Science.gov

Sample records for extracellularly generated reactive

  1. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling.

    PubMed

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-12-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2(.)) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling.

  2. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling☆

    PubMed Central

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-01-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2.) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling. PMID:26225731

  3. Chemical modification of extracellular matrix by cold atmospheric plasma-generated reactive species affects chondrogenesis and bone formation.

    PubMed

    Eisenhauer, Peter; Chernets, Natalie; Song, You; Dobrynin, Danil; Pleshko, Nancy; Steinbeck, Marla J; Freeman, Theresa A

    2016-09-01

    The goal of this study was to investigate whether cold plasma generated by dielectric barrier discharge (DBD) modifies extracellular matrices (ECM) to influence chondrogenesis and endochondral ossification. Replacement of cartilage by bone during endochondral ossification is essential in fetal skeletal development, bone growth and fracture healing. Regulation of this process by the ECM occurs through matrix remodelling, involving a variety of cell attachment molecules and growth factors, which influence cell morphology and protein expression. The commercially available ECM, Matrigel, was treated with microsecond or nanosecond pulsed (μsp or nsp, respectively) DBD frequencies conditions at the equivalent frequencies (1 kHz) or power (~1 W). Recombinant human bone morphogenetic protein-2 was added and the mixture subcutaneously injected into mice to simulate ectopic endochondral ossification. Two weeks later, the masses were extracted and analysed by microcomputed tomography. A significant increase in bone formation was observed in Matrigel treated with μsp DBD compared with control, while a significant decrease in bone formation was observed for both nsp treatments. Histological and immunohistochemical analysis showed Matrigel treated with μsp plasma increased the number of invading cells, the amount of vascular endothelial growth factor and chondrogenesis while the opposite was true for Matrigel treated with nsp plasma. In support of the in vivo Matrigel study, 10 T1/2 cells cultured in vitro on μsp DBD-treated type I collagen showed increased expression of adhesion proteins and activation of survival pathways, which decreased with nsp plasma treatments. These results indicate DBD modification of ECM can influence cellular behaviours to accelerate or inhibit chondrogenesis and endochondral ossification. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27510797

  4. Chemical modification of extracellular matrix by cold atmospheric plasma-generated reactive species affects chondrogenesis and bone formation.

    PubMed

    Eisenhauer, Peter; Chernets, Natalie; Song, You; Dobrynin, Danil; Pleshko, Nancy; Steinbeck, Marla J; Freeman, Theresa A

    2016-09-01

    The goal of this study was to investigate whether cold plasma generated by dielectric barrier discharge (DBD) modifies extracellular matrices (ECM) to influence chondrogenesis and endochondral ossification. Replacement of cartilage by bone during endochondral ossification is essential in fetal skeletal development, bone growth and fracture healing. Regulation of this process by the ECM occurs through matrix remodelling, involving a variety of cell attachment molecules and growth factors, which influence cell morphology and protein expression. The commercially available ECM, Matrigel, was treated with microsecond or nanosecond pulsed (μsp or nsp, respectively) DBD frequencies conditions at the equivalent frequencies (1 kHz) or power (~1 W). Recombinant human bone morphogenetic protein-2 was added and the mixture subcutaneously injected into mice to simulate ectopic endochondral ossification. Two weeks later, the masses were extracted and analysed by microcomputed tomography. A significant increase in bone formation was observed in Matrigel treated with μsp DBD compared with control, while a significant decrease in bone formation was observed for both nsp treatments. Histological and immunohistochemical analysis showed Matrigel treated with μsp plasma increased the number of invading cells, the amount of vascular endothelial growth factor and chondrogenesis while the opposite was true for Matrigel treated with nsp plasma. In support of the in vivo Matrigel study, 10 T1/2 cells cultured in vitro on μsp DBD-treated type I collagen showed increased expression of adhesion proteins and activation of survival pathways, which decreased with nsp plasma treatments. These results indicate DBD modification of ECM can influence cellular behaviours to accelerate or inhibit chondrogenesis and endochondral ossification. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Extracellular Redox Regulation of Intracellular Reactive Oxygen Generation, Mitochondrial Function and Lipid Turnover in Cultured Human Adipocytes

    PubMed Central

    Oliveira, Marcus F.; Burritt, Nathan; Corkey, Barbara E.

    2016-01-01

    Background Many tissues play an important role in metabolic homeostasis and the development of diabetes and obesity. We hypothesized that the circulating redox metabolome is a master metabolic regulatory system that impacts all organs and modulates reactive oxygen species (ROS) production, lipid peroxidation, energy production and changes in lipid turnover in many cells including adipocytes. Methods Differentiated human preadipocytes were exposed to the redox couples, lactate (L) and pyruvate (P), β–hydroxybutyrate (βOHB) and acetoacetate (Acoc), and the thiol-disulfides cysteine/ cystine (Cys/CySS) and GSH/GSSG for 1.5–4 hours. ROS measurements were done with CM-H2DCFDA. Lipid peroxidation (LPO) was assessed by a modification of the thiobarbituric acid method. Lipolysis was measured as glycerol release. Lipid synthesis was measured as 14C-glucose incorporated into lipid. Respiration was assessed using the SeaHorse XF24 analyzer and the proton leak was determined from the difference in respiration with oligomycin and antimycin A. Results Metabolites with increasing oxidation potentials (GSSG, CySS, Acoc) increased adipocyte ROS. In contrast, P caused a decrease in ROS compared with L. Acoc also induced a significant increase in both LPO and lipid synthesis. L and Acoc increased lipolysis. βOHB increased respiration, mainly due to an increased proton leak. GSSG, when present throughout 14 days of differentiation significantly increased fat accumulation, but not when added later. Conclusions We demonstrated that in human adipocytes changes in the external redox state impacted ROS production, LPO, energy efficiency, lipid handling, and differentiation. A more oxidized state generally led to increased ROS, LPO and lipid turnover and more reduction led to increased respiration and a proton leak. However, not all of the redox couples were the same suggesting compartmentalization. These data are consistent with the concept of the circulating redox metabolome as a

  6. Enzymatic Production of Extracellular Reactive Oxygen Species by Marine Microorganisms

    NASA Astrophysics Data System (ADS)

    Diaz, J. M.; Andeer, P. F.; Hansel, C. M.

    2014-12-01

    Reactive oxygen species (ROS) serve as intermediates in a myriad of biogeochemically important processes, including cell signaling pathways, cellular oxidative stress responses, and the transformation of both nutrient and toxic metals such as iron and mercury. Abiotic reactions involving the photo-oxidation of organic matter were once considered the only important sources of ROS in the environment. However, the recent discovery of substantial biological ROS production in marine systems has fundamentally shifted this paradigm. Within the last few decades, marine phytoplankton, including diatoms of the genus Thalassiosira, were discovered to produce ample extracellular quantities of the ROS superoxide. Even more recently, we discovered widespread production of extracellular superoxide by phylogenetically and ecologically diverse heterotrophic bacteria at environmentally significant levels (up to 20 amol cell-1 hr-1), which has introduced the revolutionary potential for substantial "dark" cycling of ROS. Despite the profound biogeochemical importance of extracellular biogenic ROS, the cellular mechanisms underlying the production of this ROS have remained elusive. Through the development of a gel-based assay to identify extracellular ROS-producing proteins, we have recently found that enzymes typically involved in antioxidant activity also produce superoxide when molecular oxygen is the only available electron acceptor. For example, large (~3600 amino acids) heme peroxidases are involved in extracellular superoxide production by a bacterium within the widespread Roseobacter clade. In Thalassiosira spp., extracellular superoxide is produced by flavoproteins such as glutathione reductase and ferredoxin NADP+ reductase. Thus, extracellular ROS production may occur via secreted and/or cell surface enzymes that modulate between producing and degrading ROS depending on prevailing geochemical and/or ecological conditions.

  7. Neutrophil extracellular traps: how to generate and visualize them.

    PubMed

    Brinkmann, Volker; Laube, Britta; Abu Abed, Ulrike; Goosmann, Christian; Zychlinsky, Arturo

    2010-02-24

    Neutrophil granulocytes are the most abundant group of leukocytes in the peripheral blood. As professional phagocytes, they engulf bacteria and kill them intracellularly when their antimicrobial granules fuse with the phagosome. We found that neutrophils have an additional way of killing microorganisms: upon activation, they release granule proteins and chromatin that together form extracellular fibers that bind pathogens. These novel structures, or Neutrophil Extracellular Traps (NETs), degrade virulence factors and kill bacteria, fungi and parasites. The structural backbone of NETs is DNA, and they are quickly degraded in the presence of DNases. Thus, bacteria expressing DNases are more virulent. Using correlative microscopy combining TEM, SEM, immunofluorescence and live cell imaging techniques, we could show that upon stimulation, the nuclei of neutrophils lose their shape and the eu- and heterochromatin homogenize. Later, the nuclear envelope and the granule membranes disintegrate allowing the mixing of NET components. Finally, the NETs are released as the cell membrane breaks. This cell death program (NETosis) is distinct from apoptosis and necrosis and depends on the generation of Reactive Oxygen Species by NADPH oxidase. Neutrophil extracellular traps are abundant at sites of acute inflammation. NETs appear to be a form of innate immune response that bind microorganisms, prevent them from spreading, and ensure a high local concentration of antimicrobial agents to degrade virulence factors and kill pathogens thus allowing neutrophils to fulfill their antimicrobial function even beyond their life span. There is increasing evidence, however, that NETs are also involved in diseases that range from auto-immune syndromes to infertility. We describe methods to isolate Neutrophil Granulocytes from peripheral human blood and stimulate them to form NETs. Also we include protocols to visualize the NETs in light and electron microscopy.

  8. Reactive oxygen species contribute to the presynaptic action of extracellular ATP at the frog neuromuscular junction

    PubMed Central

    Giniatullin, AR; Grishin, SN; Sharifullina, ER; Petrov, AM; Zefirov, AL; Giniatullin, RA

    2005-01-01

    During normal cell metabolism the production of intracellular ATP is associated with the generation of reactive oxygen species (ROS), which appear to be important signalling molecules. Both ATP and ROS can be released extracellularly by skeletal muscle during intense activity. Using voltage clamp recording combined with imaging and biochemical assay of ROS, we tested the hypothesis that at the neuromuscular junction extracellular ATP generates ROS to inhibit transmitter release from motor nerve endings. We found that ATP produced the presynaptic inhibitory action on multiquantal end-plate currents. The inhibitory action of ATP (but not that of adenosine) was significantly reduced by several antioxidants or extracellular catalase, which breaks down H2O2. Consistent with these data, the depressant effect of ATP was dramatically potentiated by the pro-oxidant Fe2+. Exogenous H2O2 reproduced the depressant effects of ATP and showed similar sensitivity to anti- and pro-oxidants. While NO also inhibited synaptic transmission, inhibitors of the NO-producing cascade did not prevent the depressant action of ATP. The ferrous oxidation in xylenol orange assay showed the increase of ROS production by ATP and 2-MeSADP but not by adenosine. Suramin, a non-selective antagonist of P2 receptors, and pertussis toxin prevented the action of ATP on ROS production. Likewise, imaging with the ROS-sensitive dye carboxy-2′,7′-dichlorodihydrofluorescein revealed increased production of ROS in the muscle treated with ATP or ADP while UTP or adenosine had no effect. Thus, generation of ROS contributed to the ATP-mediated negative feedback mechanism controlling quantal secretion of ACh from the motor nerve endings. PMID:15774519

  9. Selective reactivity of monochloramine with extracellular matrix components affects the disinfection of biofilm and detached clusters.

    PubMed

    Xue, Zheng; Lee, Woo Hyoung; Coburn, Kimberly M; Seo, Youngwoo

    2014-04-01

    The efficiency of monochloramine disinfection was dependent on the quantity and composition of extracellular polymeric substances (EPS) in biofilms, as monochloramine has a selective reactivity with proteins over polysaccharides. Biofilms with protein-based (Pseudomonas putida) and polysaccharide based EPS (Pseudomonas aeruginosa), as well as biofilms with varied amount of polysaccharide EPS (wild-type and mutant P. aeruginosa), were compared. The different reactivity of EPS components with monochloramine influenced disinfectant penetration, biofilm inactivation, as well as the viability of detached clusters. Monochloramine transport profiling measured by a chloramine-sensitive microelectrode revealed a broader diffusion boundary layer between bulk and biofilm surface in the P. putida biofilm compared to those of P. aeruginosa biofilms. The reaction with proteins in P. putida EPS multiplied both the time and the monochloramine mass required to achieve a full biofilm penetration. Cell viability in biofilms was also spatially influenced by monochloramine diffusion and reaction within biofilms, showing a lower survival in the surface section and a higher persistence in the middle section of the P. putida biofilm compared to the P. aeruginosa biofilms. While polysaccharide EPS promoted biofilm cell viability by obstructing monochloramine reactive sites on bacterial cells, protein EPS hindered monochloramine penetration by reacting with monochloramine and reduced its concentration within biofilms. Furthermore, the persistence of bacterial cells detached from biofilm (over 70% for P. putida and ∼40% for polysaccharide producing P. aeruginosa) suggested that currently recommended monochloramine residual levels may underestimate the risk of water quality deterioration caused by biofilm detachment.

  10. Fosfomycin enhances phagocyte-mediated killing of Staphylococcus aureus by extracellular traps and reactive oxygen species

    PubMed Central

    Shen, Fengge; Tang, Xudong; Cheng, Wei; Wang, Yang; Wang, Chao; Shi, Xiaochen; An, Yanan; Zhang, Qiaoli; Liu, Mingyuan; Liu, Bo; Yu, Lu

    2016-01-01

    The successful treatment of bacterial infections is the achievement of a synergy between the host’s immune defences and antibiotics. Here, we examined whether fosfomycin (FOM) could improve the bactericidal effect of phagocytes, and investigated the potential mechanisms. FOM enhanced the phagocytosis and extra- or intracellular killing of S. aureus by phagocytes. And FOM enhanced the extracellular killing of S. aureus in macrophage (MФ) and in neutrophils mediated by extracellular traps (ETs). ET production was related to NADPH oxidase-dependent reactive oxygen species (ROS). Additionally, FOM increased the intracellular killing of S. aureus in phagocytes, which was mediated by ROS through the oxidative burst process. Our results also showed that FOM alone induced S. aureus producing hydroxyl radicals in order to kill the bacterial cells in vitro. In a mouse peritonitis model, FOM treatment increased the bactericidal extra- and intracellular activity in vivo, and FOM strengthened ROS and ET production from peritoneal lavage fluid ex vivo. An IVIS imaging system assay further verified the observed in vivo bactericidal effect of the FOM treatment. This work may provide a deeper understanding of the role of the host’s immune defences and antibiotic interactions in microbial infections. PMID:26778774

  11. Role of Extracellular Polymeric Substances in the Surface Chemical Reactivity of Hymenobacter aerophilus, a Psychrotolerant Bacterium▿

    PubMed Central

    Baker, M. G.; Lalonde, S. V.; Konhauser, K. O.; Foght, J. M.

    2010-01-01

    Bacterial surface layers, such as extracellular polymeric substances (EPS), are known to play an important role in metal sorption and biomineralization; however, there have been very few studies investigating how environmentally induced changes in EPS production affect the cell's surface chemistry and reactivity. Acid-base titrations, cadmium adsorption assays, and Fourier transform infrared spectroscopy (FT-IR) were used to characterize the surface reactivities of Hymenobacter aerophilus cells with intact EPS (WC) or stripped of EPS (SC) and purified EPS alone. Linear programming modeling of titration data showed SC to possess functional groups corresponding to phosphoryl (pKa ∼6.5), phosphoryl/amine (pKa ∼7.9), and amine/hydroxyl (pKa ∼9.9). EPS and WC both possess carboxyl groups (pKa ∼5.1 to 5.8) in addition to phosphoryl and amine groups. FT-IR confirmed the presence of polysaccharides and protein in purified EPS that can account for the additional carboxyl groups. An increased ligand density was observed for WC relative to that for SC, leading to an increase in the amount of Cd adsorbed (0.53 to 1.73 mmol/liter per g [dry weight] and 0.53 to 0.59 mmol/liter per g [dry weight], respectively). Overall, the presence of EPS corresponds to an increase in the number and type of functional groups on the surface of H. aerophilus that is reflected by increased metal adsorption relative to that for EPS-free cells. PMID:19915039

  12. Role of extracellular polymeric substances in the surface chemical reactivity of Hymenobacter aerophilus, a psychrotolerant bacterium.

    PubMed

    Baker, M G; Lalonde, S V; Konhauser, K O; Foght, J M

    2010-01-01

    Bacterial surface layers, such as extracellular polymeric substances (EPS), are known to play an important role in metal sorption and biomineralization; however, there have been very few studies investigating how environmentally induced changes in EPS production affect the cell's surface chemistry and reactivity. Acid-base titrations, cadmium adsorption assays, and Fourier transform infrared spectroscopy (FT-IR) were used to characterize the surface reactivities of Hymenobacter aerophilus cells with intact EPS (WC) or stripped of EPS (SC) and purified EPS alone. Linear programming modeling of titration data showed SC to possess functional groups corresponding to phosphoryl (pKa approximately 6.5), phosphoryl/amine (pKa approximately 7.9), and amine/hydroxyl (pKa approximately 9.9). EPS and WC both possess carboxyl groups (pKa approximately 5.1 to 5.8) in addition to phosphoryl and amine groups. FT-IR confirmed the presence of polysaccharides and protein in purified EPS that can account for the additional carboxyl groups. An increased ligand density was observed for WC relative to that for SC, leading to an increase in the amount of Cd adsorbed (0.53 to 1.73 mmol/liter per g [dry weight] and 0.53 to 0.59 mmol/liter per g [dry weight], respectively). Overall, the presence of EPS corresponds to an increase in the number and type of functional groups on the surface of H. aerophilus that is reflected by increased metal adsorption relative to that for EPS-free cells.

  13. Extracellular ultrathin fibers sensitive to intracellular reactive oxygen species: Formation of intercellular membrane bridges

    SciTech Connect

    Jung, Se-Hui; Park, Jin-Young; Joo, Jung-Hoon; Kim, Young-Myeong; Ha, Kwon-Soo

    2011-07-15

    Membrane bridges are key cellular structures involved in intercellular communication; however, dynamics for their formation are not well understood. We demonstrated the formation and regulation of novel extracellular ultrathin fibers in NIH3T3 cells using confocal and atomic force microscopy. At adjacent regions of neighboring cells, phorbol 12-myristate 13-acetate (PMA) and glucose oxidase induced ultrathin fiber formation, which was prevented by Trolox, a reactive oxygen species (ROS) scavenger. The height of ROS-sensitive ultrathin fibers ranged from 2 to 4 nm. PMA-induced formation of ultrathin fibers was inhibited by cytochalasin D, but not by Taxol or colchicine, indicating that ultrathin fibers mainly comprise microfilaments. PMA-induced ultrathin fibers underwent dynamic structural changes, resulting in formation of intercellular membrane bridges. Thus, these fibers are formed by a mechanism(s) involving ROS and involved in formation of intercellular membrane bridges. Furthermore, ultrastructural imaging of ultrathin fibers may contribute to understanding the diverse mechanisms of cell-to-cell communication and the intercellular transfer of biomolecules, including proteins and cell organelles.

  14. Species-level variability in extracellular production rates of reactive oxygen species by diatoms

    NASA Astrophysics Data System (ADS)

    Schneider, Robin; Roe, Kelly; Hansel, Colleen; Voelker, Bettina

    2016-03-01

    Biological production and decay of the reactive oxygen species (ROS) hydrogen peroxide (H2O2) and superoxide (O2-) likely have significant effects on the cycling of trace metals and carbon in marine systems. In this study, extracellular production rates of H2O2 and O2- were determined for five species of marine diatoms in the presence and absence of light. Production of both ROS was measured in parallel by suspending cells on filters and measuring the ROS downstream using chemiluminescence probes. In addition, the ability of these organisms to break down O2- and H2O2 was examined by measuring recovery of O2- and H2O2 added to the influent medium. O2- production rates ranged from undetectable to 7.3 x 10-16 mol cell-1 hr-1, while H2O2 production rates ranged from undetectable to 3.4 x 10-16 mol cell-1 hr-1. Results suggest that extracellular ROS production occurs through a variety of pathways even amongst organisms of the same genus. Thalassiosira spp. produced more O2- in light than dark, even when the organisms were killed, indicating that O2- is produced via a passive photochemical process on the cell surface. The ratio of H2O¬2 to O2- production rates was consistent with production of H2O2 solely through dismutation of O2- for T. oceanica, while T. pseudonana made much more H2O2 than O2 . T. weissflogii only produced H2O2 when stressed or killed. P. tricornutum cells did not make cell-associated ROS, but did secrete H2O2-producing substances into the growth medium. In all organisms, recovery rates for killed cultures (94-100% H2O2; 10-80% O2-) were consistently higher than those for live cultures (65-95% H2O2; 10-50% O2-). While recovery rates for killed cultures in H2O2 indicate that nearly all H2O2 was degraded by active cell processes, O2- decay appeared to occur via a combination of active and passive processes. Overall, this study shows that the rates and pathways for ROS production and decay vary greatly among diatom species, even between those that are

  15. Species-Level Variability in Extracellular Production Rates of Reactive Oxygen Species by Diatoms.

    PubMed

    Schneider, Robin J; Roe, Kelly L; Hansel, Colleen M; Voelker, Bettina M

    2016-01-01

    Biological production and decay of the reactive oxygen species (ROS) hydrogen peroxide (H2O2) and superoxide (O[Formula: see text]) likely have significant effects on the cycling of trace metals and carbon in marine systems. In this study, extracellular production rates of H2O2 and O[Formula: see text] were determined for five species of marine diatoms in the presence and absence of light. Production of both ROS was measured in parallel by suspending cells on filters and measuring the ROS downstream using chemiluminescence probes. In addition, the ability of these organisms to break down O[Formula: see text] and H2O2 was examined by measuring recovery of O[Formula: see text] and H2O2 added to the influent medium. O[Formula: see text] production rates ranged from undetectable to 7.3 × 10(-16) mol cell(-1) h(-1), while H2O2 production rates ranged from undetectable to 3.4 × 10(-16) mol cell(-1) h(-1). Results suggest that extracellular ROS production occurs through a variety of pathways even amongst organisms of the same genus. Thalassiosira spp. produced more O[Formula: see text] in light than dark, even when the organisms were killed, indicating that O[Formula: see text] is produced via a passive photochemical process on the cell surface. The ratio of H2O2 to O[Formula: see text] production rates was consistent with production of H2O2 solely through dismutation of O[Formula: see text] for T. oceanica, while T. pseudonana made much more H2O2 than O[Formula: see text]. T. weissflogii only produced H2O2 when stressed or killed. P. tricornutum cells did not make cell-associated ROS, but did secrete H2O2-producing substances into the growth medium. In all organisms, recovery rates for killed cultures (94-100% H2O2; 10-80% O[Formula: see text]) were consistently higher than those for live cultures (65-95% H2O2; 10-50% O[Formula: see text]). While recovery rates for killed cultures in H2O2 indicate that nearly all H2O2 was degraded by active cell processes, O

  16. Species-Level Variability in Extracellular Production Rates of Reactive Oxygen Species by Diatoms

    PubMed Central

    Schneider, Robin J.; Roe, Kelly L.; Hansel, Colleen M.; Voelker, Bettina M.

    2016-01-01

    Biological production and decay of the reactive oxygen species (ROS) hydrogen peroxide (H2O2) and superoxide (O2-) likely have significant effects on the cycling of trace metals and carbon in marine systems. In this study, extracellular production rates of H2O2 and O2- were determined for five species of marine diatoms in the presence and absence of light. Production of both ROS was measured in parallel by suspending cells on filters and measuring the ROS downstream using chemiluminescence probes. In addition, the ability of these organisms to break down O2- and H2O2 was examined by measuring recovery of O2- and H2O2 added to the influent medium. O2- production rates ranged from undetectable to 7.3 × 10−16 mol cell−1 h−1, while H2O2 production rates ranged from undetectable to 3.4 × 10−16 mol cell−1 h−1. Results suggest that extracellular ROS production occurs through a variety of pathways even amongst organisms of the same genus. Thalassiosira spp. produced more O2- in light than dark, even when the organisms were killed, indicating that O2- is produced via a passive photochemical process on the cell surface. The ratio of H2O2 to O2- production rates was consistent with production of H2O2 solely through dismutation of O2- for T. oceanica, while T. pseudonana made much more H2O2 than O2-. T. weissflogii only produced H2O2 when stressed or killed. P. tricornutum cells did not make cell-associated ROS, but did secrete H2O2-producing substances into the growth medium. In all organisms, recovery rates for killed cultures (94–100% H2O2; 10–80% O2-) were consistently higher than those for live cultures (65–95% H2O2; 10–50% O2-). While recovery rates for killed cultures in H2O2 indicate that nearly all H2O2 was degraded by active cell processes, O2- decay appeared to occur via a combination of active and passive processes. Overall, this study shows that the rates and pathways for ROS production and decay vary greatly among diatom species, even

  17. Calcite Formation in Soft Coral Sclerites Is Determined by a Single Reactive Extracellular Protein*

    PubMed Central

    Rahman, M. Azizur; Oomori, Tamotsu; Wörheide, Gert

    2011-01-01

    Calcium carbonate exists in two main forms, calcite and aragonite, in the skeletons of marine organisms. The primary mineralogy of marine carbonates has changed over the history of the earth depending on the magnesium/calcium ratio in seawater during the periods of the so-called “calcite and aragonite seas.” Organisms that prefer certain mineralogy appear to flourish when their preferred mineralogy is favored by seawater chemistry. However, this rule is not without exceptions. For example, some octocorals produce calcite despite living in an aragonite sea. Here, we address the unresolved question of how organisms such as soft corals are able to form calcitic skeletal elements in an aragonite sea. We show that an extracellular protein called ECMP-67 isolated from soft coral sclerites induces calcite formation in vitro even when the composition of the calcifying solution favors aragonite precipitation. Structural details of both the surface and the interior of single crystals generated upon interaction with ECMP-67 were analyzed with an apertureless-type near-field IR microscope with high spatial resolution. The results show that this protein is the main determining factor for driving the production of calcite instead of aragonite in the biocalcification process and that –OH, secondary structures (e.g. α-helices and amides), and other necessary chemical groups are distributed over the center of the calcite crystals. Using an atomic force microscope, we also explored how this extracellular protein significantly affects the molecular-scale kinetics of crystal formation. We anticipate that a more thorough investigation of the proteinaceous skeleton content of different calcite-producing marine organisms will reveal similar components that determine the mineralogy of the organisms. These findings have significant implications for future models of the crystal structure of calcite in nature. PMID:21768106

  18. Local control of reactive power by distributed photovoltaic generators

    SciTech Connect

    Chertkov, Michael; Turitsyn, Konstantin; Sulc, Petr; Backhaus, Scott

    2010-01-01

    High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the real power generated by the PVs. Using one adjustable parameter per circuit, we balance the requirements on power quality and desire to minimize thermal losses. Numerical analysis of two exemplary systems, with comparable total PV generation albeit a different spatial distribution, show how to adjust the optimization parameter depending on the goal. Overall, this local scheme shows excellent performance; it's capable of guaranteeing acceptable power quality and achieving significant saving in thermal losses in various situations even when the renewable generation in excess of the circuit own load, i.e. feeding power back to the higher-level system.

  19. Reactive oxygen species generation and signaling in plants

    PubMed Central

    Tripathy, Baishnab Charan; Oelmüller, Ralf

    2012-01-01

    The introduction of molecular oxygen into the atmosphere was accompanied by the generation of reactive oxygen species (ROS) as side products of many biochemical reactions. ROS are permanently generated in plastids, peroxisomes, mitochiondria, the cytosol and the apoplast. Imbalance between ROS generation and safe detoxification generates oxidative stress and the accumulating ROS are harmful for the plants. On the other hand, specific ROS function as signaling molecules and activate signal transduction processes in response to various stresses. Here, we summarize the generation of ROS in the different cellular compartments and the signaling processes which are induced by ROS. PMID:23072988

  20. Generation of reactive oxygen species by the faecal matrix

    PubMed Central

    Owen, R; Spiegelhalder, B; Bartsch, H

    2000-01-01

    BACKGROUND—Reactive oxygen species are implicated in the aetiology of a range of human diseases and there is increasing interest in their role in the development of cancer.
AIM—To develop a suitable method for the detection of reactive oxygen species produced by the faecal matrix.
METHODS—A refined high performance liquid chromatography system for the detection of reactive oxygen species is described.
RESULTS—The method allows baseline separation of the products of hydroxyl radical attack on salicylic acid in the hypoxanthine/xanthine oxidase system, namely 2,5-dihydroxybenzoic acid, 2,3-dihydroxybenzoic acid, and catechol. The increased efficiency and precision of the method has allowed a detailed evaluation of the dynamics of reactive oxygen species generation in the faecal matrix. The data show that the faecal matrix is capable of generating reactive oxygen species in abundance. This ability cannot be attributed to the bacteria present, but rather to a soluble component within the matrix. As yet, the nature of this soluble factor is not entirely clear but is likely to be a reducing agent.
CONCLUSIONS—The soluble nature of the promoting factor renders it amenable to absorption, and circumstances may exist in which either it comes into contact with either free or chelated iron in the colonocyte, leading to direct attack on cellular DNA, or else it initiates lipid peroxidation processes whereby membrane polyunsaturated fatty acids are attacked by reactive oxygen species propagating chain reactions leading to the generation of promutagenic lesions such as etheno based DNA adducts.


Keywords: colorectal cancer; faecal matrix; hypoxanthine; phytic acid; reactive oxygen species; xanthine oxidase PMID:10644317

  1. [Extracellular protein metabolite of Luteococcus japonicus subsp. casei reactivates cells subjected to oxidative stress].

    PubMed

    Vorob'eva, L I; Khodzhaev, E Iu; Ponomareva, G M; Briukhanov, A L

    2003-01-01

    A protein exometabolite isolated from the culture liquid of Luteococcus japonicus subsp. casei reactivates the cells of this microorganism, following H2O2 or paraquat-induced oxidative stress. The resistance of L. casei cells to these oxidizers is accounted for by the high activity of superoxide dismutase and catalase. The effect of the protein exometabolite is universal, in that it reactivates the cells after UV irradiation, heating, or oxidative stress. However, the cells subjected to oxidative stress are significantly less susceptible to the reactivating effect, as compared to their UV-irradiated or heated counterparts. Possible causes of these differences are discussed. PMID:12722655

  2. Reactive Oxygen Species (ROS) generation by lunar simulants

    NASA Astrophysics Data System (ADS)

    Kaur, Jasmeet; Rickman, Douglas; Schoonen, Martin A.

    2016-05-01

    The current interest in human exploration of the Moon and past experiences of Apollo astronauts has rekindled interest into the possible harmful effects of lunar dust on human health. In comparison to the Apollo-era explorations, human explorers may be weeks on the Moon, which will raise the risk of inhalation exposure. The mineralogical composition of lunar dust is well documented, but its effects on human health are not fully understood. With the aim of understanding the reactivity of dusts that may be encountered on geologically different lunar terrains, we have studied Reactive Oxygen Species (ROS) generation by a suite of lunar simulants of different mineralogical-chemical composition dispersed in water and Simulated Lung Fluid (SLF). To further explore the reactivity of simulants under lunar environmental conditions, we compared the reactivity of simulants both in air and inert atmosphere. As the impact of micrometeorites with consequent shock-induced stresses is a major environmental factor on the Moon, we also studied the effect of mechanical stress on samples. Mechanical stress was induced by hand crushing the samples both in air and inert atmosphere. The reactivity of samples after crushing was analyzed for a period of up to nine days. Hydrogen peroxide (H2O2) in water and SLF was analyzed by an in situ electrochemical probe and hydroxyl radical (•OH) by Electron Spin Resonance (ESR) spectroscopy and Adenine probe. Out of all simulants, CSM-CL-S was found to be the most reactive simulant followed by OB-1 and then JSC-1A simulant. The overall reactivity of samples in the inert atmosphere was higher than in air. Fresh crushed samples showed a higher level of reactivity than uncrushed samples. Simulant samples treated to create agglutination, including the formation of zero-valent iron, showed less reactivity than untreated simulants. ROS generation in SLF is initially slower than in deionized water (DI), but the ROS formation is sustained for as long as 7

  3. The Role of Reactive Oxygen Species (ROS) in the Formation of Extracellular Traps (ETs) in Humans

    PubMed Central

    Stoiber, Walter; Obermayer, Astrid; Steinbacher, Peter; Krautgartner, Wolf-Dietrich

    2015-01-01

    Extracellular traps (ETs) are reticulate structures of extracellular DNA associated with antimicrobial molecules. Their formation by phagocytes (mainly by neutrophils: NETs) has been identified as an essential element of vertebrate innate immune defense. However, as ETs are also toxic to host cells and potent triggers of autoimmunity, their role between pathogen defense and human pathogenesis is ambiguous, and they contribute to a variety of acute and chronic inflammatory diseases. Since the discovery of ET formation (ETosis) a decade ago, evidence has accumulated that most reaction cascades leading to ET release involve ROS. An important new facet was added when it became apparent that ETosis might be directly linked to, or be a variant of, the autophagy cell death pathway. The present review analyzes the evidence to date on the interplay between ROS, autophagy and ETosis, and highlights and discusses several further aspects of the ROS-ET relationship that are incompletely understood. These aspects include the role of NADPH oxidase-derived ROS, the molecular requirements of NADPH oxidase-dependent ETosis, the roles of NADPH oxidase subtypes, extracellular ROS and of ROS from sources other than NADPH oxidase, and the present evidence for ROS-independent ETosis. We conclude that ROS interact with ETosis in a multidimensional manner, with influence on whether ETosis shows beneficial or detrimental effects. PMID:25946076

  4. Carrageenan-induced inflammation promotes ROS generation and neutrophil extracellular trap formation in a mouse model of peritonitis.

    PubMed

    Barth, Cristiane R; Funchal, Giselle A; Luft, Carolina; de Oliveira, Jarbas R; Porto, Bárbara N; Donadio, Márcio V F

    2016-04-01

    Neutrophil extracellular traps (NETs) are a combination of DNA fibers and granular proteins, such as neutrophil elastase (NE). NETs are released in the extracellular space in response to different stimuli. Carrageenan is a sulfated polysaccharide extracted from Chondrus crispus, a marine algae, used for decades in research for its potential to induce inflammation in different animal models. In this study, we show for the first time that carrageenan injection can induce NET release in a mouse model of acute peritonitis. Carrageenan induced NET release by viable neutrophils with NE and myeloperoxidase (MPO) expressed on DNA fibers. Furthermore, although this polysaccharide was able to stimulate reactive oxygen species (ROS) generation by peritoneal neutrophils, NADPH oxidase derived ROS were dispensable for NET formation by carrageenan. In conclusion, our results show that carrageenan-induced inflammation in the peritoneum of mice can induce NET formation in an ROS-independent manner. These results may add important information to the field of inflammation and potentially lead to novel anti-inflammatory agents targeting the production of NETs.

  5. Disulfiram anti-cancer efficacy without copper overload is enhanced by extracellular H2O2 generation: antagonism by tetrathiomolybdate

    PubMed Central

    Calderon-Aparicio, Ali; Strasberg-Rieber, Mary; Rieber, Manuel

    2015-01-01

    Highlights exogenous SOD increases apoptosis by sub-toxic disulfiram without copper overload H2O2 generation from glucose oxidase also potentiates disulfiram toxicity N-acetylcysteine suppresses antitumor potentiation of DSF by H2O2 generation sub-toxic tetrathiomolybdate inhibits potentiation of DSF by SOD Background Cu/Zn superoxide dismutases (SODs) like the extracellular SOD3 and cytoplasmic SOD1 regulate cell proliferation by generating hydrogen peroxide (H2O2). This pro-oxidant inactivates essential cysteine residues in protein tyrosine phosphatases (PTP) helping receptor tyrosine kinase activation by growth factor signaling, and further promoting downstream MEK/ERK linked cell proliferation. Disulfiram (DSF), currently in clinical cancer trials is activated by copper chelation, being potentially capable of diminishing the copper dependent activation of MEK1/2 and SOD1/SOD3 and promoting reactive oxygen species (ROS) toxicity. However, copper (Cu) overload may occur when co-administered with DSF, resulting in toxicity and mutagenicity against normal tissue, through generation of the hydroxyl radical (•OH) by the Fenton reaction. Purpose To investigate: a) whether sub-toxic DSF efficacy can be increased without Cu overload against human melanoma cells with unequal BRAF(V600E) mutant status and Her2-overexpressing SKBR3 breast cancer cells, by increasing H2O2from exogenous SOD; b) to compare the anti-tumor efficacy of DSF with that of another clinically used copper chelator, tetrathiomolybdate (TTM) Results a) without copper supplementation, exogenous SOD potentiated sub-toxic DSF toxicity antagonized by sub-toxic TTM or by the anti-oxidant N-acetylcysteine; b) exogenous glucose oxidase, another H2O2 generator resembled exogenous SOD in potentiating sub-toxic DSF. Conclusions potentiation of sub-lethal DSF toxicity by extracellular H2O2 against the human tumor cell lines investigated, only requires basal Cu and increased ROS production, being unrelated to non

  6. Phenazine production enhances extracellular DNA release via hydrogen peroxide generation in Pseudomonas aeruginosa

    PubMed Central

    Das, Theerthankar; Manefield, Mike

    2013-01-01

    In Pseudomonas aeruginosa eDNA is a crucial component essential for biofilm formation and stability. In this study we report that release of eDNA is influenced by the production of phenazine in P. aeruginosa. A ∆phzA-G mutant of P. aeruginosa PA14 deficient in phenazine production generated significantly less eDNA in comparison with the phenazine producing strains. The relationship between eDNA release and phenazine production is bridged via hydrogen peroxide (H2O2) generation and subsequent H2O2 mediated cell lysis and ultimately release of chromosomal DNA into the extracellular environment as eDNA. PMID:23710274

  7. Reactive microgliosis: extracellular μ-calpain and microglia-mediated dopaminergic neurotoxicity

    PubMed Central

    Levesque, Shannon; Wilson, Belinda; Gregoria, Vincent; Thorpe, Laura B.; Dallas, Shannon; Polikov, Vadim S.; Hong, Jau-Shyong

    2010-01-01

    Microglia, the innate immune cells in the brain, can become chronically activated in response to dopaminergic neuron death, fuelling a self-renewing cycle of microglial activation followed by further neuron damage (reactive microgliosis), which is implicated in the progressive nature of Parkinson’s disease. Here, we use an in vitro approach to separate neuron injury factors from the cellular actors of reactive microgliosis and discover molecular signals responsible for chronic and toxic microglial activation. Upon injury with the dopaminergic neurotoxin 1-methyl-4-phenylpyridinium, N27 cells (dopaminergic neuron cell line) released soluble neuron injury factors that activated microglia and were selectively toxic to dopaminergic neurons in mixed mesencephalic neuron-glia cultures through nicotinamide adenine dinucleotide phosphate oxidase. μ-Calpain was identified as a key signal released from damaged neurons, causing selective dopaminergic neuron death through activation of microglial nicotinamide adenine dinucleotide phosphate oxidase and superoxide production. These findings suggest that dopaminergic neurons may be inherently susceptible to the pro-inflammatory effects of neuron damage, i.e. reactive microgliosis, providing much needed insight into the chronic nature of Parkinson’s disease. PMID:20123724

  8. Designer Extracellular Matrix Based on DNA-Peptide Networks Generated by Polymerase Chain Reaction.

    PubMed

    Finke, Alexander; Bußkamp, Holger; Manea, Marilena; Marx, Andreas

    2016-08-16

    Cell proliferation and differentiation in multicellular organisms are partially regulated by signaling from the extracellular matrix. The ability to mimic an extracellular matrix would allow particular cell types to be specifically recognized, which is central to tissue engineering. We present a new functional DNA-based material with cell-adhesion properties. It is generated by using covalently branched DNA as primers in PCR. These primers were functionalized by click chemistry with the cyclic peptide c(RGDfK), a peptide that is known to predominantly bind to αvβ3 integrins, which are found on endothelial cells and fibroblasts, for example. As a covalent coating of surfaces, this DNA-based material shows cell-repellent properties in its unfunctionalized state and gains adhesiveness towards specific target cells when functionalized with c(RGDfK). These cells remain viable and can be released under mild conditions by DNase I treatment.

  9. Designer Extracellular Matrix Based on DNA-Peptide Networks Generated by Polymerase Chain Reaction.

    PubMed

    Finke, Alexander; Bußkamp, Holger; Manea, Marilena; Marx, Andreas

    2016-08-16

    Cell proliferation and differentiation in multicellular organisms are partially regulated by signaling from the extracellular matrix. The ability to mimic an extracellular matrix would allow particular cell types to be specifically recognized, which is central to tissue engineering. We present a new functional DNA-based material with cell-adhesion properties. It is generated by using covalently branched DNA as primers in PCR. These primers were functionalized by click chemistry with the cyclic peptide c(RGDfK), a peptide that is known to predominantly bind to αvβ3 integrins, which are found on endothelial cells and fibroblasts, for example. As a covalent coating of surfaces, this DNA-based material shows cell-repellent properties in its unfunctionalized state and gains adhesiveness towards specific target cells when functionalized with c(RGDfK). These cells remain viable and can be released under mild conditions by DNase I treatment. PMID:27410200

  10. Method for generating a highly reactive plasma for exhaust gas aftertreatment and enhanced catalyst reactivity

    DOEpatents

    Whealton, John H.; Hanson, Gregory R.; Storey, John M.; Raridon, Richard J.; Armfield, Jeffrey S.; Bigelow, Timothy S.; Graves, Ronald L.

    2002-01-01

    A method for non-thermal plasma aftertreatment of exhaust gases the method comprising the steps of providing short risetime, high frequency, high power bursts of low-duty factor microwaves sufficient to generate a plasma discharge and passing a gas to be treated through the discharge so as to cause dissociative reduction of the exhaust gases and enhanced catalyst reactivity through application of the pulsed microwave fields directly to the catalyst material sufficient to cause a polarizability catastrophe and enhanced heating of the metal crystallite particles of the catalyst, and in the presence or absence of the plasma. The invention also includes a reactor for aftertreatment of exhaust gases.

  11. Decolorization and biodegradation of reactive blue 220 textile dye by Lentinus crinitus extracellular extract.

    PubMed

    Niebisch, Carolina Heyse; Malinowski, Alexandre Knoll; Schadeck, Ruth; Mitchell, David A; Kava-Cordeiro, Vanessa; Paba, Jaime

    2010-08-15

    Studies were carried on the decolorization of the textile dye reactive blue 220 (RB220) by a novel isolate of Lentinus crinitus fungi. The optimal conditions for the production of destaining activity were obtained in media containing intermediate concentrations of ammonium oxalate and glucose (10 g L(-1)) as nitrogen and carbon sources, respectively, at 28 degrees C and pH 5.5. Maximum decolorization efficiency against RB220 achieved in this study was around 95%. Ultra-violet and visible (UV-vis) spectrophotometric analyses, before and after decolorization, suggest that decolorization was due to biodegradation. This effect was associated with a putative low molecular weight laccase (41 kDa) displaying good tolerance to a wide range of pH values, salt concentrations and temperatures, suggesting a potential role for this organism in the remediation of real dye containing effluents.

  12. Generator-specific targets of mitochondrial reactive oxygen species.

    PubMed

    Bleier, Lea; Wittig, Ilka; Heide, Heinrich; Steger, Mirco; Brandt, Ulrich; Dröse, Stefan

    2015-01-01

    To understand the role of reactive oxygen species (ROS) in oxidative stress and redox signaling it is necessary to link their site of generation to the oxidative modification of specific targets. Here we have studied the selective modification of protein thiols by mitochondrial ROS that have been implicated as deleterious agents in a number of degenerative diseases and in the process of biological aging, but also as important players in cellular signal transduction. We hypothesized that this bipartite role might be based on different generator sites for "signaling" and "damaging" ROS and a directed release into different mitochondrial compartments. Because two main mitochondrial ROS generators, complex I (NADH:ubiquinone oxidoreductase) and complex III (ubiquinol:cytochrome c oxidoreductase; cytochrome bc1 complex), are known to predominantly release superoxide and the derived hydrogen peroxide (H2O2) into the mitochondrial matrix and the intermembrane space, respectively, we investigated whether these ROS generators selectively oxidize specific protein thiols. We used redox fluorescence difference gel electrophoresis analysis to identify redox-sensitive targets in the mitochondrial proteome of intact rat heart mitochondria. We observed that the modified target proteins were distinctly different when complex I or complex III was employed as the source of ROS. These proteins are potential targets involved in mitochondrial redox signaling and may serve as biomarkers to study the generator-dependent dual role of mitochondrial ROS in redox signaling and oxidative stress.

  13. A thermoresponsive bubble-generating liposomal system for triggering localized extracellular drug delivery.

    PubMed

    Chen, Ko-Jie; Liang, Hsiang-Fa; Chen, Hsin-Lung; Wang, Yucai; Cheng, Po-Yuan; Liu, Hao-Li; Xia, Younan; Sung, Hsing-Wen

    2013-01-22

    The therapeutic effectiveness of chemotherapy is optimal only when tumor cells are subjected to a maximum drug exposure. To increase the intratumoral drug concentration and thus the efficacy of chemotherapy, a thermoresponsive bubble-generating liposomal system is proposed for triggering localized extracellular drug delivery. The key component of this liposomal formulation is the encapsulated ammonium bicarbonate (ABC), which is used to create the transmembrane gradient needed for a highly efficient encapsulation of doxorubicin (DOX). At an elevated temperature (42 °C), decomposition of ABC generates CO(2) bubbles, creating permeable defects in the lipid bilayer that rapidly release DOX and instantly increase the drug concentration locally. Because the generated CO(2) bubbles are hyperechogenic, they also enhance ultrasound imaging. Consequently, this new liposomal system encapsulated with ABC may also provide an ability to monitor a temperature-controlled drug delivery process.

  14. Generation of specific monoclonal antibodies against the extracellular loops of human claudin-3 by immunizing mice with target-expressing cells.

    PubMed

    Ando, Hiroshi; Suzuki, Masayo; Kato-Nakano, Mariko; Kawamoto, Shinobu; Misaka, Hirofumi; Kimoto, Naoya; Furuya, Akiko; Nakamura, Kazuyasu

    2015-01-01

    Human claudin-3 (CLDN3) is a tetraspanin transmembrane protein of tight junction structures and is known to be over-expressed in some malignant tumors. Although a specific monoclonal antibody (MAb) against the extracellular domains of CLDN3 would be a valuable tool, generation of such MAbs has been regarded as difficult using traditional hybridoma techniques, because of the conserved sequence homology of CLDN3s among various species. In addition, high sequence similarity is shared among claudin family members, and potential cross-reactivity of MAb should be evaluated carefully. To overcome these difficulties, we generated CLDN3-expressing Chinese hamster ovary and Sf9 cells to use an immunogens and performed cell-based screening to eliminate cross-reactive antibodies. As a result, we generated MAbs that recognized the extracellular loops of CLDN3 but not those of CLDN4, 5, 6, or 9. Further in vitro studies suggested that the isolated MAbs possessed the desired binding properties for the detection or targeting of CLDN3. PMID:25744656

  15. Complement factor H modulates the activation of human neutrophil granulocytes and the generation of neutrophil extracellular traps.

    PubMed

    Schneider, Andrea E; Sándor, Noémi; Kárpáti, Éva; Józsi, Mihály

    2016-04-01

    Factor H (FH) is a major inhibitor of the alternative pathway of complement activation in plasma and on certain host surfaces. In addition to being a complement regulator, FH can bind to various cells via specific receptors, including binding to neutrophil granulocytes through complement receptor type 3 (CR3; CD11b/CD18), and modulate their function. The cellular roles of FH are, however, poorly understood. Because neutrophils are important innate immune cells in inflammatory processes and the host defense against pathogens, we aimed at studying the effects of FH on various neutrophil functions, including the generation of extracellular traps. FH co-localized with CD11b on the surface of neutrophils isolated from peripheral blood of healthy individuals, and cell-bound FH retained its cofactor activity and enhanced C3b degradation. Soluble FH supported neutrophil migration and immobilized FH induced cell spreading. In addition, immobilized but not soluble FH enhanced IL-8 release from neutrophils. FH alone did not trigger the cells to produce neutrophil extracellular traps (NETs), but NET formation induced by PMA and by fibronectin plus fungal β-glucan were inhibited by immobilized, but not by soluble, FH. Moreover, in parallel with NET formation, immobilized FH also inhibited the production of reactive oxygen species induced by PMA and by fibronectin plus β-glucan. Altogether, these data indicate that FH has multiple regulatory roles on neutrophil functions. While it can support the recruitment of neutrophils, FH may also exert anti-inflammatory effects and influence local inflammatory and antimicrobial reactions, and reduce tissue damage by modulating NET formation. PMID:26938503

  16. Generation of Reactive Oxygen Species from Silicon Nanowires

    PubMed Central

    Leonard, Stephen S; Cohen, Guy M; Kenyon, Allison J; Schwegler-Berry, Diane; Fix, Natalie R; Bangsaruntip, Sarunya; Roberts, Jenny R

    2014-01-01

    Processing and synthesis of purified nanomaterials of diverse composition, size, and properties is an evolving process. Studies have demonstrated that some nanomaterials have potential toxic effects and have led to toxicity research focusing on nanotoxicology. About two million workers will be employed in the field of nanotechnology over the next 10 years. The unknown effects of nanomaterials create a need for research and development of techniques to identify possible toxicity. Through a cooperative effort between National Institute for Occupational Safety and Health and IBM to address possible occupational exposures, silicon-based nanowires (SiNWs) were obtained for our study. These SiNWs are anisotropic filamentary crystals of silicon, synthesized by the vapor–liquid–solid method and used in bio-sensors, gas sensors, and field effect transistors. Reactive oxygen species (ROS) can be generated when organisms are exposed to a material causing cellular responses, such as lipid peroxidation, H2O2 production, and DNA damage. SiNWs were assessed using three different in vitro environments (H2O2, RAW 264.7 cells, and rat alveolar macrophages) for ROS generation and possible toxicity identification. We used electron spin resonance, analysis of lipid peroxidation, measurement of H2O2 production, and the comet assay to assess generation of ROS from SiNW and define possible mechanisms. Our results demonstrate that SiNWs do not appear to be significant generators of free radicals. PMID:25452695

  17. Bioreductively Activated Reactive Oxygen Species (ROS) Generators as MRSA Inhibitors.

    PubMed

    Khodade, Vinayak S; Sharath Chandra, Mallojjala; Banerjee, Ankita; Lahiri, Surobhi; Pulipeta, Mallikarjuna; Rangarajan, Radha; Chakrapani, Harinath

    2014-07-10

    The number of cases of drug resistant Staphylococcus aureus infections is on the rise globally and new strategies to identify drug candidates with novel mechanisms of action are in urgent need. Here, we report the synthesis and evaluation of a series of benzo[b]phenanthridine-5,7,12(6H)-triones, which were designed based on redox-active natural products. We find that the in vitro inhibitory activity of 6-(prop-2-ynyl)benzo[b]phenanthridine-5,7,12(6H)-trione (1f) against methicillin-resistant Staphylococcus aureus (MRSA), including a panel of patient-derived strains, is comparable or better than vancomycin. We show that the lead compound generates reactive oxygen species (ROS) in the cell, contributing to its antibacterial activity. PMID:25050164

  18. Generation of reactive oxygen species by raphidophycean phytoplankton.

    PubMed

    Oda, T; Nakamura, A; Shikayama, M; Kawano, I; Ishimatsu, A; Muramatsu, T

    1997-10-01

    Chattonella marina, a raphidophycean flagellate, is one of the most toxic red tide phytoplankton and causes severe damage to fish farming. Recent studies demonstrated that Chattonella sp. generates superoxide (O2-), hydrogen peroxide (H2O2), and hydroxyl radicals (.OH), which may be responsible for the toxicity of C. marina. In this study, we found the other raphidophycean flagellates such as Heterosigma akashiwo, Olisthodiscus luteus, and Fibrocapsa japonica also produce O2- and H2O2 under normal growth condition. Among the flagellate species tested, Chattonella has the highest rates of production of O2- and H2O2 as compared on the basis of cell number. This seems to be partly due to differences in their cell sizes, since Chattonella is larger than other flagellate species. The generation of O2- by these flagellate species was also confirmed by a chemiluminescence assay by using 2-methyl-6-(p-methoxyphenyl)-3,7-dihydroimidazo[1,2-a]pyrazin++ +-3-one (MCLA). All these raphidophycean flagellates inhibited the proliferation of a marine bacterium, Vibrio alginolyticus, in a flagellates/bacteria co-culture system, and their toxic effects were suppressed by the addition of superoxide dismutase (SOD) or catalase. Our results suggest that the generation of reactive oxygen species is a common feature of raphidophycean flagellates.

  19. Photosensitizing Nanoparticles and The Modulation of Reactive Oxygen Species generation

    NASA Astrophysics Data System (ADS)

    Tada, Dayane; Baptista, Mauricio

    2015-05-01

    The association of PhotoSensitizer (PS) molecules with nanoparticles (NPs) forming photosensitizing NPs, has emerged as a therapeutic strategy to improve PS tumor targeting, to protect PS from deactivation reactions and to enhance both PS solubility and circulation time. Since association with NPs usually alters PS photophysical and photochemical properties, photosensitizing NPs are an important tool to modulate reactive oxygen species (ROS) generation. Depending on the design of the photosensitizing NP, i.e., type of PS, the NP material and the method applied for the construction of the photosensitizing NP, the deactivation routes of the excited state can be controlled, allowing the generation of either singlet oxygen or other ROS. Controlling the type of generated ROS is desirable not only in biomedical applications, as in Photodynamic Therapy where the type of ROS affects therapeutic efficiency, but also in other technological relevant fields like energy conversion, where the electron and energy transfer processes are necessary to increase the efficiency of photoconversion cells. The current review highlights some of the recent developments in the design of Photosensitizing NPs aimed at modulating the primary photochemical events after light absorption.

  20. Quantitative assessment of reactive oxygen sonochemically generated by cavitation bubbles

    NASA Astrophysics Data System (ADS)

    Yasuda, Jun; Miyashita, Takuya; Taguchi, Kei; Yoshizawa, Shin; Umemura, Shin-ichiro

    2015-07-01

    Acoustic cavitation bubbles can induce not only a thermal bioeffect but also a chemical bioeffect. When cavitation bubbles collapse and oscillate violently, they produce reactive oxygen species (ROS) that cause irreversible changes to the tissue. A sonosensitizer can promote such ROS generation. A treatment method using a sonosensitizer is called sonodynamic treatment. Rose bengal (RB) is one of the sonosensitizers whose in vivo and in vitro studies have been reported. In sonodynamic treatment, it is important to produce ROS at a high efficiency. For the efficient generation of ROS, a triggered high-intensity focused ultrasound (HIFU) sequence has been proposed. In this study, cavitation bubbles were generated in a chamber where RB solution was sealed, and a high-speed camera captured the behavior of these cavitation bubbles. The amount of ROS was also quantified by a potassium iodide (KI) method and compared with high-speed camera pictures to investigate the effectiveness of the triggered HIFU sequence. As a result, ROS could be obtained efficiently by this sequence.

  1. Plasma-generated reactive oxygen species for biomedical applications

    NASA Astrophysics Data System (ADS)

    Sousa, J. S.; Hammer, M. U.; Winter, J.; Tresp, H.; Duennbier, M.; Iseni, S.; Martin, V.; Puech, V.; Weltmann, K. D.; Reuter, S.

    2012-10-01

    To get a better insight into the effects of reactive oxygen species (ROS) on cellular components, fundamental studies are essential to determine the nature and concentration of plasma-generated ROS, and the chemistry induced in biological liquids by those ROS. In this context, we have measured the absolute density of the main ROS created in three different atmospheric pressure plasma sources: two geometrically distinct RF-driven microplasma jets (μ-APPJ [1] and kinpen [2]), and an array of microcathode sustained discharges [3]. Optical diagnostics of the plasma volumes and effluent regions have been performed: UV absorption for O3 and IR emission for O2(a^1δ) [4]. High concentrations of both ROS have been obtained (10^14--10^17cm-3). The effect of different parameters, such as gas flows and mixtures and power coupled to the plasmas, has been studied. For plasma biomedicine, the determination of the reactive species present in plasma-treated liquids is of great importance. In this work, we focused on the measurement of the concentration of H2O2 and NOX radicals, generated in physiological solutions like NaCl and PBS.[4pt] [1] N. Knake et al., J. Phys. D: App. Phys. 41, 194006 (2008)[0pt] [2] K.D. Weltmann et al., Pure Appl. Chem. 82, 1223 (2010)[0pt] [3] J.S. Sousa et al., Appl. Phys. Lett. 97, 141502 (2010)[0pt] [4] J.S. Sousa et al., Appl. Phys. Lett. 93, 011502 (2008)

  2. Autophagy and Reactive Oxygen Species Are Involved in Neutrophil Extracellular Traps Release Induced by C. albicans Morphotypes.

    PubMed

    Kenno, Samyr; Perito, Stefano; Mosci, Paolo; Vecchiarelli, Anna; Monari, Claudia

    2016-01-01

    Neutrophil extracellular traps (NETs) are a combination of DNA fibers and granular enzymes, such as elastase and myeloperoxidase. In this study, we demonstrate that Candida albicans hyphal (CAH) cells and yeast (CAY) cells induce differential amounts, kinetics and mechanisms of NET release. CAH cells induced larger quantities of NET compared to CAY cells and can stimulate rapid NET formation up to 4 h of incubation. CAY cells are, also, able to induce rapid NET formation, but this ability was lost at 4 h. Both reactive oxygen species (ROS) and autophagy are implicated in NET induced by CAH and CAY cells, but with a time-different participation of these two mechanisms. In particular, in the early phase (15 min) CAH cells stimulate NET via autophagy, but not via ROS, while CAY cells induce NET via both autophagy and ROS. At 4 h, only CAH cells stimulate NET formation using autophagy as well as ROS. Finally, we demonstrate that NET release, in response to CAH cells, involves NF-κB activation and is strongly implicated in hyphal destruction. PMID:27375599

  3. Autophagy and Reactive Oxygen Species Are Involved in Neutrophil Extracellular Traps Release Induced by C. albicans Morphotypes

    PubMed Central

    Kenno, Samyr; Perito, Stefano; Mosci, Paolo; Vecchiarelli, Anna; Monari, Claudia

    2016-01-01

    Neutrophil extracellular traps (NETs) are a combination of DNA fibers and granular enzymes, such as elastase and myeloperoxidase. In this study, we demonstrate that Candida albicans hyphal (CAH) cells and yeast (CAY) cells induce differential amounts, kinetics and mechanisms of NET release. CAH cells induced larger quantities of NET compared to CAY cells and can stimulate rapid NET formation up to 4 h of incubation. CAY cells are, also, able to induce rapid NET formation, but this ability was lost at 4 h. Both reactive oxygen species (ROS) and autophagy are implicated in NET induced by CAH and CAY cells, but with a time-different participation of these two mechanisms. In particular, in the early phase (15 min) CAH cells stimulate NET via autophagy, but not via ROS, while CAY cells induce NET via both autophagy and ROS. At 4 h, only CAH cells stimulate NET formation using autophagy as well as ROS. Finally, we demonstrate that NET release, in response to CAH cells, involves NF-κB activation and is strongly implicated in hyphal destruction. PMID:27375599

  4. Ascorbate and α-tocopherol differentially modulate reactive oxygen species generation by neutrophils in response to FcγR and TLR agonists.

    PubMed

    Chapple, Iain Lc; Matthews, John B; Wright, Helen J; Scott, Ann E; Griffiths, Helen R; Grant, Melissa M

    2013-01-01

    Periodontitis, a ubiquitous chronic inflammatory disease, is associated with reduced antioxidant defences and neutrophil hyperactivity in terms of reactive oxygen species (ROS) generation. Its phenotype is thus characterized by oxidative stress. We have determined the effect of antioxidant micronutrients ascorbate and α-tocopherol on neutrophil ROS generation. Peripheral neutrophils from periodontally-healthy individuals (n = 20) were challenged with phorbol myristate acetate, IgG-opsonised Staphylococcus aureus, Fusobacterium nucleatum or PBS in the presence and absence of micronutrients (50 µM). Total and extracellular ROS were measured by luminol and isoluminol chemiluminescence respectively. Total and extracellular unstimulated, baseline ROS generation was unaffected by α-tocopherol, but inhibited by ascorbate and a combination of both micronutrients. Fcγ-receptor (Fcγ-R)-stimulated total or extracellular ROS generation was not affected by the presence of individual micronutrients. However, the combination significantly reduced extracellular FcγR-stimulated ROS release. Neither micronutrient inhibited TLR-stimulated total ROS, but the combination caused inhibition. Ascorbate and the micronutrient combination, but not α-tocopherol, inhibited extracellular ROS release by TLR-stimulated cells. Such micronutrient effects in vivo could be beneficial in reducing collateral tissue damage in chronic inflammatory diseases, such as periodontitis, while retaining immune-mediated neutrophil function. PMID:22914919

  5. Fabrication and biological evaluation of uniform extracellular matrix coatings on discontinuous photolithography generated micropallet arrays.

    PubMed

    Gunn, Nicholas M; Bachman, Mark; Li, Guann-Pyng; Nelson, Edward L

    2010-11-01

    The recent identification of rare cell populations within tissues that are associated with specific biological behaviors, for example, progenitor cells, has illuminated a limitation of current technologies to study such adherent cells directly from primary tissues. The micropallet array is a recently developed technology designed to address this limitation by virtue of its capacity to isolate and recover single adherent cells on individual micropallets. The capacity to apply this technology to primary tissues and cells with restricted growth characteristics, particularly adhesion requirements, is critically dependent on the capacity to generate functional extracellular matrix (ECM) coatings. The discontinuous nature of the micropallet array surface provides specific constraints on the processes for generating the desired ECM coatings that are necessary to achieve the full functional capacity of the micropallet array. We have developed strategies, reported herein, to generate functional coatings with various ECM protein components: fibronectin, EHS tumor basement membrane extract, collagen, and laminin-5; confirmed by evaluation for rapid cellular adherence of four dissimilar cell types: fibroblast, breast epithelial, pancreatic epithelial, and myeloma. These findings are important for the dissemination and expanded use of micropallet arrays and similar microtechnologies requiring the integrated use of ECM protein coatings to promote cellular adherence.

  6. Reactive Transport Modeling of Acid Gas Generation and Condensation

    SciTech Connect

    G. Zhahg; N. Spycher; E. Sonnenthal; C. Steefel

    2005-01-25

    Pulvirenti et al. (2004) recently conducted a laboratory evaporation/condensation experiment on a synthetic solution of primarily calcium chloride. This solution represents one potential type of evaporated pore water at Yucca Mountain, Nevada, a site proposed for geologic storage of high-level nuclear waste. These authors reported that boiling this solution to near dryness (a concentration factor >75,000 relative to actual pore waters) leads to the generation of acid condensate (pH 4.5) presumably due to volatilization of HCl (and minor HF and/or HNO{sub 3}). To investigate the various processes taking place, including boiling, gas transport, and condensation, their experiment was simulated by modifying an existing multicomponent and multiphase reactive transport code (TOUGHREACT). This code was extended with a Pitzer ion-interaction model to deal with high ionic strength. The model of the experiment was set-up to capture the observed increase in boiling temperature (143 C at {approx}1 bar) resulting from high concentrations of dissolved salts (up to 8 m CaCl{sub 2}). The computed HCI fugacity ({approx} 10{sup -4} bars) generated by boiling under these conditions is not sufficient to lower the pH of the condensate (cooled to 80 and 25 C) down to observed values unless the H{sub 2}O mass fraction in gas is reduced below {approx}10%. This is because the condensate becomes progressively diluted by H{sub 2}O gas condensation. However, when the system is modeled to remove water vapor, the computed pH of instantaneous condensates decreases to {approx}1.7, consistent with the experiment (Figure 1). The results also show that the HCl fugacity increases, and calcite, gypsum, sylvite, halite, MgCl{sub 2}4H{sub 2}O and CaCl{sub 2} precipitate sequentially with increasing concentration factors.

  7. Method for generating a highly reactive plasma for exhaust gas after treatment and enhanced catalyst reactivity

    SciTech Connect

    Whealton, John H.; Hanson, Gregory R.; Storey, John M.; Raridon, Richard J.; Armfield, Jeffrey S.; Bigelow, Timothy S.; Graves, Ronald L.

    2000-07-01

    This patent application describes a method and apparatus of exhaust gas remediation that enhance the reactivity of the material catalysts found within catalytic converters of cars, trucks, and power stations.

  8. Generation of a novel transgenic rat model for tracing extracellular vesicles in body fluids

    PubMed Central

    Yoshimura, Aya; Kawamata, Masaki; Yoshioka, Yusuke; Katsuda, Takeshi; Kikuchi, Hisae; Nagai, Yoshitaka; Adachi, Naoki; Numakawa, Tadahiro; Kunugi, Hiroshi; Ochiya, Takahiro; Tamai, Yoshitaka

    2016-01-01

    Extracellular vesicles (EVs) play an important role in the transfer of biomolecules between cells. To elucidate the intercellular transfer fate of EVs in vivo, we generated a new transgenic (Tg) rat model using green fluorescent protein (GFP)-tagged human CD63. CD63 protein is highly enriched on EV membranes via trafficking into late endosomes and is often used as an EV marker. The new Tg rat line in which human CD63-GFP is under control of the CAG promoter exhibited high expression of GFP in various body tissues. Exogenous human CD63-GFP was detected on EVs isolated from three body fluids of the Tg rats: blood serum, breast milk and amniotic fluid. In vitro culture allowed transfer of serum-derived CD63-GFP EVs into recipient rat embryonic fibroblasts, where the EVs localized in endocytic organelles. These results suggested that this Tg rat model should provide significant information for understanding the intercellular transfer and/or mother-child transfer of EVs in vivo. PMID:27539050

  9. Generation of a novel transgenic rat model for tracing extracellular vesicles in body fluids.

    PubMed

    Yoshimura, Aya; Kawamata, Masaki; Yoshioka, Yusuke; Katsuda, Takeshi; Kikuchi, Hisae; Nagai, Yoshitaka; Adachi, Naoki; Numakawa, Tadahiro; Kunugi, Hiroshi; Ochiya, Takahiro; Tamai, Yoshitaka

    2016-01-01

    Extracellular vesicles (EVs) play an important role in the transfer of biomolecules between cells. To elucidate the intercellular transfer fate of EVs in vivo, we generated a new transgenic (Tg) rat model using green fluorescent protein (GFP)-tagged human CD63. CD63 protein is highly enriched on EV membranes via trafficking into late endosomes and is often used as an EV marker. The new Tg rat line in which human CD63-GFP is under control of the CAG promoter exhibited high expression of GFP in various body tissues. Exogenous human CD63-GFP was detected on EVs isolated from three body fluids of the Tg rats: blood serum, breast milk and amniotic fluid. In vitro culture allowed transfer of serum-derived CD63-GFP EVs into recipient rat embryonic fibroblasts, where the EVs localized in endocytic organelles. These results suggested that this Tg rat model should provide significant information for understanding the intercellular transfer and/or mother-child transfer of EVs in vivo. PMID:27539050

  10. Identification of extracellular miRNA in human cerebrospinal fluid by next-generation sequencing.

    PubMed

    Burgos, Kasandra Lovette; Javaherian, Ashkan; Bomprezzi, Roberto; Ghaffari, Layla; Rhodes, Susan; Courtright, Amanda; Tembe, Waibhav; Kim, Seungchan; Metpally, Raghu; Van Keuren-Jensen, Kendall

    2013-05-01

    There has been a growing interest in using next-generation sequencing (NGS) to profile extracellular small RNAs from the blood and cerebrospinal fluid (CSF) of patients with neurological diseases, CNS tumors, or traumatic brain injury for biomarker discovery. Small sample volumes and samples with low RNA abundance create challenges for downstream small RNA sequencing assays. Plasma, serum, and CSF contain low amounts of total RNA, of which small RNAs make up a fraction. The purpose of this study was to maximize RNA isolation from RNA-limited samples and apply these methods to profile the miRNA in human CSF by small RNA deep sequencing. We systematically tested RNA isolation efficiency using ten commercially available kits and compared their performance on human plasma samples. We used RiboGreen to quantify total RNA yield and custom TaqMan assays to determine the efficiency of small RNA isolation for each of the kits. We significantly increased the recovery of small RNA by repeating the aqueous extraction during the phenol-chloroform purification in the top performing kits. We subsequently used the methods with the highest small RNA yield to purify RNA from CSF and serum samples from the same individual. We then prepared small RNA sequencing libraries using Illumina's TruSeq sample preparation kit and sequenced the samples on the HiSeq 2000. Not surprisingly, we found that the miRNA expression profile of CSF is substantially different from that of serum. To our knowledge, this is the first time that the small RNA fraction from CSF has been profiled using next-generation sequencing.

  11. Stress generation and hierarchical fracturing in reactive systems

    NASA Astrophysics Data System (ADS)

    Jamtveit, B.; Iyer, K.; Royne, A.; Malthe-Sorenssen, A.; Mathiesen, J.; Feder, J.

    2007-12-01

    Hierarchical fracture patterns are the result of a slowly driven fracturing process that successively divides the rocks into smaller domains. In quasi-2D systems, such fracture patterns are characterized by four sided domains, and T-junctions where new fractures stop at right angles to pre-existing fractures. We describe fracturing of mm to dm thick enstatite layers in a dunite matrix from the Leka ophiolite complex in Norway. The fracturing process is driven by expansion of the dunite matrix during serpentinization. The cumulative distributions of fracture lengths show a scaling behavior that lies between a log - normal and power law (fractal) distribution. This is consistent with a simple fragmentation model in which domains are divided according to a 'top hat' distribution of new fracture positions within unfractured domains. Reaction-assisted hierarchical fracturing is also likely to be responsible for other (3-D) structures commonly observed in serpentinized ultramafic rocks, including the mesh-textures observed in individual olivine grains, and the high abundance of rectangular domains at a wide range of scales. Spectacular examples of 3-D hierarchical fracture patterns also form during the weathering of basaltic intrusions (dolerites). Incipient chemical weathering of dolerites in the Karoo Basin in South Africa occurs around water- filled fractures, originally produced by thermal contraction or by externally imposed stresses. This chemical weathering causes local expansion of the rock matrix and generates elastic stresses. On a mm to cm scale, these stresses lead to mechanical layer-by-layer spalling, producing the characteristic spheroidal weathering patterns. However, our field observations and computer simulations demonstrate that in confined environments, the spalling process alone is unable to relieve the elastic stresses. In such cases, chemical weathering drives a much larger scale hierarchical fracturing process in which fresh dolerite undergoes a

  12. LFPy: a tool for biophysical simulation of extracellular potentials generated by detailed model neurons

    PubMed Central

    Lindén, Henrik; Hagen, Espen; Łęski, Szymon; Norheim, Eivind S.; Pettersen, Klas H.; Einevoll, Gaute T.

    2014-01-01

    Electrical extracellular recordings, i.e., recordings of the electrical potentials in the extracellular medium between cells, have been a main work-horse in electrophysiology for almost a century. The high-frequency part of the signal (≳500 Hz), i.e., the multi-unit activity (MUA), contains information about the firing of action potentials in surrounding neurons, while the low-frequency part, the local field potential (LFP), contains information about how these neurons integrate synaptic inputs. As the recorded extracellular signals arise from multiple neural processes, their interpretation is typically ambiguous and difficult. Fortunately, a precise biophysical modeling scheme linking activity at the cellular level and the recorded signal has been established: the extracellular potential can be calculated as a weighted sum of all transmembrane currents in all cells located in the vicinity of the electrode. This computational scheme can considerably aid the modeling and analysis of MUA and LFP signals. Here, we describe LFPy, an open source Python package for numerical simulations of extracellular potentials. LFPy consists of a set of easy-to-use classes for defining cells, synapses and recording electrodes as Python objects, implementing this biophysical modeling scheme. It runs on top of the widely used NEURON simulation environment, which allows for flexible usage of both new and existing cell models. Further, calculation of extracellular potentials using the line-source-method is efficiently implemented. We describe the theoretical framework underlying the extracellular potential calculations and illustrate by examples how LFPy can be used both for simulating LFPs, i.e., synaptic contributions from single cells as well a populations of cells, and MUAs, i.e., extracellular signatures of action potentials. PMID:24474916

  13. Xanthohumol induces generation of reactive oxygen species and triggers apoptosis through inhibition of mitochondrial electron transfer chain complex I.

    PubMed

    Zhang, Bo; Chu, Wei; Wei, Peng; Liu, Ying; Wei, Taotao

    2015-12-01

    Xanthohumol is a prenylflavonoid extracted from hops (Humulus lupulus). It possesses anti-cancer and anti-inflammatory activities in vitro and in vivo, and offers therapeutic benefits for treatment of metabolic syndromes. However, the precise mechanisms underlying its pharmacological effects remain to be elucidated, together with its cellular target. Here, we provide evidence that xanthohumol directly interacts with the mitochondrial electron transfer chain complex I (NADH dehydrogenase), inhibits the oxidative phosphorylation, triggers the production of reactive oxygen species, and induces apoptosis. In addition, we show that as a result of the inhibition of the mitochondrial oxidative phosphorylation, xanthohumol exposure causes a rapid decrease of mitochondrial transmembrane potential. Furthermore, we showed that xanthohumol up-regulates the glycolytic capacity in cells, and thus compensates cellular ATP generation. Dissection of the multiple steps of aerobic respiration by extracellular flux assays revealed that xanthohumol specifically inhibits the activity of mitochondrial complex I, but had little effect on that of complex II, III and IV. Inhibition of complex I by xanthohumol caused the overproduction of reactive oxygen species, which are responsible for the induction of apoptosis in cancer cells. We also found that isoxanthohumol, the structural isomer of xanthohumol, is inactive to cells, suggesting that the reactive 2-hydroxyl group of xanthohumol is crucial for its targeting to the mitochondrial complex I. Together, the remodeling of cell metabolism revealed here has therapeutic potential for the use of xanthohumol.

  14. Generation of reactive species by an atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Kelly, S.; Turner, M. M.

    2014-12-01

    The role of gas mixing in reactive species delivery to treatment surfaces for an atmospheric pressure capacitively coupled plasma helium jet is investigated by numerical modelling. Atomic oxygen in the jet effluent is shown to quickly convert to ozone for increasing device to surface separation due to the molecular oxygen present in the gas mixture. Surface profiles of reactive oxygen species show narrow peaks for atomic oxygen and broader surface distributions for ozone and metastable species. Production efficiency of atomic oxygen to the helium plasma jet by molecular oxygen admixture is shown to be dependent on electro-negativity. Excessive molecular oxygen admixture results in negative ion dominance over electrons which eventually quenches the plasma. Interaction of the plasma jet with an aqueous surface showed hydrogen peroxide as the dominant species at this interface. Gas heating by the plasma is found to be dominated by elastic electron collisions and positive ion heating. Comparison with experimental measurements for atomic oxygen shows good agreement.

  15. Reactive Carbonyl Species In Vivo: Generation and Dual Biological Effects

    PubMed Central

    Semchyshyn, Halyna M.

    2014-01-01

    Reactive carbonyls are widespread species in living organisms and mainly known for their damaging effects. The most abundant reactive carbonyl species (RCS) are derived from oxidation of carbohydrates, lipids, and amino acids. Chemical modification of proteins, nucleic acids, and aminophospholipids by RCS results in cytotoxicity and mutagenicity. In addition to their direct toxicity, modification of biomolecules by RCS gives rise to a multitude of adducts and cross links that are increasingly implicated in aging and pathology of a wide range of human diseases. Understanding of the relationship between metabolism of RCS and the development of pathological disorders and diseases may help to develop effective approaches to prevent a number of disorders and diseases. On the other hand, constant persistence of RCS in cells suggests that they perform some useful role in living organisms. The most beneficial effects of RCS are their establishment as regulators of cell signal transduction and gene expression. Since RCS can modulate different biological processes, new tools are required to decipher the precise mechanisms underlying dual effects of RCS. PMID:24634611

  16. Method for generating a highly reactive plasma for exhaust gas aftertreatment and enhanced catalyst reactivity

    DOEpatents

    Whealton, John H.; Hanson, Gregory R.; Storey, John M.; Raridon, Richard J.; Armfield, Jeffrey S.; Bigelow, Timothy S.; Graves, Ronald L.

    2001-01-01

    A method for non-thermal plasma aftertreatment of exhaust gases the method comprising the steps of providing short risetime (about 40 ps), high frequency (about 5G hz), high power bursts of low-duty factor microwaves sufficient to generate a dielectric barrier discharge and passing a gas to treated through the discharge so as to cause dissociative reduction of the exhaust gases. The invention also includes a reactor for generating the non-thermal plasma.

  17. Water-soluble fullerene materials for bioapplications: photoinduced reactive oxygen species generation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The photoinduced reactive oxygen species (ROS) generation from several water-soluble fullerenes was examined. Macromolecular or small molecular water-soluble fullerene complexes/derivatives were prepared and their 1O2 and O2•- generation abilities were evaluated by EPR spin-trapping methods. As a r...

  18. CD73-generated extracellular adenosine in chronic lymphocytic leukemia creates local conditions counteracting drug-induced cell death

    PubMed Central

    Serra, Sara; Horenstein, Alberto L.; Vaisitti, Tiziana; Brusa, Davide; Rossi, Davide; Laurenti, Luca; D'Arena, Giovanni; Coscia, Marta; Tripodo, Claudio; Inghirami, Giorgio; Robson, Simon C.; Gaidano, Gianluca; Malavasi, Fabio

    2011-01-01

    Extracellular adenosine (ADO), generated from ATP or ADP through the concerted action of the ectoenzymes CD39 and CD73, elicits autocrine and paracrine effects mediated by type 1 purinergic receptors. We have tested whether the expression of CD39 and CD73 by chronic lymphocytic leukemia (CLL) cells activates an adenosinergic axis affecting growth and survival. By immunohistochemistry, CD39 is widely expressed in CLL lymph nodes, whereas CD73 is restricted to proliferation centers. CD73 expression is highest on Ki-67+ CLL cells, adjacent to T lymphocytes, and is further localized to perivascular areas. CD39+/CD73+ CLL cells generate ADO from ADP in a time- and concentration-dependent manner. In peripheral blood, CD73 expression occurs in 97/299 (32%) CLL patients and pairs with CD38 and ZAP-70 expression. CD73-generated extracellular ADO activates type 1 purinergic A2A receptors that are constitutively expressed by CLL cells and that are further elevated in proliferating neoplastic cells. Activation of the ADO receptors increases cytoplasmic cAMP levels, inhibiting chemotaxis and limiting spontaneous drug-induced apoptosis of CLL cells. These data are consistent with the existence of an autocrine adenosinergic loop, and support engraftment of leukemic cells in growth-favorable niches, while simultaneously protecting from the action of chemotherapeutic agents. PMID:21998208

  19. Extracellular vesicles released from cells exposed to reactive oxygen species increase annexin A2 expression and survival of target cells exposed to the same conditions.

    PubMed

    Grindheim, Ann Kari; Vedeler, Anni

    2016-01-01

    Annexin A2 (AnxA2) is present in multiple cellular compartments and interacts with numerous ligands including calcium, proteins, cholesterol, negatively charged phospholipids and RNA. These interactions are tightly regulated by its post-translational modifications. The levels of AnxA2 and its Tyr23 phosphorylated form (pTyr23AnxA2) are increased in many cancers and the protein is involved in malignant cell transformation, metastasis and angiogenesis. Our previous studies of rat pheochromocytoma (PC12) cells showed that reactive oxygen species (ROS) induce rapid, simultaneous and transient dephosphorylation of nuclear AnxA2, most likely associating with PML bodies, while AnxA2 associated with F-actin at the cell cortex undergoes Tyr23 phosphorylation. The pTyr23AnxA2 in the periphery of the cells is incorporated into intraluminal vesicles of multivesicular endosomes and subsequently released to the extracellular space. We show here that extracellular vesicles (EVs) from cells exposed to ROS prime untreated PC12 cells to better tolerate subsequent oxidative stress, thus enhancing their survival. There is an increase in the levels of pTyr23AnxA2 and AnxA2 in the primed cells, suggesting that AnxA2 is involved in their survival. This increase is due to an upregulation of AnxA2 expression both at the transcriptional and translational levels after relatively short term (2 h) exposure to primed EVs. PMID:27574537

  20. APT a next generation QM-based reactive force field model

    NASA Astrophysics Data System (ADS)

    Rappé, A. K.; Bormann-Rochotte, L. M.; Wiser, D. C.; Hart, J. R.; Pietsch, M. A.; Casewit, C. J.; Skiff, W. M.

    Modelling reactivity at the nanoscale is a major computational challenge. Both reactive force field and combined QM-MM methodologies have been and are being developed to study reactivity at this boundary between molecules and the solid state. There have been more than 1500 publications since the mid-1990s, on combined QM-MM methodologies. Limitations in current models include the distortional characteristics of force field potential terms, the smooth transit from one potential surface to another, rather than surface hopping, and the blending of electrostatics between QM and MM portions of a QM-MM model. Functional forms, potential surface coupling terms, and parameterization strategies for the Approximate Pair Theory (APT), a next generation reactive force field model, are described. The APT model has been developed to correct a number of limitations in current reactive force field models as well as providing a foundation for a next generation QM-MM model. Chemical bonding concepts are used to develop fully dissociative bond stretch, bend, torsion, and inversion valence terms. Quantum mechanics also provides functional forms for potential surface coupling terms that permit a general description of reactivity from hydrogen bonding, through non-classical carbocations and cracking, to olefin polymerization, oxidation, and metathesis. Van der Waals, electrostatic, and metallic bonding models also derive from quantum mechanical resonance. Finally, Pauli Principle-based orthogonality provides a way to electrostatically couple the QM and MM portions of a QM-MM model that will support arbitrarily large basis sets.

  1. A novel mechanism of generating extracellular vesicles during apoptosis via a beads-on-a-string membrane structure.

    PubMed

    Atkin-Smith, Georgia K; Tixeira, Rochelle; Paone, Stephanie; Mathivanan, Suresh; Collins, Christine; Liem, Michael; Goodall, Katharine J; Ravichandran, Kodi S; Hulett, Mark D; Poon, Ivan K H

    2015-06-15

    Disassembly of apoptotic cells into smaller fragments (a form of extracellular vesicle called apoptotic bodies) can facilitate removal of apoptotic debris and intercellular communication. However, the mechanism underpinning this process is unclear. While observing monocytes undergoing apoptosis by time-lapse microscopy, we discovered a new type of membrane protrusion that resembles a 'beads-on-a-string' structure. Strikingly, the 'beads' are frequently sheared off the 'string' to form apoptotic bodies. Generation of apoptotic bodies via this mechanism can facilitate a sorting process and results in the exclusion of nuclear contents from apoptotic bodies. Mechanistically, generation of 'beads-on-a-string' protrusion is controlled by the level of actomyosin contraction and apoptopodia formation. Furthermore, in an unbiased drug screen, we identified the ability of sertraline (an antidepressant) to block the formation of 'beads-on-a-string' protrusions and apoptotic bodies. These data uncover a new mechanism of apoptotic body formation in monocytes and also compounds that can modulate this process.

  2. Dissolution and reactive oxygen species generation of inhaled cemented tungsten carbide particles in artificial human lung fluids

    NASA Astrophysics Data System (ADS)

    Stefaniak, A. B.; Leonard, S. S.; Hoover, M. D.; Virji, M. A.; Day, G. A.

    2009-02-01

    Inhalation of both cobalt (Co) and tungsten carbide (WC) particles is associated with development of hard metal lung disease (HMD) via generation of reactive oxygen species (ROS), whereas Co alone is sufficient to cause asthma via solubilization and hapten formation. We characterized bulk and aerodynamically size-separated W, WC, Co, spray dryer (pre-sintered), and chamfer grinder (post-sintered) powders. ROS generation was measured in the murine RAW 264.7 cell line using electron spin resonance. When dose was normalized to surface area, hydroxyl radical generation was independent of particle size, which suggests that particle surface chemistry may be an important exposure factor. Chamfer grinder particles generated the highest levels of ROS, consistent with the hypothesis that intimate contact of metals is important for ROS generation. In artificial extracellular lung fluid, alkylbenzyldimethylammonium chloride (ABDC), added to prevent mold growth during experiments, did not influence dissolution of Co (44.0±5.2 vs. 48.3±6.4%) however, dissolution was higher (p<0.05) in the absence of phosphate (62.0±5.4 vs. 48.3±6.4%). In artificial macrophage phagolysosomal fluid, dissolution of Co (36.2±10.4%) does not appear to be influenced (p=0.30) by the absence of glycine (29.8±2.1%), phosphate (39.6±8.6%), or ABDC (44.0±10.5%). These results aid in assessing and understanding Co and W inhalation dosimetry.

  3. Reactive power generation in high speed induction machines by continuously occurring space-transients

    NASA Astrophysics Data System (ADS)

    Laithwaite, E. R.; Kuznetsov, S. B.

    1980-09-01

    A new technique of continuously generating reactive power from the stator of a brushless induction machine is conceived and tested on a 10-kw linear machine and on 35 and 150 rotary cage motors. An auxiliary magnetic wave traveling at rotor speed is artificially created by the space-transient attributable to the asymmetrical stator winding. At least two distinct windings of different pole-pitch must be incorporated. This rotor wave drifts in and out of phase repeatedly with the stator MMF wave proper and the resulting modulation of the airgap flux is used to generate reactive VA apart from that required for magnetization or leakage flux. The VAR generation effect increases with machine size, and leading power factor operation of the entire machine is viable for large industrial motors and power system induction generators.

