix components and architecture of the biofilm matrix on gallstone surfaces were hindered by the auto-fluorescence of cholesterol. In this work we describe a method for sectioning and direct visualization of extracellular matrix components of the Salmonella biofilm on the surface of human cholesterol gallstones and provide a description of the major matrix components observed therein. Confocal micrographs revealed robust biofilm formation, characterized by abundant but highly heterogeneous expression of polysaccharides such as LPS, Vi and O-antigen capsule. CsgA was not observed in the biofilm matrix and flagellar expression was tightly restricted to the biofilm-cholesterol interface. Images also revealed the presence of preexisting Enterobacteriaceae encased within the structure of the gallstone. These results demonstrate the use and feasibility of this method while highlighting the importance of studying the native architecture of the gallstone biofilm. A better understanding of the contribution of individual matrix components to the overall biofilm structure will facilitate the development of more effective and specific methods to disrupt these bacterial communities.

  10. Comparative Proteomic Analysis of Supportive and Unsupportive Extracellular Matrix Substrates for Human Embryonic Stem Cell Maintenance*

    PubMed Central

    Soteriou, Despina; Iskender, Banu; Byron, Adam; Humphries, Jonathan D.; Borg-Bartolo, Simon; Haddock, Marie-Claire; Baxter, Melissa A.; Knight, David; Humphries, Martin J.; Kimber, Susan J.

    2013-01-01

    Human embryonic stem cells (hESCs) are pluripotent cells that have indefinite replicative potential and the ability to differentiate into derivatives of all three germ layers. hESCs are conventionally grown on mitotically inactivated mouse embryonic fibroblasts (MEFs) or feeder cells of human origin. In addition, feeder-free culture systems can be used to support hESCs, in which the adhesive substrate plays a key role in the regulation of stem cell self-renewal or differentiation. Extracellular matrix (ECM) components define the microenvironment of the niche for many types of stem cells, but their role in the maintenance of hESCs remains poorly understood. We used a proteomic approach to characterize in detail the composition and interaction networks of ECMs that support the growth of self-renewing hESCs. Whereas many ECM components were produced by supportive and unsupportive MEF and human placental stromal fibroblast feeder cells, some proteins were only expressed in supportive ECM, suggestive of a role in the maintenance of pluripotency. We show that identified candidate molecules can support attachment and self-renewal of hESCs alone (fibrillin-1) or in combination with fibronectin (perlecan, fibulin-2), in the absence of feeder cells. Together, these data highlight the importance of specific ECM interactions in the regulation of hESC phenotype and provide a resource for future studies of hESC self-renewal. PMID:23658023

  11. Pixel based SHG probes of extracellular matrix (ECM) alterations in ovarian cancer (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Campbell, Kirby R.; Chaudhary, Rajeev; Handel, Julia; Campagnola, Paul J.

    2017-02-01

    Remodeling of the extracellular matrix in human ovarian cancer, can be reflected in increased collagen concentration, changes in alignment and/or up-regulation of different collagen isoforms, including Col III. Using fibrillar gel models, we demonstrate that Col I and Col III can be quantitatively distinguished by 3 distinct SHG polarization specific metrics: i) determination of helical pitch angle via the single axis molecular model, ii) dipole alignment via anisotropy, and iii) chirality via SHG circular dichroism (SHG-CD). These sub-resolution differentiations are possible due to differences in the α helix angles of the two isoforms, which co-mingle in the same fibrils. We also investigated the mechanism of the SHG-CD response and show that unlike conventional CD, it is dominated by electric dipole interactions and is consistent with the two state SHG model. We further applied these 3 polarization resolved analyses to human normal, high risk, benign tumors, and malignant human ovarian tissues. We found that these tissues could all be differentiated by these metrics, where high grade tissues had analogous α-helical pitch angles to the in the Col I/Col III gel model. This confirms literature suggestions based on immunofluorescence and gene expression that Col III is up-regulated in high grade ovarian cancers. The different tissues also displayed differing anisotropies, indicating the fibril assemblies are distinct and likely do not result from remodeling of existing collagen but synthesis of new collagen. Importantly, these SHG polarization methods provide structural information not otherwise possible and can serve as label-free biomarkers for ovarian and other cancers.

  12. Phrase Mining of Textual Data to Analyze Extracellular Matrix Protein Patterns Across Cardiovascular Disease.

    PubMed

    Liem, David Alexandre; Murali, Sanjana; Sigdel, Dibakar; Shi, Yu; Wang, Xuan; Shen, Jiaming; Choi, Howard; Caufield, J Harry; Wang, Wei; Ping, Peipei; Han, Jiawei

    2018-05-18

    Extracellular matrix (ECM) proteins have been shown to play important roles regulating multiple biological processes in an array of organ systems, including the cardiovascular system. By using a novel bioinformatics text-mining tool, we studied six categories of cardiovascular disease (CVD), namely ischemic heart disease (IHD), cardiomyopathies (CM), cerebrovascular accident (CVA), congenital heart disease (CHD), arrhythmias (ARR), and valve disease (VD), anticipating novel ECM protein-disease and protein-protein relationships hidden within vast quantities of textual data. We conducted a phrase-mining analysis, delineating the relationships of 709 ECM proteins with the six groups of CVDs reported in 1,099,254 abstracts. The technology pipeline known as Context-aware Semantic Online Analytical Processing (CaseOLAP) was applied to semantically rank the association of proteins to each and all six CVDs, performing analyses to quantify each protein-disease relationship. We performed principal component analysis and hierarchical clustering of the data, where each protein is visualized as a six dimensional vector. We found that ECM proteins display variable degrees of association with the six CVDs; certain CVDs share groups of associated proteins whereas others have divergent protein associations. We identified 82 ECM proteins sharing associations with all six CVDs. Our bioinformatics analysis ascribed distinct ECM pathways (via Reactome) from this subset of proteins, namely insulin-like growth factor regulation and interleukin-4 and interleukin-13 signaling, suggesting their contribution to the pathogenesis of all six CVDs. Finally, we performed hierarchical clustering analysis and identified protein clusters associated with a targeted CVD; analyses revealed unexpected insights underlying ECM-pathogenesis of CVDs.

  13. Cellulose as an extracellular matrix component present in Enterobacter sakazakii biofilms.

    PubMed

    Grimm, Maya; Stephan, Roger; Iversen, Carol; Manzardo, Giuseppe G G; Rattei, Thomas; Riedel, Kathrin; Ruepp, Andreas; Frishman, Dmitrij; Lehner, Angelika

    2008-01-01

    Cellulose was identified and characterized as an extracellular matrix component present in the biofilm of an Enterobacter sakazakii clinical isolate grown in nutrient-deficient (M9) medium. Using a bacterial artificial cloning approach in Escherichia coli and subsequent screening of transformants for fluorescence on calcofluor plates, nine genes organized in two operons were identified as putatively responsible for the biosynthesis of cellulose. In addition to the genes already described for cellulose production, two more genes were identified, putatively transcribed together with the genes from the first operon. Putative cellulose in E. sakazakii ES5 biofilm grown on glass coverslips was visualized by calcofluor staining and confocal fluorescence laser scanning microscopy. For the first time, the presence of cellulose in biofilms produced by E. sakazakii was confirmed by methylation analysis.

  14. Protein-anchoring therapy to target extracellular matrix proteins to their physiological destinations.

    PubMed

    Ito, Mikako; Ohno, Kinji

    2018-02-20

    Endplate acetylcholinesterase (AChE) deficiency is a form of congenital myasthenic syndrome (CMS) caused by mutations in COLQ, which encodes collagen Q (ColQ). ColQ is an extracellular matrix (ECM) protein that anchors AChE to the synaptic basal lamina. Biglycan, encoded by BGN, is another ECM protein that binds to the dystrophin-associated protein complex (DAPC) on skeletal muscle, which links the actin cytoskeleton and ECM proteins to stabilize the sarcolemma during repeated muscle contractions. Upregulation of biglycan stabilizes the DPAC. Gene therapy can potentially ameliorate any disease that can be recapitulated in cultured cells. However, the difficulty of tissue-specific and developmental stage-specific regulated expression of transgenes, as well as the difficulty of introducing a transgene into all cells in a specific tissue, prevents us from successfully applying gene therapy to many human diseases. In contrast to intracellular proteins, an ECM protein is anchored to the target tissue via its specific binding affinity for protein(s) expressed on the cell surface within the target tissue. Exploiting this unique feature of ECM proteins, we developed protein-anchoring therapy in which a transgene product expressed even in remote tissues can be delivered and anchored to a target tissue using specific binding signals. We demonstrate the application of protein-anchoring therapy to two disease models. First, intravenous administration of adeno-associated virus (AAV) serotype 8-COLQ to Colq-deficient mice, resulting in specific anchoring of ectopically expressed ColQ-AChE at the NMJ, markedly improved motor functions, synaptic transmission, and the ultrastructure of the neuromuscular junction (NMJ). In the second example, Mdx mice, a model for Duchenne muscular dystrophy, were intravenously injected with AAV8-BGN. The treatment ameliorated motor deficits, mitigated muscle histopathologies, decreased plasma creatine kinase activities, and upregulated expression

  15. Biomarkers of the extracellular matrix and of collagen fragments.

    PubMed

    Chalikias, Georgios K; Tziakas, Dimitrios N

    2015-03-30

    A great body of evidence has shown that extracellular matrix (ECM) alterations are present in the major types of cardiac diseases: ischemic heart disease, heart disease associated with pressure overload, heart disease associated with volume overload, and intrinsic myocardial disease or cardiomyopathy. Collagen, type I and III, is the principal structural protein found in the myocardium and its pro- or telopeptides are released into the circulation during the course of cardiovascular diseases. Therefore, these peptides may reflect collagen synthesis and break-down and also represent a much more useful tool to address ECM changes from a distance. Clinical trials have been performed during recent years to examine the usage of these peptides as diagnostic or prognostic biomarkers in heart failure (HF) patients. This review aims to summarize published data concerning cardiac ECM and its circulating biomarkers. Studies that focused on collagen metabolism related biomarkers in patients with HF are analyzed. Finally, limitations associated with the clinical use of the aforementioned biomarkers are also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Teaching the extracellular matrix and introducing online databases within a multidisciplinary course with i-cell-MATRIX: A student-centered approach.

    PubMed

    Sousa, João Carlos; Costa, Manuel João; Palha, Joana Almeida

    2010-03-01

    The biochemistry and molecular biology of the extracellular matrix (ECM) is difficult to convey to students in a classroom setting in ways that capture their interest. The understanding of the matrix's roles in physiological and pathological conditions study will presumably be hampered by insufficient knowledge of its molecular structure. Internet-available resources can bridge the division between the molecular details and ECM's biological properties and associated processes. This article presents an approach to teach the ECM developed for first year medical undergraduates who, working in teams: (i) Explore a specific molecular component of the matrix, (ii) identify a disease in which the component is implicated, (iii) investigate how the component's structure/function contributes to ECM' supramolecular organization in physiological and in pathological conditions, and (iv) share their findings with colleagues. The approach-designated i-cell-MATRIX-is focused on the contribution of individual components to the overall organization and biological functions of the ECM. i-cell-MATRIX is student centered and uses 5 hours of class time. Summary of results and take home message: A "1-minute paper" has been used to gather student feedback on the impact of i-cell-MATRIX. Qualitative analysis of student feedback gathered in three consecutive years revealed that students appreciate the approach's reliance on self-directed learning, the interactivity embedded and the demand for deeper insights on the ECM. Learning how to use internet biomedical resources is another positive outcome. Ninety percent of students recommend the activity for subsequent years. i-cell-MATRIX is adaptable by other medical schools which may be looking for an approach that achieves higher student engagement with the ECM. Copyright © 2010 International Union of Biochemistry and Molecular Biology, Inc.

  17. Optical metrics of the extracellular matrix predict compositional and mechanical changes after myocardial infarction

    NASA Astrophysics Data System (ADS)

    Quinn, Kyle P.; Sullivan, Kelly E.; Liu, Zhiyi; Ballard, Zachary; Siokatas, Christos; Georgakoudi, Irene; Black, Lauren D.

    2016-11-01

    Understanding the organization and mechanical function of the extracellular matrix (ECM) is critical for the development of therapeutic strategies that regulate wound healing following disease or injury. However, these relationships are challenging to elucidate during remodeling following myocardial infarction (MI) due to rapid changes in cellularity and an inability to characterize both ECM microstructure and function non-destructively. In this study, we overcome those challenges through whole organ decellularization and non-linear optical microscopy to directly relate the microstructure and mechanical properties of myocardial ECM. We non-destructively quantify collagen organization, content, and cross-linking within decellularized healthy and infarcted myocardium using second harmonic generation (SHG) and two photon excited autofluorescence. Tensile mechanical testing and compositional analysis reveal that the cumulative SHG intensity within each image volume and the average collagen autofluorescence are significantly correlated with collagen content and elastic modulus of the ECM, respectively. Compared to healthy ECM, infarcted tissues demonstrate a significant increase in collagen content and fiber alignment, and a decrease in cross-linking and elastic modulus. These findings indicate that cross-linking plays a key role in stiffness at the collagen fiber level following infarction, and highlight how this non-destructive approach to assessing remodeling can be used to understand ECM structure-function relationships.

