Sample records for extract effectively inhibited

  1. Antifungal activity of Piper aduncum and Peperomia pellucida leaf ethanol extract against Candida albicans

    NASA Astrophysics Data System (ADS)

    Hastuti, Utami Sri; Ummah, Yunita Putri Irsadul; Khasanah, Henny Nurul

    2017-05-01

    This research was done to 1) examine the effect of Piper aduncum leaf ethanol extract at certain concentrations against Candida albicans colony growth inhibition in vitro; 2) examine the effect of Peperomia pellucida leaf ethanol extract at certain concentrations toward Candida albicans colony growth inhibition in vitro; and 3) determine the most effective concentration of P. aduncum and P. pellucida leaves ethanol extract against C. albicans colony growth inhibition in vitro. These plant extracts were prepared by the maceration technique using 95% ethanol, and then sterile filtered and evaporated to obtain the filtrate. The filtrate was diluted with sterile distilled water at certain concentrations, i.e.: 0%, 10%, 20%, 30%, 405, 50%, 60%, 70%, 80%, and 90%. The antifungal effect of each leaf extract concentration was examined by the agar diffusion method on Sabouraud Dextrose Agar medium. The research results are: 1) the P.aduncum leaf ethanol extract at some concentrations has an effect against C. albicans colony growth inhibition in vitro; 2) the P.pellucida leaf ethanol extract at some concentrations has an effect against C. albicans colony growth inhibition in vitro; 3) the P. aduncum leaf ethanol extract at 80% is the most effective for C. albicans colony growth inhibition in vitro; and 4) the P. pellucida leaf ethanol extract at 70% is the most effective for C. albicans colony growth inhibition in vitro.

  2. The standard aqueous stem bark extract of Mangifera indica L. inhibits toxic PLA2 - NN-XIb-PLA2 of Indian cobra venom.

    PubMed

    Dhananjaya, Bhadrapura Lakkappa; Sudarshan, Shivalingaiah; Dongol, Yashad; More, Sunil S

    2016-05-01

    The aqueous extract of Mangifera indica is known to possess diverse medicinal properties, which also includes anti-snake venom activities. However, its inhibitory potency and mechanism of action on multi-toxic snake venom phospholipases A2s are still unknown. Therefore, the objective of this study was to evaluate the modulatory effect of standard aqueous bark extract of M. indica on NN-XIb-PLA2 of Indian cobra venom. The in vitro sPLA2, in situ hemolytic and in vivo edema inhibition effect were carried out as described. Also the effect of substrate and calcium concentration was carried out. M. indica extract dose dependently inhibited the GIA sPLA2 (NN-XIb-PLA2) activity with an IC50 value of 7.6 μg/ml. M. indica extract effectively inhibited the indirect hemolytic activity up to 98% at ∼40 μg/ml concentration. Further, M. indica extract (0-50 μg/ml) inhibited the edema formed in a dose dependent manner. When examined as a function of increased substrate and calcium concentration, there was no relieve of inhibitory effect of M. indica extract on the NN-XIb-PLA2. Further, the inhibition was irreversible as evident from binding studies. The in vitro inhibition is well correlated with in situ and in vivo edema inhibiting activities of M. indica. As the inhibition is independent of substrate and calcium and was irreversible, it can be concluded that M. indica extract mode of inhibition could be due to direct interaction of components present in the extract with the PLA2 enzyme. The aqueous extract of M. indica effectively inhibits svPLA2 enzymatic and its associated toxic activities, which substantiate their anti-snake venom properties. Further in-depth studies on the role and mechanism of the principal constituents present in the extract, responsible for the anti-PLA2 activity will be interesting to develop them into potent antisnake component and also as an anti-inflammatory agent.

  3. [Inhibition effect on Microcystis aeruginosa PCC7806 as well as separation and identification of algicidal substances isolated from Salvinia natans (L.) All].

    PubMed

    Zhang, Shengjuan; Xia, Wentong; Yang, Xiaohui; Zhang, Tingting

    2016-05-01

    To study the inhibition effect of Salvinia natans ( L. ) All. on harmful algae. With Microcystis aeruginosa as the subjects, deionized water, ethanol, acetone, ethyl acetate as solvent, four kinds of crude extracts from Salvinia natans (L.) All. were prepared, and their alga-inhibiting actions were verified, respectively. The crude extracts of Salvinia natans (L.) All. with better inhibition effect were selected. The components of algal inhibiting material through macroporous resin purification were obtained, and determined by gas chromatography-mass spectrometry (GC-MS). The algicidal effect as follows: ethyl acetate extract > acetone crude extract > ethanol crude extract > water crude extract. Meanwhile, the inhibitory substances of Salvinia natans (L.) All. may be: diacetone alcohol, methyl isobutenyl ketone, 5-methyl-2-(1-methylethyl)-1-hexanol, pentadecanal, 14-heptadecenal, cumene, butyl acetate, ascorbyl dipalmitate, 1, 2-benzenedicarboxylic acid, mono (2- ethylhexyl) ester, dibutyl phthalate and phthalic acid, butyl undecane ester. The algal inhibiting effect research of Salvinia natans (L.) All., as well as its separation and identification of allelochemicals supplys theoretical basis and practical evidence not only for algae control, but also exploitation of algal inhibiting agent.

  4. Optimization of in vitro inhibition of HT-29 colon cancer cell cultures by Solanum tuberosum L. extracts.

    PubMed

    Zuber, T; Holm, D; Byrne, P; Ducreux, L; Taylor, M; Kaiser, M; Stushnoff, C

    2015-01-01

    Secondary metabolites in potato have been reported to possess bioactive properties, including growth inhibition of cancer cells. Because potatoes are widely consumed globally, potential health benefits may have broad application. Thus we investigated growth inhibition of HT-29 colon cancer cell cultures by extracts from 13 diverse genetic breeding clones. Extracts from three pigmented selections (CO97226-2R/R, CO97216-1P/P, CO04058-3RW/RW) inhibited growth of in vitro HT-29 cell cultures more effectively than other clones tested. While inhibition was highest from pigmented selections and pigmented tuber tissue sectors, not all pigmented breeding lines tested had appreciable inhibitory properties. Thus, inhibition was not uniquely linked to pigmentation. Immature tubers had the highest inhibitory properties, and in most cases mature tubers retained very low inhibition properties. Flowers and skins inhibited strongly at lower extract concentrations. An extract consisting of 7.2 mg mL⁻¹ cell culture medium was the lowest effective concentration. While raw tuber extracts inhibited most effectively, a few clones at higher concentrations retained inhibition after cooking. Heated whole tubers retained higher inhibition than heated aqueous extracts. While all aqueous extracts from the two tuber selections (CO97216-1P/P and CO97226-2R/R) inhibited HT-29 cell cultures, inhibition was significantly enhanced in purple pigmented tubers of CO97216-1P/P prepared cryogenically as liquid nitrogen powders compared to extracts from freeze dried samples. Upregulation of caspase-3 protease activity, indicative of apoptosis, was highest among the most inhibitory clone samples. The unique sectorial red pigment expressing selection (CO04058-3RW/RW) provided a model system that isolated expression in pigmented sectors, and thus eliminated developmental, environmental and genetic confounding.

  5. [Allelopathic effects of Lycoris radiate on radish, cucumber, tomato and rape seedlings].

    PubMed

    Jiang, Hongyun; Zhang, Yanning; Feng, Pingzhang; Zhang, Heng

    2006-09-01

    The laboratory test showed that Lycoris radiate water extract had a stronger inhibitory effect on the seed germination and seedling growth of radish, cucumber, tomato and rape. After treated with 0.0125 g x ml(-1) of the extract, tomato seed could not germinate, but the seed germination inhibition rate of rape, radish and cucumber was only 17.73%, 14.97% and 2.65%, respectively. Under the same concentrations of the extract, sprout growth was inhibited more strongly than root growth. L. radiate methanol extract could inhibit the sprout and root growth of endosperm-removed wheat and sorghum, and the effect was stronger for sorghum than for wheat. All of these illustrated that L. radiate extracts mainly inhibited non-photosynthesis activity, but could also inhibit photosynthesis activity to some degree.

  6. [Effect of Psidium guajava leaf extract on alpha-glucosidase activity in small intestine of diabetic mouse].

    PubMed

    Wang, Bo; Liu, Heng-Chuan; Hong, Jun-Rong; Li, Hong-Gu; Huang, Cheng-Yu

    2007-03-01

    To investigate the inhibition effect of Psidium guajava linn (PGL), a leaf water-soluble extract, on the activities of alpha-glucosidases. The PGL water-soluble extract (PGL WE) was obtained by the procedure of distilled water immersion, filtration, extracted fluid concentration and dry of Psidium guajava leaf. The diabetes of Kunming mice was induced by intraperitoneal injection of Streptozotocin (STZ). The small intestinal mucosa of diabetic mice was scraped to make the homogenate for the preparation of alpha-glucosidases. In vitro, the homogenates were incubated with sucrose and maltose. The formed glucose represented the activities of alpha-glucosidases. The Lineweaver-Burk plot was applied to determine the type of alpha-glucosidase activity inhibited. The water-soluble extract from PGL significantly inhibited, in the dose-dependent manner, the activities of alpha-glucosidase from small intestinal mucosa of diabetic mice. The PGL extract inhibition concentration (IC50) to sucrase or maltase was 1.0 g/L or 3.0 g/L respectively. The mixed inhibition type was showed to be the competitive and non-competitive inhibition. The GPL water-soluble extract possesses the potential effect of inhibition on the alpha-glucosidase activity from the small intestinal mucosa of diabetic mouse.

  7. Antimitotic effect of an extract of the sea anemone Bunodosoma caissarum on sea urchin egg development.

    PubMed

    Malpezzi, E L; Freitas, J C

    1990-01-01

    A methanolic extract of the sea anemone Bunodosoma caissarum has an antimitotic effect on sea urchin egg development. The extract produces a dose-dependent inhibition of cell cleavage. When the extract is added together with sperm to unfertilized sea urchin eggs, the ED50 is 0.60 +/- 0.03 mg/ml (mean +/- SEM). When added shortly after fertilization, the extract produces the same kind of progressive inhibition but with an ED50 of 0.98 +/- 0.16 mg/ml. In the first case, detachment of the vitelline layer is inhibited whereas in the second case the extract inhibits cleavage even when the membrane is present.

  8. Inhibition of secretary PLA₂--VRV-PL-VIIIa of Russell's viper venom by standard aqueous stem bark extract of Mangifera indica L.

    PubMed

    Dhananjaya, B L; Sudarshan, S

    2015-03-01

    The aqueous extract of Mangifera indica is known to possess anti-snake venom activities. However, its inhibitory potency and mechanism of action on multi-toxic phospholipases A2s, which are the most toxic and lethal component of snake venom is still unknown. Therefore, this study was carried out to evaluate the modulatory effect of standard aqueous bark extract of M. indica on VRV-PL-VIIIa of Indian Russells viper venom. Mangifera indica extract dose dependently inhibited the GIIB sPLA2 (VRV-PL-VIIIa) activity with an IC50 value of 6.8±0.3 μg/ml. M. indica extract effectively inhibited the indirect hemolytic activity up to 96% at ~40 μg/ml concentration. Further, M. indica extract at different concentrations (0-50 μg/ml) inhibited the edema formed in a dose dependent manner. It was found that there was no relieve of inhibitory effect of the extract when examined as a function of increased substrate and calcium concentration. The inhibition was irreversible as evident from binding studies. The in vitro inhibition is well correlated with in situ and in vivo edema inducing activities. As the inhibition is independent of substrate, calcium concentration and was irreversible, it can be concluded that M. indica extracts mode of inhibition could be due to direct interaction of components present in the extract with PLA2 enzyme. In conclusion, the aqueous extract of M. indica effectively inhibits svPLA2 (Snake venom phospholipase A2) enzymatic and its associated toxic activities, which substantiate its anti-snake venom properties. Further in-depth studies are interesting to known on the role and mechanism of the principal inhibitory constituents present in the extract, so as to develop them into potent anti-snake venom and as an anti-inflammatory agent.

  9. The anti-inflammatory activity of standard aqueous stem bark extract of Mangifera indica L. as evident in inhibition of Group IA sPLA2.

    PubMed

    Dhananjaya, Bhadrapura Lakkappa; Shivalingaiah, Sudharshan

    2016-03-01

    The standard aqueous stem bark extract is consumed as herbal drink and used in the pharmaceutical formulations to treat patients suffering from various disease conditions in Cuba. This study was carried out to evaluate the modulatory effect of standard aqueous bark extract of M. indica on Group IA sPLA2. M. indica extract, dose dependently inhibited the GIA sPLA2 (NN-XIa-PLA2) activity with an IC50 value 8.1 µg/ml. M. indica extract effectively inhibited the indirect hemolytic activity up to 98% at ~40 µg/ml concentration and at various concentrations (0-50 µg/ml), it dose dependently inhibited the edema formation. When examined as a function of increased substrate and calcium concentration, there was no relieve of inhibitory effect on the GIA sPLA2. Furthermore, the inhibition was irreversible as evidenced from binding studies. It is observed that the aqueous extract ofM. indica effectively inhibits sPLA2 and it is associated inflammatory activities, which substantiate their anti-inflammatory properties. The mode of inhibition could be due to direct interaction of components present in the extract, with sPLA2 enzyme. Further studies on understanding the principal constituents, responsible for the anti-inflammatory activity would be interesting to develop this into potent anti-inflammatory agent.

  10. [Inhibition effects of Houttuynia cordata Thunb. on Microcystis aeruginosa].

    PubMed

    Liu, Lu; Li, Cheng; Xia, Wentong; Yang, Xiaohui; Zhang, Tingting

    2014-05-01

    To research the inhibitory effect of Houttuynia cordata Thunb. on Microcystis aeruginosa. M. aeruginosat were treated respectively by H. cordata leaching solution or H. cordata extracts. H. cordata leaching solution extracted by water and the H. cordata extracts extracted by organic solvent (acetone, ethyl acetate, petroleum ether and ethanol, respectively). The inhibition ratios were calculated according to the M. aeruginosa densities, and the allelochemicals of the extract that had the best inhibitiory effect on M. aeruginosa were identified by GC-MS analysis. It was proved that leaching solution of H. cordata and four crude extracts had good inhibitory effect on M. aeruginosa. The inhibitory effects of the four crude extracts were the fraction extracted by ethyl acetate, the fraction extracted by ethanol, the fraction extracted by acetone and the fraction extracted by petroleum ether form strong to weak in turn. Then, the allelochemicals of the fraction extracted by ethyl acetate were indentified, mainly including acetonyldimethylcarbinol, 2,2-dimethyl-3-hexanone, 6-chlorohexanoic and 4-cyanophenyl ester. H. cordata has strong inhibitory effect on water-blooming cyanobacteria and the potential to develop into an ecological M. aeruginosa inhibiting agent.

  11. Allelopathic effects of water extracts ofArtemisia princeps var.orientalis on selected plant species.

    PubMed

    Kil, B S; Yun, K W

    1992-01-01

    The allelopathic effects of wormwood plants (Artemisia princeps var.orientalis) and their possible phytotoxicity on receptor species were investigated. The aqueous extracts of mature leaf, stem, and root of wormwood plants caused significant inhibition in germination and decreased seedling elongation of receptor plants, whereas germination of some species was not inhibited by extracts of stems and roots. Dry weight growth was slightly increased at lower concentrations of the extract, whereas it was proportionally inhibited at higher concentrations. The calorie value of the organic matter in receptor plants measured by bomb calorimeter was reduced proportionally to the extract concentration. However, results with extracts of juvenile leaf did not correlate with inhibition or promotion of elongation and dry weight.

  12. Korean red ginseng extract exhibits neuroprotective effects through inhibition of apoptotic cell death.

    PubMed

    Kim, Sunyoung; Lee, Youngmoon; Cho, Jungsook

    2014-01-01

    Red ginseng has long been used as a traditional medicine in many East Asian countries including Korea. It is known to exhibit various pharmacological effects, including anti-oxidant, anti-cancer, anti-stress and anti-diabetes activities. To further explore its actions, the present study evaluated effects of Korean red ginseng (KRG) extract on neuronal injury induced by various types of insults using primary cultured rat cortical cells. KRG extract inhibited neuronal damage and generation of intracellular reactive oxygen species (ROS) induced by excitatory amino acids, such as glutamate and N-methyl-D-aspartate (NMDA), or by Aβ(25-35). To elucidate possible mechanism(s) by which KRG extract exerts neuroprotective action, its effects on apoptosis and apoptosis-related signaling molecules in neurons were assessed. KRG extract markedly increased phosphorylation of Bad at Ser 112 and inhibited Bax expression and caspase 3 activity. It also inhibited DNA fragmentation induced by NMDA or Aβ(25-35). These results indicate that KRG extract protects cultured neurons from excitotoxicity and Aβ(25-35)-induced toxicity through inhibition of ROS generation and apoptotic cell death. In addition, KRG extract inhibited β-secretase activity, implying that it may reduce Aβ peptide formation. Taken together, these findings suggest that KRG extract may be beneficial for the prevention and/or treatment of neurodegenerative disorders including Alzheimer's disease.

  13. The effect of artichoke (Cynara scolymus L.) extract on respiratory chain system activity in rat liver mitochondria.

    PubMed

    Juzyszyn, Z; Czerny, B; Myśliwiec, Z; Pawlik, A; Droździk, M

    2010-06-01

    The effect of artichoke extract on mitochondrial respiratory chain (MRC) activity in isolated rat liver mitochondria (including reaction kinetics) was studied. The effect of the extract on the activity of isolated cytochrome oxidase was also studied. Extract in the range of 0.68-2.72 microg/ml demonstrated potent and concentration-dependent inhibitory activity. Concentrations > or =5.4 microg/ml entirely inhibited MRC activity. The succinate oxidase system (MRC complexes II-IV) was the most potently inhibited, its activity at an extract concentration of 1.36 microg/ml being reduced by 63.3% compared with the control (p < 0.05). The results suggest a complex inhibitory mechanism of the extract. Inhibition of the succinate oxidase system was competitive (K(i) = 0.23 microg/ml), whereas isolated cytochrome oxidase was inhibited noncompetitively (K(i) = 126 microg/ml). The results of this study suggest that the salubrious effects of artichoke extracts may rely in part on the effects of their active compounds on the activity of the mitochondrial respiratory chain system.

  14. Apple peel bioactive rich extracts effectively inhibit in vitro human LDL cholesterol oxidation.

    PubMed

    Thilakarathna, Surangi H; Rupasinghe, H P Vasantha; Needs, Paul W

    2013-05-01

    Apple peels are rich in antioxidant bioactives and hence can possess the ability to inhibit human low density lipoprotein cholesterol (LDL-C) oxidation. LDL-C oxidation is known to initiate atherosclerotic plaque formation. Unique quercetin-rich (QAE) and triterpene-rich (TAE) apple peel extracts, their constituent compounds and three in vivo quercetin metabolites were investigated for in vitro LDL-C oxidation inhibition. Both extracts effectively inhibited Cu(2+)-induced LDL-C oxidation. IC(50) of QAE and TAE for LDL-C oxidation products were 0.06-8.29 mg/L and 29.58-95.49 mg/L, respectively. Quercetin compounds, chlorogenic acid and phloridzin could contribute more to the effectiveness of QAE at physiological concentrations. The three in vivo quercetin metabolites; quercetin-3'-sulfate, quercetin-3-glucuronic acid and isorhamnetin-3-glucuronic acid were effective at physiological concentrations and therefore, QAE can be effective in LDL-C oxidation inhibition under physiological conditions. Constituent TAE compounds did not perform well under Cu(2+)-induction. Overall, both extracts effectively inhibited LDL-C oxidation in vitro. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Inhibitory activities of Moringa oleifera leaf extract against α-glucosidase enzyme in vitro

    NASA Astrophysics Data System (ADS)

    Natsir, H.; Wahab, A. W.; Laga, A.; Arif, A. R.

    2018-03-01

    Alpha-glucosidase is a key enzyme in the final process of breaking carbohydrates into glucose. Inhibition of α-glucosidase affected more absorption of glucose, so it can reduce hyperglycemia condition. The aims of this study is to determine the effectiveness of inhibition wet and dried Moringa oleifera leaf extract through α-glucosidase activity in vitro. The effectiveness study of inhibition on the activity of α-glucosidase enzyme obtained from white glutinous rice (Oryza sativa glutinosa) was carried out using wet and dried kelor leaf extract of 13% (w/v) with 10 mM α-D-glucopyranoside (PNPG) substrate. A positive control used 1% acarbose and substrate without addition of extract was a negative control. Inhibitory activity was measured using spectrophotometers at a wavelength of 400 nm. The result showed that the inhibition activity against α-glucosidase enzyme of dried leaf extract, wet leaf extract and acarbose was 81,39%, 83,94%, and 95,4%, respectively on pH 7,0. The effectiveness inhibition of the wet Moringa leaf extract was greater than the dried leaf extract. The findings suggest that M. oleifera leaf has the potential to be developed as an alternative food therapy for diabetics.

  16. Green tea extract and aged garlic extract inhibit anion transport and sickle cell dehydration in vitro.

    PubMed

    Ohnishi, S T; Ohnishi, T; Ogunmola, G B

    2001-01-01

    Both green tea extract (GTE or tea polyphenols) and aged garlic extract (AGE) effectively inhibited in vitro dehydration of sickle red blood cells induced by K-Cl cotransport or red cell storage. For K-Cl cotransport induced by 500 mM urea, 0.3 mg/ml EGCg (epigallocatechin gallate; a major component in GTE) almost completely inhibited dehydration, and 6 mg/ml AGE inhibited dehydration to 30% of the control level. Both vitamins E and C had no effect at the level of 2 mM. Different tea extracts had different degrees of inhibition, but the inhibitory activity increased when the number of hydroxyl groups in the compounds increased. With storage of sickle cells at 4 degrees C for 6 days, the cells started to undergo spontaneous dehydration when incubated at 37 degrees C. Neither inhibitors for Ca-induced K efflux nor K-Cl cotransport could inhibit cell dehydration of stored sickle cells, but both GTE and AGE effectively inhibited it. Chloride efflux measurements using a chloride electrode demonstrated that both GTE and AGE inhibited anion transport in red blood cells. The inhibitory mechanism of these compounds may be related to anion transport inhibition, although involvement of their antioxidant activities can not yet be ruled out. Copyright 2001 Academic Press.

  17. Anti-fungal activity of cold and hot water extracts of spices against fungal pathogens of Roselle (Hibiscus sabdariffa) in vitro.

    PubMed

    Touba, Eslaminejad Parizi; Zakaria, Maziah; Tahereh, Eslaminejad

    2012-02-01

    Crude extracts of seven spices, viz. cardamom, chilli, coriander, onion, garlic, ginger, and galangale were made using cold water and hot water extraction and they were tested for their anti-fungal effects against the three Roselle pathogens i.e. Phoma exigua, Fusarium nygamai and Rhizoctonia solani using the 'poisoned food technique'. All seven spices studied showed significant anti-fungal activity at three concentrations (10, 20 and 30% of the crude extract) in-vitro. The cold water extract of garlic exhibited good anti-fungal activity against all three tested fungi. In the case of the hot water extracts, garlic and ginger showed the best anti-fungal activity. Of the two extraction methods, cold water extraction was generally more effective than hot water extraction in controlling the pathogens. Against P. exigua, the 10% cold water extracts of galangale, ginger, coriander and cardamom achieved total (100%) inhibition of pathogen mycelial growth. Total inhibition of F. nygamai mycelial growth was similarly achieved with the 10% cold water extracts garlic. Against R. solani, the 10% cold water extract of galangale was effective in imposing 100% inhibition. Accordingly, the 10% galangale extract effectively controlled both P. exigua and R. solani in vitro. None of the hot water extracts of the spices succeeded in achieving 100% inhibition of the pathogen mycelial growth. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. [Antifungal effect of phenolic and carotenoids extracts from chiltepin (Capsicum annum var. glabriusculum) on Alternaria alternata and Fusarium oxysporum].

    PubMed

    Rodriguez-Maturino, Alfonso; Troncoso-Rojas, Rosalba; Sánchez-Estrada, Alberto; González-Mendoza, Daniel; Ruiz-Sanchez, Esau; Zamora-Bustillos, Roberto; Ceceña-Duran, Carlos; Grimaldo-Juarez, Onecimo; Aviles-Marin, Mónica

    2015-01-01

    The effect of phenolic and carotenoid extracts from chiltepin fruits on mycelial growth and the inhibition of conidial germination of Alternaria alternata and Fusarium oxysporum were investigated in the present work. Phenolic extracts inhibited mycelial growth of A.alternata by 38.46%, and significantly reduced conidial germination on the fifth day after treatment to 92% in relation to control. No significant changes were observed in the inhibition of mycelial growth in Fusarium oxysporum; however, the number of germinated conidia was reduced, showing 85% inhibition five days after treatment in relation to control. Moreover, carotenoid extracts showed 38.5% inhibition of mycelial growth and 85.3% inhibition of conidial germination of A.alternata, five days after treatment. Carotenoid extracts showed less inhibition of mycelial growth (20.3%) in F.oxysporum, with respect to A.alternata; while there was greater inhibition of conidial germination (96%) on the fifth day after treatment. Phenolic and carotenoid extracts from chiltepin may be a promising alternative as a natural fungicide against fungi of agricultural importance. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Agnus castus extracts inhibit prolactin secretion of rat pituitary cells.

    PubMed

    Sliutz, G; Speiser, P; Schultz, A M; Spona, J; Zeillinger, R

    1993-05-01

    In our studies on prolactin inhibition by plant extracts we focused on the effects of extracts of Vitex agnus castus and its preparations on rat pituitary cells under basal and stimulated conditions in primary cell culture. Both extracts from Vitex agnus castus as well as synthetic dopamine agonists (Lisuride) significantly inhibit basal as well as TRH-stimulated prolactin secretion of rat pituitary cells in vitro and as a consequence inhibition of prolactin secretion could be blocked by adding a dopamine receptor blocker. Therefore because of its dopaminergic effect Agnus castus could be considered as an efficient alternative phytotherapeutic drug in the treatment of slight hyperprolactinaemia.

  20. Hydroalcoholic extract of Rhodiola rosea L. (Crassulaceae) and its hydrolysate inhibit melanogenesis in B16F0 cells by regulating the CREB/MITF/tyrosinase pathway.

    PubMed

    Chiang, Hsiu-Mei; Chien, Yin-Chih; Wu, Chieh-Hsi; Kuo, Yueh-Hsiung; Wu, Wan-Chen; Pan, Yu-Yun; Su, Yu-Han; Wen, Kuo-Ching

    2014-03-01

    We investigated the effects of an aqueous alcohol extract of Rhodiola rosea (R. rosea) and its hydrolysate on melanin synthesis and the mechanisms mediating the activity. The ratio of tyrosol to salidroside was 2.3 in hydroalcoholic extract, and 51.0 in hydrolysate. We found that R. rosea extract and its hydrolysate inhibited melanin synthesis and tyrosinase activity in mouse melanoma cells (B16F0 cells). R. rosea extract also inhibited gene and protein expression of melanocortin 1 receptor (MC1R) and inhibited c-AMP response element binding protein (CREB) phosphorylation, suppressed the activation of AKT and glycogen synthase kinase-3 beta (GSK3β), and inhibited the expression of microphthalmia-associated transcription factor (MITF) and tyrosinase-related protein 1 (TRP-1). R. rosea hydrolysate inhibited the phosphorylation of CREB, the activation of AKT and GSK3β, and the expression of MITF and tyrosinase. Our results suggest that R. rosea extract is a novel tyrosinase inhibitor and that it exerts its effects by regulating the CREB/MITF/tyrosinase pathway in B16F0. Further in vivo studies are needed to determine the effectiveness of R. rosea extract as a skin whitening agent. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Inhibition of MAO by fractions and constituents of hypericum extract.

    PubMed

    Bladt, S; Wagner, H

    1994-10-01

    The inhibition of monoamine oxidase (MAO) by six fractions from hypericum extract and three characteristic constituents (as pure substances) were analyzed in vitro and ex vivo to study the antidepressive mechanism of action. Rat brain homogenates were used as the in vitro model, while the ex vivo analysis was performed after intraperitoneal application of the test substances to albino rats. Massive inhibition of MAO-A could be shown with the total extract and all fractions only at the concentration of 10(-3) mol/L. At 10(-4) mol/L, one fraction rich in flavonoides showed an inhibition of 39%, and all other fractions demonstrated less than 25% inhibition. Using pure hypericin as well as in all ex vivo experiments, no relevant inhibiting effects could be shown. From the results it can be concluded that the clinically proven antidepressive effect of hypericum extract cannot be explained in terms of MAO inhibition.

  2. Pharmacological activities of Vitex agnus-castus extracts in vitro.

    PubMed

    Meier, B; Berger, D; Hoberg, E; Sticher, O; Schaffner, W

    2000-10-01

    The pharmacological effects of ethanolic Vitex agnus-castus fruit-extracts (especially Ze 440) and various extract fractions of different polarities were evaluated both by radioligand binding studies and by superfusion experiments. A relative potent binding inhibition was observed for dopamine D2 and opioid (micro and kappa subtype) receptors with IC50 values of the native extract between 20 and 70 mg/mL. Binding, neither to the histamine H1, benzodiazepine and OFQ receptor, nor to the binding-site of the serotonin (5-HT) transporter, was significantly inhibited. The lipophilic fractions contained the diterpenes rotun-difuran and 6beta,7beta-diacetoxy-13-hydroxy-labda-8,14-dien . They exhibited inhibitory actions on dopamine D2 receptor binding. While binding inhibition to mu and kappa opioid receptors was most pronounced in lipophilic fractions, binding to delta opioid receptors was inhibited mainly by a aqueous fraction. Standardised Ze 440 extracts of different batches were of constant pharmacological quality according to their potential to inhibit the binding to D2 receptors. In superfusion experiments, the aqueous fraction of a methanolic extract inhibited the release of acetylcholine in a concentration-dependent manner. In addition, the potent D2 receptor antagonist spiperone antagonised the effect of the extract suggesting a dopaminergic action mediated by D2 receptor activation. Our results indicate a dopaminergic effect of Vitex agnus-castus extracts and suggest additional pharmacological actions via opioid receptors.

  3. Hawthorn extract inhibits human isolated neutrophil functions.

    PubMed

    Dalli, Ernesto; Milara, Javier; Cortijo, Julio; Morcillo, Esteban J; Cosín-Sales, Juan; Sotillo, José Francisco

    2008-06-01

    Hawthorn extract is a popular herbal medicine given as adjunctive treatment for chronic heart failure. In contrast to the cardiac properties of hawthorn extract, its anti-inflammatory effect has been scarcely investigated. This study examines the effects of a dry extract of leaves and flowers of Crataegus laevigata on various functional outputs of human neutrophils in vitro. Incubation of human neutrophils obtained from peripheral blood of healthy donors with C. laevigata extract (0.75-250 microg/ml) inhibited N-formyl-Met-Leu-Phe (FMLP)-induced superoxide anion generation, elastase release and chemotactic migration with potency values of 43.6, 21.9, and 31.6 microg/ml, respectively. By contrast, serum-opsonized zymosan-induced phagocytosis was unaltered by plant extract. C. laevigata extract (125 microg/ml) reduced FMLP-induced leukotriene B(4) production and lipopolysaccharide-induced generation of tumour necrosis factor-alpha and interleukin-8. Extract inhibited FMLP-induced intracellular calcium signal with potency of 17.4 microg/ml. Extract also markedly inhibited the extracellular calcium entry into calcium-depleted neutrophils, and the thapsigargin-induced intracellular calcium response. In conclusion, C. laevigata extract inhibited various functional outputs of activated human neutrophils which may be relevant to the pathophysiology of cardiac failure.

  4. Potential mechanisms for the effects of tea extracts on the attachment, biofilm formation and cell size of Streptococcus mutans.

    PubMed

    Wang, Yi; Lee, Sui M; Dykes, Gary A

    2013-01-01

    Tea can inhibit the attachment of Streptococcus mutans to surfaces and subsequent biofilm formation. Five commercial tea extracts were screened for their ability to inhibit attachment and biofilm formation by two strains of S. mutans on glass and hydroxyapatite surfaces. The mechanisms of these effects were investigated using scanning electron microscopy (SEM) and phytochemical screening. The results indicated that extracts of oolong tea most effectively inhibited attachment and extracts of pu-erh tea most effectively inhibited biofilm formation. SEM images showed that the S. mutans cells treated with extracts of oolong tea, or grown in medium containing extracts of pu-erh tea, were coated with tea components and were larger with more rounded shapes. The coatings on the cells consisted of flavonoids, tannins and indolic compounds. The ratio of tannins to simple phenolics in each of the coating samples was ∼3:1. This study suggests potential mechanisms by which tea components may inhibit the attachment and subsequent biofilm formation of S. mutans on tooth surfaces, such as modification of cell surface properties and blocking of the activity of proteins and the structures used by the bacteria to interact with surfaces.

  5. Inhibition of Cyclic Adenosine Monophosphate-Specific Phosphodiesterase by Various Food Plant-Derived Phytotherapeutic Agents

    PubMed Central

    Pacjuk, Olga; Hernández-Huguet, Silvia; Körner, Johanna; Scherer, Katharina; Richling, Elke

    2017-01-01

    Background: Phosphodiesterases (PDEs) play a major role in the regulation of cyclic adenosine monophosphate (cAMP)- and cyclic guanosine monophosphate (cGMP)-mediated pathways. Their inhibitors exhibit anti-inflammatory, vasodilatory and antithrombotic effects. Therefore, consumption of foods with PDE-inhibiting potential may possess beneficial influence on the risk of cardiovascular diseases. Methods: Four plant extracts (Arbutus unedo, Camellia sinensis, Cynara scolymus, Zingiber officinale) with promising ingredient profiles and physiological effects were tested for their ability to inhibit cAMP-specific PDE in vitro in a radioactive assay. Results: Strawberry tree fruit (Arbutus unedo) and tea (Camellia sinensis) extracts did not inhibit PDE markedly. Alternatively, artichoke (Cynara scolymus) extract had a significant inhibitory influence on PDE activity (IC50 = 0.9 ± 0.1 mg/mL) as well as its flavone luteolin (IC50 = 41 ± 10 μM) and 3,4-dicaffeoylquinic acid (IC50 > 1.0 mM). Additionally, the ginger (Zingiber officinale) extract and one of its constituents, [6]-gingerol, significantly inhibited PDE (IC50 = 1.7 ± 0.2 mg/mL and IC50 > 1.7 mM, respectively). Crude fractionation of ginger extract showed that substances responsible for PDE inhibition were in the lipoid fraction (IC50 = 455 ± 19 μg/mL). Conclusions: A PDE-inhibitory effect was shown for artichoke and ginger extract. Whether PDE inhibition in vivo can be achieved through ingestion of artichoke or ginger extracts leading to physiological effects concerning cardiovascular health should be addressed in future research. PMID:29113064

  6. Inhibition of gap-junctional intercellular communication and activation of mitogen-activated protein kinases by cyanobacterial extracts--indications of novel tumor-promoting cyanotoxins?

    PubMed

    Bláha, Ludĕk; Babica, Pavel; Hilscherová, Klára; Upham, Brad L

    2010-01-01

    Toxicity and liver tumor promotion of cyanotoxins microcystins have been extensively studied. However, recent studies document that other metabolites present in the complex cyanobacterial water blooms may also have adverse health effects. In this study we used rat liver epithelial stem-like cells (WB-F344) to examine the effects of cyanobacterial extracts on two established markers of tumor promotion, inhibition of gap-junctional intercellular communication (GJIC) and activation of mitogen-activated protein kinases (MAPKs) - ERK1/2. Extracts of cyanobacteria (laboratory cultures of Microcystis aeruginosa and Aphanizomenon flos-aquae and water blooms dominated by these species) inhibited GJIC and activated MAPKs in a dose-dependent manner (effective concentrations ranging 0.5-5mgd.w./mL). Effects were independent of the microcystin content and the strongest responses were elicited by the extracts of Aphanizomenon sp. Neither pure microcystin-LR nor cylindrospermopsin inhibited GJIC or activated MAPKs. Modulations of GJIC and MAPKs appeared to be specific to cyanobacterial extracts since extracts from green alga Chlamydomonas reinhardtii, heterotrophic bacterium Klebsiella terrigena, and isolated bacterial lipopolysaccharides had no comparable effects. Our study provides the first evidence on the existence of unknown cyanobacterial toxic metabolites that affect in vitro biomarkers of tumor promotion, i.e. inhibition of GJIC and activation of MAPKs.

  7. Effects of stinging nettle root extracts and their steroidal components on the Na+,K(+)-ATPase of the benign prostatic hyperplasia.

    PubMed

    Hirano, T; Homma, M; Oka, K

    1994-02-01

    The effects of organic-solvent extracts of Urtica dioica (Urticaceae) on the Na+,K(+)-ATPase of the tissue of benign prostatic hyperplasia (BPH) were investigated. The membrane Na+,K(+)-ATPase fraction was prepared from a patient with BPH by a differential centrifugation of the tissue homogenate. The enzyme activity was inhibited by 10(-4)-10(-5) M of ouabain. The hexane extract, the ether extract, the ethyl acetate extract, and the butanol extract of the roots caused 27.6-81.5% inhibition of the enzyme activity at 0.1 mg/ml. In addition, a column extraction of stinging nettle roots using benzene as an eluent afforded efficient enzyme inhibiting activity. Steroidal components in stinging nettle roots, such as stigmast-4-en-3-one, stigmasterol, and campesterol inhibited the enzyme activity by 23.0-67.0% at concentrations ranging from 10(-3)-10(-6) M. These results suggest that some hydrophobic constituents such as steroids in the stinging nettle roots inhibited the membrane Na+,K(+)-ATPase activity of the prostate, which may subsequently suppress prostate-cell metabolism and growth.

  8. Inhibition of protein glycation by extracts of culinary herbs and spices.

    PubMed

    Dearlove, Rebecca P; Greenspan, Phillip; Hartle, Diane K; Swanson, Ruthann B; Hargrove, James L

    2008-06-01

    We tested whether polyphenolic substances in extracts of commercial culinary herbs and spices would inhibit fructose-mediated protein glycation. Extracts of 24 herbs and spices from a local supermarket were tested for the ability to inhibit glycation of albumin. Dry samples were ground and extracted with 10 volumes of 50% ethanol, and total phenolic content and ferric reducing antioxidant potential (FRAP) were measured. Aliquots were incubated in triplicate at pH 7.4 with 0.25 M fructose and 10 mg/mL fatty acid-free bovine albumin. Fluorescence at 370 nm/440 nm was used as an index of albumin glycation. In general, spice extracts inhibited glycation more than herb extracts, but inhibition was correlated with total phenolic content (R(2) = 0.89). The most potent inhibitors included extracts of cloves, ground Jamaican allspice, and cinnamon. Potent herbs tested included sage, marjoram, tarragon, and rosemary. Total phenolics were highly correlated with FRAP values (R(2) = 0.93). The concentration of phenolics that inhibited glycation by 50% was typically 4-12 microg/mL. Relative to total phenolic concentration, extracts of powdered ginger and bay leaf were less effective than expected, and black pepper was more effective. Prevention of protein glycation is an example of the antidiabetic potential for bioactive compounds in culinary herbs and spices.

  9. Inhibition of pancreatic lipase and amylase by extracts of different spices and plants.

    PubMed

    Sellami, Mohamed; Louati, Hanen; Kamoun, Jannet; Kchaou, Ali; Damak, Mohamed; Gargouri, Youssef

    2017-05-01

    The aim of this study is to search new anti-obesity and anti-diabetic agents from plant and spices crude extracts as alternative to synthetic drugs. The inhibitory effect of 72 extracts was evaluated, in vitro, on lipase and amylase activities. Aqueous extracts of cinnamon and black tea exhibited an appreciable inhibitory effect on pancreatic amylase with IC 50 values of 18 and 87 μg, respectively. Aqueous extracts of cinnamon and mint showed strong inhibitory effects against pancreatic lipase with IC 50 of 45 and 62 μg, respectively. The presence of bile salts and colipase or an excess of interface failed to restore the lipase activity. Therefore, the inhibition of pancreatic lipase, by extracts of spices and plants, belongs to an irreversible inhibition. Crude extract of cinnamon showed the strongest anti-lipase and anti-amylase activities which offer a prospective therapeutic approach for the management of diabetes and obesity.

  10. Screening of plants used in the European traditional medicine to treat memory disorders for acetylcholinesterase inhibitory activity and anti amyloidogenic activity.

    PubMed

    Lobbens, Eva S B; Vissing, Karina J; Jorgensen, Lene; van de Weert, Marco; Jäger, Anna K

    2017-03-22

    Plants used in the traditional medicine of Europe to treat memory dysfunction and/or to enhance memory were investigated for activity against the underlying mechanisms of Alzheimer's disease. To investigate 35 ethanolic extracts of plants, selected using an ethnopharmacological approach, for anti-amyloidogenic activity as well as an ability to inhibit the enzymatic activity of acetylcholinesterase. The anti-amyloidogenic activity of the extracts against amyloid beta was investigated by Thioflavin T fibrillation assays and the ability to inhibit the enzymatic activity of acetylcholinesterase was evaluated monitoring the hydrolysis of acetylthiocholine RESULTS: Under the experimental conditions investigated, extracts of two plants, Carum carvi and Olea sylvestris, inhibited amyloid beta fibrillation considerably, eight plant extracts inhibited amyloid beta fibrillation to some extent, 16 plant extracts had no effect on amyloid beta fibrillation and nine extracts accelerated fibrillation of amyloid beta. Furthermore, five plant extracts from Corydalis species inhibited the enzymatic activity of acetylcholinesterase considerably, one plant extract inhibited the enzymatic activity of acetylcholinesterase to some extent and 29 plant extract had no effect on the enzymatic activity of acetylcholinesterase. An optimal extract in this study would possess acetylcholinesterase inhibitory activity as well as anti-amyloidogenic activity in order to address multiple facets of Alzheimer's disease, until the molecular origin of the disease is unraveled. Unfortunately no such extract was found. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  11. Berry components inhibit α-glucosidase in vitro: synergies between acarbose and polyphenols from black currant and rowanberry.

    PubMed

    Boath, Ashley S; Stewart, Derek; McDougall, Gordon J

    2012-12-01

    Polyphenol-rich extracts from certain berries inhibited α-glucosidase activity in vitro. The two most effective berry extracts, from black currant and rowanberry, inhibited α-glucosidase with IC(50) values respectively of 20 and 30μg GAE/ml and were as effective as the pharmaceutical inhibitor, acarbose. These berry extracts differed greatly in their polyphenol composition: black currant was dominated by anthocyanins (∼70% of total) whereas rowanberry was enriched in chlorogenic acids (65% total) and had low levels of anthocyanins. Both black currant and rowanberry extracts potentiated the inhibition caused by acarbose and could replace the inhibition lost by reducing the acarbose dose. However, no additive effects were noted when black currant and rowanberry extracts were added in combination. The mechanisms underlying the synergy between acarbose and the berry polyphenols and the lack of synergy between the berry components are discussed. These extracts exhibited the potential to replace acarbose (or reduce the dose required) in its current clinical use in improving post-prandial glycaemic control in type 2 diabetics. As a result, these polyphenols may offer a dietary means for type 2 diabetics to exercise glycaemic control. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Gas Chromatography-Mass Spectrometry Analysis of Ulva fasciata (Green Seaweed) Extract and Evaluation of Its Cytoprotective and Antigenotoxic Effects

    PubMed Central

    Rodeiro, Idania; Olguín, Sitlali; Santes, Rebeca; Herrera, José A.; Mangas, Raisa; Hernández, Yasnay; Fernández, Gisselle; Hernández, Ivones; Hernández-Ojeda, Sandra; Valencia-Olvera, Ana

    2015-01-01

    The chemical composition and biological properties of Ulva fasciata aqueous-ethanolic extract were examined. Five components were identified in one fraction prepared from the extract by gas chromatography-mass spectrometry, and palmitic acid and its ethyl ester accounted for 76% of the total identified components. Furthermore, we assessed the extract's antioxidant properties by using the DPPH, ABTS, and lipid peroxidation assays and found that the extract had a moderate scavenging effect. In an experiment involving preexposition and coexposition of the extract (1–500 µg/mL) and benzo[a]pyrene (BP), the extract was found to be nontoxic to C9 cells in culture and to inhibit the cytotoxicity induced by BP. As BP is biotransformed by CYP1A and CYP2B subfamilies, we explored the possible interaction of the extract with these enzymes. The extract (25–50 µg/mL) inhibited CYP1A1 activity in rat liver microsomes. Analysis of the inhibition kinetics revealed a mixed-type inhibitory effect on CYP1A1 supersome. The effects of the extract on BP-induced DNA damage and hepatic CYP activity in mice were also investigated. Micronuclei induction by BP and liver CYP1A1/2 activities significantly decreased in animals treated with the extract. The results suggest that Ulva fasciata aqueous-ethanolic extract inhibits BP bioactivation and it may be a potential chemopreventive agent. PMID:26612994

  13. Kaffir lime leaves extract inhibits biofilm formation by Streptococcus mutans.

    PubMed

    Kooltheat, Nateelak; Kamuthachad, Ludthawun; Anthapanya, Methinee; Samakchan, Natthapon; Sranujit, Rungnapa Pankla; Potup, Pachuen; Ferrante, Antonio; Usuwanthim, Kanchana

    2016-04-01

    Although kaffir lime has been reported to exhibit antioxidant and antileukemic activity, little is known about the antimicrobial effect of kaffir lime extract. Because Streptococcus mutans has been known to cause biofilm formation, it has been considered the most important causative pathogen of dental caries. Thus, the effective control of its effects on the oral biofilm is the key to the prevention of dental caries. The aims of the present study were to investigate the effect of kaffir lime leaves extract on biofilm formation and its antibacterial activity on S. mutans. We examined the effect of kaffir lime leaves extract on growth and biofilm formation of S. mutans. For the investigation we used a kaffir lime extract with high phenolic content. The minimum inhibitory concentration of the extract was determined by broth microdilution assay. The inhibitory effect of the test substances on biofilm formation was also investigated by biofilm formation assay and qRT-PCR of biofilm formation-associated genes. Kaffir lime leaves extract inhibits the growth of S. mutans, corresponding to the activity of an antibiotic, ampicillin. Formation of biofilm by S. mutans was also inhibited by the extract. These results were confirmed by the down-regulation of genes associated with the biofilm formation. The findings highlight the ability of kaffir lime leaves extract to inhibit S. mutans activity, which may be beneficial in the prevention of biofilm formation on dental surface, reducing dental plaque and decreasing the chance of dental carries. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. [Inhibition effects of black rice pericarp extracts on cell proliferation of PC-3 cells].

    PubMed

    Jiang, Weiwei; Yu, Xudong; Ren, Guofeng

    2013-05-01

    To observe the inhibitive effects of black rice pericarp extracts on cell proliferation of human prostate cancer cell PC-3 and to explore its effecting mechanism. The black rice pericarp extract was used to treat the PC-3 cells. The inhibitory effect of black rice pericarp extract on cells proliferation of PC-3 was tested by MTT method. Cell apoptosis rates and cell cycle were measured by flow cytometric assay (FCM). Western blot was used to study the protein expression levels of p38, p-p38, JNK, p-JNK. A dose-dependent and time-dependent proliferation inhibition of black rice pericarp extract was demonstrated in PC-3. The most prominent experiment condition was inhibitory concentration with 300microg/ml and treated for 72 h. The experiment result of flow cytometry analysis demonstrates that the apoptosis rate of PC-3 cells increased along with the increasing of black rice pericarp extract concentration, and a G1-S cell cycle arrest was induced in a dose-dependent manner. After PC-3 cell was treated with black rice pericarp extract for 72 h, the expressions of p-p38, p-JNK protein increased. Black rice pericarp extract could inhibit proliferation, change the cell cycle distributions and induce apoptosis in human prostatic cancer cell PC-3. Its inhibitory effect may be through promoting activation of the JNK, p38 signaling pathway. These results suggest that black rice pericarp extract maybe has an inhibitory effect on prostatic cancer.

  15. Cinnamon extract inhibits α-glucosidase activity and dampens postprandial glucose excursion in diabetic rats

    PubMed Central

    2011-01-01

    Background α-glucosidase inhibitors regulate postprandial hyperglycemia (PPHG) by impeding the rate of carbohydrate digestion in the small intestine and thereby hampering the diet associated acute glucose excursion. PPHG is a major risk factor for diabetic vascular complications leading to disabilities and mortality in diabetics. Cinnamomum zeylanicum, a spice, has been used in traditional medicine for treating diabetes. In this study we have evaluated the α-glucosidase inhibitory potential of cinnamon extract to control postprandial blood glucose level in maltose, sucrose loaded STZ induced diabetic rats. Methods The methanol extract of cinnamon bark was prepared by Soxhlet extraction. Phytochemical analysis was performed to find the major class of compounds present in the extract. The inhibitory effect of cinnamon extract on yeast α-glucosidase and rat-intestinal α-glucosidase was determined in vitro and the kinetics of enzyme inhibition was studied. Dialysis experiment was performed to find the nature of the inhibition. Normal male Albino wistar rats and STZ induced diabetic rats were treated with cinnamon extract to find the effect of cinnamon on postprandial hyperglycemia after carbohydrate loading. Results Phytochemical analysis of the methanol extract displayed the presence of tannins, flavonoids, glycosides, terpenoids, coumarins and anthraquinones. In vitro studies had indicated dose-dependent inhibitory activity of cinnamon extract against yeast α-glucosidase with the IC 50 value of 5.83 μg/ml and mammalian α-glucosidase with IC 50 value of 670 μg/ml. Enzyme kinetics data fit to LB plot pointed out competitive mode of inhibition and the membrane dialysis experiment revealed reversible nature of inhibition. In vivo animal experiments are indicative of ameliorated postprandial hyperglycemia as the oral intake of the cinnamon extract (300 mg/kg body wt.) significantly dampened the postprandial hyperglycemia by 78.2% and 52.0% in maltose and sucrose loaded STZ induced diabetic rats respectively, compared to the control. On the other hand, in rats that received glucose and cinnamon extract, postprandial hyperglycemia was not effectively suppressed, which indicates that the observed postprandial glycemic amelioration is majorly due to α-glucosidase inhibition. Conclusions The current study demonstrates one of the mechanisms in which cinnamon bark extract effectively inhibits α-glucosidase leading to suppression of postprandial hyperglycemia in STZ induced diabetic rats loaded with maltose, sucrose. This bark extract shows competitive, reversible inhibition on α-glucosidase enzyme. Cinnamon extract could be used as a potential nutraceutical agent for treating postprandial hyperglycemia. In future, specific inhibitor has to be isolated from the crude extract, characterized and therapeutically exploited. PMID:21711570

  16. [The effects of herb lithospermum extract on MCF-7 cell and estrogen and progestogen levels in mice].

    PubMed

    Wang, Wei; Li, Ping-ping

    2003-11-01

    To study the effects of lithospermum extract on MCF-7 cell and estrogen and progestogen levels in mice. Cell growth curve and Western Blotting were used to do animal experiment. Lithospermum extract could inhibit the growth of MCF-7 cell. It could also inhibit the expression of ER and increase the expression of PR with large dose. After the mice were bred with Lithospermum, their serum estrogen and progestogen levels reduced, their uterus weight index decresed and uterus ER and PR levels increased. It could also improve the hyperplasia of uterus caused by tamoxifen. Lithospermum extract can inhibit the growth of MCF-7 cell and inhibit the level of estrogen and progestogen in mice.

  17. Vasorelaxant and Hypotensive Effects of an Ethanolic Extract of Eulophia macrobulbon and Its Main Compound 1-(4′-Hydroxybenzyl)-4,8-Dimethoxyphenanthrene-2,7-Diol

    PubMed Central

    Wisutthathum, Sutthinee; Chootip, Krongkarn; Martin, Hélène; Ingkaninan, Kornkanok; Temkitthawon, Prapapan; Totoson, Perle; Demougeot, Céline

    2018-01-01

    Background: Ethnopharmacological studies demonstrated the potential for Eulophia species to treat inflammation, cancer, and cardio-metabolic diseases. The aim of the study was to investigate the vasorelaxant effect of ethanolic Eulophia macrobulbon (EM) extract and its main phenanthrene on rat isolated mesenteric artery and to investigate the hypotensive effect of EM. Methods: The vasorelaxant effects of EM extract or phenanthrene and the underlying mechanisms were evaluated on second-order mesenteric arteries from Sprague Dawley rats. In addition, the acute hypotensive effect was evaluated in anesthetized rats infused with cumulative concentrations of the EM extract. Results: Both EM extract (10-4–1 mg/ml) and phenanthrene (10-7–10-4 M) relaxed endothelium-intact arteries, an effect that was partly reduced by endothelium removal (p < 0.001). A significant decrease in the relaxant effect of the extract and the phenanthrene was observed with L-NAME and apamin/charybdotoxin in endothelium-intact vessels, and with iberiotoxin in denuded vessels. SNP (sodium nitroprusside)-induced relaxation was significantly enhanced by EM extract and phenanthrene. By contrast, ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one), 4-aminopyridine and glibenclamide (endothelium-denuded vessels) and indomethacin (endothelium-intact vessels) had no effect. In calcium-free solution, both the EM extract and phenanthrene inhibited extracellular Ca2+-induced contraction in high KCl and phenylephrine (PE) pre-contracted rings. They also inhibited the intracellular Ca2+ release sensitive to PE. The acute infusion of EM extract (20 and 70 mg/kg) induced an immediate and transient dose-dependent hypotensive effect. Conclusion: The ethanolic extract of EM tubers and its main active compound, 1-(4′-hydroxybenzyl)-4,8-dimethoxyphenanthrene-2,7-diol (phenanthrene) induced vasorelaxant effects on rat resistance vessels, through pleiotropic effects including endothelium-dependent effects (NOS activation, enhanced EDH production) and endothelium-independent effects (opening of KCa channels, inhibition of Ca2+ channels, inhibition of intracellular Ca2+ release and PDE inhibition). PMID:29872393

  18. The Role of Monocarboxylate Transporters and Their Chaperone CD147 in Lactate Efflux Inhibition and the Anticancer Effects of Terminalia chebula in Neuroblastoma Cell Line N2-A

    PubMed Central

    Messeha, S. S.; Zarmouh, N. O.; Taka, E.; Gendy, S. G.; Shokry, G. R.; Kolta, M. G.; Soliman, K. F. A.

    2016-01-01

    Aims In the presence of oxygen, most of the synthesized pyruvate during glycolysis in the cancer cell of solid tumors is released away from the mitochondria to form lactate (Warburg Effect). To maintain cell homeostasis, lactate is transported across the cell membrane by monocarboxylate transporters (MCTs). The major aim of the current investigation is to identify novel compounds that inhibit lactate efflux that may lead to identifying effective targets for cancer treatment. Study Design In this study, 900 ethanol plant extracts were screened for their lactate efflux inhibition using neuroblastoma (N2-A) cell line. Additionally, we investigated the mechanism of inhibition for the most potent plant extract regarding monocarboxylate transporters expression, and consequences effects on viability, growth, and apoptosis. Methodology The potency of lactate efflux inhibition of ethanol plant extracts was evaluated in N2-A cells by measuring extracellular lactate levels. Caspase 3- activity and acridine orange/ethidium bromide staining were performed to assess the apoptotic effect. The antiproliferative effect was measured using WST assay. Western blotting was performed to quantify protein expression of MCTs and their chaperone CD147 in treated cells lysates. Results Terminalia chebula plant extract was the most potent lactate efflux inhibitor in N2-A cells among the 900 - tested plant extracts. The results obtained show that extract of Terminalia chebula fruits (TCE) significantly (P = 0.05) reduced the expression of the MCT1, MCT3, MCT4 and the chaperone CD147. The plant extract was more potent (IC50 of 3.59 ± 0.26 μg/ml) than the MCT standard inhibitor phloretin (IC50 76.54 ± 3.19 μg/ml). The extract also showed more potency and selective cytotoxicity in cancer cells than DI-TNC1 primary cell line (IC50 7.37 ± 0.28 vs. 17.35 ± 0.19 μg/ml). Moreover, TCE Inhibited N2-A cell growth (IG50 = 5.20 ± 0.30 μg/ml) and induced apoptosis at the 7.5 μg/ml concentration. Conclusion Out of the 900 plant extracts screened, Terminalia chebula ethanol extract was found to be the most potent lactate efflux inhibitor with the ability to inhibit chaperone CD147 expression and impact the function of monocarboxylate transporters. Furthermore, TCE was found to have growth inhibition and apoptotic effects. The results obtained indicate that Terminalia chebula constituent(s) may contain promising compounds that can be useful in the management of neuroblastoma cancer. PMID:27158628

  19. Anti-tumorigenic activity of five culinary and medicinal herbs grown under greenhouse conditions and their combination effects.

    PubMed

    Yi, Weiguang; Wetzstein, Hazel Y

    2011-08-15

    Herbs and spices have been used as food preservatives, flavorings, and in traditional medicines for thousands of years. More and more scientific evidence supports the medicinal properties of culinary herbs. Colon cancer is the third leading cause of cancer death in the USA, and the fourth most common form of cancer worldwide. The objectives of this study were to evaluate the antitumor activity of five selected herbs grown under greenhouse conditions, and to study the potential synergistic effects among different herbal extract combinations. Thyme, rosemary, sage, spearmint, and peppermint extracts significantly inhibited SW-480 colon cancer cell growth, with sage extracts exhibiting the highest bioactivity, with 50% inhibition at 35.9 µg mL⁻¹, which was equivalent to 93.9 µg dried leaves mL⁻¹ of culture medium. Some mixtures of different herbal extracts had combination effects on cancer cell growth. The inhibitory effects of peppermint + sage combinations at a 1:1 ratio were significantly higher than rosemary + sage combinations at 1:1 ratio, although peppermint extracts showed lower inhibition than rosemary extracts. Extracts from herb species (thyme, rosemary, sage, spearmint and peppermint) can significantly inhibit the growth of human colon cancer cells. Mixtures of herb extracts can have combination effects on cancer cell growth. The study suggests that these five herbs may have potential health benefits to suppress colon cancer. Copyright © 2011 Society of Chemical Industry.

  20. Hibiscus sabdariffa extract inhibits in vitro biofilm formation capacity of Candida albicans isolated from recurrent urinary tract infections.

    PubMed

    Alshami, Issam; Alharbi, Ahmed E

    2014-02-01

    To explore the prevention of recurrent candiduria using natural based approaches and to study the antimicrobial effect of Hibiscus sabdariffa (H. sabdariffa) extract and the biofilm forming capacity of Candida albicans strains in the present of the H. sabdariffa extract. In this particular study, six strains of fluconazole resistant Candida albicans isolated from recurrent candiduria were used. The susceptibility of fungal isolates, time-kill curves and biofilm forming capacity in the present of the H. sabdariffa extract were determined. Various levels minimum inhibitory concentration of the extract were observed against all the isolates. Minimum inhibitory concentration values ranged from 0.5 to 2.0 mg/mL. Time-kill experiment demonstrated that the effect was fungistatic. The biofilm inhibition assay results showed that H. sabdariffa extract inhibited biofilm production of all the isolates. The results of the study support the potential effect of H. sabdariffa extract for preventing recurrent candiduria and emphasize the significance of the plant extract approach as a potential antifungal agent.

  1. Hypoglycemic effect of basil (Ocimum basilicum) aqueous extract is mediated through inhibition of α-glucosidase and α-amylase activities: an in vitro study.

    PubMed

    El-Beshbishy, Ha; Bahashwan, Sa

    2012-02-01

    The present study investigated the in vitro hypoglycemic activity of basil (Ocimum basilicum) aqueous extract. Preliminary phytochemical screening of the extract revealed the presence of reducing sugars, cardiac glycosides, tannins, saponins, glycosides, flavonoids and steroids. The total polyphenols content (TPC), flavonoids content (FC), percentage diphenylpicrylhydrazyl (DPPH( · )) radical inhibition and total antioxidant status (TAS) were estimated. The FC was 41 ± 2.2 rutin/g dry extract, the TPC was 146 ± 5.26 mg catechin/g dry extract and the TAS was 5.12 ± 0.7 mmol/L. The %DPPH( · ) free radical inhibition was 60%, 54%, 49% and 43%, respectively, for different extract concentrations; 20, 18.2, 16.3 and 14.5 mg/ml, respectively. The extract elicited significant dose-dependent pattern against rat intestinal sucrase (RIS; IC(50) = 36.72 mg/ml), rat intestinal maltase (RIM; IC(50) = 21.31 mg/ml) and porcine pancreatic α-amylase (PPA; IC(50) = 42.50 mg/ml) inhibitory activities. The inhibition was greater against maltase compared with sucrase. These effects may be attributed to the high TPC and FC levels. The linear regression analysis revealed strong significant positive correlations between %DPPH( · ) radical inhibition and each of %RIS, %RIM and %PPA inhibiting activity. Also, strong significant positive correlations between %RIS and either %RIM or %PPA inhibition activity were observed. We concluded therefore that basil aqueous extract via antioxidant and possibly α-glucosidase and α-amylase inhibiting activities, offered positive benefits to control diabetes.

  2. Inhibition of melanin production by a combination of Siberian larch and pomegranate fruit extracts.

    PubMed

    Diwakar, Ganesh; Rana, Jatinder; Scholten, Jeffrey D

    2012-09-01

    In an effort to find botanicals containing polyphenolic compounds with the capacity to inhibit melanin biosynthesis, we identified a novel combination of Siberian larch (Larix sibirica) extract, standardized to 80% taxifolin, and pomegranate fruit (Punica granatum) extract, containing 20% punicalagins, that demonstrates a synergistic reduction of melanin biosynthesis in Melan-a cells. The combination of Siberian larch and pomegranate extracts (1:1) produced a 2-fold reduction in melanin content compared to Siberian larch or pomegranate extracts alone with no corresponding effect on cell viability. Siberian larch and pomegranate fruit extracts inhibited expression of melanocyte specific genes, tyrosinase (Tyr), microphthalmia transcription factor (Mitf), and melanosome structural proteins (Pmel17 and Mart1) but did not inhibit tyrosinase enzyme activity. These results suggest that the mechanism of inhibition of melanin biosynthesis by Siberian larch and pomegranate extracts, alone and in combination, is through downregulation of melanocyte specific genes and not due to inhibition of tyrosinase enzyme activity. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. [Allelopathic effects of invasive weed Solidago canadensis on native plants].

    PubMed

    Mei, Lingxiao; Chen, Xin; Tang, Jianjun

    2005-12-01

    With growth chamber method, this paper studied the allelopathic potential of invasive weed Solidago canadensis on native plant species. Different concentration S. canadensis root and rhizome extracts were examined, and the test plants were Trifolium repens, Trifolium pretense, Medicago lupulina, Lolium perenne, Suaeda glauca, Plantago virginica, Kummerowia stipulacea, Festuca arundinacea, Ageratum conyzoides, Portulaca oleracea, and Amaranthus spinosus. The results showed that the allelopathic inhibitory effect of the extracts from both S. canadensis root and rhizome was enhanced with increasing concentration, and rhizome extracts had a higher effect than root extracts. At the lowest concentration (1:60), root extract had little effect on the seed germination and seedling growth of T. repens, but rhizome extract could inhibit the germination of all test plants though the inhibitory effect varied with different species. The inhibition was the greatest for grass, followed by forb and legume. 1:60 (m:m) rhizome extract had similar effects on seed germination and radicel growth, but for outgrowth, the extract could inhibit Kummerowia stipulacea, Amaranthus spinosus and Festuca arundinacea, had no significant impact on Lolium perenne, Plantago virginica, Ageratum conyzoides, Portulaca oleracea and Amaranthus spinosus, and stimulated Trifolium repens, Trifolium pretense and Medicago lupulina.

  4. Microbiological Assessment of Moringa Oleifera Extracts and Its Incorporation in Novel Dental Remedies against Some Oral Pathogens

    PubMed Central

    Elgamily, Hanaa; Moussa, Amani; Elboraey, Asmaa; EL-Sayed, Hoda; Al-Moghazy, Marwa; Abdalla, Aboelfetoh

    2016-01-01

    AIM: To assess the antibacterial and antifungal potentials of different parts of Moringa oleifera plant using different extraction methods in attempts to formulate natural dental remedies from this plant. MATERIAL AND METHODS: Three solvents extracts (Ethanol, acetone, and ethyl acetate) of different parts of Egyptian Moringa tree were prepared and tested against oral pathogens: Staphylococcus aureus, Streptococcus mutans, and Candida albicans using disc diffusion method; As well as to incorporate the plant extract to formulate experimental toothpaste and mouthwash. The two dental remedies were assessed against the same microbial strains. Statistical analysis was performed using One-Way ANOVA test to compare the inhibition zone diameter and t-test. RESULTS: Ethanol extracts as well as leaves extracts demonstrated the highest significant mean inhibition zone values (P ≤ 0.05) against Staphylococcus aureus and Streptococcus mutans growth. However, all extracts revealed no inhibition zone against Candida albicans. For dental remedies, experimental toothpaste exhibited higher mean inhibition than the mouthwash against Staphylococcus aureus, Streptococcus mutans and only the toothpaste revealed antifungal effect against Candida albicans. CONCLUSION: The different extracts of different parts of Moringa showed an antibacterial effect against Staphylococcus aureus and Streptococcus mutans growth. The novel toothpaste of ethanolic leaves extract has antimicrobial and antifungal potential effects all selected strains. PMID:28028395

  5. Investigation of ginkgo biloba leave extracts as corrosion and Oil field microorganism inhibitors

    PubMed Central

    2013-01-01

    Ginkgo biloba (Ginkgoaceae), originating from China, now distributes all over the world. Wide application of Ginkgo biloba extracts is determined by the main active substances, flavonoids and terpenoids, which indicates its extracts suitable to be used as an effective corrosion inhibitor. The extracts of Ginkgo biloba leave have been investigated on the corrosion inhibition of Q235A steel with weight loss and potentiodynamic polarisation techniques. The inhibition efficiency of the extracts varies with extract concentration. The extracts inhibit corrosion mainly by adsorption mechanism. Potentiodynamic polarisation studies show that extracts are mixed type inhibitors. The antibacterial activity of the extracts against oil field microorganism (SRB, IB and TGB) was also investigated. PMID:23651921

  6. Monoamine Oxidase-A Inhibition and Associated Antioxidant Activity in Plant Extracts with Potential Antidepressant Actions

    PubMed Central

    Guillén, Hugo

    2018-01-01

    Monoamine oxidase (MAO) catalyzes the oxidative deamination of amines and neurotransmitters and is involved in mood disorders, depression, oxidative stress, and adverse pharmacological reactions. This work studies the inhibition of human MAO-A by Hypericum perforatum, Peganum harmala, and Lepidium meyenii, which are reported to improve and affect mood and mental conditions. Subsequently, the antioxidant activity associated with the inhibition of MAO is determined in plant extracts for the first time. H. perforatum inhibited human MAO-A, and extracts from flowers gave the highest inhibition (IC50 of 63.6 μg/mL). Plant extracts were analyzed by HPLC-DAD-MS and contained pseudohypericin, hypericin, hyperforin, adhyperforin, hyperfirin, and flavonoids. Hyperforin did not inhibit human MAO-A and hypericin was a poor inhibitor of this isoenzyme. Quercetin and flavonoids significantly contributed to MAO-A inhibition. P. harmala seed extracts highly inhibited MAO-A (IC50 of 49.9 μg/L), being a thousand times more potent than H. perforatum extracts owing to its content of β-carboline alkaloids (harmaline and harmine). L. meyenii root (maca) extracts did not inhibit MAO-A. These plants may exert protective actions related to antioxidant effects. Results in this work show that P. harmala and H. perforatum extracts exhibit antioxidant activity associated with the inhibition of MAO (i.e., lower production of H2O2). PMID:29568754

  7. Inhibition of Pancreatin-Induced Digestion of Cooked Rice Starch by Adzuki (Vigana angularis) Bean Flavonoids and the Possibility of a Decrease in the Inhibitory Effects in the Stomach.

    PubMed

    Hirota, Sachiko; Takahama, Umeo

    2017-03-15

    Flavonoids of adzuki bean bind to starch when the beans are cooked with rice. The purpose of this study is to show that adzuki flavonoids can suppress pancreatin-induced digestion of cooked rice starch. The diethyl ether extract of water boiled with adzuki bean inhibited starch digestion, and quercetin and a cyanidin-catechin conjugate (vignacyanidin) but not taxifolin in the extract contributed to the inhibition. The order of their inhibitory effects (taxifolin < quercetin < vignacyanidin) suggested that the effects increased with an increase in their hydrophobicity. The diethyl ether extract also inhibited the starch digestion of cooked rice preincubated in artificial gastric juice, and the level of inhibition was decreased by nitrite. The decrease was due to nitrite-induced consumption of quercetin and vignacyanidin. Taking these results into account, we discuss mechanisms of quercetin- and vignacyanidin-dependent inhibition of starch digestion and the possibility of the decrease in their inhibitory effects by nitrite in the stomach.

  8. Nanoparticles of Selaginella doederleinii leaf extract inhibit human lung cancer cells A549

    NASA Astrophysics Data System (ADS)

    Syaefudin; Juniarti, A.; Rosiyana, L.; Setyani, A.; Khodijah, S.

    2016-01-01

    The aim of the present study is to evaluate cytotoxicity effect of nanoparticles of Selaginella doederleinii (S. doederleinii) leaves extract. S. doederleinii was extracted by maceration method using 70%(v/v) ethanol as solvent. Phytochemical content was analyzed qualitatively by using Harborne and Thin Layer Chromatography (TLC) methods. Nanoparticle extract was prepared by ionic gelation using chitosan as encapsulant agent. Anticancer activity was performed by using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The results showed that S. doederleinii contains of flavonoids. Nanoparticle of S. doederleinii leaves extract greatly inhibited A549 cells growth (cancer cells), with IC50 of 3% or 1020 μg/ml. These nanoparticles extract also inhibited the growth of Chang cells (normal cells), with IC50 of 4% or 1442 μg/ml. The effective concentration of nanoparticles extract which inhibits cancer cells without harming the normal cells is 0.5% or 167 μg/ml. Further studies are needed to obtain the concentration of nanoparticles extract which can selectively suppress cancer cells.

  9. Suppressive effects of Lithospermum erythrorhizon extracts on lipopolysaccharide-induced activation of AP-1 and NF-kappaB via mitogen-activated protein kinase pathways in mouse macrophage cells.

    PubMed

    Han, Kyu Yeon; Kwon, Taek Hwan; Lee, Tae Hoon; Lee, Sung-Joon; Kim, Sung-Hoon; Kim, Jiyoung

    2008-04-30

    A variety of anti-inflammatory agents have been shown to exert chemopreventive activity via targeting of transcription factors such as NF-kappaB and AP-1. Lithospermum erythrorhizon (LE) has long been used in traditional oriental medicine. In this study, we demonstrated the inhibitory effects of LE extracts on lipopolysaccharide (LPS)-stimulated production of inflammatory cytokines. As an underlying mechanism of inhibition, LE extracts reduced LPS-induced transactivation of AP-1 as well as NF-kappaB in mouse macrophage cells. Electrophoretic mobility shift assays indicated that LE extracts inhibited the DNA binding activities of AP-1 and NF-kappaB. In addition, phosphorylation of IkappaB-alpha protein was suppressed by LE extracts. Moreover, LE extracts inhibited c-Jun N-terminal kinase and extracellular signal-regulated signaling pathways. Our results suggest that the anti-inflammatory activity of LE extracts may be mediated by the inhibition of signal transduction pathways that normally lead to the activation of AP-1and NF-kappaB. These inhibitory effects may be useful for chemoprevention of cancer or other chronic inflammatory diseases.

  10. Soybean phenolic-rich extracts inhibit key-enzymes linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (angiotensin I converting enzyme) in vitro.

    PubMed

    Ademiluyi, Adedayo O; Oboh, Ganiyu

    2013-03-01

    This study sought to assess the inhibitory activities of phenolic-rich extracts from soybean on α-amylase, α-glucosidase and angiotensin I converting enzyme (ACE) activities in vitro. The free phenolic extract of the soybean was obtained by extraction with 80% acetone, while that of the bound phenolic extract was done by extracting the alkaline and acid hydrolyzed residue with ethyl acetate. The inhibitory action of these extracts on the enzymes activity as well as their antioxidant properties was assessed. Both phenolic-rich extracts inhibited α-amylase, α-glucosidase and ACE enzyme activities in a dose dependent pattern. However, the bound phenolic extract exhibited significantly (P < 0.05) higher α-amylase and ACE inhibition while the free phenolic extract had significantly (P < 0.05) higher α-glucosidase inhibitory activity. Nevertheless, the free phenolic extract had higher α-glucosidase inhibitory activity when compared to that of α-amylase; this property confer an advantage on soybean phenolic-rich extracts over commercial antidiabetic drugs with little or no side effect. And inhibition of ACE suggests the antihypertension potential of soybean phenolic-rich extracts. Furthermore, the enzyme inhibitory activities of the phenolic-rich extracts were not associated with their phenolic content. Therefore, phenolic-rich extracts of soybean could inhibit key-enzyme linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (ACE) and thus could explain in part the mechanism by which soybean renders these health promoting effect. Copyright © 2011 Elsevier GmbH. All rights reserved.

  11. [Interspecific allelopathic effect of different organs' aqueous extracts of Betula platyphylla and Larix olgensis on their seed germination and seedling growth].

    PubMed

    Liu, Zhong-Ling; Wang, Qing-Cheng; Hao, Long-Fei

    2011-12-01

    In this paper, the Betula platyphylla root-, branch-, and foliage aqueous extracts and Larix olgensis root-, branch-, foliage-, and bark aqueous extracts over a range of concentrations 5.0, 12.5, 25.0, 50.0, and 100.0 mg x mL(-1) were used to study their interspecific allelopathic effect on the seed germination and seedling growth of the two tree species. All the L. olgensis organs' extracts, except its root extracts at concentration 5.0 mg x mL(-1), had inhibition effect on B. platyphylla seed germination rate, which was 54%, 58%, 59%, and 66% under the effects of L. olgensis foliage-, branch-, bark-, and root extracts, respectively, as compared with the control. With increasing concentration, the inhibition effect of L. olgensis root- and branch extracts increased while that of L. olgensis foliage- and bark extracts decreased. The L. olgensis organs' extracts, especially the foliage extracts at concentration 100.0 mg x mL(-1), had strong inhibition effect on B. platyphylla seed radicle- and hypocotyl length growth, with a decrement of 38% and 55% (P < 0.05), respectively. L. olgensis branch- and foliage extracts promoted, but root- and bark extracts inhibited B. platyphylla seedling growth and biomass production. B. platyphylla organs' extracts promoted L. olgensis seed germination, root- and branch extracts promoted hypocotyl length growth, but foliage extracts at 50.0 and 100.0 mg x mL(-1) decreased the hypocotyl length growth by 27% and 28% (P < 0.05), respectively. B. platyphylla organs' extracts mainly promoted L. olgensis seedling growth, with the height- and collar diameter growth and biomass accumulation at B. platyphylla foliage extracts concentration 5.0 mg x mL(-1) increased by 54%, 60%, and 100% (P < 0.05), respectively. Our results suggested that there existed obvious allelopathic effect between B. platyphylla and L. olgensis, and thus, mixed planting B. platyphylla and L. olgensis could have promotion effects on the growth of the two tree species.

  12. Inhibition of platelet aggregation and in vitro free radical scavenging activity of dried fruiting bodies of Pleurotus eous.

    PubMed

    Suseem, S R; Saral, Mary

    2015-07-01

    To evaluate the ethyl acetate, methanol and aqueous extracts of dried fruiting bodies of Pleurotus eous for its anti-platelet activity on human volunteer's blood. And also to analyze the free radical scavenging property of the extracts of P.eous by using various in vitro models. Anti-platelet activity of dried fruiting bodies of P.eous was evaluated by in vitro model using blood platelets. Inhibition of platelet aggregation was monitored after pre-incubation of platelets with the crude extracts of mushroom P.eous. Antioxidant activities of extracts of P.eous were evaluated by different in vitro experiments, namely, 1, 1-diphenyl-2-picryl hydrazyl (DPPH), superoxide, hydroxyl radical and lipid peroxide radical models. Crude extracts of mushroom P.eous inhibited platelet aggregation dose-dependently which was induced by adenosine diphosphate (ADP). At a maximum concentration of 10 mg/mL, methanol extract effected 64.02% inhibition of lipid per-oxidation and 50.12% scavenging effect on superoxide anion radical. Aqueous extract of P.eous have shown 69.43% chelating ability on ferrous ions, 24.27% scavenging effect on hydroxyl radical and 49.57% scavenging effect on DPPH radical at 10 mg/mL. Increasing concentrations of the extract were found to cause progressively decreasing of the intensity of absorbance. Anti-platelet effects could be related in part to the polyphenolic compounds present in the extracts. Antioxidant activity results indicated the free radical scavenging property of the extracts of P.eous which might be due to the high content of phenolic compounds and flavonoids.

  13. In Vitro Evaluation of Antimicrobial Activity of Alimentary Canal Extracts from the Red Palm Weevil, Rhynchophorus ferrugineus Olivier Larvae.

    PubMed

    Sewify, Gamal H; Hamada, Hanan M; Alhadrami, Hani A

    2017-01-01

    The invasive red palm weevil, Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae), is considered one of the world's most devastating insect pests to palm trees. It was observed that larvae of this pest are able to inhibit microbial growth on the rearing media when they start feeding and this observation has led us to study the effect of red palm weevils on various microbial species. The antimicrobial effect of extracts from different parts of the alimentary canal on Gram positive bacteria ( Enterococcus faecalis and Staphylococcus aureus ), Gram negative bacteria ( Escherichia coli and Klebsiella spp.), Candida albicans, and Penicillium sp. was tested using the agar well diffusion method. All extracts inhibited the tested microbial species. Foregut extracts had the greatest zones of growth inhibition. Enterococcus faecalis , Staphylococcus aureus, and Penicillium sp. were significantly sensitive to the extracts and had the largest growth inhibition zones. It is concluded that the gut extracts contain potent antimicrobial activity and may provide a new source of antimicrobial peptides.

  14. In vitro effects of active constituents and extracts of Orthosiphon stamineus on the activities of three major human cDNA-expressed cytochrome P450 enzymes.

    PubMed

    Pan, Yan; Abd-Rashid, Badrul Amini; Ismail, Zakiah; Ismail, Rusli; Mak, Joon Wah; Pook, Peter C K; Er, Hui Meng; Ong, Chin Eng

    2011-03-15

    Orthosiphon stamineus (OS) has been traditionally used to treat diabetes, kidney and urinary disorders, high blood pressure and bone or muscular pain. To assess the possibility of drug-herb interaction via interference of metabolism, effects of four OS extracts of different polarity and three active constituents (sinensetin, eupatorin and rosmarinic acid) on major human cDNA-expressed cytochrome P450 (CYP) enzymes were investigated. Three substrate-probe based high-performance liquid chromatography (HPLC) assays were established to serve as activity markers for CYP2C9, CYP2D6 and CYP3A4. Our results indicate that OS extracts and constituents exhibited differential modulatory effects on different CYPs. While none of the OS components showed significant inhibition on CYP2C9, eupatorin strongly and uncompetitively inhibited CYP2D6 activity with a K(i) value of 10.2μM. CYP3A4 appeared to be the most susceptible enzyme to OS inhibitory effects. It was moderately inhibited by OS dichloromethane and petroleum ether extract with mixed-type and noncompetitive inhibitions (K(i)=93.7 and 44.9μg/mL), respectively. Correlation study indicated that the inhibition was accounted for by the presence of eupatorin in the extracts. When IC(50) values of these extracts were expressed in volume per dose unit to reflect inhibitory effect at recommended human doses from commercially available products, moderate inhibition was also observed. In addition, CYP3A4 was strongly and noncompetitively inhibited by eupatorin alone, with a K(i) value of 9.3μM. These findings suggest that co-administration of OS products, especially those with high eupatorin content, with conventional drugs may have the potential to cause drug-herb interactions involving inhibition of major CYP enzymes. 2011 Elsevier Ireland Ltd. All rights reserved.

  15. Anti-inflammatory and anti-angiogenic effects of flavonoids isolated from Lycium barbarum Linnaeus on human umbilical vein endothelial cells.

    PubMed

    Wu, Wen-Bin; Hung, Dian-Kun; Chang, Fung-Wei; Ong, Eng-Thaim; Chen, Bing-Huei

    2012-10-01

    Anti-inflammatory and anti-angiogenic effects of flavonoids isolated from Lycium barbarum fruits, a traditional Chinese medicine, on human umbilical vein endothelial cells (HUVECs) were investigated. Initially, flavonoids were extracted with 80% ethanol and separated using a Cosmosil 140 C18-OPN column, with the acidic fraction eluted with deionized water being composed of chlorogenic acid, caffeoyl quinic acid, caffeic acid and p-coumaric acid and the neutral fraction eluted with methanol composed of quercetin-diglycoside, rutin and kaempferol-O-rutinoside. Flavonoid extract was effective in inhibiting expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule (VCAM-1) induced by TNF-α in HUVECs. The RT-PCR analysis indicated that ICAM-1 mRNA induced by TNF-α was inhibited by flavonoid extract. The flavonoid extract attenuated TNF-α-induced IκB phosphorylation as well as NF-κB, p65 and p50 translocation from cytosol to nucleus, through inhibition on TNF-α- and H(2)O(2)-induced intracellular reactive oxygen species (ROS) production. For the anti-angiogenic study, the flavonoid extract inhibited vascular endothelial growth factor (VEGF)-induced cell proliferation and migration in HUVECs, as well as angiogenesis. However, the flavonoid extract did not inhibit VEGF signaling. Surprisingly, HUVECs adhesion to the extracellular matrix was compromised and adhesion-induced signaling was retarded by the flavonoid extract.

  16. The inhibiting effects of Urtica dioica root extracts on experimentally induced prostatic hyperplasia in the mouse.

    PubMed

    Lichius, J J; Muth, C

    1997-08-01

    Extracts of stinging nettle roots (Urtica dioica L. Urticaceae) are used in the treatment of benign prostatic hyperplasia (BPH). We established a BPH-model by directly implanting an urogenital sinus (UGS) into the ventral prostate gland of an adult mouse. Five differently prepared stinging nettle root extracts were tested in this model. The 20% methanolic extract was the most effective with a 51.4% inhibition of induced growth.

  17. Red Pepper (Capsicum baccatum) Extracts Present Anti-Inflammatory Effects In Vivo and Inhibit the Production of TNF-α and NO In Vitro.

    PubMed

    Allemand, Alexandra; Leonardi, Bianca Franco; Zimmer, Aline Rigon; Moreno, Susana; Romão, Pedro Roosevelt Torres; Gosmann, Grace

    2016-08-01

    Capsicum baccatum is the most consumed red pepper species in Brazil. Our previous studies demonstrated the anti-inflammatory properties of its crude extract, whose activity is yet to be fully characterized. Herein, we examined the anti-inflammatory in vivo effects of enriched extracts obtained through bioguided fractionation as dichloromethane (DCM), butanol (BUT), and residual aqueous (RAq) extracts and its influence on inflammatory mediators produced by macrophages in vitro. We demonstrated that all C. baccatum extracts presented anti-inflammatory activity in vivo. In addition, we showed that BUT and RAq were more effective in inhibiting the neutrophil migration induced by carrageenan (Cg) to peritoneal cavity and both extracts inhibited paw edema induced by Cg, prostaglandin E2, and histamine in mice. Furthermore, the pretreatment with C. baccatum extracts significantly reduced the levels of myeloperoxidase (MPO) in the paw tissues of mice compared with the carrageenan group. Once again, RAq and BUT caused the greatest reduction in MPO levels. Moreover, it was demonstrated for the first time that C. baccatum inhibited the nitric oxide and tumor necrosis factor-alpha production by lipopolysaccharide/interferon gamma (IFN-γ)-stimulated macrophages. These anti-inflammatory effects seem to be at least, in part, independent of capsaicin. Hence, red pepper has bioactive compounds and might be used to develop food-derived extracts to treat related inflammatory diseases.

  18. Lectin-Like Constituents of Foods Which React with Components of Serum, Saliva, and Streptococcus mutans

    PubMed Central

    Gibbons, R. J.; Dankers, I.

    1981-01-01

    Hot and cold aqueous extracts were prepared from 22 commonly ingested fruits, vegetables, and seeds. When tested by agar diffusion, extracts from 13 and 10 of the foods formed precipitin bands with samples of normal rabbit serum and human saliva, respectively; extracts from four of the foods also reacted with antigen extracts of strains of Streptococcus mutans. When added to rabbit antiserum, extracts from 18 of 21 foods tested inhibited reactivity with antigen extracts derived from S. mutans MT3. Extracts from 16 foods agglutinated whole S. mutans cells, whereas those from 10 foods agglutinated human erythrocytes of blood types A and B. The lectin-like activities of extracts which reacted with human saliva were studied further. Pretreatment of saliva-coated hydroxyapatite (S-HA) beads with extracts of bananas, coconuts, carrots, alfalfa, and sunflower seeds markedly reduced the subsequent adsorption of S. mutans MT3. Pretreatment of S-HA with banana extract also strongly inhibited adsorption of S. mutans H12 and S. sanguis C1, but it had little effect on attachment of Actinomyces naeslundii L13 or A. viscosus LY7. Absorption experiments indicated that the component(s) in banana extract responsible for inhibiting streptococcal adsorption to S-HA was identical to that which bound to human erythrocytes. The banana hemagglutinin exhibited highest activity between pH 7 and 8, and it was inhibited by high concentrations of glucosamine, galactosamine, and, to a lesser extent, mannosamine. Other sugars tested had no effect. The selective bacterial adsorption-inhibiting effect noted for banana extract was also observed in studies with purified lectins. Thus, pretreating S-HA with wheat germ agglutinin and concanavalin A inhibited adsorption of S. mutans MT3 cells, whereas peanut agglutinin, Ulex agglutinin, Dolichos agglutinin, and soybean agglutinin had little effect; none of these lectins affected attachment of A. viscosus LY7. Collectively, the observations suggest that many foods contain lectins which can interact with components of human saliva and S. mutans cells. Because of their potential to influence host-parasite interactions in the mouth and elsewhere in the gastrointestinal canal, these reactions warrant further study. Images PMID:6786220

  19. The influence of selected potential oncostatics of plant origin on the protein biosynthesis in vitro.

    PubMed

    Paszkiewicz-Gadek, A; Chlabicz, J; Gałasiński, W

    1988-01-01

    Five potential oncostatics of plant origin (reserpine, amphotericin B, rutoside, digoxin, dry aloe extract), and cyclic AMP were investigated for their effect on protein synthesis. The solutions of digoxin and dry aloe extract inhibited protein biosynthesis in vitro. The direct inhibiting effect of digoxin on the ribosomes suggests that this drug forms an inactive complex with this organelle. Therefore it can be concluded that ribosome is the target site of digoxin action. Aloin and aloeemodin are responsible for the inhibitory effect of the solution of dry aloe extract. They inhibit markedly [14C]-leucine incorporation into proteins. Aloin and aloeemodin do not influence directly the ribosomes, but they inhibit elongation factors and peptidyltransferase activities in the complete elongation system. Some preliminary experiments have shown that direct interaction between these substances and elongation factor EF-2 should be taken in account. This observation is the subject of further experiments, in which the characteristics of the inhibitory effect of the components isolated from dry aloe extract will be performed.

  20. [Allelopathic effects of Artemisia frigida on three Poaceae plants seed germination and seedling growth].

    PubMed

    Li, Xue-feng; Wang, Jian; Xu, Wen-bo; Wang, Kun

    2010-07-01

    Aqueous extracts of Artemisia frigida leaf and stem and soils beneath A. frigida were used to test their allelopathic effects on the seed germination and seedling growth of three Poaceae plants (Leymus chinensis, Stipa krylovii, and Cleistogenes squarrosa) on Leymus chinensis grassland. The aqueous extracts of A. frigida leaf and stem decreased the seed germination index of test plants and prolonged their seed germination time, and inhibited the shoot growth of the three plants and the root growth of S. krylovii. The aqueous extracts at concentration > or = 0.075 g x ml(-1) presented a strong inhibition on the root growth of L. chinensis, while those at concentration < or = 0.05 g x ml(-1) had less effects. For the root growth of C. squarrosa, the aqueous extracts showed a "low-promotion and high-inhibition effect". Under the effects of A. frigida soil, the seedling growth of test plants was inhibited. The sensitivity of test plants to the allelopathic effects of A. frigida was in the order of S. krylovii > L. chinense > C. squarrosa, with a higher sensitivity of root growth than shoot growth.

  1. In vitro inhibition of metabolism but not transport of gliclazide and repaglinide by Cree medicinal plant extracts.

    PubMed

    Cieniak, Carolina; Liu, Rui; Fottinger, Alexandra; Smiley, Sheila A M; Guerrero-Analco, Jose A; Bennett, Steffany A L; Haddad, Pierre S; Cuerrier, Alain; Saleem, Ammar; Arnason, John T; Foster, Brian C

    2013-12-12

    Interactions between conventional drug and traditional medicine therapies may potentially affect drug efficacy and increase the potential for adverse reactions. Cree traditional healing is holistic and patients may use medicinal plants simultaneously with the conventional drugs. However, there is limited information that these medicinal plants may interact with drugs and additional mechanistic information is required. In this study, extracts from traditionally used Cree botanicals were assessed for their potential interaction that could alter the disposition of two blood glucose lowering drugs, gliclazide (Diamicron) and repaglinide (Gluconorm) though inhibition of either metabolism or transport across cell membranes. The effect of 17 extracts on metabolism was examined in a human liver microsome assay by HPLC and individual cytochrome P450s 2C9, 2C19, 2C8 and 3A4 in a microplate fluorometric assay. Gliclazide, rhaponticin and its aglycone derivative, rhapontigenin were also examined in the fluorometric assay. The effect on transport was examined with 11 extracts using the intestinal epithelial Caco-2 differentiated cell monolayer model at times up to 180 min. Both blood glucose lowering medications, gliclazide and repaglinide traversed the Caco-2 monolayer in a time-dependent manner that was not affected by the Cree plant extracts. Incubation of the Cree plant extracts inhibited CYP2C9, 2C19, 2C8 and 3A4-mediated metabolism, and the formation of four repaglinide metabolites: M4, m/z 451-A, m/z 451-B and the glucuronide of repaglinide in the human liver microsome assay. Gliclazide caused no significant inhibition. Likewise, rhaponticin had little effect on the enzymes causing changes of less than 10% with an exception of 17% inhibition of CYP2C19. By contrast, the aglycone rhapontigenin showed the greatest effects on all CYP-mediated metabolism. Its inhibition ranged from a mean of 58% CYP3A4 inhibition to 89% inhibition of CYP2C9. While rhaponticin and the aglycone did not show significant effects on repaglinide metabolism, they demonstrated inhibition of gliclazide metabolism. The aglycone significantly affected levels of gliclazide and its metabolites. These studies demonstrate that the Cree plant extracts examined have the potential in vitro to cause drug interactions through effects on key metabolic enzymes. © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Grape seed and tea extracts and catechin 3-gallates are potent inhibitors of α-amylase and α-glucosidase activity.

    PubMed

    Yilmazer-Musa, Meltem; Griffith, Anneke M; Michels, Alexander J; Schneider, Erik; Frei, Balz

    2012-09-12

    This study evaluated the inhibitory effects of plant-based extracts (grape seed, green tea, and white tea) and their constituent flavan-3-ol monomers (catechins) on α-amylase and α-glucosidase activity, two key glucosidases required for starch digestion in humans. To evaluate the relative potency of extracts and catechins, their concentrations required for 50 and 90% inhibition of enzyme activity were determined and compared to the widely used pharmacological glucosidase inhibitor, acarbose. Maximum enzyme inhibition was used to assess relative inhibitory efficacy. Results showed that grape seed extract strongly inhibited both α-amylase and α-glucosidase activity, with equal and much higher potency, respectively, than acarbose. Whereas tea extracts and catechin 3-gallates were less effective inhibitors of α-amylase, they were potent inhibitors of α-glucosidase. Nongallated catechins were ineffective. The data show that plant extracts containing catechin 3-gallates, in particular epigallocatechin gallate, are potent inhibitors of α-glucosidase activity and suggest that procyanidins in grape seed extract strongly inhibit α-amylase activity.

  3. Effect of Cuscuta reflexa Roxb on androgen-induced alopecia.

    PubMed

    Pandit, Shweta; Chauhan, Nagendra Singh; Dixit, V K

    2008-09-01

    Alopecia is a psychologically distressing condition. Androgenetic alopecia, which affects millions of men and women, is an androgen-driven disorder. Here, Cuscuta reflexa Roxb is evaluated for hair growth activity in androgen-induced alopecia. Petroleum ether extract of C. reflexa was studied for its hair growth-promoting activity. Alopecia was induced in albino mice by testosterone administration for 20 days. Its inhibition by simultaneous administration of extract was evaluated using follicular density, anagen/telogen ratio, and microscopic observation of skin sections. To investigate the mechanism of observed activity, in vitro experiments were performed to study the effect of extract and its major component on activity of 5alpha-reductase enzyme. Petroleum ether extract of C. reflexa exhibited promising hair growth-promoting activity as reflected from follicular density, anagen/telogen ratio, and skin sections. Inhibition of 5alpha-reductase activity by extract and isolate suggest that the extract reversed androgen-induced alopecia by inhibiting conversion of testosterone to dihydrotestosterone. The petroleum ether extract of C. reflexa and its isolate is useful in treatment of androgen-induced alopecia by inhibiting the enzyme 5alpha-reductase.