  4. Evidence for extracellular, but not intracellular, generation of angiotensin II in the rat adrenal zona glomerulosa

    SciTech Connect

    Urata, H.; Khosla, M.C.; Bumpus, M.; Husain, A. )

    1988-11-01

    Based on the observation that high levels of renin and angiotensin II (Ang II) are found in the adrenal zona glomerulosa (ZG), it has been postulated that Ang II is formed intracellularly by the renin-converting enzyme cascade in this tissue. To test this hypothesis, the authors examined renin-angiotensin system components in subcellular fractions of the rat adrenal ZG. Renin activity and immunoreactive-Ang II (IR-Ang II) were observed in vesicular fractions but were not colocalized. In addition, angiotensinogen, angiotensin I, and converting enzyme were not observed in the renin or IR-Ang II-containing vesicular fractions. These data do not support the hypothesis that Ang II is formed intracellularly within the renin-containing vesicles of the ZG. Rather, since modulatable renin release from adrenal ZG slices was observed and renin activity was found in dense vesicular fractions (33-39% sucrose), it is likely that Ang II formation in the ZG is extracellular and initiated by the release of vesicular renin. In ZG lysomal fractions {sup 125}I-labeled Ang II was degraded to {sup 125}I-labeled des-(Phe{sup 8})Ang II. Since Ang II antibodies do not recognize des-(Phe{sup 8})Ang II, these finding explain why IR-Ang II in the ZG is due predominantly to Ang II and not to its C-terminal immunoreactive fragments.

  5. Cardiac Extracellular Matrix Scaffold Generated Using Sarcomeric Disassembly and Antigen Removal.

    PubMed

    Papalamprou, Angela; Griffiths, Leigh G

    2016-04-01

    Xenogeneic cardiac extracellular matrix (cECM) scaffolds for reconstructive cardiac surgery applications have potential to overcome the limitations of current clinically utilized patch materials. A potentially ideal cECM scaffold would be immunologically acceptable while preserving the native cECM niche. Production of such a scaffold necessitates removal of cellular and antigenic components from cardiac tissue while preserving cECM structure/function properties. Existing decellularization methodologies predominantly utilize denaturing detergents which might irreversibly alter cECM material properties. To overcome potential deficiencies of current approaches, the effect of sarcomere relaxation and disassembly on resultant cECM scaffold cellularity was investigated. Additionally, the ability of sequential differential protein solubilization (antigen removal-AR) to reduce cECM scaffold antigenicity was examined. Sarcomeric relaxation and disassembly were necessary to achieve scaffold acellularity. All groups in which AR was employed displayed statistically significant decreases in residual antigenicity regardless of their degree of acellularity. AR combined with sarcomeric disassembly preserved structural, biochemical, mechanical and recellularization properties of the cECM scaffold. However, sodium dodecyl sulfate significantly altered cECM properties. This study demonstrates the importance of solubilizing cellular elements and antigenic components in a stepwise manner for production of a potentially ideal cECM scaffold and may have implications for future tissue engineering and regenerative medicine applications.

  6. ARSENIC SPECIES CAUSE RELEASE OF IRON FROM FERRITIN GENERATING REACTIVE OXYGEN SPECIES

    EPA Science Inventory

    ARSENIC SPECIES CAUSE RELEASE OF IRON FROM FERRITIN GENERATING REACTIVE OXYGEN SPECIES

    Arsenic-associated cancer (lung, bladder, skin, liver, kidney) remains a significant world- wide public health problem (e.g., Taiwan, Chile, Bangladesh, India, China and Thailand). Rece...

  7. The generation of hybrid electrospun nanofiber layer with extracellular matrix derived from human pluripotent stem cells, for regenerative medicine applications.

    PubMed

    Shtrichman, Ronit; Zeevi-Levin, Naama; Zaid, Rinat; Barak, Efrat; Fishman, Bettina; Ziskind, Anna; Shulman, Rita; Novak, Atara; Avrahami, Ron; Livne, Erella; Lowenstein, Lior; Zussman, Eyal; Itskovitz-Eldor, Joseph

    2014-10-01

    Extracellular matrix (ECM) has been utilized as a biological scaffold for tissue engineering applications in a variety of body systems, due to its bioactivity and biocompatibility. In the current study we developed a modified protocol for the efficient and reproducible derivation of mesenchymal progenitor cells (MPCs) from human embryonic stem cells as well as human induced pluripotent stem cells (hiPSCs) originating from hair follicle keratinocytes (HFKTs). ECM was produced from these MPCs and characterized in comparison to adipose mesenchymal stem cell ECM, demonstrating robust ECM generation by the excised HFKT-iPSC-MPCs. Exploiting the advantages of electrospinning we generated two types of electrospun biodegradable nanofiber layers (NFLs), fabricated from polycaprolactone (PCL) and poly(lactic-co-glycolic acid) (PLGA), which provide mechanical support for cell seeding and ECM generation. Elucidating the optimized decellularization treatment we were able to generate an available "off-the-shelf" implantable product (NFL-ECM). Using rat subcutaneous transplantation model we demonstrate that this stem-cell-derived construct is biocompatible and biodegradable and holds great potential for tissue regeneration applications. PMID:25185111

  8. The generation of hybrid electrospun nanofiber layer with extracellular matrix derived from human pluripotent stem cells, for regenerative medicine applications.

    PubMed

    Shtrichman, Ronit; Zeevi-Levin, Naama; Zaid, Rinat; Barak, Efrat; Fishman, Bettina; Ziskind, Anna; Shulman, Rita; Novak, Atara; Avrahami, Ron; Livne, Erella; Lowenstein, Lior; Zussman, Eyal; Itskovitz-Eldor, Joseph

    2014-10-01

    Extracellular matrix (ECM) has been utilized as a biological scaffold for tissue engineering applications in a variety of body systems, due to its bioactivity and biocompatibility. In the current study we developed a modified protocol for the efficient and reproducible derivation of mesenchymal progenitor cells (MPCs) from human embryonic stem cells as well as human induced pluripotent stem cells (hiPSCs) originating from hair follicle keratinocytes (HFKTs). ECM was produced from these MPCs and characterized in comparison to adipose mesenchymal stem cell ECM, demonstrating robust ECM generation by the excised HFKT-iPSC-MPCs. Exploiting the advantages of electrospinning we generated two types of electrospun biodegradable nanofiber layers (NFLs), fabricated from polycaprolactone (PCL) and poly(lactic-co-glycolic acid) (PLGA), which provide mechanical support for cell seeding and ECM generation. Elucidating the optimized decellularization treatment we were able to generate an available "off-the-shelf" implantable product (NFL-ECM). Using rat subcutaneous transplantation model we demonstrate that this stem-cell-derived construct is biocompatible and biodegradable and holds great potential for tissue regeneration applications.

  9. Generation of priming mesenchymal stem cells with enhanced potential to differentiate into specific cell lineages using extracellular matrix proteins.

    PubMed

    Han, Na Rae; Yun, Jung Im; Park, Young Hyun; Ahn, Ji Yeon; Kim, Choonghyo; Choi, Jung Hoon; Lee, Eunsong; Lim, Jeong Mook; Lee, Seung Tae

    2013-07-01

    Poor understanding of the differentiation of mesenchymal stem cells (MSCs) has resulted in a low differentiation yield, and has hindered their application in medicine. As a solution, priming MSCs sensitive to signaling, thus stimulating differentiation into a specific cell lineage, may improve the differentiation yield. To demonstrate this, priming MSCs were produced by using a gelatin matrix for the isolation of primary MSCs from bone-marrow-derived primary cells. Subsequently, cellular characteristics and sensitivity to specific differentiation signals were analyzed at passage five. Compared to non-priming MSCs, priming MSCs showed no significant differences in cellular characteristics, but demonstrated a significant increase in sensitivity to neurogenic differentiation signals. These results demonstrate that generation of priming MSCs by specific extracellular signaling increases the rate of differentiation into a cell-specific lineage.

  10. Elevated Cytoplasmic Free Zinc and Increased Reactive Oxygen Species Generation in the Context of Brain Injury.

    PubMed

    Stork, Christian J; Li, Yang V

    2016-01-01

    Intracellular zinc release and the generation of reactive oxygen species (ROS) have been reported to be common ingredients in numerous toxic signaling mechanisms in neurons. A key source for intracellular zinc release is its liberation from metallothionein-III (MT-III). MT-III binds and regulates intracellular zinc levels under physiological conditions, but the zinc-binding thiols readily react with certain ROS and reactive nitrogen species (RNS) to result in intracellular zinc liberation. Liberated zinc induces ROS and RNS generation by multiple mechanisms, including the induction of mitochondrial ROS production, and also promotes ROS formation outside the mitochondria by interaction with the enzymes NADPH oxidase and 12-lipoxygenase. Of particular relevance to neuronal injury in the context of ischemia and prolonged seizures, the positive feedback cycle between ROS/RNS generation and increasing zinc liberation will be examined.

  11. Free IL-12p40 Monomer is a Polyfunctional Adapter for Generating Novel IL-12-Like Heterodimers Extracellularly

    PubMed Central

    Abdi, Kaveh; Singh, Nevil J.; Spooner, Eric; Kessler, Benedikt M.; Radaev, Sergei; Lantz, Larry; Xiao, Tsan Sam; Matzinger, Polly; Sun, Peter D.; Ploegh, Hidde L.

    2014-01-01

    IL-12p40 partners with the p35 and p19 polypeptides to generate the heterodimeric cytokines IL-12 and IL-23 respectively. These cytokines play critical and distinct roles in host defense. The assembly of these heterodimers is thought to take place within the cell, resulting in the secretion of fully functional cytokines. Although the p40 subunit alone can also be rapidly secreted in response to inflammatory signals, its biological significance remains unclear. Here, we show that the secreted p40 monomer can generate de novo IL-12-like activities by combining extracellulary with p35 released from other cells. Surprisingly, an unbiased proteomic analysis reveals multiple such extracellular binding partners for p40 in the serum of mice after an endotoxin challenge. We biochemically validate the binding of one of these novel partners—the CD5 antigen-like glycoprotein CD5L— to the p40 monomer. Nevertheless, the assembled p40-CD5L heterodimer does not recapitulate the biological activity of IL-12. These findings underscore the plasticity of secreted free p40 monomer, suggesting that p40 functions as an adapter which is able to generate multiple de novo composites in combination with other locally available polypeptide partners, post secretion. PMID:24821971

  12. Caffeic acid improves cell viability and protects against DNA damage: involvement of reactive oxygen species and extracellular signal-regulated kinase

    PubMed Central

    Li, Y.; Chen, L.J.; Jiang, F.; Yang, Y.; Wang, X.X.; Zhang, Z.; Li, Z.; Li, L.

    2015-01-01

    Hormesis is an adaptive response to a variety of oxidative stresses that renders cells resistant to harmful doses of stressing agents. Caffeic acid (CaA) is an important antioxidant that has protective effects against DNA damage caused by reactive oxygen species (ROS). However, whether CaA-induced protection is a hormetic effect remains unknown, as is the molecular mechanism that is involved. We found that a low concentration (10 μM) of CaA increased human liver L-02 cell viability, attenuated hydrogen peroxide (H2O2)-mediated decreases in cell viability, and decreased the extent of H2O2-induced DNA double-strand breaks (DSBs). In L-02 cells exposed to H2O2, CaA treatment reduced ROS levels, which might have played a protective role. CaA also activated the extracellular signal-regulated kinase (ERK) signal pathway in a time-dependent manner. Inhibition of ERK by its inhibitor U0126 or by its specific small interfering RNA (siRNA) blocked the CaA-induced improvement in cell viability and the protective effects against H2O2-mediated DNA damage. This study adds to the understanding of the antioxidant effects of CaA by identifying a novel molecular mechanism of enhanced cell viability and protection against DNA damage. PMID:25831202

  13. New Aspects on the Structure of Neutrophil Extracellular Traps from Chronic Obstructive Pulmonary Disease and In Vitro Generation

    PubMed Central

    Krautgartner, Wolf-Dietrich; Klappacher, Michaela; Kofler, Barbara; Steinbacher, Peter; Vitkov, Ljubomir; Grabcanovic-Musija, Fikreta; Studnicka, Michael

    2014-01-01

    Polymorphonuclear neutrophils have in recent years attracted new attention due to their ability to release neutrophil extracellular traps (NETs). These web-like extracellular structures deriving from nuclear chromatin have been depicted in ambiguous roles between antimicrobial defence and host tissue damage. NETs consist of DNA strands of varying thickness and are decorated with microbicidal and cytotoxic proteins. Their principal structure has in recent years been characterised at molecular and ultrastructural levels but many features that are of direct relevance to cytotoxicity are still incompletely understood. These include the extent of chromatin decondensation during NET formation and the relative amounts and spatial distribution of the microbicidal components within the NET. In the present work, we analyse the structure of NETs found in induced sputum of patients with acutely exacerbated chronic obstructive pulmonary disease (COPD) using confocal laser microscopy and electron microscopy. In vitro induced NETs from human neutrophils serve for purposes of comparison and extended analysis of NET structure. Results demonstrate that COPD sputa are characterised by the pronounced presence of NETs and NETotic neutrophils. We provide new evidence that chromatin decondensation during NETosis is most extensive and generates substantial amounts of double-helix DNA in ‘beads-on-a-string’ conformation. New information is also presented on the abundance and location of neutrophil elastase (NE) and citrullinated histone H3 (citH3). NE occurs in high densities in nearly all non-fibrous constituents of the NETs while citH3 is much less abundant. We conclude from the results that (i) NETosis is an integral part of COPD pathology; this is relevant to all future research on the etiology and therapy of the disease; and that (ii) release of ‘beads-on-a-string’ DNA studded with non-citrullinated histones is a common feature of in vivo NETosis; this is of relevance to both

  14. New aspects on the structure of neutrophil extracellular traps from chronic obstructive pulmonary disease and in vitro generation.

    PubMed

    Obermayer, Astrid; Stoiber, Walter; Krautgartner, Wolf-Dietrich; Klappacher, Michaela; Kofler, Barbara; Steinbacher, Peter; Vitkov, Ljubomir; Grabcanovic-Musija, Fikreta; Studnicka, Michael

    2014-01-01

    Polymorphonuclear neutrophils have in recent years attracted new attention due to their ability to release neutrophil extracellular traps (NETs). These web-like extracellular structures deriving from nuclear chromatin have been depicted in ambiguous roles between antimicrobial defence and host tissue damage. NETs consist of DNA strands of varying thickness and are decorated with microbicidal and cytotoxic proteins. Their principal structure has in recent years been characterised at molecular and ultrastructural levels but many features that are of direct relevance to cytotoxicity are still incompletely understood. These include the extent of chromatin decondensation during NET formation and the relative amounts and spatial distribution of the microbicidal components within the NET. In the present work, we analyse the structure of NETs found in induced sputum of patients with acutely exacerbated chronic obstructive pulmonary disease (COPD) using confocal laser microscopy and electron microscopy. In vitro induced NETs from human neutrophils serve for purposes of comparison and extended analysis of NET structure. Results demonstrate that COPD sputa are characterised by the pronounced presence of NETs and NETotic neutrophils. We provide new evidence that chromatin decondensation during NETosis is most extensive and generates substantial amounts of double-helix DNA in 'beads-on-a-string' conformation. New information is also presented on the abundance and location of neutrophil elastase (NE) and citrullinated histone H3 (citH3). NE occurs in high densities in nearly all non-fibrous constituents of the NETs while citH3 is much less abundant. We conclude from the results that (i) NETosis is an integral part of COPD pathology; this is relevant to all future research on the etiology and therapy of the disease; and that (ii) release of 'beads-on-a-string' DNA studded with non-citrullinated histones is a common feature of in vivo NETosis; this is of relevance to both the

  15. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects

    NASA Astrophysics Data System (ADS)

    Lu, X.; Naidis, G. V.; Laroussi, M.; Reuter, S.; Graves, D. B.; Ostrikov, K.

    2016-05-01

    Non-equilibrium atmospheric-pressure plasmas have recently become a topical area of research owing to their diverse applications in health care and medicine, environmental remediation and pollution control, materials processing, electrochemistry, nanotechnology and other fields. This review focuses on the reactive electrons and ionic, atomic, molecular, and radical species that are produced in these plasmas and then transported from the point of generation to the point of interaction with the material, medium, living cells or tissues being processed. The most important mechanisms of generation and transport of the key species in the plasmas of atmospheric-pressure plasma jets and other non-equilibrium atmospheric-pressure plasmas are introduced and examined from the viewpoint of their applications in plasma hygiene and medicine and other relevant fields. Sophisticated high-precision, time-resolved plasma diagnostics approaches and techniques are presented and their applications to monitor the reactive species and plasma dynamics in the plasma jets and other discharges, both in the gas phase and during the plasma interaction with liquid media, are critically reviewed. The large amount of experimental data is supported by the theoretical models of reactive species generation and transport in the plasmas, surrounding gaseous environments, and plasma interaction with liquid media. These models are presented and their limitations are discussed. Special attention is paid to biological effects of the plasma-generated reactive oxygen and nitrogen (and some other) species in basic biological processes such as cell metabolism, proliferation, survival, etc. as well as plasma applications in bacterial inactivation, wound healing, cancer treatment and some others. Challenges and opportunities for theoretical and experimental research are discussed and the authors' vision for the emerging convergence trends across several disciplines and application domains is presented to

  16. Trace heavy metal ions promoted extracellular electron transfer and power generation by Shewanella in microbial fuel cells.

    PubMed

    Xu, Yu-Shang; Zheng, Tao; Yong, Xiao-Yu; Zhai, Dan-Dan; Si, Rong-Wei; Li, Bing; Yu, Yang-Yang; Yong, Yang-Chun

    2016-07-01

    Although microbial fuel cells (MFCs) is considered as one of the most promising technology for renewable energy harvesting, low power output still accounts one of the bottlenecks and limits its further development. In this work, it is found that Cu(2+) (0.1μgL(-1)-0.1mgL(-1)) or Cd(2+) (0.1μgL(-1)-1mgL(-1)) significantly improve the electricity generation in MFCs. The maximum power output achieved with trace level of Cu(2+) (∼6nM) or Cd(2+) (∼5nM) is 1.3 times and 1.6 times higher than that of the control, respectively. Further analysis verifies that addition of Cu(2+) or Cd(2+) effectively improves riboflavin production and bacteria attachment on the electrode, which enhances bacterial extracellular electron transfer (EET) in MFCs. These results unveil the mechanism for power output enhancement by Cu(2+) or Cd(2+) addition, and suggest that metal ion addition should be a promising strategy to enhance EET as well as power generation of MFCs.

  17. Deleting the Redundant TSH Receptor C-Peptide Region Permits Generation of the Conformationally Intact Extracellular Domain by Insect Cells

    PubMed Central

    Chen, Chun-Rong; Salazar, Larry M.; McLachlan, Sandra M.

    2015-01-01

    The TSH receptor (TSHR) extracellular domain (ECD) comprises a N-terminal leucine-rich repeat domain and an hinge region (HR), the latter contributing to ligand binding and critical for receptor activation. The crystal structure of the leucine-rich repeat domain component has been solved, but previous attempts to generate conformationally intact complete ECD or the isolated HR component for structural analysis have failed. The TSHR HR contains a C-peptide segment that is removed during spontaneous TSHR intramolecular cleavage into disulfide linked A- and B-subunits. We hypothesized that deletion of the redundant C-peptide would overcome the obstacle to generating conformationally intact TSHR ECD protein. Indeed, lacking the C-peptide region, the TSHR ECD (termed ECD-D1) and the isolated HR (termed HR-D1) were secreted into medium of insect cells infected with baculoviruses coding for these modified proteins. The identities of TSHR ECD-D1 and HR-D1 were confirmed by ELISA and immunoblotting using TSHR-specific monoclonal antibodies. The TSHR-ECD-D1 in conditioned medium was folded correctly, as demonstrated by its ability to inhibit radiolabeled TSH binding to the TSH holoreceptor. The TSHR ECD-D1 purification was accomplished in a single step using a TSHR monoclonal antibody affinity column, whereas the HR-D1 required a multistep protocol with a low yield. In conclusion, we report a novel approach to generate the TSHR ECD, as well as the isolated HR in insect cells, the former in sufficient amounts for structural studies. However, such studies will require previous complexing of the ECD with a ligand such as TSH or a thyroid-stimulating antibody. PMID:25860033

  18. Comparison of stainless and mild steel welding fumes in generation of reactive oxygen species

    PubMed Central

    2010-01-01

    Background Welding fumes consist of a wide range of complex metal oxide particles which can be deposited in all regions of the respiratory tract. The welding aerosol is not homogeneous and is generated mostly from the electrode/wire. Over 390,000 welders were reported in the U.S. in 2008 while over 1 million full-time welders were working worldwide. Many health effects are presently under investigation from exposure to welding fumes. Welding fume pulmonary effects have been associated with bronchitis, metal fume fever, cancer and functional changes in the lung. Our investigation focused on the generation of free radicals and reactive oxygen species from stainless and mild steel welding fumes generated by a gas metal arc robotic welder. An inhalation exposure chamber located at NIOSH was used to collect the welding fume particles. Results Our results show that hydroxyl radicals (.OH) were generated from reactions with H2O2 and after exposure to cells. Catalase reduced the generation of .OH from exposed cells indicating the involvement of H2O2. The welding fume suspension also showed the ability to cause lipid peroxidation, effect O2 consumption, induce H2O2 generation in cells, and cause DNA damage. Conclusion Increase in oxidative damage observed in the cellular exposures correlated well with .OH generation in size and type of welding fumes, indicating the influence of metal type and transition state on radical production as well as associated damage. Our results demonstrate that both types of welding fumes are able to generate ROS and ROS-related damage over a range of particle sizes; however, the stainless steel fumes consistently showed a significantly higher reactivity and radical generation capacity. The chemical composition of the steel had a significant impact on the ROS generation capacity with the stainless steel containing Cr and Ni causing more damage than the mild steel. Our results suggest that welding fumes may cause acute lung injury. Since type of

  19. Multilayer Heterojunction Anodes for Saline Wastewater Treatment: Design Strategies and Reactive Species Generation Mechanisms.

    PubMed

    Yang, Yang; Shin, Jieun; Jasper, Justin T; Hoffmann, Michael R

    2016-08-16

    Multilayer heterojunction SbSn/CoTi/Ir anodes, which consist of Ir0.7Ta0.3O2 bottom layers coated onto a titanium base, Co-TiO2 interlayers, and overcoated discrete Sb-SnO2 islands, were prepared by spray pyrolysis. The Ir0.7Ta0.3O2 bottom layer serves as an Ohmic contact to facilitate electron transfer from semiconductor layers to the Ti base. The Co-TiO2 interlayer and overcoated Sb-SnO2 islands enhance the evolution of reactive chlorine. The surficial Sb-SnO2 islands also serve as the reactive sites for free radical generation. Experiments coupled with computational kinetic simulations show that while ·OH and Cl· are initially produced on the SbSn/CoTi/Ir anode surface, the dominant radical formed in solution is the dichlorine radical anion, Cl2·(-). The steady-state concentration of reactive radicals is 10 orders of magnitude lower than that of reactive chlorine. The SbSn/CoTi/Ir anode was applied to electrochemically treat human wastewater. These test results show that COD and NH4(+) can be removed after 2 h of electrolysis with minimal energy consumption (370 kWh/kg COD and 383 kWh/kg NH4(+)). Although free radical species contribute to COD removal, anodes designed to enhance reactive chlorine production are more effective than those designed to enhance free radical production. PMID:27402194

  20. Disaccharides generated from heparan sulphate or heparin modulate chemokine-induced T-cell adhesion to extracellular matrix.

    PubMed

    Hershkoviz, R; Schor, H; Ariel, A; Hecht, I; Cohen, I R; Lider, O; Cahalon, L

    2000-01-01

    We have found previously that disaccharides (DS) enzymatically generated from heparin or heparan sulphate can modulate tumour necrosis factor-alpha (TNF-alpha) secretion from immune cells in vitro and cell-mediated immune reactions in vivo. Here, we show that such DS can modulate the adhesion and migration of human T cells. We found that certain heparin- and heparan sulphate-derived DS induced, in a dose-dependent manner, the adhesion of human T cells to both extracellular matrix (ECM) and immobilized fibronectin (FN); maximal T-cell adhesion occurred with 1 ng/ml of DS. The levels of T-cell adhesion to ECM that were induced by the tested DS molecules resembled those induced by the prototypic chemokine, macrophage inflammatory protein 1beta (MIP-1beta). However, the kinetics of DS-induced T-cell adhesion to FN resembled that induced by phorbol myristate acetate (PMA), but not that induced by MIP-1beta. This adhesion appeared to involve beta1 integrin recognition and activation, and was associated with specific intracellular activation pathways. Although a first exposure of T cells to certain DS molecules appeared to result in cell adhesion, a subsequent exposure of T cells to pro-adhesive chemokines, such as MIP-1beta or RANTES, but not to other pro-adhesive stimuli, for example interleukin-2 or CD3 cross-linking, resulted in inhibition of T-cell adhesion to and chemotactic migration through FN. Hence, we propose that the breakdown products of tissues generated by inflammatory enzymes are part of an intrinsic functional programme, and not necessarily molecular waste. Moreover, because the DS molecules exert their modulatory functions within a limited time, it appears that the historical encounters of the tissue-invading cells with the constituents of inflamed loci may dictate the cells' behaviour upon subsequent exposure to proinflammatory mediators. PMID:10651945

  1. Light Emitting Diode-Generated Blue Light Modulates Fibrosis Characteristics: Fibroblast Proliferation, Migration Speed, and Reactive Oxygen Species Generation

    PubMed Central

    Mamalis, Andrew; Garcha, Manveer; Jagdeo, Jared

    2016-01-01

    Background and Objective Blue light is part of the visible light spectrum that does not generate harmful DNA adducts associated with skin cancer and photoaging, and may represent a safer therapeutic modality for treatment of keloid scars and other fibrotic skin diseases. Our laboratory previously demonstrated that light-emitting diode (LED) red and infrared light inhibits proliferation of skin fibroblasts. Moreover, different wavelengths of light can produce different biological effects. Furthermore, the effects of LED blue light (LED-BL) on human skin fibroblasts are not well characterized. This study investigated the effects of LED-BL on human skin fibroblast proliferation, viability, migration speed, and reactive oxygen-species (ROS) generation. Methods and Materials Irradiation of adult human skin fibroblasts using commercially-available LED-BL panels was performed in vitro, and modulation of proliferation and viability was quantified using the trypan blue dye exclusion assay, migratory speed was assessed using time-lapse video microscopy, and intracellular ROS generation was measured using the dihydrorhodamine flow cytometry assay. Statistical differences between groups were determined by ANOVA and Student s t-test. Results Human skin fibroblasts treated with LED-BL fluences of 5, 30, 45, and 80 J/cm2 demonstrated statistically significant dose-dependent decreases in relative proliferation of 8.4%, 29.1%, 33.8%, 51.7%, and 55.1%, respectively, compared to temperature and environment matched bench control plates, respectively. LED-BL fluences of 5, 30, 45 and 80 J/cm2 decreased fibroblast migration speed to 95 ± 7.0% (p = 0.64), 81.3 ± 5.5% (p = 0.021), 48.5 ± 2.7% (p < 0.0001), and 32.3 ± 1.9% (p < 0.0001), respectively, relative to matched controls. LED fluences of 5, 10, 30, and 80 J/cm2 resulted in statistically significant increases in reactive oxygen species of 110.4%, 116.6%, 127.5%, and 130%, respectively, relative to bench controls. Conclusion At

  2. Chemical mechanisms of the toxicological properties of nanomaterials: generation of intracellular reactive oxygen species.

    PubMed

    Yan, Liang; Gu, Zhanjun; Zhao, Yuliang

    2013-10-01

    As more and more nanomaterials with novel physicochemical properties or new functions are created and used in different research fields and industrial sectors, the scientific and public concerns about their toxic effects on human health and the environment are also growing quickly. In the past decade, the study of the toxicological properties of nanomaterials/nanoparticles has formed a new research field: nanotoxicology. However, most of the data published relate to toxicological phenomena and there is less understanding of the underlying mechanism for nanomaterial-induced toxicity. Nanomaterial-induced reactive oxygen species (ROS) play a key role in cellular and tissue toxicity. Herein, we classify the pathways for intracellular ROS production by nanomaterials into 1) the direct generation of ROS through nanomaterial-catalyzed free-radical reactions in cells, and 2) the indirect generation of ROS through disturbing the inherent biochemical equilibria in cells. We also discuss the chemical mechanisms associated with above pathways of intracellular ROS generation, from the viewpoint of the high reactivity of atoms on the nanosurface. We hope to aid in the understanding of the chemical origin of nanotoxicity to provide new insights for chemical and material scientists for the rational design and creation of safer and greener nanomaterials.

  3. Myeloperoxidase-generated reactive nitrogen species convert LDL into an atherogenic form in vitro

    PubMed Central

    Podrez, Eugene A.; Schmitt, David; Hoff, Henry F.; Hazen, Stanley L.

    1999-01-01

    Oxidized LDL is implicated in atherosclerosis; however, the pathways that convert LDL into an atherogenic form in vivo are not established. Production of reactive nitrogen species may be one important pathway, since LDL recovered from human atherosclerotic aorta is enriched in nitrotyrosine. We now report that reactive nitrogen species generated by the MPO-H2O2-NO2– system of monocytes convert LDL into a form (NO2-LDL) that is avidly taken up and degraded by macrophages, leading to massive cholesterol deposition and foam cell formation, essential steps in lesion development. Incubation of LDL with isolated MPO, an H2O2-generating system, and nitrite (NO2–)— a major end-product of NO metabolism—resulted in nitration of apolipoprotein B 100 tyrosyl residues and initiation of LDL lipid peroxidation. The time course of LDL protein nitration and lipid peroxidation paralleled the acquisition of high-affinity, concentration-dependent, and saturable binding of NO2-LDL to human monocyte–derived macrophages and mouse peritoneal macrophages. LDL modification and conversion into a high-uptake form occurred in the absence of free metal ions, required NO2–, occurred at physiological levels of Cl–, and was inhibited by heme poisons, catalase, and BHT. Macrophage binding of NO2-LDL was specific and mediated by neither the LDL receptor nor the scavenger receptor class A type I. Exposure of macrophages to NO2-LDL promoted cholesteryl ester synthesis, intracellular cholesterol and cholesteryl ester accumulation, and foam cell formation. Collectively, these results identify MPO-generated reactive nitrogen species as a physiologically plausible pathway for converting LDL into an atherogenic form. PMID:10359564

  4. The analysis of a reactive hydromagnetic internal heat generating poiseuille fluid flow through a channel.

    PubMed

    Hassan, A R; Maritz, R

    2016-01-01

    In this paper, the analysis of a reactive hydromagnetic Poiseuille fluid flow under different chemical kinetics through a channel in the presence of a heat source is carried out. An exothermic reaction is assumed while the concentration of the material is neglected. The Adomian decomposition method together with Pade approximation technique are used to obtain the solutions of the governing nonlinear non-dimensional differential equations. Effects of various physical parameters on the velocity and temperature fields of the fluid flow are investigated. The entropy generation analysis, irreversibility distribution ratio, Bejan number and the conditions for thermal criticality for different chemical kinetics are also presented. PMID:27563527

  5. Compensation for Harmonic Currents and Reactive Power in Wind Power Generation System using PWM Inverter

    NASA Astrophysics Data System (ADS)

    Shinohara, Katsuji; Shinhatsubo, Kurato; Iimori, Kenichi; Yamamoto, Kichiro; Saruban, Takamichi; Yamaemori, Takahiro

    In recent year, consciousness of environmental problems is enhancing, and the price of the electric power purchased by an electric power company is established expensive for the power plant utilizing the natural energy. So, the introduction of the wind power generation is promoted in Japan. Generally, squirrel-cage induction machines are widely used as a generator in wind power generation system because of its small size, lightweight and low-cost. However, the induction machines do not have a source of excitation. Thus, it causes the inrush currents and the instantaneous voltage drop when the generator is directly connected to a power grid. To reduce the inrush currents, an AC power regulator is used. Wind power generations are frequently connected to and disconnected from the power grid. However, when the inrush currents are reduced, harmonic currents are caused by phase control of the AC power regulator. And the phase control of AC power regulator cannot control the power factor. Therefore, we propose the use of the AC power regulator to compensate for the harmonic currents and reactive power in the wind power generation system, and demonstrate the validity of its system by simulated and experimental results.

  6. Extracellular matrix molecules exhibit unique expression pattern in the climbing fiber-generating precerebellar nucleus, the inferior olive.

    PubMed

    Kecskes, S; Gaál, B; Rácz, É; Birinyi, A; Hunyadi, A; Matesz, C

    2015-01-22

    Extracellular matrix (ECM) accumulates around different neuronal compartments of the central nervous system (CNS) or appears in diffuse reticular form throughout the neuropil. In the adult CNS, the perineuronal net (PNN) surrounds the perikarya and dendrites of various neuron types, whereas the axonal coats are aggregations of ECM around the individual synapses, and the nodal ECM is localized at the nodes of Ranvier. Previous studies in our laboratory demonstrated on rats that the heterogeneous distribution and molecular composition of ECM is associated with the variable cytoarchitecture and hodological organization of the vestibular nuclei and may also be related to their specific functions in gaze and posture control as well as in the compensatory mechanisms following vestibular lesion. Here, we investigated the ECM expression pattern in the climbing fiber-generating inferior olive (IO), which is functionally related to the vestibular nuclei. By using histochemical and immunohistochemical methods, the most characteristic finding was the lack of PNNs, presumably due to the absence of synapses on the perikarya and proximal dendrites of IO neurons. On the other hand, the darkly stained dots or ring-like structures in the neuropil might represent the periaxonal coats around the axon terminals of olivary synaptic glomeruli. We have observed positive ECM reaction for the hyaluronan, tenascin-R, hyaluronan and proteoglycan link protein 1 (HAPLN1) and various chondroitin sulfate proteoglycans. The staining intensity and distribution of ECM molecules revealed a number of differences between the functionally different subnuclei of IO. We hypothesized that the different molecular composition and intensity differences of ECM reaction is associated with different control mechanisms of gaze and posture control executed by the visuomotor-vestibular, somatosensory and integrative subnuclei of the IO.

  7. Chemically reactive species in liquids generated by atmospheric-pressure plasmas and their roles in plasma medicine

    NASA Astrophysics Data System (ADS)

    Hamaguchi, Satoshi

    2013-07-01

    Plasmas whose gas temperatures are close to room temperature may be generated in ambient air or a gas at atmospheric pressure with the use of low-frequency high voltage or low-power radio-frequency (RF) or microwave power applied to electrodes. Such plasmas can serve as a powerful source of free radicals and/or chemically reactive species that arise from atoms and molecules of the ambient gas. Recently use of such plasmas for medical purposes has attracted much attention as they can be implemented in possible medical devices that can cause blood coagulation, heal wounds, facilitate angiogenesis, sterilize surgical devices as well as living tissues without harming healthy cells, and selectively inactivate cancer cells. Especially of interest among reactive species generated by atmospheric-pressure plasmas (APP) are reactive oxygen species (ROS) and reactive nitrogen species (RNS) that are generated in liquid phase. Since most living tissues and cells are immersed in liquids (such as blood or culture media), reactive species generated by APPs in the gas phase are transported to the liquid phase and possibly converted to different types of reactive species therein before causing some influence on the tissues or cells. In this study, the rate equations are solved to evaluate concentrations of various reactive species in pure water that are originated by plasma reactions in atmosphere and possible effects of such species (including ROS/RNS) on living tissues and cells are discussed.

  8. Chemically reactive species in liquids generated by atmospheric-pressure plasmas and their roles in plasma medicine

    SciTech Connect

    Hamaguchi, Satoshi

    2013-07-11

    Plasmas whose gas temperatures are close to room temperature may be generated in ambient air or a gas at atmospheric pressure with the use of low-frequency high voltage or low-power radio-frequency (RF) or microwave power applied to electrodes. Such plasmas can serve as a powerful source of free radicals and/or chemically reactive species that arise from atoms and molecules of the ambient gas. Recently use of such plasmas for medical purposes has attracted much attention as they can be implemented in possible medical devices that can cause blood coagulation, heal wounds, facilitate angiogenesis, sterilize surgical devices as well as living tissues without harming healthy cells, and selectively inactivate cancer cells. Especially of interest among reactive species generated by atmospheric-pressure plasmas (APP) are reactive oxygen species (ROS) and reactive nitrogen species (RNS) that are generated in liquid phase. Since most living tissues and cells are immersed in liquids (such as blood or culture media), reactive species generated by APPs in the gas phase are transported to the liquid phase and possibly converted to different types of reactive species therein before causing some influence on the tissues or cells. In this study, the rate equations are solved to evaluate concentrations of various reactive species in pure water that are originated by plasma reactions in atmosphere and possible effects of such species (including ROS/RNS) on living tissues and cells are discussed.

  9. UVB Dependence of Quantum Dot Reactive Oxygen Species Generation in Common Skin Cell Models.

    PubMed

    Mortensen, Luke J; Faulknor, Renea; Ravichandran, Supriya; Zheng, Hong; DeLouise, Lisa A

    2015-09-01

    Studies have shown that UVB can slightly increase the penetration of nanoparticles through skin and significantly alter skin cell biology, thus it is important to understand if and how UVB may impact subsequent nanoparticle skin cell interactions. The research presented herein evaluates the effect of UVB on quantum dot (QD) uptake and reactive oxygen species (ROS) generation in primary keratinocytes, primary melanocytes, and related cell lines. QD exposure induced cell type dependent ROS responses increased by pre-exposing cells to UVB and correlated with the level of QD uptake. Our results suggest that keratinocytes may be at greater risk for QD induced ROS generation than melanocytes, and raise awareness about the differential cellular effects that topically applied nanomaterials may have on UVB exposed skin.

  10. Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species.

    PubMed

    Jones, Rheinallt M; Luo, Liping; Ardita, Courtney S; Richardson, Arena N; Kwon, Young Man; Mercante, Jeffrey W; Alam, Ashfaqul; Gates, Cymone L; Wu, Huixia; Swanson, Phillip A; Lambeth, J David; Denning, Patricia W; Neish, Andrew S

    2013-11-27

    The resident prokaryotic microbiota of the metazoan gut elicits profound effects on the growth and development of the intestine. However, the molecular mechanisms of symbiotic prokaryotic-eukaryotic cross-talk in the gut are largely unknown. It is increasingly recognized that physiologically generated reactive oxygen species (ROS) function as signalling secondary messengers that influence cellular proliferation and differentiation in a variety of biological systems. Here, we report that commensal bacteria, particularly members of the genus Lactobacillus, can stimulate NADPH oxidase 1 (Nox1)-dependent ROS generation and consequent cellular proliferation in intestinal stem cells upon initial ingestion into the murine or Drosophila intestine. Our data identify and highlight a highly conserved mechanism that symbiotic microorganisms utilize in eukaryotic growth and development. Additionally, the work suggests that specific redox-mediated functions may be assigned to specific bacterial taxa and may contribute to the identification of microbes with probiotic potential.

  11. Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species

    PubMed Central

    Jones, Rheinallt M; Luo, Liping; Ardita, Courtney S; Richardson, Arena N; Kwon, Young Man; Mercante, Jeffrey W; Alam, Ashfaqul; Gates, Cymone L; Wu, Huixia; Swanson, Phillip A; Lambeth, J David; Denning, Patricia W; Neish, Andrew S

    2013-01-01

    The resident prokaryotic microbiota of the metazoan gut elicits profound effects on the growth and development of the intestine. However, the molecular mechanisms of symbiotic prokaryotic–eukaryotic cross-talk in the gut are largely unknown. It is increasingly recognized that physiologically generated reactive oxygen species (ROS) function as signalling secondary messengers that influence cellular proliferation and differentiation in a variety of biological systems. Here, we report that commensal bacteria, particularly members of the genus Lactobacillus, can stimulate NADPH oxidase 1 (Nox1)-dependent ROS generation and consequent cellular proliferation in intestinal stem cells upon initial ingestion into the murine or Drosophila intestine. Our data identify and highlight a highly conserved mechanism that symbiotic microorganisms utilize in eukaryotic growth and development. Additionally, the work suggests that specific redox-mediated functions may be assigned to specific bacterial taxa and may contribute to the identification of microbes with probiotic potential. PMID:24141879

  12. UVB Dependence of Quantum Dot Reactive Oxygen Species Generation in Common Skin Cell Models.

    PubMed

    Mortensen, Luke J; Faulknor, Renea; Ravichandran, Supriya; Zheng, Hong; DeLouise, Lisa A

    2015-09-01

    Studies have shown that UVB can slightly increase the penetration of nanoparticles through skin and significantly alter skin cell biology, thus it is important to understand if and how UVB may impact subsequent nanoparticle skin cell interactions. The research presented herein evaluates the effect of UVB on quantum dot (QD) uptake and reactive oxygen species (ROS) generation in primary keratinocytes, primary melanocytes, and related cell lines. QD exposure induced cell type dependent ROS responses increased by pre-exposing cells to UVB and correlated with the level of QD uptake. Our results suggest that keratinocytes may be at greater risk for QD induced ROS generation than melanocytes, and raise awareness about the differential cellular effects that topically applied nanomaterials may have on UVB exposed skin. PMID:26485933

  13. Berberine-induced apoptosis in human prostate cancer cells is initiated by reactive oxygen species generation

    SciTech Connect

    Meeran, Syed M.; Katiyar, Suchitra; Katiyar, Santosh K.

    2008-05-15

    Phytochemicals show promise as potential chemopreventive or chemotherapeutic agents against various cancers. Here we report the chemotherapeutic effects of berberine, a phytochemical, on human prostate cancer cells. The treatment of human prostate cancer cells (PC-3) with berberine induced dose-dependent apoptosis but this effect of berberine was not seen in non-neoplastic human prostate epithelial cells (PWR-1E). Berberine-induced apoptosis was associated with the disruption of the mitochondrial membrane potential, release of apoptogenic molecules (cytochrome c and Smac/DIABLO) from mitochondria and cleavage of caspase-9,-3 and PARP proteins. This effect of berberine on prostate cancer cells was initiated by the generation of reactive oxygen species (ROS) irrespective of their androgen responsiveness, and the generation of ROS was through the increased induction of xanthine oxidase. Treatment of cells with allopurinol, an inhibitor of xanthine oxidase, inhibited berberine-induced oxidative stress in cancer cells. Berberine-induced apoptosis was blocked in the presence of antioxidant, N-acetylcysteine, through the prevention of disruption of mitochondrial membrane potential and subsequently release of cytochrome c and Smac/DIABLO. In conclusion, the present study reveals that the berberine-mediated cell death of human prostate cancer cells is regulated by reactive oxygen species, and therefore suggests that berberine may be considered for further studies as a promising therapeutic candidate for prostate cancer.

  14. Photochemistry of Dissolved Black Carbon Released from Biochar: Reactive Oxygen Species Generation and Phototransformation.

    PubMed

    Fu, Heyun; Liu, Huiting; Mao, Jingdong; Chu, Wenying; Li, Qilin; Alvarez, Pedro J J; Qu, Xiaolei; Zhu, Dongqiang

    2016-02-01

    Dissolved black carbon (BC) released from biochar can be one of the more photoactive components in the dissolved organic matter (DOM) pool. Dissolved BC was mainly composed of aliphatics and aromatics substituted by aromatic C-O and carboxyl/ester/quinone moieties as determined by solid-state nuclear magnetic resonance. It underwent 56% loss of absorbance at 254 nm, almost complete loss of fluorescence, and 30% mineralization during a 169 h simulated sunlight exposure. Photoreactions preferentially targeted aromatic and methyl moieties, generating CH2/CH/C and carboxyl/ester/quinone functional groups. During irradiation, dissolved BC generated reactive oxygen species (ROS) including singlet oxygen and superoxide. The apparent quantum yield of singlet oxygen was 4.07 ± 0.19%, 2-3 fold higher than many well-studied DOM. Carbonyl-containing structures other than aromatic ketones were involved in the singlet oxygen sensitization. The generation of superoxide apparently depended on electron transfer reactions mediated by silica minerals in dissolved BC, in which phenolic structures served as electron donors. Self-generated ROS played an important role in the phototransformation. Photobleaching of dissolved BC decreased its ability to further generate ROS due to lower light absorption. These findings have significant implications on the environmental fate of dissolved BC and that of priority pollutants. PMID:26717492

  15. Controllable generation of reactive oxygen species by femtosecond-laser irradiation

    NASA Astrophysics Data System (ADS)

    Yan, Wei; He, Hao; Wang, Yintao; Wang, Yisen; Hu, Minglie; Wang, Chingyue

    2014-02-01

    Femtosecond lasers have been advancing Biophotonics research in the past two decades with multiphoton microscopy, microsurgery, and photodynamic therapy. Nevertheless, laser irradiation is identified to bring photodamage to cells via reactive oxygen species (ROS) generation with unclear mechanism. Meanwhile, currently in biological researches, there is no effective method to provide controllable ROS production precisely, which originally is leaked from mitochondria during respiration and plays a key role in a lot of important cellular processes and cellular signaling pathways. In this study, we show the process of how the tightly focused femtosecond-laser induces ROS generation solely in mitochondria at the very beginning and then release to cytosol if the stimulus is intense enough. At certain weak power levels, the laser pulses induce merely moderate Ca2+ release but this is necessary for the laser to generate ROS in mitochondria. Cellular original ROS are also involved with a small contribution. When the power is above a threshold, ROS are then released to cytosol, indicating photodamage overwhelming cellular repair ability. The mechanisms in those two cases are quite different. Those results clarify parts of the mechanism in laser-induced ROS generation. Hence, it is possible to further this optical scheme to provide controllable ROS generation for ROS-related biological researches including mitochondrial diseases and aging.

  16. Controllable generation of reactive oxygen species by femtosecond-laser irradiation

    SciTech Connect

    Yan, Wei; He, Hao Wang, Yintao; Wang, Yisen; Hu, Minglie; Wang, Chingyue

    2014-02-24

    Femtosecond lasers have been advancing Biophotonics research in the past two decades with multiphoton microscopy, microsurgery, and photodynamic therapy. Nevertheless, laser irradiation is identified to bring photodamage to cells via reactive oxygen species (ROS) generation with unclear mechanism. Meanwhile, currently in biological researches, there is no effective method to provide controllable ROS production precisely, which originally is leaked from mitochondria during respiration and plays a key role in a lot of important cellular processes and cellular signaling pathways. In this study, we show the process of how the tightly focused femtosecond-laser induces ROS generation solely in mitochondria at the very beginning and then release to cytosol if the stimulus is intense enough. At certain weak power levels, the laser pulses induce merely moderate Ca{sup 2+} release but this is necessary for the laser to generate ROS in mitochondria. Cellular original ROS are also involved with a small contribution. When the power is above a threshold, ROS are then released to cytosol, indicating photodamage overwhelming cellular repair ability. The mechanisms in those two cases are quite different. Those results clarify parts of the mechanism in laser-induced ROS generation. Hence, it is possible to further this optical scheme to provide controllable ROS generation for ROS-related biological researches including mitochondrial diseases and aging.

  17. Preferential Extracellular Generation of the Active Parkinsonian Toxin MPP+ by Transporter-Independent Export of the Intermediate MPDP+

    PubMed Central

    Pape, Regina; Meiser, Johannes; Karreman, Christiaan; Strittmatter, Tobias; Odermatt, Meike; Cirri, Erica; Friemel, Anke; Ringwald, Markus; Pasquarelli, Noemi; Ferger, Boris; Brunner, Thomas; Marx, Andreas; Möller, Heiko M.; Hiller, Karsten; Leist, Marcel

    2015-01-01

    Abstract Aims: 1-Methyl-4-phenyl-tetrahydropyridine (MPTP) is among the most widely used neurotoxins for inducing experimental parkinsonism. MPTP causes parkinsonian symptoms in mice, primates, and humans by killing a subpopulation of dopaminergic neurons. Extrapolations of data obtained using MPTP-based parkinsonism models to human disease are common; however, the precise mechanism by which MPTP is converted into its active neurotoxic metabolite, 1-methyl-4-phenyl-pyridinium (MPP+), has not been fully elucidated. In this study, we aimed to address two unanswered questions related to MPTP toxicology: (1) Why are MPTP-converting astrocytes largely spared from toxicity? (2) How does MPP+ reach the extracellular space? Results: In MPTP-treated astrocytes, we discovered that the membrane-impermeable MPP+, which is generally assumed to be formed inside astrocytes, is almost exclusively detected outside of these cells. Instead of a transporter-mediated export, we found that the intermediate, 1-methyl-4-phenyl-2,3-dihydropyridinium (MPDP+), and/or its uncharged conjugate base passively diffused across cell membranes and that MPP+ was formed predominately by the extracellular oxidation of MPDP+ into MPP+. This nonenzymatic extracellular conversion of MPDP+ was promoted by O2, a more alkaline pH, and dopamine autoxidation products. Innovation and Conclusion: Our data indicate that MPTP metabolism is compartmentalized between intracellular and extracellular environments, explain the absence of toxicity in MPTP-converting astrocytes, and provide a rationale for the preferential formation of MPP+ in the extracellular space. The mechanism of transporter-independent extracellular MPP+ formation described here indicates that extracellular genesis of MPP+ from MPDP is a necessary prerequisite for the selective uptake of this toxin by catecholaminergic neurons. Antioxid. Redox Signal. 23, 1001–1016. PMID:26413876

  18. Complex coordinated extracellular metabolism: Acid phosphatases activate diluted human leukocyte proteins to generate energy flow as NADPH from purine nucleotide ribose

    PubMed Central

    Hibbs, John B.; Vavrin, Zdenek; Cox, James E.

    2016-01-01

    Complex metabolism is thought to occur exclusively in the crowded intracellular environment. Here we report that diluted enzymes from lysed human leukocytes produce extracellular energy. Our findings involve two pathways: the purine nucleotide catabolic pathway and the pentose phosphate pathway, which function together to generate energy as NADPH. Glucose6P fuel for NADPH production is generated from structural ribose of purine ribonucleoside monophosphates, ADP, and ADP-ribose. NADPH drives glutathione reductase to reduce an oxidized glutathione disulfide-glutathione redox couple. Acid phosphatases initiate ribose5P salvage from purine ribonucleoside monophosphates, and transaldolase controls the direction of carbon chain flow through the nonoxidative branch of the pentose phosphate pathway. These metabolic control points are regulated by pH. Biologically, this energy conserving metabolism could function in perturbed extracellular spaces. PMID:26895212

  19. Complex coordinated extracellular metabolism: Acid phosphatases activate diluted human leukocyte proteins to generate energy flow as NADPH from purine nucleotide ribose.

    PubMed

    Hibbs, John B; Vavrin, Zdenek; Cox, James E

    2016-08-01

    Complex metabolism is thought to occur exclusively in the crowded intracellular environment. Here we report that diluted enzymes from lysed human leukocytes produce extracellular energy. Our findings involve two pathways: the purine nucleotide catabolic pathway and the pentose phosphate pathway, which function together to generate energy as NADPH. Glucose6P fuel for NADPH production is generated from structural ribose of purine ribonucleoside monophosphates, ADP, and ADP-ribose. NADPH drives glutathione reductase to reduce an oxidized glutathione disulfide-glutathione redox couple. Acid phosphatases initiate ribose5P salvage from purine ribonucleoside monophosphates, and transaldolase controls the direction of carbon chain flow through the nonoxidative branch of the pentose phosphate pathway. These metabolic control points are regulated by pH. Biologically, this energy conserving metabolism could function in perturbed extracellular spaces.

  20. Redox cycling and generation of reactive oxygen species in commercial infant formulas.

    PubMed

    Boatright, William L; Crum, Andrea D

    2016-04-01

    Three nationally prominent commercial powdered infant formulas generated hydrogen peroxide, ranging from 10.46 to 11.62 μM, when prepared according to the manufacturer's instructions. Treating infant formulas with the chelating agent diethylene triamine pentaacetic acid (DTPA) significantly reduced H2O2 generation. In contrast, the addition of disodium ethylenediaminetetraacetic acid (EDTA) elevated the level of H2O2 generated in the same infant formulas by approximately 3- to 4-fold above the untreated infant formulas. The infant formulas contained ascorbate radicals ranging from about 138 nM to 40 nM. Treatment with catalase reduced the ascorbate radical contents by as much as 67%. Treatment with DTPA further reduced ascorbate radical signals to below quantifiable levels in most samples, further implicating the involvement of transition metal redox cycling in reactive oxygen species (ROS) formation. Supportive evidence of the generation of ROS is provided using luminol-enhanced luminescence (LEL) in both model mixtures of ascorbic acid and in commercial infant formulas. PMID:26593482

  1. Redox cycling and generation of reactive oxygen species in commercial infant formulas.

    PubMed

    Boatright, William L; Crum, Andrea D

    2016-04-01

    Three nationally prominent commercial powdered infant formulas generated hydrogen peroxide, ranging from 10.46 to 11.62 μM, when prepared according to the manufacturer's instructions. Treating infant formulas with the chelating agent diethylene triamine pentaacetic acid (DTPA) significantly reduced H2O2 generation. In contrast, the addition of disodium ethylenediaminetetraacetic acid (EDTA) elevated the level of H2O2 generated in the same infant formulas by approximately 3- to 4-fold above the untreated infant formulas. The infant formulas contained ascorbate radicals ranging from about 138 nM to 40 nM. Treatment with catalase reduced the ascorbate radical contents by as much as 67%. Treatment with DTPA further reduced ascorbate radical signals to below quantifiable levels in most samples, further implicating the involvement of transition metal redox cycling in reactive oxygen species (ROS) formation. Supportive evidence of the generation of ROS is provided using luminol-enhanced luminescence (LEL) in both model mixtures of ascorbic acid and in commercial infant formulas.

  2. Lactobacillus rhamnosus blocks inflammatory signaling in vivo via reactive oxygen species generation.

    PubMed

    Lin, Patricia W; Myers, Loren E S; Ray, Laurie; Song, Shuh-Chyung; Nasr, Tala R; Berardinelli, Andrew J; Kundu, Kousik; Murthy, Niren; Hansen, Jason M; Neish, Andrew S

    2009-10-15

    Uncontrolled inflammatory responses in the immature gut may play a role in the pathogenesis of many intestinal inflammatory syndromes that present in newborns or children, such as necrotizing enterocolitis (NEC), idiopathic inflammatory bowel diseases (IBD), or infectious enteritis. Consistent with previous reports that murine intestinal function matures over the first 3 weeks of life, we show that inflammatory signaling in the neonatal mouse gut increases during postnatal maturation, with peak responses occurring at 2-3 weeks. Probiotic bacteria can block inflammatory responses in cultured epithelia by inducing the generation of reactive oxygen species (ROS), which inhibit NF-kappaB activation through oxidative inactivation of the key regulatory enzyme Ubc12. We now report for the first time that the probiotic Lactobacillus rhamnosus GG (LGG) can induce ROS generation in intestinal epithelia in vitro and in vivo. Intestines from immature mice gavage fed LGG exhibited increased GSH oxidation and cullin-1 deneddylation, reflecting local ROS generation and its resultant Ubc12 inactivation, respectively. Furthermore, prefeeding LGG prevented TNF-alpha-induced intestinal NF-kappaB activation. These studies indicate that LGG can reduce inflammatory signaling in immature intestines by inducing local ROS generation and may be a mechanism by which probiotic bacteria can prevent NEC in premature infants or reduce the severity of IBD in children.

  3. Impact of plasma jet vacuum ultraviolet radiation on reactive oxygen species generation in bio-relevant liquids

    NASA Astrophysics Data System (ADS)

    Jablonowski, H.; Bussiahn, R.; Hammer, M. U.; Weltmann, K.-D.; von Woedtke, Th.; Reuter, S.

    2015-12-01

    Plasma medicine utilizes the combined interaction of plasma produced reactive components. These are reactive atoms, molecules, ions, metastable species, and radiation. Here, ultraviolet (UV, 100-400 nm) and, in particular, vacuum ultraviolet (VUV, 10-200 nm) radiation generated by an atmospheric pressure argon plasma jet were investigated regarding plasma emission, absorption in a humidified atmosphere and in solutions relevant for plasma medicine. The energy absorption was obtained for simple solutions like distilled water (dH2O) or ultrapure water and sodium chloride (NaCl) solution as well as for more complex ones, for example, Rosewell Park Memorial Institute (RPMI 1640) cell culture media. As moderate stable reactive oxygen species, hydrogen peroxide (H2O2) was studied. Highly reactive oxygen radicals, namely, superoxide anion (O2•-) and hydroxyl radicals (•OH), were investigated by the use of electron paramagnetic resonance spectroscopy. All species amounts were detected for three different treatment cases: Plasma jet generated VUV and UV radiation, plasma jet generated UV radiation without VUV part, and complete plasma jet including all reactive components additionally to VUV and UV radiation. It was found that a considerable amount of radicals are generated by the plasma generated photoemission. From the experiments, estimation on the low hazard potential of plasma generated VUV radiation is discussed.

  4. Impact of plasma jet vacuum ultraviolet radiation on reactive oxygen species generation in bio-relevant liquids

    SciTech Connect

    Jablonowski, H.; Hammer, M. U.; Reuter, S.; Bussiahn, R.; Weltmann, K.-D.; Woedtke, Th. von

    2015-12-15

    Plasma medicine utilizes the combined interaction of plasma produced reactive components. These are reactive atoms, molecules, ions, metastable species, and radiation. Here, ultraviolet (UV, 100–400 nm) and, in particular, vacuum ultraviolet (VUV, 10–200 nm) radiation generated by an atmospheric pressure argon plasma jet were investigated regarding plasma emission, absorption in a humidified atmosphere and in solutions relevant for plasma medicine. The energy absorption was obtained for simple solutions like distilled water (dH{sub 2}O) or ultrapure water and sodium chloride (NaCl) solution as well as for more complex ones, for example, Rosewell Park Memorial Institute (RPMI 1640) cell culture media. As moderate stable reactive oxygen species, hydrogen peroxide (H{sub 2}O{sub 2}) was studied. Highly reactive oxygen radicals, namely, superoxide anion (O{sub 2}{sup •−}) and hydroxyl radicals ({sup •}OH), were investigated by the use of electron paramagnetic resonance spectroscopy. All species amounts were detected for three different treatment cases: Plasma jet generated VUV and UV radiation, plasma jet generated UV radiation without VUV part, and complete plasma jet including all reactive components additionally to VUV and UV radiation. It was found that a considerable amount of radicals are generated by the plasma generated photoemission. From the experiments, estimation on the low hazard potential of plasma generated VUV radiation is discussed.

  5. Measurements of UV-generated free radicals/reactive oxygen species (ROS) in skin

    NASA Astrophysics Data System (ADS)

    Herrling, Th.; Jung, K.; Fuchs, J.

    2006-03-01

    Free radicals/reactive oxygen species (ROS) generated in skin by UV irradiation were measured by electron spin resonance (ESR). To increase the sensitivity of measurement the short life free radicals/ROS were scavenged and accumulated by using the nitroxyl probe 3-carboxy-2,2,5,5-tetrametylpyrrolidine-1-oxyl (PCA). The spatial distribution of free radicals/ROS measured in pig skin biopsies with ESR imaging after UV irradiation corresponds to the intensity decay of irradiance in the depth of the skin. The main part of free radicals/ROS were generated by UVA (320-400 nm) so that the spatial distribution of free radicals reaches up to the lower side of the dermis. In vivo measurements on human skin were performed with a L-band ESR spectrometer and a surface coil integrating the signal intensities from all skin layers to get a sufficient signal amplitude. Using this experimental arrangement the protection of UVB and UVA/B filter against the generation of free radicals/ROS in skin were measured. The protection against ROS and the repair of damages caused by them can be realized with active antioxidants characterized by a high antioxidative power (AP). The effect of UV filter and antioxidants corresponding to their protection against free radicals/ROS in skin generated by UVAB irradiation can be quantified by the new radical sun protection factor (RSF). The RSF indicates the increase of time for staying in the sun to generate the same number of free radicals/ROS in the skin like for the unprotected skin. Regarding the amount of generated free radicals/ROS in skin as an biophysical endpoint the RSF characterizes both the protection against UVB and UVA radiation.

  6. Corrosion-induced gas generation in a nuclear waste repository: Reactive geochemistry and multiphase flow effect

    SciTech Connect

    Xu, T.; Senger, R.; Finsterle, S.

    2008-10-15

    Corrosion of steel canisters, stored in a repository for spent fuel and high-level nuclear wastes, leads to the generation and accumulation of hydrogen gas in the backfilled emplacement tunnels, which may significantly affect long-term repository safety. Previous studies used H{sub 2} generation rates based on the volume of the waste or canister material and the stoichiometry of the corrosion reaction. However, iron corrosion and H{sub 2} generation rates vary with time, depending on factors such as amount of iron, water availability, water contact area, and aqueous and solid chemistry. To account for these factors and feedback mechanisms, we developed a chemistry model related to iron corrosion, coupled with two-phase (liquid and gas) flow phenomena that are driven by gas-pressure buildup associated with H{sub 2} generation and water consumption. Results indicate that by dynamically calculating H{sub 2} generation rates based on a simple model of corrosion chemistry, and by coupling this corrosion reaction with two-phase flow processes, the degree and extent of gas pressure buildup could be much smaller compared to a model that neglects the coupling between flow and reactive transport mechanisms. By considering the feedback of corrosion chemistry, the gas pressure increases initially at the canister, but later decreases and eventually returns to a stabilized pressure that is slightly higher than the background pressure. The current study focuses on corrosion under anaerobic conditions for which the coupled hydrogeochemical model was used to examine the role of selected physical parameters on the H{sub 2} gas generation and corresponding pressure buildup in a nuclear waste repository. The developed model can be applied to evaluate the effect of water and mineral chemistry of the buffer and host rock on the corrosion reaction for future site-specific studies.

  7. Generation of Reactive Oxygen and Anti-Oxidant Species by Hydrodynamically-Stressed Suspensions of Morinda citrofolia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The generation of reactive oxygen species (ROS) by plant cell suspension cultures, in response to the imposition of both biotic and abiotic stress, is well-documented. This study investigated the generation of hydrogen peroxide by hydrodynamically-stressed cultures of Morinda citrifolia, over a 5-ho...

  8. Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation.

    SciTech Connect

    Chibli, H.; Carlini, L.; Park, S.; Dimitrijevic, N. M.; Nadeau, J. L.

    2011-01-01

    Indium phosphide (InP) quantum dots (QDs) have emerged as a presumably less hazardous alternative to cadmium-based particles, but their cytotoxicity has not been well examined. Although their constituent elements are of very low toxicity to cells in culture, they nonetheless exhibit phototoxicity related to generation of reactive oxygen species by excited electrons and/or holes interacting with water and molecular oxygen. Using spin-trap electron paramagnetic resonance (EPR) spectroscopy and reporter assays, we find a considerable amount of superoxide and a small amount of hydroxyl radical formed under visible illumination of biocompatible InP QDs with a single ZnS shell, comparable to what is seen with CdTe. A double thickness shell reduces the reactive oxygen species concentration approximately two-fold. Survival assays in five cell lines correspondingly indicate a distinct reduction in toxicity with the double-shell InP QDs. Toxicity varies significantly across cell lines according to the efficiency of uptake, being overall significantly less than what is seen with CdTe or CdSe/ZnS. This indicates that InP QDs are a useful alternative to cadmium-containing QDs, while remaining capable of electron-transfer processes that may be undesirable or which may be exploited for photosensitization applications.

  9. Autophagy-related Gene 7 (ATG7) and Reactive Oxygen Species/Extracellular Signal-regulated Kinase Regulate Tetrandrine-induced Autophagy in Human Hepatocellular Carcinoma*

    PubMed Central

    Gong, Ke; Chen, Chao; Zhan, Yao; Chen, Yan; Huang, Zebo; Li, Wenhua

    2012-01-01

    Tetrandrine, a bisbenzylisoquinoline alkaloid isolated from the broadly used Chinese medicinal herb Stephaniae tetrandrae, exhibits potent antitumor effects and has the potential to be used as a cancer chemotherapeutic agent. We previously reported that high concentrations of tetrandrine induce apoptosis in liver cancer cells. Here, we found that in human hepatocellular carcinoma (HCC) cells, a low dose of tetrandrine (5 μm) induced the expression of LC3-II, resulted in the formation of acidic autophagolysosome vacuoles (AVOs), and caused a punctate fluorescence pattern with the GFP-LC3 protein, which all are markers for cellular autophagy. Tetrandrine induced the production of intracellular reactive oxygen species (ROS), and treatment with ROS scavengers significantly abrogated the tetrandrine-induced autophagy. These results suggest that the generation of ROS plays an important role in promoting tetrandrine-induced autophagy. Tetrandrine-induced mitochondrial dysfunction resulted in ROS accumulation and autophagy. ROS generation activated the ERK MAP kinase, and the ERK signaling pathway at least partially contributed to tetrandrine-induced autophagy in HCC cells. Moreover, we found that tetrandrine transcriptionally regulated the expression of autophagy related gene 7 (ATG7), which promoted tetrandrine-induced autophagy. In addition to in vitro studies, similar results were also observed in vivo, where tetrandrine caused the accumulation of ROS and induced cell autophagy in a tumor xenograft model. Interestingly, tetrandrine treatment also induced autophagy in a ROS-dependent manner in C. elegans muscle cells. Therefore, these findings suggest that tetrandrine is a potent autophagy agonist and may be a promising clinical chemotherapeutic agent. PMID:22927446

  10. Tks5-dependent, Nox-mediated Generation of Reactive Oxygen Species is Necessary for Invadopodia Formation*

    PubMed Central

    Diaz, Begoña; Shani, Gidon; Pass, Ian; Anderson, Diana; Quintavalle, Manuela; Courtneidge, Sara A.

    2009-01-01

    Invadopodia are actin-rich membrane protrusions of cancer cells which facilitate pericellular proteolysis and invasive behavior. We show here that reactive oxygen species (ROS) generated by the NADPH oxidase (Nox) system are necessary for invadopodia formation and function. The invadopodia protein Tks5 is structurally related to p47phox, a Nox component in phagocytic cells. Knockdown of Tks5 reduces total ROS levels in cancer cells. Furthermore, Tks5 and p22phox can associate with each other, suggesting that Tks5 is part of the Nox complex. Tyrosine phosphorylation of Tks5 and Tks4, but not other Src substrates, is reduced by Nox inhibition. We propose that Tks5 facilitates the production of ROS necessary for invadopodia formation, and that in turn ROS modulates Tks5 tyrosine phosphorylation in a positive feedback loop. PMID:19755709

  11. Hemoglobin fructation promotes heme degradation through the generation of endogenous reactive oxygen species

    NASA Astrophysics Data System (ADS)

    Goodarzi, M.; Moosavi-Movahedi, A. A.; Habibi-Rezaei, M.; Shourian, M.; Ghourchian, H.; Ahmad, F.; Farhadi, M.; Saboury, A. A.; Sheibani, N.

    2014-09-01

    Protein glycation is a cascade of nonenzymatic reactions between reducing sugars and amino groups of proteins. It is referred to as fructation when the reducing monosaccharide is fructose. Some potential mechanisms have been suggested for the generation of reactive oxygen species (ROS) by protein glycation reactions in the presence of glucose. In this state, glucose autoxidation, ketoamine, and oxidative advance glycation end products (AGEs) formation are considered as major sources of ROS and perhaps heme degradation during hemoglobin glycation. However, whether fructose mediated glycation produces ROS and heme degradation is unknown. Here we report that ROS (H2O2) production occurred during hemoglobin fructation in vitro using chemiluminescence methods. The enhanced heme exposure and degradation were determined using UV-Vis and fluorescence spectrophotometry. Following accumulation of ROS, heme degradation products were accumulated reaching a plateau along with the detected ROS. Thus, fructose may make a significant contribution to the production of ROS, glycation of proteins, and heme degradation during diabetes.

  12. Zscan4 transiently reactivates early embryonic genes during the generation of induced pluripotent stem cells.

    PubMed

    Hirata, Tetsuya; Amano, Tomokazu; Nakatake, Yuhki; Amano, Misa; Piao, Yulan; Hoang, Hien G; Ko, Minoru S H

    2012-01-01

    The generation of induced pluripotent stem cells (iPSCs) by the forced expression of defined transcription factors in somatic cells holds great promise for the future of regenerative medicine. However, the initial reprogramming mechanism is still poorly understood. Here we show that Zscan4, expressed transiently in2-cell embryos and embryonic stem cells (ESCs), efficiently produces iPSCs from mouse embryo fibroblasts when coexpressed with Klf4, Oct4, and Sox2. Interestingly, the forced expression of Zscan4 is required onlyfor the first few days of iPSC formation. Microarray analysis revealed transient and early induction of preimplantation-specific genes in a Zscan4-dependent manner. Our work indicates that Zscan4 is a previously unidentified potent natural factor that facilitates the reprogramming process and reactivates early embryonic genes.

  13. Reactive oxygen species generated from skeletal muscles are required for gecko tail regeneration.

    PubMed

    Zhang, Qing; Wang, Yingjie; Man, Lili; Zhu, Ziwen; Bai, Xue; Wei, Sumei; Liu, Yan; Liu, Mei; Wang, Xiaochuan; Gu, Xiaosong; Wang, Yongjun

    2016-01-01

    Reactive oxygen species (ROS) participate in various physiological and pathological functions following generation from different types of cells. Here we explore ROS functions on spontaneous tail regeneration using gecko model. ROS were mainly produced in the skeletal muscle after tail amputation, showing a temporal increase as the regeneration proceeded. Inhibition of the ROS production influenced the formation of autophagy in the skeletal muscles, and as a consequence, the length of the regenerating tail. Transcriptome analysis has shown that NADPH oxidase (NOX2) and the subunits (p40(phox) and p47(phox)) are involved in the ROS production. ROS promoted the formation of autophagy through regulation of both ULK and MAPK activities. Our results suggest that ROS produced by skeletal muscles are required for the successful gecko tail regeneration. PMID:26853930

  14. Reactive oxygen species generated from skeletal muscles are required for gecko tail regeneration.

    PubMed

    Zhang, Qing; Wang, Yingjie; Man, Lili; Zhu, Ziwen; Bai, Xue; Wei, Sumei; Liu, Yan; Liu, Mei; Wang, Xiaochuan; Gu, Xiaosong; Wang, Yongjun

    2016-02-08

    Reactive oxygen species (ROS) participate in various physiological and pathological functions following generation from different types of cells. Here we explore ROS functions on spontaneous tail regeneration using gecko model. ROS were mainly produced in the skeletal muscle after tail amputation, showing a temporal increase as the regeneration proceeded. Inhibition of the ROS production influenced the formation of autophagy in the skeletal muscles, and as a consequence, the length of the regenerating tail. Transcriptome analysis has shown that NADPH oxidase (NOX2) and the subunits (p40(phox) and p47(phox)) are involved in the ROS production. ROS promoted the formation of autophagy through regulation of both ULK and MAPK activities. Our results suggest that ROS produced by skeletal muscles are required for the successful gecko tail regeneration.

  15. High fluence laser irradiation induces reactive oxygen species generation in human lung adenocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Xing, Da; Chen, Tong-Sheng

    2006-09-01

    Low-power laser irradiation (LPLI) has been used for therapies such as curing spinal cord injury, healing wound et al. Yet, the mechanism of LPLI remains unclear. Our previous study showed that low fluences laser irradiation induces human lung adenocarcinoma cells (ASTC-a-1) proliferation, but high fluences induced apoptosis and caspase-3 activation. In order to study the mechanism of apoptosis induced by high fluences LPLI further, we have measured the dynamics of generation of reactive oxygen species (ROS) using H IIDCFDA fluorescence probes during this process. ASTC-a-1 cells apoptosis was induced by He-Ne laser irradiation at high fluence of 120J/cm2. A confocal laser scanning microscope was used to perform fluorescence imaging. The results demonstrated that high fluence LPLI induced the increase of mitochondria ROS. Our studies contribute to clarify the biological mechanism of high fluence LPLI-induced cell apoptosis.

  16. No evidence for role of extracellular choline-acetyltransferase in generation of gamma oscillations in rat hippocampal slices in vitro.

    PubMed

    Hollnagel, J O; ul Haq, R; Behrens, C J; Maslarova, A; Mody, I; Heinemann, U

    2015-01-22

    Acetylcholine (ACh) is well known to induce persistent γ-oscillations in the hippocampus when applied together with physostigmine, an inhibitor of the ACh degrading enzyme acetylcholinesterase (AChE). Here we report that physostigmine alone can also dose-dependently induce γ-oscillations in rat hippocampal slices. We hypothesized that this effect was due to the presence of choline in the extracellular space and that this choline is taken up into cholinergic fibers where it is converted to ACh by the enzyme choline-acetyltransferase (ChAT). Release of ACh from cholinergic fibers in turn may then induce γ-oscillations. We therefore tested the effects of the choline uptake inhibitor hemicholinium-3 (HC-3) on persistent γ-oscillations either induced by physostigmine alone or by co-application of ACh and physostigmine. We found that HC-3 itself did not induce γ-oscillations and also did not prevent physostigmine-induced γ-oscillation while washout of physostigmine and ACh-induced γ-oscillations was accelerated. It was recently reported that ChAT might also be present in the extracellular space (Vijayaraghavan et al., 2013). Here we show that the effect of physostigmine was prevented by the ChAT inhibitor (2-benzoylethyl)-trimethylammonium iodide (BETA) which could indicate extracellular synthesis of ACh. However, when we tested for effects of extracellularly applied acetyl-CoA, a substrate of ChAT for synthesis of ACh, physostigmine-induced γ-oscillations were attenuated. Together, these findings do not support the idea that ACh can be synthesized by an extracellularly located ChAT. PMID:25453770

  17. Urea degradation by electrochemically generated reactive chlorine species: products and reaction pathways.

    PubMed

    Cho, Kangwoo; Hoffmann, Michael R

    2014-10-01

    This study investigated the transformation of urea by electrochemically generated reactive chlorine species (RCS). Solutions of urea with chloride ions were electrolyzed using a bismuth doped TiO2 (BiOx/TiO2) anode coupled with a stainless steel cathode at applied anodic potentials (Ea) of either +2.2 V or +3.0 V versus the normal hydrogen electrode. In NaCl solution, the current efficiency of RCS generation was near 30% at both potentials. In divided cell experiments, the pseudo-first-order rate of total nitrogen decay was an order of magnitude higher at Ea of +3.0 V than at +2.2 V, presumably because dichlorine radical (Cl2(-)·) ions facilitate the urea transformation primary driven by free chlorine. Quadrupole mass spectrometer analysis of the reactor headspace revealed that N2 and CO2 are the primary gaseous products of the oxidation of urea, whose urea-N was completely transformed into N2 (91%) and NO3(-) (9%). The higher reaction selectivity with respect to N2 production can be ascribed to a low operational ratio of free available chlorine to N. The mass-balance analysis recovered urea-C as CO2 at 77%, while CO generation most likely accounts for the residual carbon. In light of these results, we propose a reaction mechanism involving chloramines and chloramides as reaction intermediates, where the initial chlorination is the rate-determining step in the overall sequence of reactions.

  18. Targeting cancer cells with reactive oxygen and nitrogen species generated by atmospheric-pressure air plasma.

    PubMed

    Ahn, Hak Jun; Kim, Kang Il; Hoan, Nguyen Ngoc; Kim, Churl Ho; Moon, Eunpyo; Choi, Kyeong Sook; Yang, Sang Sik; Lee, Jong-Soo

    2014-01-01

    The plasma jet has been proposed as a novel therapeutic method for cancer. Anticancer activity of plasma has been reported to involve mitochondrial dysfunction. However, what constituents generated by plasma is linked to this anticancer process and its mechanism of action remain unclear. Here, we report that the therapeutic effects of air plasma result from generation of reactive oxygen/nitrogen species (ROS/RNS) including H2O2, Ox, OH-, •O2, NOx, leading to depolarization of mitochondrial membrane potential and mitochondrial ROS accumulation. Simultaneously, ROS/RNS activate c-Jun NH2-terminal kinase (JNK) and p38 kinase. As a consequence, treatment with air plasma jets induces apoptotic death in human cervical cancer HeLa cells. Pretreatment of the cells with antioxidants, JNK and p38 inhibitors, or JNK and p38 siRNA abrogates the depolarization of mitochondrial membrane potential and impairs the air plasma-induced apoptotic cell death, suggesting that the ROS/RNS generated by plasma trigger signaling pathways involving JNK and p38 and promote mitochondrial perturbation, leading to apoptosis. Therefore, administration of air plasma may be a feasible strategy to eliminate cancer cells.

  19. Generation of reactive oxygen species in cyanobacteria and green algae induced by allelochemicals of submerged macrophytes.

    PubMed

    Wang, Jing; Zhu, Junying; Liu, Shaoping; Liu, Biyun; Gao, Yunni; Wu, Zhenbin

    2011-10-01

    Inhibition of phytoplankton by allelochemicals released by submerged macrophytes is reported to be one of the mechanisms that maintain a clear-water state in shallow lakes. In order to elucidate this mechanism, the ability of six polyphenols and two long-chain fatty acids to induce the generation of reactive oxygen species (ROS) in phytoplankton was studied using the ROS sensitive probe 2',7'- dichlorodihydrofluorescein diacetate (DCFH-DA). The results showed that only (+)-catechin (CA) and pyrogallic acid (PA) could induce ROS formation in Microcystis aeruginosa and Pseudokirchneriella subcapitata. 25 mg L⁻¹ CA caused 1.2, 1.4 and 1.8 times increase of ROS levels in M. aeruginosa at 1, 2 and 4h exposure, respectively, and, correspondingly in P. subcapitata cells, these values were 3.7, 6.2 and 7.7, respectively. PA also significantly increased the levels of intracellular ROS in P. subcapitata (P < 0.01); however, significant ROS generation in M. aeruginosa was observed at only 4h exposure (P < 0.01). Light enhanced ROS generation in CA treated cells, but not in the cells treated with PA. CA and PA may act as redox cyclers after uptake by test organisms and produce ROS successively. These results suggest that the oxidative stress induced by the redox cycling property of allelochemicals may be one of the important causes for the inhibitory effect of some submerged macrophytes towards undesired phytoplankton in natural aquatic ecosystems. PMID:21757220

  20. Generation of Reactive Oxygen Species Contributes to the Development of Carbon Black Cytotoxicity to Vascular Cells

    PubMed Central

    Lee, Jong Gwan; Noh, Won Jun; Kim, Hwa

    2011-01-01

    Carbon black, a particulate form of pure elemental carbon, is an industrial chemical with the high potential of occupational exposure. Although the relationship between exposure to particulate matters (PM) and cardiovascular diseases is well established, the cardiovascular risk of carbon black has not been characterized clearly. In this study, the cytotoxicity of carbon black to vascular smooth muscle and endothelial cells were examined to investigate the potential vascular toxicity of carbon black. Carbon black with distinct particle size, N330 (primary size, 28~36 nm) and N990 (250~350 nm) were treated to A-10, rat aortic smooth muscle cells and human umbilical vein endothelial cell line, ECV304, and cell viability was assessed by lactate dehydrogenase (LDH) leakage assay. Treatment of carbon black N990 resulted in the significant reduction of viability in A-10 cells at 100 μg/ml, the highest concentration tested, while N330 failed to cause cell death. Cytotoxicity to ECV304 cells was induced only by N330 at higher concentration, 200 μg/ml, suggesting that ECV304 cells were relatively resistant to carbon black. Treatment of 100 μg/ml N990 led to the elevation of reactive oxygen species (ROS) detected by dichlorodihydrofluorescein (DCF) in A-10 cells. Pretreatment of antioxidants, N-acetylcysteine (NAC) and sulforaphane restored decreased viability of N990-treated A-10 cells, and N-acetylcysteine, but not sulforaphane, attenuated N990-induced ROS generation in A-10 cells. Taken together, present study shows that carbon black is cytotoxic to vascular cells, and the generation of reactive oxygen contributes to the development of cytotoxicity. ROS scavenging antioxidant could be a potential strategy to attenuate the toxicity induced by carbon black exposure. PMID:24278567

  1. Surface functionalization of titanium dioxide nanoparticles: Photo-stability and reactive oxygen species (ROS) generation

    NASA Astrophysics Data System (ADS)

    Louis, Kacie M.

    Metal oxide nanoparticles are becoming increasingly prevalent in society for applications of sunscreens, cosmetics, paints, biomedical imaging, and photovoltaics. Due to the increased surface area to volume ratio of nanoparticles compared to bulk materials, it is important to know the health and safety impacts of these materials. One mechanism of toxicity of nominally "safe" materials such as TiO 2 is through the photocatalytic generation of reactive oxygen species (ROS). ROS production and ligand degradation can affect the bioavailability of these particles in aqueous organisms. We have investigated ROS generation by functionalized TiO2 nanoparticles and its influence on aggregation and bioavailability and toxicity to zebrafish embryos/larvae. For these studies we investigated anatase TiO2 nanoparticles. For application purposes and solution stability, the TiO2 nanoparticles were functionalized with a variety of ligands such as citrate, 3,4-dihydroxybenzaldehyde, and ascorbate. We quantitatively examined the amount of ROS produced in aqueous solution using fluorescent probes and see that more ROS is produced under UV light than in the dark control. Our measurements show that TiO2 toxicity reaches a maximum for nanoparticles with smaller diameters, and is correlated with surface area dependent changes in ROS generation. In an effort to reduce toxicity through control of the surface and surface ligands, we synthesized anatase nanoparticles of different sizes, functionalized them with different ligands, and examined the resulting ROS generation and ligand stability. Using a modular ligand containing a hydrophobic inner region and a hydrophilic outer region, we synthesized water-stable nanoparticles, via two different chemical reactions, having much-reduced ROS generation and thus reduced toxicity. These results suggest new strategies for making safer nanoparticles while still retaining their desired properties. We also examine the degradation of the different ligands

  2. Fucoidan protects ARPE-19 cells from oxidative stress via normalization of reactive oxygen species generation through the Ca²⁺-dependent ERK signaling pathway.

    PubMed

    Li, Xiaoxia; Zhao, Haiyan; Wang, Qingfa; Liang, Hongyan; Jiang, Xiaofeng

    2015-05-01

    Diabetic retinopathy (DR) is a common complication of diabetes mellitus (DM) and it is the main cause of loss of vision. In previous years, interest in the biological activities of marine organisms has intensified. The effect of fucoidan from the seaweed Fucus vesiculosus on the molecular mechanisms of numerous diseases has been studied, while to date, its effect on DR was yet to be investigated. Therefore, the aim of the present study was to evaluate the role of fucoidan in DR. The human retinal pigment epithelial cell line ARPE‑19 was exposed to high D‑glucose in the presence or absence of fucoidan. Cell viability was monitored using MTT and lactate dehydrogenase assays. The intracellular reactive oxygen species (ROS) generation was measured using fluorescence spectrophotometry. Cell apoptosis was measured by flow cytometry using Annexin V‑fluorescein isothiocyanate staining. Ca2+ influx was measured with a calcium imaging system and the activation of the extracellular signal‑regulated kinase (ERK) protein was evaluated using western blot analysis. The non‑toxic fucoidan protected ARPE‑19 cells from high glucose‑induced cell death and normalized high glucose‑induced generation of ROS. Fucoidan also inhibited high glucose‑induced cell apoptosis, as well as the Ca2+ influx and ERK1/2 phosphorylation in ARPE‑19 cells. Taken together, these findings indicated that fucoidan protects ARPE‑19 cells against high glucose‑induced oxidative damage via normalization of ROS generation through the Ca2+‑dependent ERK signaling pathway.

  3. Effects of cocaine and its oxidative metabolites on mitochondrial respiration and generation of reactive oxygen species.

    PubMed

    Boess, F; Ndikum-Moffor, F M; Boelsterli, U A; Roberts, S M

    2000-09-01

    Cocaine is capable of producing severe hepatocellular necrosis in laboratory animals and humans. The mechanism of cocaine hepatotoxicity is not well understood, but appears to result from the actions of one or more N-oxidative metabolites of cocaine. Mitochondria have been proposed as critical cellular targets for cocaine toxicity, and previous studies have found depressed mitochondrial respiration and increased mitochondrial generation of reactive oxygen species (ROS) in animals treated with cocaine. To examine the potential role of cocaine N-oxidative metabolites in these effects, mitochondrial respiration and ROS generation were examined in isolated mouse mitochondria treated with cocaine and its N-oxidative metabolites-norcocaine, N-hydroxynorcocaine, and norcocaine nitroxide. Cocaine, in concentrations of 0.25 or 0.5 mM, had no effect on state 3 respiration, state 4 respiration, respiratory control ratio (RCR), or ADP/O ratio. Norcocaine (0.5 mM) inhibited state 3 respiration, and N-hydroxynorcocaine (0.5 mM) inhibited both state 3 and state 4 respiration. Norcocaine nitroxide had the greatest effect on mitochondrial respiration; the lower concentration (0.25 mM) completely inhibited both state 3 and state 4 respiration. Preincubation of mitochondria with cocaine or metabolites increased the inhibitory effect of norcocaine and N-hydroxynorcocaine, but not cocaine. Cocaine, norcocaine, and N-hydroxynorcocaine (0.1 mM) had no effect on ROS generation during state 3 respiration, and cocaine and norcocaine decreased ROS generation under state 4 conditions. Norcocaine nitroxide interfered with the fluorescence ROS assay and could not be assessed. The results suggest that the effects of cocaine on mitochondrial respiration are due to its N-oxidative metabolites. Inhibition of mitochondrial respiration by the N-oxidative metabolites of cocaine may be the underlying cause for observed ATP depletion and subsequent cell death.