  18. The alterations in the extracellular matrix composition guide the repair of damaged liver tissue

    PubMed Central

    Klaas, Mariliis; Kangur, Triin; Viil, Janeli; Mäemets-Allas, Kristina; Minajeva, Ave; Vadi, Krista; Antsov, Mikk; Lapidus, Natalia; Järvekülg, Martin; Jaks, Viljar

    2016-01-01

    While the cellular mechanisms of liver regeneration have been thoroughly studied, the role of extracellular matrix (ECM) in liver regeneration is still poorly understood. We utilized a proteomics-based approach to identify the shifts in ECM composition after CCl4 or DDC treatment and studied their effect on the proliferation of liver cells by combining biophysical and cell culture methods. We identified notable alterations in the ECM structural components (eg collagens I, IV, V, fibronectin, elastin) as well as in non-structural proteins (eg olfactomedin-4, thrombospondin-4, armadillo repeat-containing x-linked protein 2 (Armcx2)). Comparable alterations in ECM composition were seen in damaged human livers. The increase in collagen content and decrease in elastic fibers resulted in rearrangement and increased stiffness of damaged liver ECM. Interestingly, the alterations in ECM components were nonhomogenous and differed between periportal and pericentral areas and thus our experiments demonstrated the differential ability of selected ECM components to regulate the proliferation of hepatocytes and biliary cells. We define for the first time the alterations in the ECM composition of livers recovering from damage and present functional evidence for a coordinated ECM remodelling that ensures an efficient restoration of liver tissue. PMID:27264108

  19. Shrink Wrapping Cells in a Defined Extracellular Matrix to Modulate the Chemo-Mechanical Microenvironment.

    PubMed

    Palchesko, Rachelle N; Szymanski, John M; Sahu, Amrita; Feinberg, Adam W

    2014-09-01

    Cell-matrix interactions are important for the physical integration of cells into tissues and the function of insoluble, mechanosensitive signaling networks. Studying these interactions in vitro can be difficult because the extracellular matrix (ECM) proteins that adsorb to in vitro cell culture surfaces do not fully recapitulate the ECM-dense basement membranes to which cells such as cardiomyocytes and endothelial cells adhere to in vivo . Towards addressing this limitation, we have developed a surface-initiated assembly process to engineer ECM proteins into nanostructured, microscale sheets that can be shrink wrapped around single cells and small cell ensembles to provide a functional and instructive matrix niche. Unlike current cell encapsulation technology using alginate, fibrin or other hydrogels, our engineered ECM is similar in density and thickness to native basal lamina and can be tailored in structure and composition using the proteins fibronectin, laminin, fibrinogen, and/or collagen type IV. A range of cells including C2C12 myoblasts, bovine corneal endothelial cells and cardiomyocytes survive the shrink wrapping process with high viability. Further, we demonstrate that, compared to non-encapsulated controls, the engineered ECM modulates cytoskeletal structure, stability of cell-matrix adhesions and cell behavior in 2D and 3D microenvironments.

  20. Shrink Wrapping Cells in a Defined Extracellular Matrix to Modulate the Chemo-Mechanical Microenvironment

    PubMed Central

    Palchesko, Rachelle N.; Szymanski, John M.; Sahu, Amrita; Feinberg, Adam W.

    2014-01-01

    Cell-matrix interactions are important for the physical integration of cells into tissues and the function of insoluble, mechanosensitive signaling networks. Studying these interactions in vitro can be difficult because the extracellular matrix (ECM) proteins that adsorb to in vitro cell culture surfaces do not fully recapitulate the ECM-dense basement membranes to which cells such as cardiomyocytes and endothelial cells adhere to in vivo. Towards addressing this limitation, we have developed a surface-initiated assembly process to engineer ECM proteins into nanostructured, microscale sheets that can be shrink wrapped around single cells and small cell ensembles to provide a functional and instructive matrix niche. Unlike current cell encapsulation technology using alginate, fibrin or other hydrogels, our engineered ECM is similar in density and thickness to native basal lamina and can be tailored in structure and composition using the proteins fibronectin, laminin, fibrinogen, and/or collagen type IV. A range of cells including C2C12 myoblasts, bovine corneal endothelial cells and cardiomyocytes survive the shrink wrapping process with high viability. Further, we demonstrate that, compared to non-encapsulated controls, the engineered ECM modulates cytoskeletal structure, stability of cell-matrix adhesions and cell behavior in 2D and 3D microenvironments. PMID:25530816

  1. α2 Integrin, extracellular matrix metalloproteinase inducer, and matrix metalloproteinase-3 act sequentially to induce differentiation of mouse embryonic stem cells into odontoblast-like cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozeki, Nobuaki; Kawai, Rie; Hase, Naoko

    We previously reported that interleukin 1β acts via matrix metalloproteinase (MMP)-3 to regulate cell proliferation and suppress apoptosis in α2 integrin-positive odontoblast-like cells differentiated from mouse embryonic stem (ES) cells. Here we characterize the signal cascade underpinning odontoblastic differentiation in mouse ES cells. The expression of α2 integrin, extracellular matrix metalloproteinase inducer (Emmprin), and MMP-3 mRNA and protein were all potently increased during odontoblastic differentiation. Small interfering RNA (siRNA) disruption of the expression of these effectors potently suppressed the expression of the odontoblastic biomarkers dentin sialophosphoprotein, dentin matrix protein-1 and alkaline phosphatase, and blocked odontoblast calcification. Our siRNA, western blotmore » and blocking antibody analyses revealed a unique sequential cascade involving α2 integrin, Emmprin and MMP-3 that drives ES cell differentiation into odontoblasts. This cascade requires the interaction between α2 integrin and Emmprin and is potentiated by exogenous MMP-3. Finally, although odontoblast-like cells potently express α2, α6, αV, β1, and β3, integrins, we confirmed that β1 integrin acts as the trigger for ES cell differentiation, apparently in complex with α2 integrin. These results demonstrate a unique and unanticipated role for an α2 integrin-, Emmprin-, and MMP-3-mediated signaling cascade in driving mouse ES cell differentiation into odontoblast-like cells. - Highlights: • Odontoblast differentiation requires activation of α2 integrin, Emmprin and MMP-3. • α2 integrin, Emmprin and MMP-3 form a sequential signaling cascade. • β1 integrin acts a specific trigger for odontoblast differentiation. • The role of these effectors is highly novel and unanticipated.« less

  2. Drosophila Perlecan Regulates Intestinal Stem Cell Activity via Cell-Matrix Attachment

    PubMed Central

    You, Jia; Zhang, Yan; Li, Zhouhua; Lou, Zhefeng; Jin, Longjin; Lin, Xinhua

    2014-01-01

    Summary Stem cells require specialized local microenvironments, termed niches, for normal retention, proliferation, and multipotency. Niches are composed of cells together with their associated extracellular matrix (ECM). Currently, the roles of ECM in regulating niche functions are poorly understood. Here, we demonstrate that Perlecan (Pcan), a highly conserved ECM component, controls intestinal stem cell (ISC) activities and ISC-ECM attachment in Drosophila adult posterior midgut. Loss of Pcan from ISCs, but not other surrounding cells, causes ISCs to detach from underlying ECM, lose their identity, and fail to proliferate. These defects are not a result of a loss of epidermal growth factor receptor (EGFR) or Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling activity but partially depend on integrin signaling activity. We propose that Pcan secreted by ISCs confers niche properties to the adjacent ECM that is required for ISC maintenance of stem cell identity, activity, and anchorage to the niche. PMID:24936464

  3. Dimerization of Matrix Metalloproteinase-2 (MMP-2)

    PubMed Central

    Koo, Bon-Hun; Kim, Yeon Hyang; Han, Jung Ho; Kim, Doo-Sik

    2012-01-01

    Matrix metalloproteinase-2 (MMP-2) functions in diverse biological processes through the degradation of extracellular and non-extracellular matrix molecules. Because of its potential for tissue damage, there are several ways to regulate MMP-2 activity, including gene expression, compartmentalization, zymogen activation, and enzyme inactivation by extracellular inhibitors. Enzyme regulation through zymogen activation is important for the regulation of MMP-2 activity. In our previous studies, we showed that thrombin directly cleaved the propeptide of MMP-2 at specific sites for enzyme activation. We also demonstrated that heparan sulfate was required for thrombin-mediated activation of pro-MMP-2 by binding to thrombin, presumably through conformational changes at the active site of the enzyme. This suggests a regulatory mechanism for thrombin-mediated activation of pro-MMP-2. In this study, we found that MMP-2 formed a reduction-sensitive homodimer in a controlled manner and that Ca2+ ion was essential for homodimerization of MMP-2. Homodimerization was not associated with protein kinase C-mediated phosphorylation of MMP-2. MMP-2 formed a homodimer through an intermolecular disulfide bond between Cys102 and the neighboring Cys102. Homodimerization of MMP-2 enhanced thrombin-mediated activation of pro-MMP-2. Moreover, the MMP-2 homodimer could cleave a small peptide substrate without removal of the propeptide. Taken together, our experimental data suggest a novel regulatory mechanism for pro-MMP-2 activation that is modulated through homodimerization of MMP-2. PMID:22577146

  4. 3D extracellular matrix interactions modulate tumour cell growth, invasion and angiogenesis in engineered tumour microenvironments.

    PubMed

    Taubenberger, Anna V; Bray, Laura J; Haller, Barbara; Shaposhnykov, Artem; Binner, Marcus; Freudenberg, Uwe; Guck, Jochen; Werner, Carsten

    2016-05-01

    Interactions between tumour cells and extracellular matrix proteins of the tumour microenvironment play crucial roles in cancer progression. So far, however, there are only a few experimental platforms available that allow us to study these interactions systematically in a mechanically defined three-dimensional (3D) context. Here, we have studied the effect of integrin binding motifs found within common extracellular matrix (ECM) proteins on 3D breast (MCF-7) and prostate (PC-3, LNCaP) cancer cell cultures, and co-cultures with endothelial and mesenchymal stromal cells. For this purpose, matrix metalloproteinase-degradable biohybrid poly(ethylene) glycol-heparin hydrogels were decorated with the peptide motifs RGD, GFOGER (collagen I), or IKVAV (laminin-111). Over 14days, cancer spheroids of 100-200μm formed. While the morphology of poorly invasive MCF-7 and LNCaP cells was not modulated by any of the peptide motifs, the aggressive PC-3 cells exhibited an invasive morphology when cultured in hydrogels comprising IKVAV and GFOGER motifs compared to RGD motifs or nonfunctionalised controls. PC-3 (but not MCF-7 and LNCaP) cell growth and endothelial cell infiltration were also significantly enhanced in IKVAV and GFOGER presenting gels. Taken together, we have established a 3D culture model that allows for dissecting the effect of biochemical cues on processes relevant to early cancer progression. These findings provide a basis for more mechanistic studies that may further advance our understanding of how ECM modulates cancer cell invasion and how to ultimately interfere with this process. Threedimensional in vitro cancer models have generated great interest over the past decade. However, most models are not suitable to systematically study the effects of environmental cues on cancer development and progression. To overcome this limitation, we have developed an innovative hydrogel platform to study the interactions between breast and prostate cancer cells and

  5. Acidic Extracellular pH Promotes Activation of Integrin αvβ3

    PubMed Central

    Paradise, Ranjani K.; Lauffenburger, Douglas A.; Van Vliet, Krystyn J.

    2011-01-01

    Acidic extracellular pH is characteristic of the cell microenvironment in several important physiological and pathological contexts. Although it is well established that acidic extracellular pH can have profound effects on processes such as cell adhesion and migration, the underlying molecular mechanisms are largely unknown. Integrin receptors physically connect cells to the extracellular matrix, and are thus likely to modulate cell responses to extracellular conditions. Here, we examine the role of acidic extracellular pH in regulating activation of integrin αvβ3. Through computational molecular dynamics simulations, we find that acidic extracellular pH promotes opening of the αvβ3 headpiece, indicating that acidic pH can thereby facilitate integrin activation. This prediction is consistent with our flow cytometry and atomic force microscope-mediated force spectroscopy assays of integrin αvβ3 on live cells, which both demonstrate that acidic pH promotes activation at the intact cell surface. Finally, quantification of cell morphology and migration measurements shows that acidic extracellular pH affects cell behavior in a manner that is consistent with increased integrin activation. Taken together, these computational and experimental results suggest a new and complementary mechanism of integrin activation regulation, with associated implications for cell adhesion and migration in regions of altered pH that are relevant to wound healing and cancer. PMID:21283814

  6. Presence of extracellular DNA in the Candida albicans biofilm matrix and its contribution to biofilms.

    PubMed

    Martins, Margarida; Uppuluri, Priya; Thomas, Derek P; Cleary, Ian A; Henriques, Mariana; Lopez-Ribot, José L; Oliveira, Rosário

    2010-05-01

    DNA has been described as a structural component of the extracellular matrix (ECM) in bacterial biofilms. In Candida albicans, there is a scarce knowledge concerning the contribution of extracellular DNA (eDNA) to biofilm matrix and overall structure. This work examined the presence and quantified the amount of eDNA in C. albicans biofilm ECM and the effect of DNase treatment and the addition of exogenous DNA on C. albicans biofilm development as indicators of a role for eDNA in biofilm development. We were able to detect the accumulation of eDNA in biofilm ECM extracted from C. albicans biofilms formed under conditions of flow, although the quantity of eDNA detected differed according to growth conditions, in particular with regards to the medium used to grow the biofilms. Experiments with C. albicans biofilms formed statically using a microtiter plate model indicated that the addition of exogenous DNA (>160 ng/ml) increases biofilm biomass and, conversely, DNase treatment (>0.03 mg/ml) decreases biofilm biomass at later time points of biofilm development. We present evidence for the role of eDNA in C. albicans biofilm structure and formation, consistent with eDNA being a key element of the ECM in mature C. albicans biofilms and playing a predominant role in biofilm structural integrity and maintenance.