  4. Potential application of aromatic plant extracts to prevent cheese blowing.

    PubMed

    Librán, C M; Moro, A; Zalacain, A; Molina, A; Carmona, M; Berruga, M I

    2013-07-01

    This study aimed to inhibit the growth of Escherichia coli and Clostridium tyrobutyricum, common bacteria responsible for early and late cheese blowing defects respectively, by using novel aqueous extracts obtained by dynamic solid-liquid extraction and essential oils obtained by solvent free microwave extraction from 12 aromatic plants. In terms of antibacterial activity, a total of 13 extracts inhibited one of the two bacteria, and only two essential oils, Lavandula angustifolia Mill. and Lavandula hybrida, inhibited both. Four aqueous extracts were capable of inhibiting C. tyrobutyricum, but none were effective against E. coli. After extracts' chemical composition identification, relationship between the identified compounds and their antibacterial activity were performed by partial least square regression models revealing that compounds such as 1,8 cineole, linalool, linalyl acetate, β-phellandrene or verbene (present in essential oils), pinocarvone, pinocamphone or coumaric acid derivate (in aqueous extracts) were compounds highly correlated to the antibacterial activity.

  5. Essential oil and methanolic extract of Zataria multiflora Boiss with anticholinesterase effect.

    PubMed

    Sharififar, Fariba; Mirtajadini, Mansour; Azampour, Mohammad Jaber; Zamani, Ehsan

    2012-01-01

    One of the most common strategies in the treatment of cognitive disorders is enhancing the acetylcholine level in the brain through the inhibition of acetylcholinesterase. Despite the effectiveness of current modern drugs, more attention has been paid for finding new anticholinesterase agents from medicinal plants. Zatraia multiflora Boiss. is an endemic plant to Iran which has different uses in traditional medicine as anti-inflammatory, antimicrobial, anti spasmodic. We intended to evaluate the in vitro anticholinesterase and free radical scavenging activity of the essential oil and methanolic extract of Z. multiflora. The essential oil and methanolic extract of the plant were evaluated for anticholinesterase activity using modified Ellman method. The free radical scavenging effect of the samples were studied by using of the diphenylpicrylhydrazyl (DPPH). IC50 and the percent of inhibition of acetylcholinesterase was calculated from regression equation. The results showed that both the essential oil and methanolic extract of the plant exhibited high anticholinesterase activity (95.3 +/- 3.4 and 87.9 +/- 2.2% inhibition, respectively) which was similar to eserine (96.2 +/- 1.7% inhibition). The IC50 value of essential oil was determined as 0.97 +/- 0.12 microg mL(-1) in comparison to eserine (0.13 +/- 0.02 microg mL(-1)). The results of antioxidant assay showed that both the essential oil and methanolic extract potentially inhibit DPPH free radical (94.8 +/- 2.4 and 93.2 +/- 1.7% inhibition, respectively). The essential oil and methanolic extract of Z. multiflora have beneficial effect in health promotion and this plant would be good candidate for further studies.

  6. Comparison of the antibacterial efficiency of neem leaf extracts, grape seed extracts and 3% sodium hypochlorite against E. feacalis – An in vitro study

    PubMed Central

    Ghonmode, Wasudeo Namdeo; Balsaraf, Omkar D; Tambe, Varsha H; Saujanya, K P; Patil, Ashishkumar K; Kakde, Deepak D

    2013-01-01

    Background: E. faecalis is the predominant micro-organism recovered from root canal of the teeth where previous endodontic treatment has failed. Thorough debridement and complete elimination of micro-organisms are objectives of an effective endodontic treatment. For many years, intracanal irrigants have been used as an adjunct to enhance antimicrobial effect of cleaning and shaping in endodontics. The constant increase in antibiotic-resistant strains and side-effects of synthetic drugs has promoted researchers to look for herbal alternatives. For thousands of years humans have sought to fortify their health and cure various illnesses with herbal remedies, but only few have been tried and tested to withstand modern scientific scrutiny. The present study was aimed to evaluate alternative, inexpensive simple and effective means of sanitization of the root canal systems. The antimicrobial efficacy of herbal alternatives as endodontic irrigants is evaluated and compared with the standard irrigant sodium hypochlorite. Materials & Methods: Neem leaf extracts, grape seed extracts, 3% Sodium hypochlorite, absolute ethanol, Enterococcus faecalis (ATCC 29212) cultures, Brain heart infusion media. The agar diffusion test was performed in brain heart infusion media and broth. The agar diffusion test was used to measure the zone of inhibition. Results: Neem leaf extracts and grape seed extracts showed zones of inhibition suggesting that they had anti-microbial properties. Neem leaf extracts showed significantly greater zones of inhibition than 3% sodium hypochlorite. Also interestingly grape seed extracts showed zones of inhibition but were not as significant as of neem extracts. Conclusion: Under the limitations of this study, it was concluded that neem leaf extract has a significant antimicrobial effect against E. faecalis. Microbial inhibition potential of neem leaf extract observed in this study opens perspectives for its use as an intracanal medication. How to cite this article: Ghonmode WN, Balsaraf OD, Tambe VH, Saujanya KP, Patil AK, Kakde DD. Comparison of the antibacterial efficiency of neem leaf extracts, grape seed extracts and 3% sodium hypochlorite against E. feacalis – An in vitro study. J Int Oral Health 2013; 5(6):61-6 . PMID:24453446

  7. Antioxidant and anti-inflammatory effects of Scoparia dulcis L.

    PubMed

    Coulibaly, Ahmed Y; Kiendrebeogo, Martin; Kehoe, Patrick G; Sombie, Pierre A E D; Lamien, Charles E; Millogo, Jeanne F; Nacoulma, Odile G

    2011-12-01

    Different extracts were obtained from Scoparia dulcis L. (Scrophulariaceae) by successive extraction with hexane, chloroform, and methanol. These extracts exhibited significant antioxidant capacity in various antioxidant models mediated (xantine oxidase and lipoxygenase) or not mediated (2,2-diphenyl-picrylhydrazyl, ferric-reducing antioxidant power, β-carotene bleaching, lipid peroxidation) by enzymes. The antioxidant activity of the extracts was related to their phytochemical composition in terms of polyphenol and carotenoid contents. The chloroform extract was richest in phytochemicals and had the highest antioxidant activity in the different antioxidant systems. All the extracts exhibited less than 50% inhibition on xanthine oxidase but more than 50% inhibition on lipid peroxidation and lipoxygenase. The extracts strongly inhibited lipid peroxidation mediated by lipoxygenase.

  8. Hibiscus sabdariffa extract inhibits in vitro biofilm formation capacity of Candida albicans isolated from recurrent urinary tract infections

    PubMed Central

    Alshami, Issam; Alharbi, Ahmed E

    2014-01-01

    Objective To explore the prevention of recurrent candiduria using natural based approaches and to study the antimicrobial effect of Hibiscus sabdariffa (H. sabdariffa) extract and the biofilm forming capacity of Candida albicans strains in the present of the H. sabdariffa extract. Methods In this particular study, six strains of fluconazole resistant Candida albicans isolated from recurrent candiduria were used. The susceptibility of fungal isolates, time-kill curves and biofilm forming capacity in the present of the H. sabdariffa extract were determined. Results Various levels minimum inhibitory concentration of the extract were observed against all the isolates. Minimum inhibitory concentration values ranged from 0.5 to 2.0 mg/mL. Time-kill experiment demonstrated that the effect was fungistatic. The biofilm inhibition assay results showed that H. sabdariffa extract inhibited biofilm production of all the isolates. Conclusions The results of the study support the potential effect of H. sabdariffa extract for preventing recurrent candiduria and emphasize the significance of the plant extract approach as a potential antifungal agent. PMID:25182280

  9. The inhibitory effect of Thymus vulgaris extracts on the planktonic form and biofilm structures of six human pathogenic bacteria

    PubMed Central

    Mohsenipour, Zeinab; Hassanshahian, Mehdi

    2015-01-01

    Objective: Microorganisms are responsible for many problems in industry and medicine because of biofilm formation. Therefore, this study was aimed to examine the effect of Thymus vulgaris (T. vulgaris) extracts on the planktonic form and biofilm structures of six pathogenic bacteria. Materials and methods: Antimicrobial activities of the plant extracts against the planktonic form of the bacteria were determined using the disc diffusion method. MIC and MBC values were evaluated using macrobroth dilution technique. Anti-biofilm effects were assessed by microtiter plate method. Results: According to disc diffusion test (MIC and MBC), the ability of Thymus vulgaris (T. vulgaris ) extracts for inhibition of bacteria in planktonic form was confirmed. In dealing with biofilm structures, the inhibitory effect of the extracts was directly correlated to their concentration. Except for the inhibition of biofilm formation, efficacy of each extract was independent from type of solvent. Conclusion: According to the potential of Thymus vulgaris (T. vulgaris) extracts to inhibit the test bacteria in planktonic and biofilm form, it can be suggested that Thymus vulgaris (T. vulgaris) extracts can be applied as antimicrobial agents against the pathogenic bacteria particularly in biofilm forms. PMID:26442753

  10. Inhibition of Oxidative Stress and Lipid Peroxidation by Anthocyanins from Defatted Canarium odontophyllum Pericarp and Peel Using In Vitro Bioassays

    PubMed Central

    Khoo, Hock Eng; Azlan, Azrina; Ismail, Amin; Abas, Faridah; Hamid, Muhajir

    2014-01-01

    Canarium odontophyllum, also known as CO, is a highly nutritious fruit. Defatted parts of CO fruit are potent sources of nutraceutical. This study aimed to determine oxidative stress and lipid peroxidation effects of defatted CO pericarp and peel extracts using in vitro bioassays. Cell cytotoxic effect of the CO pericarp and peel extracts were also evaluated using HUVEC and Chang liver cell lines. The crude extracts of defatted CO peel and pericarp showed cytoprotective effects in t-BHP and 40% methanol-induced cell death. The crude extracts also showed no toxic effect to Chang liver cell line. Using CD36 ELISA, NAD+ and LDL inhibition assays, inhibition of oxidative stress were found higher in the crude extract of defatted CO peel compared to the pericarp extract. Hemoglobin and LDL oxidation assays revealed both crude extracts had significantly reduced lipid peroxidation as compared to control. TBARS values among defatted CO pericarp, peel, and cyanidin-3-glucoside showed no significant differences for hemoglobin and LDL oxidation assays. The protective effects of defatted CO parts, especially its peel is related to the presence of high anthocyanin that potentially offers as a pharmaceutical ingredient for cardioprotection. PMID:24416130

  11. Antibacterial properties of parasitic mistletoe - Scurrula ferruginea (Jack) Danser of Brunei Darussalam

    NASA Astrophysics Data System (ADS)

    David, Sheba R.; Amni Adam, Amira; Rajabalaya, Rajan

    2017-12-01

    Natural products especially from plants have become subject of much interest in drug discovery. Scurrula ferruginea is parasitic mistletoe used traditionally to treat various illnesses. The aim of this study is to investigate the potential antibacterial effect of Scurrula ferruginea native to Brunei Darussalam. The plants were collected from Brunei-Muara district air-dried, pulverized into powder, extracted by water maceration and freeze dried. Later, the extract was screened by disc-diffusion assay for two bacterial strains. The positive controls were Gentamycin and Ampicillin for Staphylococcus aureus while Sulphamethoxazole was used for Escherichia coli. Dimethyl sulfoxide was the negative control for both strains. 100, 200 and 500 mg/ml of the extract were used for the assays. The extracts did not show any inhibition activity against Escherichia coli, while sulphamethoxazole, showed inhibition of 24 mm. Ampicillin, Gentamycin, 100 and 500 mg/ml extract exhibited 29, 20, 8.3 and 10.7 mm inhibition zone, respectively against Staphylococcus aureus. There was an increase in zone of inhibition on Staphylococcus aureus strain with increase in extract concentration. Further investigations including Minimum Inhibition Concentration and Minimum Bactericidal Concentration methods as well as investigation on additional bacterial strains will be conducted for confirmation of antibacterial effect of the extract.

  12. EVELOPMENT OF AN ENVIRONMENTALLY BENIGN MICROBIAL INHIBITOR TO CONTROL INTERNAL PIPELINE CORROSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bill W. Bogan; Wendy R. Sullivan; Kristine M. H. Cruz

    2004-04-30

    The overall program objective is to develop and evaluate environmentally benign agents or products that are effective in the prevention, inhibition, and mitigation of microbially influenced corrosion (MIC) in the internal surfaces of metallic natural gas pipelines. The goal is to develop one or more environmentally benign (a.k.a. ''green'') products that can be applied to maintain the structure and dependability of the natural gas infrastructure. Previous testing of pepper extracts resulted in preliminary data indicating that some pepper extracts inhibit the growth of some corrosion-associated microorganisms. This quarter additional tests were performed to more specifically investigate the ability of threemore » pepper extracts to inhibit the growth, and to influence the metal corrosion caused by two microbial species: Desulfovibrio vulgaris, and Comomonas denitrificans. All three pepper extracts rapidly killed Desulfovibrio vulgaris, but did not appear to inhibit Comomonas denitrificans. While corrosion rates were at control levels in experiments with Desulfovibrio vulgaris that received pepper extract, corrosion rates were increased in the presence of Comomonas denitrificans plus pepper extract. Further testing with a wider range of pure bacterial cultures, and more importantly, with mixed bacterial cultures should be performed to determine the potential effectiveness of pepper extracts to inhibit MIC.« less

  13. Moringa fruit inhibits LPS-induced NO/iNOS expression through suppressing the NF-κ B activation in RAW264.7 cells.

    PubMed

    Lee, Hyo-Jin; Jeong, Yun-Jeong; Lee, Tae-Sung; Park, Yoon-Yub; Chae, Whi-Gun; Chung, Il-Kyung; Chang, Hyeun-Wook; Kim, Cheorl-Ho; Choi, Yung-Hyun; Kim, Wun-Jae; Moon, Sung-Kwon; Chang, Young-Chae

    2013-01-01

    In this study, we evaluated the anti-inflammatory effects of moringa (Moringa oleifera Lam.), a natural biologically active substance, by determining its inhibitory effects on pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated macrophage RAW264.7 cells. Extracts from different parts of moringa (root, leaf, and fruit) reduced LPS-induced nitric oxide (NO) release in a dose-dependent manner. The moringa fruit extract most effectively inhibited LPS-induced NO production and levels of inducible nitric oxide synthase (iNOS). The moringa fruit extract also was shown to suppress the production of inflammatory cytokines including IL-1β, TNF-α, and IL-6. Furthermore, moringa fruit extract inhibited the cytoplasmic degradation of I κ B -α and the nuclear translocation of p65 proteins, resulting in lower levels of NF -κ B transactivation. Collectively, the results of this study demonstrate that moringa fruit extract reduces the levels of pro-inflammatory mediators including NO , IL-1β, TNF-α, and IL-6 via the inhibition of NF -κ B activation in RAW264.7 cells. These findings reveal, in part, the molecular basis underlying the anti-inflammatory properties of moringa fruit extract.

  14. The Effects of Allium sativum Extracts on Biofilm Formation and Activities of Six Pathogenic Bacteria.

    PubMed

    Mohsenipour, Zeinab; Hassanshahian, Mehdi

    2015-08-01

    Garlic is considered a rich source of many compounds, which shows antimicrobial effects. The ability of microorganisms to adhere to both biotic and abiotic surfaces and to form biofilm is responsible for a number of diseases of chronic nature, demonstrating extremely high resistance to antibiotics. Bacterial biofilms are complex communities of sessile microorganisms, embedded in an extracellular matrix and irreversibly attached to various surfaces. The present study evaluated the antimicrobial activity of Allium sativum extract against the biofilms of six pathogenic bacteria and their free-living forms. The clinical isolates in this study had not been studied in any other studies, especially in regard to biofilm disruption and inhibition of biofilm cell metabolic activity. Antimicrobial activities of A. sativum L. extracts (methanol and ethanol extracts) against planktonic forms of bacteria were determined using the disc diffusion method. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) values were evaluated by a macrobroth dilution technique. The anti-biofilm effects were assessed by microtiter plate method. The results showed that the A. sativum L. extract discs did not have any zone of inhibition for the tested bacteria. However, The MIC values of A. sativum L. extracts (0.078 - 2.5 mg/mL) confirmed the high ability of these extracts for inhibition of planktonic bacteria. A. sativum L. extracts were efficient to inhibit biofilm structures and the concentration of each extract had a direct relation with the inhibitory effect. Finally, it can be suggested that the extracts of this plant be applied as antimicrobial agents against these pathogens, particularly in biofilm forms.

  15. Intestinal α-glucosidase and some pancreatic enzymes inhibitory effect of hydroalcholic extract of Moringa stenopetala leaves.

    PubMed

    Toma, Alemayehu; Makonnen, Eyasu; Mekonnen, Yelamtsehay; Debella, Asfaw; Addisakwattana, Sirichai

    2014-06-03

    Moringa stenopetala has been used in traditional health systems to treat diabetes mellitus. One of the successful methods to prevent of the onset of diabetes is to control postprandial hyperglycemia by the inhibition of α-glucosidase and pancreatic α-amylase activities, resulting in the aggressive delay of the carbohydrate digestion of absorbable monosaccharides. The aim of the present study is to investigate the effect of the extract of the leaves of Moringa stenopetala on α-glucosidase, pancreatic α-amylase, pancreatic lipase, and pancreatic cholesterol esterase activities, and, therefore find out the relevance of the plant in controlling blood sugar and lipid levels. The dried leaves of Moringa stenopetala were extracted with hydroalcoholic solvent and dried using rotary vapor under reduced pressure. The dried extracts were determined for the total phenolic compounds, flavonoid content and condensed tannins content by using Folin-Ciocateu's reagent, AlCl3 and vanillin assay, respectively. The dried extract of plant-based food was further quantified with respect to intestinal α-glucosidase (maltase and sucrase) inhibition and pancreatic α-amylase inhibition by glucose oxidase method and dinitrosalicylic (DNS) reagent, respectively. The phytochemical analysis indicated that flavonoid, total phenolic, and condensed tannin contents in the extract were 71.73 ± 2.48 mg quercetin equivalent/g of crude extract, 79.81 ± 2.85 mg of gallic acid equivalent/g of crude extract, 8.82 ± 0.77 mg catechin equivalent/g of crude extract, respectively. The extract inhibited intestinal sucrase more than intestinal maltase with IC50 value of 1.47 ± 0.19 mg/ml. It also slightly inhibited pancreatic α-amylase, pancreatic lipase and pancreatic cholesterol esterase. The result demonstrated the beneficial biochemical effects of Moringa stenopetala by inhibiting intestinal α-glucosidase, pancreatic cholesterol esterase and pancreatic lipase activities. A daily supplement intake of the leaves of Moringa stenopetala may help in reducing hyperglycemia and hyperlipidemia.

  16. Studies on the pharmacological action of cactus: identification of its anti-inflammatory effect.

    PubMed

    Park, E H; Kahng, J H; Paek, E A

    1998-02-01

    The ethanol extracts of Opuntia ficus-indica fructus (EEOF) and Opuntia ficus-indica stem (EEOS) were prepared and used to evaluate the pharmacological effects of cactus. Both the extracts inhibited the writhing syndrome induced by acetic acid, indicating that they contains analgesic effect. The oral administrations of EEOF and EEOS suppressed carrageenan-induced rat paw edema and also showed potent inhibition in the leukocyte migration of CMC-pouch model in rats. Moreover, the extracts suppressed the release of beta-glucuronidase, a lysosomal enzyme in rat neutrophils. It was also noted that the extracts showed the protective effect on gastric mucosal layers. From the results it is suggested that the cactus extracts contain anti-inflammatory action having protective effect against gastric lesions.

  17. An in vitro evaluation of cytochrome P450 inhibition and P-glycoprotein interaction with goldenseal, Ginkgo biloba, grape seed, milk thistle, and ginseng extracts and their constituents.

    PubMed

    Etheridge, Amy S; Black, Sherry R; Patel, Purvi R; So, James; Mathews, James M

    2007-07-01

    Drug-herb interactions can result from the modulation of the activities of cytochrome P450 (P450) and/or drug transporters. The effect of extracts and individual constituents of goldenseal, Ginkgo biloba (and its hydrolyzate), grape seed, milk thistle, and ginseng on the activities of cytochrome P450 enzymes CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4 in human liver microsomes were determined using enzyme-selective probe substrates, and their effect on human P-glycoprotein (Pgp) was determined using a baculovirus expression system by measuring the verapamil-stimulated, vanadate-sensitive ATPase activity. Extracts were analyzed by HPLC to standardize their concentration(s) of constituents associated with the pharmacological activity, and to allow comparison of their effects on P450 and Pgp with literature values. Many of the extracts/constituents exerted > or = 50 % inhibition of P450 activity. These include those from goldenseal (normalized to alkaloid content) inhibiting CYP2C8, CYP2D6, and CYP3A4 at 20 microM, ginkgo inhibiting CYP2C8 at 10 microM, grape seed inhibiting CYP2C9 and CYP3A4 at 10 microM, milk thistle inhibiting CYP2C8 at 10 microM, and ginsenosides F1 and Rh1 (but not ginseng extract) inhibiting CYP3A4 at 10 microM. Goldenseal extracts/constituents (20 microM, particularly hydrastine) and ginsenoside Rh1 stimulated ATPase at about half of the activity of the model substrate, verapamil (20 microM). The data suggest that the clearance of a variety of drugs may be diminished by concomitant use of these herbs via inhibition of P450 enzymes, but less so by Pgp-mediated effects.

  18. Effect of Ginkgo biloba extract on procarcinogen-bioactivating human CYP1 enzymes: Identification of isorhamnetin, kaempferol, and quercetin as potent inhibitors of CYP1B1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Thomas K.H.; Chen Jie; Yeung, Eugene Y.H.

    2006-05-15

    In the present study, we investigated the effect of Ginkgo biloba extracts and some of its individual constituents on the catalytic activity of human cytochrome P450 enzymes CYP1B1, CYP1A1, and CYP1A2. G. biloba extract of known abundance of terpene trilactones and flavonol glycosides inhibited 7-ethoxyresorufin O-dealkylation catalyzed by human recombinant CYP1B1, CYP1A1, and CYP1A2, and human liver microsomes, with apparent K {sub i} values of 2 {+-} 0.3, 5 {+-} 0.5, 16 {+-} 1.4, and 39 {+-} 1.2 {mu}g/ml (mean {+-} SE), respectively. In each case, the mode of inhibition was of the mixed type. Bilobalide, ginkgolides A, B, C,more » and J, quercetin 3-O-rutinoside, kaempferol 3-O-rutinoside, and isorhamentin 3-O-rutinoside were not responsible for the inhibition of CYP1 enzymes by G. biloba extract, as determined by experiments with these individual chemicals at the levels present in the extract. In contrast, the aglycones of quercetin, kaempferol, and isorhamentin inhibited CYP1B1, CYP1A1, and CYP1A2. Among the three flavonol aglycones, isorhamentin was the most potent in inhibiting CYP1B1 (apparent K {sub i} = 3 {+-} 0.1 nM), whereas quercetin was the least potent in inhibiting CYP1A2 (apparent K {sub i} 418 {+-} 50 nM). The mode of inhibition was competitive, noncompetitive, or mixed, depending on the enzyme and the flavonol. G. biloba extract also reduced benzo[a]pyrene hydroxylation, and the effect was greater with CYP1B1 than with CYP1A1 as the catalyst. Overall, our novel findings indicate that G. biloba extract and the flavonol aglycones isorhamnetin, kaempferol, and quercetin preferentially inhibit the in vitro catalytic activity of human CYP1B1.« less

  19. In Vitro efficacy of antimicrobial extracts against the atypical ruminant pathogen Mycoplasma mycoides subsp. capri.

    PubMed

    Arjoon, Amanda V; Saylor, Charlotte V; May, Meghan

    2012-10-02

    Mycoplasmosis is a common infection in human and veterinary medicine, and is associated with chronic inflammation and high morbidity. Mycoplasma species are often intrinsically resistant to many conventional antimicrobial therapies, and the resistance patterns of pathogenic mycoplasmas to commonly used medicinal (antimicrobial) plant extracts are currently unknown. Aqueous extracts, ethanol extracts, or oils of the targeted plant species and colloidal silver were prepared or purchased. Activity against the wall-less bacterial pathogen Mycoplasma mycoides subsp. capri was determined and compared to activities measured against Escherichia coli and Bacillus subtilis. Antimicrobial susceptibility testing was performed by broth microdilution assays. The lethal or inhibitory nature of each extract was determined by subculture into neat growth medium. Growth of M. mycoides capri, E. coli, and B. subtilis was inhibited by elderberry extract, oregano oil, ethanol extract of oregano leaves, and ethanol extract of goldenseal root. No inhibition was seen with aqueous extract of astragalus or calendula oil. Growth of M. mycoides capri and B. subtilis was inhibited by ethanol extract of astragalus, whereas growth of E. coli was not. Similarly, M. mycoides capri and E. coli were inhibited by aqueous extract of thyme, but B. subtilis was unaffected. Only B. subtilis was inhibited by colloidal silver. Measured MICs ranged from 0.0003 mg/mL to 3.8 mg/mL. Bacteriostatic and bactericidal effects differed by species and extract. The atypical pathogen M. mycoides capri was sensitive to extracts from many medicinal plants commonly used as antimicrobials in states of preparation and concentrations currently available for purchase in the United States and Europe. Variation in bacteriostatic and bactericidal activities between species and extracts indicates that multiple effecter compounds are present in these plant species.

  20. In Vitro efficacy of antimicrobial extracts against the atypical ruminant pathogen Mycoplasma mycoides subsp. capri

    PubMed Central

    2012-01-01

    Background Mycoplasmosis is a common infection in human and veterinary medicine, and is associated with chronic inflammation and high morbidity. Mycoplasma species are often intrinsically resistant to many conventional antimicrobial therapies, and the resistance patterns of pathogenic mycoplasmas to commonly used medicinal (antimicrobial) plant extracts are currently unknown. Methods Aqueous extracts, ethanol extracts, or oils of the targeted plant species and colloidal silver were prepared or purchased. Activity against the wall-less bacterial pathogen Mycoplasma mycoides subsp. capri was determined and compared to activities measured against Escherichia coli and Bacillus subtilis. Antimicrobial susceptibility testing was performed by broth microdilution assays. The lethal or inhibitory nature of each extract was determined by subculture into neat growth medium. Results Growth of M. mycoides capri, E. coli, and B. subtilis was inhibited by elderberry extract, oregano oil, ethanol extract of oregano leaves, and ethanol extract of goldenseal root. No inhibition was seen with aqueous extract of astragalus or calendula oil. Growth of M. mycoides capri and B. subtilis was inhibited by ethanol extract of astragalus, whereas growth of E. coli was not. Similarly, M. mycoides capri and E. coli were inhibited by aqueous extract of thyme, but B. subtilis was unaffected. Only B. subtilis was inhibited by colloidal silver. Measured MICs ranged from 0.0003 mg/mL to 3.8 mg/mL. Bacteriostatic and bactericidal effects differed by species and extract. Conclusions The atypical pathogen M. mycoides capri was sensitive to extracts from many medicinal plants commonly used as antimicrobials in states of preparation and concentrations currently available for purchase in the United States and Europe. Variation in bacteriostatic and bactericidal activities between species and extracts indicates that multiple effecter compounds are present in these plant species. PMID:23031072

  1. Identification of traditional medicinal plant extracts with novel anti-influenza activity.

    PubMed

    Rajasekaran, Dhivya; Palombo, Enzo A; Chia Yeo, Tiong; Lim Siok Ley, Diana; Lee Tu, Chu; Malherbe, Francois; Grollo, Lara

    2013-01-01

    The emergence of drug resistant variants of the influenza virus has led to a need to identify novel and effective antiviral agents. As an alternative to synthetic drugs, the consolidation of empirical knowledge with ethnopharmacological evidence of medicinal plants offers a novel platform for the development of antiviral drugs. The aim of this study was to identify plant extracts with proven activity against the influenza virus. Extracts of fifty medicinal plants, originating from the tropical rainforests of Borneo used as herbal medicines by traditional healers to treat flu-like symptoms, were tested against the H1N1 and H3N1 subtypes of the virus. In the initial phase, in vitro micro-inhibition assays along with cytotoxicity screening were performed on MDCK cells. Most plant extracts were found to be minimally cytotoxic, indicating that the compounds linked to an ethnomedical framework were relatively innocuous, and eleven crude extracts exhibited viral inhibition against both the strains. All extracts inhibited the enzymatic activity of viral neuraminidase and four extracts were also shown to act through the hemagglutination inhibition (HI) pathway. Moreover, the samples that acted through both HI and neuraminidase inhibition (NI) evidenced more than 90% reduction in virus adsorption and penetration, thereby indicating potent action in the early stages of viral replication. Concurrent studies involving Receptor Destroying Enzyme treatments of HI extracts indicated the presence of sialic acid-like component(s) that could be responsible for hemagglutination inhibition. The manifestation of both modes of viral inhibition in a single extract suggests that there may be a synergistic effect implicating more than one active component. Overall, our results provide substantive support for the use of Borneo traditional plants as promising sources of novel anti-influenza drug candidates. Furthermore, the pathways involving inhibition of hemagglutination could be a solution to the global occurrence of viral strains resistant to neuraminidase drugs.

  2. Identification of Traditional Medicinal Plant Extracts with Novel Anti-Influenza Activity

    PubMed Central

    Rajasekaran, Dhivya; Palombo, Enzo A.; Chia Yeo, Tiong; Lim Siok Ley, Diana; Lee Tu, Chu; Malherbe, Francois; Grollo, Lara

    2013-01-01

    The emergence of drug resistant variants of the influenza virus has led to a need to identify novel and effective antiviral agents. As an alternative to synthetic drugs, the consolidation of empirical knowledge with ethnopharmacological evidence of medicinal plants offers a novel platform for the development of antiviral drugs. The aim of this study was to identify plant extracts with proven activity against the influenza virus. Extracts of fifty medicinal plants, originating from the tropical rainforests of Borneo used as herbal medicines by traditional healers to treat flu-like symptoms, were tested against the H1N1 and H3N1 subtypes of the virus. In the initial phase, in vitro micro-inhibition assays along with cytotoxicity screening were performed on MDCK cells. Most plant extracts were found to be minimally cytotoxic, indicating that the compounds linked to an ethnomedical framework were relatively innocuous, and eleven crude extracts exhibited viral inhibition against both the strains. All extracts inhibited the enzymatic activity of viral neuraminidase and four extracts were also shown to act through the hemagglutination inhibition (HI) pathway. Moreover, the samples that acted through both HI and neuraminidase inhibition (NI) evidenced more than 90% reduction in virus adsorption and penetration, thereby indicating potent action in the early stages of viral replication. Concurrent studies involving Receptor Destroying Enzyme treatments of HI extracts indicated the presence of sialic acid-like component(s) that could be responsible for hemagglutination inhibition. The manifestation of both modes of viral inhibition in a single extract suggests that there may be a synergistic effect implicating more than one active component. Overall, our results provide substantive support for the use of Borneo traditional plants as promising sources of novel anti-influenza drug candidates. Furthermore, the pathways involving inhibition of hemagglutination could be a solution to the global occurrence of viral strains resistant to neuraminidase drugs. PMID:24312177

  3. Improvement of Aluminum-Air Battery Performances by the Application of Flax Straw Extract.

    PubMed

    Grishina, Ekaterina; Gelman, Danny; Belopukhov, Sergey; Starosvetsky, David; Groysman, Alec; Ein-Eli, Yair

    2016-08-23

    The effect of a flax straw extract on Al corrosion inhibition in a strong alkaline solution was studied by using electrochemical measurements, weight-loss analysis, SEM, and FTIR spectroscopy. Flax straw extract added (3 vol %) to the 5 m KOH solution to act as a mixed-type Al corrosion inhibitor. The electrochemistry of Al in the presence of a flax straw extract in the alkaline solution, the effect of the extract on the Al morphology and surface films formed, and the corrosion inhibition mechanism are discussed. Finally, the Al-air battery discharge capacity recorded from a cell that used the flax straw extract in the alkaline electrolyte is substantially higher than that with only a pure alkaline electrolyte. This improved sustainability of the Al anode is attributed to Al corrosion inhibition and, consequently, to hydrogen evolution suppression. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Antioxidative and Cardioprotective Properties of Anthocyanins from Defatted Dabai Extracts

    PubMed Central

    Khoo, Hock Eng; Azlan, Azrina; Nurulhuda, M. Halid; Ismail, Amin; Abas, Faridah; Hamid, Muhajir; Roowi, Suri

    2013-01-01

    This study aimed to determine anthocyanins and their antioxidative and cardioprotective properties in defatted dabai parts. Anthocyanins in crude extracts and extract fractions of defatted dabai peel and pericarp were quantified using UHPLC, while their antioxidant capacity and oxidative stress inhibition ability were evaluated by using DPPH and CUPRAC assays as well as linoleic acid oxidation system, hemoglobin oxidation, and PARP-1 inhibition ELISA. Cardioprotective effect of the defatted dabai peel extract was evaluated using hypercholesterolemic-induced New Zealand white rabbits. Six anthocyanins were detected in the defatted dabai peel, with the highest antioxidant capacities and oxidative stress inhibition effect compared to the other part. The defatted dabai peel extract has also inhibited lipid peroxidation (plasma MDA) and elevated cellular antioxidant enzymes (SOD and GPx) in the tested animal model. Major anthocyanin (cyanidin-3-glucoside) and other anthocyanins (pelargonidin-3-glucoside, malvidin-3-glucoside, cyanidin-3-galactoside, cyanidin-3-arabinoside, and peonidin-3-glucoside) detected in the defatted dabai peel are potential future nutraceuticals with promising medicinal properties. PMID:24368926

  5. In vitro antifugal activity of medicinal plant extract against Fusarium oxysporum f. sp. lycopersici race 3 the causal agent of tomato wilt.

    PubMed

    Isaac, G S; Abu-Tahon, M A

    2014-03-01

    Medicinal plant extracts of five plants; Adhatoda vasica, Eucalyptus globulus, Lantana camara, Nerium oleander and Ocimum basilicum collected from Cairo, Egypt were evaluated against Fusarium oxysporum f. sp. lycopersici race 3 in vitro conditions using water and certain organic solvents. The results revealed that cold distilled water extracts of O. basilicum and E. globulus were the most effective ones for inhibiting the growth of F. oxysporum f. sp. lycopersici. Butanolic and ethanolic extracts of the tested plants inhibited the pathogen growth to a higher extent than water extracts. Butanolic extract of O. basilicum completely inhibited the growth of F. oxysporum f. sp. lycopersici at concentrations 1.5 and 2.0% (v/v). Butanolic extracts (2.0%) of tested plants had a strong inhibitory effect on hydrolytic enzymes; β-glucosidase, pectin lyase and protease of F. oxysporum f. sp. lycopersici. This study has confirmed that the application of plant extracts, especially from O. basilicum for controlling F. oxysporum f. sp. lycopersici is environmentally safe, cost effective and does not disturb ecological balance. Investigations are in progress to test the efficacy of O. basilicum extract under in vivo conditions.

  6. Evaluation of the RNase H Inhibitory Properties of Vietnamese Medicinal Plant Extracts and Natural Compounds

    PubMed Central

    Tai, Bui Huu; Nhut, Nguyen Duy; Nhiem, Nguyen Xuan; Tung, Nguyen Huu; Quang, Tran Hong; Luyen, Bui Thi Thuy; Huong, Tran Thu; Wilson, Jennifer; Beutler, John A.; Cuong, Nguyen Manh; Kim, Young Ho

    2013-01-01

    In research on anti-human immunodeficiency virus (HIV) agents from natural sources, thirty two extracts of Vietnamese plants and twenty five isolated compounds were screened for their inhibitory effect against the ribonuclease H (RNase H) activity of HIV-1 reverse transcriptase and the cytopathic effect of the HIV virus. At a concentration of 50 μg/mL, eleven plant extracts and five isolated compounds inhibited over 90 percent of RNase H enzymatic activity. Of these, the methanol extracts from the leaves of Phyllanthus reticulatus and Aglaia aphanamixis highly inhibited RNase H activity by 99% and 98%, respectively. Several fucoidans isolated from seaweeds Sargassum kuetzingii, Sargassum polycystum, and Gelidiella acerosa, as well as epigallocatechin-3-gallate isolated from Camellia chinensis also showed strong inhibitory effects over ninety percent. Sixteen plant extracts with inhibition of over seventy five percent in the RNase H assay were tested in a cellular model of HIV-1 cytopathicity; four extracts showed modest activity in protecting against the cytopathic effect of the HIV virus. PMID:21595586

  7. In vitro antidiabetic activity of various crude extracts of Boletus variipes

    NASA Astrophysics Data System (ADS)

    Muniandy, Sutha; Fazry, Shazrul; Daud, Fauzi; Senafi, Sahidan

    2015-09-01

    Diabetes mellitus is a complex metabolic disease that progressively spread worldwide and difficult to treat due to various physical and metabolic complications. Current treatment using synthetic drugs has lead to various undesirable side effects. Here we determined the effect of Boletus variipes extracts on diabetes related enzymes. In this study, hot water, cold water and methanol extracts of B. variipes were utilized in order to assess their in vitro antidiabetic activity by measuring the effect on α-amylase and α-glucosidase enzyme. Hot water extract possessed the highest inhibition activity of α-amylase and α-glucosidase in a concentration dependent manner with the IC50 value 87 mg/mL and 89 mg/mL respectively. The methanol extract also showed inhibition activity of α-amylase and α-glucosidase but significantly lower than the hot water extract. Whereas cold water extract did not show any inhibition activity towards both the enzymes. Therefore, it is hypothesized that the hot water extract of Boletus variipes contains bioactive compound that can inhibit alpha-amylase and alpha-glucosidase enzyme activity. At the request of all authors of the paper an updated version was published on 11 May 2016. The original version identified the species of mushroom as Boletus variipes, but new findings have proved the species of mushroom to be Boletus qriseipurpureus. The species name has been updated throughout the revised version of this paper.

  8. Anti-inflammatory activity of dried flower extracts of Aegle marmelos in Wistar rats.

    PubMed

    Kumari, K D K P; Weerakoon, T C S; Handunnetti, S M; Samarasinghe, K; Suresh, T S

    2014-02-12

    Almost all part of the plant Aegle marmelos (Bael tree) has been used in the traditional medicine systems of Asian countries to treat various diseases over many centuries. The water extract of the dried flowers of Aegle marmelos is a commonly used beverage among Sri Lankan population in rural areas. Although extensive investigations done on many parts of the plant there are no experimental data available on the extracts of flowers. Anti-inflammatory effect of the water extract of dried flowers of Aegle marmelos (WEAM) was evaluated in the present study. The anti-inflammatory effect of the WEAM was evaluated by inhibition of the rat paw oedema, induced by carrageenan. The mechanism of the anti-inflammatory effect was assessed by the inhibition of production of nitric oxide (NO) by rat peritoneal cells, infiltration of rat peritoneal cells, anti-histamine effect, membrane stabilization activity, the antioxidant capacity and inhibition of lipid peroxidation by the WEAM. The maximum percentage inhibition of paw oedema was exhibited by the dose of 200 mg/kg at 2 h. The WEAM showed a significant increment of rat peritoneal cell infiltration, inhibition of NO production by rat peritoneal cells and inhibition of wheal formation on the skin of the rat after injection of histamine. The WEAM protected the erythrocyte membrane from heat-induced lysis in a dose-dependent manner and showed a significant anti-oxidant effect and lipid peroxidation inhibition activity. The WEAM possesses significant anti-inflammatory effect by multiple mechanisms in Wistar rats. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Bulgarian propolis induces analgesic and anti-inflammatory effects in mice and inhibits in vitro contraction of airway smooth muscle.

    PubMed

    Paulino, Niraldo; Dantas, Andreia Pires; Bankova, Vassya; Longhi, Daniela Taggliari; Scremin, Amarilis; de Castro, Solange Lisboa; Calixto, João Batista

    2003-11-01

    Propolis is a bee product, which has long been used in folk medicine for the management of different diseases. In this study we evaluated the analgesic and anti-inflammatory effects of a standard ethanolic extract of Bulgarian propolis (Et-Blg) in mice and its in vitro effect on airway smooth muscle. Et-Blg inhibited acetic acid-induced abdominal contortions with an ID(50) = 7.4 +/- 0.7 mg. kg(-1). In the formalin test, the extract caused a significant reduction in pain in mice treated with 100 mg. kg(-1) Et-Blg during the neurogenic phase and for the inflammatory phase with all doses of the extract, with an ID(50) = 2.5 +/- 0.4 mg. kg(-1). Et-Blg inhibited also the capsaicin-induced ear edema in mice; however, this extract was ineffective when assessed in the tail-flick and hot-plate thermal assays. The analgesic effect of Et-Blg was associated with the inhibition of inflammatory responses and not to a simple irritation of nervous terminals. In vitro, this extract inhibited the contraction of trachea smooth muscle induced by histamine (IC(50) = 50 +/- 5 microg. mL(-1)), capsaicin (IC(50) = 26.8 +/- 3 microg. mL(-1)), 80 mM KCl (IC(50) = 27.8 +/- 3 microg. mL(-1)), and carbachol (IC(50) = 54 +/- 2 microg. mL(-1)).

  10. Growth regulators in connective tissue. Systemic administration of an aortic extract inhibits tumor growth in mice.

    PubMed Central

    Eisenstein, R.; Schumacher, B.; Meineke, C.; Matijevitch, B.; Kuettner, K. E.

    1978-01-01

    A low-molecular-weight fraction prepared from extracts of bovine aorta inhibits the growth of a transplantable mammary tumor and a fibrosarcoma in mice when injected systemically. It also inhibits the growth of the fibrosarcoma in cell culture. The effect on the fibrosarcoma is much more marked than on the mammary tumor. Since the extract is more effective against the fibrosarcoma and is known to inhibit the growth of endothelial cells, it appears that the enhanced effect on this tumor is due to its activity on the endothelial cells of the host and the tumor cells themselves. The material injected is enriched in an antiproteinase we have previously isolated, which has anticollagneolytic activity and is presumed to be the effector molecule. Images Figure 1 Figure 2 PMID:645813

  11. Effect of different types of tea on Streptococcus mutans: an in vitro study.

    PubMed

    Subramaniam, Priya; Eswara, Uma; Maheshwar Reddy, K R

    2012-01-01

    If tea can be shown to have an inhibitory effect on the growth of Streptococcus mutans there can be a basis for using it as an agent for reducing caries. The aim of the study was to determine the effect of aqueous and organic extracts of three types of tea (green, oolong, and black tea) on the growth of S. mutans. In vitro study. Qualitative and quantitative phytochemical analysis of the three types of tea was done. Organic extracts of methanol and ethanol and aqueous extracts (50% and 100%) of tea were prepared. Fifty microliters of these extracts were inoculated into wells prepared on Mueller-Hinton agar plates that had been previously smeared with S. mutans. The agar plates were incubated at 37΀C for 24 hours. A similar procedure was followed using 0.2% chlorhexidine, which served as the positive control. Analysis of variance (ANOVA), post hoc Tukey test, Student's 't ' test (two-tailed, dependent), and Student's 't' test (two-tailed, independent) were used for analysis of the data. All the phytochemicals were found to be higher in oolong tea. Both aqueous and organic extracts of oolong tea showed greatest zones of inhibition, followed by green tea and black tea. Aqueous extracts of oolong and green tea showed greater zone of inhibition than chlorhexidine. All the three types of tea inhibited growth of S. mutans. The greatest inhibition was observed with aqueous extract of oolong tea. Oolong tea extracts (aqueous and organic) showed a greater inhibitory effect on the growth of S. mutans than the other tea extracts .

  12. Houttuynia cordata inhibits lipopolysaccharide-induced rapid pulmonary fibrosis by up-regulating IFN-γ and inhibiting the TGF-β1/Smad pathway.

    PubMed

    Du, Shaohui; Li, Hui; Cui, Yinghai; Yang, Lina; Wu, Jingjing; Huang, Haiyuan; Chen, Yangyan; Huang, Wei; Zhang, Rong; Yang, Jun; Chen, Dongfeng; Li, Yiwei; Zhang, Saixia; Zhou, Jianhong; Wei, Zhijun; Chow, Ngai Tan

    2012-07-01

    This study aimed to explore the effect and mechanism of H. cordata vapor extract on acute lung injury (ALI) and rapid pulmonary fibrosis (RPF). We applied the volatile extract of HC to an RPF rat model and analyzed the effect on ALI and RPF using hematoxylin-eosin (H&E) staining, routine blood tests, a cell count of bronchoalveolar lavage fluid (BALF), lactate dehydrogenase (LDH) content, van Gieson (VG) staining, hydroxyproline (Hyp) content and the dry/wet weight ratio. The expression of IFN-γ/STAT(1), IL-4/STAT(6) and TGF-β(1)/Smads was analyzed using ELISA, immunohistochemistry and western blotting methods. The active ingredients of the HC vapor extract were analyzed using a gas chromatograph-mass spectrometer (GC-MS), and the effects of the active ingredients of HC on the viability of NIH/3T3 and RAW264.7 cells were detected using an MTT assay. The active ingredients of the HC vapor extract included 4-terpineol, α-terpineol, l-bornyl acetate and methyl-n-nonyl ketone. The results of the lung H&E staining, Hyp content, dry/wet weight ratio and VG staining suggested that the HC vapor extract repaired lung injury and reduced RPF in a dose-dependent manner and up-regulated IFN-γ and inhibited the TGF-β1/Smad pathway in vivo. In vitro, it could inhibit the viability of RAW264.7 and NIH/3T3 cells. It also dose-dependently inhibited the expression of TGF-β1 and enhanced the expression of IFN-γ in NIH/3T3. The HC vapor extract inhibited LPS-induced RPF by up-regulating IFN-γ and inhibiting the TGF-β1/Smad pathway. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Inhibition of hematopoietic prostaglandin D2 Synthase (H-PGDS) by an alkaloid extract from Combretum molle

    PubMed Central

    2014-01-01

    Background Hematopoietic prostaglandin D2 synthase (H-PGDS, GST Sigma) is a member of the glutathione S-transferase super family of enzymes that catalyses the conjugation of electrophilic substances with reduced glutathione. The enzyme catalyses the conversion of PGH2 to PGD2 which mediates inflammatory responses. The inhibition of H-PGDS is of importance in alleviating damage to tissues due to unwarranted synthesis of PGD2. Combretum molle has been used in African ethno medicinal practices and has been shown to reduce fever and pain. The effect of C. molle alkaloid extract on H-PGDS was thus, investigated. Methods H-PGDS was expressed in Escherichia coli XL1-Blue cells and purified using nickel immobilized metal affinity chromatography. The effect of C. molle alkaloid extract on H-PGDS activity was determined with 1-chloro-2, 4-dinitrobenzene (CDNB) as substrate. The effect of C. molle alkaloid extract with time on H-PGDS was determined. The mechanism of inhibition was then investigated using CDNB and glutathione (GSH) as substrates. Results A specific activity of 24 μmol/mg/min was obtained after H-PGDS had been purified. The alkaloid extract exhibited a 70% inhibition on H-PGDS with an IC50 of 13.7 μg/ml. C. molle alkaloid extract showed an uncompetitive inhibition of H-PGDS with Ki = 41 μg/ml towards GSH, and non-competitive inhibition towards CDNB with Ki = 7.7 μg/ml and Ki′ = 9.2 μg/ml. Conclusion The data shows that C. molle alkaloid extract is a potent inhibitor of H-PGDS. This study thus supports the traditional use of the plant for inflammation. PMID:24996417

  14. Inhibition of hematopoietic prostaglandin D2 synthase (H-PGDS) by an alkaloid extract from Combretum molle.

    PubMed

    Moyo, Rejoice; Chimponda, Theresa; Mukanganyama, Stanley

    2014-07-05

    Hematopoietic prostaglandin D2 synthase (H-PGDS, GST Sigma) is a member of the glutathione S-transferase super family of enzymes that catalyses the conjugation of electrophilic substances with reduced glutathione. The enzyme catalyses the conversion of PGH2 to PGD2 which mediates inflammatory responses. The inhibition of H-PGDS is of importance in alleviating damage to tissues due to unwarranted synthesis of PGD2. Combretum molle has been used in African ethno medicinal practices and has been shown to reduce fever and pain. The effect of C. molle alkaloid extract on H-PGDS was thus, investigated. H-PGDS was expressed in Escherichia coli XL1-Blue cells and purified using nickel immobilized metal affinity chromatography. The effect of C. molle alkaloid extract on H-PGDS activity was determined with 1-chloro-2, 4-dinitrobenzene (CDNB) as substrate. The effect of C. molle alkaloid extract with time on H-PGDS was determined. The mechanism of inhibition was then investigated using CDNB and glutathione (GSH) as substrates. A specific activity of 24 μmol/mg/min was obtained after H-PGDS had been purified. The alkaloid extract exhibited a 70% inhibition on H-PGDS with an IC50 of 13.7 μg/ml. C. molle alkaloid extract showed an uncompetitive inhibition of H-PGDS with Ki = 41 μg/ml towards GSH, and non-competitive inhibition towards CDNB with Ki = 7.7 μg/ml and Ki' = 9.2 μg/ml. The data shows that C. molle alkaloid extract is a potent inhibitor of H-PGDS. This study thus supports the traditional use of the plant for inflammation.

  15. Inhibition of heterocyclic amine formation in beef patties by ethanolic extracts of rosemary.

    PubMed

    Puangsombat, Kanithaporn; Smith, J Scott

    2010-03-01

    Heterocyclic amines (HCAs) are mutagenic compounds formed during cooking muscle foods at high temperature. Inhibition of HCAs by rosemary extracts were evaluated with beef patties cooked at 191 degrees C (375 degrees F) for 6 min each side and 204 degrees C (400 degrees F) for 5 min each side. Five rosemary extracts extracted with different solvents were used in this study: extract 100W (100% water), 10E (10% ethanol), 20E (20% ethanol), 30E (30% ethanol), and 40E (40% ethanol). The 5 extracts were directly added to beef patties at 3 levels (0.05%, 0.2%, and 0.5%) before cooking and HCA contents were extracted and quantified. All of the patties contained 2-amino-3,8-dimethylimidazo [4,5-f]quinoxaline (MeIQx), and 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP). There was no statistical difference in the inhibition of HCAs in the 0.05%, 0.2%, and 0.5% rosemary extracts. All rosemary extracts significantly decreased the levels of MeIQx and PhIP at both cooking conditions. When cooking at 204 degrees C (400 degrees F) for 5 min each side, rosemary extracts 10E and 20E were superior to rosemary extracts 100W, 30E, and 40E in inhibiting HCA formation. Rosemary extract 20E showed the greatest inhibition of MeIQx (up to 91.7%) and PhIP (up to 85.3%). The inhibiting effect of rosemary extracts on HCA formation corresponded to their antioxidant activity based on a DPPH scavenging assay. Rosemary extract 10E and 20E contain a mixture of rosmarinic acid, carnosol, and carnosic acid. It is possible that these compounds might act synergistically in inhibiting the formation of HCAs.

  16. Impact of sunflower (Helianthus annuus L.) extracts upon reserve mobilization and energy metabolism in germinating mustard (Sinapis alba L.) seeds.

    PubMed

    Kupidłowska, Ewa; Gniazdowska, Agnieszka; Stepień, Joanna; Corbineau, Francoise; Vinel, Dominique; Skoczowski, Andrzej; Janeczko, Anna; Bogatek, Renata

    2006-12-01

    One commonly observed effect of phytotoxic compounds is the inhibition or delay of germination of sensitive seeds. Mustard (Sinapis alba L.) seeds were incubated with aqueous extracts of sunflower (Helianthus annuus L.) leaves. Although sunflower phytotoxins did not influence seed viability, extracts completely inhibited seed germination. Inhibition of germination was associated with alterations in reserve mobilization and generation of energy in the catabolic phase of germination. Degradation of lipids was suppressed by sunflower foliar extracts resulting in insufficient carbohydrate supply. The lack of respiratory substrates and decrease in energy (ATP) generation resulted in suppression of the anabolic phase of seed germination and ultimately growth inhibition.

  17. Rock Tea extract (Jasonia glutinosa) relaxes rat aortic smooth muscle by inhibition of L-type Ca(2+) channels.

    PubMed

    Valero, Marta Sofía; Oliván-Viguera, Aida; Garrido, Irene; Langa, Elisa; Berzosa, César; López, Víctor; Gómez-Rincón, Carlota; Murillo, María Divina; Köhler, Ralf

    2015-12-01

    In traditional herbal medicine, Rock Tea (Jasonia glutinosa) is known for its prophylactic and therapeutic value in various disorders including arterial hypertension. However, the mechanism by which Rock Tea exerts blood pressure-lowering actions has not been elucidated yet. Our aim was to demonstrate vasorelaxing effects of Rock Tea extract and to reveal its possible action mechanism. Isometric myography was conducted on high-K+-precontracted rings from rat thoracic aorta and tested extracts at concentrations of 0.5-5 mg/ml. Whole-cell patch-clamp experiments were performed in rat aortic vascular smooth muscle cells (line A7r5) to determine blocking effects on L-type Ca(2+) channels. Rock Tea extract relaxed the aorta contracted by high [K+] concentration dependently with an EC50 of ≈2.4 mg/ml and produced ≈75 % relaxation at the highest concentration tested. The L-type Ca(2+) channel blocker, verapamil (10(-6) M), had similar effects. Rock Tea extract had no effect in nominally Ca(2+)-free high-K(+) buffer but significantly inhibited contractions to re-addition of Ca(2+). Rock Tea extract inhibited the contractions induced by the L-type Ca(2+) channel activator Bay K 8644 (10(-5) M) and by phenylephrine (10(-6) M). Rock Tea extract and Y-27632 (10(-6) M), Rho-kinase inhibitor, had similar effects and the respective effects were not additive. Patch-clamp experiments demonstrated that Rock Tea extract (2.5 mg/ml) virtually abolished L-type Ca(2+) currents in A7r5. We conclude that Rock Tea extract produced vasorelaxation of rat aorta and that this relaxant effect is mediated by inhibition of L-type Ca(2+) channels. Rock Tea extracts may be of phytomedicinal value for prevention and adjuvant treatment of hypertension and other cardiovascular diseases.

  18. Crataegus extract blocks potassium currents in guinea pig ventricular cardiac myocytes.

    PubMed

    Müller, A; Linke, W; Klaus, W

    1999-05-01

    Crataegus extract is used in cardiology for the treatment of mild to moderate heart failure (NYHA II) in Germany. However, little is known about the electrophysiological actions of Crataegus extract in the heart. Recently, it was shown that Crataegus extract prolongs the refractory period in isolated perfused hearts and increases action potential duration in guinea pig papillary muscle. It was the aim of this study to find out the mechanism of the increase in action potential duration caused by Crataegus extract. Using the patch-clamp technique, we measured the effects of Crataegus extract (10 mg/l; flavonoid content: 2.25%, total procyanidin content: 11.3 +/- 0.4%) on the inward rectifier and the delayed rectifier potassium current in isolated guinea pig ventricular myocytes. To get some insight into the mechanism underlying the positive inotropic effect of Crataegus extract, we also looked for effects on the L-type calcium current. Crataegus extract slightly blocked both the delayed and the inward rectifier potassium current. The inhibition amounted to 25% and about 15%, respectively. This amount of inhibition of these repolarising currents is sufficient to explain the prolongation of action potential duration caused by Crataegus extract. To our surprise we could not detect any influence of Crataegus extract on the L-type calcium current. In summary, our results show that Crataegus extract blocks repolarising potassium currents in ventricular myocytes. This effect is similar to the action of class III antiarrhythmic drugs and might be the basis of the antiarrhythmic effects described for Crataegus extract. Our measurements of the L-type calcium current indicate that Crataegus extract's positive inotropic effect is not caused by phosphodiesterase inhibition or a beta-sympathomimetic effect.

  19. Antiproliferative and apoptotic effects triggered by Grape Seed Extract (GSE) versus epigallocatechin and procyanidins on colon cancer cell lines.

    PubMed

    Dinicola, Simona; Cucina, Alessandra; Pasqualato, Alessia; D'Anselmi, Fabrizio; Proietti, Sara; Lisi, Elisabetta; Pasqua, Gabriella; Antonacci, Donato; Bizzarri, Mariano

    2012-01-01

    Grape seed extract has been proven to exert anticancer effects on different tumors. These effects are mainly ascribed to catechin and procyanidin content. Analytical studies demonstrated that grape seed extract composition is complex and it is likely other components could exert biological activities. Using cell count and flow cytometry assays, we evaluated the cytostatic and apoptotic effects produced by three different grape seed extracts from Italia, Palieri and Red Globe cultivars, on Caco2 and HCT-8 colon cancer cells. These effects were compared to those induced by epigallocatechin and procyanidins, alone or in association, on the same cell lines. All the extracts induced growth inhibition and apoptosis in Caco2 and HCT-8 cells, along the intrinsic apoptotic pathway. On both cell lines, growth inhibition induced by Italia and Palieri grape seed extracts was significantly higher than that it has been recorded with epigallocatechin, procyanidins and their association. In Caco2 cells, the extract from Red Globe cultivar was less effective in inducing growth inhibition than procyanidins alone and in association with epigallocatechin, whereas, in HCT-8 cells, only the association of epigallocatechin and procyanidins triggers a significant proliferation decrease. On both cell lines, apoptosis induced by Italia, Palieri and Red Globe grape seed extracts was considerably higher than has been recorded with epigallocatechin, procyanidins and their association. These data support the hypothesis by which other compounds, present in the grape seed extracts, are likely to enhance the anticancer effects.

  20. Antiproliferative and Apoptotic Effects Triggered by Grape Seed Extract (GSE) versus Epigallocatechin and Procyanidins on Colon Cancer Cell Lines

    PubMed Central

    Dinicola, Simona; Cucina, Alessandra; Pasqualato, Alessia; D’Anselmi, Fabrizio; Proietti, Sara; Lisi, Elisabetta; Pasqua, Gabriella; Antonacci, Donato; Bizzarri, Mariano

    2012-01-01

    Grape seed extract has been proven to exert anticancer effects on different tumors. These effects are mainly ascribed to catechin and procyanidin content. Analytical studies demonstrated that grape seed extract composition is complex and it is likely other components could exert biological activities. Using cell count and flow cytometry assays, we evaluated the cytostatic and apoptotic effects produced by three different grape seed extracts from Italia, Palieri and Red Globe cultivars, on Caco2 and HCT-8 colon cancer cells. These effects were compared to those induced by epigallocatechin and procyanidins, alone or in association, on the same cell lines. All the extracts induced growth inhibition and apoptosis in Caco2 and HCT-8 cells, along the intrinsic apoptotic pathway. On both cell lines, growth inhibition induced by Italia and Palieri grape seed extracts was significantly higher than that it has been recorded with epigallocatechin, procyanidins and their association. In Caco2 cells, the extract from Red Globe cultivar was less effective in inducing growth inhibition than procyanidins alone and in association with epigallocatechin, whereas, in HCT-8 cells, only the association of epigallocatechin and procyanidins triggers a significant proliferation decrease. On both cell lines, apoptosis induced by Italia, Palieri and Red Globe grape seed extracts was considerably higher than has been recorded with epigallocatechin, procyanidins and their association. These data support the hypothesis by which other compounds, present in the grape seed extracts, are likely to enhance the anticancer effects. PMID:22312277

  1. Antibacterial and Antifungal Activities of Stereum ostrea, an Inedible Wild Mushroom.

    PubMed

    Imtiaj, Ahmed; Jayasinghe, Chandana; Lee, Geon Woo; Lee, Tae Soo

    2007-12-01

    Antibacterial and antifungal activities of liquid culture filtrate, water and ethanol extract (solid culture) of Stereum ostrea were evaluated against 5 bacteria and 3 plant pathogenic fungi. To determine the minimal inhibitory concentration (MIC), we studied 5~300 mg/ml concentrations against bacteria and fungi separately. The MIC was 10 mg/ml for Bacillus subtilis and 40 mg/ml for Colletotrichum gloeosporioides and Colletotrichum miyabeanus. Liquid culture filtrate was more effective against Gram positive than Gram negative bacteria, and Staphylococcus aureus was the most inhibited (20.3 mm) bacterium. Water and ethanol extracts were effective against both Gram positive and Gram negative bacteria, and water extract was better than ethanol extract. In water and ethanol extract, inhibition zones were 23.6 and 21.0 mm (S. aureus) and 26.3 and 22.3 mm (Pseudomonas aeruginosa), respectively. For plant pathogenic fungi, the highest and lowest percent inhibition of mycelial growth (PIMG) was found 82.8 and 14.4 against C. miyabeanus and Botrytis cinerea in liquid culture filtrate, respectively. In water extract, the PIMG was found to be the highest 85.2 and lowest 41.7 for C. miyabeanus and C. gloeosporioides, respectively. The inhibitory effect of ethanol extract was better against C. miyabeanus than C. gloeosporioides and B. cinerea. Among 3 samples, water extract was the best against tested pathogenic fungi. This study offers that the extracts isolated from S. ostrea contain potential compounds which inhibit the growth of both bacteria and fungi.

  2. Antibacterial and Antifungal Activities of Stereum ostrea, an Inedible Wild Mushroom

    PubMed Central

    Imtiaj, Ahmed; Jayasinghe, Chandana; Lee, Geon Woo

    2007-01-01

    Antibacterial and antifungal activities of liquid culture filtrate, water and ethanol extract (solid culture) of Stereum ostrea were evaluated against 5 bacteria and 3 plant pathogenic fungi. To determine the minimal inhibitory concentration (MIC), we studied 5~300 mg/ml concentrations against bacteria and fungi separately. The MIC was 10 mg/ml for Bacillus subtilis and 40 mg/ml for Colletotrichum gloeosporioides and Colletotrichum miyabeanus. Liquid culture filtrate was more effective against Gram positive than Gram negative bacteria, and Staphylococcus aureus was the most inhibited (20.3 mm) bacterium. Water and ethanol extracts were effective against both Gram positive and Gram negative bacteria, and water extract was better than ethanol extract. In water and ethanol extract, inhibition zones were 23.6 and 21.0 mm (S. aureus) and 26.3 and 22.3 mm (Pseudomonas aeruginosa), respectively. For plant pathogenic fungi, the highest and lowest percent inhibition of mycelial growth (PIMG) was found 82.8 and 14.4 against C. miyabeanus and Botrytis cinerea in liquid culture filtrate, respectively. In water extract, the PIMG was found to be the highest 85.2 and lowest 41.7 for C. miyabeanus and C. gloeosporioides, respectively. The inhibitory effect of ethanol extract was better against C. miyabeanus than C. gloeosporioides and B. cinerea. Among 3 samples, water extract was the best against tested pathogenic fungi. This study offers that the extracts isolated from S. ostrea contain potential compounds which inhibit the growth of both bacteria and fungi. PMID:24015099

  3. Comparative evaluation of 12 immature citrus fruit extracts for the inhibition of cytochrome P450 isoform activities.

    PubMed

    Fujita, Tadashi; Kawase, Atsushi; Niwa, Toshiro; Tomohiro, Norimichi; Masuda, Megumi; Matsuda, Hideaki; Iwaki, Masahiro

    2008-05-01

    In a previous study we found that 50% ethanol extracts of immature fruits of Citrus unshiu (satsuma mandarin) have anti-allergic effects against the Type I, II and IV allergic reactions. However, many adverse interactions between citrus fruit, especially grapefruit juice, and drugs have been reported due to the inhibition of cytochrome P450 (CYP) activities. The purpose of this study was to examine the competitive inhibitory effects of extracts from immature citrus fruit on CYP activity. Extracts were prepared from 12 citrus species or cultivars, and were tested against three kinds of major CYPs, CYP2C9, CYP2D6 and CYP3A4, in human liver microsomes. We also estimated the amounts of flavonoids (narirutin, hesperidin, naringin and neohesperidin) and furanocoumarins (bergapten, 6',7'-dihydroxybergamottin and bergamottin) in each extract using HPLC. Citrus paradisi (grapefruit) showed the greatest inhibition of CYP activities, while Citrus unshiu which has an antiallergic effect, showed relatively weak inhibitory effects. Extracts having relatively strong inhibitory effects for CYP3A4 tended to contain higher amounts of naringin, bergamottin and 6',7'-dihydroxybergamottin. These results, providing comparative information on the inhibitory effects of citrus extracts on CYP isoforms, suggest that citrus extracts containing high levels of narirutin and hesperidin and lower levels of furanocoumarins such as C. unshiu are favorable as antiallergic functional ingredients.

  4. The Effects of Allium sativum Extracts on Biofilm Formation and Activities of Six Pathogenic Bacteria

    PubMed Central

    Mohsenipour, Zeinab; Hassanshahian, Mehdi

    2015-01-01

    Background: Garlic is considered a rich source of many compounds, which shows antimicrobial effects. The ability of microorganisms to adhere to both biotic and abiotic surfaces and to form biofilm is responsible for a number of diseases of chronic nature, demonstrating extremely high resistance to antibiotics. Bacterial biofilms are complex communities of sessile microorganisms, embedded in an extracellular matrix and irreversibly attached to various surfaces. Objectives: The present study evaluated the antimicrobial activity of Allium sativum extract against the biofilms of six pathogenic bacteria and their free-living forms. The clinical isolates in this study had not been studied in any other studies, especially in regard to biofilm disruption and inhibition of biofilm cell metabolic activity. Materials and Methods: Antimicrobial activities of A. sativum L. extracts (methanol and ethanol extracts) against planktonic forms of bacteria were determined using the disc diffusion method. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) values were evaluated by a macrobroth dilution technique. The anti-biofilm effects were assessed by microtiter plate method. Results: The results showed that the A. sativum L. extract discs did not have any zone of inhibition for the tested bacteria. However, The MIC values of A. sativum L. extracts (0.078 - 2.5 mg/mL) confirmed the high ability of these extracts for inhibition of planktonic bacteria. A. sativum L. extracts were efficient to inhibit biofilm structures and the concentration of each extract had a direct relation with the inhibitory effect. Conclusions: Finally, it can be suggested that the extracts of this plant be applied as antimicrobial agents against these pathogens, particularly in biofilm forms. PMID:26464762

  5. Reduction of aflatoxins by Korean soybean paste and its effect on cytotoxicity and reproductive toxicity--part 1. Inhibition of growth and aflatoxin production of Aspergillus parasiticus by Korean soybean paste (Doen-jang) and identification of the active component.

    PubMed

    Kim, J G; Lee, Y W; Kim, P G; Roh, W S; Shintani, H

    2000-09-01

    The inhibitory effect of methanol extract of Korean soybean paste on the mold growth and aflatoxin production of a toxigenic strain of Aspergillus parasiticus ATCC 15517 was studied using different concentrations of the extract in yeast-extract sucrose broth. While inhibition in mold growth due to increasing the concentration of the extract was observed, the more remarkable effect was the inhibition of aflatoxin production. Reduction of mycelial weight as a result of addition of the extract was observed to range between 1.5 to 12.9% while reduction of aflatoxin production quantified by high-performance liquid chromatography ranged from 14.3 to 41.7%. Five percent of the extract significantly reduced aflatoxin production at the end of the incubation period (P < 0.05), although the effect on mycelial growth was less pronounced. This study indicates that soybean paste could also be an effective inhibitor of aflatoxin production even though mycelial growth may be permitted. The main active component identified by gas chromatography-mass spectroscopy was linoleic acid.

  6. Effect of oral ketoconazole on first-pass effect of nifedipine after oral administration in dogs.

    PubMed

    Kuroha, Masanori; Kayaba, Hideki; Kishimoto, Shizuka; Khalil, Waleed F; Shimoda, Minoru; Kokue, Eiichi

    2002-03-01

    The long-term oral ketoconazole (KTZ) treatment extensively inhibits hepatic CYP3A activity. We investigated the effect of the KTZ treatment on hepatic and intestinal extraction of nifedipine (NIF) using beagle dogs. Four dogs were given orally KTZ for 20 days (200 mg, bid). NIF was administered either intravenously (0.5 mg/kg) or orally (20 mg) 10 and 20 days before the KTZ treatment and 10 and 20 days after start of KTZ treatment. CLtot of NIF after intravenous administration decreased to about 50% during the KTZ treatment. C(max) and AUC after oral administration increased to 2.5-fold and fourfold, respectively, by the KTZ treatment. The hepatic extraction ratio of NIF decreased to about a half by KTZ. A significant decrease in intestinal extraction ratio was not observed. In conclusion, the KTZ treatment inhibits hepatic extraction more profoundly than intestinal extraction of NIF. Therefore, inhibition of hepatic extraction of NIF by the KTZ treatment mainly results in substantial increase in systemic bioavailability in dogs. Because KTZ inhibits human CYP3A activities similar to canine CYP3A activities, the long-term oral KTZ treatment may dramatically increase bioavailability of NIF or other CYP3A substrates in humans. Copyright 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association.

  7. Inhibitory effect of Spirogyra spp. algal extracts against herpes simplex virus type 1 and 2 infection.

    PubMed

    Deethae, A; Peerapornpisal, Y; Pekkoh, J; Sangthong, P; Tragoolpua, Y

    2018-06-01

    To determine the antiviral activities of Spirogyra spp. algal extracts against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2). Spirogyra spp. was extracted using water, ethanol and methanol. Aqueous extract of Spirogyra spp. had the lowest toxicity on Vero cells with the 50% cytotoxicity concentration (CC 50 ) of 4363·30 μg ml -1 . As for potent inhibitory effect, the ethanolic extract presented the highest inhibition of viral infection on HSV-1 in the treatment during viral attachment on Vero cells with 50% inhibitory concentration (IC 50 ) and selective index (SI) values of 164·20 and 2·17 μg ml -1 . However, the methanolic extract showed the highest inhibition of HSV-2 when treated during viral attachment with IC 50 and SI values of 75·03 and 3·34 μg ml -1 . The methanolic extract of Spirogyra spp. also demonstrated significant virucidal effects on viral particles. Therefore, anti-HSV activity at various stages of the viral multiplication cycle was shown. The main active compounds in the active fractions of Spirogyra spp. ethanolic extract against HSV were found to be alkaloids, essential oils and terpenoids. The highest anti-HSV activity was obtained from the ethanolic extract of Spirogyra spp. The extract inhibited the HSV viral particles and the inhibition was during the viral attachment and the viral multiplication. Anti-HSV activity of extract of freshwater green macroalga Spirogyra spp. in Thailand was demonstrated. Therefore, anti-HSV product containing the Spirogyra spp. extract should be developed for treatment of HSV infection. © 2018 The Society for Applied Microbiology.

  8. Antifungal Effect of Malaysian Aloe vera Leaf Extract on Selected Fungal Species of Pathogenic Otomycosis Species in In Vitro Culture Medium.

    PubMed

    Saniasiaya, Jeyasakthy; Salim, Rosdan; Mohamad, Irfan; Harun, Azian

    2017-01-01

    Aloe barbadensis miller or Aloe vera has been used for therapeutic purposes since ancient times with antifungal activity known to be amongst its medicinal properties. We conducted a pilot study to determine the antifungal properties of Malaysian Aloe vera leaf extract on otomycosis species including Aspergillus niger and Candida albicans. This laboratory-controlled prospective study was conducted at the Universiti Sains Malaysia. Extracts of Malaysian Aloe vera leaf was prepared in ethanol and solutions via the Soxhlet extraction method. Sabouraud dextrose agar cultured with the two fungal isolates were inoculated with the five different concentrations of each extract (50 g/mL, 25 g/mL, 12.5 g/mL, 6.25 g/mL, and 3.125 g/mL) using the well-diffusion method. Zone of inhibition was measured followed by minimum inhibitory concentration (MIC). For A. niger, a zone of inhibition for alcohol and aqueous extract was seen for all concentrations except 3.125 g/mL. There was no zone of inhibition for both alcohol and aqueous extracts of Aloe vera leaf for C. albicans . The MIC values of aqueous and alcohol extracts were 5.1 g/mL and 4.4 g/mL for A. niger and since no zone of inhibition was obtained for C. albicans the MIC was not determined. The antifungal effect of alcohol extracts of Malaysian Aloe vera leaf is better than the aqueous extract for A. niger ( p < 0.001). Malaysian Aloe vera has a significant antifungal effect towards A. niger.

  9. Comparison of Composition and Anticaries Effect of Galla Chinensis Extracts with Different Isolation Methods

    PubMed Central

    Huang, Xuelian; Deng, Meng; Liu, Mingdong; Cheng, Lei; Exterkate, R.A.M.; Li, Jiyao; Zhou, Xuedong; Ten Cate, Jacob. M.

    2017-01-01

    Objectives: Galla chinensis water extract (GCE) has been demonstrated to inhibit dental caries by favorably shifting the demineralization/remineralization balance of enamel and inhibiting the biomass and acid formation of dental biofilm. The present study focused on the comparison of composition and anticaries effect of Galla chinensis extracts with different isolation methods, aiming to improve the efficacy of caries prevention. Methods: The composition of water extract (GCE), ethanol extract (eGCE) and commercial tannic acid was compared. High performance liquid chromatography coupled to electrospray ionization-time of flight-mass spectrometry (HPLC-ESI-TOF-MS) analysis was used to analyze the main ingredients. In vitro pH-cycling regime and polymicrobial biofilms model were used to assess the ability of different Galla chinensis extracts to inhibit enamel demineralization, acid formation and biofilm formation. Results: All the GCE, eGCE and tannic acid contained a high level of total phenolics. HPLC-ESI-TOF-MS analysis showed that the main ingredients of GCE were gallic acid (GA), while eGCE mainly contained 4-7 galloylglucopyranoses (GGs) and tannic acid mainly contained 5-10 GGs. Furthermore, eGCE and tannic acid showed a better effect on inhibiting enamel demineralization, acid formation and biofilm formation compared to GCE. Conclusions: Galla chinensis extracts with higher tannin content were suggested to have higher potential to prevent dental caries. PMID:28979574

  10. Hypolipidemic and Antioxidant Properties of Hot Pepper Flower (Capsicum annuum L.).

    PubMed

    Marrelli, Mariangela; Menichini, Francesco; Conforti, Filomena

    2016-09-01

    At present, the various medical treatments of obesity involve side effects. The aim of the research is therefore to find natural compounds that have anti-obesity activity with minimum disadvantages. In this study, the hypolipidemic effect of hydroalcoholic extract of flowers from Capsicum annuum L. was examined through the evaluation of inhibition of pancreatic lipase. Antioxidant activity was assessed using different tests: 2,2-diphenyl-1-picrylhydrazyl (DPPH), nitric oxide (˙NO) and lipid peroxidation inhibition assays. Phytochemical analysis indicated that total phenolic and flavonoid content in the extract was 128.7 ± 4.5 mg chlorogenic acid equivalent/g of crude extract and 17.66 ± 0.11 mg of quercetin equivalent/g of crude extract, respectively. The extract inhibited pancreatic lipase with IC50 value equal to 3.54 ± 0.18 mg/ml. It also inhibited lipid peroxidation with IC50 value of 27.61 ± 2.25 μg/ml after 30 min of incubation and 41.69 ± 1.13 μg/ml after 60 min of incubation. The IC50 value of radical scavenging activity was 51.90 ± 2.03 μg/ml. The extract was also able to inhibit NO production (IC50 = of 264.3 ± 7.98 μg/ml) without showing any cytotoxic effect.

  11. Inhibitory effect of a novel combination of Salvia hispanica (chia) seed and Punica granatum (pomegranate) fruit extracts on melanin production.

    PubMed

    Diwakar, Ganesh; Rana, Jatinder; Saito, Lisa; Vredeveld, Doug; Zemaitis, Dorothy; Scholten, Jeffrey

    2014-09-01

    In recent years, dietary fatty acids have been extensively evaluated for nutritional as well as cosmetic benefits. Among the dietary fats, the omega-3 (ω3) and omega-6 (ω6) forms of polyunsaturated fatty acids (PUFAs) have been found to exhibit many biological functions in the skin such as prevention of transepidermal water loss, maintenance of the stratum corneum epidermal barrier, and disruption of melanogenesis in epidermal melanocytes. In this study, we examined the effect of chia seed extract, high in ω3 (linolenic acid) and ω6 (linoleic acid) PUFAs, for its capacity to affect melanogenesis. Chia seed extract was shown to inhibit melanin biosynthesis in Melan-a cells; however, linoleic and α-linolenic acids alone did not effectively reduce melanin content. Further investigation demonstrated that chia seed extract in combination with pomegranate fruit extract had a synergistic effect on the inhibition of melanin biosynthesis with no corresponding effect on tyrosinase activity. Investigation of the possible mechanism of action revealed that chia seed extract downregulated expression of melanogenesis-related genes (Tyr, Tyrp1, and Mc1r), alone and in combination with pomegranate fruit extract, suggesting that the inhibition of melanin biosynthesis by a novel combination of chia seed and pomegranate fruit extracts is possibly due to the downregulation of gene expression of key melanogenic enzymes. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Fermented guava leaf extract inhibits LPS-induced COX-2 and iNOS expression in Mouse macrophage cells by inhibition of transcription factor NF-kappaB.

    PubMed

    Choi, Soo-Youn; Hwang, Joon-Ho; Park, Soo-Young; Jin, Yeong-Jun; Ko, Hee-Chul; Moon, Sang-Wook; Kim, Se-Jae

    2008-08-01

    The goal of this study was to elucidate the antiinflammatory activities of Psidium guajava L. (guava) leaf. To improve the functionality of guava leaf, it was fermented with Phellinus linteus mycelia, Lactobacillus plantarum and Saccharomyces cerevisiae. The ethanol extract from fermented guava leaf inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin E(2) (PGE(2)) production. Western blot analysis showed that fermented guava leaf extract decreased LPS-induced inducible nitric oxide synthase (iNOS) and the cyclooxygenase-2 (COX-2) protein level in RAW 264.7 cells. To investigate the mechanism involved, the study examined the effect of fermented guava leaf extract on LPS-induced nuclear factor-kappaB (NF-kappaB) activation. Fermented guava leaf extract significantly inhibited LPS-induced NF-kappaB transcriptional activity. Immunochemical analysis revealed that fermented guava leaf extract suppressed LPS-induced degradation of I-kappaBalpha. Taken together, the data indicate that fermented guava leaf extract is involved in the inhibition of iNOS and COX-2 via the down-regulation of NF-kappaB pathway, revealing a partial molecular basis for the antiinflammatory properties of fermented guava leaf extract.

  13. Antiviral activity of some South American medicinal plants.

    PubMed

    Abad, M J; Bermejo, P; Sanchez Palomino, S; Chiriboga, X; Carrasco, L

    1999-03-01

    Folk medicinal plants are potential sources of useful therapeutic compounds including some with antiviral activities. Extracts prepared from 10 South American medicinal plants (Baccharis trinervis, Baccharis teindalensis, Eupatorium articulatum, Eupatorium glutinosum, Tagetes pusilla, Neurolaena lobata, Conyza floribunda, Phytolacca bogotensis, Phytolacca rivinoides and Heisteria acuminata) were screened for in vitro antiviral activity against herpes simplex type I (HSV-1), vesicular stomatitis virus (VSV) and poliovirus type 1. The most potent inhibition was observed with an aqueous extract of B. trinervis, which inhibited HSV-1 replication by 100% at 50-200 micrograms/mL, without showing cytotoxic effects. Good activities were also found with the ethanol extract of H. acuminata and the aqueous extract of E. articulatum, which exhibited antiviral effects against both DNA and RNA viruses (HSV-1 and VSV, respectively) at 125-250 micrograms/mL. The aqueous extracts of T. pusilla (100-250 micrograms/mL), B. teindalensis (50-125 micrograms/mL) and E. glutinosum (50-125 micrograms/mL) also inhibited the replication of VSV, but none of the extracts tested had any effect on poliovirus replication.

  14. Extract from Aronia melanocarpa fruits potentiates the inhibition of platelet aggregation in the presence of endothelial cells

    PubMed Central

    Luzak, Boguslawa; Golanski, Jacek; Rozalski, Marek; Krajewska, Urszula; Olas, Beata

    2010-01-01

    Introduction Some polyphenolic compounds extracted from Aronia melanocarpa fruits (AM) have been reported to be cardioprotective agents. In this study we evaluated the ability of AM extract to increase the efficacy of human umbilical vein endothelial cells (HUVECs) to inhibit platelet functions in vitro. Material and methods This study encompasses two models of monitoring platelet reactivity: optical aggregation and platelet degranulation (monitored as the surface CD62P expression) in PRP upon the stimulation with ADP. Results We observed that only at low concentrations (5 µg/ml) did AM extract significantly improve antiplatelet action of HUVECs towards ADP-activated platelets in the aggregation test. Conclusions It is concluded that the potentiating effect of AM extract on the endothelial cell-mediated inhibition of platelet aggregation clearly depends on the used concentrations of Aronia-derived active compounds. Therefore, despite these encouraging preliminary outcomes on the beneficial effects of AM extract polyphenols, more profound dose-effect studies should certainly be considered before the implementation of Aronia-originating compounds in antiplatelet therapy and the prevention of cardiovascular diseases. PMID:22371737

  15. Ethyl acetate extract from Panax ginseng C.A. Meyer and its main constituents inhibit α-melanocyte-stimulating hormone-induced melanogenesis by suppressing oxidative stress in B16 mouse melanoma cells.

    PubMed

    Jiang, Rui; Xu, Xiao-Hao; Wang, Ke; Yang, Xin-Zhao; Bi, Ying-Fei; Yan, Yao; Liu, Jian-Zeng; Chen, Xue-Nan; Wang, Zhen-Zhong; Guo, Xiao-Li; Zhao, Da-Qing; Sun, Li-Wei

    2017-08-17

    Hyperpigmentation disease involves darkening of the skin color due to melanin overproduction. Panax ginseng C.A. Meyer is a well-known traditional Chinese medicine and has a long history of use as a skin lightener to inhibit melanin formation in China, Korea and some other Asian countries. However, the constituents and the molecular mechanisms by which they affect melanogenesis are not fully clear. The purpose of this study was to identify the active ingredient in Panax ginseng C.A. Meyer extract that inhibits mushroom tyrosinase activity and to investigate the antioxidative capacity and molecular mechanisms of the effective extract on melanogenesis in B16 mouse melanoma cells. Aqueous extracts of Panax ginseng C.A. Meyer were successively fractionated with an equal volume of chloroform, ethyl acetate, and n-butyl alcohol to determine the effects by examining the activity of mushroom tyrosinase. The effective fraction was analyzed using HPLC and LC-MS. The antioxidative capacity and the inhibitory effects on melanin content, cell intracellular tyrosinase activity, and melanogenesis protein levels were determined in α-melanocyte-stimulating hormone (α-MSH)-treated B16 mouse melanoma cells. The ethyl acetate extract from Panax ginseng C.A. Meyer (PG-2) had the highest inhibiting effect on mushroom tyrosinase, mainly contained phenolic acids, including protocatechuic acid, vanillic acid, p-coumaric acid, salicylic acid, and caffeic acid, and exhibited apparent antioxidant activity in vitro. PG-2 and its main constituents significantly decreased melanin content, suppressed cellular tyrosinase activity, and reduced expression of tyrosinase protein to inhibit B16 cells melanogenesis induced by α-MSH, and no cytotoxic effects were observed. They also inhibited cellular reactive oxygen species (ROS) generation, increased superoxide dismutase (SOD) activity and glutathione (GSH) level in α-MSH-treated B16 cells effectively. And those activities of its main constituents could reach more than 80% of PG-2. The ROS scavengers N-acetyl-L-cysteine (NAC) had a similar inhibitory effect on melanogenesis. These results suggest that ethyl acetate extract from Panax ginseng C.A. Meyer has the highest effect on inhibiting melanogenesis, and that its main components are polyphenolic compounds, which may inhibit melanogenesis by suppressing oxidative stress. This work provides new insight into the active constituents and molecular mechanisms underlying skin-lightening effect of Panax ginseng C.A. Meyer. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  16. Effects of the Fruit Extract of Tribulus terrestris on Skin Inflammation in Mice with Oxazolone-Induced Atopic Dermatitis through Regulation of Calcium Channels, Orai-1 and TRPV3, and Mast Cell Activation

    PubMed Central

    Kang, Seok Yong; Jung, Hyo Won; Nam, Joo Hyun; Kim, Woo Kyung; Kang, Jong-Seong; Kim, Young-Ho; Cho, Cheong-Weon; Cho, Chong Woon

    2017-01-01

    Ethnopharmacological Relevance In this study, we investigated the effects of Tribulus terrestris fruit (Leguminosae, Tribuli Fructus, TF) extract on oxazolone-induced atopic dermatitis in mice. Materials and Methods TF extract was prepared with 30% ethanol as solvent. The 1% TF extract with or without 0.1% HC was applied to the back skin daily for 24 days. Results 1% TF extract with 0.1% HC improved AD symptoms and reduced TEWL and symptom scores in AD mice. 1% TF extract with 0.1% HC inhibited skin inflammation through decrease in inflammatory cells infiltration as well as inhibition of Orai-1 expression in skin tissues. TF extract inhibited Orai-1 activity in Orai-1-STIM1 cooverexpressing HEK293T cells but increased TRPV3 activity in TRPV3-overexpressing HEK293T cells. TF extract decreased β-hexosaminidase release in RBL-2H3 cells. Conclusions The present study demonstrates that the topical application of TF extract improves skin inflammation in AD mice, and the mechanism for this effect appears to be related to the modulation of calcium channels and mast cell activation. This outcome suggests that the combination of TF and steroids could be a more effective and safe approach for AD treatment. PMID:29348776

  17. Bioactive Extract from Moringa oleifera Inhibits the Pro-inflammatory Mediators in Lipopolysaccharide Stimulated Macrophages

    PubMed Central

    Fard, Masoumeh Tangestani; Arulselvan, Palanisamy; Karthivashan, Govindarajan; Adam, Siti Khadijah; Fakurazi, Sharida

    2015-01-01

    Introduction: Inflammation is a well-known physiological response to protect the body against infection and restore tissue injury. Nevertheless, the chronic inflammation can trigger various inflammatory associated diseases/disorder. Moringa oleifera is a widely grown plant in most tropical countries and it has been recognized traditionally for several medicinal benefits. Objectives: The objective of this study was to investigate the anti-inflammatory properties of M. oleifera extract on lipopolysaccharide (LPS) - stimulated macrophages. Materials and Methods: The anti-inflammatory effect of M. oleifera hydroethanolic bioactive leaves extracts was evaluated by assessing the inhibition of nitric oxide (NO) production during Griess reaction and the expression of pro-inflammatory mediators in macrophages. Results: Interestingly, we found that M. oleifera hydroethanolic bioactive leaves extract significantly inhibited the secretion of NO production and other inflammatory markers such as prostaglandin E2, tumor necrosis factor alpha, interleukin (IL)-6, and IL-1β. Meanwhile, the bioactive extract has induced the production of IL-10 in a dose-dependent manner. In addition, M. oleifera hydroethanolic bioactive leaves extract effectively suppressed the protein expression of inflammatory markers inducible NO synthase, cyclooxygenase-2, and nuclear factor kappa-light-chain-enhancer of activated B-cells p65 in LPS-induced RAW264.7 macrophages in a dose-dependent manner. Conclusion: These findings support the traditional use of M. oleifera plant as an effective treatment for inflammation associated diseases/disorders. SUMMARY Hydroethanolic extracts of Moringa oleifera effectively inhibit the NO production in LPS induced inflammatory model.M. oleifera crude extracts successfully modulate the production of pro-inflammatory mediators in LPS stimulated macrophages.M. oleifera extracts suppressed the expression of inflammatory mediators in LPS stimulated macrophages. PMID:27013794

  18. Luteolin-7-O-Glucoside Present in Lettuce Extracts Inhibits Hepatitis B Surface Antigen Production and Viral Replication by Human Hepatoma Cells in Vitro

    PubMed Central

    Cui, Xiao-Xian; Yang, Xiao; Wang, Hui-Jing; Rong, Xing-Yu; Jing, Sha; Xie, You-Hua; Huang, Dan-Feng; Zhao, Chao

    2017-01-01

    Hepatitis B virus (HBV) infection is endemic in Asia and chronic hepatitis B (CHB) is a major public health issue worldwide. Current treatment strategies for CHB are not satisfactory as they induce a low rate of hepatitis B surface antigen (HBsAg) loss. Extracts were prepared from lettuce hydroponically cultivated in solutions containing glycine or nitrate as nitrogen sources. The lettuce extracts exerted potent anti-HBV effects in HepG2 cell lines in vitro, including significant HBsAg inhibition, HBV replication and transcription inhibition, without exerting cytotoxic effects. When used in combination interferon-alpha 2b (IFNα-2b) or lamivudine (3TC), the lettuce extracts synergistically inhibited HBsAg expression and HBV replication. By using differential metabolomics analysis, Luteolin-7-O-glucoside was identified and confirmed as a functional component of the lettuce extracts and exhibited similar anti-HBV activity as the lettuce extracts in vitro. The inhibition rate on HBsAg was up to 77.4%. Moreover, both the lettuce extracts and luteolin-7-O-glucoside functioned as organic antioxidants and, significantly attenuated HBV-induced intracellular reactive oxygen species (ROS) accumulation. Luteolin-7-O-glucoside also normalized ROS-induced mitochondrial membrane potential damage, which suggests luteolin-7-O-glucoside inhibits HBsAg and HBV replication via a mechanism involving the mitochondria. Our findings suggest luteolin-7-O-glucoside may have potential value for clinical application in CHB and may enhance HBsAg and HBV clearance when used as a combination therapy. PMID:29270164

  19. Anti-inflammatory activity of aqueous and alkaline extracts from mushrooms (Agaricus blazei Murill).

    PubMed

    Padilha, Marina M; Avila, Ana A L; Sousa, Pergentino J C; Cardoso, Luis Gustavo V; Perazzo, Fábio F; Carvalho, José Carlos T

    2009-04-01

    The effects of aqueous and alkaline extracts from Agaricus blazei Murill, an edible mushroom used as folk medicine in Brazil, Japan, and China to treat several illnesses, were investigated on the basis of the inflammatory process induced by different agents. Oral administration of A. blazei extracts marginally inhibited the edema induced by nystatin. In contrast, when complete Freund's adjuvant was used as the inflammatory stimulus, both extracts were able to inhibit this process significantly (P < .05, analysis of variance followed by Tukey-Kramer multiple comparison post hoc test), although it inhibited the granulomatous tissue induction moderately. These extracts were able to decrease the ulcer wounds induced by stress. Also, administration of extracts inhibited neutrophil migration to the exudates present in the peritoneal cavity after carrageenin injection. Therefore, it is possible that A. blazei extracts can be useful in inflammatory diseases because of activation of the immune system and its cells induced by the presence of polysaccharides such as beta-glucans.

  20. Intestinal α-glucosidase and some pancreatic enzymes inhibitory effect of hydroalcholic extract of Moringa stenopetala leaves

    PubMed Central

    2014-01-01

    Background Moringa stenopetala has been used in traditional health systems to treat diabetes mellitus. One of the successful methods to prevent of the onset of diabetes is to control postprandial hyperglycemia by the inhibition of α-glucosidase and pancreatic α-amylase activities, resulting in the aggressive delay of the carbohydrate digestion of absorbable monosaccharides. The aim of the present study is to investigate the effect of the extract of the leaves of Moringa stenopetala on α-glucosidase, pancreatic α-amylase, pancreatic lipase, and pancreatic cholesterol esterase activities, and, therefore find out the relevance of the plant in controlling blood sugar and lipid levels. Methods The dried leaves of Moringa stenopetala were extracted with hydroalcoholic solvent and dried using rotary vapor under reduced pressure. The dried extracts were determined for the total phenolic compounds, flavonoid content and condensed tannins content by using Folin-Ciocateu’s reagent, AlCl3 and vanillin assay, respectively. The dried extract of plant-based food was further quantified with respect to intestinal α-glucosidase (maltase and sucrase) inhibition and pancreatic α-amylase inhibition by glucose oxidase method and dinitrosalicylic (DNS) reagent, respectively. Results The phytochemical analysis indicated that flavonoid, total phenolic, and condensed tannin contents in the extract were 71.73 ± 2.48 mg quercetin equivalent/g of crude extract, 79.81 ± 2.85 mg of gallic acid equivalent/g of crude extract, 8.82 ± 0.77 mg catechin equivalent/g of crude extract, respectively. The extract inhibited intestinal sucrase more than intestinal maltase with IC50 value of 1.47 ± 0.19 mg/ml. It also slightly inhibited pancreatic α-amylase, pancreatic lipase and pancreatic cholesterol esterase. Conclusion The result demonstrated the beneficial biochemical effects of Moringa stenopetala by inhibiting intestinal α-glucosidase, pancreatic cholesterol esterase and pancreatic lipase activities. A daily supplement intake of the leaves of Moringa stenopetala may help in reducing hyperglycemia and hyperlipidemia. PMID:24890563

  1. Chloride channel inhibition by a red wine extract and a synthetic small molecule prevents rotaviral secretory diarrhoea in neonatal mice

    PubMed Central

    Ko, Eun-A; Jin, Byung-Ju; Namkung, Wan; Ma, Tonghui; Thiagarajah, Jay R.; Verkman, A. S.