  4. Curcumin-induced inhibition of cellular reactive oxygen species generation: novel therapeutic implications.

    PubMed

    Balasubramanyam, M; Koteswari, A Adaikala; Kumar, R Sampath; Monickaraj, S Finny; Maheswari, J Uma; Mohan, V

    2003-12-01

    There is evidence for increased levels of circulating reactive oxygen species (ROS) in diabetics, as indirectly inferred by the findings of increased lipid peroxidation and decreased antioxidant status. Direct measurements of intracellular generation of ROS using fluorescent dyes also demonstrate an association of oxidative stress with diabetes. Although phenolic compounds attenuate oxidative stress-related tissue damage, there are concerns over toxicity of synthetic phenolic antioxidants and this has considerably stimulated interest in investigating the role of natural phenolics in medicinal applications. Curcumin (the primary active principle in turmeric, Curcuma longa Linn.) has been claimed to represent a potential antioxidant and antiinflammatory agent with phytonutrient and bioprotective properties. However there are lack of molecular studies to demonstrate its cellular action and potential molecular targets. In this study the antioxidant effect of curcumin as a function of changes in cellular ROS generation was tested. Our results clearly demonstrate that curcumin abolished both phorbol-12 myristate-13 acetate (PMA) and thapsigargin-induced ROS generation in cells from control and diabetic subjects. The pattern of these ROS inhibitory effects as a function of dose-dependency suggests that curcumin mechanistically interferes with protein kinase C (PKC) and calcium regulation. Simultaneous measurements of ROS and Ca2+ influx suggest that a rise in cytosolic Ca2+ may be a trigger for increased ROS generation. We suggest that the antioxidant and antiangeogenic actions of curcumin, as a mechanism of inhibition of Ca2+ entry and PKC activity, should be further exploited to develop suitable and novel drugs for the treatment of diabetic retinopathy and other diabetic complications. PMID:14660871

  5. The mechanism of cell-damaging reactive oxygen generation by colloidal fullerenes.

    PubMed

    Markovic, Zoran; Todorovic-Markovic, Biljana; Kleut, Duska; Nikolic, Nadezda; Vranjes-Djuric, Sanja; Misirkic, Maja; Vucicevic, Ljubica; Janjetovic, Kristina; Isakovic, Aleksandra; Harhaji, Ljubica; Babic-Stojic, Branka; Dramicanin, Miroslav; Trajkovic, Vladimir

    2007-12-01

    Because of the ability to induce cell death in certain conditions, the fullerenes (C(60)) are potential anticancer and toxic agents. The colloidal suspension of crystalline C(60) (nano-C(60), nC(60)) is extremely toxic, but the mechanisms of its cytotoxicity are not completely understood. By combining experimental analysis and mathematical modelling, we investigate the requirements for the reactive oxygen species (ROS)-mediated cytotoxicity of different nC(60) suspensions, prepared by solvent exchange method in tetrahydrofuran (THF/nC(60)) and ethanol (EtOH/nC(60)), or by extended mixing in water (aqu/nC(60)). With regard to their capacity to generate ROS and cause mitochondrial depolarization followed by necrotic cell death, the nC(60) suspensions are ranked in the following order: THF/nC(60)>EtOH/nC(60)>aqu/nC(60). Mathematical modelling of singlet oxygen ((1)O(2)) generation indicates that the (1)O(2)-quenching power (THF/nC(60)

  6. Cytotoxicity and reactive oxygen species generation from aggregated carbon and carbonaceous nanoparticulate materials.

    PubMed

    Garza, Kristine M; Soto, Karla F; Murr, Lawrence E

    2008-01-01

    We have investigated the cytotoxicity and reactive oxygen species (ROS) generation for indoor and outdoor soots: candle, wood, diesel, tire, and natural gas burner soots--along with surrogate black carbon, various multiwall carbon nanotube aggregate materials, TiO2 (anatase) and chrysotile asbestos as reference materials. All soots were observed utilizing TEM and FESEM to be composed of aggregated, primary spherules (20-80 nm diameter) forming complex, branched fractal structures. These spherules were composed of intercalated, turbostratic arrangements of curved graphene fragments with varying concentrations ofpolycyclic aromatic hydrocarbon (PAH) isomers. In vitro cultures with an immortalized human lung epithelial carcinoma cell line (A549) treated with these materials showed decreased cell viability and variations in ROS production, with no correlations to PAH content. The data demonstrate that soots are cytotoxic and that cytotoxicity is not related to PAH content but is related to ROS generation, suggesting that soot induces cellular oxidative stress and that cell viability assays can be indicators of ROS production. PMID:18488419

  7. Generation of Reactive Oxygen Species via NOXa Is Important for Development and Pathogenicity of Mycosphaerella graminicola.

    PubMed

    Choi, Yoon-E; Lee, Changsu; Goodwin, Stephen B

    2016-03-01

    The ascomycete fungus Mycosphaerella graminicola (synonym Zymoseptoria tritici) is an important pathogen of wheat causing economically significant losses. The primary nutritional mode of this fungus is thought to be hemibiotrophic. This pathogenic lifestyle is associated with an early biotrophic stage of nutrient uptake followed by a necrotrophic stage aided possibly by production of a toxin or reactive oxygen species (ROS). In many other fungi, the genes CREA and AREA are important during the biotrophic stage of infection, while the NOXa gene product is important during necrotrophic growth. To test the hypothesis that these genes are important for pathogenicity of M. graminicola, we employed an over-expression strategy for the selected target genes CREA, AREA, and NOXa, which might function as regulators of nutrient acquisition or ROS generation. Increased expressions of CREA, AREA, and NOXa in M. graminicola were confirmed via quantitative real-time PCR and strains were subsequently assayed for pathogenicity. Among them, the NOXa over-expression strain, NO2, resulted in significantly increased virulence. Moreover, instead of the usual filamentous growth, we observed a predominance of yeast-like growth of NO2 which was correlated with ROS production. Our data indicate that ROS generation via NOXa is important to pathogenicity as well as development in M. graminicola. PMID:27103853

  8. Controlled intracellular generation of reactive oxygen species in human mesenchymal stem cells using porphyrin conjugated nanoparticles.

    PubMed

    Lavado, Andrea S; Chauhan, Veeren M; Zen, Amer Alhaj; Giuntini, Francesca; Jones, D Rhodri E; Boyle, Ross W; Beeby, Andrew; Chan, Weng C; Aylott, Jonathan W

    2015-09-14

    Nanoparticles capable of generating controlled amounts of intracellular reactive oxygen species (ROS), that advance the study of oxidative stress and cellular communication, were synthesized by functionalizing polyacrylamide nanoparticles with zinc(II) porphyrin photosensitisers. Controlled ROS production was demonstrated in human mesenchymal stem cells (hMSCs) through (1) production of nanoparticles functionalized with varying percentages of Zn(II) porphyrin and (2) modulating the number of doses of excitation light to internalized nanoparticles. hMSCs challenged with nanoparticles functionalized with increasing percentages of Zn(II) porphyrin and high numbers of irradiations of excitation light were found to generate greater amounts of ROS. A novel dye, which is transformed into fluorescent 7-hydroxy-4-trifluoromethyl-coumarin in the presence of hydrogen peroxide, provided an indirect indicator for cumulative ROS production. The mitochondrial membrane potential was monitored to investigate the destructive effect of increased intracellular ROS production. Flow cytometric analysis of nanoparticle treated hMSCs suggested irradiation with excitation light signalled controlled apoptotic cell death, rather than uncontrolled necrotic cell death. Increased intracellular ROS production did not induce phenotypic changes in hMSC subcultures.

  9. Rapid hydrogen gas generation using reactive thermal decomposition of uranium hydride.

    SciTech Connect

    Kanouff, Michael P.; Van Blarigan, Peter; Robinson, David B.; Shugard, Andrew D.; Gharagozloo, Patricia E.; Buffleben, George M.; James, Scott Carlton; Mills, Bernice E.

    2011-09-01

    Oxygen gas injection has been studied as one method for rapidly generating hydrogen gas from a uranium hydride storage system. Small scale reactors, 2.9 g UH{sub 3}, were used to study the process experimentally. Complimentary numerical simulations were used to better characterize and understand the strongly coupled chemical and thermal transport processes controlling hydrogen gas liberation. The results indicate that UH{sub 3} and O{sub 2} are sufficiently reactive to enable a well designed system to release gram quantities of hydrogen in {approx} 2 seconds over a broad temperature range. The major system-design challenge appears to be heat management. In addition to the oxidation tests, H/D isotope exchange experiments were performed. The rate limiting step in the overall gas-to-particle exchange process was found to be hydrogen diffusion in the {approx}0.5 {mu}m hydride particles. The experiments generated a set of high quality experimental data; from which effective intra-particle diffusion coefficients can be inferred.

  10. Generation of reactive oxygen species mediates butein-induced apoptosis in neuroblastoma cells.

    PubMed

    Chen, Ya-Hui; Yeh, Chi-Wei; Lo, Hui-Chen; Su, Shih-Li; Hseu, You-Cheng; Hsu, Li-Sung

    2012-04-01

    Flavonoids exhibit chemopreventive and chemotherapeutic effects. Butein, a bioactive flavonoid isolated from numerous native plants, has been shown to induce apoptosis in human cancer cells. In the current study, the molecular mechanisms of butein action on cell proliferation and apoptosis of neuroblastoma cells were evaluated. Treatment with butein decreased the viability of Neuro-2A neuroblastoma cells in a dose- and time-dependent manner. The dose-dependent nature of butein-induced apoptosis was characterized by an increase in the sub-G1 phase population. Treatment with butein significantly increased intracellular reactive oxygen species (ROS)levels and reduced the Bcl-2/Bax ratio, triggering the cleavage of pro-caspase 3 and poly-(ADP-ribose) polymerase (PARP). Pre-treatment with the antioxidant agent, N-acetyl cysteine (NAC), blocks butein-induced ROS generation and cell death. NAC also recovers butein-induced apoptosis-related protein alteration. In conclusion, butein-triggered neuroblastoma cells undergo apoptosis via generation of ROS, alteration of the Bcl‑2/Bax ratio, and cleavage of pro-caspase 3 and PARP. Our results suggest that butein may serve as a potential therapeutic agent for the treatment of neuroblastoma.

  11. PKCα promotes generation of reactive oxygen species via DUOX2 in hepatocellular carcinoma

    SciTech Connect

    Wang, Jiajun; Shao, Miaomiao; Liu, Min; Peng, Peike; Li, Lili; Wu, Weicheng; Wang, Lan; Duan, Fangfang; Zhang, Mingming; Song, Shushu; Jia, Dongwei; Ruan, Yuanyuan; Gu, Jianxin

    2015-08-07

    Hepatocellular carcinoma (HCC) remains the second leading cause of cancer-related death worldwide, and elevated rates of reactive oxygen species (ROS) have long been considered as a hallmark of almost all types of cancer including HCC. Protein kinase C alpha (PKCα), a serine/threonine kinase among conventional PKC family, is recognized as a major player in signal transduction and tumor progression. Overexpression of PKCα is commonly observed in human HCC and associated with its poor prognosis. However, how PKCα is involved in hepatocellular carcinogenesis remains not fully understood. In this study, we found that among the members of conventional PKC family, PKCα, but not PKCβI or βII, promoted ROS production in HCC cells. PKCα stimulated generation of ROS by up-regulating DUOX2 at post-transcriptional level. Depletion of DUOX2 abrogated PKCα-induced activation of AKT/MAPK pathways as well as cell proliferation, migration and invasion in HCC cells. Moreover, the expression of DUOX2 and PKCα was well positively correlated in both HCC cell lines and patient samples. Collectively, our findings demonstrate that PKCα plays a critical role in HCC development by inducing DUOX2 expression and ROS generation, and propose a strategy to target PKCα/DUOX2 as a potential adjuvant therapy for HCC treatment. - Highlights: • PKCα promotes the generation of ROS in hepatocellular carcinoma. • PKCα induces ROS production by up-regulating DUOX2 at post-transcriptional level. • DUOX2 is required for PKCα-induced AKT/MAPK activation and tumor progression in HCC. • The expression of PKCα is positively correlated with DUOX2 in HCC.

  12. Efficient generation of cavitation bubbles and reactive oxygen species using triggered high-intensity focused ultrasound sequence for sonodynamic treatment

    NASA Astrophysics Data System (ADS)

    Yasuda, Jun; Yoshizawa, Shin; Umemura, Shin-ichiro

    2016-07-01

    Sonodynamic treatment is a method of treating cancer using reactive oxygen species (ROS) generated by cavitation bubbles in collaboration with a sonosensitizer at a target tissue. In this treatment method, both localized ROS generation and ROS generation with high efficiency are important. In this study, a triggered high-intensity focused ultrasound (HIFU) sequence, which consists of a short, extremely high intensity pulse immediately followed by a long, moderate-intensity burst, was employed for the efficient generation of ROS. In experiments, a solution sealed in a chamber was exposed to a triggered HIFU sequence. Then, the distribution of generated ROS was observed by the luminol reaction, and the amount of generated ROS was quantified using KI method. As a result, the localized ROS generation was demonstrated by light emission from the luminol reaction. Moreover, it was demonstrated that the triggered HIFU sequence has higher efficiency of ROS generation by both the KI method and the luminol reaction emission.

  13. Effect of reactive oxygen species (ROS) generating system for control of airborne microorganisms in meat processing environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effectiveness of reactive oxygen species (ROS) generating AirOcare equipment on the reduction of airborne bacteria in a meat processing environment was determined. Serratia marcescens and lactic acid bacteria (Lactococcus lactis subsp. lactis and Lactobacillus plantarum) were used to artificiall...

  14. Controlled intracellular generation of reactive oxygen species in human mesenchymal stem cells using porphyrin conjugated nanoparticles

    NASA Astrophysics Data System (ADS)

    Lavado, Andrea S.; Chauhan, Veeren M.; Alhaj Zen, Amer; Giuntini, Francesca; Jones, D. Rhodri E.; Boyle, Ross W.; Beeby, Andrew; Chan, Weng C.; Aylott, Jonathan W.

    2015-08-01

    Nanoparticles capable of generating controlled amounts of intracellular reactive oxygen species (ROS), that advance the study of oxidative stress and cellular communication, were synthesized by functionalizing polyacrylamide nanoparticles with zinc(ii) porphyrin photosensitisers. Controlled ROS production was demonstrated in human mesenchymal stem cells (hMSCs) through (1) production of nanoparticles functionalized with varying percentages of Zn(ii) porphyrin and (2) modulating the number of doses of excitation light to internalized nanoparticles. hMSCs challenged with nanoparticles functionalized with increasing percentages of Zn(ii) porphyrin and high numbers of irradiations of excitation light were found to generate greater amounts of ROS. A novel dye, which is transformed into fluorescent 7-hydroxy-4-trifluoromethyl-coumarin in the presence of hydrogen peroxide, provided an indirect indicator for cumulative ROS production. The mitochondrial membrane potential was monitored to investigate the destructive effect of increased intracellular ROS production. Flow cytometric analysis of nanoparticle treated hMSCs suggested irradiation with excitation light signalled controlled apoptotic cell death, rather than uncontrolled necrotic cell death. Increased intracellular ROS production did not induce phenotypic changes in hMSC subcultures.Nanoparticles capable of generating controlled amounts of intracellular reactive oxygen species (ROS), that advance the study of oxidative stress and cellular communication, were synthesized by functionalizing polyacrylamide nanoparticles with zinc(ii) porphyrin photosensitisers. Controlled ROS production was demonstrated in human mesenchymal stem cells (hMSCs) through (1) production of nanoparticles functionalized with varying percentages of Zn(ii) porphyrin and (2) modulating the number of doses of excitation light to internalized nanoparticles. hMSCs challenged with nanoparticles functionalized with increasing percentages of Zn

  15. Cryptococcus neoformans capsule protects cell from oxygen reactive species generated by antimicrobial photodynamic inactivation

    NASA Astrophysics Data System (ADS)

    Prates, Renato Araujo; Hamblin, Michael R.; Kato, Ilka T.; Fuchs, Beth; Mylonakis, Eleytherios; Simões Ribeiro, Martha; Tegos, George

    2011-03-01

    Antimicrobial photodynamic inactivation (APDI) is based on the utilization of substances that can photosensitize biological tissues and are capable of being activated in the presence of light. Cryptococcus neoformans is an yeast surrounded by a capsule composed primarily of glucoronoxylomannan that plays an important role in its virulence. This yeast causes infection on skin, lungs and brain that can be associated with neurological sequelae and neurosurgical interventions, and its conventional treatment requires prolonged antifungal therapy, which presents important adverse effects. The aim of this study was to evaluate the protective effect of Cryptococcus neoformans capsule against reactive oxygen species generated by APDI. Cryptococcus neoformans KN99α, which is a strain able to produce capsule, and CAP59 that does not present capsule production were submitted to APDI using methylene blue (MB), rose bengal (RB), and pL-ce6 as photosensitizers (PS). Then microbial inactivation was evaluated by counting colony form units following APDI and confocal laser scanning microscopy (CLSM) illustrated localization as well as the preferential accumulation of PS into the fungal cells. C. neoformans KN99α was more resistant to APDI than CAP59 for all PSs tested. CLSM showed incorporation of MB and RB into the cytoplasm and a preferential uptake in mitochondria. A nuclear accumulation of MB was also observed. Contrarily, pL-ce6 appears accumulated in cell wall and cell membrane and minimal florescence was observed inside the fungal cells. In conclusion, the ability of C. neoformans to form capsule enhances survival following APDI.

  16. Silver nanoparticle-algae interactions: oxidative dissolution, reactive oxygen species generation and synergistic toxic effects.

    PubMed

    He, Di; Dorantes-Aranda, Juan José; Waite, T David

    2012-08-21

    The short-term toxicity of citrate-stabilized silver nanoparticles (AgNPs) and ionic silver Ag(I) to the ichthyotoxic marine raphidophyte Chattonella marina has been examined using the fluorometric indicator alamarBlue. Aggregation and dissolution of AgNPs occurred after addition to GSe medium while uptake of dissolved Ag(I) occurred in the presence of C. marina. Based on total silver mass, toxicity was much higher for Ag(I) than for AgNPs. Cysteine, a strong Ag(I) ligand, completely removed the inhibitory effects of Ag(I) and AgNPs on the metabolic activity of C. marina, suggesting that the toxicity of AgNPs was due to the release of Ag(I). Synergistic toxic effects of AgNPs/Ag(I) and C. marina to fish gill cells were observed with these effects possibly attributable to enhancement in the generation of reactive oxygen species by C. marina on exposure of the organism to silver.

  17. Prokaryotic expression and refolding of EGFR extracellular domain and generation of phage display human scFv against EGFR.

    PubMed

    Zhou, Yaqiong; Zhang, Juan; Jin, Haizhen; Chen, Zhiguo; Wu, Qinhang; Li, Weiguang; Yue, Ming; Luo, Chen; Wang, Min

    2013-10-01

    The epidermal growth factor receptor (EGFR), overexpressed in many epithelial tumors, is emerging as an attractive target for cancer therapy. Antibodies to the extracellular region of EGFR play a key role in the development of a mechanistic understanding and cancer therapy. In the present study, we demonstrated for the first time that EGFR-truncated extracellular domain (EGFR-tED), which was expressed in Escherichia coli BL21 (DE3) cells in the form of inclusion bodies, could be purified and renatured. The EGFR-tED protein was purified by gel filtration and Ni-NTA affinity chromatography with high purity (>90%) and refolded by a urea gradient size-exclusion chromatography, which could bind its ligand EGF in a concentration-dependent manner. The renatured EGFR was used for biopanning anti-EGFR scFvs from a human synthetic antibody phage display library. Combined with an additional cell-based ELISA screen, a novel scFv, E10, was obtained with two-fold more potent on the binding to EGFR-bearing tumor cells (the epidermoid carcinoma cell line A431) and the inhibition of A431 cells proliferation than scFv 11F8, suggesting that the E10 has the potential to be developed as therapeutic agents to solid tumors associated with EGFR overexpression.

  18. High-efficiency Generation of Multiple Short Noncoding RNA in B-cells and B-cell-derived Extracellular Vesicles

    PubMed Central

    Almanza, Gonzalo; Zanetti, Maurizio

    2015-01-01

    Short noncoding (snc)RNAs are important new players in the landscape of biologics with therapeutic potential. Recently, we reported on a new method for the synthesis and delivery of snc RNA in B-cells transfected with plasmid DNA. Here using the same approach, we demonstrate that B-cells can be programmed for the enforced biogenesis and synchronous release of multiple sncRNAs. Our data show that this goal is feasible and that multiple sncRNA are released in the extracellular compartment in amounts comparable to those from B-cells programmed to express and secrete one scnRNA only. Furthermore, we found that the cargo of extracellular vescicles (EVs) isolated from programmed B-cells is remarkably enriched for multiple sncRNA. On average, we found that the content of multiple sncRNAs in EVs is 3.6 copynumber/EV. Collectively, we demonstrate that B-cells can be easily programmed toward the synthesis and release of multiple sncRNAs, including sncRNA-laden EVs, efficiently and specifically. PMID:26670278

  19. Incorporating Geochemical And Microbial Kinetics In Reactive Transport Models For Generation Of Acid Rock Drainage

    NASA Astrophysics Data System (ADS)

    Andre, B. J.; Rajaram, H.; Silverstein, J.

    2010-12-01

    diffusion model at the scale of a single rock is developed incorporating the proposed kinetic rate expressions. Simulations of initiation, washout and AMD flows are discussed to gain a better understanding of the role of porosity, effective diffusivity and reactive surface area in generating AMD. Simulations indicate that flow boundary conditions control generation of acid rock drainage as porosity increases.

  20. A Porous Tissue Engineering Scaffold Selectively Degraded by Cell-Generated Reactive Oxygen Species

    PubMed Central

    Martin, John R.; Gupta, Mukesh K.; Page, Jonathan M.; Yu, Fang; Davidson, Jeffrey M.; Guelcher, Scott A.

    2014-01-01

    Biodegradable tissue engineering scaffolds are commonly fabricated from poly(lactide-co-glycolide) (PLGA) or similar polyesters that degrade by hydrolysis. PLGA hydrolysis generates acidic breakdown products that trigger an accelerated, autocatalytic degradation mechanism that can create mismatched rates of biomaterial breakdown and tissue formation. Reactive oxygen species (ROS) are key mediators of cell function in both health and disease, especially at sites of inflammation and tissue healing, and induction of inflammation and ROS are natural components of the in vivo response to biomaterial implantation. Thus, polymeric biomaterials that are selectively degraded by cell-generated ROS may have potential for creating tissue engineering scaffolds with better matched rates of tissue in-growth and cell-mediated scaffold biodegradation. To explore this approach, a series of poly(thioketal) (PTK) urethane (PTK-UR) biomaterial scaffolds were synthesized that degrade specifically by an ROS-dependent mechanism. PTK-UR scaffolds had significantly higher compressive moduli than analogous poly(ester urethane) (PEUR) scaffolds formed from hydrolytically-degradable ester-based diols (p < 0.05). Unlike PEUR scaffolds, the PTK-UR scaffolds were stable under aqueous conditions out to 25 weeks but were selectively degraded by ROS, indicating that their biodegradation would be exclusively cell-mediated. The in vitro oxidative degradation rates of the PTK-URs followed first-order degradation kinetics, were significantly dependent on PTK composition (p < 0.05), and correlated to ROS concentration. In subcutaneous rat wounds, PTK-UR scaffolds supported cellular infiltration and granulation tissue formation, followed first-order degradation kinetics over 7 weeks, and produced significantly greater stenting of subcutaneous wounds compared to PEUR scaffolds. These combined results indicate that ROS-degradable PTK-UR tissue engineering scaffolds have significant advantages over analogous

  1. Evidence for the generation of reactive oxygen species from hydroquinone and benzoquinone: Roles in arsenite oxidation.

    PubMed

    Qin, Wenxiu; Wang, Yujun; Fang, Guodong; Wu, Tongliang; Liu, Cun; Zhou, Dongmei

    2016-05-01

    Natural organic matter (NOM) significantly affects the fate, bioavailability, and toxicity of arsenic in the environment. In the present study, we investigated the oxidation of As(III) in the presence of hydroquinone (HQ) and benzoquinone (BQ), which were selected as model quinone moieties for NOM. It was found that As(III) was oxidized to As(V) in the presence of HQ or BQ at neutral conditions, and the oxidation efficiency of As(III) increased from 33% to 92% in HQ solutions and from 0 to 80% in BQ solutions with pH increasing from 6.5 to 8.5. The oxidation mechanism was further explored with electron spin resonance (ESR) technique. The results showed that semiquinone radicals (SQ(-)) were generated from the comproportionation reaction between BQ and HQ, which mediated the formation of superoxide anion (O2(-)), hydrogen peroxide (H2O2) and hydroxyl radical (OH). Both the SQ(-), H2O2 and OH contributed to the oxidation of As(III). The increase of pH favored the formation of SQ(-), and thus promoted the generation of reactive oxygen species (ROS) as well as As(III) oxidation. Increasing concentrations of HQ and BQ from 0.1 to 1.0 mM enhanced As(III) oxidation from 65% to 94% and from 10% to 53%, respectively. The findings of this study facilitate our understanding of the fate and transformation of As(III) in organic-rich aquatic environments and highlight quinone moieties as the potential oxidants for As(III) in the remediation of arsenic contaminated sites.

  2. Nucleic acid reactivity: challenges for next-generation semiempirical quantum models.

    PubMed

    Huang, Ming; Giese, Timothy J; York, Darrin M

    2015-07-01

    Semiempirical quantum models are routinely used to study mechanisms of RNA catalysis and phosphoryl transfer reactions using combined quantum mechanical (QM)/molecular mechanical methods. Herein, we provide a broad assessment of the performance of existing semiempirical quantum models to describe nucleic acid structure and reactivity to quantify their limitations and guide the development of next-generation quantum models with improved accuracy. Neglect of diatomic differential overlap and self-consistent density-functional tight-binding semiempirical models are evaluated against high-level QM benchmark calculations for seven biologically important datasets. The datasets include: proton affinities, polarizabilities, nucleobase dimer interactions, dimethyl phosphate anion, nucleoside sugar and glycosidic torsion conformations, and RNA phosphoryl transfer model reactions. As an additional baseline, comparisons are made with several commonly used density-functional models, including M062X and B3LYP (in some cases with dispersion corrections). The results show that, among the semiempirical models examined, the AM1/d-PhoT model is the most robust at predicting proton affinities. AM1/d-PhoT and DFTB3-3ob/OPhyd reproduce the MP2 potential energy surfaces of 6 associative RNA phosphoryl transfer model reactions reasonably well. Further, a recently developed linear-scaling "modified divide-and-conquer" model exhibits the most accurate results for binding energies of both hydrogen bonded and stacked nucleobase dimers. The semiempirical models considered here are shown to underestimate the isotropic polarizabilities of neutral molecules by approximately 30%. The semiempirical models also fail to adequately describe torsion profiles for the dimethyl phosphate anion, the nucleoside sugar ring puckers, and the rotations about the nucleoside glycosidic bond. The modeling of pentavalent phosphorus, particularly with thio substitutions often used experimentally as mechanistic

  3. Pathophysiological and pharmacological implications of mitochondria-targeted reactive oxygen species generation in astrocytes.

    PubMed

    Jou, Mei-Jie

    2008-01-01

    Astrocytes, in addition to passively supporting neurons, have recently been shown to be actively involved in synaptic transmission and neurovascular coupling in the central nervous system (CNS). This review summarizes briefly our previous observations using fluorescent probes coupled with laser scanning digital imaging microscopy to visualize spatio-temporal alteration of mitochondrial reactive oxygen species (mROS) generation in intact astrocytes. mROS formation is enhanced by exogenous oxidants exposure, Ca2+ stress and endogenous pathological defect of mitochondrial respiratory complexes. In addition, mROS formation can be specifically stimulated by visible light or visible laser irradiation and can be augmented further by photodynamic coupling with photosensitizers, particularly with mitochondria-targeted photosensitizers. "Severe" oxidative insult often results in massive and homogeneous augmentation of mROS formation which causes cessation of mitochondrial movement, pathological fission and irreversible swelling of mitochondria and eventually apoptosis or necrosis of cells. Mitochondria-targeted antioxidants and protectors such as MitoQ, melatonin and nanoparticle C(60) effectively prevent "severe" mROS generation. Intriguingly, "minor" oxidative insults enhance heterogeneity of mROS and mitochondrial dynamics. "Minor" mROS formation-induced fission and fusion of mitochondria relocates mitochondrial network to form a mitochondria free gap, i.e., "firewall", which may play a crucial role in mROS-mediated protective "preconditioning" by preventing propagation of mROS during oxidative insults. These mROS-targeted strategies for either enhancement or prevention of mitochondrial oxidative stress in astrocytes may provide new insights for future development of therapeutic interventions in the treatment of cancer such as astrocytomas and gliomas and astrocyte-associated neurodegeneration, mitochondrial diseases and aging. PMID:18692534

  4. A porous tissue engineering scaffold selectively degraded by cell-generated reactive oxygen species.

    PubMed

    Martin, John R; Gupta, Mukesh K; Page, Jonathan M; Yu, Fang; Davidson, Jeffrey M; Guelcher, Scott A; Duvall, Craig L

    2014-04-01

    Biodegradable tissue engineering scaffolds are commonly fabricated from poly(lactide-co-glycolide) (PLGA) or similar polyesters that degrade by hydrolysis. PLGA hydrolysis generates acidic breakdown products that trigger an accelerated, autocatalytic degradation mechanism that can create mismatched rates of biomaterial breakdown and tissue formation. Reactive oxygen species (ROS) are key mediators of cell function in both health and disease, especially at sites of inflammation and tissue healing, and induction of inflammation and ROS are natural components of the in vivo response to biomaterial implantation. Thus, polymeric biomaterials that are selectively degraded by cell-generated ROS may have potential for creating tissue engineering scaffolds with better matched rates of tissue in-growth and cell-mediated scaffold biodegradation. To explore this approach, a series of poly(thioketal) (PTK) urethane (PTK-UR) biomaterial scaffolds were synthesized that degrade specifically by an ROS-dependent mechanism. PTK-UR scaffolds had significantly higher compressive moduli than analogous poly(ester urethane) (PEUR) scaffolds formed from hydrolytically-degradable ester-based diols (p < 0.05). Unlike PEUR scaffolds, the PTK-UR scaffolds were stable under aqueous conditions out to 25 weeks but were selectively degraded by ROS, indicating that their biodegradation would be exclusively cell-mediated. The in vitro oxidative degradation rates of the PTK-URs followed first-order degradation kinetics, were significantly dependent on PTK composition (p < 0.05), and correlated to ROS concentration. In subcutaneous rat wounds, PTK-UR scaffolds supported cellular infiltration and granulation tissue formation, followed first-order degradation kinetics over 7 weeks, and produced significantly greater stenting of subcutaneous wounds compared to PEUR scaffolds. These combined results indicate that ROS-degradable PTK-UR tissue engineering scaffolds have significant advantages over

  5. Generation of a high-valent iron imido corrolazine complex and NR group transfer reactivity.

    PubMed

    Leeladee, Pannee; Jameson, Guy N L; Siegler, Maxime A; Kumar, Devesh; de Visser, Sam P; Goldberg, David P

    2013-04-15

    The generation of a new high-valent iron terminal imido complex prepared with a corrolazine macrocycle is reported. The reaction of [Fe(III)(TBP8Cz)] (TBP8Cz = octakis(4-tert-butylphenyl)corrolazinato) with the commercially available chloramine-T (Na(+)TsNCl(-)) leads to oxidative N-tosyl transfer to afford [Fe(IV)(TBP8Cz(+•))(NTs)] in dichloromethane/acetonitrile at room temperature. This complex was characterized by UV-vis, Mössbauer (δ = -0.05 mm s(-1), ΔE(Q) = 2.94 mm s(-1)), and EPR (X-band (15 K), g = 2.10, 2.00) spectroscopies, and together with reactivity patterns and DFT calculations has been established as an iron(IV) species antiferromagnetically coupled with a Cz-π-cation-radical (S(total) = 1/2 ground state). Reactivity studies with triphenylphosphine as substrate show that [Fe(IV)(TBP8Cz(+•))(NTs)] is an efficient NTs transfer agent, affording the phospharane product Ph3P═NTs under both stoichiometric and catalytic conditions. Kinetic analysis of this reaction supports a bimolecular NTs transfer mechanism with rate constant of 70(15) M(-1) s(-1). These data indicate that [Fe(IV)(TBP8Cz(+•))(NTs)] reacts about 100 times faster than analogous Mn terminal arylimido corrole analogues. It was found that two products crystallize from the same reaction mixture of Fe(III)(TBP8Cz) + chloramine-T + PPh3, [Fe(IV)(TBP8Cz)(NPPh3)] and [Fe(III)(TBP8Cz)(OPPh3)], which were definitively characterized by X-ray crystallography. The sequential production of Ph3P═NTs, Ph3P═NH, and Ph3P═O was observed by (31)P NMR spectroscopy and led to a proposed mechanism that accounts for all of the observed products. The latter Fe(III) complex was then rationally synthesized and structurally characterized from Fe(III)(TBP8Cz) and OPPh3, providing an important benchmark compound for spectroscopic studies. A combination of Mössbauer and EPR spectroscopies led to the characterization of both intermediate spin (S = 3/2 and low spin (S = 1/2) Fe(III) corrolazines, as

  6. Generation of a high-valent iron imido corrolazine complex and NR group transfer reactivity.

    PubMed

    Leeladee, Pannee; Jameson, Guy N L; Siegler, Maxime A; Kumar, Devesh; de Visser, Sam P; Goldberg, David P

    2013-04-15

    The generation of a new high-valent iron terminal imido complex prepared with a corrolazine macrocycle is reported. The reaction of [Fe(III)(TBP8Cz)] (TBP8Cz = octakis(4-tert-butylphenyl)corrolazinato) with the commercially available chloramine-T (Na(+)TsNCl(-)) leads to oxidative N-tosyl transfer to afford [Fe(IV)(TBP8Cz(+•))(NTs)] in dichloromethane/acetonitrile at room temperature. This complex was characterized by UV-vis, Mössbauer (δ = -0.05 mm s(-1), ΔE(Q) = 2.94 mm s(-1)), and EPR (X-band (15 K), g = 2.10, 2.00) spectroscopies, and together with reactivity patterns and DFT calculations has been established as an iron(IV) species antiferromagnetically coupled with a Cz-π-cation-radical (S(total) = 1/2 ground state). Reactivity studies with triphenylphosphine as substrate show that [Fe(IV)(TBP8Cz(+•))(NTs)] is an efficient NTs transfer agent, affording the phospharane product Ph3P═NTs under both stoichiometric and catalytic conditions. Kinetic analysis of this reaction supports a bimolecular NTs transfer mechanism with rate constant of 70(15) M(-1) s(-1). These data indicate that [Fe(IV)(TBP8Cz(+•))(NTs)] reacts about 100 times faster than analogous Mn terminal arylimido corrole analogues. It was found that two products crystallize from the same reaction mixture of Fe(III)(TBP8Cz) + chloramine-T + PPh3, [Fe(IV)(TBP8Cz)(NPPh3)] and [Fe(III)(TBP8Cz)(OPPh3)], which were definitively characterized by X-ray crystallography. The sequential production of Ph3P═NTs, Ph3P═NH, and Ph3P═O was observed by (31)P NMR spectroscopy and led to a proposed mechanism that accounts for all of the observed products. The latter Fe(III) complex was then rationally synthesized and structurally characterized from Fe(III)(TBP8Cz) and OPPh3, providing an important benchmark compound for spectroscopic studies. A combination of Mössbauer and EPR spectroscopies led to the characterization of both intermediate spin (S = 3/2 and low spin (S = 1/2) Fe(III) corrolazines, as

  7. Neutrophil Extracellular Traps Identification in Tegumentary Lesions of Patients with Paracoccidioidomycosis and Different Patterns of NETs Generation In Vitro

    PubMed Central

    Della Coletta, Amanda Manoel; Bachiega, Tatiana Fernanda; de Quaglia e Silva, Juliana Carvalho; Soares, Ângela Maria Victoriano de Campos; De Faveri, Julio; Marques, Silvio Alencar; Marques, Mariângela Esther Alencar; Ximenes, Valdecir Farias; Dias-Melicio, Luciane Alarcão

    2015-01-01

    Paracoccidioidomycosis (PCM) is a systemic mycosis, endemic in most Latin American countries, especially in Brazil. It is caused by the thermo-dimorphic fungus of the genus Paracoccidioides (Paracoccidioides brasiliensis and Paracoccidioides lutzii). Innate immune response plays a crucial role in host defense against fungal infections, and neutrophils (PMNs) are able to combat microorganisms with three different mechanisms: phagocytosis, secretion of granular proteins, which have antimicrobial properties, and the most recent described mechanism called NETosis. This new process is characterized by the release of net-like structures called Neutrophil Extracellular Traps (NETs), which is composed of nuclear (decondensed DNA and histones) and granular material such as elastase. Several microorganisms have the ability of inducing NETs formation, including gram-positive and gram-negative bacteria, viruses and some fungi. We proposed to identify NETs in tegumentary lesions of patients with PCM and to analyze the interaction between two strains of P. brasiliensis and human PMNs by NETs formation in vitro. In this context, the presence of NETs in vivo was evidenced in tegumentary lesions of patients with PCM by confocal spectrum analyzer. Furthermore, we showed that the high virulent P. brasiliensis strain 18 (Pb18) and the lower virulent strain Pb265 are able to induce different patterns of NETs formation in vitro. The quantification of extracellular DNA corroborates the idea of the ability of P. brasiliensis in inducing NETs release. In conclusion, our data show for the first time the identification of NETs in lesions of patients with PCM and demonstrate distinct patterns of NETs in cultures challenged with fungi in vitro. The presence of NETs components both in vivo and in vitro open new possibilities for the detailed investigation of immunity in PCM. PMID:26327485

  8. Neutrophil Extracellular Traps Identification in Tegumentary Lesions of Patients with Paracoccidioidomycosis and Different Patterns of NETs Generation In Vitro.

    PubMed

    Della Coletta, Amanda Manoel; Bachiega, Tatiana Fernanda; de Quaglia e Silva, Juliana Carvalho; Soares, Ângela Maria Victoriano de Campos; De Faveri, Julio; Marques, Silvio Alencar; Marques, Mariângela Esther Alencar; Ximenes, Valdecir Farias; Dias-Melicio, Luciane Alarcão

    2015-01-01

    Paracoccidioidomycosis (PCM) is a systemic mycosis, endemic in most Latin American countries, especially in Brazil. It is caused by the thermo-dimorphic fungus of the genus Paracoccidioides (Paracoccidioides brasiliensis and Paracoccidioides lutzii). Innate immune response plays a crucial role in host defense against fungal infections, and neutrophils (PMNs) are able to combat microorganisms with three different mechanisms: phagocytosis, secretion of granular proteins, which have antimicrobial properties, and the most recent described mechanism called NETosis. This new process is characterized by the release of net-like structures called Neutrophil Extracellular Traps (NETs), which is composed of nuclear (decondensed DNA and histones) and granular material such as elastase. Several microorganisms have the ability of inducing NETs formation, including gram-positive and gram-negative bacteria, viruses and some fungi. We proposed to identify NETs in tegumentary lesions of patients with PCM and to analyze the interaction between two strains of P. brasiliensis and human PMNs by NETs formation in vitro. In this context, the presence of NETs in vivo was evidenced in tegumentary lesions of patients with PCM by confocal spectrum analyzer. Furthermore, we showed that the high virulent P. brasiliensis strain 18 (Pb18) and the lower virulent strain Pb265 are able to induce different patterns of NETs formation in vitro. The quantification of extracellular DNA corroborates the idea of the ability of P. brasiliensis in inducing NETs release. In conclusion, our data show for the first time the identification of NETs in lesions of patients with PCM and demonstrate distinct patterns of NETs in cultures challenged with fungi in vitro. The presence of NETs components both in vivo and in vitro open new possibilities for the detailed investigation of immunity in PCM. PMID:26327485

  9. Generation of functional insulin-producing cells from mouse embryonic stem cells through 804G cell-derived extracellular matrix and protein transduction of transcription factors.

    PubMed

    Kaitsuka, Taku; Noguchi, Hirofumi; Shiraki, Nobuaki; Kubo, Takuya; Wei, Fan-Yan; Hakim, Farzana; Kume, Shoen; Tomizawa, Kazuhito

    2014-01-01

    Embryonic stem (ES) and induced pluripotent stem (iPS) cells have potential applications to regenerative medicine for diabetes; however, a useful and safe way to generate pancreatic β cells has not been developed. In this study, we tried to establish an effective method of differentiation through the protein transduction of three transcription factors (Pdx1, NeuroD, and MafA) important to pancreatic β cell development. The method poses no risk of unexpected genetic modifications in target cells. Transduction of the three proteins induced the differentiation of mouse ES and mouse iPS cells into insulin-producing cells. Furthermore, a laminin-5-rich extracellular matrix efficiently induced differentiation under feeder-free conditions. Cell differentiation was confirmed with the expression of the insulin 1 gene in addition to marker genes in pancreatic β cells, the differentiated cells secreted glucose-responsive C-peptide, and their transplantation restored normoglycemia in diabetic mice. Moreover, Pdx1 protein transduction had facilitative effects on differentiation into pancreatic endocrine progenitors from human iPS cells. These results suggest the direct delivery of recombinant proteins and treatment with laminin-5-rich extracellular matrix to be useful for the generation of insulin-producing cells.

  10. Inhibitory effects of hypo-osmotic stress on extracellular carbonic anhydrase and photosynthetic efficiency of green alga Dunaliella salina possibly through reactive oxygen species formation.

    PubMed

    Liu, Wenhua; Ming, Yao; Li, Ping; Huang, Zhongwen

    2012-05-01

    In this study, Dunaliella salina (D. salina) maintained in 30‰ salinity for more than two years was exposed to the salinities of 5‰, 10‰, 20‰, 30‰ (control) in order to investigate oxidative burst and it's possible connection with extracellular carbonic anhydrase (CA) under hypo-osmotic stress (low salinity). The results indicated that intracellular ROS contents increased significantly when cells were exposed to salinity of 5 and 10‰, and the increase also occurred at 20‰ salinity. The activity of extracellular CA and its gene (P60) expression decreased significantly when cells were exposed to salinity of 5-20‰. Data from H₂O₂ treatments hinted that ROS production was possibly one of the factors affecting CA, including enzyme activity and gene expression levels. Significant inhibition of effective quantum efficiency of PSII and photosynthetic oxygen evolution rate were observed with the increase of ROS production and decline of CA activities. Taken together, hypo-osmotic stresses could induce ROS production in D. salina, and CA enzyme activities and expression levels were consequently inhibited. As a result, algal photosynthesis and oxygen evolution were inhibited.

  11. The phosphorylation status of extracellular-regulated kinase 1/2 in astrocytes and neurons from rat hippocampus determines the thrombin-induced calcium release and ROS generation.

    PubMed

    Zündorf, Gregor; Reiser, Georg

    2011-12-01

    Challenge of protease-activated receptors induces cytosolic Ca(2+) concentration ([Ca(2+) ](c)) increase, mitogen-activated protein kinase activation and reactive oxygen species (ROS) formation with a bandwidth of responses in individual cells. We detected in this study in situ the thrombin-induced [Ca(2+) ](c) rise and ROS formation in dissociated hippocampal astrocytes and neurons in a mixed culture. In identified cells, single cell responses were correlated with extracellular-regulated kinase (ERK)1/2 phosphorylation level. On average, in astrocytes, thrombin induced a transient [Ca(2+) ](c) rise with concentration-dependent increase in amplitude and extrusion rate and high ERK1/2 phosphorylation level. Correlation analysis of [Ca(2+) ](c) response characteristics of single astrocytes reveals that astrocytes with nuclear phosphoERK1/2 localization have a smaller Ca(2+) amplitude and extrusion rate compared with cells with a cytosolic phosphoERK1/2 localization. In naive neurons, without thrombin challenge, variable ERK1/2 phosphorylation patterns are observed. ROS were detected by hydroethidine. Only in neurons with increased ERK1/2 phosphorylation level, we see sustained intracellular rise in fluorescence of the dye lasting over several minutes. ROS formation was abolished by pre-incubation with the NADPH oxidase inhibitor apocynin. Additionally, thrombin induced an immediate, transient hydroethidine fluorescence increase. This was interpreted as NADPH oxidase-mediated O(2) (•-) -release into the extracellular milieu, because it was decreased by pre-incubation with apocynin, and could be eluted by superfusion. In conclusion, the phosphorylation status of ERK1/2 determines the thrombin-dependent [Ca(2+) ](c) increase and ROS formation and, thus, influences the capacity of thrombin to regulate neuroprotection or neurodegeneration. PMID:21988180

  12. Manipulation of environmental oxygen modifies reactive oxygen and nitrogen species generation during myogenesis

    PubMed Central

    McCormick, Rachel; Pearson, Timothy; Vasilaki, Aphrodite

    2016-01-01

    Regulated changes in reactive oxygen and nitrogen species (RONS) activities are important in maintaining the normal sequence and development of myogenesis. Both excessive formation and reduction in RONS have been shown to affect muscle differentiation in a negative way. Cultured cells are typically grown in 20% O2 but this is not an appropriate physiological concentration for a number of cell types, including skeletal muscle. The aim was to examine the generation of RONS in cultured skeletal muscle cells under a physiological oxygen concentration condition (6% O2) and determine the effect on muscle myogenesis. Primary mouse satellite cells were grown in 20% or 6% O2 environments and RONS activity was measured at different stages of myogenesis by real-time fluorescent microscopy using fluorescent probes with different specificities i.e. dihydroethidium (DHE), 4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate (DAF-FM DA) and 5-(and-6)-chloromethyl-2′,7′ -dichlorodihydrofluorescein diacetate (CM-DCFH-DA). Data demonstrate that satellite cell proliferation increased when cells were grown in 6% O2 compared with 20% O2. Myoblasts grown in 20% O2 showed an increase in DCF fluorescence and DHE oxidation compared with myoblasts grown at 6% O2. Myotubes grown in 20% O2 also showed an increase in DCF and DAF-FM fluorescence and DHE oxidation compared with myotubes grown in 6% O2. The catalase and MnSOD contents were also increased in myoblasts and myotubes that were maintained in 20% O2 compared with myoblasts and myotubes grown in 6% O2. These data indicate that intracellular RONS activities in myoblasts and myotubes at rest are influenced by changes in environmental oxygen concentration and that the increased ROS may influence myogenesis in a negative manner. PMID:26827127

  13. Cancer Therapy by Catechins Involves Redox Cycling of Copper Ions and Generation of Reactive Oxygen Species

    PubMed Central

    Farhan, Mohd; Khan, Husain Yar; Oves, Mohammad; Al-Harrasi, Ahmed; Rehmani, Nida; Arif, Hussain; Hadi, Sheikh Mumtaz; Ahmad, Aamir

    2016-01-01

    Catechins, the dietary phytochemicals present in green tea and other beverages, are considered to be potent inducers of apoptosis and cytotoxicity to cancer cells. While it is believed that the antioxidant properties of catechins and related dietary agents may contribute to lowering the risk of cancer induction by impeding oxidative injury to DNA, these properties cannot account for apoptosis induction and chemotherapeutic observations. Catechin (C), epicatechin (EC), epigallocatechin (EGC) and epigallocatechin-3-gallate (EGCG) are the four major constituents of green tea. In this article, using human peripheral lymphocytes and comet assay, we show that C, EC, EGC and EGCG cause cellular DNA breakage and can alternatively switch to a prooxidant action in the presence of transition metals such as copper. The cellular DNA breakage was found to be significantly enhanced in the presence of copper ions. Catechins were found to be effective in providing protection against oxidative stress induced by tertbutylhydroperoxide, as measured by oxidative DNA breakage in lymphocytes. The prooxidant action of catechins involved production of hydroxyl radicals through redox recycling of copper ions. We also determined that catechins, particularly EGCG, inhibit proliferation of breast cancer cell line MDA-MB-231 leading to a prooxidant cell death. Since it is well established that tissue, cellular and serum copper levels are considerably elevated in various malignancies, cancer cells would be more subject to redox cycling between copper ions and catechins to generate reactive oxygen species (ROS) responsible for DNA breakage. Such a copper dependent prooxidant cytotoxic mechanism better explains the anticancer activity and preferential cytotoxicity of dietary phytochemicals against cancer cells. PMID:26861392

  14. Cancer Therapy by Catechins Involves Redox Cycling of Copper Ions and Generation of Reactive Oxygen species.

    PubMed

    Farhan, Mohd; Khan, Husain Yar; Oves, Mohammad; Al-Harrasi, Ahmed; Rehmani, Nida; Arif, Hussain; Hadi, Sheikh Mumtaz; Ahmad, Aamir

    2016-02-04

    Catechins, the dietary phytochemicals present in green tea and other beverages, are considered to be potent inducers of apoptosis and cytotoxicity to cancer cells. While it is believed that the antioxidant properties of catechins and related dietary agents may contribute to lowering the risk of cancer induction by impeding oxidative injury to DNA, these properties cannot account for apoptosis induction and chemotherapeutic observations. Catechin (C), epicatechin (EC), epigallocatechin (EGC) and epigallocatechin-3-gallate (EGCG) are the four major constituents of green tea. In this article, using human peripheral lymphocytes and comet assay, we show that C, EC, EGC and EGCG cause cellular DNA breakage and can alternatively switch to a prooxidant action in the presence of transition metals such as copper. The cellular DNA breakage was found to be significantly enhanced in the presence of copper ions. Catechins were found to be effective in providing protection against oxidative stress induced by tertbutylhydroperoxide, as measured by oxidative DNA breakage in lymphocytes. The prooxidant action of catechins involved production of hydroxyl radicals through redox recycling of copper ions. We also determined that catechins, particularly EGCG, inhibit proliferation of breast cancer cell line MDA-MB-231 leading to a prooxidant cell death. Since it is well established that tissue, cellular and serum copper levels are considerably elevated in various malignancies, cancer cells would be more subject to redox cycling between copper ions and catechins to generate reactive oxygen species (ROS) responsible for DNA breakage. Such a copper dependent prooxidant cytotoxic mechanism better explains the anticancer activity and preferential cytotoxicity of dietary phytochemicals against cancer cells.

  15. Nucleic acid reactivity : challenges for next-generation semiempirical quantum models

    PubMed Central

    Huang, Ming; Giese, Timothy J.; York, Darrin M.

    2016-01-01

    Semiempirical quantum models are routinely used to study mechanisms of RNA catalysis and phosphoryl transfer reactions using combined quantum mechanical/molecular mechanical methods. Herein, we provide a broad assessment of the performance of existing semiempirical quantum models to describe nucleic acid structure and reactivity in order to quantify their limitations and guide the development of next-generation quantum models with improved accuracy. Neglect of diatomic diffierential overlap (NDDO) and self-consistent density-functional tight-binding (SCC-DFTB) semiempirical models are evaluated against high-level quantum mechanical benchmark calculations for seven biologically important data sets. The data sets include: proton affinities, polarizabilities, nucleobase dimer interactions, dimethyl phosphate anion, nucleoside sugar and glycosidic torsion conformations, and RNA phosphoryl transfer model reactions. As an additional baseline, comparisons are made with several commonly used density-functional models, including M062X and B3LYP (in some cases with dispersion corrections). The results show that, among the semiempirical models examined, the AM1/d-PhoT model is the most robust at predicting proton affinities. AM1/d-PhoT and DFTB3-3ob/OPhyd reproduce the MP2 potential energy surfaces of 6 associative RNA phosphoryl transfer model reactions reasonably well. Further, a recently developed linear-scaling “modified divide-and-conquer” model exhibits the most accurate results for binding energies of both hydrogen bonded and stacked nucleobase dimers. The semiempirical models considered here are shown to underestimate the isotropic polarizabilities of neutral molecules by approximately 30%. The semiempirical models also fail to adequately describe torsion profiles within the dimethyl phosphate anion, the nucleoside sugar ring puckers, and the rotations about the nucleoside glycosidic bond. The modeling of pentavalent phosphorus, particularly with thio

  16. Nucleic acid reactivity: challenges for next-generation semiempirical quantum models.

    PubMed

    Huang, Ming; Giese, Timothy J; York, Darrin M

    2015-07-01

    Semiempirical quantum models are routinely used to study mechanisms of RNA catalysis and phosphoryl transfer reactions using combined quantum mechanical (QM)/molecular mechanical methods. Herein, we provide a broad assessment of the performance of existing semiempirical quantum models to describe nucleic acid structure and reactivity to quantify their limitations and guide the development of next-generation quantum models with improved accuracy. Neglect of diatomic differential overlap and self-consistent density-functional tight-binding semiempirical models are evaluated against high-level QM benchmark calculations for seven biologically important datasets. The datasets include: proton affinities, polarizabilities, nucleobase dimer interactions, dimethyl phosphate anion, nucleoside sugar and glycosidic torsion conformations, and RNA phosphoryl transfer model reactions. As an additional baseline, comparisons are made with several commonly used density-functional models, including M062X and B3LYP (in some cases with dispersion corrections). The results show that, among the semiempirical models examined, the AM1/d-PhoT model is the most robust at predicting proton affinities. AM1/d-PhoT and DFTB3-3ob/OPhyd reproduce the MP2 potential energy surfaces of 6 associative RNA phosphoryl transfer model reactions reasonably well. Further, a recently developed linear-scaling "modified divide-and-conquer" model exhibits the most accurate results for binding energies of both hydrogen bonded and stacked nucleobase dimers. The semiempirical models considered here are shown to underestimate the isotropic polarizabilities of neutral molecules by approximately 30%. The semiempirical models also fail to adequately describe torsion profiles for the dimethyl phosphate anion, the nucleoside sugar ring puckers, and the rotations about the nucleoside glycosidic bond. The modeling of pentavalent phosphorus, particularly with thio substitutions often used experimentally as mechanistic

  17. PI3K/Akt1 signalling specifies foregut precursors by generating regionalized extra-cellular matrix

    PubMed Central

    Villegas, S Nahuel; Rothová, Michaela; Barrios-Llerena, Martin E; Pulina, Maria; Hadjantonakis, Anna-Katerina; Le Bihan, Thierry; Astrof, Sophie; Brickman, Joshua M

    2013-01-01

    During embryonic development signalling pathways act repeatedly in different contexts to pattern the emerging germ layers. Understanding how these different responses are regulated is a central question for developmental biology. In this study, we used mouse embryonic stem cell (mESC) differentiation to uncover a new mechanism for PI3K signalling that is required for endoderm specification. We found that PI3K signalling promotes the transition from naïve endoderm precursors into committed anterior endoderm. PI3K promoted commitment via an atypical activity that delimited epithelial-to-mesenchymal transition (EMT). Akt1 transduced this activity via modifications to the extracellular matrix (ECM) and appropriate ECM could itself induce anterior endodermal identity in the absence of PI3K signalling. PI3K/Akt1-modified ECM contained low levels of Fibronectin (Fn1) and we found that Fn1 dose was key to specifying anterior endodermal identity in vivo and in vitro. Thus, localized PI3K activity affects ECM composition and ECM in turn patterns the endoderm. DOI: http://dx.doi.org/10.7554/eLife.00806.001 PMID:24368729

  18. In vitro elastogenesis: instructing human vascular smooth muscle cells to generate an elastic fiber-containing extracellular matrix scaffold.

    PubMed

    Hinderer, Svenja; Shena, Nian; Ringuette, Léa-Jeanne; Hansmann, Jan; Reinhardt, Dieter P; Brucker, Sara Y; Davis, Elaine C; Schenke-Layland, Katja

    2015-06-01

    Elastic fibers are essential for the proper function of organs including cardiovascular tissues such as heart valves and blood vessels. Although (tropo)elastin production in a tissue-engineered construct has previously been described, the assembly to functional elastic fibers in vitro using human cells has been highly challenging. In the present study, we seeded primary isolated human vascular smooth muscle cells (VSMCs) onto 3D electrospun scaffolds and exposed them to defined laminar shear stress using a customized bioreactor system. Increased elastin expression followed by elastin deposition onto the electrospun scaffolds, as well as on newly formed fibers, was observed after six days. Most interestingly, we identified the successful deposition of elastogenesis-associated proteins, including fibrillin-1 and -2, fibulin-4 and -5, fibronectin, elastin microfibril interface located protein 1 (EMILIN-1) and lysyl oxidase (LOX) within our engineered constructs. Ultrastructural analyses revealed a developing extracellular matrix (ECM) similar to native human fetal tissue, which is composed of collagens, microfibrils and elastin. To conclude, the combination of a novel dynamic flow bioreactor and an electrospun hybrid polymer scaffold allowed the production and assembly of an elastic fiber-containing ECM. PMID:25784676

  19. Procyanidins from Nelumbo nucifera Gaertn. Seedpod induce autophagy mediated by reactive oxygen species generation in human hepatoma G2 cells.

    PubMed

    Duan, Yuqing; Xu, Hui; Luo, Xiaoping; Zhang, Haihui; He, Yuanqing; Sun, Guibo; Sun, Xiaobo

    2016-04-01

    In this study, autophagic effect of procyanidins from lotus (Nelumbo nucifera Gaertn.) seedpod (LSPCs) on human hepatoma G2 (HepG2) cells, and the inherent correlation between autophagic levels and reactive oxygen species (ROS) generation were investigated. The results showed that LSPCs increased monodansylcadaverine (MDC) fluorescence intensity and LC3-I/LC3-II conversion in HepG2 cells. In addition, the typically autophagic characteristics (autophagosomes and autolysosomes) were observed in LSPCs-treated cells, but not found in the cells treated with autophagy inhibitor 3-methyladenine (3-MA). Furthermore, the elevated ROS level was in line with the increasing of autophagy activation caused by LSPCs, however, both 3-MA and the ROS scavenger N-acetylcyteine (NAC) inhibitors effectively suppressed the autophagy and ROS generation triggered by LSPCs. As a result, these results indicated that LSPCs induced HepG2 cell autophagy in a time- and dose-dependent manner, and promoted reactive oxygen species (ROS) generation on HepG2 cells. Moreover, we found that LSPCs caused DNA damage, S phase arrest and the decrement of mitochondria membrane potential (MMP) which were associated with ROS generation. In summary, our findings demonstrated that the LSPCs-induced autophagy and autophagic cell death were triggered by the ROS generation in HepG2 cells, which might be associated with ROS generation through the mitochondria-dependent signaling way. PMID:27044822

  20. From Microbiology to Cancer Biology: The Rid Protein Family Prevents Cellular Damage Caused by Endogenously Generated Reactive Nitrogen Species

    PubMed Central

    Downs, Diana M.; Ernst, Dustin C.

    2015-01-01

    Summary The Rid family of proteins is highly conserved and broadly distributed throughout the domains of life. Genetic and biochemical studies, primarily in Salmonella enterica, have defined a role for RidA in responding to endogenously generated reactive metabolites. The data show that 2-aminoacrylate (2AA), a reactive enamine intermediate generated by some pyridoxal 5′-phosphate (PLP)-dependent enzymes, accumulates in the absence of RidA. The accumulation of 2AA leads to covalent modification and inactivation of several enzymes involved in essential metabolic processes. This review describes the 2AA hydrolyzing activity of RidA and the effect of this biochemical activity on the metabolic network, which impacts organism fitness. The reported activity of RidA and the consequences encountered in vivo when RidA is absent have challenged fundamental assumptions in enzymology, biochemistry and cell metabolism regarding the fate of transiently-generated reactive enamine intermediates. The current understanding of RidA in Salmonella and the broad distribution of Rid family proteins provide exciting opportunities for future studies to define metabolic roles of Rid family members from microbes to man. PMID:25620221

  1. Flow cytometric assessment of reactive oxygen species generations that are directly related to cellular ZnO nanoparticle uptake.

    PubMed

    Yoo, Hyun Ju; Yoon, Tae Hyun

    2014-07-01

    In this study, a simple flow cytometry protocol to evaluate nanoparticle associated biological response was proposed. Particularly, we have evaluated the effect of surface charge on the cellular nanoparticle associations and nanoparticle-induced apoptosis. Significant enhancement in side scattering intensity was observed for the HeLa cells treated with positively charged (PLL)ZnO nanoparticles, suggesting that the (PLL)ZnO nanoparticles may induce cell death via adsorption and endocytosis of the nanoparticles. On the other hand, the negatively charged (PAA)ZnO nanoparticle seems to cause cell death process indirectly via the released Zn ions, with less contribution from cellular association of nanoparticles. Time- and dose-dependent studies on cellular association of ZnO nanoparticles, and ZnO associated reactive oxygen species generation were also performed for the HeLa cells exposed to the (PLL)ZnO nanoparticle. For those cells associated with (PLL)ZnO nanoparticle, a significant enhancement in reactive oxygen species generation was observed even at a lower concentration (10 ppm), which was not observable for the results with the whole cell population. By using this approach, we are able to distinguish biological responses (e.g., reactive oxygen species (ROS) generation) directly related to the cellular associations of NPs from those indirectly related to the cellular associations of NPs, such as the cytotoxicity caused by the NP released metal ions.

  2. FRAS1-related extracellular matrix 3 (FREM3) single-nucleotide polymorphism effects on gene expression, amygdala reactivity and perceptual processing speed: An accelerated aging pathway of depression risk.

    PubMed

    Nikolova, Yuliya S; Iruku, Swetha P; Lin, Chien-Wei; Conley, Emily Drabant; Puralewski, Rachel; French, Beverly; Hariri, Ahmad R; Sibille, Etienne

    2015-01-01

    The A allele of the FRAS1-related extracellular matrix protein 3 (FREM3) rs7676614 single nucleotide polymorphism (SNP) was linked to major depressive disorder (MDD) in an early genome-wide association study (GWAS), and to symptoms of psychomotor retardation in a follow-up investigation. In line with significant overlap between age- and depression-related molecular pathways, parallel work has shown that FREM3 expression in postmortem human brain decreases with age. Here, we probe the effect of rs7676614 on amygdala reactivity and perceptual processing speed, both of which are altered in depression and aging. Amygdala reactivity was assessed using a face-matching BOLD fMRI paradigm in 365 Caucasian participants in the Duke Neurogenetics Study (DNS) (192 women, mean age 19.7 ± 1.2). Perceptual processing speed was indexed by reaction times in the same task and the Trail Making Test (TMT). The effect of rs7676614 on FREM3 mRNA brain expression levels was probed in a postmortem cohort of 169 Caucasian individuals (44 women, mean age 50.8 ± 14.9). The A allele of rs7676614 was associated with blunted amygdala reactivity to faces, slower reaction times in the face-matching condition (p < 0.04), as well as marginally slower performance on TMT Part B (p = 0.056). In the postmortem cohort, the T allele of rs6537170 (proxy for the rs7676614 A allele), was associated with trend-level reductions in gene expression in Brodmann areas 11 and 47 (p = 0.066), reminiscent of patterns characteristic of older age. The low-expressing allele of another FREM3 SNP (rs1391187) was similarly associated with reduced amygdala reactivity and slower TMT Part B speed, in addition to reduced BA47 activity and extraversion (p < 0.05). Together, these results suggest common genetic variation associated with reduced FREM3 expression may confer risk for a subtype of depression characterized by reduced reactivity to environmental stimuli and slower perceptual processing speed, possibly suggestive of

  3. FRAS1-related extracellular matrix 3 (FREM3) single-nucleotide polymorphism effects on gene expression, amygdala reactivity and perceptual processing speed: An accelerated aging pathway of depression risk

    PubMed Central

    Nikolova, Yuliya S.; Iruku, Swetha P.; Lin, Chien-Wei; Conley, Emily Drabant; Puralewski, Rachel; French, Beverly; Hariri, Ahmad R.; Sibille, Etienne

    2015-01-01

    The A allele of the FRAS1-related extracellular matrix protein 3 (FREM3) rs7676614 single nucleotide polymorphism (SNP) was linked to major depressive disorder (MDD) in an early genome-wide association study (GWAS), and to symptoms of psychomotor retardation in a follow-up investigation. In line with significant overlap between age- and depression-related molecular pathways, parallel work has shown that FREM3 expression in postmortem human brain decreases with age. Here, we probe the effect of rs7676614 on amygdala reactivity and perceptual processing speed, both of which are altered in depression and aging. Amygdala reactivity was assessed using a face-matching BOLD fMRI paradigm in 365 Caucasian participants in the Duke Neurogenetics Study (DNS) (192 women, mean age 19.7 ± 1.2). Perceptual processing speed was indexed by reaction times in the same task and the Trail Making Test (TMT). The effect of rs7676614 on FREM3 mRNA brain expression levels was probed in a postmortem cohort of 169 Caucasian individuals (44 women, mean age 50.8 ± 14.9). The A allele of rs7676614 was associated with blunted amygdala reactivity to faces, slower reaction times in the face-matching condition (p < 0.04), as well as marginally slower performance on TMT Part B (p = 0.056). In the postmortem cohort, the T allele of rs6537170 (proxy for the rs7676614 A allele), was associated with trend-level reductions in gene expression in Brodmann areas 11 and 47 (p = 0.066), reminiscent of patterns characteristic of older age. The low-expressing allele of another FREM3 SNP (rs1391187) was similarly associated with reduced amygdala reactivity and slower TMT Part B speed, in addition to reduced BA47 activity and extraversion (p < 0.05). Together, these results suggest common genetic variation associated with reduced FREM3 expression may confer risk for a subtype of depression characterized by reduced reactivity to environmental stimuli and slower perceptual processing speed, possibly suggestive of

  4. Mesenchymal Stem Cells Ability to Generate Traction Stress in Response to Substrate Stiffness is Modulated by the Changing Extracellular Matrix Composition of the Heart During Development

    PubMed Central

    Gershlak, Joshua R.; Resnikoff, Joshua IN; Sullivan, Kelly E; Williams, Corin; Wang, Raymond M.; Black, Lauren D.

    2013-01-01

    In this study we present a novel method for studying cellular traction force generation and mechanotransduction in the context of cardiac development. Rat hearts from three distinct stage of development (fetal, neonatal and adult) were isolated, decellularized and characterized via mechanical testing and protein compositional analysis. Stiffness increased ~2 fold between fetal and neonatal time points but not between neonatal and adult. Composition of structural extracellular matrix (ECM) proteins was significantly different between all three developmental ages. ECM that was solubilized via pepsin digestion was cross-linked into polyacrylamide gels of varying stiffness and traction force microscopy was used to assess the ability of mesenchymal stem cells (MSCs) to generate traction stress against the substrates. The response to increasing stiffness was significantly different depending on the developmental age of the ECM. An investigation into early cardiac differentiation of MSCs demonstrated a dependence of the level of expression of early cardiac transcription factors on the composition of the complex ECM. In summary, this study found that complex ECM composition plays an important role in modulating a cell’s ability to generate traction stress against a substrate, which is a significant component of mechanotransductive signaling. PMID:23994333

  5. Immune competence of cancer-reactive T cells generated de novo in adult tumor-bearing mice.

    PubMed

    May, Kenneth F; Lute, Kenneth; Kocak, Ergun; Abdessalam, Shahab; Yin, Lijie; Li, Ou; Guan, Zhen; Philips, Gary; Zheng, Pan; Liu, Yang

    2007-01-01

    The impact of timing of antigen introduction into fetus and neonates leads to the suggestion that pre-existing antigens are tolerogenic to immunocompetent cells generated thereafter. This hypothesis predicts that in patients with cancer who are undergoing bone marrow transplantation, newly produced T cells with specificity for pre-existing tumor cells will be inactivated by the tumor antigens in the host. Because the effect of tumor cells on developing cancer-reactive T cells has not been investigated, we set out to systematically analyze the impact of tumor cells in the periphery on the development of tumor-reactive T cells in the thymus and their immunocompetence in the periphery. Our data demonstrate that in the host in which a tumor is established in the periphery, the cancer-reactive T cells develop normally, remain fully immunocompetent, become activated in the periphery, and cause regression of large established tumors. The immunocompetence of T cells generated in an antigen-bearing host is also confirmed in a skin graft transplantation model.

  6. Lysophosphatidic acid induces reactive oxygen species generation by activating protein kinase C in PC-3 human prostate cancer cells

    SciTech Connect

    Lin, Chu-Cheng; Lin, Chuan-En; Lin, Yueh-Chien; Ju, Tsai-Kai; Huang, Yuan-Li; Lee, Ming-Shyue; Chen, Jiun-Hong; Lee, Hsinyu

    2013-11-01

    Highlights: •LPA induces ROS generation through LPA{sub 1} and LPA{sub 3}. •LPA induces ROS generation by activating PLC. •PKCζ mediates LPA-induced ROS generation. -- Abstract: Prostate cancer is one of the most frequently diagnosed cancers in males, and PC-3 is a cell model popularly used for investigating the behavior of late stage prostate cancer. Lysophosphatidic acid (LPA) is a lysophospholipid that mediates multiple behaviors in cancer cells, such as proliferation, migration and adhesion. We have previously demonstrated that LPA enhances vascular endothelial growth factor (VEGF)-C expression in PC-3 cells by activating the generation of reactive oxygen species (ROS), which is known to be an important mediator in cancer progression. Using flow cytometry, we showed that LPA triggers ROS generation within 10 min and that the generated ROS can be suppressed by pretreatment with the NADPH oxidase (Nox) inhibitor diphenylene iodonium. In addition, transfection with LPA{sub 1} and LPA{sub 3} siRNA efficiently blocked LPA-induced ROS production, suggesting that both receptors are involved in this pathway. Using specific inhibitors and siRNA, phospholipase C (PLC) and protein kinase C (PKC) were also suggested to participate in LPA-induced ROS generation. Overall, we demonstrated that LPA induces ROS generation in PC-3 prostate cancer cells and this is mediated through the PLC/PKC/Nox pathway.

  7. Bridge capacitor bank installation concept reactive power generation in EHV systems

    SciTech Connect

    Andrei, R.G.; Keri, A.J.F.; Albanese, R.J.; Johnson, P.B. )

    1993-11-01

    As an alternative to the conventional shunt capacitor bank installation, a totally new concept of providing reactive power to an electrical power system is presented. A new type of capacitor bank installation called bridge'' is described. An analytical investigation of the bridge capacitor installation concept and its application in an EHV electrical power system is presented. The technical and economic advantages of the bridge capacitor bank over the shunt capacitor bank are analyzed in the context of the reactive power being directly supplied to an EHV system. A field trial installation at a lower than EHV level (138/69kV) along with some experimental test results are presented in the last part of this paper. A more detailed presentation of the field experience with the trial installation will be covered in a future paper.

  8. Electrophilic difluoro(phenylthio)methylation: generation, stability, and reactivity of α-fluorocarbocations.

    PubMed

    Betterley, Nolan M; Surawatanawong, Panida; Prabpai, Samran; Kongsaeree, Palangpon; Kuhakarn, Chutima; Pohmakotr, Manat; Reutrakul, Vichai

    2013-11-15

    Electrophilic difluoro(phenylthio)methylation of allylsilanes has been achieved using bromodifluoro(phenylthio)methane (PhSCF2Br) and silver hexafluoroantimonate (AgSbF6). The structural assignment and observation of α-fluorocarbocation were substantiated by NMR and theoretical calculations. Detailed mechanistic and electronic studies have provided a fundamental understanding of the reactivity and stability of the difluoro(phenylthio)methylium cation (PhSCF2(+)).

  9. Calcium-dependent trichosanthin-induced generation of reactive oxygen species involved in apoptosis of human choriocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Zhang, Chunyang; Ma, Hui; Chen, Die Yan

    2001-04-01

    The type-I ribosome-inactivating protein trichosanthin (TCS) has a broad spectrum of biological and pharmacological activities, including abortifacient, anti-tumor and anti-HIV. We found for the first time that TCS induced production of reactive oxygen species (ROS) in JAR cells by using fluorescent probe 2',7'-dichlorofluorescin diacetate with confocal laser scanning microscopy. TCS-induced ROS showed dependence on the increase in intracellular calcium and on the presence of extracellular calcium. The production of ROS increased rapidly after the application of TCS, which paralleled TCS-indued increase in intracellular calcium monitored using fluo 3-AM, suggesting that TCS-induced ROS might mediate by the increase in intracellular Ca2PLU concentration. Simultaneous observation of the nuclear morphological changes and production of ROS in JAR cells with two-photon laser scanning microscopy and confocal laser scanning microscopy revealed that ROS involved in the apoptosis of JAR cells, which was confirmed by that antioxidant (alpha) -tocopherol prevented TCS-induced ROS formation and cell death. The finding that calcium-dependent TCS-induced ROS involved in the apoptosis of JAR cells might provide new insight into the anti-tumor and anti-HIV mechanism of TCS.

  10. Extracellular Matrix-Dependent Generation of Integration- and Xeno-Free iPS Cells Using a Modified mRNA Transfection Method

    PubMed Central

    Lee, Kang-In; Lee, Seo-Young; Hwang, Dong-Youn

    2016-01-01

    Human induced pluripotent stem cells (iPS cells) hold great promise in the field of regenerative medicine, especially immune-compatible cell therapy. The most important safety-related issues that must be resolved before the clinical use of iPS cells include the generation of “footprint-free” and “xeno-free” iPS cells. In this study, we sought to examine whether an extracellular matrix- (ECM-) based xeno-free culture system that we recently established could be used together with a microRNA-enhanced mRNA reprogramming method for the generation of clinically safe iPS cells. The notable features of this method are the use of a xeno-free/feeder-free culture system for the generation and expansion of iPS cells rather than the conventional labor-intensive culture systems using human feeder cells or human feeder-conditioned medium and the enhancement of mRNA-mediated reprogramming via the delivery of microRNAs. Strikingly, we observed the early appearance of iPS cell colonies (~11 days), substantial reprogramming efficiency (~0.2–0.3%), and a high percentage of ESC-like colonies among the total colonies (~87.5%), indicating enhanced kinetics and reprogramming efficiency. Therefore, the combined method established in this study provides a valuable platform for the generation and expansion of clinically safe (i.e., integration- and xeno-free) iPS cells, facilitating immune-matched cell therapy in the near future. PMID:27057175

  11. Effect of triiodothyronine on reactive oxygen species generation by leukocytes, indices of oxidative damage, and antioxidant reserve.

    PubMed

    Magsino, C H; Hamouda, W; Ghanim, H; Browne, R; Aljada, A; Dandona, P

    2000-06-01

    We have examined the effect of short-term triiodothyronine (T3) administration on reactive oxygen species (ROS) generation by leukocytes in 9 euthyroid subjects. At a dose of 60 microg/d orally for 7 days, T3 induced a significant increase in ROS generation by mononuclear cells (MNCs) from 183 +/- 102 mV at baseline to 313 +/- 111 mV on the seventh day (P < .02), and by polymorphonuclear leukocytes (PMNLs) from 195 +/- 94 mV at baseline to 302 +/- 104 mV on the seventh day (P < .02). There was also a significant increase in meta-tyrosine (P < .001) and ortho-tyrosine (P < .001), known indices of oxidative damage to proteins and amino acids. However, there was no increase in plasma thiobarbituric acid-reactive substances (TBARS), an index of oxidative damage to lipids, and in the level of carbonylated proteins, a less sensitive index to assess protein oxidation. There was no decrease in the level of antioxidants such as alpha-tocopherol, vitamin A, beta-carotene, lycopene, and lutein/zeaxanthin. The stimulatory effect on ROS generation may reflect a generalized increase in metabolic activity or may be a specific effect on NADPH oxidase in leukocyte membranes. The absence of a significant change in TBARS, carbonylated proteins, alpha-tocopherol, vitamin A, beta-carotene, lycopene, and lutein/zeaxanthin may reflect the short duration of the increased ROS load.

  12. Inorganic Polyphosphates Regulate Hexokinase Activity and Reactive Oxygen Species Generation in Mitochondria of Rhipicephalus (Boophilus) microplus Embryo

    PubMed Central

    Fraga, Amanda; Moraes, Jorge; da Silva, José Roberto; Costa, Evenilton P.; Menezes, Jackson; da Silva Vaz Jr, Itabajara; Logullo, Carlos; da Fonseca, Rodrigo Nunes; Campos, Eldo

    2013-01-01

    The physiological roles of polyphosphates (poly P) recently found in arthropod mitochondria remain obscure. Here, the possible involvement of poly P with reactive oxygen species generation in mitochondria of Rhipicephalus microplus embryos was investigated. Mitochondrial hexokinase and scavenger antioxidant enzymes, such as superoxide dismutase, catalase, and glutathione reductase were assayed during embryogenesis of R. microplus. The influence of poly P3 and poly P15 were analyzed during the period of higher enzymatic activity during embryogenesis. Both poly Ps inhibited hexokinase activity by up to 90% and, interestingly, the mitochondrial membrane exopolyphosphatase activity was stimulated by the hexokinase reaction product, glucose-6-phosphate. Poly P increased hydrogen peroxide generation in mitochondria in a situation where mitochondrial hexokinase is also active. The superoxide dismutase, catalase and glutathione reductase activities were higher during embryo cellularization, at the end of embryogenesis and during embryo segmentation, respectively. All of the enzymes were stimulated by poly P3. However, superoxide dismutase was not affected by poly P15, catalase activity was stimulated only at high concentrations and glutathione reductase was the only enzyme that was stimulated in the same way by both poly Ps. Altogether, our results indicate that inorganic polyphosphate and mitochondrial membrane exopolyphosphatase regulation can be correlated with the generation of reactive oxygen species in the mitochondria of R. microplus embryos. PMID:23983617

  13. NQO2 is a reactive oxygen species generating off-target for acetaminophen.

    PubMed

    Miettinen, Teemu P; Björklund, Mikael

    2014-12-01

    The analgesic and antipyretic compound acetaminophen (paracetamol) is one of the most used drugs worldwide. Acetaminophen overdose is also the most common cause for acute liver toxicity. Here we show that acetaminophen and many structurally related compounds bind quinone reductase 2 (NQO2) in vitro and in live cells, establishing NQO2 as a novel off-target. NQO2 modulates the levels of acetaminophen derived reactive oxygen species, more specifically superoxide anions, in cultured cells. In humans, NQO2 is highly expressed in liver and kidney, the main sites of acetaminophen toxicity. We suggest that NQO2 mediated superoxide production may function as a novel mechanism augmenting acetaminophen toxicity.

  14. NQO2 Is a Reactive Oxygen Species Generating Off-Target for Acetaminophen

    PubMed Central

    2014-01-01

    The analgesic and antipyretic compound acetaminophen (paracetamol) is one of the most used drugs worldwide. Acetaminophen overdose is also the most common cause for acute liver toxicity. Here we show that acetaminophen and many structurally related compounds bind quinone reductase 2 (NQO2) in vitro and in live cells, establishing NQO2 as a novel off-target. NQO2 modulates the levels of acetaminophen derived reactive oxygen species, more specifically superoxide anions, in cultured cells. In humans, NQO2 is highly expressed in liver and kidney, the main sites of acetaminophen toxicity. We suggest that NQO2 mediated superoxide production may function as a novel mechanism augmenting acetaminophen toxicity. PMID:25313982

  15. Functional implications of mitochondrial reactive oxygen species generated by oncogenic viruses

    PubMed Central

    Choi, Young Bong; Harhaj, Edward William

    2014-01-01

    Between 15–20% of human cancers are associated with infection by oncogenic viruses. Oncogenic viruses, including HPV, HBV, HCV and HTLV-1, target mitochondria to influence cell proliferation and survival. Oncogenic viral gene products also trigger the production of reactive oxygen species which can elicit oxidative DNA damage and potentiate oncogenic host signaling pathways. Viral oncogenes may also subvert mitochondria quality control mechanisms such as mitophagy and metabolic adaptation pathways to promote virus replication. Here, we will review recent progress on viral regulation of mitophagy and metabolic adaptation and their roles in viral oncogenesis. PMID:25580106

  16. Extracellular ATP

    PubMed Central

    Chivasa, Stephen; Tomé, Daniel FA; Murphy, Alex M; Hamilton, John M; Lindsey, Keith; Carr, John P

    2009-01-01

    Living organisms acquire or synthesize high energy molecules, which they frugally conserve and use to meet their cellular metabolic demands. Therefore, it is surprising that ATP, the most accessible and commonly utilized chemical energy carrier, is actively secreted to the extracellular matrix of cells. It is now becoming clear that in plants this extracellular ATP (eATP) is not wasted, but harnessed at the cell surface to signal across the plasma membrane of the secreting cell and neighboring cells to cxontrol gene expression and influence plant development. Identification of the gene/protein networks regulated by eATP-mediated signaling should provide insight into the physiological roles of eATP in plants. By disrupting eATP-mediated signaling, we have identified pathogen defense genes as part of the eATP-regulated gene circuitry, leading us to the discovery that eATP is a negative regulator of pathogen defense in plants.1 Previously, we reported that eATP is a key signal molecule that modulates programmed cell death in plants.2 A complex picture is now emerging, in which eATP-mediated signaling cross-talks with signaling mediated by the major plant defense hormone, salicylic acid, in the regulation of pathogen defense and cell death. PMID:20009563

  17. A LAIR1 insertion generates broadly reactive antibodies against malaria variant antigens.

    PubMed

    Tan, Joshua; Pieper, Kathrin; Piccoli, Luca; Abdi, Abdirahman; Foglierini, Mathilde; Geiger, Roger; Tully, Claire Maria; Jarrossay, David; Ndungu, Francis Maina; Wambua, Juliana; Bejon, Philip; Fregni, Chiara Silacci; Fernandez-Rodriguez, Blanca; Barbieri, Sonia; Bianchi, Siro; Marsh, Kevin; Thathy, Vandana; Corti, Davide; Sallusto, Federica; Bull, Peter; Lanzavecchia, Antonio

    2016-01-01

    Plasmodium falciparum antigens expressed on the surface of infected erythrocytes are important targets of naturally acquired immunity against malaria, but their high number and variability provide the pathogen with a powerful means of escape from host antibodies. Although broadly reactive antibodies against these antigens could be useful as therapeutics and in vaccine design, their identification has proven elusive. Here we report the isolation of human monoclonal antibodies that recognize erythrocytes infected by different P. falciparum isolates and opsonize these cells by binding to members of the RIFIN family. These antibodies acquired broad reactivity through a novel mechanism of insertion of a large DNA fragment between the V and DJ segments. The insert, which is both necessary and sufficient for binding to RIFINs, encodes the entire 98 amino acid collagen-binding domain of LAIR1, an immunoglobulin superfamily inhibitory receptor encoded on chromosome 19. In each of the two donors studied, the antibodies are produced by a single expanded B-cell clone and carry distinct somatic mutations in the LAIR1 domain that abolish binding to collagen and increase binding to infected erythrocytes. These findings illustrate, with a biologically relevant example, a novel mechanism of antibody diversification by interchromosomal DNA transposition and demonstrate the existence of conserved epitopes that may be suitable candidates for the development of a malaria vaccine.

  18. A LAIR1 insertion generates broadly reactive antibodies against malaria variant antigens.

    PubMed

    Tan, Joshua; Pieper, Kathrin; Piccoli, Luca; Abdi, Abdirahman; Foglierini, Mathilde; Geiger, Roger; Tully, Claire Maria; Jarrossay, David; Ndungu, Francis Maina; Wambua, Juliana; Bejon, Philip; Fregni, Chiara Silacci; Fernandez-Rodriguez, Blanca; Barbieri, Sonia; Bianchi, Siro; Marsh, Kevin; Thathy, Vandana; Corti, Davide; Sallusto, Federica; Bull, Peter; Lanzavecchia, Antonio

    2016-01-01

    Plasmodium falciparum antigens expressed on the surface of infected erythrocytes are important targets of naturally acquired immunity against malaria, but their high number and variability provide the pathogen with a powerful means of escape from host antibodies. Although broadly reactive antibodies against these antigens could be useful as therapeutics and in vaccine design, their identification has proven elusive. Here we report the isolation of human monoclonal antibodies that recognize erythrocytes infected by different P. falciparum isolates and opsonize these cells by binding to members of the RIFIN family. These antibodies acquired broad reactivity through a novel mechanism of insertion of a large DNA fragment between the V and DJ segments. The insert, which is both necessary and sufficient for binding to RIFINs, encodes the entire 98 amino acid collagen-binding domain of LAIR1, an immunoglobulin superfamily inhibitory receptor encoded on chromosome 19. In each of the two donors studied, the antibodies are produced by a single expanded B-cell clone and carry distinct somatic mutations in the LAIR1 domain that abolish binding to collagen and increase binding to infected erythrocytes. These findings illustrate, with a biologically relevant example, a novel mechanism of antibody diversification by interchromosomal DNA transposition and demonstrate the existence of conserved epitopes that may be suitable candidates for the development of a malaria vaccine. PMID:26700814

  19. A LAIR-1 insertion generates broadly reactive antibodies against malaria variant antigens

    PubMed Central

    Abdi, Abdirahman; Perez, Mathilde Foglierini; Geiger, Roger; Tully, Claire Maria; Jarrossay, David; Maina Ndungu, Francis; Wambua, Juliana; Bejon, Philip; Fregni, Chiara Silacci; Fernandez-Rodriguez, Blanca; Barbieri, Sonia; Bianchi, Siro; Marsh, Kevin; Thathy, Vandana; Corti, Davide; Sallusto, Federica

    2016-01-01

    Plasmodium falciparum antigens expressed on the surface of infected erythrocytes are important targets of naturally acquired immunity against malaria, but their high number and variability provide the pathogen with a powerful means of escape from host antibodies1–4. Although broadly reactive antibodies against these antigens could be useful as therapeutics and in vaccine design, their identification has proven elusive. Here, we report the isolation of human monoclonal antibodies that recognize erythrocytes infected by different P. falciparum isolates and opsonize these cells by binding to members of the RIFIN family. These antibodies acquired broad reactivity through a novel mechanism of insertion of a large DNA fragment between the V and DJ segments. The insert, which is both necessary and sufficient for binding to RIFINs, encodes the entire 100 amino acid collagen-binding domain of LAIR-1, an Ig superfamily inhibitory receptor encoded on chromosome 19. In each of the two donors studied, the antibodies are produced by a single expanded B cell clone and carry distinct somatic mutations in the LAIR-1 domain that abolish binding to collagen and increase binding to infected erythrocytes. These findings illustrate, with a biologically relevant example, a novel mechanism of antibody diversification by interchromosomal DNA transposition and demonstrate the existence of conserved epitopes that may be suitable candidates for the development of a malaria vaccine. PMID:26700814

  20. Next-generation re-sequencing of genes involved in increased platelet reactivity in diabetic patients on acetylsalicylic acid.