  7. Extracellular matrix biomimicry for the creation of investigational and therapeutic devices.

    PubMed

    Pellowe, Amanda S; Gonzalez, Anjelica L

    2016-01-01

    The extracellular matrix (ECM) is a web of fibrous proteins that serves as a scaffold for tissues and organs, and is important for maintaining homeostasis and facilitating cellular adhesion. Integrin transmembrane receptors are the primary adhesion molecules that anchor cells to the ECM, thus integrating cells with their microenvironments. Integrins play a critical role in facilitating cell-matrix interactions and promoting signal transduction, both from the cell to the ECM and vice versa, ultimately mediating cell behavior. For this reason, many advanced biomaterials employ biomimicry by replicating the form and function of fibrous ECM proteins. The ECM also acts as a reservoir for small molecules and growth factors, wherein fibrous proteins directly bind and present these bioactive moieties that facilitate cell activity. Therefore biomimicry can be enhanced by incorporating small molecules into ECM-like substrates. Biomimetic ECM materials have served as invaluable research tools for studying interactions between cells and the surrounding ECM, revealing that cell-matrix signaling is driven by mechanical forces, integrin engagement, and small molecules. Mimicking pathological ECMs has also elucidated disease specific cell behaviors. For example, biomimetic tumor microenvironments have been used to induce metastatic cell behaviors, and have thereby shown promise for in vitro cancer drug testing and targeting. Further, ECM-like substrates have been successfully employed for autologous cell recolonization for tissue engineering and wound healing. As we continue to learn more about the mechanical and biochemical characteristics of the ECM, these properties can be harnessed to develop new biomaterials, biomedical devices, and therapeutics. © 2015 Wiley Periodicals, Inc.

  8. Optimization of Extracellular Matrix Synthesis and Accumulation by Human Articular Chondrocytes in 3-Dimensional Construct with Repetitive Hydrostatic Pressure.

    PubMed

    Ogura, Takahiro; Tsuchiya, Akihiro; Minas, Tom; Mizuno, Shuichi

    2018-04-01

    Objective The effects of hydrostatic pressure (HP) on the matrix synthesis by human articular chondrocytes have been reported elsewhere. In order to optimize the production of extracellular matrix, we aimed to clarify the effects of repetitive HP on metabolic function by human articular chondrocytes. Design The human articular chondrocytes were expanded and embedded within a collagen gel/sponge scaffold. We incubated these constructs with and without HP followed by atmospheric pressure (AP) and repeated the second HP followed by AP over 14 days. Genomic, biochemical, and histological evaluation were performed to compare the effects of each regimen on the constructs. Results The gene expressions of collagen type II and aggrecan core protein were significantly upregulated with repetitive HP regimens compared with a single HP or AP by 14 days ( P < 0.01 or 0.05). Matrix metalloptoteinase-13 (MMP-13) in AP was upregulated significantly compared to other HP regimens at day 14 ( P < 0.01). No significant difference was observed in tissue inhibitor of metalloproteinases-II. Immunohistology demonstrated that application of HP (both repetitive and single) promoted the accumulation of specific extracellular matrix and reduced a MMP-13. A single regimen of HP followed by AP significantly increased the amount of sulfated glycosaminoglycan than that of the AP, whereas repetitive HP remained similar level of that of the AP. Conclusions Repetitive HP had a greater effect on anabolic activity by chondrocytes than a single HP regimen, which will be advantageous for producing a matrix-rich cell construct.

  9. Molecular mechanisms of mechanotransduction in integrin-mediated cell-matrix adhesion

    PubMed Central

    Li, Zhenhai; Lee, Hyunjung; Zhu, Cheng

    2016-01-01

    Cell-matrix adhesion complexes are multi-protein structures linking the extracellular matrix (ECM) to the cytoskeleton. They are essential to both cell motility and function by bidirectionally sensing and transmitting mechanical and biochemical stimulations. Several types of cell-matrix adhesions have been identified and they share many key molecular components, such as integrins and actin-integrin linkers. Mechanochemical coupling between ECM molecules and the actin cytoskeleton has been observed from the single cell to the single molecule level and from immune cells to neuronal cells. However, the mechanisms underlying force regulation of integrin-mediated mechanotransduction still need to be elucidated. In this review article, we focus on integrin-mediated adhesions and discuss force regulation of cell-matrix adhesions and key adaptor molecules, three different force-dependent behaviors, and molecular mechanisms for mechanochemical coupling in force regulation. PMID:27720950

  10. Enhanced Antimicrobial Effects of Decellularized Extracellular Matrix (CorMatrix) with Added Vancomycin and Gentamicin for Device Implant Protection.

    PubMed

    Deering, Thomas F; Chang, Carlos; Snyder, Carl; Natarajan, Selvamuthu K; Matheny, Robert

    2017-06-01

    The incidence of cardiac implantable electronic device (CIED) infections has risen significantly over the past years. Although several devices are currently available to decrease the incidence of infection, most are made from nonviable synthetic material and are more prone to infection than vascularized tissue. This study was undertaken to assess the resistance to infection of the CorMatrix CanGaroo (CorMatrix Cardiovascular, Roswell, GA, USA), a CIED envelope made of decellularized extracellular matrix (ECM) hydrated in different antibiotic solutions. This study was comprised of two in vitro tests and one animal trial. For all the tests, the ECM was hydrated in a mixture of vancomycin (25 mg/mL) and gentamicin (20 mg/mL) or gentamicin alone (40 mg/mL). The drug elution characteristics were assessed followed by the effectiveness of CanGaroo to prevent the bacterial growth of Staphylococcus aureus and Staphylococcus epidermidis in culture. Then, the direct inoculation of pacemaker implant pockets with both Staphylococcus species was performed in rabbits implanted with either a pacemaker alone or a pacemaker with antibiotic-soaked CorMatrix ECM pouches. The hydration of CanGaroo envelopes in both antibiotic mixtures resulted in antimicrobial activity against both Staphylococcus species, with an early bolus release of antibiotics followed by a slow release lasting for up to 6 days. In vivo, there was a substantial decrease in the occurrence of infection. The hydration of the CanGaroo ECM with an antibiotic solution prevented Staphylococcus species growth in vitro and substantially reduced the incidence of CIED pocket infections in an in vivo rabbit model. © 2017 Wiley Periodicals, Inc.

  11. Insight On Colorectal Carcinoma Infiltration by Studying Perilesional Extracellular Matrix

    PubMed Central

    Nebuloni, Manuela; Albarello, Luca; Andolfo, Annapaola; Magagnotti, Cinzia; Genovese, Luca; Locatelli, Irene; Tonon, Giovanni; Longhi, Erika; Zerbi, Pietro; Allevi, Raffaele; Podestà, Alessandro; Puricelli, Luca; Milani, Paolo; Soldarini, Armando; Salonia, Andrea; Alfano, Massimo

    2016-01-01

    The extracellular matrix (ECM) from perilesional and colorectal carcinoma (CRC), but not healthy colon, sustains proliferation and invasion of tumor cells. We investigated the biochemical and physical diversity of ECM in pair-wised comparisons of healthy, perilesional and CRC specimens. Progressive linearization and degree of organization of fibrils was observed from healthy to perilesional and CRC ECM, and was associated with a steady increase of stiffness and collagen crosslinking. In the perilesional ECM these modifications coincided with increased vascularization, whereas in the neoplastic ECM they were associated with altered modulation of matrisome proteins, increased content of hydroxylated lysine and lysyl oxidase. This study identifies the increased stiffness and crosslinking of the perilesional ECM predisposing an environment suitable for CRC invasion as a phenomenon associated with vascularization. The increased stiffness of colon areas may represent a new predictive marker of desmoplastic region predisposing to invasion, thus offering new potential application for monitoring adenoma with invasive potential. PMID:26940881

  12. Disentangling the multifactorial contributions of fibronectin, collagen and cyclic strain on MMP expression and extracellular matrix remodeling by fibroblasts.

    PubMed

    Zhang, Yang; Lin, Zhe; Foolen, Jasper; Schoen, Ingmar; Santoro, Alberto; Zenobi-Wong, Marcy; Vogel, Viola

    2014-11-01

    Early wound healing is associated with fibroblasts assembling a provisional fibronectin-rich extracellular matrix (ECM), which is subsequently remodeled and interlaced by type I collagen. This exposes fibroblasts to time-variant sets of matrices during different stages of wound healing. Our goal was thus to gain insight into the ECM-driven functional regulation of human foreskin fibroblasts (HFFs) being either anchored to a fibronectin (Fn) or to a collagen-decorated matrix, in the absence or presence of cyclic mechanical strain. While the cells reoriented in response to the onset of uniaxial cyclic strain, cells assembled exogenously added Fn with a preferential Fn-fiber alignment along their new orientation. Exposure of HFFs to exogenous Fn resulted in an increase in matrix metalloproteinase (MMP) expression levels, i.e. MMP-15 (RT-qPCR), and MMP-9 activity (zymography), while subsequent exposure to collagen slightly reduced MMP-15 expression and MMP-9 activity compared to Fn-exposure alone. Cyclic strain upregulated Fn fibrillogenesis and actin stress fiber formation, but had comparatively little effect on MMP activity. We thus propose that the appearance of collagen might start to steer HFFs towards homeostasis, as it decreased both MMP secretion and the tension of Fn matrix fibrils as assessed by Fluorescence Resonance Energy Transfer. These results suggest that HFFs might have a high ECM remodeling or repair capacity in contact with Fn alone (early event), which is reduced in the presence of Col1 (later event), thereby down-tuning HFF activity, a processes which would be required in a tissue repair process to finally reach tissue homeostasis. Copyright © 2014. Published by Elsevier B.V.

  13. Development of a cellularly degradable PEG hydrogel to promote articular cartilage extracellular matrix deposition.

    PubMed

    Sridhar, Balaji V; Brock, John L; Silver, Jason S; Leight, Jennifer L; Randolph, Mark A; Anseth, Kristi S

    2015-04-02

    Healing articular cartilage remains a significant clinical challenge because of its limited self-healing capacity. While delivery of autologous chondrocytes to cartilage defects has received growing interest, combining cell-based therapies with scaffolds that capture aspects of native tissue and promote cell-mediated remodeling could improve outcomes. Currently, scaffold-based therapies with encapsulated chondrocytes permit matrix production; however, resorption of the scaffold does not match the rate of production by cells leading to generally low extracellular matrix outputs. Here, a poly (ethylene glycol) (PEG) norbornene hydrogel is functionalized with thiolated transforming growth factor (TGF-β1) and cross-linked by an MMP-degradable peptide. Chondrocytes are co-encapsulated with a smaller population of mesenchymal stem cells, with the goal of stimulating matrix production and increasing bulk mechanical properties of the scaffold. The co-encapsulated cells cleave the MMP-degradable target sequence more readily than either cell population alone. Relative to non-degradable gels, cellularly degraded materials show significantly increased glycosaminoglycan and collagen deposition over just 14 d of culture, while maintaining high levels of viability and producing a more widely-distributed matrix. These results indicate the potential of an enzymatically degradable, peptide-functionalized PEG hydrogel to locally influence and promote cartilage matrix production over a short period. Scaffolds that permit cell-mediated remodeling may be useful in designing treatment options for cartilage tissue engineering applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Enzymatically Regulated Peptide Pairing and Catalysis for the Bioanalysis of Extracellular Prometastatic Activities of Functionally Linked Enzymes

    NASA Astrophysics Data System (ADS)

    Li, Hao; Huang, Yue; Yu, Yue; Li, Tianqi; Li, Genxi; Anzai, Jun-Ichi

    2016-05-01

    Diseases such as cancer arise from systematical reconfiguration of interactions of exceedingly large numbers of proteins in cell signaling. The study of such complicated molecular mechanisms requires multiplexed detection of the inter-connected activities of several proteins in a disease-associated context. However, the existing methods are generally not well-equipped for this kind of application. Here a method for analyzing functionally linked protein activities is developed based on enzyme controlled pairing between complementary peptide helix strands, which simultaneously enables elaborate regulation of catalytic activity of the paired peptides. This method has been used to detect three different types of protein modification enzymes that participate in the modification of extracellular matrix and the formation of invasion front in tumour. In detecting breast cancer tissue samples using this method, up-regulated activity can be observed for two of the assessed enzymes, while the third enzyme is found to have a subtle fluctuation of activity. These results may point to the application of this method in evaluating prometastatic activities of proteins in tumour.

  15. Disruption of fibronectin matrix affects type IV collagen, fibrillin and laminin deposition into extracellular matrix of human trabecular meshwork (HTM) cells.