    2014-01-01

    Background Rotavirus is the most common cause of severe secretory diarrhoea in infants and young children globally. The rotaviral enterotoxin, NSP4, has been proposed to stimulate calcium-activated chloride channels (CaCC) on the apical plasma membrane of intestinal epithelial cells. We previously identified red wine and small molecule CaCC inhibitors. Objective To investigate the efficacy of a red wine extract and a synthetic small molecule, CaCCinh-A01, in inhibiting intestinal CaCCs and rotaviral diarrhoea. Design Inhibition of CaCC-dependent current was measured in T84 cells and mouse ileum. The effectiveness of an orally administered wine extract and CaCCinh-A01 in inhibiting diarrhoea in vivo was determined in a neonatal mouse model of rotaviral infection. Results Screening of ~150 red wines revealed a Cabernet Sauvignon that inhibited CaCC current in T84 cells with IC50 at a ~1:200 dilution, and higher concentrations producing 100% inhibition. A >1 kdalton wine extract prepared by dialysis, which retained full inhibition activity, blocked CaCC current in T84 cells and mouse intestine. In rotavirus-inoculated mice, oral administration of the wine extract prevented diarrhoea by inhibition of intestinal fluid secretion without affecting rotaviral infection. The wine extract did not inhibit the cystic fibrosis chloride channel (CFTR) in cell cultures, nor did it prevent watery stools in neonatal mice administered cholera toxin, which activates CFTR-dependent fluid secretion. CaCCinh-A01 also inhibited rotaviral diarrhoea. Conclusions Our results support a pathogenic role for enterocyte CaCCs in rotaviral diarrhoea and demonstrate the antidiarrhoeal action of CaCC inhibition by an alcohol-free, red wine extract and by a synthetic small molecule. PMID:24052273

  2. Quinic acid is a biologically active component of the Uncaria tomentosa extract C-Med 100.

    PubMed

    Akesson, Christina; Lindgren, Hanna; Pero, Ronald W; Leanderson, Tomas; Ivars, Fredrik

    2005-01-01

    We have previously reported that the C-Med 100 extract of the plant Uncaria tomentosa induces prolonged lymphocyte half life and hence increased spleen cell number in mice receiving the extract in their drinking water. Further, the extract induces cell proliferation arrest and inhibits activation of the transcriptional regulator nuclear factor kappaB (NF-kappaB) in vitro. We now report that mice exposed to quinic acid (QA), a component of this extract, had significantly increased number of spleen cells, thus recapitulating the in vivo biological effect of C-Med 100 exposure. Commercially supplied QA (H(+) form) did not, however, inhibit cell proliferation in vitro, while the ammonia-treated QA (QAA) was a potent inhibitor. Both QA and QAA inhibited NF-kappaB activity in exposed cells at similar concentrations. Thus, our present data identify QA as a candidate component for both in vivo and in vitro biological effects of the C-Med 100 extract.

  3. Effects of Artemisia annua extracts on sporulation of Eimeria oocysts.

    PubMed

    Fatemi, Ahmadreza; Razavi, Seyyed Mostafa; Asasi, Keramat; Goudarzi, Majid Torabi

    2015-03-01

    The present study aimed to compare the effect of different Artemisia annua extracts on sporulation rate of mixed oocysts of Eimeria acervulina, Eimeria necatrix, and Eimeria tenella. Three types of A. annua extracts including petroleum ether (PE), ethanol 96° (E), and water (W) extracts were prepared. Artemisinin, a sesquiterpene lactone endoperoxide derived from the A. annua analysis of each extract was done by high-performance liquid chromatography with ultraviolet detection (HPLC-UV). Fresh fecal samples containing three Eimeria species were floated and counted, and the oocysts were transferred into 50 tubes, each containing 10(5) oocysts per milliliter. Five tubes were control. Each of the other 45 tubes contained one of three doses (1 part per thousand (ppt), 2 ppt, and 5 ppt) and one of three extracts (PE, E, and W extracts) with five replications. The tubes were incubated for 48 h at 25-29 °C and aerated. Sporulation inhibition assay was used to evaluate the activity of extracts. The results showed that the E and PE extracts inhibit sporulation in 2 and 5 ppt concentrations, but the W extract stimulates it in all concentrations. The proportions of oocyst inhibition relative to control were 31 % (5 ppt) and 29 % (2 ppt) for PE and 34 % (5 ppt) and 46 % (2 ppt) for E extract. Furthermore, many oocysts in PE and E groups were wrinkled and contained abnormal sporocysts. The proportions of sporulation stimulation relative to control were 22 % (5 ppt), 24 % (2 ppt), and 27 % (1 ppt) in W extract. Our study is the first to demonstrate that all types of A. annua extracts do not necessarily have a similar activity, and the interaction of all contents and their relative concentrations is an important factor for sporulation stimulation or inhibition. It seems, some parts of unmetabolized excreted PE and E extracts could inhibit oocyst sporulation and eventually affect infection transmission.

  4. Wild Mushroom Extracts as Inhibitors of Bacterial Biofilm Formation

    PubMed Central

    Alves, Maria José; Ferreira, Isabel C. F. R.; Lourenço, Inês; Costa, Eduardo; Martins, Anabela; Pintado, Manuela

    2014-01-01

    Microorganisms can colonize a wide variety of medical devices, putting patients in risk for local and systemic infectious complications, including local-site infections, catheter-related bloodstream infections, and endocarditis. These microorganisms are able to grow adhered to almost every surface, forming architecturally complex communities termed biofilms. The use of natural products has been extremely successful in the discovery of new medicine, and mushrooms could be a source of natural antimicrobials. The present study reports the capacity of wild mushroom extracts to inhibit in vitro biofilm formation by multi-resistant bacteria. Four Gram-negative bacteria biofilm producers (Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, and Acinetobacter baumannii) isolated from urine were used to verify the activity of Russula delica, Fistulina hepatica, Mycena rosea, Leucopaxilus giganteus, and Lepista nuda extracts. The results obtained showed that all tested mushroom extracts presented some extent of inhibition of biofilm production. Pseudomonas aeruginosa was the microorganism with the highest capacity of biofilm production, being also the most susceptible to the extracts inhibition capacity (equal or higher than 50%). Among the five tested extracts against E. coli, Leucopaxillus giganteus (47.8%) and Mycenas rosea (44.8%) presented the highest inhibition of biofilm formation. The extracts exhibiting the highest inhibitory effect upon P. mirabilis biofilm formation were Sarcodon imbricatus (45.4%) and Russula delica (53.1%). Acinetobacter baumannii was the microorganism with the lowest susceptibility to mushroom extracts inhibitory effect on biofilm production (highest inhibition—almost 29%, by Russula delica extract). This is a pioneer study since, as far as we know, there are no reports on the inhibition of biofilm production by the studied mushroom extracts and in particular against multi-resistant clinical isolates; nevertheless, other studies are required to elucidate the mechanism of action. PMID:25438017

  5. Antiproliferative activity of guava leaf extract via inhibition of prostaglandin endoperoxide H synthase isoforms.

    PubMed

    Kawakami, Yuki; Nakamura, Tomomi; Hosokawa, Tomoko; Suzuki-Yamamoto, Toshiko; Yamashita, Hiromi; Kimoto, Masumi; Tsuji, Hideaki; Yoshida, Hideki; Hada, Takahiko; Takahashi, Yoshitaka

    2009-01-01

    Prostaglandin endoperoxide H synthase (PGHS) is a key enzyme for the synthesis of prostaglandins (PGs) which play important roles in inflammation and carcinogenesis. Because the extract from Psidium guajava is known to have a variety of beneficial effects on our body including the anti-inflammatory, antioxidative and antiproliferative activities, we investigated whether the extract inhibited the catalytic activity of the two PGHS isoforms using linoleic acid as an alternative substrate. The guava leaf extract inhibited the cyclooxygenase reaction of recombinant human PGHS-1 and PGHS-2 as assessed by conversion of linoleic acid to 9- and 13-hydroxyoctadecadienoic acids (HODEs). The guava leaf extract also inhibited the PG hydroperoxidase activity of PGHS-1, which was not affected by nonsteroidal anti-inflammatory drugs (NSAIDs). Quercetin which was one of the major components not only inhibited the cyclooxygenase activity of both isoforms but also partially inhibited the PG hydroperoxidase activity. Overexpression of human PGHS-1 and PGHS-2 in the human colon carcinoma cells increased the DNA synthesis rate as compared with mock-transfected cells which did not express any isoforms. The guava leaf extract not only inhibited the PGE(2) synthesis but also suppressed the DNA synthesis rate in the PGHS-1- and PGHS-2-expressing cells to the same level as mock-transfected cells. These results demonstrate the antiproliferative activity of the guava leaf extract which is at least in part caused by inhibition of the catalytic activity of PGHS isoforms.

  6. Efficacy of antimicrobials extracted from organic pecan shell for inhibiting the growth of Listeria spp.

    PubMed

    Babu, Dinesh; Crandall, Philip G; Johnson, Casey L; O'Bryan, Corliss A; Ricke, Steven C

    2013-12-01

    Growers and processors of USDA certified organic foods are in need of suitable organic antimicrobials. The purpose of the research reported here was to develop and test natural antimicrobials derived from an all-natural by-product, organic pecan shells. Unroasted and roasted organic pecan shells were subjected to solvent free extraction to produce antimicrobials that were tested against Listeria spp. and L. monocytogenes serotypes to determine the minimum inhibitory concentrations (MIC) of antimicrobials. The effectiveness of pecan shell extracts were further tested using a poultry skin model system and the growth inhibition of the Listeria cells adhered onto the skin model were quantified. The solvent free extracts of pecan shells inhibited Listeria strains at MICs as low as 0.38%. The antimicrobial effectiveness tests on a poultry skin model exhibited nearly a 2 log reduction of the inoculated cocktail mix of Listeria strains when extracts of pecan shell powder were used. The extracts also produced greater than a 4 log reduction of the indigenous spoilage bacteria on the chicken skin. Thus, the pecan shell extracts may prove to be very effective alternative antimicrobials against food pathogens and supplement the demand for effective natural antimicrobials for use in organic meat processing. © 2013 Institute of Food Technologists®

  7. Effect of balanced low pressure drying of curcuma longa leaf on skin immune activation activities.

    PubMed

    Choi, Wooseok; Lim, Hye Won; Lee, Hyeon Yong

    2014-01-01

    The effect of balanced low pressure drying pretreatment associated with ultrasonication extraction (BU) on the enhancement of skin immune modulatory activities of Curcuma longa leaf was studied by comparing with conventional hot air drying (HE), freeze drying (FE) and balanced low pressure drying (BE) pretreatment processes. In considering skin immune activation activities such as the inhibition of hyaluronidase activity, the BU extract showed ca. 10% higher than those of HE, and even higher than that of the FE extract. Nitric oxide production from macrophage of the BU extract in adding 1.0 mg/mL was increased up to 16.5 μM. When measuring inhibition of IL-6 and TNF-a production from the human T lymphocytes (T cell), the BU extract also showed 53% and 78% of inhibition effect, respectively. It is found that the BU extract could effectively suppress the expression levels of skin inflammation related genes such as Cox-2 and iNOS, down to 80% and 85% compared to the control, respectively. Balanced low pressure drying process was especially active on dehydration of the leaves with minimizing the destruction and making easier elution of the bioactive substances, which resulted in higher extraction yield and better biological activities.

  8. Human Cytochrome P450 Enzyme Modulation by Gymnema sylvestre: A Predictive Safety Evaluation by LC-MS/MS.

    PubMed

    Rammohan, Bera; Samit, Karmakar; Chinmoy, Das; Arup, Saha; Amit, Kundu; Ratul, Sarkar; Sanmoy, Karmakar; Dipan, Adhikari; Tuhinadri, Sen

    2016-07-01

    Traditionally GS is used to treat diabetes mellitus. Drug-herb interaction of GS via cytochrome P450 enzyme system by substrate cocktail method using HLM has not been reported. To evaluate the in-vitro modulatory effects of GS extracts (aqueous, methanol, ethyl acetate, chloroform and n -hexane) and deacylgymnemic acid (DGA) on human CYP1A2, 2C8, 2C9, 2D6 and 3A4 activities in HLM. Probe substrate-based LCMS/MS method was established for all CYPs. The metabolite formations were examined after incubation of probe substrates with HLM in the presence or absence of extracts and DGA. The inhibitory effects of GS extracts and DGA were characterized with kinetic parameters IC50 and Ki values. GS extracts showed differential effect on CYP activities in the following order of inhibitory potency: ethyl acetate > Chloroform > methanol > n -hexane > aqueous > DGA. This differential effect was observed against CYP1A2, 2C9 and less on CYP3A4 and 2C8 but all CYPs were unaffected by aqueous extract and DGA. The ethyl acetate and chloroform extract exhibited moderate inhibition towards CYP1A2 and 3A4. The aqueous extract and DGA however showed negligible inhibition towards all five major human CYPs with very high IC50 values (>90μg/ml). The results of our study revealed that phytoconstituents contained in GS, particularly in ethyl acetate and chloroform extracts, were able to inhibit CYP1A2, 3A4 and 2C9. The presence of relatively small, lipophillic yet slightly polar compounds within the GS extracts may be attributed for inhibition activities. These suggest that the herb or its extracts should be examined for potential pharmacokinetic drug interactions in vivo . Abbreviations used: GS: Gymnema sylvestre , GSE: Gymnema sylvestre extract, DGA: deacyl gymnemic acid, CYP: cytochrome P450, DMSO: dimethylsulphoxide, HLM: human liver microsomes, LC-MS/MS: liquid chromatography tandem mass spectroscopy, NADPH: reduced nicotinamide adeninedinucleotide phosphate, NRS: nicotinamide adeninedinucleotide phosphate regenerating system, CHE: chloroform extract, EAE: ethyl acetate extract, NHE- n -hexane extract, AE: aqueous extract, ME: methanol extract.

  9. Antidiabetic effects of extracts from Psidium guajava.

    PubMed

    Oh, Won Keun; Lee, Chul Ho; Lee, Myung Sun; Bae, Eun Young; Sohn, Cheon Bae; Oh, Hyuncheol; Kim, Bo Yeon; Ahn, Jong Seog

    2005-01-15

    During a screening of medicinal plants for inhibition of protein tyrosine phosphatase1B (PTP1B), an extract from Psidium guajava (Myrtaceae) leaves exhibited significant inhibitory effect on PTP1B. Thus, its antidiabetic effect on Lepr(db)/Lepr(db) mice was evaluated. Significant blood glucose lowering effects of the extract were observed after intraperitoneal injection of the extract at a dose of 10mg/kg in both 1- and 3-month-old Lepr(db)/Lepr(db) mice. In addition, histological analysis of the liver from the butanol-soluble fraction treated Lepr(db)/Lepr(db) mice revealed a significant decrease in the number of lipid droplets compared to the control mice. Taken together, it was suggested that the extract from Psidium guajava leaves possesses antidiabetic effect in type 2 diabetic mice model and these effect is, at least in part, mediated via the inhibition of PTP1B.

  10. Antibacterial Effects of Different Concentrations of Althaea officinalis Root Extract versus 0.2% Chlorhexidine and Penicillin on Streptococcus mutans and Lactobacillus (In vitro).

    PubMed

    Haghgoo, Roza; Mehran, Majid; Afshari, Elahe; Zadeh, Hamide Farajian; Ahmadvand, Motahare

    2017-01-01

    The aims of the present study were to determine and compare the effects of different concentrations of Althaea officinalis extract, 0.2% chlorhexidine (CHX), and penicillin on Streptococcus mutans and Lactobacillus acidophilus in vitro . The laboratory study was done, for a period of 8 weeks. Minimum inhibitory concentration (MIC) in the test tube, minimum bactericidal concentration (MBC) in a plate culture medium, and growth inhibition zone diameter methods were used to compare the antibacterial effects of 0.2% CHX, penicillin, and different concentrations of A. officinalis root extract. The data were analyzed by SPSS version 24 using ANOVA and t -test analysis. The results showed A. officinalis root extract had antibacterial effect, but significant differences were in MIC and MBC against L. acidophilus and S. mutans with penicillin and 0.2% CHX mouthwash. In addition, the mean growth inhibition zones of all the concentrations of the plant extract were less than that of the positive control group ( P = 0.001). However, the difference in the maximum growth inhibition zone from that with the negative control group was significant. In addition, the antibacterial effect of the extract increased with an increase in its concentration. The extract exerted a greater antibacterial effect on S. mutans than on L. acidophilus . The plant polyphenols content is 3.7% which is equivalent to 29.93 g/ml. The root extract of A. officinalis exhibited antibacterial effects on S. mutans and L. acidophilus , but this effect was less than those of CHX mouthwash and penicillin. The antibacterial effect increased with an increase in the concentration of the extract.

  11. Inhibitory Effects of Hydroethanolic Leaf Extracts of Kalanchoe brasiliensis and Kalanchoe pinnata (Crassulaceae) against Local Effects Induced by Bothrops jararaca Snake Venom

    PubMed Central

    Fernandes, Júlia Morais; Félix-Silva, Juliana; da Cunha, Lorena Medeiros; Gomes, Jacyra Antunes dos Santos; Siqueira, Emerson Michell da Silva; Gimenes, Luisa Possamai; Lopes, Norberto Peporine; Soares, Luiz Alberto Lira; Fernandes-Pedrosa, Matheus de Freitas; Zucolotto, Silvana Maria

    2016-01-01

    The species Kalanchoe brasiliensis and Kalanchoe pinnata, both known popularly as “Saião,” are used interchangeably in traditional medicine for their antiophidic properties. Studies evaluating the anti-venom activity of these species are scarce. This study aims to characterize the chemical constituents and evaluate the inhibitory effects of hydroethanolic leaf extracts of K. brasiliensis and K. pinnata against local effects induced by Bothrops jararaca snake venom. Thin Layer Chromatography (TLC) and High Performance Liquid Chromatography coupled with Diode Array Detection and Electrospray Mass Spectrometry (HPLC-DAD-MS/MS) were performed for characterization of chemical markers of the extracts from these species. For antiophidic activity evaluation, B. jararaca venom-induced paw edema and skin hemorrhage in mice were evaluated. In both models, hydroethanolic extracts (125–500 mg/kg) were administered intraperitoneally in different protocols. Inhibition of phospholipase enzymatic activity of B. jararaca was evaluated. The HPLC-DAD-MS/MS chromatographic profile of extracts showed some particularities in the chemical profile of the two species. K. brasileinsis exhibited major peaks that have UV spectra similar to flavonoid glycosides derived from patuletin and eupafolin, while K. pinnata showed UV spectra similar to flavonoids glycosides derived from quercetin and kaempferol. Both extracts significantly reduced the hemorrhagic activity of B. jararaca venom in pre-treatment protocol, reaching about 40% of inhibition, while only K. pinnata was active in post-treatment protocol (about 30% of inhibition). In the antiedematogenic activity, only K. pinnata was active, inhibiting about 66% and 30% in pre and post-treatment protocols, respectively. Both extracts inhibited phospholipase activity; however, K. pinnata was more active. In conclusion, the results indicate the potential antiophidic activity of Kalanchoe species against local effects induced by B. jararaca snake venom, suggesting their potential use as a new source of bioactive molecules against bothropic venom. PMID:28033347

  12. Inhibitory Effects of Hydroethanolic Leaf Extracts of Kalanchoe brasiliensis and Kalanchoe pinnata (Crassulaceae) against Local Effects Induced by Bothrops jararaca Snake Venom.

    PubMed

    Fernandes, Júlia Morais; Félix-Silva, Juliana; da Cunha, Lorena Medeiros; Gomes, Jacyra Antunes Dos Santos; Siqueira, Emerson Michell da Silva; Gimenes, Luisa Possamai; Lopes, Norberto Peporine; Soares, Luiz Alberto Lira; Fernandes-Pedrosa, Matheus de Freitas; Zucolotto, Silvana Maria

    2016-01-01

    The species Kalanchoe brasiliensis and Kalanchoe pinnata, both known popularly as "Saião," are used interchangeably in traditional medicine for their antiophidic properties. Studies evaluating the anti-venom activity of these species are scarce. This study aims to characterize the chemical constituents and evaluate the inhibitory effects of hydroethanolic leaf extracts of K. brasiliensis and K. pinnata against local effects induced by Bothrops jararaca snake venom. Thin Layer Chromatography (TLC) and High Performance Liquid Chromatography coupled with Diode Array Detection and Electrospray Mass Spectrometry (HPLC-DAD-MS/MS) were performed for characterization of chemical markers of the extracts from these species. For antiophidic activity evaluation, B. jararaca venom-induced paw edema and skin hemorrhage in mice were evaluated. In both models, hydroethanolic extracts (125-500 mg/kg) were administered intraperitoneally in different protocols. Inhibition of phospholipase enzymatic activity of B. jararaca was evaluated. The HPLC-DAD-MS/MS chromatographic profile of extracts showed some particularities in the chemical profile of the two species. K. brasileinsis exhibited major peaks that have UV spectra similar to flavonoid glycosides derived from patuletin and eupafolin, while K. pinnata showed UV spectra similar to flavonoids glycosides derived from quercetin and kaempferol. Both extracts significantly reduced the hemorrhagic activity of B. jararaca venom in pre-treatment protocol, reaching about 40% of inhibition, while only K. pinnata was active in post-treatment protocol (about 30% of inhibition). In the antiedematogenic activity, only K. pinnata was active, inhibiting about 66% and 30% in pre and post-treatment protocols, respectively. Both extracts inhibited phospholipase activity; however, K. pinnata was more active. In conclusion, the results indicate the potential antiophidic activity of Kalanchoe species against local effects induced by B. jararaca snake venom, suggesting their potential use as a new source of bioactive molecules against bothropic venom.

  13. Cinnamon extract suppresses experimental colitis through modulation of antigen-presenting cells.

    PubMed

    Kwon, Ho-Keun; Hwang, Ji-Sun; Lee, Choong-Gu; So, Jae-Seon; Sahoo, Anupama; Im, Chang-Rok; Jeon, Won Kyung; Ko, Byoung Seob; Lee, Sung Haeng; Park, Zee Yong; Im, Sin-Hyeog

    2011-02-28

    To investigate the anti-inflammatory effects of cinnamon extract and elucidate its mechanisms for targeting the function of antigen presenting cells. Cinnamon extract was used to treat murine macrophage cell line (Raw 264.7), mouse primary antigen-presenting cells (APCs, MHCII(+)) and CD11c(+) dendritic cells to analyze the effects of cinnamon extract on APC function. The mechanisms of action of cinnamon extract on APCs were investigated by analyzing cytokine production, and expression of MHC antigens and co-stimulatory molecules by quantitative real-time PCR and flow cytometry. In addition, the effect of cinnamon extract on antigen presentation capacity and APC-dependent T-cell differentiation were analyzed by [H(3)]-thymidine incorporation and cytokine analysis, respectively. To confirm the anti-inflammatory effects of cinnamon extract in vivo, cinnamon or PBS was orally administered to mice for 20 d followed by induction of experimental colitis with 2,4,6 trinitrobenzenesulfonic acid. The protective effects of cinnamon extract against experimental colitis were measured by checking clinical symptoms, histological analysis and cytokine expression profiles in inflamed tissue. Treatment with cinnamon extract inhibited maturation of MHCII(+) APCs or CD11c(+) dendritic cells (DCs) by suppressing expression of co-stimulatory molecules (B7.1, B7.2, ICOS-L), MHCII and cyclooxygenase (COX)-2. Cinnamon extract induced regulatory DCs (rDCs) that produce low levels of pro-inflammatory cytokines [interleukin (IL)-1β, IL-6, IL-12, interferon (IFN)-γ and tumor necrosis factor (TNF)-α] while expressing high levels of immunoregulatory cytokines (IL-10 and transforming growth factor-β). In addition, rDCs generated by cinnamon extract inhibited APC-dependent T-cell proliferation, and converted CD4(+) T cells into IL-10(high) CD4(+) T cells. Furthermore, oral administration of cinnamon extract inhibited development and progression of intestinal colitis by inhibiting expression of COX-2 and pro-inflammatory cytokines (IL-1β, IFN-γ and TNF-α), while enhancing IL-10 levels. Our study suggests the potential of cinnamon extract as an anti-inflammatory agent by targeting the generation of regulatory APCs and IL-10(+) regulatory T cells.

  14. Combined effects of plant extracts in inhibiting the growth of Bacillus cereus in reconstituted infant rice cereal.

    PubMed

    Jun, Hyejung; Kim, Jinsol; Bang, Jihyun; Kim, Hoikyung; Beuchat, Larry R; Ryu, Jee-Hoon

    2013-01-01

    A study was done to determine the potential use of plant extracts to inhibit the growth of Bacillus cereus in reconstituted infant rice cereal. A total of 2116 extracts were screened for inhibitory activity against B. cereus using an agar well diffusion assay. The minimal inhibitory concentrations (MIC) and minimal lethal concentrations (MLC) of 14 promising extracts in tryptic soy broth (TSB) were determined. Dryopteris erythrosora (autumn fern) root extract showed the lowest MIC (0.0156 mg/ml), followed by Siegesbeckia glabrescens (Siegesbeckia herb) leaf (0.0313 mg/ml), Morus alba (white mulberry) cortex (0.0313 mg/ml), Carex pumila (sand sedge) root (0.0625 mg/ml), and Citrus paradisi (grapefruit) seed (0.0625 mg/ml) extracts. The order of MLCs of extracts was D. erythrosora root (0.0156 mg/ml)

  15. Analgesic and anti-inflammatory effects of Mangifera indica L. extract (Vimang).

    PubMed

    Garrido, G; González, D; Delporte, C; Backhouse, N; Quintero, G; Núñez-Sellés, A J; Morales, M A

    2001-02-01

    Vimang is an aqueous extract of Mangifera indica used in Cuba to improve the quality of life in patients suffering from elevated stress. To assess its possible analgesic and antiinflammatory effects, the results of a standard extract evaluation are presented. Analgesia was determined using acetic acid-induced abdominal constriction and formalin-induced licking. Antiinflammatory effects were evaluated using carrageenan- and formalin-induced oedema. Vimang (50-1000 mg/kg, p.o.) exhibited a potent and dose-dependent antinociceptive effect against acetic acid test in mice. The mean potency (DE(50)) was 54.5 mg/kg and the maximal inhibition attained was 94.4%. Vimang (20-1000 mg/kg, p.o.) dose-dependently inhibited the second phase of formalin-induced pain but not the first phase. The DE(50) of the second phase was 8.4 mg/kg and the maximal inhibition was 99.5%, being more potent than indomethacin at doses of 20 mg/kg. Vimang (20-1000 mg/kg, p.o.) significantly inhibited oedema formation (p < 0.01 or p < 0.05) of both carrageenan- and formalin-induced oedema in rat, guinea-pigs and mice (maximal inhibitions: 39.5, 45.0 and 48.6, respectively). The inhibitions were similar to those produced by indomethacin and sodium naproxen, p.o. The different polyphenols found in Vimang could account for the antinociceptive and antiinflammatory actions reported here for the first time for M. indica bark aqueous extract. Copyright 2001 John Wiley & Sons, Ltd.

  16. Evaluating the effect of four extracts of avocado fruit on esophageal squamous carcinoma and colon adenocarcinoma cell lines in comparison with peripheral blood mononuclear cells.

    PubMed

    Vahedi Larijani, Laleh; Ghasemi, Maryam; AbedianKenari, Saeid; Naghshvar, Farshad

    2014-01-01

    Most patients with gastrointestinal cancers refer to the health centers at advanced stages of the disease and conventional treatments are not significantly effective for these patients. Therefore, using modern therapeutic approaches with lower toxicity bring higher chance for successful treatment and reduced adverse effects in such patients. The aim of this study is to evaluate the effect of avocado fruit extracts on inhibition of the growth of cancer cells in comparison with normal cells. In an experimental study, ethanol, chloroform, ethyl acetate, and petroleum extracts of avocado (Persea americana) fruit were prepared. Then, the effects if the extracts on the growth of esophageal squamous cell carcinoma and colon adenocarcinoma cell lines were evaluated in comparison with the control group using the MTT test in the cell culture medium. Effects of the four extracts of avocado fruit on three cells lines of peripheral blood mononuclear cells, esophageal squamous cell carcinoma, and colon adenocarcinoma were tested. The results showed that avocado fruit extract is effective in inhibition of cancer cell growth in comparison with normal cells (P<0.05). Avocado fruit is rich in phytochemicals, which play an important role in inhibition of growth of cancer cells. The current study for the first time demonstrates the anti-cancer effect of avocado fruit extracts on two cancers common in Iran. Therefore, it is suggested that the fruit extracts can be considered as appropriate complementary treatments in treatment of esophageal and colon cancers.

  17. The Anti-Inflammatory Effect of Algae-Derived Lipid Extracts on Lipopolysaccharide (LPS)-Stimulated Human THP-1 Macrophages

    PubMed Central

    Robertson, Ruairi C.; Guihéneuf, Freddy; Bahar, Bojlul; Schmid, Matthias; Stengel, Dagmar B.; Fitzgerald, Gerald F.; Ross, R. Paul; Stanton, Catherine

    2015-01-01

    Algae contain a number of anti-inflammatory bioactive compounds such as omega-3 polyunsaturated fatty acids (n-3 PUFA) and chlorophyll a, hence as dietary ingredients, their extracts may be effective in chronic inflammation-linked metabolic diseases such as cardiovascular disease. In this study, anti-inflammatory potential of lipid extracts from three red seaweeds (Porphyra dioica, Palmaria palmata and Chondrus crispus) and one microalga (Pavlova lutheri) were assessed in lipopolysaccharide (LPS)-stimulated human THP-1 macrophages. Extracts contained 34%–42% total fatty acids as n-3 PUFA and 5%–7% crude extract as pigments, including chlorophyll a, β-carotene and fucoxanthin. Pretreatment of the THP-1 cells with lipid extract from P. palmata inhibited production of the pro-inflammatory cytokines interleukin (IL)-6 (p < 0.05) and IL-8 (p < 0.05) while that of P. lutheri inhibited IL-6 (p < 0.01) production. Quantitative gene expression analysis of a panel of 92 genes linked to inflammatory signaling pathway revealed down-regulation of the expression of 14 pro-inflammatory genes (TLR1, TLR2, TLR4, TLR8, TRAF5, TRAF6, TNFSF18, IL6R, IL23, CCR1, CCR4, CCL17, STAT3, MAP3K1) by the lipid extracts. The lipid extracts effectively inhibited the LPS-induced pro-inflammatory signaling pathways mediated via toll-like receptors, chemokines and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling molecules. These results suggest that lipid extracts from P. lutheri, P. palmata, P. dioica and C. crispus can inhibit LPS-induced inflammatory pathways in human macrophages. Therefore, algal lipid extracts should be further explored as anti-inflammatory ingredients for chronic inflammation-linked metabolic diseases. PMID:26308008

  18. Antifungal effect of some plant extracts against factors wheat root rot

    NASA Astrophysics Data System (ADS)

    Atmaca, Sevim; Şimşek, Şeyda; Denek, Yunus Emre

    2017-04-01

    Methanol leaf extracts of Humulus lupulus L. and Achillea millefolium L. were evaluated for antifungal activity against economically important phytopathogenic fungi including Fusarium culmorum (W. G. Smith) Sacc. The final concentrations of the methanol extracts obtained from the plants were added to the Potato Dextrose Agar (PDA) at 1%, 2%, 4% and 8% doses. Mycelial disks of pathogens (6 mm in diameter) removed from the margins of a 7 days old culture were transferred to PDA media containing the plant extracts at tested concentrations. Four replicates were used per treatment. For each plant extract and concentration, inhibition of radial growth compared with the untreated control was calculated after 7 days of incubation at 24±1°C, in the dark. Extracts H. lupulus and A. millefolium inhibited the mycelial growth of F. culmorum of mycelial growth of 8% dose of the pathogens by 92.77% and 69.83%, respectively. It has been observed that the antifungal effect of the extracts increases with dose increase. As a result, at least micelle growth and the highest percent inhibition rate were obtained at 8% dose of the extract H. lupulus. H. lupulus extract can be used as a biological preparation.

  19. Huaier extract suppresses breast cancer via regulating tumor-associated macrophages

    PubMed Central

    Li, Yaming; Qi, Wenwen; Song, Xiaojin; Lv, Shangge; Zhang, Hanwen; Yang, Qifeng

    2016-01-01

    Macrophages in tumor microenvironment are mostly M2-polarized - and have been reported to promote tumorigenesis, which are also defined as tumor-associated macrophages (TAMs). Here, we examined the regulatory effects of Huaier extract on TAMs using RAW264.7 murine macrophage cell line. Our data demonstrated that Huaier extract could inhibit the infiltration of macrophages into tumor microenvironment in a dose-dependent manner. By performing RT-PCR, immunofluorescence and phagocytosis assay, we were able to find that Huaier extract could regulate the polarization of macrophages, with decreased M2-polarization and increased phagocytosis of RAW264.7 cells. Moreover, we identified that Huaier extract could suppress macrophages-induced angiogenesis by using HUVEC migration assay, tube formation and chorioallantoic membrane assay. Additionally, western blotting showed decreased expression of MMP2, MMP9 and VEGF with the use of Huaier extract. Finally, we found that Huaier extract could inhibit M2-macrophages infiltration and angiogenesis through treating 4T1 tumor bearing mice with Huaier extract. Our study revealed a novel mechanism of the anti-tumor effect of Huaier extract which inhibited angiogenesis by targeting TAMs. These findings provided that Huaier was a promising drug for clinical treatment of breast cancer. PMID:26831282

  20. Antidiarrhoeal activity of aqueous leaf extract of Caladium bicolor (Araceae) and its possible mechanisms of action.

    PubMed

    Salako, Olanrewaju A; Akindele, Abidemi J; Shitta, Omotoyosi M; Elegunde, Olajumoke O; Adeyemi, Olufunmilayo O

    2015-12-24

    Caladium bicolor (Araceae) is a horticulture plant also used by some traditional medicine practitioners in the treatment of diarrhoea and other gastrointestinal disorders. This study was conducted to evaluate the antidiarrhoeal activity of the aqueous leaf extract of C. bicolor and its possible mechanisms of action in rodents. Normal and castor oil-induced intestinal transit and castor oil-induced diarrhoea tests were carried out in mice while gastric emptying and enteropooling tests were conducted in rats following the administration of distilled water (10 ml/kg, p.o.), C. bicolor extract (1-50mg/kg, p.o.) and loperamide (5mg/kg, p.o.). The probable mechanisms of action of C. bicolor was investigated following pre-treatment with yohimbine (10mg/kg, s.c.; α2-adrenoceptor antagonist), pilocarpine (1mg/kg, s.c.; non-selective muscarinic receptor agonist), prazosin (1mg/kg, s.c.; α1-adrenoceptor antagonist) and propranolol (1mg/kg, i.p.; non-selective β-adrenoceptor antagonist) 15 min prior to administration of C. bicolor extract (50mg/kg, p.o.). After 30 min of pre-treatment with these drugs, the mice were subjected to the castor oil-induced intestinal transit test. C. bicolor extract did not produce significant (p>0.05) effect on normal intestinal transit unlike loperamide which caused significant (p<0.001) inhibition (61.57%). The extract caused significant (p<0.001) dose-dependent inhibition of castor oil-induced intestinal transit with peak effect, 100% inhibition, elicited at the dose of 50mg/kg compared to 86.97% inhibition for loperamide. Yohimbine and pilocarpine most significantly (p<0.001) reversed this effect of the extract. In the castor oil-induced diarrhoea test, the extract (1mg/kg) and loperamide significantly (p<0.05, 0.01) delayed the onset of diarrhoea. For diarrhoea score, the extract (1 and 50mg/kg) inhibited diarrhoea development (47.53% and 43.83% inhibition, respectively) like loperamide (5mg/kg; 54.94%). The in vivo antidiarrhoeal index of the extract at 1 and 50mg/kg was 50.07% and 42.81% respectively compared to 58.15% for loperamide. The results obtained in this study suggest that the aqueous leaf extract of C. bicolor possess antidiarrhoeal activity due to its anti-motility effect possibly via antagonist action on intestinal muscarinic receptors and agonist action on intestinal α2-adrenoceptors. This justifies the use of the extract in traditional medicine for the treatment of diarrhoea. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Saw Palmetto Extract Inhibits Metastasis and Antiangiogenesis through STAT3 Signal Pathway in Glioma Cell.

    PubMed

    Ding, Hong; Shen, Jinglian; Yang, Yang; Che, Yuqin

    2015-01-01

    Signal transducer and activator of transcription factor 3 (STAT3) plays an important role in the proliferation and angiogenesis in human glioma. Previous research indicated that saw palmetto extract markedly inhibited the proliferation of human glioma cells through STAT3 signal pathway. But its effect on tumor metastasis and antiangiogenesis is not clear. This study is to further clear the impact of saw palmetto extract on glioma cell metastasis, antiangiogenesis, and its mechanism. TUNEL assay indicated that the apoptotic cells in the saw palmetto treated group are higher than that in the control group (p < 0.05). The apoptosis related protein is detected and the results revealed that saw palmetto extract inhibits the proliferation of human glioma. Meanwhile pSTAT3 is lower in the experimental group and CD34 is also inhibited in the saw palmetto treated group. This means that saw palmetto extract could inhibit the angiogenesis in glioma. We found that saw palmetto extract was an important phytotherapeutic drug against the human glioma through STAT3 signal pathway. Saw palmetto extract may be useful as an adjunctive therapeutic agent for treatment of individuals with glioma and other types of cancer in which STAT3 signaling is activated.

  2. Assessment of allelopathic properties of Aloe ferox Mill. on turnip, beetroot and carrot.

    PubMed

    Arowosegbe, Sunday; Afolayan, Anthony J

    2012-01-01

    Turnip (Brassica rapa var. rapa L.), beetroot (Beta vulgaris L.) and carrot (Daucus carota L.) are common vegetables in South Africa. The allelopathic potential of aqueous leaf and root extracts of Aloe ferox Mill.- a highly valued medicinal plant- was evaluated against seed germination and seedling growth of the three vegetables in Petri dish experiments. The extracts were tested at concentrations of 2, 4, 6, 8, and 10 mg/mL. Leaf extract concentrations above 4 mg/mL inhibited the germination of all the crops, while the root extract had no significant effect on germination irrespective of concentration. Interestingly, the lowest concentration of leaf extract stimulated root length elongation of beetroot by 31.71%. Other concentrations significantly inhibited both root and shoot growth of the vegetable crops except the turnip shoot. The most sensitive crop was carrot, with percentage inhibition ranging from 29.15 to 100% for root and shoot lengths. Lower percentage inhibition was observed for the root extract than the leaf extract against shoot growth of beetroot and carrot. The results from this study suggested the presence of allelochemicals mostly in the leaves of A. ferox that could inhibit the growth of the turnip, beetroot and carrot.

  3. Sambucus nigra extracts inhibit infectious bronchitis virus at an early point during replication

    PubMed Central

    2014-01-01

    Background Infectious bronchitis virus (IBV) is a pathogenic chicken coronavirus. Currently, vaccination against IBV is only partially protective; therefore, better preventions and treatments are needed. Plants produce antimicrobial secondary compounds, which may be a source for novel anti-viral drugs. Non-cytotoxic, crude ethanol extracts of Rhodiola rosea roots, Nigella sativa seeds, and Sambucus nigra fruit were tested for anti-IBV activity, since these safe, widely used plant tissues contain polyphenol derivatives that inhibit other viruses. Results Dose–response cytotoxicity curves on Vero cells using trypan blue staining determined the highest non-cytotoxic concentrations of each plant extract. To screen for IBV inhibition, cells and virus were pretreated with extracts, followed by infection in the presence of extract. Viral cytopathic effect was assessed visually following an additional 24 h incubation with extract. Cells and supernatants were harvested separately and virus titers were quantified by plaque assay. Variations of this screening protocol determined the effects of a number of shortened S. nigra extract treatments. Finally, S. nigra extract-treated virions were visualized by transmission electron microscopy with negative staining. Virus titers from infected cells treated with R. rosea and N. sativa extracts were not substantially different from infected cells treated with solvent alone. However, treatment with S. nigra extracts reduced virus titers by four orders of magnitude at a multiplicity of infection (MOI) of 1 in a dose-responsive manner. Infection at a low MOI reduced viral titers by six orders of magnitude and pretreatment of virus was necessary, but not sufficient, for full virus inhibition. Electron microscopy of virions treated with S. nigra extract showed compromised envelopes and the presence of membrane vesicles, which suggested a mechanism of action. Conclusions These results demonstrate that S. nigra extract can inhibit IBV at an early point in infection, probably by rendering the virus non-infectious. They also suggest that future studies using S. nigra extract to treat or prevent IBV or other coronaviruses are warranted. PMID:24433341

  4. Comparison of different methods for extraction of Cinnamomi ramulus: yield, chemical composition and in vitro antiviral activities.

    PubMed

    Zhou, Jing; Yuan, Xiurong; Li, Ling; Zhang, Tong; Wang, Bing

    2017-12-01

    Hydrodistillation (HD), supercritical fluid extraction (SFE) and reflux extraction (RE) were applied to obtain Cinnamomi ramulus extracts. The yields, chemical compositions and antiviral activities of the extracts were investigated. Extracts were analysed using gas chromatography-mass spectrometry and the antiviral activities were evaluated using cytopathic effect inhibition assay. HD, SFE and RE afforded 0.376, 1.227 and 5.914% yields, respectively. Cinnamaldehyde (CA), SFE and ethanol extracts exhibited antiviral activities against herpes simplex virus type 1. Moreover, CA and other three extracts had inhibition efficacy against respiratory syncytial virus. The most efficient antiviral activities were obtained with SFE.

  5. Inhibition of local effects of Indian Daboia/Vipera russelli venom by the methanolic extract of grape (Vitis vinifera L.) seeds.

    PubMed

    Mahadeswaraswamy, Y H; Devaraja, S; Kumar, M S; Goutham, Y N J; Kemparaju, K

    2009-04-01

    Although anti-venom therapy is available for the treatment of fatal bite by snakes, it offers less or no protection against the local effects such as dermo- and myonecrosis, edema, hemorrhage and inflammation at the bitten region. The viper species are known for their violent local effects and such effects have been commonly treated with plant extracts without any scientific validation in rural India. In this investigation, the methanolic extract of grapes (Vitis vinifera L.) seed was studied against the Indian Daboia/Vipera russelli venom-induced local effects. The extract abolished the proteolytic and hyaluronidase activities and also efficiently neutralized the hemorrhage, edema-inducing and myonecrotic properties of the venom. In addition, the extract also inhibited partially the pro-coagulant activity of the venom and abolished the degradation of Aalpha and Bbeta chains of human fibrinogen. Thus, the extract possesses potent anti-snake venom property, especially against the local effects of viper bites.

  6. Study of anticancer and antibacterial activities of Foeniculum vulgare, Justicia adhatoda and Urtica dioica as natural curatives.

    PubMed

    Batool, R; Salahuddin, H; Mahmood, T; Ismail, M

    2017-09-30

    High-throughput technologies, such as synthetic biology and genomics have paved new paths for discovery and utility of medicinally beneficial plants. Bioactive molecules isolated from different plants have significantly higher biological activities. The present study was done to analyze antibacterial potential of some medicinal plants against multi drug resistant (MDR) pathogens and anticancer effect against MCF-7 cell line. Methanolic and ethanolic extracts were tested for their antibacterial activity by disc diffusion method against six MDR bacterial strains and for cytotoxicity evaluation by MTT assay. Ethanolic extracts of the three tested plants exhibited growth inhibitory effect against Klebsiella pneumonia, Serratia marcescens and Methicillin-resistant S. aureus. Pseudomonas aeruginosa was more resistant to all extracts as its growth was least inhibited by the extracts of all tested plants. Ethanol extract of Foeniculum vulgare exhibited significant inhibition of cancer cells proliferation. Methanol extract of Justicia adhatoda also showed considerable inhibition of cancer cells. Future studies must converge on detailed investigation of modes of action of extracts of tested plants.

  7. Comparison of the in vitro anthelmintic effects of Acacia nilotica and Acacia raddiana

    PubMed Central

    Zabré, Geneviève; Kaboré, Adama; Bayala, Balé; Katiki, Luciana M.; Costa-Júnior, Lívio Martins; Tamboura, Hamidou H.; Belem, Adrien M.G.; Abdalla, Adibe L.; Niderkorn, Vincent; Hoste, Hervé; Louvandini, Helder

    2017-01-01

    Gastrointestinal nematodes are a major threat to small ruminant rearing in the Sahel area, where farmers traditionally use bioactive plants to control these worms, including Acacia nilotica and Acacia raddiana. The main aim of this study was to screen the potential anthelmintic properties of aqueous and acetone extracts of leaves of these two plants based on three in vitro assays: (1) the egg hatch inhibition assay (EHA); (2) the larvae exsheathment inhibition assay (LEIA) using Haemonchus contortus as a model; and (3) an adult mortality test (AMT) applied on Caenorhabditis elegans. For the EHA, only A. raddiana was effective with IC50 = 1.58 mg/mL for aqueous extract, and IC50 = 0.58 mg/mL for acetonic extract. For the LEIA, all extracts inhibited the exsheathment of larvae compared to the controls, and the aqueous extract of A. nilotica was more larvicidal with IC50 = 0.195 mg/mL. In general, all responses to the substances were dose-dependent and were significantly different from the control group (p < 0.05). For the AMT, the extracts of the two Acacia species were effective but A. raddiana showed greater efficacy with 100% mortality at 2.5 mg/mL and LC50 = 0.84 mg/mL (acetonic extract). The addition of polyvinyl polypyrrolidone (PVPP) to the extracts suggested that tannins were responsible for blocking egg eclosion and inducing adult mortality but were not responsible for exsheathment inhibition. These results suggest that the leaves of these Acacia species possess ovicidal and larvicidal activities in vitro against H. contortus, and adulticidal effects against C. elegans. PMID:29173278

  8. Inhibitory effects of pine nodule extract and its component, SJ-2, on acetylcholine-induced catecholamine secretion and synthesis in bovine adrenal medullary cells.

    PubMed

    Li, Xiaojia; Horishita, Takafumi; Toyohira, Yumiko; Shao, Hui; Bai, Jie; Bo, Haixia; Song, Xinbo; Ishikane, Shin; Yoshinaga, Yukari; Satoh, Noriaki; Tsutsui, Masato; Yanagihara, Nobuyuki

    2017-04-01

    Extract of pine nodules (matsufushi) formed by bark proliferation on the surface of trees of Pinus tabulaeformis or Pinus massoniana has been used as an analgesic for joint pain, rheumatism, neuralgia, dysmenorrhea and other complaints in Chinese traditional medicine. Here we report the effects of matsufushi extract and its components on catecholamine secretion and synthesis in cultured bovine adrenal medullary cells. We found that matsufushi extract (0.0003-0.005%) and its component, SJ-2 (5-hydroxy-3-methoxy-trans-stilbene) (0.3-100 μM), but not the other three, concentration-dependently inhibited catecholamine secretion induced by acetylcholine, a physiological secretagogue. Matsufushi extract (0.0003-0.005%) and SJ-2 (0.3-100 μM) also inhibited 45 Ca 2+ influx induced by acetylcholine in a concentration-dependent manner, similar to its effect on catecholamine secretion. They also suppressed 14 C-catecholamine synthesis and tyrosine hydroxylase activity induced by acetylcholine. In Xenopus oocytes expressing α3β4 nicotinic acetylcholine receptors, matsufushi extract (0.00003-0.001%) and SJ-2 (1-100 μM) directly inhibited the current evoked by acetylcholine. The present findings suggest that SJ-2, as well as matsufushi extract, inhibits acetylcholine-induced catecholamine secretion and synthesis by suppression of nicotinic acetylcholine receptor-ion channels in bovine adrenal medullary cells. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  9. Antimutagenic and anticarcinogenic effects of betel leaf extract against the tobacco-specific nitrosamine 4-(N-nitrosomethylamino)-1-(3-pyridyl)-1-butanone (NNK).

    PubMed

    Bhide, S V; Padma, P R; Amonkar, A J

    1991-01-01

    Earlier studies showed that betel leaf inhibits the mutagenic action of standard mutagens like benzo[a]pyrene and dimethylbenz[a]anthracene. Since tobacco-specific nitrosamines are the major carcinogens present in unburnt forms of tobacco, we studied the effect of an extract of betel leaf on the mutagenic and carcinogenic actions of one of the most potent, 4-(N-nitrosomethylamino)-1-(3-pyridyl)-1-butanone (NNK). Betel-leaf extract and hydroxychavicol suppressed the mutagenicity of NNK in both the Ames and the micronucleus test. In studies in mice, betel-leaf extract reduced the tumorigenic effects of NNK by 25%. Concurrent treatment with the extract also inhibited the decreases in levels of vitamin A in liver and plasma induced by NNK. Betel leaf thus has protective effects against the mutagenic, carcinogenic and adverse metabolic effects of NNK in mice.

  10. Inhibition of the growth of Alexandrium tamarense by algicidal substances in Chinese fir (Cunninghamia lanceolata).

    PubMed

    Yang, Wei-Dong; Liu, Jie-Sheng; Li, Hong-Ye; Zhang, Xin-Lian; Qi, Yu-Zao

    2009-10-01

    The wood sawdust from Chinese fir (Cunninghamia lanceolata) exhibited stronger inhibition on the growth of Alexandrium tamarense than those from alder (Alnus cremastogyne), pine (Pinus massoniana), birch (Betula alnoides) and sapele (Entandrophragma cylindricum). The water extract, acetone-water extract and essential oil from fir sawdust were all shown to inhibit the growth of A. tamarense. The inhibition of fir essential oil was the strongest among all the above wood sources while the half effective concentration was only 0.65 mg/L. These results suggested that the fir essential oil may play an important role in the algicidal effect of Chinese fir.

  11. Aqueous Leaf Extract of Jatropha gossypiifolia L. (Euphorbiaceae) Inhibits Enzymatic and Biological Actions of Bothrops jararaca Snake Venom

    PubMed Central

    Félix-Silva, Juliana; Souza, Thiago; Menezes, Yamara A. S.; Cabral, Bárbara; Câmara, Rafael B. G.; Silva-Junior, Arnóbio A.; Rocha, Hugo A. O.; Rebecchi, Ivanise M. M.; Zucolotto, Silvana M.; Fernandes-Pedrosa, Matheus F.

    2014-01-01

    Snakebites are a serious public health problem due their high morbi-mortality. The main available specific treatment is the antivenom serum therapy, which has some disadvantages, such as poor neutralization of local effects, risk of immunological reactions, high cost and difficult access in some regions. In this context, the search for alternative therapies is relevant. Therefore, the aim of this study was to evaluate the antiophidic properties of Jatropha gossypiifolia, a medicinal plant used in folk medicine to treat snakebites. The aqueous leaf extract of the plant was prepared by decoction and phytochemical analysis revealed the presence of sugars, alkaloids, flavonoids, tannins, terpenes and/or steroids and proteins. The extract was able to inhibit enzymatic and biologic activities induced by Bothrops jararaca snake venom in vitro and in vivo. The blood incoagulability was efficiently inhibited by the extract by oral route. The hemorrhagic and edematogenic local effects were also inhibited, the former by up to 56% and the latter by 100%, in animals treated with extract by oral and intraperitoneal routes, respectively. The inhibition of myotoxic action of B. jararaca reached almost 100%. According to enzymatic tests performed, it is possible to suggest that the antiophidic activity may be due an inhibitory action upon snake venom metalloproteinases (SVMPs) and/or serine proteinases (SVSPs), including fibrinogenolytic enzymes, clotting factors activators and thrombin like enzymes (SVTLEs), as well upon catalytically inactive phospholipases A2 (Lys49 PLA2). Anti-inflammatory activity, at least partially, could also be related to the inhibition of local effects. Additionally, protein precipitating and antioxidant activities may also be important features contributing to the activity presented. In conclusion, the results demonstrate the potential antiophidic activity of J. gossypiifolia extract, including its significant action upon local effects, suggesting that it may be used as a new source of bioactive molecules against bothropic venom. PMID:25126759

  12. Vitex negundo induces an anticonvulsant effect by inhibiting voltage gated sodium channels in murine Neuro 2A cell line.

    PubMed

    Khan, Faisal; Saify, Zafar Saeed; Jamali, Khawar Saeed; Naz, Saima; Hassan, Sohail; Siddiqui, Sonia

    2018-01-01

    Vitex negundo (Vn) extract is famous for the treatment of neurological diseases such as migraine and epilepsy. These neurological diseases have been associated with abnormally increased influx of sodium ions into the neurons. Drugs that inhibit voltage gated sodium channels can be used as potent anti-epileptics. Till now, the effects of Vn on sodium channels have not been investigated. Therefore, we have investigated the effects of methalonic fraction of Vn extract in Murine Neuro 2A cell line. Cells were cultured in a defined medium with or without the Vn extract (100 μg/ml). Sodium currents were recorded using whole-cell patch clamp method. The data show that methanolic extract of Vn inhibited sodium currents in a dose dependent manner (IC50 =161μg/ml). Vn (100 μg/ml) shifted the steady-state inactivation curve to the left or towards the hyper polarization state. However, Vn did not show any effects on outward rectifying potassium currents. Moreover, Vn (100 μg/ml) significantly reduced the sustained repetitive (48±4.8%, P<0.01) firing from neonatal hippocampal neurons at 12 DIV. Hence, our data suggested that inhibition of sodium channels by Vn may exert pharmacological effects in reducing pain and convulsions.

  13. Lotus seed epicarp extract as potential antioxidant and anti-obesity additive in Chinese Cantonese Sausage.

    PubMed

    Qi, Suijian; Zhou, Delong

    2013-02-01

    The antioxidative activities of a lotus seed epicarp extract in different concentrations (6.25, 12.5, 25, 50 and 100 μg.mL(-1)) in pork homogenates representative of Chinese Cantonese Sausage were evaluated using three methods: thiobarbituric acid-reactive substances (TBARS) values, peroxide values (POVs) and acid values (AVs). Also the cytotoxic and anti-obesity effects of the lotus seed epicarp extracts were evaluated using an in vitro 3T3-L1 preadipocyte cell model. Results showed that the lotus seed epicarp extracts were non-toxic and effective in inhibiting preadipocyte differentiation. Supplementation of pork homogenate with lotus seed epicarp extracts was effective in retarding lipid oxidation. Moreover, the antioxidative and preadipocyte differentiation inhibition effects of the lotus seed epicarp extracts were dose-dependent. Thus, the lotus seed epicarp extract might be a good candidate as an antioxidant and anti-obesity natural additive in Chinese Cantonese Sausage. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Germination of Medicago sativa is inhibited by soluble compounds in cement dust.

    PubMed

    Lafragüeta, Cristina; García-Criado, Balbino; Arranz, Angel; Vázquez-de-Aldana, Beatriz R

    2014-01-01

    Deposition of cement dust on soils and plant surfaces is known to affect plant growth and the species composition of plant communities, but little is known about its effects (and those of its pH and constituents) on germination. Therefore, the aim of this study was to assess the toxicity of an aqueous cement extract, constituents of the extract and pH on the germination of seeds of a selected species, Medicago sativa. First, the effects of the extract were tested in assays with concentrations and exposure durations ranging from 0 to 1.0 g/mL and 4 to 96 h, respectively. At 0.8 g/mL, the extract strongly inhibited germination; a 4-h exposure reduced the germination rate, from 77 ± 1.8 to 50 ± 2.6% (mean ± SE), while 8-h exposure completely inhibited it. Further, treatment at this concentration killed the non-germinating seeds, thus the inhibition was due to toxic effects. Neither the pH of the extract nor the concentration of its main soluble elements separately (K, Ca, S, Na, or Cr) caused the toxicity since germination rates were not significantly reduced when these variables were tested individually. However, a mixture of the elements in solution reduced germination rates, suggesting that they have adverse synergistic effects.

  15. Early inhibitory effects of zoledronic acid in tooth extraction sockets in dogs are negated by recombinant human bone morphogenetic protein.

    PubMed

    Gerard, David A; Carlson, Eric R; Gotcher, Jack E; Pickett, David O

    2014-01-01

    This study was conducted with 2 purposes. The first was to determine the effect of a single dose of zoledronic acid (ZA) on the healing of a tooth extraction socket in dogs. The second was to determine if placement of recombinant human bone morphogenetic protein-2 (rhBMP-2)/absorbable collagen sponge (ACS) - INFUSE, (Medtronic, Memphis, TN) into these extraction sockets would inhibit the inhibition on bone healing and remodeling by ZA. Nine adult female beagle dogs (2 to 3 yr old) were placed into 3 groups of 3 dogs each. Group I received 15 mL of sterile saline intravenously; group II received 2.5 mg of ZA intravenously; and group III received 5 mg of ZA intravenously. Forty-five days after treatment, all dogs underwent extraction of noncontiguous right and left mandibular first molars and second premolars. In group I, the right mandibular extraction sockets had nothing placed in them, whereas the left mandibular sockets had only ACS placed in them. In groups II and III, the right mandibular sockets had rhBMP-2/ACS placed in them, whereas the left mandibular sockets had only ACS placed. All extraction sockets were surgically closed. Tetracycline was given intravenously 5 and 12 days later, and all animals were euthanized 15 days after tooth extraction. The extraction sockets and rib and femur samples were harvested immediately after euthanasia, processed, and studied microscopically. A single dose of ZA significantly inhibited healing and bone remodeling in the area of the tooth extractions. The combination of rhBMP-2/ACS appeared to over-ride some of the bone remodeling inhibition of the ZA and increased bone fill in the extraction sites, and remodeling activity in the area was noted. The effects of rhBMP-2/ACS were confined to the area of the extraction sockets because bone activity at distant sites was not influenced. A single dose of ZA administered intravenously inhibits early healing of tooth extraction sockets and bone remodeling in this animal model. The combination of rhBMP-2/ACS significantly increased bone fill and bone remodeling in these areas, negating much of the effect of the ZA. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  16. Anticholinesterase, antioxidant, analgesic and anti-inflammatory activity assessment of Xeranthemum annuum L. and isolation of two cyanogenic compounds.

    PubMed

    Orhan, Ilkay Erdogan; Gulyurdu, Fulya; Kupeli Akkol, Esra; Senol, Fatma Sezer; Arabaci Anul, Serap; Tatli, Iffet Irem

    2016-11-01

    Xeranthemum annuum L. (Asteraceae) (XA) is an ornamental and medicinal species with limited bioactivity and phytochemical data. Identification of anticholinesterase, antioxidant, anti-inflammatory and analgesic effects of the flower and root-stem (R-S) extracts of XA. Anticholinesterase (at 100 μg mL -1 ) and antioxidant (at 1000 μg mL -1 ) effects of various extracts were evaluated via microtiter assays, while anti-inflammatory and analgesic effects of the R-S extracts were tested using carrageenan-induced hind paw oedema (100 and 200 mg kg -1 ) and p-benzoquinone (PBQ) writhing models (200 mg kg -1 ) in male Swiss albino mice. The R-S ethanol extract of XA was subjected to isolation studies using conventional chromatographic methods. Most of the extracts showed inhibition over 85% against butyrylcholinesterase and no inhibition towards acetylcholinesterase. The flower chloroform and the R-S ethyl acetate extracts were most effective (97.85 ± 0.94% and 96.89 ± 1.09%, respectively). The R-S ethanol extract displayed a remarkable scavenging activity against DPPH (77.33 ± 1.99%) and in FRAP assay, while the hexane extract of the R-S parts possessed the highest metal-chelating capacity (72.79 ± 0.33%). The chloroform extract of the R-S caused a significant analgesic effect (24.4%) in PBQ writhing model. No anti-inflammatory effect was observed. Isolation of zierin and zierin xyloside, which were inactive in anticholinesterase assays, was achieved from the R-S ethanol extract. This is the first report of anticholinesterase, antioxidant, analgesic and anti-inflammatory activities and isolation of zierin and zierin xyloside from XA. Therefore, XA seems to contain antioxidant and BChE-inhibiting compounds.

  17. Date palm pollen allergoid: characterization of its chemical-physical and immunological properties.

    PubMed

    Mistrello, G; Harfi, H; Roncarolo, D; Kwaasi, A; Zanoni, D; Falagiani, P; Panzani, R

    2008-01-01

    Date palm (DP) pollen can cause allergic symptoms in people living in different countries. Specific immunotherapy with allergenic extracts by subcutaneous route is effective to cure allergic people. However, the risk of side effects has led to explore safer therapeutic modalities. The aim of our work was to evaluate IgE cross-reactivity between DP and autochthonous palm (European fan palm, EFP) pollen extracts, to chemically modify DP extract with potassium cyanate in order to obtain an allergoid, and to characterize it. By radioallergosorbent test inhibition, immunoblotting (IB) and skin prick test, in vitro and in vivo allergenic activities of native and modified DP extracts were compared. By SDS-PAGE and IB, we compared the protein profile and IgE-binding capacity of both native and modified DP, as well as of EFP extracts. By IB inhibition, IgE cross-reactivity of native DP and EFP extracts was evaluated. By ELISA, the capacity of modified DP-induced IgG to react with native DP extract was determined. Radioallergosorbent test inhibition, IB and skin prick test results demonstrated that modified DP was significantly less allergenic than native DP extract. The SDS-PAGE profile showed that potassium cyanate treatment of DP extract did not alter the molecular weight of its components. In addition, no difference was observed between native DP and EFP extracts. Subsequent IB inhibition data evidenced the existence of a strong IgE cross-reactivity between native DP and EFP extracts. ELISA results indicated that the administration of modified DP in mice was able to induce specific IgG also recognizing native DP extract. Modified DP extract (allergoid) seems to be a good candidate for immunotherapy of patients affected by specific allergy. 2007 S. Karger AG, Basel

  18. Anti-inflammatory and antiallergic activity in vivo of lipophilic Isatis tinctoria extracts and tryptanthrin.

    PubMed

    Recio, María-Carmen; Cerdá-Nicolás, Miguel; Potterat, Olivier; Hamburger, Matthias; Ríos, José-Luis

    2006-05-01

    The effects of a supercritical CO2 (SFE) extract, a dichloromethane (DCM) extract from Isatis tinctoria leaf and the alkaloidal constituent tryptanthrin were studied in acute and subchronic experimental models of inflammation. The SFE and DCM extracts showed anti-inflammatory activity in the carrageenan-induced acute mouse paw oedema (ED50 values of 78 mg/kg and 165 mg/kg P. O., respectively) and in the acute tetradecanoylphorbol acetate (TPA)-induced mouse ear oedema in oral (62% and 32% oedema reduction at 100 and 125 mg/kg, respectively) and topical application (37% and 33% reduction of oedema at 0.5 mg/ear). In contrast, tryptanthrin showed no significant anti-inflammatory effect. The DCM extract inhibited oedema formation and neutrophil infiltration in subchronic inflammation in mice induced by repeated application of TPA. The extract showed activity after oral and topical administration by reducing the various parameters of the inflammatory response. The DCM extract (1 mg/ear) inhibited the delayed-type hypersensitivity (DTH) reaction induced by application of dinitrofluorobenzene (DNFB) after topical application. The response during the induction phase (24 h) was decreased by 48%, and the inflammatory phase (48 to 96 h) was reduced by 53 to 56%. The extract had no effect in this model when administered orally. The DCM extract (200 mg/kg P. O.) inhibited the acetic acid-induced writhing by 49%.

  19. Extracts of Coreopsis tinctoria Nutt. Flower Exhibit Antidiabetic Effects via the Inhibition of α-Glucosidase Activity.

    PubMed

    Cai, Wujie; Yu, Lijing; Zhang, Yu; Feng, Li; Kong, Siyuan; Tan, Hongsheng; Xu, Hongxi; Huang, Cheng

    2016-01-01

    The aim of this study was to assay the effects of Coreopsis tinctoria Nutt. flower extracts on hyperglycemia of diet-induced obese mice and the underlying mechanisms. Coreopsis tinctoria flower was extracted with ethanol and water, respectively. The total phenol, flavonoid levels, and the constituents of the extracts were measured. For the animal experiments, C57BL/6 mice were fed with a chow diet, high-fat diet, or high-fat diet mixed with 0.4% (w/w) water and ethanol extracts of Coreopsis tinctoria flower for 8 weeks. The inhibitory effects of the extracts on α-glucosidase activity and the antioxidant properties were assayed in vitro. We found that the extracts blocked the increase of fasting blood glucose, serum triglyceride (TG), insulin, leptin, and liver lipid levels and prevented the development of glucose tolerance impairment and insulin resistance in the C57BL/6 mice induced by a high-fat diet. The extracts inhibited α-glycosidase activity and increased oxidant activity in vitro. In conclusion, Coreopsis tinctoria flower extracts may ameliorate high-fat diet-induced hyperglycemia and insulin resistance. The underling mechanism may be via the inhibition of α-glucosidase activity. Our data indicate that Coreopsis tinctoria flower could be used as a beverage supplement and a potential source of drugs for treatment of diabetics.

  20. Aged garlic extract and S-allyl cysteine prevent formation of advanced glycation endproducts.

    PubMed

    Ahmad, Muhammad Saeed; Pischetsrieder, Monika; Ahmed, Nessar

    2007-04-30

    Hyperglycaemia causes increased protein glycation and the formation of advanced glycation endproducts which underlie the complications of diabetes and ageing. Glycation is accompanied by metal-catalysed oxidation of glucose and Amadori products to form free radicals capable of protein fragmentation. Aged garlic extract is a potent antioxidant with established lipid-lowering effects attributed largely to a key ingredient called S-allyl cysteine. This study investigated the ability of aged garlic extract and S-allyl cysteine to inhibit advanced glycation in vitro. Bovine serum albumin (BSA) was glycated in the presence of Cu(2+) ions and different concentrations of aged garlic extract and protein fragmentation was examined by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Lysozyme was glycated by glucose or methylglyoxal in the presence of different concentrations of aged garlic extract or S-allyl cysteine with subsequent analysis of glycation-derived crosslinking using SDS-PAGE. Amadori-rich protein was prepared by dialysing lysozyme that had been glycated by ribose for 24 h. This ribated lysozyme was reincubated and the effects of aged garlic extract, S-allyl cysteine and pyridoxamine on glycation-induced crosslinking was monitored. Aged garlic extract inhibited metal-catalysed protein fragmentation. Both aged garlic extract and S-allyl cysteine inhibited formation of glucose and methylglyoxal derived advanced glycation endproducts and showed potent Amadorin activity when compared to pyridoxamine. S-allyl cysteine inhibited formation of carboxymethyllysine (CML), a non-crosslinked advanced glycation endproduct derived from oxidative processes. Further studies are required to assess whether aged garlic extract and S-allyl cysteine can protect against the harmful effects of glycation and free radicals in diabetes and ageing.

  1. Soy Pulp Extract Inhibits Angiotensin I-Converting Enzyme (ACE) Activity In Vitro: Evidence for Its Potential Hypertension-Improving Action.

    PubMed

    Nishibori, Naoyoshi; Kishibuchi, Reina; Morita, Kyoji

    2017-05-04

    Soy pulp, called "okara" in Japanese, is known as a by-product of the production of bean curd (tofu), and expected to contain a variety of biologically active substances derived from soybean. However, the biological activities of okara ingredients have not yet been fully understood, and the effectiveness of okara as a functional food seems necessary to be further evaluated. Then the effect of okara extract on angiotensin I-converting enzyme (ACE) activity was examined in vitro, and the extract was shown to cause the inhibition of ACE activity in a manner depending on its concentration. Kinetic analysis indicated that this enzyme inhibition was accompanied by an increase in the Km value without any change in Vmax. Further studies suggested that putative inhibitory substances contained in the extract might be heat stable and dialyzable, and recovered mostly in the peptide fraction obtained by a spin-column separation and a high performance liquid chromatography (HPLC) fractionation. Therefore, the extract was speculated to contain small-size peptides responsible for the inhibitory effect of okara extract on ACE activity, and could be expected to improve the hypertensive conditions by reducing the production of hypertensive peptide.

  2. Unheated Cannabis sativa extracts and its major compound THC-acid have potential immuno-modulating properties not mediated by CB1 and CB2 receptor coupled pathways.

    PubMed

    Verhoeckx, Kitty C M; Korthout, Henrie A A J; van Meeteren-Kreikamp, A P; Ehlert, Karl A; Wang, Mei; van der Greef, Jan; Rodenburg, Richard J T; Witkamp, Renger F

    2006-04-01

    There is a great interest in the pharmacological properties of cannabinoid like compounds that are not linked to the adverse effects of Delta(9)-tetrahydrocannabinol (THC), e.g. psychoactive properties. The present paper describes the potential immuno-modulating activity of unheated Cannabis sativa extracts and its main non-psychoactive constituent Delta(9)-tetrahydrocanabinoid acid (THCa). By heating Cannabis extracts, THCa was shown to be converted into THC. Unheated Cannabis extract and THCa were able to inhibit the tumor necrosis factor alpha (TNF-alpha) levels in culture supernatants from U937 macrophages and peripheral blood macrophages after stimulation with LPS in a dose-dependent manner. This inhibition persisted over a longer period of time, whereas after prolonged exposure time THC and heated Cannabis extract tend to induce the TNF-alpha level. Furthermore we demonstrated that THCa and THC show distinct effects on phosphatidylcholine specific phospholipase C (PC-PLC) activity. Unheated Cannabis extract and THCa inhibit the PC-PLC activity in a dose-dependent manner, while THC induced PC-PLC activity at high concentrations. These results suggest that THCa and THC exert their immuno-modulating effects via different metabolic pathways.

  3. Anti-Photoaging Effect of Jeju Putgyul (Unripe Citrus) Extracts on Human Dermal Fibroblasts and Ultraviolet B-induced Hairless Mouse Skin.

    PubMed

    Choi, Seung-Hyun; Choi, Sun-Il; Jung, Tae-Dong; Cho, Bong-Yeon; Lee, Jin-Ha; Kim, Seung-Hyung; Yoon, Seon-A; Ham, Young-Min; Yoon, Weon-Jong; Cho, Ju-Hyun; Lee, Ok-Hawn

    2017-09-25

    Ultraviolet (UV) radiation stimulates the expression of matrix metalloproteinases (MMPs) and inflammatory cytokines. These signaling pathways participate in the degradation of the extracellular matrix and induce inflammatory responses that lead to photoaging. This study evaluated the antioxidant activity and the effect on MMPs and procollagen of putgyul extract in vitro. The anti-photoaging activity of putgyul extracts was estimated in vivo using hairless mice (HR-1). The putgyul extracts reduced MMP-1 production and increased the content of procollagen type I carboxy-terminal peptide in human dermal fibroblasts. Ultravilot-B (UVB)-induced expression of inflammatory cytokines and MMPs was detected in mice, and putgyul extracts suppressed the expression. These results suggest that putgyul extract inhibits photoaging by inhibiting the expression of MMPs that degrade collagen and inhibiting cytokines that induce inflammatory responses. The mouse model also demonstrated that oral administration of putgyul extracts decreased wrinkle depth, epidermal thickness, collagen degradation, and trans-epidermal water loss, and increased β-glucosidase activity on UVB exposed skin. Putgyul extract protects against UVB-induced damage of skin and could be valuable in the prevention of photoaging.

  4. Anti-Photoaging Effect of Jeju Putgyul (Unripe Citrus) Extracts on Human Dermal Fibroblasts and Ultraviolet B-induced Hairless Mouse Skin

    PubMed Central

    Choi, Seung-Hyun; Choi, Sun-Il; Jung, Tae-Dong; Cho, Bong-Yeon; Lee, Jin-Ha; Kim, Seung-Hyung; Yoon, Seon-A; Ham, Young-Min; Yoon, Weon-Jong; Cho, Ju-Hyun; Lee, Ok-Hawn

    2017-01-01

    Ultraviolet (UV) radiation stimulates the expression of matrix metalloproteinases (MMPs) and inflammatory cytokines. These signaling pathways participate in the degradation of the extracellular matrix and induce inflammatory responses that lead to photoaging. This study evaluated the antioxidant activity and the effect on MMPs and procollagen of putgyul extract in vitro. The anti-photoaging activity of putgyul extracts was estimated in vivo using hairless mice (HR-1). The putgyul extracts reduced MMP-1 production and increased the content of procollagen type I carboxy-terminal peptide in human dermal fibroblasts. Ultravilot-B (UVB)-induced expression of inflammatory cytokines and MMPs was detected in mice, and putgyul extracts suppressed the expression. These results suggest that putgyul extract inhibits photoaging by inhibiting the expression of MMPs that degrade collagen and inhibiting cytokines that induce inflammatory responses. The mouse model also demonstrated that oral administration of putgyul extracts decreased wrinkle depth, epidermal thickness, collagen degradation, and trans-epidermal water loss, and increased β-glucosidase activity on UVB exposed skin. Putgyul extract protects against UVB-induced damage of skin and could be valuable in the prevention of photoaging. PMID:28946661

  5. Anti-inflammatory activity of Lippia dulcis.

    PubMed

    Pérez, S; Meckes, M; Pérez, C; Susunaga, A; Zavala, M A

    2005-10-31

    Lippia dulcis hexane and ethanol extracts were tested for its anti-inflammatory activity in several animal models. Hexane extract showed to be inactive, but the ethanol extract at doses of 400 mg/kg produced significant inhibition of carrageenan-induced paw oedema and reduced the weight of cotton pellet-induced granuloma, moreover, the topical application of 0.5 mg/ear of this extract inhibited the edema induced with TPA by 49.13%, an effect which is of less intensity than that produced by indomethacine at the same dose.

  6. Phytochemical analysis of Binahong (Anredera Cordifolia) leaves extract to inhibit In Vitro growth of Aeromonas Hydrophila

    NASA Astrophysics Data System (ADS)

    Basyuni, Mohammad; Ginting, Prita Yulianti Anasta Br; Lesmana, Indra

    2017-11-01

    Binahong (Anredera cordifolia) is one of the medicinal plants commonly used to treat the disease of living organisms. The secondary metabolite of A. cordifolia leaves has been shown antibacterial activity. This study aimed to investigate the secondary metabolite of A. cordifolia leaves showing antibacterial and analysis the effectiveness of antibacterial to inhibit the growth of bacteria Aeromonas hydrophila. A paper disc soaked in a solution of A. cordifolia leaves extract was used to test in vitro at a concentration of 0% (w/v), 0.2%, 0.4%, 0.6%, 0.8%, and positive control of antibiotic (oxytetracycline), respectively. The extracts then placed on a tryptone soy agar (TSA) medium containing bacteria A. hydrophila and incubated at 37 °C for 24 hours. In vitro test showed that A. cordifolia leaves extract inhibited the growth of bacteria A. hydrophila with an inhibition area around the paper disc. The inhibition growth of A. hydrophila increased with the increasing of extract concentration. Bacterial growth was inhibited in the diameter zone of A. hydrophila under different levels of the extracts were 0 mm (0 % negative control), 8.4 mm (0.2 %), 9.4 mm (0.4 %), 10.5 mm (0.6 %), 11.9 mm (0.8 %), 27.5 mm (positive control), respectively. Phytochemical screening of A. cordifolia leaves extract indicated that the extracts contained flavonoid, phenol, saponin, alkaloid, triterpenoid, and β-sitosterol. Our in vitro study demonstrated the inhibition growth of A. hydrophila that caused the disease of motile Aeromonas septicemia (MAS).

  7. Inhibitory activity on type 2 diabetes and hypertension key-enzymes, and antioxidant capacity of Veronica persica phenolic-rich extracts.

    PubMed

    Sharifi-Rad, M; Tayeboon, G S; Sharifi-Rad, J; Iriti, M; Varoni, E M; Razazi, S

    2016-05-30

    Veronica genus (Plantaginaceae) is broadly distributed in different habitats. In this study, the inhibitory activity of free soluble and conjugated phenolic extracts of Veronica persica on key enzymes associated to type 2 diabetes (α-glucosidase and α-amylase) and hypertension (angiotensin I converting enzyme, ACE) was assessed, as well as their antioxidant power. Our results showed that both the extracts inhibited α-amylase, α-glucosidase and ACE in a dose-dependent manner. In particular, free phenolic extract significantly (P<0.05) inhibited α-glucosidase (IC50 532.97 µg/mL), whereas conjugated phenolic extract significantly (P<0.05) inhibited α-amylase (IC50 489.73 µg/mL) and ACE (290.06 µg/mL). The enzyme inhibitory activities of the extracts were not associated with their phenolic content. Anyway, the inhibition of α-amylase, α-glucosidase and ACE, along with the antioxidant capacity of the phenolic-rich extracts, could represent a putative mechanism through which V. persica exerts its antidiabetes and antihypertension effects.

  8. Effect of inhibition on tyrosinase and melanogenesis of Agastache rugosa Kuntze by lactic acid bacteria fermentation.

    PubMed

    Kim, Nam Young; Kwon, Hee Souk; Lee, Hyeon Yong

    2017-09-01

    This work presents the first report that A. rugosa could have tyrosinase and melanogenesis inhibition and that its activities also be improved by fermentation with Lactobacillus rhamnosus and Lactobacillus paracasei. It was found that the tyrosinase and melanogenesis inhibition was correlated with antioxidant activity of acacetin, the major biologically active substances in A. rugosa. we pursued an improvement in tyrosinase and melanogenesis inhibition of A. rugosa extract by fermentation process. A. rugosa was extracted by lactic acid fermentation process; we measured antioxidant activities and tyrosinase and melanogenesis inhibition of A. rugosa extracts. In particular, reducing power of the extract from fermentation process (FE) was measured as 0.562 (O.D.), whereas reducing power of the extracts from 70% ethanol extraction (EE) was lower than the FE as 0.496 (O.D.). Polyphenols and flavonoids in the FE were higher than the EE: 69.3 mg/g vs. 60.5 mg/g, and 187 mg/g vs. 138 mg/g. The FE was estimated as 51.04% tyrosinase inhibition and 41.88% for the EE. Similarly, melanin inhibition in melanocyte B16F10 was observed as 66.60% vs. 42.23% for the FE and EE. The increase in tyrosinase and melanogenesis inhibition activity was confirmed by high elution of acacetin through fermentation process such as 289.97 mg/100 g vs. 198.04 mg/100 g in the FE and EE. These results indicate that tyrosinase and melanogenesis inhibition activities of the extracts should be associated with antioxidant activity because acacetin is known to have strong antioxidant activity, which can also positively affect whitening activities. © 2016 Wiley Periodicals, Inc.

  9. The effect of extracts of the roots of the stinging nettle (Urtica dioica) on the interaction of SHBG with its receptor on human prostatic membranes.

    PubMed

    Hryb, D J; Khan, M S; Romas, N A; Rosner, W

    1995-02-01

    Extracts from the roots of the stinging nettle (Urtica dioica) are used in the treatment of benign prostatic hyperplasia. The mechanisms underlying this treatment have not been elucidated. We set out to determine whether specific extracts from U. dioica had the ability to modulate the binding of sex hormone-binding globulin to its receptor on human prostatic membranes. Four substances contained in U. dioica were examined: an aqueous extract; an alcoholic extract; U. dioica agglutinin, and stigmasta-4-en-3-one. Of these, only the aqueous extract was active. It inhibited the binding of 125I-SHBG to its receptor. The inhibition was dose related, starting at about 0.6 mg/ml and completely inhibited binding at 10 mg/ml.

  10. Novel biological properties of Oenothera paradoxa defatted seed extracts: effects on metallopeptidase activity.

    PubMed

    Kiss, Anna K; Derwińska, Małgorzata; Dawidowska, Anna; Naruszewicz, Marek

    2008-09-10

    In this study, for the first time, we used the in vitro metallopeptidase model for the identification of a potential novel activity of defatted evening primrose seed extracts. Prepared extracts of different polarity (aqueous, 60% ethanolic, isopropanolic, and 30% isopropanolic) at concentrations of 1.5-100 microg/mL exhibited a significant and dose dependent inhibition of three tested enzymes. The 50% inhibition of enzymes activity showed that aminopeptidase N (APN) was the enzyme affected to the greatest extent with IC50 at the level of 2.8 microg/mL and 2.9 microg/mL for aqueous and 30% isopropanolic extracts, respectively. The activity of neutral endopeptidase (NEP) was quite strongly inhibited by the extracts as well. The HPLC-DAD analysis and bioguided fractionation led to the identification of four active compounds: (-)-epicatechin gallate, proanthocyanidin B3, oenothein B, and penta-O-galloyl-beta-D-glucose (PGG). Oenothein B has been shown previously to inhibit metallopeptidases. The three other compounds are known to inhibit angiotensin-converting enzyme (ACE), but they have not been previously reported to inhibit the NEP and APN activity. PGG and procyanidins with different degrees of polymerization, as the dominating compounds in O. paradoxa seeds, seemed to play a role in the crude extract activity.

  11. Anti-Quorum Sensing Potential of Crude Kigelia africana Fruit Extracts

    PubMed Central

    Chenia, Hafizah Y.

    2013-01-01

    The increasing incidence of multidrug-resistant pathogens has stimulated the search for novel anti-virulence compounds. Although many phytochemicals show promising antimicrobial activity, their power lies in their anti-virulence properties. Thus the quorum sensing (QS) inhibitory activity of four crude Kigelia africana fruit extracts was assessed qualitatively and quantitatively using the Chromobacterium violaceum and Agrobacterium tumefaciens biosensor systems. Inhibition of QS-controlled violacein production in C. violaceum was assayed using the qualitative agar diffusion assay as well as by quantifying violacein inhibition using K. africana extracts ranging from 0.31–8.2 mg/mL. Qualitative modulation of QS activity was investigated using the agar diffusion double ring assay. All four extracts showed varying levels of anti-QS activity with zones of violacein inhibition ranging from 9–10 mm. The effect on violacein inhibition was significant in the following order: hexane > dichloromethane > ethyl acetate > methanol. Inhibition was concentration-dependent, with the ≥90% inhibition being obtained with ≥1.3 mg/mL of the hexane extract. Both LuxI and LuxR activity were affected by crude extracts suggesting that the phytochemicals target both QS signal and receptor. K. africana extracts with their anti-QS activity, have the potential to be novel therapeutic agents, which might be important in reducing virulence and pathogenicity of drug-resistant bacteria in vivo. PMID:23447012

  12. [Anti-proliferation Effect of Taraxacum mongolicum Extract in HepG2 Cells and Its Mechanism].

    PubMed

    Guo, Jun-bin; Ye, Hai-hong; Chen, Jian-feng

    2015-10-01

    To study the anti-proliferation effect of Taraxacum mongolicum extract in HepG2 cells and its mechanism. The total proteins of HepG2 cells treated with Taraxacum mongolicum extract were. extracted and mitochondria-mediated apoptosis-related proteins (Survivin, Mcl-1, BCL-xL, BCL-2, Smac, BAX, Bad, Cytochrome c and Caspase-3/7/9) were detected by Western blot. Taraxacum mongolicum extract obviously inhibited the proliferation of HepG2 cells and the expression of anti-apoptotic proteins (Survivin, BCL-xL and BCL-2), increased the expression of pro-apoptotic proteins (Smac and Caspase-3/7/9), and promoted the release of Cytochrome c from mitochondria to cytoplasm in HepG2 cells. The effects were in a dose-independent mode. Taraxacum mongolicum extract can inhibit the proliferation of HepG2 cells and the anti-proliferation mechanism is related to mitochondria-mediated apoptosis.

  13. Effect of Bawang Dayak (Eleutherine palmifolia (L) Merr) crude extract towards bacteria inhibition zone and carp (Cyprinus carpio) hematology

    NASA Astrophysics Data System (ADS)

    Maftuch

    2017-05-01

    Negative impacts of antibiotics and chemical substance usage in aquaculture demand the researchers discover more efficient alternative yet environmentally friendly to overcome fish diseases. One alternative is by using Bawang Dayak (Eleutherine palmifolia (L.) Merr). This research aimed to reveal the effect of Bawang Dayak crude extract towards the inhibition zone of A. hydrophilia, V. harveyi, and P. fluorescens bacteria. Furthermore, it was also conducted to investigate the carp (C. carpio) hematology which was infected with A. hydrophila bacteria, and find the most appropriate dose of Bawang Dayak crude extract to inhibit the bacteria. This experimental research was performed by using Completely Randomized Design with 4 treatments and 3 replications. The best result of the zone of inhibition test in A. hydrophila bacteria was at the dose of 70 ppm while V. harveyi and P. Fluorescens bacteria were at the dose of 85 ppm. Then, fish hematology was found best at the dose of 80 ppm. Bawang Dayak crude extract was significant towards the inhibition zone of A. hydrophila, V. harveyi and P. Fluorescens bacteria, and carp hematology which was infected with A. hydrophila bacteria.

  14. Inhibition of gluconeogenesis by Malmea depressa root.

    PubMed

    Andrade-Cetto, Adolfo

    2011-09-01

    Malmea depressa is traditionally used in the Mayan communities of southeastern Mexico to treat type 2 diabetes. A root bark infusion is being taken throughout the day, between meals. The aim of this study was to determine whether an ethanolic extract of Malmea depressa would reduce hepatic glucose production by targeting gluconeogenesis. The effects of the plant extract on gluconeogenesis (in vivo) and the activity of GL-6-P (in vitro) were examined. The plant extract was analyzed by HPLC to confirm its phytochemical composition. The inhibition of gluconeogenesis was tested in vivo by performing a pyruvate tolerance test in n5-STZ after an 18-h fasting period. The extracts effect on glucose-6-phosphatase activity were assayed in vitro with intact rat liver microsomes. Using HPLC-DAD we confirmed that the phytochemical compositions of the tested extract were similar to those previously reported. We proved that the ethanolic extract of the root bark of Malmea depressa dose-dependently inhibits a glucose peak. Furthermore, the gluconeogenesis inhibition was confirmed in vitro using a pyruvate test. The results suggest that administration of Malmea depressa can improve glycemic control by blocking hepatic glucose production, especially in the fasting state. These data support its traditional use as an infusion consumed continually throughout the day. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. A new extract of the plant calendula officinalis produces a dual in vitro effect: cytotoxic anti-tumor activity and lymphocyte activation

    PubMed Central

    Jiménez-Medina, Eva; Garcia-Lora, Angel; Paco, Laura; Algarra, Ignacio; Collado, Antonia; Garrido, Federico

    2006-01-01

    Background Phytopharmacological studies of different Calendula extracts have shown anti-inflamatory, anti-viral and anti-genotoxic properties of therapeutic interest. In this study, we evaluated the in vitro cytotoxic anti-tumor and immunomodulatory activities and in vivo anti-tumor effect of Laser Activated Calendula Extract (LACE), a novel extract of the plant Calendula Officinalis (Asteraceae). Methods An aqueous extract of Calendula Officinalis was obtained by a novel extraction method in order to measure its anti-tumor and immunomodulatory activities in vitro. Tumor cell lines derived from leukemias, melanomas, fibrosarcomas and cancers of breast, prostate, cervix, lung, pancreas and colorectal were used and tumor cell proliferation in vitro was measured by BrdU incorporation and viable cell count. Effect of LACE on human peripheral blood lymphocyte (PBL) proliferation in vitro was also analyzed. Studies of cell cycle and apoptosis were performed in LACE-treated cells. In vivo anti-tumor activity was evaluated in nude mice bearing subcutaneously human Ando-2 melanoma cells. Results The LACE extract showed a potent in vitro inhibition of tumor cell proliferation when tested on a wide variety of human and murine tumor cell lines. The inhibition ranged from 70 to 100%. Mechanisms of inhibition were identified as cell cycle arrest in G0/G1 phase and Caspase-3-induced apoptosis. Interestingly, the same extract showed an opposite effect when tested on PBLs and NKL cell line, in which in vitro induction of proliferation and activation of these cells was observed. The intraperitoneal injection or oral administration of LACE extract in nude mice inhibits in vivo tumor growth of Ando-2 melanoma cells and prolongs the survival day of the mice. Conclusion These results indicate that LACE aqueous extract has two complementary activities in vitro with potential anti-tumor therapeutic effect: cytotoxic tumor cell activity and lymphocyte activation. The LACE extract presented in vivo anti-tumoral activity in nude mice against tumor growth of Ando-2 melanoma cells. PMID:16677386

  16. Anti-tumor effect of hot aqueous extracts from Sonchus oleraceus (L.) L. and Juniperus sabina L - Two traditional medicinal plants in China.

    PubMed

    Huyan, Ting; Li, Qi; Wang, Yi-Lin; Li, Jing; Zhang, Jian-Yang; Liu, Ya-Xiong; Shahid, Muhammad Riaz; Yang, Hui; Li, Huan-Qing

    2016-06-05

    Sonchus oleraceus (L.) L (SO) and Juniperus sabina L (JS) are traditional medicinal plants in China. And the aqueous extracts of them have been used to treat tumor, inflammatory diseases, infection and so on in Chinese folk culture. However, the underlying mechanisms of their anti-tumor activities have not been illustrated yet. This study aims to evaluate the inhibitory effects of aqueous extracts from SO and JS on tumor cells. The prepared aqueous extracts of SO and JS were used to treat HepG-2 and K562 tumor cells, while the human peripheral blood mononuclear cells (PBMCs) were set as normal control. The viabilities, cell cycle and apoptosis of tumor cells after extracts treatment were assessed, in addition the expression of apoptosis-related genes (FasL, caspase 3, 6, 7, 8, 9, and 10) were analyzed. Meanwhile, the adherence and migration of HepG-2 were tested, and the expression levels of MMPs and ICAM-1 were analyzed. On top of that, the pSTAT in the two cells were also analyzed and suggested the related signaling pathway that the extracts acted on with in these tumor cells. Results showed that aqueous extracts of SO and JS have inhibitory effects on HepG-2 and K562 cells by decreasing cell viability and inducing apoptosis via up-regulation of the expression of the apoptosis-related genes FasL, caspase 3 and caspase 9. The extracts had different IC50 on tumor cells and PBMCs, which could block the tumor cell cycle at the G(0)/G(1) stage and significantly inhibit the adherence of HepG-2 cells. The extracts inhibited migration of these cells by inhibiting the expression of ICAM-1, MMP-2 and MMP-9. Further study indicated that the inhibition of pSTAT1 and 3 might be responsible for the inhibitory effects of the extracts on tumor cells. The results of this study indicated that SO and JS extracts had the anti-tumor effects, which may be developed as novel anti-tumor drugs and used in cancer therapy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Tannins from Hamamelis virginiana bark extract: characterization and improvement of the antiviral efficacy against influenza A virus and human papillomavirus.

    PubMed

    Theisen, Linda L; Erdelmeier, Clemens A J; Spoden, Gilles A; Boukhallouk, Fatima; Sausy, Aurélie; Florin, Luise; Muller, Claude P

    2014-01-01

    Antiviral activity has been demonstrated for different tannin-rich plant extracts. Since tannins of different classes and molecular weights are often found together in plant extracts and may differ in their antiviral activity, we have compared the effect against influenza A virus (IAV) of Hamamelis virginiana L. bark extract, fractions enriched in tannins of different molecular weights and individual tannins of defined structures, including pseudotannins. We demonstrate antiviral activity of the bark extract against different IAV strains, including the recently emerged H7N9, and show for the first time that a tannin-rich extract inhibits human papillomavirus (HPV) type 16 infection. As the best performing antiviral candidate, we identified a highly potent fraction against both IAV and HPV, enriched in high molecular weight condensed tannins by ultrafiltration, a simple, reproducible and easily upscalable method. This ultrafiltration concentrate and the bark extract inhibited early and, to a minor extent, later steps in the IAV life cycle and tannin-dependently inhibited HPV attachment. We observed interesting mechanistic differences between tannin structures: High molecular weight tannin containing extracts and tannic acid (1702 g/mol) inhibited both IAV receptor binding and neuraminidase activity. In contrast, low molecular weight compounds (<500 g/mol) such as gallic acid, epigallocatechin gallate or hamamelitannin inhibited neuraminidase but not hemagglutination. Average molecular weight of the compounds seemed to positively correlate with receptor binding (but not neuraminidase) inhibition. In general, neuraminidase inhibition seemed to contribute little to the antiviral activity. Importantly, antiviral use of the ultrafiltration fraction enriched in high molecular weight condensed tannins and, to a lesser extent, the unfractionated bark extract was preferable over individual isolated compounds. These results are of interest for developing and improving plant-based antivirals.

  18. Tannins from Hamamelis virginiana Bark Extract: Characterization and Improvement of the Antiviral Efficacy against Influenza A Virus and Human Papillomavirus

    PubMed Central

    Theisen, Linda L.; Erdelmeier, Clemens A. J.; Spoden, Gilles A.; Boukhallouk, Fatima; Sausy, Aurélie; Florin, Luise; Muller, Claude P.