    PubMed

    Postula, Marek; Janicki, Piotr K; Eyileten, Ceren; Rosiak, Marek; Kaplon-Cieslicka, Agnieszka; Sugino, Shigekazu; Wilimski, Radosław; Kosior, Dariusz A; Opolski, Grzegorz; Filipiak, Krzysztof J; Mirowska-Guzel, Dagmara

    2016-06-01

    The objective of this study was to investigate whether rare missense genetic variants in several genes related to platelet functions and acetylsalicylic acid (ASA) response are associated with the platelet reactivity in patients with diabetes type 2 (T2D) on ASA therapy. Fifty eight exons and corresponding introns of eight selected genes, including PTGS1, PTGS2, TXBAS1, PTGIS, ADRA2A, ADRA2B, TXBA2R, and P2RY1 were re-sequenced in 230 DNA samples from T2D patients by using a pooled PCR amplification and next-generation sequencing by Illumina HiSeq2000. The observed non-synonymous variants were confirmed by individual genotyping of 384 DNA samples comprising of the individuals from the original discovery pools and additional verification cohort of 154 ASA-treated T2DM patients. The association between investigated phenotypes (ASA induced changes in platelets reactivity by PFA-100, VerifyNow and serum thromboxane B2 level [sTxB2]), and accumulation of rare missense variants (genetic burden) in investigated genes was tested using statistical collapsing tests. We identified a total of 35 exonic variants, including 3 common missense variants, 15 rare missense variants, and 17 synonymous variants in 8 investigated genes. The rare missense variants exhibited statistically significant difference in the accumulation pattern between a group of patients with increased and normal platelet reactivity based on PFA-100 assay. Our study suggests that genetic burden of the rare functional variants in eight genes may contribute to differences in the platelet reactivity measured with the PFA-100 assay in the T2DM patients treated with ASA. PMID:26599574

  1. Direct and Indirect Co-culture of Chondrocytes and Mesenchymal Stem Cells for the Generation of Polymer/Extracellular Matrix Hybrid Constructs

    PubMed Central

    Levorson, Erica J.; Santoro, Marco; Kasper, F. Kurtis; Mikos, Antonios G.

    2014-01-01

    In this work, the influence of direct cell-cell contact in co-cultures of mesenchymal stem cells (MSCs) and chondrocytes for the improved deposition of cartilage-like extracellular matrix (ECM) within nonwoven fibrous poly(∊ -caprolactone) (PCL) scaffolds was examined. To this end, chondrocytes and MSCs were either co-cultured in direct contact by mixing on a single PCL scaffold or via indirect co-culture whereby the two cell types were seeded on separate scaffolds which were then cultured together in the same system either statically or under media perfusion in a bioreactor. In static cultures, the chondrocyte scaffold of an indirectly co-cultured group generated significantly greater amounts of glycosaminoglycan and collagen than the direct co-culture group initially seeded with the same number of chondrocytes. Furthermore, improved ECM production was linked to greater cellular proliferation and distribution throughout the scaffold in static culture. In perfusion cultures, flow had a significant effect on the proliferation of the chondrocytes. The ECM contents within the chondrocyte containing scaffolds of the indirect co-culture groups either approximated or surpassed the amounts generated within the direct co-culture group. Additionally, within bioreactor culture there were indications that chondrocytes had an influence on the chondrogenesis of MSCs as evidenced by increases in cartilaginous ECM synthetic capacity. This work demonstrates that it is possible to generate PCL/ECM hybrid scaffolds for cartilage regeneration by utilizing the factors secreted by two different cell types, chondrocytes and MSCs, even in the absence of juxtacrine signaling. PMID:24365703

  2. Effect of electron-transport inhibitors on the generation of reactive oxygen species by pea mitochondria during succinate oxidation.

    PubMed

    Popov, V N; Ruuge, E K; Starkov, A A

    2003-07-01

    The effect of inhibitors of the cytochrome pathway and alternative oxidase on the rate of respiration and generation of reactive oxygen species by pea mitochondria was studied. Respiration of mitochondria from pea cotyledons was inhibited by 70-80% by salicylhydroxamate (SHAM). The rate of hydrogen peroxide production by pea cotyledon mitochondria during succinate oxidation was 0.15 nmol/min per mg protein. SHAM considerably accelerated the hydrogen peroxide production. The SHAM-dependent H2O2 production was stimulated by 2 micro M antimycin A and inhibited by 5 mM KCN and 1 micro M myxothiazol. The study of the rate of O2*- generation by pea mitochondria using EPR spin traps and epinephrine oxidation showed that H2O2 accumulation can be accounted for by a significant increase in the rate of O2*- production.

  3. Late generated neurons in the medial cortex of adult lizards send axons that reach the Timm-reactive zones.

    PubMed

    Lopez-Garcia, C; Molowny, A; Garcia-Verdugo, J M; Martinez-Guijarro, F J; Bernabeu, A

    1990-12-15

    Double labelling autoradiography-HRP experiments were performed to examine whether late generated neurons in the medial cortex of lizards develop and send axons to their targets. One to two months after receiving a series of tritiated thymidine ([3H]T) injections to label recently generated neurons, lizards (Podarcis hispanica) were subjected to a HRP labelling experiment. HRP was stereotaxically injected into the projection areas of the medial cerebral cortex, i.e. the cortical Timm-reactive areas. Following a short survival time, lizards were sacrificed and their brains processed first for HRP histochemical detection and then for autoradiography. Many cell somata in the cell layer of the medial cortex were retrogradely labelled. A few of the HRP labelled somata also displayed autoradiographic silver granules labelling their nuclei. This indicates that their time of origin had coincided with the tritiated thymidine pulse. These doubly labelled somata are evidence that newly formed neurons grow axons that reach the areas injected with HRP.

  4. Angiotensin II induces Fat1 expression/activation and vascular smooth muscle cell migration via Nox1-dependent reactive oxygen species generation

    PubMed Central

    Bruder-Nascimento, T; Chinnasamy, P; Riascos-Bernal, DF; Cau, SB; Callera, GE; Touyz, RM; Tostes, RC; Sibinga, NES

    2013-01-01

    Fat1 is an atypical cadherin that controls vascular smooth muscle cell (VSMC) proliferation and migration. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 1 (Nox1) is an important source of reactive oxygen species (ROS) in VSMCs. Angiotensin II (Ang II) induces the expression and/or activation of both Fat1 and Nox1 proteins. This study tested the hypothesis that Ang II-induced Fat1 activation and VSMC migration are mediated by Nox1-dependent ROS generation and redox signaling. Studies were performed in cultured VSMCs from Sprague-Dawley rats. Cells were treated with Ang II (1 μmol/L) for short (5 to 30 min) or long term stimulations (3 to 12 h) in the absence or presence of the antioxidant apocynin (10 μmol/L), extracellular-signal-regulated kinases 1/2 (Erk1/2) inhibitor PD98059 (1 μmol/L), or Ang II type 1 receptor (AT1R) valsartan (1 μmol/L). siRNA was used to knockdown Nox1 or Fat1. Cell migration was determined by Boyden chamber assay. Ang II increased Fat1 mRNA and protein levels and promoted Fat1 translocation to the cell membrane, responses that were inhibited by AT1R antagonist and antioxidant treatment. Downregulation of Nox1 inhibited the effects of Ang II on Fat1 protein expression. Nox1 protein induction, ROS generation, and p44/p42 MAPK phosphorylation in response to Ang II were prevented by valsartan and apocynin, and Nox1 siRNA inhibited Ang II-induced ROS generation. Knockdown of Fat1 did not affect Ang II-mediated increases in Nox1 expression or ROS. Inhibition of p44/p42 MAPK phosphorylation by PD98059 abrogated the Ang II-induced increase in Fat1 expression and membrane translocation. Knockdown of Fat1 inhibited Ang II-induced VSMC migration, which was also prevented by valsartan, apocynin, PD98059, and Nox1 siRNA. Our findings indicate that Ang II regulates Fat1 expression and activity and induces Fat1-dependent VSMC migration via activation of AT1R, ERK1/2, and Nox1-derived ROS, suggesting a role for Fat1 downstream of Ang II

  5. Oxidation of Levafix CA reactive azo-dyes in industrial wastewater of textile dyeing by electro-generated Fenton's reagent.

    PubMed

    El-Desoky, Hanaa S; Ghoneim, Mohamed M; El-Sheikh, Ragaa; Zidan, Naglaa M

    2010-03-15

    The indirect electrochemical removal of pollutants from effluents has become an attractive method in recent years. Removal (decolorization and mineralization) of Levafix Blue CA and Levafix Red CA reactive azo-dyes from aqueous media by electro-generated Fenton's reagent (Fe(2+)/H(2)O(2)) using a reticulated vitreous carbon cathode and a platinum gauze anode was optimized. Progress of oxidation (decolorization and mineralization) of the investigated azo-dyes with time of electro-Fenton's reaction was monitored by UV-visible absorbance measurements, Chemical oxygen demand (COD) removal and HPLC analysis. The results indicated that the electro-Fenton's oxidation system is efficient for treatment of such types of reactive dyes. Oxidation of each of the investigated azo-dyes by electro-generated Fenton's reagent up to complete decolorization and approximately 90-95% mineralization was achieved. Moreover, the optimized electro-Fenton's oxidation was successfully applied for complete decolorization and approximately 85-90% mineralization of both azo-dyes in real industrial wastewater samples collected from textile dyeing house at El-Mahalla El-Kobra, Egypt.

  6. Resveratrol induced inhibition of Escherichia coli proceeds via membrane oxidation and independent of diffusible reactive oxygen species generation.

    PubMed

    Subramanian, Mahesh; Goswami, Manish; Chakraborty, Saikat; Jawali, Narendra

    2014-01-01

    Resveratrol (5-[(E)-2-(4-hydroxyphenyl)ethenyl]benzene-1,3-diol), a redox active phytoalexin with a large number of beneficial activities is also known for antibacterial property. However the mechanism of action of resveratrol against bacteria remains unknown. Due to its extensive redox property it was envisaged if reactive oxygen species (ROS) generation by resveratrol could be a reason behind its antibacterial activity. Employing Escherichia coli as a model organism we have evaluated the role of diffusible reactive oxygen species in the events leading to inhibition of this organism by resveratrol. Evidence for the role of ROS in E. coli treated with resveratrol was investigated by direct quantification of ROS by flow cytometry, supplementation with ROS scavengers, depletion of intracellular glutathione, employing mutants devoid of enzymatic antioxidant defences, induction of adaptive response prior to resveratrol challenge and monitoring oxidative stress response elements oxyR, soxS and soxR upon resveratrol treatment. Resveratrol treatment did not result in scavengable ROS generation in E. coli cells. However, evidence towards membrane damage was obtained by potassium leakage (atomic absorption spectrometry) and propidium iodide uptake (flow cytometry and microscopy) as an early event. Based on the comprehensive evidences this study concludes for the first time the antibacterial property of resveratrol against E. coli does not progress via the diffusible ROS but is mediated by site-specific oxidative damage to the cell membrane as the primary event.

  7. Resveratrol induced inhibition of Escherichia coli proceeds via membrane oxidation and independent of diffusible reactive oxygen species generation

    PubMed Central

    Subramanian, Mahesh; Goswami, Manish; Chakraborty, Saikat; Jawali, Narendra

    2014-01-01

    Resveratrol (5-[(E)-2-(4-hydroxyphenyl)ethenyl]benzene-1,3-diol), a redox active phytoalexin with a large number of beneficial activities is also known for antibacterial property. However the mechanism of action of resveratrol against bacteria remains unknown. Due to its extensive redox property it was envisaged if reactive oxygen species (ROS) generation by resveratrol could be a reason behind its antibacterial activity. Employing Escherichia coli as a model organism we have evaluated the role of diffusible reactive oxygen species in the events leading to inhibition of this organism by resveratrol. Evidence for the role of ROS in E. coli treated with resveratrol was investigated by direct quantification of ROS by flow cytometry, supplementation with ROS scavengers, depletion of intracellular glutathione, employing mutants devoid of enzymatic antioxidant defences, induction of adaptive response prior to resveratrol challenge and monitoring oxidative stress response elements oxyR, soxS and soxR upon resveratrol treatment. Resveratrol treatment did not result in scavengable ROS generation in E. coli cells. However, evidence towards membrane damage was obtained by potassium leakage (atomic absorption spectrometry) and propidium iodide uptake (flow cytometry and microscopy) as an early event. Based on the comprehensive evidences this study concludes for the first time the antibacterial property of resveratrol against E. coli does not progress via the diffusible ROS but is mediated by site-specific oxidative damage to the cell membrane as the primary event. PMID:25009788

  8. Generation of reactive oxygen species by lethal attacks from competing microbes

    PubMed Central

    Dong, Tao G.; Dong, Shiqi; Catalano, Christy; Moore, Richard; Liang, Xiaoye; Mekalanos, John J.

    2015-01-01

    Whether antibiotics induce the production of reactive oxygen species (ROS) that contribute to cell death is an important yet controversial topic. Here, we report that lethal attacks from bacterial and viral species also result in ROS production in target cells. Using soxS as an ROS reporter, we found soxS was highly induced in Escherichia coli exposed to various forms of attacks mediated by the type VI secretion system (T6SS), P1vir phage, and polymyxin B. Using a fluorescence ROS probe, we found enhanced ROS levels correlate with induced soxS in E. coli expressing a toxic T6SS antibacterial effector and in E. coli treated with P1vir phage or polymyxin B. We conclude that both contact-dependent and contact-independent interactions with aggressive competing bacterial species and viruses can induce production of ROS in E. coli target cells. PMID:25646446

  9. Influence of ionic liquid and ionic salt on protein against the reactive species generated using dielectric barrier discharge plasma

    NASA Astrophysics Data System (ADS)

    Attri, Pankaj; Sarinont, Thapanut; Kim, Minsup; Amano, Takaaki; Koga, Kazunori; Cho, Art E.; Ha Choi, Eun; Shiratani, Masaharu

    2015-12-01

    The presence of salts in biological solution can affect the activity of the reactive species (RS) generated by plasma, and so they can also have an influence on the plasma-induced sterilization. In this work, we assess the influence that diethylammonium dihydrogen phosphate (DEAP), an ionic liquid (IL), and sodium chloride (NaCl), an ionic salt (IS), have on the structural changes in hemoglobin (Hb) in the presence of RS generated using dielectric barrier discharge (DBD) plasma in the presence of various gases [O2, N2, Ar, He, NO (10%) + N2 and Air]. We carry out fluorescence spectroscopy to verify the generation of •OH with or without the presence of DEAP IL and IS, and we use electron spin resonance (ESR) to check the generation of H• and •OH. In addition, we verified the structural changes in the Hb structure after treatment with DBD in presence and absence of IL and IS. We then assessed the structural stability of the Hb in the presence of IL and IS by using molecular dynamic (MD) simulations. Our results indicate that the IL has a strong effect on the conservation of the Hb structure relative to that of IS against RS generated by plasma.

  10. Influence of ionic liquid and ionic salt on protein against the reactive species generated using dielectric barrier discharge plasma

    PubMed Central

    Attri, Pankaj; Sarinont, Thapanut; Kim, Minsup; Amano, Takaaki; Koga, Kazunori; Cho, Art E.; Ha Choi, Eun; Shiratani, Masaharu

    2015-01-01

    The presence of salts in biological solution can affect the activity of the reactive species (RS) generated by plasma, and so they can also have an influence on the plasma-induced sterilization. In this work, we assess the influence that diethylammonium dihydrogen phosphate (DEAP), an ionic liquid (IL), and sodium chloride (NaCl), an ionic salt (IS), have on the structural changes in hemoglobin (Hb) in the presence of RS generated using dielectric barrier discharge (DBD) plasma in the presence of various gases [O2, N2, Ar, He, NO (10%) + N2 and Air]. We carry out fluorescence spectroscopy to verify the generation of •OH with or without the presence of DEAP IL and IS, and we use electron spin resonance (ESR) to check the generation of H• and •OH. In addition, we verified the structural changes in the Hb structure after treatment with DBD in presence and absence of IL and IS. We then assessed the structural stability of the Hb in the presence of IL and IS by using molecular dynamic (MD) simulations. Our results indicate that the IL has a strong effect on the conservation of the Hb structure relative to that of IS against RS generated by plasma. PMID:26656857

  11. In situ fluorescence spectroscopy correlates ionomer degradation to reactive oxygen species generation in an operating fuel cell.

    PubMed

    Prabhakaran, Venkateshkumar; Arges, Christopher G; Ramani, Vijay

    2013-11-21

    The rate of generation of reactive oxygen species (ROS) within the polymer electrolyte membrane (PEM) of an operating proton exchange member fuel cell (PEMFC) was monitored using in situ fluorescence spectroscopy. A modified barrier layer was introduced between the PEM and the electrocatalyst layer to eliminate metal-dye interactions and fluorescence resonance energy transfer (FRET) effects during measurements. Standard fuel cell operating parameters (temperature, relative humidity, and electrode potential) were systematically varied to evaluate their influence on the rate of ROS generation during PEMFC operation. Independently, the macroscopic rate of PEM degradation was measured by monitoring the fluoride ion emission rate (FER) in the effluent stream at each operating condition. The ROS generation reaction rate constant (estimated from the in situ fluorescence experiments) correlated perfectly with the measured FER across all conditions, demonstrating unequivocally for the first time that a direct correlation exists between in situ ROS generation and PEM macroscopic degradation. The activation energy for ROS generation within the PEM was estimated to be 12.5 kJ mol(-1).

  12. Effect of plasma jet diameter on the efficiency of reactive oxygen and nitrogen species generation in water

    NASA Astrophysics Data System (ADS)

    Oh, Jun-Seok; Kakuta, Maito; Furuta, Hiroshi; Akatsuka, Hiroshi; Hatta, Akimitsu

    2016-06-01

    The plasma jet generation of reactive oxygen and nitrogen species (RONS) in solution is important in biology, medicine, and disinfection. Studies using a wide variety of plasma jet devices have been carried out for this purpose, making it difficult to compare the performance between devices. In this study, we compared the efficiency of RONS generation in deionized (DI) water between 3.7-mm- and 800-µm-sized helium (He) plasma jets (hereafter mm-jet and µm-jet, respectively) at different treatment distances and times. The efficiency of RONS generation was determined by considering the total amount of RONS generated in DI water with respect to the input energy and gas consumption. We found that the mm-jet generated 20% more RONS in the DI water than the µm-jet at the optimized distance. However, when the input power and He gas consumption were taken into account, we discovered that the µm-jet was 5 times more efficient in generating RONS in the DI water. Under the parameters investigated in this study, the concentration of RONS continued to increase as a function of treatment time (up to 30 min). However treatment distance had a marked effect on the efficiency of RONS generation: treatment distances of 25 and 30 mm were optimal for the mm-jet and µm-jet, respectively. Our method of comparing the efficiency of RONS generation in solution between plasma jets could be used as a reference protocol for the development of efficient plasma jet sources for use in medicine, biology, and agriculture.

  13. Mechanisms of Rapid Reactive Oxygen Species Generation in Response to Cytosolic Ca2+ or Zn2+ Loads in Cortical Neurons

    PubMed Central

    Clausen, Aaron; McClanahan, Taylor; Ji, Sung G.; Weiss, John H.

    2013-01-01

    Excessive “excitotoxic” accumulation of Ca2+ and Zn2+ within neurons contributes to neurodegeneration in pathological conditions including ischemia. Putative early targets of these ions, both of which are linked to increased reactive oxygen species (ROS) generation, are mitochondria and the cytosolic enzyme, NADPH oxidase (NOX). The present study uses primary cortical neuronal cultures to examine respective contributions of mitochondria and NOX to ROS generation in response to Ca2+ or Zn2+ loading. Induction of rapid cytosolic accumulation of either Ca2+ (via NMDA exposure) or Zn2+ (via Zn2+/Pyrithione exposure in 0 Ca2+) caused sharp cytosolic rises in these ions, as well as a strong and rapid increase in ROS generation. Inhibition of NOX activation significantly reduced the Ca2+-induced ROS production with little effect on the Zn2+- triggered ROS generation. Conversely, dissipation of the mitochondrial electrochemical gradient increased the cytosolic Ca2+ or Zn2+ rises caused by these exposures, consistent with inhibition of mitochondrial uptake of these ions. However, such disruption of mitochondrial function markedly suppressed the Zn2+-triggered ROS, while partially attenuating the Ca2+-triggered ROS. Furthermore, block of the mitochondrial Ca2+ uniporter (MCU), through which Zn2+ as well as Ca2+ can enter the mitochondrial matrix, substantially diminished Zn2+ triggered ROS production, suggesting that the ROS generation occurs specifically in response to Zn2+ entry into mitochondria. Finally, in the presence of the sulfhydryl-oxidizing agent 2,2'-dithiodipyridine, which impairs Zn2+ binding to cytosolic metalloproteins, far lower Zn2+ exposures were able to induce mitochondrial Zn2+ uptake and consequent ROS generation. Thus, whereas rapid acute accumulation of Zn2+ and Ca2+ each can trigger injurious ROS generation, Zn2+ entry into mitochondria via the MCU may do so with particular potency. This may be of particular relevance to conditions like ischemia

  14. Mechanisms of rapid reactive oxygen species generation in response to cytosolic Ca2+ or Zn2+ loads in cortical neurons.

    PubMed

    Clausen, Aaron; McClanahan, Taylor; Ji, Sung G; Weiss, John H

    2013-01-01

    Excessive "excitotoxic" accumulation of Ca(2+) and Zn(2+) within neurons contributes to neurodegeneration in pathological conditions including ischemia. Putative early targets of these ions, both of which are linked to increased reactive oxygen species (ROS) generation, are mitochondria and the cytosolic enzyme, NADPH oxidase (NOX). The present study uses primary cortical neuronal cultures to examine respective contributions of mitochondria and NOX to ROS generation in response to Ca(2+) or Zn(2+) loading. Induction of rapid cytosolic accumulation of either Ca(2+) (via NMDA exposure) or Zn(2+) (via Zn(2+)/Pyrithione exposure in 0 Ca(2+)) caused sharp cytosolic rises in these ions, as well as a strong and rapid increase in ROS generation. Inhibition of NOX activation significantly reduced the Ca(2+)-induced ROS production with little effect on the Zn(2+)- triggered ROS generation. Conversely, dissipation of the mitochondrial electrochemical gradient increased the cytosolic Ca(2+) or Zn(2+) rises caused by these exposures, consistent with inhibition of mitochondrial uptake of these ions. However, such disruption of mitochondrial function markedly suppressed the Zn(2+)-triggered ROS, while partially attenuating the Ca(2+)-triggered ROS. Furthermore, block of the mitochondrial Ca(2+) uniporter (MCU), through which Zn(2+) as well as Ca(2+) can enter the mitochondrial matrix, substantially diminished Zn(2+) triggered ROS production, suggesting that the ROS generation occurs specifically in response to Zn(2+) entry into mitochondria. Finally, in the presence of the sulfhydryl-oxidizing agent 2,2'-dithiodipyridine, which impairs Zn(2+) binding to cytosolic metalloproteins, far lower Zn(2+) exposures were able to induce mitochondrial Zn(2+) uptake and consequent ROS generation. Thus, whereas rapid acute accumulation of Zn(2+) and Ca(2+) each can trigger injurious ROS generation, Zn(2+) entry into mitochondria via the MCU may do so with particular potency. This may be of

  15. RhoA and Rac1 GTPases Differentially Regulate Agonist-Receptor Mediated Reactive Oxygen Species Generation in Platelets

    PubMed Central

    Akbar, Huzoor; Duan, Xin; Saleem, Saima; Davis, Ashley K.; Zheng, Yi

    2016-01-01

    Agonist induced generation of reactive oxygen species (ROS) by NADPH oxidases (NOX) enhances platelet aggregation and hence the risk of thrombosis. RhoA and Rac1 GTPases are involved in ROS generation by NOX in a variety of cells, but their roles in platelet ROS production remain unclear. In this study we used platelets from RhoA and Rac1 conditional knockout mice as well as human platelets treated with Rhosin and NSC23767, rationally designed small molecule inhibitors of RhoA and Rac GTPases, respectively, to better define the contributions of RhoA and Rac1 signaling to ROS generation and platelet activation. Treatment of platelets with Rhosin inhibited: (a) U46619 induced activation of RhoA; (b) phosphorylation of p47phox, a critical component of NOX; (c) U46619 or thrombin induced ROS generation; (d) phosphorylation of myosin light chain (MLC); (e) platelet shape change; (f) platelet spreading on immobilized fibrinogen; and (g) release of P-selectin, secretion of ATP and aggregation. Conditional deletion of RhoA or Rac1 gene inhibited thrombin induced ROS generation in platelets. Addition of Y27632, a RhoA inhibitor, NSC23766 or Phox-I, an inhibitor of Rac1-p67phox interaction, to human platelets blocked thrombin induced ROS generation. These data suggest that: (a) RhoA/ROCK/p47phox signaling axis promotes ROS production that, at least in part, contributes to platelet activation in conjunction with or independent of the RhoA/ROCK mediated phosphorylation of MLC; and (b) RhoA and Rac1 differentially regulate ROS generation by inhibiting phosphorylation of p47phox and Rac1-p67phox interaction, respectively. PMID:27681226

  16. Variation in structure of proteins by adjusting reactive oxygen and nitrogen species generated from dielectric barrier discharge jet

    PubMed Central

    Park, Ji Hoon; Kim, Minsup; Shiratani, Masaharu; Cho, Art. E.; Choi, Eun Ha; Attri, Pankaj

    2016-01-01

    Over the last few years, the variation in liquid chemistry due to the development of radicals generated by cold atmospheric plasma (CAP) has played an important role in plasma medicine. CAP direct treatment or CAP activated media treatment in cancer cells shows promising anticancer activity for both in vivo and in vitro studies. However, the anticancer activity or antimicrobial activity varies between plasma devices due to the different abilities among plasma devices to generate the reactive oxygen and nitrogen species (RONS) at different ratios and in different concentrations. While the generation of RONS depends on many factors, the feeding gas plays the most important role among the factors. Hence, in this study we used different compositions of feeding gas while fixing all other plasma characteristics. We used Ar, Ar-O2 (at different ratios), and Ar-N2 (at different ratios) as the working gases for CAP and investigated the structural changes in proteins (Hemoglobin (Hb) and Myoglobin (Mb)). We then analyzed the influence of RONS generated in liquid on the conformations of proteins. Additionally, to determine the influence of H2O2 on the Hb and Mb structures, we used molecular dynamic simulation. PMID:27779212

  17. Generation of reactive oxygen species (ROS) is a key factor for stimulation of macrophage proliferation by ceramide 1-phosphate

    SciTech Connect

    Arana, Lide; Gangoiti, Patricia; Ouro, Alberto; Rivera, Io-Guane; Ordonez, Marta; Trueba, Miguel; Lankalapalli, Ravi S.; Bittman, Robert; Gomez-Munoz, Antonio

    2012-02-15

    We previously demonstrated that ceramide 1-phosphate (C1P) is mitogenic for fibroblasts and macrophages. However, the mechanisms involved in this action were only partially described. Here, we demonstrate that C1P stimulates reactive oxygen species (ROS) formation in primary bone marrow-derived macrophages, and that ROS are required for the mitogenic effect of C1P. ROS production was dependent upon prior activation of NADPH oxidase by C1P, which was determined by measuring phosphorylation of the p40phox subunit and translocation of p47phox from the cytosol to the plasma membrane. In addition, C1P activated cytosolic calcium-dependent phospholipase A{sub 2} and protein kinase C-{alpha}, and NADPH oxidase activation was blocked by selective inhibitors of these enzymes. These inhibitors, and inhibitors of ROS production, blocked the mitogenic effect of C1P. By using BHNB-C1P (a photolabile caged-C1P analog), we demonstrate that all of these C1P actions are caused by intracellular C1P. It can be concluded that the enzyme responsible for C1P-stimulated ROS generation in bone marrow-derived macrophages is NADPH oxidase, and that this enzyme is downstream of PKC-{alpha} and cPLA{sub 2}-{alpha} in this pathway. -- Highlights: Black-Right-Pointing-Pointer Ceramide 1-phosphate (C1P) stimulates reactive oxygen species (ROS) formation. Black-Right-Pointing-Pointer The enzyme responsible for ROS generation by C1P in macrophages is NADPH oxidase. Black-Right-Pointing-Pointer NADPH oxidase lies downstream of cPLA{sub 2}-{alpha} and PKC-{alpha} in this pathway. Black-Right-Pointing-Pointer ROS generation is essential for the stimulation of macrophage proliferation by C1P.

  18. Energy conversion, redox catalysis and generation of reactive oxygen species by respiratory complex I.

    PubMed

    Hirst, Judy; Roessler, Maxie M

    2016-07-01

    Complex I (NADH:ubiquinone oxidoreductase) is critical for respiration in mammalian mitochondria. It oxidizes NADH produced by the Krebs' tricarboxylic acid cycle and β-oxidation of fatty acids, reduces ubiquinone, and transports protons to contribute to the proton-motive force across the inner membrane. Complex I is also a significant contributor to cellular oxidative stress. In complex I, NADH oxidation by a flavin mononucleotide, followed by intramolecular electron transfer along a chain of iron-sulfur clusters, delivers electrons and energy to bound ubiquinone. Either at cluster N2 (the terminal cluster in the chain) or upon the binding/reduction/dissociation of ubiquinone/ubiquinol, energy from the redox process is captured to initiate long-range energy transfer through the complex and drive proton translocation. This review focuses on current knowledge of how the redox reaction and proton transfer are coupled, with particular emphasis on the formation and role of semiquinone intermediates in both energy transduction and reactive oxygen species production. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt. PMID:26721206

  19. Reactive-power compensation of coal mining excavators by using a new-generation STATCOM

    SciTech Connect

    Bilgin, H.F.; Ermis, M.; Kose, K.N.; Cadirci, I.; Acik, A.; Demirci, T.; Terciyanli, A.; Kocak, C.; Yorukoglu, M.

    2007-01-15

    This paper deals with the development and implementation of a current-source-converter-based static synchronous compensator (CSC-STATCOM) applied to the volt-ampere-reactive (VAR) compensation problem of coal mining excavators. It is composed of a +/- 750-kVAR full-bridge CSC with selective harmonic elimination, a low-pass input filter tuned to 200 Hz, and a Delta/Y-connected coupling transformer for connection to medium-voltage load bus. Each power semiconductor switch is composed of an asymmetrical integrated gate commutated thyristor (IGCT) connected in series with a reverse-blocking diode and switched at 500 Hz to eliminate 5th, 7th, 11th, and 13th current harmonics produced by the CSC. Operating principles, power stage, design of dc link, and input filter are also described in this paper. It has been verified by field tests that the developed STATCOM follows rapid fluctuations in nearly symmetrical lagging and leading VAR consumption of electric excavators, resulting in nearly unity power factor on monthly basis, and the harmonic current spectra in the lines of CSC-STATCOM at the point of common coupling comply with the IEEE Standard 519-1992.

  20. Colloidal gold nanorings for improved photodynamic therapy through field-enhanced generation of reactive oxygen species

    NASA Astrophysics Data System (ADS)

    Hu, Yue; Yang, Yamin; Wang, Hongjun; Du, Henry

    2013-02-01

    Au nanostructures that exhibit strong localized surface plasmon resonance (SPR) have excellent potential for photo-medicine, among a host of other applications. Here, we report the synthesis and use of colloidal gold nanorings (GNRs) with potential for enhanced photodynamic therapy of cancer. The GNRs were fabricated via galvanic replacement reaction of sacrificial Co nanoparticles in gold salt solution with low molecular weight (Mw = 2,500) poly(vinylpyrrolidone) (PVP) as a stabilizing agent. The size and the opening of the GNRs were controlled by the size of the starting Co particles and the concentration of the gold salt. UV-Vis absorption measurements indicated the tunability of the SPR of the GNRs from 560 nm to 780 nm. MTT assay showed that GNRs were non-toxic and biocompatible when incubated with breast cancer cells as well as the healthy counterpart cells. GNRs conjugated with 5-aminolevulinic acid (5-ALA) photosensitizer precursor led to elevated formation of reactive oxygen species and improved efficacy of photodynamic therapy of breast cancer cells under light irradiation compared to 5-ALA alone. These results can be attributed to significantly enhance localized electromagnetic field of the GNRs.

  1. Ligation of Glycophorin A Generates Reactive Oxygen Species Leading to Decreased Red Blood Cell Function

    PubMed Central

    Khoory, Joseph; Estanislau, Jessica; Elkhal, Abdallah; Lazaar, Asmae; Melhorn, Mark I.; Brodsky, Abigail; Illigens, Ben; Hamachi, Itaru; Kurishita, Yasutaka; Ivanov, Alexander R.; Shevkoplyas, Sergey; Shapiro, Nathan I.; Ghiran, Ionita C.

    2016-01-01

    Acute, inflammatory conditions associated with dysregulated complement activation are characterized by significant increases in blood concentration of reactive oxygen species (ROS) and ATP. The mechanisms by which these molecules arise are not fully understood. In this study, using luminometric- and fluorescence-based methods, we show that ligation of glycophorin A (GPA) on human red blood cells (RBCs) results in a 2.1-fold, NADPH-oxidase-dependent increase in intracellular ROS that, in turn, trigger multiple downstream cascades leading to caspase-3 activation, ATP release, and increased band 3 phosphorylation. Functionally, using 2D microchannels to assess membrane deformability, GPS-ligated RBCs travel 33% slower than control RBCs, and lipid mobility was hindered by 10% using fluorescence recovery after photobleaching (FRAP). These outcomes were preventable by pretreating RBCs with cell-permeable ROS scavenger glutathione monoethyl ester (GSH-ME). Our results obtained in vitro using anti-GPA antibodies were validated using complement-altered RBCs isolated from control and septic patients. Our results suggest that during inflammatory conditions, circulating RBCs significantly contribute to capillary flow dysfunctions, and constitute an important but overlooked source of intravascular ROS and ATP, both critical mediators responsible for endothelial cell activation, microcirculation impairment, platelet activation, as well as long-term dysregulated adaptive and innate immune responses. PMID:26784696

  2. Development and characterization of a panel of cross-reactive monoclonal antibodies generated using H1N1 influenza virus.

    PubMed

    Guo, Chun-yan; Tang, Yi-gui; Qi, Zong-li; Liu, Yang; Zhao, Xiang-rong; Huo, Xue-ping; Li, Yan; Feng, Qing; Zhao, Peng-hua; Wang, Xin; Li, Yuan; Wang, Hai-fang; Hu, Jun; Zhang, Xin-jian

    2015-08-01

    To characterize the antigenic epitopes of the hemagglutinin (HA) protein of H1N1 influenza virus, a panel consisting of 84 clones of murine monoclonal antibodies (mAbs) were generated using the HA proteins from the 2009 pandemic H1N1 vaccine lysate and the seasonal influenza H1N1(A1) vaccines. Thirty-three (39%) of the 84 mAbs were found to be strain-specific, and 6 (7%) of the 84 mAbs were subtype-specific. Twenty (24%) of the 84 mAbs recognized the common HA epitopes shared by 2009 pandemic H1N1, seasonal A1 (H1N1), and A3 (H3N2) influenza viruses. Twenty-five of the 84 clones recognized the common HA epitopes shared by the 2009 pandemic H1N1, seasonal A1 (H1N1) and A3 (H3N2) human influenza viruses, and H5N1 and H9N2 avian influenza viruses. We found that of the 16 (19%) clones of the 84 mAbs panel that were cross-reactive with human respiratory pathogens, 15 were made using the HA of the seasonal A1 (H1N1) virus and 1 was made using the HA of the 2009 pandemic H1N1 influenza virus. Immunohistochemical analysis of the tissue microarray (TMA) showed that 4 of the 84 mAb clones cross-reacted with human tissue (brain and pancreas). Our results indicated that the influenza virus HA antigenic epitopes not only induce type-, subtype-, and strain-specific monoclonal antibodies against influenza A virus but also cross-reactive monoclonal antibodies against human tissues. Further investigations of these cross-reactive (heterophilic) epitopes may significantly improve our understanding of viral antigenic variation, epidemics, pathophysiologic mechanisms, and adverse effects of influenza vaccines.

  3. Lysosomal membrane permeabilization: Carbon nanohorn-induced reactive oxygen species generation and toxicity by this neglected mechanism

    SciTech Connect

    Yang, Mei; Zhang, Minfang; Tahara, Yoshio; Chechetka, Svetlana; Miyako, Eijiro; Iijima, Sumio; Yudasaka, Masako

    2014-10-01

    Understanding the molecular mechanisms responsible for the cytotoxic effects of carbon nanomaterials is important for their future biomedical applications. Carbon nanotubular materials induce the generation of reactive oxygen species (ROS), which causes cell death; however, the exact details of this process are still unclear. Here, we identify a mechanism of ROS generation that is involved in the apoptosis of RAW264.7 macrophages caused by excess uptake of carbon nanohorns (CNHs), a typical type of carbon nanotubule. CNH accumulated in the lysosomes, where they induced lysosomal membrane permeabilization (LMP) and the subsequent release of lysosomal proteases, such as cathepsins, which in turn caused mitochondrial dysfunction and triggered the generation of ROS in the mitochondria. The nicotinamide adenine dinucleotide phosphate oxidase was not directly involved in CNH-related ROS production, and the ROS generation cannot be regulated by mitochondrial electron transport chain. ROS fed back to amplify the mitochondrial dysfunction, leading to the subsequent activation of caspases and cell apoptosis. Carbon nanotubules commonly accumulate in the lysosomes after internalization in cells; however, lysosomal dysfunction has not attracted much attention in toxicity studies of these materials. These results suggest that LMP, a neglected mechanism, may be the primary reason for carbon nanotubule toxicity. - Highlights: • We clarify an apoptotic mechanism of RAW264.7 cells caused by carbon nanohorns. • In the meantime, the mechanism of CNH-induced ROS generation is identified. • LMP is the initial factor of CNH-induced ROS generation and cell death. • Cathepsins work as mediators that connect LMP and mitochondrial dysfunction.

  4. Reactive Oxygen Species Generation by Lunar Simulants in Simulated Lung Fluid

    NASA Astrophysics Data System (ADS)

    Schoonen, M. A.; Kaur, J.; Rickman, D.

    2015-12-01

    The current interest in human exploration of the Moon and other airless planetary bodies has rekindled research into the harmful effects of Lunar dust on human health. Our team has evaluated the spontaneous formation of Reactive Oxygen Species (ROS; hydroxyl radicals, superoxide, and hydrogen peroxide) of a suite of lunar simulants when dispersed in deionized water. Of these species, hydroxyl radical reacts almost immediately with any biomolecule leading to oxidative damage. Sustained production of OH radical as a result of mineral exposure can initiate or enhance disease. The results in deionized water indicate that mechanical stress and the absence of molecular oxygen and water, important environmental characteristics of the lunar environment, can lead to enhanced production of ROS in general. On the basis of the results with deionized water, a few of the simulants were selected for additional studies to evaluate the formation of hydrogen peroxide, a precursor of hydroxyl radical in Simulated Lung Fluid. These simulants dispersed in deionized water typically produce a maximum in H2O2 within 10 to 40 minutes. However, experiments in SLF show a slow steady increase in H2O2 concentration that has been documented to continue for as long as 7 hours. Control experiments with one simulant demonstrate that the rise in H2O2 depends on the availability of dissolved O2. We speculate that this continuous rise in oxygenated SLF might be a result of metal ion-mediated oxidation of organic components, such as glycine in SLF. Ion-mediated oxidation essentially allows dissolved molecular oxygen to react with dissolved organic compounds by forming a metal-organic complex. Results of separate experiments with dissolved Fe, Ni, and Cu and speciation calculations support this notion.

  5. Generation of reactive astrocytes from NG2 cells is regulated by sonic hedgehog.

    PubMed

    Honsa, Pavel; Valny, Martin; Kriska, Jan; Matuskova, Hana; Harantova, Lenka; Kirdajova, Denisa; Valihrach, Lukas; Androvic, Peter; Kubista, Mikael; Anderova, Miroslava

    2016-09-01

    NG2 cells, a fourth glial cell type in the adult mammalian central nervous system, produce oligodendrocytes in the healthy nervous tissue, and display wide differentiation potential under pathological conditions, where they could give rise to reactive astrocytes. The factors that control the differentiation of NG2 cells after focal cerebral ischemia (FCI) are largely unknown. Here, we used transgenic Cspg4-cre/Esr1/ROSA26Sortm14(CAG-tdTomato) mice, in which tamoxifen administration triggers the expression of red fluorescent protein (tomato) specifically in NG2 cells and cells derived therefrom. Differentiation potential (in vitro and in vivo) of tomato-positive NG2 cells from control or postischemic brains was determined using the immunohistochemistry, single cell RT-qPCR and patch-clamp method. The ischemic injury was induced by middle cerebral artery occlusion, a model of FCI. Using genetic fate-mapping method, we identified sonic hedgehog (Shh) as an important factor that influences differentiation of NG2 cells into astrocytes in vitro. We also manipulated Shh signaling in the adult mouse brain after FCI. Shh signaling activation significantly increased the number of astrocytes derived from NG2 cells in the glial scar around the ischemic lesion, while Shh signaling inhibition caused the opposite effect. Since Shh signaling modifications did not change the proliferation rate of NG2 cells, we can conclude that Shh has a direct influence on the differentiation of NG2 cells and therefore, on the formation and composition of a glial scar, which consequently affects the degree of the brain damage. GLIA 2016;64:1518-1531. PMID:27340757

  6. Hierarchical Testing with Automated Document Generation for Amanzi, ASCEM's Subsurface Flow and Reactive Transport Simulator

    NASA Astrophysics Data System (ADS)

    Moulton, J. D.; Steefel, C. I.; Yabusaki, S.; Castleton, K.; Scheibe, T. D.; Keating, E. H.; Freedman, V. L.

    2013-12-01

    The Advanced Simulation Capabililty for Environmental Management (ASCEM) program is developing an approach and open-source tool suite for standardized risk and performance assessments at legacy nuclear waste sites. These assessments use a graded and iterative approach, beginning with simplified highly abstracted models, and adding geometric and geologic complexity as understanding is gained. To build confidence in this assessment capability, extensive testing of the underlying tools is needed. Since the tools themselves, such as the subsurface flow and reactive-transport simulator, Amanzi, are under active development, testing must be both hierarchical and highly automated. In this presentation we show how we have met these requirements, by leveraging the python-based open-source documentation system called Sphinx with several other open-source tools. Sphinx builds on the reStructured text tool docutils, with important extensions that include high-quality formatting of equations, and integrated plotting through matplotlib. This allows the documentation, as well as the input files for tests, benchmark and tutorial problems, to be maintained with the source code under a version control system. In addition, it enables developers to build documentation in several different formats (e.g., html and pdf) from a single source. We will highlight these features, and discuss important benefits of this approach for Amanzi. In addition, we'll show that some of ASCEM's other tools, such as the sampling provided by the Uncertainty Quantification toolset, are naturally leveraged to enable more comprehensive testing. Finally, we will highlight the integration of this hiearchical testing and documentation framework with our build system and tools (CMake, CTest, and CDash).

  7. Testosterone improves erectile function through inhibition of reactive oxygen species generation in castrated rats

    PubMed Central

    Li, Rui; Meng, Xianghu; Zhang, Yan; Wang, Tao; Yang, Jun; Niu, Yonghua; Cui, Kai; Wang, Shaogang

    2016-01-01

    Testosterone is overwhelmingly important in regulating erectile physiology. However, the associated molecular mechanisms are poorly understood. The purpose of this study was to explore the effects and mechanisms of testosterone in erectile dysfunction (ED) in castrated rats. Forty male Sprague-Dawley rats were randomized to four groups (control, sham-operated, castration and castration-with-testosterone-replacement). Reactive oxygen species (ROS) production was measured by dihydroethidium (DHE) staining. Erectile function was assessed by the recording of intracavernous pressure (ICP) and mean arterial blood pressure (MAP). Protein expression levels were examined by western blotting. We found that castration reduced erectile function and that testosterone restored it. Nitric oxide synthase (NOS) activity was decrease in the castrated rats, and testosterone administration attenuated this decrease (each p < 0.05). The testosterone, dihydrotestosterone, cyclic guanosine monophosphate (cGMP) and cyclic adenosine monophosphate (cAMP) concentrations were lower in the castrated rats, and testosterone restored these levels (each p < 0.05). Furthermore, the cyclooxygenase-2 (COX-2) and prostacyclin synthase (PTGIS) expression levels and phospho-endothelial nitric oxide synthase (p-eNOS, Ser1177)/endothelial nitric oxide synthase (eNOS) ratio were reduced in the castrated rats compared with the controls (each p < 0.05). In addition, the p40phox and p67phox expression levels were increased in the castrated rats, and testosterone reversed these changes (each p < 0.05). Overall, our results demonstrate that testosterone ameliorates ED after castration by reducing ROS production and increasing the activity of the eNOS/cGMP and COX-2/PTGIS/cAMP signaling pathways. PMID:27168996

  8. Smoke extract impairs adenosine wound healing: implications of smoke-generated reactive oxygen species.

    PubMed

    Allen-Gipson, Diane S; Zimmerman, Matthew C; Zhang, Hui; Castellanos, Glenda; O'Malley, Jennifer K; Alvarez-Ramirez, Horacio; Kharbanda, Kusum; Sisson, Joseph H; Wyatt, Todd A

    2013-05-01

    Adenosine concentrations are elevated in the lungs of patients with asthma and chronic obstructive pulmonary disease, where it balances between tissue repair and excessive airway remodeling. We previously demonstrated that the activation of the adenosine A2A receptor promotes epithelial wound closure. However, the mechanism by which adenosine-mediated wound healing occurs after cigarette smoke exposure has not been investigated. The present study investigates whether cigarette smoke exposure alters adenosine-mediated reparative properties via its ability to induce a shift in the oxidant/antioxidant balance. Using an in vitro wounding model, bronchial epithelial cells were exposed to 5% cigarette smoke extract, were wounded, and were then stimulated with either 10 μM adenosine or the specific A2A receptor agonist, 5'-(N-cyclopropyl)-carboxamido-adenosine (CPCA; 10 μM), and assessed for wound closure. In a subset of experiments, bronchial epithelial cells were infected with adenovirus vectors encoding human superoxide dismutase and/or catalase or control vector. In the presence of 5% smoke extract, significant delay was evident in both adenosine-mediated and CPCA-mediated wound closure. However, cells pretreated with N-acetylcysteine (NAC), a nonspecific antioxidant, reversed smoke extract-mediated inhibition. We found that cells overexpressing mitochondrial catalase repealed the smoke extract inhibition of CPCA-stimulated wound closure, whereas superoxide dismutase overexpression exerted no effect. Kinase experiments revealed that smoke extract significantly reduced the A2A-mediated activation of cyclic adenosine monophosphate-dependent protein kinase. However, pretreatment with NAC reversed this effect. In conclusion, our data suggest that cigarette smoke exposure impairs A2A-stimulated wound repair via a reactive oxygen species-dependent mechanism, thereby providing a better understanding of adenosine signaling that may direct the development of pharmacological

  9. Derivatization of haemoglobin with periodate-generated reticulation agents: evaluation of oxidative reactivity for potential blood substitutes.

    PubMed

    Deac, Florina; Iacob, Bianca; Fischer-Fodor, Eva; Damian, Grigore; Silaghi-Dumitrescu, Radu

    2011-01-01

    Periodate modification of the sugar moiety in sugars, including adenosine triphosphate (ATP), has previously been employed in order to prepare dialdehyde-type reagents, which were then utilized in crosslinking reactions on haemoglobin, yielding polymerized material with useful dioxygen-binding properties and hence proposed as possible artificial oxygen carriers ('blood substitutes'). Here, the periodate protocol is shown to be applicable to a wider range of oxygen-containing compounds, illustrated by starch and polyethylene glycol. Derivatization protocols are described for haemoglobin with such periodate-treated crosslinking agents, and the dioxygen-binding properties and redox reactivities are investigated for the derivatized haemoglobins, with emphasis on pro-oxidative properties. There is a general tendency of the derivatization to result in higher autooxidation rates. The peroxide reactivity of the met (ferric) form is also affected by derivatization, as witnessed, among others, by varying yields of ferryl [Fe (IV)-oxo] and free radical generated. In cell, culture tests (human umbilical vein epithelial cells, HUVEC), the derivatization protocols show no toxic effect. PMID:20961862

  10. Derivatization of haemoglobin with periodate-generated reticulation agents: evaluation of oxidative reactivity for potential blood substitutes.

    PubMed

    Deac, Florina; Iacob, Bianca; Fischer-Fodor, Eva; Damian, Grigore; Silaghi-Dumitrescu, Radu

    2011-01-01

    Periodate modification of the sugar moiety in sugars, including adenosine triphosphate (ATP), has previously been employed in order to prepare dialdehyde-type reagents, which were then utilized in crosslinking reactions on haemoglobin, yielding polymerized material with useful dioxygen-binding properties and hence proposed as possible artificial oxygen carriers ('blood substitutes'). Here, the periodate protocol is shown to be applicable to a wider range of oxygen-containing compounds, illustrated by starch and polyethylene glycol. Derivatization protocols are described for haemoglobin with such periodate-treated crosslinking agents, and the dioxygen-binding properties and redox reactivities are investigated for the derivatized haemoglobins, with emphasis on pro-oxidative properties. There is a general tendency of the derivatization to result in higher autooxidation rates. The peroxide reactivity of the met (ferric) form is also affected by derivatization, as witnessed, among others, by varying yields of ferryl [Fe (IV)-oxo] and free radical generated. In cell, culture tests (human umbilical vein epithelial cells, HUVEC), the derivatization protocols show no toxic effect.

  11. Extracellular calcium sensing and extracellular calcium signaling

    NASA Technical Reports Server (NTRS)

    Brown, E. M.; MacLeod, R. J.; O'Malley, B. W. (Principal Investigator)

    2001-01-01

    The cloning of a G protein-coupled extracellular Ca(2+) (Ca(o)(2+))-sensing receptor (CaR) has elucidated the molecular basis for many of the previously recognized effects of Ca(o)(2+) on tissues that maintain systemic Ca(o)(2+) homeostasis, especially parathyroid chief cells and several cells in the kidney. The availability of the cloned CaR enabled the development of DNA and antibody probes for identifying the CaR's mRNA and protein, respectively, within these and other tissues. It also permitted the identification of human diseases resulting from inactivating or activating mutations of the CaR gene and the subsequent generation of mice with targeted disruption of the CaR gene. The characteristic alterations in parathyroid and renal function in these patients and in the mice with "knockout" of the CaR gene have provided valuable information on the CaR's physiological roles in these tissues participating in mineral ion homeostasis. Nevertheless, relatively little is known about how the CaR regulates other tissues involved in systemic Ca(o)(2+) homeostasis, particularly bone and intestine. Moreover, there is evidence that additional Ca(o)(2+) sensors may exist in bone cells that mediate some or even all of the known effects of Ca(o)(2+) on these cells. Even more remains to be learned about the CaR's function in the rapidly growing list of cells that express it but are uninvolved in systemic Ca(o)(2+) metabolism. Available data suggest that the receptor serves numerous roles outside of systemic mineral ion homeostasis, ranging from the regulation of hormonal secretion and the activities of various ion channels to the longer term control of gene expression, programmed cell death (apoptosis), and cellular proliferation. In some cases, the CaR on these "nonhomeostatic" cells responds to local changes in Ca(o)(2+) taking place within compartments of the extracellular fluid (ECF) that communicate with the outside environment (e.g., the gastrointestinal tract). In others

  12. Mountain cedar pollen induces IgE-independent mast cell degranulation, IL-4 production, and intracellular reactive oxygen species generation

    PubMed Central

    Endo, Shuichiro; Hochman, Daniel J.; Midoro-Horiuti, Terumi; Goldblum, Randall M.; Brooks, Edward G.

    2011-01-01

    Cedar pollens cause severe allergic disease throughout the world. We have previously characterized allergenic pollen glycoproteins from mountain cedar (Juniperus ashei) that bind to allergen-specific immunoglobulin E (IgE). In the present report, we investigated an alternative pathway of mast cell activation by mountain cedar pollen extract through IgE-independent mechanisms. We show that mountain cedar pollen directly induces mast cell serotonin and IL-4 release and enhances release induced by IgE cross-linking. Concomitant with mediator release, high levels of intracellular reactive oxygen species (ROS) were generated, and both ROS and serotonin release were inhibited by anti-oxidants. These findings suggest that alternative mechanisms exist whereby pollen exposure enhances allergic inflammatory mediator release through mechanisms that involve ROS. These mechanisms have the potential for enhancing the allergenic potency of pollens. PMID:21944563

  13. Newly synthesized bis-benzimidazole compound 8 induces apoptosis, autophagy and reactive oxygen species generation in HeLa cells.

    PubMed

    Chu, Naying; Yao, Guodong; Liu, Yuan; Cheng, Maosheng; Ikejima, Takashi

    2016-09-01

    Compound 8 (C8) is a newly synthesized bis-benzimidazole derivative and exerts significant anti-tumor activity in vitro. Previous studies demonstrated that C8 induced apoptosis and autophagy in human promyelocytic leukemia HL60 cells. However, cytotoxicity study on human peripheral blood mononuclear cells (hPBMC) showed that C8 exhibited less toxicity in normal cells. In this study, the molecular mechanism of C8 on human cervical carcinoma HeLa cells was investigated. The results showed that C8 inhibited the growth of HeLa cells and triggered both apoptotic and autophagic cell death. Subsequent experiment also indicated that reactive oxygen species (ROS) generation was induced in C8-treated HeLa cells. Since ROS scavenger decreased the ratio of apoptotic and autophagic cells, ROS generation contributed to C8-induced apoptosis and autophagy. Furthermore, inhibitors of apoptosis and autophagy also reduced ROS generation, respectively. Autophagy inhibition increased cell growth compared to C8-treated group and attenuated apoptotic cell death, indicating that C8-induced autophagy promoted apoptosis for cell death. However, the percentage of autophagic cells was enhanced when limiting apoptosis process. Taken together, C8 induced ROS-mediated apoptosis and autophagy in HeLa cells, autophagy promoted apoptosis but the former was antagonized by the latter. The data also gave us a new perspective on the anti-tumor effect of C8. PMID:27497983

  14. Newly synthesized bis-benzimidazole compound 8 induces apoptosis, autophagy and reactive oxygen species generation in HeLa cells.

    PubMed

    Chu, Naying; Yao, Guodong; Liu, Yuan; Cheng, Maosheng; Ikejima, Takashi

    2016-09-01

    Compound 8 (C8) is a newly synthesized bis-benzimidazole derivative and exerts significant anti-tumor activity in vitro. Previous studies demonstrated that C8 induced apoptosis and autophagy in human promyelocytic leukemia HL60 cells. However, cytotoxicity study on human peripheral blood mononuclear cells (hPBMC) showed that C8 exhibited less toxicity in normal cells. In this study, the molecular mechanism of C8 on human cervical carcinoma HeLa cells was investigated. The results showed that C8 inhibited the growth of HeLa cells and triggered both apoptotic and autophagic cell death. Subsequent experiment also indicated that reactive oxygen species (ROS) generation was induced in C8-treated HeLa cells. Since ROS scavenger decreased the ratio of apoptotic and autophagic cells, ROS generation contributed to C8-induced apoptosis and autophagy. Furthermore, inhibitors of apoptosis and autophagy also reduced ROS generation, respectively. Autophagy inhibition increased cell growth compared to C8-treated group and attenuated apoptotic cell death, indicating that C8-induced autophagy promoted apoptosis for cell death. However, the percentage of autophagic cells was enhanced when limiting apoptosis process. Taken together, C8 induced ROS-mediated apoptosis and autophagy in HeLa cells, autophagy promoted apoptosis but the former was antagonized by the latter. The data also gave us a new perspective on the anti-tumor effect of C8.

  15. Loading effects of silver oxides upon generation of reactive oxygen species in semiconductor photocatalysis.

    PubMed

    Kohtani, Shigeru; Yoshida, Kazuhiro; Maekawa, Toshiyasu; Iwase, Akihide; Kudo, Akihiko; Miyabe, Hideto; Nakagaki, Ryoichi

    2008-05-28

    Superoxide anion radical (O(2)(-*)) and OH radical generations in suspensions of Ag metal-, Ag(2)O-, or AgO-loaded TiO(2) and BiVO(4) photocatalysts in alkaline conditions (pH 12.0) were examined by means of a luminol chemiluminescence (CL) technique and a spin-trapping fluorescence one in which terephthalic acid reacts with an OH radical to afford the highly fluorescent 2-hydroxyterephthalic acid (TAOH), respectively. The observed luminol CL intensity was remarkably enhanced by the AgO loading on TiO(2) as well as BiVO(4). This can be explained by enhancement of O(2)(-*) production on the AgO-loaded photocatalysts caused by the synergetic effects on the thermocatalytic activity upon the AgO surface and the efficient electron-hole separation at the photocatalyst/AgO interface. On the other hand, loading effects of AgO on the TAOH formation were not so significant compared to those on the CL observation, though the TAOH formation rates for the TiO(2) samples were much larger than those for the BiVO(4) ones by about three orders of magnitude. The properties of O(2)(-*) and OH radical generations on these photocatalysts are discussed on the basis of the luminol CL kinetics and approximate band edge positions of TiO(2), BiVO(4), and silver oxides.

  16. Reactive molecular dynamics of network polymers: Generation, characterization and mechanical properties

    NASA Astrophysics Data System (ADS)

    Shankar, Chandrashekar

    The goal of this research was to gain a fundamental understanding of the properties of networks created by the ring opening metathesis polymerization (ROMP) of dicyclopentadiene (DCPD) used in self-healing materials. To this end we used molecular simulation methods to generate realistic structures of DCPD networks, characterize their structures, and determine their mechanical properties. Density functional theory (DFT) calculations, complemented by structural information derived from molecular dynamics simulations were used to reconstruct experimental Raman spectra and differential scanning calorimetry (DSC) data. We performed coarse-grained simulations comparing networks generated via the ROMP reaction process and compared them to those generated via a RANDOM process, which led to the fundamental realization that the polymer topology has a unique influence on the network properties. We carried out fully atomistic simulations of DCPD using a novel algorithm for recreating ROMP reactions of DCPD molecules. Mechanical properties derived from these atomistic networks are in excellent agreement with those obtained from coarse-grained simulations in which interactions between nodes are subject to angular constraints. This comparison provides self-consistent validation of our simulation results and helps to identify the level of detail necessary for the coarse-grained interaction model. Simulations suggest networks can classified into three stages: fluid-like, rubber-like or glass-like delineated by two thresholds in degree of reaction alpha: The onset of finite magnitudes for the Young's modulus, alphaY, and the departure of the Poisson ration from 0.5, alphaP. In each stage the polymer exhibits a different predominant mechanical response to deformation. At low alpha < alphaY it flows. At alpha Y < alpha < alphaP the response is entropic with no change in internal energy. At alpha > alphaP the response is enthalpic change in internal energy. We developed graph theory

  17. Generation and reactivation of T-cell receptor A joining region pseudogenes in primates

    SciTech Connect

    Thiel, C.; Lanchbury, J.S.; Otting, N.

    1996-06-01

    Tandemly duplicated T-cell receptor (Tcr) AJ (J{alpha}) segments contribute significantly to TCRA chain junctional region diversity in mammals. Since only limited data exists on TCRA diversity in nonhuman primates, we examined the TCRAJ regions of 37 chimpanzee and 71 rhesus macaque TCRA cDNA clones derived from inverse polymerase chain reaction on peripheral blood mononuclear cell cDNA of healthy animals. Twenty-five different TCRAJ regions were characterized in the chimpanzee and 36 in the rhesus macaque. Each bears a close structural relationship to an equivalent human TCRAJ region. Conserved amino acid motifs are shared between all three species. There are indications that differences between nonhuman primates and humans exist in the generation of TCRAJ pseudogenes. The nucleotide and amino acid sequences of the various characterized TCRAJ of each species are reported and we compare our results to the available information on human genomic sequences. Although we provide evidence of dynamic processes modifying TCRAJ segments during primate evolution, their repertoire and primary structure appears to be relatively conserved. 21 refs., 2 figs.

  18. Effect of Structural Transformation of Nanoparticulate Zero-Valent Iron on Generation of Reactive Oxygen Species.

    PubMed

    He, Di; Ma, Jinxing; Collins, Richard N; Waite, T David

    2016-04-01

    While it has been recognized for some time that addition of nanoparticlate zerovalent iron (nZVI) to oxygen-containing water results in both corrosion of Fe(0) and oxidation of contaminants, there is limited understanding of either the relationship between transformation of nZVI and oxidant formation or the factors controlling the lifetime and extent of oxidant production. Using Fe K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy, we show that while nZVI particles are transformed to ferrihydrite then lepidocrocite in less than 2 h, oxidant generation continues for up to 10 h. The major products (Fe(II) and H2O2) of the reaction of nZVI with oxygenated water are associated, for the most part, with the surface of particles present with these surface-associated Fenton reagents inducing oxidation of a target compound (in this study, (14)C-labeled formate). Effective oxidation of formate only occurred after formation of iron oxides on the nZVI surface with the initial formation of high surface area ferrihydrite facilitating rapid and extensive adsorption of formate with colocation of this target compound and surface-associated Fe(II) and H2O2 apparently critical to formate oxidation. Ongoing formate oxidation long after nZVI is consumed combined with the relatively slow consumption of Fe(II) and H2O2 suggest that these reactants are regenerated during the nZVI-initiated heterogeneous Fenton process. PMID:26958862

  19. Apoptosis induction of U937 human leukemia cells by diallyl trisulfide induces through generation of reactive oxygen species

    PubMed Central

    2012-01-01

    Background Diallyl trisulfide (DATS) is one of the major constituents in garlic oil and has demonstrated various pharmacological activities, including antimicrobial, antihyperlipidemic, antithrombotic, and anticancer effects. However, the mechanisms of antiproliferative activity in leukemia cells are not fully understood. In this study, the apoptotic effects of DATS were investigated in human leukemia cells. Results Results of this study indicated that treatment with DATS resulted in significantly inhibited leukemia cell growth in a concentration- and time-dependent manner by induction of apoptosis. In U937 cells, DATS-induced apoptosis was correlated with down-regulation of Bcl-2, XIAP, and cIAP-1 protein levels, cleavage of Bid proteins, activation of caspases, and collapse of mitochondrial membrane potential. The data further demonstrated that DATS increased intracellular reactive oxygen species (ROS) generation, which was attenuated by pretreatment with antioxidant N-acetyl-l-cysteine (NAC), a scavenger of ROS. In addition, administration of NAC resulted in significant inhibition of DATS-induced apoptosis by inhibiting activation of caspases. Conclusions The present study reveals that the cytotoxicity caused by DATS is mediated by generation of ROS and subsequent activation of the ROS-dependent caspase pathway in U937 leukemia cells. PMID:22578287

  20. Reactive Oxygen Species Generation-Scavenging and Signaling during Plant-Arbuscular Mycorrhizal and Piriformospora indica Interaction under Stress Condition

    PubMed Central

    Nath, Manoj; Bhatt, Deepesh; Prasad, Ram; Gill, Sarvajeet S.; Anjum, Naser A.; Tuteja, Narendra

    2016-01-01

    A defined balance between the generation and scavenging of reactive oxygen species (ROS) is essential to utilize ROS as an adaptive defense response of plants under biotic and abiotic stress conditions. Moreover, ROS are not only a major determinant of stress response but also act as signaling molecule that regulates various cellular processes including plant-microbe interaction. In particular, rhizosphere constitutes the biologically dynamic zone for plant–microbe interactions which forms a mutual link leading to reciprocal signaling in both the partners. Among plant–microbe interactions, symbiotic associations of arbuscular mycorrhizal fungi (AMF) and arbuscular mycorrhizal-like fungus especially Piriformospora indica with plants are well known to improve plant growth by alleviating the stress-impacts and consequently enhance the plant fitness. AMF and P. indica colonization mainly enhances ROS-metabolism, maintains ROS-homeostasis, and thereby averts higher ROS-level accrued inhibition in plant cellular processes and plant growth and survival under stressful environments. This article summarizes the major outcomes of the recent reports on the ROS-generation, scavenging and signaling in biotic-abiotic stressed plants with AMF and P. indica colonization. Overall, a detailed exploration of ROS-signature kinetics during plant-AMF/P. indica interaction can help in designing innovative strategies for improving plant health and productivity under stress conditions.

  1. BME, a novel compound of anthraquinone, down regulated P-glycoprotein expression in doxorubicin-resistant human myelogenous leukemia (K562/DOX) cells via generation of reactive oxygen species.

    PubMed

    Wang, Jianhong; Liu, Lu; Cen, Juan; Ji, Biansheng

    2015-09-01

    P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) in tumor cells is still a main obstacle for the chemotherapeutic treatment of cancers. Thus, development of effective MDR reversing agents is an important approach in the clinic. The present study revealed that BME, a novel compound of anthraquinone, elevated intracellular accumulation of the P-gp substrates and reduced concentration resulting in 50% inhibition of cell growth (IC50) values for doxorubicin (DOX) in doxorubicin-resistant human myelogenous leukemia (K562/DOX) cells. Further more, BME was also reported to down regulated P-gp expression accompanying with generation of nontoxic low level of intracellular reactive oxygen species (iROS) and activation of extracellular signal-regulated kinase (ERK)1/2 as well as c-JUN N-terminal kinase (JNK). However, treatment with N-acetyl-cysteine (NAC), U0216 and SP600125 almost abolished actions of the BME mentioned above. These results indicated that the effect of the BME on the P-gp may be involved in generation of nontoxic low level of iROS and activation of ERK1/2 or JNK, which suggested valuable clues to screen and develop P-gp reversing agents.

  2. Cell uptake, intracellular distribution, fate and reactive oxygen species generation of polymer brush engineered CeO2-x NPs

    NASA Astrophysics Data System (ADS)

    Qiu, Yuan; Rojas, Elena; Murray, Richard A.; Irigoyen, Joseba; Gregurec, Danijela; Castro-Hartmann, Pablo; Fledderman, Jana; Estrela-Lopis, Irina; Donath, Edwin; Moya, Sergio E.

    2015-04-01

    Cerium Oxide nanoparticles (CeO2-x NPs) are modified with polymer brushes of negatively charged poly (3-sulfopropylmethacrylate) (PSPM) and positively charged poly (2-(methacryloyloxy)ethyl-trimethylammonium chloride) (PMETAC) by Atom Transfer Radical Polymerisation (ATRP). CeO2-x NPs are fluorescently labelled by covalently attaching Alexa Fluor® 488/Fluorescein isothiocyanate to the NP surface prior to polymerisation. Cell uptake, intracellular distribution and the impact on the generation of intracellular Reactive Oxygen Species (ROS) with respect to CeO2-x NPs are studied by means of Raman Confocal Microscopy (CRM), Transmission Electron Microscopy (TEM) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). PSPM and PMETAC coated CeO2-x NPs show slower and less uptake compared to uncoated Brush modified NPs display a higher degree of co-localisation with cell endosomes and lysosomes after 24 h of incubation. They also show higher co-localisation with lipid bodies when compared to unmodified CeO2-x NPs. The brush coating does not prevent CeO2-x NPs from displaying antioxidant properties.Cerium Oxide nanoparticles (CeO2-x NPs) are modified with polymer brushes of negatively charged poly (3-sulfopropylmethacrylate) (PSPM) and positively charged poly (2-(methacryloyloxy)ethyl-trimethylammonium chloride) (PMETAC) by Atom Transfer Radical Polymerisation (ATRP). CeO2-x NPs are fluorescently labelled by covalently attaching Alexa Fluor® 488/Fluorescein isothiocyanate to the NP surface prior to polymerisation. Cell uptake, intracellular distribution and the impact on the generation of intracellular Reactive Oxygen Species (ROS) with respect to CeO2-x NPs are studied by means of Raman Confocal Microscopy (CRM), Transmission Electron Microscopy (TEM) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). PSPM and PMETAC coated CeO2-x NPs show slower and less uptake compared to uncoated Brush modified NPs display a higher degree of co-localisation with cell

  3. Combustion-derived flame generated ultrafine soot generates reactive oxygen species and activates Nrf2 antioxidants differently in neonatal and adult rat lungs

    PubMed Central

    2013-01-01

    Background Urban particulate matter (PM) has been epidemiologically correlated with multiple cardiopulmonary morbidities and mortalities, in sensitive populations. Children exposed to PM are more likely to develop respiratory infections and asthma. Although PM originates from natural and anthropogenic sources, vehicle exhaust rich in polycyclic aromatic hydrocarbons (PAH) can be a dominant contributor to the PM2.5 and PM0.1 fractions and has been implicated in the generation of reactive oxygen species (ROS). Objectives Current studies of ambient PM are confounded by the variable nature of PM, so we utilized a previously characterized ethylene-combusted premixed flame particles (PFP) with consistent and reproducible physiochemical properties and 1) measured the oxidative potential of PFP compared to ambient PM, 2) determined the ability of PFPs to generate oxidative stress and activate the transcription factor using in vitro and ex vivo models, and 3) we correlated these responses with antioxidant enzyme expression in vivo. Methods We compared oxidative stress response (HMOX1) and antioxidant enzyme (SOD1, SOD2, CAT, and PRDX6) expression in vivo by performing a time-course study in 7-day old neonatal and young adult rats exposed to a single 6-hour exposure to 22.4 μg/m3 PFPs. Results We showed that PFP is a potent ROS generator that induces oxidative stress and activates Nrf2. Induction of the oxidative stress responsive enzyme HMOX1 in vitro was mediated through Nrf2 activation and was variably upregulated in both ages. Furthermore, antioxidant enzyme expression had age and lung compartment variations post exposure. Of particular interest was SOD1, which had mRNA and protein upregulation in adult parenchyma, but lacked a similar response in neonates. Conclusions We conclude that PFPs are effective ROS generators, comparable to urban ambient PM2.5, that induce oxidative stress in neonatal and adult rat lungs. PFPs upregulate a select set of antioxidant enzymes in

  4. A mutation in the mitochondrial protein UQCRB promotes angiogenesis through the generation of mitochondrial reactive oxygen species.

    PubMed

    Chang, Junghwa; Jung, Hye Jin; Jeong, Seung Hun; Kim, Hyoung Kyu; Han, Jin; Kwon, Ho Jeong

    2014-12-12

    Ubiquinol-cytochrome c reductase binding protein (UQCRB) is one of the subunits of mitochondrial complex III and is a target protein of the natural anti-angiogenic small molecule terpestacin. Previously, the biological role of UQCRB was thought to be limited to the maintenance of complex III. However, the identification and validation of UQCRB as a target protein of terpestacin enabled the role of UQCRB in oxygen sensing and angiogenesis to be elucidated. To explore the biological role of this protein further, UQCRB mutant stable cell lines were generated on the basis of a human case report. We demonstrated that these cell lines exhibited glycolytic and pro-angiogenic activities via mitochondrial reactive oxygen species (mROS)-mediated HIF1 signal transduction. Furthermore, a morphological abnormality in mitochondria was detected in UQCRB mutant stable cell lines. In addition, the proliferative effect of the UQCRB mutants was significantly regulated by the UQCRB inhibitors terpestacin and A1938. Collectively, these results provide a molecular basis for UQCRB-related biological processes and reveal potential key roles of UQCRB in angiogenesis and mitochondria-mediated metabolic disorders.

  5. Methodological considerations of electron spin resonance spin trapping techniques for measuring reactive oxygen species generated from metal oxide nanomaterials

    PubMed Central

    Jeong, Min Sook; Yu, Kyeong-Nam; Chung, Hyun Hoon; Park, Soo Jin; Lee, Ah Young; Song, Mi Ryoung; Cho, Myung-Haing; Kim, Jun Sung

    2016-01-01

    Qualitative and quantitative analyses of reactive oxygen species (ROS) generated on the surfaces of nanomaterials are important for understanding their toxicity and toxic mechanisms, which are in turn beneficial for manufacturing more biocompatible nanomaterials in many industrial fields. Electron spin resonance (ESR) is a useful tool for detecting ROS formation. However, using this technique without first considering the physicochemical properties of nanomaterials and proper conditions of the spin trapping agent (such as incubation time) may lead to misinterpretation of the resulting data. In this report, we suggest methodological considerations for ESR as pertains to magnetism, sample preparation and proper incubation time with spin trapping agents. Based on our results, each spin trapping agent should be given the proper incubation time. For nanomaterials having magnetic properties, it is useful to remove these nanomaterials via centrifugation after reacting with spin trapping agents. Sonication for the purpose of sample dispersion and sample light exposure should be controlled during ESR in order to enhance the obtained ROS signal. This report will allow researchers to better design ESR spin trapping applications involving nanomaterials. PMID:27194379

  6. Salinomycin simultaneously induces apoptosis and autophagy through generation of reactive oxygen species in osteosarcoma U2OS cells.

    PubMed

    Kim, Sang-Hun; Choi, Young-Jun; Kim, Kwang-Youn; Yu, Sun-Nyoung; Seo, Young-Kyo; Chun, Sung-Sik; Noh, Kyung-Tae; Suh, Jeung-Tak; Ahn, Soon-Cheol

    2016-04-29

    Salinomycin, a polyether antibiotic, acts as a highly selective potassium ionophore. It was reported to anticancer activity on various cancer cell lines. In this study, salinomycin was examined on apoptosis and autophagy through generation of reactive oxygen species (ROS) in osteosarcoma U2OS cells. Apoptosis, autophagy, mitochondrial membrane potential (MMP) and ROS were analyzed using flow cytometry. Also, expressions of apoptosis- and autophagy-related proteins were determined by western blotting. As a result, salinomycin triggered apoptosis of U2OS cells, which was accompanied by change of MMP and cleavage of caspases-3 and poly (ADP-ribose) polymerase. And salinomycin increased the expression of autophagy-related protein and accumulation of acidic vesicular organelles (AVO). Salinomycin-induced ROS production promotes both apoptosis and autophagy, as evidenced by the result that treatment of N-acetyl-l-cysteine (NAC), a ROS scavenger, attenuated both apoptosis and autophagy. In addition, inhibition of autophagy by 3-methyladenine (3 MA) enhanced the salinoymcin-induced apoptosis. Taken together, these results suggested that salinomycin-induced autophagy, as a survival mechanism, might be a potential strategy through ROS regulation in cancer therapy. PMID:27033598

  7. Methodological considerations of electron spin resonance spin trapping techniques for measuring reactive oxygen species generated from metal oxide nanomaterials.

    PubMed

    Jeong, Min Sook; Yu, Kyeong-Nam; Chung, Hyun Hoon; Park, Soo Jin; Lee, Ah Young; Song, Mi Ryoung; Cho, Myung-Haing; Kim, Jun Sung

    2016-01-01

    Qualitative and quantitative analyses of reactive oxygen species (ROS) generated on the surfaces of nanomaterials are important for understanding their toxicity and toxic mechanisms, which are in turn beneficial for manufacturing more biocompatible nanomaterials in many industrial fields. Electron spin resonance (ESR) is a useful tool for detecting ROS formation. However, using this technique without first considering the physicochemical properties of nanomaterials and proper conditions of the spin trapping agent (such as incubation time) may lead to misinterpretation of the resulting data. In this report, we suggest methodological considerations for ESR as pertains to magnetism, sample preparation and proper incubation time with spin trapping agents. Based on our results, each spin trapping agent should be given the proper incubation time. For nanomaterials having magnetic properties, it is useful to remove these nanomaterials via centrifugation after reacting with spin trapping agents. Sonication for the purpose of sample dispersion and sample light exposure should be controlled during ESR in order to enhance the obtained ROS signal. This report will allow researchers to better design ESR spin trapping applications involving nanomaterials. PMID:27194379

  8. Generation of reactive species and fate of thiols during peroxidase-catalyzed metabolic activation of aromatic amines and phenols

    SciTech Connect

    Ross, D.; Moldeus, P.

    1985-12-01

    The horseradish peroxidase (HRP)-catalyzed oxidation of p-phenetidine and acetaminophen was investigated. Studies using the spin probe 2-ethyl-1-hydroxy-2,5,5-trimethyl-3-oxazolidine (OXANOH) suggested these oxidations involve the generation of substrate-derived free radicals. This was confirmed by using glutathione (GSH) in these incubations in the presence of the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), DMPO-glutathionyl radical adducts were observed using EPR spectroscopy during HRP-catalyzed oxidation of both p-phenetidine and acetaminophen. Investigations of oxygen uptake and oxidized glutathione (GSSG) formation during HRP-catalyzed oxidations of p-phenetidine and acetaminophen suggested that further reactions of the glutathionyl radical involve glutathione peroxysulfenyl radical and glutathione sulfenyl hydroperoxide production. Quinonoid products of the peroxidatic oxidations of p-phenetidine and acetaminophen, and their interaction with GSH via both conjugation and redox mechanisms are described. The relevance of these reactions of GSH with reactive species as detoxification mechanisms is discussed. 29 references.

  9. A mutation in the mitochondrial protein UQCRB promotes angiogenesis through the generation of mitochondrial reactive oxygen species

    SciTech Connect

    Chang, Junghwa; Jung, Hye Jin; Jeong, Seung Hun; Kim, Hyoung Kyu; Han, Jin; Kwon, Ho Jeong

    2014-12-12

    Highlights: • We constructed mitochondrial protein UQCRB mutant stable cell lines on the basis of a human case report. • These mutant cell lines exhibit pro-angiogenic activity with enhanced VEGF expression. • Proliferation of mutant cell lines was regulated by UQCRB inhibitors. • UQCRB may have a functional role in angiogenesis. - Abstract: Ubiquinol-cytochrome c reductase binding protein (UQCRB) is one of the subunits of mitochondrial complex III and is a target protein of the natural anti-angiogenic small molecule terpestacin. Previously, the biological role of UQCRB was thought to be limited to the maintenance of complex III. However, the identification and validation of UQCRB as a target protein of terpestacin enabled the role of UQCRB in oxygen sensing and angiogenesis to be elucidated. To explore the biological role of this protein further, UQCRB mutant stable cell lines were generated on the basis of a human case report. We demonstrated that these cell lines exhibited glycolytic and pro-angiogenic activities via mitochondrial reactive oxygen species (mROS)-mediated HIF1 signal transduction. Furthermore, a morphological abnormality in mitochondria was detected in UQCRB mutant stable cell lines. In addition, the proliferative effect of the UQCRB mutants was significantly regulated by the UQCRB inhibitors terpestacin and A1938. Collectively, these results provide a molecular basis for UQCRB-related biological processes and reveal potential key roles of UQCRB in angiogenesis and mitochondria-mediated metabolic disorders.

  10. Methodological considerations of electron spin resonance spin trapping techniques for measuring reactive oxygen species generated from metal oxide nanomaterials

    NASA Astrophysics Data System (ADS)

    Jeong, Min Sook; Yu, Kyeong-Nam; Chung, Hyun Hoon; Park, Soo Jin; Lee, Ah Young; Song, Mi Ryoung; Cho, Myung-Haing; Kim, Jun Sung

    2016-05-01

    Qualitative and quantitative analyses of reactive oxygen species (ROS) generated on the surfaces of nanomaterials are important for understanding their toxicity and toxic mechanisms, which are in turn beneficial for manufacturing more biocompatible nanomaterials in many industrial fields. Electron spin resonance (ESR) is a useful tool for detecting ROS formation. However, using this technique without first considering the physicochemical properties of nanomaterials and proper conditions of the spin trapping agent (such as incubation time) may lead to misinterpretation of the resulting data. In this report, we suggest methodological considerations for ESR as pertains to magnetism, sample preparation and proper incubation time with spin trapping agents. Based on our results, each spin trapping agent should be given the proper incubation time. For nanomaterials having magnetic properties, it is useful to remove these nanomaterials via centrifugation after reacting with spin trapping agents. Sonication for the purpose of sample dispersion and sample light exposure should be controlled during ESR in order to enhance the obtained ROS signal. This report will allow researchers to better design ESR spin trapping applications involving nanomaterials.

  11. Cell uptake, intracellular distribution, fate and reactive oxygen species generation of polymer brush engineered CeO(2-x) NPs.

    PubMed

    Qiu, Yuan; Rojas, Elena; Murray, Richard A; Irigoyen, Joseba; Gregurec, Danijela; Castro-Hartmann, Pablo; Fledderman, Jana; Estrela-Lopis, Irina; Donath, Edwin; Moya, Sergio E

    2015-04-21

    Cerium Oxide nanoparticles (CeO(2-x) NPs) are modified with polymer brushes of negatively charged poly (3-sulfopropylmethacrylate) (PSPM) and positively charged poly (2-(methacryloyloxy)ethyl-trimethylammonium chloride) (PMETAC) by Atom Transfer Radical Polymerisation (ATRP). CeO(2-x) NPs are fluorescently labelled by covalently attaching Alexa Fluor® 488/Fluorescein isothiocyanate to the NP surface prior to polymerisation. Cell uptake, intracellular distribution and the impact on the generation of intracellular Reactive Oxygen Species (ROS) with respect to CeO(2-x) NPs are studied by means of Raman Confocal Microscopy (CRM), Transmission Electron Microscopy (TEM) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). PSPM and PMETAC coated CeO(2-x) NPs show slower and less uptake compared to uncoated Brush modified NPs display a higher degree of co-localisation with cell endosomes and lysosomes after 24 h of incubation. They also show higher co-localisation with lipid bodies when compared to unmodified CeO(2-x) NPs. The brush coating does not prevent CeO(2-x) NPs from displaying antioxidant properties.

  12. [The genotoxic action of uranyl ions on DNA in vitro caused by the generation of reactive oxygen species].

    PubMed

    Smirnova, V S; Gudkov, S V; Shtarkman, I N; Chernikov, A V; Bruskov, V I

    2005-01-01

    8-Oxoguanine (8-OG) is an important biomarker of oxidative DNA damage induced by reactive oxygen species (ROS). By using ELISA with monoclonal antibodies against 8-OG, the formation of 8-OG in DNA by the action of uranyl ions, gamma-irradiation, and heating at 37 degrees C and their combined action was investigated in view of environmental pollution by uranium oxides as a result of the use of armor piercing shells with depleted uranium. The content of 8-OG in DNA induced by the action of gamma-irradiation, 5 microM uranyl ions and heating changes with time in a complicated manner. These results suggest that, by the action of uranyl ions, an additional generation of ROS occurs, which leads both to the formation of 8-OG in DNA and its further oxidation. Uranyl ions at a conceptration of 5 microM increase the thermal deamination of cytosine in DNA several times but do not influence DNA thermal depurination. It is shown that uranyl ions essentially increase the production of hydrogen peroxide and hydroxyl radicals by the action of heat on water. The results indicate a high chemical genotoxicity of uranyl ions and their enhancing effect on DNA base damage by the action of heat and gamma-irradiation.

  13. Testosterone induces apoptosis in vascular smooth muscle cells via extrinsic apoptotic pathway with mitochondria-generated reactive oxygen species involvement.

    PubMed

    Lopes, Rheure Alves Moreira; Neves, Karla Bianca; Pestana, Cezar Rangel; Queiroz, André Lima; Zanotto, Camila Ziliotto; Chignalia, Andréia Z; Valim, Yara Maria; Silveira, Leonardo R; Curti, Carlos; Tostes, Rita C

    2014-06-01

    Testosterone exerts both beneficial and harmful effects on the cardiovascular system. Considering that testosterone induces reactive oxygen species (ROS) generation and ROS activate cell death signaling pathways, we tested the hypothesis that testosterone induces apoptosis in vascular smooth muscle cells (VSMCs) via mitochondria-dependent ROS generation. Potential mechanisms were addressed. Cultured VSMCs were stimulated with testosterone (10(-7) mol/l) or vehicle (2-12 h) in the presence of flutamide (10(-5) mol/l), CCCP (10(-6) mol/l), mimetic manganese(III) tetrakis(1-methyl-4-pyridyl)porphyrin (MnTMPyP; 3 × 10(-5) mol/l), Z-Ile-Glu(O-ME)-Thr-Asp(O-Me) fluoromethyl ketone (Z-IETD-FMK; 10(-5) mol/l), or vehicle. ROS were determined with lucigenin and dichlorodihydrofluorescein; apoptosis, with annexin V and calcein; O2 consumption, with a Clark-type electrode, and procaspases, caspases, cytochrome c, Bax, and Bcl-2 levels by immunoblotting. Testosterone induced ROS generation (relative light units/mg protein, 2 h; 162.6 ± 16 vs. 100) and procaspase-3 activation [arbitrary units, (AU), 6 h; 166.2 ± 19 vs. 100]. CCCP, MnTMPyP, and flutamide abolished these effects. Testosterone increased annexin-V fluorescence (AU, 197.6 ± 21.5 vs. 100) and decreased calcein fluorescence (AU, 34.4 ± 6.4 vs. 100), and O2 consumption (nmol O2/min, 18.6 ± 2.0 vs. 34.4 ± 3.9). Testosterone also reduced Bax-to-Bcl-2 ratio but not cytochrome-c release from mitochondria. Moreover, testosterone (6 h) induced cleavage of procaspase 8 (AU, 161.1 ± 13.5 vs. 100) and increased gene expression of Fas ligand (2(ΔΔCt), 3.6 ± 1.2 vs. 0.7 ± 0.5), and TNF-α (1.7 ± 0.4 vs. 0.3 ± 0.1). CCCP, MnTMPyP, and flutamide abolished these effects. These data indicate that testosterone induces apoptosis in VSMCs via the extrinsic apoptotic pathway with the involvement of androgen receptor activation and mitochondria-generated ROS.