    PubMed

    Filla, Mark S; Dimeo, Kaylee D; Tong, Tiegang; Peters, Donna M

    2017-12-01

    Fibronectin fibrils are a major component of the extracellular matrix (ECM) of the trabecular meshwork (TM). They are a key mediator of the formation of the ECM which controls aqueous humor outflow and contributes to the pathogenesis of glaucoma. The purpose of this work was to determine if a fibronectin-binding peptide called FUD, derived from the Streptococcus pyogenes Functional Upstream Domain of the F1 adhesin protein, could be used to control fibronectin fibrillogenesis and hence ECM formation under conditions where its expression was induced by treatment with the glucocorticoid dexamethasone. FUD was very effective at preventing fibronectin fibrillogenesis in the presence or absence of steroid treatment as well as the removal of existing fibronectin fibrils. Disruption of fibronectin fibrillogenesis by FUD also disrupted the incorporation of type IV collagen, laminin and fibrillin into the ECM. The effect of FUD on these other protein matrices, however, was found to be dependent upon the maturity of the ECM when FUD was added. FUD effectively disrupted the incorporation of these other proteins into matrices when added to newly confluent cells that were forming a nascent ECM. In contrast, FUD had no effect on these other protein matrices if the cell cultures already possessed a pre-formed, mature ECM. Our studies indicate that FUD can be used to control fibronectin fibrillogenesis and that these fibrils play a role in regulating the assembly of other ECM protein into matrices involving type IV collagen, laminin, and fibrillin within the TM. This suggests that under in vivo conditions, FUD would selectively disrupt fibronectin fibrils and de novo assembly of other proteins into the ECM. Finally, our studies suggest that targeting fibronectin fibril assembly may be a viable treatment for POAG as well as other glaucomas involving excessive or abnormal matrix deposition of the ECM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Extracellular matrix inflammation in vascular cognitive impairment and dementia.

    PubMed

    Rosenberg, Gary A

    2017-03-01

    Vascular cognitive impairment and dementia (VCID) include a wide spectrum of chronic manifestations of vascular disease related to large vessel strokes and small vessel disease (SVD). Lacunar strokes and white matter (WM) injury are consequences of SVD. The main vascular risk factor for SVD is brain hypoperfusion from cerebral blood vessel narrowing due to chronic hypertension. The hypoperfusion leads to activation and degeneration of astrocytes with the resulting fibrosis of the extracellular matrix (ECM). Elasticity is lost in fibrotic cerebral vessels, reducing the response of stiffened blood vessels in times of increased metabolic need. Intermittent hypoxia/ischaemia activates a molecular injury cascade, producing an incomplete infarction that is most damaging to the deep WM, which is a watershed region for cerebral blood flow. Neuroinflammation caused by hypoxia activates microglia/macrophages to release proteases and free radicals that perpetuate the damage over time to molecules in the ECM and the neurovascular unit (NVU). Matrix metalloproteinases (MMPs) secreted in an attempt to remodel the blood vessel wall have the undesired consequences of opening the blood-brain barrier (BBB) and attacking myelinated fibres. This dual effect of the MMPs causes vasogenic oedema in WM and vascular demyelination, which are the hallmarks of the subcortical ischaemic vascular disease (SIVD), which is the SVD form of VCID also called Binswanger's disease (BD). Unravelling the complex pathophysiology of the WM injury-related inflammation in the small vessel form of VCID could lead to novel therapeutic strategies to reduce damage to the ECM, preventing the progressive damage to the WM. © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  17. Peroxidase Enzymes Regulate Collagen Biosynthesis and Matrix Mineralization by Cultured Human Osteoblasts.

    PubMed

    DeNichilo, Mark O; Shoubridge, Alexandra J; Panagopoulos, Vasilios; Liapis, Vasilios; Zysk, Aneta; Zinonos, Irene; Hay, Shelley; Atkins, Gerald J; Findlay, David M; Evdokiou, Andreas

    2016-03-01

    The early recruitment of inflammatory cells to sites of bone fracture and trauma is a critical determinant in successful fracture healing. Released by infiltrating inflammatory cells, myeloperoxidase (MPO) and eosinophil peroxidase (EPO) are heme-containing enzymes, whose functional involvement in bone repair has mainly been studied in the context of providing a mechanism for oxidative defense against invading microorganisms. We report here novel findings that show peroxidase enzymes have the capacity to stimulate osteoblastic cells to secrete collagen I protein and generate a mineralized extracellular matrix in vitro. Mechanistic studies conducted using cultured osteoblasts show that peroxidase enzymes stimulate collagen biosynthesis at a post-translational level in a prolyl hydroxylase-dependent manner, which does not require ascorbic acid. Our studies demonstrate that osteoblasts rapidly bind and internalize both MPO and EPO, and the catalytic activity of these peroxidase enzymes is essential to support collagen I biosynthesis and subsequent release of collagen by osteoblasts. We show that EPO is capable of regulating osteogenic gene expression and matrix mineralization in culture, suggesting that peroxidase enzymes may play an important role not only in normal bone repair, but also in the progression of pathological states where infiltrating inflammatory cells are known to deposit peroxidases.

  18. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions

    NASA Astrophysics Data System (ADS)

    Doyle, Andrew D.; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M.

    2015-11-01

    The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils.

  19. Flax Fiber Hydrophobic Extract Inhibits Human Skin Cells Inflammation and Causes Remodeling of Extracellular Matrix and Wound Closure Activation

    PubMed Central

    Styrczewska, Monika; Kostyn, Anna; Kulma, Anna; Majkowska-Skrobek, Grazyna; Augustyniak, Daria; Prescha, Anna; Czuj, Tadeusz; Szopa, Jan

    2015-01-01

    Inflammation is the basis of many diseases, with chronic wounds amongst them, limiting cell proliferation and tissue regeneration. Our previous preclinical study of flax fiber applied as a wound dressing and analysis of its components impact on the fibroblast transcriptome suggested flax fiber hydrophobic extract use as an anti-inflammatory and wound healing preparation. The extract contains cannabidiol (CBD), phytosterols, and unsaturated fatty acids, showing great promise in wound healing. In in vitro proliferation and wound closure tests the extract activated cell migration and proliferation. The activity of matrix metalloproteinases in skin cells was increased, suggesting activation of extracellular components remodeling. The expression of cytokines was diminished by the extract in a cannabidiol-dependent manner, but β-sitosterol can act synergistically with CBD in inflammation inhibition. Extracellular matrix related genes were also analyzed, considering their importance in further stages of wound healing. The extract activated skin cell matrix remodeling, but the changes were only partially cannabidiol- and β-sitosterol-dependent. The possible role of fatty acids also present in the extract is suggested. The study shows the hydrophobic flax fiber components as wound healing activators, with anti-inflammatory cannabidiol acting in synergy with sterols, and migration and proliferation promoting agents, some of which still require experimental identification. PMID:26347154

  20. Embryonic lung morphogenesis in organ culture: experimental evidence for a proteoglycan function in the extracellular matrix

    NASA Technical Reports Server (NTRS)

    Spooner, B. S.; Bassett, K. E.; Spooner, B. S. Jr

    1993-01-01

    The lung rudiment, isolated from mid-gestation (11 day) mouse embryos, can undergo morphogenesis in organ culture. Observation of living rudiments, in culture, reveals both growth and ongoing bronchiolar branching activity. To detect proteoglycan (PG) biosynthesis, and deposition in the extracellular matrix, rudiments were metabolically labeled with radioactive sulfate, then fixed, embedded, sectioned and processed for autoradiography. The sulfated glycosaminoglycan (GAG) types, composing the carbohydrate component of the proteoglycans, were evaluated by selective GAG degradative approaches that showed chondroitin sulfate PG principally associated with the interstitial matrix, and heparan sulfate PG principally associated with the basement membrane. Experiments using the proteoglycan biosynthesis disrupter, beta-xyloside, suggest that when chondroitin sulfate PG deposition into the ECM is perturbed, branching morphogenesis is compromised.

  1. Effects of transforming growth factor-beta1 on cell motility, collagen gel contraction, myofibroblastic differentiation, and extracellular matrix expression of human adipose-derived stem cell.

    PubMed

    Kakudo, Natsuko; Kushida, Satoshi; Suzuki, Kenji; Ogura, Tsunetaka; Notodihardjo, Priscilla Valentin; Hara, Tomoya; Kusumoto, Kenji

    2012-12-01

    Human adipose-derived stem cells (ASCs) are adult pluripotent stem cells, and their usefulness in plastic surgery has garnered attention in recent years. Although, there have been expectations that ASCs might function in wound repair and regeneration, no studies to date have examined the role of ASCs in the mechanism that promotes wound-healing. Transforming growth factor-beta1 (TGF-β1) is a strong candidate cytokine for the triggering of mesenchymal stem cell migration, construction of extracellular matrices, and differentiation of ASCs into myofibroblasts. Cell proliferation, motility, and differentiation, as well as extracellular matrix production, play an important role in wound-healing. We have evaluated the capacity of ASCs to proliferate and their potential to differentiate into phenotypic myofibroblasts, as well as their cell motility and collagen gel contraction ability, when cultured with TGF-β1. Cell motility was analyzed using a wound-healing assay. ASCs that differentiated into myofibroblasts expressed the gene for alpha-smooth muscle actin, and its protein expression was detected immunohistochemically. The extracellular matrix expression in ASCs was evaluated using real-time RT-PCR. Based on the results, we conclude that human ASCs have the potential for cell motility, extracellular matrix gene expression, gel contraction, and differentiation into myofibroblasts and, therefore, may play an important role in the wound-healing process.

  2. Ultrastructure and biological function of matrix vesicles in bone mineralization.

    PubMed

    Hasegawa, Tomoka

    2018-04-01

    Bone mineralization is initiated by matrix vesicles, small extracellular vesicles secreted by osteoblasts, inducing the nucleation and subsequent growth of calcium phosphate crystals inside. Although calcium ions (Ca 2+ ) are abundant throughout the tissue fluid close to the matrix vesicles, the influx of phosphate ions (PO4 3- ) into matrix vesicles is a critical process mediated by several enzymes and transporters such as ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), ankylosis (ANK), and tissue nonspecific alkaline phosphatase (TNSALP). The catalytic activity of ENPP1 in osteoblasts generates inorganic pyrophosphate (PPi) intracellularly and extracellularly, and ANK may allow the intracellular PPi to pass through the plasma membrane to the outside of the osteoblasts. Although the extracellular PPi binds to growing hydroxyapatite crystals to prevent crystal overgrowth, TNSALP on the osteoblasts and matrix vesicles hydrolyzes PPi into PO4 3- monomers: the prevention of crystal growth is blocked, and PO4 3- monomers are supplied to matrix vesicles. In addition, PHOSPHO1 is thought to function inside matrix vesicles to catalyze phosphocoline, a constituent of the plasma membrane, consequently increasing PO4 3- in the vesicles. Accumulation of Ca 2+ and PO4 3- inside the matrix vesicles then initiates crystalline nucleation associated with the inner leaflet of the matrix vesicles. Calcium phosphate crystals elongate radially, penetrate the matrix vesicle's membrane, and finally grow out of the vesicles to form calcifying nodules, globular assemblies of needle-shaped mineral crystals retaining some of those transporters and enzymes. The subsequent growth of calcifying nodules appears to be regulated by surrounding organic compounds, finally leading to collagen mineralization.

  3. High capacity for extracellular acid-base regulation in the air-breathing fish Pangasianodon hypophthalmus.

    PubMed

    Damsgaard, Christian; Gam, Le Thi Hong; Tuong, Dang Diem; Thinh, Phan Vinh; Huong Thanh, Do Thi; Wang, Tobias; Bayley, Mark

    2015-05-01

    The evolution of accessory air-breathing structures is typically associated with reduction of the gills, although branchial ion transport remains pivotal for acid-base and ion regulation. Therefore, air-breathing fishes are believed to have a low capacity for extracellular pH regulation during a respiratory acidosis. In the present study, we investigated acid-base regulation during hypercapnia in the air-breathing fish Pangasianodon hypophthalmus in normoxic and hypoxic water at 28-30°C. Contrary to previous studies, we show that this air-breathing fish has a pronounced ability to regulate extracellular pH (pHe) during hypercapnia, with complete metabolic compensation of pHe within 72 h of exposure to hypoxic hypercapnia with CO2 levels above 34 mmHg. The high capacity for pHe regulation relies on a pronounced ability to increase levels of HCO3(-) in the plasma. Our study illustrates the diversity in the physiology of air-breathing fishes, such that generalizations across phylogenies may be difficult. © 2015. Published by The Company of Biologists Ltd.

  4. Influence of the amyloid dye Congo red on curli, cellulose, and the extracellular matrix in E. coli during growth and matrix purification.