    2014-01-01

    Antiviral activity has been demonstrated for different tannin-rich plant extracts. Since tannins of different classes and molecular weights are often found together in plant extracts and may differ in their antiviral activity, we have compared the effect against influenza A virus (IAV) of Hamamelis virginiana L. bark extract, fractions enriched in tannins of different molecular weights and individual tannins of defined structures, including pseudotannins. We demonstrate antiviral activity of the bark extract against different IAV strains, including the recently emerged H7N9, and show for the first time that a tannin-rich extract inhibits human papillomavirus (HPV) type 16 infection. As the best performing antiviral candidate, we identified a highly potent fraction against both IAV and HPV, enriched in high molecular weight condensed tannins by ultrafiltration, a simple, reproducible and easily upscalable method. This ultrafiltration concentrate and the bark extract inhibited early and, to a minor extent, later steps in the IAV life cycle and tannin-dependently inhibited HPV attachment. We observed interesting mechanistic differences between tannin structures: High molecular weight tannin containing extracts and tannic acid (1702 g/mol) inhibited both IAV receptor binding and neuraminidase activity. In contrast, low molecular weight compounds (<500 g/mol) such as gallic acid, epigallocatechin gallate or hamamelitannin inhibited neuraminidase but not hemagglutination. Average molecular weight of the compounds seemed to positively correlate with receptor binding (but not neuraminidase) inhibition. In general, neuraminidase inhibition seemed to contribute little to the antiviral activity. Importantly, antiviral use of the ultrafiltration fraction enriched in high molecular weight condensed tannins and, to a lesser extent, the unfractionated bark extract was preferable over individual isolated compounds. These results are of interest for developing and improving plant-based antivirals. PMID:24498245

  19. In vitro effects of Musa x paradisiaca extracts on four developmental stages of Haemonchus contortus.

    PubMed

    Marie-Magdeleine, C; Udino, L; Philibert, L; Bocage, B; Archimede, H

    2014-02-01

    This study was carried out to evaluate the in vitro effect of Musa x paradisiaca stem and leaf against the parasitic nematode of small ruminants Haemonchus contortus. Three extracts (aqueous, methanolic and/or dichloromethane) of Musa x paradisiaca stem and leaf were tested in vitro on four developmental stages of H. contortus using egg hatch assay (EHA), larval development assay (LDA), L3 migration inhibition assay (LMI) and adult worm motility assay (AWM). The highly significant (P<0.0001) ability to stop larval development (inhibition >67% for each extract) and the negative effect of the dichloromethane extract of leaf on adult worm motility (43% of inhibition of motility after 24h of incubation) compared to the negative controls, suggest anthelmintic properties of Musa x paradisiaca stem and leaf against H. contortus. The active principles responsible for the activity could be secondary metabolites such as terpenoid and flavonoid compounds present in the leaf and stem of the plant. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. In vitro and in vivo effects of clove on pro-inflammatory cytokines production by macrophages.

    PubMed

    Rodrigues, T G; Fernandes, A; Sousa, J P B; Bastos, J K; Sforcin, J M

    2009-01-01

    Biological properties of clove have been reported, but little is known about its effect on the immune system. This work was aimed to investigate the effect in vivo of a water-soluble part of hydroalcoholic extract of clove on pro-inflammatory cytokines (IL-1beta and IL-6) production by macrophages of BALB/c mice. The action of the essential oil of clove on the production of these cytokines macrophages was also investigated in vitro. The chemical compositions of the extract and of the oil were also investigated. Treatment of mice with water extract of clove was found to inhibit macrophages to produce both IL-1beta and IL-6. The essential oil of clove also inhibited the production of these cytokines in vitro. Eugenol was found to be the major component of the clove extract and essential oil, and probably is the causative agent of cytokine inhibition. Taken together, these data suggest an anti-inflammatory action of this spice.

  1. Plant extracts from stinging nettle (Urtica dioica), an antirheumatic remedy, inhibit the proinflammatory transcription factor NF-kappaB.

    PubMed

    Riehemann, K; Behnke, B; Schulze-Osthoff, K

    1999-01-08

    Activation of transcription factor NF-kappaB is elevated in several chronic inflammatory diseases and is responsible for the enhanced expression of many proinflammatory gene products. Extracts from leaves of stinging nettle (Urtica dioica) are used as antiinflammatory remedies in rheumatoid arthritis. Standardized preparations of these extracts (IDS23) suppress cytokine production, but their mode of action remains unclear. Here we demonstrate that treatment of different cells with IDS23 potently inhibits NF-kappaB activation. An inhibitory effect was observed in response to several stimuli, suggesting that IDS23 suppressed a common NF-kappaB pathway. Inhibition of NF-kappaB activation by IDS23 was not mediated by a direct modification of DNA binding, but rather by preventing degradation of its inhibitory subunit IkappaB-alpha. Our results suggests that part of the antiinflammatory effect of Urtica extract may be ascribed to its inhibitory effect on NF-kappaB activation.

  2. Inhibition of human P450 enzymes by natural extracts used in traditional medicine.

    PubMed

    Rodeiro, Idania; Donato, María T; Jimenez, Nuria; Garrido, Gabino; Molina-Torres, Jorge; Menendez, Roberto; Castell, José V; Gómez-Lechón, María J

    2009-02-01

    Different medicinal plants are widely used in Cuba and Mexico to treat several disorders. This paper reports in vitro inhibitory effects on the P450 system of herbal products commonly used by people in Cuba and Mexico in traditional medicine for decades. Experiments were conducted in human liver microsomes. The catalytic activities of CYP1A1/2, 2D6, and 3A4 were measured using specific probe substrates. The Heliopsis longipes extract exhibited a concentration-dependent inhibition of the three enzymes, and similar effects were produced by affinin (an alkamide isolated from the H. longipes extract) and two catalytically reduced alkamides. Mangifera indica L. and Thalassia testudinum extracts, two natural polyphenol-rich extracts, diminished CYP1A1/2 and 3A4 activities, but not the CYP2D6 activity. These results suggest that these herbs inhibit the major human P450 enzymes involved in drug metabolism and could induce potential herbal-drug interactions. Copyright (c) 2008 John Wiley & Sons, Ltd.

  3. In vitro erythrocyte membrane stabilization properties of Carica papaya L. leaf extracts

    PubMed Central

    Ranasinghe, Priyanga; Ranasinghe, Pathmasiri; Abeysekera, W. P. Kaushalya M.; Premakumara, G. A. Sirimal; Perera, Yashasvi S.; Gurugama, Padmalal; Gunatilake, Saman B.

    2012-01-01

    Background: Carica papaya L. fruit juice and leaf extracts are known to have many beneficial medical properties. Recent reports have claimed possible beneficial effects of C. papaya L. leaf juice in treating patients with dengue viral infections. This study aims to evaluate the membrane stabilization potential of C. papaya L. leaf extracts using an in vitro hemolytic assay. Materials and Methods: The study was conducted in between June and August 2010. Two milliliters of blood from healthy volunteers and patients with serologically confirmed current dengue infection were freshly collected and used in the assays. Fresh papaya leaves at three different maturity stages (immature, partly matured, and matured) were cleaned with distilled water, crushed, and the juice was extracted with 10 ml of cold distilled water. Freshly prepared cold water extracts of papaya leaves (1 ml containing 30 μl of papaya leaf extracts, 20 μl from 40% erythrocytes suspension, and 950 μl of phosphate buffered saline) were used in the heat-induced and hypotonic-induced hemolytic assays. In dose response experiments, six different concentrations (9.375, 18.75, 37.5, 75, 150, and 300 μg/ml) of freeze dried extracts of the partly matured leaves were used. Membrane stabilization properties were investigated with heat-induced and hypotonicity-induced hemolysis assays. Results: Extracts of papaya leaves of all three maturity levels showed a significant reduction in heat-induced hemolysis compared to controls (P < 0.05). Papaya leaf extracts of all three maturity levels showed more than 25% inhibition at a concentration of 37.5 μg/ml. The highest inhibition of heat-induced hemolysis was observed at 37.5 μg/ml. Inhibition activity of different maturity levels was not significantly (P < 0.05) different from one another. Heat-induced hemolysis inhibition activity did not demonstrate a linear dose response relationship. At 37.5 μg/ml concentration of the extract, a marked inhibition of hypotonicity-induced hemolysis was observed. Conclusion: C. papaya L. leaf extracts showed a significant inhibition of hemolysis in vitro and could have a potential therapeutic effect on disease processes causing destabilization of biological membranes. PMID:23225962

  4. In vitro erythrocyte membrane stabilization properties of Carica papaya L. leaf extracts.

    PubMed

    Ranasinghe, Priyanga; Ranasinghe, Pathmasiri; Abeysekera, W P Kaushalya M; Premakumara, G A Sirimal; Perera, Yashasvi S; Gurugama, Padmalal; Gunatilake, Saman B

    2012-10-01

    Carica papaya L. fruit juice and leaf extracts are known to have many beneficial medical properties. Recent reports have claimed possible beneficial effects of C. papaya L. leaf juice in treating patients with dengue viral infections. This study aims to evaluate the membrane stabilization potential of C. papaya L. leaf extracts using an in vitro hemolytic assay. The study was conducted in between June and August 2010. Two milliliters of blood from healthy volunteers and patients with serologically confirmed current dengue infection were freshly collected and used in the assays. Fresh papaya leaves at three different maturity stages (immature, partly matured, and matured) were cleaned with distilled water, crushed, and the juice was extracted with 10 ml of cold distilled water. Freshly prepared cold water extracts of papaya leaves (1 ml containing 30 μl of papaya leaf extracts, 20 μl from 40% erythrocytes suspension, and 950 μl of phosphate buffered saline) were used in the heat-induced and hypotonic-induced hemolytic assays. In dose response experiments, six different concentrations (9.375, 18.75, 37.5, 75, 150, and 300 μg/ml) of freeze dried extracts of the partly matured leaves were used. Membrane stabilization properties were investigated with heat-induced and hypotonicity-induced hemolysis assays. Extracts of papaya leaves of all three maturity levels showed a significant reduction in heat-induced hemolysis compared to controls (P < 0.05). Papaya leaf extracts of all three maturity levels showed more than 25% inhibition at a concentration of 37.5 μg/ml. The highest inhibition of heat-induced hemolysis was observed at 37.5 μg/ml. Inhibition activity of different maturity levels was not significantly (P < 0.05) different from one another. Heat-induced hemolysis inhibition activity did not demonstrate a linear dose response relationship. At 37.5 μg/ml concentration of the extract, a marked inhibition of hypotonicity-induced hemolysis was observed. C. papaya L. leaf extracts showed a significant inhibition of hemolysis in vitro and could have a potential therapeutic effect on disease processes causing destabilization of biological membranes.

  5. In vitro antioxidant and antimalarial activities of leaves, pods and bark extracts of Acacia nilotica (L.) Del.

    PubMed

    Sadiq, Muhammad Bilal; Tharaphan, Pattamon; Chotivanich, Kesinee; Tarning, Joel; Anal, Anil Kumar

    2017-07-18

    The emergence of drug resistant malaria is threatening our ability to treat and control malaria in the Southeast Asian region. There is an urgent need to develop novel and chemically diverse antimalarial drugs. This study aimed at evaluating the antimalarial and antioxidant potentials of Acacia nilotica plant extracts. The antioxidant activities of leaves, pods and bark extracts were determined by standard antioxidant assays; reducing power capacity, % lipid peroxidation inhibition and ferric reducing antioxidant power assay. The antimalarial activities of plant extracts against Plasmodium falciparum parasites were determined by the 48 h schizont maturation inhibition assay. Further confirmation of schizonticide activity of extracts was made by extending the incubation period up to 96 h after removing the plant extract residues from parasites culture. Inhibition assays were analyzed by dose-response modelling. In all antioxidant assays, leaves of A. nilotica showed higher antioxidant activity than pods and bark. Antimalarial IC 50 values of leaves, pods and bark extracts were 1.29, 4.16 and 4.28 μg/ml respectively, in the 48 h maturation assay. The IC 50 values determined for leaves, pods and bark extracts were 3.72, 5.41 and 5.32 μg/ml respectively, after 96 h of incubation. All extracts inhibited the development of mature schizont, indicating schizonticide activity against P. falciparum. A. nilotica extracts showed promising antimalarial and antioxidant effects. However, further investigation is needed to isolate and identify the active components responsible for the antimalarial and antioxidant effects.

  6. Inhibitory effects of Morinda citrifolia extract and its constituents on melanogenesis in murine B16 melanoma cells.

    PubMed

    Masuda, Megumi; Itoh, Kimihisa; Murata, Kazuya; Naruto, Shunsuke; Uwaya, Akemi; Isami, Fumiyuki; Matsuda, Hideaki

    2012-01-01

    The objective of this study was to examine the effects of Morinda citrifolia (noni) extract and its constituents on α-melanocyte stimulating hormone (α-MSH)-stimulated melanogenesis in cultured murine B16 melanoma cells (B16 cells). A 50% ethanolic extract of noni seeds (MCS-ext) showed significant inhibition of melanogenesis with no effect on cell proliferation. MCS-ext was more active than noni leaf and fruit flesh extracts. Activity guided fractionation of MCS-ext led to the isolation of two lignans, 3,3'-bisdemethylpinoresinol (1) and americanin A (2), as active constituents. To elucidate the mechanism of melanogenesis inhibition by the lignans, α-MSH-stimulated B16 cells were treated with 1 (5 μM) and 2 (200 μM). Time-dependent increases of intracellular melanin content and tyrosinase activity, during 24 to 72 h, were inhibited significantly by treatment with the lignans. The activity of 1 was greater than that of 2. Western blot analysis suggested that the lignans inhibited melanogenesis by down regulation of the levels of phosphorylation of p38 mitogen-activated protein kinase, resulting in suppression of tyrosinase expression.

  7. Inhibition effects of scorpion venom extracts (Buthus matensii Karsch) on the growth of human breast cancer MCF-7 cells.

    PubMed

    Li, Weiling; Li, Ye; Zhao, Yuwan; Yuan, Jieli; Mao, Weifeng

    2014-01-01

    To observe the inhibition effects of the Buthus matensii Karsch (BmK) scorpion venom extracts on the growth of human breast cancer MCF-7 cells, and to explore its mechanisms. Two common tumor cells (SMMC7721, MCF-7) were examined for the one which wasmore sensitivity to scorpion venom by MTT method. Cell cycle was determined by flow cytometry. Immunocytochemistry was applied to detect apoptosis-related protein Caspase-3 and Bcl-2 levels, while the expression of cell cycle-related protein Cyclin D1 was shown by Western blotting. Our data indicated that MCF-7 was the more sensitive cell line to scorpion venom. The extracts of scorpion venom could inhibit the growth and proliferation of MCF-7 cells. Furthermore, the extract of scorpion venom induced apoptosis through Caspase-3 up-regulation while Bcl-2 down-regulation in MCF-7 cells. In addition, the extracts of scorpion venom blocked the cells from G0/G1 phase to S phase and decreased cell cycle-related protein Cyclin D1 level after drug intervention compared with the negative control group. These results showed that the BmK scorpion venom extracts could inhibit the growth of MCF-7 cells by inducing apoptosis and blocking cell cycle in G0/G1 phase. The BmK scorpion venom extracts will be very valuable for the treatment of breast cancer.

  8. Protection against septic shock and suppression of tumor necrosis factor alpha and nitric oxide production on macrophages and microglia by a standard aqueous extract of Mangifera indica L. (VIMANG). Role of mangiferin isolated from the extract.

    PubMed

    Garrido, Gabino; Delgado, René; Lemus, Yeny; Rodríguez, Janet; García, Dagmar; Núñez-Sellés, Alberto J

    2004-08-01

    The present study illustrates the effects of a standard aqueous extract, used in Cuba under the brand name of VIMANG, from the stem bark of Mangifera indica L. on the production of tumor necrosis factor alpha (TNFalpha) and nitric oxide (NO) in in vivo and in vitro experiments. In vivo was determined by the action of the extract and its purified glucosylxanthone (mangiferin) on TNFalpha in a murine model of endotoxic shock using Balb/c mice pre-treated with lipopolysaccharide (LPS) 0.125 mg kg(-1), i.p. In vitro, M. indica extract and mangiferin were tested on TNFalpha and NO production in activated macrophages (RAW264.7 cell line) and microglia (N9 cell line) stimulated with LPS (10ng ml(-1)) and interferon gamma (IFNgamma, 2U ml(-1)). M. indica extract reduced dose-dependently TNFalpha production in the serum (ED50 = 64.5 mg kg(-1)) and the TNFalpha mRNA expression in the lungs and livers of mice. Mangiferin also inhibited systemic TNFalpha at 20 mg kg(-1). In RAW264.7, the extract inhibited TNFalpha (IC50 = 94.1 microg ml(-1)) and NO (IC50 = 64.4 microg ml(-1)). In microglia the inhibitions of the extract were IC50 = 76.0 microg ml(-1) (TNFalpha) and 84.0 microg ml(-1) (NO). These findings suggest that the anti-inflammatory response observed during treatment with M. indica extract must be related with inhibition of TNFalpha and NO production. Mangiferin, a main component in the extract, is involved in these effects. The TNFalpha and NO inhibitions by M. indica extract and mangiferin on endotoxic shock and microglia are reported here for the first time. Copyright 2004 Elsevier Ltd.

  9. Flavonoids from Theobroma cacao down-regulate inflammatory mediators.

    PubMed

    Ramiro, Emma; Franch, Angels; Castellote, Cristina; Pérez-Cano, Francisco; Permanyer, Joan; Izquierdo-Pulido, Maria; Castell, Margarida

    2005-11-02

    In the present study, we report the effects of a cocoa extract on the secretion and RNA expression of various proinflammatory mediators by macrophages. Monocyte chemoattractant protein 1 and tumor necrosis factor alpha (TNFalpha) were significantly and dose-dependently diminished by cocoa extract, and this effect was higher than that produced by equivalent concentrations of epicatechin but was lower than that produced by isoquercitrin. Interestingly, cocoa extract added prior to cell activation resulted in a significantly greater inhibition of TNFalpha secretion. Both cocoa extract and epicatechin decreased TNFalpha, interleukin (IL) 1alpha, and IL-6 mRNA expression, suggesting that their inhibitory effect on cytokine secretion is produced, in part, at the transcriptional level. Cocoa extract also significantly decreased NO secretion in a dose-dependent manner and with a greater effect than that produced by epicatechin. In conclusion, our study shows that cocoa flavonoids not only inhibit NO release from macrophages but also down-regulate inflammatory cytokines and chemokines.

  10. Wild Blueberry (Vaccinium angustifolium Ait.) Polyphenols Target Fusobacterium nucleatum and the Host Inflammatory Response: Potential Innovative Molecules for Treating Periodontal Diseases.

    PubMed

    Ben Lagha, Amel; Dudonné, Stéphanie; Desjardins, Yves; Grenier, Daniel

    2015-08-12

    Blueberries contain significant amounts of flavonoids to which a number of beneficial health effects in humans have been associated. The present study investigated the effect of a polyphenol-rich lowbush blueberry (Vaccinium angustifolium Ait.) extract on the two main etiologic components of periodontitis, a multifactorial disorder affecting the supporting structures of the teeth. Phenolic acids, flavonoids (flavonols, anthocyanins, flavan-3-ols), and procyanidins made up 16.6, 12.9, and 2.7% of the blueberry extract, respectively. The blueberry extract showed antibacterial activity (MIC = 1 mg/mL) against the periodontopathogenic bacterium Fusobacterium nucleatum. This property may result from the ability of blueberry polyphenols to chelate iron. Moreover, the blueberry extract at 62.5 μg/mL inhibited F. nucleatum biofilm formation by 87.5 ± 2.3%. Subsequently, the ability of the blueberry extract to inhibit the NF-κB signaling pathway in U937-3xκB cells was investigated. The blueberry extract dose-dependently inhibited the activation of NF-κB induced by F. nucleatum. In addition, a pretreatment of macrophages with the blueberry extract (62.5 μg/mL) inhibited the secretion of IL-1β, TNF-α, and IL-6 by 87.3 ± 1.3, 80.7 ± 5.6, and 28.2 ± 9.3%, respectively, following a stimulation with F. nucleatum. Similarly, the secretion of MMP-8 and MMP-9 was also dose-dependently inhibited. This dual antibacterial and anti-inflammatory action of lowbush blueberry polyphenols suggests that they may be promising candidates for novel therapeutic agents.

  11. Anti-inflammatory and anti-allergic effect of Agaricus blazei extract in bone marrow-derived mast cells.

    PubMed

    Song, Hyuk-Hwan; Chae, Hee-Sung; Oh, Sei-Ryang; Lee, Hyeong-Kyu; Chin, Young-Won

    2012-01-01

    In this study, the anti-inflammatory and anti-allergic effects of the chloroform-soluble extract of Agaricus blazei in mouse bone marrow-derived mast cells (BMMCs) were investigated. The chloroform-soluble extract inhibited IL-6 production in PMA plus A23187-stimulated BMMCs, and down-regulated the phosphorylation of Akt. In addition, this extract demonstrated inhibition of the degranulation of β-hexosaminidase and the production of IL-6, prostaglandin D(2) and leukotriene C(4) in PMA plus A23187-induced BMMCs. In conclusion, the chloroform-soluble extract of Agaricus blazei exerted anti-inflammatory and anti-allergic activities mediated by influencing IL-6, prostaglandin D(2), leukotriene C(4), and the phosphorylation of Akt.

  12. Inhibition properties of propolis extracts to some clinically important enzymes.

    PubMed

    Baltas, Nimet; Yildiz, Oktay; Kolayli, Sevgi

    2016-01-01

    The present study was conducted to envisage inhibition effects of propolis on the crucial enzymes, urease, xanthine oxidase (XO) and acetylcholinesterase (AChE). Some of the antioxidant properties of the propolis samples were determined using the total phenolic content (TPE) and total flavonoids in the eight different ethanolic propolis extracts (EPE) samples. Inhibition values of the enzymes were expressed as inhibition concentration (IC 50 ; mg/mL or μg/mL) causing 50% inhibition of the enzymes with donepezil, acetohydroxamic acid and allopurinol as reference inhibitors. All the propolis extracts exhibited variable inhibition effects on these enzymes, but the higher the phenolic contents the lower the inhibitions values (IC 50 = 0.074 to 1.560 mg/mL). IC 50 values of the P5 propolis sample having the highest TPE, obtained from Zonguldak, for AChE, urease and XO were 0.081 ± 0.009, 0.080 ± 0.006 and 0.074 ± 0.011 μg/mL, respectively. The EPE proved to be a good source of inhibitor agents that can be used as natural inhibitors to serve human health.

  13. In vitro effects of aqueous extract from Maytenus senegalensis (Lam.) Exell stem bark on egg hatching, larval migration and adult worms of Haemonchus contortus.

    PubMed

    Zangueu, Calvin Bogning; Olounlade, Abiodoun Pascal; Ossokomack, Marlyse; Djouatsa, Yolande Noelle Nangue; Alowanou, Goue Géorcelin; Azebaze, Anatole Guy Blaise; Llorent-Martínez, Eulogio José; de Córdova, Maria Luisa Fernández; Dongmo, Alain Bertrand; Hounzangbe-Adote, Mawulé Sylvie

    2018-05-02

    Maytenus senegalensis is a common shrub which is scattered in tropical Africa. Different parts of this plant have been reported to be useful in traditional medicine against gastrointestinal disorders and intestinal worms. This study evaluated the anthelmintic activity of the aqueous stem bark extract of M. senegalensis using egg hatch assay (EHA), larval migration inhibition assay (LMIA) and adult worms' motility inhibition assay (AMIA). On EHA, the extract concentrations tested resulted in a significant (p < 0.01) inhibition of egg hatching in concentration-dependent manner and ranged between 31.86% at 75 μg.mL - 1 to 54.92% at 2400 μg.mL - 1 after a 48 h post-exposure with eggs. For the LMI assays, the aqueous extract of M. senegalensis showed a significant (p < 0.05) inhibition of larval migration in a concentration-dependent manner. The highest concentration used (2400 μg.mL - 1 ) showed a 37.77% inhibition. The use of polyvinyl polypyrrolidone (PVPP) indicated that tannins and flavonoids were partly involved in the effect since the larval migration was inhibited by 15.5%, but other biochemical compounds were also implicated. On AMIA, M. senegalensis was associated with a reduced worm motility after a 24 h post exposure compared to phosphate buffered saline as control (p < 0.05). By this time 66.66% of the worms' were found immotile or dead in the wells containing plant extract at 2400 μg.mL - 1 . The Phytochemical analysis of aqueous extract of M. senegalensis by HPLC-ESI-MS n detected the presence of proanthocyanidins (20%) and flavonoids (> 50%). These in vitro results suggest the presence of some anthelmintic properties in M. senegalensis extract, which is traditionally used by small farmers in west and central Africa. These effects may be due to the flavonoids and proanthocyanidins present in the extract and need to be studied under in vivo conditions.

  14. Antibacterial activity of cinnamon ethanol extract (cinnamomum burmannii) and its application as a mouthwash to inhibit streptococcus growth

    NASA Astrophysics Data System (ADS)

    Waty, Syahdiana; Suryanto, Dwi; Yurnaliza

    2018-03-01

    Cinnamon bark has been commonly used as spicy and traditional medicine. It contains several antibacterial compounds such as flavonoids, saponins, and cinnamaldehyde. Several studies have been done to know the antibacterial effect on bacteria such as Streptococcus in vitro. This study aimed to examine the antibacterial activity of cinnamon ethanol extract against Streptococcus and its application as mouthwash to inhibit the bacteria. The cinnamon bark was macerated followed by extracted in 80% ethanol. Bacterial samples were isolated from dental plaque of patients visiting dental clinic drg. Syahdiana Waty in Medan, North Sumatra. The isolates were identified using Vitek 2 compact. Secondary metabolites were detected using previously described method. Antibacterial assay was done at extract concentration of 6.25%, 12.5%, and 25%. The result showed that alkaloids, flavonoids, saponins, and glycoside were detected in the extract. Nine bacterial species were identified as Streptococcus mitis, S. sanguinis, S. salivarius, S. pluranimalium, S. pneumoniae, S. alactolyticus, Kocuria rosea, Kocuria kristinae, and Spingomonas paucimolis. It showed that the extract of Cinnamon bark significantly inhibited Streptococcus growth, and it was effective as mouthwash.

  15. [Allelopathy of grape root aqueous extracts].

    PubMed

    Li, Kun; Guo, Xiu-wu; Guo, Yin-shan; Li, Cheng-xiang; Xie, Hong-gang; Hu, Xi-xi; Zhang, Li-heng; Sun, Ying-ni

    2010-07-01

    Taking the tissue-cultured seedlings of grape cultivar Red Globe as test objects, this paper examined the effects of their root aqueous extracts on seedling's growth, with the allelochemicals identified by LC-MS. The results showed that 0.02 g x ml(-1) (air-dried root mass in aqueous extracts volume; the same below), 0.1 g x ml(-1), and 0.2 g x ml(-1) of the aqueous extracts inhibited the growth of the seedlings significantly, and the inhibition effect increased with increasing concentration of the extracts. The identified allelochemicals of the extracts included p-hydroxybenzoic acid, salicylic acid, phenylpropionic acid, and coumaric acid. Pot experiment showed that different concentration (0.1, 1, and 10 mmol x L(-1)) salicylic acid and phenylpropionic acid inhibited the seedling' s growth remarkably. With the increasing concentration of the two acids, the plant height, stem diameter, shoot- and root fresh mass, leaf net photosynthetic rate and starch content, and root activity of the seedlings decreased, while the leaf soluble sugar and MDA contents increased. No obvious change pattern was observed in leaf protein content.

  16. Screening of metabolites secondary compounds in extract of moringa fruit and determination of inhibitory effect on growth of the fungus Candida albicans

    NASA Astrophysics Data System (ADS)

    Nuryanti, Siti; Puspitasari, Dwi Juli

    2017-08-01

    Moringa (Moringa oleifera Lamk) is a nutritious plant that can cure various diseases. Parts of this plant like leave, root, flower, and fruit can be used as a traditional medicine. The research about screening of secondary metabolites in moringa extracts and the determination of their inhibitory effect on growth of the fungus Candida albicans have been done. This research was conducted by extracting the moringa fruit with various solvent with different polarity namely hexane, distilled water and ethanol. The fungal inhibition test was done by well-difuse method. Suspensions of Candida albicans was standardized by 0.5 Mc Farland standard. The results showed that the extracts of Moringa with distilled water provided the greatest inhibition on the growth of the fungus Candida albicans compared to moringa fruit extracted by ethanol and hexane. The percentages inhibition of Moringa extracts on the growth of the Candida albicans with distilled water, ethanol and hexane solvents were 89.90%, 57.90% and 8.97% respectively. Phytochemical screening test showed that the moringa fruit contain alkaloids, flavonoids and steroids.

  17. Antioxidant activity, inhibition of nitric oxide overproduction, and in vitro antiproliferative effect of maple sap and syrup from Acer saccharum.

    PubMed

    Legault, Jean; Girard-Lalancette, Karl; Grenon, Carole; Dussault, Catherine; Pichette, André

    2010-04-01

    Antioxidant activity, inhibition of nitric oxide (NO) overproduction, and antiproliferative effect of ethyl acetate extracts of maple sap and syrup from 30 producers were evaluated in regard to the period of harvest in three different regions of Québec, Canada. Oxygen radical absorbance capacity (ORAC) values of maple sap and syrup extracts are, respectively, 12 +/- 6 and 15 +/- 5 micromol of Trolox equivalents (TE)/mg. The antioxidant activity was also confirmed by a cell-based assay. The period of harvest has no statistically significant incidence on the antioxidant activity of both extracts. The antioxidant activity of pure maple syrup was also determined using the ORAC assay. Results indicate that the ORAC value of pure maple syrup (8 +/- 2 micromol of TE/mL) is lower than the ORAC value of blueberry juice (24 +/- 1 micromol of TE/mL) but comparable to the ORAC values of strawberry (10.7 +/- 0.4 micromol of TE/mL) and orange (10.8 +/- 0.5 micromol of TE/mL) juices. Maple sap and syrup extracts showed to significantly inhibit lipopolysaccharide-induced NO overproduction in RAW264.7 murine macrophages. Maple syrup extract was significantly more active than maple sap extract, suggesting that the transformation of maple sap into syrup increases NO inhibition activity. The highest NO inhibition induced by the maple syrup extracts was observed at the end of the season. Moreover, darker maple syrup was found to be more active than clear maple syrup, suggesting that some colored oxidized compounds could be responsible in part for the activity. Finally, maple syrup extracts (50% inhibitory concentration = 42 +/- 6 microg/mL) and pure maple syrup possess a selective in vitro antiproliferative activity against cancer cells.

  18. Chloride channel inhibition by a red wine extract and a synthetic small molecule prevents rotaviral secretory diarrhoea in neonatal mice.

    PubMed

    Ko, Eun-A; Jin, Byung-Ju; Namkung, Wan; Ma, Tonghui; Thiagarajah, Jay R; Verkman, A S

    2014-07-01

    Rotavirus is the most common cause of severe secretory diarrhoea in infants and young children globally. The rotaviral enterotoxin, NSP4, has been proposed to stimulate calcium-activated chloride channels (CaCC) on the apical plasma membrane of intestinal epithelial cells. We previously identified red wine and small molecule CaCC inhibitors. To investigate the efficacy of a red wine extract and a synthetic small molecule, CaCCinh-A01, in inhibiting intestinal CaCCs and rotaviral diarrhoea. Inhibition of CaCC-dependent current was measured in T84 cells and mouse ileum. The effectiveness of an orally administered wine extract and CaCCinh-A01 in inhibiting diarrhoea in vivo was determined in a neonatal mouse model of rotaviral infection. Screening of ∼150 red wines revealed a Cabernet Sauvignon that inhibited CaCC current in T84 cells with IC50 at a ∼1:200 dilution, and higher concentrations producing 100% inhibition. A >1 kdalton wine extract prepared by dialysis, which retained full inhibition activity, blocked CaCC current in T84 cells and mouse intestine. In rotavirus-inoculated mice, oral administration of the wine extract prevented diarrhoea by inhibition of intestinal fluid secretion without affecting rotaviral infection. The wine extract did not inhibit the cystic fibrosis chloride channel (CFTR) in cell cultures, nor did it prevent watery stools in neonatal mice administered cholera toxin, which activates CFTR-dependent fluid secretion. CaCCinh-A01 also inhibited rotaviral diarrhoea. Our results support a pathogenic role for enterocyte CaCCs in rotaviral diarrhoea and demonstrate the antidiarrhoeal action of CaCC inhibition by an alcohol-free, red wine extract and by a synthetic small molecule. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  19. Inhibitory effects of Caesalpinia sappan on growth and invasion of methicillin-resistant Staphylococcus aureus.

    PubMed

    Kim, Kang-Ju; Yu, Hyeon-Hee; Jeong, Seung-Il; Cha, Jung-Dan; Kim, Shin-Moo; You, Yong-Ouk

    2004-03-01

    In the present study, we investigated antimicrobial activity of Caesalpinia sappan against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) and effect of Caesalpinia sappan extract on the invasion of MRSA to human mucosal fibroblasts (HMFs). Chloroform, n-butanol, methanol, and aqueous extracts of the Caesalpinia sappan showed antimicrobial activity against standard methicillin-sensitive Staphylococcus aureus (MSSA) as well as MRSA. Methanol extract of Caesalpinia sappan demonstrated a higher inhibitory activity than n-butanol, chloroform, and aqueous extracts. In the checkerboard dilution method, methanol extract of Caesalpinia sappan markedly lowered the minimal inhibitory concentrations (MICs) of ampicillin and oxacillin against MRSA. To determine whether methanol extract of Caesalpinia sappan inhibits the MRSA invasion to HMFs, the cells were treated with various sub-MIC concentrations of methanol extract and bacterial invasion was assayed. MRSA invasion was notably decreased in the presence of 20-80 microg/ml of Caesalpinia sappan extract compared to the control group. The effect of Caesalpinia sappan extract on MRSA invasion appeared dose-dependent. These results suggest that methanol extract of Caesalpinia sappan may have antimicrobial activity and the potential to restore the effectiveness of beta-lactam antibiotics against MRSA, and inhibit the MRSA invasion to HMFs.

  20. Saw Palmetto Extract Inhibits Metastasis and Antiangiogenesis through STAT3 Signal Pathway in Glioma Cell

    PubMed Central

    Ding, Hong; Shen, Jinglian; Yang, Yang; Che, Yuqin

    2015-01-01

    Signal transducer and activator of transcription factor 3 (STAT3) plays an important role in the proliferation and angiogenesis in human glioma. Previous research indicated that saw palmetto extract markedly inhibited the proliferation of human glioma cells through STAT3 signal pathway. But its effect on tumor metastasis and antiangiogenesis is not clear. This study is to further clear the impact of saw palmetto extract on glioma cell metastasis, antiangiogenesis, and its mechanism. TUNEL assay indicated that the apoptotic cells in the saw palmetto treated group are higher than that in the control group (p < 0.05). The apoptosis related protein is detected and the results revealed that saw palmetto extract inhibits the proliferation of human glioma. Meanwhile pSTAT3 is lower in the experimental group and CD34 is also inhibited in the saw palmetto treated group. This means that saw palmetto extract could inhibit the angiogenesis in glioma. We found that saw palmetto extract was an important phytotherapeutic drug against the human glioma through STAT3 signal pathway. Saw palmetto extract may be useful as an adjunctive therapeutic agent for treatment of individuals with glioma and other types of cancer in which STAT3 signaling is activated. PMID:26788112

  1. Açaí (Euterpe oleraceae Mart.) berry extract exerts neuroprotective effects against β-amyloid exposure in vitro.

    PubMed

    Wong, Daphne Yiu San; Musgrave, Ian Francis; Harvey, Benjamin Scott; Smid, Scott Darryl

    2013-11-27

    The native South American palm açaí berry (Euterpe oleraceae Mart.) has high polyphenolic and antioxidant levels. This study examined whether açaí berry extract afforded protection against β-amyloid (Aβ)-mediated loss of cell viability and oxidative stress associated with anti-fibrillar effects. PC12 cells were exposed to either Aβ1-42, Aβ25-35 or tert butyl hydroperoxide (t-BHP), alone or in the presence of açaí extract (0.5-50μg/ml). Thioflavin T (ThT) binding assay and transmission electron microscopy were used to determine effects of açaí extract on Aβ1-42 fibril morphology and compared to açaí phenolics gallic acid, cyanidin rutinoside and cyanidin glucoside. Exposure to Aβ1-42, Aβ25-35 or t-BHP decreased PC12 cell viability. Pretreatment with açaí extract significantly improved cell viability following Aβ1-42 exposure, however Aβ25-35 or t-BHP-mediated viability loss was unaltered. Açaí extract inhibited ThT fluorescence and disrupted Aβ1-42 fibril and aggregate morphology. In comparison with other phenolics, açaí was most effective at inhibiting Aβ1-42 aggregation. Inhibition of β-amyloid aggregation may underlie a neuroprotective effect of açaí. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Modulation of platelet aggregation by areca nut and betel leaf ingredients: roles of reactive oxygen species and cyclooxygenase.

    PubMed

    Jeng, Jiiang-Huei; Chen, Shiao-Yun; Liao, Chang-Hui; Tung, Yuan-Yii; Lin, Bor-Ru; Hahn, Liang-Jiunn; Chang, Mei-Chi

    2002-05-01

    There are 2 to 6 billion betel quid (BQ) chewers in the world. Areca nut (AN), a BQ component, modulates arachidonic acid (AA) metabolism, which is crucial for platelet function. AN extract (1 and 2 mg/ml) stimulated rabbit platelet aggregation, with induction of thromboxane B2 (TXB2) production. Contrastingly, Piper betle leaf (PBL) extract inhibited AA-, collagen-, and U46619-induced platelet aggregation, and TXB2 and prostaglandin-D2 (PGD2) production. PBL extract also inhibited platelet TXB2 and PGD2 production triggered by thrombin, platelet activating factor (PAF), and adenosine diphosphate (ADP), whereas little effect on platelet aggregation was noted. Moreover, PBL is a scavenger of O2(*-) and *OH, and inhibits xanthine oxidase activity and the (*)OH-induced PUC18 DNA breaks. Deferoxamine, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) and neomycin prevented AN-induced platelet aggregation and TXB2 production. Indomethacin, genistein, and PBL extract inhibited only TXB2 production, but not platelet aggregation. Catalase, superoxide dismutase, and dimethylthiourea (DMT) showed little effect on AN-induced platelet aggregation, whereas catalase and DMT inhibited the AN-induced TXB2 production. These results suggest that AN-induced platelet aggregation is associated with iron-mediated reactive oxygen species production, calcium mobilization, phospholipase C activation, and TXB2 production. PBL inhibited platelet aggregation via both its antioxidative effects and effects on TXB2 and PGD2 production. Effects of AN and PBL on platelet aggregation and AA metabolism is crucial for platelet activation in the oral mucosa and cardiovascular system in BQ chewers.

  3. Inhibitory effects of spices on growth and toxin production of toxigenic fungi.

    PubMed Central

    Hitokoto, H; Morozumi, S; Wauke, T; Sakai, S; Kurata, H

    1980-01-01

    The inhibitory effects of 29 commercial powdered spices on the growth and toxin production of three species of toxigenic Aspergillus were observed by introducing these materials into culture media for mycotoxin production. Of the 29 samples tested, cloves, star anise seeds, and allspice completely inhibited the fungal growth, whereas most of the others inhibited only the toxin production. Eugenol extracted from cloves and thymol from thyme caused complete inhibition of the growth of both Aspergillus flavus and Aspergillus versicolor at 0.4 mg/ml or less. At a concentration of 2 mg/ml, anethol extracted from star anise seeds inhibited the growth of all the strains. PMID:6769391

  4. Modulation of ionizing radiation induced oxidative imbalance by semi-fractionated extract of Piper betle

    PubMed Central

    Verma, Savita; Dutta, Ajaswrata; Sankhwar, Sanghmitra; Shukla, Sandeep Kumar

    2010-01-01

    The study was planned to evaluate modulatory effect of aqueous extract of Piper betle leaf (PBL) on ionizing radiation mediated oxidative stress leading to normal tissues damage during radiotherapy and other radiation exposures. The total polyphenols and flavonoids known as free radical scavenger (chelators) were measured in the extract. To ascertain antioxidant potential of PBL extract, we studied free radical scavenging, metal chelation, reducing power, lipid peroxidation inhibition and ferric reducing antioxidant properties (FRAP ) using in vitro assays. Mice were exposed to varied radiation doses administered with the same extract prior to irradiation to confirm its oxidative stress minimizing efficacy by evaluating ferric reducing ability of plasma, reduced glutathione, lipid peroxidation and micro-nuclei frequency. PBL extract was effective in scavenging DPPH (up to 92% at 100 µg/ml) and superoxide radicals (up to 95% at 80 µg/ml), chelated metal ions (up to 83% at 50 µg/ml) and inhibited lipid peroxidation (up to 45.65% at 500 µg/ml) in a dose dependant manner using in vitro model. Oral administration of PBL extract (225 mg/kg body weight) 1 hr before irradiation in mice significantly enhanced (p < 0.01) radiation abated antioxidant potential of plasma and GSH level in all the observed organs. The treatment with extract effectively lowered the radiation induced lipid peroxidation at 24 hrs in all the selected organs with maximum inhibition in thymus (p < 0.01). After 48 hrs, lipid peroxidation was maximally inhibited in the group treated with the extract. Frequency of radiation induced micronucleated cells declined significantly (34.78%, p < 0.01) at 24 hrs post-irradiation interval by PBL extract administration. The results suggest that PBL extract has high antioxidant potential and relatively non-toxic and thus could be assertively used to mitigate radiotherapy inflicted normal tissues damage and also injuries caused by moderate doses of radiation during unplanned exposures. PMID:20716927

  5. Modulation of ionizing radiation induced oxidative imbalance by semi-fractionated extract of Piper betle: an in vitro and in vivo assessment.

    PubMed

    Verma, Savita; Gupta, Manju Lata; Dutta, Ajaswrata; Sankhwar, Sanghmitra; Shukla, Sandeep Kumar; Flora, Swaran J S

    2010-01-01

    The study was planned to evaluate modulatory effect of aqueous extract of Piper betle leaf (PBL) on ionizing radiation mediated oxidative stress leading to normal tissues damage during radiotherapy and other radiation exposures. The total polyphenols and flavonoids known as free radical scavenger (chelators) were measured in the extract. To ascertain antioxidant potential of PBL extract we studied free radical scavenging, metal chelation, reducing power, lipid peroxidation inhibition and ferric reducing antioxidant properties (FRAP) using in vitro assays. Mice were exposed to varied radiation doses administered with the same extract prior to irradiation to confirm its oxidative stress minimizing efficacy by evaluating ferric reducing ability of plasma, reduced glutathione, lipid peroxidation and micro-nuclei frequency. PBL extract was effective in scavenging DPPH (up to 92% at 100 microg/ml) and superoxide radicals (up to 95% at 80 microg/ml), chelated metal ions (up to 83% at 50 microg/ml) and inhibited lipid peroxidation (up to 55.65% at 500 microg/ml) in a dose dependant manner using in vitro model. Oral administration of PBL extract (225 mg/kg body weight) 1 hr before irradiation in mice significantly enhanced (p < 0.01) radiation abated antioxidant potential of plasma and GSH level in all the observed organs. The treatment with extract effectively lowered the radiation induced lipid peroxidation at 24 hrs in all the selected organs with maximum inhibition in thymus (p < 0.01). After 48 hrs, lipid peroxidation was maximally inhibited in the group treated with the extract. Frequency of radiation induced micronucleated cells declined significantly (34.78%, p < 0.01) at 24 hrs post-irradiation interval by PBL extract administration. The results suggest that PBL extract has high antioxidant potential and relatively non-toxic and thus could be assertively used to mitigate radiotherapy inflicted normal tissues damage and also injuries caused by moderate doses of radiation during unplanned exposures.

  6. Inactivation of pathogenic viruses by plant-derived tannins: strong effects of extracts from persimmon (Diospyros kaki) on a broad range of viruses.

    PubMed

    Ueda, Kyoko; Kawabata, Ryoko; Irie, Takashi; Nakai, Yoshiaki; Tohya, Yukinobu; Sakaguchi, Takemasa

    2013-01-01

    Tannins, plant-derived polyphenols and other related compounds, have been utilized for a long time in many fields such as the food industry and manufacturing. In this study, we investigated the anti-viral effects of tannins on 12 different viruses including both enveloped viruses (influenza virus H3N2, H5N3, herpes simplex virus-1, vesicular stomatitis virus, Sendai virus and Newcastle disease virus) and non-enveloped viruses (poliovirus, coxsachievirus, adenovirus, rotavirus, feline calicivirus and mouse norovirus). We found that extracts from persimmon (Diospyros kaki), which contains ca. 22% of persimmon tannin, reduced viral infectivity in more than 4-log scale against all of the viruses tested, showing strong anti-viral effects against a broad range of viruses. Other tannins derived from green tea, acacia and gallnuts were effective for some of the viruses, while the coffee extracts were not effective for any of the virus. We then investigated the mechanism of the anti-viral effects of persimmon extracts by using mainly influenza virus. Persimmon extracts were effective within 30 seconds at a concentration of 0.25% and inhibited attachment of the virus to cells. Pretreatment of cells with the persimmon extracts before virus infection or post-treatment after virus infection did not inhibit virus replication. Protein aggregation seems to be a fundamental mechanism underlying the anti-viral effect of persimmon tannin, since viral proteins formed aggregates when purified virions were treated with the persimmon extracts and since the anti-viral effect was competitively inhibited by a non-specific protein, bovine serum albumin. Considering that persimmon tannin is a food supplement, it has a potential to be utilized as a safe and highly effective anti-viral reagent against pathogenic viruses.

  7. Inactivation of Pathogenic Viruses by Plant-Derived Tannins: Strong Effects of Extracts from Persimmon (Diospyros kaki) on a Broad Range of Viruses

    PubMed Central

    Ueda, Kyoko; Kawabata, Ryoko; Irie, Takashi; Nakai, Yoshiaki; Tohya, Yukinobu; Sakaguchi, Takemasa

    2013-01-01

    Tannins, plant-derived polyphenols and other related compounds, have been utilized for a long time in many fields such as the food industry and manufacturing. In this study, we investigated the anti-viral effects of tannins on 12 different viruses including both enveloped viruses (influenza virus H3N2, H5N3, herpes simplex virus-1, vesicular stomatitis virus, Sendai virus and Newcastle disease virus) and non-enveloped viruses (poliovirus, coxsachievirus, adenovirus, rotavirus, feline calicivirus and mouse norovirus). We found that extracts from persimmon (Diospyros kaki), which contains ca. 22% of persimmon tannin, reduced viral infectivity in more than 4-log scale against all of the viruses tested, showing strong anti-viral effects against a broad range of viruses. Other tannins derived from green tea, acacia and gallnuts were effective for some of the viruses, while the coffee extracts were not effective for any of the virus. We then investigated the mechanism of the anti-viral effects of persimmon extracts by using mainly influenza virus. Persimmon extracts were effective within 30 seconds at a concentration of 0.25% and inhibited attachment of the virus to cells. Pretreatment of cells with the persimmon extracts before virus infection or post-treatment after virus infection did not inhibit virus replication. Protein aggregation seems to be a fundamental mechanism underlying the anti-viral effect of persimmon tannin, since viral proteins formed aggregates when purified virions were treated with the persimmon extracts and since the anti-viral effect was competitively inhibited by a non-specific protein, bovine serum albumin. Considering that persimmon tannin is a food supplement, it has a potential to be utilized as a safe and highly effective anti-viral reagent against pathogenic viruses. PMID:23372851

  8. Human Cytochrome P450 Enzyme Modulation by Gymnema sylvestre: A Predictive Safety Evaluation by LC-MS/MS

    PubMed Central

    Rammohan, Bera; Samit, Karmakar; Chinmoy, Das; Arup, Saha; Amit, Kundu; Ratul, Sarkar; Sanmoy, Karmakar; Dipan, Adhikari; Tuhinadri, Sen

    2016-01-01

    Background: Traditionally GS is used to treat diabetes mellitus. Drug-herb interaction of GS via cytochrome P450 enzyme system by substrate cocktail method using HLM has not been reported. Objective: To evaluate the in-vitro modulatory effects of GS extracts (aqueous, methanol, ethyl acetate, chloroform and n-hexane) and deacylgymnemic acid (DGA) on human CYP1A2, 2C8, 2C9, 2D6 and 3A4 activities in HLM. Material and Methods: Probe substrate-based LCMS/MS method was established for all CYPs. The metabolite formations were examined after incubation of probe substrates with HLM in the presence or absence of extracts and DGA. The inhibitory effects of GS extracts and DGA were characterized with kinetic parameters IC50 and Ki values. Results: GS extracts showed differential effect on CYP activities in the following order of inhibitory potency: ethyl acetate > Chloroform > methanol > n-hexane > aqueous > DGA. This differential effect was observed against CYP1A2, 2C9 and less on CYP3A4 and 2C8 but all CYPs were unaffected by aqueous extract and DGA. The ethyl acetate and chloroform extract exhibited moderate inhibition towards CYP1A2 and 3A4. The aqueous extract and DGA however showed negligible inhibition towards all five major human CYPs with very high IC50 values (>90μg/ml). Conclusion: The results of our study revealed that phytoconstituents contained in GS, particularly in ethyl acetate and chloroform extracts, were able to inhibit CYP1A2, 3A4 and 2C9. The presence of relatively small, lipophillic yet slightly polar compounds within the GS extracts may be attributed for inhibition activities. These suggest that the herb or its extracts should be examined for potential pharmacokinetic drug interactions in vivo. Abbreviations used: GS: Gymnema sylvestre, GSE: Gymnema sylvestre extract, DGA: deacyl gymnemic acid, CYP: cytochrome P450, DMSO: dimethylsulphoxide, HLM: human liver microsomes, LC-MS/MS: liquid chromatography tandem mass spectroscopy, NADPH: reduced nicotinamide adeninedinucleotide phosphate, NRS: nicotinamide adeninedinucleotide phosphate regenerating system, CHE: chloroform extract, EAE: ethyl acetate extract, NHE- n-hexane extract, AE: aqueous extract, ME: methanol extract PMID:27761064

  9. DEVELOPMENT OF AN ENVIRONMENTALLY BENIGN MICROBIAL INHIBITOR TO CONTROL INTERNAL PIPELINE CORROSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristine L. Lowe; Bill W. Bogan; Wendy R. Sullivan

    2004-07-30

    The overall program objective is to develop and evaluate environmentally benign agents or products that are effective in the prevention, inhibition, and mitigation of microbially influenced corrosion (MIC) in the internal surfaces of metallic natural gas pipelines. The goal is to develop one or more environmentally benign (a.k.a. ''green'') products that can be applied to maintain the structure and dependability of the natural gas infrastructure. Previous testing indicated that the growth, and the metal corrosion caused by pure cultures of sulfate reducing bacteria were inhibited by hexane extracts of some pepper plants. This quarter tests were performed with mixed bacterialmore » cultures obtained from natural gas pipelines. Treatment with the pepper extracts affected the growth and metabolic activity of the microbial consortia. Specifically, the growth and metabolism of sulfate reducing bacteria was inhibited. The demonstration that pepper extracts can inhibit the growth and metabolism of sulfate reducing bacteria in mixed cultures is a significant observation validating a key hypothesis of the project. Future tests to determine the effects of pepper extracts on mature/established biofilms will be performed next.« less

  10. High-mesembrine Sceletium extract (Trimesemine™) is a monoamine releasing agent, rather than only a selective serotonin reuptake inhibitor.

    PubMed

    Coetzee, Dirk D; López, Víctor; Smith, Carine

    2016-01-11

    Extracts from and alkaloids contained in plants in the genus Sceletium have been reported to inhibit ligand binding to serotonin transporter. From this, the conclusion was made that Sceletium products act as selective serotonin-reuptake inhibitors. However, other mechanisms which may similarly result in the anxiolytic or anti-depressant effect ascribed to Sceletium, such as monoamine release, have not been investigated. The current study investigated simultaneously and at two consecutive time points, the effect of high-mesembrine Sceletium extract on both monoamine release and serotonin reuptake into both human astrocytes and mouse hippocampal neurons, as well as potential inhibitory effects on relevant enzyme activities. Human astrocytes and mouse hippocampal cells were treated with citalopram or Sceletium extract for 15 and 30min, after which protein expression levels of serotonin transporter (SERT) and vesicular monoamine transporter-2 (VAMT-2) was assessed using fluorescent immunocytochemistry and digital image analysis. Efficacy of inhibition of acetylcholinesterase (AChE) and monoamine oxidate-A (MAO-A) activity were assessed using the Ellman and Olsen methods (and appropriate controls) respectively. We report the first investigation of mechanism of action of Sceletium extract in the context of serotonin transport, release and reuptake in a cellular model. Cell viability was not affected by Sceletium treatment. High-mesembrine Sceletium extract down-regulated SERT expression similarly to citalopram. In addition, VMAT-2 was upregulated significantly in response to Sceletium treatment. The extract showed only relatively mild inhibition of AChE and MAO-A. We conclude that the serotonin reuptake inhibition activity ascribed to the Sceletium plant, is a secondary function to the monoamine-releasing activity of high-mesembrine Sceletium extract (Trimesemine(TM)). Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Artemisia princeps Inhibits Biofilm Formation and Virulence-Factor Expression of Antibiotic-Resistant Bacteria

    PubMed Central

    Kang, Sun-Young; Kim, Kang-Ju

    2015-01-01

    In this study, we used ethanol extract of A. princeps and investigated its antibacterial effects against MRSA. Ethanol extract of A. princeps significantly inhibited MRSA growth and organic acid production during glucose metabolism at concentrations greater than 1 mg/mL (P < 0.05). MRSA biofilm formation was observed using scanning electron microscopy (SEM) and safranin staining. A. princeps extract was found to inhibit MRSA biofilm formation at concentrations higher than 2 mg/mL significantly (P < 0.05). Bactericidal effects of the A. princeps were observed using confocal laser microscopy, which showed that A. princeps was bactericidal in a dose-dependent manner. Using real-time PCR, expression of mecA, an antibiotic-resistance gene of MRSA, was observed, along with that of sea, agrA, and sarA. A. princeps significantly inhibited mecA, sea, agrA, and sarA, mRNA expression at the concentrations greater than 1 mg/mL (P < 0.05). The phytochemical analysis of A. princeps showed a relatively high content of organic acids and glycosides. The results of this study suggest that the ethanol extract of A. princeps may inhibit proliferation, acid production, biofilm formation, and virulence gene expressions of MRSA, which may be related to organic acids and glycosides, the major components in the extract. PMID:26247012

  12. Artemisia princeps Inhibits Biofilm Formation and Virulence-Factor Expression of Antibiotic-Resistant Bacteria.

    PubMed

    Choi, Na-Young; Kang, Sun-Young; Kim, Kang-Ju

    2015-01-01

    In this study, we used ethanol extract of A. princeps and investigated its antibacterial effects against MRSA. Ethanol extract of A. princeps significantly inhibited MRSA growth and organic acid production during glucose metabolism at concentrations greater than 1 mg/mL (P < 0.05). MRSA biofilm formation was observed using scanning electron microscopy (SEM) and safranin staining. A. princeps extract was found to inhibit MRSA biofilm formation at concentrations higher than 2 mg/mL significantly (P < 0.05). Bactericidal effects of the A. princeps were observed using confocal laser microscopy, which showed that A. princeps was bactericidal in a dose-dependent manner. Using real-time PCR, expression of mecA, an antibiotic-resistance gene of MRSA, was observed, along with that of sea, agrA, and sarA. A. princeps significantly inhibited mecA, sea, agrA, and sarA, mRNA expression at the concentrations greater than 1 mg/mL (P < 0.05). The phytochemical analysis of A. princeps showed a relatively high content of organic acids and glycosides. The results of this study suggest that the ethanol extract of A. princeps may inhibit proliferation, acid production, biofilm formation, and virulence gene expressions of MRSA, which may be related to organic acids and glycosides, the major components in the extract.

  13. Anticancer Effects of Salvia miltiorrhiza Alcohol Extract on Oral Squamous Carcinoma Cells.

    PubMed

    Wang, Wen-Hung; Hsuan, Kuo-Yu; Chu, Ling-Ya; Lee, Chia-Ying; Tyan, Yu-Chang; Chen, Zong-Shiow; Tsai, Wan-Chi

    2017-01-01

    Researchers have reported significant effects from Danshen ( Salvia miltiorrhiza ) in terms of inhibiting tumor cell proliferation and promoting apoptosis in breast cancer, hepatocellular carcinomas, promyelocytic leukemia, and clear cell ovary carcinomas. Here we report our data indicating that Danshen extracts, especially alcohol extract, significantly inhibited the proliferation of the human oral squamous carcinoma (OSCC) cell lines HSC-3 and OC-2. We also observed that Danshen alcohol extract activated the caspase-3 apoptosis executor by impeding members of the inhibitor of apoptosis (IAP) family, but not by regulating the Bcl-2-triggered mitochondrial pathway in OSCC cells. Our data also indicate that the extract exerted promising effects in vivo, with HSC-3 tumor xenograft growth being suppressed by 40% and 69% following treatment with Danshen alcohol extract at 50 and 100 mg/kg, respectively, for 34 days. Combined, our results indicate appreciable anticancer activity and significant potential for Danshen alcohol extract as a natural antioxidant and herbal human oral cancer chemopreventive drug.

  14. Antifungal activity of different neem leaf extracts and the nimonol against some important human pathogens

    PubMed Central

    Mahmoud, D.A.; Hassanein, N.M.; Youssef, K.A.; Abou Zeid, M.A.

    2011-01-01

    This study was conducted to evaluate the effect of aqueous, ethanolic and ethyl acetate extracts from neem leaves on growth of some human pathogens (Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Aspergillus terreus, Candida albicans and Microsporum gypseum) in vitro. Different concentrations (5, 10, 15 and 20%) prepared from these extracts inhibited the growth of the test pathogens and the effect gradually increased with concentration. The 20% ethyl acetate extract gave the strongest inhibition compared with the activity obtained by the same concentration of the other extracts. High Performance Liquid Chromatography (HPLC) analysis of ethyl acetate extract showed the presence of a main component (nimonol) which was purified and chemically confirmed by Nuclear Magnetic Resonance (NMR) spectroscopic analysis. The 20% ethyl acetate extract lost a part of its antifungal effect after pooling out the nimonol and this loss in activity was variable on test pathogens. The purified nimonol as a separate compound did not show any antifungal activity when assayed against all the six fungal pathogens. PMID:24031718

  15. In vitro activity of Tridax procumbens against promastigotes of Leishmania mexicana.

    PubMed

    Martín-Quintal, Zhelmy; Moo-Puc, Rosa; González-Salazar, Francisco; Chan-Bacab, Manuel J; Torres-Tapia, Luis W; Peraza-Sánchez, Sergio R

    2009-04-21

    Tridax procumbens is an active herb against leishmaniasis. Leishmaniasis is a group of diseases caused by Leishmania protozoa. We investigated the antileishmanial activity of Tridax procumbens extracts and a pure compound against promastigotes of Leishmania mexicana, the causative agent of cutaneous leishmaniasis in the New World. Extracts and (3S)-16,17-didehydrofalcarinol (1) were obtained by chromatographic methods from Tridax procumbens, and the latter identified by spectroscopic analysis. The effect of these extracts and 1 on the growth inhibition of promastigotes of Leishmania mexicana was evaluated. In order to test the safety of extracts and 1, mammalian cells were treated with them, and cell viability was assessed using trypan blue and MTT. We demonstrated that extracts of Tridax procumbens and 1 showed a pronounced activity against Leishmania mexicana. The methanol extract inhibited promastigotes growth of Leishmania mexicana with a 50% inhibitory concentration (IC(50)) of 3 microg/ml, while oxylipin 1 exhibited the highest inhibition at IC(50)=0.478 microg/ml. In this study we report the biological activity of extracts and (3S)-16,17-didehydrofalcarinol (1), obtained from Tridax procumbens, on the promastigote form of Leishmania mexicana, with no effect upon mammalian cells.

  16. Inhibition of the recombinant cattle tick Rhipicephalus (Boophilus) annulatus glutathione S-transferase.

    PubMed

    Guneidy, Rasha A; Shahein, Yasser E; Abouelella, Amira M K; Zaki, Eman R; Hamed, Ragaa R

    2014-09-01

    Rhipicephalus (Boophilus) annulatus is a bloodsucking ectoparasite that causes severe production losses in the cattle industry. This study aims to evaluate the in vitro effects of tannic acid, hematin (GST inhibitors) and different plant extracts (rich in tannic acid) on the activity of the recombinant glutathione S-transferase enzyme of the Egyptian cattle tick R. annulatus (rRaGST), in order to confirm their ability to inhibit the parasitic essential detoxification enzyme glutathione S-transferase. Extraction with 70% ethanol of Hibiscus cannabinus (kenaf flowers), Punica granatum (red and white pomegranate peel), Musa acuminata (banana peel) (Musaceae), Medicago sativa (alfalfa seeds), Tamarindus indicus (seed) and Cuminum cyminum (cumin seed) were used to assess: (i) inhibitory capacities of rRaGST and (ii) their phenolic and flavonoid contents. Ethanol extraction of red pomegranate peel contained the highest content of phenolic compounds (29.95mg gallic acid/g dry tissue) compared to the other studied plant extracts. The highest inhibition activities of rRaGST were obtained with kenaf and red pomegranate peel (P. granatum) extracts with IC50 values of 0.123 and 0.136mg dry tissue/ml, respectively. Tannic acid was the more effective inhibitor of rRaGST with an IC50 value equal to 4.57μM compared to delphinidine-HCl (IC50=14.9±3.1μM). Gossypol had a weak inhibitory effect (IC50=43.7μM), and caffeic acid had almost no effect on tick GST activity. The IC50 values qualify ethacrynic acid as a potent inhibitor of rRaGST activity (IC50=0.034μM). Cibacron blue and hematin showed a considerable inhibition effect on rRaGST activity, and their IC50 values were 0.13μM and 7.5μM, respectively. The activity of rRaGST was highest for CDNB (30.2μmol/min/mg protein). The enzyme had also a peroxidatic activity (the specific activity equals 26.5μmol/min/mg protein). Both tannic acid and hematin inhibited rRaGST activity non-competitively with respect to GSH and competitively with respect to CDNB. While red pomegranate extracts inhibited rRaGST activity competitively with respect to GSH, uncompetitive inhibition was observed with respect to CDNB. Copyright © 2014 Elsevier GmbH. All rights reserved.

  17. An Alginate/Cyclodextrin Spray Drying Matrix to Improve Shelf Life and Antioxidant Efficiency of a Blood Orange By-Product Extract Rich in Polyphenols: MMPs Inhibition and Antiglycation Activity in Dysmetabolic Diseases.

    PubMed

    Lauro, Maria Rosaria; Crascì, Lucia; Giannone, Virgilio; Ballistreri, Gabriele; Fabroni, Simona; Sansone, Francesca; Rapisarda, Paolo; Panico, Anna Maria; Puglisi, Giovanni

    2017-01-01

    Alginate and β -cyclodextrin were used to produce easily dosable and spray-dried microsystems of a dried blood orange extract with antidysmetabolic properties, obtained from a by-product fluid extract. The spray-dried applied conditions were able to obtain a concentrate dried extract without the loss of AOA and with TPC and TMA values of 35-40% higher than that of the starting material. They were also effective in producing microparticles with 80-100% of encapsulation efficiency. The 2% sodium alginate was capable of improving the extract shelf life , while the beta-cyclodextrin (1 : 1 molar ratio with dried extract) prolonged the extract antioxidant efficiency by 6 hours. The good inhibition effect of the dried extract on the AGE formation and the MMP-2 and MMP-9 activity is presumably due to a synergic effect exerted by both anthocyanin and bioflavonoid extract compounds and was improved by the use of alginate and cyclodextrin.

  18. An Alginate/Cyclodextrin Spray Drying Matrix to Improve Shelf Life and Antioxidant Efficiency of a Blood Orange By-Product Extract Rich in Polyphenols: MMPs Inhibition and Antiglycation Activity in Dysmetabolic Diseases

    PubMed Central

    Giannone, Virgilio; Ballistreri, Gabriele; Fabroni, Simona; Rapisarda, Paolo; Panico, Anna Maria; Puglisi, Giovanni

    2017-01-01

    Alginate and β-cyclodextrin were used to produce easily dosable and spray-dried microsystems of a dried blood orange extract with antidysmetabolic properties, obtained from a by-product fluid extract. The spray-dried applied conditions were able to obtain a concentrate dried extract without the loss of AOA and with TPC and TMA values of 35–40% higher than that of the starting material. They were also effective in producing microparticles with 80–100% of encapsulation efficiency. The 2% sodium alginate was capable of improving the extract shelf life, while the beta-cyclodextrin (1 : 1 molar ratio with dried extract) prolonged the extract antioxidant efficiency by 6 hours. The good inhibition effect of the dried extract on the AGE formation and the MMP-2 and MMP-9 activity is presumably due to a synergic effect exerted by both anthocyanin and bioflavonoid extract compounds and was improved by the use of alginate and cyclodextrin. PMID:29230268

  19. Pharmacological Effects of Active Components of Chinese Herbal Medicine in the Treatment of Alzheimer's Disease: A Review.

    PubMed

    Wang, Zhi-Yong; Liu, Jian-Gang; Li, Hao; Yang, Hui-Ming

    2016-01-01

    Alzheimer's disease (AD), the most common neurodegenerative disorder associated with dementia, not only severely decreases the quality of life for its victims, but also brings a heavy economic burden to the family and society. Unfortunately, few chemical drugs designed for clinical applications have reached the expected preventive or therapeutic effect so far, and combined with their significant side-effects, there is therefore an urgent need for new strategies to be developed for AD treatment. Traditional Chinese Medicine has accumulated many experiences in the treatment of dementia during thousands of years of practice; modern pharmacological studies have confirmed the therapeutic effects of many active components derived from Chinese herbal medicines (CHM). Ginsenoside Rg1, extracted from Radix Ginseng, exerts a [Formula: see text]-secretase inhibitor effect so as to decrease A[Formula: see text] aggregation. It can also inhibit the apoptosis of neuron cells. Tanshinone IIA, extracted from Radix Salviae miltiorrhizae, and baicalin, extracted from Radix Scutellariae[Formula: see text] can inhibit the oxidative stress injury in neuronal cells. Icariin, extracted from Epimedium brevicornum, can decrease A[Formula: see text] levels and the hyperphosphorylation of tau protein, and can also inhibit oxidative stress and apoptosis. Huperzine A, extracted from Huperzia serrata, exerts a cholinesterase inhibitor effect. Evodiamine, extracted from Fructus Evodiae, and curcumin, extracted from Rhizoma Curcumae Longae, exert anti-inflammatory actions. Curcumin can act on A[Formula: see text] and tau too. Due to the advantages of multi-target effects and fewer side effects, Chinese medicine is more appropriate for long-term use. In this present review, the pharmacological effects of commonly used active components derived from Chinese herbal medicines in the treatment of AD are discussed.

  20. Panax ginseng extract antagonizes the effect of DKK-1-induced catagen-ike changes of hair follicles

    PubMed Central

    Lee, Yonghee; Kim, Su Na; Hong, Yong Deog; Park, Byung Cheol; Na, Yongjoo

    2017-01-01

    It is well known that Panax ginseng (PG) has various pharmacological effects such as anti-aging and anti-inflammation. In a previous study, the authors identified that PG extract induced hair growth by means of a mechanism similar to that of minoxidil. In the present study, the inhibitory effect of PG extract on Dickkopf-1 (DKK-1)-induced catagen-like changes in hair follicles (HFs) was investigated in addition to the underlying mechanism of action. The effects of PG extract on cell proliferation, anti-apoptotic effect, and hair growth were observed using cultured outer root sheath (ORS) keratinocytes and human HFs with or without DKK-1 treatment. The PG extract significantly stimulated proliferation and inhibited apoptosis, respectively, in ORS keratinocytes. PG extract treatment affected the expression of apoptosis-related genes Bcl-2 and Bax. DKK-1 inhibited hair growth, and PG extract dramatically reversed the effect of DKK-1 on ex vivo human hair organ culture. PG extract antagonizes DKK-1-induced catagen-like changes, in part, through the regulation of apoptosis-related gene expression in HFs. These findings suggested that PG extract may reduce hair loss despite the presence of DKK-1, a strong catagen inducer via apoptosis. PMID:28849028

  1. Danshen extract circumvents drug resistance and represses cell growth in human oral cancer cells.

    PubMed

    Yang, Cheng-Yu; Hsieh, Cheng-Chih; Lin, Chih-Kung; Lin, Chun-Shu; Peng, Bo; Lin, Gu-Jiun; Sytwu, Huey-Kang; Chang, Wen-Liang; Chen, Yuan-Wu

    2017-12-29

    Danshen is a common traditional Chinese medicine used to treat neoplastic and chronic inflammatory diseases in China. However, the effects of Danshen on human oral cancer cells remain relatively unknown. This study investigated the antiproliferative effects of a Danshen extract on human oral cancer SAS, SCC25, OEC-M1, and KB drug-resistant cell lines and elucidated the possible underlying mechanism. We investigated the anticancer potential of the Danshen extract in human oral cancer cell lines and an in vivo oral cancer xenograft mouse model. The expression of apoptosis-related molecules was evaluated through Western blotting, and the concentration of in vivo apoptotic markers was measured using immunohistochemical staining. The antitumor effects of 5-fluorouracil and the Danshen extract were compared. Cell proliferation assays revealed that the Danshen extract strongly inhibited oral cancer cell proliferation. Cell morphology studies revealed that the Danshen extract inhibited the growth of SAS, SCC25, and OEC-M1 cells by inducing apoptosis. The Flow cytometric analysis indicated that the Danshen extract induced cell cycle G0/G1 arrest. Immunoblotting analysis for the expression of active caspase-3 and X-linked inhibitor of apoptosis protein indicated that Danshen extract-induced apoptosis in human oral cancer SAS cells was mediated through the caspase pathway. Moreover, the Danshen extract significantly inhibited growth in the SAS xenograft mouse model. Furthermore, the Danshen extract circumvented drug resistance in KB drug-resistant oral cancer cells. The study results suggest that the Danshen extract could be a potential anticancer agent in oral cancer treatment.

  2. Antioxidative effects of cinnamomi cortex: A potential role of iNOS and COX-II

    PubMed Central

    Chung, Jin-Won; Kim, Jeong-Jun; Kim, Sung-Jin

    2011-01-01

    Background: Cinnamomi cortex has wide varieties of pharmacological actions such as anti-inflammatory action, anti-platelet aggregation, and improving blood circulation. In this study, we tested to determine whether the Cinnamomi cortex extract has antioxidant activities. Materials and Methods: Antioxidative actions were explored by measuring free radical scavenging activity, NO levels, and reducing power. The mechanism of antioxidative action of Cinnamomi cortex was determined by measuring iNOS and COX-II expression in lipopolysaccharide (LPS) stimulated Raw cells. Results: Seventy percent methanolic extract of Cinnamomi cortex exerted significant 1,1-diphenyl--2--picrylhydrazyl (DPPH) free radicals and NO scavenging activities in a dose-dependent manner. More strikingly, the Cinnamomi cortex extract exerted dramatic reducing power activity (13-fold over control). Production of iNOS induced by LPS was significantly inhibited by the Cinnamomi cortex extract, suggesting that it inhibits NO production by suppressing iNOS expression. Additionally, COX-2 induced by LPS was dramatically inhibited by the Cinnamomi cortex extract. Conclusion: These results suggest that 70% methanolic extract of Cinnamomi cortex exerts significant antioxidant activity via inhibiting iNOS and COX-II induction. PMID:22262934

  3. Inhibition of proinflammatory activities of major periodontal pathogens by aqueous extracts from elder flower (Sambucus nigra).

    PubMed

    Harokopakis, Evlambia; Albzreh, Mohamad H; Haase, Elaine M; Scannapieco, Frank A; Hajishengallis, George

    2006-02-01

    Prolonged induction of excessive levels of inflammatory mediators contributes to the pathogenesis of chronic disease states, such as periodontitis. It is thus important to develop safe and effective anti-inflammatory strategies for therapeutic reasons. In this study, we determined the ability of aqueous extracts from elder flower (Sambucus nigra) to inhibit the proinflammatory activity of major virulence factors from the periodontal pathogens Porphyromonas gingivalis and Actinobacillus actinomycetemcomitans. Monocytes/macrophages or neutrophils were incubated with whole cells of P. gingivalis, A. actinomycetemcomitans, or purified components thereof (lipopolysaccharide and fimbriae) in the absence or presence of elder flower extract and were assayed for cytokine production, integrin activation, or induction of the oxidative burst. The elder flower extract was found to potently inhibit all proinflammatory activities tested. Investigation of the underlying mechanisms revealed that the anti-inflammatory extract inhibited activation of the nuclear transcription factor kappaB and of phosphatidylinositol 3-kinase. The elder flower extract displays useful anti-inflammatory properties that could be exploited therapeutically for the control of inflammation in human periodontitis.

  4. Gentiolactone, a Secoiridoid Dilactone from Gentiana triflora, Inhibits TNF-α, iNOS and Cox-2 mRNA Expression and Blocks NF-κB Promoter Activity in Murine Macrophages

    PubMed Central

    Yamada, Hidetoshi; Kikuchi, Sayaka; Inui, Tomoki; Takahashi, Hideyuki; Kimura, Ken-ichi

    2014-01-01

    Background Gentian roots have been used as a herbal medicine because of their anti-inflammatory activities. However, the molecular mechanisms of these anti-inflammatory effects remain to be completely explained. Methods and Findings Here, we investigated anti-inflammatory effects of gentian roots and showed that root extracts from Gentiana triflora inhibited lipopolysaccharide (LPS)-induced expression of TNF-α in RAW264.7 cells. The extracts also contained swertiamarin and gentiopicroside, which are the major active compounds of gentian roots; however, neither compound had any effect on LPS-induced TNF-α production in our test system. We isolated gentiolactone as an inhibitor of TNF-α production from the extracts. Gentiolactone also inhibited LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (Cox-2) expression at the mRNA level. Moreover, gentiolactone suppressed NF-κB transcriptional activity without inhibition of IκB degradation or NF-κB nuclear transport. Conclusions Our results indicate that inhibition of TNF-α, iNOS and Cox-2 expression by gentiolactone is one of the mechanisms of the anti-inflammatory properties of gentian roots. PMID:25423092

  5. Evaluation of antitumoral and antimicrobial activity of Morinda lcitrifolia L. grown in Southeast Brazil.

    PubMed

    Candida, Thamyris; França, Jerônimo Pereira de; Chaves, Alba Lucilvânia Fonseca; Lopes, Fernanda Andrade Rodrigues; Gaiba, Silvana; Sacramento, Celio Kersul do; Ferreira, Lydia Masako; França, Lucimar Pereira de

    2014-01-01

    To evaluate the antitumor and antimicrobial activity of ethanolic extract of Morinda citrifolia L. fruit cultivated in southeastern Brazil. Preparation ethanolic extract of the fruit of Morinda citrifolia L. Culture of melanoma cells B16-F10 for treatment with ethanolic extract of Morinda citrifolia L. fruit to determine cell viability by MTT and determination temporal effect of ethanolic extract fruit on the cell growth B16-F10 for 8 days. Evaluation of antimicrobial activity of ethanolic extract fruit against Staphylococcus aureus and Escherichia coli by determination of Minimum Inhibitory Concentration (MIC). The ethanolic extract of Morinda citrifolia L. fruit (10mg/mL) decreased cellular activity and inhibited 45% the rate of cell proliferation of B16-F10 melanoma treated during period studied. The ethanolic extract of Morinda citrifolia L. fruit demonstrated antimicrobial activity inhibiting the growth of both microorganisms studied. Staphylococcus aureus was less resistant to ethanolic extract of Morinda citrifolia L. fruit than Escherichia coli, 1 mg/mL and 10 mg/mL, respectively. What these results indicate that the ethanolic extract of the fruit of Morinda citrifolia L. showed antitumor activity with inhibition of viability and growth of B16-F10 cells and also showed antibacterial activity as induced inhibition of growth of Staphylococcus aureus and Escherichia coli.

  6. Analgesic and antipyretic effects of Sansevieria trifasciata leaves.

    PubMed

    Anbu, Jeba Sunilson J; Jayaraj, P; Varatharajan, R; Thomas, John; Jisha, James; Muthappan, M

    2009-07-03

    The ethanol and water extracts of Sansevieria trifasciata leaves showed dose-dependent and significant (P < 0.05) increase in pain threshold in tail-immersion test. Moreover, both the extracts (100 - 200 mg/kg) exhibited a dose-dependent inhibition of writhing and also showed a significant (P < 0.001) inhibition of both phases of the formalin pain test. The ethanol extract (200 mg/kg) significantly (P < 0.01) reversed yeast-induced fever. Preliminary phytochemical screening of the extracts showed the presence of alkaloids, flavonoids, saponins, glycosides, terpenoids, tannins, proteins and carbohydrates.

  7. Anti-arthritic effects and toxicity of the essential oils of turmeric (Curcuma longa L.).

    PubMed

    Funk, Janet L; Frye, Jennifer B; Oyarzo, Janice N; Zhang, Huaping; Timmermann, Barbara N

    2010-01-27

    Turmeric (Curcuma longa L., Zingiberaceae) rhizomes contain two classes of secondary metabolites, curcuminoids and the less well-studied essential oils. Having previously identified potent anti-arthritic effects of the curcuminoids in turmeric extracts in an animal model of rheumatoid arthritis (RA), studies were undertaken to determine whether the turmeric essential oils (TEO) were also joint protective using the same experimental model. Crude or refined TEO extracts dramatically inhibited joint swelling (90-100% inhibition) in female rats with streptococcal cell wall (SCW)-induced arthritis when extracts were administered via intraperitoneal injection to maximize uniform delivery. However, this anti-arthritic effect was accompanied by significant morbidity and mortality. Oral administration of a 20-fold higher dose TEO was nontoxic, but only mildly joint-protective (20% inhibition). These results do not support the isolated use of TEO for arthritis treatment but, instead, identify potential safety concerns in vertebrates exposed to TEO.

  8. Anti-Arthritic Effects and Toxicity of the Essential Oils of Turmeric (Curcuma longa L.)

    PubMed Central

    Funk, Janet L.; Frye, Jennifer B.; Oyarzo, Janice N.; Zhang, Huaping; Timmermann, Barbara N.

    2010-01-01

    Turmeric (Curcuma longa L., Zingiberaceae) rhizomes contain two classes of secondary metabolites, curcuminoids and the less well-studied essential oils. Having previously identified potent anti-arthritic effects of the curcuminoids in turmeric extracts in an animal model of rheumatoid arthritis (RA), studies were undertaken to determine whether the turmeric essential oils (TEO) were also joint protective using the same experimental model. Crude or refined TEO extracts dramatically inhibited joint swelling (90-100% inhibition) in female rats with streptococcal cell wall (SCW)-induced arthritis when extracts were administered via intraperitoneal injection to maximize uniform delivery. However, this anti-arthritic effect was accompanied by significant morbidity and mortality. Oral administration of a 20-fold higher dose TEO was non-toxic, but only mildly joint-protective (20% inhibition). These results do not support the isolated use of TEO for arthritis treatment, but, instead, identify potential safety concerns in vertebrates exposed to TEO. PMID:20025215

  9. In vivo and in vitro anti-tumor and anti-metastasis effects of Coriolus versicolor aqueous extract on mouse mammary 4T1 carcinoma.

    PubMed

    Luo, Ke-Wang; Yue, Grace Gar-Lee; Ko, Chun-Hay; Lee, Julia Kin-Ming; Gao, Si; Li, Long-Fei; Li, Gang; Fung, Kwok-Pui; Leung, Ping-Chung; Lau, Clara Bik-San

    2014-01-01

    Coriolus versicolor (CV), a medicinal mushroom widely consumed in Asian countries, has been demonstrated to be effective in stimulation of immune system and inhibition of tumor growth. The present study aimed to investigate the anti-tumor and anti-metastasis effects of CV aqueous extract in mouse mammary carcinoma 4T1 cells and in 4T1-tumor bearing mouse model. Our results showed that CV aqueous extract (0.125-2 mg/ml) did not inhibit 4T1 cell proliferation while the non-cytotoxic dose of CV extract (1-2 mg/ml) significantly inhibited cell migration and invasion (p<0.05). Besides, the enzyme activities and protein levels of MMP-9 were suppressed by CV extract significantly. Animal studies showed that CV aqueous extract (1 g/kg, orally-fed daily for 4 weeks) was effective in decreasing the tumor weight by 36%, and decreased the lung metastasis by 70.8% against untreated control. Besides, micro-CT analysis of the tumor-bearing mice tibias indicated that CV extract was effective in bone protection against breast cancer-induced bone destruction as the bone volume was significantly increased. On the other hand, CV aqueous extract treatments resulted in remarkable immunomodulatory effects, which was reflected by the augmentation of IL-2, 6, 12, TNF-α and IFN-γ productions from the spleen lymphocytes of CV-treated tumor-bearing mice. In conclusion, our results demonstrated for the first time that the CV aqueous extract exhibited anti-tumor, anti-metastasis and immunomodulation effects in metastatic breast cancer mouse model, and could protect the bone from breast cancer-induced bone destruction. These findings provided scientific evidences for the clinical application of CV aqueous extract in breast cancer patients. Copyright © 2014 Elsevier GmbH. All rights reserved.

  10. Prospective bacterial quorum sensing inhibitors from Indian medicinal plant extracts.

    PubMed

    Tiwary, B K; Ghosh, R; Moktan, S; Ranjan, V K; Dey, P; Choudhury, D; Dutta, S; Deb, D; Das, A P; Chakraborty, R

    2017-07-01

    As virulence of many pathogenic bacteria is regulated by the phenomenon of quorum sensing (QS), the present study aimed to find the QS-inhibiting (QS-I) property (if any) in 61 Indian medicinal plants. The presence of QS-I compound in the leaf extract was evaluated by its ability to inhibit production of pigment in Chromobacterium violaceum MTCC 2656 (violacein) and Pseudomonas aeruginosa MTCC 2297 (pyocyanin) or swarming of P. aeruginosa MTCC 2297. Extracts of three plants, Astilbe rivularis, Fragaria nubicola and Osbeckia nepalensis, have shown a dose-dependent inhibition of violacein production with no negative effect on bacterial growth. Inhibition of pyocyanin pigment production and swarming motility in P. aeruginosa MTCC 2297 was also shown. Based on the results obtained by gas chromatography-mass spectroscopy (GC-MS) and thin-layer chromatography-direct bioautography (TLC-DB), it was concluded that triterpenes and flavonoid compounds found in the three plant extracts could have QS-I activity. A novel alternative prospect to prevent bacterial infections without inhibiting the growth is to apply chemicals that inhibit quorum sensing mechanism of the pathogens. Antiquorum property of 61 medicinal plants was evaluated by the ability of their leaf extract(s) to inhibit production of pigment (violacein in Chromobacterium violaceum MTCC 2656, pyocyanin in Pseudomonas aeruginosa MTCC 2297) or swarming in P. aeruginosa MTCC 2297. The most prospective plants (for the development of quorum sensing inhibitor), showing inhibition of violacein production without affecting bacterial growth, were Astilbe rivularis, Fragaria nubicola and Osbeckia nepalensis. © 2017 The Society for Applied Microbiology.

  11. Mast cell degranulation and calcium influx are inhibited by an Echinacea purpurea extract and the alkylamide dodeca-2E,4E-dienoic acid isobutylamide.

    PubMed

    Gulledge, Travis V; Collette, Nicholas M; Mackey, Emily; Johnstone, Stephanie E; Moazami, Yasamin; Todd, Daniel A; Moeser, Adam J; Pierce, Joshua G; Cech, Nadja B; Laster, Scott M

    2018-02-15

    Native Americans used plants from the genus Echinacea to treat a variety of different inflammatory conditions including swollen gums, sore throats, skin inflammation, and gastrointestinal disorders. Today, various Echinacea spp. preparations are used primarily to treat upper respiratory infections. The goal of this study was to evaluate the effects of an ethanolic E. purpurea (L) Moench root extract and the alkylamide dodeca-2E,4E-dienoic acid isobutylamide (A15) on mast cells, which are important mediators of allergic and inflammatory responses. Inhibition of mast cell activation may help explain the traditional use of Echinacea. A15 was evaluated for its effects on degranulation, calcium influx, cytokine and lipid mediator production using bone marrow derived mast cells (BMMCs) and the transformed rat basophilic leukemia mast cell line RBL-2H3. Methods included enzymatic assays, fluorimetry, ELISAs, and microscopy. A root extract of E. purpurea, and low and high alkylamide-containing fractions prepared from this extract, were also tested for effects on mast cell function. Finally, we tested A15 for effects on calcium responses in RAW 264.7 macrophage and Jurkat T cell lines. A15 inhibited ß-hexosaminidase release from BMMCs and RBL-2H3 cells after treatment with the calcium ionophore A23187 by 83.5% and 48.4% at 100µM, respectively. Inhibition also occurred following stimulation with IgE anti-DNP/DNP-HSA. In addition, A15 inhibited 47% of histamine release from A23187-treated RBL-2H3 cells. A15 prevented the rapid rise in intracellular calcium following FcεRI crosslinking and A23187 treatment suggesting it acts on the signals controlling granule release. An E. purpurea root extract and a fraction with high alkylamide content derived from this extract also displayed these activities while fractions with little to no detectable amounts of alkylamide did not. A15 mediated inhibition of calcium influx was not limited to mast cells as A23187-stimulated calcium influx was blocked in both RAW 264.7 and Jurkat cell lines with 60.2% and 43.6% inhibition at 1min post-stimulation, respectively. A15 also inhibited the release of TNF-α, and PGE 2 to a lesser degree, following A23187 stimulation indicating its broad activity on mast cell mediator production. These findings suggest that Echinacea extracts and alkylamides may be useful for treating allergic and inflammatory responses mediated by mast cells. More broadly, since calcium is a critical second messenger, the inhibitory effects of alkylamides on calcium uptake would be predicted to dampen a variety of pathological responses, suggesting new uses for this plant and its constituents. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Functional Characterization of Epitheaflagallin 3-O-Gallate Generated in Laccase-Treated Green Tea Extracts in the Presence of Gallic Acid.

    PubMed

    Itoh, Nobuya; Kurokawa, Junji; Isogai, Yasuhiro; Ogasawara, Masaru; Matsunaga, Takayuki; Okubo, Tsutomu; Katsube, Yuji

    2017-12-06

    Epitheaflagallin (ETFG) and epitheaflagallin 3-O-gallate (ETFGg) are minor polyphenols in black tea extract that are enzymatically synthesized from epigallocatechin (EGC) and epigallocatechin gallate (EGCg), respectively, in green tea extract via laccase oxidation in the presence of gallic acid. The constituents of laccase-treated green tea extract in the presence of gallic acid are thus quite different from those of nonlaccase-treated green tea extract: EGC and EGCg are present in lower concentrations, and ETFG and ETFGg are present in higher concentrations. Additionally, laccase-treated green tea extract contains further polymerized catechin derivatives, comparable with naturally fermented teas such as oolong tea and black tea. We found that ETFGg and laccase-treated green tea extracts exhibit versatile physiological functions in vivo and in vitro, including antioxidative activity, pancreatic lipase inhibition, Streptococcus sorbinus glycosyltransferase inhibition, and an inhibiting effect on the activity of matrix metalloprotease-1 and -3 and their synthesis by human gingival fibroblasts. We confirmed that these inhibitory effects of ETFGg in vitro match well with the results obtained by docking simulations of the compounds with their target enzymes or noncatalytic protein. Thus, ETFGg and laccase-treated green tea extracts containing ETFGg are promising functional food materials with potential antiobesity and antiperiodontal disease activities.

  13. A comparison of the ability of Bellucia dichotoma Cogn. (Melastomataceae) extract to inhibit the local effects of Bothrops atrox venom when pre-incubated and when used according to traditional methods.

    PubMed

    Mourão de Moura, Valéria; Serra Bezerra, Adrielle N; Veras Mourão, Rosa Helena; Varjão Lameiras, Juliana L; Almeida Raposo, Juliana D; Luckwu de Sousa, Rafael; Boechat, Antônio Luiz; Bezerra de Oliveira, Ricardo; de Menezes Chalkidis, Hipocrátes; Dos-Santos, Maria Cristina

    2014-07-01

    Bellucia dichotoma Cogn. (Melastomataceae) is one of various plant species used in folk medicine in the west of the state of Pará, Brazil, to treat snake bites. Many studies have been carried out to evaluate the effectiveness of anti-snake bite plants, but few of these use the same preparation methods and doses as those traditionally used by the local populations. This study therefore compared inhibition of the main local effects of B. atrox venom (BaV) by aqueous extract of B. dichotoma (AEBd) administered according to traditional methods and pre-incubated with BaV). The concentrations of phenolic compounds (tannins and flavonoids) in AEBd were determined by colorimetric assays. The effectiveness of AEBd in inhibiting the hemorrhagic and edematogenic activities of BaV was evaluated in mice in four different experimental in vivo protocols: (1) pre-incubation (venom:extract, w/w); (2) pre-treatment (p.o.); (3) post-treatment (p.o.); and (4) AEBd (p.o.) in combination with Bothrops antivenom (BA) (i.v.). To assess in vitro inhibition of BaV phospholipase A₂ activity, the pre-incubation method or incorporation of AEBd or BA in agarose gels were used. The effect of AEBd on BaV was determined by SDS-PAGE, zymography and Western blot. Colorimetric assays revealed higher concentrations of (condensed and hydrolyzable) tannins than flavonoids in AEBd. Hemorrhagic activity was completely inhibited using the pre-incubation protocol. However, with pre-treatment there was no significant inhibition for the concentrations tested, and with the post-treatment only the 725 mg/kg dose of AEBd was able to inhibit 40.5% (p = 0.001) of the hemorrhagic activity of BaV. Phospholipase A₂ activity was only inhibited when AEBd was pre-incubated with BaV. BaV-induced edema was completely inhibited with pre-incubation (p < 0.05) and significantly reduced (p < 0.05) with pre- and post-treatment (p.o.) for the concentrations tested. The reduction in local edema was even greater when AEBd was administered in combination with BA. The SDS-PAGE profiles showed that several of the BaV protein (SDS-PAGE) and enzyme (zymography) bands were not detected when the venom was pre-incubated, and Western blot revealed that this was not caused by the AEBd enzymes observed in the zymogram. The "pseudo inhibition" observed after pre-incubation in this study may be due to the presence of tannins in the extract, which could act as chelating agents, removing metalloproteins and Ca²⁺ ions and thus inhibiting hemorrhagin and PLA₂ activity. However, when administered according to traditional methods, B. dichotoma extract was effective in blocking BaV-induced edematogenic activity and had an additional effect on inhibition of this activity by BA. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. A botulinum neurotoxin-like function of Potentilla chinensis extract that inhibits neuronal SNARE complex formation, membrane fusion, neuroexocytosis, and muscle contraction.

    PubMed

    Jung, Chang-Hwa; Choi, Jin-Kyu; Yang, Yoosoo; Koh, Hyun-Ju; Heo, Paul; Yoon, Kee-Jung; Kim, Sehyun; Park, Won-Seok; Shing, Hong-Ju; Kweon, Dae-Hyuk

    2012-09-01

    Botulinum neurotoxins (BoNTs) are popularly used to treat various diseases and for cosmetic purposes. They act by blocking neurotransmission through specific cleavage of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. Recently, several polyphenols were shown to interfere with SNARE complex formation by wedging into the hydrophobic core interface, thereby leading to reduced neuroexocytosis. In order to find industrially-viable plant extract that functions like BoNT, 71 methanol extracts of flowers were screened and BoNT-like activity of selected extract was evaluated. After evaluating the inhibitory effect of 71 flower methanol extracts on SNARE complex formation, seven candidates were selected and they were subjected to SNARE-driven membrane fusion assay. Neurotransmitter release from neuronal PC12 cells and SNARE complex formation inside the cell was also evaluated. Finally, the effect of one selected extract on muscle contraction and digit abduction score was determined. The extract of Potentilla chinensis Ser. (Rosaceae)(Chinese cinquefoil) flower inhibited neurotransmitter release from neuronal PC12 cells by approximately 90% at a concentration of 10 μg/mL. The extract inhibited neuroexocytosis by interfering with SNARE complex formation inside cells. It reduced muscle contraction of phrenic nerve-hemidiaphragm by approximately 70% in 60 min, which is comparable to the action of the Ca²⁺-channel blocker verapamil and BoNT type A. While BoNT blocks neuroexocytosis by cleaving SNARE proteins, the Potentilla chinensis extract exhibited the same activity by inhibiting SNARE complex formation. The extract paralyzed muscle as efficiently as BoNT, suggesting the potential versatility in cosmetics and therapeutics.

  15. In Vivo Inhibition of Lipid Accumulation in Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Sulistiyani; Purwakusumah, E. P.; Andrianto, D.

    2017-03-01

    This is a preliminary research report on the use of Caenorhabditis elegans as a model to establish anti-obesity screening assay of the natural plant resources. Nematode C. elegans has been used as experimental animal model for understanding lipid accumulation. The objective of this research was to investigate the effect of selected plant extracts on lipid accumulation in C. elegans. Currently no report could be found regarding lipid accumulation in C.elegans treated with ethanolic leaf extracts of jabon merah (Anthocephalus macrophyllus), jati belanda (Guazuma ulmifolia), and Mindi (Melia Azedarach) plants. Lipid accumulation was determined qualitatively using lipid staining method and quantitatively by colorimetry using sulpho-phospho-vanillin reagent. Data showed that lipid accumulation was inhibited up to 72% by extract of M. azedarach, about 35% by both of A. macrophyllus and G. ulmifolia extracts, and up to 25% by orlistat (a synthetic slimming drug). Ethanolic extract of A. macrophyllus, G. ulmifolia, and M. azedarach leaves were shown to inhibit lipid accumulation in C. elegans and M. azedarach leaves extracts was the most effective inhibitor. C.elegans were shown to be an effective model for in vivo lipid accumulation mechanism and potential to be used as a rapid screening assay for bioactive compounds with lipid accumulation inhibitory activity.