  14. Organic aerosols associated with the generation of reactive oxygen species (ROS) by water-soluble PM2.5.

    PubMed

    Verma, Vishal; Fang, Ting; Xu, Lu; Peltier, Richard E; Russell, Armistead G; Ng, Nga Lee; Weber, Rodney J

    2015-04-01

    We compare the relative toxicity of various organic aerosol (OA) components identified by an aerosol mass spectrometer (AMS) based on their ability to generate reactive oxygen species (ROS). Ambient fine aerosols were collected from urban (three in Atlanta, GA and one in Birmingham, AL) and rural (Yorkville, GA and Centerville, AL) sites in the Southeastern United States. The ROS generating capability of the water-soluble fraction of the particles was measured by the dithiothreitol (DTT) assay. Water-soluble PM extracts were further separated into the hydrophobic and hydrophilic fractions using a C-18 column, and both fractions were analyzed for DTT activity and water-soluble metals. Organic aerosol composition was measured at selected sites using a high-resolution time-of-flight AMS. Positive matrix factorization of the AMS spectra resolved the organic aerosol into isoprene-derived OA (Isop_OA), hydrocarbon-like OA (HOA), less-oxidized oxygenated OA, (LO-OOA), more-oxidized OOA (MO-OOA), cooking OA (COA), and biomass burning OA (BBOA). The association of the DTT activity of water-soluble PM2.5 (WS_DTT) with these factors was investigated by linear regression techniques. BBOA and MO-OOA were most consistently linked with WS_DTT, with intrinsic water-soluble activities of 151 ± 20 and 36 ± 22 pmol/min/μg, respectively. Although less toxic, MO-OOA was most widespread, contributing to WS_DTT activity at all sites and during all seasons. WS_DTT activity was least associated with biogenic secondary organic aerosol. The OA components contributing to WS_DTT were humic-like substances (HULIS), which are abundantly emitted in biomass burning (BBOA) and include highly oxidized OA from multiple sources (MO-OOA). Overall, OA contributed approximately 60% to the WS_DTT activity, with the remaining probably from water-soluble metals, which were mostly associated with the hydrophilic WS_DTT fraction. PMID:25748105

  15. Induction of Reactive Oxygen Species Generation Inhibits Epithelial-Mesenchymal Transition and Promotes Growth Arrest in Prostate Cancer Cells

    PubMed Central

    Das, Trinath P; Suman, Suman; Damodaran, Chendil

    2013-01-01

    Oxidative stress is one causative factor of the pathogenesis and aggressiveness of most of the cancer types, including prostate cancer (CaP). A moderate increase in reactive oxygen species (ROS) induces cell proliferation whereas excessive amounts of ROS promote apoptosis. In this study, we explored the pro-oxidant property of 3, 9-dihydroxy-2-prenylcoumestan [psoralidin (pso)], a dietary agent, on CaP (PC-3 and C4-2B) cells. Pso greatly induced ROS expression (more than 20-fold) that resulted in the growth inhibition of CaP cells. Overexpression of anti-oxidant enzymes superoxide dismutase 1 (SOD1), SOD2, and catalase, or pretreatment with the pharmacological inhibitor N-acetylcysteine (NAC) significantly attenuated both pso-mediated ROS generation and pso-mediated growth inhibition in CaP cells. Furthermore, pso administration significantly inhibited the migratory and invasive property of CaP cells by decreasing the transcription of β-catenin, snail, and slug, which promote epithelial mesenchymal transition (EMT), and by concurrently inducing E-cadherin expression in CaP cells. Pso-induced ROS generation in CaP cells resulted in loss of mitochondrial membrane potential, cytochrome-c release, and activation of caspase-3 and -9 and poly (ADP-ribose) polymerase (PARP), which led to apoptosis. On the other hand, overexpression of anti-oxidants rescued pso-mediated effects on CaP cells. These findings suggest that increasing the threshold of intracellular ROS could prevent or treat CaP growth and metastasis. PMID:23475579

  16. Copper ions strongly activate the phosphoinositide-3-kinase/Akt pathway independent of the generation of reactive oxygen species.

    PubMed

    Ostrakhovitch, Elena A; Lordnejad, Mohammad Reza; Schliess, Freimut; Sies, Helmut; Klotz, Lars-Oliver

    2002-01-15

    Copper is implicated in metabolic disorders, such as Wilson's disease or Alzheimer's disease. Analysis of signaling pathways regulating cellular survival and function in response to a copper stress is crucial for understanding the pathogenesis of such diseases. Exposure of human skin fibroblasts or HeLa cells to Cu(2+) resulted in a dose- and time-dependent activation of the antiapoptotic kinase Akt/protein kinase B, starting at concentrations as low as 3 microM. Only Cu(II), but not Cu(I), had this effect. Activation of Akt was accompanied by phosphorylation of a downstream target of Akt, glycogen synthase kinase-3. Inhibitors of phosphoinositide-3-kinase (PI3K) completely blocked activation of Akt by Cu(2+), indicating a requirement of PI3K for Cu(2+)-induced activation of Akt. Indeed, cellular PI3K activity was strongly enhanced after exposure to Cu(2+). Copper ions may lead to the formation of reactive oxygen species, such as hydrogen peroxide. Activation of Akt by hydrogen peroxide or growth factors is known to proceed via the activation growth factor receptors. In line with this, pretreatment with inhibitors of growth factor receptor tyrosine kinases blocked activation of Akt by hydrogen peroxide and growth factors, as did a src-family tyrosine kinase inhibitor or the broad-spectrum tyrosine kinase inhibitor genistein. Activation of Akt by Cu(2+), however, remained unimpaired, implying (i) that tyrosine kinase activation is not involved in Cu(2+) activation of Akt and (ii) that activation of the PI3K/Akt pathway by Cu(2+) is initiated independently of that induced by reactive oxygen species. Comparison of the time course of the oxidation of 2',7'-dichlorodihydrofluorescein in copper-treated cells with that of Akt activation led to the conclusion that production of hydroperoxides cannot be an upstream event in copper-induced Akt activation. Rather, both activation of Akt and generation of ROS are proposed to occur in parallel, regulating cell survival after a

  17. Alcohol metabolism's damaging effects on the cell: a focus on reactive oxygen generation by the enzyme cytochrome P450 2E1.

    PubMed

    Koop, Dennis R

    2006-01-01

    Alcohol metabolism's various processes create harmful compounds that contribute to cell and tissue damage. In particular, the enzyme cytochrome P450 2E1 (CYP2E1) plays a role in creating a harmful condition known as oxidative stress. This condition is related to oxygen's ability to accept electrons and the subsequent highly reactive and harmful byproducts created by these chemical reactions. CYP2E1's use of oxygen in alcohol metabolism generates reactive oxygen species, ultimately leading to oxidative stress and tissue damage.

  18. Reactivation of Endogenous Genes and Epigenetic Remodeling Are Barriers for Generating Transgene-Free Induced Pluripotent Stem Cells in Pig

    PubMed Central

    Choi, Kwang-Hwan; Park, Jin-Kyu; Son, Dongchan; Hwang, Jae Yeon; Lee, Dong-Kyung; Ka, Hakhyun; Park, Joonghoon; Lee, Chang-Kyu

    2016-01-01

    Cellular reprogramming of committed cells into a pluripotent state can be induced by ectopic expression of genes such as OCT4, SOX2, KLF4, and MYC. Reprogrammed cells can be maintained by activating endogenous pluripotent networks without transgene expression. Although various research groups have attempted to generate pig induced pluripotent stem cells (iPSCs), authentic iPSCs have not be obtained, instead showing dependence on transgene expression. In this study, iPSCs were derived from porcine fetal fibroblasts via drug-inducible vectors carrying human transcription factors (OCT4, SOX2, KLF4, and MYC). Therefore, this study investigated characteristics of iPSCs and reprogramming mechanisms in pig. The iPSCs were stably maintained over an extended period with potential in vitro differentiation into three germ layers. In addition, the pluripotent state of iPSCs was regulated by modulating culture conditions. They showed naive- or primed-like pluripotent states in LIF or bFGF supplemented culture conditions, respectively. However, iPSCs could not be maintained without ectopic expression of transgenes. The cultured iPSCs expressed endogenous transcription factors such as OCT4 and SOX2, but not NANOG (a known gateway to complete reprogramming). Endogenous genes related to mesenchymal-to-epithelial transition (DPPA2, CDH1, EPCAM, and OCLN) were not sufficiently reactivated, as measured by qPCR. DNA methylation analysis for promoters of OCT4, NANOG, and XIST showed that epigenetic reprogramming did not occur in female iPSCs. Based on our results, expression of exogenous genes could not sufficiently activate the essential endogenous genes and remodel the epigenetic milieu to achieve faithful pluripotency in pig. Accordingly, investigating iPSCs could help us improve and develop reprogramming methods by understanding reprogramming mechanisms in pig. PMID:27336671

  19. Curcumin induces ER stress-mediated apoptosis through selective generation of reactive oxygen species in cervical cancer cells.

    PubMed

    Kim, Boyun; Kim, Hee Seung; Jung, Eun-Ji; Lee, Jung Yun; K Tsang, Benjamin; Lim, Jeong Mook; Song, Yong Sang

    2016-05-01

    Prolonged accumulation of misfolded or unfolded proteins caused by cellular stress, including oxidative stress, induces endoplasmic reticulum stress, which then activates an unfolded protein response (UPR). ER stress is usually maintained at higher levels in cancer cells as compared to normal cells due to altered metabolism in cancer. Here, we investigated whether curcumin is ER stress-mediated apoptosis in cervical cancer cells, and ROS increased by curcumin are involved in the process as an upstream contributor. Curcumin inhibited proliferation of cervical cancer cells (C33A, CaSki, HeLa, and ME180) and induced apoptotic cell death. Curcumin activated ER-resident UPR sensors, such as PERK, IRE-1α, and ATF6, and their downstream-signaling proteins in cervical cancer cells, but not in normal epithelial cells and peripheral blood mononuclear cells (PBMCs). CHOP, a key factor involved in ER stress-mediated apoptosis, was also activated by curcumin. CHOP decreased the ratio of anti-apoptotic protein Bcl-2 to pro-apoptotic protein Bax expression, and subsequently increased the apoptotic population of cervical cancer cells. Furthermore, curcumin elevated levels of intracellular reactive oxygen species (ROS) in cervical cancer cells, but not in normal epithelial cells. Scavenging ROS resulted in inhibition of ER stress and partially restored cell viability in curcumin-treated cancer cells. Collectively, these observations show that curcumin promotes ER stress-mediated apoptosis in cervical cancer cells through increase of cell type-specific ROS generation. Therefore, modulation of these differential responses to curcumin between normal and cervical cancer cells could be an effective therapeutic strategy without adverse effects on normal cells.

  20. Generation of reactive oxygen species by a novel berberine–bile acid analog mediates apoptosis in hepatocarcinoma SMMC-7721 cells

    SciTech Connect

    Li, Qingyong; Zhang, Li; Zu, Yuangang; Liu, Tianyu; Zhang, Baoyou; He, Wuna

    2013-04-19

    Graphical abstract: - Highlights: • Anticancer effects of B4, a novel berberine–bile acid analog, were tested. • B4 inhibited cell proliferation in hepatocellular carcinoma cells. • It also stimulated mitochondrial ROS production and membrane depolarization. • Effects of B4 were inhibited by a non-specific ROS scavenger. • Regulation of ROS generation may be a strategy for treating hepatic carcinoma. - Abstract: 2,3-Methenedioxy-9-O-(3′α,7′α-dihydroxy-5′β-cholan-24′-propy-lester) berberine (B4) is a novel berberine–bile acid analog synthesized in our laboratory. Previously, we showed that B4 exerted greater cytotoxicity than berberine in several human cancer cell lines. Therefore, we further evaluated the mechanism governing its anticancer actions in hepatocellular carcinoma SMMC-7721 cells. B4 inhibited the proliferation of SMMC-7721 cells, and stimulated reactive oxygen species (ROS) production and mitochondrial membrane depolarization; anti-oxidant capacity was reduced. B4 also induced the release of cytochrome c from the mitochondria to the cytosol and an increase in poly ADP-ribose polymerase (PARP) cleavage products, reflective of caspase-3 activation. Moreover, B4 induced the nuclear translocation of apoptosis-inducing factor (AIF) and a rise in DNA fragmentation. Pretreatment with the anti-oxidant N-acetylcysteine (NAC) inhibited B4-mediated effects, including cytotoxicity, ROS production, mitochondrial membrane depolarization increase in intracellular Ca{sup 2+}, cytochrome c release, PARP cleavage, and AIF translocation. Our data suggest that B4 induces ROS-triggered caspase-dependent and caspase-independent apoptosis pathways in SMMC-7721 cells and that ROS production may be a specific potential strategy for treating hepatic carcinoma.

  1. Humic acid effect on catalase activity and the generation of reactive oxygen species in corn (Zea mays).

    PubMed

    Cordeiro, Flávio Couto; Santa-Catarina, Claudete; Silveira, Vanildo; de Souza, Sonia Regina

    2011-01-01

    Humic acids (HAs) have positive effects on plant physiology, but the molecular mechanisms underlying these events are only partially understood. The induction of root growth and emission of lateral roots (LRs) promoted by exogenous auxin is a natural phenomenon. Exogenous auxins are also associated with HA. Gas nitric oxide (NO) is a secondary messenger produced endogenously in plants. It is associated with metabolic events dependent on auxin. With the application of auxin, NO production is significantly increased, resulting in positive effects on plant physiology. Thus it is possible to evaluate the beneficial effects of the application of HA as an effect of auxin. To investigate the effects of HA the parameters of root growth, Zea mays was studied by evaluating the application of 3 mM C L⁻¹ of HA extracted from Oxisol and 100 µM SNP (sodium nitroprusside) and the NO donor, subject to two N-NO₃⁻, high dose (5.0 mM N-NO₃⁻) and low dose (5.0 mM N-NO₃⁻). Treatments with HA and NO were positively increased, regardless of the N-NO₃⁻ taken, as assessed by fresh weight and dry root, issue of LRs. The effects were more pronounced in the treatment with a lower dose of N-NO₃⁻. Detection of reactive oxygen species (ROS) in vivo and catalase activity were evaluated; these tests were associated with root growth. Under application of the bioactive substances tested, detection of ROS and catalase activity increased, especially in treatments with lower doses of N-NO₃⁻. The results of this experiment indicate that the effects of HA are dependent on ROS generation, which act as a messenger that induces root growth and the emission of LRs.

  2. Reactivation of Endogenous Genes and Epigenetic Remodeling Are Barriers for Generating Transgene-Free Induced Pluripotent Stem Cells in Pig.

    PubMed

    Choi, Kwang-Hwan; Park, Jin-Kyu; Son, Dongchan; Hwang, Jae Yeon; Lee, Dong-Kyung; Ka, Hakhyun; Park, Joonghoon; Lee, Chang-Kyu

    2016-01-01

    Cellular reprogramming of committed cells into a pluripotent state can be induced by ectopic expression of genes such as OCT4, SOX2, KLF4, and MYC. Reprogrammed cells can be maintained by activating endogenous pluripotent networks without transgene expression. Although various research groups have attempted to generate pig induced pluripotent stem cells (iPSCs), authentic iPSCs have not be obtained, instead showing dependence on transgene expression. In this study, iPSCs were derived from porcine fetal fibroblasts via drug-inducible vectors carrying human transcription factors (OCT4, SOX2, KLF4, and MYC). Therefore, this study investigated characteristics of iPSCs and reprogramming mechanisms in pig. The iPSCs were stably maintained over an extended period with potential in vitro differentiation into three germ layers. In addition, the pluripotent state of iPSCs was regulated by modulating culture conditions. They showed naive- or primed-like pluripotent states in LIF or bFGF supplemented culture conditions, respectively. However, iPSCs could not be maintained without ectopic expression of transgenes. The cultured iPSCs expressed endogenous transcription factors such as OCT4 and SOX2, but not NANOG (a known gateway to complete reprogramming). Endogenous genes related to mesenchymal-to-epithelial transition (DPPA2, CDH1, EPCAM, and OCLN) were not sufficiently reactivated, as measured by qPCR. DNA methylation analysis for promoters of OCT4, NANOG, and XIST showed that epigenetic reprogramming did not occur in female iPSCs. Based on our results, expression of exogenous genes could not sufficiently activate the essential endogenous genes and remodel the epigenetic milieu to achieve faithful pluripotency in pig. Accordingly, investigating iPSCs could help us improve and develop reprogramming methods by understanding reprogramming mechanisms in pig. PMID:27336671

  3. Essential oil of Artemisia scoparia inhibits plant growth by generating reactive oxygen species and causing oxidative damage.

    PubMed

    Singh, Harminder Pal; Kaur, Shalinder; Mittal, Sunil; Batish, Daizy Rani; Kohli, Ravinder Kumar

    2009-02-01

    We investigated the chemical composition and phytotoxicity of the essential oil extracted from leaves of Artemisia scoparia Waldst. et Kit. (red stem wormwood, Asteraceae). GC/GC-MS analyses revealed 33 chemical constituents representing 99.83% of the oil. The oil, in general, was rich in monoterpenes that constitute 71.6%, with beta-myrcene (29.27%) as the major constituent followed by (+)-limonene (13.3%), (Z)-beta-ocimene (13.37%), and gamma-terpinene (9.51%). The oil and beta-myrcene were evaluated in a dose-response bioassay under laboratory conditions for phytotoxicity against three weeds-Avena fatua, Cyperus rotundus, and Phalaris minor. A significant reduction in germination, seedling growth, and dry matter accumulation was observed in the test weeds. At the lowest treatment of 0.07 mg/ml Artemisia oil, germination was reduced by 39%, 19%, and 10.6% in C. rotundus, P. minor, and A. fatua, respectively. However, the inhibitory effect of beta-myrcene was less. In general, a dose-dependent effect was observed and the growth declined with increasing concentration. Among the three weeds, the inhibitory effect was greatest on C. rotundus, so it was selected for further studies. We explored the explanation for observed growth inhibition in terms of reactive oxygen species (ROS: lipid peroxidation, membrane integrity, and amounts of conjugated dienes and hydrogen peroxide)-induced oxidative stress. Exposure of C. rotundus to Artemisia oil or beta-myrcene enhanced solute leakage, indicating membrane disintegration. There were increased levels of malondialdehyde and hydrogen peroxide, indicating lipid peroxidation and induction of oxidative stress. We conclude that Artemisia oil inhibits plant root growth through generation of ROS-induced oxidative damage.

  4. The role of water and structure on the generation of reactive oxygen species in peptide/hypericin complexes.

    PubMed

    Souza, Márcia I; Silva, Emerson R; Jaques, Ygor M; Ferreira, Fabio F; Fileti, Eudes E; Alves, Wendel A

    2014-07-01

    Hybrid associates formed between peptide assemblies and fluorophores are attractive mainly because of their unique properties for biomedical applications. Recently, we demonstrated that the production of reactive oxygen species (ROS) by hypericin and their stability in excited states are enhanced upon conjugation with l,l-diphenylalanine microtubes (FF-MNTs). Although the detailed mechanisms responsible for improving the photophysical properties of ROS remain unclear, tentative hypotheses have suggested that the driving force is the growth of overall dipolar moments ascribed either to coupling between aligned H2O dipoles within the ordered structures or to the organization of hypericin molecules on peptide interfaces. To provide new insights on ROS activity in hypericin/FF-MNTs hybrids and further explore the role of water in this respect, we present results obtained from investigations on the behavior of these complexes organized into different crystalline arrangements. Specifically, we monitored and compared the photophysical performance of hypericin bound to FF-MNTs with peptides organized in both hexagonal (water-rich) and orthorhombic (water-free) symmetries. From a theoretical perspective, we present the results of new molecular dynamics simulations that highlight the distinct hypericin/peptide interaction at the interface of FF-MNTs for the different symmetries. As a conclusion, we propose that although water enhances photophysical properties, the organization induced by peptide structures and the availability of a hydrophobic environment surrounding the hypericin/peptide interface are paramount to optimizing ROS generation. The findings presented here provide useful basic research insights for designing peptide/fluorophore complexes with outstanding technological potential.

  5. Effect of different forms of acute stress in the generation of reactive oxygen species in albino Wistar rats.

    PubMed

    Smitha, K K; Mukkadan, J K

    2014-01-01

    Stress is common for all organisms either in the form of eustress (beneficial) or as distress (harmful). Stress is highly diverse in present world and its effects in organisms are well studied. This study is a comparative effect of stress in the generation of reactive oxygen species in albino Wistar rats, which are seldom reported. Here animals were grouped into four and the test animals of each group were administered with any one of the following stress, namely forced swimming induced stress (FS), and noise induced stress (NS), immobilization stress (IS) and overcrowding stress (OS). After stress administration, serum cortisol was estimated as a bio marker of stress in the albino rats, and the liver homogenate were used to estimate superoxide dismutase (SOD) by using rat Elisa kit in the spectrophotometer. The data were processed with unpaired 't' test. The cortisol levels were found to be increased in a highly significant level (P < 0.001) in all the groups as compared to the normal control. And the stress level was found to be maximum in the FS group in comparison with other groups. The mean cortisol level in different stress groups such as FS, NS, IS and OS were found to be 4.15, 3.7, 3.63, 3.62 μ gm/dl respectively. Among all the stressed groups, the SOD level in the FS group were found to be increased in a highly significant level (P < 0.001) in comparison with normal control group. The SOD level in FS group was (30.75 U/mgm. protein) followed by OS (28.96), noise (28.88) and IS (28.77).

  6. A photoreducible copper(II)-tren complex of practical value: generation of a highly reactive click catalyst.

    PubMed

    Harmand, Lydie; Lambert, Romain; Scarpantonio, Luca; McClenaghan, Nathan D; Lastécouères, Dominique; Vincent, Jean-Marc

    2013-11-25

    A detailed study on the photoreduction of the copper(II) precatalyst 1 to generate a highly reactive cuprous species for the copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) click reaction is presented. For the photoactive catalyst described herein, the activation is driven by a photoinduced electron transfer (PET) process harnessing a benzophenone-like ketoprofenate chromophore as a photosensitizer, which is equally the counterion. The solvent is shown to play a major role in the Cu(II) to Cu(I) reduction process as the final electron source, and the influence of the solvent nature on the photoreduction efficiency has been studied. Particular attention was paid to the use of water as a potential solvent, aqueous media being particularly appealing for CuAAC processes. The ability to solubilize the copper-tren complexes in water through the formation of inclusion complexes with β-CDs is demonstrated. Data is also provided on the fate of the copper(I)-tren catalytic species when reacting with O2, O2 being used to switch off the catalysis. These data show that partial oxidation of the secondary benzylamine groups of the ligand to benzylimines occurs. Preliminary results show that when prolonged irradiation times are employed a Cu(I) to Cu(0) over-reduction process takes place, leading to the formation of copper nanoparticles (NPs). Finally, the main objective of this work being the development of photoactivable catalysts of practical value for the CuAAC, the catalytic, photolatent, and recycling properties of 1 in water and organic solvents are reported. PMID:24127367

  7. Low level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts

    NASA Astrophysics Data System (ADS)

    Chen, Aaron Chih-Hao; Arany, Praveen R.; Huang, Ying-Ying; Tomkinson, Elizabeth M.; Saleem, Taimur; Yull, Fiona E.; Blackwell, Timothy S.; Hamblin, Michael R.

    2009-02-01

    Despite over forty years of investigation on low-level light therapy (LLLT), the fundamental mechanisms underlying photobiomodulation remain unclear. In this study, we isolated murine embryonic fibroblasts (MEF) from transgenic NF-kB luciferase reporter mice and studied their response to 810-nm laser radiation. Significant activation of NFkB was observed for fluences higher than 0.003 J/cm2. NF-kB activation by laser was detectable at 1-hour time point. Moreover, we demonstrated that laser phosphorylated both IKK α/β and NF-kB 15 minutes after irradiation, which implied that laser activates NF-kB via phosphorylation of IKK α/β. Suspecting mitochondria as the source of NF-kB activation signaling pathway, we demonstrated that laser increased both intracellular reactive oxygen species (ROS) by fluorescence microscopy with dichlorodihydrofluorescein and ATP synthesis by luciferase assay. Mitochondrial inhibitors, such as antimycin A, rotenone and paraquat increased ROS and NF-kB activation but had no effect on ATP. The ROS quenchers N-acetyl-L-cysteine and ascorbic acid abrogated laser-induced NF-kB and ROS but not ATP. These results suggested that ROS might play an important role in the signaling pathway of laser induced NF-kB activation. However, the western blot showed that antimycin A, a mitochondrial inhibitor, did not activate NF-kB via serine phosphorylation of IKK α/β as the laser did. On the other hand, LLLT, unlike mitochondrial inhibitors, induced increased cellular ATP levels, which indicates that light also upregulates mitochondrial respiration. ATP upregulation reached a maximum at 0.3 J/cm2 or higher. We conclude that LLLT not only enhances mitochondrial respiration, but also activates the redox-sensitive transcription factor NF-kB by generating ROS as signaling molecules.

  8. Reactive oxygen and nitrogen (ROS and RNS) species generation and cell death in tomato suspension cultures--Botrytis cinerea interaction.

    PubMed

    Pietrowska, E; Różalska, S; Kaźmierczak, A; Nawrocka, J; Małolepsza, U

    2015-01-01

    This article reports events connected to cell survival and Botrytis cinerea infection development in cell suspension cultures of two tomato cultivars which show different levels of susceptibility to the pathogen: cv. Corindo (more susceptible) and cv. Perkoz (less susceptible). In parallel changes in reactive oxygen (ROS) and nitrogen (RNS) species generation and in S-nitrosoglutathione reductase (GSNOR) activity were studied. In vivo staining methods with acridine orange (AO) and ethidium bromide (EB) as well as fluorescent microscopy were used to assess tomato and B. cinerea cells death. The biochemical studies of ROS and RNS concentrations in plant cell extract were complemented by in vivo ROS and nitric oxide (NO) imaging using nitro blue tetrazolium (NBT), diaminobenzidine (DAB) and diaminofluorescein diacetate (DAF-DA) staining methods, and confocal microscope technique. B. cinerea infection proceeded slower in Perkoz cell cultures. It was evidenced by measuring the pathogen conidia germination and germination tube development in which nuclei revealing cell death dominated. Two different types of tomato cell death were observed: cells with necrotic nuclei dominated in Corindo whereas in Perkoz cells with characteristic of vacuolar death type prevailed. In Perkoz cells, constitutive levels of NO and S-nitrosothiols (SNO) were significantly higher and hydrogen peroxide (H₂O₂) and superoxide anion (O₂(-)) concentrations were slightly higher as compared with Corindo cells. Moreover, increases in these molecule concentrations as a result of B. cinerea inoculation were observed in both, Perkoz and Corindo cell cultures. The enzymatic GSNOR activity seems to be an important player in controlling the SNO level in tomato cells. Involvements of the studied compounds in molecular mechanisms of tomato resistance to B. cinerea are discussed in the paper. PMID:25064634

  9. The implementation of a 3D characteristics solver for the generation of incremental cross sections for reactivity devices in a CANDU reactor

    SciTech Connect

    Le Tellier, R.; Hebert, A.; Marleau, G.

    2006-07-01

    We are presenting issues related to the generation of consistent incremental cross sections for the reactivity devices in a CANDU reactor. Such calculations involve the solution of the neutron transport equation over complex 3D geometries representing a single vertical reactivity device inserted mid-way between two horizontal fuel channels. The DRAGON lattice code has recently been upgraded and can handle the exact geometry of such configurations for trajectory-based transport solvers. Within this framework, the detailed representation of the reactivity devices implies an increase in the number of regions when the strongly absorbing regions and fuel clusters are described without cylinderization. In this paper, a solution based on the characteristics method is compared with the standard procedure, based on the collision probabilities method. The coherence of both solvers is highlighted and a comparison of their computational costs is presented. (authors)

  10. Phototoxicity of nano titanium dioxides in HaCaT keratinocytes—Generation of reactive oxygen species and cell damage

    SciTech Connect

    Yin, Jun-Jie; Liu, Jun; Ehrenshaft, Marilyn; Roberts, Joan E.; Fu, Peter P.; Mason, Ronald P.; Zhao, Baozhong

    2012-08-15

    Nano-sized titanium dioxide (TiO{sub 2}) is among the top five widely used nanomaterials for various applications. In this study, we determine the phototoxicity of TiO{sub 2} nanoparticles (nano-TiO{sub 2}) with different molecular sizes and crystal forms (anatase and rutile) in human skin keratinocytes under UVA irradiation. Our results show that all nano-TiO{sub 2} particles caused phototoxicity, as determined by the MTS assay and by cell membrane damage measured by the lactate dehydrogenase (LDH) assay, both of which were UVA dose- and nano-TiO{sub 2} dose-dependent. The smaller the particle size of the nano-TiO{sub 2} the higher the cell damage. The rutile form of nano-TiO{sub 2} showed less phototoxicity than anatase nano-TiO{sub 2}. The level of photocytotoxicity and cell membrane damage is mainly dependent on the level of reactive oxygen species (ROS) production. Using polyunsaturated lipids in plasma membranes and human serum albumin as model targets, and employing electron spin resonance (ESR) oximetry and immuno-spin trapping as unique probing methods, we demonstrated that UVA irradiation of nano-TiO{sub 2} can induce significant cell damage, mediated by lipid and protein peroxidation. These overall results suggest that nano-TiO{sub 2} is phototoxic to human skin keratinocytes, and that this phototoxicity is mediated by ROS generated during UVA irradiation. Highlights: ► We evaluate the phototoxicity of nano-TiO{sub 2} with different sizes and crystal forms. ► The smaller the particle size of the nano-TiO{sub 2} the higher the cell damage. ► The rutile form of nano-TiO{sub 2} showed less phototoxicity than anatase nano-TiO{sub 2}. ► ESR oximetry and immuno-spin trapping techniques confirm UVA-induced cell damage. ► Phototoxicity is mediated by ROS generated during UVA irradiation of nano-TiO{sub 2}.

  11. Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death

    PubMed Central

    1995-01-01

    Programmed cell death (PCD) is a physiological process commonly defined by alterations in nuclear morphology (apoptosis) and/or characteristic stepwise degradation of chromosomal DNA occurring before cytolysis. However, determined characteristics of PCD such as loss in mitochondrial reductase activity or cytolysis can be induced in enucleated cells, indicating cytoplasmic PCD control. Here we report a sequential disregulation of mitochondrial function that precedes cell shrinkage and nuclear fragmentation. A first cyclosporin A-inhibitable step of ongoing PCD is characterized by a reduction of mitochondrial transmembrane potential, as determined by specific fluorochromes (5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine++ + iodide; 3,3'dihexyloxacarbocyanine iodide). Cytofluorometrically purified cells with reduced mitochondrial transmembrane potential are initially incapable of oxidizing hydroethidine (HE) into ethidium. Upon short-term in vitro culture, such cells acquire the capacity of HE oxidation, thus revealing a second step of PCD marked by mitochondrial generation of reactive oxygen species (ROS). This step can be selectively inhibited by rotenone and ruthenium red yet is not affected by cyclosporin A. Finally, cells reduce their volume, a step that is delayed by radical scavengers, indicating the implication of ROS in the apoptotic process. This sequence of alterations accompanying early PCD is found in very different models of apoptosis induction: glucocorticoid-induced death of lymphocytes, activation-induced PCD of T cell hybridomas, and tumor necrosis factor-induced death of U937 cells. Transfection with the antiapoptotic protooncogene Bcl-2 simultaneously inhibits mitochondrial alterations and apoptotic cell death triggered by steroids or ceramide. In vivo injection of fluorochromes such as 5,5',6,6'-tetrachloro-1,1',3,3'- tetraethylbenzimidazolcarbocyanine iodide; 3,3'dihexyloxacarbocyanine iodide; or HE allows for the detection of

  12. Program for certification of waste from contained firing facility: Establishment of waste as non-reactive and discussion of potential waste generation problems

    SciTech Connect

    Green, L.; Garza, R.; Maienschein, J.; Pruneda, C.

    1997-09-30

    Debris from explosives testing in a shot tank that contains 4 weight percent or less of explosive is shown to be non-reactive under the specified testing protocol in the Code of Federal Regulations. This debris can then be regarded as a non-hazardous waste on the basis of reactivity, when collected and packaged in a specified manner. If it is contaminated with radioactive components (e.g. depleted uranium), it can therefore be disposed of as radioactive waste or mixed waste, as appropriate (note that debris may contain other materials that render it hazardous, such as beryllium). We also discuss potential waste generation issues in contained firing operations that are applicable to the planned new Contained Firing Facility (CFF). The goal of this program is to develop and document conditions under which shot debris from the planned Contained Firing Facility (CFF) can be handled, shipped, and accepted for waste disposal as non-reactive radioactive or mixed waste. This report fulfills the following requirements as established at the outset of the program: 1. Establish through testing the maximum level of explosive that can be in a waste and still have it certified as non-reactive. 2. Develop the procedure to confirm the acceptability of radioactive-contaminated debris as non-reactive waste at radioactive waste disposal sites. 3. Outline potential disposal protocols for different CFF scenarios (e.g. misfires with scattered explosive).

  13. Sum-Frequency Generation Spectroscopy for Studying Organic Layers at Water-Air Interfaces: Microlayer Monitoring and Surface Reactivity

    NASA Astrophysics Data System (ADS)

    Laß, Kristian; Kleber, Joscha; Bange, Hermann; Friedrichs, Gernot

    2015-04-01

    The sea surface microlayer, according to commonly accepted terminology, comprises the topmost millimetre of the oceanic water column. It is often enriched with organic matter and is directly influenced by sunlight exposure and gas exchange with the atmosphere, hence making it a place for active biochemistry and photochemistry as well as for heterogeneous reactions. In addition, surface active material either is formed or accumulates directly at the air-water interface and gives rise to very thin layers, sometimes down to monomolecular thickness. This "sea surface nanolayer" determines the viscoelastic properties of the seawater surface and thus may impact the turbulent air-sea gas exchange rates. To this effect, this small scale layer presumably plays an important role for large scale changes of atmospheric trace gas concentrations (e.g., by modulating the ocean carbon sink characteristics) with possible implications for coupled climate models. To date, detailed knowledge about the composition, structure, and reactivity of the sea surface nanolayer is still scarce. Due to its small vertical dimension and the small amount of material, this surfactant layer is very difficult to separate and analyse. A way out is the application of second-order nonlinear optical methods, which make a direct surface-specific and background-free detection of this interfacial layer possible. In recent years, we have introduced the use of vibrational sum frequency generation (VSFG) spectroscopy to gain insight into natural and artificial organic monolayers at the air-water interface. In this contribution, the application of VSFG spectroscopy for the analysis of the sea surface nanolayer will be illustrated. Resulting spectra are interpreted in terms of layer composition and surfactant classes, in particular with respect to carbohydrate-containing molecules such as glycolipids. The partitioning of the detected surfactants into soluble and non-soluble ("wet" and "dry") surfactants will be

  14. IL-2 induces T cell adherence to extracellular matrix: inhibition of adherence and migration by IL-2 peptides generated by leukocyte elastase.

    PubMed

    Ariel, A; Yavin, E J; Hershkoviz, R; Avron, A; Franitza, S; Hardan, I; Cahalon, L; Fridkin, M; Lider, O

    1998-09-01

    Migration of inflammatory cells requires cell adhesion and their subsequent detachment from the extracellular matrix (ECM). Leukocyte activation and migration must be terminated to stop inflammation. Here, we report that IL-2 enhances human T cell adherence to laminin, collagen type IV, and fibronectin (FN). In contrast, neutrophil elastase, an enzyme activated during inflammation, degrades IL-2 to yield IL-2 fractions that inhibit IL-2-induced T cell adhesion to FN. The amino acid composition of two of these IL-2 fractions, which appear to block T cell adherence to FN, were analyzed, and three peptides were consequently synthesized. The three peptides IVL, RMLT, and EFLNRWIT, but not the corresponding inversely synthesized peptides, inhibited T cell adhesion to FN induced by a variety of activators: IL-2, IL-7, macrophage inflammatory protein (MIP)-1beta, and PMA, as well as anti-CD3 and anti-beta1 integrin-activating mAb. Moreover, these IL-2 peptides inhibited T cell chemotaxis via FN-coated membranes induced by IL-2 and MIP-1beta. Inhibition of T cell adherence and migration apparently involves abrogation of the rearrangement of the T cell actin cytoskeleton. Thus, the migrating immune cells, the cytokines, and the ECM can create a functional relationship in which both inflammation-inducing signals and inhibitory molecules of immune responses can coexist; the enzymatic products of IL-2 may serve as natural feedback inhibitors of inflammation. PMID:9725245

  15. NADPH oxidase-mediated generation of reactive oxygen species: A new mechanism for X-ray-induced HeLa cell death

    SciTech Connect

    Liu Qing; He Xiaoqing; Liu Yongsheng; Du Bingbing; Wang Xiaoyan; Zhang Weisheng; Jia Pengfei; Dong Jingmei; Ma Jianxiu; Wang Xiaohu; Li Sha; Zhang Hong

    2008-12-19

    Oxidative damage is an important mechanism in X-ray-induced cell death. Radiolysis of water molecules is a source of reactive oxygen species (ROS) that contribute to X-ray-induced cell death. In this study, we showed by ROS detection and a cell survival assay that NADPH oxidase has a very important role in X-ray-induced cell death. Under X-ray irradiation, the upregulation of the expression of NADPH oxidase membrane subunit gp91{sup phox} was dose-dependent. Meanwhile, the cytoplasmic subunit p47{sup phox} was translocated to the cell membrane and localized with p22{sup phox} and gp91{sup phox} to form reactive NADPH oxidase. Our data suggest, for the first time, that NADPH oxidase-mediated generation of ROS is an important contributor to X-ray-induced cell death. This suggests a new target for combined gene transfer and radiotherapy.

  16. Sexual Preferences in Nutrient Utilization Regulate Oxygen Consumption and Reactive Oxygen Species Generation in Schistosoma mansoni: Potential Implications for Parasite Redox Biology.

    PubMed

    Oliveira, Matheus P; Correa Soares, Juliana B R; Oliveira, Marcus F

    2016-01-01

    Schistosoma mansoni, one of the causative agents of human schistosomiasis, has a unique antioxidant network that is key to parasite survival and a valuable chemotherapeutic target. The ability to detoxify and tolerate reactive oxygen species increases along S. mansoni development in the vertebrate host, suggesting that adult parasites are more exposed to redox challenges than young stages. Indeed, adult parasites are exposed to multiple redox insults generated from blood digestion, activated immune cells, and, potentially, from their own parasitic aerobic metabolism. However, it remains unknown how reactive oxygen species are produced by S. mansoni metabolism, as well as their biological effects on adult worms. Here, we assessed the contribution of nutrients and parasite gender to oxygen utilization pathways, and reactive oxygen species generation in whole unpaired adult S. mansoni worms. We also determined the susceptibilities of both parasite sexes to a pro-oxidant challenge. We observed that glutamine and serum importantly contribute to both respiratory and non-respiratory oxygen utilization in adult worms, but with different proportions among parasite sexes. Analyses of oxygen utilization pathways revealed that respiratory rates were high in male worms, which contrast with high non-respiratory rates in females, regardless nutritional sources. Interestingly, mitochondrial complex I-III activity was higher than complex IV specifically in females. We also observed sexual preferences in substrate utilization to sustain hydrogen peroxide production towards glucose in females, and glutamine in male worms. Despite strikingly high oxidant levels and hydrogen peroxide production rates, female worms were more resistant to a pro-oxidant challenge than male parasites. The data presented here indicate that sexual preferences in nutrient metabolism in adult S. mansoni worms regulate oxygen utilization and reactive oxygen species production, which may differently contribute

  17. Sexual Preferences in Nutrient Utilization Regulate Oxygen Consumption and Reactive Oxygen Species Generation in Schistosoma mansoni: Potential Implications for Parasite Redox Biology

    PubMed Central

    Oliveira, Matheus P.; Correa Soares, Juliana B. R.; Oliveira, Marcus F.

    2016-01-01

    Schistosoma mansoni, one of the causative agents of human schistosomiasis, has a unique antioxidant network that is key to parasite survival and a valuable chemotherapeutic target. The ability to detoxify and tolerate reactive oxygen species increases along S. mansoni development in the vertebrate host, suggesting that adult parasites are more exposed to redox challenges than young stages. Indeed, adult parasites are exposed to multiple redox insults generated from blood digestion, activated immune cells, and, potentially, from their own parasitic aerobic metabolism. However, it remains unknown how reactive oxygen species are produced by S. mansoni metabolism, as well as their biological effects on adult worms. Here, we assessed the contribution of nutrients and parasite gender to oxygen utilization pathways, and reactive oxygen species generation in whole unpaired adult S. mansoni worms. We also determined the susceptibilities of both parasite sexes to a pro-oxidant challenge. We observed that glutamine and serum importantly contribute to both respiratory and non-respiratory oxygen utilization in adult worms, but with different proportions among parasite sexes. Analyses of oxygen utilization pathways revealed that respiratory rates were high in male worms, which contrast with high non-respiratory rates in females, regardless nutritional sources. Interestingly, mitochondrial complex I-III activity was higher than complex IV specifically in females. We also observed sexual preferences in substrate utilization to sustain hydrogen peroxide production towards glucose in females, and glutamine in male worms. Despite strikingly high oxidant levels and hydrogen peroxide production rates, female worms were more resistant to a pro-oxidant challenge than male parasites. The data presented here indicate that sexual preferences in nutrient metabolism in adult S. mansoni worms regulate oxygen utilization and reactive oxygen species production, which may differently contribute

  18. Huge increase in gas phase nanoparticle generation by pulsed direct current sputtering in a reactive gas admixture

    NASA Astrophysics Data System (ADS)

    Polonskyi, Oleksandr; Peter, Tilo; Mohammad Ahadi, Amir; Hinz, Alexander; Strunskus, Thomas; Zaporojtchenko, Vladimir; Biederman, Hynek; Faupel, Franz

    2013-07-01

    Using reactive DC sputtering in a gas aggregation cluster source, we show that pulsed discharge gives rise to a huge increase in deposition rate of nanoparticles by more than one order of magnitude compared to continuous operation. We suggest that this effect is caused by an equilibrium between slight target oxidation (during "time-off") and subsequent sputtering of Ti oxides (sub-oxides) at "time-on" with high power impulse.

  19. Generation of reactive oxygen species from 5-aminolevulinic acid and Glutamate in cooperation with excited CdSe/ZnS QDs

    NASA Astrophysics Data System (ADS)

    Duong, Hong Dinh; Lee, Jee Won; Rhee, Jong Il

    2014-08-01

    CdSe/ZnS quantum dots (QDs) can be joined in the reductive pathway involving the electron transfer to an acceptor or in the oxidative pathway involving the hole transfer to a donor. They were exploited in the oxidation reactions of 5-aminolevulinic acid (ALA) and glutamate (GLU) for the generation of reactive oxygen species (ROS) such as hydroxyl radical (HO●) and superoxide anion (O2 ● -). Fast and highly efficient oxidation reactions of ALA to produce HO● and of GLU to produce O2 ●- were observed in the cooperation of mercaptopropionic acid (MPA)-capped CdSe/ZnS QDs under LED irradiation. Fluorescence spectroscopy and electron spin resonance (ESR) spectroscopy were used to evaluate the generation of different forms of ROS. Confocal fluorescent microscopic images of the size and morphology of HeLa cells confirmed the ROS generation from ALA or GLU in cooperation with CdSe/ZnS QDs under LED irradiation.

  20. Growth inhibition dependent on reactive oxygen species generated by C9-UK-2A, a derivative of the antifungal antibiotic UK-2A, in Saccharomyces cerevisiae.

    PubMed

    Fujita, Ken-Ichi; Tani, Kazunori; Usuki, Yoshinosuke; Tanaka, Toshio; Taniguchi, Makoto

    2004-08-01

    UK-2A is a potent antifungal antibiotic and its structure is highly similar to that of antimycin A3 (AA). UK-2A and AA inhibit mitochondrial electron transport at complex III. C9-UK-2A, which has been prepared to improve the duration of the antifungal activity of UK-2A, shows durable fungicidal activities against various species of fungi and induces both membrane injury and the generation of cellular reactive oxygen species (ROS) against Rhodotorula mucilaginosa IFO 0001 cells. We found that C9-UK-2A inhibited the vegetative growth of Saccharomyces cerevisiae IFO 0203 cells accompanying cellular ROS generation in Sabouraud dextrose (SD) medium, which contained a fermentable carbon source. The ROS generation was completely restricted by pretreatment with a lipophilic antioxidant alpha-tocopherol. In addition, the pretreatment with the antioxidant protected against the growth inhibition induced by C9-UK-2A. C9-UK-2A also induced ROS generation in isolated mitochondria of the S. cerevisiae cells. The addition of both a complex I inhibitor rotenone and a complex II inhibitor thenoyltrifluoroacetone reduced ROS generation induced by C9-UK-2A in the whole cells and the isolated mitochondria. The addition of the inhibitors of complex III, AA or myxothiazol, or of complex IV, KCN, did not reduce ROS generation. These results suggest that C9-UK-2A induces ROS generation due to the blockade of electron flow at complex III, thereby inhibiting the growth of S. cerevisiae in SD medium. PMID:15515888

  1. Norepinephrine-induced apoptotic and hypertrophic responses in H9c2 cardiac myoblasts are characterized by different repertoire of reactive oxygen species generation.

    PubMed

    Thakur, Anita; Alam, Md Jahangir; Ajayakumar, M R; Ghaskadbi, Saroj; Sharma, Manish; Goswami, Shyamal K

    2015-08-01

    Despite recent advances, the role of ROS in mediating hypertrophic and apoptotic responses in cardiac myocytes elicited by norepinephrine (NE) is rather poorly understood. We demonstrate through our experiments that H9c2 cardiac myoblasts treated with 2 µM NE (hypertrophic dose) generate DCFH-DA positive ROS only for 2h; while those treated with 100 µM NE (apoptotic dose) sustains generation for 48 h, followed by apoptosis. Though the levels of DCFH fluorescence were comparable at early time points in the two treatment sets, its quenching by DPI, catalase and MnTmPyP suggested the existence of a different repertoire of ROS. Both doses of NE also induced moderate levels of H2O2 but with different kinetics. Sustained but intermittent generation of highly reactive species detectable by HPF was seen in both treatment sets but no peroxynitrite was generated in either conditions. Sustained generation of hydroxyl radicals with no appreciable differences were noticed in both treatment sets. Nevertheless, despite similar profile of ROS generation between the two conditions, extensive DNA damage as evident from the increase in 8-OH-dG content, formation of γ-H2AX and PARP cleavage was seen only in cells treated with the higher dose of NE. We therefore conclude that hypertrophic and apoptotic doses of NE generate distinct but comparable repertoire of ROS/RNS leading to two very distinct downstream responses. PMID:26070033

  2. Norepinephrine-induced apoptotic and hypertrophic responses in H9c2 cardiac myoblasts are characterized by different repertoire of reactive oxygen species generation

    PubMed Central

    Thakur, Anita; Alam, Md. Jahangir; Ajayakumar, MR; Ghaskadbi, Saroj; Sharma, Manish; Goswami, Shyamal K.

    2015-01-01

    Despite recent advances, the role of ROS in mediating hypertrophic and apoptotic responses in cardiac myocytes elicited by norepinephrine (NE) is rather poorly understood. We demonstrate through our experiments that H9c2 cardiac myoblasts treated with 2 µM NE (hypertrophic dose) generate DCFH-DA positive ROS only for 2 h; while those treated with 100 µM NE (apoptotic dose) sustains generation for 48 h, followed by apoptosis. Though the levels of DCFH fluorescence were comparable at early time points in the two treatment sets, its quenching by DPI, catalase and MnTmPyP suggested the existence of a different repertoire of ROS. Both doses of NE also induced moderate levels of H2O2 but with different kinetics. Sustained but intermittent generation of highly reactive species detectable by HPF was seen in both treatment sets but no peroxynitrite was generated in either conditions. Sustained generation of hydroxyl radicals with no appreciable differences were noticed in both treatment sets. Nevertheless, despite similar profile of ROS generation between the two conditions, extensive DNA damage as evident from the increase in 8-OH-dG content, formation of γ-H2AX and PARP cleavage was seen only in cells treated with the higher dose of NE. We therefore conclude that hypertrophic and apoptotic doses of NE generate distinct but comparable repertoire of ROS/RNS leading to two very distinct downstream responses. PMID:26070033

  3. Thrombin-induced reactive oxygen species generation in platelets: A novel role for protease-activated receptor 4 and GPIbα

    PubMed Central

    Carrim, Naadiya; Arthur, Jane F.; Hamilton, Justin R.; Gardiner, Elizabeth E.; Andrews, Robert K.; Moran, Niamh; Berndt, Michael C.; Metharom, Pat

    2015-01-01

    Background Platelets are essential for maintaining haemostasis and play a key role in the pathogenesis of cardiovascular disease. Upon ligation of platelet receptors through subendothelial matrix proteins, intracellular reactive oxygen species (ROS) are generated, further amplifying the platelet activation response. Thrombin, a potent platelet activator, can signal through GPIbα and protease-activated receptor (PAR) 1 and PAR4 on human platelets, and recently has been implicated in the generation of ROS. While ROS are known to have key roles in intra-platelet signalling and subsequent platelet activation, the precise receptors and signalling pathways involved in thrombin-induced ROS generation have yet to be fully elucidated. Objective To investigate the relative contribution of platelet GPIbα and PARs to thrombin-induced reactive oxygen species (ROS) generation. Methods and results Highly specific antagonists targeting PAR1 and PAR4, and the GPIbα-cleaving enzyme, Naja kaouthia (Nk) protease, were used in quantitative flow cytometry assays of thrombin-induced ROS production. Antagonists of PAR4 but not PAR1, inhibited thrombin-derived ROS generation. Removal of the GPIbα ligand binding region attenuated PAR4-induced and completely inhibited thrombin-induced ROS formation. Similarly, PAR4 deficiency in mice abolished thrombin-induced ROS generation. Additionally, GPIbα and PAR4-dependent ROS formation were shown to be mediated through focal adhesion kinase (FAK) and NADPH oxidase 1 (NOX1) proteins. Conclusions Both GPIbα and PAR4 are required for thrombin-induced ROS formation, suggesting a novel functional cooperation between GPIbα and PAR4. Our study identifies a novel role for PAR4 in mediating thrombin-induced ROS production that was not shared by PAR1. This suggests an independent signalling pathway in platelet activation that may be targeted therapeutically. PMID:26569550

  4. Extracellular toxicity of 6-hydroxydopamine on PC12 cells.

    PubMed

    Blum, D; Torch, S; Nissou, M F; Benabid, A L; Verna, J M

    2000-04-14

    6-hydroxydopamine (6-OHDA) is usually thought to cross cell membrane through dopamine uptake transporters, to inhibit mitochondrial respiration and to generate intracellular reactive oxygen species. In this study, we show that the anti-oxidants catalase, glutathione and N-acetyl-cysteine are able to reverse the toxic effects of 6-OHDA. These two latter compounds considerably slow down 6-OHDA oxidation in a cell free system suggesting a direct chemical interaction with the neurotoxin. Moreover, desipramine does not protect PC12 cells and 6-OHDA is also strongly toxic towards non-catecholaminergic C6 and NIH3T3 cells. These results thus suggest that 6-OHDA toxicity on PC12 cells mainly involves an extracellular process. PMID:10754220

  5. CO extrusion in homogeneous gold catalysis: reactivity of gold acyl species generated through water addition to gold vinylidenes.

    PubMed

    Bucher, Janina; Stößer, Tim; Rudolph, Matthias; Rominger, Frank; Hashmi, A Stephen K

    2015-01-26

    Herein, we describe a new gold-catalyzed decarbonylative indene synthesis. Synergistic σ,π-activation of diyne substrates leads to gold vinylidene intermediates, which upon addition of water are transformed into gold acyl species, a type of organogold compound hitherto only scarcely reported. The latter are shown to undergo extrusion of CO, an elementary step completely unknown for homogeneous gold catalysis. By tuning the electronic and steric properties of the starting diyne systems, this new reactivity could be exploited for the synthesis of indene derivatives in high yields.

  6. Effects of the electrical parameters and gas flow rate on the generation of reactive species in liquids exposed to atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Baek, Eun Jeong; Joh, Hea Min; Kim, Sun Ja; Chung, T. H.

    2016-07-01

    In this work, an atmospheric pressure plasma jet was fabricated and studied for plasma-liquid interactions. The plasma jet consists of a quartz-covered pin electrode and outer quartz tube with a tapered nozzle. Using the current-voltage (I-V) and optical emission characteristics of the plasma jet, the plasma density and the speed of the plume were investigated. The optical emission spectra clearly indicated the excited NO, O, OH, N2, and N2+ in the plasma plumes. Then the plasma jets were applied to the deionized water. We investigated the effects of the operating parameters such as applied voltage, pulse frequency, and gas flow rate on the generation of reactive species in the gas and liquid phases. The densities of reactive species including OH radicals were obtained at the plasma-liquid surface and inside the plasma-treated liquids using ultraviolet absorption spectroscopy and chemical probe method. The nitrite concentration was detected by Griess assay. The data are very suggestive that there is a strong correlation among the production of reactive oxygen and nitrogen species (RONS) in the plasmas and liquids.

  7. Beta 1 integrin binding plays a role in the constant traction force generation in response to varying stiffness for cells grown on mature cardiac extracellular matrix.

    PubMed

    Gershlak, Joshua R; Black, Lauren D

    2015-01-15

    We have previously reported a unique response of traction force generation for cells grown on mature cardiac ECM, where traction force was constant over a range of stiffnesses. In this study we sought to further investigate the role of the complex mixture of ECM on this response and assess the potential mechanism behind it. Using traction force microscopy, we measured cellular traction forces and stresses for mesenchymal stem cells (MSCs) grown on polyacrylamide gels at a range of stiffnesses (9, 25, or 48 kPa) containing either adult rat heart ECM, different singular ECM proteins including collagen I, fibronectin, and laminin, or ECM mimics comprised of varying amounts of collagen I, fibronectin, and laminin. We also measured the expression of integrins on these different substrates as well as probed for β1 integrin binding. There was no significant change in traction force generation for cells grown on the adult ECM, as previously reported, whereas cells grown on singular ECM protein substrates had increased traction force generation with an increase in substrate stiffness. Cells grown on ECM mimics containing collagen I, fibronectin and laminin were found to be reminiscent of the traction forces generated by cells grown on native ECM. Integrin expression generally increased with increasing stiffness except for the β1 integrin, potentially implicating it as playing a role in the response to adult cardiac ECM. We inhibited binding through the β1 integrin on cells grown on the adult ECM and found that the inhibition of β1 binding led to a return to the typical response of increasing traction force generation with increasing stiffness. Our data demonstrates that cells grown on the mature cardiac ECM are able to circumvent typical stiffness related cellular behaviors, likely through β1 integrin binding to the complex composition.

  8. Generation and reactivity of putative support systems, Ce-Al neutral binary oxide nanoclusters: CO oxidation and C-H bond activation.

    PubMed

    Wang, Zhe-Chen; Yin, Shi; Bernstein, Elliot R

    2013-11-21

    Both ceria (CeO2) and alumina (Al2O3) are very important catalyst support materials. Neutral binary oxide nanoclusters (NBONCs), CexAlyOz, are generated and detected in the gas phase and their reactivity with carbon monoxide (CO) and butane (C4H10) is studied. The very active species CeAlO4 (●) can react with CO and butane via O atom transfer (OAT) and H atom transfer (HAT), respectively. Other CexAlyOz NBONCs do not show reactivities toward CO and C4H10. The structures, as well as the reactivities, of CexAlyOz NBONCs are studied theoretically employing density functional theory (DFT) calculations. The ground state CeAlO4 (●) NBONC possesses a kite-shaped structure with an OtCeObObAlOt configuration (Ot, terminal oxygen; Ob, bridging oxygen). An unpaired electron is localized on the Ot atom of the AlOt moiety rather than the CeOt moiety: this Ot centered radical moiety plays a very important role for the reactivity of the CeAlO4 (●) NBONC. The reactivities of Ce2O4, CeAlO4 (●), and Al2O4 toward CO are compared, emphasizing the importance of a spin-localized terminal oxygen for these reactions. Intramolecular charge distributions do not appear to play a role in the reactivities of these neutral clusters, but could be important for charged isoelectronic BONCs. DFT studies show that the reaction of CeAlO4 (●) with C4H10 to form the CeAlO4H●C4H9 (●) encounter complex is barrierless. While HAT processes have been previously characterized for cationic and anionic oxide clusters, the reported study is the first observation of a HAT process supported by a ground state neutral oxide cluster. Mechanisms for catalytic oxidation of CO over surfaces of AlxOy∕MmOn or MmOn∕AlxOy materials are proposed consistent with the presented experimental and theoretical results. PMID:24320332

  9. The use of chimeric virus-like particles harbouring a segment of hantavirus Gc glycoprotein to generate a broadly-reactive hantavirus-specific monoclonal antibody.

    PubMed

    Zvirbliene, Aurelija; Kucinskaite-Kodze, Indre; Razanskiene, Ausra; Petraityte-Burneikiene, Rasa; Klempa, Boris; Ulrich, Rainer G; Gedvilaite, Alma

    2014-02-07

    Monoclonal antibodies (MAbs) against viral glycoproteins have important diagnostic and therapeutic applications. In most cases, the MAbs specific to viral glycoproteins are raised against intact virus particles. The biosynthesis of viral glycoproteins in heterologous expression systems such as bacteria, yeast, insect or mammalian cells is often problematic due to their low expression level, improper folding and limited stability. To generate MAbs against hantavirus glycoprotein Gc, we have used initially a recombinant yeast-expressed full-length Puumala virus (PUUV) Gc protein. However, this approach was unsuccessful. As an alternative recombinant antigen, chimeric virus-like particles (VLPs) harboring a segment of PUUV Gc glycoprotein were generated in yeast Saccharomyces cerevisiae. A 99 amino acid (aa)-long segment of Gc protein was inserted into the major capsid protein VP1 of hamster polyomavirus at previously defined positions: either site #1 (aa 80-89) or site #4 (aa 280-289). The chimeric proteins were found to self-assemble to VLPs as evidenced by electron microscopy. Chimeric VLPs induced an efficient insert-specific antibody response in immunized mice. Monoclonal antibody (clone #10B8) of IgG isotype specific to hantavirus Gc glycoprotein was generated. It recognized recombinant full-length PUUV Gc glycoprotein both in ELISA and Western blot assay and reacted specifically with hantavirus-infected cells in immunofluorescence assay. Epitope mapping studies revealed the N-terminally located epitope highly conserved among different hantavirus strains. In conclusion, our approach to use chimeric VLPs was proven useful for the generation of virus-reactive MAb against hantavirus Gc glycoprotein. The generated broadly-reactive MAb #10B8 might be useful for various diagnostic applications.

  10. The Use of Chimeric Virus-like Particles Harbouring a Segment of Hantavirus Gc Glycoprotein to Generate a Broadly-Reactive Hantavirus-Specific Monoclonal Antibody

    PubMed Central

    Zvirbliene, Aurelija; Kucinskaite-Kodze, Indre; Razanskiene, Ausra; Petraityte-Burneikiene, Rasa; Klempa, Boris; Ulrich, Rainer G.; Gedvilaite, Alma

    2014-01-01

    Monoclonal antibodies (MAbs) against viral glycoproteins have important diagnostic and therapeutic applications. In most cases, the MAbs specific to viral glycoproteins are raised against intact virus particles. The biosynthesis of viral glycoproteins in heterologous expression systems such as bacteria, yeast, insect or mammalian cells is often problematic due to their low expression level, improper folding and limited stability. To generate MAbs against hantavirus glycoprotein Gc, we have used initially a recombinant yeast-expressed full-length Puumala virus (PUUV) Gc protein. However, this approach was unsuccessful. As an alternative recombinant antigen, chimeric virus-like particles (VLPs) harboring a segment of PUUV Gc glycoprotein were generated in yeast Saccharomyces cerevisiae. A 99 amino acid (aa)-long segment of Gc protein was inserted into the major capsid protein VP1 of hamster polyomavirus at previously defined positions: either site #1 (aa 80–89) or site #4 (aa 280–289). The chimeric proteins were found to self-assemble to VLPs as evidenced by electron microscopy. Chimeric VLPs induced an efficient insert-specific antibody response in immunized mice. Monoclonal antibody (clone #10B8) of IgG isotype specific to hantavirus Gc glycoprotein was generated. It recognized recombinant full-length PUUV Gc glycoprotein both in ELISA and Western blot assay and reacted specifically with hantavirus-infected cells in immunofluorescence assay. Epitope mapping studies revealed the N-terminally located epitope highly conserved among different hantavirus strains. In conclusion, our approach to use chimeric VLPs was proven useful for the generation of virus-reactive MAb against hantavirus Gc glycoprotein. The generated broadly-reactive MAb #10B8 might be useful for various diagnostic applications. PMID:24513568

  11. Development of new generation of copolymers via reactive extrusion in a twin screw extruder and application in various PVC blends

    NASA Astrophysics Data System (ADS)

    Kim, In

    Polymerization in twin screw extruders has largely involved homopolymers. Here we generalize this and polymerize a range of copolymers and terpolymers including epsilon-caprolactam(CA), o-lauryl lactam(LA), epsilon-caprolactone(CL), and gamma-butyrolactone(GBL) in a modular intermeshing co-rotating twin screw extruder. We considered different types of copolymer structures (di-block, tri-block, and random-block) and different backbones of copolymer(lactams-lactones) as well as the variables of temperature profile, screw speed, monomer feed rate, the ratio of monomer to initiator, and feeding order of co-monomers on reactive extrusion of polyamides-polylactones based (co)polymers. Specially designed block copolymers have played a role as compatibilizing agents in the system of immiscible polymer blends. We apply the di-block copolymer(P(LA-b-CL)) and random block copolymer (P(LA/CA-b-CL)) produced by reactive extrusion as a compatibilizing agent in immiscible polymer blend systems: (i) poly(vinyl chloride) (PVC)/polyamide 12 (PA12), (ii) PVC/polypropylene(PP), and (iii) PVC/Ethylene-propylene-non-conjugated diene elastomer(EPDM).

  12. Sanguinarine Inhibits Vascular Endothelial Growth Factor Release by Generation of Reactive Oxygen Species in MCF-7 Human Mammary Adenocarcinoma Cells

    PubMed Central

    Dong, Xian-zhe; Zhang, Miao; Wang, Kun; Liu, Ping; Guo, Dai-hong; Zheng, Xiao-li; Ge, Xiao-yue

    2013-01-01

    The inhibitory action and the possible mechanism of anticancer compound Sanguinarine (SAN) on vascular endothelial growth factor (VEGF) in human mammary adenocarcinoma cells MCF-7 were evaluated in this study. We exposed MCF-7 to SAN for 24 h, then cell viability was assessed by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay. Human VEGF was measured using a paired antibody quantitative ELISA kit, relative expression of VEGF mRNA was calculated using the real-time PCR studies, and the effect of SAN on the reactive oxygen species (ROS) level was detected by the flow cytometer. Treatment with SAN remarkably inhibited growth of MCF-7 cells and induced cell apoptosis. We found that VEGF release was stimulated by subtoxic concentrations of SAN and inhibited by high dose of SAN, SAN-evoked VEGF release was mimicked by low concentration of H2O2, and SAN-regulated VEGF inhibition was accompanied by increasing of ROS; these changes were abolished by antioxidant. High concentration of SAN inhibited VEGF mRNA expression in MCF-7 cultures, suggesting an effect at transcriptional level, and was also abolished by antioxidant. The present findings indicated that the regulation of VEGF expression and release from MCF-7 cells were possibly through reactive oxygen species evoked by SAN. PMID:23762849

  13. Reactive oxygen species generated from the mitochondrial electron transport chain induce cytochrome c dissociation from beef-heart submitochondrial particles via cardiolipin peroxidation. Possible role in the apoptosis.

    PubMed

    Petrosillo, G; Ruggiero, F M; Pistolese, M; Paradies, G

    2001-12-14

    Cytochrome c release from mitochondria is a critical event in the apoptosis induction. Dissociation of cytochrome c from the mitochondrial inner membrane (IMM) is a necessary first step for cytochrome c release. In the present study, the effect of reactive oxygen species (ROS) on the dissociation of cytochrome c from beef-heart submitochondrial particles (SMP) and on the cardiolipin content was investigated. Exposure of SMP to mitochondrial-mediated ROS generation resulted in a large dissociation of cytochrome c from SMP and in a parallel loss of cardiolipin. Both these effects were directly and significantly correlated and also abolished by superoxide dismutase+catalase. These results demonstrate that ROS generation induces the dissociation of cytochrome c from IMM via cardiolipin peroxidation. The data may prove useful in clarifying the molecular mechanism underlying the release of cytochrome c from the mitochondria to the cytosol.

  14. Formation of diatomic molecular radicals in reactive nitrogen-carbon plasma generated by electron cyclotron resonance discharge and pulsed laser ablation

    SciTech Connect

    Liang, Peipei; Li, Yanli; You, Qinghu; Cai, Hua; Yang, Xu; Sun, Jian; Xu, Ning; Wu, Jiada

    2014-04-15

    The reactive nitrogen-carbon plasma generated by electron cyclotron resonance (ECR) microwave discharge of N{sub 2} gas and pulsed laser ablation of a graphite target was characterized spectroscopically by time-integrated and time-resolved optical emission spectroscopy with space resolution for a study of gas-phase reactions and molecular radical formation in the plasma. The plasma exhibits very high reactivity compared with the plasma generated solely by ECR discharge or by pulsed laser ablation and contains highly excited species originally present in the ambient gaseous environment and directly ablated from the target as well as formed as the products of gas-phase reactions occurring in the plasma. The space distribution and the time evolution of the plasma emission give an access to the gas-phase reactions for the formation of C{sub 2} and CN radicals, revealing that C{sub 2} radicals are formed mainly in the region near the target while CN radicals can be formed in a much larger region not only in the vicinity of the target, but especially in the region near a substrate far away from the target.

  15. Gardenin B-induced cell death in human leukemia cells involves multiple caspases but is independent of the generation of reactive oxygen species.

    PubMed

    Cabrera, Javier; Saavedra, Ester; Del Rosario, Henoc; Perdomo, Juan; Loro, Juan F; Cifuente, Diego A; Tonn, Carlos E; García, Celina; Quintana, José; Estévez, Francisco

    2016-08-25

    Flavonoids have attracted great interest due to their possible anticancer activities. Here we investigated the antiproliferative activity of the flavonoids isolated from Baccharis scandens against human leukemia cell lines and found that the methoxyflavonoid gardenin B was the most cytotoxic compound against HL-60 and U-937 cells, showing IC50 values between 1.6 and 3.0 μM, but had no significant cytotoxic effects against quiescent or proliferating human peripheral blood mononuclear cells. These effects on viability were accompanied by the concentration- and time-dependent appearance of apoptosis as evidenced by DNA fragmentation, formation of apoptotic bodies and a sub-G1 ratio increase. Comparative studies with the best-studied bioflavonoid quercetin indicate that gardenin B is a more cytotoxic and more apoptotic inducer than quercetin. Cell death induced by gardenin B was associated with: (i) a significant induction of caspase-2, -3, -8 and -9 activities; (ii) cleavage of the initiator caspases (caspase-2, -8 and -9), of the executioner caspase-3, and of poly(ADP-ribose) polymerase; and (iii) a concentration-dependent reactive oxygen species generation. In conclusion, apoptosis induced by gardenin B is associated with activation of both the extrinsic and the intrinsic apoptotic pathways of cell death and occurs through a mechanism that is independent of the generation of reactive oxygen species. PMID:27423764

  16. Gardenin B-induced cell death in human leukemia cells involves multiple caspases but is independent of the generation of reactive oxygen species.

    PubMed

    Cabrera, Javier; Saavedra, Ester; Del Rosario, Henoc; Perdomo, Juan; Loro, Juan F; Cifuente, Diego A; Tonn, Carlos E; García, Celina; Quintana, José; Estévez, Francisco

    2016-08-25

    Flavonoids have attracted great interest due to their possible anticancer activities. Here we investigated the antiproliferative activity of the flavonoids isolated from Baccharis scandens against human leukemia cell lines and found that the methoxyflavonoid gardenin B was the most cytotoxic compound against HL-60 and U-937 cells, showing IC50 values between 1.6 and 3.0 μM, but had no significant cytotoxic effects against quiescent or proliferating human peripheral blood mononuclear cells. These effects on viability were accompanied by the concentration- and time-dependent appearance of apoptosis as evidenced by DNA fragmentation, formation of apoptotic bodies and a sub-G1 ratio increase. Comparative studies with the best-studied bioflavonoid quercetin indicate that gardenin B is a more cytotoxic and more apoptotic inducer than quercetin. Cell death induced by gardenin B was associated with: (i) a significant induction of caspase-2, -3, -8 and -9 activities; (ii) cleavage of the initiator caspases (caspase-2, -8 and -9), of the executioner caspase-3, and of poly(ADP-ribose) polymerase; and (iii) a concentration-dependent reactive oxygen species generation. In conclusion, apoptosis induced by gardenin B is associated with activation of both the extrinsic and the intrinsic apoptotic pathways of cell death and occurs through a mechanism that is independent of the generation of reactive oxygen species.

  17. [Generation of reactive oxygen species in water under exposure of visible or infrared irradiation at absorption band of molecular oxygen].

    PubMed

    Gudkov, S V; Karp, O E; Garmash, S A; Ivanov, V E; Chernikov, A V; Manokhin, A A; Astashev, M E; Iaguzhinskiĭ, L S; Bruskov, V I

    2012-01-01

    It is found that in bidistilled water saturated with oxygen hydrogen peroxide and hydroxyl radicals are formed under the influence of visible and infrared radiation in the absorption bands of molecular oxygen. Formation of reactive oxygen species (ROS) occurs under the influence of both solar and artificial light sourses, including the coherent laser irradiation. The oxygen effect, i.e. the impact of dissolved oxygen concentration on production of hydrogen peroxide induced by light, is detected. It is shown that the visible and infrared radiation in the absorption bands of molecular oxygen leads to the formation of 8-oxoguanine in DNA in vitro. Physicochemical mechanisms of ROS formation in water when exposed to visible and infrared light are studied, and the involvement of singlet oxygen and superoxide anion radicals in this process is shown.

  18. Induction of Apoptosis by [8]-shogaol via Reactive Oxygen Species Generation, Glutathione Depletion and Caspase Activation in Human Leukemia Cells

    PubMed Central

    Shieh, Po-Chuen; Chen, Yi-Own; Kuo, Daih-Huang; Chen, Fu-An; Tsai, Mei-Ling; Chang, Ing-Shing; Wu, Hou; Sang, Shengmin; Ho, Chi-Tang; Pan, Min-Hsiung

    2010-01-01

    Ginger, the rhizome of Zingiber officinale, is a traditional medicine with carminative effect, anti-nausea, anti-inflammatory, and anti-carcinogenic properties. This study examined the growth inhibitory effects of [8]-shogaol, one of pungent phenolic compounds in ginger, on human leukemia HL-60 cells. It demonstrated that [8]-shogaol was able to induce apoptosis in a time- and concentration-dependent manner. Treatment with [8]-shogaol caused a rapid loss of mitochondrial transmembrane potential, stimulation of reactive oxygen species (ROS) production, release of mitochondrial cytochrome c into cytosol, and subsequent induction of procaspase-9 and procaspase-3 processing. Taken together, these results suggest for the first time that ROS production and depletion of the glutathione that committed to [8]-shogaol-induced apoptosis in HL-60 cells. PMID:20163181

  19. Quinclorac-induced cell death is accompanied by generation of reactive oxygen species in maize root tissue.

    PubMed

    Sunohara, Yukari; Matsumoto, Hiroshi

    2008-09-01

    The importance of reactive oxygen species for herbicide quinclorac (3,7-dichloro-8-quinolinecarboxylic acid)-induced cell death in roots was investigated. This was in order to understand its mode of action in grass species grown in the dark. Under these dark conditions, quinclorac suppressed the shoot and root growth of maize (Zea mays L. cv. Honey Bantam) in a concentration-dependent manner (50microM), although the inhibition level was less than that observed under growth conditions in the light. Analysis of cell viability using Evans blue or fluorescein diacetate-propidium iodide (FDA-PI) staining showed that the maize root cells significantly lost their viability after 14h root treatment with 10microM quinclorac, but not 10microM 2,4-dichlorophenoxyacetic acid (2,4-D). Determination of reactive oxygen species (ROS) in maize roots using a superoxide anion (O2-)-specific indicator, dihydroethidium (DHE), indicated that 50microM quinclorac induced a high level of O2- production in maize roots after 14h root treatment than that of either the control (non-treated) or with 50microM 2,4-D. Moreover, either cell death or ethane evolution, an indicator of lipid peroxide formation, in maize root segments was significantly enhanced by 50microM quinclorac, but not by 50microM 2,4-D. On the other hand, the 50microM 2,4-D treatment induced much higher ethylene and cyanide production in the root segments than with the 50microM quinclorac. These results suggest that quinclorac-induced cell death in maize roots may be caused by ROS and lipid peroxidation, but not by ethylene and its biosynthetic pathway-related substances including cyanide, which have been thought to be the causative factor of quinclorac-induced phytotoxicity in susceptible grass weeds such as Echinochloa, Digitaria, and Setaria. PMID:18674787

  20. Quinclorac-induced cell death is accompanied by generation of reactive oxygen species in maize root tissue.

    PubMed

    Sunohara, Yukari; Matsumoto, Hiroshi

    2008-09-01

    The importance of reactive oxygen species for herbicide quinclorac (3,7-dichloro-8-quinolinecarboxylic acid)-induced cell death in roots was investigated. This was in order to understand its mode of action in grass species grown in the dark. Under these dark conditions, quinclorac suppressed the shoot and root growth of maize (Zea mays L. cv. Honey Bantam) in a concentration-dependent manner (50microM), although the inhibition level was less than that observed under growth conditions in the light. Analysis of cell viability using Evans blue or fluorescein diacetate-propidium iodide (FDA-PI) staining showed that the maize root cells significantly lost their viability after 14h root treatment with 10microM quinclorac, but not 10microM 2,4-dichlorophenoxyacetic acid (2,4-D). Determination of reactive oxygen species (ROS) in maize roots using a superoxide anion (O2-)-specific indicator, dihydroethidium (DHE), indicated that 50microM quinclorac induced a high level of O2- production in maize roots after 14h root treatment than that of either the control (non-treated) or with 50microM 2,4-D. Moreover, either cell death or ethane evolution, an indicator of lipid peroxide formation, in maize root segments was significantly enhanced by 50microM quinclorac, but not by 50microM 2,4-D. On the other hand, the 50microM 2,4-D treatment induced much higher ethylene and cyanide production in the root segments than with the 50microM quinclorac. These results suggest that quinclorac-induced cell death in maize roots may be caused by ROS and lipid peroxidation, but not by ethylene and its biosynthetic pathway-related substances including cyanide, which have been thought to be the causative factor of quinclorac-induced phytotoxicity in susceptible grass weeds such as Echinochloa, Digitaria, and Setaria.

  1. Genotype differences in anxiety and fear learning and memory of WT and ApoE4 mice associated with enhanced generation of hippocampal reactive oxygen species.

    PubMed

    Villasana, Laura E; Weber, Sydney; Akinyeke, Tunde; Raber, Jacob

    2016-09-01

    Apolipoprotein E (apoE), involved in cholesterol and lipid metabolism, also influences cognitive function and injury repair. In humans, apoE is expressed in three isoforms. E4 is a risk factor for age-related cognitive decline and Alzheimer's disease, particularly in women. E4 might also be a risk factor for developing behavioral and cognitive changes following (56) Fe irradiation, a component of the space environment astronauts are exposed to during missions. These changes might be related to enhanced generation of reactive oxygen species (ROS). In this study, we compared the behavioral and cognitive performance of sham-irradiated and irradiated wild-type (WT) mice and mice expressing the human E3 or E4 isoforms, and assessed the generation of ROS in hippocampal slices from these mice. E4 mice had greater anxiety-like and conditioned fear behaviors than WT mice, and these genotype differences were associated with greater levels of ROS in E4 than WT mice. The greater generation of ROS in the hippocampus of E4 than WT mice might contribute to their higher anxiety levels and enhanced fear conditioning. In E4, but not WT, mice, phorbol-12-myristate-13-acetate-treated hippocampal slices showed more dihydroxy ethidium oxidation in sham-irradiated than irradiated mice and hippocampal heme oxygenase-1 levels were higher in irradiated than sham-irradiated E4 mice. Mice with apolipoprotein E4 (E4), a risk factor for Alzheimer's disease, have greater anxiety-like and conditioned fear behaviors than wild-type (WT) mice. Generation of reactive oxygen species (ROS, in red) 3 months following (56) Fe irradiation, a component of the space environment astronauts are exposed to, is more pronounced in the hippocampus of E4 than WT mice. In E4, but not WT, mice, hippocampal levels of the oxidative stress-relevant marker heme oxygenase-1 are higher in irradiated than sham-irradiated E4 mice. PMID:27412623

  2. Genotype differences in anxiety and fear learning and memory of WT and ApoE4 mice associated with enhanced generation of hippocampal reactive oxygen species.

    PubMed

    Villasana, Laura E; Weber, Sydney; Akinyeke, Tunde; Raber, Jacob

    2016-09-01

    Apolipoprotein E (apoE), involved in cholesterol and lipid metabolism, also influences cognitive function and injury repair. In humans, apoE is expressed in three isoforms. E4 is a risk factor for age-related cognitive decline and Alzheimer's disease, particularly in women. E4 might also be a risk factor for developing behavioral and cognitive changes following (56) Fe irradiation, a component of the space environment astronauts are exposed to during missions. These changes might be related to enhanced generation of reactive oxygen species (ROS). In this study, we compared the behavioral and cognitive performance of sham-irradiated and irradiated wild-type (WT) mice and mice expressing the human E3 or E4 isoforms, and assessed the generation of ROS in hippocampal slices from these mice. E4 mice had greater anxiety-like and conditioned fear behaviors than WT mice, and these genotype differences were associated with greater levels of ROS in E4 than WT mice. The greater generation of ROS in the hippocampus of E4 than WT mice might contribute to their higher anxiety levels and enhanced fear conditioning. In E4, but not WT, mice, phorbol-12-myristate-13-acetate-treated hippocampal slices showed more dihydroxy ethidium oxidation in sham-irradiated than irradiated mice and hippocampal heme oxygenase-1 levels were higher in irradiated than sham-irradiated E4 mice. Mice with apolipoprotein E4 (E4), a risk factor for Alzheimer's disease, have greater anxiety-like and conditioned fear behaviors than wild-type (WT) mice. Generation of reactive oxygen species (ROS, in red) 3 months following (56) Fe irradiation, a component of the space environment astronauts are exposed to, is more pronounced in the hippocampus of E4 than WT mice. In E4, but not WT, mice, hippocampal levels of the oxidative stress-relevant marker heme oxygenase-1 are higher in irradiated than sham-irradiated E4 mice.

  3. Intracellular Zn(2+) Increase in Cardiomyocytes Induces both Electrical and Mechanical Dysfunction in Heart via Endogenous Generation of Reactive Nitrogen Species.

    PubMed

    Tuncay, Erkan; Turan, Belma

    2016-02-01

    Oxidants increase intracellular free Zn(2+) concentration ([Zn(2+)]i) in ventricular myocytes, which contributes to oxidant-induced alterations in excitation-contraction coupling (ECC). However, it is not clear whether increased [Zn(2+)]i in cardiomyocytes via increased reactive nitrogen species (RNS) has a role on heart function under pathological conditions, such as hyperglycemia. In this study, first we aimed to investigate the role of increased [Zn(2+)]i under in vitro condition in the development of both electrical and mechanical dysfunction of isolated papillary muscle strips from rat heart via exposed samples to a Zn(2+)-ionophore (Zn-pyrithione; 1 μM) for 20 min. Under simultaneous measurement of intracellular action potential and contractile activity in these preparations, Zn-pyrithione exposure caused marked prolongation in action potential repolarization phase and slowdown in both contraction and relaxation rates of twitch activity. Second, in order to demonstrate an association between increased [Zn(2+)]i and increased RNS, we monitored intracellular [Zn(2+)]i under an acute exposure of nitric oxide (NO) donor sodium nitroprusside, SNP, in freshly isolated quiescent cardiomyocytes loaded with FluoZin-3. Resting level of free Zn(2+) is significantly higher in cardiomyocytes under hyperglycemic condition compared to those of the controls, which seems to be associated with increased level of RNS production in hyperglycemic cardiomyocytes. Western blot analysis showed that Zn-pyrithione exposure induced a marked decrease in the activity of protein phosphatase 1 and 2A, member of macromolecular protein complex of cardiac ryanodine receptors, RyR2, besides significant increase in the phosphorylation level of extracellular signal-regulated kinase1/2 as a concentration-dependent manner. Overall, the present data demonstrated that there is a cross-relationship between increased RNS production and increased [Zn(2+)]i level in cardiomyocytes under pathological

  4. Photosensitized damage inflicted on plasma membranes of live cells by an extracellular generator of singlet oxygen--a linear dependence of a lethal dose on light intensity.

    PubMed

    Zarębski, Mirosław; Kordon, Magdalena; Dobrucki, Jurek W

    2014-01-01

    We describe a study of the influence of a dose rate, i.e. light intensity or photon flux, on the efficiency of induction of a loss of integrity of plasma membranes of live cells in culture. The influence of a photon flux on the size of the light dose, which was capable of causing lethal effects, was measured in an experimental system where singlet oxygen was generated exclusively outside of live cells by ruthenium(II) phenantroline complex. Instantaneous, sensitive detection of a loss of integrity of a plasma membrane was achieved by fluorescence confocal imaging of the entry of this complex into a cell interior. We demonstrate that the size of the lethal dose of light is directly proportional to the intensity of the exciting light. Thus, the probability of a photon of the exciting light inflicting photosensitized damage on plasma membranes diminishes with increasing density of the incident photons.

  5. Catalytic therapy of cancer by ascorbic acid involves redox cycling of exogenous/endogenous copper ions and generation of reactive oxygen species.

    PubMed

    Hadi, S M; Ullah, M F; Shamim, U; Bhatt, S H; Azmi, A S

    2010-01-01

    Catalytic therapy is a cancer treatment modality based on the generation of reactive oxygen species (ROS) through administration of ascorbate/medicinal herbal extracts and copper. It is known that antioxidants such as ascorbate also exhibit prooxidant activity in the presence of transition metals such as copper. Based on our work and that in the literature, in this review we propose a mechanism for the cytotoxic action of ascorbate against cancer cells. It involves redox cycling of exogenous/endogenous copper ions and the consequent generation of ROS leading to oxidative DNA breakage. Using human peripheral lymphocytes and the Comet assay, we have shown that ascorbic acid is able to cause oxidative breakage in cellular DNA. Such DNA degradation is inhibited by neocuproine (a Cu(I) sequestering agent) and scavengers of ROS indicating that the cellular DNA breakage involves the generation of Cu(I) and formation of ROS. Similar results are also obtained with plant polyphenol antioxidants that are important constituents of medicinal herbal extracts. Copper is an essential component of chromatin and can take part in redox reactions. It is well established that tissue, cellular and serum copper levels are considerably elevated in various malignancies. Therefore, cancer cells may be more subject to electron transfer between copper ions and ascorbate/plant polyphenols to generate ROS. In this review we cite evidence to indicate that in catalytic therapy cytotoxic action against cancer cells involves redox cycling of exogenous/endogenous copper ions.

  6. Generation and loss of reactive oxygen species in low-temperature atmospheric-pressure RF He + O2 + H2O plasmas

    NASA Astrophysics Data System (ADS)

    McKay, K.; Liu, D. X.; Rong, M. Z.; Iza, F.; Kong, M. G.

    2012-05-01

    This study focuses on the generation and loss of reactive oxygen species (ROS) in low-temperature atmospheric-pressure RF (13.56 MHz) He + O2 + H2O plasmas, which are of interest for many biomedical applications. These plasmas create cocktails of ROS containing ozone, singlet oxygen, atomic oxygen, hydroxyl radicals, hydrogen peroxide and hydroperoxyl radicals, i.e. ROS of great significance as recognized by the free-radical biology community. By means of one-dimensional fluid simulations (61 species, 878 reactions), the key ROS and their generation and loss mechanisms are identified as a function of the oxygen and water content in the feed gas. Identification of the main chemical pathways can guide the optimization of He + O2 + H2O plasmas for the production of particular ROS. It is found that for a given oxygen concentration, the presence of water in the feed gas decreases the net production of oxygen-derived ROS, while for a given water concentration, the presence of oxygen enhances the net production of water-derived ROS. Although most ROS can be generated in a wide range of oxygen and water admixtures, the chemical pathways leading to their generation change significantly as a function of the feed gas composition. Therefore, care must be taken when selecting reduced chemical sets to study these plasmas.

  7. Airborne particulate matter PM2.5 from Mexico City affects the generation of reactive oxygen species by blood neutrophils from asthmatics: an in vitro approach

    PubMed Central

    Sierra-Vargas, Martha Patricia; Guzman-Grenfell, Alberto Martin; Blanco-Jimenez, Salvador; Sepulveda-Sanchez, Jose David; Bernabe-Cabanillas, Rosa Maria; Cardenas-Gonzalez, Beatriz; Ceballos, Guillermo; Hicks, Juan Jose

    2009-01-01

    Background The Mexico City Metropolitan Area is densely populated, and toxic air pollutants are generated and concentrated at a higher rate because of its geographic characteristics. It is well known that exposure to particulate matter, especially to fine and ultra-fine particles, enhances the risk of cardio-respiratory diseases, especially in populations susceptible to oxidative stress. The aim of this study was to evaluate the effect of fine particles on the respiratory burst of circulating neutrophils from asthmatic patients living in Mexico City. Methods In total, 6 subjects diagnosed with mild asthma and 11 healthy volunteers were asked to participate. Neutrophils were isolated from peripheral venous blood and incubated with fine particles, and the generation of reactive oxygen species was recorded by chemiluminescence. We also measured plasma lipoperoxidation susceptibility and plasma myeloperoxidase and paraoxonase activities by spectrophotometry. Results Asthmatic patients showed significantly lower plasma paraoxonase activity, higher susceptibility to plasma lipoperoxidation and an increase in myeloperoxidase activity that differed significantly from the control group. In the presence of fine particles, neutrophils from asthmatic patients showed an increased tendency to generate reactive oxygen species after stimulation with fine particles (PM2.5). Conclusion These findings suggest that asthmatic patients have higher oxidation of plasmatic lipids due to reduced antioxidant defense. Furthermore, fine particles tended to increase the respiratory burst of blood human neutrophils from the asthmatic group. On the whole, increased myeloperoxidase activity and susceptibility to lipoperoxidation with a concomitant decrease in paraoxonase activity in asthmatic patients could favor lung infection and hence disrupt the control of asthmatic crises. PMID:19563660

  8. Generation and molecular characterization of a monoclonal antibody reactive with conserved epitope in sphingomyelinases D from Loxosceles spider venoms.