    PubMed

    Reichhardt, Courtney; McCrate, Oscar A; Zhou, Xiaoxue; Lee, Jessica; Thongsomboon, Wiriya; Cegelski, Lynette

    2016-11-01

    Microbial biofilms are communities of cells characterized by a hallmark extracellular matrix (ECM) that confers functional attributes to the community, including enhanced cohesion, adherence to surfaces, and resistance to external stresses. Understanding the composition and properties of the biofilm ECM is crucial to understanding how it functions and protects cells. New methods to isolate and characterize ECM are emerging for different biofilm systems. Solid-state nuclear magnetic resonance was used to quantitatively track the isolation of the insoluble ECM from the uropathogenic Escherichia coli strain UTI89 and understand the role of Congo red in purification protocols. UTI89 assembles amyloid-integrated biofilms when grown on YESCA nutrient agar. The ECM contains curli amyloid fibers and a modified form of cellulose. Biofilms formed by UTI89 and other E. coli and Salmonella strains are often grown in the presence of Congo red to visually emphasize wrinkled agar morphologies and to score the production of ECM. Congo red is a hallmark amyloid-binding dye and binds to curli, yet also binds to cellulose. We found that growth in Congo red enabled more facile extraction of the ECM from UTI89 biofilms and facilitates isolation of cellulose from the curli mutant, UTI89ΔcsgA. Yet, Congo red has no influence on the isolation of curli from curli-producing cells that do not produce cellulose. Sodium dodecyl sulfate can remove Congo red from curli, but not from cellulose. Thus, Congo red binds strongly to cellulose and possibly weakens cellulose interactions with the cell surface, enabling more complete removal of the ECM. The use of Congo red as an extracellular matrix purification aid may be applied broadly to other organisms that assemble extracellular amyloid or cellulosic materials. Graphical abstract Solid-state NMR was used to quantitatively track the isolation of the insoluble amyloid-associated ECM from uropathogenic E. coli and understand the role of Congo red in

  5. Cryotherapy Reduces Inflammatory Response Without Altering Muscle Regeneration Process and Extracellular Matrix Remodeling of Rat Muscle.

    PubMed

    Vieira Ramos, Gracielle; Pinheiro, Clara Maria; Messa, Sabrina Peviani; Delfino, Gabriel Borges; Marqueti, Rita de Cássia; Salvini, Tania de Fátima; Durigan, Joao Luiz Quagliotti

    2016-01-04

    The application of cryotherapy is widely used in sports medicine today. Cooling could minimize secondary hypoxic injury through the reduction of cellular metabolism and injury area. Conflicting results have also suggested cryotherapy could delay and impair the regeneration process. There are no definitive findings about the effects of cryotherapy on the process of muscle regeneration. The aim of the present study was to evaluate the effects of a clinical-like cryotherapy on inflammation, regeneration and extracellular matrix (ECM) remodeling on the Tibialis anterior (TA) muscle of rats 3, 7 and 14 days post-injury. It was observed that the intermittent application of cryotherapy (three 30-minute sessions, every 2 h) in the first 48 h post-injury decreased inflammatory processes (mRNA levels of TNF-α, NF-κB, TGF-β and MMP-9 and macrophage percentage). Cryotherapy did not alter regeneration markers such as injury area, desmin and Myod expression. Despite regulating Collagen I and III and their growth factors, cryotherapy did not alter collagen deposition. In summary, clinical-like cryotherapy reduces the inflammatory process through the decrease of macrophage infiltration and the accumulation of the inflammatory key markers without influencing muscle injury area and ECM remodeling.

  6. Interactions between Skeletal Muscle Myoblasts and their Extracellular Matrix Revealed by a Serum Free Culture System.

    PubMed

    Chaturvedi, Vishal; Dye, Danielle E; Kinnear, Beverley F; van Kuppevelt, Toin H; Grounds, Miranda D; Coombe, Deirdre R

    2015-01-01

    Decellularisation of skeletal muscle provides a system to study the interactions of myoblasts with muscle extracellular matrix (ECM). This study describes the efficient decellularisation of quadriceps muscle with the retention of matrix components and the use of this matrix for myoblast proliferation and differentiation under serum free culture conditions. Three decellularisation approaches were examined; the most effective was phospholipase A2 treatment, which removed cellular material while maximizing the retention of ECM components. Decellularised muscle matrices were then solubilized and used as substrates for C2C12 mouse myoblast serum free cultures. The muscle matrix supported myoblast proliferation and differentiation equally as well as collagen and fibronectin. Immunofluorescence analyses revealed that myoblasts seeded on muscle matrix and fibronectin differentiated to form long, well-aligned myotubes, while myoblasts seeded on collagen were less organized. qPCR analyses showed a time dependent increase in genes involved in skeletal muscle differentiation and suggested that muscle-derived matrix may stimulate an increased rate of differentiation compared to collagen and fibronectin. Decellularized whole muscle three-dimensional scaffolds also supported cell adhesion and spreading, with myoblasts aligning along specific tracts of matrix proteins within the scaffolds. Thus, under serum free conditions, intact acellular muscle matrices provided cues to direct myoblast adhesion and migration. In addition, myoblasts were shown to rapidly secrete and organise their own matrix glycoproteins to create a localized ECM microenvironment. This serum free culture system has revealed that the correct muscle ECM facilitates more rapid cell organisation and differentiation than single matrix glycoprotein substrates.

  7. Methods for the visualization and analysis of extracellular matrix protein structure and degradation.

    PubMed

    Leonard, Annemarie K; Loughran, Elizabeth A; Klymenko, Yuliya; Liu, Yueying; Kim, Oleg; Asem, Marwa; McAbee, Kevin; Ravosa, Matthew J; Stack, M Sharon

    2018-01-01

    This chapter highlights methods for visualization and analysis of extracellular matrix (ECM) proteins, with particular emphasis on collagen type I, the most abundant protein in mammals. Protocols described range from advanced imaging of complex in vivo matrices to simple biochemical analysis of individual ECM proteins. The first section of this chapter describes common methods to image ECM components and includes protocols for second harmonic generation, scanning electron microscopy, and several histological methods of ECM localization and degradation analysis, including immunohistochemistry, Trichrome staining, and in situ zymography. The second section of this chapter details both a common transwell invasion assay and a novel live imaging method to investigate cellular behavior with respect to collagen and other ECM proteins of interest. The final section consists of common electrophoresis-based biochemical methods that are used in analysis of ECM proteins. Use of the methods described herein will enable researchers to gain a greater understanding of the role of ECM structure and degradation in development and matrix-related diseases such as cancer and connective tissue disorders. © 2018 Elsevier Inc. All rights reserved.

  8. [Clinical and etiopathogenetic role of plasminogen and metaloproteinase systems in the tumor growth. Pericellular proteolysis of extracellular matrix and tumor growth].

    PubMed

    Cosić, Sanda Jelisavac; Kovac, Zdenko

    2011-01-01

    Pericellular proteolysis is a cascade process involved in degradation of extracellular matrix. This process is included in various physiological and pathological processes. Pericellullar proteolysis has major functions like degradation of tissue stroma and weakening of intercellular connections but it also has a function in the synthesis of bioactive molecules (cytokines, growth factors and inhibitory factors). Plasminogen system is involved in fibrinolysis and starts metalloproteinase activation. Activity of proteolytic molecules is controlled by the rate of zymogenic activation, half-life of molecules, and action of inhibitory molecules. Inhibition is achieved through direct binding of inhibitor and enzyme and takes a few steps. Pericellular proteolysis is involved in tumor invasion and metastasis, inflammatory reaction, degenerative diseases and other diseases. Pathophysiological regulation of pericellular proteolysis in mentioned diseases contributes to clinical properties of diseases and has diagnostic and therapeutic importance.

  9. Use of Collagen Extracellular Matrix Dressing for the Treatment of a Recurrent Venous Ulcer in a 52-Year-Old Patient.

    PubMed

    González, Arturo

    2016-01-01

    This case study describes treatment for a 52-year-old man with a recurrent venous leg ulcer using a collagen dressing with extracellular matrix. The patient was admitted to the wound care service for a 3-week-old recurrent venous ulcer. Treatment included application of a collagen dressing with extracellular matrix twice weekly or as needed by the patient; application of a secondary dressing (4 × 4 gauze); and coverage with an expandable netting or gauze using a conforming stretch gauze bandage and latex-free dressing retention tape. The initial venous leg ulcer in this patient required 10 weeks to achieve closure. Ninety-eight percent resolution of the recurrent ulcer had occurred within 4 weeks of treatment, with complete closure at 7 weeks. The average healing time for recurrent venous ulcers is reported in the literature to be longer than initial venous ulcers. In the case provided, collagen ECM dressings promoted complete wound healing in 49 days.

  10. Culture of human anulus fibrosus cells on polyamide nanofibers: extracellular matrix production.

    PubMed

    Gruber, Helen E; Hoelscher, Gretchen; Ingram, Jane A; Hanley, Edward N

    2009-01-01

    Studies were approved by the authors' Human Subjects Institutional Review Board. Human anulus cells were tested for growth and extracellular matrix (ECM) production in vitro. To investigate cell attachment, cell proliferation, and ECM production of human intervertebral disc anulus cells seeded onto randomly oriented electrospun polyamide nanofibers. Because nanofibrillar matrices have the potential to promote microenvironments, which may mimic in vivo conditions and resemble connective tissue, their utilization opens new avenues for cell-based tissue engineering applications for disc cells. Anulus cells were isolated from 4 cervical spine surgical disc specimens, expanded, and seeded into either routine plastic culture (control) or a nanofiber surface of randomly oriented electrospun polyamide nanofibers (Ultra-Web-coated culture dish, Corning) with a positive charge or without a charge. Cells were cultured for 9 days, digital images captured, cells harvested, embedded in paraffin, and examined for production of extracellular matrix (ECM). Additional anulus cultures were tested to quantitatively assess total proteoglycan production and cell proliferation under control or nanofiber cultures. Cells attached well and exhibited cell extensions within the nanofiber layers; cells on the charged nanofiber surface deposited greater amounts of chondroitin sulfate than of type II collagen than cells cultured on the uncharged nanofiber surface. Results showed that culture of anulus cells on nanofibers was permissive for secretion and assembly of type II collagen and chondroitin sulfate. Significantly greater total proteoglycan formation was present after culture on the nanofiber with added charge conditions {control, 0.6116 microg/mL +/- 0.186 [4] [mean +/- sem(n)] vs. 1.201 +/- 0.2509 [4], P < 0.05}. Cell proliferation, however, did not differ among treatment groups. Culture of anulus cells on nanofibers was found to be permissive for secretion and assembly of type II

  11. Aggrecan-based extracellular matrix shows unique cortical features and conserved subcortical principles of mammalian brain organization in the Madagascan lesser hedgehog tenrec (Echinops telfairi Martin, 1838).

    PubMed

    Morawski, M; Brückner, G; Jäger, C; Seeger, G; Künzle, H; Arendt, T

    2010-02-03

    The Madagascan tenrecs (Afrotheria), an ancient mammalian clade, are characterized by unique brain anatomy. Striking features are an expanded paleocortex but a small and poorly differentiated neocortex devoid of a distinct granular layer IV. To investigate the organization of cortical areas we analyzed extracellular matrix components in perineuronal nets (PNs) using antibodies to aggrecan, lectin staining and hyaluronan-binding protein. Selected subcortical regions were studied to correlate the cortical patterns with features in evolutionary conserved systems. In the neocortex, paleocortex and hippocampus PNs were associated with nonpyramidal neurons. Quantitative analysis in the cerebral cortex revealed area-specific proportions and laminar distribution patterns of neurons ensheathed by PNs. Cortical PNs showed divergent structural phenotypes. Diffuse PNs forming a cotton wool-like perisomatic rim were characteristic of the paleocortex. These PNs were associated with a dense pericellular plexus of calretinin-immunoreactive fibres. Clearly contoured PNs were devoid of a calretinin-positive plexus and predominated in the neocortex and hippocampus. The organization of the extracellular matrix in subcortical nuclei followed the widely distributed mammalian type. We conclude that molecular properties of the aggrecan-based extracellular matrix are conserved during evolution of mammals; however, the matrix scaffold is adapted to specific wiring patterns of cortical and subcortical neuronal networks. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Quantification of the extracellular matrix of the Listeria monocytogenes biofilms of different phylogenic lineages with optimization of culture conditions.

    PubMed

    Combrouse, T; Sadovskaya, I; Faille, C; Kol, O; Guérardel, Y; Midelet-Bourdin, G

    2013-04-01

    The purpose of this study was to quantify the extracellular matrix of Listeria monocytogenes biofilm. A preliminary study was carried out to establish a relationship between phylogenetic lineage of 27 strains and their ability to form biofilm in various conditions. Biofilm formation on microtitre plates of 27 strains of L. monocytogenes belonging to lineages I or II was evaluated in different conditions [two temperatures (37 and 22°C) and two media (tryptone soy broth yeast extract medium (TSBYE) and MCDB 202 defined medium)] using crystal violet assay. Lineage II strains produced significantly more biofilm than lineage I strains. In microtitre plates assay, biofilm quantities were greater in MCDB 202 vs TSBYE medium [confirmed by scanning electron microscopy (SEM) analysis] and at 37 vs 22°C. Cultivable bacteria from biofilm population on Petri dishes were enumerated in greater quantities in TSBYE than in MCDB 202 medium. The SEM investigation established that L. monocytogenes biofilms produce extracellular matrix in both media at 37°C. The amount of exopolymers in the extracellular matrix and the pH values were significantly higher in TSBYE than in MCDB 202 medium. The exception was the ScottA strain that presented similar pH values and exopolymer contents in both media. Proteins were the most abundant exopolymer components, followed by DNA and polysaccharides. The interpretation of results of biofilm quantification was depending on the growth conditions, the viability of the bacteria and the analysis method. The quantities of proteins, DNA and polysaccharides were different according to the strains and the medium. This study screened the potential of a wide panel of L. monocytogenes strains to synthesize exopolymers in biofilm growing condition. The characterization of L. monocytogenes biofilm composition may help to develop new strategies to prevent the formation of biofilms and to remove the biofilms. © 2013 The Society for Applied Microbiology.