  16. Synergistic effect of apple extracts and quercetin 3-beta-d-glucoside combination on antiproliferative activity in MCF-7 human breast cancer cells in vitro.

    PubMed

    Yang, Jun; Liu, Rui Hai

    2009-09-23

    Breast cancer is the most frequently diagnosed cancer in women. An alternative strategy to reduce the risk of cancer is through dietary modification. Although phytochemicals naturally occur as complex mixtures, little information is available regarding possible additive, synergistic, or antagonistic interactions among compounds. The antiproliferative activity of apple extracts and quercetin 3-beta-d-glucoside (Q3G) was assessed by measurement of the inhibition of MCF-7 human breast cancer cell proliferation. Cell cytotoxicity was determined by the methylene blue assay. The two-way combination of apple plus Q3G was conducted. In this two-way combination, the EC(50) values of apple extracts and Q3G were 2- and 4-fold lower, respectively, than those of apple extracts and Q3G alone. The combination index (CI) values at 50 and 95% inhibition rates were 0.76 +/- 0.16 and 0.42 +/- 0.10, respectively. The dose-reduction index (DRI) values of the apple extracts and Q3G to achieve a 50% inhibition effect were reduced by 2.03 +/- 0.55 and 4.28 +/- 0.39-fold, respectively. The results suggest that the apple extracts plus Q3G combination possesses a synergistic effect in MCF-7 cell proliferation.

  17. Allelopathic effects of the aqueous extract of the leaf and seed of Leucaena leucocephala on three selected weed species

    NASA Astrophysics Data System (ADS)

    Ishak, Muhamad Safwan; Sahid, Ismail

    2014-09-01

    A laboratory experiment was conducted to study the allelopathic effects of the aqueous extract of the leaf and seed of Leucaena leucocephala. The aqueous extracts were individually tested on three selected weed species, namely goatweed (Ageratum conyzoides), coat buttons (Tridax procumbens) and lilac tasselflower (Emilia sonchifolia). The allelopathic effects of the leaf and seed extracts on germination, shoot length, root length and fresh weight of each of the selected weed species were determined. Germination of goatweed, coat buttons and lilac tasselflower were inhibited by the aqueous extracts of both the leaf and seed of L. leucocephala and was concentration dependent. Different concentrations of the aqueous extracts showed various germination patterns on the selected weeds species. Seedling length and fresh weight of goatweed, coat buttons and lilac tasselflower were reduced in response to respective increasing concentrations of the seed extracts. Maximum inhibition by the aqueous seed extract was observed more on the root rather than the shoot growth. The aqueous seed extract at T3 concentration reduced root length of goatweed, coat buttons and lilac tasselflower by 95%, 86% and 91% (of the control) respectively. The aqueous seed extract showed greater inhibitory effects than that of the aqueous leaf extract.

  18. Effect of Neem Leaf Extract and Neem Oil on Penicillium Growth, Sporulation, Morphology and Ochratoxin A Production

    PubMed Central

    Mossini, Simone A. G.; Arrotéia, Carla C.; Kemmelmeier, Carlos

    2009-01-01

    In vitro trials were conducted to evaluate the effect of Azadirachta indica (neem) extracts on mycelial growth, sporulation, morphology and ochratoxin A production by P. verrucosum and P. brevicompactum. The effect of neem oil extract from seeds and leaf was evaluated at 0.125; 0.25 and 0.5% and 6.25 and 12.5 mg/mL, respectively, in Yeast Extract Sucrose (YES) medium. Ochratoxin A production was evaluated by a thin-layer chromatography technique. Oil extracts exhibited significant (p ≤ 0.05) reduction of growth and sporulation of the fungi. No inhibition of ochratoxin A production was observed. Given its accessibility and low cost, neem oil could be implemented as part of a sustainable integrated pest management strategy for plant disease, as it has been shown to be fungitoxic by inhibition of growth and sporulation. PMID:22069528

  19. Effect of neem leaf extract and neem oil on Penicillium growth, sporulation, morphology and ochratoxin A production.

    PubMed

    Mossini, Simone A G; Arrotéia, Carla C; Kemmelmeier, Carlos

    2009-09-01

    In vitro trials were conducted to evaluate the effect of Azadirachtaindica (neem) extracts on mycelial growth, sporulation, morphology and ochratoxin A production by P. verrucosum and P. brevicompactum. The effect of neem oil extract from seeds and leaf was evaluated at 0.125; 0.25 and 0.5% and 6.25 and 12.5 mg/mL, respectively, in Yeast Extract Sucrose (YES) medium. Ochratoxin A production was evaluated by a thin-layer chromatography technique. Oil extracts exhibited significant (p ≤ 0.05) reduction of growth and sporulation of the fungi. No inhibition of ochratoxin A production was observed. Given its accessibility and low cost, neem oil could be implemented as part of a sustainable integrated pest management strategy for plant disease, as it has been shown to be fungitoxic by inhibition of growth and sporulation.

  20. In vitro and in vivo anti-allergic effects of Arctium lappa L.

    PubMed

    Knipping, Karen; van Esch, Elisabeth C A M; Wijering, Selva C; van der Heide, Sicco; Dubois, Anthony E; Garssen, Johan

    2008-11-01

    The discovery of drugs that can be used for the treatment of allergic disease is important in human health. Arctium lappa Linne (Compositae) (AL) has been used as a traditional medicine in Brazil and throughout Asia and is known to have an anti-inflammatory effect. In this study, the inhibitory effects of AL on degranulation and the release of mediators as well as on inhibition of cys-leukotriene biosynthesis by basophils were investigated. AL was selected out of 10,000 herbal extracts in a set-up for high throughput screening in which the degree of degranulation was monitored by the release of beta-hexosaminidase from rat basophil leukemia (RBL-2H3) cells. The AL extract significantly reduced degranulation and biosynthesis of cys-leukotrienes of human basophils in peripheral blood mono-nuclear cells (PBMCs) (50% inhibitory concentration [IC(50)] = 8.3 and 11.4 microg/ml, respectively). Viability and metabolic activity of the PBMCs were not affected. Although arctiin, the active component of AL that has been described in the literature, was not able to reduce degranulation in RBL-2H3 cells, a single high-performance liquid chromatography (HPLC) fraction from the AL extract inhibited beta-hexosaminidase release (IC(50) = 22.2 microg/ml). Topical administration of an aqueous extract of AL (5 mg/ear) on the ear of whey-sensitized mice 4 hrs before challenge with whey in the ear inhibited acute ear swelling by 50% in an in vivo cow's milk allergic model. The extract had no effect in this model when administered orally. In conclusion, the active component present in the active HPLC fraction of the AL extract was able to significantly reduce the release of inflammatory mediators through inhibition of degranulation and cys-leukotriene release in vitro. In addition, this active component was able to inhibit acute skin response in mice in vivo, indicating that AL is a very promising natural component for use in anti-allergic treatment.

  1. HPTLC Bioautography Guided Isolation of α-Glucosidase Inhibiting Compounds from Justicia secunda Vahl (Acanthaceae).

    PubMed

    Theiler, Barbara A; Istvanits, Stefanie; Zehl, Martin; Marcourt, Laurence; Urban, Ernst; Caisa, Lugardo O Espinoza; Glasl, Sabine

    2017-03-01

    α-Glucosidase inhibitors form an essential basis for the development of novel drugs in diabetes type 2 treatment. Searching for α-glucosidase inhibitors in plants, TLC bioautographic assays have been established and improved within the last years. In traditional medicine, extracts from the leaves of Justicia secunda Vahl are used to treat diabetes mellitus symptoms. To screen for α-glucosidase inhibitors in J. secunda via HPTLC bioautography. Methodology - Extracts from the leaves of J. secunda and fractions thereof were evaluated in terms of their α-glucosidase inhibiting potential by subjecting them to HPTLC bioautography. The aqueous (AQ) fraction deriving from the methanol extract was further fractionated via column chromatography on polystyrene Diaion® HP-20. Two AQ subfractions revealed active compounds, which were isolated via preparative HPTLC and semipreparative HPLC. Their identification and structure elucidation was achieved employing HPLC-ESI-MS n , HRESI-MS, and NMR analyses. α-Glucosidase inhibitors were visualised as white zones on violet background on the TLC plate. The crude water extract, the methanol extract, and the methanol extract derived AQ fraction showed α-glucosidase inhibiting effects. In the latter, two diastereomeric mixtures responsible for the α-glucosidase inhibition were enriched. They were identified as the novel 2-caffeoyloxy-4-hydroxy-glutaric acid and the diastereomers secundarellone B and C. The current study presents the α-glucosidase inhibiting potential of J. secunda supporting its traditional medicinal use in diabetes mellitus treatment. HPTLC bioautography screening for α-glucosidase inhibitors provides a simple and effective method for the investigation of complex samples, such as plant extracts. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Flavonoids in Helichrysum pamphylicum inhibit mammalian type I DNA topoisomerase.

    PubMed

    Topcu, Zeki; Ozturk, Bintug; Kucukoglu, Ozlem; Kilinc, Emrah

    2008-01-01

    DNA topoisomerases are important targets for cancer chemotherapy. We investigated the effects of a methanolic extract of Helichrysum pamphylicum on mammalian DNA topoisomerase I via in vitro plasmid supercoil relaxation assays. The extracts manifested a considerable inhibition of the enzyme's activity in a dose-dependent manner. We also performed a HPLC analysis to identify the flavonoid content of the H. pamphylicum extract and tested the identified flavonoids; luteolin, luteolin-4-glucoside, naringenin, helichrysinA and isoquercitrin, on DNA topoisomerase I activity. The measurement of the total antioxidant capacity of the flavonoid standards suggested that the topoisomerase inhibition might be correlated with the antioxidant capacity of the plant.

  3. Saw palmetto extracts potently and noncompetitively inhibit human alpha1-adrenoceptors in vitro.

    PubMed

    Goepel, M; Hecker, U; Krege, S; Rübben, H; Michel, M C

    1999-02-15

    We wanted to test whether phytotherapeutic agents used in the treatment of lower urinary tract symptoms have alpha1-adrenoceptor antagonistic properties in vitro. Preparations of beta-sitosterol and extracts of stinging nettle, medicinal pumpkin, and saw palmetto were obtained from several pharmaceutical companies. They were tested for their ability to inhibit [3H]tamsulosin binding to human prostatic alpha1-adrenoceptors and [3H]prazosin binding to cloned human alpha1A- and alpha1B-adrenoceptors. Inhibition of phenylephrine-stimulated [3H]inositol phosphate formation by cloned receptors was also investigated. Up to the highest concentration which could be tested, preparations of beta-sitosterol, stinging nettle, and medicinal pumpkin were without consistent inhibitory effect in all assays. In contrast, all tested saw palmetto extracts inhibited radioligand binding to human alpha1-adrenoceptors and agonist-induced [3H]inositol phosphate formation. Saturation binding experiments in the presence of a single saw palmetto extract concentration indicated a noncompetitive antagonism. The relationship between active concentrations in vitro and recommended therapeutic doses for the saw palmetto extracts was slightly lower than that for several chemically defined alpha1-adrenoceptor antagonists. Saw palmetto extracts have alpha1-adrenoceptor-inhibitory properties. If bioavailability and other pharmacokinetic properties of these ingredients are similar to those of the chemically defined alpha1-adrenoceptor antagonists, alpha1-adrenoceptor antagonism might be involved in the therapeutic effects of these extracts in patients with lower urinary tract symptoms suggestive of benign prostatic obstruction.

  4. Marine Sponge-Derived Streptomyces sp. SBT343 Extract Inhibits Staphylococcal Biofilm Formation

    PubMed Central

    Balasubramanian, Srikkanth; Othman, Eman M.; Kampik, Daniel; Stopper, Helga; Hentschel, Ute; Ziebuhr, Wilma; Oelschlaeger, Tobias A.; Abdelmohsen, Usama R.

    2017-01-01

    Staphylococcus epidermidis and Staphylococcus aureus are opportunistic pathogens that cause nosocomial and chronic biofilm-associated infections. Indwelling medical devices and contact lenses are ideal ecological niches for formation of staphylococcal biofilms. Bacteria within biofilms are known to display reduced susceptibilities to antimicrobials and are protected from the host immune system. High rates of acquired antibiotic resistances in staphylococci and other biofilm-forming bacteria further hamper treatment options and highlight the need for new anti-biofilm strategies. Here, we aimed to evaluate the potential of marine sponge-derived actinomycetes in inhibiting biofilm formation of several strains of S. epidermidis, S. aureus, and Pseudomonas aeruginosa. Results from in vitro biofilm-formation assays, as well as scanning electron and confocal microscopy, revealed that an organic extract derived from the marine sponge-associated bacterium Streptomyces sp. SBT343 significantly inhibited staphylococcal biofilm formation on polystyrene, glass and contact lens surfaces, without affecting bacterial growth. The extract also displayed similar antagonistic effects towards the biofilm formation of other S. epidermidis and S. aureus strains tested but had no inhibitory effects towards Pseudomonas biofilms. Interestingly the extract, at lower effective concentrations, did not exhibit cytotoxic effects on mouse fibroblast, macrophage and human corneal epithelial cell lines. Chemical analysis by High Resolution Fourier Transform Mass Spectrometry (HRMS) of the Streptomyces sp. SBT343 extract proportion revealed its chemical richness and complexity. Preliminary physico-chemical characterization of the extract highlighted the heat-stable and non-proteinaceous nature of the active component(s). The combined data suggest that the Streptomyces sp. SBT343 extract selectively inhibits staphylococcal biofilm formation without interfering with bacterial cell viability. Due to absence of cell toxicity, the extract might represent a good starting material to develop a future remedy to block staphylococcal biofilm formation on contact lenses and thereby to prevent intractable contact lens-mediated ocular infections. PMID:28261188

  5. The Effects of Aronia melanocarpa 'Viking' Extracts in Attenuating RANKL-Induced Osteoclastic Differentiation by Inhibiting ROS Generation and c-FOS/NFATc1 Signaling.

    PubMed

    Ghosh, Mithun; Kim, In Sook; Lee, Young Min; Hong, Seong Min; Lee, Taek Hwan; Lim, Ji Hong; Debnath, Trishna; Lim, Beong Ou

    2018-03-08

    This study aimed to determine the anti-osteoclastogenic effects of extracts from Aronia melanocarpa 'Viking' (AM) and identify the underlying mechanisms in vitro. Reactive oxygen species (ROS) are signal mediators in osteoclast differentiation. AM extracts inhibited ROS production in RAW 264.7 cells in a dose-dependent manner and exhibited strong radical scavenging activity. The extracts also attenuated the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated osteoclasts. To attain molecular insights, the effect of the extracts on the signaling pathways induced by receptor activator of nuclear factor kappa B ligand (RANKL) were also investigated. RANKL triggers many transcription factors through the activation of mitogen-activated protein kinase (MAPK) and ROS, leading to the induction of osteoclast-specific genes. The extracts significantly suppressed RANKL-induced activation of MAPKs, such as extracellular signal-regulated kinase (ERK), c-Jun- N -terminal kinase (JNK) and p38 and consequently led to the downregulation of c-Fos and nuclear factor of activated T cells 1 (NFATc1) protein expression which ultimately suppress the activation of the osteoclast-specific genes, cathepsin K, TRAP, calcitonin receptor and integrin β₃. In conclusion, our findings suggest that AM extracts inhibited RANKL-induced osteoclast differentiation by downregulating ROS generation and inactivating JNK/ERK/p38, nuclear factor kappa B (NF-κB)-mediated c-Fos and NFATc1 signaling pathway.

  6. Valerian extract Ze 911 inhibits postsynaptic potentials by activation of adenosine A1 receptors in rat cortical neurons.

    PubMed

    Vissiennon, Z; Sichardt, K; Koetter, U; Brattström, A; Nieber, K

    2006-06-01

    In this study we evaluated the adenosine A1 receptor-mediated effect of valerian extract (Ze 911) on postsynaptic potentials (PSPs) in pyramidal cells of the rat cingulate cortex in a slice preparation. We first observed that N6-cyclopentyladenosine (CPA, 0.01 - 10 microM), an adenosine A1 receptor agonist, inhibited PSPs in a concentration-dependent manner. The CPA (10 microM)-induced inhibition was antagonized by 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, 0.1 microM), an adenosine A1 receptor antagonist. Ze 911 concentration dependently (0.1 - 15 mg/mL) inhibited PSPs in the presence of the adenosine A2A receptor antagonist 1,3,7-trimethyl-8-(3-chlorostyryl)xanthine (CSC, 0.2 microM) and adenosine deaminase (1 U/mL). The maximal inhibition induced by 10 mg/mL was completely antagonised by DPCPX (0.1 microM), an A1 receptor blocker. The data suggest that activation of adenosine A1 receptors is involved in the pharmacological effects of the valerian extract Ze 911.

  7. Antinociceptive and anti-inflammatory effects of Urtica dioica leaf extract in animal models.

    PubMed

    Hajhashemi, Valiollah; Klooshani, Vahid

    2013-01-01

    This study was aimed to examine the antinociceptive and anti-inflammatory effects of Urtica dioica leaf extract in animal models. Hydroalcoholic extract of the plant leaves was prepared by percolation method. Male Swiss mice (25-35 g) and male Wistar rats (180-200 g) were randomly distributed in control, standard drug, and three experimental groups (n=6 in each group). Acetic acid-induced writhing, formalin test, and carrageenan-induced paw edema were used to assess the antinociceptive and anti-inflammatory effects. The extract dose-dependently reduced acetic acid-induced abdominal twitches. In formalin test, the extract at any of applied doses (100, 200, and 400 mg/kg) could not suppress the licking behavior of first phase while doses of 200 and 400 mg/kg significantly inhibited the second phase of formalin test. In carrageenan test, the extract at a dose of 400 mg/kg significantly inhibited the paw edema by 26%. The results confirm the folkloric use of the plant extract in painful and inflammatory conditions. Further studies are needed to characterize the active constituents and the mechanism of action of the plant extract.

  8. Entomocidal effects of beech apricot, Labramia bojeri, seed extract on a soybean pest, the velvetbean moth, Anticarsia gemmatalis, and its enzymatic activity

    PubMed Central

    Macedo, Maria L. R.; Kubo, Carlos E. G.; Freire, Maria G. M.; Júnior, Roberto T. A.; Parra, José R. P.

    2014-01-01

    Abstract The effects of the beech apricot, Labramia bojeri A. de Candolle (Sapotales: Sapotaceae), seed aqueous extract on the larval development of the velvetbean moth, Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae), was evaluated. The extract inhibited larval development, pupal weight, and survival and emergence of adults. Digestive proteolytic activity in larval midgut and feces extracts was determined. Larvae fed 10 g/L of the aqueous extract showed a significant reduction in trypsin activity (~64%), when compared with control larvae. Trypsin and chymotrypsin activities were also detected in fecal material in aqueous-extract-fed larvae, with about ~4.5 times more trypsin activity than the controls. The results from dietary utilization experiments with A. gemmatalis larvae showed a reduction in the efficiency of conversion of ingested food and digested food and an increase in approximate digestibility and metabolic cost. The effect of the extract suggests the potential use of L. bojeri seeds to inhibit the development of A. gemmatalis via oral exposure. The L. bojeri extract can be an alternative to other methods of control. PMID:25373174

  9. Compounds Released from Biomass Deconstruction: Understanding Their Effect on Cellulose Enzyme Hydrolysis and Their Biological Activity

    NASA Astrophysics Data System (ADS)

    Djioleu, Angele Mezindjou

    The effect of compounds produced during biomass pretreatment on cellulolytic enzyme was investigated. Liquid prehydrolyzates were prepared by pretreating switchgrass using 24 combinations of temperature, time, and sulfuric acid concentration based on a full factorial design. Temperature was varied from 140°C to 180°C; time ranged from 10 to 40 min; and the sulfuric acid concentrations were 0.5% or 1% (v/v). Identified products in the prehydrolyzates included xylose, glucose, hydroxymethylfurfural (HMF), furfural, acetic acid, formic acid, and phenolic compounds at concentration ranging from 0 to 21.4 g/L. Pretreatment conditions significantly affected the concentrations of compounds detected in prehydrolyzates. When assayed in the presence of switchgrass prehydrolyzates against model substrates, activities of cellulase, betaglucosidase, and exoglucanase, were significantly reduced by at least 16%, 31.8%, and 57.8%, respectively, as compared to the control. A strong positive correlation between inhibition of betaglucosidase and concentration of glucose, acetic acid, and furans in prehydrolyzate was established. Exoglucanase inhibition correlated with the presence of phenolic compounds and acetic acid. The prehydrolyzate, prepared at 160°C, 30 min, and 1% acid, was fractionated by centrifugal partition chromatography (CPC) into six fractions; the inhibition effect of these fractions on betaglucosidase and exoglucanase was determined. The initial hydrolysis rate of cellobiose by betaglucosidase was significantly reduced by the CPC sugar-rich fraction; however, exoglucanase was deactivated by the CPC phenolic-rich fraction. Finally, biological activities of water-extracted compounds from sweetgum bark and their effect on cellulase was investigated. It was determined that 12% of solid content of the bark extract could be accounted by phenolic compounds with gallic acid identified as the most concentrated phytochemical. Sweetgum bark extract inhibited Staphylococcus aureus growth and copper-induced peroxidation of human low-density lipoprotein, confirming antimicrobial and antioxidant activities of the extract. On the other hand, bark extract inhibited cellulase cocktail activity by reducing cellulose hydrolysis by 82.32% after 48 h of incubation. Overall, phenolic compounds generated from biomass fractionation are important players in cellulolytic enzyme inhibition; removal of biomass extractives prior to pretreatment could reduce inhibitory compounds in prehydrolyzate while generating phytochemicals with societal benefits.

  10. Anti-inflammatory effect of bee pollen ethanol extract from Cistus sp. of Spanish on carrageenan-induced rat hind paw edema.

    PubMed

    Maruyama, Hiroe; Sakamoto, Takashi; Araki, Yoko; Hara, Hideaki

    2010-06-23

    Bee pollen, a honeybee product, is the feed for honeybees prepared themselves by pollens collecting from plants and has been consumed as a perfect food in Europe, because it is nutritionally well balanced. In this study, we aimed to investigate the anti-inflammatory effect of bee pollen from Cistus sp. of Spanish origin by a method of carrageenan-induced paw edema in rats, and to investigate the mechanism of anti-inflammatory action and also to elucidate components involved in bee pollen extracted with ethanol. The bee pollen bulk, its water extract and its ethanol extract were administered orally to rats. One hour later, paw edema was produced by injecting of 1% solution of carrageenan, and paw volume was measured before and after carrageenan injection up to 5 h. The ethanol extract and water extract were measured COX-1 and COX-2 inhibitory activities using COX inhibitor screening assay kit, and were compared for the inhibition of NO production in LPS-stimulated RAW 264.7 cells. The constituents of bee pollen were purified from the ethanol extract subjected to silica gel or LH-20 column chromatography. Each column chromatography fractions were further purified by repeated ODS or silica gel column chromatography. The bee pollen bulk mildly suppressed the carrageenan-induced paw edema and the water extract showed almost no inhibitory activity, but the ethanol extract showed relatively strong inhibition of paw edema. The ethanol extract inhibited the NO production and COX-2 but not COX-1 activity, but the water extract did not affect the NO production or COX activities. Flavonoids were isolated and purified from the ethanol extract of bee pollen, and identified at least five flavonoids and their glycosides. It is suggested that the ethanol extract of bee pollen show a potent anti-inflammatory activity and its effect acts via the inhibition of NO production, besides the inhibitory activity of COX-2. Some flavonoids included in bee pollen may partly participate in some of the anti-inflammatory action. The bee pollen would be beneficial not only as a dietary supplement but also as a functional food.

  11. Anti-inflammatory effect of bee pollen ethanol extract from Cistus sp. of Spanish on carrageenan-induced rat hind paw edema

    PubMed Central

    2010-01-01

    Background Bee pollen, a honeybee product, is the feed for honeybees prepared themselves by pollens collecting from plants and has been consumed as a perfect food in Europe, because it is nutritionally well balanced. In this study, we aimed to investigate the anti-inflammatory effect of bee pollen from Cistus sp. of Spanish origin by a method of carrageenan-induced paw edema in rats, and to investigate the mechanism of anti-inflammatory action and also to elucidate components involved in bee pollen extracted with ethanol. Methods The bee pollen bulk, its water extract and its ethanol extract were administered orally to rats. One hour later, paw edema was produced by injecting of 1% solution of carrageenan, and paw volume was measured before and after carrageenan injection up to 5 h. The ethanol extract and water extract were measured COX-1 and COX-2 inhibitory activities using COX inhibitor screening assay kit, and were compared for the inhibition of NO production in LPS-stimulated RAW 264.7 cells. The constituents of bee pollen were purified from the ethanol extract subjected to silica gel or LH-20 column chromatography. Each column chromatography fractions were further purified by repeated ODS or silica gel column chromatography. Results The bee pollen bulk mildly suppressed the carrageenan-induced paw edema and the water extract showed almost no inhibitory activity, but the ethanol extract showed relatively strong inhibition of paw edema. The ethanol extract inhibited the NO production and COX-2 but not COX-1 activity, but the water extract did not affect the NO production or COX activities. Flavonoids were isolated and purified from the ethanol extract of bee pollen, and identified at least five flavonoids and their glycosides. Conclusions It is suggested that the ethanol extract of bee pollen show a potent anti-inflammatory activity and its effect acts via the inhibition of NO production, besides the inhibitory activity of COX-2. Some flavonoids included in bee pollen may partly participate in some of the anti-inflammatory action. The bee pollen would be beneficial not only as a dietary supplement but also as a functional food. PMID:20573205

  12. [Growth inhibition of the four species of red tide microalgae by extracts from Enteromorpha prolifera extracted with the five solvents].

    PubMed

    Sun, Ying-Ying; Liu, Xiao-Xiao; Wang, Chang-Hai

    2010-06-01

    To study the effects of extracts of Enteromorpha prolifera on the growth of the four species of red tide microalgae (Amphidinium hoefleri, Karenia mikimitoi, Alexandrium tamarense and Skeletonema costatum), the extracts were extracted with five solvents (methanol, acetone, ethyl acetate, chloroform and petroleum ether), respectively. Based on the observation of algal morphology and the measurement of algal density, cell size and the contents of physiological indicators (chlorophyll, protein and polysaccharide), the results showed methanol extracts of E. prolifera had the strongest action. The inhibitory effects of A. hoefleri, K. mikimitoi, A. tamarense and S. costatum by the methanol extracts were 54.0%, 48.1%, 44.0% and 37.5% in day 10, respectively. The extracts of E. prolifera extracted with methanol, acetone and ethyl acetate caused cavities, pieces and pigment reduction in cells, and those with chloroform and petroleum ether caused goffers on cells. The extracts of E. prolifera extracted with all the five solvents decreased athletic ability of the cells, among which those extracted with ethyl acetate, chloroform and petroleum ether decreased cell size of test microalgae. The further investigation found that the methanol extracts significantly decreased contents of chlorophyll, protein and polysaccharide in the cells of those microalgae. The inhibitory effect of chlorophyll, protein and polysaccharide contents of four species of microalgae by the methanol extracts was about 51%. On the basis of the above experiments, dry powder of E. prolifera were extracts with methanol, and extracts were obtained. The methanol extracts were partitioned to petroleum ether phase, ethyl acetate phase, n-butanol phase and distilled water phase by liquid-liquid fractionation, and those with petroleum ether and ethyl acetate significantly inhibited the growth of all test microalgae, and the inhibitory effect of four species of microalgae by those two extracts was above 25% in day 10. Our researches expressed that antialgal substances in E. prolifera extracted with methanol were obtained. And two fractions (petroleum ether phase and ethyl acetate phase) that inhibited the growth of all test microalgae were obtained when the methanol extracts was fractionated by liquid-liquid fractionation.

  13. The Spermatogenic Effect of Yacon Extract and Its Constituents and Their Inhibition Effect of Testosterone Metabolism

    PubMed Central

    Park, Jeong Sook; Han, Kun

    2013-01-01

    We screened the pharmacological effects of a 50% ethanol extract of Yacon tubers and leaves on spermatogenesis in rats. As a result, we found that Yacon tuber extracts increased sperm number and serum testosterone level in rats. It has been reported that the crude extract of Yacon tubers and leaves contain phenolic acids, such as, chlorogenic acid, ferulic acid and caffeic acid by HPLC/MS analysis. We were interested in the contributions made by phenolic acid, particularly chlorogenic acid of Yacon tuber extract to the spermatogenic activity. After administering Yacon tuber extract or chlorogenic acid to rats for 5 weeks, numbers of sperm in epididymis were increased by 34% and 20%, respectively. We also administered ferulic acid, which has been reported to be a metabolite of chlorogenic acid and a constituent of Yacon tuber extract to investigate its spermatogenic activity in rats. Yacon tuber extract and ferulic acid increased sperm numbers by 43% and 37%, respectively. And, Yacon tuber extract, and chlorogenic acid showed significantly inhibition effect of testoeterone degradation in rat liver homogenate. We considered that the spermatogenic effect of Yacon tuber extract might be related to phenolic compounds and their inhibitory effect of testosterone degradation. Yacon showed the possibility as ameliorable agents of infertility by sperm deficiency and late onset hypogonadism syndrome with low level of testosterone. PMID:24009874

  14. Anti-microbial Activity of Tulsi {Ocimum Sanctum (Linn.)} Extract on a Periodontal Pathogen in Human Dental Plaque: An Invitro Study

    PubMed Central

    Devaraj, C.G.; Agarwal, Payal

    2016-01-01

    Introduction Tulsi is a popular healing herb in Ayurvedic medicine. It is widely used in the treatment of several systemic diseases because of its anti-microbial property. However, studies documenting the effect of Tulsi on oral disease causing organisms are rare. Hence, an attempt was made to determine the effect of Tulsi on a periodontal microorganism in human dental plaque. Aim To determine if Ocimum sanctum (Linn.) has an anti-microbial activity (Minimum Inhibitory Concentration and zone of inhibition) against Actinobacillus actinomycetemcomitans in human dental plaque and to compare the antimicrobial activity of Ocimum sanctum(Linn.) extract with 0.2% chlorhexidine as the positive control and dimethyl sulfoxide as the negative control. Materials and Methods A lab based invitro experimental study design was adopted. Ethanolic extract of Ocimum sanctum (Linn.) was prepared by the cold extraction method. The extract was diluted with an inert solvent, dimethyl sulfoxide, to obtain ten different concentrations (1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%) of extract. Plaque sample was collected from 05 subjects diagnosed with periodontal disease. Isolation of Actinobacillus actinomycetemcomitans from plaque samples was done using Tryptic Soy Serum Bacitracin Vancomycin agar (TSBV) medium. Identification of Actinobacillus actinomycetemcomitans was done based on cultural, microscopic, biochemical characterization and multiple drug resistance patterns. Anti-microbial activity of Ocimum sanctum (Linn.) extract was tested by agar well-diffusion method against 0.2% chlorhexidine as a positive control and dimethyl sulfoxide as a negative control. The zone of inhibition was measured in millimeters using Vernier callipers. Results At the 6% w/v concentration of Ocimum sanctum (Linn.) extract, a zone of inhibition of 22 mm was obtained. This was the widest zone of inhibition observed among all the 10 different concentrations tested. The zone of inhibition for positive control was 25mm and no zone of inhibition was observed around the negative control. Conclusion Ocimum sanctum (Linn.) extract demonstrated an antimicrobial activity against Actinobacillus actinomycetemcomitans. The maximum antimicrobial potential was observed at the 6% concentration level. PMID:27135002

  15. Anti-microbial Activity of Tulsi {Ocimum Sanctum (Linn.)} Extract on a Periodontal Pathogen in Human Dental Plaque: An Invitro Study.

    PubMed

    Eswar, Pranati; Devaraj, C G; Agarwal, Payal

    2016-03-01

    Tulsi is a popular healing herb in Ayurvedic medicine. It is widely used in the treatment of several systemic diseases because of its anti-microbial property. However, studies documenting the effect of Tulsi on oral disease causing organisms are rare. Hence, an attempt was made to determine the effect of Tulsi on a periodontal microorganism in human dental plaque. To determine if Ocimum sanctum (Linn.) has an anti-microbial activity (Minimum Inhibitory Concentration and zone of inhibition) against Actinobacillus actinomycetemcomitans in human dental plaque and to compare the antimicrobial activity of Ocimum sanctum(Linn.) extract with 0.2% chlorhexidine as the positive control and dimethyl sulfoxide as the negative control. A lab based invitro experimental study design was adopted. Ethanolic extract of Ocimum sanctum (Linn.) was prepared by the cold extraction method. The extract was diluted with an inert solvent, dimethyl sulfoxide, to obtain ten different concentrations (1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%) of extract. Plaque sample was collected from 05 subjects diagnosed with periodontal disease. Isolation of Actinobacillus actinomycetemcomitans from plaque samples was done using Tryptic Soy Serum Bacitracin Vancomycin agar (TSBV) medium. Identification of Actinobacillus actinomycetemcomitans was done based on cultural, microscopic, biochemical characterization and multiple drug resistance patterns. Anti-microbial activity of Ocimum sanctum (Linn.) extract was tested by agar well-diffusion method against 0.2% chlorhexidine as a positive control and dimethyl sulfoxide as a negative control. The zone of inhibition was measured in millimeters using Vernier callipers. At the 6% w/v concentration of Ocimum sanctum (Linn.) extract, a zone of inhibition of 22 mm was obtained. This was the widest zone of inhibition observed among all the 10 different concentrations tested. The zone of inhibition for positive control was 25mm and no zone of inhibition was observed around the negative control. Ocimum sanctum (Linn.) extract demonstrated an antimicrobial activity against Actinobacillus actinomycetemcomitans. The maximum antimicrobial potential was observed at the 6% concentration level.

  16. Extracts of Renealmia alpinia (Rottb.) MAAS Protect against Lethality and Systemic Hemorrhage Induced by Bothrops asper Venom: Insights from a Model with Extract Administration before Venom Injection

    PubMed Central

    Patiño, Arley Camilo; Quintana, Juan Carlos; Gutiérrez, José María; Rucavado, Alexandra; Benjumea, Dora María; Pereañez, Jaime Andrés

    2015-01-01

    Renealmia alpinia (Rottb.) MAAS, obtained by micropropagation (in vitro) and wild forms have previously been shown to inhibit some toxic activities of Bothrops asper snake venom if preincubated before injection. In this study, assays were performed in a murine model in which extracts were administered for three days before venom injection. R. alpinia extracts inhibited lethal activity of B. asper venom injected by intraperitoneal route. Median Effective Dose (ED50) values were 36.6 ± 3.2 mg/kg and 31.7 ± 5.4 mg/kg (p > 0.05) for R. alpinia wild and in vitro extracts, respectively. At a dose of 75 mg/kg, both extracts totally inhibited the lethal activity of the venom. Moreover, this dose prolonged survival time of mice receiving a lethal dose of venom by the intravenous route. At 75 mg/kg, both extracts of R. alpinia reduced the extent of venom-induced pulmonary hemorrhage by 48.0% (in vitro extract) and 34.7% (wild extract), in agreement with histological observations of lung tissue. R. alpinia extracts also inhibited hemorrhage in heart and kidneys, as evidenced by a decrease in mg of hemoglobin/g of organ. These results suggest the possibility of using R. alpinia as a prophylactic agent in snakebite, a hypothesis that needs to be further explored. PMID:25941768

  17. Extracts of Renealmia alpinia (Rottb.) MAAS Protect against Lethality and Systemic Hemorrhage Induced by Bothrops asper Venom: Insights from a Model with Extract Administration before Venom Injection.

    PubMed

    Patiño, Arley Camilo; Quintana, Juan Carlos; Gutiérrez, José María; Rucavado, Alexandra; Benjumea, Dora María; Pereañez, Jaime Andrés

    2015-04-30

    Renealmia alpinia (Rottb.) MAAS, obtained by micropropagation (in vitro) and wild forms have previously been shown to inhibit some toxic activities of Bothrops asper snake venom if preincubated before injection. In this study, assays were performed in a murine model in which extracts were administered for three days before venom injection. R. alpinia extracts inhibited lethal activity of B. asper venom injected by intraperitoneal route. Median Effective Dose (ED50) values were 36.6 ± 3.2 mg/kg and 31.7 ± 5.4 mg/kg (p > 0.05) for R. alpinia wild and in vitro extracts, respectively. At a dose of 75 mg/kg, both extracts totally inhibited the lethal activity of the venom. Moreover, this dose prolonged survival time of mice receiving a lethal dose of venom by the intravenous route. At 75 mg/kg, both extracts of R. alpinia reduced the extent of venom-induced pulmonary hemorrhage by 48.0% (in vitro extract) and 34.7% (wild extract), in agreement with histological observations of lung tissue. R. alpinia extracts also inhibited hemorrhage in heart and kidneys, as evidenced by a decrease in mg of hemoglobin/g of organ. These results suggest the possibility of using R. alpinia as a prophylactic agent in snakebite, a hypothesis that needs to be further explored.

  18. Inhibition of microglial activation by elderberry extracts and its phenolic components

    PubMed Central

    Simonyi, Agnes; Chen, Zihong; Jiang, Jinghua; Zong, Yijia; Chuang, Dennis Y.; Gu, Zezong; Lu, Chi-Hua; Fritsche, Kevin L.; Greenlief, C. Michael; Rottinghaus, George E.; Thomas, Andrew L.; Lubahn, Dennis B.; Sun, Grace Y.

    2015-01-01

    Aims Elderberry (Sambucus spp.) is one of the oldest medicinal plants noted for its cardiovascular, anti-inflammatory, and immune-stimulatory properties. In this study, we investigated the anti-inflammatory and anti-oxidant effects of the American elderberry (Sambucus nigra subsp. canadensis) pomace as well as some of the anthocyanins (cyanidin chloride and cyanidin 3-O-glucoside) and flavonols (quercetin and rutin) in bv-2 mouse microglial cells. Main methods The bv-2 cells were pretreated with elderberry pomace (extracted with ethanol or ethyl acetate) or its anthocyanins and flavonols and stimulated by either lipopolysaccharide (LPS) or interferon-γ (IFNγ). Reactive oxygen species (ROS) and nitric oxide (NO) production (indicating oxidative stress and inflammatory response) were measured using the ROS detection reagent DCF-DA and the Griess reaction, respectively. Key findings Analysis of total monomeric anthocyanin (as cyanidin 3-O-glucoside equivalents) indicated five-fold higher amount in the freeze-dried ethanol extract as compared to that of the oven-dried extract; anthocyanin was not detected in the ethyl acetate extracts. Elderberry ethanol extracts (freeze-dried or oven-dried) showed higher anti-oxidant activities and better ability to inhibit LPS or IFNγ-induced NO production as compared with the ethyl acetate extracts. The phenolic compounds strongly inhibited LPS or IFNγ-induced ROS production, but except for quercetin, they were relatively poor in inhibiting NO production. Significance These results demonstrated difference in anti-oxidative and anti-inflammatory effects of elderberry extracts depending on solvents used. Results further identified quercetin as the most active component in suppressing oxidative stress and inflammatory responses on microglial cells. PMID:25744406

  19. A Vitex agnus-castus extract inhibits cell growth and induces apoptosis in prostate epithelial cell lines.

    PubMed

    Weisskopf, M; Schaffner, W; Jundt, G; Sulser, T; Wyler, S; Tullberg-Reinert, H

    2005-10-01

    Extracts of Vitex agnus-castus fruits (VACF) are described to have beneficial effects on disorders related to hyperprolactinemia (cycle disorders, premenstrual syndrome). A VACF extract has recently been shown to exhibit antitumor activities in different human cancer cell lines. In the present study, we explored the antiproliferative effects of a VACF extract with a particular focus on apoptosis-inducing and potential cytotoxic effects. Three different human prostate epithelial cell lines (BPH-1, LNCaP, PC-3) representing different disease stages and androgen responsiveness were chosen. The action of VACF on cell viability was assessed using the WST-8-tetrazolium assay. Cell proliferation in cells receiving VACF alone or in combination with a pan-caspase inhibitor (Z-VAD-fmk) was quantified using a Crystal Violet assay. Flow cytometric cell cycle analysis and measurement of DNA fragmentation using an ELISA method were used for studying the induction of apoptosis. Lactate dehydrogenase (LDH) activity was determined as a marker of cytotoxicity. The extract inhibited proliferation of all three cell lines in a concentration-dependent manner with IC (50) values below 10 microg/mL after treatment for 48 h. Cell cycle analysis and DNA fragmentation assays suggest that part of the cells were undergoing apoptosis. The VACF-induced decrease in cell number was partially inhibited by Z-VAD-fmk, indicating a caspase-dependent apoptotic cell death. However, the concentration-dependent LDH activity of VACF treated cells indicated cytotoxic effects as well. These data suggest that VACF contains components that inhibit proliferation and induce apoptosis in human prostate epithelial cell lines. The extract may be useful for the prevention and/or treatment not only of benign prostatic hyperplasia but also of human prostate cancer.

  20. Inhibition of Group IIA Secretory Phospholipase A2 and its Inflammatory Reactions in Mice by Ethanolic Extract of Andrographis paniculata, a Well-known Medicinal Food

    PubMed Central

    Kishore, V.; Yarla, N. S.; Zameer, F.; Nagendra Prasad, M. N.; Santosh, M. S.; More, S. S.; Rao, D. G.; Dhananjaya, Bhadrapura Lakkappa

    2016-01-01

    Andrographis paniculata Nees is an important medicinal plant found in the tropical regions of the world, which has been traditionally used in Indian and Chinese medicinal systems. It is also used as medicinal food. A. paniculata is found to exhibit anti-inflammatory activities; however, its inhibitory potential on inflammatory Group IIA phospholipases A2 (PLA2) and its associated inflammatory reactions are not clearly understood. The aim of the present study is to evaluate the inhibitory/neutralizing potential of ethanolic extract of A. paniculata on the isolated inflammatory PLA2 (VRV-PL-VIIIa) from Daboii rusellii pulchella (belonging to Group IIA inflammatory secretory PLA2 [sPLA2]) and its associated edema-induced activities in Swiss albino mice. A. paniculata extract dose dependently inhibited the Group IIA sPLA2 enzymatic activity with an IC50 value of 10.3 ± 0.5 μg/ml. Further, the extract dose dependently inhibited the edema formation, when co-injected with enzyme indicating that a strong correlation exists between lipolytic and pro-inflammatory activities of the enzyme. In conclusion, results of this study shows that the ethanolic extract of A. paniculata effectively inhibits Group IIA sPLA2 and its associated inflammatory activities, which substantiate its anti-inflammatory properties. The results of the present study warranted further studies to develop bioactive compound (s) in ethanolic extract of A. paniculata as potent therapeutic agent (s) for inflammatory diseases. SUMMARY This study emphasis the anti-inflammatory effect of A. paniculata by inhibiting the inflammatory Group IIA sPLA2 and its associated inflammatory activities such as edema. It was found that there is a strong correlation between lipolytic activity and pro-inflammatory activity inhibition. Therefore, the study suggests that the extract processes potent anti-inflammatory agents, which could be developed as a potential therapeutic agent against inflammatory and related diseases. PMID:27365993

  1. Hawthorn (Crataegus monogyna Jacq.) extract exhibits atropine-sensitive activity in a cultured cardiomyocyte assay.

    PubMed

    Salehi, Satin; Long, Shannon R; Proteau, Philip J; Filtz, Theresa M

    2009-01-01

    Hawthorn (Crataegus spp.) plant extract is used as a herbal alternative medicine for the prevention and treatment of various cardiovascular diseases. Recently, it was shown that hawthorn extract preparations caused negative chronotropic effects in a cultured neonatal murine cardiomyocyte assay, independent of beta-adrenergic receptor blockade. The aim of this study was to further characterize the effect of hawthorn extract to decrease the contraction rate of cultured cardiomyocytes. To test the hypothesis that hawthorn is acting via muscarinic receptors, the effect of hawthorn extract on atrial versus ventricular cardiomyocytes in culture was evaluated. As would be expected for activation of muscarinic receptors, hawthorn extract had a greater effect in atrial cells. Atrial and/or ventricular cardiomyocytes were then treated with hawthorn extract in the presence of atropine or himbacine. Changes in the contraction rate of cultured cardiomyocytes revealed that both muscarinic antagonists significantly attenuated the negative chronotropic activity of hawthorn extract. Using quinuclidinyl benzilate, L-[benzylic-4,4'-(3)H] ([(3)H]-QNB) as a radioligand antagonist, the effect of a partially purified hawthorn extract fraction to inhibit muscarinic receptor binding was quantified. Hawthorn extract fraction 3 dose-dependently inhibited [(3)H]-QNB binding to mouse heart membranes. Taken together, these findings suggest that decreased contraction frequency by hawthorn extracts in neonatal murine cardiomyocytes may be mediated via muscarinic receptor activation.

  2. Screening of plant extracts for human tyrosinase inhibiting effects.

    PubMed

    Kim, M; Park, J; Song, K; Kim, H G; Koh, J-S; Boo, Y C

    2012-04-01

    Screening for tyrosinase (TYR) inhibitors potentially useful for control of skin pigmentation has been hampered by the limited availability of human TYR. To overcome this hurdle, we have established human embryonic kidney (HEK293)-TYR cells that constitutively express human TYR. In the current study, we assayed human TYR inhibition activities of 50 plant extracts using the lysates of transformed HEK293-TYR cells. The strongest inhibition of human TYR was shown by the extract of Vaccinium bracteatum Thunberg, followed by the extract of Morus bombycis Koidzumi. The former extract did not inhibit mushroom TYR activity whereas significant inhibition was observed with the latter extract, demonstrating the importance of using human TYR in the screening for human TYR inhibitors. Upon liquid-liquid partitioning of the extract from V. bracteatum, the active constituents were enriched in the ethyl acetate fraction, and the subsequent preparatory thin-layer chromatography identified p-coumaric acid (PCA) as the main active constituent. The hypo-pigmentation of PCA was verified in the MelanoDerm™ Skin Model. This study demonstrates that transformed HEK293-TYR cells could expedite the discovery of human TYR-specific inhibitors from natural sources which might be useful in the control of skin pigmentation. © 2012 The Authors. ICS © 2012 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  3. Inhibition of melanin content by Punicalagins in the super fruit pomegranate (Punica granatum).

    PubMed

    Rana, Jatinder; Diwakar, Ganesh; Saito, Lisa; Scholten, Jeffrey D; Mulder, Timothy

    2013-01-01

    Current efforts to develop effective skin lightening products through the inhibition of melanin production have focused on compounds that inhibit the function and activity of tyrosinase, the rate-limiting enzyme in the melanin biosynthesis pathway. Synthetic tyrosinase inhibitors, such as hydroquinone, kojic acid, and arbutin, have been reported to cause skin irritation or acute dermatitis, raising concerns about the safety of these compounds. As a result, there is a need for safe natural ingredients that show effective skin lightening. In this report, we have identified a natural ingredient, pomegranate fruit extract, that inhibits melanin production in melanocytes and shows potential for use as a cosmetic skin lightening agent. In addition, we have identified a polyphenolic compound, punicalagins, as the active melanin inhibitor in pomegranate fruit extract based on its capacity to directly inhibit melanin production.

  4. Antitumor activity of ethanol extract from Hippophae rhamnoides L. leaves towards human acute myeloid leukemia cells in vitro.

    PubMed

    Zhamanbaeva, G T; Murzakhmetova, M K; Tuleukhanov, S T; Danilenko, M P

    2014-12-01

    We studied the effects of ethanol extract from Hippophae rhamnoides L. leaves on the growth and differentiation of human acute myeloid leukemia cells (KG-1a, HL60, and U937). The extract of Hippophae rhamnoides L. leaves inhibited cell growth depending on the cell strain and extract dose. In a high concentration (100 μg/ml), the extract also exhibited a cytotoxic effect on HL60 cells. Hippophae rhamnoides L. leaves extract did not affect cell differentiation and did not modify the differentiating effect of calcitriol, active vitamin D metabolite. Inhibition of cell proliferation was paralleled by paradoxical accumulation of phase S cells (synthetic phase) with a reciprocal decrease in the count of G1 cells (presynthetic phase). The extract in a concentration of 100 μg/ml induced the appearance of cells with a subdiploid DNA content (sub-G1 phase cells), which indicated induction of apoptosis. The antiproliferative effect of Hippophae rhamnoides L. extract on acute myeloid leukemia cells was at least partially determined by activation of the S phase checkpoint, which probably led to deceleration of the cell cycle and apoptosis induction.

  5. Inhibitory effect of Piper betle Linn. leaf extract on protein glycation--quantification and characterization of the antiglycation components.

    PubMed

    Bhattacherjee, Abhishek; Chakraborti, Abhay Sankar

    2013-12-01

    Piper betle Linn. is a Pan-Asiatic plant having several beneficial properties. Protein glycation and advanced glycation end products (AGEs) formation are associated with different pathophysiological conditions, including diabetes mellitus. Our study aims to find the effect of methanolic extract of P. betle leaves on in vitro protein glycation in bovine serum albumin (BSA)-glucose model. The extract inhibits glucose-induced glycation, thiol group modification and carbonyl formation in BSA in dose-dependent manner. It inhibits different stages of protein glycation, as demonstrated by using glycation models: hemoglobin-delta-gluconolactone (for early stage, Amadori product formation), BSA-methylglyoxal (for middle stage, formation of oxidative cleavage products) and BSA-glucose (for last stage, formation of AGEs) systems. Several phenolic compounds are isolated from the extract. Considering their relative amounts present in the extract, rutin appears to be the most active antiglycating agent. The extract of P. betle leaf may thus have beneficial effect in preventing protein glycation and associated complications in pathological conditions.

  6. Alkaloid extracts of Ficus species and palm oil-derived tocotrienols synergistically inhibit proliferation of human cancer cells.

    PubMed

    Abubakar, Ibrahim Babangida; Lim, Kuan-Hon; Loh, Hwei-San

    2015-01-01

    Tocotrienols have been reported to possess anticancer effects other than anti-inflammatory and antioxidant activities. This study explored the potential synergism of antiproliferative effects induced by individual alkaloid extracts of Ficus fistulosa, Ficus hispida and Ficus schwarzii combined with δ- and γ-tocotrienols against human brain glioblastoma (U87MG), lung adenocarcinoma (A549) and colorectal adenocarcinoma (HT-29) cells. Cell viability and morphological results demonstrated that extracts containing a mixture of alkaloids from the leaves and bark of F. schwarzii inhibited the proliferation of HT-29 cells, whereas the alkaloid extracts of F. fistulosa inhibited the proliferation of both U87MG and HT-29 cells and showed synergism in combined treatments with either δ- or γ-tocotrienol resulting in 2.2-34.7 fold of reduction in IC50 values of tocotrienols. The observed apoptotic cell characteristics in conjunction with the synergistic antiproliferative effects of Ficus species-derived alkaloids and tocotrienols assuredly warrant future investigations towards the development of a value-added chemotherapeutic regimen against cancers.

  7. Effects of tanshinone nanoemulsion and extract on inhibition of lung cancer cells A549

    NASA Astrophysics Data System (ADS)

    Lee, W. D.; Liang, Y. J.; Chen, B. H.

    2016-12-01

    Danshen (Salvia miltiorrhiza), a Chinese medicinal herb, consists of several functional components including tanshinones responsible for prevention of several chronic diseases. This study intends to prepare tanshinone extract and nanoemulsion from danshen and determine their inhibition effect on lung cancer cells A549. A highly stable tanshinone nanoemulsion composed of Capryol 90, Tween 80, ethanol and deionized water with the mean particle size of 14.2 nm was successfully prepared. Tanshinone nanoemulsion was found to be more effective in inhibiting A549 proliferation than tanshinone extract. Both nanoemulsion and extract could penetrate into cytoplasm through endocytosis, with the former being more susceptible than the latter. A dose-dependent response in up-regulation of p-JNK, p53 and p21 and down-regulation of CDK2, cyclin D1 and cyclin E1 expressions was observed with the cell cycle arrested at G0/G1 phase. The cellular microcompartment change of A549 was also investigated. The study demonstrated that tanshinone nanoemulsion may be used as a botanic drug for treatment of lung cancer.

  8. [Inhibitory effect on Microcystis aeruginosa as well as separation and identification of the allelochemicals of welsh onion].

    PubMed

    Zhou, Yang; Li, Yuan; Li, Cheng; Liu, Lu; Zhang, Tingting

    2013-11-01

    To study the inhibition of welsh onion on Microcystis aeruginosa, and separat and identify of the allelochemicals from welsh onion. METHEDS: The inhibitory effect of different concentrations of fistular onion stalk and fistular onion leaf water extracts on M. aeruginosa were studied; besides, separation and identification of the allelochemicals of welsh onion were also studied. Both fistular onion stalk and fistular onion leaf water extracts had, to different degree, inhibitory effect on the growth of M. aeruginosat. Compared with the control group, the fluorescence intensity of fistular onion stalk and fistular onion leaf were lower than the control group in the same period, and the inhibitory effect were more obvious with the increase of the water extract concentrations, to the fifth day, M. aeruginosa almost completely dead of the highest concentration(50 ml/L) of fistular onion stalk water extract treated group, the EC50 of water extract from fistular onion stalk to M. aeruginosa was 12.7 ml/L, equivalent to fresh weight 1.27 g/L. Main allelochemicals in fistular onion stalk includes allyl mercaptan, cyclopentyl mercaptan, and so on. The inhibiting assay on M. aeruginosa showed that the EC50 of allyl mercaptan and cyclopentyl mercaptan respectively were 0.03 and 0.02 g/L. The fistular onion stalk water extracts has very good algicidal effect, allelopathic algal inhibiting substances primarily are sulfocompound, which have the potential to develop into biological algicide.

  9. Immunomodulatory properties of medicinal mushrooms: differential effects of water and ethanol extracts on NK cell-mediated cytotoxicity.

    PubMed

    Lu, Chia-Chen; Hsu, Ya-Jing; Chang, Chih-Jung; Lin, Chuan-Sheng; Martel, Jan; Ojcius, David M; Ko, Yun-Fei; Lai, Hsin-Chih; Young, John D

    2016-10-01

    Medicinal mushrooms have been used for centuries in Asian countries owing to their beneficial effects on health and longevity. Previous studies have reported that a single medicinal mushroom may produce both stimulatory and inhibitory effects on immune cells, depending on conditions, but the factors responsible for this apparent dichotomy remain obscure. We show here that water and ethanol extracts of cultured mycelium from various species (Agaricus blazei Murrill, Antrodia cinnamomea, Ganoderma lucidum and Hirsutella sinensis) produce opposite effects on NK cells. Water extracts enhance NK cell cytotoxic activity against cancer cells, whereas ethanol extracts inhibit cytotoxicity. Water extracts stimulate the expression and production of cytolytic proteins (perforin and granulysin) and NKG2D/NCR cell surface receptors, and activate intracellular signaling kinases (ERK, JNK and p38). In contrast, ethanol extracts inhibit expression of cytolytic and cell surface receptors. Our results suggest that the mode of extraction of medicinal mushrooms may determine the nature of the immunomodulatory effects produced on immune cells, presumably owing to the differential solubility of stimulatory and inhibitory mediators. These findings have important implications for the preparation of medicinal mushrooms to prevent and treat human diseases. © The Author(s) 2016.

  10. Antiophidian properties of the aqueous extract of Mikania glomerata.

    PubMed

    Maiorano, Victor A; Marcussi, Silvana; Daher, Maristela A F; Oliveira, Clayton Z; Couto, Lucélio B; Gomes, Odair A; França, Suzelei C; Soares, Andreimar M; Pereira, Paulo S

    2005-12-01

    Aqueous extracts, prepared from dried or fresh roots, stems or leaves of Mikania glomerata, a plant found in Mata Atlântica in Southeastern Brazil, were able to efficiently neutralize different toxic, pharmacological, and enzymatic effects induced by venoms from Bothrops and Crotalus snakes. Phospholipase A(2) activity and the edema induced by Crotalus durissus terrificus venom were inhibited around 100 and approximately 40%, respectively, although this inhibition was only partial for Bothrops venoms. The hemorrhagic activity of Bothrops venoms (Bothrops altenatus, Bothrops moojeni, Bothrops neuwiedi, and Bothrops jararacussu) was significantly inhibited by this vegetal species, while the clotting activity of Crotalus durissus terrificus, Bothrops jararacussu, and Bothrops neuwiedi venoms was totally inhibited. Although, the mechanism of action of Mikania glomerata extract is still unknown, the finding that no visible change was detected in the electrophoretic pattern of snake venom after incubation with the extract excludes proteolytic degradation as a potential mechanism. Since the extract of Mikania glomerata significantly inhibited the studied snake venoms, it may be used as an alternative treatment to serumtherapy and, in addition, as a rich source of potential inhibitors of PLA(2)s, metalloproteases and serineproteases, enzymes involved in several physiopathological human and animal diseases.

  11. Effects of Eriobotrya japonica seed extract on oxidative stress in rats with non-alcoholic steatohepatitis.

    PubMed

    Yoshioka, Saburo; Hamada, Atsuhide; Jobu, Kohei; Yokota, Junko; Onogawa, Masahide; Kyotani, Shojiro; Miyamura, Mitsuhiko; Saibara, Toshiji; Onishi, Saburo; Nishioka, Yutaka

    2010-02-01

    Non-alcoholic steatohepatitis is associated with the deposition of lipid droplets in the liver, and is characterised histologically by the infiltration of inflammatory cells, hepatocellular degeneration and liver fibrosis. Oxidative stress may play an important role in the onset and deterioration of non-alcoholic steatohepatitis. We previously reported that an Eriobotrya japonica seed extract, extracted in 70% ethanol, exhibited antioxidant actions in vitro and in vivo. In this study, we examined the effect of this extract in a rat model of non-alcoholic steatohepatitis. The seed extract was given in the drinking water to fats being fed a methionine-choline-deficient diet for 15 weeks. Increases in alanine aminotransferase and aspartate aminotransferase levels were significantly inhibited in rats fed the seed extract compared with the group on the diet alone. Formation of fatty droplets in the liver was also inhibited. Antioxidant enzyme activity in liver tissue was higher than in the diet-only group and lipid peroxidation was reduced compared with rats that also received the extract. Expression of 8-hydroxy-2'-deoxyguanosine and 4-hydroxy-2-nonenal was lower in the rats given the seed extract than in the diet-only group. In the former, liver tissue levels of transforming growth factor-beta and collagen were also decreased. Thus, the E. japonica seed extract inhibited fatty liver, inflammation and fibrosis, suggesting its usefulness in the treatment of non-alcoholic steatohepatitis.

  12. Bioactive chemical constituents of Curcuma longa L. rhizomes extract inhibit the growth of human hepatoma cell line (HepG2).

    PubMed

    Abdel-Lateef, Ezzat; Mahmoud, Faten; Hammam, Olfat; El-Ahwany, Eman; El-Wakil, Eman; Kandil, Sherihan; Abu Taleb, Hoda; El-Sayed, Mortada; Hassenein, Hanaa

    2016-09-01

    The present study was designed to identify the chemical constituents of the methanolic extract of Curcuma longa L. rhizomes and their inhibitory effect on a hepatoma cell line. The methanolic extract was subjected to GC-MS analysis to identify the volatile constituents and the other part of the same extract was subjected to liquid column chromatographic separation to isolate curcumin. The inhibition of cell growth in the hepatoma cell line and the cytopathological changes were studied. GC-MS analysis showed the presence of fifty compounds in the methanolic extract of C. longa. The major compounds were ar-turmerone (20.50 %), β-sesquiphellandrene (5.20 %) and curcumenol (5.11 %). Curcumin was identified using IR, 1H and 13C NMR. The inhibition of cell growth by curcumin (IC50 = 41.69 ± 2.87 μg mL-1) was much more effective than that of methanolic extract (IC50 = 196.12 ± 5.25 μg mL-1). Degenerative and apoptotic changes were more evident in curcumin- treated hepatoma cells than in those treated with the methanol extract. Antitumor potential of the methanolic extract may be attributed to the presence of sesquiterpenes and phenolic constituents including curcumin (0.051 %, 511.39 μg g-1 dried methanol extract) in C. longa rhizomes.

  13. Antinociceptive properties of the aqueous and methanol extracts of the stem bark of Petersianthus macrocarpus (P. Beauv.) Liben (Lecythidaceae) in mice.

    PubMed

    Bomba, Francis Desire Tatsinkou; Wandji, Bibiane Aimee; Piegang, Basile Nganmegne; Awouafack, Maurice Ducret; Sriram, Dharmarajan; Yogeeswari, Perumal; Kamanyi, Albert; Nguelefack, Telesphore Benoit

    2015-11-04

    Aqueous maceration from the stem barks of Petersianthus macrocarpus (P. Beauv.) Liben (Lecythidaceae) is taken orally in the central Africa for the management of various ailments, including pain. This work was carried out to evaluate in mice, the antinociceptive effects of the aqueous and methanol extracts of the stem bark of P. macrocarpus. The chemical composition of the aqueous and methanol extracts prepared as cold macerations was determined by high performance liquid chromatography coupled with mass spectrometry (LCMS). The antinociceptive effects of these extracts administered orally at the doses of 100, 200 and 400 mg/kg were evaluated using behavioral pain model induced by acetic acid, formalin, hot-plate, capsaicin and glutamate. The rotarod test was also performed at the same doses. The oral acute toxicity of both extracts was studied at the doses of 800, 1600, 3200 and 6400 mg/kg in mice. The LCMS analysis revealed the presence of ellagic acid as the major constituent in the methanol extract. Both extracts of P. macrocarpus significantly and dose dependently reduced the time and number of writhing induced by acetic acid. They also significantly inhibited the two phases of formalin-induced pain. These effects were significantly inhibited by a pretreatment with naloxone, except for the analgesic activity of the methanol extract at the earlier phase. In addition, nociception induced by hot plate, intraplantar injection of capsaicin or glutamate was significantly inhibited by both extracts. Acute toxicity test showed no sign of toxicity. These results demonstrate that aqueous and methanol extracts of P. macrocarpus are none toxic substances with good central and peripheral antinociceptive effects that are at least partially due to the presence of ellagic acid. These extracts may induce their antinociceptive effect by interfering with opioid, capsaicin and excitatory amino acid pathways. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Skin extracts from 2 Italian table grapes (Italia and Palieri) inhibit tissue factor expression by human blood mononuclear cells.

    PubMed

    Milella, Rosa Anna; Antonacci, Donato; Crupi, Pasquale; Incampo, Francesca; Carrieri, Cosimo; Semeraro, Nicola; Colucci, Mario

    2012-08-01

    Grape and its products such as red wine and grape juice have well-known antithrombotic properties, which have been attributed to their high content in polyphenolic compounds. Most studies on the mechanisms underlying these beneficial effects, among which the suppression of tissue factor (TF) synthesis in blood mononuclear cells (MNC) and vascular endothelium is a prominent one, have been performed with purified polyphenols, while little is known about the effect of fresh grapes which contain a multitude of phytochemicals whose interaction may lead to different cell responses. In this study, we investigated the effect of grape skin extracts (GSEs) on TF expression in isolated blood MNC and in whole blood. Alcoholic extracts from skins of 2 grape varieties (Palieri and Italia) inhibited TF expression in lipopolysaccharide (LPS)-stimulated MNC in a concentration-dependent manner with ≥90% inhibition of TF activity and antigen at 6 μg/mL of gallic acid equivalents. Noteworthy, GSEs were also able to inhibit the appearance of TF in whole blood challenged with LPS. The 2 grape varieties displayed a fairly similar TF-inhibiting capacity despite marked differences in phenolic profile. When selected purified polyphenols were tested, their ability to inhibit TF expression was markedly lower as compared to grape extracts, whereas a mixture of some representative polyphenols was much more efficient, supporting the occurrence of a synergistic effect. Given the key role of cell TF in thrombotic diseases, the inhibition of MNC-mediated clotting activation, if confirmed by in vivo studies, might represent an important antithrombotic mechanism. Our data indicate that the combination of different polyphenols, as in grape extracts, is much more efficient than the single constituents, a finding that might be useful as starting point for the development of new antithrombotic nutraceutics. In addition, our study validated a simple, inexpensive, and physiologically relevant in vitro method on whole blood that allows the evaluation of one of the most important antithrombotic activities of food and food-derived products. The simplicity of the method makes it suitable also for screening purposes in large-scale studies. © 2012 Institute of Food Technologists®

  15. Anti-lipase and antioxidant properties of 30 medicinal plants used in Oaxaca, México.

    PubMed

    Villa-Ruano, Nemesio; Zurita-Vásquez, Guilibaldo G; Pacheco-Hernández, Yesenia; Betancourt-Jiménez, Martha G; Cruz-Durán, Ramiro; Duque-Bautista, Horacio

    2013-01-01

    We report the results of in vitro anti-lipase and antioxidant assays using crude ethanolic extracts from 30 plants grown in Oaxaca, México. Anti-lipase tests were performed by using porcine pancreatic lipase (PPL) [EC 3.1.1.3] from Affymetrix/USB. The extracts of Solanum erianthum, Salvia microphylla, Brungmansia suaveolens and Cuphea aequipetala showed up to 60% PPL inhibition. The effect of these extracts on the kinetic parameters of PPL (Km= 0.36 mM, and Vmax=0.085 mM min -1) revealed that the alcoholic preparations of S. erianthum and C. aequipetala engendered a non-competitive inhibition (Vmax=0.055 mM min -1; Vmax= 0.053 mM min -1), whereas those of S. microphylla and B. suaveolens produced a mixed inhibition (Km= 0.567 mM, Vmax=0.051 mM min _1; Km=0.643 mM, Vmax= 0.042 mM min ¹). In addition to these findings, seven extracts from different plants were able to inhibit PPL in the range of 30-50%. Antioxidant tests against 2,2-Diphenyl-1-picryl hydrazyl (DPPH) confirmed that Arctostaphylos pungens, Gnaphalium roseum, Crotalaria pumila, Cuphea aequipetala, Rhus chondroloma, and Satureja laevigata possess relevant antioxidant activity (IC(5)0=50-80 μg mL¹). The general composition of the most effective ethanolic extracts was obtained in order to confirm their known chemistry reported by previous works. Comprehensive chemical analysis of the ethanolic extracts and their poisoning effects suggests that S. microphylla, C. aequipetala and A. pungens could be considered as the best sources with both desired properties.

  16. In Vitro Anthelmintic Activity of Crude Extracts of Aerial Parts of Cissus quadrangularis L. and Leaves of Schinus molle L. against Haemonchus contortus.

    PubMed

    Zenebe, Selamawit; Feyera, Teka; Assefa, Solomon

    2017-01-01

    Haemonchus contortus, the causative agent of Haemonchosis, is the most economically important parasite in small ruminant production. Control with chemotherapy has not been successful due to rapid emergence of drug-resistant strains. There is a continuous search for alternative leads particularly from plants. The study aimed to evaluate the anthelmintic activity of crude methanolic extracts of leaves of Schinus molle and aerial parts of Cissus quadrangularis against H. contortus. Methods . Adult motility test and egg hatching inhibition assay were employed to investigate the in vitro adulticidal and egg hatching inhibitory effects of the extracts. Higher concentrations of the extracts (10 and 5 mg/ml) had a significantly superior adulticidal activity ( p < 0.05) compared to the negative control and lower concentration levels, which was comparable to albendazole. Similarly, the relative egg hatch inhibition efficacy of S. molle and C. quadrangularis extracts indicated a maximum of 96% and 88% egg hatch inhibition, respectively, within the 48 hrs of exposure at 1 mg/ml. The current study evidenced that the crude methanolic extracts of the plants have promising adulticidal and egg hatching inhibitory effects against H. contortus .

  17. [Study on antioxidative activities of Psidium guajava Linn leaves extracts].

    PubMed

    Wang, Bo; Jiao, Shirong; Liu, Hengchuan; Hong, Junrong

    2007-05-01

    To study the antioxidative activities of the extracts from Psidium guajava Linn leaves (PGL). The PGL was submersed with distilled water, 65% ethanol and 95% ethanol respectively. The 3 extracts were obtained after the solutions were filtered, concentrated and dried. The scavenging rate to hydroxyl radicals and inhibiting rate to lipid peroxidation were analyzed for the 3 extracts. Their contents of total flavonoids were determined by ultraviolet spectrophotometry, and the components of total flavonoids were primarily identified by high performance liquid chromatography (HPLC) and ultraviolet-visible absorption spectrometry (UV). The extracts from distilled water, 65% ethanol and 95% ethanol respectively showed effects on scavenging hydroxyl radicals and inhibiting lipid peroxidation in the dose-dependent manner, had 50% effective concentration (EC50) on scavenging hydroxyl radicals of 0.63, 0.47 and 0.58g/L, had EC50 on inhibiting lipid peroxidation of 0.20, 0.035, 0.18g/L and had total flavonoids contents of 3.28, 30.71 and 55.98g/kg respectively. The aquatic and the ethanol extracts from PGL possess the potential antioxidative activities in the study. The flavonoids may be one of their antioxidative components.

  18. ENVIROMENTALLY BENIGN MITIGATION OF MICROBIOLOGICALLY INFLUENCED CORROSION (MIC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Robert Paterek; Gemma Husmillo; Amrutha Daram

    The overall program objective is to develop and evaluate environmentally benign agents or products that are effective in the prevention, inhibition, and mitigation of microbially influenced corrosion (MIC) in the internal surfaces of metallic natural gas pipelines. The goal is to develop one or more environmentally benign (a.k.a. ''green'') products that can be applied to maintain the structure and dependability of the natural gas infrastructure. The technical approach for this quarter includes the application of the method of fractionation of the extracts by high performance liquid chromatography (HPLC); determination of antimicrobial activities of the new extracts and fractions using amore » growth inhibition assay, and evaluation of the extracts' ability to inhibit biofilm formation. We initiated the delivery system for these new biocides in the test cell and in mixtures of foam components and biocides/anti-biofilms. A total of 51 fractions collected by HPLC from crude extracts that were obtained from three varieties of Capsicum sp. (Serrano, Habanero, Chile de Arbol) were subjected to growth inhibition tests against two SRB strains, D. vulgaris and D. desulfuricans. Five fractions showed growth inhibition against both strains while seven inhibited D. desulfuricans only. The crude extracts did not show growth inhibition on both strains but were proven to be potent in preventing the formation of biofilm. Growth inhibition tests of the same set of crude extracts against Comamonas denitrificans did not show positive results. The fractions will be subjected to biofilm inhibition and dissociation assay as well. The delivery system to be evaluated first was foam. The ''foam pig'' components of surfactants and water were tested with the biocide addition. The first chemical and physical parameters to be tested were pH and surfactants. Tests using the fractionated pepper extracts are progressing rapidly. Gas chromatographic analysis on a number of fractions is underway. Involvement of other microorganisms in the tests will be extended. The foam application method has been initiated and is being developed.« less

  19. Potent α-amylase inhibitory activity of Indian Ayurvedic medicinal plants.

    PubMed

    P, Sudha; Zinjarde, Smita S; Bhargava, Shobha Y; Kumar, Ameeta R

    2011-01-20

    Indian medicinal plants used in the Ayurvedic traditional system to treat diabetes are a valuable source of novel anti-diabetic agents. Pancreatic α-amylase inhibitors offer an effective strategy to lower the levels of post-prandial hyperglycemia via control of starch breakdown. In this study, seventeen Indian medicinal plants with known hypoglycemic properties were subjected to sequential solvent extraction and tested for α-amylase inhibition, in order to assess and evaluate their inhibitory potential on PPA (porcine pancreatic α-amylase). Preliminary phytochemical analysis of the lead extracts was performed in order to determine the probable constituents. Analysis of the 126 extracts, obtained from 17 plants (Aloe vera (L.) Burm.f., Adansonia digitata L., Allium sativum L., Casia fistula L., Catharanthus roseus (L.) G. Don., Cinnamomum verum Persl., Coccinia grandis (L.) Voigt., Linum usitatisumum L., Mangifera indica L., Morus alba L., Nerium oleander L., Ocimum tenuiflorum L., Piper nigrum L., Terminalia chebula Retz., Tinospora cordifolia (Willd.) Miers., Trigonella foenum-graceum L., Zingiber officinale Rosc.) for PPA inhibition was initially performed qualitatively by starch-iodine colour assay. The lead extracts were further quantified with respect to PPA inhibition using the chromogenic DNSA (3, 5-dinitrosalicylic acid) method. Phytochemical constituents of the extracts exhibiting≥ 50% inhibition were analysed qualitatively as well as by GC-MS (Gas chromatography-Mass spectrometry). Of the 126 extracts obtained from 17 plants, 17 extracts exhibited PPA inhibitory potential to varying degrees (10%-60.5%) while 4 extracts showed low inhibition (< 10%). However, strong porcine pancreatic amylase inhibitory activity (> 50%) was obtained with 3 isopropanol extracts. All these 3 extracts exhibited concentration dependent inhibition with IC50 values, viz., seeds of Linum usitatisumum (540 μgml-1), leaves of Morus alba (1440 μgml-1) and Ocimum tenuiflorum (8.9 μgml-1). Acarbose as the standard inhibitor exhibited an IC50 (half maximal inhibitory concentration)value of 10.2 μgml-1. Phytochemical analysis revealed the presence of alkaloids, tannins, cardiac glycosides, flavonoids, saponins and steroids with the major phytoconstituents being identified by GC-MS. This study endorses the use of these plants for further studies to determine their potential for type 2 diabetes management. Results suggests that extracts of Linum usitatisumum, Morus alba and Ocimum tenuiflorum act effectively as PPA inhibitors leading to a reduction in starch hydrolysis and hence eventually to lowered glucose levels.

  20. Potent α-amylase inhibitory activity of Indian Ayurvedic medicinal plants

    PubMed Central

    2011-01-01

    Background Indian medicinal plants used in the Ayurvedic traditional system to treat diabetes are a valuable source of novel anti-diabetic agents. Pancreatic α-amylase inhibitors offer an effective strategy to lower the levels of post-prandial hyperglycemia via control of starch breakdown. In this study, seventeen Indian medicinal plants with known hypoglycemic properties were subjected to sequential solvent extraction and tested for α-amylase inhibition, in order to assess and evaluate their inhibitory potential on PPA (porcine pancreatic α-amylase). Preliminary phytochemical analysis of the lead extracts was performed in order to determine the probable constituents. Methods Analysis of the 126 extracts, obtained from 17 plants (Aloe vera (L.) Burm.f., Adansonia digitata L., Allium sativum L., Casia fistula L., Catharanthus roseus (L.) G. Don., Cinnamomum verum Persl., Coccinia grandis (L.) Voigt., Linum usitatisumum L., Mangifera indica L., Morus alba L., Nerium oleander L., Ocimum tenuiflorum L., Piper nigrum L., Terminalia chebula Retz., Tinospora cordifolia (Willd.) Miers., Trigonella foenum-graceum L., Zingiber officinale Rosc.) for PPA inhibition was initially performed qualitatively by starch-iodine colour assay. The lead extracts were further quantified with respect to PPA inhibition using the chromogenic DNSA (3, 5-dinitrosalicylic acid) method. Phytochemical constituents of the extracts exhibiting≥ 50% inhibition were analysed qualitatively as well as by GC-MS (Gas chromatography-Mass spectrometry). Results Of the 126 extracts obtained from 17 plants, 17 extracts exhibited PPA inhibitory potential to varying degrees (10%-60.5%) while 4 extracts showed low inhibition (< 10%). However, strong porcine pancreatic amylase inhibitory activity (> 50%) was obtained with 3 isopropanol extracts. All these 3 extracts exhibited concentration dependent inhibition with IC50 values, viz., seeds of Linum usitatisumum (540 μgml-1), leaves of Morus alba (1440 μgml-1) and Ocimum tenuiflorum (8.9 μgml-1). Acarbose as the standard inhibitor exhibited an IC50 (half maximal inhibitory concentration)value of 10.2 μgml-1. Phytochemical analysis revealed the presence of alkaloids, tannins, cardiac glycosides, flavonoids, saponins and steroids with the major phytoconstituents being identified by GC-MS. Conclusions This study endorses the use of these plants for further studies to determine their potential for type 2 diabetes management. Results suggests that extracts of Linum usitatisumum, Morus alba and Ocimum tenuiflorum act effectively as PPA inhibitors leading to a reduction in starch hydrolysis and hence eventually to lowered glucose levels. PMID:21251279

  1. Biological Activities and Secondary Metabolite Screening of Rumex hastatus Extract through Fourier Transform Infrared and Raman Spectroscopy.

    PubMed

    Andleeb, Saiqa; Naseer, Anum; Ali, Shaukat; Mustafa, Rozina Ghulam; Zafar, Atiya; Shafique, Irsa; Ihsan-Ul-Haq; Ismail, Muhammad; Saleem, Muhammad; Mansoor, Qaiser

    2018-01-01

    Human infectious diseases are caused by various pathogens including bacteria, fungi, viruses, parasites, and protozoans. These infectious agents are controlled by using synthetic drugs as well as natural sources. The aim of current study was to evaluate the antibacterial effect of Rumex hastatus against clinical bacterial pathogens. In current research antibacterial effect of Rumex hastatus was analyzed against seven clinical pathogenic bacteria such as Escherichia coli, Serratia marcescens, Streptococcus pyogenes, Staphylococcus epidermidis, Staphylococcus aureus, Klebsiella pneumoniae and Pseudomonas aeruginosa through agar well diffusion method. The boiled extract was used for the phytochemical screening, antioxidant potential, thin layer chromatography, bio-autography, and spot screening. Genomic DNA was extracted to find the DNA protection effect of R. hastatus. Antibacterial results showed that diethyl ether extract has the maximum inhibition of S. pyogenes (9.66 ± 0.57 mm). Acetone and diethyl ether extracts showed moderate inhibition of K. pneumoniae (6.33 ± 1.52 mm and 5.66 ±1.15 mm) and S. aureus (6.33 ± 1.52 mm and 5.66 ± 0.57 mm). Similarly, chloroform extract indicated moderate inhibition of S. pyogenes (5.66 ± 1.15 mm). Ethanol extract had low or even no effect on the growth of bacteria. Genomic DNA extraction also encouraged the antibacterial effect of R. hastatus. Various phytochemical constituents such as ketoses, oligosaccharides, amino acids, amines, sugars, flavonoids, and antioxidant constituents were detected. TLC-Bioautography and spot screening results revealed the potential use of R. hustatus as an antibacterial agent. It was concluded that most of the tested fractions appeared as an important source for the discovery of new antimicrobial drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Inhibition of melanogenesis and antioxidant properties of Magnolia grandiflora L. flower extract

    PubMed Central

    2012-01-01

    Background Magnolia grandiflora L. flower is wildly used in Asian as a traditional herbal medication. The purpose of the study was to investigate the antimelanogenic and antioxidant properties of Magnolia grandiflora L. flower extract. In the study, the inhibitory effects of M. grandiflora L. flower extract on mushroom tyrosinase, B16F10 intracellular tyrosinase activity and melanin content were determined spectrophotometrically. Meanwhile, the antioxidative capacity of the flower extract was also investigated. Results Our results revealed that M. grandiflora L. flower extract inhibit mushroom tyrosinase activity (IC50 =11.1%; v/v), the flower extract also effectively suppressed intracellular tyrosinase activity (IC50 = 13.6%; v/v) and decreased the amount of melanin (IC50 = 25.6%; v/v) in a dose-dependent manner in B16F10 cells. Protein expression level of tyrosinase and tyrosinase-related protein 1 (TRP-1) were also decreased by the flower extract. Additionally, antioxidant capacities such as ABTS+ free radical scavenging activity, reducing capacity and total phenolic content of the flower extract were increased in a dose-dependent pattern. Conclusions Our results concluded that M. grandiflora L. flower extract decreased the expression of tyrosinase and TRP-1, and then inhibited melanogenesis in B16F10 cells. The flower extract also show antioxidant capacities and depleted cellular reactive oxygen species (ROS). Hence, M. grandiflora L. flower extract could be applied as a type of dermatological whitening agent in skin care products. PMID:22672352

  3. Inhibition of melanogenesis and antioxidant properties of Magnolia grandiflora L. flower extract.

    PubMed

    Huang, Huey-Chun; Hsieh, Wan-Yu; Niu, Yu-Lin; Chang, Tsong-Min

    2012-06-06

    Magnolia grandiflora L. flower is wildly used in Asian as a traditional herbal medication. The purpose of the study was to investigate the antimelanogenic and antioxidant properties of Magnolia grandiflora L. flower extract. In the study, the inhibitory effects of M. grandiflora L. flower extract on mushroom tyrosinase, B16F10 intracellular tyrosinase activity and melanin content were determined spectrophotometrically. Meanwhile, the antioxidative capacity of the flower extract was also investigated. Our results revealed that M. grandiflora L. flower extract inhibit mushroom tyrosinase activity (IC(50) = 11.1%; v/v), the flower extract also effectively suppressed intracellular tyrosinase activity (IC(50) = 13.6%; v/v) and decreased the amount of melanin (IC(50) = 25.6%; v/v) in a dose-dependent manner in B16F10 cells. Protein expression level of tyrosinase and tyrosinase-related protein 1 (TRP-1) were also decreased by the flower extract. Additionally, antioxidant capacities such as ABTS(+) free radical scavenging activity, reducing capacity and total phenolic content of the flower extract were increased in a dose-dependent pattern. Our results concluded that M. grandiflora L. flower extract decreased the expression of tyrosinase and TRP-1, and then inhibited melanogenesis in B16F10 cells. The flower extract also show antioxidant capacities and depleted cellular reactive oxygen species (ROS). Hence, M. grandiflora L. flower extract could be applied as a type of dermatological whitening agent in skin care products.

  4. Sodium sulphite inhibition of potato and cherry polyphenolics in nucleic acid extraction for virus detection by RT-PCR.

    PubMed

    Singh, R P; Nie, X; Singh, M; Coffin, R; Duplessis, P

    2002-01-01

    Phenolic compounds from plant tissues inhibit reverse transcription-polymerase chain reaction (RT-PCR). Multiple-step protocols using several additives to inhibit polyphenolic compounds during nucleic acid extraction are common, but time consuming and laborious. The current research highlights that the inclusion of 0.65 to 0.70% of sodium sulphite in the extraction buffer minimizes the pigmentation of nucleic acid extracts and improves the RT-PCR detection of Potato virus Y (PVY) and Potato leafroll virus (PLRV) in potato (Solanum tuberosum) tubers and Prune dwarf virus (PDV) and Prunus necrotic ringspot virus (PNRSV) in leaves and bark in the sweet cherry (Prunus avium) tree. Substituting sodium sulphite in the nucleic acid extraction buffer eliminated the use of proteinase K during extraction. Reagents phosphate buffered saline (PBS)-Tween 20 and polyvinylpyrrolidone (PVP) were also no longer required during RT or PCR phase. The resultant nucleic acid extracts were suitable for both duplex and multiplex RT-PCR. This simple and less expensive nucleic acid extraction protocol has proved very effective for potato cv. Russet Norkotah, which contains a high amount of polyphenolics. Comparing commercially available RNA extraction kits (Catrimox and RNeasy), the sodium sulphite based extraction protocol yielded two to three times higher amounts of RNA, while maintaining comparable virus detection by RT-PCR. The sodium sulphite based extraction protocol was equally effective in potato tubers, and in leaves and bark from the cherry tree.

  5. Synthesis and characterization of an effective organic/inorganic hybrid green corrosion inhibitive complex based on zinc acetate/Urtica Dioica

    NASA Astrophysics Data System (ADS)

    Salehi, E.; Naderi, Reza; Ramezanzadeh, B.

    2017-02-01

    This study aims at synthesis and characterization of an effective corrosion inhibitive complex based on zinc acetate/Urtica Dioica (ZnA-U.D) for corrosion protection of mild steel in chloride solution. The chemical structure and morphology of the complex were characterized by Fourier transform infrared spectroscopy (FT-IR), UV-vis, thermal gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The corrosion protection performance of the mild steel samples dipped in 3.5 wt.% NaCl solutions with and without ZnA-U.D extract was investigated by visual observations, open circuit potential (OCP) measurements, electrochemical impedance spectroscopy (EIS) and polarization test. Results revealed that the ZnA successfully chelated with organic inhibitive compounds (i.e Quercetin, Quinic acid, Caffeic acid, Hystamine and Serotonin) present in the U.D extract. The electrochemical measurements revealed the effective inhibition action of ZnA-U.D complex in the sodium chloride solution on the mild steel. The synergistic effect between Zn2+ and organic compounds present in the U.D extract resulted in protective film deposition on the steel surface, which was proved by SEM and XPS analyses.

  6. Inhibition of human dendritic cell activation by hydroethanolic but not lipophilic extracts of turmeric (Curcuma longa).

    PubMed

    Krasovsky, Joseph; Chang, David H; Deng, Gary; Yeung, Simon; Lee, Mavis; Leung, Ping Chung; Cunningham-Rundles, Susanna; Cassileth, Barrie; Dhodapkar, Madhav V

    2009-03-01

    Turmeric has been extensively utilized in Indian and Chinese medicine for its immune-modulatory properties. Dendritic cells (DCs) are antigen-presenting cells specialized to initiate and regulate immunity. The ability of DCs to initiate immunity is linked to their activation status. The effects of turmeric on human DCs have not been studied. Here we show that hydroethanolic (HEE) but not lipophilic "supercritical" extraction (SCE) of turmeric inhibits the activation of human DCs in response to inflammatory cytokines. Treatment of DCs with HEE also inhibits the ability of DCs to stimulate the mixed lymphocyte reaction (MLR). Importantly, the lipophilic fraction does not synergize with the hydroethanolic fraction for the ability of inhibiting DC maturation. Rather, culturing of DCs with the combination of HEE and SCE leads to partial abrogation of the effects of HEE on the MLR initiated by DCs. These data provide a mechanism for the anti-inflammatory properties of turmeric. However, they suggest that these extracts are not synergistic and may contain components with mutually antagonistic effects on human DCs. Harnessing the immune effects of turmeric may benefit from specifically targeting the active fractions.

  7. Inhibition of Human Dendritic Cell Activation by Hydroethanolic But Not Lipophilic Extracts of Turmeric (Curcuma longa)

    PubMed Central

    Krasovsky, Joseph; Chang, David H.; Deng, Gary; Yeung, Simon; Lee, Mavis; Leung, Ping Chung; Cunningham-Rundles, Susanna; Cassileth, Barrie; Dhodapkar, Madhav V.

    2015-01-01

    Turmeric has been extensively utilized in Indian and Chinese medicine for its immune-modulatory properties. Dendritic cells (DCs) are antigen-presenting cells specialized to initiate and regulate immunity. The ability of DCs to initiate immunity is linked to their activation status. The effects of turmeric on human DCs have not been studied. Here we show that hydroethanolic (HEE) but not lipophilic “supercritical” extraction (SCE) of turmeric inhibits the activation of human DCs in response to inflammatory cytokines. Treatment of DCs with HEE also inhibits the ability of DCs to stimulate the mixed lymphocyte reaction (MLR). Importantly, the lipophilic fraction does not synergize with the hydroethanolic fraction for the ability of inhibiting DC maturation. Rather, culturing of DCs with the combination of HEE and SCE leads to partial abrogation of the effects of HEE on the MLR initiated by DCs. These data provide a mechanism for the anti-inflammatory properties of turmeric. However, they suggest that these extracts are not synergistic and may contain components with mutually antagonistic effects on human DCs. Harnessing the immune effects of turmeric may benefit from specifically targeting the active fractions. PMID:19034830

  8. Antioxidant rich grape pomace extract suppresses postprandial hyperglycemia in diabetic mice by specifically inhibiting alpha-glucosidase.

    PubMed

    Hogan, Shelly; Zhang, Lei; Li, Jianrong; Sun, Shi; Canning, Corene; Zhou, Kequan

    2010-08-27

    Postprandial hyperglycemia is an early defect of type 2 diabetes and one of primary anti-diabetic targets. Treatment of postprandial hyperglycemia can be achieved by inhibiting intestinal α-glucosidase, the key enzyme for oligosaccharide digestion and further glucose absorption. Grape pomace is winemaking byproduct rich in bioactive food compounds such as phenolic antioxidants. This study evaluated the anti-diabetic potential of two specific grape pomace extracts by determining their antioxidant and anti-postprandial hyperglycemic activities in vitro and in vivo. The extracts of red wine grape pomace (Cabernet Franc) and white wine grape pomace (Chardonnay) were prepared in 80% ethanol. An extract of red apple pomace was included as a comparison. The radical scavenging activities and phenolic profiles of the pomace extracts were determined through the measurement of oxygen radical absorbance capacity, DPPH radical scavenging activity, total phenolic content and flavonoids. The inhibitory effects of the pomace extracts on yeast and rat intestinal α-glucosidases were determined. Male 6-week old C57BLKS/6NCr mice were treated with streptozocin to induce diabetes. The diabetic mice were then treated with vehicle or the grape pomace extract to determine whether the oral intake of the extract can suppress postprandial hyperglycemia through the inhibition of intestinal α-glucosidases. The red grape pomace extract contained significantly higher amounts of flavonoids and phenolic compounds and exerted stronger oxygen radical absorbance capacity than the red apple pomace extract. Both the grape pomace extracts but not the apple pomace extract exerted significant inhibition on intestinal α-glucosidases and the inhibition appears to be specific. In the animal study, the oral intake of the grape pomace extract (400 mg/kg body weight) significantly suppressed the postprandial hyperglycemia by 35% in streptozocin-induced diabetic mice following starch challenge. This is the first report that the grape pomace extracts selectively and significantly inhibits intestinal α-glucosidase and suppresses postprandial hyperglycemia in diabetic mice. The antioxidant and anti-postprandial hyperglycemic activities demonstrated on the tested grape pomace extract therefore suggest a potential for utilizing grape pomace-derived bioactive compounds in management of diabetes.

  9. Antioxidant rich grape pomace extract suppresses postprandial hyperglycemia in diabetic mice by specifically inhibiting alpha-glucosidase

    PubMed Central

    2010-01-01

    Background Postprandial hyperglycemia is an early defect of type 2 diabetes and one of primary anti-diabetic targets. Treatment of postprandial hyperglycemia can be achieved by inhibiting intestinal α-glucosidase, the key enzyme for oligosaccharide digestion and further glucose absorption. Grape pomace is winemaking byproduct rich in bioactive food compounds such as phenolic antioxidants. This study evaluated the anti-diabetic potential of two specific grape pomace extracts by determining their antioxidant and anti-postprandial hyperglycemic activities in vitro and in vivo. Methods The extracts of red wine grape pomace (Cabernet Franc) and white wine grape pomace (Chardonnay) were prepared in 80% ethanol. An extract of red apple pomace was included as a comparison. The radical scavenging activities and phenolic profiles of the pomace extracts were determined through the measurement of oxygen radical absorbance capacity, DPPH radical scavenging activity, total phenolic content and flavonoids. The inhibitory effects of the pomace extracts on yeast and rat intestinal α-glucosidases were determined. Male 6-week old C57BLKS/6NCr mice were treated with streptozocin to induce diabetes. The diabetic mice were then treated with vehicle or the grape pomace extract to determine whether the oral intake of the extract can suppress postprandial hyperglycemia through the inhibition of intestinal α-glucosidases. Results The red grape pomace extract contained significantly higher amounts of flavonoids and phenolic compounds and exerted stronger oxygen radical absorbance capacity than the red apple pomace extract. Both the grape pomace extracts but not the apple pomace extract exerted significant inhibition on intestinal α-glucosidases and the inhibition appears to be specific. In the animal study, the oral intake of the grape pomace extract (400 mg/kg body weight) significantly suppressed the postprandial hyperglycemia by 35% in streptozocin-induced diabetic mice following starch challenge. Conclusion This is the first report that the grape pomace extracts selectively and significantly inhibits intestinal α-glucosidase and suppresses postprandial hyperglycemia in diabetic mice. The antioxidant and anti-postprandial hyperglycemic activities demonstrated on the tested grape pomace extract therefore suggest a potential for utilizing grape pomace-derived bioactive compounds in management of diabetes. PMID:20799969

  10. Green and black tea inhibit cytokine-induced IL-8 production and secretion in AGS gastric cancer cells via inhibition of NF-κB activity.

    PubMed

    Gutierrez-Orozco, Fabiola; Stephens, Brian R; Neilson, Andrew P; Green, Rodney; Ferruzzi, Mario G; Bomser, Joshua A

    2010-10-01

    Consumption of tea is associated with a reduced risk for several gastrointestinal cancers. Inflammatory processes, such as secretion of IL-8 from the gastric epithelium in response to chronic chemokine or antigen exposure, serve both as a chemoattractant for white blood cells and a prerequisite for gastric carcinogenesis. In this study, the gastric adenocarcinoma cell line AGS was used to investigate the effect of green tea extract, black tea extract, and epigallocatechin gallate (EGCG), the most abundant catechin in tea, on cytokine-induced inflammation. AGS cells were stimulated with interleukin-1β (IL-1β) to initiate inflammation, followed by exposure to either tea extracts or EGCG. We found that both green and black tea extracts at concentrations of 20 and 2 µM total catechins, respectively, significantly (p < 0.05) inhibited IL-1β-induced IL-8 production and secretion to a similar extent. Treatment of AGS cells with EGCG (8 µM) produced similar reductions in IL-1β-induced IL-8 production and secretion. Inhibition of NF-κB activity was found to be responsible, in part, for these observed effects. Our findings demonstrate that both green and black tea extracts with distinctly different catechin profiles, are capable of disrupting the molecular link between inflammation and carcinogenesis via inhibition of NF-κB activity in AGS cells. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Different Culture Metabolites of the Red Sea Fungus Fusarium equiseti Optimize the Inhibition of Hepatitis C Virus NS3/4A Protease (HCV PR).