    PubMed

    Dias-Lopes, C; Felicori, L; Rubrecht, L; Cobo, S; Molina, L; Nguyen, C; Galéa, P; Granier, C; Molina, F; Chávez-Olortegui, C

    2014-04-11

    We report the production of a neutralizing monoclonal antibody able to recognize the venoms of three major medically important species of Loxosceles spiders in Brazil. The mAb was produced by immunization of mice with a toxic recombinant L. intermedia sphingomyelinase D {SMases D isoform (rLiD1)} [1] and screened by enzyme-linked immunosorbent assay (ELISA) using L. intermedia, L. laeta and L. gaucho venoms as antigens. One clone (LiD1mAb16) out of seventeen anti-rLiD1 hybridomas was cross-reactive with the three whole Loxosceles venoms. 2D Western blot analysis indicated that LiD1mAb16 was capable of interacting with 34 proteins of 29-36kDa in L. intermedia, 33 in L. gaucho and 27 in L. laeta venoms. The results of immunoassays with cellulose-bound peptides revealed that the LiD1mAb16 recognizes a highly conserved linear epitope localized in the catalytic region of SMases D toxins. The selected mAb displayed in vivo protective activity in rabbits after challenge with rLiD1. These results show the potential usefulness of monoclonal antibodies for future therapeutic approaches and also opens up the perspective of utilization of these antibodies for immunodiagnostic assays in loxoscelism.

  9. Effects of a novel pesticide-particle conjugate on viability and reactive oxygen species generation in neuronal (PC12) cells.

    PubMed

    Sooresh, Aishwarya; Sayes, Christie M; Pine, Michelle

    2015-04-01

    Development of new methods and compounds to eradicate insect vectors are desperately needed. To that end, our team has previously described the synthesis and characterization of a conjugate comprised of a silver nanoparticle core encapsulated by the pyrethroid pesticide, deltamethrin (pesticide encapsulated silver nanoparticle termed "PENS"). For this current work, the PENS conjugate was tested in neuronal cultured cells to compare the cytotoxic responses to the unconjugated pesticide deltamethrin - a known neurotoxic agent and pristine silver nanoparticles. The PC12 (pheochromocytoma of the rat adrenal medulla) cell line was chosen as a model neuronal culture system. Cells were exposed to known concentrations of PENS, deltamethrin or silver nanoparticle suspensions to assess the degree of toxicity in vitro. After 24 hours of incubation, cell viability and intracellular reactive oxygen species (ROS) were measured. Bright field images of high dose exposures to dosing solutions were also acquired to evaluate cell morphology. Exposure to PENS resulted in a 17% decline in viability at the highest concentration of 45 µM while exposure to deltamethrin caused a 47% decrease. These results suggest that cellular viability was less adversely affected by PENS than by the deltamethrin. Also, ROS production following PENS exposure indicated that the newly developed conjugate was responding in a similar manner as that of cells treated with deltamethrin only.

  10. Inorganic chemical composition and chemical reactivity of settled dust generated by the World Trade Center building collapse

    USGS Publications Warehouse

    Plumlee, Geoffrey S.; Hageman, Philip L.; Lamothe, Paul J.; Ziegler, Thomas L.; Meeker, Gregory P.; Theodorakos, Peter M.; Brownfield, Isabelle; Adams, Monique G.; Swayze, Gregg A.; Hoefen, Todd M.; Taggart, Joseph E.; Clark, Roger N.; Wilson, S.; Sutley, Stephen J.

    2009-01-01

    Samples of dust deposited around lower Manhattan by the September 11, 2001, World Trade Center (WTC) collapse have inorganic chemical compositions that result in part from the variable chemical contributions of concrete, gypsum wallboard, glass fibers, window glass, and other materials contained in the buildings. The dust deposits were also modified chemically by variable interactions with rain water or water used in street washing and fire fighting. Chemical leach tests using deionized water as the extraction fluid show the dust samples can be quite alkaline, due primarily to reactions with calcium hydroxide in concrete particles. Calcium and sulfate are the most soluble components in the dust, but many other elements are also readily leached, including metals such as Al, Sb, Mo Cr, Cu, and Zn. Indoor dust samples produce leachates with higher pH, alkalinity, and dissolved solids than outdoor dust samples, suggesting most outdoor dust had reacted with water and atmospheric carbon dioxide prior to sample collection. Leach tests using simulated lung fluids as the extracting fluid suggest that the dust might also be quite reactive in fluids lining the respiratory tract, resulting in dissolution of some particles and possible precipitation of new phases such as phosphates, carbonates, and silicates. Results of these chemical characterization studies can be used by health scientists as they continue to track and interpret health effects resulting from the short-term exposure to the initial dust cloud and the longer-term exposure to dusts resuspended during cleanup.

  11. Neutrophils Regulate Humoral Autoimmunity by Restricting Interferon-γ Production via the Generation of Reactive Oxygen Species.

    PubMed

    Huang, Xinfang; Li, Jingjing; Dorta-Estremera, Stephanie; Di Domizio, Jeremy; Anthony, Scott M; Watowich, Stephanie S; Popkin, Daniel; Liu, Zheng; Brohawn, Philip; Yao, Yihong; Schluns, Kimberly S; Lanier, Lewis L; Cao, Wei

    2015-08-18

    Here, we examine the mechanism by which plasmacytoid dendritic cells (pDCs) and type I interferons promote humoral autoimmunity. In an amyloid-induced experimental autoimmune model, neutrophil depletion enhanced anti-nuclear antibody development, which correlated with heightened IFN-γ production by natural killer (NK) cells. IFN-α/β produced by pDCs activated NK cells via IL-15 induction. Neutrophils released reactive oxygen species (ROS), which negatively modulated the levels of IL-15, thereby inhibiting IFN-γ production. Mice deficient in NADPH oxidase 2 produced increased amounts of IFN-γ and developed augmented titers of autoantibodies. Both the pDC-IFN-α/β pathway and IFN-γ were indispensable in stimulating humoral autoimmunity. Male NZB/W F1 mice expressed higher levels of superoxide than their female lupus-prone siblings, and depletion of neutrophils resulted in spontaneous NK cell and autoimmune B cell activation. Our findings suggest a regulatory role for neutrophils in vivo and highlight the importance of an NK-IFN-γ axis downstream of the pDC-IFN-α/β pathway in systemic autoimmunity.

  12. Endothelial cell apoptosis induced by bacteria-activated platelets requires caspase-8 and -9 and generation of reactive oxygen species.

    PubMed

    Kuckleburg, Christopher J; Tiwari, Raksha; Czuprynski, Charles J

    2008-02-01

    A common feature of severe sepsis is vascular inflammation and damage to the endothelium. Because platelets can be directly activated by bacteria and endotoxin, these cells may play an important role in determining the outcome of sepsis. For example, inhibiting platelet interactions with the endothelium has been shown to attenuate endothelial cell damage and improve survival during sepsis. Although not entirely understood, the interactions between bacteria-activated platelets and the endothelium may play a key role in the vascular pathology of bacterial sepsis. Haemophilus somnus is a bacterial pathogen that causes diffuse vascular inflammation and endothelial damage. In some cases H. somnus infection results in an acute and fatal form of vasculitis in the cerebral microvasculature known as thrombotic meningoencephalitis (TME). In this study, we have characterized the mechanisms involved in endothelial cell apoptosis induced by activated platelets. We observed that direct contact between H. somnus-activated platelets and endothelial cells induced significant levels of apoptosis; however, Fas receptor activation on bovine endothelial cells was not able to induce apoptosis unless protein synthesis was disrupted. Endothelial cell apoptosis by H. somnus-activated platelets required activation of both caspase-8 and caspase-9, as inhibitors of either caspase inhibited apoptosis. Furthermore, activated platelets induced endothelial cell production of reactive oxygen species (ROS) and disrupting ROS activity in endothelial cells significantly inhibited apoptosis. These findings suggest that bacterial activation of platelets may contribute to endothelial cell dysfunction observed during sepsis, specifically by inducing endothelial cell apoptosis.

  13. Potentiating effect of an endocrine disruptor, paranonylphenol, on the generation of reactive oxygen species (ROS) in human venous blood -- association with the activation of signal transduction pathway.

    PubMed

    Okai, Yasuji; Sato, Eisuke F; Higashi-Okai, Kiyoka; Inoue, Masayasu

    2007-09-01

    An endocrine disruptor, para-nonylphenol (NP), caused a dose-dependent stimulatory effect on the generation of reactive oxygen species (ROS) in human whole blood from 50 to 1000 microM, which was measured by chemiluminescence generation. ROS-scavenging enzymes such as catalase and superoxide dismutase, and the lipophilic antioxidative agents, alpha-tocopherol and beta-carotene, showed preventive effects on NP-induced ROS generation. To analyze the biochemical mechanism of NP-induced ROS generation in human blood, we investigated the effects of different types of metabolic inhibitors on the activation pathways of ROS generation. An NADPH-dependent oxidase inhibitor, diphenyl iodonium chloride (DPI), and a myeloperoxidase inhibitor, sodium azide (NaN3), showed remarkable inhibitory effects on ROS generation induced by NP, but an inhibitor against mitochondrial respiratory function, potassium cyanide (KCN), did not exhibit a significant effect. Furthermore, a phosphatidylinositol-3 (PI3) kinase inhibitor, wortmannin, and a tyrosine kinase inhibitor, protein phosphorylation inhibitor 1 (PP1), caused a strong suppression of NP-induced ROS generation. Selective protein kinase C inhibitor, Ro-32-0432, p38 MAP kinase inhibitor, SB-203580, and ERK MAP kinase inhibitor, PD 98059, showed significant suppressive effects on NP-induced ROS generation. In addition, when human blood was exposed to lower concentrations (5-50 microM) of NP, they did not cause the significant ROS generation by themselves, but the priming and synergistic effects of NP were detected by the addition of secondary stimulants, opsonized zymosan (OZ) or phorbol myristate acetate (PMA). The analysis of the priming and synergistic effects of NP on OZ- or PMA-dependent ROS generation by antioxidative substances and metabolic inhibitors showed similar results compared with those of human blood treated with NP alone. These results suggest that NP causes an enhancing effect by itself, or priming and synergistic

  14. The study of radiation-induced damage and remodeling of extracellular matrix of rectum and bladder by second-harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Kochueva, Marina V.; Sergeeva, Ekaterina A.; Ignatjeva, Natalya Yu.; Zakharkina, Olga L.; Kuznetzov, Sergej S.; Kiseleva, Elena B.; Babak, Ksenia V.; Kamensky, Vladislav A.; Maslennikova, Anna V.

    2014-02-01

    Adverse events in normal tissues after irradiation of malignant tumors are of great importance in modern radiation oncology. Second harmonic generation (SHG) microscopy allows observe the structure of collagen fibers and bundles without additional staining. The study objective was evaluation the dose-time dependences of the structural changes occurring in collagen of rat rectum and bladder after gamma-irradiation. Animals were irradiated by a local field at single doses of 10 Gy and 40 Gy. The study of collagen state was carried out in a week and a month after radiation exposure. Paraffin-embedded material was sectioned on the slices 10 mkm thick and SHG-imaging was performed by LSM 510 Meta (Carl Zeiss, Germany). Excitation was implemented with a pulsed (100-fs) titanium-sapphire laser at a wavelength of 800 nm and a pulse repetition frequency of 80 MHz, registration was performed at two wavelengths: 362-415 nm according to collagen fluorescence and 512-576 nm according to myoglobin fluorescence. In a week after irradiation, sings of epithelial damage and edema of submucosal layer, more significant after the dose of 40 Gy were observed on LSM-images. The SHG signal decreased at this time reflecting the processes of collagen degradation independently either in bladder or in rectum. In a month after radiation the increase of size and number of collagen-bearing structures was observed, more essential after irradiation in a dose of 40 Gy. LSM microscopy with SHG allows evaluate changes of normal tissues after ionizing radiation and get information in addition to standard and special histological staining.

  15. Modulatory effects of alpha-linolenic acid on generation of reactive oxygen species in elaidic acid enriched peritoneal macrophages in rats.

    PubMed

    Rao, Y Poorna Chandra; Lokesh, B R

    2014-09-01

    Fatty acids are known to influence the ability of macrophages to generate reactive oxygen species (ROS). However the effect of elaidic acid (EA, 18:1 trans fatty acid) on ROS generation is not well studied. Rat peritoneal macrophages were enriched with elaidic acid by incubating the cells with 80 1M EA. The macrophages containing EA generated higher amounts of superoxide anion (O2*-), hydrogen peroxide (H2O2) and nitric oxide (NO) by 54, 123 and 237%, respectively as compared to control cells which did not contain EA. To study the competition of other C18 fatty acids with EA macrophages were incubated with EA along with stearic acid (18:0), oleic acid (18:1), linoleic acid (18:2) and alpha-linolenic acid (ALA, 18:3). ALA significantly reduced the incorporation of EA into macrophage lipids. This also significantly reduced the generation of O2*-, H2O2, NO by macrophages. Studies were also conducted by feeding rats with diet containing partially hydrogenated vegetable fat (PHVF) as a source for EA and linseed oil (LSO) as a source for ALA. The rats were fed AIN-93 diet containing PHVF with 17% EA and incremental amounts of linseed oil for 10 weeks. The peritoneal macrophages from rats fed partially hydrogenated vegetable fat generated higher levels of O2*-, H2O2, NO by 46, 161 and 76% respectively, when compared to rats fed control diets containing ground nut oil. Macrophages from rats fed PHVF with incremental amounts of LSO produced significantly lower levels ROS in a dose dependent manner. Thus ALA reduces the higher levels of ROS generated by macrophages containing EA.

  16. Macrophages generate reactive oxygen species in response to minimally oxidized LDL: TLR4- and Syk-dependent activation of Nox2

    PubMed Central

    Bae, Yun Soo; Lee, Jee Hyun; Choi, Soo Ho; Kim, Sunah; Almazan, Felicidad; Witztum, Joseph L.; Miller, Yury I.

    2009-01-01

    Oxidative modification of low-density lipoprotein (LDL) plays a causative role in the development of atherosclerosis. In this study, we demonstrate that minimally oxidized LDL (mmLDL) stimulates intracellular reactive oxygen species (ROS) generation in macrophages through NADPH oxidase 2 (gp91phox/Nox2), which in turn induces production of RANTES and migration of smooth muscle cells. Peritoneal macrophages from gp91phox/Nox2−/− mice or J774 macrophages in which Nox2 was knocked down by siRNA failed to generate ROS in response to mmLDL. Because mmLDL-induced cytoskeletal changes were dependent on TLR4, we analyzed ROS generation in peritoneal macrophages from wild type, TLR4−/−, or MyD88−/− mice and found that mmLDL-mediated ROS was generated in a TLR4-dependent, but MyD88-independent manner. Furthermore, we found that ROS generation required the recruitment and activation of spleen tyrosine kinase (Syk) and that mmLDL also induced PLCγ1 phosphorylation and PKC membrane translocation. Importantly, the PLCγ1 phosphorylation was reduced in J774 cells expressing Syk-specific shRNA. Nox2 modulated mmLDL activation of macrophages by regulating the expression of proinflammatory cytokines IL-1β, IL-6 and RANTES. We showed that purified RANTES was able to stimulate migration of mouse aortic smooth muscle cells (MASMC) and addition of neutralizing antibody against RANTES abolished the migration of MASMC stimulated by mmLDL-stimulated macrophages. These results suggest that mmLDL induces generation of ROS through sequential activation of TLR4, Syk, PLCγ1, PKC, and gp91phox/Nox2 and thereby stimulates expression of proinflammatory cytokines. These data help explain mechanisms by which endogenous ligands, such as mmLDL, can induce TLR4-dependent, proatherogenic activation of macrophages. PMID:19096031

  17. H2S Inhibits Hyperglycemia-Induced Intrarenal Renin-Angiotensin System Activation via Attenuation of Reactive Oxygen Species Generation

    PubMed Central

    Ni, Jun; Li, Chen; Shao, Decui; Liu, Jia; Shen, Yang; Wang, Zhen; Zhou, Li; Zhang, Wei; Huang, Yu; Yu, Chen; Wang, Rui; Lu, Limin

    2013-01-01

    Decrease in endogenous hydrogen sulfide (H2S) was reported to participate in the pathogenesis of diabetic nephropathy (DN). This study is aimed at exploring the relationship between the abnormalities in H2S metabolism, hyperglycemia-induced oxidative stress and the activation of intrarenal renin-angiotensin system (RAS). Cultured renal mesangial cells (MCs) and streptozotocin (STZ) induced diabetic rats were used for the studies. The expressions of angiotensinogen (AGT), angiotensin converting enzyme (ACE), angiotensin II (Ang II) type I receptor (AT1), transforming growth factor-β1 (TGF-β1) and collagen IV were measured by real time PCR and Western blot. Reactive oxygen species (ROS) production was assessed by fluorescent probe assays. Cell proliferation was analyzed by 5'-bromo-2'-deoxyuridine incorporation assay. Ang II concentration was measured by an enzyme immunoassay. AGT, ACE and AT1 receptor mRNA levels and Ang II concentration were increased in high glucose (HG) -treated MCs, the cell proliferation rate and the production of TGF-β1 and of collagen IV productions were also increased. The NADPH oxidase inhibitor diphenylenechloride iodonium (DPI) was able to reverse the HG-induced RAS activation and the changes in cell proliferation and collagen synthesis. Supplementation of H2S attenuated HG-induced elevations in ROS and RAS activation. Blockade on H2S biosynthesis from cystathione-γ-lyase (CSE) by DL-propargylglycine (PPG) resulted in effects similar to that of HG treatment. In STZ-induced diabetic rats, the changes in RAS were also reversed by H2S supplementation without affecting blood glucose concentration. These data suggested that the decrease in H2S under hyperglycemic condition leads to an imbalance between oxidative and reductive species. The increased oxidative species results in intrarenal RAS activation, which, in turn, contributes to the pathogenesis of renal dysfunction. PMID:24058553

  18. Colistin-Induced Apoptosis of Neuroblastoma-2a Cells Involves the Generation of Reactive Oxygen Species, Mitochondrial Dysfunction, and Autophagy.

    PubMed

    Dai, Chongshan; Tang, Shusheng; Velkov, Tony; Xiao, Xilong

    2016-09-01

    Neurotoxicity remains a poorly characterized adverse effect associated with colistin therapy. The aim of the present study was to investigate the mechanism of colistin-induced neurotoxicity using the mouse neuroblastoma2a (N2a) cell line. Colistin treatment (0-200 μM) of N2a neuronal cells induced apoptotic cell death in a dose-dependent manner. Colistin-induced neurotoxicity was associated with a significant increase of reactive oxygen species (ROS) levels, with a concomitant decrease in the activities of superoxide dismutase (SOD), catalase (CAT), and the glutathione (GSH) levels. Mitochondrial dysfunction was evident from the dissipation of membrane potential and the increase of Bax/Bcl-2, followed by the release of cytochrome c (CytC). Caspase-3/7, -8, and -9 activations were also detected. Colistin-induced neurotoxicity significantly increased the gene expression of p53 (1.6-fold), Bax (3.3-fold), and caspase-8 (2.2-fold) (all p < 0.01). The formation of autophagic vacuoles was evident with the significant increases (all p < 0.05 or 0.01) of both of Beclin 1 and LC3B following colistin treatment (50-200 μM). Furthermore, inhibition of autophagy by pretreatment with chloroquine diphosphate (CQ) enhanced colistin-induced apoptosis via caspase activation, which could be attenuated by co-treatment with the pan-caspase inhibitor Z-VAD-FMK. In summary, our study reveals that colistin-induced neuronal cell death involves ROS-mediated oxidative stress and mitochondrial dysfunction, followed by caspase-dependent apoptosis and autophagy. A knowledge base of the neuronal signaling pathways involved in colistin-induced neurotoxicity will greatly facilitate the discovery of neuroprotective agents for use in combination with colistin to prevent this undesirable side effect. PMID:26316077

  19. Inorganic pyrophosphate generation by transforming growth factor-beta-1 is mainly dependent on ANK induction by Ras/Raf-1/extracellular signal-regulated kinase pathways in chondrocytes.

    PubMed

    Cailotto, Frederic; Bianchi, Arnaud; Sebillaud, Sylvie; Venkatesan, Narayanan; Moulin, David; Jouzeau, Jean-Yves; Netter, Patrick

    2007-01-01

    ANK is a multipass transmembrane protein transporter thought to play a role in the export of intracellular inorganic pyrophosphate and so to contribute to the pathophysiology of chondrocalcinosis. As transforming growth factor-beta-1 (TGF-beta1) was shown to favor calcium pyrophosphate dihydrate deposition, we investigated the contribution of ANK to the production of extracellular inorganic pyrophosphate (ePPi) by chondrocytes and the signaling pathways involved in the regulation of Ank expression by TGF-beta1. Chondrocytes were exposed to 10 ng/mL of TGF-beta1, and Ank expression was measured by quantitative polymerase chain reaction and Western blot. ePPi was quantified in cell supernatants. RNA silencing was used to define the respective roles of Ank and PC-1 in TGF-beta1-induced ePPi generation. Finally, selective kinase inhibitors and dominant-negative/overexpression plasmid strategies were used to explore the contribution of several signaling pathways to Ank induction by TGF-beta1. TGF-beta1 strongly increased Ank expression at the mRNA and protein levels, as well as ePPi production. Using small interfering RNA technology, we showed that Ank contributed approximately 60% and PC-1 nearly 20% to TGF-beta1-induced ePPi generation. Induction of Ank by TGF-beta1 required activation of the extracellular signal-regulated kinase (ERK) pathway but not of p38-mitogen-activated protein kinase or of protein kinase A. In line with the general protein kinase C (PKC) inhibitor calphostin C, Gö6976 (a Ca2+-dependent PKC inhibitor) diminished TGF-beta1-induced Ank expression by 60%, whereas a 10% inhibition was observed with rottlerin (a PKCdelta inhibitor). These data suggest a regulatory role for calcium in TGF-beta1-induced Ank expression. Finally, we demonstrated that the stimulatory effect of TGF-beta1 on Ank expression was inhibited by the suppression of the Ras/Raf-1 pathway, while being enhanced by their constitutive activation. Transient overexpression of Smad 7, an

  20. Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione.

    PubMed

    García-Ruiz, C; Colell, A; Marí, M; Morales, A; Fernández-Checa, J C

    1997-04-25

    Ceramide is a sphingolipid that is generated in the signaling of inflammatory cytokines such as tumor necrosis factor (TNF), which exerts many functional roles depending on the cell type where it is produced. Since TNF cytotoxicity is mediated by overproduction of reactive oxygen species from mitochondria, we have examined the role of ceramide in generation of oxidative stress in isolated rat liver mitochondria. The present studies demonstrate that addition of N-acetylsphingosine (C2-ceramide) to mitochondria led to an increase of fluorescence of dihydrorhodamine 123 or dichlorofluorescein-stained mitochondria, indicating formation of hydrogen peroxide. Such effect was significant at 0.25 microM and maximal at 1-5 microM C2, decreasing at greater concentrations. This inductive effect of ceramide was mimicked by N-hexanoylsphingosine at the same concentration range, whereas the immediate precursor of C2, C2-dihydroceramide increased hydrogen peroxide at 1-5 microM. Sphingosine generated hydrogen peroxide at concentrations >/=10 microM, whereas diacylglycerol failed to increase hydrogen peroxide. The increase in hydrogen peroxide induced by C2 was not triggered by mitochondrial permeability transition as C2 did not induce mitochondrial swelling. Blocking electron transport chain at complex I and II prevented the increase in hydrogen peroxide induced by C2; however, interruption of electron flow at complex III by antimycin A potentiated the inductive effect of C2. Depletion of matrix GSH prior to exposure to ceramide resulted in a potentiated increase (2-fold) of hydrogen peroxide generation, leading to lipid peroxidation and loss of activity of respiratory chain complex IV compared with GSH-repleted mitochondria. Mitochondria isolated from TNF-treated cells showed an increase (2-3-fold) in the amount of ceramide compared with mitochondria from untreated cells. These results suggest that mitochondria are a target of ceramide produced in the signaling of TNF whose

  1. Extracellular nucleotides as negative modulators of immunity

    PubMed Central

    Di Virgilio, Francesco; Boeynaems, Jean-Marie; Robson, Simon C.

    2014-01-01

    Nucleotides are well known for being the universal currency of intracellular energy transactions, but over the last decade it has become clear that they are also ubiquitous extracellular messenger. In the immune system there is increasing awareness that nucleotides serve multiple roles as stimulants of lymphocyte proliferation, ROS generation, cytokine and chemokine secretion: in one word as pro-inflammatory mediators. However, although often neglected, extracellular nucleotides exert an additional more subtle function as negative modulators of immunity, or as immunedepressants. The more we understand the peculiar biochemical composition of the microenvironment generated at inflammatory sites, the more we appreciate how chronic exposure to low extracellular nucleotide levels affect immunity and inflammation. A deeper understanding of this complex network will no doubt help design more effective therapies for cancer and chronic inflammatory diseases. PMID:19628431

  2. Plasmon-mediated generation of reactive oxygen species from near-infrared light excited gold nanocages for photodynamic therapy in vitro.

    PubMed

    Gao, Liang; Liu, Ru; Gao, Fuping; Wang, Yaling; Jiang, Xinglu; Gao, Xueyun

    2014-07-22

    We have performed fundamental assays of gold nanocages (AuNCs) as intrinsic inorganic photosensitizers mediating generation of reactive oxygen species (ROS) by plasmon-enabled photochemistry under near-infrared (NIR) one/two-photon irradiation. We disclosed that NIR light excited hot electrons transform into either ROS or hyperthermia. Electron spin resonance spectroscopy was applied to demonstrate the production of three main radical species, namely, singlet oxygen ((1)O2), superoxide radical anion (O2(-•)), and hydroxyl radical ((•)OH). The existence of hot electrons from irradiated AuNCs was confirmed by a well-designed photoelectrochemical experiment based on a three-electrode system. It could be speculated that surface plasmons excited in AuNCs first decay into hot electrons, and then the generated hot electrons sensitize oxygen to form ROS through energy and electron transfer modes. We also compared AuNCs' ROS generation efficiency in different surface chemical environments under one/two-photon irradiation and verified that, compared with one-photon irradiation, two-photon irradiation could bring about much more ROS. Furthermore, in vitro, under two-photon irradiation, ROS can trigger mitochondrial depolarization and caspase protein up-regulation to initiate tumor cell apoptosis. Meanwhile, hyperthermia mainly induces tumor cell necrosis. Our findings suggest that plasmon-mediated ROS and hyperthermia can be facilely regulated for optimized anticancer phototherapy. PMID:24992260

  3. Responses of Solid Tumor Cells in DMEM to Reactive Oxygen Species Generated by Non-Thermal Plasma and Chemically Induced ROS Systems

    NASA Astrophysics Data System (ADS)

    Kaushik, Neha; Uddin, Nizam; Sim, Geon Bo; Hong, Young June; Baik, Ku Youn; Kim, Chung Hyeok; Lee, Su Jae; Kaushik, Nagendra Kumar; Choi, Eun Ha

    2015-02-01

    In this study, we assessed the role of different reactive oxygen species (ROS) generated by soft jet plasma and chemical-induced ROS systems with regard to cell death in T98G, A549, HEK293 and MRC5 cell lines. For a comparison with plasma, we generated superoxide anion (O2-), hydroxyl radical (HO.), and hydrogen peroxide (H2O2) with chemicals inside an in vitro cell culture. Our data revealed that plasma decreased the viability and intracellular ATP values of cells and increased the apoptotic population via a caspase activation mechanism. Plasma altered the mitochondrial membrane potential and eventually up-regulated the mRNA expression levels of BAX, BAK1 and H2AX gene but simultaneously down-regulated the levels of Bcl-2 in solid tumor cells. Moreover, a western blot analysis confirmed that plasma also altered phosphorylated ERK1/2/MAPK protein levels. At the same time, using ROS scavengers with plasma, we observed that scavengers of HO. (mannitol) and H2O2 (catalase and sodium pyruvate) attenuated the activity of plasma on cells to a large extent. In contrast, radicals generated by specific chemical systems enhanced cell death drastically in cancer as well as normal cell lines in a dose-dependent fashion but not specific with regard to the cell type as compared to plasma.

  4. Responses of solid tumor cells in DMEM to reactive oxygen species generated by non-thermal plasma and chemically induced ROS systems.

    PubMed

    Kaushik, Neha; Uddin, Nizam; Sim, Geon Bo; Hong, Young June; Baik, Ku Youn; Kim, Chung Hyeok; Lee, Su Jae; Kaushik, Nagendra Kumar; Choi, Eun Ha

    2015-01-01

    In this study, we assessed the role of different reactive oxygen species (ROS) generated by soft jet plasma and chemical-induced ROS systems with regard to cell death in T98G, A549, HEK293 and MRC5 cell lines. For a comparison with plasma, we generated superoxide anion (O2(-)), hydroxyl radical (HO·), and hydrogen peroxide (H2O2) with chemicals inside an in vitro cell culture. Our data revealed that plasma decreased the viability and intracellular ATP values of cells and increased the apoptotic population via a caspase activation mechanism. Plasma altered the mitochondrial membrane potential and eventually up-regulated the mRNA expression levels of BAX, BAK1 and H2AX gene but simultaneously down-regulated the levels of Bcl-2 in solid tumor cells. Moreover, a western blot analysis confirmed that plasma also altered phosphorylated ERK1/2/MAPK protein levels. At the same time, using ROS scavengers with plasma, we observed that scavengers of HO· (mannitol) and H2O2 (catalase and sodium pyruvate) attenuated the activity of plasma on cells to a large extent. In contrast, radicals generated by specific chemical systems enhanced cell death drastically in cancer as well as normal cell lines in a dose-dependent fashion but not specific with regard to the cell type as compared to plasma. PMID:25715710

  5. Photoactivation by visible light of CdTe quantum dots for inline generation of reactive oxygen species in an automated multipumping flow system.

    PubMed

    Ribeiro, David S M; Frigerio, Christian; Santos, João L M; Prior, João A V

    2012-07-20

    Quantum dots (QD) are semiconductor nanocrystals able to generate free radical species upon exposure to an electromagnetic radiation, usually in the ultraviolet wavelength range. In this work, CdTe QD were used as highly reactive oxygen species (ROS) generators for the control of pharmaceutical formulations containing epinephrine. The developed approach was based on the chemiluminometric monitoring of the quenching effect of epinephrine on the oxidation of luminol by the produced ROS. Due to the relatively low energy band-gap of this chalcogenide a high power visible light emitting diode (LED) lamp was used as photoirradiation element and assembled in a laboratory-made photocatalytic unit. Owing to the very short lifetime of ROS and to ensure both reproducible generation and time-controlled reaction implementation and development, all reactional processes were implemented inline by using an automated multipumping micro-flow system. A linear working range for epinephrine concentration of up to 2.28×10(-6) mol L(-1) (r=0.9953; n=5) was verified. The determination rate was about 79 determinations per hour and the detection limit was about 8.69×10(-8) mol L(-1). The results obtained in the analysis of epinephrine pharmaceutical formulations by using the proposed methodology were in good agreement with those furnished by the reference procedure, with relative deviations lower than 4.80%.

  6. Cells with dysfunctional telomeres are susceptible to reactive oxygen species hydrogen peroxide via generation of multichromosomal fusions and chromosomal fragments bearing telomeres

    SciTech Connect

    Woo, Seon Rang; Park, Jeong-Eun; Juhn, Kyoung-Mi; Ju, Yeun-Jin; Jeong, Jaemin; Kang, Chang-Mo; Yun, Hyun Jin; Yun, Mi Yong; Shin, Hyun-Jin; Joo, Hyun-Yoo; Park, Eun-Ran; Park, In-Chul; Hong, Sung Hee; Hwang, Sang-Gu; Kim, Haekwon; Cho, Myung-Haing; Kim, Sang Hoon; Park, Gil Hong; Lee, Kee-Ho

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Under conditions of telomere erosion, cells become extremely sensitive to H{sub 2}O{sub 2}. Black-Right-Pointing-Pointer Chromosomal regions adjacent to telomeres are cleaved by H{sub 2}O{sub 2} under such conditions. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} thus causes multichromosomal fusions and generation of small chromosomal fragments. Black-Right-Pointing-Pointer N-acetylcysteine prevents H{sub 2}O{sub 2}-induced chromosomal aberrations. -- Abstract: During genotoxic stress, reactive oxygen species hydrogen peroxide (H{sub 2}O{sub 2}) is a prime mediator of the DNA damage response. Telomeres function both to assist in DNA damage repair and to inhibit chromosomal end-to-end fusion. Here, we show that telomere dysfunction renders cells susceptible to H{sub 2}O{sub 2}, via generation of multichromosomal fusion and chromosomal fragments. H{sub 2}O{sub 2} caused formation of multichromosomal end-to-end fusions involving more than three chromosomes, preferentially when telomeres were erosive. Interestingly, extensive chromosomal fragmentation (yielding small-sized fragments) occurred only in cells exhibiting such multichromosomal fusions. Telomeres were absent from fusion points, being rather present in the small fragments, indicating that H{sub 2}O{sub 2} cleaves chromosomal regions adjacent to telomeres. Restoration of telomere function or addition of the antioxidant N-acetylcysteine prevented development of chromosomal aberrations and rescued the observed hypersensitivity to H{sub 2}O{sub 2}. Thus, chromosomal regions adjacent to telomeres become sensitive to reactive oxygen species hydrogen peroxide when telomeres are dysfunctional, and are cleaved to produce multichromosomal fusions and small chromosomal fragments bearing the telomeres.

  7. Differential effects of glucose and alcohol on reactive oxygen species generation and intranuclear nuclear factor-kappaB in mononuclear cells.

    PubMed

    Dhindsa, Sandeep; Tripathy, Devjit; Mohanty, Priya; Ghanim, Husam; Syed, Tufail; Aljada, Ahmad; Dandona, Paresh

    2004-03-01

    It has previously been shown that oral intake of 300 calories of glucose (75 g), lipid, or protein increases reactive oxygen species (ROS) generation by polymorphonuclear cells (PMNL) and mononuclear cells (MNCs). We investigated the effects of 75 g glucose on proinflammatory transcription factor, nuclear factor-kappaB (NFkappaB), in mononuclear cells. To further investigate whether the effects of macronutrient-induced oxidative stress are due to consumption of calories or are nutrient specific, we investigated the effects of acute oral challenge of equicaloric amounts of alcohol (300 calories) on ROS generation and NF-kappaB activation in MNCs and PMNL and compared them with those of glucose and water (control). Sixteen normal healthy adult volunteers were given either vodka (10 subjects), glucose solution (10 subjects), or 300 mL water (7 subjects). Vodka and glucose drinks were equivalent to 300 calories. We measured ROS generation and intranuclear NF-kappaB activation by PMNL cells and MNCs at 1 hour, 2 hours, and 3 hours following ingestion. ROS generation by both MNC and PMNL increased significantly (P <.05 for MNC and P <.01 for PMNL) following intake of glucose solution, but did not change significantly following alcohol or water. NF-kappaB binding activity in MNC nuclear extracts also increased (P <.001) following ingestion of glucose solution, but did not change after the administration of alcohol or water. We conclude that (1) 75 g oral glucose increases NF-kappaB binding activity in MNCs. (2) While 75 g glucose (300 calories) induces an increase in ROS generation and intranuclear NF-kappaB, equicaloric amounts of alcohol did not produce these effects.

  8. Generation and reactivity of putative support systems, Ce-Al neutral binary oxide nanoclusters: CO oxidation and C–H bond activation

    SciTech Connect

    Wang, Zhe-Chen; Yin, Shi; Bernstein, Elliot R.

    2013-11-21

    Both ceria (CeO{sub 2}) and alumina (Al{sub 2}O{sub 3}) are very important catalyst support materials. Neutral binary oxide nanoclusters (NBONCs), Ce{sub x}Al{sub y}O{sub z}, are generated and detected in the gas phase and their reactivity with carbon monoxide (CO) and butane (C{sub 4}H{sub 10}) is studied. The very active species CeAlO{sub 4}{sup •} can react with CO and butane via O atom transfer (OAT) and H atom transfer (HAT), respectively. Other Ce{sub x}Al{sub y}O{sub z} NBONCs do not show reactivities toward CO and C{sub 4}H{sub 10}. The structures, as well as the reactivities, of Ce{sub x}Al{sub y}O{sub z} NBONCs are studied theoretically employing density functional theory (DFT) calculations. The ground state CeAlO{sub 4}{sup •} NBONC possesses a kite-shaped structure with an O{sub t}CeO{sub b}O{sub b}AlO{sub t} configuration (O{sub t}, terminal oxygen; O{sub b}, bridging oxygen). An unpaired electron is localized on the O{sub t} atom of the AlO{sub t} moiety rather than the CeO{sub t} moiety: this O{sub t} centered radical moiety plays a very important role for the reactivity of the CeAlO{sub 4}{sup •} NBONC. The reactivities of Ce{sub 2}O{sub 4}, CeAlO{sub 4}{sup •}, and Al{sub 2}O{sub 4} toward CO are compared, emphasizing the importance of a spin-localized terminal oxygen for these reactions. Intramolecular charge distributions do not appear to play a role in the reactivities of these neutral clusters, but could be important for charged isoelectronic BONCs. DFT studies show that the reaction of CeAlO{sub 4}{sup •} with C{sub 4}H{sub 10} to form the CeAlO{sub 4}H•C{sub 4}H{sub 9}{sup •} encounter complex is barrierless. While HAT processes have been previously characterized for cationic and anionic oxide clusters, the reported study is the first observation of a HAT process supported by a ground state neutral oxide cluster. Mechanisms for catalytic oxidation of CO over surfaces of Al{sub x}O{sub y}/M{sub m}O{sub n} or M{sub m}O{sub n

  9. Mechanisms of strong pressure wave generations during knocking combustion: compressible reactive flow simulations with detailed chemical kinetics

    NASA Astrophysics Data System (ADS)

    Terashima, Hiroshi; Koshi, Mitsuo

    2014-11-01

    Knocking is a very severe pressure oscillation caused by interactions between flame propagation and end-gas autoignition in spark-assisted engines. In this study, knocking combustion modeled in one-dimensional space is simulated using a highly efficient compressible flow solver with detailed chemical kinetics for clarifying the process of knocking occurrence. Especially, mechanisms of strong pressure wave generation are addressed. A robust and fast explicit integration method is used to efficiently handle stiff chemistry, and species bundling for effectively estimating the diffusion coefficients. The detailed mechanisms such as n-butane of 113 species and n-heptane of 373 species are directly applied. Results demonstrate that the negative temperature coefficient (NTC) region of n-heptane significantly influence the knocking timing and intensity. In the NTC region, stronger pressure wave is generated due to rapid heat release of a very small portion in the end-gas, which is attributed to low temperature oxidation and inhomogeneous temperature distributions in the end-gas. The knocking intensity is thus amplified in the NTC region, taking a maximum value. In the case of n-butane with no NTC region, relatively weak knocking intensity is observed in all conditions with no clear peak.

  10. Inhibition of Akt signaling promotes the generation of superior tumor-reactive T cells for adoptive immunotherapy

    PubMed Central

    van der Waart, Anniek B.; van de Weem, Noortje M. P.; Maas, Frans; Kramer, Cynthia S. M.; Kester, Michel G. D.; Falkenburg, J. H. Frederik; Schaap, Nicolaas; Jansen, Joop H.; van der Voort, Robbert; Gattinoni, Luca; Hobo, Willemijn

    2014-01-01

    Effective T-cell therapy against cancer is dependent on the formation of long-lived, stem cell–like T cells with the ability to self-renew and differentiate into potent effector cells. Here, we investigated the in vivo existence of stem cell–like antigen-specific T cells in allogeneic stem cell transplantation (allo-SCT) patients and their ex vivo generation for additive treatment posttransplant. Early after allo-SCT, CD8+ stem cell memory T cells targeting minor histocompatibility antigens (MiHAs) expressed by recipient tumor cells were not detectable, emphasizing the need for improved additive MiHA-specific T-cell therapy. Importantly, MiHA-specific CD8+ T cells with an early CCR7+CD62L+CD45RO+CD27+CD28+CD95+ memory-like phenotype and gene signature could be expanded from naive precursors by inhibiting Akt signaling during ex vivo priming and expansion. This resulted in a MiHA-specific CD8+ T-cell population containing a high proportion of stem cell–like T cells compared with terminal differentiated effector T cells in control cultures. Importantly, these Akt-inhibited MiHA-specific CD8+ T cells showed a superior expansion capacity in vitro and in immunodeficient mice and induced a superior antitumor effect in intrafemural multiple myeloma–bearing mice. These findings provide a rationale for clinical exploitation of ex vivo–generated Akt-inhibited MiHA-specific CD8+ T cells in additive immunotherapy to prevent or treat relapse in allo-SCT patients. PMID:25336630

  11. Inhibition of Akt signaling promotes the generation of superior tumor-reactive T cells for adoptive immunotherapy.

    PubMed

    van der Waart, Anniek B; van de Weem, Noortje M P; Maas, Frans; Kramer, Cynthia S M; Kester, Michel G D; Falkenburg, J H Frederik; Schaap, Nicolaas; Jansen, Joop H; van der Voort, Robbert; Gattinoni, Luca; Hobo, Willemijn; Dolstra, Harry

    2014-11-27

    Effective T-cell therapy against cancer is dependent on the formation of long-lived, stem cell-like T cells with the ability to self-renew and differentiate into potent effector cells. Here, we investigated the in vivo existence of stem cell-like antigen-specific T cells in allogeneic stem cell transplantation (allo-SCT) patients and their ex vivo generation for additive treatment posttransplant. Early after allo-SCT, CD8+ stem cell memory T cells targeting minor histocompatibility antigens (MiHAs) expressed by recipient tumor cells were not detectable, emphasizing the need for improved additive MiHA-specific T-cell therapy. Importantly, MiHA-specific CD8+ T cells with an early CCR7+CD62L+CD45RO+CD27+CD28+CD95+ memory-like phenotype and gene signature could be expanded from naive precursors by inhibiting Akt signaling during ex vivo priming and expansion. This resulted in a MiHA-specific CD8+ T-cell population containing a high proportion of stem cell-like T cells compared with terminal differentiated effector T cells in control cultures. Importantly, these Akt-inhibited MiHA-specific CD8+ T cells showed a superior expansion capacity in vitro and in immunodeficient mice and induced a superior antitumor effect in intrafemural multiple myeloma-bearing mice. These findings provide a rationale for clinical exploitation of ex vivo-generated Akt-inhibited MiHA-specific CD8+ T cells in additive immunotherapy to prevent or treat relapse in allo-SCT patients. PMID:25336630

  12. Bacterial extracellular lignin peroxidase

    DOEpatents

    Crawford, Donald L.; Ramachandra, Muralidhara

    1993-01-01

    A newly discovered lignin peroxidase enzyme is provided. The enzyme is obtained from a bacterial source and is capable of degrading the lignin portion of lignocellulose in the presence of hydrogen peroxide. The enzyme is extracellular, oxidative, inducible by lignin, larch wood xylan, or related substrates and capable of attacking certain lignin substructure chemical bonds that are not degradable by fungal lignin peroxidases.

  13. Iron deprivation-induced reactive oxygen species generation leads to non-autolytic PCD in Brassica napus leaves

    PubMed Central

    Tewari, Rajesh Kumar; Hadacek, Franz; Sassmann, Stefan; Lang, Ingeborg

    2013-01-01

    Using iron-deprived (–Fe) chlorotic as well as green iron-deficient (5 μM Fe) and iron-sufficient supplied (50 μM Fe) leaves of young hydroponically reared Brassica napus plants, we explored iron deficiency effects on triggering programmed cell death (PCD) phenomena. Iron deficiency increased superoxide anion but decreased hydroxyl radical (•OH) formation (TBARS levels). Impaired photosystem II efficiency led to hydrogen peroxide accumulation in chloroplasts; NADPH oxidase activity, however, remained on the same level in all treatments. Non-autolytic PCD was observed especially in the chlorotic leaf of iron-deprived plants, to a lesser extent in iron-deficient plants. It correlated with higher DNAse-, alkaline protease- and caspase-3-like activities, DNA fragmentation and chromatin condensation, hydrogen peroxide accumulation and higher superoxide dismutase activity. A significant decrease in catalase activity together with rising levels of dehydroascorbic acid indicated a strong disturbance of the redox homeostasis, which, however, was not caused by •OH formation in concordance with the fact that iron is required to catalyse the Fenton reaction leading to •OH generation. This study documents the chain of events that contributes to the development of non-autolytic PCD in advanced stages of iron deficiency in B. napus leaves. PMID:23825883

  14. Iron deprivation-induced reactive oxygen species generation leads to non-autolytic PCD in Brassica napus leaves.

    PubMed

    Tewari, Rajesh Kumar; Hadacek, Franz; Sassmann, Stefan; Lang, Ingeborg

    2013-07-01

    Using iron-deprived (-Fe) chlorotic as well as green iron-deficient (5 μM Fe) and iron-sufficient supplied (50 μM Fe) leaves of young hydroponically reared Brassica napus plants, we explored iron deficiency effects on triggering programmed cell death (PCD) phenomena. Iron deficiency increased superoxide anion but decreased hydroxyl radical (•OH) formation (TBARS levels). Impaired photosystem II efficiency led to hydrogen peroxide accumulation in chloroplasts; NADPH oxidase activity, however, remained on the same level in all treatments. Non-autolytic PCD was observed especially in the chlorotic leaf of iron-deprived plants, to a lesser extent in iron-deficient plants. It correlated with higher DNAse-, alkaline protease- and caspase-3-like activities, DNA fragmentation and chromatin condensation, hydrogen peroxide accumulation and higher superoxide dismutase activity. A significant decrease in catalase activity together with rising levels of dehydroascorbic acid indicated a strong disturbance of the redox homeostasis, which, however, was not caused by •OH formation in concordance with the fact that iron is required to catalyse the Fenton reaction leading to •OH generation. This study documents the chain of events that contributes to the development of non-autolytic PCD in advanced stages of iron deficiency in B. napus leaves. PMID:23825883

  15. Model combustion-generated particulate matter containing persistent free radicals redox cycle to produce reactive oxygen species

    PubMed Central

    Kelley, Matthew A.; Hebert, Valeria Y.; Thibeaux, Taylor M.; Orchard, Mackenzie A.; Hasan, Farhana; Cormier, Stephania A.; Thevenot, Paul T.; Lomnicki, Slawomir M.; Varner, Kurt J.; Dellinger, Barry; Dugas, Tammy

    2014-01-01

    Particular matter (PM) is emitted during thermal decomposition of waste. During this process, aromatic compounds chemisorb to the surface of metal-oxide-containing PM, forming a surface-stabilized environmentally persistent free radical (EPFR). We hypothesized that EPFR-containing PM redox cycle to produce ROS and that this redox cycle is maintained in biological environments. To test our hypothesis, we incubated model EPFRs with the fluorescent probe dihydrorhodamine (DHR). Marked increases in DHR fluorescence were observed. Using a more specific assay, hydroxyl radicals (•OH) were also detected, and their level was further increased by co-treatment with thiols or ascorbic acid (AA), known components of epithelial lining fluid. Next, we incubated our model EPFR in bronchoalveolar lavage fluid (BALF) or serum. Detection of EPFRs and •OH verified that PM generate ROS in biological fluids. Moreover, incubation of pulmonary epithelial cells with EPFR-containing PM increased •OH levels compared to PM lacking EPFRs. Finally, measurements of oxidant injury in neonatal rats exposed to EPFRs by inhalation suggested that EPFRs induce an oxidant injury within lung lining fluid and that the lung responds by increasing antioxidant levels. In summary, our EPFR-containing PM redox cycle to produce ROS, and these ROS are maintained in biological fluids and environments. Moreover, these ROS may modulate toxic responses of PM in biological tissues such as the lung. PMID:24224526

  16. The inhibitory effect of CIL-102 on the growth of human astrocytoma cells is mediated by the generation of reactive oxygen species and induction of ERK1/2 MAPK

    SciTech Connect

    Teng, Chih-Chuan; Kuo, Hsing-Chun; Cheng, Ho-Chen; Wang, Ting-Chung; Sze, Chun-I

    2012-08-15

    CIL-102 (1-[4-(furo[2,3-b]quinolin-4-ylamino)phenyl]ethanone) is the major active agent of the alkaloid derivative of Camptotheca acuminata, with multiple pharmacological activities, including anticancer effects and promotion of apoptosis. The mechanism by which CIL-102 inhibits growth remains poorly understood in human astrocytoma cells. Herein, we investigated the molecular mechanisms by which CIL-102 affects the generation of reactive oxygen species (ROS) and cell cycle G2/M arrest in glioma cells. Treatment of U87 cells with 1.0 μM CIL-102 resulted in phosphorylation of extracellular signal-related kinase (ERK1/2), downregulation of cell cycle-related proteins (cyclin A, cyclin B, cyclin D1, and cdk1), and phosphorylation of cdk1Tyr{sup 15} and Cdc25cSer{sup 216}. Furthermore, treatment with the ERK1/2 inhibitor PD98059 abolished CIL-102-induced Cdc25cSer{sup 216} expression and reversed CIL-102-inhibited cdk1 activation. In addition, N-acetyl cysteine (NAC), an ROS scavenger, blocked cell cycle G2/M arrest and phosphorylation of ERK1/2 and Cdc25cSer{sup 216} in U87 cells. CIL-102-mediated ERK1/2 and ROS production, and cell cycle arrest were blocked by treatment with specific inhibitors. In conclusion, we have identified a novel CIL-102-inhibited proliferation in U87 cells by activating the ERK1/2 and Cdc25cSer{sup 216} cell cycle-related proteins and inducing ROS production; this might be a new mechanism in human astrocytoma cells. -- Highlights: ► We show the effects of CIL-102 on the G2/M arrest of human astrocytoma cells. ► ROS and the Ras/ERK1/2 triggering pathways are involved in the CIL-102 treatment. ► CIL-102 induces sustained activation of ERK1/2 and Cdc25c and ROS are required.

  17. Photodynamic Inactivation of Candida albicans with Imidazoacridinones: Influence of Irradiance, Photosensitizer Uptake and Reactive Oxygen Species Generation.

    PubMed

    Taraszkiewicz, Aleksandra; Szewczyk, Grzegorz; Sarna, Tadeusz; Bielawski, Krzysztof P; Nakonieczna, Joanna

    2015-01-01

    The increasing applicability of antifungal treatments, the limited range of available drug classes and the emergence of drug resistance in Candida spp. suggest the need for new treatment options. To explore the applicability of C. albicans photoinactivation, we examined nine structurally different imidazoacridinone derivatives as photosensitizing agents. The most effective derivatives showed a >10(4)-fold reduction of viable cell numbers. The fungicidal action of the three most active compounds was compared at different radiant powers (3.5 to 63 mW/cm2), and this analysis indicated that 7 mW/cm2 was the most efficient. The intracellular accumulation of these compounds in fungal cells correlated with the fungicidal activity of all 9 derivatives. The lack of effect of verapamil, an inhibitor targeting Candida ABC efflux pumps, suggests that these imidazoacridinones are not substrates for ABC transporters. Thus, unlike azoles, a major class of antifungals used against Candida, ABC transporter-mediated resistance is unlikely. Electron paramagnetic resonance (EPR)-spin trapping data suggested that the fungicidal light-induced action of these derivatives might depend on the production of superoxide anion. The highest generation rate of superoxide anion was observed for 1330H, 1610H, and 1611. Singlet oxygen production was also detected upon the irradiation of imidazoacridinone derivatives with UV laser light, with a low to moderate yield, depending on the type of compound. Thus, imidazoacridinone derivatives examined in the present study might act via mixed type I/type II photodynamic mechanism. The presented data indicate lack of direct correlation between the structures of studied imidazoacridinones, cell killing ability, and ROS production. However, we showed for the first time that for imidazoacridinones not only intracellular accumulation is necessary prerequisite of lethal photosensitization of C. albicans, but also localization within particular cellular

  18. Photodynamic Inactivation of Candida albicans with Imidazoacridinones: Influence of Irradiance, Photosensitizer Uptake and Reactive Oxygen Species Generation.

    PubMed

    Taraszkiewicz, Aleksandra; Szewczyk, Grzegorz; Sarna, Tadeusz; Bielawski, Krzysztof P; Nakonieczna, Joanna

    2015-01-01

    The increasing applicability of antifungal treatments, the limited range of available drug classes and the emergence of drug resistance in Candida spp. suggest the need for new treatment options. To explore the applicability of C. albicans photoinactivation, we examined nine structurally different imidazoacridinone derivatives as photosensitizing agents. The most effective derivatives showed a >10(4)-fold reduction of viable cell numbers. The fungicidal action of the three most active compounds was compared at different radiant powers (3.5 to 63 mW/cm2), and this analysis indicated that 7 mW/cm2 was the most efficient. The intracellular accumulation of these compounds in fungal cells correlated with the fungicidal activity of all 9 derivatives. The lack of effect of verapamil, an inhibitor targeting Candida ABC efflux pumps, suggests that these imidazoacridinones are not substrates for ABC transporters. Thus, unlike azoles, a major class of antifungals used against Candida, ABC transporter-mediated resistance is unlikely. Electron paramagnetic resonance (EPR)-spin trapping data suggested that the fungicidal light-induced action of these derivatives might depend on the production of superoxide anion. The highest generation rate of superoxide anion was observed for 1330H, 1610H, and 1611. Singlet oxygen production was also detected upon the irradiation of imidazoacridinone derivatives with UV laser light, with a low to moderate yield, depending on the type of compound. Thus, imidazoacridinone derivatives examined in the present study might act via mixed type I/type II photodynamic mechanism. The presented data indicate lack of direct correlation between the structures of studied imidazoacridinones, cell killing ability, and ROS production. However, we showed for the first time that for imidazoacridinones not only intracellular accumulation is necessary prerequisite of lethal photosensitization of C. albicans, but also localization within particular cellular

  19. PEGylated FePt-Fe3O4 composite nanoassemblies (CNAs): in vitro hyperthermia, drug delivery and generation of reactive oxygen species (ROS).

    PubMed

    Sahu, Niroj Kumar; Gupta, Jagriti; Bahadur, Dhirendra

    2015-05-21

    Chemothermal therapy is widely used in clinical applications for the treatment of tumors. However, the major challenge is the use of a multifunctional nano platform for significant regression of the tumor. In this study, a simple synthesis of highly aqueous stable, carboxyl enriched, PEGylated mesoporous iron platinum-iron(ii,iii) oxide (FePt-Fe3O4) composite nanoassemblies (CNAs) by a simple hydrothermal approach is reported. CNAs exhibit a high loading capacity ∼90 wt% of the anticancer therapeutic drug, doxorubicin (DOX) because of its porous nature and the availability of abundant negatively charged carboxylic groups on its surface. DOX loaded CNAs (CNAs + DOX) showed a pH responsive drug release in a cell-mimicking environment. Furthermore, the release was enhanced by the application of a alternating current magnetic field. CNAs show no appreciable cytotoxicity in mouse fibroblast (L929) cells but show toxic effects in cervical cancer (HeLa) cells at a concentration of ∼1 mg mL(-1). A suitable composition of CNAs with a concentration of 2 mg mL(-1) can generate a hyperthermic temperature of ∼43 °C. Also, CNAs, because of their Fe and Pt contents, have an ability to generate reactive oxygen species (ROS) in the presence of hydrogen peroxide inside the cancer cells which helps to enhance its therapeutic effects. The synergistic combination of chemotherapy and ROS is very efficient for killing cancer cells. PMID:25897960

  20. Anti-leukemia activity of PVP-coated silver nanoparticles via generation of reactive oxygen species and release of silver ions.

    PubMed

    Guo, Dawei; Zhu, Lingying; Huang, Zhihai; Zhou, Haixia; Ge, Yue; Ma, Wenjuan; Wu, Jie; Zhang, Xiuyan; Zhou, Xuefeng; Zhang, Yu; Zhao, Yun; Gu, Ning

    2013-10-01

    Silver nanoparticles (AgNPs) have anti-cancer effect. However, whether and how these particles could inhibit the growth of acute myeloid leukemia (AML) cells is unclear. In the present study, we prepared AgNPs with various sizes and investigated their cytotoxic effect on AML cells. We found that AgNPs could inhibit the viability of AML cells including the isolates from AML patients. AgNPs caused the production of reactive oxygen species (ROS), losses of mitochondrial membrane potential (MMP), DNA damage and apoptosis. Both vitamin C (Vit C) and N-acetyl-L-cysteine (NAC) could completely reverse the generation of ROS upon AgNPs, however only NAC but not Vit C could protect the cells from losses of MMP, DNA damage and apoptosis thoroughly. Similar results were obtained when cells were treated with silver ions alone. As NAC was not only an antioxidant to scavenge ROS but also a silver ion chelator, these data supported the model that both generation of ROS and release of silver ions played critical roles in the AgNPs-induced cytotoxic effect against AML cells. Taken together, this work elucidated the cytotoxic effect of AgNPs on AML cells and their underlying mechanism and might have significant impact on AML treatment.

  1. Nicotine- and tar-free cigarette smoke induces cell damage through reactive oxygen species newly generated by PKC-dependent activation of NADPH oxidase.

    PubMed

    Asano, Hiroshi; Horinouchi, Takahiro; Mai, Yosuke; Sawada, Osamu; Fujii, Shunsuke; Nishiya, Tadashi; Minami, Masabumi; Katayama, Takahiro; Iwanaga, Toshihiko; Terada, Koji; Miwa, Soichi

    2012-01-01

    We examined cytotoxic effects of nicotine/tar-free cigarette smoke extract (CSE) on C6 glioma cells. The CSE induced plasma membrane damage (determined by lactate dehydrogenase leakage and propidium iodide uptake) and cell apoptosis {determined by MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] reduction activity and DNA fragmentation}. The cytotoxic activity decayed with a half-life of approximately 2 h at 37°C, and it was abolished by N-acetyl-L-cysteine and reduced glutathione. The membrane damage was prevented by catalase and edaravone (a scavenger of (•)OH) but not by superoxide dismutase, indicating involvement of (•)OH. In contrast, the CSE-induced cell apoptosis was resistant to edaravone and induced by authentic H(2)O(2) or O(2)(-) generated by the xanthine/xanthine oxidase system, indicating involvement of H(2)O(2) or O(2)(-) in cell apoptosis. Diphenyleneiodonium [NADPH oxidase (NOX) inhibitor] and bisindolylmaleimide I [BIS I, protein kinase C (PKC) inhibitor] abolished membrane damage, whereas they partially inhibited apoptosis. These results demonstrate that 1) a stable component(s) in the CSE activates PKC, which stimulates NOX to generate reactive oxygen species (ROS), causing membrane damage and apoptosis; 2) different ROS are responsible for membrane damage and apoptosis; and 3) part of the apoptosis is caused by oxidants independently of PKC and NOX. PMID:22302021

  2. Effect of Reactive Oxygen Species Generation in Rabbit Corneal Epithelial Cells on Inflammatory and Apoptotic Signaling Pathways in the Presence of High Osmotic Pressure

    PubMed Central

    Li, Bing; Wang, Weifang; Lin, Anjuan; Sheng, Minjie

    2013-01-01

    It is generally accepted that high osmotic pressure (HOP) of lacrimal fluid is the core mechanism causing ocular inflammation and injury. However, the association between HOP and the regulation of cell inflammatory response and apoptotic pathways remains unclear. In the present study, we used HOP to interfere with in vitro cultured rabbit corneal epithelial cells, and found that HOP increased the generation of reactive oxygen species (ROS) in rabbit corneal epithelial cells, and increased ROS in turn induced the activation of JNK inflammatory signaling pathway, which further promoted the expression of pro-inflammatory factor NF-κβ and induced the generation of inflammatory factor IL-1β and TNF-α. In addition, HOP-induced ROS in rabbit corneal epithelial cells regulated the CD95/CD95L-mediated cell apoptotic signaling pathway by activating JNK inflammatory signaling pathway. These findings may serve as new theoretical basis and a new way of thinking about the treatment of ocular diseases, especially dry eye. PMID:23977369

  3. Folic acid and its photoproducts, 6-formylpterin and pterin-6-carboxylic acid, as generators of reactive oxygen species in skin cells during UVA exposure.

    PubMed

    Juzeniene, Asta; Grigalavicius, Mantas; Ma, Li Wei; Juraleviciute, Marina

    2016-02-01

    Folic acid (FA) is the synthetic form of folate (vitamin B9), present in supplements and fortified foods. During ultraviolet (UV) radiation FA is degraded to 6-formylpterin (FPT) and pterin-6-carboxylic acid (PCA) which generate reactive oxygen species (ROS) and may be phototoxic. The aim of the present study was to investigate the production of ROS and phototoxicity of FA, FPT and PCA in skin cells during UVA exposure. The production of ROS and phototoxicity of FA, FPT and PCA were studied in the immortal human keratinocytes (HaCaT) and malignant skin cells (A431 and WM115) during UVA exposure. Increased ROS production and the photoinactivation of cells in vitro were observed during UVA exposure in the presence of FA, FPT and PCA. HPLC analysis revealed that 10 μM FA photodegradation was around 2.1 and 5.8-fold faster than that of 5 μM and 1 μM FA. Photodegradation of FA is concentration dependent, and even non-phototoxic doses of FA and its photoproducts, FPT and PCA, generate high levels of ROS in vitro. FA, FPT and PCA are phototoxic in vitro. The photodegradation of topical or unmetabolized FA during UV exposure via sunlight, sunbeds or phototherapy may lead to ROS production, to the cutaneous folate deficiency, skin photocarcinogenesis and other deleterious skin effects. Further studies are needed to confirm whether UV exposure can decrease cutaneous and serum folate levels in humans taking FA supplements or using cosmetic creams with FA.

  4. SJL mice infected with Acanthamoeba castellanii develop central nervous system autoimmunity through the generation of cross-reactive T cells for myelin antigens.

    PubMed

    Massilamany, Chandirasegaran; Marciano-Cabral, Francine; Rocha-Azevedo, Bruno da; Jamerson, Melissa; Gangaplara, Arunakumar; Steffen, David; Zabad, Rana; Illes, Zsolt; Sobel, Raymond A; Reddy, Jay

    2014-01-01

    We recently reported that Acanthamoeba castellanii (ACA), an opportunistic pathogen of the central nervous system (CNS) possesses mimicry epitopes for proteolipid protein (PLP) 139-151 and myelin basic protein 89-101, and that the epitopes induce experimental autoimmune encephalomyelitis (EAE) in SJL mice reminiscent of the diseases induced with their corresponding cognate peptides. We now demonstrate that mice infected with ACA also show the generation of cross-reactive T cells, predominantly for PLP 139-151, as evaluated by T cell proliferation and IAs/dextramer staining. We verified that PLP 139-151-sensitized lymphocytes generated in infected mice contained a high proportion of T helper 1 cytokine-producing cells, and they can transfer disease to naïve animals. Likewise, the animals first primed with suboptimal dose of PLP 139-151 and later infected with ACA, developed EAE, suggesting that ACA infection can trigger CNS autoimmunity in the presence of preexisting repertoire of autoreactive T cells. Taken together, the data provide novel insights into the pathogenesis of Acanthamoeba infections, and the potential role of infectious agents with mimicry epitopes to self-antigens in the pathogenesis of CNS diseases such as multiple sclerosis.

  5. Alantolactone induces apoptosis of human cervical cancer cells via reactive oxygen species generation, glutathione depletion and inhibition of the Bcl-2/Bax signaling pathway

    PubMed Central

    JIANG, YAN; XU, HANJIE; WANG, JIAFEI

    2016-01-01

    Alantolactone is the active ingredient in frankincense, and is extracted from the dry root of elecampane. It has a wide variety of uses, including as an insect repellent, antibacterial, antidiuretic, analgesic and anticancer agent. In addition, alantolactone induces apoptosis of human cervical cancer cells, however, its mechanism of action remains to be elucidated. Therefore, the present study investigated whether alantolactone was able to induce apoptosis of human cervical cancer cells, and its potential mechanisms of action were analyzed. Treatment of HeLa cells with alantolactone (0, 10, 20, 30, 40, 50 and 60 µM) for 12 h significantly inhibited growth in a dose-dependent manner. Cells treated with 30 µM of alantolactone for 0, 3, 6 and 12 h demonstrated marked induction of apoptosis in a time-dependent manner. Treatment of HeLa cells with 30 µM of alantolactone for 0, 3, 6 and 12 h significantly induced the generation of reactive oxygen species (ROS) and inhibited glutathione (GSH) production in HeLa cells in a dose-dependent manner. Alantolactone additionally markedly inhibited the Bcl-2/Bax signaling pathway in HeLa cells. Therefore, administration of alantolactone induced apoptosis of human cervical cancer cells via ROS generation, GSH depletion and inhibition of the Bcl-2/Bax signaling pathway. PMID:27313767

  6. Sonochemical degradation of methyl orange in the presence of Bi2WO6: Effect of operating parameters and the generated reactive oxygen species.

    PubMed

    He, Ling-Ling; Liu, Xian-Ping; Wang, Yong-Xia; Wang, Zhi-Xin; Yang, Yan-Jie; Gao, Yan-Ping; Liu, Bin; Wang, Xin

    2016-11-01

    The Bi2WO6 was prepared by the hydrothermal method and its sonocatalytic activity was studied in the degradation of methyl orange (MO) solutions. The effects of catalytic activity of Bi2WO6 on dye were inspected by the change in absorbance of dye with UV-vis spectrometer. The influences of operational parameters such as the addition amount of Bi2WO6, pH, the initial concentration of dyes, ultrasonic power and irradiation time on the degradation ratio were investigated. In addition, the obtained results indicated that the kinetics of sonochemical reactions of MO were consistent with the pseudo first-order kinetics and Bi2WO6 had excellent reusability and stability during the sonochemical degradation processes. The generation and kinds of reactive oxygen species (ROS) and their influence on the sonochemical degradation of MO were determined by the methods of oxidation-extraction spectrophotometry and ROS scavengers. The results indicate that the degradation of MO in the presence of Bi2WO6 under ultrasonic irradiation is related to the generation of ROS, in which both singlet molecular oxygen ((1)O2) and hydroxyl radical (OH) play important roles in the sonochemical degradation of MO. These experimental results provide a sound foundation for the further development of Bi2WO6 as a sonocatalyst in wastewater treatment. PMID:27245960

  7. Effects of multiwalled carbon nanotubes and triclocarban on several eukaryotic cell lines: elucidating cytotoxicity, endocrine disruption, and reactive oxygen species generation

    NASA Astrophysics Data System (ADS)

    Simon, Anne; Maletz, Sibylle X.; Hollert, Henner; Schäffer, Andreas; Maes, Hanna M.

    2014-08-01

    To date, only a few reports about studies on toxic effects of carbon nanotubes (CNT) are available, and their results are often controversial. Three different cell lines (rainbow trout liver cells (RTL-W1), human adrenocortical carcinoma cells (T47Dluc), and human adrenocarcinoma cells (H295R)) were exposed to multiwalled carbon nanotubes, the antimicrobial agent triclocarban (TCC) as well as the mixture of both substances in a concentration range of 3.13 to 50 mg CNT/L, 31.25 to 500 μg TCC/L, and 3.13 to 50 mg CNT/L + 1% TCC (percentage relative to carbon nanotubes concentration), respectively. Triclocarban is a high-production volume chemical that is widely used as an antimicrobial compound and is known for its toxicity, hydrophobicity, endocrine disruption, bioaccumulation potential, and environmental persistence. Carbon nanotubes are known to interact with hydrophobic organic compounds. Therefore, triclocarban was selected as a model substance to examine mixture toxicity in this study. The influence of multiwalled carbon nanotubes and triclocarban on various toxicological endpoints was specified: neither cytotoxicity nor endocrine disruption could be observed after exposure of the three cell lines to carbon nanotubes, but the nanomaterial caused intracellular generation of reactive oxygen species in all cell types. For TCC on the other hand, cell vitality of 80% could be observed at a concentration of 2.1 mg/L for treated RTL-W1 cells. A decrease of luciferase activity in the ER Calux assay at a triclocarban concentration of 125 μg/L and higher was observed. This effect was less pronounced when multiwalled carbon nanotubes were present in the medium. Taken together, these results demonstrate that multiwalled carbon nanotubes induce the production of reactive oxygen species in RTL-W1, T47Dluc, and H295R cells, reveal no cytotoxicity, and reduce the bioavailability and toxicity of the biocide triclocarban.

  8. Transcriptional Reactivation of OTX2, RX1 and SIX3 during Reprogramming Contributes to the Generation of RPE Cells from Human iPSCs

    PubMed Central

    Li, Peng; Sun, Xiaofeng; Ma, Zhizhong; Liu, Yinan; Jin, Ying; Ge, Ruimin; Hao, Limin; Ma, Yanling; Han, Shuo; Sun, Haojie; Zhang, Mingzhi; Li, Ruizhi; Li, Tao; Shen, Li

    2016-01-01

    Directed differentiation of human induced pluripotent stem cells (iPSCs) into retinal pigmented epithelium (RPE) holds great promise in cell replacement therapy for patients suffering from degenerative eye diseases, including age-related macular degeneration (AMD). In this study, we generated iPSCs from human dermal fibroblasts (HDFs) by electroporation with episomal plasmid vectors encoding OCT4, SOX2, KLF4, L-MYC together with p53 suppression. Intriguingly, cell reprogramming resulted in a metastable transcriptional activation and selective demethylation of neural and retinal specification-associated genes, such as OTX2, RX1 and SIX3. In contrast, RPE progenitor genes were transcriptionally silent in HDFs and descendant iPSCs. Overexpression of OCT4 and SOX2 directly stimulated the expression of OTX2, RX1 and SIX3 in HDFs and iPSCs. Luciferase and chromatin immunoprecipitation (ChIP) assays further identified an OCT4- and two SOX2-binding sites located in the proximal promoter of OTX2. Histone acetylation and methylation on the local promoter also participated in the reactivation of OTX2. The transcriptional conversion of RX1 and SIX3 genes partially attributed to DNA demethylation. Subsequently, iPSCs were induced into the RPE cells displaying the characteristics of polygonal shapes and pigments, and expressing typical RPE cell markers. Taken together, our results establish readily efficient and safe protocols to produce iPSCs and iPSC-derived RPE cells, and underline that the reactivation of anterior neural transcription factor OTX2, eye field transcription factor RX1 and SIX3 in iPSCs is a feature of pluripotency acquisition and predetermines the potential of RPE differentiation. PMID:27019633

  9. Transcriptional Reactivation of OTX2, RX1 and SIX3 during Reprogramming Contributes to the Generation of RPE Cells from Human iPSCs.

    PubMed

    Li, Peng; Sun, Xiaofeng; Ma, Zhizhong; Liu, Yinan; Jin, Ying; Ge, Ruimin; Hao, Limin; Ma, Yanling; Han, Shuo; Sun, Haojie; Zhang, Mingzhi; Li, Ruizhi; Li, Tao; Shen, Li

    2016-01-01

    Directed differentiation of human induced pluripotent stem cells (iPSCs) into retinal pigmented epithelium (RPE) holds great promise in cell replacement therapy for patients suffering from degenerative eye diseases, including age-related macular degeneration (AMD). In this study, we generated iPSCs from human dermal fibroblasts (HDFs) by electroporation with episomal plasmid vectors encoding OCT4, SOX2, KLF4, L-MYC together with p53 suppression. Intriguingly, cell reprogramming resulted in a metastable transcriptional activation and selective demethylation of neural and retinal specification-associated genes, such as OTX2, RX1 and SIX3. In contrast, RPE progenitor genes were transcriptionally silent in HDFs and descendant iPSCs. Overexpression of OCT4 and SOX2 directly stimulated the expression of OTX2, RX1 and SIX3 in HDFs and iPSCs. Luciferase and chromatin immunoprecipitation (ChIP) assays further identified an OCT4- and two SOX2-binding sites located in the proximal promoter of OTX2. Histone acetylation and methylation on the local promoter also participated in the reactivation of OTX2. The transcriptional conversion of RX1 and SIX3 genes partially attributed to DNA demethylation. Subsequently, iPSCs were induced into the RPE cells displaying the characteristics of polygonal shapes and pigments, and expressing typical RPE cell markers. Taken together, our results establish readily efficient and safe protocols to produce iPSCs and iPSC-derived RPE cells, and underline that the reactivation of anterior neural transcription factor OTX2, eye field transcription factor RX1 and SIX3 in iPSCs is a feature of pluripotency acquisition and predetermines the potential of RPE differentiation. PMID:27019633

  10. Effects of multiwalled carbon nanotubes and triclocarban on several eukaryotic cell lines: elucidating cytotoxicity, endocrine disruption, and reactive oxygen species generation.

    PubMed

    Simon, Anne; Maletz, Sibylle X; Hollert, Henner; Schäffer, Andreas; Maes, Hanna M

    2014-01-01

    To date, only a few reports about studies on toxic effects of carbon nanotubes (CNT) are available, and their results are often controversial. Three different cell lines (rainbow trout liver cells (RTL-W1), human adrenocortical carcinoma cells (T47Dluc), and human adrenocarcinoma cells (H295R)) were exposed to multiwalled carbon nanotubes, the antimicrobial agent triclocarban (TCC) as well as the mixture of both substances in a concentration range of 3.13 to 50 mg CNT/L, 31.25 to 500 μg TCC/L, and 3.13 to 50 mg CNT/L + 1% TCC (percentage relative to carbon nanotubes concentration), respectively. Triclocarban is a high-production volume chemical that is widely used as an antimicrobial compound and is known for its toxicity, hydrophobicity, endocrine disruption, bioaccumulation potential, and environmental persistence. Carbon nanotubes are known to interact with hydrophobic organic compounds. Therefore, triclocarban was selected as a model substance to examine mixture toxicity in this study. The influence of multiwalled carbon nanotubes and triclocarban on various toxicological endpoints was specified: neither cytotoxicity nor endocrine disruption could be observed after exposure of the three cell lines to carbon nanotubes, but the nanomaterial caused intracellular generation of reactive oxygen species in all cell types. For TCC on the other hand, cell vitality of 80% could be observed at a concentration of 2.1 mg/L for treated RTL-W1 cells. A decrease of luciferase activity in the ER Calux assay at a triclocarban concentration of 125 μg/L and higher was observed. This effect was less pronounced when multiwalled carbon nanotubes were present in the medium. Taken together, these results demonstrate that multiwalled carbon nanotubes induce the production of reactive oxygen species in RTL-W1, T47Dluc, and H295R cells, reveal no cytotoxicity, and reduce the bioavailability and toxicity of the biocide triclocarban.

  11. Catha edulis Extract Induces H9c2 Cell Apoptosis by Increasing Reactive Oxygen Species Generation and Activation of Mitochondrial Proteins

    PubMed Central

    Mohan, Syam; Abdelwahab, Siddig Ibrahim; Hobani, Yahya Hasan; Syam, Suvitha; Al-Zubairi, Adel S.; Al-Sanousi, Rashad; Oraiby, Magbool Essa

    2016-01-01

    Background: Catha edulis (Khat) is an evergreen shrub or small tree, traditionally used by various peoples of the Arabian Peninsula and Africa as an integral component of the socioeconomic traditions. It is believed that the psychostimulant nature and toxic nature of khat is primarily due to the presence of cathinone and cathine respectively. Studies have shown that khat chewing is closely associated with cardiac complications, especially myocardial infarction. Hence in this study, we exposed cathine-rich khat extract in a cardiomyoblast H9c2 (2-1) cell line to check the cell death mechanism. Materials and Methods: Extraction of Catha edulis leaves was done and the presence of cathine was confirmed with LC-MS-MS. The anti-proliferative activity was assayed using MTT and apoptosis detection by acridine orange/propidium iodide assay. The expression of Bcl-2 and Bax protein and caspase-3/7 expression were analyzed. The level of reactive oxygen species generation was also evaluated. Results: The khat extract showed an IC50 value of 86.5 μg/ml at 48 hours treatment. We have observed significant early apoptosis events by intervened acridine orange within the fragmented DNA with bright green fluorescence upon treatment. The Bcl-2 expression in the treatment with IC50 concentration of khat extract for 24, 48 and 72 hours of incubation significantly decreased with increase in bax level. The increased activation of caspase-3/7 was significantly observed upon treatment together with significant increase of ROS was detected at 24 and 48 hours treatment. Conclusion: Collectively, our results provide insight into the mechanisms by which Catha edulis leaves mediate cell death in cardiomyocytes. SUMMARY Catha edulis (Khat) is an evergreen psychotropic shrub or small treeExtraction of khat leaves was done and the presence of cathine was confirmed with liquid chromatography-mass spectrometry-mass spectrometryThe khat extract showed an IC50 value of 86.5 μg/ml at 48 h treatment in

  12. NADPH Oxidase Promotes Neutrophil Extracellular Trap Formation in Pulmonary Aspergillosis

    PubMed Central

    Röhm, Marc; Grimm, Melissa J.; D'Auria, Anthony C.; Almyroudis, Nikolaos G.

    2014-01-01

    NADPH oxidase is a crucial enzyme in antimicrobial host defense and in regulating inflammation. Chronic granulomatous disease (CGD) is an inherited disorder of NADPH oxidase in which phagocytes are defective in generation of reactive oxidant intermediates. Aspergillus species are ubiquitous, filamentous fungi, which can cause invasive aspergillosis, a major cause of morbidity and mortality in CGD, reflecting the critical role for NADPH oxidase in antifungal host defense. Activation of NADPH oxidase in neutrophils can be coupled to the release of proteins and chromatin that comingle in neutrophil extracellular traps (NETs), which can augment extracellular antimicrobial host defense. NETosis can be driven by NADPH oxidase-dependent and -independent pathways. We therefore undertook an analysis of whether NADPH oxidase was required for NETosis in Aspergillus fumigatus pneumonia. Oropharyngeal instillation of live Aspergillus hyphae induced neutrophilic pneumonitis in both wild-type and NADPH oxidase-deficient (p47phox−/−) mice which had resolved in wild-type mice by day 5 but progressed in p47phox−/− mice. NETs, identified by immunostaining, were observed in lungs of wild-type mice but were absent in p47phox−/− mice. Using bona fide NETs and nuclear chromatin decondensation as an early NETosis marker, we found that NETosis required a functional NADPH oxidase in vivo and ex vivo. In addition, NADPH oxidase increased the proportion of apoptotic neutrophils. Together, our results show that NADPH oxidase is required for pulmonary clearance of Aspergillus hyphae and generation of NETs in vivo. We speculate that dual modulation of NETosis and apoptosis by NADPH oxidase enhances antifungal host defense and promotes resolution of inflammation upon infection clearance. PMID:24549323

  13. On Development and Characterisation of a Mobile and Metrologically Traceable Reference Gas Generator for Ammonia and Other Reactive Species in Ambient Air Levels

    NASA Astrophysics Data System (ADS)

    Leuenberger, Daiana; Pascale, Céline; Guillevic, Myriam; Ackermann, Andreas; Niederhauser, Bernhard

    2016-04-01

    Ammonia NH3 in the atmosphere is the major precursor for neutralising atmospheric acids and is thus affecting not only the long-range transport of sulphur dioxide and nitrogen oxides but also stabilies secondary particulate matter. These aerosols have negative impacts on air quality and human health. Moreover, they negatively affect terrestrial ecosystems after deposition. NH3 has been included in the air quality monitoring networks and emission reduction directives of European nations. Atmospheric concentrations are in the order of 0.5-500 nmol/mol. However, the lowest substance amount fraction of available certified reference material (CRM) is 30 μmol/mol. The EMRP JRP ENV55 MetNH3 aims at overcoming this discrepancy by assessing and developing novel approaches for the production of CRM and measurement methods. The Federal Institute of Metrology METAS has developed a mobile and metrologically traceable reference gas generator for reactive gases (ReGaS1). This device is based on the specific temperature dependent permeation of the reference substance through a membrane into a flow of carrier gas and subsequent dynamic dilution to desired amount fractions. The characteristics of individual components lead to the uncertainty estimation for the generated NH3 gas mixture according to GUM, which is aimed to be <3 %. Here we present insights into the development of said instrument and results of the first performance tests. Moreover, we include results of the study on adsorption/desorption effects in dry as well as humidified matrix gas into the discussion on the generation of reference gas mixtures.

  14. Photon emissions from rice cells elicited by N-acetylchitooligosaccharide are generated through phospholipid signaling in close association with the production of reactive oxygen species.

    PubMed

    Kageyama, C; Kato, K; Iyozumi, H; Inagaki, H; Yamaguchi, A; Furuse, K; Baba, K

    2006-01-01

    Biophotons are ultraweak light emissions from biochemical reactions in a living body. They increase in suspension-cultured rice (Oryza sativa L.) cells when elicited by N-acetylchitooligosaccharide. Biochemical analyses were undertaken to investigate the relationship between disease response and biophotons in order to clarify the emission mechanism of biophotons caused by this elicitor. Photon emissions induced by N-acetylchitohexaose were suppressed when cells were pretreated with the reactive oxygen species (ROS)-generating inhibitors: pyrocatechol-3,5-disulfonic acid disodium salt (Tiron); diphenylene iodonium (DPI); and salicylhydroxamic acid (SHAM). Conversely, exogenously applied ROS (superoxide and hydrogen peroxide) were able to induce photon emissions. The effects of protein phosphorylation (K-252a) and the Ca(2+) signaling inhibitors, ethylene glycol-bis(beta-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) and LaCl(3), caused photon emissions to decrease. It is clear that photon emissions from rice cells elicited by N-acetylchitohexaose are closely associated with the ROS-generating system, and are regulated by Ca(2+) signaling and protein phosphorylation. Exogenously applied phosphatidic acid (PA), the second messenger in the signal transduction of disease response, raised photon emissions in rice cells. Comparisons of photon emissions from PA and N-acetylchitohexaose regarding time courses, spectral compositions, and the inhibition ratios of several inhibitors, as well as a loss- and gain-of-function assay using the protein synthesis inhibitor cycloheximide (CHX) and PA, showed the possibility that photon emissions from rice cells elicited by N-acetylchitooligosaccharide were generated through PA, an intermediate of phospholipid signaling.

  15. Extracellular Matrix and Liver Disease

    PubMed Central

    Arriazu, Elena; Ruiz de Galarreta, Marina; Cubero, Francisco Javier; Varela-Rey, Marta; Pérez de Obanos, María Pilar; Leung, Tung Ming; Lopategi, Aritz; Benedicto, Aitor; Abraham-Enachescu, Ioana

    2014-01-01

    Abstract Significance: The extracellular matrix (ECM) is a dynamic microenvironment that undergoes continuous remodeling, particularly during injury and wound healing. Chronic liver injury of many different etiologies such as viral hepatitis, alcohol abuse, drug-induced liver injury, obesity and insulin resistance, metabolic disorders, and autoimmune disease is characterized by excessive deposition of ECM proteins in response to persistent liver damage. Critical Issues: This review describes the main collagenous and noncollagenous components from the ECM that play a significant role in pathological matrix deposition during liver disease. We define how increased myofibroblasts (MF) from different origins are at the forefront of liver fibrosis and how liver cell-specific regulation of the complex scarring process occurs. Recent Advances: Particular attention is paid to the role of cytokines, growth factors, reactive oxygen species, and newly identified matricellular proteins in the regulation of fibrillar type I collagen, a field to which our laboratory has significantly contributed over the years. We compile data from recent literature on the potential mechanisms driving fibrosis resolution such as MF’ apoptosis, senescence, and reversal to quiescence. Future Directions: We conclude with a brief description of how epigenetics, an evolving field, can regulate the behavior of MF and of how new “omics” tools may advance our understanding of the mechanisms by which the fibrogenic response to liver injury occurs. Antioxid. Redox Signal. 21, 1078–1097. PMID:24219114

  16. Reactive arthritis

    PubMed Central

    Hind, C. R. K.

    1982-01-01

    Reactive arthritis is a rare complication of certain infections. The similar features and HLA associations with the seronegative arthropathies have raised the possibility that the latter may be forms of reactive arthritis. This review describes the clinical and epidemiological features, and the recent advances in our understanding of the underlying pathogenesis of reactive arthritis. PMID:7100033

  17. Reactive Power Compensating System.

    DOEpatents

    Williams, Timothy J.; El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.

    1985-01-04

    The circuit was designed for the specific application of wind-driven induction generators. It has great potential for application in any situation where a varying reactive power load is present, such as with induction motors or generators, or for transmission network compensation.

  18. Non-transferrin bound iron, cytokine activation and intracellular reactive oxygen species generation in hemodialysis patients receiving intravenous iron dextran or iron sucrose.