  13. Extracellular matrix proteins as temporary coating for thin-film neural implants

    NASA Astrophysics Data System (ADS)

    Ceyssens, Frederik; Deprez, Marjolijn; Turner, Neill; Kil, Dries; van Kuyck, Kris; Welkenhuysen, Marleen; Nuttin, Bart; Badylak, Stephen; Puers, Robert

    2017-02-01

    Objective. This study investigates the suitability of a thin sheet of extracellular matrix (ECM) proteins as a resorbable coating for temporarily reinforcing fragile or ultra-low stiffness thin-film neural implants to be placed on the brain, i.e. microelectrocorticographic (µECOG) implants. Approach. Thin-film polyimide-based electrode arrays were fabricated using lithographic methods. ECM was harvested from porcine tissue by a decellularization method and coated around the arrays. Mechanical tests and an in vivo experiment on rats were conducted, followed by a histological tissue study combined with a statistical equivalence test (confidence interval approach, 0.05 significance level) to compare the test group with an uncoated control group. Main results. After 3 months, no significant damage was found based on GFAP and NeuN staining of the relevant brain areas. Significance. The study shows that ECM sheets are a suitable temporary coating for thin µECOG neural implants.

  14. A novel culture device for the evaluation of three-dimensional extracellular matrix materials.

    PubMed

    Akhyari, Payam; Ziegler, Heiko; Gwanmesia, Patricia; Barth, Mareike; Schilp, Soeren; Huelsmann, Joern; Hoffmann, Stefanie; Bosch, Julia; Kögler, Gesine; Lichtenberg, Artur

    2014-09-01

    Cell-matrix interactions in a three-dimensional (3D) extracellular matrix (ECM) are of fundamental importance in living tissue, and their in vitro reconstruction in bioartificial structures represents a core target of contemporary tissue engineering concepts. For a detailed analysis of cell-matrix interaction under highly controlled conditions, we developed a novel ECM evaluation culture device (EECD) that allows for a precisely defined surface-seeding of 3D ECM scaffolds, irrespective of their natural geometry. The effectiveness of EECD was evaluated in the context of heart valve tissue engineering. Detergent decellularized pulmonary cusps were mounted in EECD and seeded with endothelial cells (ECs) to study EC adhesion, morphology and function on a 3D ECM after 3, 24, 48 and 96 h. Standard EC monolayers served as controls. Exclusive top-surface-seeding of 3D ECM by viable ECs was demonstrated by laser scanning microscopy (LSM), resulting in a confluent re-endothelialization of the ECM after 96 h. Cell viability and protein expression, as demonstrated by MTS assay and western blot analysis (endothelial nitric oxide synthase, von Willebrand factor), were preserved at maintained levels over time. In conclusion, EECD proves as a highly effective system for a controlled repopulation and in vitro analysis of cell-ECM interactions in 3D ECM. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Differential expression of extracellular matrix constituents and cell adhesion molecules between malignant pleural mesothelioma and mesothelial hyperplasia.

    PubMed

    Alì, Greta; Borrelli, Nicla; Riccardo, Giannini; Proietti, Agnese; Pelliccioni, Serena; Niccoli, Cristina; Boldrini, Laura; Lucchi, Marco; Mussi, Alfredo; Fontanini, Gabriella

    2013-11-01

    Malignant pleural mesothelioma (MPM) is a highly aggressive neoplasm associated with asbestos exposure. Currently, the molecular mechanisms that induce MPM development are still unknown. The purpose of this study was to identify new molecular biomarkers for mesothelial carcinogenesis. We analyzed a panel of 84 genes involved in extracellular matrix remodeling and cell adhesion by polymerase chain reaction (PCR) array in 15 samples of epithelioid mesothelioma and 10 samples of reactive mesothelial hyperplasia (MH; 3 of 25 samples were inadequate for mRNA analysis). To validate the differentially expressed genes identified by PCR array, we analyzed 27 more samples by immunohistochemistry, in addition to the 25 samples already studied. Twenty-five genes were differentially expressed in MPM and MH by PCR array. Of these we studied matrix metalloproteinase 7 (MMP7), MMP14, CD44, and integrin, alpha3 expression by immunohistochemistry in 26 epithelioid MPM and 26 MH samples from the entire series of 52 cases. We observed higher MMP14 and integrin, alpha3 expression in MPM samples compared with MH samples (p = 0.000002 and p = 0.000002, respectively). Conversely, CD44 expression was low in most (57.7%) mesothelioma samples but only in 11.5% of the MH samples (p = 0.0013). As regards MMP7, we did not observe differential expression between MH and MPM samples. We have extensively studied genes involved in cell adhesion and extracellular matrix remodeling in MPM and MH samples, gaining new insight into the pathophysiology of mesothelioma. Moreover, our data suggest that these factors could be potential biomarkers for MPM.

  16. Serum, liver, and lung levels of the major extracellular matrix components at the early stage of BCG-induced granulomatosis depending on the infection route.

    PubMed

    Kim, L B; Shkurupy, V A; Putyatina, A N

    2015-01-01

    Experiments on the model of mouse BCG-induced granulomatous showed that the content of glycosaminoglycans and proteoglycans in the extracellular matrix of the liver and lungs are changed at the early stages of inflammation (days 3 and 30 postinfection) before cell destruction in the organs begins. This is related to degradation of extracellular matrix structures. Their high content in the blood and interstitium probably contributes to the formation of granulomas, fibroblast proliferation and organ fibrosis. These processes depend on the infection route that determines different conditions for generalization of the inflammation process. Intravenous method of vaccine injection is preferable to use when designing the experiments simulating tuberculosis granulomatosis, especially for the analysis of its early stages.

  17. Programmable Control in Extracellular Matrix-mimicking Polymer Hydrogels.

    PubMed

    Hof, Kevin S; Bastings, Maartje M C

    2017-06-28

    The extracellular matrix (ECM) and cells have a reciprocal relationship, one shapes the other and vice versa. One of the main challenges of synthetic material systems for developmental cell culturing, organoid and stem cell work includes the implementation of this reciprocal nature. The largest hurdle to achieve true cell-instructive materials in biomaterials engineering is a lack of spatial and temporal control over material properties and the display of bioactive signals compared to the natural cell environment. ECM-mimicking hydrogels have been developed using a wide range of polymers, assembly and cross-linking strategies. While our synthetic toolbox is larger than nature, often our systems underperform when compared to ECM systems with natural components like Matrigel. Material properties and three-dimensional structure ill-represent the three-dimensional ECM reciprocal nature and ligand presentation is an oversimplified version of the complexity found in nature. We hypothesize that the lack of programmable control in properties and ligand presentation forms the basis of this mismatch in performance and analyze the presence of control in current state of the art ECM-mimicking systems based on covalent, supramolecular and recombinant polymers. We conclude that through combining the dynamics of supramolecular materials, robustness from covalent systems and the programmable spatial control of bio-activation in recombinant ECM materials, the optimal synthetic artificial ECM could be assembled.

  18. The Role of Structural Extracellular Matrix Proteins in Urothelial Bladder Cancer (Review)

    PubMed Central

    Brunner, Andrea; Tzankov, Alexandar

    2007-01-01

    The extracellular matrix (ECM) plays a key role in the modulation of cancer cell invasion. In urothelial carcinoma of the bladder (UC) the role of ECM proteins has been widely studied. The mechanisms, which are involved in the development of invasion, progression and generalization, are complex, depending on the interaction of ECM proteins with each other as well as with cancer cells. The following review will focus on the pathogenetic role and prognostic value of structural proteins, such as laminins, collagens, fibronectin (FN), tenascin (Tn-C) and thrombospondin 1 (TSP1) in UC. In addition, the role of integrins mediating the interaction of ECM molecules and cancer cells will be addressed, since integrin-mediated FN, Tn-C and TSP1 interactions seem to play an important role during tumor cell invasion and angiogenesis. PMID:19662222

  19. The extracellular matrix of Volvox carteri: molecular structure of the cellular compartment.

    PubMed

    Ertl, H; Mengele, R; Wenzl, S; Engel, J; Sumper, M

    1989-12-01

    The extracellular matrix (ECM) of Volvox contains insoluble fibrous layers that surround individual cells at a distance to form contiguous cellular compartments. Using immunological techniques, we identified a sulfated surface glycoprotein (SSG 185) as the monomeric precursor of this substructure within the ECM. The primary structure of the SSG 185 poly-peptide chain has been derived from cDNA and genomic DNA. A central domain of the protein, 80 amino acid residues long, consists almost exclusively of hydroxyproline residues. The chemical structure of the highly sulfated polysaccharide covalently attached to SSG 185 has been determined by permethylation analysis. As revealed by EM, SSG 185 is a rod-shaped molecule with a 21-nm-long polysaccharide strand protruding from its central region. The chemical nature of the cross-links between SSG 185 monomers is discussed.

  20. Epithelial expression of extracellular matrix metalloproteinase inducer/CD147 and matrix metalloproteinase-2 in neoplasms and precursor lesions derived from cutaneous squamous cells: An immunohistochemical study.

    PubMed

    Ayva, Sebnem Kupana; Karabulut, Ayse Anil; Akatli, Ayşe Nur; Atasoy, Pinar; Bozdogan, Onder

    2013-10-01

    Extracellular matrix metalloproteinase inducer (CD147) is a transmembrane glycoprotein involved in the regulation of matrix metalloproteinases (MMPs). The study investigated CD147 and MMP-2 expression in epidermis of cutaneous squamous lesions. CD147 and MMP-2 expressions were evaluated immunohistochemically in 44 specimens: 18 actinic keratoses (AK), 6 squamous cell carcinomas in situ (SCCIS), 13 squamous cell carcinomas (SCC; peritumoral and invasive portions assessed), and 7 normal skins. Patterns of expression were assessed, with MMP-2 in nuclei (MMP-2n) and cytoplasm (MMP-2c) evaluated separately. The expression of each marker was quantified using a calculated immunohistochemical/histologic score (H-score). Correlations were analyzed for the marker H-scores in each study group. Associations between H-scores and histopathologic parameters were also evaluated. CD147 H-score was the highest in SCC (invasive islands), followed by AK, SCCIS, and control specimens, respectively. MMP-2n and MMP-2c H-scores were the highest in AK, followed by SCCIS, SCC, and control specimens, respectively. MMP-2c and MMP-2n H-scores were significantly higher in peritumoral epidermis than in invasive islands of SCC. MMP-2c and CD147 H-scores were positively correlated in the peritumoral SCCs. CD147 H-score was positively correlated with tumor differentiation in SCC. The findings suggest that overexpression of CD147 plays a role in the development of SCC. Copyright © 2013 Elsevier GmbH. All rights reserved.

  1. Modulation of cardiac myocyte phenotype in vitro by the composition and orientation of the extracellular matrix.

    PubMed

    Simpson, D G; Terracio, L; Terracio, M; Price, R L; Turner, D C; Borg, T K

    1994-10-01

    Cellular phenotype is the result of a dynamic interaction between a cell's intrinsic genetic program and the morphogenetic signals that serve to modulate the extent to which that program is expressed. In the present study we have examined how morphogenetic information might be stored in the extracellular matrix (ECM) and communicated to the neonatal heart cell (NHC) by the cardiac alpha 1 beta 1 integrin molecule. A thin film of type I collagen (T1C) was prepared with a defined orientation. This was achieved by applying T1C to the peripheral edge of a 100 mm culture dish. The T1C was then drawn across the surface of the dish in a continuous stroke with a sterile cell scraper and allowed to polymerize. When NHCs were cultured on this substrate, they spread, as a population, along a common axis in parallel with the gel lattice and expressed an in vivo-like phenotype. Individual NHCs displayed an elongated, rod-like shape and disclosed parallel arrays of myofibrils. These phenotypic characteristics were maintained for at least 4 weeks in primary culture. The evolution of this tissue-like organizational pattern was dependent upon specific interactions between the NHCs and the collagen-based matrix that were mediated by the cardiac alpha 1 beta 1 integrin complex. This conclusion was supported by a variety of experimental results. Altering the tertiary structure of the matrix or blocking the extracellular domains of either the cardiac alpha 1 or beta 1 integrin chain inhibited the expression of the tissue-like pattern of organization. Neither cell-to-cell contact or contractile function were necessary to induce the formation of the rod-like cell shape. However, beating activity was necessary for the assembly of a well-differentiated myofibrillar apparatus. These data suggest that the cardiac alpha 1 beta 1 integrin complex serves to detect and transduce phenotypic information stored within the tertiary structure of the surrounding matrix.