    PubMed

    Hawas, Usama W; Al-Farawati, Radwan; Abou El-Kassem, Lamia T; Turki, Adnan J

    2016-10-20

    The endophytic fungus Fusarium equiseti was isolated from the brown alga Padina pavonica , collected from the Red Sea. The fungus was identified by its morphology and 18S rDNA. Cultivation of this fungal strain in biomalt-peptone medium led to isolation of 12 known metabolites of diketopeprazines and anthraquinones. The organic extract and isolated compounds were screened for their inhibition of hepatitis C virus NS3/4A protease (HCV PR). As a result, the fungal metabolites showed inhibition of HCV protease (IC 50 from 19 to 77 μM), and the fungus was subjected to culture on Czapek's (Cz) media, with a yield of nine metabolites with potent HCV protease inhibition ranging from IC 50 10 to 37 μM. The Cz culture extract exhibited high-level inhibition of HCV protease (IC 50 27.6 μg/mL) compared to the biomalt culture extract (IC 50 56 μg/mL), and the most potent HCV PR isolated compound (Griseoxanthone C, IC 50 19.8 μM) from the bio-malt culture extract showed less of an inhibitory effect compared to isolated ω-hydroxyemodin (IC 50 10.7 μM) from the optimized Cz culture extract. Both HCV PR active inhibitors ω-hydroxyemodin and griseoxanthone C were considered as the lowest selective safe constituents against Trypsin inhibitory effect with IC 50 48.5 and 51.3 μM, respectively.

  12. Phytochemical Constituents, ChEs and Urease Inhibitions, Antiproliferative and Antioxidant Properties of Elaeagnus umbellata Thunb.

    PubMed

    Ozen, Tevfik; Yenigun, Semiha; Altun, Muhammed; Demirtas, Ibrahim

    2017-01-01

    Due to the common ethnopharmacological used or scientifically examined biochemical properties, Elaeagnaceae family, Elaeagnus umbellate (Thunb.) (EU, Guz yemisi) was worth investigating. In this investigation, we revealed antioxidant, antiproliferative and enzyme inhibition activities of the water, methanol, ethanol, acetone, ethyl acetate and hexane extracts of EU as well as the contents of their phenolic, flavonoid, anthocyanin, ascorbic acid, lycopene and β- carotene. The antioxidant activity was screened by total antioxidant (phosphomolybdenum), inhibition of linoleic acid peroxidation, reducing power, 2-deoxyribose degradation assay, H2O2 scavenging and metal chelating activities of the samples were tested in vitro. Additionally, the scavenging activities of the extracts were determined against 1,1-diphenyl-2-picrylhydrazyl (DPPH˙), 2,2-azino-bis(3-ethylbenzothiazloine-6-sulfonicacid (ABTS˙+), superoxide anion and peroxide radicals. The samples were determined for their inhibitory activities against urease, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). In vitro, antiproliferative activities of six different extracts were tested using the xCELLigence system against HeLa and HT29 cell lines. The antioxidant activities of the extracts were found higher than standard antioxidants. The water extracts of fruit and leaf showed the best antioxidant activity. In inhibition assays of urease, AChE and BuChE, all extracts exhibited remarkable inhibition potential. Ethyl acetate extracts, especially, showed better inhibition capacity. It was found that the antioxidant activities of the extracts presented consistently with their chemical contents. The antiproliferative activities of leaf extracts were more effective than the fruit extracts. The chromatographic methods were applied to the different solvents to analyses phenolic secondery metabolites. It was found that fumaric acid, 4- hydroxybenzoic acid, rutin and quercetin-3-β-D-glucoside, neohesperidin, hesperidin determined to have higher contents all the extracts. EU can be suggested as a potential natural source of antioxidants appropriate for utilization in nutritional/pharmaceutical fields. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Inhibition of dipeptidyl peptidase activity by flavonol glycosides of guava (Psidium guajava L.): a key to the beneficial effects of guava in type II diabetes mellitus.

    PubMed

    Eidenberger, Thomas; Selg, Manuel; Krennhuber, Klaus

    2013-09-01

    Based on the traditional use in popular medicine, the effect of extracts from Psidium guajava L. leaves and of the main flavonol-glycoside components on dipeptidyl-peptidase IV (DP-IV), a key enzyme of blood glucose homoeostasis, has been investigated in-vitro. An ethanolic extract was prepared from dried, powdered leaves of guava and was found to contain seven main flavonol-glycosides, which were isolated by semipreparative HPLC and tested individually. The ethanolic guava leave extract was shown to exert a dose-dependent inhibition of DP-IV, with an IC50 of 380 μg/ml test assay solution. Also the individual flavonol-glycosides inhibited DP-IV dose-dependently, with variations of the effects by a factor of 10, and an overall effect accounting for 100% of that observed for the total guava extract. The recovery of individual flavonol-glycosides in CaCo-2 epithelial cells, a model of gastrointestinal tract absorption, amounted to 2.3-5.3% of the amount available for absorption over 60 min at 37°C. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Effect of Calea serrata Less. n-hexane extract on acetylcholinesterase of larvae ticks and brain Wistar rats.

    PubMed

    Ribeiro, Vera Lucia Sardá; Vanzella, Cláudia; Moysés, Felipe dos Santos; Santos, Jaqueline Campiol Dos; Martins, João Ricardo Souza; von Poser, Gilsane Lino; Siqueira, Ionara Rodrigues

    2012-10-26

    Acetylcholinesterase (AChE), an enzyme that hydrolyses acetylcholine (ACh) at cholinergic synapses, is a target for pesticides and its inhibition by organophosphates leads to paralysis and death of arthropods. It has been demonstrated that the n-hexane extract of Calea serrata had acaricidal activity against larvae of Rhipicephalus (Boophilus) microplus and Rhipicephalus sanguineus. The aim of the present study was to understand the mechanism of the acaricidal action of C. serrata n-hexane extract are specifically to investigate the in vitro anticholinesterase activity on larvae of R. microplus and in brain structures of male Wistar rats. The n-hexane extract significantly inhibited in vitro acetylcholinesterase activity in R. microplus larvae and rat brain structures. The results confirm that inhibition of acetylcholinesterase is a possible mechanism of action of hexane extract at C. serrata. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Screening of plant extracts for antimicrobial activity against bacteria and yeasts with dermatological relevance.

    PubMed

    Weckesser, S; Engel, K; Simon-Haarhaus, B; Wittmer, A; Pelz, K; Schempp, C M

    2007-08-01

    There is cumulative resistance against antibiotics of many bacteria. Therefore, the development of new antiseptics and antimicrobial agents for the treatment of skin infections is of increasing interest. We have screened six plant extracts and isolated compounds for antimicrobial effects on bacteria and yeasts with dermatological relevance. The following plant extracts have been tested: Gentiana lutea, Harpagophytum procumbens, Boswellia serrata (dry extracts), Usnea barbata, Rosmarinus officinalis and Salvia officinalis (supercritical carbon dioxide [CO2] extracts). Additionally, the following characteristic plant substances were tested: usnic acid, carnosol, carnosic acid, ursolic acid, oleanolic acid, harpagoside, boswellic acid and gentiopicroside. The extracts and compounds were tested against 29 aerobic and anaerobic bacteria and yeasts in the agar dilution test. U. barbata-extract and usnic acid were the most active compounds, especially in anaerobic bacteria. Usnea CO2-extract effectively inhibited the growth of several Gram-positive bacteria like Staphylococcus aureus (including methicillin-resistant strains - MRSA), Propionibacterium acnes and Corynebacterium species. Growth of the dimorphic yeast Malassezia furfur was also inhibited by Usnea-extract. Besides the Usnea-extract, Rosmarinus-, Salvia-, Boswellia- and Harpagophytum-extracts proved to be effective against a panel of bacteria. It is concluded that due to their antimicrobial effects some of the plant extracts may be used for the topical treatment of skin disorders like acne vulgaris and seborrhoic eczema.

  16. Inhibitory Effects of Adlay Extract on Melanin Production and Cellular Oxygen Stress in B16F10 Melanoma Cells

    PubMed Central

    Huang, Huey-Chun; Hsieh, Wan-Yu; Niu, Yu-Lin; Chang, Tsong-Min

    2014-01-01

    The aim of this study was to determine the effects of adlay extract on melanin production and the antioxidant characteristics of the extract. The seeds were extracted by the supercritical fluid CO2 extraction (SFE) method. The effect of adlay extract on melanin production was evaluated using mushroom tyrosinase activity assay, intracellular tyrosinase activity, antioxidant properties and melanin content. Those assays were performed spectrophotometrically. In addition, the expression of melanogenesis-related proteins was determined by western blotting. The results revealed that the adlay extract suppressed intracellular tyrosinase activity and decreased the amount of melanin in B16F10 cells. The adlay extract decreased the expression of microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase related protein-1 (TRP-1) and tyrosinase related protein-2 (TRP-2). The extract also exhibited antioxidant characteristics such as free radical scavenging capacity and reducing power. It effectively decreased intracellular reactive oxygen species (ROS) levels in B16F10 cells. We concluded that the adlay extract inhibits melanin production by down-regulation of MITF, tyrosinase, TRP-1 and TRP-2. The antioxidant properties of the extract may also contribute to the inhibition of melanogenesis. The adlay extract can therefore be applied as an inhibitor of melanogenesis and could also act as a natural antioxidant in skin care products. PMID:25244016

  17. Well-tolerated Spirulina extract inhibits influenza virus replication and reduces virus-induced mortality

    PubMed Central

    Chen, Yi-Hsiang; Chang, Gi-Kung; Kuo, Shu-Ming; Huang, Sheng-Yu; Hu, I-Chen; Lo, Yu-Lun; Shih, Shin-Ru

    2016-01-01

    Influenza is one of the most common human respiratory diseases, and represents a serious public health concern. However, the high mutability of influenza viruses has hampered vaccine development, and resistant strains to existing anti-viral drugs have also emerged. Novel anti-influenza therapies are urgently needed, and in this study, we describe the anti-viral properties of a Spirulina (Arthrospira platensis) cold water extract. Anti-viral effects have previously been reported for extracts and specific substances derived from Spirulina, and here we show that this Spirulina cold water extract has low cellular toxicity, and is well-tolerated in animal models at one dose as high as 5,000 mg/kg, or 3,000 mg/kg/day for 14 successive days. Anti-flu efficacy studies revealed that the Spirulina extract inhibited viral plaque formation in a broad range of influenza viruses, including oseltamivir-resistant strains. Spirulina extract was found to act at an early stage of infection to reduce virus yields in cells and improve survival in influenza-infected mice, with inhibition of influenza hemagglutination identified as one of the mechanisms involved. Together, these results suggest that the cold water extract of Spirulina might serve as a safe and effective therapeutic agent to manage influenza outbreaks, and further clinical investigation may be warranted. PMID:27067133

  18. Antioxidant and anticholinesterase activities of eleven edible plants.

    PubMed

    Boğa, Mehmet; Hacıbekiroğlu, Işıl; Kolak, Ufuk

    2011-03-01

    Consumers have become more interested in beneficial effects of vegetables, fruits, and tea to protect their health. The antioxidant potential and anticholinesterase activity of eleven edible plants were investigated. The dichloromethane, ethanol and water extracts prepared from celery [Apium graveolens L. (Umbelliferae)], Jerusalem artichoke [Helianthus tuberosus L. (Compositae)], spinach [Spinacia oleracea L. (Chenopodiaceae)], chard [Beta vulgaris L. var. cicla (Chenopodiaceae)], purslane [Portulaca oleracea L. (Portulacaceae)], ispit, or borage [Trachystemon orientale (L.) G. Don (Boraginaceae)], garden rocket [Eruca sativa Mill. (Brassicaceae)], red cabbage [Brassica oleracea L. var. capitata f. rubra DC. (Cruciferae)], lime flower [Tilia tomentosa Moench (Tiliaceae)], cinnamon [Cinnamomum cassia Presl. (Lauraceae)], and rosehip [Rosa canina L. (Rosaceae)], were tested to determine their antioxidant and anticholinesterase activities by using CUPRAC (cupric reducing antioxidant capacity) and Ellman methods, respectively, for the first time. As a result, the dichloromethane, ethanol and water extracts of cinnamon showed the best antioxidant effect among the extracts of the tested plants. The ethanol extract of cinnamon exhibited 63.02% inhibition against acetylcholinesterase and 85.11% inhibition against butyrylcholinesterase (BChE) at 200 µg/mL concentration while the dichloromethane extract of garden rocket possessed the highest inhibition (91.27%) against BChE among all the tested extracts. This study indicated that the ethanol extract of cinnamon may be a new potential resource of natural antioxidant and anticholinesterase compounds.

  19. Protective effects of a standard extract of Mangifera indica L. (VIMANG) against mouse ear edemas and its inhibition of eicosanoid production in J774 murine macrophages.

    PubMed

    Garrido, G; González, D; Lemus, Y; Delporte, C; Delgado, R

    2006-06-01

    A standard aqueous extract of Mangifera indica L., used in Cuba as antioxidant under the brand name VIMANG, was tested in vivo for its anti-inflammatory activity, using commonly accepted assays. The standard extract of M. indica, administered orally (50-200mg/kg body wt.), reduced ear edema induced by arachidonic acid (AA) and phorbol myristate acetate (PMA) in mice. In the PMA model, M. indica extract also reduced myeloperoxidase (MPO) activity. In vitro studies were performed using macrophage cell line J774 stimulated with pro-inflammatory stimuli lipopolysaccharide-interferon gamma (LPS-IFNgamma) or calcium ionophore A23187 to determine prostaglandin PGE(2) or leukotriene LTB(4) release, respectively. The extract inhibited the induction of PGE(2) and LTB(4) with IC(50) values of 21.7 and 26.0microg/ml, respectively. Mangiferin (a glucosylxanthone isolated from the extract) also inhibited these AA metabolites (PGE(2), IC(50) value=17.2microg/ml and LTB(4), IC(50) value=2.1microg/ml). These results represent an important contribution to the elucidation of the mechanism involved in the anti-inflammatory and anti-nociceptive effects reported for the standard extract of M. indica VIMANG.

  20. Cancer-suppressive potential of extracts of endemic plant Helichrysum zivojinii: effects on cell migration, invasion and angiogenesis.

    PubMed

    Matić, Ivana Z; Aljancić, Ivana; Vajs, Vlatka; Jadranin, Milka; Gligorijević, Nevenka; Milosavljević, Slobodan; Juranić, Zorica D

    2013-09-01

    Helichrysum zivojinii Cernjavski & Soska is an endemic plant species that grows in the National Park Galicica in Macedonia. Five extracts were isolated as fractions from the aerial parts of the plant: a n-hexane extract (1), a dichloromethane extract (2), an ethyl-acetate extract (3), a n-butanol extract (4) and a methanol extract (5). A dose-dependent cytotoxic activity of the extracts on MDA-MB-231 and EA.hy926 cells was observed. Extracts exhibited more pronounced cytotoxic actions on MDA-MB-231 cells than on EA.hy926 cells. The n-hexane extract (1), at a non-toxic concentration, exhibited an inhibitory effect on the migration as well the invasiveness of MDA-MB-231 cells. The dichloromethane extract (2), at a non-toxic concentration, demonstrated inhibition of MDA-MB-231 cells invasion. Each of the five extracts applied at non-toxic concentrations inhibited migration of EA.hy926 cells. The prominent inhibitory effect of the n-hexane extract on EA.hy926 cells migration was associated with a notable anti-angiogenic action of this extract. The other four tested extracts demonstrated mild anti-angiogenic activity. Our data highlight the prominent anticancer potential of n-hexane (1) and dichloromethane (2) extracts, which could be attributed to their very pronounced and selective cytotoxic activities as well as their anti-invasive and anti-angiogenic properties.

  1. The Inhibitory Effect of C-phycocyanin Containing Protein Extract (C-PC Extract) on Human Matrix Metalloproteinases (MMP-2 and MMP-9) in Hepatocellular Cancer Cell Line (HepG2).

    PubMed

    Kunte, Mugdha; Desai, Krutika

    2017-06-01

    Spirulina platensis :have been studied for several biological activities. In the current study C-phycocyanin containing protein extract (C-PC extract) of Spirulina platensis have been studied for its effect on human matrix metalloproteinases (MMP-1, MMP-2 and MMP-9) and tissue inhibitors of MMPs (TIMP-1 and TIMP-2). In the present study, breast cancer cell line (MDA-MB 231) and hepatocellular cancer cell line (HepG2) were examined for inhibition of MMPs at different levels of expression after C-PC extract treatment. Herein, we have demonstrated that C-PC extract significantly reduced activity of MMP-2 by 55.13% and MMP-9 by 57.9% in HepG2 cells at 15 μg concentration. Additionally, the treatment has reduced mRNA expression of MMP-2 and MMP-9 at 20 μg concentration by 1.65-folds and 1.66-folds respectively. The C-PC extract treatment have also downregulated a mRNA expression of TIMP-2 by 1.12 folds at 20 μg concentration in HepG2 cells. Together, these results indicate that C-PC, extract successfully inhibited MMP-2 and -9 at different levels of expression and TIMP-2 at a mRNA expression level; however, extract did not have any effect on MMP-1 expressed in MDA-MB231 and TIMP-1 expressed in HepG2 cells as well as the exact mechanism of inhibition of MMP-2, MMP-9 and TIMP-2 remained unclear.

  2. Medicinal activities of the leaves of Musa sapientum var. sylvesteris in vitro

    PubMed Central

    Sahaa, Repon Kumer; Acharyaa, Srijan; Shovon, Syed Sohidul Haque; Royb, Priyanka

    2013-01-01

    Objective This study is to investigate the medicinal value of methanolic extract of the leaves of Musa sapientum var. sylvesteris in Bangladesh. Methods Several biochemical assays, thin layer chormatogarphy and ultra-violet spectroscopy were used to detect the presence of various types of compounds in this extract. Antioxidant effects were measured by DPPH scavenging assay, total reducing assay and hydrogen peroxide scavenging assay. Receptor binding activities and hydrogen peroxide induced hemolysis assay were performed by hemagglutination assay and hemolysis assay using erythrocytes. Disk diffusion assay was performed to show the antibacterial effect of the extract. Results Methanolic extract of the leaves showed antioxidant and antibacterial activity in vitro. The extract showed hemaglutination inhibition activities and hydrogen peroxide induced hemolysis inhibition activity of human red blood cells. Conclusion Musa sapientum var. sylvesteris can be an useful medicinal plant. PMID:23730561

  3. Quince (Cydonia oblonga Miller) peel polyphenols modulate LPS-induced inflammation in human THP-1-derived macrophages through NF-{kappa}B, p38MAPK and Akt inhibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Essafi-Benkhadir, Khadija; Refai, Amira; Riahi, Ichrak

    Highlights: Black-Right-Pointing-Pointer Quince peel polyphenols inhibit LPS-induced secretion of TNF-{alpha} and IL-8. Black-Right-Pointing-Pointer Quince peel polyphenols augment LPS-induced secretion of IL-10 and IL-6. Black-Right-Pointing-Pointer Quince peel polyphenols-mediated inhibition of LPS-induced secretion of TNF-{alpha} is partially mediated by IL-6. Black-Right-Pointing-Pointer The anti-inflammatory effects of quince polyphenols pass through NF-{kappa}B, p38MAPK and Akt inhibition. -- Abstract: Chronic inflammation is a hallmark of several pathologies, such as rheumatoid arthritis, gastritis, inflammatory bowel disease, atherosclerosis and cancer. A wide range of anti-inflammatory chemicals have been used to treat such diseases while presenting high toxicity and numerous side effects. Here, we report the anti-inflammatory effectmore » of a non-toxic, cost-effective natural agent, polyphenolic extract from the Tunisian quince Cydonia oblonga Miller. Lipopolysaccharide (LPS) treatment of human THP-1-derived macrophages induced the secretion of high levels of the pro-inflammatory cytokine TNF-{alpha} and the chemokine IL-8, which was inhibited by quince peel polyphenolic extract in a dose-dependent manner. Concomitantly, quince polyphenols enhanced the level of the anti-inflammatory cytokine IL-10 secreted by LPS-treated macrophages. We further demonstrated that the unexpected increase in IL-6 secretion that occurred when quince polyphenols were associated with LPS treatment was partially responsible for the polyphenols-mediated inhibition of TNF-{alpha} secretion. Biochemical analysis showed that quince polyphenols extract inhibited the LPS-mediated activation of three major cellular pro-inflammatory effectors, nuclear factor-kappa B (NF-{kappa}B), p38MAPK and Akt. Overall, our data indicate that quince peel polyphenolic extract induces a potent anti-inflammatory effect that may prove useful for the treatment of inflammatory diseases and that a quince-rich regimen may help to prevent and improve the treatment of such diseases.« less

  4. Cytochrome P450 3A4 in vivo ketoconazole competitive inhibition: determination of Ki and dangers associated with high clearance drugs in general.

    PubMed

    Boxenbaum, H

    1999-01-01

    Assuming complete hepatic substrate metabolism and system linearity, quantitative effects of in vivo competitive inhibition are investigated. Following oral administration of a substrate in the presence of a competitive inhibitor, determination of the inhibition constant (Ki) is possible when plasma concentration-time profiles of both substrate and inhibitor are available. When triazolam is the P450 3A4 substrate and ketoconazole the competitive inhibitor, Ki approximately 1.2 microg/mL in humans. The effects of competitive inhibition can be divided into two components: first-pass hepatic metabolism and systemic metabolism. For drugs with high hepatic extraction ratios, the impact of competitive inhibition on hepatic first-pass metabolism can be particularly dramatic. For example, human terfenadine hepatic extraction goes from 95% in the absence of a competitive inhibitor to 35% in the presence of one (ketoconazole, 200 mg po Q 12 h dosed to steady-state). First-pass extraction therefore goes from 5% in the absence of the inhibitor to 65% in its presence. The combined effect on first-pass and systemic metabolism produces an approximate 37 fold increase in terfenadine area under the plasma concentration-time curve. Assuming intact drug is active and/or toxic, development of metabolized drugs with extensive first-pass metabolism should be avoided if possible, since inhibition of metabolism may lead to profound increases in exposure.

  5. Angiotensin-converting enzyme (ACE) inhibitory potential of standardized Mucuna pruriens seed extract.

    PubMed

    Chaudhary, Sushil Kumar; De, Apurba; Bhadra, Santanu; Mukherjee, Pulok K

    2015-01-01

    Mucuna pruriens Linn. (Fabaceae) is a tropical legume, traditionally used for controlling blood pressure. Inhibition of angiotensin-converting enzyme (ACE) is one of the successful strategies for controlling hypertension. The present study evaluated the ACE inhibition potential of the standardized extract of M. pruriens seeds. Standardization of the extract and its fractions were carried out by RP-HPLC method [methanol and 1% v/v acetic acid in water (5:95 v/v)] using levodopa as a marker. The ACE inhibition activity of the extract and fractions was evaluated at different concentrations (20, 40, 60, 80, and 100 µg/mL) using the HPLC-DAD and the UV spectrophotometric method. The liberation of hippuric acid (HA) from hippuryl-L-histidyl-L-leucine (HHL) was estimated in the spectrophotometric method and RP-HPLC assay at 228 nm. Methanol extract and aqueous fraction showed a maximum activity with IC50 values of 38.44 ± 0.90 and 57.07 ± 2.90 µg/mL (RP-HPLC), and 52.68 ± 2.02 and 67.65 ± 2.40 µg/mL (spectrophotometry), respectively. The study revealed that the aqueous extract contains the highest amount of levodopa. Eventually the methanol extract showed highest ACE inhibition activity except levodopa alone. It was further observed that the inhibition was altered with respect to the change in the content of levodopa in the extract. Thus, it can be assumed that levodopa may be responsible for the ACE inhibition activity of M. pruriens seeds. It can be concluded that M. pruriens seed is a potential ACE inhibitor can be explored further as an effective antihypertensive agent.

  6. Inhibition of benzodiazepine binding in vitro by amentoflavone, a constituent of various species of Hypericum.

    PubMed

    Baureithel, K H; Büter, K B; Engesser, A; Burkard, W; Schaffner, W

    1997-06-01

    Flower extracts of Hypericum perforatum, Hypericum hirsutum, Hypericum patulum and Hypericum olympicum efficiently inhibited binding of [3H]flumazenil to rat brain benzodiazepine binding sites of the GABAA-receptor in vitro with IC50 values of 6.83, 6.97, 13.2 and 6.14 micrograms/ml, respectively. Single constituents of the extracts like hypericin, the flavones quercetin and luteolin, the glycosylated flavonoides rutin, hyperoside and quercitrin and the biflavone 13, II8-biapigenin did not inhibit binding up to concentrations of 1 microM. In contrast, amentoflavone revealed an IC50 = 14.9 +/- 1.9 nM on benzodiazepine binding in vitro. Comparative HPLC analyses of hypericin and amentoflavone in extracts of different Hypericum species revealed a possible correlation between the amentoflavone concentration and the inhibition of flumazenil binding. For hypericin no such correlation was observed. Our experimental data demonstrate that amentoflavone, in contrast to hypericin, presents a very active compound with regard to the inhibition of [3H]-flumazenil binding in vitro and thus might be involved in the antidepressant effects of Hypericum perforatum extracts.

  7. Plants used in Guatemala for the treatment of protozoal infections: II. Activity of extracts and fractions of five Guatemalan plants against Trypanosoma cruzi.

    PubMed

    Berger, I; Barrientos, A C; Cáceres, A; Hernández, M; Rastrelli, L; Passreiter, C M; Kubelka, W

    1998-09-01

    The activities of crude plant extracts of five plants popularly used in Guatemala against bacterial and protozoal infections and some of their fractions have been evaluated against the trypomastigote and epimastigote forms of Trypanosoma cruzi in vitro. The most active fraction of Neurolaena lobata has also been screened in vivo. Main in vitro activities against trypomastigotes have been observed for the hexane and ethanol extracts of N. lobata (Asteraceae). Both extracts were also active against epimastigotes, whereas all other extracts tested had no effect on epimastigotes. For the hexane extracts of Petiveria alliacea (Phytolaccaceae) and Tridax procumbens (Asteraceae) a marked inhibition of trypomastigotes has been found. Also the ethanol extracts of Byrsonima crassifolia (Malpighiaceae) leafs and Gliricidia sepium (Papilionaceae) bark showed some trypanocidal activity. Fraction 2 of the ethanol extract of N. lobata was highly active against T. cruzi as well in vitro as in vivo. The chloroforme fraction of P. alliacea showed a high inhibition of trypomastigotes in vitro. Also three fractions of the active extract of B. crassifolia inhibited T. cruzi trypomastigotes. No fraction of G. sepium bark extract showed a marked trypanocidal activity.

  8. Study on antibacterial effect of medlar and hawthorn compound extract in vitro.

    PubMed

    Niu, Yang; Nan, Yi; Yuan, Ling; Wang, Rong

    2013-01-01

    This paper evaluated the antibacterial effect of medlar and hawthorn compound extract in vitro. Water extract method and ethanol extraction method was adopted to prepare the compound extracts, and disc diffusion method and improved test tube doubling dilution method were used to conduct the antibacterial test on the two common pathogenic bacteria, Staphylococcus aureus and Klebsiella pneumonia, in vitro. The results showed that medlar and hawthorn compound extract was moderately sensitive to Staphylococcus aureus, while its inhibiting effect on Klebsiella pneumoniae was particularly significant, moreover, the antibacterial effect of ethanol extract was better than water extract. Medlar and hawthorn compounds had good antibacterial effect on the two pathogenic bacteria.

  9. Inhibition of human calcineurin and yeast calcineurin-dependent gene expression by Jasminum humile leaf and root extracts.

    PubMed

    Prescott, Thomas A K; Ariño, Joaquín; Kite, Geoffrey C; Simmonds, Monique S J

    2012-03-27

    The leaves of Jasminum humile are used to treat skin disorders in a way which resembles the use of modern topical anti-inflammatory drugs. Ethanolic extracts of the roots and leaves were shown to inhibit calcineurin which is a regulator of inflammatory gene expression. A novel yeast calcineurin reporter gene assay suitable for a 96 well plate format was developed to test for inhibition of calcineurin-dependent gene expression. Calmodulin/calcineurin phosphatase assays were then used to further elucidate the mode of action of the extracts. Jasminum humile root and leaf extract exhibited calcineurin inhibition activity that was shown to be mediated through a direct interaction with calcineurin enzyme. The activity is sufficient to block calcineurin-dependent gene expression in a yeast model. The activity of the plant supports its traditional use in the treatment of inflammatory skin disorders. The specially adapted yeast reporter assay was found to be a highly effective way of detecting calcineurin inhibitors in plant extracts. Crown Copyright © 2012. Published by Elsevier Ireland Ltd. All rights reserved.

  10. White Tea extract induces lipolytic activity and inhibits adipogenesis in human subcutaneous (pre)-adipocytes

    PubMed Central

    Söhle, Jörn; Knott, Anja; Holtzmann, Ursula; Siegner, Ralf; Grönniger, Elke; Schepky, Andreas; Gallinat, Stefan; Wenck, Horst; Stäb, Franz; Winnefeld, Marc

    2009-01-01

    Background The dramatic increase in obesity-related diseases emphasizes the need to elucidate the cellular and molecular mechanisms underlying fat metabolism. To investigate how natural substances influence lipolysis and adipogenesis, we determined the effects of White Tea extract on cultured human subcutaneous preadipocytes and adipocytes. Methods For our in vitro studies we used a White Tea extract solution that contained polyphenols and methylxanthines. Utilizing cultured human preadipocytes we investigated White Tea extract solution-induced inhibition of triglyceride incorporation during adipogenesis and possible effects on cell viability. In vitro studies on human adipocytes were performed aiming to elucidate the efficacy of White Tea extract solution to stimulate lipolytic activity. To characterize White Tea extract solution-mediated effects on a molecular level, we analyzed gene expression of essential adipogenesis-related transcription factors by qRT-PCR and determined the expression of the transcription factor ADD1/SREBP-1c on the protein level utilizing immunofluorescence analysis. Results Our data show that incubation of preadipocytes with White Tea extract solution significantly decreased triglyceride incorporation during adipogenesis in a dose-dependent manner (n = 10) without affecting cell viability (n = 10). These effects were, at least in part, mediated by EGCG (n = 10, 50 μM). In addition, White Tea extract solution also stimulated lipolytic activity in adipocytes (n = 7). Differentiating preadipocytes cultivated in the presence of 0.5% White Tea extract solution showed a decrease in PPARγ, ADD1/SREBP-1c, C/EBPα and C/EBPδ mRNA levels. Moreover, the expression of the transcription factor ADD1/SREBP-1c was not only decreased on the mRNA but also on the protein level. Conclusion White Tea extract is a natural source that effectively inhibits adipogenesis and stimulates lipolysis-activity. Therefore, it can be utilized to modulate different levels of the adipocyte life cycle. PMID:19409077

  11. Effects of ethanol and water extracts of propolis (bee glue) on acute inflammatory animal models.

    PubMed

    Hu, Fuliang; Hepburn, H R; Li, Yinghua; Chen, M; Radloff, S E; Daya, S

    2005-09-14

    The anti-inflammatory effects of ethanol (EEP) and water (WSD) extracts in ICR mice and Wistar rats were analyzed. Both WSD and EEP exhibited significant anti-inflammatory effects in animal models with respect to thoracic capillary vessel leakage in mice, carrageenan-induced oedema, carrageenan-induced pleurisy, acute lung damage in rats. The mechanisms for the anti-inflammatory effects probably involve decreasing prostaglandin-E(2) (PGE(2)) and nitric oxide (NO) levels. In rats with Freund's complete adjuvant (FCA) induced arthritis, propolis extracts significantly inhibited the increase of interleukin-6 (IL-6) in inflamed tissues, but had no significant effect on levels of interleukin-2 (IL-2) and interferon-gamma (IFN-gamma). The results are consistent with the interpretation that EEP and WSD may exert these effects by inhibiting the activation and differentiation of mononuclear macrophages.

  12. Extract of Artemisia lavandulaefolia Inhibits In Vitro Angiogenesis in Human Umbilical Vein Endothelial Cells

    PubMed Central

    Yi, Eui-Yeun; Han, Kyung-Suk; Kim, Yung-Jin

    2014-01-01

    Angiogenesis is important processes for tumor growth and metastasis. Anti-angiogenesis target therapy has recently been known to be new anti-cancer therapeutic strategies. Natural products such as traditional medicine comprise a major source of angiogenesis inhibitors. Artemisia lavandulaefolia has been known to use in the traditional medical practices. However, its molecular mechanism on the tumor protection and therapy was not clearly elucidated. In this study, we investigated the possibility that extract of A. lavandulaefolia inhibits in vitro angiogenesis. Therefore, we examined the effect of extract of A. lavandulaefolia on the vascular network formation of human umbilical vein endothelial cells (HUVECs). We found that the treatment of A. lavandulaefolia extract suppressed the tube formation of HUVECs without any influence on the viability of HUVECs. In addition, extract of A. lavandulaefolia inhibited the migration and invasion of HUVECs. These results suggest that extract of A. lavandulaefolia could be act for an angiogenic inhibitor. PMID:25574458

  13. Inhibition of α-amylase and α-glucosidase activities by ethanolic extract of Telfairia occidentalis (fluted pumpkin) leaf

    PubMed Central

    Oboh, G; Akinyemi, AJ; Ademiluyi, AO

    2012-01-01

    Objective To investigate the inhibitory effect of Telfairia occidentalis Hook f. (Curcubitaceae) (T. occidentalis) leaf on key enzyme linked to type-2 diabetes (α - amylase and α - glucosidase) as well as assess the effect of blanching (a commonly practiced food processing technique) of the vegetable on these key enzymes. Methods Fresh leaves of T. occidentalis were blanched in hot water for 10 minutes, and the extracts of both the fresh and blanched vegetables were prepared and used for subsequent analysis. The inhibitory effect of the extract on α - amylase and α - glucosidase activities as well as some antioxidant parameter was determined in vitro. Results The result revealed that unprocessed T. occidentalis leaf reduce Fe3+ to Fe2+ and also inhibited α - amylase and α - glucosidase activities in a dose dependent manner. However, blanching of the leafy vegetables caused a significant (P<0.05) increase in the antioxidant properties but decrease their ability to inhibit α - amylase and α - glucosidase activities. Conclusions This antioxidant properties and enzyme inhibition could be part of the mechanism by which they are used in the treatment/prevention of type-2 diabetes. However, the blanched vegetable reduces their ability to inhibit both α - amylase and α - glucosidase activity in vitro. PMID:23570004

  14. Inhibitory effects of rosmarinic acid extracts on porcine pancreatic amylase in vitro.

    PubMed

    McCue, Patrick P; Shetty, Kalidas

    2004-01-01

    Porcine pancreatic alpha-amylase (PPA) was allowed to react with herbal extracts containing rosmarinic acid (RA) and purified RA. The derivatized enzyme-phytochemical mixtures obtained were characterized for residual amylase activity. These in vitro experiments showed that the amylase activity was inhibited in the presence of these phytochemicals. The extent of amylase inhibition correlated with increased concentration of RA. RA-containing oregano extracts yielded higher than expected amylase inhibition than similar amount of purified RA, suggesting that other phenolic compounds or phenolic synergies may contribute to additional amylase inhibitory activity. The significance of food-grade, plant-based amylase inhibitors for modulation of diabetes mellitus and other oxidation-linked diseases is hypothesized and discussed.

  15. In vitro inhibitory effects of plant-based foods and their combinations on intestinal α-glucosidase and pancreatic α-amylase.

    PubMed

    Adisakwattana, Sirichai; Ruengsamran, Thanyachanok; Kampa, Patcharaporn; Sompong, Weerachat

    2012-07-31

    Plant-based foods have been used in traditional health systems to treat diabetes mellitus. The successful prevention of the onset of diabetes consists in controlling postprandial hyperglycemia by the inhibition of α-glucosidase and pancreatic α-amylase activities, resulting in aggressive delay of carbohydrate digestion to absorbable monosaccharide. In this study, five plant-based foods were investigated for intestinal α-glucosidase and pancreatic α-amylase. The combined inhibitory effects of plant-based foods were also evaluated. Preliminary phytochemical analysis of plant-based foods was performed in order to determine the total phenolic and flavonoid content. The dried plants of Hibiscus sabdariffa (Roselle), Chrysanthemum indicum (chrysanthemum), Morus alba (mulberry), Aegle marmelos (bael), and Clitoria ternatea (butterfly pea) were extracted with distilled water and dried using spray drying process. The dried extracts were determined for the total phenolic and flavonoid content by using Folin-Ciocateu's reagent and AlCl3 assay, respectively. The dried extract of plant-based food was further quantified with respect to intestinal α-glucosidase (maltase and sucrase) inhibition and pancreatic α-amylase inhibition by glucose oxidase method and dinitrosalicylic (DNS) reagent, respectively. The phytochemical analysis revealed that the total phenolic content of the dried extracts were in the range of 230.3-460.0 mg gallic acid equivalent/g dried extract. The dried extracts contained flavonoid in the range of 50.3-114.8 mg quercetin equivalent/g dried extract. It was noted that the IC50 values of chrysanthemum, mulberry and butterfly pea extracts were 4.24±0.12 mg/ml, 0.59±0.06 mg/ml, and 3.15±0.19 mg/ml, respectively. In addition, the IC50 values of chrysanthemum, mulberry and butterfly pea extracts against intestinal sucrase were 3.85±0.41 mg/ml, 0.94±0.11 mg/ml, and 4.41±0.15 mg/ml, respectively. Furthermore, the IC50 values of roselle and butterfly pea extracts against pancreatic α-amylase occurred at concentration of 3.52±0.15 mg/ml and 4.05±0.32 mg/ml, respectively. Combining roselle, chrysanthemum, and butterfly pea extracts with mulberry extract showed additive interaction on intestinal maltase inhibition. The results also demonstrated that the combination of chrysanthemum, mulberry, or bael extracts together with roselle extract produced synergistic inhibition, whereas roselle extract showed additive inhibition when combined with butterfly pea extract against pancreatic α-amylase. The present study presents data from five plant-based foods evaluating the intestinal α-glucosidase and pancreatic α-amylase inhibitory activities and their additive and synergistic interactions. These results could be useful for developing functional foods by combination of plant-based foods for treatment and prevention of diabetes mellitus.

  16. Study of allelopathic effects of Eucalyptus erythrocorys L. crude extracts against germination and seedling growth of weeds and wheat.

    PubMed

    Ben Ghnaya, Asma; Hamrouni, Lamia; Amri, Ismail; Ahoues, Haifa; Hanana, Mohsen; Romane, Abderrahmane

    2016-09-01

    Allelopathic materials inside a tree can produce positive or negative change in the survival, growth, reproduction and behaviour of other organisms if they escape into the environment. To assess these effects, this work was carried out to evaluate the allelopathic impact of Eucalyptus erythrocorys L. on seed germination and seedling growth of two weeds: Sinapis arvensis L. and Phalaris canariensis L.; on one cultivated crop: Triticum durum L. Aqueous; and on ethanolic leaf extracts of E. erythrocorys L. The study was effected using four concentrations (10, 20, 25 and 30 μL/mL) while distilled water was used as a control. The results showed that the E. erythrocorys L. crude extracts had an inhibitory effect on seed germination and seedling growth of both studied weeds and wheat. The inhibition rate was increased by the increase in extract concentration. Only ethanolic extracts of E. erythrocorys L. induced a significant inhibition of seed germination of durum wheat. The effect of E. erythrocorys L. crude extracts was more severe on weeds than on durum wheat. These results indicate that the seedling growth, especially radicle elongation, was the more sensitive indicator to evaluate the effects of extracts than was the seed germination.

  17. Optimization of Extraction Process for Antidiabetic and Antioxidant Activities of Kursi Wufarikun Ziyabit Using Response Surface Methodology and Quantitative Analysis of Main Components.

    PubMed

    Edirs, Salamet; Turak, Ablajan; Numonov, Sodik; Xin, Xuelei; Aisa, Haji Akber

    2017-01-01

    By using extraction yield, total polyphenolic content, antidiabetic activities (PTP-1B and α -glycosidase), and antioxidant activity (ABTS and DPPH) as indicated markers, the extraction conditions of the prescription Kursi Wufarikun Ziyabit (KWZ) were optimized by response surface methodology (RSM). Independent variables were ethanol concentration, extraction temperature, solid-to-solvent ratio, and extraction time. The result of RSM analysis showed that the four variables investigated have a significant effect ( p < 0.05) for Y 1 , Y 2 , Y 3 , Y 4 , and Y 5 with R 2 value of 0.9120, 0.9793, 0.9076, 0.9125, and 0.9709, respectively. Optimal conditions for the highest extraction yield of 39.28%, PTP-1B inhibition rate of 86.21%, α -glycosidase enzymes inhibition rate of 96.56%, and ABTS inhibition rate of 77.38% were derived at ethanol concentration 50.11%, extraction temperature 72.06°C, solid-to-solvent ratio 1 : 22.73 g/mL, and extraction time 2.93 h. On the basis of total polyphenol content of 48.44% in this optimal condition, the quantitative analysis of effective part of KWZ was characterized via UPLC method, 12 main components were identified by standard compounds, and all of them have shown good regression within the test ranges and the total content of them was 11.18%.

  18. Pharmacologic properties of brewery dust extracts in vitro.

    PubMed

    Schachter, E N; Zuskin, E; Rienzi, N; Goswami, S; Castranova, V; Whitmer, M; Siegel, P

    2001-06-01

    To study the effects of extracts of brewery dust on isolated guinea pig tracheal smooth muscle in vitro. Parallel pharmacologic intervention on guinea pig tracheal rings that were obtained from the same animal. Mount Sinai School of Medicine, Department of Pulmonary Medicine. The isolated guinea pig tracheal tissue of 18 guinea pigs. Pretreatment of guinea pig rings by mediator-modifying agents before challenge with the brewery dust extracts. The effect of brewery dust extracts on isolated guinea pig tracheal smooth muscle was studied using water-soluble extracts of dust obtained from brewery materials, including hops, barley, and brewery yeast. Dust extracts were prepared as a 1:10 (wt/vol) aqueous solution. Dose-related contractions of nonsensitized guinea pig tracheas were demonstrated using these extracts. The dust extracts contained significant quantities of bacterial components (eg, endotoxin and n-formyl-methionyl-leucyl-phenylalanine), but these agents were not thought to contribute directly to the constrictor effect of the dusts. Pharmacologic studies were performed by pretreating guinea pig tracheal tissue with the following drugs known to modulate smooth muscle contraction: atropine; indomethacin; pyrilamine; LY171883; nordihydroguaiaretic acid; captopril; thiorphan; verapamil; and TMB8. The constrictor effects of the dust extracts were inhibited by a wide variety of agents, the patterns of which depended on the dust extract. Atropine consistently and strikingly reduced the contractile effects of these extracts. These observations may suggest an interaction of the extracts with parasympathetic nerves or, more directly, with muscarinic receptors. The inhibition of contraction by the blocking of other mediators was less effective and varied with the dust extract. We suggest that brewery dust extracts cause a dose-related airway smooth muscle constriction by nonimmunologic mechanisms involving a variety of airway mediators and, possibly, cholinergic receptors. This effect is not dependent on presensitization of the guinea pigs.

  19. Anti-HMG-CoA Reductase, Antioxidant, and Anti-Inflammatory Activities of Amaranthus viridis Leaf Extract as a Potential Treatment for Hypercholesterolemia

    PubMed Central

    Salvamani, Shamala; Gunasekaran, Baskaran; Shukor, Mohd Yunus; Shaharuddin, Noor Azmi; Sabullah, Mohd Khalizan

    2016-01-01

    Inflammation and oxidative stress are believed to contribute to the pathology of several chronic diseases including hypercholesterolemia (elevated levels of cholesterol in blood) and atherosclerosis. HMG-CoA reductase inhibitors of plant origin are needed as synthetic drugs, such as statins, which are known to cause adverse effects on the liver and muscles. Amaranthus viridis (A. viridis) has been used from ancient times for its supposedly medically beneficial properties. In the current study, different parts of A. viridis (leaf, stem, and seed) were evaluated for potential anti-HMG-CoA reductase, antioxidant, and anti-inflammatory activities. The putative HMG-CoA reductase inhibitory activity of A. viridis extracts at different concentrations was determined spectrophotometrically by NADPH oxidation, using HMG-CoA as substrate. A. viridis leaf extract revealed the highest HMG-CoA reductase inhibitory effect at about 71%, with noncompetitive inhibition in Lineweaver-Burk plot analysis. The leaf extract showed good inhibition of hydroperoxides, 2,2-diphenyl-1-picrylhydrazyl (DPPH), nitric oxide (NO), and ferric ion radicals in various concentrations. A. viridis leaf extract was proven to be an effective inhibitor of hyaluronidase, lipoxygenase, and xanthine oxidase enzymes. The experimental data suggest that A. viridis leaf extract is a source of potent antioxidant and anti-inflammatory agent and may modulate cholesterol metabolism by inhibition of HMG-CoA reductase. PMID:27051453

  20. The cytotoxic effect of Elephantopus scaber Linn extract against breast cancer (T47D) cells

    NASA Astrophysics Data System (ADS)

    Sulistyani, N.; Nurkhasanah

    2017-11-01

    Breast cancer is one of the main cause of death. Elephantopus scaber Linn (ES) which has been used as a traditional medicine contains an antitumor compounds. This study aimed to explore the active fraction from ethanolic extract of ES as anticancer and to determine its inhibition effect on the cell proliferation cycle of breast cancer (T47D) cells. The ES leaf was macerated with ethanol and then evaporated to get the concentrated extract. The extract was fractionated using petroleum ether, chloroform, and methanol respectively. The cytotoxic activity of each fraction was carried out with MTT method, and the inhibition of cell cycle test were observed by flowcytometry method. The result showed that ES and the fractions have cytotoxic activity against T47D cell lines with IC50 values of extract, petroleum ether, chloroform, and methanol fractions were 58.36±2.38, 132.17±9.69, 7.08±2.11, and 572.89±69.23 µg/mL. The inhibition effect of ethanol extract on the lifecycle of cells was occured in sub G1 phase. There was no prolonging of G1, S, G2/M and polyploidy phase of T47D cell lines. The chloroform fraction of ES is the most cytotoxic fraction against T47D cells without prolonging the cell lifecycle.

  1. Inhibitory activity of cinnamon bark species and their combination effect with acarbose against intestinal α-glucosidase and pancreatic α-amylase.

    PubMed

    Adisakwattana, Sirichai; Lerdsuwankij, Orathai; Poputtachai, Ubonwan; Minipun, Aukkrapon; Suparpprom, Chaturong

    2011-06-01

    Inhibition of α-glucosidase and pancreatic α-amylase is one of the therapeutic approaches for delaying carbohydrate digestion, resulting in reduced postprandial glucose. The aim of this study was to evaluate the phytochemical analysis and the inhibitory effect of various cinnamon bark species against intestinal α-glucosidase and pancreatic α-amylase. The results showed that the content of total phenolic, flavonoid, and condensed tannin ranged from 0.17 to 0.21 g gallic acid equivalent/g extract, from 48.85 to 65.52 mg quercetin equivalent/g extract, and from 0.12 to 0.15 g catechin equivalent/g extract, respectively. The HPLC fingerprints of each cinnamon species were established. Among cinnamon species, Thai cinnamon extract was the most potent inhibitor against the intestinal maltase with the IC(50) values of 0.58 ± 0.01 mg/ml. The findings also showed that Ceylon cinnamon was the most effective intestinal sucrase and pancreatic α-amylase inhibitor with the IC(50) values of 0.42 ± 0.02 and 1.23 ± 0.02 mg/ml, respectively. In addition, cinnamon extracts produced additive inhibition against intestinal α-glucosidase and pancreatic α-amylase when combined with acarbose. These results suggest that cinnamon bark extracts may be potentially useful for the control of postprandial glucose in diabetic patients through inhibition of intestinal α-glucosidase and pancreatic α-amylase.

  2. Aqueous extract of Tribulus terrestris Linn induces cell growth arrest and apoptosis by down-regulating NF-κB signaling in liver cancer cells.

    PubMed

    Kim, Hye Jin; Kim, Jin Chul; Min, Jung Sun; Kim, Mi-Jee; Kim, Ji Ae; Kor, Myung Ho; Yoo, Hwa Seung; Ahn, Jeong Keun

    2011-06-14

    A medicinal herb Tribulus terrestris Linn has been used to treat various diseases including hepatocellular carcinoma. The aim of the present study was to investigate the anticancer activity of Tribulus terrestris Linn (TT) in liver cancer cells. The antitumor activity of aqueous TT extract was analyzed by testing the cytotoxicity and the effect on clonogenecity in HepG2 cells. Apoptosis and cell cycle arrest induced by TT were dissected by flow cytometry and its inhibitory effect on NF-κB activity was determined by analyzing the expression levels of NF-κB/IκB subunit proteins. The suppression of NF-κB-regulated gene expression by TT was assessed by RT-PCR. TT extract repressed clonogenecity and proliferation, induced apoptosis, and enhanced accumulation in the G0/G1 phase of liver cancer cells. It also turned out that TT extract inhibited NF-κB-dependent reporter gene expression and NF-κB subunit p50 expression, while it enhanced the cellular level of IκBα by inhibiting the phosphorylation and degradation of IκBα. In addition, IKK activity was inhibited in a dose-dependent manner. Furthermore, TT extract suppressed the transcription of genes associated with cell cycle regulation, anti-apoptosis, and invasion. These data showed that TT extract blocks proliferation and induces apoptosis in human liver cancer cells through the inhibition of NF-κB signaling. Aqueous TT extract can be used as an anticancer drug for hepatocellular carcinoma patients. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. Effects of Heracleum persicum ethyl acetate extract on the growth, hyphal ultrastructure and aflatoxin biosynthesis in Aspergillus parasiticus.

    PubMed

    Razzaghi-Abyaneh, Mehdi; Saberi, Reza; Sharifan, Anosheh; Rezaee, Mohammad-Bagher; Seifili, Roghayeh; Hosseini, Seyed-Ibrahim; Shams-Ghahfarokhi, Masoomeh; Nikkhah, Mehdi; Saberi, Ismail; Amani, Akram

    2013-11-01

    The ethyl acetate extract of leaves, seeds and flowers of Heracleum persicum, a medicinal plant of Iran (family Apiaceae) inhibited growth and aflatoxin (AF) production of Aspergillus parasiticus. On the basis of total dry weight growth inhibition by the leaf extract ranged from 17.1 to 36.9 %, by the flower extract from 32.2 to 75.6 %, and by the seed extract from 27.5 to 74.9 %. Production of AFB1 and AFG1 was inhibited in a dose-dependent manner, with a reduction of 88.5-100 % at the highest concentration of 8,000 μg/ml tested. The flower extract decreased ergosterol content of hyphae most significantly. Electron microscopy further revealed structural defects in the treated A. parasiticus including disruption of cytoplasmic membranous compartments, detachment of plasma membrane from the cell wall, and disorganization of hyphal compartments. Collapsed hyphae without conidiation, shorter branches and undifferentiated hyphal tips were also evident. The results indicate that H. persicum extract exerts antifungal and anti-AF activities by disrupting plasma membrane integrity and permeability mainly through interference with ergosterol biosynthesis. These results show that H. persicum can serve as a potent and safe alternative for inhibiting toxigenic aspergilli growth and thus preventing AF contamination of foods and feeds.

  4. The inhibitory effect of a non-yessotoxin-producing dinoflagellate, Lingulodinium polyedrum (Stein) Dodge, towards Vibrio vulnificus and Staphylococcus aureus.

    PubMed

    Quijano-Scheggia, Sonia; Barajas-Gonzalez, Maribel; Lim, Hong Chang; Leaw, Chui Pin; Olivos-Ortiz, Aramis; Gaviño-Rodriguez, Juan; Blanco Pérez, Juan; Bates, Stephen S

    2016-06-01

    The increased bacterial resistance to antibiotics has caused global concern, prompting the search for new compounds. Because of their abundance and diversity, marine phytoplankton are an important potential source of such compounds. Research on dinoflagellates has led to the discovery of inhibitors of bacterial growth. The marine dinoflagellate Lingulodinium polyedrum blooms in different regions of the world, including Mexico, and is also known to regulate the growth of other species in coastal waters. Here, we investigated the taxonomy of this dinoflagellate and characterized the ability of its extracts to inhibit the growth of two bacteria of medical importance (Vibrio vulnificus and Staphylococcus aureus). Taxonomic characterization was performed by PCR and gene amplification of ITS, and confirmed that the species isolated off the Pacific coast of Mexico was L. polyedrum. To prove the inhibitory effect of L. polyedrum extracts, cultures were harvested by centrifugation. Pellets from three cellular abundances were extracted with water, methanol, hexane and chloroform. The experiments on V. vulnificus showed a high growth inhibition for the four extracts, ranging from 77 to 98 %. Surprisingly, the growth inhibition was lower when the extracts originated from a higher L. polyedrum cell abundance, ranging from 0 to 34 %. For S. aureus, the growth inhibition was also high, but not statistically different for all extracts and cell abundances, ranging from 62 to 99 %. This study obtained promising results for future pharmacological applications. Our Mexican strain of L. polyedrum did not produce any detectable yessotoxins.

  5. [Allelopathy of Andrographis paniculata vegetative].

    PubMed

    Li, Ming; Zhou, Xiao-Yan; Lu, Zhan-Hong

    2010-12-01

    Andrographis paniculata at vegetative stage were analyzed for the allelopathic effect on cabbage (Brassica chinensis), Radis (Raphanus sativus), and Desmodium styracifolium, and provided the theory reference for their application of compounding planting pattern in practice. Water extracts of Andrographis paniculata root, stem and leaf were used to dispose Brassica chinensis, Raphanus sativus and Desmodium styracifolium seeds, young seedlings. There were allelopathic effect of water extracts of Andrographis paniculata on seed germination of Brassica chinensis, Raphanus sativus and Desmodium styracifolium, but there were difference on allelopathic effect. The suppression effects of roots on seed germination rates of Brassica chinensis showed more significantly, the stems and leaves of Andrographis paniculata on the allelopathic effects on Brassica chinensis seed germination rate index was also significantly higher than the other two receptors plants. Under the treating condition of root, stem and leaf aqueous extracts of Andrographis paniculata, the root growth of receptors seeding mostly showed inhibition effect. Under low concentrations treated. The effects on the seedlings height of Raphanus sativus and Desmodium styracifolium showed the results in which low concentration promoted and high concentration inhibited, and with increasing concentration increased the promotion or inhibition effects. But in the measured concentration range, the effects on the seedlings height of Brassica chinensis were showed promote effect. Within the testing concentration range, water extracts of Andrographis paniculata on allelopathic effects of cabbage (Brassica chinensis), Radis (Raphanus sativus) and Desmodium styracifolium showed allelopathic effect, and roughly showed inhibiti effect. However, showed different effect in which high concentration inhibitied and low concentration promoted to different receptor.

  6. Evaluation of alpha- amylase inhibition by Urtica dioica and Juglans regia extracts.

    PubMed

    Rahimzadeh, Mahsa; Jahanshahi, Samaneh; Moein, Soheila; Moein, Mahmood Reza

    2014-06-01

    One strategy for the treatment of diabetes is inhibition of pancreatic α- amylase. Plants contains different chemical constituents with potential for inhibition of α-amylase and hence maybe used as therapeutic. Urtica dioica and Juglans regia Linn were tested for α-amylase inhibition. Different concentrations of leaf aqueous extracts were incubated with enzyme substrate solution and the activity of enzyme was measured. For determination of the type of inhibition, Dixon plot was depicted. Acarbose was used as the standard inhibitor. Both plant extracts showed time and concentration dependent inhibition of α-amylase. 60% inhibition was seen with 2 mg/ml of U. dioica and 0.4 mg/ml of J. regia aqueous extract. Dixon plots revealed the type of α-amylase inhibition by these two extracts as competitive inhibition. Determination of the type of α-amylase inhibition by these plant extracts could provide by successful use of plant chemicals as drug targets.

  7. Polyphenols and phenolic acids from strawberry and apple decrease glucose uptake and transport by human intestinal Caco-2 cells.

    PubMed

    Manzano, Susana; Williamson, Gary

    2010-12-01

    The effect of polyphenols, phenolic acids and tannins (PPTs) from strawberry and apple on uptake and apical to basolateral transport of glucose was investigated using Caco-2 intestinal cell monolayers. Substantial inhibition on both uptake and transport was observed by extracts from both strawberry and apple. Using sodium-containing (glucose transporters SGLT1 and GLUT2 both active) and sodium-free (only GLUT2 active) conditions, we show that the inhibition of GLUT2 was greater than that of SGLT1. The extracts were analyzed and some of the constituent PPTs were also tested. Quercetin-3-O-rhamnoside (IC₅₀ =31 μM), phloridzin (IC₅₀=146 μM), and 5-caffeoylquinic acid (IC₅₀=2570 μM) contributed 26, 52 and 12%, respectively, to the inhibitory activity of the apple extract, whereas pelargonidin-3-O-glucoside (IC₅₀=802 μM) contributed 26% to the total inhibition by the strawberry extract. For the strawberry extract, the inhibition of transport was non-competitive based on kinetic analysis, whereas the inhibition of cellular uptake was a mixed-type inhibition, with changes in both V(max) and apparent K(m) . The results in this assay show that some PPTs inhibit glucose transport from the intestinal lumen into cells and also the GLUT2-facilitated exit on the basolateral side. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Multi-constituent synergism is responsible for anti-inflammatory effect of Azadirachta indica leaf extract.

    PubMed

    Umar, Muhammad Ihtisham; Asmawi, Mohd Zaini; Sadikun, Amirin; Abdul Majid, A M S; Atangwho, Item Justin; Khadeer Ahamed, Mohamed B; Altaf, Rabia; Ahmad, Ashfaq

    2014-11-01

    Azadirachta indica A. Juss. (Meliaceaes) leaves have been used traditionally to treat swelling and rheumatism in Indian cultures. To fractionate A. indica leaf extracts using bioactivity guided manner for identification of the active anti-inflammatory principles. Polarity-gradient sequential extracts (petroleum ether, chloroform, methanol, and water) of A. indica leaves were screened for their anti-inflammatory potential using the carrageenan-induced rat paw edema model (1 g/kg). The chloroform extract was sequentially fractionated to obtain n-hexane (F-1), n-hexane-chloroform (F-2), and chloroform (F-3) fractions and their inhibitory effect on rat paw edema was evaluated (500 mg/kg). Inhibitory effect of F-2 on granuloma formation, plasma interleukin (IL-1), and tumor necrosis factor (TNF-α) was assessed at the doses of 100, 200, and 400 mg/kg using the cotton pellet assay in rats. Three sub-fractions (SF-1, SF-2, and SF-3) were obtained upon chromatography of F-2, and their inhibitory effect on cyclooxygenase was assessed at 200 µg/mL concentration. The sub-fractions were subjected to gas chromatography-mass spectrometry (GC-MS). All the extracts showed significant anti-inflammatory effect; however, chloroform extract was the most effective against paw edema (53.25% inhibition). The three fractions of chloroform extract showed significant effect, while F-2 being the most potent (51.02%). F-2 demonstrated dose-dependent inhibition of granuloma and cytokines. Interestingly, all the sub-fractions of F-2 inhibited COX-1 and COX-2 with almost equal potential. GC-MS revealed that chemically the sub-fractions were totally different from each other. Anti-inflammatory effect of A. indica is a result of cumulative and synergistic effects of diversified constituents with varying polarities that collectively exert the effect via suppression of cyclo-oxygenases and cytokines (IL-1 and TNF-α).

  9. Anti-inflammatory effects of Allium schoenoprasum L. leaves.

    PubMed

    Parvu, A E; Parvu, M; Vlase, L; Miclea, P; Mot, A C; Silaghi-Dumitrescu, R

    2014-04-01

    Allium schoenoprasum has antimicrobial and antifungal properties and is used to relieve pain from sunburn and sore throat. The aim of the present study was to evaluate the anti-inflammatory effects of the extracts from A. schoenoprasum leaves. A 1:1 (w:v) extract was prepared by a modified Squibb repercolation method. The total phenolic content of 68.5±2 g gallic acid aquivalent (GAE)/g plant was determined using the Folin-Ciocalteu method. The in vitro antioxidant activity was determined using the 1,1-diphenyl-2-picrylhydrazyl bleaching method (6.72±0.44 g/mg DPPH) and the trolox equivalent antioxidant capacity (132.8±23 g trolox eq./g plant) assay. Analysis of the extracts using the hemoglobin ascorbate peroxidase activity inhibition assay or the electron spin resonance did not yield signals above the detection limit. The anti-inflammatory effects of three extract concentrations (25%, 50%, 100%) were evaluated in vivo on a model turpentine oil-induced inflammation in rats. These three extracts were also evaluated in vitro for the ability to inhibit phagocytosis, the accumulation of total nitrites and nitrates in the serum, the total oxidative status, the total antioxidant response and the oxidative stress index. Pure extracts (100% concentration) had the best inhibitory activity on phagocytosis and oxidative stress. In conclusion, these results support the hypothesis that extracts from A. schoenoprasum leaves exert anti-inflammatory activities by inhibiting phagocytosis through the reduction of nitro-oxidative stress.

  10. Propolis Extracted from the Stingless Bee Trigona sirindhornae Inhibited S. mutans Activity In Vitro.

    PubMed

    Utispan, Kusumawadee; Chitkul, Bordin; Monthanapisut, Paopanga; Meesuk, Ladda; Pugdee, Kamolparn; Koontongkaew, Sittichai

    The aim of this study was to determine the antimicrobial effects of propolis extracted from an endemic species of stingless bee, T. sirindhornae, on the cariogenic bacterium Streptococcus mutans. Dichloromethane extracts (DME) of propolis (DMEP) were prepared and analysed by reverse-phase high-performance liquid chromatography. The antibacterial growth and antibiofilm formation effects of DMEP on S. mutans were compared with those of apigenin, a commercial propolis product. The effects of DMEP and apigenin on glucosyltransferase (gtf) B expression in S. mutans were investigated using real-time polymerase chain reaction. Chlorhexidine (CHX) was used as a positive control in the experiments. Apigenin, pinocembrin, p-coumaric acid, and caffeic acid were not detected in the propolis extracts. DMEP and apigenin significantly inhibited S. mutans growth (IC50 = 43.5 and 17.36 mg/ml, respectively). DMEP and apigenin also exhibited antiadherence effects on S. mutans as shown by reduced biofilm formation. Furthermore, a significant inhibition in gtfB expression was observed in DMEP and apigenin treated S. mutans. Propolis produced by T. sirindhornae demonstrated antibacterial and antibiofilm effects, and reduced gtfB expression in S. mutans. The antibacterial activities of propolis observed were not due to apigenin, pinocembrin, p-coumaric acid, or caffeic acid.

  11. Oryza sativa (Rice) Hull Extract Inhibits Lipopolysaccharide-Induced Inflammatory Response in RAW264.7 Macrophages by Suppressing Extracellular Signal-regulated Kinase, c-Jun N-terminal Kinase, and Nuclear Factor-κB Activation.

    PubMed

    Ha, Sang Keun; Sung, Jeehye; Choi, Inwook; Kim, Yoonsook

    2016-01-01

    Rice ( Oryza sativa ) is a major cereal crop in many Asian countries and an important staple food source. Rice hulls have been reported to possess antioxidant activities. In this study, we evaluated the antiinflammatory effects of rice hull extract and associated signal transduction mechanisms in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. We found that rice hull extract inhibited nitric oxide (NO) and prostaglandin E 2 by suppressing the expression of inducible NO synthase and cyclooxygenase-2, respectively. The release of interleukin-1β and tumor necrosis factor-α was also reduced in a dose-dependent manner. Furthermore, rice hull extract attenuated the activation of nuclear factor-kappa B (NF-κB), as well as the phosphorylation of mitogen-activated protein kinases, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK), in LPS-stimulated RAW264.7 cells. This suggests that rice hull extract decreases the production of inflammatory mediators by downregulating ERK and JNK and the NF-κB signal pathway in RAW 264.7 cells. Rice hull extract inhibits the lipopolysaccharide-induced inflammatory response in RAW264.7 macrophages.Rice hull extract inhibited nitric oxide and prostaglandin E 2 by suppressing the expression of inducible NO synthase and cyclooxygenase-2, respectively.Rice hull extract exerted anti-inflammatory effect through inhibition of nuclear factor-kappa B, extracellular signal-regulated kinase and c-Jun N-terminal kinase signaling pathways.Rice hull extract may provide a potential therapeutic approach for inflammatory diseases. Abbreviations used: COX-2: cyclooxygenase-2, ERK: extracellular signal-regulated kinase, IκB: inhibitory kappa B, IL-1β: interleukin-1β, iNOS: inducible NO synthase, JNK: c-Jun N-terminal kinase, LPS: lipopolysaccharide, MAPKs: mitogen-activated protein kinases, NF-κB: nuclear factor-κB, NO: nitric oxide, PGE2: prostaglandin E2, RHE: rice hull extract, ROS: reactive oxygen species, TNF-α: tumor necrosis factor-α.

  12. Phyllanthus muellerianus and C6H15NO3 synergistic effects on 0.5 M H2SO4-immersed steel-reinforced concrete: Implication for clean corrosion-protection of wind energy structures in industrial environment

    NASA Astrophysics Data System (ADS)

    Okeniyi, Joshua Olusegun; Omotosho, Olugbenga Adeshola; Popoola, Abimbola Patricia Idowu; Loto, Cleophas Akintoye

    2016-07-01

    This paper investigates Phyllanthus muellerianus leaf-extract and C6H15NO3 (triethanolamine: TEA) synergistic effects on reinforcing-steel corrosion-inhibition and the compressive-strength of steel-reinforced concrete immersed in 0.5 M H2SO4. This is to assess suitability of the synergistic admixture usage for wind-energy steel-reinforced concrete structures designed for industrial environments. Steel-reinforced concrete specimens were admixed with individual and synergistic designs of Phyllanthus muellerianus leaf-extract and C6H15NO3 admixtures and immersed in the 0.5 M H2SO4. Electrochemical monitoring of corrosion potential, as per ASTM C876-91 R99, and corrosion current were obtained and statistically analysed, as per ASTM G16-95 R04, for modelling noise resistance. Post-immersion compressive-strength testing then followed, as per ASTM C39/C39M-03, for detailing the admixture effect on load-bearing strength of the steel-reinforced concrete specimens. Results showed that while individual Phyllanthus muellerianus leaf-extract concentrations exhibited better inhibition-efficiency performance than C6H15NO3, synergistic additions of C6H15NO3 to Phyllanthus muellerianus leaf-extract improved steel-rebar corrosion-inhibition. Thus, 6 g Phyllanthus muellerianus + 2 g C6H15NO3 synergistically improved inhibition-efficiency to η = 84.17%, from η = 55.28% by the optimal chemical or from η = 74.72% by the optimal plant-extract admixtures. The study also established that improved compressive strength of steel-reinforced concrete with acceptable inhibition of the steel-rebar corrosion could be attained through optimal combination of the Phyllanthus muellerianus leaf-extract and C6H15NO3 admixtures.

  13. Anti-microbial principles of selected remedial plants from Southern India.

    PubMed

    Tirupathi, Rao G; Suresh, Babu K; Ujwal, Kumar J; Sujana, P; Raoa, A Veerabhadr; Sreedhar, A S

    2011-08-01

    To examine the anti-bacterial activity of leaf extracts of Morus alba L. (Moraceae) and Piper betel L. (Piperaceae), and seed extracts of Bombax ceiba L. (Borabacaceae). We have partially purified plant extracts by solvent extraction method, and evaluated the effect of individual fractions on bacterial growth using Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) bacterial strains. Compared with Morus and Bombax fractions, Piper fractions showed significant growth inhibition on all the three types of bacteria studied. The EtOAc-hexane fractions of Piper leaves exhibited significant anti-bacterial activity with minimum inhibitory concentrations (MIC) of 50 µg/mL culture against both gram-positive and gram-negative bacteria. The EtOAc-fractions I, II, and IV inhibited bacterial colony formation on soft agar in addition to growth inhibition. A combination treatment of piper fractions with ampicillin resulted in significant growth inhibition in E. coli and P. aeruginosa, and combination with anticancer drug geldanamycin (2µg/mL) showed selective growth inhibition against P. aeruginosa and S. aureus. Three major compounds, i.e., eugenol, 3-hexene-ol and stigmasterol, were primarily identified from Piper betel leaf extractions. Among the individual compounds, eugenol treatment showed improved growth inhibition compared with stigmasterol and 3-hexene-ol. We are reporting potential anti-bacterial compounds from Piper betel against both gram-positive and gram-negative bacteria either alone or in combination with drug treatment.

  14. Anti-inflammatory, anti-cholinergic and cytotoxic effects of Sida rhombifolia.

    PubMed

    Mah, Siau Hui; Teh, Soek Sin; Ee, Gwendoline Cheng Lian

    2017-12-01

    Sida (Malvaceae) has been used as a traditional remedy for the treatment of diarrhoea, malarial, gastrointestinal dysentery, fevers, asthma and inflammation. This study evaluates the anti-inflammatory, cytotoxic and anti-cholinergic activities of Sida rhombifolia Linn. whole plant for the first time. S. rhombifolia whole plant was extracted by n-hexane, ethyl acetate and methanol using Soxhlet apparatus. The plant extracts were evaluated for their antioxidant (DPPH, FIC and FRAP), anti-inflammatory (NO and protein denaturation inhibitions), cytotoxic (MTT) and anti-cholinesterase (AChE) properties in a range of concentrations to obtain IC 50 values. GC-MS analysis was carried out on the n-hexane extract. The ethyl acetate extract exhibited the most significant antioxidant activities by scavenging DPPH radicals and ferrous ions with EC 50 of 380.5 and 263.4 μg/mL, respectively. In contrast, the n-hexane extract showed the strongest anti-inflammatory activity with IC 50 of 52.16 and 146.03 μg/mL for NO and protein denaturation inhibition assays, respectively. The same extract also revealed the strongest effects in anti-cholinesterase and cytotoxic tests at the concentration of 100 μg/mL, AChE enzyme inhibition was 58.55% and human cancer cells, SNU-1 and Hep G2 inhibition was 68.52% and 47.82%, respectively. The phytochemicals present in the n-hexane extract are palmitic acid, linoleic acid and γ-sitosterol. The present study revealed that the n-hexane extract possessed relatively high pharmacological activities in anti-inflammation, cytotoxicity and anti-cholinesterase assays. Thus, further work on the detail mechanism of the bioactive phytochemicals which contribute to the biological properties are strongly recommended.

  15. Inhibition of fish bacteria pathogen in tilapia using a concoction three of Borneo plant extracts

    NASA Astrophysics Data System (ADS)

    Hardi, EH; Saptiani, G.; Kusuma, IW; Suwinarti, W.; Sudaryono, A.

    2018-04-01

    This study was conducted to evaluate the antibacterial activity of concoction Solanum ferox, Boesenbergia pandurata and Zingimber zerumbetextract (SF, BP, and ZZ) to inhibit pathogenic bacteria in tilapia with the each concentrations 600 ppm BP, 900 ppm SF and 200 ppm ZZ. Antibacterial activity was measured by testing the concoction of three plants extract against single isolate Aeromonas hydrophila and Pseudomonas sp. and combined both bacteria (105 colony-forming units per milliliter). In this research, oxytetracycline was used as a control. Clear zone inhibition was observed at 6, 12, 18 and 24 hours after incubation at 30 °C. The results showed that the different concoction of BP: SF: ZZ have inhibitory zones against both single and joint isolate bacteria. The ratio of3:3:4 and 1:8:1 had higher antibacterial activity towards Pseudomonas sp. and 1:1:3 ratios both inhibit joint bacteria. The ZI% higher of concoction extracts against A.hydrophila is 1:1:8; 1:3:1; 3:4:3. The ZI% concoction extracts against Pseudomonas sp. ware 3:3:4 and 1:8:1 ratio. While the two bacteria combined, just 1:1:3 ratio had higher Z%. The conclusion is that a concoction of SF:BP:ZZ is effective to inhibit the growth of A.hydrophila and Pseudomonas sp., even its antibacterial ability is similar to the effectiveness of antibiotic oxytetracycline.

  16. Portulaca oleracea extract can inhibit nodule formation of colon cancer stem cells by regulating gene expression of the Notch signal transduction pathway.

    PubMed

    Jin, Heiying; Chen, Li; Wang, Shuiming; Chao, Deng

    2017-07-01

    To investigate whether Portulaca oleracea extract affects tumor formation in colon cancer stem cells and its chemotherapy sensitivity. In addition, to analyze associated genetic changes within the Notch signal transduction pathway. Serum-free cultures of colon cancer cells (HT-29) and HT-29 cancer stem cells were treated with the chemotherapeutic drug 5-fluorouracil to assess sensitivity. Injections of the stem cells were also given to BALB/c mice to confirm tumor growth and note its characteristics. In addition, the effect of different concentrations of P. oleracea extract was tested on the growth of HT-29 colon cancer cells and HT-29 cancer stem cells, as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. The effects of P. oleracea extract on the expression of β-catenin, Notch1, and Notch2 in the HT-29 cells were studied using reverse transcription polymerase chain reaction and Western blotting. The tumor volume of the HT29 cells was two times larger than that of HT29 cancer stem cells. Treatment with P. oleracea extract inhibited the proliferation of both HT-29 cancer cells and HT-29 cancer stem cells at doses from 0.07 to 2.25 µg/mL. Apoptosis of HT-29 cancer cells and HT-29 cancer stem cells was assessed by flow cytometry; it was enhanced by the addition of P. oleracea extract. Finally, treatment with P. oleracea extract significantly downregulated the expression of the Notch1 and β-catenin genes in both cell types. The results of this study show that P. oleracea extract inhibits the growth of colon cancer stem cells in a dose-dependent manner. Furthermore, it inhibits the expression of the Notch1 and β-catenin genes. Taken together, this suggests that it may elicit its effects through regulatory and target genes that mediate the Notch signal transduction pathway.

  17. Inhibition of DNA polymerase λ and associated inflammatory activities of extracts from steamed germinated soybeans.

    PubMed

    Mizushina, Yoshiyuki; Kuriyama, Isoko; Yoshida, Hiromi

    2014-04-01

    During the screening of selective DNA polymerase (pol) inhibitors from more than 50 plant food materials, we found that the extract from steamed germinated soybeans (Glycine max L.) inhibited human pol λ activity. Among the three processed soybean samples tested (boiled soybeans, steamed soybeans, and steamed germinated soybeans), both the hot water extract and organic solvent extract from the steamed germinated soybeans had the strongest pol λ inhibition. We previously isolated two glucosyl compounds, a cerebroside (glucosyl ceramide, AS-1-4, compound ) and a steroidal glycoside (eleutheroside A, compound ), from dried soybean, and these compounds were prevalent in the extracts of the steamed germinated soybeans as pol inhibitors. The hot water and organic solvent extracts of the steamed germinated soybeans and compounds and selectively inhibited the activity of eukaryotic pol λ in vitro but did not influence the activities of other eukaryotic pols, including those from the A-family (pol γ), B-family (pols α, δ, and ε), and Y-family (pols η, ι, and κ), and also showed no effect on the activity of pol β, which is of the same family (X) as pol λ. The tendency for in vitro pol λ inhibition by these extracts and compounds showed a positive correlation with the in vivo suppression of TPA (12-O-tetradecanoylphorbol-13-acetate)-induced inflammation in mouse ear. These results suggest that steamed germinated soybeans, especially the glucosyl compound components, may be useful for their anti-inflammatory properties.

  18. Antioxidant activity of Crataegus aronia aqueous extract used in traditional Arab medicine in Israel.

    PubMed

    Ljubuncic, Predrag; Portnaya, Irina; Cogan, Uri; Azaizeh, Hassan; Bomzon, Arieh

    2005-10-03

    The medicinal use of extracts prepared from plant parts of the genus Crataegus dates back to ancient times. Furthermore, it has been proposed that its antioxidant constituents account for its beneficial therapeutic effects. A decoction of leaves and unripe fruits from Crataegus aronia syn. azarolus (L) (Rosaceae), the indigenous Israeli hawthorn, is used to treat cardiovascular diseases, cancer, diabetes and sexual weakness in Arab traditional medicine. Because laboratory data on the bioactivity of extracts prepared from the indigenous Israeli hawthorn is lacking, we evaluated the antioxidant and cytotoxic potentials of an extract prepared from leaves and unripe fruits in a variety of cell and cell-free in vitro assays. The antioxidant assays measured: (a) its ability to inhibit (i) oxidation of beta-carotene, (ii) 2,2'-azobis(2-amidino-propan) dihydrochloride (AAPH)-induced plasma oxidation and (iii) iron-induced lipid peroxidation in rat liver homogenates; (b) its ability to scavenge the superoxide (O2-) radical; (c) its effects on the enzyme xanthine oxidase (XO) activity; (d) its effect on the redox state of glutathione (GSH) in cultured Hep G2 cells. In addition, we also evaluated the effects of the extract on cell membrane integrity and mitochondrial respiration in cultured Hep G2 cells. Water-soluble extracts inhibited (1) oxidation of beta-carotene, (2) AAPH-induced plasma oxidation and (3) Fe(2+)-induced lipid peroxidation in rat liver homogenates. In addition, the extract (4) is an efficient scavenger of the O2- (5) increases intracellular GSH levels and (6) is not cytotoxic. Accordingly, we propose that the therapeutic benefit of Crataegus aronia can be, at least in part, attributed to its effective inhibition of oxidative processes, efficient scavenging of O2- and possible increasing GSH biosynthesis.

  19. The effect of Psilocybe cubensis extract on hippocampal neurons in vitro.

    PubMed

    Moldavan, M G; Grodzinskaya, A A; Solomko, E F; Lomberh, M L; Wasser, S P; Storozhuk, V M

    2001-01-01

    The action of P. cubensis mushroom extract, containing psilocybin (PCB) and psilocin, on spike activity of hippocampal CA1 pyramidal neurons was studied in in vitro rat brain slices. In 38 (76%) out of 50 investigated neurons spike activity was decreased, in 2 (4%) cells it increased. There was no response 10 (20%) neurons. Application of the extract caused short burst firing in 12 (24%) neurons. All neurons showing inhibition during PCB-containing extract application, were also inhibited by serotonin (5-HT). Usually inhibitory reaction did not last over 4-5 min upon 3 min extract application and could be prolonged up to 10-43 min up on serotonin application. Part of neurons were inhibited by serotonin and did not react to extract application. Inhibitory reactions induced by extract application were blocked by ritanserin in half of the tested units and were induced due to activation of 5-HT2 serotonin receptors. The extract suppressed excitative spike reactions caused by application of L-glutamic acid. It is concluded, that application of PCB-containing extract in most cases reduced spike activity in hippocampal CA1 pyramidal neurons and suppressed glutamate transmission.

  20. Preventing hepatocyte oxidative stress cytotoxicity with Mangifera indica L. extract (Vimang).

    PubMed

    Remirez, Diadelis; Tafazoli, Shahrzad; Delgado, Rene; Harandi, Asghar A; O'Brien, Peter J

    2005-01-01

    Vimang is an aqueous extract of Mangifera indica used in Cuba to improve the quality of life in patients suffering from inflammatory diseases. In the present study we evaluated the effects of Vimang at preventing reactive oxygen species (ROS) formation and lipid peroxidation in intact isolated rat hepatocytes. Vimang at 20, 50 and 100 microg/ml inhibited hepatocyte ROS formation induced by glucose-glucose oxidase. Hepatocyte cytotoxicity and lipid peroxidation induced by cumene hydroperoxide was also inhibited by Vimang in a dose and time dependent manner at the same concentration. Vimang also inhibited superoxide radical formation by xanthine oxidase and hypoxanthine. The superoxide radical scavenging and antioxidant activity of the Vimang extract was likely related to its gallates, catechins and mangiferin content. To our knowledge, this is the first report of cytoprotective antioxidant effects of Vimang in cellular oxidative stress models.

  1. Antimicrobial Effects of Blueberry, Raspberry, and Strawberry Aqueous Extracts and their Effects on Virulence Gene Expression in Vibrio cholerae.

    PubMed

    Khalifa, Hazim O; Kamimoto, Maki; Shimamoto, Toshi; Shimamoto, Tadashi

    2015-11-01

    The antimicrobial effects of aqueous extracts of blueberry, raspberry, and strawberry on 13 pathogenic bacteria were evaluated. The minimum inhibitory concentrations and minimum bactericidal concentrations of the extracts were determined before and after neutralization to pH 7.03 ± 0.15. Both Gram-positive and Gram-negative pathogenic bacteria were selectively inhibited by the non-neutralized berries. Blueberry was the best inhibitor, and Vibrio and Listeria were the most sensitive bacteria. After neutralization, blueberry affected only Vibrio and Listeria, whereas the antimicrobial activities of raspberry and strawberry were abolished. The total contents of phenolics, flavonoids, and proanthocyanidins in the extracts were measured with colorimetric methods and were highest in strawberry, followed by raspberry, and then blueberry. We also studied the effects of sub-bactericidal concentrations of the three berry extracts on virulence gene expression in Vibrio cholerae. Real-time quantitative reverse transcription-polymerase chain reaction revealed that the three berry extracts effectively repressed the transcription of the tcpA gene. Raspberry also repressed the transcription of the ctxA gene, whereas blueberry and strawberry did not. However, the three berry extracts did not affect the transcription of toxT. These results suggest that the three berry extracts exert potent antimicrobial effects and inhibit the expression of the virulence factors of V. cholerae. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Antinociceptive and anti-inflammatory effects of Urtica dioica leaf extract in animal models

    PubMed Central

    Hajhashemi, Valiollah; Klooshani, Vahid

    2013-01-01

    Objective: This study was aimed to examine the antinociceptive and anti-inflammatory effects of Urtica dioica leaf extract in animal models. Materials and Methods: Hydroalcoholic extract of the plant leaves was prepared by percolation method. Male Swiss mice (25-35 g) and male Wistar rats (180-200 g) were randomly distributed in control, standard drug, and three experimental groups (n=6 in each group). Acetic acid-induced writhing, formalin test, and carrageenan-induced paw edema were used to assess the antinociceptive and anti-inflammatory effects. Results: The extract dose-dependently reduced acetic acid-induced abdominal twitches. In formalin test, the extract at any of applied doses (100, 200, and 400 mg/kg) could not suppress the licking behavior of first phase while doses of 200 and 400 mg/kg significantly inhibited the second phase of formalin test. In carrageenan test, the extract at a dose of 400 mg/kg significantly inhibited the paw edema by 26%. Conclusion: The results confirm the folkloric use of the plant extract in painful and inflammatory conditions. Further studies are needed to characterize the active constituents and the mechanism of action of the plant extract. PMID:25050274

  3. In vitro anti-proliferative and anti-inflammatory activity of leaf and fruit extracts from Vaccinium bracteatum Thunb.

    PubMed

    Landa, Premysl; Skalova, Lenka; Bousova, Iva; Kutil, Zsofia; Langhansova, Lenka; Lou, Ji-Dong; Vanek, Tomas

    2014-01-01

    The aim of this study was to evaluate in vitro anti-proliferative (tested on MCF-7, MDA-MB-231, and MCF-10A cell lines) and anti-inflammatory (evaluated as inhibition of prostaglandin E2 synthesis catalyzed by cyclooxygenase-2) effect of various extracts from Vaccinium bracteatum leaves and fruits. The highest anti-proliferative effect possessed leaf dichloromethane extract with IC50 values ranging from 93 to 198 μg/mL. In the case of cyclooxygenase-2 inhibition, n-hexane, dichloromethane, and ethanol fruit extracts showed the best activity with IC50 values = 2.0, 5.4, and 12.7 μg/mL, respectively. These results indicate that V. bracteatum leaves and fruits could be useful source of anti-cancer and anti-inflammatory compounds.

  4. PCR Inhibition of a Quantitative PCR for Detection of Mycobacterium avium Subspecies Paratuberculosis DNA in Feces: Diagnostic Implications and Potential Solutions

    PubMed Central

    Acharya, Kamal R.; Dhand, Navneet K.; Whittington, Richard J.; Plain, Karren M.

    2017-01-01

    Molecular tests such as polymerase chain reaction (PCR) are increasingly being applied for the diagnosis of Johne’s disease, a chronic intestinal infection of ruminants caused by Mycobacterium avium subspecies paratuberculosis (MAP). Feces, as the primary test sample, presents challenges in terms of effective DNA isolation, with potential for PCR inhibition and ultimately for reduced analytical and diagnostic sensitivity. However, limited evidence is available regarding the magnitude and diagnostic implications of PCR inhibition for the detection of MAP in feces. This study aimed to investigate the presence and diagnostic implications of PCR inhibition in a quantitative PCR assay for MAP (High-throughput Johne’s test) to investigate the characteristics of samples prone to inhibition and to identify measures that can be taken to overcome this. In a study of fecal samples derived from a high prevalence, endemically infected cattle herd, 19.94% of fecal DNA extracts showed some evidence of inhibition. Relief of inhibition by a five-fold dilution of the DNA extract led to an average increase in quantification of DNA by 3.3-fold that consequently increased test sensitivity of the qPCR from 55 to 80% compared to fecal culture. DNA extracts with higher DNA and protein content had 19.33 and 10.94 times higher odds of showing inhibition, respectively. The results suggest that the current test protocol is sensitive for herd level diagnosis of Johne’s disease but that test sensitivity and individual level diagnosis could be enhanced by relief of PCR inhibition, achieved by five-fold dilution of the DNA extract. Furthermore, qualitative and quantitative parameters derived from absorbance measures of DNA extracts could be useful for prediction of inhibitory fecal samples. PMID:28210245

  5. [Effect of Astragalus membranaceus var. mongholicus seed extracts on seed germination and seedling growth of different Codonopsis pilosula caltiver].

    PubMed

    Guo, Feng-Xia; Wu, Zhi-Jiang; Chen, Yuan; Xi, Zhuo-Xia; Zhang, Xiao-Hu; Yao, Li-Rong; Chen, Xiang

    2012-11-01

    To reveal the allelopathy effect of Astragalus membranaceus var. mongholicus seeds and provide information for the intercrop production. The A. membranaceus. var. mongholicus seeds were soaked in distilled water for different time (12, 24, 36, 48, 60 h) , and then the seed extracts were used to study their effects on the seed germination, seedling growth and development of two Codonopsis pilosula. The A. membranaceus var. mongholicus seeds contained some allelopathy compounds. Their soaked liquid had significantly influence on the seed germination and seedling growth of C. pilosula. The seed germination rate, germination power, germination index and vigor index of two C. pilosula calrivar were improved and then inhabited with soaking time elongation. The extract soaking for 24 h significantly improved the germination traits but the extract for 60 h appeared different degrees of inhibiting vigor. The seed extracts soaking ranging between 12 and 60 h all significantly improved the above plant growth of C. pilosula but significant inhibited their radicle growth in length. And with the soaking time elongation the facilitation effect weakened and the inhibiting effect enhanced, especially more significant in the C. pilosula caltivar (Baitiaodangshen). The A. membranaceus var. mongholicus seeds have allelopathic compounds and the endogenous inhibitor can be extracted when soaked for more than 24 h in water with intact seeds, resulting in improvement of seed germination rate. The C. pilosula could be intercropped in A. membranaceus var. mongholicus field, however, when intercroped it should notice that the intercrop proportion should vary with the caltivar.

  6. An evaluation of extracts of five traditional medicinal plants from Iran on the inhibition of mushroom tyrosinase activity and scavenging of free radicals.

    PubMed

    Khazaeli, P; Goldoozian, R; Sharififar, F

    2009-10-01

    This study aimed to evaluate the free radical scavenging and inhibition properties of five medicinal plants, including Quercus infectoria Olive., Terminalia chebula Retz., Lavendula stoechas L., Mentha longifolia L., Rheum palmatum L., toward the activity of mushroom tyrosinase using L-tyrosine and L-3,4-dihydroxyphenylalanine (L-DOPA) as the substrate.The methanol extracts of Q. infectoria and T. chebula showed strong radical scavenging effect in 2,2'-dipheny L-1-picrylhydrazyl (DPPH) assay(IC50 = 15.3 and 82.2 microg mL)1 respectively).These plants also showed inhibitory effects against the activity of mushroom tyrosinase in hydroxylation of L-tyrosine (85.9% and 82.2% inhibition,respectively). These two plants also inhibited the oxidation of l-DOPA similar to kojic acid as positive control (IC50 = 102.8 and 192.6 microg mL)1 respectively). In general Q. infectoria and T. chebula significantly inhibited tyrosinase activity and DPPH radical. Both activities were concentration dependant but not in linear manner. It is needed to study the cytotoxicity of these plant extracts in pigment cell culture before further evaluation and moving to in vivo conditions.

  7. Ethanol extract of mango (Mangifera indica L.) peel inhibits α-amylase and α-glucosidase activities, and ameliorates diabetes related biochemical parameters in streptozotocin (STZ)-induced diabetic rats.

    PubMed

    Gondi, Mahendranath; Prasada Rao, U J S

    2015-12-01

    Peel is a major by-product during processing of mango fruit into pulp. Recent report indicates that the whole peel powder ameliorated diabetes. In the present study, ethanolic extract of mango peel was analysed for its bioactive compounds, evaluated for α-amylase and α-glucosidase inhibitory properties, oral glucose tolerance test, antioxidant properties, plasma insulin level and biochemical parameters related to diabetes. In addition to gallic and protocatechuic acids, the extract also had chlorogenic and ferulic acids, which were not reported earlier in mango peel extracts. The peel extract inhibited α-amylase and α-glucosidase activities, with IC50 values of 4.0 and 3.5 μg/ml. Ethanolic extract of peel showed better glucose utilization in oral glucose tolerance test. Treatment of streptozotocin-induced diabetic rats with the extract decreased fasting blood glucose, fructosamine and glycated hemoglobin levels, and increased plasma insulin level. Peel extract treatment decreased malondialdehyde level, but increased the activities of antioxidant enzymes significantly in liver and kidney compared to diabetic rats. These beneficial effects were comparable to metformin, but better than gallic acid treated diabetic rats. The beneficial effects of peel extract may be through different mechanism like increased plasma insulin levels, decreased oxidative stress and inhibition of carbohydrate hydrolyzing enzyme activities by its bioactive compounds. Thus, results suggest that the peel extract can be a potential source of nutraceutical or can be used in functional foods and this is the first report on antidiabetic properties of mango peel extract.

  8. Evaluation of Traditional Indian Antidiabetic Medicinal Plants for Human Pancreatic Amylase Inhibitory Effect In Vitro

    PubMed Central

    Ponnusamy, Sudha; Ravindran, Remya; Zinjarde, Smita; Bhargava, Shobha; Ravi Kumar, Ameeta

    2011-01-01

    Pancreatic α-amylase inhibitors offer an effective strategy to lower the levels of post prandial hyperglycemia via control of starch breakdown. Eleven Ayurvedic Indian medicinal plants with known hypoglycemic properties were subjected to sequential solvent extraction and tested for α-amylase inhibition, in order to assess and evaluate their inhibitory potential on pancreatic α-amylase. Analysis of 91 extracts, showed that 10 exhibited strong Human Pancreatic Amylase (HPA) inhibitory potential. Of these, 6 extracts showed concentration dependent inhibition with IC50 values, namely, cold and hot water extracts from Ficus bengalensis bark (4.4 and 125 μgmL−1), Syzygium cumini seeds (42.1 and 4.1 μgmL−1), isopropanol extracts of Cinnamomum verum leaves (1.0 μgmL−1) and Curcuma longa rhizome (0.16 μgmL−1). The other 4 extracts exhibited concentration independent inhibition, namely, methanol extract of Bixa orellana leaves (49 μgmL−1), isopropanol extract from Murraya koenigii leaves (127 μgmL−1), acetone extracts from C. longa rhizome (7.4 μgmL−1) and Tribulus terrestris seeds (511 μgmL−1). Thus, the probable mechanism of action of the above fractions is due to their inhibitory action on HPA, thereby reducing the rate of starch hydrolysis leading to lowered glucose levels. Phytochemical analysis revealed the presence of alkaloids, proteins, tannins, cardiac glycosides, flavonoids, saponins and steroids as probable inhibitory compounds. PMID:20953430

  9. Allelopathic Effects, Physiological Responses and Phenolic Compounds in Litter Extracts of Juniperus rigidaSieb. et Zucc.