    PubMed

    Pai, Amy Barton; Conner, Todd; McQuade, Charles R; Olp, Jonathan; Hicks, Paul

    2011-08-01

    Intravenous (IV) iron supplementation is widely used to support erythropoeisis in hemodialysis patients. IV iron products are associated with oxidative stress that has been measured principally by circulating biomarkers such as products of lipid peroxidation. The pro-oxidant effects of IV iron are presumed to be due at least in part, by free or non-transferrin bound iron (NTBI). However, the effects of IV iron on intracellular redox status and downstream effectors is not known. This prospective, crossover study compared cytokine activation, reactive oxygen species generation and oxidative stress after single IV doses of iron sucrose and iron dextran. This was a prospective, open-label, crossover study. Ten patients with end-stage renal disease (ESRD) on hemodialysis and four age and sex-matched healthy were assigned to receive 100 mg of each IV iron product over 5 min in random sequence with a 2 week washout between products. Subjects were fasted and fed a low iron diet in the General Clinical Research Center at the University of New Mexico. Serum and plasma samples for IL-1, IL-6, TNF-α and IL-10 and NTBI were obtained at baseline, 60 and 240 min after iron infusion. Peripheral blood mononuclear cells (PBMC) were isolated at the same time points and stained with fluorescent probes to identify intracellular reactive oxygen species and mitochondrial membrane potential (Δψm) by flow cytometry. Lipid peroxidation was assessed by plasma F(2) isoprostane concentration. Mean ± SEM maximum serum NTBI values were significantly higher among patients receiving IS compared to ID (2.59 ± 0.31 and 1.0 ± 0.36 µM, respectively, P = 0.005 IS vs. ID) Mean ± SEM NTBI area under the serum concentration-time curve (AUC) was 3-fold higher after IS versus ID (202 ± 53 vs. 74 ± 23 µM*min/l, P = 0.04) in ESRD patients, indicating increased exposure to NTBI. IV iron administration was associated with increased pro-inflammatory cytokines. Serum IL-6 concentrations increased most

  19. The reaction of pristane (2,6,10,14-tetramethylpentadecane) with radiolytically generated reactive oxygen intermediates results in a stable genotoxic compound as assessed by the SOS chromotest.

    PubMed

    Janz, S; Brede, O; Müller, J

    1991-07-01

    The most widely studied model of plasmacytomagenesis is the induction of plasmacytomas in BALB/c mice by i.p. injections of the isoalkane pristane (2,6,10,14-tetramethylpentadecane). Employing a simple quantitative and well-established short-term bacterial genotoxicity assay, the SOS chromotest, as a model system, we have investigated whether pristane may potentially be involved in causing or modulating the genotoxic events thought to induce plasma cell tumorigenesis. We found that incorporation of pristane into the cell membranes enhance the SOS response in Escherichia coli PQ37 and PQ300 induced by gamma-radiation under hyperoxic conditions. Moreover, the oxidation of pristane by radiolytically generated reactive oxygen intermediates yielded a stable, genotoxic product active on E. coli PQ300, a SOS tester strain designed to detect oxidative genotoxins. We discuss these findings in relation to the tumor-promoting role of the chronic i.p. inflammation that accompanies plasmacytomagenesis and conclude that, under these specific conditions, pristane may possess a previously unrecognized genotoxic activity in its tumorigenic potential. PMID:2070489

  20. Generation of leukemia-reactive cytotoxic T lymphocytes from HLA-identical donors of patients with chronic myeloid leukemia using modifications of a limiting dilution assay.

    PubMed

    Smit, W M; Rijnbeek, M; van Bergen, C A; Willemze, R; Falkenburg, J H

    1998-03-01

    Donor leukocyte transfusions (DLT) have an anti-leukemic effect in most patients with a relapse of chronic myeloid leukemia (CML) after allogeneic stem cell transplantation. However, DLT are often complicated by graft-versus-host disease. Selection of donor lymphocytes with a relative specificity for leukemic cells is desirable. The generation of leukemia-reactive cytotoxic T lymphocyte (CTL) responses between HLA-identical donors and patients in bulk cultures showed major variations, and false negative results were observed. In a modification of a limiting dilution analysis (LDA) two-fold serial dilutions of HLA-identical donor mononuclear cells (MNC) were cultured in the presence of CML cells. The anti-leukemic CTL precursor frequencies in these donors varied between <1 and 9 per 106 MNC. HLA-restricted CD4+ or CD8+ lymphocytes as well as MHC non-restricted gammadelta T cells were responsible for the anti-leukemic responses. A positive correlation between cytotoxicity in the various wells after 3, 4 and 5 weeks of culture could be found. The LDA may be superior to bulk cultures in selecting stable immune responses and in separating multiple different anti-leukemic T cell responses in each donor-patient combination.

  1. Synthesis of 1-(β-D-Galactopyranosyl)Thymine-6'-O-Triphosphate - A Potential Probe to Generate Reactive Dialdehyde for DNA-Enzyme Cross-Linking.

    PubMed

    Kore, Anilkumar R; Yang, Bo; Srinivasan, Balasubramanian

    2015-01-01

    Concise, facile, and efficient synthesis of 1-(β-D-galactopyranosyl)thymine-6'-O-triphosphate, a potential probe that can generate reactive dialdehyde for DNA-enzyme cross-linking applications, was described starting from O,O'-bis(trimethylsilyl)thymine. Stannic chloride promoted glycosylation of 1,2,3,4,6-penta-O-acetyl-α-D-galactopyranose with O,O'-bis(trimethylsilyl)thymine, resulting in the formation of 1-(2,3,4,6-O-tetraacetyl-β-D-galactopyranosyl)thymine in 91% yield. Acetyl deprotection using methanolic ammonia afforded 1-(β-D-galactopyranosyl)thymine in 98% yield. The modified one-pot methodology was used to convert 1-(β-D-galactopyranosyl)thymine into 1-(β-D-galactopyranosyl)thymine-6'-O-triphosphate in 72% yield, which involves the formation of 1-(β-D-galactopyranosyl)thymine dichlorophosphoridate using POCl3 as the reagent at the monophosphorylation step followed by reaction with tributylammonium pyrophosphate and hydrolysis of resulting cyclic intermediate.

  2. Antiviral, anti-parasitic, and cytotoxic effects of 5,6-dihydroxyindole (DHI), a reactive compound generated by phenoloxidase during insect immune response.

    PubMed

    Zhao, Picheng; Lu, Zhiqiang; Strand, Michael R; Jiang, Haobo

    2011-09-01

    Phenoloxidase (PO) and its activation system are implicated in several defense responses of insects. Upon wounding or infection, inactive prophenoloxidase (proPO) is converted to active PO through a cascade of serine proteases and their homologs. PO generates reactive compounds such as 5,6-dihydroxyindole (DHI), which have a broad-spectrum antibacterial and antifungal activity. Here we report that DHI and its spontaneous oxidation products are also active against viruses and parasitic wasps. Preincubation of a baculovirus stock with 1.25 mM DHI for 3 h near fully disabled recombinant protein production. The LC₅₀ for lambda bacteriophage and eggs of the wasp Microplitis demolitor were 5.6 ± 2.2 and 111.0 ± 1.6 μM, respectively. The toxicity of DHI and related compounds also extended to cells derived from insects that serve as hosts for several of the aforementioned pathogens. Pretreatment of Sf9 cells with 1.0 mM DHI for 4 h resulted in 97% mortality, and LC₅₀ values of 20.3 ± 1.2 μM in buffer and 131.8 ± 1.1 μM in a culture medium. Symptoms of DHI toxicity in Sf9 cells included DNA polymerization, protein crosslinking, and lysis. Taken together, these data showed that proPO activation and DHI production is strongly toxic against various pathogens but can also damage host tissues and cells if not properly controlled.

  3. A ‘tissue model’ to study the barrier effects of living tissues on the reactive species generated by surface air discharge

    NASA Astrophysics Data System (ADS)

    He, Tongtong; Liu, Dingxin; Xu, Han; liu, Zhichao; Xu, Dehui; Li, Dong; Li, Qiaosong; Rong, Mingzhe; Kong, Michael G.

    2016-05-01

    Gelatin gels are used as surrogates of human tissues to study their barrier effects on incoming reactive oxygen and nitrogen species (RONS) generated by surface air discharge. The penetration depth of nitrite into gelatin gel is measured in real time during plasma treatment, and the permeabilities of nitrite, nitrate, O3 and H2O2 through gelatin gel films are quantified by measuring their concentrations in the water underneath such films after plasma treatment. It is found that the penetration speed of nitrite increases linearly with the mass fraction of water in the gelatin gels, and the permeabilities of nitrite and O3 are comparably smaller than that for H2O2 and nitrate due to differences in their chemistry in gelatin gels. These results provide a quantitative basis to estimate the penetration processes of RONS in human tissues, and they also confirm that the composition of RONS is strongly dependent on the tissue depth and the plasma treatment time. A small electric field of up to 20 V cm‑1 can greatly reduce the barrier effects of the tissue model regardless of their directions, for which the underlying mechanism is unclear. However, the electric field force on the objective RONS should not be the dominant mechanism.

  4. Characterization of xanthophyll pigments, photosynthetic performance, photon energy dissipation, reactive oxygen species generation and carbon isotope discrimination during artemisinin-induced stress in Arabidopsis thaliana.

    PubMed

    Hussain, M Iftikhar; Reigosa, Manuel J

    2015-01-01

    Artemisinin, a potent antimalarial drug, is phytotoxic to many crops and weeds. The effects of artemisinin on stress markers, including fluorescence parameters, photosystem II photochemistry, photon energy dissipation, lipid peroxidation, reactive oxygen species generation and carbon isotope discrimination in Arabidopsis thaliana were studied. Arabidopsis ecotype Columbia (Col-0) seedlings were grown in perlite and watered with 50% Hoagland nutrient solution. Adult plants of Arabidopsis were treated with artemisinin at 0, 40, 80, 160 μM for one week. Artemisinin, in the range 40-160 μM, decreased the fresh biomass, chl a, b and leaf mineral contents. Photosynthetic efficiency, yield and electron transport rate in Arabidopsis were also reduced following exposure to 80 and 160 μM artemisinin. The ΦNPQ and NPQ were less than control. Artemisinin treatment caused an increase in root oxidizability and lipid peroxidation (MDA contents) of Arabidopsis. Calcium and nitrogen contents decreased after 80 and 160 μM artemisinin treatment compared to control. δ13C values were less negative following treatment with artemisinin as compared to the control. Artemisinin also decreased leaf protein contents in Arabidopsis. Taken together, these data suggest that artemisinin inhibits many physiological and biochemical processes in Arabidopsis. PMID:25635811

  5. Core-shell AgSiO2-protoporphyrin IX nanoparticle: Effect of the Ag core on reactive oxygen species generation

    NASA Astrophysics Data System (ADS)

    Lismont, M.; Pá; ez-Martinez, C.; Dreesen, L.

    2015-03-01

    Photodynamic therapy (PDT) for cancer is based on the use of a light sensitive molecule to produce, under specific irradiation, toxic reactive oxygen species (ROS). A way to improve the therapy efficiency is to increase the amount of produced ROS near cancer cells. This aim can be achieved by using a metal enhanced process arising when an optically active molecule is located near a metallic nanoparticle (NP). Here, the coupling effect between silver (Ag) NPs and protoporphyrin IX (PpIX) molecules, a clinically approved photosensitizer, is studied compared first, to PpIX fluorescence yield and second, to ROS production efficiency. By applying a modified Stöber process, PpIX was encapsulated into a silica (SiO2) shell, surrounding a 60 nm sized Ag core. We showed that, compared to SiO2-PpIX NPs, Ag coated SiO2-PpIX NPs dramatically decreased PpIX fluorescence together with singlet oxygen production efficiency. However, after incubation time in the dark, the amount of superoxide anions generated by the Ag doped sample was higher than the control sample one.

  6. A ‘tissue model’ to study the barrier effects of living tissues on the reactive species generated by surface air discharge

    NASA Astrophysics Data System (ADS)

    He, Tongtong; Liu, Dingxin; Xu, Han; liu, Zhichao; Xu, Dehui; Li, Dong; Li, Qiaosong; Rong, Mingzhe; Kong, Michael G.

    2016-05-01

    Gelatin gels are used as surrogates of human tissues to study their barrier effects on incoming reactive oxygen and nitrogen species (RONS) generated by surface air discharge. The penetration depth of nitrite into gelatin gel is measured in real time during plasma treatment, and the permeabilities of nitrite, nitrate, O3 and H2O2 through gelatin gel films are quantified by measuring their concentrations in the water underneath such films after plasma treatment. It is found that the penetration speed of nitrite increases linearly with the mass fraction of water in the gelatin gels, and the permeabilities of nitrite and O3 are comparably smaller than that for H2O2 and nitrate due to differences in their chemistry in gelatin gels. These results provide a quantitative basis to estimate the penetration processes of RONS in human tissues, and they also confirm that the composition of RONS is strongly dependent on the tissue depth and the plasma treatment time. A small electric field of up to 20 V cm-1 can greatly reduce the barrier effects of the tissue model regardless of their directions, for which the underlying mechanism is unclear. However, the electric field force on the objective RONS should not be the dominant mechanism.

  7. UV-B Induced Generation of Reactive Oxygen Species Promotes Formation of BFA-Induced Compartments in Cells of Arabidopsis Root Apices

    PubMed Central

    Yokawa, Ken; Kagenishi, Tomoko; Baluška, František

    2016-01-01

    UV-B radiation is an important part of the electromagnetic spectrum emitted by the sun. For much of the period of biological evolution organisms have been exposed to UV radiation, and have developed diverse mechanisms to cope with this potential stress factor. Roots are usually shielded from exposure to UV by the surrounding soil, but may nevertheless be exposed to high energy radiation on the soil surface. Due to their high sensitivity to UV-B radiation, plant roots need to respond rapidly in order to minimize exposure on the surface. In addition to root gravitropism, effective light perception by roots has recently been discovered to be essential for triggering negative root phototropism in Arabidopsis. However, it is not fully understood how UV-B affects root growth and phototropism. Here, we report that UV-B induces rapid generation of reactive oxygen species which in turn promotes the formation of BFA-induced compartments in the Arabidopsis root apex. During unilateral UV-B irradiation of roots changes in auxin concentration on the illuminated side have been recorded. In conclusion, UV-B-induced and ROS-mediated stimulation of vesicle recycling promotes root growth and induces negative phototropism. PMID:26793199

  8. UV-B Induced Generation of Reactive Oxygen Species Promotes Formation of BFA-Induced Compartments in Cells of Arabidopsis Root Apices.

    PubMed

    Yokawa, Ken; Kagenishi, Tomoko; Baluška, František

    2015-01-01

    UV-B radiation is an important part of the electromagnetic spectrum emitted by the sun. For much of the period of biological evolution organisms have been exposed to UV radiation, and have developed diverse mechanisms to cope with this potential stress factor. Roots are usually shielded from exposure to UV by the surrounding soil, but may nevertheless be exposed to high energy radiation on the soil surface. Due to their high sensitivity to UV-B radiation, plant roots need to respond rapidly in order to minimize exposure on the surface. In addition to root gravitropism, effective light perception by roots has recently been discovered to be essential for triggering negative root phototropism in Arabidopsis. However, it is not fully understood how UV-B affects root growth and phototropism. Here, we report that UV-B induces rapid generation of reactive oxygen species which in turn promotes the formation of BFA-induced compartments in the Arabidopsis root apex. During unilateral UV-B irradiation of roots changes in auxin concentration on the illuminated side have been recorded. In conclusion, UV-B-induced and ROS-mediated stimulation of vesicle recycling promotes root growth and induces negative phototropism.

  9. Generation and Improvement of Effector Function of a Novel Broadly Reactive and Protective Monoclonal Antibody against Pneumococcal Surface Protein A of Streptococcus pneumoniae

    PubMed Central

    Cho, Rebecca; Groff, Brian C.; Kubota, Tsuguo; Destito, Giuseppe; Laudenslager, John; Koriazova, Lilia; Tahara, Tomoyuki; Kanda, Yutaka

    2016-01-01

    A proof-of-concept study evaluating the potential of Streptococcus pneumoniae Pneumococcal Surface Protein A (PspA) as a passive immunization target was conducted. We describe the generation and isolation of several broadly reactive mouse anti-PspA monoclonal antibodies (mAbs). MAb 140H1 displayed (i) 98% strain coverage, (ii) activity in complement deposition and opsonophagocytic killing (OPK) assays, which are thought to predict the in vivo efficacy of anti-pneumococcal mAbs, (iii) efficacy in mouse sepsis models both alone and in combination with standard-of-care antibiotics, and (iv) therapeutic activity in a mouse pneumonia model. Moreover, we demonstrate that antibody engineering can significantly enhance anti-PspA mAb effector function. We believe that PspA has promising potential as a target for the therapy of invasive pneumococcal disease by mAbs, which could be used alone or in conjunction with standard-of-care antibiotics. PMID:27171010

  10. Identification of differential anti-neoplastic activity of copper bis(thiosemicarbazones) that is mediated by intracellular reactive oxygen species generation and lysosomal membrane permeabilization.

    PubMed

    Stefani, Christian; Al-Eisawi, Zaynab; Jansson, Patric J; Kalinowski, Danuta S; Richardson, Des R

    2015-11-01

    Bis(thiosemicarbazones) and their copper (Cu) complexes possess unique anti-neoplastic properties. However, their mechanism of action remains unclear. We examined the structure-activity relationships of twelve bis(thiosemicarbazones) to elucidate factors regarding their anti-cancer efficacy. Importantly, the alkyl substitutions at the diimine position of the ligand backbone resulted in two distinct groups, namely, unsubstituted/monosubstituted and disubstituted bis(thiosemicarbazones). This alkyl substitution pattern governed their: (1) Cu(II/I) redox potentials; (2) ability to induce cellular (64)Cu release; (3) lipophilicity; and (4) anti-proliferative activity. The potent anti-cancer Cu complex of the unsubstituted bis(thiosemicarbazone) analog, glyoxal bis(4-methyl-3-thiosemicarbazone) (GTSM), generated intracellular reactive oxygen species (ROS), which was attenuated by Cu sequestration by a non-toxic Cu chelator, tetrathiomolybdate, and the anti-oxidant, N-acetyl-l-cysteine. Fluorescence microscopy suggested that the anti-cancer activity of Cu(GTSM) was due, in part, to lysosomal membrane permeabilization (LMP). For the first time, this investigation highlights the role of ROS and LMP in the anti-cancer activity of bis(thiosemicarbazones).

  11. Generation and Improvement of Effector Function of a Novel Broadly Reactive and Protective Monoclonal Antibody against Pneumococcal Surface Protein A of Streptococcus pneumoniae.

    PubMed

    Kristian, Sascha A; Ota, Takayuki; Bubeck, Sarah S; Cho, Rebecca; Groff, Brian C; Kubota, Tsuguo; Destito, Giuseppe; Laudenslager, John; Koriazova, Lilia; Tahara, Tomoyuki; Kanda, Yutaka

    2016-01-01

    A proof-of-concept study evaluating the potential of Streptococcus pneumoniae Pneumococcal Surface Protein A (PspA) as a passive immunization target was conducted. We describe the generation and isolation of several broadly reactive mouse anti-PspA monoclonal antibodies (mAbs). MAb 140H1 displayed (i) 98% strain coverage, (ii) activity in complement deposition and opsonophagocytic killing (OPK) assays, which are thought to predict the in vivo efficacy of anti-pneumococcal mAbs, (iii) efficacy in mouse sepsis models both alone and in combination with standard-of-care antibiotics, and (iv) therapeutic activity in a mouse pneumonia model. Moreover, we demonstrate that antibody engineering can significantly enhance anti-PspA mAb effector function. We believe that PspA has promising potential as a target for the therapy of invasive pneumococcal disease by mAbs, which could be used alone or in conjunction with standard-of-care antibiotics. PMID:27171010

  12. A time course assessment of changes in reactive oxygen species generation and antioxidant defense in hydroponically grown wheat in response to lead ions (Pb2+).

    PubMed

    Kaur, Gurpreet; Singh, Harminder Pal; Batish, Daizy Rani; Kohli, Ravinder Kumar

    2012-10-01

    We examined the effect of Pb(2+) (8 and 40 mg l(-1)) on reactive oxygen species generation and alterations in antioxidant enzymes in hydroponically grown wheat at 24, 72, and 120 h after exposure. Pb(2+) toxicity was more pronounced on root growth, and it correlated with the greater Pb accumulation in roots. Pb exposure (40 mg l(-1)) enhanced superoxide anion, H(2)O(2), and MDA content in wheat roots by 1.9- to 2.2-folds, 56-255%, and 41-90%, respectively, over the control. Pb-induced loss of membrane integrity was confirmed by the enhanced electrolyte leakage and in vivo histochemical localization. Activities of scavenging enzymes, superoxide dismutases and catalases, enhanced in Pb-treated wheat roots by 1.4- to 5.7-folds over that in the control. In contrast, the activities of ascorbate and guaiacol peroxidases and glutathione reductases decreased significantly, suggesting their non-involvement in detoxification process. The study concludes that Pb(2+)-induced oxidative damage in wheat roots involve greater H(2)O(2) accumulation and the deactivation of the related scavenging enzymes.

  13. Characterization of Xanthophyll Pigments, Photosynthetic Performance, Photon Energy Dissipation, Reactive Oxygen Species Generation and Carbon Isotope Discrimination during Artemisinin-Induced Stress in Arabidopsis thaliana

    PubMed Central

    Hussain, M. Iftikhar; Reigosa, Manuel J.

    2015-01-01

    Artemisinin, a potent antimalarial drug, is phytotoxic to many crops and weeds. The effects of artemisinin on stress markers, including fluorescence parameters, photosystem II photochemistry, photon energy dissipation, lipid peroxidation, reactive oxygen species generation and carbon isotope discrimination in Arabidopsis thaliana were studied. Arabidopsis ecotype Columbia (Col-0) seedlings were grown in perlite and watered with 50% Hoagland nutrient solution. Adult plants of Arabidopsis were treated with artemisinin at 0, 40, 80, 160 μM for one week. Artemisinin, in the range 40–160 μM, decreased the fresh biomass, chl a, b and leaf mineral contents. Photosynthetic efficiency, yield and electron transport rate in Arabidopsis were also reduced following exposure to 80 and 160 μM artemisinin. The ΦNPQ and NPQ were less than control. Artemisinin treatment caused an increase in root oxidizability and lipid peroxidation (MDA contents) of Arabidopsis. Calcium and nitrogen contents decreased after 80 and 160 μM artemisinin treatment compared to control. δ13C values were less negative following treatment with artemisinin as compared to the control. Artemisinin also decreased leaf protein contents in Arabidopsis. Taken together, these data suggest that artemisinin inhibits many physiological and biochemical processes in Arabidopsis. PMID:25635811

  14. UV-B Induced Generation of Reactive Oxygen Species Promotes Formation of BFA-Induced Compartments in Cells of Arabidopsis Root Apices.

    PubMed

    Yokawa, Ken; Kagenishi, Tomoko; Baluška, František

    2015-01-01

    UV-B radiation is an important part of the electromagnetic spectrum emitted by the sun. For much of the period of biological evolution organisms have been exposed to UV radiation, and have developed diverse mechanisms to cope with this potential stress factor. Roots are usually shielded from exposure to UV by the surrounding soil, but may nevertheless be exposed to high energy radiation on the soil surface. Due to their high sensitivity to UV-B radiation, plant roots need to respond rapidly in order to minimize exposure on the surface. In addition to root gravitropism, effective light perception by roots has recently been discovered to be essential for triggering negative root phototropism in Arabidopsis. However, it is not fully understood how UV-B affects root growth and phototropism. Here, we report that UV-B induces rapid generation of reactive oxygen species which in turn promotes the formation of BFA-induced compartments in the Arabidopsis root apex. During unilateral UV-B irradiation of roots changes in auxin concentration on the illuminated side have been recorded. In conclusion, UV-B-induced and ROS-mediated stimulation of vesicle recycling promotes root growth and induces negative phototropism. PMID:26793199

  15. Deconvoluting Mixtures ofEmissions Sources to Investigate PM2.5's Ability to Generate Reactive Oxygen Species and its Associations with Cardiorespiratory Effects

    NASA Astrophysics Data System (ADS)

    Weber, R. J.; Bates, J.; Abrams, J.; Verma, V.; Fang, T.; Klein, M.; Strickland, M. J.; Sarnat, S. E.; Chang, H. H.; Mulholland, J. A.; Tolbert, P. E.; Russell, A. G.

    2015-12-01

    It is hypothesized that fine particulate matter (PM2.5) inhalation can catalytically generate reactive oxygen species (ROS) in excess of the body's antioxidant capacity, leading to oxidative stress and ultimately adverse health. PM2.5 emissions from different sources vary widely in chemical composition, with varied effects on the body. Here, the ability of mixtures of different sources of PM2.5 to generate ROS and associations of this capability with acute health effects were investigated. A dithiothreitol (DTT) assay that integrates over different sources was used to quantify ROS generation potential of ambient water-soluble PM2.5 in Atlanta from June 2012 - June 2013. PM2.5 source impacts, estimated using the Chemical Mass Balance method with ensemble-averaged source impact profiles, were related to DTT activity using a linear regression model, which provided information on intrinsic DTT activity (i.e., toxicity) of each source. The model was then used to develop a time series of daily DTT activity over a ten-year period (1998-2010) for use in an epidemiologic study. Light-duty gasoline vehicles exhibited the highest intrinsic DTT activity, followed by biomass burning and heavy-duty diesel vehicles. Biomass burning contributed the largest fraction to total DTT activity, followed by gasoline and diesel vehicles (45%, 20% and 14%, respectively). These results suggest the importance of aged oxygenated organic aerosols and metals in ROS generation. Epidemiologic analyses found significant associations between estimated DTT activity and emergency department visits for congestive heart failure and asthma/wheezing attacks in the 5-county Atlanta area. Estimated DTT activity was the only pollutant measure out of PM2.5, O3, and PM2.5 constituents elemental carbon and organic carbon) that exhibited a significant link to congestive heart failure. In two-pollutant models, DTT activity was significantly associated with asthma/wheeze and congestive heart failure while PM2

  16. Controlling Material Reactivity Using Architecture.

    PubMed

    Sullivan, Kyle T; Zhu, Cheng; Duoss, Eric B; Gash, Alexander E; Kolesky, David B; Kuntz, Joshua D; Lewis, Jennifer A; Spadaccini, Christopher M

    2016-03-01

    3D-printing methods are used to generate reactive material architectures. Several geometric parameters are observed to influence the resultant flame propagation velocity, indicating that the architecture can be utilized to control reactivity. Two different architectures, channels and hurdles, are generated, and thin films of thermite are deposited onto the surface. The architecture offers an additional route to control, at will, the energy release rate in reactive composite materials. PMID:26669517

  17. Fe(III) mineral reduction followed by partial dissolution and reactive oxygen species generation during 2,4,6-trinitrotoluene transformation by the aerobic yeast Yarrowia lipolytica.

    PubMed

    Ziganshin, Ayrat M; Ziganshina, Elvira E; Byrne, James; Gerlach, Robin; Struve, Ellen; Biktagirov, Timur; Rodionov, Alexander; Kappler, Andreas

    2015-01-01

    Understanding the factors that influence pollutant transformation in the presence of ferric (oxyhydr)oxides is crucial to the efficient application of different remediation strategies. In this study we determined the effect of goethite, hematite, magnetite and ferrihydrite on the transformation of 2,4,6-trinitrotoluene (TNT) by Yarrowia lipolytica AN-L15. The presence of ferric (oxyhydr)oxides led to a small decrease in the rate of TNT removal. In all cases, a significant release of NO2 (-) from TNT and further NO2 (-) oxidation to NO3 (-) was observed. A fraction of the released NO2 (-) was abiotically decomposed to NO and NO2, and then NO was likely oxidized abiotically to NO2 by O2. ESR analysis revealed the generation of superoxide in the culture medium; its further protonation at low pH resulted in the formation of hydroperoxyl radical. Presumably, a fraction of NO released during TNT degradation reacted with superoxide and formed peroxynitrite, which was further rearranged to NO3 (-) at the acidic pH values observed in this study. A transformation and reduction of ferric (oxyhydr)oxides followed by partial dissolution (in the range of 7-86% of the initial Fe(III)) were observed in the presence of cells and TNT. Mössbauer spectroscopy showed some minor changes for goethite, magnetite and ferrihydrite samples during their incubation with Y. lipolytica and TNT. This study shows that i) reactive oxygen and nitrogen species generated during TNT transformation by Y. lipolytica participate in the abiotic conversion of TNT and ii) the presence of iron(III) minerals leads to a minor decrease in TNT transformation. PMID:25852985

  18. Blocking NF-κB sensitizes non-small cell lung cancer cells to histone deacetylase inhibitor induced extrinsic apoptosis through generation of reactive oxygen species.

    PubMed

    Karthik, Selvaraju; Sankar, Renu; Varunkumar, Krishnamoorthy; Anusha, Chidambaram; Ravikumar, Vilwanathan

    2015-02-01

    NF-κB signalling is one of the main cell survival pathways that attenuate the anticancer efficacy of therapeutic drugs. Previous studies demonstrated that the histone deacetylase (HDAC) inhibitor induces apoptosis in some malignancies through multiple mechanisms including up-regulation of death receptors, disruption of Hsp90 function and generation of reactive oxygen species (ROS). However, HDAC inhibitor also induces a cell survival signal through NF-κB activation. In this report, we found that romidepsin, a class I HDAC inhibitor, induces NF-κB activation in A549 non-small-cell lung cancer (NSCLC) cells. We also found that inhibition of A549 cells with bortezomib (proteasome inhibitor) has blocked IκB degradation that leads to the loss of NF-κB activation and translocation which enhanced the romidepsin induced mitochondrial injury and sensitizes NSCLC cells to apoptosis. Romidepsin significantly enhances NF-κB reporter gene transcription and these effects were inhibited by bortezomib as determined by reporter gene assay. Consistently, the combined exposure of romidepsin and bortezomib reversed the effects on IκB degradation as evident with IL-8, p50 and p65 (NF-κB) expression. Apoptosis was markedly sensitized with greater ROS generation and more cell death in A549 cell lines. These events are most closely related in that bortezomib prevents the romidepsin mediated RelA acetylation and NF-κB activation, resulting in caspase activation. A strategy of blocking NF-κB activation to enhance HDAC inhibitor activity warrants further attention in NSCLC cells.

  19. Fe(III) mineral reduction followed by partial dissolution and reactive oxygen species generation during 2,4,6-trinitrotoluene transformation by the aerobic yeast Yarrowia lipolytica.

    PubMed

    Ziganshin, Ayrat M; Ziganshina, Elvira E; Byrne, James; Gerlach, Robin; Struve, Ellen; Biktagirov, Timur; Rodionov, Alexander; Kappler, Andreas

    2015-01-01

    Understanding the factors that influence pollutant transformation in the presence of ferric (oxyhydr)oxides is crucial to the efficient application of different remediation strategies. In this study we determined the effect of goethite, hematite, magnetite and ferrihydrite on the transformation of 2,4,6-trinitrotoluene (TNT) by Yarrowia lipolytica AN-L15. The presence of ferric (oxyhydr)oxides led to a small decrease in the rate of TNT removal. In all cases, a significant release of NO2 (-) from TNT and further NO2 (-) oxidation to NO3 (-) was observed. A fraction of the released NO2 (-) was abiotically decomposed to NO and NO2, and then NO was likely oxidized abiotically to NO2 by O2. ESR analysis revealed the generation of superoxide in the culture medium; its further protonation at low pH resulted in the formation of hydroperoxyl radical. Presumably, a fraction of NO released during TNT degradation reacted with superoxide and formed peroxynitrite, which was further rearranged to NO3 (-) at the acidic pH values observed in this study. A transformation and reduction of ferric (oxyhydr)oxides followed by partial dissolution (in the range of 7-86% of the initial Fe(III)) were observed in the presence of cells and TNT. Mössbauer spectroscopy showed some minor changes for goethite, magnetite and ferrihydrite samples during their incubation with Y. lipolytica and TNT. This study shows that i) reactive oxygen and nitrogen species generated during TNT transformation by Y. lipolytica participate in the abiotic conversion of TNT and ii) the presence of iron(III) minerals leads to a minor decrease in TNT transformation.

  20. Assessment of the long-term stability of cementitious barriers of radioactive waste repositories by using digital-image-based microstructure generation and reactive transport modelling

    SciTech Connect

    Galindez, Juan Manuel; Molinero, Jorge

    2010-08-15

    Cement-based grout plays a significant role in the design and performance of nuclear waste repositories: used correctly, it can enhance their safety. However, the high water-to-binder ratios, which are required to meet the desired workability and injection ability at early age, lead to high porosity that may affect the durability of this material and undermine its long-term geochemical performance. In this paper, a new methodology is presented in order to help the process of mix design which best meets the compromise between these two conflicting requirements. It involves the combined use of the computer programs CEMHYD3D for the generation of digital-image-based microstructures and CrunchFlow, for the reactive transport calculations affecting the materials so simulated. This approach is exemplified with two grout types, namely, the so-called Standard mix 5/5, used in the upper parts of the structure, and the 'low-pH' P308B, to be injected at higher depths. The results of the digital reconstruction of the mineralogical composition of the hardened paste are entirely logical, as the microstructures display high degrees of hydration, large porosities and low or nil contents of aluminium compounds. Diffusion of solutes in the pore solution was considered to be the dominant transport process. A single scenario was studied for both mix designs and their performances were compared. The reactive transport model adequately reproduces the process of decalcification of the C-S-H and the precipitation of calcite, which is corroborated by empirical observations. It was found that the evolution of the deterioration process is sensitive to the chemical composition of groundwater, its effects being more severe when grout is set under continuous exposure to poorly mineralized groundwater. Results obtained appear to indicate that a correct conceptualization of the problem was accomplished and support the assumption that, in absence of more reliable empirical data, it might

  1. Cytokines Induced Neutrophil Extracellular Traps Formation: Implication for the Inflammatory Disease Condition

    PubMed Central

    Keshari, Ravi S.; Jyoti, Anupam; Dubey, Megha; Kothari, Nikhil; Kohli, Monica; Bogra, Jaishri; Barthwal, Manoj K.; Dikshit, Madhu

    2012-01-01

    Neutrophils (PMNs) and cytokines have a critical role to play in host defense and systemic inflammatory response syndrome (SIRS). Neutrophil extracellular traps (NETs) have been shown to extracellularly kill pathogens, and inflammatory potential of NETs has been shown. Microbial killing inside the phagosomes or by NETs is mediated by reactive oxygen and nitrogen species (ROS/RNS). The present study was undertaken to assess circulating NETs contents and frequency of NETs generation by isolated PMNs from SIRS patients. These patients displayed significant augmentation in the circulating myeloperoxidase (MPO) activity and DNA content, while PMA stimulated PMNs from these patients, generated more free radicals and NETs. Plasma obtained from SIRS patients, if added to the PMNs isolated from healthy subjects, enhanced NETs release and free radical formation. Expressions of inflammatory cytokines (IL-1β, TNFα and IL-8) in the PMNs as well as their circulating levels were significantly augmented in SIRS subjects. Treatment of neutrophils from healthy subjects with TNFα, IL-1β, or IL-8 enhanced free radicals generation and NETs formation, which was mediated through the activation of NADPH oxidase and MPO. Pre-incubation of plasma from SIRS with TNFα, IL-1β, or IL-8 antibodies reduced the NETs release. Role of IL-1β, TNFα and IL-8 thus seems to be involved in the enhanced release of NETs in SIRS subjects. PMID:23110185

  2. Role of reactive nitrogen species generated via inducible nitric oxide synthase in vesicant-induced lung injury, inflammation and altered lung functioning

    SciTech Connect

    Sunil, Vasanthi R.; Shen, Jianliang; Patel-Vayas, Kinal; Gow, Andrew J.; Laskin, Jeffrey D.; Laskin, Debra L.

    2012-05-15

    Pulmonary toxicity induced by sulfur mustard and related vesicants is associated with oxidative stress. In the present studies we analyzed the role of reactive nitrogen species (RNS) generated via inducible nitric oxide synthase (iNOS) in lung injury and inflammation induced by vesicants using 2-chloroethyl ethyl sulfide (CEES) as a model. C57Bl/6 (WT) and iNOS −/− mice were sacrificed 3 days or 14 days following intratracheal administration of CEES (6 mg/kg) or control. CEES intoxication resulted in transient (3 days) increases in bronchoalveolar lavage (BAL) cell and protein content in WT, but not iNOS −/− mice. This correlated with expression of Ym1, a marker of oxidative stress in alveolar macrophages and epithelial cells. In contrast, in iNOS −/− mice, Ym1 was only observed 14 days post-exposure in enlarged alveolar macrophages, suggesting that they are alternatively activated. This is supported by findings that lung tumor necrosis factor and lipocalin Lcn2 expression, mediators involved in tissue repair were also upregulated at this time in iNOS −/− mice. Conversely, CEES-induced increases in the proinflammatory genes, monocyte chemotactic protein-1 and cyclooxygenase-2, were abrogated in iNOS −/− mice. In WT mice, CEES treatment also resulted in increases in total lung resistance and decreases in compliance in response to methacholine, effects blunted by loss of iNOS. These data demonstrate that RNS, generated via iNOS play a role in the pathogenic responses to CEES, augmenting oxidative stress and inflammation and suppressing tissue repair. Elucidating inflammatory mechanisms mediating vesicant-induced lung injury is key to the development of therapeutics to treat mustard poisoning. -- Highlights: ► Lung injury, inflammation and oxidative stress are induced by the model vesicant CEES ► RNS generated via iNOS are important in the CEES-induced pulmonary toxicity ► iNOS −/− mice are protected from CEES-induced lung toxicity and

  3. The Extracellular Matrix of Candida albicans Biofilms Impairs Formation of Neutrophil Extracellular Traps

    PubMed Central

    Cabezas-Olcoz, Jonathan; Wang, Steven X.; Huttenlocher, Anna; Ansari, Hamayail; Nett, Jeniel E.

    2016-01-01

    Neutrophils release extracellular traps (NETs) in response to planktonic C. albicans. These complexes composed of DNA, histones, and proteins inhibit Candida growth and dissemination. Considering the resilience of Candida biofilms to host defenses, we examined the neutrophil response to C. albicans during biofilm growth. In contrast to planktonic C. albicans, biofilms triggered negligible release of NETs. Time lapse imaging confirmed the impairment in NET release and revealed neutrophils adhering to hyphae and migrating on the biofilm. NET inhibition depended on an intact extracellular biofilm matrix as physical or genetic disruption of this component resulted in NET release. Biofilm inhibition of NETosis could not be overcome by protein kinase C activation via phorbol myristate acetate (PMA) and was associated with suppression of neutrophil reactive oxygen species (ROS) production. The degree of impaired NET release correlated with resistance to neutrophil attack. The clinical relevance of the role for extracellular matrix in diminishing NET production was corroborated in vivo using a rat catheter model. The C. albicans pmr1Δ/Δ, defective in production of matrix mannan, appeared to elicit a greater abundance of NETs by scanning electron microscopy imaging, which correlated with a decreased fungal burden. Together, these findings show that C. albicans biofilms impair neutrophil response through an inhibitory pathway induced by the extracellular matrix. PMID:27622514

  4. The Extracellular Matrix of Candida albicans Biofilms Impairs Formation of Neutrophil Extracellular Traps.

    PubMed

    Johnson, Chad J; Cabezas-Olcoz, Jonathan; Kernien, John F; Wang, Steven X; Beebe, David J; Huttenlocher, Anna; Ansari, Hamayail; Nett, Jeniel E

    2016-09-01

    Neutrophils release extracellular traps (NETs) in response to planktonic C. albicans. These complexes composed of DNA, histones, and proteins inhibit Candida growth and dissemination. Considering the resilience of Candida biofilms to host defenses, we examined the neutrophil response to C. albicans during biofilm growth. In contrast to planktonic C. albicans, biofilms triggered negligible release of NETs. Time lapse imaging confirmed the impairment in NET release and revealed neutrophils adhering to hyphae and migrating on the biofilm. NET inhibition depended on an intact extracellular biofilm matrix as physical or genetic disruption of this component resulted in NET release. Biofilm inhibition of NETosis could not be overcome by protein kinase C activation via phorbol myristate acetate (PMA) and was associated with suppression of neutrophil reactive oxygen species (ROS) production. The degree of impaired NET release correlated with resistance to neutrophil attack. The clinical relevance of the role for extracellular matrix in diminishing NET production was corroborated in vivo using a rat catheter model. The C. albicans pmr1Δ/Δ, defective in production of matrix mannan, appeared to elicit a greater abundance of NETs by scanning electron microscopy imaging, which correlated with a decreased fungal burden. Together, these findings show that C. albicans biofilms impair neutrophil response through an inhibitory pathway induced by the extracellular matrix. PMID:27622514

  5. The role of extracellular conductivity profiles in compartmental models for neurons: particulars for layer 5 pyramidal cells.

    PubMed

    Wang, Kai; Riera, Jorge; Enjieu-Kadji, Herve; Kawashima, Ryuta

    2013-07-01

    With the rapid increase in the number of technologies aimed at observing electric activity inside the brain, scientists have felt the urge to create proper links between intracellular- and extracellular-based experimental approaches. Biophysical models at both physical scales have been formalized under assumptions that impede the creation of such links. In this work, we address this issue by proposing a multicompartment model that allows the introduction of complex extracellular and intracellular resistivity profiles. This model accounts for the geometrical and electrotonic properties of any type of neuron through the combination of four devices: the integrator, the propagator, the 3D connector, and the collector. In particular, we applied this framework to model the tufted pyramidal cells of layer 5 (PCL5) in the neocortex. Our model was able to reproduce the decay and delay curves of backpropagating action potentials (APs) in this type of cell with better agreement with experimental data. We used the voltage drops of the extracellular resistances at each compartment to approximate the local field potentials generated by a PCL5 located in close proximity to linear microelectrode arrays. Based on the voltage drops produced by backpropagating APs, we were able to estimate the current multipolar moments generated by a PCL5. By adding external current sources in parallel to the extracellular resistances, we were able to create a sensitivity profile of PCL5 to electric current injections from nearby microelectrodes. In our model for PCL5, the kinetics and spatial profile of each ionic current were determined based on a literature survey, and the geometrical properties of these cells were evaluated experimentally. We concluded that the inclusion of the extracellular space in the compartmental models of neurons as an extra electrotonic medium is crucial for the accurate simulation of both the propagation of the electric potentials along the neuronal dendrites and the

  6. The role of extracellular conductivity profiles in compartmental models for neurons: particulars for layer 5 pyramidal cells.

    PubMed

    Wang, Kai; Riera, Jorge; Enjieu-Kadji, Herve; Kawashima, Ryuta

    2013-07-01

    With the rapid increase in the number of technologies aimed at observing electric activity inside the brain, scientists have felt the urge to create proper links between intracellular- and extracellular-based experimental approaches. Biophysical models at both physical scales have been formalized under assumptions that impede the creation of such links. In this work, we address this issue by proposing a multicompartment model that allows the introduction of complex extracellular and intracellular resistivity profiles. This model accounts for the geometrical and electrotonic properties of any type of neuron through the combination of four devices: the integrator, the propagator, the 3D connector, and the collector. In particular, we applied this framework to model the tufted pyramidal cells of layer 5 (PCL5) in the neocortex. Our model was able to reproduce the decay and delay curves of backpropagating action potentials (APs) in this type of cell with better agreement with experimental data. We used the voltage drops of the extracellular resistances at each compartment to approximate the local field potentials generated by a PCL5 located in close proximity to linear microelectrode arrays. Based on the voltage drops produced by backpropagating APs, we were able to estimate the current multipolar moments generated by a PCL5. By adding external current sources in parallel to the extracellular resistances, we were able to create a sensitivity profile of PCL5 to electric current injections from nearby microelectrodes. In our model for PCL5, the kinetics and spatial profile of each ionic current were determined based on a literature survey, and the geometrical properties of these cells were evaluated experimentally. We concluded that the inclusion of the extracellular space in the compartmental models of neurons as an extra electrotonic medium is crucial for the accurate simulation of both the propagation of the electric potentials along the neuronal dendrites and the

  7. Generations.

    PubMed

    Chambers, David W

    2005-01-01

    Groups naturally promote their strengths and prefer values and rules that give them an identity and an advantage. This shows up as generational tensions across cohorts who share common experiences, including common elders. Dramatic cultural events in America since 1925 can help create an understanding of the differing value structures of the Silents, the Boomers, Gen Xers, and the Millennials. Differences in how these generations see motivation and values, fundamental reality, relations with others, and work are presented, as are some applications of these differences to the dental profession. PMID:16623137

  8. Citrinin-generated reactive oxygen species cause cell cycle arrest leading to apoptosis via the intrinsic mitochondrial pathway in mouse skin.

    PubMed

    Kumar, Rahul; Dwivedi, Premendra D; Dhawan, Alok; Das, Mukul; Ansari, Kausar M

    2011-08-01

    The mycotoxin, citrinin (CTN), is a contaminant of various food and feed materials. Several in vivo and in vitro studies have demonstrated that CTN has broad toxicity spectra; however, dermal toxicity is not known. In the present investigation, dermal exposure to CTN was undertaken to study oxidative stress, DNA damage, cell cycle arrest, and apoptosis in mouse skin. A single topical application of CTN caused significant change in oxidative stress markers, such as lipid peroxidation, protein carbonyl content, glutathione (GSH) content, and antioxidant enzymes in a dose-dependent (25-100 μg/mouse) and time-dependent (12-72 h) manner. Single topical application of CTN (50 μg/mouse) for 12-72 h caused significant enhancement in (1) reactive oxygen species (ROS); (2) cell cycle arrest at the G0/G1 phase (30-71%) and G2/M phase (56-65%) along with the induction of apoptosis (3.6-27%); (3) expression of p53, p21/waf1; (4) Bax/Bcl₂ ratio and cytochome c release; and (5) activities of caspase 9 (22-46%) and 3 (42-54%) as well as increased poly(ADP-ribose) polymerase cleavage. It was also observed that pretreatment with bio-antioxidants viz butylated hydroxyanisole (55 μmol/100 μl), quercetin (10 μmol/100 μl), or α-tocopherol (40 μmol/100 μl) resulted in decreases of ROS generation, arrest in the G0/G1 phase of the cell cycle, and apoptosis. These data confirm the involvement of ROS in apoptosis and suggest that these bio-antioxidants may be useful in the prevention of CTN-induced dermal toxicity.

  9. Generation of reactive oxygen species in different fractions of the coelomocytes of holothurian Eupentacta fraudatrix in response to the thermostable toxin of Yersinia pseudotuberculosis in vitro

    NASA Astrophysics Data System (ADS)

    Dolmatova, L. S.; Eliseykina, M. G.; Timchenko, N. F.; Kovaleva, A. L.; Shitkova, O. A.

    2003-12-01

    Pure fraction (92% 95%) of phagocytes (FP) and a mixture of amoebocytes (62%) and morula cells (38%)-FPMC- of the holothurian Eupentacta fraudatrix' (Holothuroidea, Dendrochirota) were obtained by using ficoll-verographine step gradient. Basal production of reactive oxygen species (ROS) in FP quantified by using reduction of nitroblue tetrazolium (NBT) was more than twice that in FPMC. Thermostable toxin of Yersinia pseudotuberculosis (TST) at different concentrations (0.2; 0.5; 2.5 μg/ml, but not 0.1 μg/ml) stimulated NBT reduction in FPMC after 24 h incubation. In FP, TST at concentrations of 0.1 and 0.2 μg/ml inhibited and at concentrations of 0.5 and 2.5 μg/ml stimulated NBT reduction after 24 h incubation. Maximal effect was observed in FP and FPMC at TST concentrations of 0.5 and 0.2 μg/ml, respectively. Addition of catalase (0.7 μg/ml) to the cells treated with TST (2.5 μg/ml) was followed by a decrease in NBT reduction compared to that under toxin treatment alone. TST stimulated superoxide dismutase activity in concentration-dependent manner (maximum at 0.5 μg/ml concentration in FP) after 24 h treatment, and this stimulation was prevented by a commercial catalase. Plant lectin concanavalin A stimulated NBT reduction more than 5-fold in FPMC compared to the control. With addition of TST, lectin stimulated ROS to lesser extent than that with lectin alone. When catalase, TST, and lectin were added into the FPMC simultaneously, ROS increase was similar to that under lectin treatment alone. On the whole, data obtained indicated that ROS generation in holothurian coelomocytes especially occurs in both stimulated and not stimulated phagocytes, and that changes in ROS production by these cells may be one of the mechanisms of antibacterial protection of holothurians.

  10. The influence of endogenously generated reactive oxygen species on the inotropic and chronotropic effects of adrenoceptor and ET-receptor stimulation.

    PubMed

    Sand, Carsten; Peters, Stephan L M; Pfaffendorf, Martin; van Zwieten, Pieter A

    2003-06-01

    Reactive oxygen species (ROS) play a role in cardiovascular diseases such as heart failure and hypertension. Furthermore, increasing evidence has accumulated suggesting that ROS can also be formed subsequent to the stimulation of various receptors, thus functioning as second messengers. The objective of the present study was to elucidate the role of intracellular-generated ROS in the inotropic and chronotropic effects of the alpha1- and beta-adrenoceptor and the ET-receptor stimulation in isolated rat atria. In addition, we investigated whether the MAPKerk pathway is involved in the ROS-provoked rise of contractile force. For this purpose hydrogen peroxide was applied, which is known to serve several endogenous functions as a second messenger. Moreover, hydrogen peroxide readily crosses cell membranes, which thus allows to mimic the intracellular formation. Preincubation of atria with EUK 8 (400 microM), a cell permeable superoxide dismutase- and catalase-mimetic, reduced the positive inotropic effect upon alpha1-adrenoceptor and ET-receptor stimulation. The responsiveness to beta-adrenoceptor stimulation remained unaffected by this pretreatment. The chronotropic effects were not altered by preincubation with EUK 8. In contrast to the MAPK(p38) inhibitor SB203580 (2 and 10 microM), the two MKKmek inhibitors PD98059 (30 and 100 microM) and U0126 (10 microM) significantly attenuated the positive inotropic response to hydrogen peroxide in isolated rat left atria. In addition, inhibition of the Na+/H+ exchange (NHE) by cariporide (1 microM) counteracted ROS-provoked increase of contractile force. From the present study we conclude that the inotropic responses to alpha1-adrenoceptor and ET-receptor stimulation are, at least partially, caused by intracellular-formed ROS, that subsequently may activate the MAPKerk pathway and the NHE.

  11. Using copper ions to amplify ROS-mediated fluorescence for continuous online monitoring of extracellular glucose in living rat brain.

    PubMed

    Su, Cheng-Kuan; Chen, Chen-Yu; Tseng, Po-Jen; Sun, Yuh-Chang

    2015-02-15

    In this study we developed a facile and sensitive method for continuous monitoring of extracellular glucose concentration in living rat brain through microdialysis (MD) sampling in conjunction with (i) online sample derivatization using glucose oxidase to generate H2O2, which converted a reactive oxygen species-responsive fluorescent dye, 2',7'-dichlorodihydrofluorescein (DCFH), into fluorescent species, and (ii) a novel non-immobilized enzyme-based fluorescence assay strategy, featuring copper ion (Cu(2+))-facilitated amplification of the fluorescence intensity. After evaluating the experimental conditions for glucose oxidation and fluorescence generation, the introduction of Cu(2+) ions to this system resulted in an additional 51-fold amplification of the net fluorescence intensity. By sequentially loading brain microdialysate into the dual sample collection loops, the sampling frequency was 7.5h(-1). Based on a 40-μL sample volume, the system's detection limit reached as low as 0.18 mM, sufficiently accurate to determine the extracellular glucose concentrations in living rat brains. To demonstrate the proposed system's practical performance and applicability, we conducted (i) spike analyses of biomolecule-rich fetal bovine serum sample, confirming that the analytical reliability was similar to that of a commercial glucose kit, and (ii) in vivo dynamic monitoring of the extracellular glucose concentrations in living rat brains after inducing neural depolarization by perfusing a high-K(+) medium from the MD probe.

  12. Singlet oxygen is essential for neutrophil extracellular trap formation.

    PubMed

    Nishinaka, Yoko; Arai, Toshiyuki; Adachi, Souichi; Takaori-Kondo, Akifumi; Yamashita, Kouhei

    2011-09-16

    Neutrophil extracellular traps (NETs) that bind invading microbes are pivotal for innate host defense. There is a growing body of evidence for the significance of NETs in the pathogenesis of infectious and inflammatory diseases, but the mechanism of NET formation remains unclear. Previous observation in neutrophils of chronic granulomatous disease (CGD) patients, which defect NADPH oxidase (Nox) and fail to produce reactive oxygen species (ROS), revealed that ROS contributed to the formation of NETs. However, the active species were not identified. In this study, we discovered that singlet oxygen, one of the ROS, mediated Nox-dependent NET formation upon stimulation with phorbol myristate acetate. We also revealed that singlet oxygen itself could induce NET formation by a distinct system generating singlet oxygen with porfimer sodium (Photofrin) in CGD neutrophils, as well as healthy neutrophils. This was independent of Nox activation. These results show that singlet oxygen is essential for NET formation, and provide novel insights into the pathogenesis of infectious and inflammatory diseases.

  13. Algal extracellular release in river-floodplain dissolved organic matter: response of extracellular enzymatic activity during a post-flood period

    PubMed Central

    Sieczko, Anna; Maschek, Maria; Peduzzi, Peter

    2015-01-01

    River-floodplain systems are susceptible to rapid hydrological events. Changing hydrological connectivity of the floodplain generates a broad range of conditions, from lentic to lotic. This creates a mixture of allochthonously and autochthonously derived dissolved organic matter (DOM). Autochthonous DOM, including photosynthetic extracellular release (PER), is an important source supporting bacterial secondary production (BSP). Nonetheless, no details are available regarding microbial extracellular enzymatic activity (EEA) as a response to PER under variable hydrological settings in river-floodplain systems. To investigate the relationship between bacterial and phytoplankton components, we therefore used EEA as a tool to track the microbial response to non-chromophoric, but reactive and ecologically important DOM. The study was conducted in three floodplain subsystems with distinct hydrological regimes (Danube Floodplain National Park, Austria). The focus was on the post-flood period. Enhanced %PER (up to 48% of primary production) in a hydrologically isolated subsystem was strongly correlated with β-glucosidase, which was related to BSP. This shows that—in disconnected floodplain backwaters with high terrestrial input—BSP can also be driven by autochthonous carbon sources (PER). In a semi-isolated section, in the presence of fresh labile material from primary producers, enhanced activity of phenol oxidase was observed. In frequently flooded river-floodplain systems, BSP was mainly driven by enzymatic degradation of particulate primary production. Our research demonstrates that EEA measurements are an excellent tool to describe the coupling between bacteria and phytoplankton, which cannot be deciphered when focusing solely on chromophoric DOM. PMID:25741326

  14. Generation and reactivity of ketyl radicals with lignin related structures. On the importance of the ketyl pathway in the photoyellowing of lignin containing pulps and papers.

    PubMed

    Fabbri, Claudia; Bietti, Massimo; Lanzalunga, Osvaldo

    2005-04-01

    [reaction: see text] Ketyl radicals with lignin related structures have been generated by means of radiation chemical and photochemical techniques. In the former studies ketyl radicals are produced by reaction of alpha-carbonyl-beta-aryl ether lignin models with the solvated electron produced by pulse radiolysis of an aqueous solution at pH 6.0. The UV-vis spectra of ketyl radicals are characterized by three main absorption bands. The shape and position of these bands slightly change when the spectra are recorded in alkaline solution (pH 11.0) being now assigned to the ketyl radical anions and a pKa = 9.5 is determined for the 1-(3,4,5-trimethoxyphenyl)-2-phenoxyethanol-1-yl radical. Decay rates of ketyl radicals are found to be dose dependent and, at low doses, lie in the range (1.7-2.7) x 10(3) s(-1). In the presence of oxygen a fast decay of the ketyl radicals is observed (k2 = 1.8-2.7 x 10(9) M(-1) s(-1)) that is accompanied by the formation of stable products, i.e., the starting ketones. In the photochemical studies ketyl radicals have been produced by charge-transfer (CT) photoactivation of the electron donor-acceptor salts of methyl viologen (MV2+) with alpha-hydroxy-alpha-phenoxymethyl-aryl acetates. This process leads to the instantaneous formation of the reduced acceptor (methyl viologen radical cation, MV+*), as is clearly shown in a laser flash photolysis experiment by the two absorption bands centered at 390 and 605 nm, and an acyloxyl radical [ArC(CO2*))(OH)CH2(OC6H5)], which undergoes a very fast decarboxylation with formation of the ketyl radicals. Steady-state photoirradiation of the CT ion pairs indicates that 1-aryl-2-phenoxyethanones are formed as primary photoproducts by oxidation of ketyl radicals by MV2+ (under argon) or by molecular oxygen. Small amounts of acetophenones are formed by further photolysis of 1-aryl-2-phenoxyethanones and not by beta-fragmentation of the ketyl radicals. The high reactivity of ketyl radicals with oxygen coupled

  15. Extracellular Control of Limb Regeneration

    NASA Astrophysics Data System (ADS)

    Calve, S.; Simon, H.-G.

    Adult newts possess the ability to completely regenerate organs and appendages. Immediately after limb loss, the extracellular matrix (ECM) undergoes dramatic changes that may provide mechanical and biochemical cues to guide the formation of the blastema, which is comprised of uncommitted stem-like cells that proliferate to replace the lost structure. Skeletal muscle is a known reservoir for blastema cells but the mechanism by which it contributes progenitor cells is still unclear. To create physiologically relevant culture conditions for the testing of primary newt muscle cells in vitro, the spatio-temporal distribution of ECM components and the mechanical properties of newt muscle were analyzed. Tenascin-C and hyaluronic acid (HA) were found to be dramatically upregulated in the amputated limb and were co-expressed around regenerating skeletal muscle. The transverse stiffness of muscle measured in situ was used as a guide to generate silicone-based substrates of physiological stiffness. Culturing newt muscle cells under different conditions revealed that the cells are sensitive to both matrix coating and substrate stiffness: Myoblasts on HA-coated soft substrates display a rounded morphology and become more elongated as the stiffness of the substrate increases. Coating of soft substrates with matrigel or fibronectin enhanced cell spreading and eventual cell fusion.

  16. Preeclampsia and Extracellular Vesicles.

    PubMed

    Gilani, Sarwat I; Weissgerber, Tracey L; Garovic, Vesna D; Jayachandran, Muthuvel

    2016-09-01

    Preeclampsia is a hypertensive pregnancy disorder characterized by development of hypertension and proteinuria after 20 weeks of gestation that remains a leading cause of maternal and neonatal morbidity and mortality. While preeclampsia is believed to result from complex interactions between maternal and placental factors, the proximate pathophysiology of this syndrome remains elusive. Cell-to-cell communication is a critical signaling mechanism for feto-placental development in normal pregnancies. One mechanism of cellular communication relates to activated cell-derived sealed membrane vesicles called extracellular vesicles (EVs). The concentrations and contents of EVs in biological fluids depend upon their cells of origin and the stimuli which trigger their production. Research on EVs in preeclampsia has focused on EVs derived from the maternal vasculature (endothelium, vascular smooth muscle) and blood (erythrocytes, leukocytes, and platelets), as well as placental syncytiotrophoblasts. Changes in the concentrations and contents of these EVs may contribute to the pathophysiology of preeclampsia by accentuating the pro-inflammatory and pro-coagulatory states of pregnancy. This review focuses on possible interactions among placental- and maternal-derived EVs and their contents in the initiation and progression of the pathogenesis of preeclampsia. Understanding the contributions of EVs in the pathogenesis of preeclampsia may facilitate their use as diagnostic and prognostic biomarkers. PMID:27590522

  17. Molecular cloning of an Onchocerca volvulus extracellular Cu-Zn superoxide dismutase.

    PubMed Central

    James, E R; McLean, D C; Perler, F

    1994-01-01

    Onchocerca volvulus, a human parasitic nematode, is the third leading cause of preventable blindness worldwide. This study describes the molecular cloning of a novel superoxide dismutase (SOD) from the parasite. This putative O. volvulus extracellular SOD (OvEcSOD) is 628 nucleotides (nt) long, including a 22-nt 5' spliced leader (SL1) and a portion encoding an N-terminal hydrophobic 42-amino-acid signal peptide. The remainder of the cDNA shares 71% identity with an O. volvulus cytosolic SOD sequence and is 3 nt longer. All residues involved in metal ion binding, active site formation, folding, and dimer formation in SODs are conserved. Data indicate the OvEcSOD and O. volvulus cytosolic SOD are separate gene products and that the OvEcSOD appears to possess the characteristics of a membrane-bound or secreted enzyme which may be involved in the parasite defense against phagocyte-generated reactive oxygen species. Images PMID:8300230

  18. Formation and Reactivity of Biogenic Iron Microminerals

    SciTech Connect

    Beveridge, Terrance J.; Ferris, F. Grant

    2001-08-15

    The overall purpose of the project was to explore and quantify the processes that control the formation and reactivity of biogenic iron microminerals and their impact on the solubility of metal contaminants. The research addressed how surface components of bacterial cells, extracellular organic material, and the aqueous geochemistry of the DIRB microenvironment impacts the mineralogy, chemical state and micromorphology of reduced iron phases.

  19. Formation and Reactivity of Biogenic Iron Microminerals

    SciTech Connect

    Beveridge, Terrance J.; Glasauer, Susan; Korenevsky, Anton; Ferris, F. Grant

    2000-08-08

    The overall purpose of the project is to explore and quantify the processes that control the formation and reactivity of biogenic iron microminerals and their impact on the solubility of metal contaminants. The research addresses how surface components of bacterial cells, extracellular organic material, and the aqueous geochemistry of the DIRB microenvironment impacts the mineralogy, chemical state and micromorphology of reduced iron phases.

  20. [Inhibitory proteins of neuritic regeneration in the extracellular matrix: structure, molecular interactions and their functions. Mechanisms of extracellular balance].

    PubMed

    Vargas, Javier; Uribe-Escamilla, Rebeca; Alfaro-Rodríguez, Alfonso

    2013-01-01

    After injury of the central nervous system (CNS) in higher vertebrates, neurons neither grow nor reconnect with their targets because their axons or dendrites cannot regenerate within the injured site. In the CNS, the signal from the environment regulating neurite regeneration is not exclusively generated by one molecular group. This signal is generated by the interaction of various types of molecules such as extracellular matrix proteins, soluble factors and surface membrane molecules; all these elements interact with one another generating the matrix's biological state: the extracellular balance. Proteins in the balanced extracellular matrix, support and promote cellular physiological states, including neuritic regeneration. We have reviewed three types of proteins of the extracellular matrix possessing an inhibitory effect and that are determinant of neuritic regeneration failure in the CNS: chondroitin sulfate proteoglycans, keratan sulfate proteoglycans and tenascin. We also review some of the mechanisms involved in the balance of extracellular proteins such as isomerization, epimerization, sulfation and glycosylation as well as the assemblage of the extracellular matrix, the interaction between the matrix and soluble factors and its proteolytic degradation. In the final section, we have presented some examples of the matrix's role in development and in tumor propagation.

  1. Adsorption and separation of reactive aromatic isomers and generation and stabilization of their radicals within cadmium(II)-triazole metal-organic confined space in a single-crystal-to-single-crystal fashion.

    PubMed

    Liu, Qi-Kui; Ma, Jian-Ping; Dong, Yu-Bin

    2010-05-26

    A series of reactive group functionalized aromatics, namely 2-furaldehyde, 3-furaldehyde, 2-thenaldehyde, 3-thenaldehyde, o-toluidine, m-toluidine, p-toluidine, and aniline, can be absorbed by a CdL(2) (1; L = 4-amino-3,5-bis(4-pyridyl-3-phenyl)-1,2,4-triazole) porous framework in both vapor and liquid phases to generate new G(n) [symbol: see text] CdL(2) (n = 1, 2) host-guest complexes. In addition, the CdL(2) framework can be a shield to protect the active functional group (-CHO and -NH(2)) substituted guests from reaction with the outside medium containing their reaction partners. That is, aldehyde-substituted guests within the CdL(2) host become "stable" in the aniline phase and vice versa. Moreover, 1 displays a very strict selectivity for these reactive group substituted aromatic isomers and can completely separate these guest isomers under mild conditions (i.e., 2-furaldehyde vs 3-furaldehyde, 2-thenaldehyde vs 3-thenaldehyde, and o-toluidine vs m-toluidine vs p-toluidine). All adsorptions and separations are directly performed on the single crystals of 1. More interestingly, these reactive group substituted aromatics readily transform to the corresponding radicals within the CdL(2) host upon ambient light or UV light (355 nm) irradiation. Furthermore, the generated organic radicals are alive for 1 month within the interior cavity in air under ambient conditions. Simple organic radicals are highly reactive short-lived species, and they cannot be generally isolated and conserved under ambient conditions. Thus, the CdL(2) host herein could be considered as a radical generator and storage vessel.

  2. Characterization of human T cells reactive with the Mycoplasma arthritidis-derived superantigen (MAM): generation of a monoclonal antibody against V beta 17, the T cell receptor gene product expressed by a large fraction of MAM-reactive human T cells

    PubMed Central

    1991-01-01

    While all known microbial superantigens are mitogenic for human peripheral blood lymphocytes (PBL), the functional response induced by Mycoplasma arthritidis-derived superantigen (MAM) is unique in that MAM stimulation of PBL consistently results in T cell-dependent B cell activation characterized by polyclonal IgM and IgG production. These immunostimulatory effects of MAM on the humoral arm of the human immune system warranted a more precise characterization of MAM-reactive human T cells. Using an uncloned MAM reactive human T cell line as immunogen, we have generated a monoclonal antibody (mAb) (termed C1) specific for the T cell receptor V beta gene expressed by the major fraction of MAM- reactive human T cells, V beta 17. In addition, a V beta 17- MAM- reactive T cell population exists, assessed by MAM, induced T cell proliferation and cytotoxic T cell activity. mAb C1 will be useful in characterizing the functional properties of V beta 17+ T cells and their potential role in autoimmune disease. PMID:1833503

  3. Extracellular matrix and wound healing.

    PubMed

    Maquart, F X; Monboisse, J C

    2014-04-01

    Extracellular matrix has been known for a long time as an architectural support for the tissues. Many recent data, however, have shown that extracellular matrix macromolecules (collagens, elastin, glycosaminoglycans, proteoglycans and connective tissue glycoproteins) are able to regulate many important cell functions, such as proliferation, migration, protein synthesis or degradation, apoptosis, etc., making them able to play an important role in the wound repair process. Not only the intact macromolecules but some of their specific domains, that we called "Matrikines", are also able to regulate many cell activities. In this article, we will summarize main findings showing the effects of extracellular matrix macromolecules and matrikines on connective tissue and epithelial cells, particularly in skin, and their potential implication in the wound healing process. These examples show that extracellular matrix macromolecules or some of their specific domains may play a major role in wound healing. Better knowledge of these interactions may suggest new therapeutic targets in wound healing defects. PMID:24650524

  4. DNase I Inhibits a Late Phase of Reactive Oxygen Species Production in Neutrophils

    PubMed Central

    Munafo, Daniela B.; Johnson, Jennifer L.; Brzezinska, Agnieszka A.; Ellis, Beverly A.; Wood, Malcolm R.; Catz, Sergio D.

    2009-01-01

    Neutrophils kill bacteria on extracellular complexes of DNA fibers and bactericidal proteins known as neutrophil extracellular traps (NETs). The NET composition and the bactericidal mechanisms they use are not fully understood. Here, we show that treatment with deoxyribonuclease (DNase I) impairs a late oxidative response elicited by Gram-positive and Gram-negative bacteria and also by phorbol ester. Isoluminol-dependent chemiluminescence elicited by opsonized Listeria monocytogenes-stimulated neutrophils was inhibited by DNase I, and the DNase inhibitory effect was also evident when phagocytosis was blocked, suggesting that DNase inhibits an extracellular mechanism of reactive oxygen species (ROS) generation. The DNase inhibitory effect was independent of actin polymerization. Phagocytosis and cell viability were not impaired by DNase I. Immunofluorescence analysis shows that myeloperoxidase is present on NETs. Furthermore, granular proteins were detected in NETs from Rab27a-deficient neutrophils which have deficient exocytosis, suggesting that exocytosis and granular protein distribution on NETs proceed by independent mechanisms. NADPH oxidase subunits were also detected on NETs, and the detection of extracellular trap-associated NADPH oxidase subunits was abolished by treatment with DNase I and dependent on cell stimulation. In vitro analyses demonstrate that MPO and NADPH oxidase activity are not directly inhibited by DNase I, suggesting that its effect on ROS production depends on NET disassembly. Altogether, our data suggest that inhibition of ROS production by microorganism-derived DNase would contribute to their ability to evade killing. PMID:20375609

  5. Reactive oxygen species and mitochondria: A nexus of cellular homeostasis.

    PubMed

    Dan Dunn, Joe; Alvarez, Luis Aj; Zhang, Xuezhi; Soldati, Thierry

    2015-12-01

    Reactive oxygen species (ROS) are integral components of multiple cellular pathways even though excessive or inappropriately localized ROS damage cells. ROS function as anti-microbial effector molecules and as signaling molecules that regulate such processes as NF-kB transcriptional activity, the production of DNA-based neutrophil extracellular traps (NETs), and autophagy. The main sources of cellular ROS are mitochondria and NADPH oxidases (NOXs). In contrast to NOX-generated ROS, ROS produced in the mitochondria (mtROS) were initially considered to be unwanted by-products of oxidative metabolism. Increasing evidence indicates that mtROS have been incorporated into signaling pathways including those regulating immune responses and autophagy. As metabolic hubs, mitochondria facilitate crosstalk between the metabolic state of the cell with these pathways. Mitochondria and ROS are thus a nexus of multiple pathways that determine the response of cells to disruptions in cellular homeostasis such as infection, sterile damage, and metabolic imbalance. In this review, we discuss the roles of mitochondria in the generation of ROS-derived anti-microbial effectors, the interplay of mitochondria and ROS with autophagy and the formation of DNA extracellular traps, and activation of the NLRP3 inflammasome by ROS and mitochondria.

  6. Reactive oxygen species and mitochondria: A nexus of cellular homeostasis

    PubMed Central

    Dan Dunn, Joe; Alvarez, Luis AJ; Zhang, Xuezhi; Soldati, Thierry

    2015-01-01

    Reactive oxygen species (ROS) are integral components of multiple cellular pathways even though excessive or inappropriately localized ROS damage cells. ROS function as anti-microbial effector molecules and as signaling molecules that regulate such processes as NF-kB transcriptional activity, the production of DNA-based neutrophil extracellular traps (NETs), and autophagy. The main sources of cellular ROS are mitochondria and NADPH oxidases (NOXs). In contrast to NOX-generated ROS, ROS produced in the mitochondria (mtROS) were initially considered to be unwanted by-products of oxidative metabolism. Increasing evidence indicates that mtROS have been incorporated into signaling pathways including those regulating immune responses and autophagy. As metabolic hubs, mitochondria facilitate crosstalk between the metabolic state of the cell with these pathways. Mitochondria and ROS are thus a nexus of multiple pathways that determine the response of cells to disruptions in cellular homeostasis such as infection, sterile damage, and metabolic imbalance. In this review, we discuss the roles of mitochondria in the generation of ROS-derived anti-microbial effectors, the interplay of mitochondria and ROS with autophagy and the formation of DNA extracellular traps, and activation of the NLRP3 inflammasome by ROS and mitochondria. PMID:26432659

  7. Roles of the Yap1 transcription factor and antioxidants in Saccharomyces cerevisiae's tolerance to furfural and 5-hydroxymethylfurfural, which function as thiol-reactive electrophiles generating oxidative stress.

    PubMed

    Kim, Daehee; Hahn, Ji-Sook

    2013-08-01

    Development of the tolerance of Saccharomyces cerevisiae strains to furfural and 5-hydroxymethylfurfural (HMF) is an important issue for cellulosic ethanol production. Although furfural and HMF are known to induce oxidative stress, the underlying mechanisms are largely unknown. In this study, we show that both furfural and HMF act as thiol-reactive electrophiles, thus directly activating the Yap1 transcription factor via the H2O2-independent pathway, depleting cellular glutathione (GSH) levels, and accumulating reactive oxygen species in Saccharomyces cerevisiae. However, furfural showed higher reactivity than did HMF toward GSH in vitro and in vivo. In line with such toxic mechanisms, overexpression of YAP1(C620F), a constitutively active mutant of YAP1, and Yap1 target genes encoding catalases (CTA1 and CTT1) increased tolerance to furfural and HMF. However, increasing GSH levels by overexpression of genes for GSH biosynthesis (GSH1 and GLR1) or by the exogenous addition of GSH to the culture medium enhanced tolerance to furfural but not to HMF.

  8. Roles of the Yap1 transcription factor and antioxidants in Saccharomyces cerevisiae's tolerance to furfural and 5-hydroxymethylfurfural, which function as thiol-reactive electrophiles generating oxidative stress.

    PubMed

    Kim, Daehee; Hahn, Ji-Sook

    2013-08-01

    Development of the tolerance of Saccharomyces cerevisiae strains to furfural and 5-hydroxymethylfurfural (HMF) is an important issue for cellulosic ethanol production. Although furfural and HMF are known to induce oxidative stress, the underlying mechanisms are largely unknown. In this study, we show that both furfural and HMF act as thiol-reactive electrophiles, thus directly activating the Yap1 transcription factor via the H2O2-independent pathway, depleting cellular glutathione (GSH) levels, and accumulating reactive oxygen species in Saccharomyces cerevisiae. However, furfural showed higher reactivity than did HMF toward GSH in vitro and in vivo. In line with such toxic mechanisms, overexpression of YAP1(C620F), a constitutively active mutant of YAP1, and Yap1 target genes encoding catalases (CTA1 and CTT1) increased tolerance to furfural and HMF. However, increasing GSH levels by overexpression of genes for GSH biosynthesis (GSH1 and GLR1) or by the exogenous addition of GSH to the culture medium enhanced tolerance to furfural but not to HMF. PMID:23793623

  9. Extracellular Vesicles from Caveolin-Enriched Microdomains Regulate Hyaluronan-Mediated Sustained Vascular Integrity

    PubMed Central

    Mirzapoiazova, Tamara; Lennon, Frances E.; Mambetsariev, Bolot; Allen, Michael; Riehm, Jacob; Poroyko, Valeriy A.; Singleton, Patrick A.

    2015-01-01

    Defects in vascular integrity are an initiating factor in several disease processes. We have previously reported that high molecular weight hyaluronan (HMW-HA), a major glycosaminoglycan in the body, promotes rapid signal transduction in human pulmonary microvascular endothelial cells (HPMVEC) leading to barrier enhancement. In contrast, low molecular weight hyaluronan (LMW-HA), produced in disease states by hyaluronidases and reactive oxygen species (ROS), induces HPMVEC barrier disruption. However, the mechanism(s) of sustained barrier regulation by HA are poorly defined. Our results indicate that long-term (6–24 hours) exposure of HMW-HA induced release of a novel type of extracellular vesicle from HLMVEC called enlargeosomes (characterized by AHNAK expression) while LMW-HA long-term exposure promoted release of exosomes (characterized by CD9, CD63, and CD81 expression). These effects were blocked by inhibiting caveolin-enriched microdomain (CEM) formation. Further, inhibiting enlargeosome release by annexin II siRNA attenuated the sustained barrier enhancing effects of HMW-HA. Finally, exposure of isolated enlargeosomes to HPMVEC monolayers generated barrier enhancement while exosomes led to barrier disruption. Taken together, these results suggest that differential release of extracellular vesicles from CEM modulate the sustained HPMVEC barrier regulation by HMW-HA and LMW-HA. HMW-HA-induced specialized enlargeosomes can be a potential therapeutic strategy for diseases involving impaired vascular integrity. PMID:26447809

  10. In Chemico Evaluation of Tea Tree Essential Oils as Skin Sensitizers: Impact of the Chemical Composition on Aging and Generation of Reactive Species.

    PubMed

    Avonto, Cristina; Chittiboyina, Amar G; Wang, Mei; Vasquez, Yelkaira; Rua, Diego; Khan, Ikhlas A

    2016-07-18

    Tea tree oil (TTO) is an essential oil obtained from the leaves of Melaleuca alternifolia, M. linariifolia, or M. dissitiflora. Because of the commercial importance of TTO, substitution or adulteration with other tea tree species (such as cajeput, niaouli, manuka, or kanuka oils) is common and may pose significant risks along with perceived health benefits. The distinctive nature, qualitative and quantitative compositional variation of these oils, is responsible for the various pharmacological as well as adverse effects. Authentic TTOs (especially aged ones) have been identified as potential skin sensitizers, while reports of adverse allergic reactions to the other tea trees essential oils are less frequent. Chemical sensitizers are usually electrophilic compounds, and in chemico methods have been developed to identify skin allergens in terms of their ability to bind to biological nucleophiles. However, little information is available on the assessment of sensitization potential of mixtures, such as essential oils, due to their complexity. In the present study, 10 "tea tree" oils and six major TTO constituents have been investigated for their sensitization potential using a fluorescence in chemico method. The reactivity of authentic TTOs was found to correlate with the age of the oils, while the majority of nonauthentic TTOs were less reactive, even after aging. Further thio-trapping experiments with DCYA and characterization by UHPLC-DAD-MS led to the identification of several possible DCYA-adducts which can be used to deduce the structure of the candidate reactive species. The major TTO components, terpinolene, α-terpinene, and terpinene-4-ol, were unstable under accelerated aging conditions, which led to the formation of several DCYA-adducts. PMID:27286037

  11. Photoirradiation of Polycyclic Aromatic Hydrocarbons with UVA Light – A Pathway Leading to the Generation of Reactive Oxygen Species, Lipid Peroxidation, and DNA Damage

    PubMed Central

    Yu, Hongtao; Xia, Qingsu; Yan, Jian; Herreno-Saenz, Diogenes; Wu, Yuh-Shen; Tang, I-Wah; Fu, Peter P.

    2009-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are a class of genotoxic environmental contaminants. We have long been interested in determining the mechanisms by which PAHs induce genotoxicity. Although the metabolic activation of PAHs leading to biological activities has been well studied, the photo-induced activation pathway has seldom reported. In this paper, we review the study of photoirradiation of PAHs with UVA irradiation results in (i) cytotoxicity and DNA damage (ii) DNA single strand cleavage; (iii) formation of 8-hydroxy -2′-deoxyguanosine adduct (8-OHdG), and (iv) formation of lipid peroxidation. Evidence has been shown that these photobiological activities are mediated by reactive oxygen species (ROS). PMID:17159277

  12. Modulation of macrophage-mediated cytotoxicity by kerosene soot: Possible role of reactive oxygen species

    SciTech Connect

    Arif, J.M.; Khan, S.G.; Ashquin, M.; Rahman, Q. )

    1993-05-01

    The involvement of reactive oxygen species (ROS) in the cytotoxicity of soot on rat alveolar macrophages has been postulated. A single intratracheal injection of soot (5 mg) in corn oil significantly induced the macrophage population, hydrogen peroxide (H[sub 2]O[sub 2]) generation, thiobarbituric acid (TBA)-reactive substanced of lipid peroxidation, and the activities of extracellular acid phosphatase (AP) and lactate dehydrogenase (LDH) at 1, 4, 8, and 16 days of postinoculation. The activities of glutathione peroxidase (GPX) and catalase (CAT) were significantly inhibited at all the stages, while glutathione reductase (GR) and glucose-6-phosphate dehydrogenase (G6PD) showed a different pattern. These results show that soot is cytotoxic to alveolar macrophages and suggest that ROS may play a primary role in the cytotoxic process. 28 refs., 4 figs., 1 tab.

  13. Extracellular metabolic energetics can promote cancer progression.

    PubMed

    Loo, Jia Min; Scherl, Alexis; Nguyen, Alexander; Man, Fung Ying; Weinberg, Ethan; Zeng, Zhaoshi; Saltz, Leonard; Paty, Philip B; Tavazoie, Sohail F

    2015-01-29

    Colorectal cancer primarily metastasizes to the liver and globally kills over 600,000 people annually. By functionally screening 661 microRNAs (miRNAs) in parallel during liver colonization, we have identified miR-551a and miR-483 as robust endogenous suppressors of liver colonization and metastasis. These miRNAs convergently target creatine kinase, brain-type (CKB), which phosphorylates the metabolite creatine, to generate phosphocreatine. CKB is released into the extracellular space by metastatic cells encountering hepatic hypoxia and catalyzes production of phosphocreatine, which is imported through the SLC6A8 transporter and used to generate ATP—fueling metastatic survival. Combinatorial therapeutic viral delivery of miR-551a and miR-483-5p through single-dose adeno-associated viral (AAV) delivery significantly suppressed colon cancer metastasis, as did CKB inhibition with a small-molecule inhibitor. Importantly, human liver metastases express higher CKB and SLC6A8 levels and reduced miR-551a/miR-483 levels relative to primary tumors. We identify the extracellular space as an important compartment for malignant energetic catalysis and therapeutic targeting. PMID:25601461

  14. Mutagenesis of the aquaporin 4 extracellular domains defines restricted binding patterns of pathogenic neuromyelitis optica IgG.

    PubMed

    Owens, Gregory P; Ritchie, Alanna; Rossi, Andrea; Schaller, Kristin; Wemlinger, Scott; Schumann, Hannah; Shearer, Andrew; Verkman, Alan S; Bennett, Jeffrey L

    2015-05-01

    Neuromyelitis optica-immunoglobulin G (NMO-IgG) binds to aquaporin-4 (AQP4) water channels in the central nervous system leading to immune-mediated injury. We have previously demonstrated that a high proportion of CSF plasma cells of NMO patients produce antibody to the extracellular domains of the AQP4 protein and that recombinant IgG (rAb) derived from these cells recapitulate pathogenic features of disease. We performed a comprehensive mutational analysis of the three extracellular loops of the M23 isoform of human AQP4 using both serial and single point mutations, and we evaluated the effects on binding of NMO AQP4-reactive rAbs by quantitative immunofluorescence. Whereas all NMO rAbs required conserved loop C ((137)TP(138) and Val(150)) and loop E ((230)HW(231)) amino acids for binding, two broad patterns of NMO-IgG recognition could be distinguished based on differential sensitivity to loop A amino acid changes. Pattern 1 NMO rAbs were insensitive to loop A mutations and could be further discriminated by differential sensitivity to amino acid changes in loop C ((148)TM(149) and His(151)) and loop E (Asn(226) and Glu(228)). Alternatively, pattern 2 NMO rAbs showed significantly reduced binding following amino acid changes in loop A ((63)EKP(65) and Asp(69)) and loop C (Val(141), His(151), and Leu(154)). Amino acid substitutions at (137)TP(138) altered loop C conformation and abolished the binding of all NMO rAbs and NMO-IgG, indicating the global importance of loop C conformation to the recognition of AQP4 by pathogenic NMO Abs. The generation of human NMO rAbs has allowed the first high resolution mapping of extracellular loop amino acids critical for NMO-IgG binding and identified regions of AQP4 extracellular structure that may represent prime targets for drug therapy. PMID:25792738

  15. A Tariff for Reactive Power

    SciTech Connect

    Kueck, John D; Kirby, Brendan J; Li, Fangxing; Tufon, Christopher; Isemonger, Alan

    2008-07-01

    Two kinds of power are required to operate an electric power system: real power, measured in watts, and reactive power, measured in volt-amperes reactive or VARs. Reactive power supply is one of a class of power system reliability services collectively known as ancillary services, and is essential for the reliable operation of the bulk power system. Reactive power flows when current leads or lags behind voltage. Typically, the current in a distribution system lags behind voltage because of inductive loads such as motors. Reactive power flow wastes energy and capacity and causes voltage droop. To correct lagging power flow, leading reactive power (current leading voltage) is supplied to bring the current into phase with voltage. When the current is in phase with voltage, there is a reduction in system losses, an increase in system capacity, and a rise in voltage. Reactive power can be supplied from either static or dynamic VAR sources. Static sources are typically transmission and distribution equipment, such as capacitors at substations, and their cost has historically been included in the revenue requirement of the transmission operator (TO), and recovered through cost-of-service rates. By contrast, dynamic sources are typically generators capable of producing variable levels of reactive power by automatically controlling the generator to regulate voltage. Transmission system devices such as synchronous condensers can also provide dynamic reactive power. A class of solid state devices (called flexible AC transmission system devices or FACTs) can provide dynamic reactive power. One specific device has the unfortunate name of static VAR compensator (SVC), where 'static' refers to the solid state nature of the device (it does not include rotating equipment) and not to the production of static reactive power. Dynamic sources at the distribution level, while more costly would be very useful in helping to regulate local voltage. Local voltage regulation would reduce

  16. The novel ruthenium-gamma-linolenic complex [Ru(2)(aGLA)(4)Cl] inhibits C6 rat glioma cell proliferation and induces changes in mitochondrial membrane potential, increased reactive oxygen species generation and apoptosis in vitro.

    PubMed

    Ribeiro, Geise; Benadiba, Marcel; de Oliveira Silva, Denise; Colquhoun, Alison

    2010-01-01

    The present study reports the synthesis of a novel compound with the formula [Ru(2)(aGLA)4Cl] according to elemental analyses data, referred to as Ru(2)GLA. The electronic spectra of Ru(2)GLA is typical of a mixed valent diruthenium(II,III) carboxylate. Ru(2)GLA was synthesized with the aim of combining and possibly improving the anti-tumour properties of the two active components ruthenium and gamma-linolenic acid (GLA). The properties of Ru(2)GLA were tested in C6 rat glioma cells by analysing cell number, viability, lipid droplet formation, apoptosis, cell cycle distribution, mitochondrial membrane potential and reactive oxygen species. Ru(2)GLA inhibited cell proliferation in a time and concentration dependent manner. Nile Red staining suggested that Ru(2)GLA enters the cells and ICP-AES elemental analysis found an increase in ruthenium from <0.02 to 425 mg/Kg in treated cells. The sub-G1 apoptotic cell population was increased by Ru(2)GLA (22 +/- 5.2%) when analysed by FACS and this was confirmed by Hoechst staining of nuclei. Mitochondrial membrane potential was decreased in the presence of Ru(2)GLA (44 +/- 2.3%). In contrast, the cells which maintained a high mitochondrial membrane potential had an increase (18 +/- 1.5%) in reactive oxygen species generation. Both decreased mitochondrial membrane potential and increased reactive oxygen species generation may be involved in triggering apoptosis in Ru(2)GLA exposed cells. The EC(50) for Ru(2)GLA decreased with increasing time of exposure from 285 microM at 24 h, 211 microM at 48 h to 81 microM at 72 h. In conclusion, Ru(2)GLA is a novel drug with antiproliferative properties in C6 glioma cells and is a potential candidate for novel therapies in gliomas.