  2. Keratinocyte-derived Laminin-332 Protein Promotes Melanin Synthesis via Regulation of Tyrosine Uptake*

    PubMed Central

    Chung, Heesung; Jung, Hyejung; Lee, Jung-hyun; Oh, Hye Yun; Kim, Ok Bin; Han, Inn-Oc; Oh, Eok-Soo

    2014-01-01

    Melanocytes, which produce the pigment melanin, are known to be closely regulated by neighboring keratinocytes. However, how keratinocytes regulate melanin production is unclear. Here we report that melanin production in melanoma cells (B16F10 and MNT-1) was increased markedly on a keratinocyte-derived extracellular matrix compared with a melanoma cell-derived extracellular matrix. siRNA-mediated reduction of keratinocyte-derived laminin-332 expression decreased melanin synthesis in melanoma cells, and laminin-332, but not fibronectin, enhanced melanin content and α-melanocyte-stimulating hormone-regulated melanin production in melanoma cells. Similar effects were observed in human melanocytes. Interestingly, however, laminin-332 did not affect the expression or activity of tyrosinase. Instead, laminin-332 promoted the uptake of extracellular tyrosine and, subsequently, increased intracellular levels of tyrosine in both melanocytes and melanoma cells. Taken together, these data strongly suggest that keratinocyte-derived laminin-332 contributes to melanin production by regulating tyrosine uptake. PMID:24951591

  3. Keratinocyte-derived laminin-332 protein promotes melanin synthesis via regulation of tyrosine uptake.

    PubMed

    Chung, Heesung; Jung, Hyejung; Lee, Jung-Hyun; Oh, Hye Yun; Kim, Ok Bin; Han, Inn-Oc; Oh, Eok-Soo

    2014-08-01

    Melanocytes, which produce the pigment melanin, are known to be closely regulated by neighboring keratinocytes. However, how keratinocytes regulate melanin production is unclear. Here we report that melanin production in melanoma cells (B16F10 and MNT-1) was increased markedly on a keratinocyte-derived extracellular matrix compared with a melanoma cell-derived extracellular matrix. siRNA-mediated reduction of keratinocyte-derived laminin-332 expression decreased melanin synthesis in melanoma cells, and laminin-332, but not fibronectin, enhanced melanin content and α-melanocyte-stimulating hormone-regulated melanin production in melanoma cells. Similar effects were observed in human melanocytes. Interestingly, however, laminin-332 did not affect the expression or activity of tyrosinase. Instead, laminin-332 promoted the uptake of extracellular tyrosine and, subsequently, increased intracellular levels of tyrosine in both melanocytes and melanoma cells. Taken together, these data strongly suggest that keratinocyte-derived laminin-332 contributes to melanin production by regulating tyrosine uptake. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Collagen XII and XIV, new partners of cartilage oligomeric matrix protein in the skin extracellular matrix suprastructure.

    PubMed

    Agarwal, Pallavi; Zwolanek, Daniela; Keene, Douglas R; Schulz, Jan-Niklas; Blumbach, Katrin; Heinegård, Dick; Zaucke, Frank; Paulsson, Mats; Krieg, Thomas; Koch, Manuel; Eckes, Beate

    2012-06-29

    The tensile and scaffolding properties of skin rely on the complex extracellular matrix (ECM) that surrounds cells, vasculature, nerves, and adnexus structures and supports the epidermis. In the skin, collagen I fibrils are the major structural component of the dermal ECM, decorated by proteoglycans and by fibril-associated collagens with interrupted triple helices such as collagens XII and XIV. Here we show that the cartilage oligomeric matrix protein (COMP), an abundant component of cartilage ECM, is expressed in healthy human skin. COMP expression is detected in the dermal compartment of skin and in cultured fibroblasts, whereas epidermis and HaCaT cells are negative. In addition to binding collagen I, COMP binds to collagens XII and XIV via their C-terminal collagenous domains. All three proteins codistribute in a characteristic narrow zone in the superficial papillary dermis of healthy human skin. Ultrastructural analysis by immunogold labeling confirmed colocalization and further revealed the presence of COMP along with collagens XII and XIV in anchoring plaques. On the basis of these observations, we postulate that COMP functions as an adapter protein in human skin, similar to its function in cartilage ECM, by organizing collagen I fibrils into a suprastructure, mainly in the vicinity of anchoring plaques that stabilize the cohesion between the upper dermis and the basement membrane zone.

  5. Collagen XII and XIV, New Partners of Cartilage Oligomeric Matrix Protein in the Skin Extracellular Matrix Suprastructure*

    PubMed Central

    Agarwal, Pallavi; Zwolanek, Daniela; Keene, Douglas R.; Schulz, Jan-Niklas; Blumbach, Katrin; Heinegård, Dick; Zaucke, Frank; Paulsson, Mats; Krieg, Thomas; Koch, Manuel; Eckes, Beate

    2012-01-01

    The tensile and scaffolding properties of skin rely on the complex extracellular matrix (ECM) that surrounds cells, vasculature, nerves, and adnexus structures and supports the epidermis. In the skin, collagen I fibrils are the major structural component of the dermal ECM, decorated by proteoglycans and by fibril-associated collagens with interrupted triple helices such as collagens XII and XIV. Here we show that the cartilage oligomeric matrix protein (COMP), an abundant component of cartilage ECM, is expressed in healthy human skin. COMP expression is detected in the dermal compartment of skin and in cultured fibroblasts, whereas epidermis and HaCaT cells are negative. In addition to binding collagen I, COMP binds to collagens XII and XIV via their C-terminal collagenous domains. All three proteins codistribute in a characteristic narrow zone in the superficial papillary dermis of healthy human skin. Ultrastructural analysis by immunogold labeling confirmed colocalization and further revealed the presence of COMP along with collagens XII and XIV in anchoring plaques. On the basis of these observations, we postulate that COMP functions as an adapter protein in human skin, similar to its function in cartilage ECM, by organizing collagen I fibrils into a suprastructure, mainly in the vicinity of anchoring plaques that stabilize the cohesion between the upper dermis and the basement membrane zone. PMID:22573329

  6. Role of the extracellular matrix during neural crest cell migration.

    PubMed

    Perris, R; Perissinotto, D

    2000-07-01

    Once specified to become neural crest (NC), cells occupying the dorsal portion of the neural tube disrupt their cadherin-mediated cell-cell contacts, acquire motile properties, and embark upon an extensive migration through the embryo to reach their ultimate phenotype-specific sites. The understanding of how this movement is regulated is still rather fragmentary due to the complexity of the cellular and molecular interactions involved. An additional intricate aspect of the regulation of NC cell movement is that the timings, modes and patterns of NC cell migration are intimately associated with the concomitant phenotypic diversification that cells undergo during their migratory phase and the fact that these changes modulate the way that moving cells interact with their microenvironment. To date, two interplaying mechanisms appear central for the guidance of the migrating NC cells through the embryo: one involves secreted signalling molecules acting through their cognate protein kinase/phosphatase-type receptors and the other is contributed by the multivalent interactions of the cells with their surrounding extracellular matrix (ECM). The latter ones seem fundamental in light of the central morphogenetic role played by the intracellular signals transduced through the cytoskeleton upon integrin ligation, and the convergence of these signalling cascades with those triggered by cadherins, survival/growth factor receptors, gap junctional communications, and stretch-activated calcium channels. The elucidation of the importance of the ECM during NC cell movement is presently favoured by the augmenting knowledge about the macromolecular structure of the specific ECM assembled during NC development and the functional assaying of its individual constituents via molecular and genetic manipulations. Collectively, these data propose that NC cell migration may be governed by time- and space-dependent alterations in the expression of inhibitory ECM components; the relative ratio

  7. Loss of miR-203 regulates cell shape and matrix adhesion through ROBO1/Rac/FAK in response to stiffness

    PubMed Central

    Le, Lily Thao-Nhi; Cazares, Oscar; Mouw, Janna K.; Chatterjee, Sharmila; Macias, Hector; Moran, Angel; Ramos, Jillian; Keely, Patricia J.; Weaver, Valerie M.

    2016-01-01

    Breast tumor progression is accompanied by changes in the surrounding extracellular matrix (ECM) that increase stiffness of the microenvironment. Mammary epithelial cells engage regulatory pathways that permit dynamic responses to mechanical cues from the ECM. Here, we identify a SLIT2/ROBO1 signaling circuit as a key regulatory mechanism by which cells sense and respond to ECM stiffness to preserve tensional homeostasis. We observed that Robo1 ablation in the developing mammary gland compromised actin stress fiber assembly and inhibited cell contractility to perturb tissue morphogenesis, whereas SLIT2 treatment stimulated Rac and increased focal adhesion kinase activity to enhance cell tension by maintaining cell shape and matrix adhesion. Further investigation revealed that a stiff ECM increased Robo1 levels by down-regulating miR-203. Consistently, patients whose tumor expressed a low miR-203/high Robo1 expression pattern exhibited a better overall survival prognosis. These studies show that cells subjected to stiffened environments up-regulate Robo1 as a protective mechanism that maintains cell shape and facilitates ECM adherence. PMID:26975850

  8. Selective redox regulation of cytokine receptor signaling by extracellular thioredoxin-1

    PubMed Central

    Schwertassek, Ulla; Balmer, Yves; Gutscher, Marcus; Weingarten, Lars; Preuss, Marc; Engelhard, Johanna; Winkler, Monique; Dick, Tobias P

    2007-01-01

    The thiol-disulfide oxidoreductase thioredoxin-1 (Trx1) is known to be secreted by leukocytes and to exhibit cytokine-like properties. Extracellular effects of Trx1 require a functional active site, suggesting a redox-based mechanism of action. However, specific cell surface proteins and pathways coupling extracellular Trx1 redox activity to cellular responses have not been identified so far. Using a mechanism-based kinetic trapping technique to identify disulfide exchange interactions on the intact surface of living lymphocytes, we found that Trx1 catalytically interacts with a single principal target protein. This target protein was identified as the tumor necrosis factor receptor superfamily member 8 (TNFRSF8/CD30). We demonstrate that the redox interaction is highly specific for both Trx1 and CD30 and that the redox state of CD30 determines its ability to engage the cognate ligand and transduce signals. Furthermore, we confirm that Trx1 affects CD30-dependent changes in lymphocyte effector function. Thus, we conclude that receptor–ligand signaling interactions can be selectively regulated by an extracellular redox catalyst. PMID:17557078

  9. Nitric Oxide Induces Cardiac Protection by Preventing Extracellular Matrix Degradation through the Complex Caveolin-3/EMMPRIN in Cardiac Myocytes

    PubMed Central

    Cuadrado, Irene; Castejon, Borja; Martin, Ana M.; Saura, Marta; Reventun-Torralba, Paula; Zamorano, Jose Luis

    2016-01-01

    Inhibition of Extracellular Matrix degradation by nitric oxide (NO) induces cardiac protection against coronary ischemia/reperfusion (IR). Glycosylation of Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) stimulates enzymatic activation of matrix metalloproteinases (MMPs) in the heart, although the mechanisms leading to EMMPRIN glycosylation are poorly understood. We sought to determine if NO may induce cardiac protection by preventing glycosylation of EMMPRIN in a mouse model of IR. Here we found that Caveolin-3 binds to low glycosylated EMMPRIN (LG-EMMPRIN) in cardiac cells and in the hearts of healthy mice, whereas IR disrupted the complex in nitric oxide synthase 2 (NOS2) knockout (KO) mice. By contrast, the binding was partially restored when mice were fed with an NO donor (DEA-NO) in the drinking water, showing a significant reduction on infarct size (NOS2KO: 34.6±5 vs NOS2KO+DEA-NO: 20.7±9), in expression of matrix metalloproteinases, and cardiac performance was improved (left ventricular ejection fraction (LVEF). NOS2KO: 31±4 vs NOS2KO+DEA-NO: 46±6). The role of Caveolin-3/EMMPRIN in NO-mediated cardiac protection was further assayed in Caveolin-3 KO mice, showing no significant improvement on infarct size (Caveolin-3 KO: 34.8±3 vs Caveolin-3 KO+DEA-NO:33.7±5), or in the expression of MMPs, suggesting that stabilization of the complex Caveolin-3/LG-EMMPRIN may play a significant role in the cardioprotective effect of NO against IR. PMID:27649573

  10. Nitric Oxide Induces Cardiac Protection by Preventing Extracellular Matrix Degradation through the Complex Caveolin-3/EMMPRIN in Cardiac Myocytes.

    PubMed

    Cuadrado, Irene; Castejon, Borja; Martin, Ana M; Saura, Marta; Reventun-Torralba, Paula; Zamorano, Jose Luis; Zaragoza, Carlos

    2016-01-01

    Inhibition of Extracellular Matrix degradation by nitric oxide (NO) induces cardiac protection against coronary ischemia/reperfusion (IR). Glycosylation of Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) stimulates enzymatic activation of matrix metalloproteinases (MMPs) in the heart, although the mechanisms leading to EMMPRIN glycosylation are poorly understood. We sought to determine if NO may induce cardiac protection by preventing glycosylation of EMMPRIN in a mouse model of IR. Here we found that Caveolin-3 binds to low glycosylated EMMPRIN (LG-EMMPRIN) in cardiac cells and in the hearts of healthy mice, whereas IR disrupted the complex in nitric oxide synthase 2 (NOS2) knockout (KO) mice. By contrast, the binding was partially restored when mice were fed with an NO donor (DEA-NO) in the drinking water, showing a significant reduction on infarct size (NOS2KO: 34.6±5 vs NOS2KO+DEA-NO: 20.7±9), in expression of matrix metalloproteinases, and cardiac performance was improved (left ventricular ejection fraction (LVEF). NOS2KO: 31±4 vs NOS2KO+DEA-NO: 46±6). The role of Caveolin-3/EMMPRIN in NO-mediated cardiac protection was further assayed in Caveolin-3 KO mice, showing no significant improvement on infarct size (Caveolin-3 KO: 34.8±3 vs Caveolin-3 KO+DEA-NO:33.7±5), or in the expression of MMPs, suggesting that stabilization of the complex Caveolin-3/LG-EMMPRIN may play a significant role in the cardioprotective effect of NO against IR.