    PubMed

    Liu, Jing; Li, Dengwu; Wang, Dongmei; Liu, Yu; Song, Huiying

    2017-08-01

    The allelopathic effects of Juniperus rigida litter aqueous extract (LE) on wheat and Pinus tabuliformis were studied, as well as the physiological responses to the extract. High concentration LE (0.10 g Dw/ml) significantly inhibited the seed germination and seedling growth in receptor plants. The chlorophyll content and root activity in the wheat seedlings were reduced significantly across all treatments; however, those were more prominently reduced at high concentration (0.10 g Dw/ml) but received little stimulation at low concentration (0.025 g Dw/ml) in P. tabuliformis. The content of malonaldehyde (MDA) increased with increasing concentrations of LE, except at 0.025 g Dw/ml. Activities of antioxidant enzymes (POD, CAT and SOD) in receptor plants were all significantly inhibited at high concentrations but stimulated at low concentrations. These results demonstrate that the aqueous extract from J. rigida litter has allelopathic potential. Various phenolic compounds were identified in litter aqueous extract and litter ethanol extract by HPLC. The phenolic compound content in the aqueous extract was significantly lower than that in the ethanol extract. Chlorogenic acid and podophyllotoxin were the predominant phenolic compounds in both types of litter extracts. These findings suggest that the seed germination and seedling growth of P. tabuliformis and wheat would be inhibited when planted near large amounts J. rigida litter. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  10. Hypoglycemic effect of ethanolic extract of Musa sapientum on alloxan induced diabetes mellitus in rats and its relation with antioxidant potential.

    PubMed

    Dhanabal, S P; Sureshkumar, M; Ramanathan, M; Suresh, B

    2005-01-01

    The antihyperglycemic effect of ethanolic extract of flowers of Musa sapientum (Musaceae), a herb (used in Indian folklore medicine for the treatment of diabetes mellitus) in alloxan induced diabetic rats. Oral administration of the ethanolic extract showed significant (p < 0.001) blood glucose lowering effect at 200 mg/kg in alloxan induced diabetic rats (120 mg/kg, i.p.) and the extract was also found to significantly (p < 0.001) scavenge oxygen free radicals, viz., superoxide dismutase (SOD), catalase (CAT) and also protein, malondialdehyde and ascorbic acid in vivo. Musa sapientum induced blood sugar reduction may be due to possible inhibition of free radicals and subsequent inhibition of tissue damage induced by alloxan. The antidiabetic activity observed in this plant may be attributed to the presence of flavonoids, alkaloids, steroid and glycoside principles.

  11. Inhibitory Effect of Black and Red Pepper and Thyme Extracts and Essential Oils on Enterohemorrhagic Escherichia coli and DNase Activity of Staphylococcus aureus.

    PubMed

    Zarringhalam, Maryam; Zaringhalam, Jalal; Shadnoush, Mehdi; Safaeyan, Firouzeh; Tekieh, Elaheh

    2013-01-01

    In this study, extracts and essential oils of Black and Red pepper and Thyme were tested for antibacterial activity against Escherichia coli O157: H7 and Staphylococcus aureus. Black and Red pepper and Thyme were provided from Iranian agricultural researches center. 2 g of each plant powder was added to 10 cc ethanol 96°. After 24 h, the crude extract was separated as an alcoholic extract and concentrated by distillation method. Plants were examined for determining their major component and essential oils were separated. Phytochemical analyses were done for detection of some effective substances in extracts. The antibacterial activity against Escherichia coli O157: H7 and Staphylococcus aureus was tested and the results showed that all extracts and essential oils were effective and essential oils were more active. The extracts and oils that showed antimicrobial activity were later tested to determine the Minimum Inhibitory Dilution (MID) for those bacteria. They were also effective on the inhibition of DNase activity. This study was indicated that extracts and essential oils of Black and Red pepper and Thyme can play a significant role in inhibition of Escherichia coli O157: H7 and Staphylococcus aureus.

  12. Inhibitory Effect of Black and Red Pepper and Thyme Extracts and Essential Oils on Enterohemorrhagic Escherichia coli and DNase Activity of Staphylococcus aureus

    PubMed Central

    Zarringhalam, Maryam; Zaringhalam, Jalal; Shadnoush, Mehdi; Safaeyan, Firouzeh; Tekieh, Elaheh

    2013-01-01

    In this study, extracts and essential oils of Black and Red pepper and Thyme were tested for antibacterial activity against Escherichia coli O157: H7 and Staphylococcus aureus. Black and Red pepper and Thyme were provided from Iranian agricultural researches center. 2 g of each plant powder was added to 10 cc ethanol 96°. After 24 h, the crude extract was separated as an alcoholic extract and concentrated by distillation method. Plants were examined for determining their major component and essential oils were separated. Phytochemical analyses were done for detection of some effective substances in extracts. The antibacterial activity against Escherichia coli O157: H7 and Staphylococcus aureus was tested and the results showed that all extracts and essential oils were effective and essential oils were more active. The extracts and oils that showed antimicrobial activity were later tested to determine the Minimum Inhibitory Dilution (MID) for those bacteria. They were also effective on the inhibition of DNase activity. This study was indicated that extracts and essential oils of Black and Red pepper and Thyme can play a significant role in inhibition of Escherichia coli O157: H7 and Staphylococcus aureus. PMID:24250643

  13. Effect of propolis in gastric disorders: inhibition studies on the growth of Helicobacter pylori and production of its urease.

    PubMed

    Baltas, Nimet; Karaoglu, Sengul Alpay; Tarakci, Cemre; Kolayli, Sevgi

    2016-01-01

    There is considerable interest in alternative approaches to inhibit Helicobacter pylori (H. pylori) and thus treat many stomach diseases. Propolis is a pharmaceutical mixture containing many natural bioactive substances. The aim of this study was to use propolis samples to treat H. pylori. The anti-H. pylori and anti-urease activities of 15 different ethanolic propolis extracts (EPEs) were tested. The total phenolic contents and total flavonoid contents of the EPE were also measured. The agar-well diffusion assay was carried out on H. pylori strain J99 and the inhibition zones were measured and compared with standards. All propolis extracts showed high inhibition of H. pylori J99, with inhibition diameters ranging from 31.0 to 47.0 mm. Helicobacter pylori urease inhibitory activity was measured using the phenol-hypochlorite assay; all EPEs showed significant inhibition against the enzyme, with inhibition concentrations (IC 50 ; mg/mL) ranging from 0.260 to 1.525 mg/mL. The degree of inhibition was related to the phenolic content of the EPE. In conclusion, propolis extract was found to be a good inhibitor that can be used in H. pylori treatment to improve human health.

  14. Effect of grape pomace extracts obtained from different grape varieties on microbial quality of beef patty.

    PubMed

    Sagdic, Osman; Ozturk, Ismet; Yilmaz, Mustafa Tahsin; Yetim, Hasan

    2011-09-01

    Grape pomace extracts were obtained from 5 different grape varieties grown in Turkey. The extracts were concentrated to obtain crude extracts; and incorporated into beef patties at 0% (Control), 1%, 2%, 5%, and 10% concentrations to test their antimicrobial effects in different storage periods (first, 12, 24, and 48 h). The numbers of microorganism were generally decreased by the extract concentration during the storage period. All the microorganisms tested were inhibited by the extract concentration of 10% in all the storage periods. Furthermore, the foodborne pathogens including Enterobacteriaceae and coliform bacteria, and the spoilage microorganisms including yeasts and moulds and lipolytic bacteria were also inhibited by 5% of Emir, Gamay, and Kalecik Karasi varieties in beef patties. Considering the results, the extracts of grape pomaces might be a good choice in the microbial shelf life extension of the food products as well as inhibiting the food pathogens as the case of beef patties. Grape pomace consists of seeds, skins, and stems, and an important by-product that is well known to be the rich source of phenolic compounds, both flavonoids and non-flavonoids. These substances have considerable beneficial effects on human health. The use of natural antimicrobial compounds, like plant extracts of herbs and spices for the preservation of foods has been very popular issue because of their antimicrobial activity. Therefore, grape pomace should be added into some food formulations to benefit from their protective effects. In this respect, this study reports the effect of addition of grape pomace extracts obtained from different grape varieties on microbial quality of beef patty. The results obtained in this study may be useful for food industry, which has recently tended to use natural antimicrobial sources in place of synthetic preservatives to prevent microbial spoilage. © 2011 Institute of Food Technologists®

  15. Antimicrobial effects of citrus sinensis peel extracts against periodontopathic bacteria: an in vitro study.

    PubMed

    Hussain, Khaja Amjad; Tarakji, Bassel; Kandy, Binu Purushothaman Panar; John, Jacob; Mathews, Jacob; Ramphul, Vandana; Divakar, Darshan Devang

    2015-01-01

    Use of plant extracts and phytochemicals with known antimicrobial properties may have great significance in therapeutic treatments. To assess the in vitro antimicrobial potential and also determine the minimum inhibitory concentration (MIC) of Citrus sinensis peel extracts with a view of searching a novel extract as a remedy for periodontal pathogens. Aqueous and ethanol (cold and hot) extracts prepared from peel of Citrus sinensis were screened for in vitro antimicrobial activity against Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and Prevotella intermedia, using agar well diffusion method. The lowest concentration of every extract considered as the minimal inhibitory concentration (MIC) values were determined for both test organisms. Confidence level and level of significance were set at 95% and 5% respectively. Prevotella intermedia and Porphyromonas gingivalis were resistant to aqueous extracts while Aggregatibacter actinomycetemcomitans was inhibited at very high cncentrations. Hot ethanolic extracts showed significantly higher zone of inhibition than cold ethanolic extract. Minimum inhibitory concentration of hot and cold ethanolic extracts of Citrus sinensis peel ranged between 12-15 mg/ml against all three periodontal pathogens. Both extracts were found sensitive and contain compounds with therapeutic potential. Nevertheless, clinical trials on the effect of these plants are essential before advocating large-scale therapy.

  16. Fungitoxicity of organic extracts of Ocimum basilicum on growth and morphogenesis of Bipolaris species (teleomorph Cochliobolus).

    PubMed

    Elsherbiny, E A; Safwat, N A; Elaasser, M M

    2017-10-01

    This study aimed at evaluating the inhibitory effects of various organic extracts of Ocimum basilicum against some species of Bipolaris and Cochliobolus with GC-MS and HPLC analysis. The ethyl acetate extract consisted of methyl cinnamate as the most abundant component, while butylated hydroxytoluene was the major component in the methanol extract. Pyrogallol and chlorogenic acid were major phenolic compounds in the ethyl acetate and methanol extracts, respectively. Complete growth inhibition of all fungi except Cochliobolus australiensis was observed by ethyl acetate extract, and on Bipolaris hawaiensis, Bipolaris spicifera and Cochliobolus cynodontis by methanol extract. Spore germination was completely inhibited for Bipolaris hawaiensis by ethyl acetate extract. Scanning electron microscopic observations revealed that the organic extracts cause considerable morphological changes of the fungal hyphae such as mycelial asymmetry, hyphal swelling, sunken, curling, distorted and broken hyphae. The ethyl acetate and methanol extracts of O. basilicum can result in an effective suppression of mycelial growth, spore germination and germ tube elongation of Bipolaris and Cochliobolus species. The organic extracts of O. basilicum are potential and promising natural tools for controlling Bipolaris and Cochliobolus species, economically important plant and human fungal pathogens. © 2017 The Society for Applied Microbiology.

  17. Remediation of uranium contaminated soils with bicarbonate extraction and microbial U(VI) reduction

    USGS Publications Warehouse

    Philips , Elizabeth J.P.; Landa, Edward R.; Lovely, Derek R.

    1995-01-01

    A process for concentrating uranium from contaminated soils in which the uranium is first extracted with bicarbonate and then the extracted uranium is precipitated with U(VI)-reducing microorganisms was evaluated for a variety of uranuum-contaminated soils. Bicarbonate (100 mM) extracted 20–94% of the uranium that was extracted with nitric acid. The U(VI)-reducing microorganism,Desulfovibrio desulfuricans reduced the U(VI) to U(IV) in the bicarbonate extracts. In some instances unidentified dissolved extracted components, presumably organics, gave the extract a yellow color and inhibited U(VI) reduction and/or the precipitation of U(IV). Removal of the dissolved yellow material with the addition of hydrogen peroxide alleviated this inhibition. These results demonstrate that bicarbonate extraction of uranium from soil followed by microbial U(VI) reduction might be an effective mechanism for concentrating uranium from some contaminated soils.

  18. Pao Pereira Extract Suppresses Castration-Resistant Prostate Cancer Cell Growth, Survival, and Invasion Through Inhibition of NFκB Signaling.

    PubMed

    Chang, Cunjie; Zhao, Wei; Xie, Bingxian; Deng, Yongming; Han, Tao; Cui, Yangyan; Dai, Yundong; Zhang, Zhen; Gao, Jimin; Guo, Hongqian; Yan, Jun

    2014-05-01

    Pao extract, derived from bark of Amazonian tree Pao Pereira, is commonly used in South American medicine. A recent study showed that Pao extract repressed androgen-dependent LNCaP prostate cancer cell growth. We hypothesize that Pao extract asserts its anticancer effects on metastatic castration-resistant prostate cancer (CRPC) cells. Pao extract suppressed CRPC PC3 cell growth in a dose- and time-dependent manner, through induction of apoptosis and cell cycle arrest. Pao extract treatment induced cell cycle inhibitors, p21 and p27, and repressed PCNA, Cyclin A and Cyclin D1. Furthermore, Pao extract also induced the upregulation of pro-apoptotic Bax, reduction of anti-apoptotic Bcl-2, Bcl-xL, and XIAP expression, which were associated with the cleavage of PARP protein. Moreover, Pao extract treatment blocked PC3 cell migration and invasion. Mechanistically, Pao extract suppressed phosphorylation levels of AKT and NFκB/p65, NFκB DNA binding activity, and luciferase reporter activity. Pao inhibited TNFα-induced relocation of NFκB/p65 to the nucleus, NFκB/p65 transcription activity, and MMP9 activity as shown by zymography. Consistently, NFκB/p65 downstream targets involved in proliferation (Cyclin D1), survival (Bcl-2, Bcl-xL, and XIAP), and metastasis (VEGFa, MMP9, and GROα/CXCL1) were also downregulated by Pao extract. Finally, forced expression of NFκB/p65 reversed the growth inhibitory effect of Pao extract. Overall, Pao extract induced cell growth arrest, apoptosis, partially through inhibiting NFκB activation in prostate cancer cells. These data suggest that Pao extract may be beneficial for protection against CRPC. © The Author(s) 2013.

  19. Aqueous and Ethanolic Valeriana officinalis Extracts Change the Binding of Ligands to Glutamate Receptors

    PubMed Central

    Del Valle-Mojica, Lisa M.; Cordero-Hernández, José M.; González-Medina, Giselle; Ramos-Vélez, Igmeris; Berríos-Cartagena, Nairimer; Torres-Hernández, Bianca A.; Ortíz, José G.

    2011-01-01

    The effects of two valerian extracts (aqueous and hydroalcoholic) were investigated through [3H]Glutamate ([3H]Glu) and [3H]Fluorowillardine ([3H]FW) receptor binding assays using rat synaptic membranes in presence of different receptor ligands. In addition, the extract stability was monitored spectrophotometrically. Both extracts demonstrated interaction with ionotropic glutamate receptors (iGluRs). However, the extracts displayed considerable differences in receptor selectivity. The hydroalcoholic extract selectively interacted with quisqualic acid (QA), group I metabotropic glutamate receptor (mGluR) ligand, while the aqueous extract did not alter the binding of QA. The stability of the extracts was examined during several weeks. Freshly prepared extract inhibited 38–60% of [3H]FW binding (AMPA). After 10 days, the aqueous extract inhibited 85% of [3H]FW binding while the hydroalcoholic extract markedly potentiated (200%) [3H]FW binding to AMPA receptors. Thus, our results showed that factors such as extraction solvent and extract stability determine the selectivity for glutamate receptor (GluR) interactions. PMID:21151614

  20. Aqueous and Ethanolic Valeriana officinalis Extracts Change the Binding of Ligands to Glutamate Receptors.

    PubMed

    Del Valle-Mojica, Lisa M; Cordero-Hernández, José M; González-Medina, Giselle; Ramos-Vélez, Igmeris; Berríos-Cartagena, Nairimer; Torres-Hernández, Bianca A; Ortíz, José G

    2011-01-01

    The effects of two valerian extracts (aqueous and hydroalcoholic) were investigated through [(3)H]Glutamate ([(3)H]Glu) and [(3)H]Fluorowillardine ([(3)H]FW) receptor binding assays using rat synaptic membranes in presence of different receptor ligands. In addition, the extract stability was monitored spectrophotometrically. Both extracts demonstrated interaction with ionotropic glutamate receptors (iGluRs). However, the extracts displayed considerable differences in receptor selectivity. The hydroalcoholic extract selectively interacted with quisqualic acid (QA), group I metabotropic glutamate receptor (mGluR) ligand, while the aqueous extract did not alter the binding of QA. The stability of the extracts was examined during several weeks. Freshly prepared extract inhibited 38-60% of [(3)H]FW binding (AMPA). After 10 days, the aqueous extract inhibited 85% of [(3)H]FW binding while the hydroalcoholic extract markedly potentiated (200%) [(3)H]FW binding to AMPA receptors. Thus, our results showed that factors such as extraction solvent and extract stability determine the selectivity for glutamate receptor (GluR) interactions.

  1. Anti-HCV effect of Lentinula edodes mycelia solid culture extracts and low-molecular-weight lignin.

    PubMed

    Matsuhisa, Koji; Yamane, Seiji; Okamoto, Toru; Watari, Akihiro; Kondoh, Masuo; Matsuura, Yoshiharu; Yagi, Kiyohito

    2015-06-19

    Lentinula edodes mycelia solid culture extract (MSCE) contains several bioactive molecules, including some polyphenolic compounds, which exert immunomodulatory, antitumor, and hepatoprotective effects. In this study, we examined the anti-hepatitis C virus (HCV) activity of MSCE and low-molecular-weight lignin (LM-lignin), which is the active component responsible for the hepatoprotective effect of MSCE. Both MSCE and LM-lignin inhibited the entry of two HCV pseudovirus (HCVpv) types into Huh7.5.1 cells. LM-lignin inhibited HCVpv entry at a lower concentration than MSCE and inhibited the entry of HCV particles in cell culture (HCVcc). MSCE also inhibited HCV subgenome replication. LM-lignin had no effect on HCV replication, suggesting that MSCE contains additional active substances. We demonstrate here for the first time the anti-HCV effects of plant-derived LM-lignin and MSCE. The hepatoprotective effect of LM-lignin suggests that lignin derivatives, which can be produced in abundance from existing plant resources, may be effective in the treatment of HCV-related diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. In Vitro Anthelmintic Activity of Crude Extracts of Aerial Parts of Cissus quadrangularis L. and Leaves of Schinus molle L. against Haemonchus contortus

    PubMed Central

    Zenebe, Selamawit; Feyera, Teka

    2017-01-01

    Background Haemonchus contortus, the causative agent of Haemonchosis, is the most economically important parasite in small ruminant production. Control with chemotherapy has not been successful due to rapid emergence of drug-resistant strains. There is a continuous search for alternative leads particularly from plants. The study aimed to evaluate the anthelmintic activity of crude methanolic extracts of leaves of Schinus molle and aerial parts of Cissus quadrangularis against H. contortus. Methods. Adult motility test and egg hatching inhibition assay were employed to investigate the in vitro adulticidal and egg hatching inhibitory effects of the extracts. Results Higher concentrations of the extracts (10 and 5 mg/ml) had a significantly superior adulticidal activity (p < 0.05) compared to the negative control and lower concentration levels, which was comparable to albendazole. Similarly, the relative egg hatch inhibition efficacy of S. molle and C. quadrangularis extracts indicated a maximum of 96% and 88% egg hatch inhibition, respectively, within the 48 hrs of exposure at 1 mg/ml. Conclusion The current study evidenced that the crude methanolic extracts of the plants have promising adulticidal and egg hatching inhibitory effects against H. contortus. PMID:29410960

  3. Anti-inflammatory, cyclooxygenase (COX)-2, COX-1 inhibitory, and free radical scavenging effects of Rumex nepalensis.

    PubMed

    Gautam, Raju; Karkhile, Kailas V; Bhutani, Kamlesh K; Jachak, Sanjay M

    2010-10-01

    Evaluation of the topical anti-inflammatory activity of chloroform and ethyl acetate extracts of RUMEX NEPALENSIS roots in a TPA-induced acute inflammation mouse model demonstrated a significant reduction in ear edema. The extracts were further tested on purified enzymes for COX-1 and COX-2 inhibition to elucidate their mechanism of action, and a strong inhibition was observed. Six anthraquinones and two naphthalene derivatives were isolated from the ethyl acetate extract. Among the isolated compounds, emodin was found to be a potent inhibitor with slight selectivity towards COX-2, and nepodin exhibited selectivity towards COX-1. Emodin, endocrocin, and nepodin also exhibited significant topical anti-inflammatory activity in mice. Interestingly, nepodin showed better radical scavenging activity than trolox and ascorbic acid against DPPH and ABTS radicals. The strong radical scavenging activity of chloroform and ethyl acetate extracts could be explained by the presence of nepodin as well as by the high phenolic content of the ethyl acetate extract. Thus, the anti-inflammatory effect of R. NEPALENSIS roots was assumed to be mediated through COX inhibition by anthraquinones and naphthalene derivatives and through the radical scavenging activities of naphthalene derivatives. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Extract from Edible Red Seaweed (Gelidium amansii) Inhibits Lipid Accumulation and ROS Production during Differentiation in 3T3-L1 Cells.

    PubMed

    Seo, Min-Jung; Lee, Ok-Hwan; Choi, Hyeon-Son; Lee, Boo-Yong

    2012-06-01

    Gelidium (G.) amansii is a red alga widely distributed in the shallow waters around East Asian countries. We investigated the effect of G. amansii on lipid accumulation and ROS (Reactive Oxygen Species) production in 3T3-L1 cells. G. amansii extracts dose-dependently inhibited lipid formation and ROS generation in cultured cells. Our results showed that anti-adipogenic effect of G. amansii was due to the reduction in mRNA expressions of PPARγ peroxisome proliferator-activated receptor-γ and aP2 (adipocyte protein 2). G. amansii extracts significantly decreased mRNA levels of a ROS-generator, NOX4 (nicotinamide adenine dinucleotide phosphate hydrogen oxidase 4), and increased the protein levels of antioxidant enzymes including SOD1/2 (superoxide dis-mutases), Gpx (glutathione peroxidase), and GR (glutathione reductase), which can lead to the reduction of ROS in the cell. In addition, the G. amansii extract enhanced mRNA levels of adiponectin, one of the adipokines secreted from adipocytes, and GLUT4, glucose uptake protein. Taken together, our study shows that G. amansii extract inhibited lipid accumulation and ROS production by controlling adipogenic signals and ROS regulating genes.

  5. Extract from Edible Red Seaweed (Gelidium amansii) Inhibits Lipid Accumulation and ROS Production during Differentiation in 3T3-L1 Cells

    PubMed Central

    Seo, Min-Jung; Lee, Ok-Hwan; Choi, Hyeon-Son; Lee, Boo-Yong

    2012-01-01

    Gelidium (G.) amansii is a red alga widely distributed in the shallow waters around East Asian countries. We investigated the effect of G. amansii on lipid accumulation and ROS (Reactive Oxygen Species) production in 3T3-L1 cells. G. amansii extracts dose-dependently inhibited lipid formation and ROS generation in cultured cells. Our results showed that anti-adipogenic effect of G. amansii was due to the reduction in mRNA expressions of PPARγ peroxisome proliferator-activated receptor-γ and aP2 (adipocyte protein 2). G. amansii extracts significantly decreased mRNA levels of a ROS-generator, NOX4 (nicotinamide adenine dinucleotide phosphate hydrogen oxidase 4), and increased the protein levels of antioxidant enzymes including SOD1/2 (superoxide dis-mutases), Gpx (glutathione peroxidase), and GR (glutathione reductase), which can lead to the reduction of ROS in the cell. In addition, the G. amansii extract enhanced mRNA levels of adiponectin, one of the adipokines secreted from adipocytes, and GLUT4, glucose uptake protein. Taken together, our study shows that G. amansii extract inhibited lipid accumulation and ROS production by controlling adipogenic signals and ROS regulating genes. PMID:24471074

  6. Inhibition of human cytochrome P450 enzymes by Bacopa monnieri standardized extract and constituents.

    PubMed

    Ramasamy, Seetha; Kiew, Lik Voon; Chung, Lip Yong

    2014-02-24

    Bacopa monnieri and the constituents of this plant, especially bacosides, possess various neuropharmacological properties. Like drugs, some herbal extracts and the constituents of their extracts alter cytochrome P450 (CYP) enzymes, causing potential herb-drug interactions. The effects of Bacopa monnieri standardized extract and the bacosides from the extract on five major CYP isoforms in vitro were analyzed using a luminescent CYP recombinant human enzyme assay. B. monnieri extract exhibited non-competitive inhibition of CYP2C19 (IC50/Ki = 23.67/9.5 µg/mL), CYP2C9 (36.49/12.5 µg/mL), CYP1A2 (52.20/25.1 µg/mL); competitive inhibition of CYP3A4 (83.95/14.5 µg/mL) and weak inhibition of CYP2D6 (IC50 = 2061.50 µg/mL). However, the bacosides showed negligible inhibition of the same isoforms. B. monnieri, which is orally administered, has a higher concentration in the gut than the liver; therefore, this herb could exhibit stronger inhibition of intestinal CYPs than hepatic CYPs. At an estimated gut concentration of 600 µg/mL (based on a daily dosage of 300 mg/day), B. monnieri reduced the catalytic activities of CYP3A4, CYP2C9 and CYP2C19 to less than 10% compared to the total activity (without inhibitor = 100%). These findings suggest that B. monnieri extract could contribute to herb-drug interactions when orally co-administered with drugs metabolized by CYP1A2, CYP3A4, CYP2C9 and CYP2C19.

  7. Hair-Loss Preventing Effect of Grateloupia elliptica

    PubMed Central

    Kang, Jung-Il; Kim, Sang-Cheol; Han, Sang-Chul; Hong, Hye-Jin; Jeon, You-Jin; Kim, Bora; Koh, Young-Sang; Yoo, Eun-Sook; Kang, Hee-Kyoung

    2012-01-01

    This study was conducted to evaluate the effect of Grateloupia elliptica, a seaweed native to Jeju Island, Korea, on the prevention of hair loss. When immortalized rat vibrissa dermal papilla cells were treated with extract of G. elliptica, the proliferation of dermal papilla cells significantly increased. In addition, the G. elliptica extract significantly inhibited the activity of 5α-reductase, which converts testosterone to dihydrotestosterone (DHT), a main cause of androgenetic alopecia. On the other hand, the G. elliptica extract promoted PGE2 production in HaCaT cells in a dose-dependent manner. The G. elliptica extract exhibited particularly high inhibitory effect on LPS-stimulated IL-12, IL-6, and TNF-α production in lipopolysaccharide (LPS)-stimulated bone marrow-derived dendritic cells. The G. elliptica extract also showed inhibitory activity against Pityrosporum ovale, a main cause of dandruff. These results suggest that G. elliptica extract has the potential to treat alopecia via the proliferation of dermal papilla, 5α-reductase inhibition, increase of PGE2 production, decrease of LPS-stimulated pro-inflammatory cytokines and inhibitory activity against Pityrosporum ovale. PMID:24116284

  8. Inhibitory effect of rice bran extracts and its phenolic compounds on polyphenol oxidase activity and browning in potato and apple puree.

    PubMed

    Sukhonthara, Sukhontha; Kaewka, Kunwadee; Theerakulkait, Chockchai

    2016-01-01

    Full-fatted and commercially defatted rice bran extracts (RBE and CDRBE) were evaluated for their ability to inhibit enzymatic browning in potato and apple. RBE showed more effective inhibition of polyphenol oxidase (PPO) activity and browning in potato and apple as compared to CDRBE. Five phenolic compounds in RBE and CDRBE (protocatechuic acid, vanillic acid, p-coumaric acid, ferulic acid and sinapic acid) were identified by HPLC. They were then evaluated for their important role in the inhibition using a model system which found that ferulic acid in RBE and p-coumaric acid in CDRBE were active in enzymatic browning inhibition of potato and apple. p-Coumaric acid exhibited the highest inhibitory effect on potato and apple PPO (p ⩽ 0.05). Almost all phenolic compounds showed higher inhibitory effect on potato and apple PPO than 100 ppm citric acid. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Outstanding Anti-inflammatory Potential of Selected Asteraceae Species through the Potent Dual Inhibition of Cyclooxygenase-1 and 5-Lipoxygenase.

    PubMed

    Chagas-Paula, Daniela Aparecida; Oliveira, Tiago Branquinho; Faleiro, Danniela Príscylla Vasconcelos; Oliveira, Rejane Barbosa; Costa, Fernando Batista Da

    2015-09-01

    Cyclooxygenase and 5-lipoxygenase are enzymes that catalyze important inflammatory pathways, suggesting that dual cyclooxygenase/lipoxygenase inhibitors should be more efficacious as anti-inflammatory medicines with lower side effects than the currently available nonsteroidal anti-inflammatory drugs. Many plants from the family Asteraceae have anti-inflammatory activities, which could be exerted by inhibiting the cyclooxygenase-1 and 5-lipoxygenase enzymes. Nevertheless, only a small number of compounds from this family have been directly evaluated for their ability to inhibit the enzymes in cell-free assays. Therefore, this study systematically evaluated 57 Asteraceae extracts in vitro in enzyme activity experiments to determine whether any of these extracts exhibit dual inhibition of cyclooxygenase-1 and 5-lipoxygenase. The chemical profiles of the extracts were obtained by the high-performance liquid chromatography-ultraviolet-diode array detector method, and their major constituents were dereplicated. Of the 57 tested extracts, 13 (26.6 %, IC50 range from 0.03-36.2 µg/mL) of them displayed dual inhibition. Extracts from known anti-inflammatory herbs, food plants, and previously uninvestigated species are among the most active. Additionally, the extract action was found to be specific with IC50 values close to or below those of the standard inhibitors. Thus, the active extracts and active substances of these species are potent inhibitors acting through the mechanism of dual inhibition of cyclooxygenase-1 and 5-lipoxygenase. The extracts were prepared for this study using nontoxic extraction solvents (EtOH-H2O), requiring only a small amount of plant material to carry out the bioassays and the phytochemical analyses. In summary, this study demonstrated the potential of the investigated species as dual inhibitors, revealing their potential as pharmaceuticals or nutraceuticals. Georg Thieme Verlag KG Stuttgart · New York.

  10. Inhibition of the protease activity of the light chain of type A botulinum neurotoxin by aqueous extract from stinging nettle (Urtica dioica) leaf.

    PubMed

    Gul, Nizamettin; Ahmed, S Ashraf; Smith, Leonard A

    2004-11-01

    We investigated the inhibitory effect of stinging nettle leaf extract on the protease activity of botulinum neurotoxin type A and B light chains. The nettle leaf infusion was fractionated and HPLC-based enzymatic assays were performed to determine the capacity of each fraction to inhibit the protease activity of botulinum neurotoxin type A and B light chains. Assay results demonstrated that a water-soluble fraction obtained from the nettle leaf infusion inhibited type A, but did not inhibit type B light chain protease activity. The inhibition mode of water soluble fraction against protease activity of type A light chain was analyzed and found to be a non-competitive.

  11. Antiviral Effects of Blackberry Extract Against Herpes Simplex Virus Type 1

    PubMed Central

    Danaher, Robert J.; Wang, Chunmei; Dai, Jin; Mumper, Russell J.; Miller, Craig S.

    2011-01-01

    Objective To evaluate antiviral properties of blackberry extract against herpes simplex virus type 1 (HSV-1) in vitro. Methods HSV-infected oral epithelial (OKF6) cells and cell-free virus suspensions were treated with blackberry extract (2.24 to 1400 μg/mL) and virus yield and infectivity were quantified by direct plaque assay. Results Blackberry extract ≥ 56 μg/ml inhibited HSV-1 replication in oral epithelial cells by > 99% (p < 0.005). Concentrations ≥ 280 μg/ml were antiviral when the extract was added after virus adsorption and entry. Exposure of cell-free virus to ≥ 280 μg/ml blackberry extract for 15 minutes at room temperature was virucidal (p = 0.0002). The virucidal effects were not due to pH changes at concentrations up to 1500 μg/ml. Conclusions Blackberry extract inhibited the early stages of HSV-1 replication and had potent virucidal activity. These properties suggest that this natural fruit extract could provide advantage as a topical prophylactic/therapeutic agent for HSV infections. PMID:21827957

  12. In Vitro Screening of Anti-lice Activity of Pongamia pinnata Leaves

    PubMed Central

    Radhamani, Suraj; Gopinath, Rejitha; Kalusalingam, Anandarajagopal; Vimala, Anita Gnana Kumari Anbumani; Husain, Hj Azman

    2009-01-01

    Growing patterns of pediculocidal drug resistance towards head louse laid the foundation for research in exploring novel anti-lice agents from medicinal plants. In the present study, various extracts of Pongamia pinnata leaves were tested against the head louse Pediculus humanus capitis. A filter paper diffusion method was conducted for determining the potential pediculocidal and ovicidal activity of chloroform, petroleum ether, methanol, and water extracts of P. pinnata leaves. The findings revealed that petroleum ether extracts possess excellent anti-lice activity with values ranging between 50.3% and 100% where as chloroform and methanol extracts showed moderate pediculocidal effects. The chloroform and methanol extracts were also successful in inhibiting nymph emergence and the petroleum ether extract was the most effective with a complete inhibition of emergence. Water extract was devoid of both pediculocidal and ovicidal activities. All the results were well comparable with benzoyl benzoate (25% w/v). These results showed the prospect of using P. pinnata leave extracts against P. humanus capitis in difficult situations of emergence of resistance to synthetic anti-lice agents. PMID:19967085

  13. Potency of a novel saw palmetto ethanol extract, SPET-085, for inhibition of 5alpha-reductase II.

    PubMed

    Pais, Pilar

    2010-08-01

    The nicotinamide adenine dinucleotide phosphate (NADPH)-dependent membrane protein 5alpha-reductase irreversibly catalyses the conversion of testosterone to the most potent androgen, 5alpha-dihydrotestosterone (DHT). In humans, two 5alpha-reductase isoenyzmes are expressed: type I and type II. Type II is found primarily in prostate tissue. Saw palmetto extract (SPE) has been widely used for the treatment of lower urinary tract symptoms secondary to benign prostatic hyperplasia (BPH). The mechanisms of the pharmacological effects of SPE include the inhibition of 5alpha-reductase, among other actions. Clinical studies of SPE have been equivocal, with some showing significant results and others not. These inconsistent results may be due, in part, to varying bioactivities of the SPE used in the studies. The aim of the present study was to determine the in vitro potency of a novel saw palmetto ethanol extract (SPET-085), an inhibitor of the 5alpha-reductase isoenzyme type II, in a cell-free test system. On the basis of the enzymatic conversion of the substrate androstenedione to the 5alpha-reduced product 5alpha-androstanedione, the inhibitory potency was measured and compared to those of finasteride, an approved 5alpha-reductase inhibitor. SPET-085 concentration-dependently inhibited 5alpha-reductase type II in vitro (IC(50)=2.88+/-0.45 microg/mL). The approved 5alpha-reductase inhibitor, finasteride, tested as positive control, led to 61% inhibition of 5alpha-reductase type II. SPET-085 effectively inhibits the enzyme that has been linked to BPH, and the amount of extract required for activity is very low compared to data reported for other extracts. It can be concluded from data in the literature that SPET-085 is as effective as a hexane extract of saw palmetto that exhibited the highest levels of bioactivity, and is more effective than other SPEs tested. This study confirmed that SPET-085 has prostate health-promoting bioactivity that also corresponds favorably to that reported for the established prescription drug standard of therapy, finasteride.

  14. Inhibitory potentials of phenolic-rich extracts from Bridelia ferruginea on two key carbohydrate-metabolizing enzymes and Fe2+-induced pancreatic oxidative stress.

    PubMed

    Afolabi, Olakunle Bamikole; Oloyede, Omotade Ibidun; Agunbiade, Shadrack Oludare

    2018-05-01

    The current study was designed to evaluate the various antioxidant potentials and inhibitory effects of phenolic-rich leaf extracts of Bridelia ferruginea (BF) on the in vitro activities of some key enzymes involved in the metabolism of carbohydrates. In this study, BF leaf free and bound phenolic-rich extracts were used. We quantified total phenolic and flavonoid contents, and evaluated several antioxidant activities using assays for ferric reducing antioxidant power, total antioxidant activity (phosphomolybdenum reducing ability), 1,1-diphenyl-2-picrylhydrazyl and thiobarbituric acid reactive species. Also, extracts were tested for their ability to inhibit α-amylase and α-glucosidase activity. The total phenolic and total flavonoid contents in the free phenolic extract of BF were significantly greater than in the bound phenolic extract. Also, all the antioxidant activities considered were significantly greater in the free phenolic extract than in the bound phenolic extract. In the same vein, the free phenolic-rich extract had a significantly higher percentage inhibition against α-glucosidase activity (IC 50  = 28.5 µg/mL) than the bound phenolic extract (IC 50  = 340.0 µg/mL). On the contrary, the free phenolic extract (IC 50  = 210.0 µg/mL) had significantly lower inhibition against α-amylase than the bound phenolic-rich extract (IC 50  = 190.0 µg/mL). The phenolic-rich extracts of BF leaves showed antioxidant potentials and inhibited two key carbohydrate-metabolizing enzymes in vitro. Copyright © 2018 Shanghai Changhai Hospital. Published by Elsevier B.V. All rights reserved.

  15. Okanin, effective constituent of the flower tea Coreopsis tinctoria, attenuates LPS-induced microglial activation through inhibition of the TLR4/NF-κB signaling pathways

    NASA Astrophysics Data System (ADS)

    Hou, Yue; Li, Guoxun; Wang, Jian; Pan, Yingni; Jiao, Kun; Du, Juan; Chen, Ru; Wang, Bing; Li, Ning

    2017-04-01

    The EtOAc extract of Coreopsis tinctoria Nutt. significantly inhibited LPS-induced nitric oxide (NO) production, as judged by the Griess reaction, and attenuated the LPS-induced elevation in iNOS, COX-2, IL-1β, IL-6 and TNF-α mRNA levels, as determined by quantitative real-time PCR, when incubated with BV-2 microglial cells. Immunohistochemical results showed that the EtOAc extract significantly decreased the number of Iba-1-positive cells in the hippocampal region of LPS-treated mouse brains. The major effective constituent of the EtOAc extract, okanin, was further investigated. Okanin significantly suppressed LPS-induced iNOS expression and also inhibited IL-6 and TNF-α production and mRNA expression in LPS-stimulated BV-2 cells. Western blot analysis indicated that okanin suppressed LPS-induced activation of the NF-κB signaling pathway by inhibiting the phosphorylation of IκBα and decreasing the level of nuclear NF-κB p65 after LPS treatment. Immunofluorescence staining results showed that okanin inhibited the translocation of the NF-κB p65 subunit from the cytosol to the nucleus. Moreover, okanin significantly inhibited LPS-induced TLR4 expression in BV-2 cells. In summary, okanin attenuates LPS-induced activation of microglia. This effect may be associated with its capacity to inhibit the TLR4/NF-κB signaling pathways. These results suggest that okanin may have potential as a nutritional preventive strategy for neurodegenerative disorders.

  16. Evaluation of alpha- amylase inhibition by Urtica dioica and Juglans regia extracts

    PubMed Central

    Rahimzadeh, Mahsa; Jahanshahi, Samaneh; Moein, Soheila; Moein, Mahmood Reza

    2014-01-01

    Objective(s): One strategy for the treatment of diabetes is inhibition of pancreatic α- amylase. Plants contains different chemical constituents with potential for inhibition of α-amylase and hence maybe used as therapeutic. Materials and Methods: Urtica dioica and Juglans regia Linn were tested for α-amylase inhibition. Different concentrations of leaf aqueous extracts were incubated with enzyme substrate solution and the activity of enzyme was measured. For determination of the type of inhibition, Dixon plot was depicted. Acarbose was used as the standard inhibitor. Results: Both plant extracts showed time and concentration dependent inhibition of α-amylase. 60% inhibition was seen with 2 mg/ml of U. dioica and 0.4 mg/ml of J. regia aqueous extract. Dixon plots revealed the type of α-amylase inhibition by these two extracts as competitive inhibition. Conclusion: Determination of the type of α-amylase inhibition by these plant extracts could provide by successful use of plant chemicals as drug targets. PMID:25140210

  17. Anticonvulsant Activity of Hydroalcoholic Extract of Citrullus colocynthis Fruit: Involvement of Benzodiazepine and Opioid Receptors.

    PubMed

    Mehrzadi, Saeed; Shojaii, Asie; Pur, Sogol Attari; Motevalian, Manijeh

    2016-10-01

    This study investigated the anticonvulsant activity of Citrullus colocynthis fruit extract used traditionally in the treatment of convulsion. Albino mice were pretreated with extract in different doses (10, 25, 50, and 100 mg/kg), prior to injection of pentylenetetrazole. Animals received pretreatments with naloxone and flumazenil to further clarify the mechanisms of anticonvulsant action. The total flavonoid content of Citrullus colocynthis extract was also determined. Citrullus colocynthis hydroalcoholic extract with doses 25 and 50 mg/kg prolonged the onset of seizures and decreased the duration compared with control group. Pretreatment by flumazenil could inhibit the effect of Citrullus colocynthis on latency of seizure to some extent and administration of naloxone significantly inhibited changes in latency and duration of seizure produced by Citrullus colocynthis This study showed that Citrullus colocynthis has significant anticonvulsant effect in pentylenetetrazole-induced seizures in mice, and these effects may be related to its effect on γ-aminobutyric acid-ergic and opioid systems. These results confirmed the traditional use of Citrullus colocynthis in Iranian traditional medicine. © The Author(s) 2015.

  18. In vitro biological screening of the anticholinesterase and antiproliferative activities of medicinal plants belonging to Annonaceae

    PubMed Central

    Formagio, A.S.N.; Vieira, M.C.; Volobuff, C.R.F.; Silva, M.S.; Matos, A.I.; Cardoso, C.A.L.; Foglio, M.A.; Carvalho, J.E.

    2015-01-01

    The aim of this research was to investigate the antiproliferative and anticholinesterase activities of 11 extracts from 5 Annonaceae species in vitro. Antiproliferative activity was assessed using 10 human cancer cell lines. Thin-layer chromatography and a microplate assay were used to screen the extracts for acetylcholinesterase (AchE) inhibitors using Ellman's reagent. The chemical compositions of the active extracts were investigated using high performance liquid chromatography. Eleven extracts obtained from five Annonaceae plant species were active and were particularly effective against the UA251, NCI-470 lung, HT-29, NCI/ADR, and K-562 cell lines with growth inhibition (GI50) values of 0.04-0.06, 0.02-0.50, 0.01-0.12, 0.10-0.27, and 0.02-0.04 µg/mL, respectively. In addition, the Annona crassiflora and A. coriacea seed extracts were the most active among the tested extracts and the most effective against the tumor cell lines, with GI50 values below 8.90 µg/mL. The A. cacans extract displayed the lowest activity. Based on the microplate assay, the percent AchE inhibition of the extracts ranged from 12 to 52%, and the A. coriacea seed extract resulted in the greatest inhibition (52%). Caffeic acid, sinapic acid, and rutin were present at higher concentrations in the A. crassiflora seed samples. The A. coriacea seeds contained ferulic and sinapic acid. Overall, the results indicated that A. crassiflora and A. coriacea extracts have antiproliferative and anticholinesterase properties, which opens up new possibilities for alternative pharmacotherapy drugs. PMID:25714885

  19. In vitro biological screening of the anticholinesterase and antiproliferative activities of medicinal plants belonging to Annonaceae.

    PubMed

    Formagio, A S N; Vieira, M C; Volobuff, C R F; Silva, M S; Matos, A I; Cardoso, C A L; Foglio, M A; Carvalho, J E

    2015-04-01

    The aim of this research was to investigate the antiproliferative and anticholinesterase activities of 11 extracts from 5 Annonaceae species in vitro. Antiproliferative activity was assessed using 10 human cancer cell lines. Thin-layer chromatography and a microplate assay were used to screen the extracts for acetylcholinesterase (AchE) inhibitors using Ellman's reagent. The chemical compositions of the active extracts were investigated using high performance liquid chromatography. Eleven extracts obtained from five Annonaceae plant species were active and were particularly effective against the UA251, NCI-470 lung, HT-29, NCI/ADR, and K-562 cell lines with growth inhibition (GI50) values of 0.04-0.06, 0.02-0.50, 0.01-0.12, 0.10-0.27, and 0.02-0.04 µg/mL, respectively. In addition, the Annona crassiflora and A. coriacea seed extracts were the most active among the tested extracts and the most effective against the tumor cell lines, with GI50 values below 8.90 µg/mL. The A. cacans extract displayed the lowest activity. Based on the microplate assay, the percent AchE inhibition of the extracts ranged from 12 to 52%, and the A. coriacea seed extract resulted in the greatest inhibition (52%). Caffeic acid, sinapic acid, and rutin were present at higher concentrations in the A. crassiflora seed samples. The A. coriacea seeds contained ferulic and sinapic acid. Overall, the results indicated that A. crassiflora and A. coriacea extracts have antiproliferative and anticholinesterase properties, which opens up new possibilities for alternative pharmacotherapy drugs.

  20. Proanthocyanidin-rich Pinus radiata bark extract inhibits mast cell-mediated anaphylaxis-like reactions.

    PubMed

    Choi, Yun Ho; Song, Chang Ho; Mun, Sung Phil

    2018-02-01

    Mast cells play a critical role in the effector phase of immediate hypersensitivity and allergic reactions. Pinus radiata bark extract exerts multiple biological effects and exhibits immunomodulatory and antioxidant properties. However, its role in mast cell-mediated anaphylactic reactions has not been thoroughly investigated. In this study, we examined the effects of proanthocyanidin-rich water extract (PAWE) isolated from P. radiata bark on compound 48/80-induced or antidinitrophenyl (DNP) immunoglobulin E (IgE)-mediated anaphylaxis-like reactions in vivo. In addition, we evaluated the mechanism underlying the inhibitory effect of PAWE on mast cell activation, with a specific focus on histamine release, using rat peritoneal mast cells. PAWE attenuated compound 48/80-induced or anti-DNP IgE-mediated passive cutaneous anaphylaxis-like reactions in mice, and it inhibited histamine release triggered by compound 48/80, ionophore A23187, or anti-DNP IgE in rat peritoneal mast cells in vitro. Moreover, PAWE suppressed compound 48/80-elicited calcium uptake in a concentration-dependent manner and promoted a transient increase in intracellular cyclic adenosine-3',5'-monophosphate levels. Together, these results suggest that proanthocyanidin-rich P. radiata bark extract effectively inhibits anaphylaxis-like reactions. Copyright © 2017 John Wiley & Sons, Ltd.

  1. ACE inhibition and antioxidant activity of different part of Channa striata prepared by various cooking method

    NASA Astrophysics Data System (ADS)

    Chasanah, E.; Budiari, S.; Thenawijaya, M.; Palupi, N. S.

    2018-03-01

    Channa striata (snakehead) extract has been known possessing positive activity, one of which is the ability to inhibit Angiotensin Converting Enzyme (ACE) activity in vitro. Aims of this study were to determine the effect of cooking and parts of C. striata, i.e. meat/fillet, gonad, skin, gill against the ACE inhibition activity and antioxidant activity in vitro. Heat processing methods used were direct boiling and indirect boiling and steamed at 100 °C for 10 min. ACE inhibition activity was analyzed using hippuryl-L-histidyl-L-leucine (HHL) as substrate and antioxidant activity was analyzed using DPPH method. The result shows that the higher the concentration of the extract (5 %, 20 %, 35 % and 50 %), the higher the antioxidant activity. The highest antioxidant activity was shown by gonad followed by meat extract, skin, and gill. Cooking treatment affected antioxidant activity, being the detrimental treatment were steam and direct boiling. The egg/gonad of C. striata showed the highest capability to inhibit ACE activity followed by meat/fillet, gill and skin. In concentration of 10 mg, extract of C. striata gonad was comparable to captopril, a commercial hypertension drug. While uncooked fillet showed the highest ACE inhibition activity followed by indirect boiling, direct boiling and steaming.

  2. Effect of aqueous extracts of Mentha arvensis (mint) and Piper betle (betel) on growth and citrinin production from toxigenic Penicillium citrinum.

    PubMed

    Panda, Pragyanshree; Aiko, Visenuo; Mehta, Alka

    2015-06-01

    Due to growing concern of consumers about chemical residues in food products, the demand for safe and natural food is increasing greatly. The use of natural additives such as spices and herbal oil as seasoning agents for their antimicrobial activity has been extensively investigated. This paper discusses the efficacy of the aqueous extract of mint (Mentha arvensis) and betel (Piper betle) on the mycelial growth and citrinin production of Penicillium citrinum. The present investigation revealed that mint extract inhibited citrinin production up to 73 % without inhibiting the mycelium growth. The citrinin production decreased with increase in the concentration of mint extract as observed from the data obtained from High pressure liquid chromatography. The samples also showed reduced cytotoxicity on HeLa cells. On the other hand betel extract resulted in stimulatory effect on citrinin production and mycelial growth. The study showed that mint extract has the potential to be used safely for restraining citrinin contamination.

  3. In vitro evaluation of Bacopa monniera extract and individual constituents on human recombinant monoamine oxidase enzymes.

    PubMed

    Singh, Rajbir; Ramakrishna, Rachumallu; Bhateria, Manisha; Bhatta, Rabi Sankar

    2014-09-01

    Bacopa monniera is a traditional Ayurvedic medicinal plant that has been used worldwide for its nootropic action. Chemically standardized extract of B. monniera is now available as over the counter herbal remedy to enhance memory in children and adults. Considering the nootropic action of B. monniera, we evaluated the effect of clinically available B. monniera extract and six of B. monniera constituents (bacoside A3, bacopaside I, bacopaside II, bacosaponin C, bacosine, and bacoside A mixture) on recombinant human monoamine oxidase (MAO) enzymes. The effect of B. monniera extract and individual constituents on human recombinant MAO-A and MAO-B enzymes was evaluated using MAO-Glo(TM) assay kit (Promega Corporation, USA), following the instruction manual. IC50 and mode of inhibition were measured for MAO enzymes. Bacopaside I and bacoside A mixture inhibited the MAO-A and MAO-B enzymes. Bacopaside I exhibited mixed mode of inhibition with IC50 and Ki values of 17.08 ± 1.64 and 42.5 ± 3.53 µg/mL, respectively, for MAO-A enzyme. Bacopaside I is the major constituent of B. monniera, which inhibited the MAO-A enzyme selectively. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Isolation and structure elucidation of avocado seed (Persea americana) lipid derivatives that inhibit Clostridium sporogenes endospore germination.

    PubMed

    Rodríguez-Sánchez, Dariana Graciela; Pacheco, Adriana; García-Cruz, María Isabel; Gutiérrez-Uribe, Janet Alejandra; Benavides-Lozano, Jorge Alejandro; Hernández-Brenes, Carmen

    2013-07-31

    Avocado fruit extracts are known to exhibit antimicrobial properties. However, the effects on bacterial endospores and the identity of antimicrobial compounds have not been fully elucidated. In this study, avocado seed extracts were tested against Clostridium sporogenes vegetative cells and active endospores. Bioassay-guided purification of a crude extract based on inhibitory properties linked antimicrobial action to six lipid derivatives from the family of acetogenin compounds. Two new structures and four compounds known to exist in nature were identified as responsible for the activity. Structurally, most potent molecules shared features of an acetyl moiety and a trans-enone group. All extracts produced inhibition zones on vegetative cells and active endospores. Minimum inhibitory concentrations (MIC) of isolated molecules ranged from 7.8 to 15.6 μg/mL, and bactericidal effects were observed for an enriched fraction at 19.5 μg/mL. Identified molecules showed potential as natural alternatives to additives and antibiotics used by the food and pharmaceutical industries to inhibit Gram-positive spore-forming bacteria.

  5. Anti-Inflammatory Activity and Composition of Senecio salignus Kunth

    PubMed Central

    Pérez González, Cuauhtemoc; Serrano Vega, Roberto; González-Chávez, Marco; Zavala Sánchez, Miguel Angel; Pérez Gutiérrez, Salud

    2013-01-01

    We investigated the anti-inflammatory activity of Senecio salignus. This medicinal plant is often used in Mexico for the treatment of fever and rheumatism. Chloroform and methanol extracts of the plant were tested on 12-O-tetradecanoylphorbol-13-acetate- (TPA-) induced edema in mice ears. The methanol extract of the plant inhibited edema by 36 ± 4.4% compared with the control, while the chloroform extract exhibited an even greater level of inhibition (64.1%). The chloroform extract was then fractionated, and the composition of the active fraction was determined by GC-MS. The anti-inflammatory activity of this fraction was then tested on TPA-induced ear edema in mice, and we found that the active fraction could inhibit edema by 46.9%. The anti-inflammatory effect of the fraction was also tested on carrageenan-induced paw edema in rats at doses of 100 mg/kg; a 58.9 ± 2.8% reduction of the edema was observed 4 h after administration of carrageenan, and the effect was maintained for 5 h. PMID:23691512

  6. The preservation of substance p by lysergic acid diethylamide

    PubMed Central

    Krivoy, W. A.

    1957-01-01

    Lysergic acid diethylamide (LSD) potentiated the response of guinea-pig ileum to substance P but not to histamine. It also inhibited the disappearance of substance P when incubated with guinea-pig brain extract but not when incubated with chymotrypsin. Eserine, morphine, mescaline, chlorpromazine, ergometrine, strychnine and 2 bromo-LSD did not have this effect. Oxytocin was not destroyed by brain extract. The inhibition of the destruction of substance P by LSD could be antagonized by 2 bromo-LSD. This effect of LSD may have some relation to its pharmacological actions. PMID:13460245

  7. The preservation of substance P by lysergic acid diethylamide.

    PubMed

    KRIVOY, W A

    1957-09-01

    Lysergic acid diethylamide (LSD) potentiated the response of guinea-pig ileum to substance P but not to histamine. It also inhibited the disappearance of substance P when incubated with guinea-pig brain extract but not when incubated with chymotrypsin. Eserine, morphine, mescaline, chlorpromazine, ergometrine, strychnine and 2 bromo-LSD did not have this effect. Oxytocin was not destroyed by brain extract. The inhibition of the destruction of substance P by LSD could be antagonized by 2 bromo-LSD. This effect of LSD may have some relation to its pharmacological actions.

  8. Inhibitory effect of red koji extracts on mushroom tyrosinase.

    PubMed

    Wu, Li-Chen; Chen, Yun-Chen; Ho, Ja-An Annie; Yang, Chung-Shi

    2003-07-16

    Red koji has been recognized as a cholesterol-lowering diet supplement because of it contains fungi metabolites, monacolins, which reduce cholesterol synthesis by inhibiting HMG-CoA reductase. In this study, water extracts of red koji were loaded onto a C(18) cartridge, and the acetonitrile eluate was collected as test fraction. Red koji water extracts and its C(18) cartridge acetonitrile eluent had total phenols concentrations of 5.57 and 1.89 mg/g of red koji and condensed tannins concentrations of 2.71 and 1.20 mg/g of red koji, respectively. Both exhibited an antioxidant activity and an inhibitory activity to mushroom tyrosinase. The higher antioxidant activity of the red koji acetonitrile eluent was due to the existence of a high percentage of condensed tannins. The results from the kinetic study for inhibition of mushroom tyrosinase by red koji extracts showed that the compounds in the extracts competitively inhibited the oxidation of tyrosine catalyzed by mushroom tyrosinase with an ID(50) of 5.57 mg/mL.

  9. A Novel Role of Eruca sativa Mill. (Rocket) Extract: Antiplatelet (NF-κB Inhibition) and Antithrombotic Activities

    PubMed Central

    Fuentes, Eduardo; Alarcón, Marcelo; Fuentes, Manuel; Carrasco, Gilda; Palomo, Iván

    2014-01-01

    Background: Epidemiological studies have shown the prevention of cardiovascular diseases through the regular consumption of vegetables. Eruca sativa Mill., commonly known as rocket, is a leafy vegetable that has anti-inflammatory activity. However, its antiplatelet and antithrombotic activities have not been described. Methods: Eruca sativa Mill. aqueous extract (0.1 to 1 mg/mL), was evaluated on human platelets: (i) P-selectin expression by flow cytometry; (ii) platelet aggregation induced by ADP, collagen and arachidonic acid; (iii) IL-1β, TGF-β1, CCL5 and thromboxane B2 release; and (iv) activation of NF-κB and PKA by western blot. Furthermore, (v) antithrombotic activity (200 mg/kg) and (vi) bleeding time in murine models were evaluated. Results: Eruca sativa Mill. aqueous extract (0.1 to 1 mg/mL) inhibited P-selectin expression and platelet aggregation induced by ADP. The release of platelet inflammatory mediators (IL-1β, TGF-β1, CCL5 and thromboxane B2) induced by ADP was inhibited by Eruca sativa Mill. aqueous extract. Furthermore, Eruca sativa Mill. aqueous extract inhibited NF-κB activation. Finally, in murine models, Eruca sativa Mill. aqueous extract showed significant antithrombotic activity and a slight effect on bleeding time. Conclusion: Eruca sativa Mill. presents antiplatelet and antithrombotic activity. PMID:25514563

  10. Inhibitory effect of marine green algal extracts on germination of Lactuca sativa seeds.

    PubMed

    Choi, Jae-Suk; Choi, In Soon

    2016-03-01

    The allelopathic potential of nine green seaweed species was examined based on germination and seedling growth of lettuce (Lactuca sativa L.). Out of nine methanol extracts, Capsosiphon fulvescens and Monostroma nitidum extracts completely inhibited germination of L. sativa at 4 mg/filter paper after 24 hr of treatment. Water extracts of these seaweeds generally showed low anti-germination activities than methanol extracts. Of the nine water extracts, Enteromorpha linza extract completely inhibited L. sativa germination at 16 mg/filter paper after 24 hrs. To identify the primary active compounds, C. fulvescens. powder was successively fractionated according to polarity, and the main active agents against L. sativa were determined to be lipids (0.0% germination at 0.5 mg of lipids/paper disc). According to these results, extracts of C. fulvescens can be used to develop natural herbicidal agents and manage terrestrial weeds.

  11. Effect of aqueous and alcoholic Stevia (Stevia rebaudiana) extracts against Streptococcus mutans and Lactobacillus acidophilus in comparison to chlorhexidine: An in vitro study

    PubMed Central

    Ajagannanavar, Sunil Lingaraj; Shamarao, Supreetha; Battur, Hemant; Tikare, Shreyas; Al-Kheraif, Abdulaziz Abdullah; Al Sayed, Mohammed Sayed Al Esawy

    2014-01-01

    Introduction: Stevia (S. rebaudiana) a herb which has medicinal value and was used in ancient times as a remedy for a great diversity of ailments and sweetener. Leaves of Stevia contain a high concentration of Stevioside and Rebaudioside which are supposed to be sweetening agents. Aim: To compare the efficacy of aqueous and alcoholic S. rebaudiana extract against Streptococcus mutans and Lactobacillus acidophilus in comparison to chlorhexidine. Materials and Methods: In the first part of the study, various concentrations of aqueous and ethanolic Stevia extract were prepared in the laboratory of Pharmacy College. It was then subjected to microbiological assay to determine its zone of inhibition using Agar disk diffusion test and minimum inhibitory concentration (MIC) using serial broth dilution method against Streptococcus mutans and Lactobacillus acidophilus. Chlorhexidine was used as a positive control. One way Analysis of Variance (ANOVA) test was used for multiple group comparisons followed by Tukey post hoc for group wise comparisons. Results: Minimum inhibitory concentration (MIC) of aqueous and ethnolic Stevia extract against Streptococcus mutans and Lactobacillus acidophilus were 25% and 12.5% respectively. Mean zone of inhibition of the aqueous and alcoholic Stevia extracts against Streptococcus mutans at 48 hours were 22.8 mm and 26.7 mm respectively. Mean zone of inhibition of the aqueous and alcoholic Stevia extracts against Lactobacillus acidophilus at 48 hours were 14.4 mm and 15.1 mm respectively. Mean zone of inhibition of the chlorhexidine against Streptococcus mutans and Lactobacillus acidophilus at 48 hours was 20.5 and 13.2 respectively. Conclusion: The inhibitory effect shown by alcoholic Stevia extract against Streptococcus mutans and Lactobacillus acidophilus was superior when compared with that of aqueous form and was inferior when compared with Chlorhexidine. PMID:25558451

  12. Antimicrobial activity of wild mushroom extracts against clinical isolates resistant to different antibiotics.

    PubMed

    Alves, M J; Ferreira, I C F R; Martins, A; Pintado, M

    2012-08-01

    This work aimed to screen the antimicrobial activity of aqueous methanolic extracts of 13 mushroom species, collected in Bragança, against several clinical isolates obtained in Hospital Center of Trás-os-Montes and Alto Douro, Portugal. Microdilution method was used to determine the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC). MIC results showed that Russula delica and Fistulina hepatica extracts inhibited the growth of gram-negative (Escherichia coli, Morganella morganni and Pasteurella multocida) and gram-positive (Staphylococcus aureus, MRSA, Enterococcus faecalis, Listeria monocytogenes, Streptococcus agalactiae and Streptococcus pyogenes) bacteria. A bactericide effect of both extracts was observed in Past. multocida, Strep. agalactiae and Strep. pyogenes with MBC of 20, 10 and 5 mg ml⁻¹, respectively. Lepista nuda extract exhibited a bactericide effect upon Past. multocida at 5 mg ml⁻¹ and inhibited Proteus mirabilis at 20 mg ml⁻¹. Ramaria botrytis extract showed activity against Enterococcus faecalis and L. monocytogenes, being bactericide for Past. multocida, Strep. agalactiae (MBCs 20 mg ml⁻¹) and Strep. pyogenes (MBC 10 mg ml⁻¹). Leucopaxillus giganteus extract inhibited the growth of E. coli and Pr. mirabilis, being bactericide for Past. multocida, Strep. pyogenes and Strep. agalactiae. Fistulina hepatica, R. botrytis and R. delica are the most promising species as antimicrobial agents. Mushroom extracts could be an alternative as antimicrobials against pathogenic micro-organisms resistant to conventional treatments. © 2012The Authors Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  13. The gastroprotective effects of Eugenia dysenterica (Myrtaceae) leaf extract: the possible role of condensed tannins.

    PubMed

    Prado, Ligia Carolina da Silva; Silva, Denise Brentan; de Oliveira-Silva, Grasielle Lopes; Hiraki, Karen Renata Nakamura; Canabrava, Hudson Armando Nunes; Bispo-da-Silva, Luiz Borges

    2014-01-01

    We applied a taxonomic approach to select the Eugenia dysenterica (Myrtaceae) leaf extract, known in Brazil as "cagaita," and evaluated its gastroprotective effect. The ability of the extract or carbenoxolone to protect the gastric mucosa from ethanol/HCl-induced lesions was evaluated in mice. The contributions of nitric oxide (NO), endogenous sulfhydryl (SH) groups and alterations in HCl production to the extract's gastroprotective effect were investigated. We also determined the antioxidant activity of the extract and the possible contribution of tannins to the cytoprotective effect. The extract and carbenoxolone protected the gastric mucosa from ethanol/HCl-induced ulcers, and the former also decreased HCl production. The blockage of SH groups but not the inhibition of NO synthesis abolished the gastroprotective action of the extract. Tannins are present in the extract, which was analyzed by matrix assisted laser desorption/ionization (MALDI); the tannins identified by fragmentation pattern (MS/MS) were condensed type-B, coupled up to eleven flavan-3-ol units and were predominantly procyanidin and prodelphinidin units. Partial removal of tannins from the extract abolished the cytoprotective actions of the extract. The extract exhibits free-radical-scavenging activity in vitro, and the extract/FeCl3 sequence stained gastric surface epithelial cells dark-gray. Therefore, E. dysenterica leaf extract has gastroprotective effects that appear to be linked to the inhibition of HCl production, the antioxidant activity and the endogenous SH-containing compounds. These pleiotropic actions appear to be dependent on the condensed tannins contained in the extract, which bind to mucins in the gastric mucosa forming a protective coating against damaging agents. Our study highlights the biopharmaceutical potential of E. dysenterica.

  14. Inhibition of Cytochrome P450 (CYP3A4) Activity by Extracts from 57 Plants Used in Traditional Chinese Medicine (TCM)

    PubMed Central

    Ashour, Mohamed L; Youssef, Fadia S; Gad, Haidy A; Wink, Michael

    2017-01-01

    Background: Herbal medicine is widely used all over the world for treating various health disorders. It is employed either alone or in combination with synthetic drugs or plants to be more effective. Objective: The assessment of the effect of both water and methanol extracts of 57 widely used plants from Traditional Chinese Medicine (TCM) against the main phase I metabolizing enzyme CYP3A4 in vitro for the first time. Materials and Methods: The inhibition of cytochrome P450 activity was evaluated using a luminescence assay. The principal component analysis (PCA) was used to correlate the inhibitory activity with the main secondary metabolites present in the plant extracts. Molecular modeling studies on CYP3A4 (PDB ID 4NY4) were carried out with 38 major compounds present in the most active plant extracts to validate the observed inhibitory effect. Results: Aqueous extracts of Acacia catechu, Andrographis paniculata, Arctium lappa, Areca catechu, Bupleurum marginatum, Chrysanthemum indicum, Dysosma versipellis, and Spatholobus suberectus inhibited CYP3A4 is more than 85% (at a dose of 100 μg/mL). The corresponding methanol extracts of A. catechu, A. paniculata, A. catechu, Mahonia bealei, and Sanguisorba officinalis inhibited the enzyme by more than 50%. Molecular modeling studies revealed that two polyphenols, namely hesperidin and rutin, revealed the highest fitting scores in the active sites of the CYP3A4 with binding energies equal to -74.09 and -71.34 kcal/mol, respectively. Conclusion: These results provide evidence that many TCM plants can inhibit CYP3A4, which might cause a potential interference with the metabolism of other concomitantly administered herbs or drugs. SUMMARY In this study, the inhibitory activity of the aqueous and methanol extracts of 57 widely used plants from Traditional Chinese Medicine (TCM) against the main phase I metabolizing enzyme CYP3A4 was tested in vitro for the first time.Aqueous extracts of Acacia catechu, Andrographis paniculata, Arctium lappa, Areca catechu, Bupleurum marginatum, Dysosma versipellis, and Spatholobus suberectus inhibited CYP3A4 by more than 85% (at a dose of 100 μg/mL).The activity could be attributed to the presence of polyphenolics as revealed from the multivariate chemometric analysis and molecular modeling study.These results provide evidence that many TCM plants can inhibit CYP3A4, which might cause a potential interference with the metabolism of other concomitantly administered herbs or drugs. Abbreviation used: CHARMm: Chemistry at HARvard Macromolecular Mechanics, CYP: Cytochrome P450, DMSO: Dimethyl Sulfoxide, PCA: Principal Component Analysis, PDB: Protein Data Bank, TCM: Traditional Chinese Medicine PMID:28539725

  15. ENVIRONMENTALLY BENIGN MITIGATION OF MICROBIOLOGICALLY INFLUENCED CORROSION (MIC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John J. Kilbane II; William Bogan

    2004-01-31

    The overall program objective is to develop and evaluate environmentally benign agents or products that are effective in the prevention, inhibition, and mitigation of microbially influenced corrosion (MIC) in the internal surfaces of metallic natural gas pipelines. The goal is to develop one or more environmentally benign (a.k.a. ''green'') products that can be applied to maintain the structure and dependability of the natural gas infrastructure. The technical approach for this quarter included the fractionation of extracts prepared from several varieties of pepper plants, and using several solvents, by high performance liquid chromatography (HPLC). A preliminary determination of antimicrobial activities ofmore » the new extracts and fractions using a growth inhibition assay, and evaluation of the extracts ability to inhibit biofilm formation was also performed. The analysis of multiple extracts of pepper plants and fractions of extracts of pepper plants obtained by HPLC illustrated that these extracts and fractions are extremely complex mixtures of chemicals. Gas chromatography-mass spectrometry was used to identify the chemical constituents of these extracts and fractions to the greatest degree possible. Analysis of the chemical composition of various extracts of pepper plants has illustrated the complexity of the chemical mixtures present, and while additional work will be performed to further characterize the extracts to identify bioactive compounds the focus of efforts should now shift to an evaluation of the ability of extracts to inhibit corrosion in mixed culture biofilms, and in pure cultures of bacterial types which are known or believed to be important in corrosion.« less

  16. Potential hepatoprotective effects of new Cuban natural products in rat hepatocytes culture.

    PubMed

    Rodeiro, I; Donato, M T; Martínez, I; Hernández, I; Garrido, G; González-Lavaut, J A; Menéndez, R; Laguna, A; Castell, J V; Gómez-Lechón, M J

    2008-08-01

    The protective effects of five Cuban natural products (Mangifera indica L. (MSBE), Erythroxylum minutifolium, Erythroxylum confusum, Thalassia testudinum and Dictyota pinnatifida extracts and mangiferin) on the oxidative damage induced by model toxicants in rat hepatocyte cultures were studied. Cells were pre-incubated with the natural products (5-200 microg/mL) for 24 h. Then hepatotoxins (tert-butyl hydroperoxide, ethanol, carbon tetrachloride and lipopolysaccharide) were individually added and post-incubated for another 24 h. After treatments, cell viability was determined using the MTT assay. Mangiferin and MSBE exhibited the highest cytoprotective potential (EC50 between 50 and 125 microg/mL), followed by T. testudinum and Erythroxylum extracts, whereas no significant protective effects was produced by Dictyota extract treatment. Antioxidant properties of the natural products against lipid peroxidation and GSH depletion induced by tert-butyl hydroperoxide were then investigated. The results show that at 36 h pre-treatment of cells with mangiferin or MSBE, concentrations of T. testudinum and Erythroxylum extracts ranging from 25 to 100 microg/mL significantly inhibited lipid peroxidation induced by tert-butyl hydroperoxide (100 and 250 microM) and increased the GSH levels reduced by the toxicant. D. pinnatifida inhibited lipid peroxidation, but did not preserve GSH levels. In conclusion, MSBE, E. minutifolium, E. confusum and T. testudinum extracts and mangiferin showed hepatoprotective activity against induced damage in all the experimental series, where mangiferin and the extracts of MSBE and T. testudinum were the best candidates to inhibit "in vitro" damage to rat hepatocytes. This hepatoprotective effect found could be associated with the antioxidant properties observed for the products.

  17. Evaluation of in vitro antidiabetic and antioxidant characterizations of Elettaria cardamomum (L.) Maton (Zingiberaceae), Piper cubeba L. f. (Piperaceae), and Plumeria rubra L. (Apocynaceae).

    PubMed

    Ahmed, Afnan Sh; Ahmed, Qamaruddin; Saxena, Anil Kumar; Jamal, Parveen

    2017-01-01

    Inhibition of intestinal α-amylase and α-glucosidase is an important strategy to regulate diabetes mellitus (DM). Antioxidants from plants are widely regarded in the prevention of diabetes. Fruits of Elettaria cardamomum (L.) Maton (Zingiberaceae) and Piper cubeba L. f. (Piperaceae) and flowers of Plumeria rubra L. (Apocynaceae) are traditionally used to cure DM in different countries. However, the role of these plants has been grossly under reported and is yet to receive proper scientific evaluation with respect to understand their traditional role in the management of diabetes especially as digestive enzymes inhibitors. Hence, methanol and aqueous extracts of the aforementioned plants were evaluated for their in vitro α-glucosidase and α-amylase inhibition at 1 mg/mL and quantification of their antioxidant properties (DPPH, FRAP tests, total phenolic and total flavonoids contents). In vitro optimization studies for the extracts were also performed to enhance in vitro biological activities. The % inhibition of α-glucosidase by the aqueous extracts of the fruits of E. cardamomum, P. cubeba and flowers of P. rubra were 10.41 (0.03), 95.19 (0.01), and -2.92 (0.03), while the methanol extracts exhibited % inhibition 13.73 (0.02), 92.77 (0.01), and -0.98 (0.01), respectively. The % inhibition of α-amylase by the aqueous extracts were 82.99 (0.01), 64.35 (0.01), and 20.28 (0.02), while the methanol extracts displayed % inhibition 39.93 (0.01), 31.06 (0.02), and 39.40 (0.01), respectively. Aqueous extracts displayed good in vitro antidiabetic and antioxidant activities. Moreover, in vitro optimization experiments helped to increase the α-glucosidase inhibitory activity of E. cardamomum. Our findings further justify the traditional claims of these plants as folk medicines to manage diabetes, however, through digestive enzymes inhibition effect.

  18. In Vitro Lipophilic Antioxidant Capacity, Antidiabetic and Antibacterial Activity of Citrus Fruits Extracts from Aceh, Indonesia

    PubMed Central

    Ernawita; Wahyuono, Ruri Agung; Hesse, Jana; Hipler, Uta-Christina; Elsner, Peter; Böhm, Volker

    2017-01-01

    This study reports in vitro lipophilic antioxidant, inhibition of α-amylase and antibacterial activities of extracts of peel and pulp of citrus samples from Aceh, Indonesia. HPLC (high-performance liquid chromatography), phytochemical, and FTIR (fourier transform infrared) analysis detected carotenoids, flavonoids, phenolic acids and terpenoids, contributing to the biological potencies. Most peel and pulp extracts contained lutein and lower concentrations of zeaxanthin, α-carotene, β-carotene and β-cryptoxanthin. The extracts also contained flavanone glycosides (hesperidin, naringin and neohesperidin), flavonol (quercetin) and polymethoxylated flavones (sinensetin, tangeretin). L-TEAC (lipophilic trolox equivalent antioxidant capacity) test determined for peel extracts higher antioxidant capacity compared to pulp extracts. All extracts presented α-amylase inhibitory activity, pulp extracts showing stronger inhibitory activity compared to peel extracts. All extracts inhibited the growth of both gram (+) and gram (−) bacteria, with peel and pulp extracts of makin showing the strongest inhibitory activity. Therefore, local citrus species from Aceh are potential sources of beneficial compounds with possible health preventive effects. PMID:28165379

  19. In Vitro Lipophilic Antioxidant Capacity, Antidiabetic and Antibacterial Activity of Citrus Fruits Extracts from Aceh, Indonesia.

    PubMed

    Ernawita; Wahyuono, Ruri Agung; Hesse, Jana; Hipler, Uta-Christina; Elsner, Peter; Böhm, Volker

    2017-02-03

    This study reports in vitro lipophilic antioxidant, inhibition of α-amylase and antibacterial activities of extracts of peel and pulp of citrus samples from Aceh, Indonesia. HPLC (high-performance liquid chromatography), phytochemical, and FTIR (fourier transform infrared) analysis detected carotenoids, flavonoids, phenolic acids and terpenoids, contributing to the biological potencies. Most peel and pulp extracts contained lutein and lower concentrations of zeaxanthin, α-carotene, β-carotene and β-cryptoxanthin. The extracts also contained flavanone glycosides (hesperidin, naringin and neohesperidin), flavonol (quercetin) and polymethoxylated flavones (sinensetin, tangeretin). L-TEAC (lipophilic trolox equivalent antioxidant capacity) test determined for peel extracts higher antioxidant capacity compared to pulp extracts. All extracts presented α-amylase inhibitory activity, pulp extracts showing stronger inhibitory activity compared to peel extracts. All extracts inhibited the growth of both gram (+) and gram (-) bacteria, with peel and pulp extracts of makin showing the strongest inhibitory activity. Therefore, local citrus species from Aceh are potential sources of beneficial compounds with possible health preventive effects.

  20. In vitro inhibitory effects of plant-based foods and their combinations on intestinal α-glucosidase and pancreatic α-amylase

    PubMed Central

    2012-01-01

    Background Plant-based foods have been used in traditional health systems to treat diabetes mellitus. The successful prevention of the onset of diabetes consists in controlling postprandial hyperglycemia by the inhibition of α-glucosidase and pancreatic α-amylase activities, resulting in aggressive delay of carbohydrate digestion to absorbable monosaccharide. In this study, five plant-based foods were investigated for intestinal α-glucosidase and pancreatic α-amylase. The combined inhibitory effects of plant-based foods were also evaluated. Preliminary phytochemical analysis of plant-based foods was performed in order to determine the total phenolic and flavonoid content. Methods The dried plants of Hibiscus sabdariffa (Roselle), Chrysanthemum indicum (chrysanthemum), Morus alba (mulberry), Aegle marmelos (bael), and Clitoria ternatea (butterfly pea) were extracted with distilled water and dried using spray drying process. The dried extracts were determined for the total phenolic and flavonoid content by using Folin-Ciocateu’s reagent and AlCl3 assay, respectively. The dried extract of plant-based food was further quantified with respect to intestinal α-glucosidase (maltase and sucrase) inhibition and pancreatic α-amylase inhibition by glucose oxidase method and dinitrosalicylic (DNS) reagent, respectively. Results The phytochemical analysis revealed that the total phenolic content of the dried extracts were in the range of 230.3-460.0 mg gallic acid equivalent/g dried extract. The dried extracts contained flavonoid in the range of 50.3-114.8 mg quercetin equivalent/g dried extract. It was noted that the IC50 values of chrysanthemum, mulberry and butterfly pea extracts were 4.24±0.12 mg/ml, 0.59±0.06 mg/ml, and 3.15±0.19 mg/ml, respectively. In addition, the IC50 values of chrysanthemum, mulberry and butterfly pea extracts against intestinal sucrase were 3.85±0.41 mg/ml, 0.94±0.11 mg/ml, and 4.41±0.15 mg/ml, respectively. Furthermore, the IC50 values of roselle and butterfly pea extracts against pancreatic α-amylase occurred at concentration of 3.52±0.15 mg/ml and 4.05±0.32 mg/ml, respectively. Combining roselle, chrysanthemum, and butterfly pea extracts with mulberry extract showed additive interaction on intestinal maltase inhibition. The results also demonstrated that the combination of chrysanthemum, mulberry, or bael extracts together with roselle extract produced synergistic inhibition, whereas roselle extract showed additive inhibition when combined with butterfly pea extract against pancreatic α-amylase. Conclusions The present study presents data from five plant-based foods evaluating the intestinal α-glucosidase and pancreatic α-amylase inhibitory activities and their additive and synergistic interactions. These results could be useful for developing functional foods by combination of plant-based foods for treatment and prevention of diabetes mellitus. PMID:22849553

  1. Spice phenolics inhibit human PMNL 5-lipoxygenase.

    PubMed

    Prasad, N Satya; Raghavendra, R; Lokesh, B R; Naidu, K Akhilender

    2004-06-01

    A wide variety of phenolic compounds and flavonoids present in spices possess potent antioxidant, antimutagenic and anticarcinogenic activities. We examined whether 5-lipoxygenase (5-LO), the key enzyme involved in biosynthesis of leukotrienes is a possible target for the spices. Effect of aqueous extracts of turmeric, cloves, pepper, chili, cinnamon, onion and also their respective active principles viz., curcumin, eugenol, piperine, capsaicin, cinnamaldehyde, quercetin, and allyl sulfide were tested on human PMNL 5-LO activity by spectrophotomeric and HPLC methods. The formation of 5-LO product 5-HETE was significantly inhibited in a concentration-dependent manner with IC(50) values of 0.122-1.44 mg for aqueous extracts of spices and 25-83 microM for active principles, respectively. The order of inhibitory activity was of quercetin>eugenol>curcumin>cinnamaldehyde>piperine>capsaicin>allyl sulfide. Quercetin, eugenol and curcumin with one or more phenolic ring and methoxy groups in their structure showed high inhibitory effect, while the non-phenolic spice principle allyl sulfide showed least inhibitory effect on 5-LO. The inhibitory effect of quercetin, curcumin and eugenol was similar to that of synthetic 5-LO inhibitors-phenidone and NDGA. Moreover, the inhibitory potency of aqueous extracts of spice correlated with the active principles of their respective spices. The synergistic or antagonistic effect of mixtures of spice active principles and spice extracts were investigated and all the combinations of spice active principles/extracts exerted synergistic effect in inhibiting 5-LO activity. These findings clearly suggest that phenolic compounds present in spices might have physiological role in modulating 5-LO pathway.

  2. Anti-influenza virus effect of aqueous extracts from dandelion

    PubMed Central

    2011-01-01

    Background Human influenza is a seasonal disease associated with significant morbidity and mortality. Anti-flu Traditional Chinese Medicine (TCM) has played a significant role in fighting the virus pandemic. In TCM, dandelion is a commonly used ingredient in many therapeutic remedies, either alone or in conjunction with other natural substances. Evidence suggests that dandelion is associated with a variety of pharmacological activities. In this study, we evaluated anti-influenza virus activity of an aqueous extract from dandelion, which was tested for in vitro antiviral activity against influenza virus type A, human A/PR/8/34 and WSN (H1N1). Results Results obstained using antiviral assays, minigenome assay and real-time reverse transcription-PCR analysis showed that 0.625-5 mg/ml of dandelion extracts inhibited infections in Madin-Darby canine kidney (MDCK) cells or Human lung adenocarcinoma cell line (A549) of PR8 or WSN viruses, as well as inhibited polymerase activity and reduced virus nucleoprotein (NP) RNA level. The plant extract did not exhibit any apparent negative effects on cell viability, metabolism or proliferation at the effective dose. This result is consistent with the added advantage of lacking any reported complications of the plant's utility in traditional medicine over several centuries. Conclusion The antiviral activity of dandelion extracts indicates that a component or components of these extracts possess anti-influenza virus properties. Mechanisms of reduction of viral growth in MDCK or A549 cells by dandelion involve inhibition on virus replication. PMID:22168277

  3. Anti-microbial principles of selected remedial plants from Southern India

    PubMed Central

    Tirupathi, Rao G; Suresh, Babu K; Ujwal, Kumar J; Sujana, P; Raoa, A Veerabhadr; Sreedhar, AS

    2011-01-01

    Objective To examine the anti-bacterial activity of leaf extracts of Morus alba L. (Moraceae) and Piper betel L. (Piperaceae), and seed extracts of Bombax ceiba L. (Borabacaceae). Methods We have partially purified plant extracts by solvent extraction method, and evaluated the effect of individual fractions on bacterial growth using Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) bacterial strains. Results Compared with Morus and Bombax fractions, Piper fractions showed significant growth inhibition on all the three types of bacteria studied. The EtOAc-hexane fractions of Piper leaves exhibited significant anti-bacterial activity with minimum inhibitory concentrations (MIC) of 50 µg/mL culture against both gram-positive and gram-negative bacteria. The EtOAc-fractions I, II, and IV inhibited bacterial colony formation on soft agar in addition to growth inhibition. A combination treatment of piper fractions with ampicillin resulted in significant growth inhibition in E. coli and P. aeruginosa, and combination with anticancer drug geldanamycin (2µg/mL) showed selective growth inhibition against P. aeruginosa and S. aureus. Three major compounds, i.e., eugenol, 3-hexene-ol and stigmasterol, were primarily identified from Piper betel leaf extractions. Among the individual compounds, eugenol treatment showed improved growth inhibition compared with stigmasterol and 3-hexene-ol. Conclusions We are reporting potential anti-bacterial compounds from Piper betel against both gram-positive and gram-negative bacteria either alone or in combination with drug treatment. PMID:23569779

  4. Differential effects of black raspberry and strawberry extracts on BaPDE-induced activation of transcription factors and their target genes.

    PubMed

    Li, Jingxia; Zhang, Dongyun; Stoner, Gary D; Huang, Chuanshu

    2008-04-01

    The chemopreventive properties of edible berries have been demonstrated both in vitro and in vivo, however, the specific molecular mechanisms underlying their anti-cancer effects are largely unknown. Our previous studies have shown that a methanol extract fraction of freeze-dried black raspberries inhibits benzoapyrene (BaP)-induced transformation of Syrian hamster embryo cells. This fraction also blocks activation of activator protein-1 (AP-1) and nuclear factor kappaB (NF-kappaB) induced by benzoapyrene diol-epoxide (BaPDE) in mouse epidermal JB6 Cl 41 cells. To determine if different berry types exhibit specific mechanisms for their anti-cancer effects, we compared the effects of extract fractions from both black raspberries and strawberries on BaPDE-induced activation of various signaling pathways in Cl 41 cells. Black raspberry fractions inhibited the activation of AP-1, NF-kappaB, and nuclear factor of activated T cells (NFAT) by BaPDE as well as their upstream PI-3K/Akt-p70(S6K) and mitogen-activated protein kinase pathways. In contrast, strawberry fractions inhibited NFAT activation, but did not inhibit the activation of AP-1, NF-kappaB or the PI-3K/Akt-p70(S6K) and mitogen-activated protein kinase pathways. Consistent with the effects on NFAT activation, tumor necrosis factor-alpha (TNF-alpha) induction by BaPDE was blocked by extract fractions of both black raspberries and strawberries, whereas vascular endothelial growth factor (VEGF) expression, which depends on AP-1 activation, was suppressed by black raspberry fractions but not strawberry fractions. These results suggest that black raspberry and strawberry components may target different signaling pathways in exerting their anti-carcinogenic effects. (c) 2007 Wiley-Liss, Inc.

  5. Differential Effects of Black Raspberry and Strawberry Extracts on BaPDE-Induced Activation of Transcription Factors and Their Target Genes

    PubMed Central

    Li, Jingxia; Zhang, Dongyun; Stoner, Gary D.; Huang, Chuanshu

    2013-01-01

    The chemopreventive properties of edible berries have been demonstrated both in vitro and in vivo, however, the specific molecular mechanisms underlying their anti-cancer effects are largely unknown. Our previous studies have shown that a methanol extract fraction of freeze-dried black raspberries inhibits benzoapyrene (BaP)-induced transformation of Syrian hamster embryo cells. This fraction also blocks activation of activator protein-1 (AP-1) and nuclear factor κB (NF-κB) induced by benzoapyrene diol-epoxide (BaPDE) in mouse epidermal JB6 Cl 41 cells. To determine if different berry types exhibit specific mechanisms for their anti-cancer effects, we compared the effects of extract fractions from both black raspberries and strawberries on BaPDE-induced activation of various signaling pathways in Cl 41 cells. Black raspberry fractions inhibited the activation of AP-1, NF-κB, and nuclear factor of activated T cells (NFAT) by BaPDE as well as their upstream PI-3K/Akt-p70S6K and mitogen-activated protein kinase pathways. In contrast, strawberry fractions inhibited NFAT activation, but did not inhibit the activation of AP-1, NF-κB or the PI-3K/Akt-p70S6K and mitogen-activated protein kinase pathways. Consistent with the effects on NFAT activation, tumor necrosis factor-α (TNF-α) induction by BaPDE was blocked by extract fractions of both black raspberries and strawberries, whereas vascular endothelial growth factor (VEGF) expression, which depends on AP-1 activation, was suppressed by black raspberry fractions but not strawberry fractions. These results suggest that black raspberry and strawberry components may target different signaling pathways in exerting their anti-carcinogenic effects. PMID:18085529

  6. Antioxidant Properties of Berberis aetnensis C. Presl (Berberidaceae) Roots Extract and Protective Effects on Astroglial Cell Cultures

    PubMed Central

    Campisi, Agata; Bonfanti, Roberta; Raciti, Giuseppina; Amodeo, Andrea; Mastrojeni, Silvana; Ragusa, Salvatore; Iauk, Liliana

    2014-01-01

    Berberis aetnensis C. Presl (Berberidaceae) is a bushy-spiny shrub common on Mount Etna (Sicily). We demonstrated that the alkaloid extract of roots of B. aetnensis C. Presl contains prevalently berberine and berbamine, possesses antimicrobial properties, and was able to counteract the upregulation evoked by glutamate of tissue transglutaminase in primary rat astroglial cell cultures. Until now, there are no reports regarding antioxidant properties of B. aetnensis C. Presl collected in Sicily. Air-dried, powdered roots of B. aetnensis C. Presl were extracted, identified, and quantified by HPLC. We assessed in cellular free system its effect on superoxide anion, radicals scavenging activity of antioxidants against free radicals like the 1,1-diphenyl-2-picrylhydrazyl radical, and the inhibition of xanthine oxidase activity. In primary rat astroglial cell cultures, exposed to glutamate, we evaluated the effect of the extract on glutathione levels and on intracellular production of reactive oxygen species generated by glutamate. The alkaloid extract of B. aetnensis C. Presl inhibited superoxide anion, restored to control values, the decrease of GSH levels, and the production of reactive oxygen species. Potent antioxidant activities of the alkaloid extract of roots of B. aetnensis C. Presl may be one of the mechanisms by which the extract is effective against health disorders associated to oxidative stress. PMID:25177720

  7. Antioxidant properties of Berberis aetnensis C. Presl (Berberidaceae) roots extract and protective effects on astroglial cell cultures.

    PubMed

    Campisi, Agata; Acquaviva, Rosaria; Bonfanti, Roberta; Raciti, Giuseppina; Amodeo, Andrea; Mastrojeni, Silvana; Ragusa, Salvatore; Iauk, Liliana

    2014-01-01

    Berberis aetnensis C. Presl (Berberidaceae) is a bushy-spiny shrub common on Mount Etna (Sicily). We demonstrated that the alkaloid extract of roots of B. aetnensis C. Presl contains prevalently berberine and berbamine, possesses antimicrobial properties, and was able to counteract the upregulation evoked by glutamate of tissue transglutaminase in primary rat astroglial cell cultures. Until now, there are no reports regarding antioxidant properties of B. aetnensis C. Presl collected in Sicily. Air-dried, powdered roots of B. aetnensis C. Presl were extracted, identified, and quantified by HPLC. We assessed in cellular free system its effect on superoxide anion, radicals scavenging activity of antioxidants against free radicals like the 1,1-diphenyl-2-picrylhydrazyl radical, and the inhibition of xanthine oxidase activity. In primary rat astroglial cell cultures, exposed to glutamate, we evaluated the effect of the extract on glutathione levels and on intracellular production of reactive oxygen species generated by glutamate. The alkaloid extract of B. aetnensis C. Presl inhibited superoxide anion, restored to control values, the decrease of GSH levels, and the production of reactive oxygen species. Potent antioxidant activities of the alkaloid extract of roots of B. aetnensis C. Presl may be one of the mechanisms by which the extract is effective against health disorders associated to oxidative stress.

  8. Stevia rebaudiana ethanolic extract exerts better antioxidant properties and antiproliferative effects in tumour cells than its diterpene glycoside stevioside.

    PubMed

    López, Víctor; Pérez, Sergio; Vinuesa, Arturo; Zorzetto, Christian; Abian, Olga

    2016-04-01

    Steviol glycosides are currently being used as natural sweeteners by the food industry and Stevia rebaudiana has long been used as a sweet plant in South America for patients suffering from diabetes. In this study, a Stevia rebaudiana ethanolic extract (SREE) was prepared, analysed and tested for antioxidant activity in terms of free radical scavenging properties and antiproliferative effects in cervix (HeLa), pancreatic (MiaPaCa-2) and colonic (HCT116) cancer cells. The antiproliferative mechanism was confirmed by testing the effects on cyclin D1-CDK4. Bioassays were also performed for the diterpene glycoside stevioside. Our results demonstrate that the extract acts as an antioxidant being able to scavenge free radicals, but this activity was not due to stevioside. The extract also induced cell death in the three cell lines, being more active against cervix cancer cells (HeLa); however, the concentration of stevioside needed to produce antiproliferative effects was higher than the amount of steviol glycosides found in a lower dose of extract inducing cell death. In addition, the extract clearly inhibited CDK4 whereas stevioside did not, concluding that the antiproliferative activity of stevia may be due to inhibition of cyclin-dependent kinases performed by other compounds of the extract.

  9. Aloe vera extract reduces both growth and germ tube formation by Candida albicans.

    PubMed

    Bernardes, Ivy; Felipe Rodrigues, Monalisa Poliana; Bacelli, Gabrielle Klug; Munin, Egberto; Alves, Leandro Procópio; Costa, Maricilia Silva

    2012-05-01

    Due to the increased number of immunocompromised patients, the infections associated with the pathogen of the genus Candida have significantly increased in recent years. To grow, Candida albicans may form a germ tube extension from the cells, which is essential for virulence. In this work, we studied the effect of crude glycolic extract of Aloe vera fresh leaves (20% w/v) on growth and germ tube formation by C. albicans. The C. albicans growth was determined in the presence of different concentrations of A. vera extracts in Sabouraud dextrose broth medium. In the presence of A. vera extract (10% v/v), the pronounced inhibition in the C. albicans growth (90-100%) was observed. This inhibition occurred parallel to the decrease in the germ tube formation induced by goat serum. Our results demonstrated that A. vera fresh leaves plant extract can inhibit both the growth and the germ tube formation by C. albicans. Our results suggest the possibility that A. vera extract may be used as a promising novel antifungal treatment. © 2011 Blackwell Verlag GmbH.

  10. Study of pharmacological activities of methanol extract of Jatropha gossypifolia fruits.

    PubMed

    Apu, Apurba Sarker; Hossain, Faruq; Rizwan, Farhana; Bhuyan, Shakhawat Hossan; Matin, Maima; Jamaluddin, A T M

    2012-12-01

    The present study was carried out to investigate the possible in vivo analgesic, neuropharmacological and anti-diarrheal activities of the methanol extract of Jatropha gossypifolia fruits. The analgesic activity was measured by acetic acid induced writhing inhibition test. The neuropharmacological activities were evaluated by hole cross, hole-board, and elevated plus-maze (EPM) tests and the anti-diarrheal activity was assessed by castor oil induced diarrhea inhibition method. The extract showed highly significant (P < 0.001) analgesic activity with % inhibitions of writhing response at doses 200 and 400 mg/kg body weight were 77.86% and 71.25%, respectively. The extract at both doses showed significant (P < 0.05) sedative effect in-hole cross test. In-hole board test, the extract showed highly significant (P < 0.001) anxiolytic activity at lower dose whereas this activity was observed at higher dose in EPM test. The extract also showed highly significant (P < 0.001) anti-diarrheal activity. The findings of the study clearly indicate the presence of significant analgesic, neuropharmacological and anti-diarrheal properties of the plant, which demands further investigation including, compound isolation.