  17. Pneumolysin activates neutrophil extracellular trap formation.

    PubMed

    G Nel, J; Theron, A J; Durandt, C; Tintinger, G R; Pool, R; Mitchell, T J; Feldman, C; Anderson, R

    2016-06-01

    The primary objective of the current study was to investigate the potential of the pneumococcal toxin, pneumolysin (Ply), to activate neutrophil extracellular trap (NET) formation in vitro. Isolated human blood neutrophils were exposed to recombinant Ply (5-20 ng ml(-1) ) for 30-90 min at 37°C and NET formation measured using the following procedures to detect extracellular DNA: (i) flow cytometry using Vybrant® DyeCycle™ Ruby; (ii) spectrofluorimetry using the fluorophore, Sytox(®) Orange (5 μM); and (iii) NanoDrop(®) technology. These procedures were complemented by fluorescence microscopy using 4', 6-diamino-2-phenylindole (DAPI) (nuclear stain) in combination with anti-citrullinated histone monoclonal antibodies to visualize nets. Exposure of neutrophils to Ply resulted in relatively rapid (detected within 30-60 min), statistically significant (P < 0·05) dose- and time-related increases in the release of cellular DNA impregnated with both citrullinated histone and myeloperoxidase. Microscopy revealed that NETosis appeared to be restricted to a subpopulation of neutrophils, the numbers of NET-forming cells in the control and Ply-treated systems (10 and 20 ng ml(-1) ) were 4·3 (4·2), 14.3 (9·9) and 16·5 (7·5), respectively (n = 4, P < 0·0001 for comparison of the control with both Ply-treated systems). Ply-induced NETosis occurred in the setting of retention of cell viability, and apparent lack of involvement of reactive oxygen species and Toll-like receptor 4. In conclusion, Ply induces vital NETosis in human neutrophils, a process which may either contribute to host defence or worsen disease severity, depending on the intensity of the inflammatory response during pneumococcal infection. PMID:26749379

  18. Regulation of expression of ABCB1 and LRP genes by mitogen-activated protein kinase/extracellular signal-regulated kinase pathway and its role in generation of side population cells in canine lymphoma cell lines.

    PubMed

    Tomiyasu, Hirotaka; Watanabe, Manabu; Goto-Koshino, Yuko; Fujino, Yasuhito; Ohno, Koichi; Sugano, Sumio; Tsujimoto, Hajime

    2013-06-01

    The concept of the cancer stem cell (CSC) has been recognized as key for elucidation of the mechanisms that confer the multidrug resistance (MDR) phenotype to tumor cells, and the side population (SP) fraction has been shown to be enriched by cells with the CSC phenotype. The purpose of the present study was to identify the mechanism that induces a difference of phenotype between the SP and the remaining major population (MP) using two canine lymphoma cell lines. Expression levels of ABCB1 and LRP genes, which encode efflux pumps, were significantly higher in the SP than in the MP. Microarray analysis revealed up-regulation of the expression of transforming growth factor-β (TGF-β) type II receptor in SP compared with MP, and the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway was more up-regulated in the SP than in the MP. Stimulation of the MAPK/ERK pathway significantly increased the mRNA expression of both ABCB1 and LRP genes. These results indicate increased expression of the efflux pumps through the MAPK/ERK pathway in SP cells.

  19. Emodin Inhibits Homocysteine-Induced C-Reactive Protein Generation in Vascular Smooth Muscle Cells by Regulating PPARγ Expression and ROS-ERK1/2/p38 Signal Pathway.

    PubMed

    Pang, Xiaoming; Liu, Juntian; Li, Yuxia; Zhao, Jingjing; Zhang, Xiaolu

    2015-01-01

    Atherosclerosis is an inflammatory disease. As an inflammatory molecule, C-reactive protein (CRP) plays a direct role in atherogenesis. It is known that the elevated plasma homocysteine (Hcy) level is an independent risk factor for atherosclerosis. We previously reported that Hcy produces a pro-inflammatory effect by inducing CRP expression in vascular smooth muscle cells (VSMCs). In the present study, we observed effect of emodin on Hcy-induced CRP expression in rat VSMCs and molecular mechanisms. The in vitro results showed that pretreatment of VSMCs with emodin inhibited Hcy-induced mRNA and protein expression of CRP in a concentration-dependent manner. The in vivo experiments displayed that emodin not only inhibited CRP expression in the vessel walls in mRNA and protein levels, but also reduced the circulating CRP level in hyperhomocysteinemic rats. Further study revealed that emodin diminished Hcy-stimulated generation of reactive oxygen species (ROS), attenuated Hcy-activated phosphorylation of ERK1/2 and p38, and upregulated Hcy-inhibited expression of peroxisome proliferator-activated receptor gamma (PPARγ) in VSMCs. These demonstrate that emodin is able to inhibit Hcy-induced CRP generation in VSMCs, which is related to interfering with ROS-ERK1/2/p38 signal pathway and upregulating PPARγ expression. The present study provides new evidence for the anti-inflammatory and anti-atherosclerotic effects of emodin.

  20. Sodium nitrite enhances generation of reactive oxygen species that decrease antioxidant power and inhibit plasma membrane redox system of human erythrocytes.

    PubMed

    Ansari, Fariheen Aisha; Mahmood, Riaz

    2016-08-01

    Nitrite/nitrate salts are used in fertilizers and as food preservatives. Human exposure to high levels of nitrite results in its uptake and subsequent entry into blood where it can interact with erythrocytes. We show that treatment of human erythrocytes with sodium nitrite (NaNO2 ) results in a dose-dependent increase in the production of reactive oxygen species. This was accompanied by a decrease in the antioxidant power which lowered the free radical quenching and metal-reducing ability. NaNO2 treatment also inhibited plasma membrane redox system (PMRS) of erythrocytes. These changes increase the susceptibility of erythrocytes to oxidative damage, decrease the antioxidant power of whole blood, and can be a major cause of nitrite-induced cellular toxicity. PMID:27214747

  1. Sodium nitrite enhances generation of reactive oxygen species that decrease antioxidant power and inhibit plasma membrane redox system of human erythrocytes.

    PubMed

    Ansari, Fariheen Aisha; Mahmood, Riaz

    2016-08-01

    Nitrite/nitrate salts are used in fertilizers and as food preservatives. Human exposure to high levels of nitrite results in its uptake and subsequent entry into blood where it can interact with erythrocytes. We show that treatment of human erythrocytes with sodium nitrite (NaNO2 ) results in a dose-dependent increase in the production of reactive oxygen species. This was accompanied by a decrease in the antioxidant power which lowered the free radical quenching and metal-reducing ability. NaNO2 treatment also inhibited plasma membrane redox system (PMRS) of erythrocytes. These changes increase the susceptibility of erythrocytes to oxidative damage, decrease the antioxidant power of whole blood, and can be a major cause of nitrite-induced cellular toxicity.

  2. Purification and determination of C-reactive protein and inter-α-trypsin inhibitor heavy chain 4 in dogs after major surgery through generation of specific antibodies.

    PubMed

    Soler, L; García, N; Unzueta, A; Piñeiro, M; Álava, M A; Lampreave, F

    2016-10-15

    Inter-α-trypsin inhibitor heavy chain 4 (ITIH4) and C-reactive protein (CRP) have been isolated from acute phase dog sera by affinity chromatography with insolubilized polyclonal antibodies anti pig Major Acute phase Protein (Pig-MAP) and with p-Aminophenyl Phosphoryl Choline, respectively. Isolated proteins were used to prepare specific polyclonal rabbit antisera that have allowed quantifying their concentration in serum samples by single radial immunodifussion. Both proteins were quantified in sera from female dogs that had undergone ovariohysterectomy (OVH, n=9) or mastectomy (n=10). The observed increases in CRP concentrations showed that surgical traumas induced an acute phase response of a great magnitude in the dogs. In both surgeries a four-fold increase of ITIH4 concentrations was detected. It can be concluded that ITIH4 is a new positive acute phase protein in dogs, as reported in other species.

  3. Purification and determination of C-reactive protein and inter-α-trypsin inhibitor heavy chain 4 in dogs after major surgery through generation of specific antibodies.

    PubMed

    Soler, L; García, N; Unzueta, A; Piñeiro, M; Álava, M A; Lampreave, F

    2016-10-15

    Inter-α-trypsin inhibitor heavy chain 4 (ITIH4) and C-reactive protein (CRP) have been isolated from acute phase dog sera by affinity chromatography with insolubilized polyclonal antibodies anti pig Major Acute phase Protein (Pig-MAP) and with p-Aminophenyl Phosphoryl Choline, respectively. Isolated proteins were used to prepare specific polyclonal rabbit antisera that have allowed quantifying their concentration in serum samples by single radial immunodifussion. Both proteins were quantified in sera from female dogs that had undergone ovariohysterectomy (OVH, n=9) or mastectomy (n=10). The observed increases in CRP concentrations showed that surgical traumas induced an acute phase response of a great magnitude in the dogs. In both surgeries a four-fold increase of ITIH4 concentrations was detected. It can be concluded that ITIH4 is a new positive acute phase protein in dogs, as reported in other species. PMID:27590422

  4. What Is Reactive Arthritis?

    MedlinePlus

    ... Arthritis PDF Version Size: 69 KB November 2014 What is Reactive Arthritis? Fast Facts: An Easy-to- ... Information About Reactive Arthritis and Other Related Conditions What Causes Reactive Arthritis? Sometimes, reactive arthritis is set ...

  5. Extracellular enzymes of Legionella pneumophila.

    PubMed Central

    Thorpe, T C; Miller, R D

    1981-01-01

    All strains of Legionella pneumophila tested produced detectable levels of extracellular protease, phosphatase, lipase, deoxyribonuclease, ribonuclease, and beta-lactamase activity. Weak starch hydrolysis was also demonstrated for all strains. Elastase, collagenase, phospholipase C, hyaluronidase, chondroitinase, neuraminidase, or coagulase were not detected in any of these laboratory-maintained strains. PMID:6268549

  6. A common theme in extracellular fluids of beetles: extracellular superoxide dismutases crucial for balancing ROS in response to microbial challenge

    PubMed Central

    Gretscher, René R.; Streicher, Priska E.; Strauß, Anja S.; Wielsch, Natalie; Stock, Magdalena; Wang, Ding; Boland, Wilhelm; Burse, Antje

    2016-01-01

    Extracellular Cu/Zn superoxide dismutases (SODs) are critical for balancing the level of reactive oxygen species in the extracellular matrix of eukaryotes. In the present study we have detected constitutive SOD activity in the haemolymph and defensive secretions of different leaf beetle species. Exemplarily, we have chosen the mustard leaf beetle, Phaedon cochleariae, as representative model organism to investigate the role of extracellular SODs in antimicrobial defence. Qualitative and quantitative proteome analyses resulted in the identification of two extracellular Cu/Zn SODs in the haemolymph and one in the defensive secretions of juvenile P. cochleariae. Furthermore, quantitative expression studies indicated fat body tissue and defensive glands as the main synthesis sites of these SODs. Silencing of the two SODs revealed one of them, PcSOD3.1, as the only relevant enzyme facilitating SOD activity in haemolymph and defensive secretions in vivo. Upon challenge with the entomopathogenic fungus, Metarhizium anisopliae, PcSOD3.1-deficient larvae exhibited a significantly higher mortality compared to other SOD-silenced groups. Hence, our results serve as a basis for further research on SOD regulated host-pathogen interactions. In defensive secretions PcSOD3.1-silencing affected neither deterrent production nor activity against fungal growth. Instead, we propose another antifungal mechanism based on MRJP/yellow proteins in the defensive exudates. PMID:27068683

  7. Nanosecond Pulsed Electric Field Stimulation of Reactive Oxygen Species in Human Pancreatic Cancer Cells is Ca2+-Dependent

    PubMed Central

    Nuccitelli, Richard; Lui, Kaying; Kreis, Mark; Athos, Brian; Nuccitelli, Pamela

    2013-01-01

    The cellular response to 100 ns pulsed electric fields (nsPEF) exposure includes the formation of transient nanopores in the plasma membrane and organelle membranes, an immediate increase in intracellular Ca2+, an increase in reactive oxygen species (ROS), DNA fragmentation and caspase activation. 100 ns, 30 kV/cm nsPEF stimulates an increase in ROS proportional to the pulse number. This increase is inhibited by the anti-oxidant, Trolox, as well as the presence of Ca2+ chelators in the intracellular and extracellular media. This suggests that the nsPEF-triggered Ca2+ increase is required for ROS generation. PMID:23680664

  8. CONVECTIVE-REACTIVE PROTON-{sup 12}C COMBUSTION IN SAKURAI'S OBJECT (V4334 SAGITTARII) AND IMPLICATIONS FOR THE EVOLUTION AND YIELDS FROM THE FIRST GENERATIONS OF STARS

    SciTech Connect

    Herwig, Falk; Pignatari, Marco; Woodward, Paul R.; Porter, David H.; Rockefeller, Gabriel; Fryer, Chris L.; Bennett, Michael; Hirschi, Raphael

    2011-02-01

    Depending on mass and metallicity as well as evolutionary phase, stars occasionally experience convective-reactive nucleosynthesis episodes. We specifically investigate the situation when nucleosynthetically unprocessed, H-rich material is convectively mixed with an He-burning zone, for example in a convectively unstable shell on top of electron-degenerate cores in asymptotic giant branch stars, young white dwarfs, or X-ray bursting neutron stars. Such episodes are frequently encountered in stellar evolution models of stars of extremely low or zero metal content, such as the first stars. We have carried out detailed nucleosynthesis simulations based on stellar evolution models and informed by hydrodynamic simulations. We focus on the convective-reactive episode in the very late thermal pulse star Sakurai's object (V4334 Sagittarii). Asplund et al. determined the abundances of 28 elements, many of which are highly non-solar, ranging from H, He, and Li all the way to Ba and La, plus the C isotopic ratio. Our simulations show that the mixing evolution according to standard, one-dimensional stellar evolution models implies neutron densities in the He intershell ({approx}< few 10{sup 11} cm{sup -3}) that are too low to obtain a significant neutron capture nucleosynthesis on the heavy elements. We have carried out three-dimensional hydrodynamic He-shell flash convection simulations in 4{pi} geometry to study the entrainment of H-rich material. Guided by these simulations we assume that the ingestion process of H into the He-shell convection zone leads only after some delay time to a sufficient entropy barrier that splits the convection zone into the original one driven by He burning and a new one driven by the rapid burning of ingested H. By making such mixing assumptions that are motivated by our hydrodynamic simulations we obtain significantly higher neutron densities ({approx} few 10{sup 15} cm{sup -3}) and reproduce the key observed abundance trends found in Sakurai

  9. Rhizome extracts of Curcuma zedoaria Rosc induce caspase dependant apoptosis via generation of reactive oxygen species in filarial parasite Setaria digitata in vitro.

    PubMed

    Senathilake, K S; Karunanayake, E H; Samarakoon, S R; Tennekoon, K H; de Silva, E D

    2016-08-01

    ), superoxide dismutase (SOD) and catalase activities, increased reactive oxygen levels (ROS) and lipid peroxidation were also observed indicating that an apoptotic event is induced by reactive oxygen species. PMID:27174667

  10. Elucidation of the interplay between Fe(II), Fe(III), and dopamine with relevance to iron solubilization and reactive oxygen species generation by catecholamines.

    PubMed

    Sun, Yingying; Pham, A Ninh; Waite, T David

    2016-06-01

    The non-enzymatically catalyzed oxidation of dopamine (DA) and the resultant formation of powerful oxidants such as the hydroxyl radical ((•) OH) through 'Fenton chemistry' in the presence of iron within dopaminergic neurons are thought to contribute to the damage of cells or even lead to neuronal degenerative diseases such as Parkinson's disease. An understanding of DA oxidation as well as the transformation of the intermediates that are formed in the presence of iron under physiological conditions is critical to understanding the mechanism of DA and iron induced oxidative stress. In this study, the generation of H2 O2 through the autoxidation and iron-catalyzed oxidation of DA, the formation of the dominant complex via the direct reaction with Fe(II) and Fe(III) in both oxygen saturated and deoxygenated conditions and the oxidation of Fe(II) in the presence of DA at physiological pH 7.4 were investigated. The oxidation of DA resulted in the generation of significant amounts of H2 O2 with this process accelerated significantly in the presence of Fe(II) and Fe(III). At high DA:Fe(II) ratios, the results from this study suggest that DA plays a protective role by complexing Fe(II) and preventing it from reacting with the generated H2 O2 . However, the accumulation of H2 O2 may result in cellular damage as high intracellular H2 O2 concentrations will result in the oxidation of remaining Fe(II) mainly through the peroxidation pathway. At low DA:Fe(II) ratios however, it is likely that DA will act as a pro-oxidant by generating H2 O2 which, in the presence of Fe(II), will result in the production of strongly oxidizing (•) OH radicals. Powerful oxidants such as the hydroxyl radical ((•) OH) have previously been thought to be generated through the interplay between dopamine (DA) and iron, contributing to damage to cells and, potentially, leading to neuronal degenerative diseases such as Parkinson's disease. Our results suggest that DA plays a dual role as high DA

  11. Conjugates of gonadotropin releasing hormone (GnRH) with carminic acid: Synthesis, generation of reactive oxygen species (ROS) and biological evaluation.

    PubMed

    Lev-Goldman, Vered; Mester, Brenda; Ben-Aroya, Nurit; Hanoch, Tamar; Rupp, Barbara; Stanoeva, Tsvetanka; Gescheidt, Georg; Seger, Rony; Koch, Yitzhak; Weiner, Lev; Fridkin, Mati

    2008-07-15

    We synthesized two carminic acid (7-alpha-d-glucopyranosyl-9,10-dihydro-3,5,6,8-tetrahydroxy-1-methyl-9,10-dioxo-2-anthracene carboxlic acid, CA)-GnRH conjugates to be used as a model for potential photoactive targeted compounds. CA was conjugated to the epsilon-amino group of [d-Lys(6)]GnRH through its carboxylic moiety or via a beta-alanine spacer (beta-ala). Redox potentials of CA and its conjugates were determined. We used electron spin resonance (ESR) and spin trapping techniques to study the light-stimulated redox properties of CA and its CA-GnRH conjugates. Upon irradiation, the compounds stimulated the formation of reactive oxygen species (ROS), that is, singlet oxygen ((1)O(2)) and oxygen radicals (O(2)(-*) and OH(*)). Both conjugates exhibited higher ROS production than the non-conjugated CA. The bioactivity properties of the CA conjugates and the parent peptide, [d-Lys(6)]GnRH, were tested on primary rat pituitary cells. We found that the conjugates preserved the bioactivity of GnRH as illustrated by their capability to induce ERK phosphorylation and LH release. PMID:18571926

  12. Overexpression of Lon contributes to survival and aggressive phenotype of cancer cells through mitochondrial complex I-mediated generation of reactive oxygen species.

    PubMed

    Cheng, C-W; Kuo, C-Y; Fan, C-C; Fang, W-C; Jiang, S S; Lo, Y-K; Wang, T-Y; Kao, M-C; Lee, A Y-L

    2013-06-20

    Lon protease is a multifunction protein and operates in protein quality control and stress response pathways in mitochondria. Human Lon is upregulated under oxidative and hypoxic stresses that represent the stress phenotypes of cancer. However, little literature undertakes comprehensive and detailed investigations on the tumorigenic role of Lon. Overexpression of Lon promotes cell proliferation, apoptotic resistance to stresses, and transformation. Furthermore, Lon overexpression induces the production of mitochondrial reactive oxygen species (ROS) that result from Lon-mediated upregulation of NDUFS8, a mitochondrial Fe-S protein in complex I of electron transport chain. Increased level of mitochondrial ROS promotes cell proliferation, cell survival, cell migration, and epithelial-mesenchymal transition through mitogen-activated protein kinase (MAPK) and Ras-ERK activation. Overall, the present report for the first time demonstrates the role of Lon overexpression in tumorigenesis. Lon overexpression gives an apoptotic resistance to stresses and induces mitochondrial ROS production through Complex I as signaling molecules to activate Ras and MAPK signaling, giving the survival advantages and adaptation to cancer cells. Finally, in silico and immunohistochemistry analysis showed that Lon is overexpressed specifically in various types of cancer tissue including oral cancer.

  13. Hexane extracts of garlic cloves induce apoptosis through the generation of reactive oxygen species in Hep3B human hepatocarcinoma cells.

    PubMed

    Kim, Hye Jeong; Han, Min Ho; Kim, Gi Young; Choi, Young-Whan; Choi, Yung Hyun

    2012-11-01

    Garlic (Allium sativum) compounds have recently received increasing attention due to their cancer chemopreventive properties, and their anticancer activities are extensively reported in many cancer cell lines. However, the anticancer activity and the signaling pathway associated with the induction of apoptosis by extracts of garlic cloves have not been elucidated. In this study, we examined the effects of hexane extracts of garlic cloves (HEGCs) on reactive oxygen species (ROS) production and the association of these effects with apoptotic cell death, using a Hep3B human hepatocarcinoma cell line in vitro. The results demonstrated that HEGCs mediate ROS production, and that this mediation is followed by a collapse of mitochondrial membrane potential (MMP, ΔΨm), the downregulation of anti-apoptotic Bcl-2 and Bcl-xL and the activation of caspase-9 and -3. HEGCs also promoted the activation of caspase-8 and the downregulation of Bid, a BH3-only pro-apoptotic member of the Bcl-2. However, the apoptotic phenomena displayed by HEGCs were significantly diminished by the presence of z-VAD-fmk (non-selective caspase inhibitor). Moreover, N-acetyl-L-cysteine (NAC), a widely used ROS scavenger, effectively blocked the HEGC-induced apoptotic effects via the inhibition of ROS production and MMP collapse. These observations clearly indicate that HEGC-induced ROS are key mediators of MMP collapse, which leads to the induction of apoptosis, followed by caspase activation.

  14. Yno1p/Aim14p, a NADPH-oxidase ortholog, controls extramitochondrial reactive oxygen species generation, apoptosis, and actin cable formation in yeast.

    PubMed

    Rinnerthaler, Mark; Büttner, Sabrina; Laun, Peter; Heeren, Gino; Felder, Thomas K; Klinger, Harald; Weinberger, Martin; Stolze, Klaus; Grousl, Tomas; Hasek, Jiri; Benada, Oldrich; Frydlova, Ivana; Klocker, Andrea; Simon-Nobbe, Birgit; Jansko, Bettina; Breitenbach-Koller, Hannelore; Eisenberg, Tobias; Gourlay, Campbell W; Madeo, Frank; Burhans, William C; Breitenbach, Michael

    2012-05-29

    The large protein superfamily of NADPH oxidases (NOX enzymes) is found in members of all eukaryotic kingdoms: animals, plants, fungi, and protists. The physiological functions of these NOX enzymes range from defense to specialized oxidative biosynthesis and to signaling. In filamentous fungi, NOX enzymes are involved in signaling cell differentiation, in particular in the formation of fruiting bodies. On the basis of bioinformatics analysis, until now it was believed that the genomes of unicellular fungi like Saccharomyces cerevisiae and Schizosaccharomyces pombe do not harbor genes coding for NOX enzymes. Nevertheless, the genome of S. cerevisiae contains nine ORFs showing sequence similarity to the catalytic subunits of mammalian NOX enzymes, only some of which have been functionally assigned as ferric reductases involved in iron ion transport. Here we show that one of the nine ORFs (YGL160W, AIM14) encodes a genuine NADPH oxidase, which is located in the endoplasmic reticulum (ER) and produces superoxide in a NADPH-dependent fashion. We renamed this ORF YNO1 (yeast NADPH oxidase 1). Overexpression of YNO1 causes YCA1-dependent apoptosis, whereas deletion of the gene makes cells less sensitive to apoptotic stimuli. Several independent lines of evidence point to regulation of the actin cytoskeleton by reactive oxygen species (ROS) produced by Yno1p.

  15. Bamboo Vinegar Decreases Inflammatory Mediator Expression and NLRP3 Inflammasome Activation by Inhibiting Reactive Oxygen Species Generation and Protein Kinase C-α/δ Activation

    PubMed Central

    Ka, Shuk-Man; Chen, Ann; Tasi, Yu-Ling; Liu, May-Lan; Chiu, Yi-Chich; Hua, Kuo-Feng

    2013-01-01

    Bamboo vinegar (BV), a natural liquid derived from the condensation produced during bamboo charcoal production, has been used in agriculture and as a food additive, but its application to immune modulation has not been reported. Here, we demonstrated that BV has anti-inflammatory activities both in vitro and in vivo. BV reduced inducible nitric oxide synthase expression and nitric oxide levels in, and interleukin-6 secretion by, lipopolysaccharide-activated macrophages without affecting tumor necrosis factor-α secretion and cyclooxygenase-2 expression. The mechanism for the anti-inflammatory effect of BV involved decreased reactive oxygen species production and protein kinase C-α/δ activation. Furthermore, creosol (2-methoxy-4-methylphenol) was indentified as the major anti-inflammatory compound in BV. Impaired cytokine expression and NLR family, pyrin domain-containing 3 (NLRP3) inflammasome activation was seen in mice treated with creosol. These findings provide insights into how BV regulates inflammation and suggest that it may be a new source for the development of anti-inflammatory agents or a healthy supplement for preventing and ameliorating inflammation- and NLRP3 inflammasome-related diseases, including metabolic syndrome. PMID:24124509

  16. Impact of solar UV radiation on toxicity of ZnO nanoparticles through photocatalytic reactive oxygen species (ROS) generation and photo-induced dissolution

    EPA Science Inventory

    The present study investigated the impact of solar UV radiation on ZnO nanoparticle toxicity through photocatalytic ROS generation and photo-induced dissolution. Toxicity of ZnO nanoparticles to Daphnia magna was examined under laboratory light versus simulated solar UV radiatio...

  17. Extracellular enzyme kinetics scale with resource availability

    EPA Science Inventory

    Microbial community metabolism relies on external digestion, mediated by extracellular enzymes that break down complex organic matter into molecules small enough for cells to assimilate. We analyzed the kinetics of 40 extracellular enzymes that mediate the degradation and assimi...

  18. Formation and Reactivity of Biogenic Iron Microminerals

    SciTech Connect

    Beveridge, Terrance J.; Ferris, F. Grant

    1999-06-01

    The overall purpose of the project is to explore and quantify the processes that control the formation and reactivity of biogenic iron microminerals, and the impact of these processes on the solubility of metal contaminants, e.g., uranium, chromium and nickel. The research addresses how surface components of bacterial cells, extracellular organic material, and the aqueous geochemistry of the DIRB microenvironment impacts the mineralogy, chemical state and micromorphology of reduced iron phases.

  19. Analysis of Yeast Extracellular Vesicles.

    PubMed

    Rodrigues, Marcio L; Oliveira, Debora L; Vargas, Gabriele; Girard-Dias, Wendell; Franzen, Anderson J; Frasés, Susana; Miranda, Kildare; Nimrichter, Leonardo

    2016-01-01

    Extracellular vesicles (EV) are important carriers of biologically active components in a number of organisms, including fungal cells. Experimental characterization of fungal EVs suggested that these membranous compartments are likely involved in the regulation of several biological events. In fungal pathogens, these events include mechanisms of disease progression and/or control, suggesting potential targets for therapeutic intervention or disease prophylaxis. In this manuscript we describe methods that have been used in the last 10 years for the characterization of EVs produced by yeast forms of several fungal species. Experimental approaches detailed in this chapter include ultracentrifugation methods for EV fractionation, chromatographic approaches for analysis of EV lipids, microscopy techniques for analysis of both intracellular and extracellular vesicular compartments, interaction of EVs with host cells, and physical chemical analysis of EVs by dynamic light scattering. PMID:27665559

  20. Analysis of Yeast Extracellular Vesicles.

    PubMed

    Rodrigues, Marcio L; Oliveira, Debora L; Vargas, Gabriele; Girard-Dias, Wendell; Franzen, Anderson J; Frasés, Susana; Miranda, Kildare; Nimrichter, Leonardo

    2016-01-01

    Extracellular vesicles (EV) are important carriers of biologically active components in a number of organisms, including fungal cells. Experimental characterization of fungal EVs suggested that these membranous compartments are likely involved in the regulation of several biological events. In fungal pathogens, these events include mechanisms of disease progression and/or control, suggesting potential targets for therapeutic intervention or disease prophylaxis. In this manuscript we describe methods that have been used in the last 10 years for the characterization of EVs produced by yeast forms of several fungal species. Experimental approaches detailed in this chapter include ultracentrifugation methods for EV fractionation, chromatographic approaches for analysis of EV lipids, microscopy techniques for analysis of both intracellular and extracellular vesicular compartments, interaction of EVs with host cells, and physical chemical analysis of EVs by dynamic light scattering.

  1. Extracellular matrix in ovarian follicles.

    PubMed

    Rodgers, R J; Irving-Rodgers, H F; van Wezel, I L

    2000-05-25

    A lot is known about the control of the development of ovarian follicles by growth factors and hormones, but less is known about the roles of extracellular matrix in the control of follicular growth and development. In this review we focus on the specialized extracellular matrix of the basal laminas that are present in ovarian follicles. These include the follicular basal lamina itself, the Call-Exner bodies of the membrana granulosa, the subendothelial and arteriole smooth muscle basal laminas in the theca, and the basal lamina-like material of the thecal matrix. We discuss the evidence that during follicle development the follicular basal lamina changes in composition, that many of its components are produced by the granulosa cells, and that the follicular basal laminas of different follicles have different ultrastructural appearances, linked to the shape of the aligning granulosa cells. All these studies suggest that the follicular basal lamina is extremely dynamic during follicular development. PMID:10963877

  2. Diffusion in Brain Extracellular Space

    PubMed Central

    Syková, Eva; Nicholson, Charles

    2009-01-01

    Diffusion in the extracellular space (ECS) of the brain is constrained by the volume fraction and the tortuosity and a modified diffusion equation represents the transport behavior of many molecules in the brain. Deviations from the equation reveal loss of molecules across the blood-brain barrier, through cellular uptake, binding or other mechanisms. Early diffusion measurements used radiolabeled sucrose and other tracers. Presently, the real-time iontophoresis (RTI) method is employed for small ions and the integrative optical imaging (IOI) method for fluorescent macromolecules, including dextrans or proteins. Theoretical models and simulations of the ECS have explored the influence of ECS geometry, effects of dead-space microdomains, extracellular matrix and interaction of macromolecules with ECS channels. Extensive experimental studies with the RTI method employing the cation tetramethylammonium (TMA) in normal brain tissue show that the volume fraction of the ECS typically is about 20% and the tortuosity about 1.6 (i.e. free diffusion coefficient of TMA is reduced by 2.6), although there are regional variations. These parameters change during development and aging. Diffusion properties have been characterized in several interventions, including brain stimulation, osmotic challenge and knockout of extracellular matrix components. Measurements have also been made during ischemia, in models of Alzheimer's and Parkinson's diseases and in human gliomas. Overall, these studies improve our conception of ECS structure and the roles of glia and extracellular matrix in modulating the ECS microenvironment. Knowledge of ECS diffusion properties are valuable in contexts ranging from understanding extrasynaptic volume transmission to the development of paradigms for drug delivery to the brain. PMID:18923183

  3. Extracellular secretion of recombinant proteins

    SciTech Connect

    Linger, Jeffrey G.; Darzins, Aldis

    2014-07-22

    Nucleic acids encoding secretion signals, expression vectors containing the nucleic acids, and host cells containing the expression vectors are disclosed. Also disclosed are polypeptides that contain the secretion signals and methods of producing polypeptides, including methods of directing the extracellular secretion of the polypeptides. Exemplary embodiments include cellulase proteins fused to secretion signals, methods to produce and isolate these polypeptides, and methods to degrade lignocellulosic biomass.

  4. Sodium arsenite induced reactive oxygen species generation, nuclear factor (erythroid-2 related) factor 2 activation, heme oxygenase-1 expression, and glutathione elevation in Chang human hepatocytes.

    PubMed

    Li, Bing; Li, Xin; Zhu, Bo; Zhang, Xinyu; Wang, Yi; Xu, Yuanyuan; Wang, Huihui; Hou, Yongyong; Zheng, Quanmei; Sun, Guifan

    2013-07-01

    Liver is one of the major target organs of arsenic toxicity and carcinogenesis. Nuclear factor (erythroid-2 related) factor 2 (Nrf2) is a redox-sensitive transcription factor, regulating critically cellular defense responses against the toxic metallic arsenic in many cell types and tissues. This study was conducted to evaluate the hepato-cellular Nrf2 and Nrf2-regulated antioxidant reactions of sodium arsenite exposure in Chang human hepatocytes. Nrf2 and heme oxygenase-1 (HO-1) protein levels were detected by Western blot, and Nrf2-regulated HO-1 mRNA expressions were determined using semiquantitative RT-PCR by 0∼50 μmol/L of sodium arsenite exposure for 2, 6, 12, and 24 h. We also observed the changes of intracellular reactive oxygen species (ROS) and total cellular glutathione (GSH) by flow cytometry and spectrophotometry, respectively. Our results showed that intracellular ROS were both dose- and time-dependent induced by inorganic arsenic; Cellular Nrf2 protein levels increased rapidly after 2 h of exposure, elevated significantly at 6 h, and reached the maximum at 12 h. The endogenous Nrf2-regulated downstream HO-1 mRNA and protein were also induced dramatically and lasted for as long as 24 h. In addition, intracellular GSH levels elevated in consistent with Nrf2 activation. Our findings here suggest that inorganic arsenic alters cellular redox balance in hepatocytes to trigger Nrf2-regulated antioxidant responses promptly, which may represent an adaptive cell defense mechanism against inorganic arsenic induced liver injuries and hepatoxicity.

  5. Binding of EBP50 to Nox organizing subunit p47phox is pivotal to cellular reactive species generation and altered vascular phenotype.

    PubMed

    Al Ghouleh, Imad; Meijles, Daniel N; Mutchler, Stephanie; Zhang, Qiangmin; Sahoo, Sanghamitra; Gorelova, Anastasia; Henrich Amaral, Jefferson; Rodríguez, Andrés I; Mamonova, Tatyana; Song, Gyun Jee; Bisello, Alessandro; Friedman, Peter A; Cifuentes-Pagano, M Eugenia; Pagano, Patrick J

    2016-09-01

    Despite numerous reports implicating NADPH oxidases (Nox) in the pathogenesis of many diseases, precise regulation of this family of professional reactive oxygen species (ROS) producers remains unclear. A unique member of this family, Nox1 oxidase, functions as either a canonical or hybrid system using Nox organizing subunit 1 (NoxO1) or p47(phox), respectively, the latter of which is functional in vascular smooth muscle cells (VSMC). In this manuscript, we identify critical requirement of ezrin-radixin-moesin-binding phosphoprotein 50 (EBP50; aka NHERF1) for Nox1 activation and downstream responses. Superoxide (O2 (•-)) production induced by angiotensin II (AngII) was absent in mouse EBP50 KO VSMC vs. WT. Moreover, ex vivo incubation of aortas with AngII showed a significant increase in O2 (•-) in WT but not EBP50 or Nox1 nulls. Similarly, lipopolysaccharide (LPS)-induced oxidative stress was attenuated in femoral arteries from EBP50 KO vs. WT. In silico analyses confirmed by confocal microscopy, immunoprecipitation, proximity ligation assay, FRET, and gain-/loss-of-function mutagenesis revealed binding of EBP50, via its PDZ domains, to a specific motif in p47(phox) Functional studies revealed AngII-induced hypertrophy was absent in EBP50 KOs, and in VSMC overexpressing EBP50, Nox1 gene silencing abolished VSMC hypertrophy. Finally, ex vivo measurement of lumen diameter in mouse resistance arteries exhibited attenuated AngII-induced vasoconstriction in EBP50 KO vs. WT. Taken together, our data identify EBP50 as a previously unidentified regulator of Nox1 and support that it promotes Nox1 activity by binding p47(phox) This interaction is pivotal for agonist-induced smooth muscle ROS, hypertrophy, and vasoconstriction and has implications for ROS-mediated physiological and pathophysiological processes.

  6. Novel HLA-B27-restricted epitopes from Chlamydia trachomatis generated upon endogenous processing of bacterial proteins suggest a role of molecular mimicry in reactive arthritis.

    PubMed

    Alvarez-Navarro, Carlos; Cragnolini, Juan J; Dos Santos, Helena G; Barnea, Eilon; Admon, Arie; Morreale, Antonio; López de Castro, José A

    2013-09-01

    Reactive arthritis (ReA) is an HLA-B27-associated spondyloarthropathy that is triggered by diverse bacteria, including Chlamydia trachomatis, a frequent intracellular parasite. HLA-B27-restricted T-cell responses are elicited against this bacterium in ReA patients, but their pathogenetic significance, autoimmune potential, and relevant epitopes are unknown. High resolution and sensitivity mass spectrometry was used to identify HLA-B27 ligands endogenously processed and presented by HLA-B27 from three chlamydial proteins for which T-cell epitopes were predicted. Fusion protein constructs of ClpC, Na(+)-translocating NADH-quinone reductase subunit A, and DNA primase were expressed in HLA-B27(+) cells, and their HLA-B27-bound peptidomes were searched for endogenous bacterial ligands. A non-predicted peptide, distinct from the predicted T-cell epitope, was identified from ClpC. A peptide recognized by T-cells in vitro, NQRA(330-338), was detected from the reductase subunit. This is the second HLA-B27-restricted T-cell epitope from C. trachomatis with relevance in ReA demonstrated to be processed and presented in live cells. A novel peptide from the DNA primase, DNAP(211-223), was also found. This was a larger variant of a known epitope and was highly homologous to a self-derived natural ligand of HLA-B27. All three bacterial peptides showed high homology with human sequences containing the binding motif of HLA-B27. Molecular dynamics simulations further showed a striking conformational similarity between DNAP(211-223) and its homologous and much more flexible human-derived HLA-B27 ligand. The results suggest that molecular mimicry between HLA-B27-restricted bacterial and self-derived epitopes is frequent and may play a role in ReA.

  7. Folate Deficiency Triggered Apoptosis of Synoviocytes: Role of Overproduction of Reactive Oxygen Species Generated via NADPH Oxidase/Mitochondrial Complex II and Calcium Perturbation

    PubMed Central

    Wu, Jin-Yi; Huang, Chin-Chin; Lu, Fung-Jou; Chuang, Yi-Wen; Chang, Pey-Jium; Chen, Kai-Hua; Hong, Chang-Zern; Yeh, Rang-Hui; Liu, Tsan-Zon; Chen, Ching-Hsein

    2016-01-01

    Despite a plethora of literature has documented that osteoarthritis (OA) is veritably associated with oxidative stress-mediated chondrocyte death and matrix degradation, yet the possible involvement of synoviocyte abnormality as causative factor of OA has not been thoroughly investigated. For this reason, we conduct the current studies to insight into how synoviocytes could respond to an episode of folate-deprived (FD) condition. First, when HIG-82 synoviocytes were cultivated under FD condition, a time-dependent growth impediment was observed and the demise of these cells was demonstrated to be apoptotic in nature mediated through FD-evoked overproduction of reactive oxygen species (ROS) and drastically released of cytosolic calcium (Ca2+) concentrations. Next, we uncovered that FD-evoked ROS overproduction could only be strongly suppressed by either mitochondrial complex II inhibitors (TTFA and carboxin) or NADPH oxidase (NOX) inhibitors (AEBSF and apocynin), but not by mitochondrial complex I inhibitor (rotenone) and mitochondrial complex III inhibitor (antimycin A). Interestingly, this selective inhibition of FD-evoked ROS by mitochondrial complex II and NOX inhibitors was found to correlate excellently with the suppression of cytosolic Ca2+ release and reduced the magnitude of the apoptotic TUNEL-positive cells. Taken together, we present the first evidence here that FD-triggered ROS overproduction in synoviocytes is originated from mitochondrial complex II and NOX. Both elevated ROS in tandem with cytosolic Ca2+ overload serve as final arbitrators for apoptotic lethality of synoviocytes cultivated under FD condition. Thus, folate supplementation may be beneficial to patients with OA. PMID:26771387

  8. A comparative photochemical study on the behavior of 3,3'-dihydroxyflavone and its complex with La(III) as generators and quenchers of reactive oxygen species.

    PubMed

    Ferrari, Gabriela V; Montaña, M Paulina; Dimarco, Frida C D; Debattista, Nora B; Pappano, Nora B; Massad, Walter A; García, Norman A

    2013-07-01

    A 1:1 complex between 3,3'-dihydroxyflavone (DHF) and La(III) (DHF-La(III)) is formed in methanolic solution with the relatively high apparent stability constant value of 2.3×10(6) and a calculated standard entropy change of 88.2 J mol(-1) K(-1), both at 25 °C. The photophysical properties of the complex and the free flavonoid are discussed in comparison to the well known related compound 3-hydroxyflavone. The ligand photogenerates O2((1)Δg) by energy transfer from its excited triplet state ((3)DHF(*)) to dissolved ground state oxygen, with a quantum yield of 0.13. (3)DHF(*) is quenched by La(III) with a rate constant close to the diffusion-controlled value. The respective abilities of the free flavonoid and DHF-La(III) as quenchers of the riboflavin-photogenerated reactive oxygen species singlet molecular oxygen (O2((1)Δg)) and superoxide radical anion (O2(-)) have been investigated. Both individual compounds were photoirradiated with visible light in the presence of the flavin as the only light-absorbing compound. A detailed kinetics and mechanistic study employing polarographic monitoring of oxygen uptake and time resolved detection of O2((1)Δg) phosphorescence indicates that DHF and the complex react with O2((1)Δg) and O2(-) by a non simple mechanism. The former deactivates O2((1)Δg) in a predominant physical fashion, a fact that constitutes a desirable property for antioxidants. It was found that metal chelation greatly enhances the ability of DHF as an overall O2((1)Δg) quencher.

  9. Novel HLA-B27-restricted Epitopes from Chlamydia trachomatis Generated upon Endogenous Processing of Bacterial Proteins Suggest a Role of Molecular Mimicry in Reactive Arthritis*

    PubMed Central

    Alvarez-Navarro, Carlos; Cragnolini, Juan J.; Dos Santos, Helena G.; Barnea, Eilon; Admon, Arie; Morreale, Antonio; López de Castro, José A.

    2013-01-01

    Reactive arthritis (ReA) is an HLA-B27-associated spondyloarthropathy that is triggered by diverse bacteria, including Chlamydia trachomatis, a frequent intracellular parasite. HLA-B27-restricted T-cell responses are elicited against this bacterium in ReA patients, but their pathogenetic significance, autoimmune potential, and relevant epitopes are unknown. High resolution and sensitivity mass spectrometry was used to identify HLA-B27 ligands endogenously processed and presented by HLA-B27 from three chlamydial proteins for which T-cell epitopes were predicted. Fusion protein constructs of ClpC, Na+-translocating NADH-quinone reductase subunit A, and DNA primase were expressed in HLA-B27+ cells, and their HLA-B27-bound peptidomes were searched for endogenous bacterial ligands. A non-predicted peptide, distinct from the predicted T-cell epitope, was identified from ClpC. A peptide recognized by T-cells in vitro, NQRA(330–338), was detected from the reductase subunit. This is the second HLA-B27-restricted T-cell epitope from C. trachomatis with relevance in ReA demonstrated to be processed and presented in live cells. A novel peptide from the DNA primase, DNAP(211–223), was also found. This was a larger variant of a known epitope and was highly homologous to a self-derived natural ligand of HLA-B27. All three bacterial peptides showed high homology with human sequences containing the binding motif of HLA-B27. Molecular dynamics simulations further showed a striking conformational similarity between DNAP(211–223) and its homologous and much more flexible human-derived HLA-B27 ligand. The results suggest that molecular mimicry between HLA-B27-restricted bacterial and self-derived epitopes is frequent and may play a role in ReA. PMID:23867464

  10. Nano-photosensitizers Engineered to Generate a Tunable Mix of Reactive Oxygen Species, for Optimizing Photodynamic Therapy, Using a Microfluidic Device

    PubMed Central

    Yoon, Hyung Ki; Lou, Xia; Chen, Yu-Chih; Koo Lee, Yong-Eun; Yoon, Euisik; Kopelman, Raoul

    2014-01-01

    This work is aimed at engineering photosensitizer embedded nanoparticles (NPs) that produce optimal amount of reactive oxygen species (ROS) for photodynamic therapy (PDT). A revised synthetic approach, coupled with improved analytical tools, resulted in more efficient PDT. Specifically, methylene blue (MB) conjugated polyacrylamide nanoparticles (PAA NPs), with a polyethylene glycol dimethacrylate (PEGDMA, Mn 550) cross-linker, were synthesized so as to improve the efficacy of cancer PDT. The long cross-linker chain, PEGDMA, increases the distance between the conjugated MB molecules so as to avoid self-quenching of the excited states or species, and also enhances the oxygen permeability of the NP matrix, when compared to the previously used shorter cross-linker. The overall ROS production from the MB–PEGDMA PAA NPs was evaluated using the traditional way of monitoring the oxidation rate kinetics of anthracence-9,10-dipropionic acid (ADPA). We also applied singlet oxygen sensor green (SOSG) so as to selectively derive the singlet oxygen (1O2) production rate. This analysis enabled us to investigate the ROS composition mix based on varied MB loading. To effectively obtain the correlation between the ROS productivity and the cell killing efficacy, a microfluidic chip device was employed to provide homogeneous light illumination from an LED for rapid PDT efficacy tests, enabling simultaneous multiple measurements while using only small amounts of NPs sample. This provided multiplexed, comprehensive PDT efficacy assays, leading to the determination of a near optimal loading of MB in a PAA matrix for high PDT efficacy by measuring the light-dose-dependent cell killing effects of the various MB–PEGDMA PAA NPs using C6 glioma cancer cells. PMID:24701030

  11. Binding of EBP50 to Nox organizing subunit p47phox is pivotal to cellular reactive species generation and altered vascular phenotype.

    PubMed

    Al Ghouleh, Imad; Meijles, Daniel N; Mutchler, Stephanie; Zhang, Qiangmin; Sahoo, Sanghamitra; Gorelova, Anastasia; Henrich Amaral, Jefferson; Rodríguez, Andrés I; Mamonova, Tatyana; Song, Gyun Jee; Bisello, Alessandro; Friedman, Peter A; Cifuentes-Pagano, M Eugenia; Pagano, Patrick J

    2016-09-01

    Despite numerous reports implicating NADPH oxidases (Nox) in the pathogenesis of many diseases, precise regulation of this family of professional reactive oxygen species (ROS) producers remains unclear. A unique member of this family, Nox1 oxidase, functions as either a canonical or hybrid system using Nox organizing subunit 1 (NoxO1) or p47(phox), respectively, the latter of which is functional in vascular smooth muscle cells (VSMC). In this manuscript, we identify critical requirement of ezrin-radixin-moesin-binding phosphoprotein 50 (EBP50; aka NHERF1) for Nox1 activation and downstream responses. Superoxide (O2 (•-)) production induced by angiotensin II (AngII) was absent in mouse EBP50 KO VSMC vs. WT. Moreover, ex vivo incubation of aortas with AngII showed a significant increase in O2 (•-) in WT but not EBP50 or Nox1 nulls. Similarly, lipopolysaccharide (LPS)-induced oxidative stress was attenuated in femoral arteries from EBP50 KO vs. WT. In silico analyses confirmed by confocal microscopy, immunoprecipitation, proximity ligation assay, FRET, and gain-/loss-of-function mutagenesis revealed binding of EBP50, via its PDZ domains, to a specific motif in p47(phox) Functional studies revealed AngII-induced hypertrophy was absent in EBP50 KOs, and in VSMC overexpressing EBP50, Nox1 gene silencing abolished VSMC hypertrophy. Finally, ex vivo measurement of lumen diameter in mouse resistance arteries exhibited attenuated AngII-induced vasoconstriction in EBP50 KO vs. WT. Taken together, our data identify EBP50 as a previously unidentified regulator of Nox1 and support that it promotes Nox1 activity by binding p47(phox) This interaction is pivotal for agonist-induced smooth muscle ROS, hypertrophy, and vasoconstriction and has implications for ROS-mediated physiological and pathophysiological processes. PMID:27540115

  12. Reactive free radical generation in vivo in heart and liver of ethanol-fed rats: correlation with radical formation in vitro

    SciTech Connect

    Reinke, L.A.; Lai, E.K.; DuBose, C.M.; McCay, P.B.

    1987-12-01

    Rats fed a high-fat ethanol-containing diet for 2 weeks were found to generate free radicals in liver and heart in vivo. The radicals are believed to be carbon-centered radicals, were detected by administering spin-trapping agents to the rats, and were characterized by electron paramagnetic resonance spectroscopy. The radicals in the liver were demonstrated to be localized in the endoplasmic reticulum. Rats fed ethanol in a low-fat diet showed significantly less free radical generation. Control animals given isocaloric diets without ethanol showed no evidence of free radicals in liver and heart. When liver microsomes prepared from rats fed the high-fat ethanol diet were incubated in a system containing ethanol, NADPH, and a spin-trapping agent, the generation of 1-hydroxyethyl radicals was observed. The latter was verified by using /sup 13/C-substituted ethanol. Microsomes from animals fed the high-fat ethanol-containing diet had higher levels of cytochrome P-450 than microsomes from rats fed the low-fat ethanol-containing diet. The results suggest that the consumption of ethanol results in the production of free radicals in rat liver and heart in vivo that appear to initiate lipid peroxidation.

  13. Oxidatively Generated DNA Damage Following Cu(II)-Catalysis of Dopamine and Related Catecholamine Neurotransmitters and Neurotoxins: Role of Reactive Oxygen Species1

    PubMed Central

    Spencer, Wendy A.; Jeyabalan, Jeyaprakash; Kichambre, Sunita; Gupta, Ramesh C.

    2012-01-01

    There is increasing evidence supporting a causal role of oxidatively damaged DNA in neurodegeneration during the natural aging process and neurodegenerative diseases such as Parkinson’s and Alzheimer’s. The presence of redox-active catecholamine neurotransmitters coupled with the localization of catalytic copper to DNA suggests a plausible role for these agents in the induction of oxidatively generated DNA damage. In this study we have investigated the role of Cu(II)-catalyzed oxidation of several catecholamine neurotransmitters and related neurotoxins to induce oxidatively generated DNA damage. Auto-oxidation of all catechol neurotransmitters and related congeners tested resulted in the formation of nearly a dozen oxidation DNA products resulting in a decomposition pattern that was essentially identical for all agents tested. The presence of Cu(II), and to a lesser extent Fe(III), had no effect on the decomposition pattern but substantially enhanced the DNA product levels by up to 75 fold, with dopamine producing the highest levels of unidentified oxidation DNA products (383 ± 46 adducts/106 nucleotides), comparable to 8-oxo-7,8-dihydro-2′-deoxyguanosine levels under the same conditions (122 ± 19 adducts/106 nucleotides). The addition of sodium azide, 2,2,6,6-tetramethyl-4-piperidone, tiron, catalase, bathocuproine or methional to the dopamine/Cu(II) reaction mixture resulted in a substantial decrease (>90%) in oxidation DNA product levels, indicating a role of singlet oxygen, superoxide, H2O2, Cu(I) and Cu(I)OOH in their formation. While the addition of N-tert-butyl-α-phenylnitrone significantly decreased (67%) dopamine-mediated oxidatively damaged DNA, three other hydroxyl radical scavengers, ascorbic acid, sodium benzoate and mannitol, had little to no effect on these oxidation DNA product levels, suggesting that free hydroxyl radicals may have limited involvement in this dopamine/Cu(II)-mediated oxidatively generated DNA damage. These studies suggest

  14. Oxidatively generated DNA damage after Cu(II) catalysis of dopamine and related catecholamine neurotransmitters and neurotoxins: Role of reactive oxygen species.

    PubMed

    Spencer, Wendy A; Jeyabalan, Jeyaprakash; Kichambre, Sunita; Gupta, Ramesh C

    2011-01-01

    There is increasing evidence supporting a causal role for oxidatively damaged DNA in neurodegeneration during the natural aging process and in neurodegenerative diseases such as Parkinson and Alzheimer. The presence of redox-active catecholamine neurotransmitters coupled with the localization of catalytic copper to DNA suggests a plausible role for these agents in the induction of oxidatively generated DNA damage. In this study we have investigated the role of Cu(II)-catalyzed oxidation of several catecholamine neurotransmitters and related neurotoxins in inducing oxidatively generated DNA damage. Autoxidation of all catechol neurotransmitters and related congeners tested resulted in the formation of nearly a dozen oxidation DNA products resulting in a decomposition pattern that was essentially identical for all agents tested. The presence of Cu(II), and to a lesser extent Fe(III), had no effect on the decomposition pattern but substantially enhanced the DNA product levels by up to 75-fold, with dopamine producing the highest levels of unidentified oxidation DNA products (383±46 adducts/10(6) nucleotides), nearly 3-fold greater than 8-oxo-7,8-dihydro-2'-deoxyguanosine (122±19 adducts/10(6) nucleotides) under the same conditions. The addition of sodium azide, 2,2,6,6-tetramethyl-4-piperidone, tiron, catalase, bathocuproine, or methional to the dopamine/Cu(II) reaction mixture resulted in a substantial decrease (>90%) in oxidation DNA product levels, indicating a role for singlet oxygen, superoxide, H(2)O(2), Cu(I), and Cu(I)OOH in their formation. Whereas the addition of N-tert-butyl-α-phenylnitrone significantly decreased (67%) dopamine-mediated oxidatively damaged DNA, three other hydroxyl radical scavengers, ascorbic acid, sodium benzoate, and mannitol, had little to no effect on these oxidation DNA product levels, suggesting that free hydroxyl radicals may have limited involvement in this dopamine/Cu(II)-mediated oxidatively generated DNA damage. These

  15. Extracellular matrix motion and early morphogenesis.

    PubMed

    Loganathan, Rajprasad; Rongish, Brenda J; Smith, Christopher M; Filla, Michael B; Czirok, Andras; Bénazéraf, Bertrand; Little, Charles D

    2016-06-15

    For over a century, embryologists who studied cellular motion in early amniotes generally assumed that morphogenetic movement reflected migration relative to a static extracellular matrix (ECM) scaffold. However, as we discuss in this Review, recent investigations reveal that the ECM is also moving during morphogenesis. Time-lapse studies show how convective tissue displacement patterns, as visualized by ECM markers, contribute to morphogenesis and organogenesis. Computational image analysis distinguishes between cell-autonomous (active) displacements and convection caused by large-scale (composite) tissue movements. Modern quantification of large-scale 'total' cellular motion and the accompanying ECM motion in the embryo demonstrates that a dynamic ECM is required for generation of the emergent motion patterns that drive amniote morphogenesis. PMID:27302396

  16. Extracellular matrix motion and early morphogenesis.

    PubMed

    Loganathan, Rajprasad; Rongish, Brenda J; Smith, Christopher M; Filla, Michael B; Czirok, Andras; Bénazéraf, Bertrand; Little, Charles D

    2016-06-15

    For over a century, embryologists who studied cellular motion in early amniotes generally assumed that morphogenetic movement reflected migration relative to a static extracellular matrix (ECM) scaffold. However, as we discuss in this Review, recent investigations reveal that the ECM is also moving during morphogenesis. Time-lapse studies show how convective tissue displacement patterns, as visualized by ECM markers, contribute to morphogenesis and organogenesis. Computational image analysis distinguishes between cell-autonomous (active) displacements and convection caused by large-scale (composite) tissue movements. Modern quantification of large-scale 'total' cellular motion and the accompanying ECM motion in the embryo demonstrates that a dynamic ECM is required for generation of the emergent motion patterns that drive amniote morphogenesis.

  17. Photochemical behavior of carbon nanotubes in natural waters: reactive oxygen species production and effects on •OH generation by Suwannee River fulvic acid, nitrate, and Fe (III).

    PubMed

    Zhou, Lei; Zhang, Ya; Wang, Qi; Ferronato, Corinne; Yang, Xi; Chovelon, Jean-Marc

    2016-10-01

    The photochemical activities of three kinds of carbon nanotubes (CNTs) were investigated in the present study. Efficient procedures of dispersing the three kinds of carbon nanotubes in water were established, and the quantitative analysis methods were also developed by TOC-absorbance method. High pH value or low ionic strength of the colloidal solutions facilitated the dispersion of CNTs. The suspensions of three kinds of CNTs could generate singlet oxygen ((1)O2) and hydroxyl radical (•OH) under irradiation of simulated sunlight, while superoxide radical (O2 (•-)) was not detected. The steady-state concentrations of (1)O2 and •OH generated by these CNTs were also determined. The presence of CNTs in natural waters can affect the photochemical behavior of water constituents, such as nitrate, dissolved organic matter, and Fe(3+). Specifically, in nitrate solution, the presence of CNTs could inhibit the generation of •OH by nitrate through light screening effect, while the quenching effect of hydroxyl radicals by CNTs was not observed. Besides light screening effect, the three kinds of CNTs used in the experiments also have a strong inhibiting effect on the ability of DOM to produce •OH by binding to the active sites. Moreover, the adsorption of Fe(3+) on MWCNT-OH and MWCNT-COOH could lead to its inactivation of formation of •OH in acidic conditions. However, the presence of the three kinds of CNTs did not affect the ligand-to-metal charge transfer (LMCT) reaction of DOM-Fe (III) complex.

  18. The 'reactive

    NASA Astrophysics Data System (ADS)

    Battista Piccardo, Giovanni; Guarnieri, Luisa

    2010-05-01

    The Ligurian ophiolitic peridotites [South Lanzo, Erro-Tobbio, Internal Ligurides and Corsica] are characterized by the abundance of spinel(Sp) peridotites showing depleted compositions and ranging from Cpx-poor Sp lherzolites to Sp harzburgites. They were recognized in the last decades as refractory residua by MORB-forming partial melting of the asthenosphere, and were similar to abyssal peridotites. Recent structural and compositional studies promoted a better understanding of their structural and compositional features and their genetic processes. In the field these depleted peridotites replace with primary contacts pyroxenite-bearing fertile Sp lherzolites that have been recognized as sub-continental lithospheric mantle. Field relationships evidence that decametric-hectometric bodies of pristine pyroxenite-veined lithospheric Sp lherzolites are preserved as structural remnants within the km-scale masses of depleted peridotites. The depleted peridotites show coarse-grained recrystallized textures and reaction micro-structures indicating pyroxene dissolution and olivine precipitation that have been considered as records of melt/peridotite interaction during reactive diffuse porous flow of undersaturated melts. They show, moreover, contrasting bulk and mineral chemistries that cannot be produced by simple partial melting and melt extraction. In particular, their bulk compositions are depleted in SiO2 and enriched in FeO with respect to refractory residua after any kind of partial melting, as calculated by Niu (1997), indicating that they cannot be formed by simple partial melting and melt extraction processes. Moreover, TiO2 content in Sp is usually significantly higher (up to 0.8-1.0 wt%) than typical TiO2 contents of spinels (usually < 0.1-0.2 wt %) in fertile mantle peridotites and melting refractory residua, indicating that spinel attained element equilibration with a Ti-bearing basaltic melt. The depleted peridotites usually show strongly variable Cpx modal

  19. Reactive oxygen species generated by a heat shock protein (Hsp) inducing product contributes to Hsp70 production and Hsp70-mediated protective immunity in Artemia franciscana against pathogenic vibrios.

    PubMed

    Baruah, Kartik; Norouzitallab, Parisa; Linayati, Linayati; Sorgeloos, Patrick; Bossier, Peter

    2014-10-01

    The cytoprotective role of heat shock protein (Hsp70) described in a variety of animal disease models, including vibriosis in farmed aquatic animals, suggests that new protective strategies relying upon the use of compounds that selectively turn on Hsp genes could be developed. The product Tex-OE® (hereafter referred to as Hspi), an extract from the skin of the prickly pear fruit, Opuntia ficus indica, was previously shown to trigger Hsp70 synthesis in a non-stressful situation in a variety of animals, including in a gnotobiotically (germ-free) cultured brine shrimp Artemia franciscana model system. This model system offers great potential for carrying out high-throughput, live-animal screens of compounds that have health benefit effects. By using this model system, we aimed to disclose the underlying cause behind the induction of Hsp70 by Hspi in the shrimp host, and to determine whether the product affects the shrimp in inducing resistance towards pathogenic vibrios. We provide unequivocal evidences indicating that during the pretreatment period with Hspi, there is an initial release of reactive oxygen species (hydrogen peroxide and/or superoxide anion), generated by the added product, in the rearing water and associated with the host. The reactive molecules generated are the triggering factors responsible for causing Hsp70 induction within Artemia. We have also shown that Hspi acts prophylactically at an optimum dose regimen to confer protection against pathogenic vibrios. This salutary effect was associated with upregulation of two important immune genes, prophenoloxidase and transglutaminase of the innate immune system. These findings suggest that inducers of stress protein (e.g. Hsp70) are potentially important modulator of immune responses and might be exploited to confer protection to cultured shrimp against Vibrio infection. PMID:24950414

  20. Multiscale reactive molecular dynamics

    PubMed Central

    Knight, Chris; Lindberg, Gerrick E.; Voth, Gregory A.

    2012-01-01

    Many processes important to chemistry, materials science, and biology cannot be described without considering electronic and nuclear-level dynamics and their coupling to slower, cooperative motions of the system. These inherently multiscale problems require computationally efficient and accurate methods to converge statistical properties. In this paper, a method is presented that uses data directly from condensed phase ab initio simulations to develop reactive molecular dynamics models that do not require predefined empirical functions. Instead, the interactions used in the reactive model are expressed as linear combinations of interpolating functions that are optimized by using a linear least-squares algorithm. One notable benefit of the procedure outlined here is the capability to minimize the number of parameters requiring nonlinear optimization. The method presented can be generally applied to multiscale problems and is demonstrated by generating reactive models for the hydrated excess proton and hydroxide ion based directly on condensed phase ab initio molecular dynamics simulations. The resulting models faithfully reproduce the water-ion structural properties and diffusion constants from the ab initio simulations. Additionally, the free energy profiles for proton transfer, which is sensitive to the structural diffusion of both ions in water, are reproduced. The high fidelity of these models to ab initio simulations will permit accurate modeling of general chemical reactions in condensed phase systems with computational efficiency orders of magnitudes greater than currently possible with ab initio simulation methods, thus facilitating a proper statistical sampling of the coupling to slow, large-scale motions of the system. PMID:23249062

  1. Becoming Reactive by Concretization

    NASA Technical Reports Server (NTRS)

    Prieditis, Armand; Janakiraman, Bhaskar

    1992-01-01

    One way to build a reactive system is to construct an action table indexed by the current situation or stimulus. The action table describes what course of action to pursue for each situation or stimulus. This paper describes an incremental approach to constructing the action table through achieving goals with a hierarchical search system. These hierarchies are generated with transformations called concretizations, which add constraints to a problem and which can reduce the search space. The basic idea is that an action for a state is looked up in the action table and executed whenever the action table has an entry for that state; otherwise, a path is found to the nearest (cost-wise in a graph with costweighted arcs) state that has a mappring from a state in the next highest hierarchy. For each state along the solution path, the successor state in the path is cached in the action table entry for that state. Without caching, the hierarchical search system can logarithmically reduce search. When the table is complete the system no longer searches: it simply reacts by proceeding to the state listed in the table for each state. Since the cached information is specific only to the nearest state in the next highest hierarchy and not the goal, inter-goal transfer of reactivity is possible. To illustrate our approach, we show how an implemented hierarchical search system can completely reactive.

  2. Induction of cytotoxicity of Pelagia noctiluca venom causes reactive oxygen species generation, lipid peroxydation induction and DNA damage in human colon cancer cells

    PubMed Central

    2011-01-01

    Background The long-lasting and abundant blooming of Pelagia noctiluca in Tunisian coastal waters compromises both touristic and fishing activities and causes substantial economic losses. Determining their molecular mode of action is, important in order to limit or prevent the subsequent damages. Thus, the aim of the present study was to investigate the propensity of Pelagia noctiluca venom to cause oxidative damage in HCT 116 cells and its associated genotoxic effects. Results Our results indicated an overproduction of ROS, an induction of catalase activity and an increase of MDA generation. We looked for DNA fragmentation by means of the comet assay. Results indicated that venom of Pelagia noctiluca induced DNA fragmentation. SDS-PAGE analysis of Pelagia noctiluca venom revealed at least 15 protein bands of molecular weights ranging from 4 to 120 kDa. Conclusion Oxidative damage may be an initiating event and contributes, in part, to the mechanism of toxicity of Pelagia noctiluca venom. PMID:22151830

  3. The NIH Extracellular RNA Communication Consortium

    PubMed Central

    Ainsztein, Alexandra M.; Brooks, Philip J.; Dugan, Vivien G.; Ganguly, Aniruddha; Guo, Max; Howcroft, T. Kevin; Kelley, Christine A.; Kuo, Lillian S.; Labosky, Patricia A.; Lenzi, Rebecca; McKie, George A.; Mohla, Suresh; Procaccini, Dena; Reilly, Matthew; Satterlee, John S.; Srinivas, Pothur R.; Church, Elizabeth Stansell; Sutherland, Margaret; Tagle, Danilo A.; Tucker, Jessica M.; Venkatachalam, Sundar

    2015-01-01

    The Extracellular RNA (exRNA) Communication Consortium, funded as an initiative of the NIH Common Fund, represents a consortium of investigators assembled to address the critical issues in the exRNA research arena. The overarching goal is to generate a multi-component community resource for sharing fundamental scientific discoveries, protocols, and innovative tools and technologies. The key initiatives include (a) generating a reference catalogue of exRNAs present in body fluids of normal healthy individuals that would facilitate disease diagnosis and therapies, (b) defining the fundamental principles of exRNA biogenesis, distribution, uptake, and function, as well as development of molecular tools, technologies, and imaging modalities to enable these studies, (c) identifying exRNA biomarkers of disease, (d) demonstrating clinical utility of exRNAs as therapeutic agents and developing scalable technologies required for these studies, and (e) developing a community resource, the exRNA Atlas, to provide the scientific community access to exRNA data, standardized exRNA protocols, and other useful tools and technologies generated by funded investigators. PMID:26320938

  4. Extracellular movement of signaling molecules

    PubMed Central

    Müller, Patrick; Schier, Alexander F.

    2011-01-01

    Extracellular signaling molecules have crucial roles in development and homeostasis, and their incorrect deployment can lead to developmental defects and disease states. Signaling molecules are released from sending cells, travel to target cells and act over length scales of several orders of magnitude, from morphogen-mediated patterning of small developmental fields to hormonal signaling throughout the organism. We discuss how signals are modified and assembled for transport, which routes they take to reach their targets and how their range is affected by mobility and stability. PMID:21763615

  5. Extracellular movement of signaling molecules.

    PubMed

    Müller, Patrick; Schier, Alexander F

    2011-07-19

    Extracellular signaling molecules have crucial roles in development and homeostasis, and their incorrect deployment can lead to developmental defects and disease states. Signaling molecules are released from sending cells, travel to target cells, and act over length scales of several orders of magnitude, from morphogen-mediated patterning of small developmental fields to hormonal signaling throughout the organism. We discuss how signals are modified and assembled for transport, which routes they take to reach their targets, and how their range is affected by mobility and stability.

  6. Brain Extracellular Matrix in Neurodegeneration

    PubMed Central

    Bonneh-Barkay, Dafna; Wiley, Clayton A.

    2009-01-01

    The role of extracellular matrix (ECM) in neurological development, function and degeneration has evolved from a simplistic physical adhesion to a system of intricate cellular signaling. While most cells require ECM adhesion to survive, it is now clear that differentiated function is intimately dependent upon cellular interaction with the ECM. Therefore, it is not surprising that the ECM is increasingly found to be involved in the enigmatic process of neurodegeneration. Descriptive studies of human neurodegenerative disorders and experimental studies of animal models of neurodegeneration have begun to define potential mechanisms of ECM disruption that can lead to synaptic and neuronal loss. PMID:18662234

  7. Pathophysiology of neutrophil-mediated extracellular redox reactions.

    PubMed

    Jaganjac, Morana; Cipak, Ana; Schaur, Rudolf Joerg; Zarkovic, Neven

    2016-01-01

    Neutrophil granulocyte leukocytes (neutrophils) play fundamental role in the innate immune response. In the presence of adequate stimuli, neutrophils release excessive amount of reactive oxygen species (ROS) that may induce cell and tissue injury. Oxidative burst of neutrophils acts as a double-edged sword. It may contribute to the pathology of atherosclerosis and brain injury but is also necessary in resolving infections. Moreover, neutrophil-derived ROS may also have both a tumor promoting and tumor suppressing role. ROS have a specific activities and diffusion distance, which is related to their short lifetime. Therefore, the manner in which ROS will act depends on the cells targeted and the intra- and extracellular levels of individual ROS, which can further cause production of reactive aldehydes like 4-hydroxynonenal (HNE) that act as a second messengers of ROS. In this review we discuss the influence of neutrophil mediated extracellular redox reactions in ischemia reperfusion injury, transplant rejection and chronic diseases (atherosclerosis, inflammatory bowel diseases and cancer). At the end a brief overview of cellular mechanisms to maintain ROS homeostasis is given.

  8. Tactics for Probing Aryne Reactivity: Mechanistic Studies of Silicon-oxygen Bond Cleavage During the Trapping of (HDDA-generated) Benzynes by Silyl Ethers

    PubMed Central

    Hoye, Thomas R.; Baire, Beeraiah; Wang, Tao

    2014-01-01

    We report mechanistic aspects of the trapping of thermally (HDDA) generated benzyne derivatives by pendant silyl ether groups, which results in net insertion of the pair of benzyne Csp-hydribized carbon atoms into the silicon–oxygen sigma bond. Cross-over experiments using symmetrical, doubly labeled bis-silyl ether substrates established that the reaction is unimolecular in nature. Competition experiments involving either intramolecular or intermolecular dihydrogen transfer clock reactions (from within a TIPS isopropyl group or cyclooctane, respectively) vs. the silyl ether cyclization were used to gain additional insights. We evaluated effects of the steric bulk of the silyl ether trapping group and of the ring-size of the cyclic ether being formed (furan vs. pyran). These types of competition experiments allow the relative rates of various product-determining steps to be determined. This previously has only rarely been possible because aryne formation is typically rate-limiting, making it challenging to probe the kinetics of subsequent trapping reactions. Solvent effects (polarity of the medium) and computational studies were used to probe the question of stepwise vs. concerted pathways for the Si–O insertion. PMID:25419449

  9. The role of reactive oxygen species (ROS) and cytochrome P-450 2E1 in the generation of carcinogenic etheno-DNA adducts.

    PubMed

    Linhart, Kirsten; Bartsch, Helmut; Seitz, Helmut K

    2014-01-01

    Exocyclic etheno-DNA adducts are mutagenic and carcinogenic and are formed by the reaction of lipidperoxidation (LPO) products such as 4-hydoxynonenal or malondialdehyde with DNA bases. LPO products are generated either via inflammation driven oxidative stress or via the induction of cytochrome P-450 2E1 (CYP2E1). In the liver CYP2E1 is induced by various compounds including free fatty acids, acetone and ethanol. Increased levels of CYP2E1 and thus, oxidative stress are observed in the liver of patients with non-alcoholic steatohepatitis (NASH) as well as in the chronic alcoholic. In addition, chronic ethanol ingestion also increases CYP2E1 in the mucosa of the oesophagus and colon. In all these tissues CYP2E1 correlates significantly with the levels of carcinogenic etheno-DNA adducts. In contrast, in patients with non-alcoholic steatohepatitis (NASH) hepatic etheno-DNA adducts do not correlate with CYP2E1 indicating that in NASH etheno-DNA adducts formation is predominately driven by inflammation rather than by CYP2E1 induction. Since etheno-DNA adducts are strong mutagens producing various types of base pair substitution mutations as well as other types of genetic damage, it is strongly believed that they are involved in ethanol mediated carcinogenesis primarily driven by the induction of CYP2E1. PMID:25462066

  10. Phaseoloideside E, a novel natural triterpenoid saponin identified from Entada phaseoloides, induces apoptosis in Ec-109 esophageal cancer cells through reactive oxygen species generation.

    PubMed

    Mo, Shasha; Xiong, Hui; Shu, Guangwen; Yang, Xinzhou; Wang, Jianxia; Zheng, Congyi; Xiong, Wei; Mei, Zhinan

    2013-01-01

    Phaseoloideside E (PE), a new oleanane-type triterpene saponin, was isolated from the seed kernels of Entada phaseoloides (Linn.) Merr. PE had strong cytotoxic activity against an array of malignant cells. Typical morphological and biochemical features of apoptosis were observed in PE-treated Ec-109 cells. PE induced a dose-dependent increase in the sub-G1 fraction of the cell cycle and DNA fragmentation. Decreases in the mitochondrial membrane potential, SOD activity, and GSH content were also observed. Further investigations revealed that PE reduced the ratio of Bcl-2 to Bax and increased the activities of caspase-3 and -9, but this was prevented by Z-VAD-fmk. PE also induced a decrease of the sub-G1 fraction. Furthermore, PE-induced apoptosis was mediated by up-regulating cellular ROS, which was suppressed by cotreating the cells with N-acetylcysteine (NAC). NAC also attenuated the ratio of sub-G1, the generation of DNA fragmentation and the expression of Bcl-2, Bax, caspase-3, and caspase-9. Interestingly, PE did not up-regulate ROS or induce cell death in untransformed cells. These data showed that PE induces cell death through up-regulation of cellular ROS production. Our investigation provides the scientific basis for the traditional application of this herb and suggests the possibility that PE may be used for a treatment of esophageal carcinoma. [Supplementary materials: available only at http://dx.doi.org/10.1254/jphs.12193FP].

  11. The role of reactive oxygen species (ROS) and cytochrome P-450 2E1 in the generation of carcinogenic etheno-DNA adducts

    PubMed Central

    Linhart, Kirsten; Bartsch, Helmut; Seitz, Helmut K.

    2014-01-01

    Exocyclic etheno-DNA adducts are mutagenic and carcinogenic and are formed by the reaction of lipidperoxidation (LPO) products such as 4-hydoxynonenal or malondialdehyde with DNA bases. LPO products are generated either via inflammation driven oxidative stress or via the induction of cytochrome P-450 2E1 (CYP2E1). In the liver CYP2E1 is induced by various compounds including free fatty acids, acetone and ethanol. Increased levels of CYP2E1 and thus, oxidative stress are observed in the liver of patients with non-alcoholic steatohepatitis (NASH) as well as in the chronic alcoholic. In addition, chronic ethanol ingestion also increases CYP2E1 in the mucosa of the oesophagus and colon. In all these tissues CYP2E1 correlates significantly with the levels of carcinogenic etheno-DNA adducts. In contrast, in patients with non-alcoholic steatohepatitis (NASH) hepatic etheno-DNA adducts do not correlate with CYP2E1 indicating that in NASH etheno-DNA adducts formation is predominately driven by inflammation rather than by CYP2E1 induction. Since etheno-DNA adducts are strong mutagens producing various types of base pair substitution mutations as well as other types of genetic damage, it is strongly believed that they are involved in ethanol mediated carcinogenesis primarily driven by the induction of CYP2E1. PMID:25462066

  12. Cytotoxic effect of p-Coumaric acid on neuroblastoma, N2a cell via generation of reactive oxygen species leading to dysfunction of mitochondria inducing apoptosis and autophagy.

    PubMed

    Shailasree, S; Venkataramana, M; Niranjana, S R; Prakash, H S

    2015-02-01

    p-Coumaric acid (p-CA), an ubiquitous plant phenolic acid, has been proven to render protection against pathological conditions. In the present study, p-CA was evaluated for its capacity to induce cytotoxic effect to neuroblastoma N2a cells and we report here the possible mechanism of its action. p-CA at a concentration of 150 μmol/L, upon exposure for 72 h, stimulated 81.23 % of cells to apoptosis, as evidenced by flow cytometer studies mediated through elevated levels of ROS (7.5-fold over control). Excess ROS production activated structural injury to mitochondrial membrane, observed as dissipation of its membrane potential and followed by the release of cytochrome c (8.73-fold). Enhanced generation of intracellular ROS correlated well with the decreased levels (~60 %) of intracellular GSH. Sensitizing neuroblastoma cells for induction of apoptosis by p-CA identified p53-mediated upregulated accumulation of caspase-8 messenger RNA (2.8-fold). Our data report on autophagy, representing an additional mechanism of p-CA to induce growth arrest, detected by immunoblotting and fluorescence, correlated with accumulation of elevated levels (1.2-fold) of the LC3-II protein and acridine orange-stained autophagosomes, both autophagy markers. The present study indicates p-CA was effective in production of ROS-dependent mitochondrial damage-induced cytotoxicity in N2a cells.

  13. β-Amyloid Fibrils in Alzheimer Disease Are Not Inert When Bound to Copper Ions but Can Degrade Hydrogen Peroxide and Generate Reactive Oxygen Species*

    PubMed Central

    Mayes, Jennifer; Tinker-Mill, Claire; Kolosov, Oleg; Zhang, Hao; Tabner, Brian J.; Allsop, David

    2014-01-01

    According to the “amyloid cascade” hypothesis of Alzheimer disease, the formation of Aβ fibrils and senile plaques in the brain initiates a cascade of events leading to the formation of neurofibrillary tangles, neurodegeneration, and the symptom of dementia. Recently, however, emphasis has shifted away from amyloid fibrils as the predominant toxic form of Aβ toward smaller aggregates, referred to as “soluble oligomers.” These oligomers have become one of the prime suspects for involvement in the early oxidative damage that is evident in this disease. This raises the question whether or not Aβ fibrils are actually “inert tombstones” present at the end of the aggregation process. Here we show that, when Aβ(1–42) aggregates, including fibrils, are bound to Cu(II) ions, they retain their redox activity and are able to degrade hydrogen peroxide (H2O2) with the formation of hydroxyl radicals and the consequent oxidation of the peptide (detected by formation of carbonyl groups). We find that this ability increases as the Cu(II):peptide ratio increases and is accompanied by changes in aggregate morphology, as determined by atomic force microscopy. When aggregates are prepared in the copresence of Cu(II) and Zn(II) ions, the ratio of Cu(II):Zn(II) becomes an important factor in the degeneration of H2O2, the formation of carbonyl groups in the peptide, and in aggregate morphology. We believe, therefore, that Aβ fibrils can destroy H2O2 and generate damaging hydroxyl radicals and, so, are not necessarily inert end points. PMID:24619420

  14. The evolution of extracellular matrix.

    PubMed

    Ozbek, Suat; Balasubramanian, Prakash G; Chiquet-Ehrismann, Ruth; Tucker, Richard P; Adams, Josephine C

    2010-12-01

    We present a perspective on the molecular evolution of the extracellular matrix (ECM) in metazoa that draws on research publications and data from sequenced genomes and expressed sequence tag libraries. ECM components do not function in isolation, and the biological ECM system or "adhesome" also depends on posttranslational processing enzymes, cell surface receptors, and extracellular proteases. We focus principally on the adhesome of internal tissues and discuss its origins at the dawn of the metazoa and the expansion of complexity that occurred in the chordate lineage. The analyses demonstrate very high conservation of a core adhesome that apparently evolved in a major wave of innovation in conjunction with the origin of metazoa. Integrin, CD36, and certain domains predate the metazoa, and some ECM-related proteins are identified in choanoflagellates as predicted sequences. Modern deuterostomes and vertebrates have many novelties and elaborations of ECM as a result of domain shuffling, domain innovations and gene family expansions. Knowledge of the evolution of metazoan ECM is important for understanding how it is built as a system, its roles in normal tissues and disease processes, and has relevance for tissue engineering, the development of artificial organs, and the goals of synthetic biology.

  15. The Evolution of Extracellular Matrix

    PubMed Central

    Özbek, Suat; Balasubramanian, Prakash G.; Chiquet-Ehrismann, Ruth; Tucker, Richard P.

    2010-01-01

    We present a perspective on the molecular evolution of the extracellular matrix (ECM) in metazoa that draws on research publications and data from sequenced genomes and expressed sequence tag libraries. ECM components do not function in isolation, and the biological ECM system or “adhesome” also depends on posttranslational processing enzymes, cell surface receptors, and extracellular proteases. We focus principally on the adhesome of internal tissues and discuss its origins at the dawn of the metazoa and the expansion of complexity that occurred in the chordate lineage. The analyses demonstrate very high conservation of a core adhesome that apparently evolved in a major wave of innovation in conjunction with the origin of metazoa. Integrin, CD36, and certain domains predate the metazoa, and some ECM-related proteins are identified in choanoflagellates as predicted sequences. Modern deuterostomes and vertebrates have many novelties and elaborations of ECM as a result of domain shuffling, domain innovations and gene family expansions. Knowledge of the evolution of metazoan ECM is important for understanding how it is built as a system, its roles in normal tissues and disease processes, and has relevance for tissue engineering, the development of artificial organs, and the goals of synthetic biology. PMID:21160071

  16. Enhancing reactive species generation upon photo-activation of CdTe quantum dots for the chemiluminometric determination of unreacted reagent in UV/S2O8(2-) drug degradation process.

    PubMed

    Santana, Rodolfo M M; Oliveira, Thaís D; Rodrigues, S Sofia M; Frigerio, Christian; Santos, João L M; Korn, Mauro

    2015-04-01

    A new chemiluminescence (CL) flow method for persulfate determination was developed based on luminol oxidation by in-line generated radicals. Reactive oxygen species (ROS) generated by CdTe quantum dots (QDs) under a low energetic radiation (visible light emitted by LEDs) promoted the decomposition of persulfate ion (S2O8(2-)) into sulfate radical (SO4(∙-)), leading to subsequent radical chain reactions that yield the emission of light. Due to the inherent radical short lifetimes and the transient behavior of CL phenomena an automated multi-pumping flow system (MPFS) was proposed to improve sample manipulation and reaction zone implementation ensuring reproducible analysis time and high sampling rate. The developed approach allowed up to 60 determinations per hour and determine S2O8(2-) concentrations between 0.1 and 1 mmol with good linearity (R=0.9999). The method has shown good repeatability with relative standard deviations below 2.5% (n=3) for different persulfate concentrations (0.1 and 0.625 mmol L(-1)). Limits of detection (3σ) and quantification (10σ) were 2.7 and 9.1 µmol L(-1), respectively. The MPFS system was applied to persulfate determination in bench scale UV/S2O8(2-) drug degradation processes of model samples showing good versatility and providing real time information on the persulfate consumption in photo-chemical degradation methodologies.

  17. Substituted 3‑acyl‑2‑phenylamino‑1,4‑naphthoquinones intercalate into DNA and cause genotoxicity through the increased generation of reactive oxygen species culminating in cell death.

    PubMed

    Farias, Mirelle Sifroni; Pich, Claus Tröger; Kviecinski, Maicon Roberto; Bucker, Nádia Cristina Falcão; Felipe, Karina Bettega; Da Silva, Fabiana Ourique; Günther, Tânia Mara Fisher; Correia, João Francisco; Ríos, David; Benites, Julio; Valderrama, Jaime A; Calderon, Pedro Buc; Pedrosa, Rozangela Curi

    2014-07-01

    Naphthoquinones interact with biological systems by generating reactive oxygen species (ROS) that can damage cancer cells. The cytotoxicity and the antitumor activity of 3‑acyl‑2‑phenylamino‑1,4‑naphthoquinones (DPB1‑DPB9) were evaluated in the MCF7 human breast cancer cell line and in male Ehrlich tumor‑bearing Balb/c mice. DPB4 was the most cytotoxic derivative against MCF7 cells (EC50 15 µM) and DPB6 was the least cytotoxic one (EC50 56 µM). The 1,4‑naphthoquinone derivatives were able to cause DNA damage and promote DNA fragmentation as shown by the plasmid DNA cleavage assay (FII form). In addition, 1,4‑naphthoquinone derivatives possibly interacted with DNA as intercalating agents, which was demonstrated by the changes caused in the fluorescence of the DNA‑ethidium bromide complexes. Cell death of MCF7 cells induced by 3‑acyl‑2‑phenylamino‑1,4‑naphthoquinones was mostly due to apoptosis. The DNA fragmentation and subsequent apoptosis may be correlated to the redox potential of the 1,4‑naphthoquinone derivatives that, once present in the cell nucleus, led to the increased generation of ROS. Finally, certain 1,4‑naphthoquinone derivatives and particularly DPB4 significantly inhibited the growth of Ehrlich ascites tumors in mice (73%). PMID:24756411

  18. Rearrangement of the Extracellular Domain/Extracellular Loop 1 Interface Is Critical for Thyrotropin Receptor Activation.

    PubMed

    Schaarschmidt, Joerg; Nagel, Marcus B M; Huth, Sandra; Jaeschke, Holger; Moretti, Rocco; Hintze, Vera; von Bergen, Martin; Kalkhof, Stefan; Meiler, Jens; Paschke, Ralf

    2016-07-01

    The thyroid stimulating hormone receptor (TSHR) is a G protein-coupled receptor (GPCR) with a characteristic large extracellular domain (ECD). TSHR activation is initiated by binding of the hormone ligand TSH to the ECD. How the extracellular binding event triggers the conformational changes in the transmembrane domain (TMD) necessary for intracellular G protein activation is poorly understood. To gain insight in this process, the knowledge on the relative positioning of ECD and TMD and the conformation of the linker region at the interface of ECD and TMD are of particular importance. To generate a structural model for the TSHR we applied an integrated structural biology approach combining computational techniques with experimental data. Chemical cross-linking followed by mass spectrometr