  11. Doxycycline inhibits TGF-β1-induced extracellular matrix production in nasal polyp-derived fibroblasts.

    PubMed

    Shin, Jae-Min; Park, Joo-Hoo; Park, Il-Ho; Lee, Heung-Man

    2016-03-01

    Doxycycline has been shown to have antibacterial and anti-inflammatory effects and suppresses collagen biosynthesis. The purpose of this study was to evaluate the effects of doxycycline on transforming growth factor (TGF)-β1-induced myofibroblast differentiation and extracellular matrix production in nasal polyp-derived fibroblasts (NPDFs). We also determined the molecular mechanisms of action for doxycycline. NPDFs were isolated from nasal polyps from 8 patients. Doxycycline was used to pretreat TGF-β1-induced NPDFs. Cytotoxicity was evaluated using a 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide assay. Expression levels of α-smooth muscle actin (SMA) and fibronectin were measured using Western blot, reverse-transcription polymerase chain reaction, and immunofluorescence staining. Total collagen production was analyzed with the Sircol collagen assay, while mitogen-activated protein kinase (MAPK) and NF-κB activation were determined using Western blot analysis. Luciferase assay was used to evaluate the transcriptional activity of NF-κB. Although doxycycline (0 to 40 μg/mL) had no significant cytotoxic effects in TGF-β1-induced NPDFs, it significantly reduced the expression levels of α-SMA, fibronectin, and collagen in TGF-β1-induced NPDFs in a dose-dependent manner. Doxycycline also inhibited the TGF-β1-induced activation of p38, c-Jun NH2 -terminal kinase (JNK), and NF-κB, and its inhibitory effects were similar to those of the specific inhibitors for each. Doxycycline has an inhibitory effect on TGF-β1-induced myofibroblast differentiation and extracellular matrix production via the p38 and JNK/NF-κB signal pathways in NPDFs. © 2015 ARS-AAOA, LLC.

  12. In vitro enhancement of extracellular matrix formation as natural bioscaffold for stem cell culture

    NASA Astrophysics Data System (ADS)

    Naroeni, Aroem; Shalihah, Qonitha; Meilany, Sofy

    2017-02-01

    Growing cells in plastic with liquid media for in vitro study is very common but far from physiological. The use of scaffold materials is more biocompatible. Extracellular matrix provides tissue integrity which acts as a native scaffold for cell attachment and interaction, as well as it serves as a reservoir for growth factors. For this reason, we have developed natural scaffold from mice fibroblast to form a natural scaffold for stem cell culture. Fibroblasts were cultured under crowded condition and lysed to form natural scaffold. The natural scaffold formation was observed using immunofluorescence which then will be used and tested for stem cell propagation and differentiation.

  13. Tlx acts as a proangiogenic switch by regulating extracellular assembly of fibronectin matrices in retinal astrocytes.

    PubMed

    Uemura, Akiyoshi; Kusuhara, Sentaro; Wiegand, Stanley J; Yu, Ruth T; Nishikawa, Shin-ichi

    2006-02-01

    In response to hypoxia, hypoxia-inducible factors act as the primary proangiogenic triggers by regulating transcription levels of target genes, including VEGF. However, little is known about the specific factors that control other components of the angiogenic process, particularly formation of matrix scaffolds that promote adhesion and migration of endothelial cells. We show that in the postnatal mouse retina, the orphan nuclear receptor tailless (Tlx) is strongly expressed in the proangiogenic astrocytes, which secrete VEGF and fibronectin. Tlx expression by retinal astrocytes is controlled by oxygen concentration and rapidly downregulated upon contact with blood vessels. In mice null for Tlx, retinal astrocytes maintain VEGF expression; however, the extracellular assembly of fibronectin matrices by astrocytes is severely impaired, leading to defective scaffold formation and a complete failure of normal retinal vascular development. This work identifies Tlx as an essential component of the molecular network involved in the hypoxia-inducible proangiogenic switch in retinal astrocytes.

  14. Tlx acts as a proangiogenic switch by regulating extracellular assembly of fibronectin matrices in retinal astrocytes

    PubMed Central

    Uemura, Akiyoshi; Kusuhara, Sentaro; Wiegand, Stanley J.; Yu, Ruth T.; Nishikawa, Shin-Ichi

    2006-01-01

    In response to hypoxia, hypoxia-inducible factors act as the primary proangiogenic triggers by regulating transcription levels of target genes, including VEGF. However, little is known about the specific factors that control other components of the angiogenic process, particularly formation of matrix scaffolds that promote adhesion and migration of endothelial cells. We show that in the postnatal mouse retina, the orphan nuclear receptor tailless (Tlx) is strongly expressed in the proangiogenic astrocytes, which secrete VEGF and fibronectin. Tlx expression by retinal astrocytes is controlled by oxygen concentration and rapidly downregulated upon contact with blood vessels. In mice null for Tlx, retinal astrocytes maintain VEGF expression; however, the extracellular assembly of fibronectin matrices by astrocytes is severely impaired, leading to defective scaffold formation and a complete failure of normal retinal vascular development. This work identifies Tlx as an essential component of the molecular network involved in the hypoxia-inducible proangiogenic switch in retinal astrocytes. PMID:16424942

  15. Tangeretin inhibits extracellular-signal-regulated kinase (ERK) phosphorylation.

    PubMed

    Van Slambrouck, Séverine; Parmar, Virinder S; Sharma, Sunil K; De Bondt, Bart; Foré, Fleur; Coopman, Peter; Vanhoecke, Barbara W; Boterberg, Tom; Depypere, Herman T; Leclercq, Guy; Bracke, Marc E

    2005-03-14

    Tangeretin is a methoxyflavone from citrus fruits, which inhibits growth of human mammary cancer cells and cytolysis by natural killer cells. Attempting to unravel the flavonoid's action mechanism, we found that it inhibited extracellular-signal-regulated kinases 1/2 (ERK1/2) phosphorylation in a dose- and time-dependent way. In human T47D mammary cancer cells this inhibition was optimally observed after priming with estradiol. The spectrum of the intracellular signalling kinase inhibition was narrow and comparison of structural congeners showed that inhibition of ERK phosphorylation was not unique for tangeretin. Our data add tangeretin to the list of small kinase inhibitors with a restricted intracellular inhibition profile.

  16. The altered glucose metabolism in tumor and a tumor acidic microenvironment associated with extracellular matrix metalloproteinase inducer and monocarboxylate transporters

    PubMed Central

    Li, Xiaofeng; Yu, Xiaozhou; Dai, Dong; Song, Xiuyu; Xu, Wengui

    2016-01-01

    Extracellular matrix metalloproteinase inducer, also knowns as cluster of differentiation 147 (CD147) or basigin, is a widely distributed cell surface glycoprotein that is involved in numerous physiological and pathological functions, especially in tumor invasion and metastasis. Monocarboxylate transporters (MCTs) catalyze the proton-linked transport of monocarboxylates such as L-lactate across the plasma membrane to preserve the intracellular pH and maintain cell homeostasis. As a chaperone to some MCT isoforms, CD147 overexpression significantly contributes to the metabolic transformation of tumor. This overexpression is characterized by accelerated aerobic glycolysis and lactate efflux, and it eventually provides the tumor cells with a metabolic advantage and an invasive phenotype in the acidic tumor microenvironment. This review highlights the roles of CD147 and MCTs in tumor cell metabolism and the associated molecular mechanisms. The regulation of CD147 and MCTs may prove to be with a therapeutic potential for tumors through the metabolic modification of the tumor microenvironment. PMID:27009812

  17. Neogenin Regulates Skeletal Myofiber Size and Focal Adhesion Kinase and Extracellular Signal-regulated Kinase Activities In Vivo and In Vitro

    PubMed Central

    Bae, Gyu-Un; Yang, Youn-Joo; Jiang, Guoying; Hong, Mingi; Lee, Hye-Jin; Tessier-Lavigne, Marc

    2009-01-01

    A variety of signaling pathways participate in the development of skeletal muscle, but the extracellular cues that regulate such pathways in myofiber formation are not well understood. Neogenin is a receptor for ligands of the netrin and repulsive guidance molecule (RGM) families involved in axon guidance. We reported previously that neogenin promoted myotube formation by C2C12 myoblasts in vitro and that the related protein Cdo (also Cdon) was a potential neogenin coreceptor in myoblasts. We report here that mice homozygous for a gene-trap mutation in the Neo1 locus (encoding neogenin) develop myotomes normally but have small myofibers at embryonic day 18.5 and at 3 wk of age. Similarly, cultured myoblasts derived from such animals form smaller myotubes with fewer nuclei than myoblasts from control animals. These in vivo and in vitro defects are associated with low levels of the activated forms of focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK), both known to be involved in myotube formation, and inefficient expression of certain muscle-specific proteins. Recombinant netrin-2 activates FAK and ERK in cultured myoblasts in a neogenin- and Cdo-dependent manner, whereas recombinant RGMc displays lesser ability to activate these kinases. Together, netrin-neogenin signaling is an important extracellular cue in regulation of myogenic differentiation and myofiber size. PMID:19812254

  18. Emerging interactions between matrix components during biofilm development.

    PubMed

    Payne, David E; Boles, Blaise R

    2016-02-01

    Bacterial cells are most often found in the form of multicellular aggregates commonly referred to as biofilms. Biofilms offer their member cells several benefits, such as resistance to killing by antimicrobials and predation. During biofilm formation there is a production of extracellular substances that, upon assembly, constitute an extracellular matrix. The ability to generate a matrix encasing the microbial cells is a common feature of biofilms, but there is diversity in matrix composition and in interaction between matrix components. The different components of bacterial biofilm extracellular matrixes, known as matrix interactions, and resulting implications are discussed in this review.

  19. Collagen cross-linking: insights on the evolution of metazoan extracellular matrix.

    PubMed

    Rodriguez-Pascual, Fernando; Slatter, David Anthony

    2016-11-23

    Collagens constitute a large family of extracellular matrix (ECM) proteins that play a fundamental role in supporting the structure of various tissues in multicellular animals. The mechanical strength of fibrillar collagens is highly dependent on the formation of covalent cross-links between individual fibrils, a process initiated by the enzymatic action of members of the lysyl oxidase (LOX) family. Fibrillar collagens are present in a wide variety of animals, therefore often being associated with metazoan evolution, where the emergence of an ancestral collagen chain has been proposed to lead to the formation of different clades. While LOX-generated collagen cross-linking metabolites have been detected in different metazoan families, there is limited information about when and how collagen acquired this particular modification. By analyzing telopeptide and helical sequences, we identified highly conserved, potential cross-linking sites throughout the metazoan tree of life. Based on this analysis, we propose that they have importantly contributed to the formation and further expansion of fibrillar collagens.

  20. Effects of freezing-induced cell-fluid-matrix interactions on the cells and extracellular matrix of engineered tissues.

    PubMed

    Teo, Ka Yaw; DeHoyos, Tenok O; Dutton, J Craig; Grinnell, Frederick; Han, Bumsoo

    2011-08-01

    The two most significant challenges for successful cryopreservation of engineered tissues (ETs) are preserving tissue functionality and controlling highly tissue-type dependent preservation outcomes. In order to address these challenges, freezing-induced cell-fluid-matrix interactions should be understood, which determine the post-thaw cell viability and extracellular matrix (ECM) microstructure. However, the current understanding of this tissue-level biophysical interaction is still limited. In this study, freezing-induced cell-fluid-matrix interactions and their impact on the cells and ECM microstructure of ETs were investigated using dermal equivalents as a model ET. The dermal equivalents were constructed by seeding human dermal fibroblasts in type I collagen matrices with varying cell seeding density and collagen concentration. While these dermal equivalents underwent an identical freeze/thaw condition, their spatiotemporal deformation during freezing, post-thaw ECM microstructure, and cellular level cryoresponse were characterized. The results showed that the extent and characteristics of freezing-induced deformation were significantly different among the experimental groups, and the ETs with denser ECM microstructure experienced a larger deformation. The magnitude of the deformation was well correlated to the post-thaw ECM structure, suggesting that the freezing-induced deformation is a good indicator of post-thaw ECM structure. A significant difference in the extent of cellular injury was also noted among the experimental groups, and it depended on the extent of freezing-induced deformation of the ETs and the initial cytoskeleton organization. These results suggest that the cells have been subjected to mechanical insult due to the freezing-induced deformation as well as thermal insult. These findings provide insight on tissue-type dependent cryopreservation outcomes, and can help to design and modify cryopreservation protocols for new types of tissues from