  11. Effects of pine needle extract on pacemaker currents in interstitial cells of Cajal from the murine small intestine.

    PubMed

    Cheong, Hyeonsook; Paudyal, Dilli Parasad; Jun, Jae Yeoul; Yeum, Cheol Ho; Yoon, Pyung Jin; Park, Chan Guk; Kim, Man Yoo; So, Insuk; Kim, Ki Whan; Choi, Seok

    2005-10-31

    Extracts of pine needles (Pinus densiflora Sieb. et Zucc.) have diverse physiological and pharmacological actions. In this study we show that pine needle extract alters pacemaker currents in interstitial cells of Cajal (ICC) by modulating ATP-sensitive K+ channels and that this effect is mediated by prostaglandins. In whole cell patches at 30 degrees , ICC generated spontaneous pacemaker potentials in the current clamp mode (I = 0), and inward currents (pacemaker currents) in the voltage clamp mode at a holding potential of -70 mV. Pine needle extract hyperpolarized the membrane potential, and in voltage clamp mode decreased both the frequency and amplitude of the pacemaker currents, and increased the resting currents in the outward direction. It also inhibited the pacemaker currents in a dose-dependent manner. Because the effects of pine needle extract on pacemaker currents were the same as those of pinacidil (an ATP-sensitive K+ channel opener) we tested the effect of glibenclamide (an ATP-sensitive K+ channels blocker) on ICC exposed to pine needle extract. The effects of pine needle extract on pacemaker currents were blocked by glibenclamide. To see whether production of prostaglandins (PGs) is involved in the inhibitory effect of pine needle extract on pacemaker currents, we tested the effects of naproxen, a non-selective cyclooxygenase (COX-1 and COX-2) inhibitor, and AH6809, a prostaglandin EP1 and EP2 receptor antagonist. Naproxen and AH6809 blocked the inhibitory effects of pine needle extract on ICC. These results indicate that pine needle extract inhibits the pacemaker currents of ICC by activating ATP-sensitive K+ channels via the production of PGs.

  12. In Vitro CYP2D Inhibitory Effect and Influence on Pharmacokinetics and Pharmacodynamic Parameters of Metoprolol Succinate by Terminalia arjuna in Rats.

    PubMed

    Varghese, Alice; Savai, Jay; Mistry, Shruti; Khandare, Preeti; Barve, Kalyani; Pandita, Nancy; Gaud, Ram

    2016-01-01

    Terminalia arjuna Wight & Arn. (Combretaceae) is a tree having an extensive medicinal potential in cardiovascular disorders. T. arjuna bark extract has been reported to play a significant role as a cardiac stimulant for its beneficial effects in angina. Herb - drug interactions (HDI) are one of the most important clinical concerns in the concomitant consumption of herbs and prescription drugs. Our study was to investigate the in vitro CYP2D inhibition potential of Terminalia arjuna (T. arjuna) extracts in rat liver microsomes and to study the influence of aqueous bark extract of T. arjuna on the oral pharmacokinetics and pharmacodynamics of metoprolol succinate in rats. The CYP2D inhibition potential of herbal extracts of T. arjuna was investigated in rat liver microsomes. Pharmacokinetic-pharmacodynamic interaction of aqueous extract of T. arjuna with metoprolol succinate was investigated in rats. The ethyl acetate, alcoholic & aqueous bark extracts of T. arjuna showed potent reversible non-competitive inhibition CYP2D enzyme in rat liver microsomes with IC50 values less than 40 μg/mL. Arjunic acid, arjunetin and arjungenin did not show significant inhibition of CYP2D enzyme in rat liver microsomes. Pharmacokinetic studies showed that aqueous bark extract of T. arjuna led to a significant reduction (P < 0.05) in AUC0-24h and Cmax of metoprolol succinate in rats, when co-administered. Pharmacodynamic studies reveal a significant reduction in therapeutic activity of metoprolol succinate on co-administration with aqueous bark extract of T. arjuna. Based on our in vitro and in vivo findings and until further clinical drug interaction experiments are conducted, the co-administration of drugs, especially those primarily cleared via CYP2D catalyzed metabolism, with T. arjuna extracts should be done with caution.

  13. Clinical and Microbial Evaluation of the Effects on Gingivitis of a Mouth Rinse Containing an Enteromorpha linza Extract

    PubMed Central

    Cho, Han-Bin; Lee, Hee-Hyun; Lee, Ok-Hwan; Choi, Hyeon-Son; Choi, Jae-Suk

    2011-01-01

    Abstract Enteromorpha linza, a green alga, has been recognized as a potential source of natural antimicrobial and antifungal compounds. We previously reported that an E. linza extract strongly inhibited the growth of Prevotella intermedia and Porphyromonas gingivalis. The principal objective of this study was to evaluate the clinical effect of a mouth rinse containing the E. linza extract on gingivitis disease, as measured by the plaque index (PI), gingival index (GI), and bleeding on probing (BOP), and on two bacterial strains (P. intermedia and P. gingivalis), in comparison with Listerine® (Listerine-Korea, Seoul, Korea), which was used as a positive control. In total, 55 subjects were recruited into active participation in this clinical study. The PI, GI, BOP, and bacterial strains were then evaluated over a test period of 6 weeks. After 1, 2, 4, and 6 weeks, the same clinical indices were recorded, and the levels of P. intermedia and P. gingivalis were quantified via real-time polymerase chain reaction. At the end of the study, the group using the mouth rinse containing the E. linza extract evidenced significant reductions in the clinical indices (PI, GI, and BOP) and P. gingivalis compared with baseline values. Moreover, E. linza extract containing mouth rinse produced effects similar to those of Listerine. Overall, these results indicate that a mouth rinse containing E. linza extract significantly reduces plaque, improves the condition of gingival tissues, and reduces bleeding. Additionally, E. linza extract mouth rinse significantly inhibits P. gingivalis and P. intermedia. Thus, this clinical study demonstrated that the twice-daily use of an E. linza extract mouth rinse can inhibit and prevent gingivitis. PMID:22145775

  14. Estrogenic and Progestagenic effects of extracts of Justicia pectoralis Jacq., an herbal medicine from Costa Rica used for the treatment of Menopause and PMS

    PubMed Central

    Locklear, Tracie D.; Huang, Yue; Frasor, Jonna; Doyle, Brian J.; Perez, Alice; Gomez-Laurito, Jorge; Mahady, Gail. B.

    2010-01-01

    Objectives To investigate the biological activities of Justicia pectoralis Jacq. (Acanthaceae), an herbal medicine used in Costa Rica (CR) for the management of menopausal symptoms and dysmenorrhea. Study design The aerial parts of Justicia pectoralis were collected, dried and extracted in methanol. To establish possible mechanisms of action of JP for the treatment of menopausal symptoms, the estrogenic and progesterone agonist, and antiinflammatory activities were investigated. Main outcome measures The methanol extract (JP-M) was tested in ER and PR binding assays, a COX-2 enzyme inhibition assay, the ERβ-CALUX assay in U2-OS cells, as well as reporter and endogenous gene assays in MCF-7 K1 cells. Results The JP-M extract inhibited COX-2 catalytic activity (IC50 4.8µg/ml); bound to both ERα and ERβ (IC50 50 µg/ml and 23.1µg/ml, respectively); induced estrogen-dependent transcription in the ERβ-CALUX; and bound to the progesterone receptor (IC50 22.8 µg/ml). The extract also modulated the expression of endogenous estrogen responsive genes pS2, PR, and PTGES in MCF-7 cells at a concentration of 20 µg/ml. Activation of a 2 ERE-construct in transiently transfected MCF-7 cells by the extract was inhibited by the estrogen receptor antagonist ICI 182,780, indicating that the effects were mediated through the estrogen receptor. Finally, the extract weakly enhanced the proliferation of MCF-7 cells, however this was not statistically significant as compared with DMSO controls. Conclusions Extracts of J. pectoralis have estrogenic, progestagenic and anti-inflammatory effects, and thus have a plausible mechanism of action, explaining its traditional use for menopause and PMS. PMID:20452152

  15. Solamargine, a bioactive steroidal alkaloid isolated from Solanum aculeastrum induces non-selective cytotoxicity and P-glycoprotein inhibition.

    PubMed

    Burger, Trevor; Mokoka, Tsholofelo; Fouché, Gerda; Steenkamp, Paul; Steenkamp, Vanessa; Cordier, Werner

    2018-05-02

    Solanum aculeastrum fruits are used by some cancer sufferers as a form of alternative treatment. Scientific literature is scarce concerning its anticancer activity, and thus the aim of the study was to assess the in vitro anticancer and P-glycoprotein inhibitory potential of extracts of S. aculeastrum fruits. Furthermore, assessment of the combinational effect with doxorubicin was also done. The crude extract was prepared by ultrasonic maceration. Liquid-liquid extraction yielded one aqueous and two organic fractions. Bioactive constituents were isolated from the aqueous fraction by means of column chromatography, solid phase extraction and preparative thin-layer chromatography. Confirmation of bioactive constituent identity was done by nuclear magnetic resonance and ultra-performance liquid chromatography mass spectrometry. The crude extract and fractions were assessed for cytotoxicity and P-glycoprotein inhibition in both cancerous and non-cancerous cell lines using the sulforhodamine B and rhodamine-123 assays, respectively. Both the crude extract and aqueous fraction was cytotoxic to all cell lines, with the SH-SY5Y neuroblastoma cell line being most susceptible to exposure (IC 50  = 10.72 μg/mL [crude], 17.21 μg/mL [aqueous]). Dose-dependent P-glycoprotein inhibition was observed for the crude extract (5.9 to 18.9-fold at 100 μg/mL) and aqueous fraction (2.9 to 21.2 at 100 μg/mL). The steroidal alkaloids solamargine and solanine were identified. While solanine was not bioactive, solamargine displayed an IC 50 of 15.62 μg/mL, and 9.1-fold P-glycoprotein inhibition at 100 μg/mL against the SH-SY5Y cell line. Additive effects were noted for combinations of doxorubicin against the SH-SY5Y cell line. The crude extract and aqueous fraction displayed potent non-selective cytotoxicity and noteworthy P-glycoprotein inhibition. These effects were attributed to solamargine. P-glycoprotein inhibitory activity was only present at concentrations higher than those inducing cytotoxicity, and thus does not appear to be the likely mechanism for the enhancement of doxorubicin's cytotoxicity. Preliminary results suggest that non-selective cytotoxicity may hinder drug development, however, further assessment of the mode of cell death is necessary to determine the route forward.

  16. Interactions of 172 plant extracts with human organic anion transporter 1 (SLC22A6) and 3 (SLC22A8): a study on herb-drug interactions

    PubMed Central

    Lu, Hang; Lu, Zhiqiang; Li, Xue; Li, Gentao; Qiao, Yilin

    2017-01-01

    Background Herb-drug interactions (HDIs) resulting from concomitant use of herbal products with clinical drugs may cause adverse reactions. Organic anion transporter 1 (OAT1) and 3 (OAT3) are highly expressed in the kidney and play a key role in the renal elimination of substrate drugs. So far, little is known about the herbal extracts that could modulate OAT1 and OAT3 activities. Methods HEK293 cells stably expressing human OAT1 (HEK-OAT1) and OAT3 (HEK-OAT3) were established and characterized. One hundred seventy-two extracts from 37 medicinal and economic plants were prepared. An initial concentration of 5 µg/ml for each extract was used to evaluate their effects on 6-carboxylfluorescein (6-CF) uptake in HEK-OAT1 and HEK-OAT3 cells. Concentration-dependent inhibition studies were conducted for those extracts with more than 50% inhibition to OAT1 and OAT3. The extract of Juncus effusus, a well-known traditional Chinese medicine, was assessed for its effect on the in vivo pharmacokinetic parameters of furosemide, a diuretic drug which is a known substrate of both OAT1 and OAT3. Results More than 30% of the plant extracts at the concentration of 5 µg/ml showed strong inhibitory effect on the 6-CF uptake mediated by OAT1 (61 extracts) and OAT3 (55 extracts). Among them, three extracts for OAT1 and fourteen extracts for OAT3 were identified as strong inhibitors with IC50 values being <5 µg/ml. Juncus effusus showed a strong inhibition to OAT3 in vitro, and markedly altered the in vivo pharmacokinetic parameters of furosemide in rats. Conclusion The present study identified the potential interactions of medicinal and economic plants with human OAT1 and OAT3, which is helpful to predict and to avoid potential OAT1- and OAT3-mediated HDIs. PMID:28560096

  17. Protective effects of dietary chamomile tea on diabetic complications.

    PubMed

    Kato, Atsushi; Minoshima, Yuka; Yamamoto, Jo; Adachi, Isao; Watson, Alison A; Nash, Robert J

    2008-09-10

    Matricaria chamomilla L., known as "chamomile", has been used as an herbal tea or supplementary food all over the world. We investigated the effects of chamomile hot water extract and its major components on the prevention of hyperglycemia and the protection or improvement of diabetic complications in diabetes mellitus. Hot water extract, esculetin (3) and quercetin (7) have been found to show moderate inhibition of sucrase with IC50 values of 0.9 mg/mL and 72 and 71 microM, respectively. In a sucrose-loading test, the administration of esculetin (50 mg/kg body weight) fully suppressed hyperglycemia after 15 and 30 min, but the extract (500 mg/kg body weight) and quercetin (50 mg/kg body weight) were less effective. On the other hand, a long-term feed test (21 days) using a streptozotocin-induced rat diabetes model revealed that the same doses of extract and quercetin showed significant suppression of blood glucose levels. It was also found that these samples increased the liver glycogen levels. Moreover, chamomile extract showed potent inhibition against aldose reductase (ALR2), with an IC50 value of 16.9 microg/mL, and its components, umbelliferone (1), esculetin (3), luteolin (6), and quercetin (7), could significantly inhibit the accumulation of sorbitol in human erythrocytes. These results clearly suggested that daily consumption of chamomile tea with meals could contribute to the prevention of the progress of hyperglycemia and diabetic complications.

  18. In Vitro Efficacy of Diallyl Sulfides against the Periodontopathogen Aggregatibacter actinomycetemcomitans

    PubMed Central

    Ganeshnarayan, Krishnaraj; Velusamy, Senthil Kumar; Fine, Daniel H.

    2012-01-01

    The in vitro antibacterial effects of diallyl sulfide (DAS) against the Gram-negative periodontopathogen Aggregatibacter actinomycetemcomitans, the key etiologic agent of the severe form of localized aggressive periodontitis and other nonoral infections, were studied. A. actinomycetemcomitans was treated with garlic extract, allicin, or DAS, and the anti-A. actinomycetemcomitans effects of the treatment were evaluated. Garlic extract, allicin, and DAS significantly inhibited the growth of A. actinomycetemcomitans (greater than 3 log; P < 0.01) compared to control cells. Heat inactivation of the garlic extracts significantly reduced the protein concentration; however, the antimicrobial effect was retained. Purified proteins from garlic extract did not exhibit antimicrobial activity. Allicin lost all its antimicrobial effect when it was subjected to heat treatment, whereas DAS demonstrated an antimicrobial effect similar to that of the garlic extract, suggesting that the antimicrobial activity of garlic extract is mainly due to DAS. An A. actinomycetemcomitans biofilm-killing assay performed with DAS showed a significant reduction in biofilm cell numbers, as evidenced by both confocal microscopy and culture. Scanning electron microscopy (SEM) analysis of DAS-treated A. actinomycetemcomitans biofilms showed alterations of colony architecture indicating severe stress. Flow cytometry analysis of OBA9 cells did not demonstrate apoptosis or cell cycle arrest at therapeutic concentrations of DAS (0.01 and 0.1 μg/ml). DAS-treated A. actinomycetemcomitans cells demonstrated complete inhibition of glutathione (GSH) S-transferase (GST) activity. However, OBA9 cells, when exposed to DAS at similar concentrations, showed no significant differences in GST activity, suggesting that DAS-induced GST inhibition might be involved in A. actinomycetemcomitans cell death. These findings demonstrate that DAS exhibits significant antibacterial activity against A. actinomycetemcomitans and that this property might be utilized for exploring its therapeutic potential in treatment of A. actinomycetemcomitans-associated oral and nonoral infections. PMID:22330917

  19. Moringa oleifera leaf extracts inhibit 6beta-hydroxylation of testosterone by CYP3A4.

    PubMed

    Monera, Tsitsi G; Wolfe, Alan R; Maponga, Charles C; Benet, Leslie Z; Guglielmo, Joseph

    2008-10-01

    Moringa oleifera is a tropical tree often used as a herbal medicine, including by people who test positive for HIV. Since herbal constituents may interact with drugs via inhibition of metabolizing enzymes, we investigated the effects of extracts of M. oleifera on the CYP3A4-mediated 6beta-hydroxylation of testosterone. Methanolic and aqueous leaf and root of extracts of M. oleifera with concentrations between 0.01 and 10 mg/ml were incubated with testosterone and mixed-sex human liver microsomes in the presence of NADPH. Metabolite concentrations were determined by HPLC. The cytotoxicity of the extracts was tested with HepG2 cells using the MTT formazan assay. Significant CYP3A4 inhibitory effects were found, with IC50 values of 0.5 and 2.5 mg/ml for leaf-methanol and leaf-water extracts, respectively. Root extracts were less active. Cytotoxicity was observed only with the leaf-water extract (IC50 = 6 mg/ml). Further investigation is warranted to elucidate the potential of M. oleifera for clinically significant interactions with antiretroviral and other drugs.

  20. Phytotoxical effect of Lepidium draba L. extracts on the germination and growth of monocot (Zea mays L.) and dicot (Amaranthus retroflexus L.) seeds.

    PubMed

    Kaya, Yusuf; Aksakal, Ozkan; Sunar, Serap; Erturk, Filiz Aygun; Bozari, Sedat; Agar, Guleray; Erez, Mehmet Emre; Battal, Peyami

    2015-03-01

    Laboratory experiments were performed to determine phytotoxic potentials of white top (Lepidium draba) methanol extracts (root, stem and leaf) on germination and early growth of corn (Zea mays) and redroot pigweed (Amaranthus retroflexus). Furthermore, the effects of different methanol extracts of L. draba on the phytohormone (indole-3-acetic acid (IAA), gibberellic acid (GA), abscisic acid (ABA) and zeatin) levels of corn and redroot pigweed were investigated. It was observed that all concentrations of methanol extracts of root, stem and leaf of L. draba inhibited germination, radicle and plumule elongation when compared with the respective controls. Besides this, the degree of inhibition was increased in concert with increasing concentrations of extracts used. On the other hand, phytohormone levels changed with the application of different extract concentrations. Comparing with the control, the GA levels significantly decreased while the ABA levels increased in all the application groups. Zeatin and IAA levels showed changes depending upon the applied extracts and concentrations. © The Author(s) 2012.

  1. Inhibition of collagen production in scleroderma fibroblast cultures by a connective tissue glycoprotein extracted from normal dermis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maquart, F.X.; Bellon, G.; Cornillet-Stoupy, J.

    1985-08-01

    It was shown in a previous paper that a connective tissue glycoprotein (CTGP) extracted from normal rabbit dermis was able to inhibit total protein and collagen syntheses by normal dermis fibroblast cultures. In the present study, the effects of CTGP on scleroderma fibroblasts were investigated. (/sup 14/C)Proline incorporation into total proteins of the supernatant was not significantly different from that found in controls. By contrast, the amount of collagen, expressed as percentage of total secreted protein, was far higher in scleroderma cultures than in normal ones (14.4% +/- 6.0% vs 4.6% +/- 0.9%). Addition of CTGP to the medium inducedmore » a concentration-dependent inhibition of (/sup 14/C)proline incorporation into proteins from both control and scleroderma cells. In control cultures, no significant decrease of the percentage of collagen was observed, but over 60 micrograms/ml, both cytotoxic effects and inhibition of protein synthesis occurred. In scleroderma cultures, the inhibition was twice as effective on collagen as on noncollagen protein synthesis. The inhibition of collagen secretion was not related either to changes in collagen hydroxylation or to the intracellular catabolism of newly synthesized procollagen.« less

  2. Ginger (Zingiber officinale Roscoe) and the Gingerols Inhibit the Growth of Cag A+ Strains of Helicobacter pylori

    PubMed Central

    Mahady, Gail B.; Pendland, Susan L.; Yun, Gina S.; Lu, Zhi-Zhen; Stoia, Adina

    2013-01-01

    Background Ginger root (Zingiber officinale) has been used traditionally for the treatment of gastrointestinal ailments such as motion sickness, dyspepsia and hyperemesis gravidarum, and is also reported to have chemopreventative activity in animal models. The gingerols are a group of structurally related polyphenolic compounds isolated from ginger and known to be the active constituents. Since Helicobacter pylori (HP) is the primary etiological agent associated with dyspepsia, peptic ulcer disease and the development of gastric and colon cancer, the anti-HP effects of ginger and its constituents were tested in vitro. Materials and Methods A methanol extract of the dried powdered ginger rhizome, fractions of the extract and the isolated constituents, 6-,8-, 10-gingerol and 6-shogoal, were tested against 19 strains of HP, including 5 CagA+ strains. Results The methanol extract of ginger rhizome inhibited the growth of all 19 strains in vitro with a minimum inhibitory concentration range of 6.25–50 µg/ml. One fraction of the crude extract, containing the gingerols, was active and inhibited the growth of all HP strains with an MIC range of 0.78 to 12.5 µg/ml and with significant activity against the CagA+ strains. Conclusion These data demonstrate that ginger root extracts containing the gingerols inhibit the growth of H. pylori CagA+ strains in vitro and this activity may contribute to its chemopreventative effects. PMID:14666666

  3. In vitro studies to assess the antidiabetic, antiperoxidative, and radical scavenging potential of Stereospermum colais.

    PubMed

    Rani, M Priya; Padmakumari, K P

    2012-10-01

    Stereospermum colais (Buch.-Ham. ex Dillw.) Mabberley (Bignoniaceae), which has traditional medicinal properties, is distributed all over deciduous forests. In spite of its many uses, the antidiabetic, antiperoxidative and radical scavenging activities of this species have not been assessed, and its chemical composition is scarcely known. Antidiabetic, antiperoxidation, xanthine oxidase (XO) inhibition, and radical scavenging activities of acetone and methanol extracts of Stereospermum colais roots were investigated. Protective effects of Stereospermum colais root extract in stabilizing sunflower oil was also examined. The protective effect of acetone (ASC) and methanol (MSC) extracts of Stereospermum colais root for the potential inhibition of α-glucosidase and α-amylase enzymes were studied by in vitro method. Glycation inhibitory activity was also studied to inhibit the production of glycated end products. Compared with acarbose, ASC showed a strong inhibitory activity against α-glucosidase (IC(50) 61.21 µg/mL) and a moderate inhibitory activity against α-amylase (IC(50) 681.08 µg/mL). Glycation inhibitory activity of Stereospermum colais root extracts by using an in vitro glucose-bovine serum albumin (BSA) assay was also done and compared with standard gallic acid. ASC also shows high XO inhibition potential, free radical scavenging activities, and low p-anisidine value indicates the high medicinal potency of Stereospermum colais root. These results suggest that the extract of Stereospermum colais may be interesting for incorporation in pharmaceutical preparations for human health, since it can suppress hyperglycaemia, and or as food additives due to its antiradical efficiency.

  4. Inhibitory effect of Cinnamomum osmophloeum Kanehira ethanol extracts on melanin synthesis via repression of tyrosinase expression.

    PubMed

    Lee, Shih-Chieh; Chen, Chun-Hao; Yu, Chih-Wen; Chen, Hsiao Ling; Huang, Wei-Tung; Chang, Yun-Shiang; Hung, Shu-Hsien; Lee, Tai-Lin

    2016-09-01

    Melanin contributes to skin color, and tyrosinase is the enzyme that catalyzes the initial steps of melanin formation. Therefore, tyrosinase inhibitors may contribute to the control of skin hyperpigmentation. The inhibition of tyrosinase activity by Cinnamomum zeylanicum extracts was previously reported. In this report, we test the hypothesis that Cinnamomum osmophloeum Kanehira, an endemic plant to Taiwan, contains compounds that inhibit tyrosinase activity, similar to C. zeylanicum. The cytotoxicity of three sources of C. osmophloeum Kanehira ethanol extracts was measured in B16-F10 cells using a methyl thiazolyl tetrazolium bromide (MTT) assay. At concentrations greater than 21.25 μg/mL, the ethanol extracts were toxic to the cells; therefore, 21.25 μg/mL was selected to test the tyrosinase activities. At this concentration, all three ethanol extracts decreased the melanin content by 50% in IBMX-induced B16-F10 cells. In addition to the melanin content, greater than 20% of the tyrosinase activity was inhibited by these ethanol extracts. The RT-PCR results showed that tyrosinase and transcription factor MITF mRNAs expression were down-regulated. Consistent with the mRNA results, greater than 40% of the human tyrosinase promoter activity was inhibited based on the reporter assay. Furthermore, our results demonstrate that the ethanol extracts protect cells from UV exposure. C. osmophloeum Kanehira neutralized the IBMX-induced increase in melanin content in B16-F10 cells by inhibiting tyrosinase gene expression at the level of transcription. Moreover, the ethanol extracts also partially inhibited UV-induced cell damage and prevented cell death. Taken together, we conclude that C. osmophloeum Kanehira is a potential skin-whitening and protective agent. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Stachytarpheta cayennensis extract inhibits promastigote and amastigote growth in Leishmania amazonensis via parasite arginase inhibition.

    PubMed

    Maquiaveli, Claudia do Carmo; Oliveira E Sá, Amanda Maria; Vieira, Paulo Cezar; da Silva, Edson Roberto

    2016-11-04

    Stachytarpheta cayennensis is a plant that is traditionally used to treat tegumentary leishmaniasis and as an anti-inflammatory agent. This study aimed to evaluate the action of S. cayennensis extracts on the Leishmania (Leishmania) amazonensis arginase enzyme. S. cayennensis was collected from the Brazilian Amazon region. Aqueous extracts were fractionated with n-butanol. The leishmanicidal effects of the n-butanolic fraction (BUF) were evaluated in L. (L.) amazonensis promastigotes and amastigotes. BUF was tested against recombinant arginase from both L. (L.) amazonensis and macrophage arginase. Promastigote cultures and infected macrophage cultures were supplemented with L-ornithine to verify arginase inhibition. NMR analysis was used to identify the major components of BUF. BUF showed an EC 50 of 51 and 32µg/mL against promastigotes and amastigotes of L. (L.) amazonensis, respectively. BUF contains a mixture of verbascoside and isoverbascoside (7:3 ratio) and is a potent L. (L.) amazonensis arginase inhibitor (IC 50 =1.2µg/mL), while macrophage arginase was weakly inhibited (IC 50 >1000µg/mL). The inhibition of arginase by BUF in promastigotes and amastigotes could be demonstrated by culture media supplementation with L-ornithine, a product of the hydrolysis of L-arginine by arginase. Leishmanicidal effects of the S. cayennensis BUF fraction on L. (L.) amazonensis are associated with selective parasite arginase inhibition. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. In Vitro Inhibition of Cholera Toxin Production in Vibrio cholerae by Methanol Extract of Sweet Fennel Seeds and Its Components.

    PubMed

    Chatterjee, Shruti; Zahid, M Shamim Hasan; Awasthi, Sharda Prasad; Chowdhury, Nityananda; Asakura, Masahiro; Hinenoya, Atsushi; Ramamurthy, T; Iwaoka, Emiko; Aoki, Shunji; Yamasaki, Shinji

    2016-09-21

    A newly emerged Vibrio cholerae O1 El Tor variant strain with multidrug resistance is considered a threat to public health. Recent strategies to suppress virulence factors production instead of bacterial growth may lead to less selective pressure for the emergence of resistant strains. The use of spices and their active constituents as the inhibitory agents against cholera toxin (CT) production in V. cholerae may be an alternative approach to treat cholera. In this study, we examined the potential of sweet fennel seed (Foeniculum vulgare Miller var. dulce) methanol extract to inhibit CT production in V. cholerae without affecting viability. The methanol extract of sweet fennel seeds significantly inhibited CT production in various V. cholerae strains, regardless of serogroup or biotype. Interestingly, trans-anethole and 4-allylanisole, essential oil components of sweet fennel seeds, also demonstrated similar effects. Here, we report that sub-bactericidal concentrations of sweet fennel seed methanol extract and its major components can drastically inhibit CT production in various V. cholerae strains.

  7. Oenothera laciniata inhibits lipopolysaccharide induced production of nitric oxide, prostaglandin E2, and proinflammatory cytokines in RAW264.7 macrophages.

    PubMed

    Yoon, Weon-Jong; Ham, Young Min; Yoo, Byoung-Sam; Moon, Ji-Young; Koh, Jaesook; Hyun, Chang-Gu

    2009-04-01

    We elucidated the pharmacological and biological effects of Oenothera laciniata extracts on the production of inflammatory mediators in macrophages. The CH(2)Cl(2) fraction of O. laciniata extract effectively inhibited LPS-induced NO, PGE(2), and proinflammatory cytokine production in RAW264.7 cells. These inhibitory effects of the CH(2)Cl(2) fraction of O. laciniata were accompanied by decreases in the expression of iNOS and COX-2 proteins and iNOS, COX-2, TNF-alpha, IL-1beta, and IL-6 mRNA. Asiatic acid and quercetin were present in the HPLC fingerprint of the O. laciniata extract. We tested the potential application of O. laciniata extract as a cosmetic material by performing primary skin irritation tests. In New Zealand white rabbits, primary irritation tests revealed that application of O. laciniata extracts (1%) did not induce erythema or edema formation. Human skin primary irritation tests were performed on the normal skin (upper back) of 30 volunteers to determine if any material in O. laciniata extracts had irritation or sensitization potential. In these assays, O. laciniata extracts did not induce any adverse reactions. Based on these results, we suggest that O. laciniata extracts be considered possible anti-inflammatory candidates for topical application.

  8. Entomocidal effects of beech apricot, Labramia bojeri, seed extract on a soybean pest, the velvetbean moth, Anticarsia gemmatalis, and its enzymatic activity.

    PubMed

    Macedo, Maria L R; Kubo, Carlos E G; Freire, Maria G M; Júnior, Roberto T A; Parra, José R P

    2014-02-26

    The effects of the beech apricot, Labramia bojeri A. de Candolle (Sapotales: Sapotaceae), seed aqueous extract on the larval development of the velvetbean moth, Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae), was evaluated. The extract inhibited larval development, pupal weight, and survival and emergence of adults. Digestive proteolytic activity in larval midgut and feces extracts was determined. Larvae fed 10 g/L of the aqueous extract showed a significant reduction in trypsin activity (~64%), when compared with control larvae. Trypsin and chymotrypsin activities were also detected in fecal material in aqueous-extract-fed larvae, with about ~4.5 times more trypsin activity than the controls. The results from dietary utilization experiments with A. gemmatalis larvae showed a reduction in the efficiency of conversion of ingested food and digested food and an increase in approximate digestibility and metabolic cost. The effect of the extract suggests the potential use of L. bojeri seeds to inhibit the development of A. gemmatalis via oral exposure. The L. bojeri extract can be an alternative to other methods of control. This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed.

  9. The effect of purified condensed tannins of forage plants from Botswana on the free-living stages of gastrointestinal nematode parasites of livestock.

    PubMed

    Tibe, O; Sutherland, I A; Lesperance, L; Harding, D R K

    2013-10-18

    The effect of condensed tannins (CT) extracted from forage plants from Botswana on the free-living stages of a number of species of gastrointestinal nematode parasites derived from infected sheep were investigated using in vitro assays. Fresh samples of five different plants (Viscum rotundifolium, Viscum verrucosum, Tapinanthus oleifolius, Grewia flava and Ipomoea sinensis) were collected over two summers (February 2009 and 2010). Fractionation of each crude extract on a Sephadex LH-20 column yielded low molecular weight phenolics and CT-containing fractions. The effect of each purified CT fraction on parasites was evaluated using either egg hatch, larval development or larval migration inhibition assays. Three gastrointestinal nematode species (Haemonchus contortus, Trichostrongylus colubriformis and Teladorsagia circumcincta) derived from infected sheep were evaluated in the study. CT from V. rotundifolium and I. sinensis fractions from samples collected in 2009 and 2010 did not inhibit larval development. However, CT isolated from V. verrucosum, T. oleifolius and G. flava collected in 2009 completely inhibited the development of all parasite species. These CT fractions were more potent in inhibiting larval development of H. contortus than fractions from the same plant species collected in 2010. However, a slight effect on larval migration was observed with some CT extracts. The results suggest that CT extracts of some forage plants from Botswana have anti-parasitic properties in vitro, and that further research is required to determine any in vivo efficacy from feeding the plants to goats in a field situation. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. In vitro anti-diabetic activity of flavonoids and pheophytins from Allophylus cominia Sw . on PTP1B, DPPIV, alpha-glucosidase and alpha-amylase enzymes.

    PubMed

    Semaan, D G; Igoli, J O; Young, L; Marrero, E; Gray, A I; Rowan, E G

    2017-05-05

    Ethno-botanical information from diabetic patients in Cuba led to the identification of Allophylus cominia as a possible source of new drugs for the treatment of type 2 diabetes mellitus (T2-DM). Chemical characterization of the extracts from A. cominia was carried out using chromatographic and spectroscopic methods. The extracts were tested for their activity on PTP1B, DPPIV, α-glucosidase enzymes and α-amylase. The flavonoid rich fractions from A. cominia inhibited DPPIV enzyme (75.3±2.33%) at 30µg/ml and produced a concentration-dependent inhibition against DPPIV with a Ki value of 2.6µg/ml. At 30µg/ml, flavonoids and pheophytins extracts significantly inhibited PTP1B enzyme (100±2.6% and 68±1% respectively). The flavonoids, pheophytin A and pheophytin B fractions showed significant concentration-dependent inhibition against PTP1B with Ki values of 3µg/ml, 0.64µg/ml and 0.88µg/ml respectively. At 30µg/ml, the flavonoid fraction significantly inhibited α-glucosidase enzyme (86±0.3%) in a concentration-dependent pattern with a Ki value of 2µg/ml. None of the fractions showed significant effects on α-amylase. Fatty acids, tannins, pheophytins A and B, and a mixture of flavonoids were detected in the methanolic extract from A. cominia. The identified flavonoids were mearnsitrin, quercitrin, quercetin-3-alloside, and naringenin-7-glucoside. The pharmacological effects of the extracts from A. cominia earlier observed in experimental diabetic models was confirmed in this study. Thus a new drug or formulation for the treatment of T2-DM could be developed from A. cominia. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  11. Inhibitory effect of bofutsushosan (fang feng tong sheng san) on glucose transporter 5 function in vitro.

    PubMed

    Gao, Shengli; Satsu, Hideo; Makino, Toshiaki

    2018-03-01

    Bofutsushosan (BTS; fang feng tong sheng san in Chinese) is a formula in traditional Japanese Kampo medicine and Chinese medicine comprising eighteen crude drugs, and is used to treat obesity and metabolic syndrome. Fructose is contained in refreshing beverages as high-fructose corn syrup, and is associated with obesity. Fructose is absorbed via glucose transporter 5 (GLUT5) in the intestine. Therefore, the inhibition of GLUT5 is considered to be a target of obesity drugs. We evaluated the inhibitory effects of BTS extract and its constituents on fructose uptake using Chinese hamster ovary K1 cells, i.e., cells stably expressing GLUT5. Boiled water extract of BTS significantly suppressed GLUT5 function in a concentration-dependent manner without cytotoxicities. Among 18 components of BTS, the boiled water extracts of the rhizome of Zingiber officinale, the root and rhizome of Saposhnikovia divaricata, and the root of Platycodon grandiflorum exhibited significant inhibitory effects on fructose uptake with IC 50 values of 314, 119 and 475 µg/ml, respectively. Among the constituents of the rhizome of Z. officinale extract, 6-gingerol significantly inhibited GLUT5 with an IC 50 value of 39 µM, while 6-shogaol exhibited a significant but weak inhibition on GLUT5 at 100 µM. One of the mechanisms of action of BTS may be the inhibition of fructose absorption in the intestine, and one of the active components of BTS is the rhizome of Z. officinale and 6-gingerol.

  12. In vitro inhibitory activities of selected Australian medicinal plant extracts against protein glycation, angiotensin converting enzyme (ACE) and digestive enzymes linked to type II diabetes.

    PubMed

    Deo, Permal; Hewawasam, Erandi; Karakoulakis, Aris; Claudie, David J; Nelson, Robert; Simpson, Bradley S; Smith, Nicholas M; Semple, Susan J

    2016-11-04

    There is a need to develop potential new therapies for the management of diabetes and hypertension. Australian medicinal plants collected from the Kuuku I'yu (Northern Kaanju) homelands, Cape York Peninsula, Queensland, Australia were investigated to determine their therapeutic potential. Extracts were tested for inhibition of protein glycation and key enzymes relevant to the management of hyperglycaemia and hypertension. The inhibitory activities were further correlated with the antioxidant activities. Extracts of five selected plant species were investigated: Petalostigma pubescens, Petalostigma banksii, Memecylon pauciflorum, Millettia pinnata and Grewia mesomischa. Enzyme inhibitory activity of the plant extracts was assessed against α-amylase, α-glucosidase and angiotensin converting enzyme (ACE). Antiglycation activity was determined using glucose-induced protein glycation models and formation of protein-bound fluorescent advanced glycation endproducts (AGEs). Antioxidant activity was determined by measuring the scavenging effect of plant extracts against 1, 1-diphenyl-2-picryl hydrazyl (DPPH) and using the ferric reducing anti-oxidant potential assay (FRAP). Total phenolic and flavonoid contents were also determined. Extracts of the leaves of Petalostigma banksii and P. pubescens showed the strongest inhibition of α-amylase with IC 50 values of 166.50 ± 5.50 μg/mL and 160.20 ± 27.92 μg/mL, respectively. The P. pubescens leaf extract was also the strongest inhibitor of α-glucosidase with an IC 50 of 167.83 ± 23.82 μg/mL. Testing for the antiglycation potential of the extracts, measured as inhibition of formation of protein-bound fluorescent AGEs, showed that P. banksii root and fruit extracts had IC 50 values of 34.49 ± 4.31 μg/mL and 47.72 ± 1.65 μg/mL, respectively, which were significantly lower (p < 0.05) than other extracts. The inhibitory effect on α-amylase, α-glucosidase and the antiglycation potential of the extracts did not correlate with the total phenolic, total flavonoid, FRAP or DPPH. For ACE inhibition, IC 50 values ranged between 266.27 ± 6.91 to 695.17 ± 15.38 μg/mL. The tested Australian medicinal plant extracts inhibit glucose-induced fluorescent AGEs, α-amylase, α-glucosidase and ACE with extracts of Petalostigma species showing the most promising activity. These medicinal plants could potentially be further developed as therapeutic agents in the treatment of hyperglycaemia and hypertension.

  13. [Experimental study of bacteriostatic activity of Chinese herbal medicines on primary cariogenic bacteria in vitro].

    PubMed

    Wang, S; Fan, M; Bian, Z

    2001-09-01

    To screen some Chinese herbal medicines for their inhibitory activity on cariogenic bacteria, and investigate their active ingredients, and measure their minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC). Active components were isolated from every tested Chinese herbal medicine by means of aqueous extraction and ethanolic extraction. Berberine was purified from Coptis chinensis Fra. Disk agar diffusion method was employed in screening herbs with inhibiting effect on cariogenic bacteria. MIC and MBC were determined by broth dilution method. Against Streptococcus mutans Ingbritt, MBCs of Magnolia officinalis ethanolic extract, Berberine, Coptis chinensis Fra aqueous extract and Coptis chinensis Fra ethanolic extract were 0.488, 0.625, 7.800 and 1.950 g/L respectively. Against Streptococcus sobrinus 6715, MBCs of Magnolia extract, Coptis chinensis Fra ethanolic extract, Rhus chinensis Mill ethanolic extract and Phellodendron chinen ethanolic extract were 0.488, 0.625, 1.950, 3.900, 3.900 and 3.900 g/L respectively. Against Actinomyces viscosus ATCC 19246, MBCs of Berberine, Coptis chinensis Fra aqueous extract, Coptis chinensis Fra ethanolic extract, Rheum palmatum L aqueous extract and Rheum palmatum L ethanolic extract were 1.250, 3.900, 3.900, 15.600 and 31.250 g/L respectively. Magnolia officinalis, Coptis chinensis Fran, Rheum palmatum L aqueous extracts exhibit strong inhibition on cariogenic bacteria. Magnolia officinalis ethanolic extract has the strongest bactericidal effects on Streptococcus mutans and Streptococcus sobrinus.

  14. Inhibitive effect of Xylopia ferruginea extract on the corrosion of mild steel in 1M HCl medium

    NASA Astrophysics Data System (ADS)

    Raja, Pandian Bothi; Rahim, Afidah Abdul; Osman, Hasnah; Awang, Khalijah

    2011-08-01

    The alkaloid content of the leaves and stem bark of Xylopia ferruginea plant was isolated and tested for its anticorrosion potential on mild steel corrosion in a hydrochloric acid medium by using electrochemical impedance spectroscopy, potentiodynamic polarization measurement, scanning electron microscopy (SEM), and Fourier transform infra red (FTIR) analysis. The experimental results reveal the effective anticorrosion potential of the plant extract. The mixed mode of action exhibited by the plant extract is evidenced from the polarization study. SEM images proof the formation of a protective layer over the mild steel surface, and this is supported by the FTIR study. The possible mode of the corrosion inhibition mechanism has also been discussed.

  15. Korean red ginseng extract induces apoptosis and decreases telomerase activity in human leukemia cells.

    PubMed

    Park, Sang Eun; Park, Cheol; Kim, Sun Hee; Hossain, Mohammad Akbar; Kim, Min Young; Chung, Hae Young; Son, Woo Sung; Kim, Gi-Young; Choi, Yung Hyun; Kim, Nam Deuk

    2009-01-21

    Korean red ginseng (KRG, Panax ginseng C.A. Meyer Radix rubra) has been used to treat various diseases including cancer. However, the molecular mechanisms responsible for KRG extract induced apoptosis and telomerase inhibition remain unclear. The hot water extract from KRG was used to evaluate the mechanism of induction of apoptosis in U937 human leukemia cells and its effects on cyclooxgenase-2 (COX-2) and telomerase activity. KRG extract treatment to U937 cells resulted in growth inhibition and induction of apoptosis in a concentration-dependent manner as measured by hemacytometer counts, MTT assay, fluorescence microscopy, agarose gel electrophoresis and flow cytometry analysis. The increase in apoptosis was associated with the down-regulation of antiapoptotic Bcl-2, Bcl-X(L), and IAPs family members, and the activation of caspase-3. KRG extract treatment also decreased the expression levels of COX-2 and inducible nitric oxide synthase. Furthermore, KRG extract treatment progressively down-regulated the expression of human telomerase reverse transcriptase, a main determinant of the telomerase enzymatic activity, with inhibiting the expression of c-Myc in a concentration-dependent manner. These results provide important new insights into the possible molecular mechanisms of the anticancer activity of KRG extract.

  16. Safety assessment, biological effects, and mechanisms of Myrica rubra fruit extract for anti-melanogenesis, anti-oxidation, and free radical scavenging abilities on melanoma cells.

    PubMed

    Juang, Lih-Jeng; Gao, Xiang-Yu; Mai, Shou-Ting; Lee, Cheng-Hung; Lee, Ming-Chung; Yao, Chao-Ling

    2018-02-20

    Currently, the cosmetic and medical industries are paying considerable attention to solve or prevent skin damage or diseases, such as hyperpigmentation and oxidation and free radical damage. In this study, the effective compounds in Myrica rubra fruit were extracted and studied the biological effects of these M. rubra fruit extracts. In this study, we extracted M. rubra fruit using solutions with various ratios of water to ethanol (100:0, 50:50, 5:95) and studied the anti-melanogenesis, anti-oxidation and radical scavenging effects of these M. rubra fruit extracts on two melanoma cell lines: mouse melanoma (B16-F0) and human melanoma (A2058). The cytotoxicity, melanin synthesis, mushroom and cellular tyrosinase activities, enzyme kinetics, melanogenesis-related gene expression, melanogenesis-related protein secretion, radical DPPH scavenging activity and ROS inhibition after treatment with M. rubra fruit extracts were determined. The results showed that the water extract of M. rubra fruit was less cytotoxic to the melanoma cell lines, effectively inhibited melanin synthesis and tyrosinase activity and down-regulated the gene expression and protein secretion of MITF and TRP-1. In addition, the M. rubra fruit extracts also showed the abilities to scavenge DPPH free radicals and suppress ROS production. Finally, the effective compounds in the water extract were Myricetin-O-deoxyhexoside, Quercetin-O-deoxyhexoside, and Kaempferol-O-hexoside determined by LC/MS/MS assay. Overall, the water extract of M. rubra fruit is a safe and effective melanin inhibitor and anti-oxidant and can be applied widely in the fields of cosmetics and medicine. © 2018 Wiley Periodicals, Inc.

  17. Medicinal values of fruit peels from Citrus sinensis, Punica granatum, and Musa paradisiaca with respect to alterations in tissue lipid peroxidation and serum concentration of glucose, insulin, and thyroid hormones.

    PubMed

    Parmar, Hamendra Singh; Kar, Anand

    2008-06-01

    Peel extracts from Citrus sinensis, Punica granatum, and Musa paradisiaca were investigated for their effects on tissue lipid peroxidation (LPO) and on the concentration of thyroid hormones, insulin, and glucose in male rats. In vitro inhibition of H(2)O(2)-induced LPO in red blood cells of rats by 0.25, 0.50, 1.0, and 2.0 microg/mL C. sinensis, P. granatum, and M. paradisiaca peel extracts was observed in a dose-specific manner. Maximum inhibition was observed at 0.50 microg/mL C. sinensis, 2.0 microg/mL P. granatum, and 1.0 microg/mL M. paradisiaca. In the in vivo investigation, out of four different concentrations of each peel extract, 25, 200, and 100 mg/kg C. sinensis, P. granatum, and M. paradisiaca, respectively, were found to maximally inhibit hepatic LPO. The most effective doses were further evaluated for effects on serum triiodothyronine (T(3)), thyroxine (T(4)), insulin, and glucose concentrations. C. sinensis exhibited antithyroidal, hypoglycemic, and insulin stimulatory activities, in addition to inhibition of LPO, as it significantly decreased the serum T(4) (P < .05) and glucose (P < .001) concentrations with a concomitant increase in insulin levels (P < .05). P. granatum decreased LPO in hepatic, cardiac, and renal tissues (P < .01, P < .001, and P < .05, respectively) and serum glucose concentration (P < .01). M. paradisiaca strongly inhibited the serum level of thyroid hormones (P < .01 for both T(3) and T(4)) but increased the level of glucose (P < .05). These findings reveal the hitherto unknown potential of the tested peel extracts in the regulation of thyroid function and glucose metabolism. Besides antiperoxidative activity, C. sinensis extract has antithyroidal, hypoglycemic, and insulin stimulatory properties, which suggest its potential to ameliorate both hyperthyroidism and diabetes mellitus.

  18. Inhibition of Klebsiella pneumoniae growth by selected Australian plants: natural approaches for the prevention and management of ankylosing spondylitis.

    PubMed

    Winnett, V; Sirdaarta, J; White, A; Clarke, F M; Cock, I E

    2017-04-01

    A wide variety of herbal remedies are used in traditional Australian medicine to treat inflammatory disorders, including autoimmune inflammatory diseases. One hundred and six extracts from 40 native Australian plant species traditionally used for the treatment of inflammation and/or to inhibit bacterial growth were investigated for their ability to inhibit the growth of a microbial trigger for ankylosing spondylitis (K. pneumoniae). Eighty-six of the extracts (81.1%) inhibited the growth of K. pneumoniae. The D. leichardtii, Eucalyptus spp., K. flavescens, Leptospermum spp., M. quinquenervia, Petalostigma spp., P. angustifolium, S. spinescens, S. australe, S. forte and Tasmannia spp. extracts were effective K. pneumoniae growth inhibitors, with MIC values generally <1000 µg/mL. The T. lanceolata peppercorn extracts were the most potent growth inhibitors, with MIC values as low as 16 µg/mL. These extracts were examined by non-biased GC-MS headspace analysis and comparison with a compound database. A notable feature was the high relative abundance of the sesquiterpenoids polygodial, guaiol and caryophyllene oxide, and the monoterpenoids linalool, cineole and α-terpineol in the T. lanceolata peppercorn methanolic and aqueous extracts. The extracts with the most potent K. pneumoniae inhibitory activity (including the T. lanceolata peppercorn extracts) were nontoxic in the Artemia nauplii bioassay. The lack of toxicity and the growth inhibitory activity of these extracts against K. pneumoniae indicate their potential for both preventing the onset of ankylosing spondylitis and minimising its symptoms once the disease is established.

  19. Inhibitory effects of Cyperus digitatus extract on human platelet function in vitro.

    PubMed

    Fuentes, Eduardo; Forero-Doria, Oscar; Alarcón, Marcelo; Palomo, Iván

    2015-01-01

    The purpose of this research was to investigate the mechanisms of antiplatelet action of Cyperus digitatus. The antiplatelet action of C. digitatus was studied on platelet function: secretion, adhesion, aggregation, and sCD40L release. The platelet ATP secretion and aggregation were significantly inhibited by CDA (ethyl acetate extract) at 0.1 mg/ml and after the incubation of whole blood with CDA, the platelet coverage was inhibited by 96 ± 3% (p < 0.001). At the same concentration, CDA significantly decreased sCD40L levels. The mechanism of antiplatelet action of CDA could be by NF-κB inhibition and that is cAMP independent. In conclusion, C. digitatus extract may serve as a new source of antiplatelet agents for food and nutraceutical applications.

  20. [Effect of Spatholobus suberctus on adhesion, invasion, migration and metastasis of melanoma cells].

    PubMed

    Xu, Jian-Ya; Gu, Qin; Xia, Wei-Jun

    2010-10-01

    To study the effect of Spatholobus suberctus, a kind of Chinese Traditional Medicine which can dissolve the stasis by activating the blood circulation, on invasion, adhesion, migration and metastasis of B16-BL6 metastatic mouse melanoma cells and its mechanism. The proliferation, adhesion, invasion and migration capacity of B16-BL6 metastatic cells was evaluated by MTP assay, adhesion assay and reconstituted basement membrane invasion and migration assay in vitro respectively. Mouse spontaneous motility melanoma model was used to study the effect of Spatholobus suberctus on metastasis in vivo. At the highest innoxious concentration, the extracts of Spatholobus suberctus inhibited the adhesion and invasion capacity of B16-BL6 metastatic cells significantly. In the mouse spontaneous melanoma model, the lung metastatic nodes number and its volume were significantly decreased after continuously treated with the extracts of Spatholobus suberctu. The extracts of Spatholobus suberctu can inhibit the metastasis of of B16-BI6 metastatic mouse melanoma cells and its mechanism may be inhibiting the capability of B16-BL6 cells in adhering to the ECM and invading the basement membrane.

  1. Antioxidative and antiplatelet effects of aqueous inflorescence Piper betle extract.

    PubMed

    Lei, Daniel; Chan, Chiu-Po; Wang, Ying-Jan; Wang, Tong-Mei; Lin, Bor-Ru; Huang, Chun-Hsun; Lee, Jang-Jaer; Chen, Hsin-Ming; Jeng, Jiiang-Huei; Chang, Mei-Chi

    2003-03-26

    Piper betle, belonging to the Piperaceae family, is a tropical plant, and its leaf and inflorescence are popularly consumed by betel quid (BQ) chewers in Taiwan and many other South and Southeast Asian countries. However, little is known about the biochemical properties of inflorescence Piper betle (IPB) toward reactive oxygen species (ROS) and platelet functions. In the present work, aqueous IPB extract was shown to be a scavenger of H(2)O(2), superoxide radical, and hydroxyl radical with a 50% inhibitory concentration (IC(50)) of about 80, 28, and 73 microg/mL, respectively. IPB extract also prevented the hydroxyl radical induced PUC18 plasmid DNA breaks at concentrations higher than 40 microg/mL. Since ROS are crucial for platelet aggregation, we further found that IPB extract also inhibited the arachidonic acid (AA) induced and collagen-induced platelet aggregation, with an IC(50) of 207 and 335 microg/mL, respectively. IPB extract also inhibited the AA-, collagen- (>100 microg/mL of IPB), and thrombin (>250 microg/mL of IPB)-induced thromboxane B(2) (TXB(2)) production by more than 90%. However, IPB extract showed little effect on thrombin-induced aggregation. These results indicated that aqueous components of IPB are potential ROS scavengers and may prevent the platelet aggregation possibly via scavenging ROS or inhibition of TXB(2) production.

  2. The Leaves of Broussonetia kazinoki Siebold Inhibit Atopic Dermatitis-Like Response on Mite Allergen-Treated Nc/Nga Mice.

    PubMed

    Lee, Hoyoung; Ha, Hyekyung; Lee, Jun Kyoung; Park, Sang-Joon; Jeong, Seung-Ii; Shin, Hyeun Kyoo

    2014-09-01

    Broussonetia kazinoki Siebold. (B. kazinoki) has long been used in the manufacture of paper in Asian countries. Although B. kazinoki leaves (BK) have been employed in dermatological therapy, use of BK has not been tested in patients with atopic dermatitis (AD). Using Nc/Nga mice, which are genetically predisposed to develop AD-like skin lesions, we confirmed the efficacy of BK in AD treatment. BK extract was applied topically to Dermatophagoides farinae-induced AD-like lesions in Nc/Nga mice, and the effects were assessed both clinically and by measuring skin thickness on the back and ears. We measured the effects of BK extract on plasma levels of IgE and IL-4. We also measured the ability of BK extract to inhibit the secretion of hTARC in HaCaT cells after stimulation by TNF-α and IFN-γ. We found that BK extract significantly reduced ear and dorsal skin thickness and the clinical signs of AD, as well as significantly down-regulating the plasma levels of IgE and IL-4 (p<0.01 for each comparison). Moreover, 500 μg/mL of BK extract inhibited hTARC secretion in HaCaT cells by activated TNF-α/IFN-γ by about 87%. These findings suggest that topical application of BK extract has excellent potential in the treatment of AD.

  3. Chemical Composition and Immuno-Modulatory Effects of Urtica dioica L. (Stinging Nettle) Extracts.

    PubMed

    Francišković, Marina; Gonzalez-Pérez, Raquel; Orčić, Dejan; Sánchez de Medina, Fermín; Martínez-Augustin, Olga; Svirčev, Emilija; Simin, Nataša; Mimica-Dukić, Neda

    2017-08-01

    The purpose of this work was to determine the chemical profile of stinging nettle and to provide an insight into the mechanisms by which it ameliorates the immune response. Qualitative and quantitative liquid chromatography tandem mass spectrometry analyses indicated that phenolic acids (5-O-caffeoylquinic acid as dominant) and flavonol glycosides (rutin, isoquercitrin, and kaempferol 3-O-glucoside) are present in the aerial parts, while lignans (secoisolariciresinol, 9,9'-bisacetyl-neo-olivil and their glucosides) were detected in the root. Herb and root extracts expressed selective inhibition toward cyclooxygenase and lipoxygenase branches in human platelets: root extracts were better at inhibiting thromboxane production, while herb extracts were more specific toward inhibition of 12-lipoxygenase pathway. Stinging nettle extracts mildly increased monocyte chemoattractant protein-1 and growth-related oncogene release from nonstimulated intestinal epithelial cells, stimulating MyD88/NF-κB/p38 signaling, hence preserving the epithelial integrity and enhancing intestinal steady-state defense. Additionally, root extract reduced lipopolysaccharide-induced monocyte chemoattractant protein-1/growth-related oncogene secretion and cyclooxygenase-2 expression in intestinal epithelial cells, thus showing the potential protective effect against tissue damage caused by inflammation processes. These observations suggest that stinging nettle is an interesting candidate for the development of phytopharmaceuticals or dietary supplements for cotreatment of various inflammatory diseases, particularly inflammatory bowel diseases. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  4. ANTIPROLIFERATIVE EFFECT ON BREAST CANCER (MCF7) OF MORINGA OLEIFERA SEED EXTRACTS.

    PubMed

    Adebayo, Ismail Abiola; Arsad, Hasni; Samian, Mohd Razip

    2017-01-01

    Moringa oleifera belongs to plant family, Moringaceae and popularly called "wonderful tree", for it is used traditionally to cure many diseases including cancer in Africa and Asia, however, there is limited knowledge on cytotoxic activity of Moringa oleifera seeds on MCF7 breast cancer cell. The present study evaluated antiproliferative effect on MCF7 of the seed. Seeds of Moringa oleifera were grinded to powder and its phytochemicals were extracted using water and 80% ethanol solvents, part of the ethanolic extract were sequentially partitioned to fractions with four solvents (hexane, dichloromethane, chloroform, and n-butanol). Antiproliferative effects on MCF7 of the samples were determined. Finally, potent samples that significantly inhibited MCF7 growth were tested on MCF 10A. Crude water extract, hexane and dichloromethane fractions of the seeds inhibited the proliferation of MCF7 with the following IC 50 values 280 μg/ml, 130 μg/ml and 26 μg/ml respectively, however, of the 3 samples, only hexane fraction had minimal cytotoxic effect on MCF 10A (IC 50 > 400μg/ml). Moringa oleifera seed has antiproliferative effect on MCF7.

  5. An Investigation of the Growth Inhibitory Capacity of Several Medicinal Plants From Iran on Tumor Cell Lines

    PubMed Central

    Esmaeilbeig, Maryam; Kouhpayeh, Seyed Amin; Amirghofran, Zahra

    2015-01-01

    Background: Traditional herbal medicine is a valuable resource that provides new drugs for cancer treatment. Objectives: In this study we aim to screen and investigate the in vitro anti-tumor activities of ten species of plants commonly grown in Southern Iran. Materials and Methods: We used the MTT colorimetric assay to evaluate the cytotoxic activities of the methanol extracts of these plants on various tumor cell lines. The IC50 was calculated as a scale for this evaluation. Results: Satureja bachtiarica, Satureja hortensis, Thymus vulgaris, Thymus daenensis and Mentha lonigfolia showed the inhibitoriest effects on Jurkat cells with > 80% inhibition at 200 µg/mL. Satureja hortensis (IC50: 66.7 µg/mL) was the most effective. These plants also strongly inhibited K562 cell growth; Satureja bachtiarica (IC50: 28.3 µg/mL), Satureja hortensis (IC50: 52 µg/mL) and Thymus vulgaris (IC50: 87 µg/mL) were the most effective extracts. Cichorium intybus, Rheum ribes, Alhagi pseudalhagi and Glycyrrihza glabra also showed notable effects on the leukemia cell lines. The Raji cell line was mostly inhibited by Satureja bachtiarica and Thymus vulgaris with approximately 40% inhibition at 200µg/ml. The influence of these extracts on solid tumor cell lines was not strong. Fen cells were mostly affected by Glycyrrihza glabra (IC50: 182 µg/mL) and HeLa cells by Satureja hortensis (31.6% growth inhibitory effect at 200 µg/mL). Conclusions: Leukemic cell lines were more sensitive to the extracts than the solid tumor cell lines; Satureja hortensis, Satureja bachtiarica, Thymus vulgaris, Thymus daenensis and Mentha lonigfolia showed remarkable inhibitory potential. PMID:26634114

  6. Bactericidal effect of extracts and metabolites of Robinia pseudoacacia L. on Streptococcus mutans and Porphyromonas gingivalis causing dental plaque and periodontal inflammatory diseases.

    PubMed

    Patra, Jayanta Kumar; Kim, Eun Sil; Oh, Kyounghee; Kim, Hyeon-Jeong; Dhakal, Radhika; Kim, Yangseon; Baek, Kwang-Hyun

    2015-04-08

    The mouth cavity hosts many types of anaerobic bacteria, including Streptococcus mutans and Porphyromonas gingivalis, which cause periodontal inflammatory diseases and dental caries. The present study was conducted to evaluate the antibacterial potential of extracts of Robinia pseudoacacia and its different fractions, as well as some of its natural compounds against oral pathogens and a nonpathogenic reference bacteria, Escherichia coli. The antibacterial activity of the crude extract and the solvent fractions (hexane, chloroform, ethyl acetate and butanol) of R. pseudoacacia were evaluated against S. mutans, P. gingivalis and E. coli DH5α by standard micro-assay procedure using conventional sterile polystyrene microplates. The results showed that the crude extract was more active against P. gingivalis (100% growth inhibition) than against S. mutans (73% growth inhibition) at 1.8 mg/mL. The chloroform and hexane fractions were active against P. gingivalis, with 91 and 97% growth inhibition, respectively, at 0.2 mg/mL. None of seven natural compounds found in R. pseudoacacia exerted an antibacterial effect on P. gingivalis; however, fisetin and myricetin at 8 µg/mL inhibited the growth of S. mutans by 81% and 86%, respectively. The crude extract of R. pseudoacacia possesses bioactive compounds that could completely control the growth of P. gingivalis. The antibiotic activities of the hexane and chloroform fractions suggest that the active compounds are hydrophobic in nature. The results indicate the effectiveness of the plant in clinical applications for the treatment of dental plaque and periodontal inflammatory diseases and its potential use as disinfectant for various surgical and orthodontic appliances.

  7. Immunoregulatory cytokines in mouse placental extracts inhibit in vitro osteoclast differentiation of murine macrophages.

    PubMed

    Canellada, A; Custidiano, A; Abraham, F; Rey, E; Gentile, T

    2013-03-01

    Previous studies showed that placental extracts (PE) alleviates arthritic symptoms in animal models of arthritis. To evaluate whether murine PEs obtained at embryonic days 7.5 (PE7) and 17.5 (PE18) regulate RANKL-induced osteoclast differentiation, RAW 264.7 cells were cultured with RANKL and MCSF in presence or not of PEs. Tartrate-resistant acid phosphatase (TRAP) was stained and multinucleated TRAP positive cells were visualized under a light microscope. Cathepsin K and metalloprotease expression was assessed by RT-PCR and gelatin zymography respectively. NFATc1 expression was determined by immunoblot. To analyze NFAT-dependent transcription, macrophages were transfected with a luciferase reporter plasmid. Cytokines were determined in PEs by ELISA and immunoblot. Transforming growth factor (TGF)- beta and Interleukin (IL)-10 receptor were inhibited in cell cultures with specific antibodies. PE7 and PE18 inhibited RANKL-induced multinucleated TRAP positive cells, Cathepsin K expression and metalloprotease activity, as well as NFATc1 expression and activity, thereby inhibiting osteoclast differentiation of RAW cells. Inflammatory/Regulatory cytokine ratio was higher in PE7 than in PE18. Blocking TGF-beta abolished the effect of both, PE7 and PE18, on multinucleated TRAP positive cells and metalloprotease expression, whereas blocking IL-10 receptor reverted the effect of PE18 but not of PE7. Inhibition of osteoclast differentiation by PEs was not unexpected, since cytokines detected in extracts were previously found to regulate osteoclast differentiation. PEs inhibited osteoclast differentiation of macrophages in vitro. Downregulation of NFATc1 might be involved in this effect. Regulatory/Th2 cytokines play a role in the effect of PEs on osteoclast differentiation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Gallic acid indanone and mangiferin xanthone are strong determinants of immunosuppressive anti-tumour effects of Mangifera indica L. bark in MDA-MB231 breast cancer cells.

    PubMed

    García-Rivera, Dagmar; Delgado, René; Bougarne, Nadia; Haegeman, Guy; Berghe, Wim Vanden

    2011-06-01

    Vimang is a standardized extract derived from Mango bark (Mangifera Indica L.), commonly used as anti-inflammatory phytomedicine, which has recently been used to complement cancer therapies in cancer patients. We have further investigated potential anti-tumour effects of glucosylxanthone mangiferin and indanone gallic acid, which are both present in Vimang extract. We observed significant anti-tumour effects of both Vimang constituents in the highly aggressive and metastatic breast cancer cell type MDA-MB231. At the molecular level, mangiferin and gallic acid both inhibit classical NFκB activation by IKKα/β kinases, which results in impaired IκB degradation, NFκB translocation and NFκB/DNA binding. In contrast to the xanthone mangiferin, gallic acid further inhibits additional NFκB pathways involved in cancer cell survival and therapy resistance, such as MEK1, JNK1/2, MSK1, and p90RSK. This results in combinatorial inhibition of NFκB activity by gallic acid, which results in potent inhibition of NFκB target genes involved in inflammation, metastasis, anti-apoptosis and angiogenesis, such as IL-6, IL-8, COX2, CXCR4, XIAP, bcl2, VEGF. The cumulative NFκB inhibition by gallic acid, but not mangiferin, is also reflected at the level of cell survival, which reveals significant tumour cytotoxic effects in MDA-MB231 cells. Altogether, we identify gallic acid, besides mangiferin, as an essential anti-cancer component in Vimang extract, which demonstrates multifocal inhibition of NFκB activity in the cancer-inflammation network. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. Investigation of Diospyros Kaki L.f husk extracts as corrosion inhibitors and bactericide in oil field

    PubMed Central

    2013-01-01

    Background Hydrochloric acid is used in oil-well acidizing commonly for improving the crude oil production of the low-permeable reservoirs, while it is a great challenge for the metal instruments involved in the acidification. Developing natural products as oilfield chemicals is a straight way to find less expensive, green and eco-friendly materials. The great plant resources in Qin-ling and Ba-shan Mountain Area of Shannxi Province enable the investigating of new green oil field chemicals. Diospyros Kaki L.f (persimmon), a famous fruit tree is widely planted in Qin-ling and Ba-shan Mountain Area of Shaanxi Province. It has been found that the crude persimmon extracts are complex mixtures containing vitamins, p-coumaric acid, gallic acid, catechin, flavonoids, carotenoids and condensed tannin and so on, which indicates the extracts of persimmon husk suitable to be used as green and eco-friendly corrosion inhibitors. Findings Extracts of persimmon husk were investigated, by using weight loss and potentiodynamic polarisation techniques, as green and eco-friendly corrosion inhibitors of Q235A steel in 1M HCl. The inhibition efficiency of the extracts varied with extract concentration from 10 to 1,000 mg/L. There are some synergistic effects between the extracts and KI, KSCN and HMTA. Potentiodynamic polarization studies indicate that extracts are mixed-type inhibitors. Besides, the extracts were screened for antibacterial activity against oil field microorganisms, and they showed good to moderate activity against SRB, IB and TGB. Conclusions The inhibition efficiency of the extracts varied with extract concentration from 10 to 1,000 mg/L, and the highest reaches to 65.1% with the con concentration of 1,000 mg/L WE. KI, KSCN and HMTA they can enhance the IE of WE effectively to 97.3% at most, but not effective for KI and KSCN to AE. Tafel polarisation measurements indicate the extracts behave as mixed type inhibitor. Investigation of the antibacterial activity against oil field microorganism showed the extracts can inhibit SRB, IB and TGB with moderate to highly efficiency under 1,000 mg/L, which makes extracts potential to be used as bifunctional oil field chemicals. PMID:23816431

  10. Verification of biological activity of irradiated Sopoongsan, an oriental medicinal prescription, for industrial application of functional cosmetic material

    NASA Astrophysics Data System (ADS)

    Lee, Jin-Young; Park, Tae-Soon; Ho Son, Jun; Jo, Cheorun; Woo Byun, Myung; Jeun An, Bong

    2007-11-01

    Sopoongsan is an oriental medicinal prescription including 12 medicinal herbs. Sopoongsan is known to have anti-inflammatory, anti-microbial, anti-allergic, and anti-cancer effects on human skin. To use Sopoongsan extract for functional cosmetic composition, its dark color should be brighter for seeking consumer demand, clear products, without any adverse change in its function. Irradiation with doses 0, 5, 10, and 20 kGy was applied to improve color of ethanol- or water-extracted Sopoongsan and also superoxide dismutase (SOD), xanthine oxidase (XO), melanoma cell growth inhibition, and anti-microbial activity was investigated. Generally, ethanol extract was better than water extract in function and irradiation up to 20 kGy did not change any functional effect. Especially, the inhibition of melanin deposition on skin measured by inhibition of B16F10 (melanoma) cell growth was as high as arbutin, commercially available product, when the ethanol-extracted Sopoongsan was irradiated for 20 kGy. Results showed that when irradiation technology is used, the limitation of addition amount of natural materials for food or cosmetic composition caused by color problem can be decreased significantly with time saving and cost benefit compared to conventional color removal process. Therefore, irradiation would be one of the good methods to pose an additional value for related industry.

  11. The enhanced inhibition of water extract of black tea under baking treatment on α-amylase and α-glucosidase.

    PubMed

    Tong, Da-Peng; Zhu, Ke-Xue; Guo, Xiao-Na; Peng, Wei; Zhou, Hui-Ming

    2018-02-01

    This paper studied the inhibition of water extract of natural or baked black tea on the activity of α-amylase and α- glucosidase. Baking treatment was found to be one effective way to enhance the inhibition of black tea on both α-amylase and α- glucosidase, and IC 50 of water extract of baked black tea (BBTWE) were 1.213mg/mL and 4.190mg/mL, respectively, while IC 50 of water extract of black tea (BTWE) were 1.723mg/mL and 6.056mg/mL, respectively. This study further studied the mechanism of the effect of water extract on α-amylase and α- glucosidase using HPLC, circular dichroism, and synchronous fluorescence. HPLC analysis of tea polyphenols showed that the content of tea polyphenols with low polarity increased after baking. In addition, BBTWE had higer abilty on decreasing the hydrophobicity of tryptophan residues than BTWE for both α-amylase and α- glucosidase.The increase of α-helix proportion of α-amylase when treated with BBTWE was more obvious than that when treated with BTWE. In a word, thermal process of baked foods may be beneficial for tea polyphenols to reduce the rate of starch digestion. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. [Vasodilator effect mediated by nitric oxide of the Zea mays L (andean purple corn) hydroalcoholic extract in aortic rings of rat].

    PubMed

    Moreno-Loaiza, Oscar; Paz-Aliaga, Azael

    2010-01-01

    To evaluate the vasodilator response of the hydroalcoholic extract of Zea mays L. (Andean purple corn) and to determine if this response is mediated by nitric oxide (NO). We obtained an extract by maceration for eight days of Andean purple corn cobs in 70% ethanol and subsequent concentration of the product. Thoracic aortic rings were evaluated in an isolated organ chamber, bathed with Krebs-Hensleit solution (KH), and vasomotor activity was recorded with an isometric tension transducer. Basal contraction was produced with 120 mM KCl and then, we proceeded to determinate the vasodilator effect of 3 doses of the extract: 0.1, 0.5, and 1.0 mg/mL. We used L-NG-Nitroarginin methyl ester (L-NAME) to verify that the vasodilation depends on nitric oxide sinteasa (NOs). Then we compared the inhibition of vascular contraction after incubation for 30 minutes, with purple corn extract and captopril 10-5 M. We observed a reduction in maximum contraction (100%) to 85.25 ± 2.60%, 77.76 ± 3.23%, and 73.3 ± 4.87% for doses of 0.1, 0.5 and 1,0 mg/mL respectively. The vasodilation was inhibited by prior incubation with L-NAME. Andean purple corn extract did not inhibit vascular contraction as captopril did (reduction to 75.27 ± 8.61%). The hydroalcoholic extract of Zea mays L produces NO dependent vasodilation.

  13. Scanning electron microscopic study of Piper betle L. leaves extract effect against Streptococcus mutans ATCC 25175.

    PubMed

    Rahim, Zubaidah Haji Abdul; Thurairajah, Nalina

    2011-04-01

    Previous studies have shown that Piper betle L. leaves extract inhibits the adherence of Streptococcus mutans to glass surface, suggesting its potential role in controlling dental plaque development. In this study, the effect of the Piper betle L. extract towards S. mutans (with/without sucrose) using scanning electron microscopy (SEM) and on partially purified cell-associated glucosyltransferase activity were determined. S. mutans were allowed to adhere to glass beads suspended in 6 different Brain Heart Infusion broths [without sucrose; with sucrose; without sucrose containing the extract (2 mg mL(-1) and 4 mg mL(-1)); with sucrose containing the extract (2 mg mL(-1) and 4 mg mL(-1))]. Positive control was 0.12% chlorhexidine. The glass beads were later processed for SEM viewing. Cell surface area and appearance and, cell population of S. mutans adhering to the glass beads were determined upon viewing using the SEM. The glucosyltransferase activity (with/without extract) was also determined. One- and two-way ANOVA were used accordingly. It was found that sucrose increased adherence and cell surface area of S. mutans (p<0.001). S. mutans adhering to 100 µm² glass surfaces (with/without sucrose) exhibited reduced cell surface area, fluffy extracellular appearance and cell population in the presence of the Piper betle L. leaves extract. It was also found that the extract inhibited glucosyltransferase activity and its inhibition at 2.5 mg mL(-1) corresponded to that of 0.12% chlorhexidine. At 4 mg mL(-1) of the extract, the glucosyltransferase activity was undetectable and despite that, bacterial cells still demonstrated adherence capacity. The SEM analysis confirmed the inhibitory effects of the Piper betle L. leaves extract towards cell adherence, cell growth and extracellular polysaccharide formation of S. mutans visually. In bacterial cell adherence, other factors besides glucosyltransferase are involved.

  14. Scanning Electron Microscopic study of Piper betle L. leaves extract effect against Streptococcus mutans ATCC 25175

    PubMed Central

    RAHIM, Zubaidah Haji Abdul; THURAIRAJAH, Nalina

    2011-01-01

    Introduction Previous studies have shown that Piper betle L. leaves extract inhibits the adherence of Streptococcus mutans to glass surface, suggesting its potential role in controlling dental plaque development. Objectives: In this study, the effect of the Piper betle L. extract towards S. mutans (with/without sucrose) using scanning electron microscopy (SEM) and on partially purified cell-associated glucosyltransferase activity were determined. Material and Methods S. mutans were allowed to adhere to glass beads suspended in 6 different Brain Heart Infusion broths [without sucrose; with sucrose; without sucrose containing the extract (2 mg mL-1 and 4 mg mL-1); with sucrose containing the extract (2 mg mL-1 and 4 mg mL-1)]. Positive control was 0.12% chlorhexidine. The glass beads were later processed for SEM viewing. Cell surface area and appearance and, cell population of S. mutans adhering to the glass beads were determined upon viewing using the SEM. The glucosyltransferase activity (with/without extract) was also determined. One- and two-way ANOVA were used accordingly. Results It was found that sucrose increased adherence and cell surface area of S. mutans (p<0.001). S. mutans adhering to 100 µm2 glass surfaces (with/without sucrose) exhibited reduced cell surface area, fluffy extracellular appearance and cell population in the presence of the Piper betle L. leaves extract. It was also found that the extract inhibited glucosyltransferase activity and its inhibition at 2.5 mg mL-1 corresponded to that of 0.12% chlorhexidine. At 4 mg mL-1 of the extract, the glucosyltransferase activity was undetectable and despite that, bacterial cells still demonstrated adherence capacity. Conclusion The SEM analysis confirmed the inhibitory effects of the Piper betle L. leaves extract towards cell adherence, cell growth and extracellular polysaccharide formation of S. mutans visually. In bacterial cell adherence, other factors besides glucosyltransferase are involved. PMID:21552715

  15. Inhibitory effects of Physalis angulata on tumor metastasis and angiogenesis.

    PubMed

    Hseu, You-Cheng; Wu, Chi-Rei; Chang, Hsueh-Wei; Kumar, K J Senthil; Lin, Ming-Kuem; Chen, Chih-Sheng; Cho, Hsin-Ju; Huang, Chun-Yin; Huang, Chih-Yang; Lee, Hong-Zin; Hsieh, Wen-Tsong; Chung, Jing-Gung; Wang, Hui-Min; Yang, Hsin-Ling

    2011-06-01

    ETHNOPHARMACOLOGICAL RELAVENCE: Physalis angulata is well-known in traditional Chinese medicine as a ingredient for various herbal formulation; also, it has been shown to exhibit anti-cancer and anti-inflammatory effects. In this study, the ability of P. angulata to inhibit tumor metastasis and angiogenesis was investigated. Anti-proliferative activity of ethyl acetate extracts of P. angulata (PA extracts), was determined against human oral squamous carcinoma (HSC-3) and human umbilical vein endothelial cells (HUVECs) by trypan blue exclusion method. Wound-healing migration, trans-well invasion, Western blotting and chick chorioallantoic membrane assay were carried out to determine the anti-metastatic and anti-angiogenic effects of PA extracts in vitro and in vivo. We demonstrated that at sub-cytotoxic concentrations of PA extracts (5-15 μg/mL) markedly inhibited the migration and invasion of highly metastatic HSC-3 cells as shown by wound-healing repair assay and trans-well assay. Gelatin zymography assay showed that PA extracts suppressed the activity of matrix metalloproteinase (MMP)-9 and -2, and urokinase plasminogen activator (u-PA) in HSC-3 cells. In addition, Western blot analysis confirmed that PA extracts significantly decreased MMP-2 and u-PA protein expression in HSC-3 cells. Notably, PA extracts significantly augmented the expression of their endogenous inhibitors, including tissue inhibitors of MMP (TIMP-1 and -2), and plasminogen activator inhibitors (PAI-1 and -2). Further investigations revealed that non-cytotoxic concentration of PA extracts (5-15 μg/mL) inhibited vascular endothelial growth factor (VEGF)-induced proliferation, and migration/invasion of HUVECs in vitro. PA extracts also suppressed the activity of MMP-9, but not MMP-2, in HUVECs. Further, we observed, PA extracts strongly suppressed neovessel formation in the chorioallantoic membrane of chick embryos in vivo. These results strongly support an anti-metastatic and anti-angiogenic activity of P. angulata that may contribute to the development of better chemopreventive agent for cancer and inflammation. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  16. Synergisms in Alpha-glucosidase Inhibition and Antioxidant Activity of Camellia sinensis L. Kuntze and Eugenia uniflora L. Ethanolic Extracts

    PubMed Central

    Vinholes, Juliana; Vizzotto, Márcia

    2017-01-01

    Background: Camellia sinensis, the most consumed and popular beverages worldwide, and Eugenia uniflora, a Brazilian native species, have been already confirmed to have beneficial effects in the treatment of diabetes mellitus. However, their potential acting together against an enzyme linked to this pathology has never been exploited. Objective: The aim of this study was to evaluate the inhibitory properties of individual and combined ethanolic extracts of the leaves of C. sinensis and E. uniflora over alpha-glucosidase, a key digestive enzyme used on the Type 2 diabetes mellitus (T2DM) control. In addition, their inhibitory activity against 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) and peroxyl radicals was also assayed. Materials and Methods: Enzyme inhibition and antioxidant potential were assessed based on in vitro assays. Total phenolic compounds, carotenoids, and chlorophylls A and B were achieved using spectrophotometric methods. Results: E. uniflora was almost 40 times more active on alpha-glucosidase than C. sinensis and combined extracts showed a significant synergistic effect with an obtained IC50 value almost 5 times lower than the theoretical value. C. sinensis extract was twice more active than E. uniflora concerning DPPH•, in contrast, E. uniflora was almost 10 times more effective than C. sinensis on inhibition of peroxyl radicals with a significant synergistic effect for combined extracts. The extracts activities may be related with their phytochemicals, mainly phenolic compounds, and chlorophylls. Conclusion: Combined C. sinensis and E. uniflora ethanolic extracts showed synergistic effect against alpha-glucosidase and lipid peroxidation. These herbal combinations can be used to control postprandial hyperglycemia and can also provide antioxidant defenses to patients with T2DM. SUMMARY Alfa-glucosidase and antioxidant Interaction between Camellia sinensis L. Kuntze and Eugenia uniflora L. ethanolic extracts was investigated.Extracts showed synergistic effect over alpha-glucosidase and peroxyl radicals.Total phenolic, carotenoids and chlorophylls A and B can be responsible by the observed activities.Extracts could be used as alternative to control postprandial hyperglycemia.Extracts could increase antioxidant defenses to patients with T2DM. Abbreviations Used: T2DM: Type 2 diabetes mellitus; DPPH: 2,2-diphenyl-1-picrylhydrazyl radical; PNPG: 4-Nitrophenyl β-D-glucuronide; LOO: Lipid peroxidation; SEM: Standard error of the mean; CAE: Chlorogenic acid equivalent PMID:28250662

  17. Inhibitory effect of betel quid on the volatility of methyl mercaptan.

    PubMed

    Wang, C K; Chen, S L; Wu, M G

    2001-04-01

    Betel quid, a popular natural masticatory in Taiwan, is mainly composed of fresh areca fruit, Piper betle (leaf or inflorescence), and slaked lime paste. People say that halitosis disappears during betel quid chewing. In this study, the removal of mouth odor during betel quid chewing was discussed by using a model system which measured its inhibition on the volatility of methyl mercaptan. Results showed that crude extracts of betel quid (the mixture of areca fruit, Piper betle, and slaked lime paste) and extracts of the mixture of areca fruit and slaked lime paste exhibited marked effects on the volatility of methyl mercaptan, and the inhibition function increased when increasing amounts of slaked lime paste were added. The same condition (increased inhibition) was also found by replacing the slaked lime paste with alkaline salts (calcium hydroxide, potassium hydroxide, or sodium hydroxide). Areca fruit, the major ingredient of betel quid, contained abundant phenolics. However, the crude phenolic extract of areca fruit did not show any inhibitory activity on the volatility of methyl mercaptan. Great inhibitory activity occurred only when the crude phenolic extract of areca fruit was treated with alkali. Further studies by using gel filtration determined that the effect probably came from the oxidative polymerization of phenolics of areca fruit after alkaline treatment.

  18. [In vitro and in vivo studies on the cardioprotective action of oligomeric procyanidins in a Crataegus extract of leaves and blooms].

    PubMed

    Chatterjee, S S; Koch, E; Jaggy, H; Krzeminski, T

    1997-07-01

    Cardioprotective effects of a standardized extract from leaves with flowers of Crataegus (WS-1442; content of oligomeric procyandins [OPC]: 18.75%) have recently been demonstrated in an ischemia-reperfusion model in rats. Further studies were now conducted to clarify the mechanism of action and to identify active constituents involved in these effects of WS-1442. Exhausting partitioning between ethyl acetate/water and successive ultrafiltration of the aqueous layer led to the quantitative recovery of three fractions, which were tested for their in vitro radical scavenging (RS) and human neutrophil elastase (HNE) inhibitory activity. The lipophilic ethylacetate-soluble fraction A, enriched in flavone derivatives and constituting 14.9% of WS-1442, was as active as WS-1442 in inhibiting HNE. However, its RS activity was only about half that of the primary extract. Although 67.9% of WS-1442 was recovered in a water-soluble low molecular weight fraction B, this fraction displayed only weak RS and HNE inhibiting activity. In contrast, the RS and HNE inhibiting potencies of an essentially flavone-free and OPC-rich fraction C (21.3% of WS-1442) were significantly higher (inhibition of lipid peroxidation: IC50 0.3 microgram/ml; inhibition of HNE: IC50 0.84 microgram/ml) as those of WS-1442. The RS and HNE inhibitory activities of the extract and those of its fractions correlated well with their OPC-content but not with their concentration of flavonols. These results demonstrate that OPCs of Crataegus extracts possess stronger radical scavenging activities than flavone derivatives or other constituents. In addition, the oligomeric components are potent inhibitors of HNE. Oral administration of 20 mg/kg/d of the OPC-rich fraction C to rats afforded similar protection against ischemia-reperfusion induced pathologies as treatment with WS-1442 at a dose of 100 mg/kg/d. These observations indicate that radical scavenging and elastase inhibitory activities could indeed be involved in the observed cardioprotective effects of WS-1442, and demonstrate that OPCs are major orally active constituents of WS-1442. Thus, Crataegus extracts used therapeutically for cardiovascular diseases should be analyzed and standardized for their OPC-content.

  19. Analgesic and Anti-Inflammatory Effects of 80% Methanol Extract of Leonotis ocymifolia (Burm.f.) Iwarsson Leaves in Rodent Models

    PubMed Central

    Alemu, Asnakech

    2018-01-01

    Background Pain and inflammation are the major health problems commonly treated with traditional remedies mainly using medicinal plants. Leonotis ocymifolia is one of such medicinal plants used in folkloric medicine of Ethiopia. However, the plant has not been scientifically evaluated. The aim of this study was to evaluate analgesic and anti-inflammatory effects of the 80% methanol leaves extract of Leonotis ocymifolia using rodent models. Method The central and peripheral analgesic effect of the extract at 100, 200, and 400 mg/kg dose levels was evaluated using hot plate and acetic acid induced writhing rodent models, whereas carrageenan induced paw edema and cotton pellet granuloma methods were used to screen anti-inflammatory effect of the extract at the same dose levels. Acute toxicity test was also done. Data were analyzed using one-way ANOVA followed by Tukey's post hoc test and p < 0.05 was considered significant. Results The extract did not produce mortality up to 2000 mg/kg. All tested doses of the extract showed significant analgesic effect with maximum latency response of 62.8% and inhibition of acetic acid induced writhing. Maximum anti-inflammatory effect was recorded at 6 h after induction, with 75.88% reduction in carrageenan induced paw edema. Moreover, all tested doses of extract significantly inhibited the formation of inflammatory exudates and granuloma formation (p < 0.001). Conclusion The study indicated that the extract was safe in mice and it has both analgesic and anti-inflammatory effect in rodent models. PMID:29675050

  20. Pumpkin seed extract: Cell growth inhibition of hyperplastic and cancer cells, independent of steroid hormone receptors.

    PubMed

    Medjakovic, Svjetlana; Hobiger, Stefanie; Ardjomand-Woelkart, Karin; Bucar, Franz; Jungbauer, Alois

    2016-04-01

    Pumpkin seeds have been known in folk medicine as remedy for kidney, bladder and prostate disorders since centuries. Nevertheless, pumpkin research provides insufficient data to back up traditional beliefs of ethnomedical practice. The bioactivity of a hydro-ethanolic extract of pumpkin seeds from the Styrian pumpkin, Cucurbita pepo L. subsp. pepo var. styriaca, was investigated. As pumpkin seed extracts are standardized to cucurbitin, this compound was also tested. Transactivational activity was evaluated for human androgen receptor, estrogen receptor and progesterone receptor with in vitro yeast assays. Cell viability tests with prostate cancer cells, breast cancer cells, colorectal adenocarcinoma cells and a hyperplastic cell line from benign prostate hyperplasia tissue were performed. As model for non-hyperplastic cells, effects on cell viability were tested with a human dermal fibroblast cell line (HDF-5). No transactivational activity was found for human androgen receptor, estrogen receptor and progesterone receptor, for both, extract and cucurbitin. A cell growth inhibition of ~40-50% was observed for all cell lines, with the exception of HDF-5, which showed with ~20% much lower cell growth inhibition. Given the receptor status of some cell lines, a steroid-hormone receptor independent growth inhibiting effect can be assumed. The cell growth inhibition for fast growing cells together with the cell growth inhibition of prostate-, breast- and colon cancer cells corroborates the ethnomedical use of pumpkin seeds for a treatment of benign prostate hyperplasia. Moreover, due to the lack of androgenic activity, pumpkin seed applications can be regarded as safe for the prostate. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Preliminary studies on allelopatic effect of some woody plants on seed germination of rye-grass and tall fescue.

    PubMed

    Arouiee, H; Nazdar, T; Mousavi, A

    2010-11-01

    In order to investigation of allelopathic effects of some ornamental trees on seed germination of rye-grass (Lolium prenne) and tall fescue (Festuca arundinaceae), this experiment was conducted in a randomized complete block design with 3 replicates at the laboratory of Horticultural Sciences Department of Ferdowsi University of Mashhad, during 2008. In this research, we studied the effect of aqueous and hydro-alcoholic extracts of Afghanistan pine (Pinus eldarica), arizona cypress (Cupressus arizonica), black locust (Robinia psedue acacia) and box elder (Acer negundo) leaves that prepared in 1:5 ratio on seed germination percent and rate for two grasses. The results showed that all extracts decreased statistically seed germination in compared to control treatment. The highest germination percentage and germination rate of tested grass detected in control treatment. Hydro-alcoholic extracts of all woody plants (15, 30%) were completely inhibited seed germination of rye-grass and tall fescue. Also aqueous extract of arizona cypress was completely inhibited seed germination of tall fescue and had more inhibitory activity than other aqueous extracts on rye-grass. Between aqueous extracts, the highest and lowest seed germination of rye-grass was found in Afghanistan pine and arizona cypress, respectively.

  2. Antihyperglycemic effect of the traditional Chinese scutellaria-coptis herb couple and its main components in streptozotocin-induced diabetic rats.

    PubMed

    Liu, Sheng-Zi; Deng, Yuan-Xiong; Chen, Bo; Zhang, Xiao-Jie; Shi, Qun-Zhi; Qiu, Xi-Min

    2013-01-30

    Scutellaria-coptis herb couple (SC) is the main herb couple in many traditional Chinese compound formulas used for the treatment of diabetes mellitus, which has been used to treat diabetes mellitus for thousands of years in China. In this study we provide experimental evidence for the clinical use of SC in the treatment of diabetes mellitus. To confirm the anti-diabetic effect of SC extract and its main components, and to explore its mechanism from the effect on intestinal disaccharidases by in vivo and in vitro experiment. SC extract was prepared and the main components (namely berberine and baicalin) contained in the extract were assayed with high performance liquid chromatography (HPLC). And diabetic model rats were induced by intraperitoneal injection of streptozotocin (STZ). After grouped randomly, diabetic rats were administered SC extract, berberine, baicalin, berberine+baicalin, acarbose and vehicle for 33d, respectively. Body weight, food intake, urine volume, urine sugars, fasting plasma glucose and fasting plasma insulin were monitored to evaluate the antidiabetic effects on diabetic rats. Intestinal mucosa homogenate was prepared and the activities of intestinal disaccharidases were assayed. Moreover, oral sucrose tolerance test (OSTT) was performed and the inhibitory effects of SC extract and its main components (berberine and baicalin) on the maltase and sucrase in vitro was evaluated. After the treatment of SC extract and its main components, the body weight and the fasting plasma insulin level were found to be increased while food intake, urine volume, urine sugars and fasting plasma were decreased. OSTT showed that SC extract and its main components could lower the postprandial plasma glucose level of diabetic rats. Furthermore, SC extract and its main components could inhibit the activities of intestinal disaccharidases in diabetic rats, whereas only SC extract and berberine could inhibit the activity of maltase in vitro. According to our present findings, scutellaria-coptis herb couple (SC) possessed potent anti-hyperglycemic effect on STZ-induced diabetic rats. And SC extract and its main components exerted anti-hyperglycemic effect partly via inhibiting the increased activities of intestinal disaccharidases and elevating the level of plasma insulin in diabetic rats induced by STZ. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. Antibacterial activity of GUAVA, Psidium guajava Linnaeus, leaf extracts on diarrhea-causing enteric bacteria isolated from Seabob shrimp, Xiphopenaeus kroyeri (Heller).

    PubMed

    Gonçalves, Flávia A; Andrade Neto, Manoel; Bezerra, José N S; Macrae, Andrew; Sousa, Oscarina Viana de; Fonteles-Filho, Antonio A; Vieira, Regine H S F

    2008-01-01

    Guava leaf tea of Psidium guajava Linnaeus is commonly used as a medicine against gastroenteritis and child diarrhea by those who cannot afford or do not have access to antibiotics. This study screened the antimicrobial effect of essential oils and methanol, hexane, ethyl acetate extracts from guava leaves. The extracts were tested against diarrhea-causing bacteria: Staphylococcus aureus, Salmonella spp. and Escherichia coli. Strains that were screened included isolates from seabob shrimp, Xiphopenaeus kroyeri (Heller) and laboratory-type strains. Of the bacteria tested, Staphylococcus aureus strains were most inhibited by the extracts. The methanol extract showed greatest bacterial inhibition. No statistically significant differences were observed between the tested extract concentrations and their effect. The essential oil extract showed inhibitory activity against S. aureus and Salmonella spp. The strains isolated from the shrimp showed some resistance to commercially available antibiotics. These data support the use of guava leaf-made medicines in diarrhea cases where access to commercial antibiotics is restricted. In conclusion, guava leaf extracts and essential oil are very active against S. aureus, thus making up important potential sources of new antimicrobial compounds.

  4. Development of extract library from indonesian biodiversity: exploration of antibacterial activity of mangrove bruguiera cylindrica leaf extracts

    NASA Astrophysics Data System (ADS)

    Audah, K. A.; Amsyir, J.; Almasyhur, F.; Hapsari, A. M.; Sutanto, H.

    2018-03-01

    Antibacterial drugs derived from natural sources play significant roles in the prevention and treatment of bacterial infections since antibiotics have become less effective against many infectious diseases. Mangroves are very potential natural antibacterial sources among great numbers of wild medicinal plants. Bruguiera cylindrica is one of the many mangroves species which spread along Indonesian coastline. The aim of this study was to explore the antibacterial activity of B. cylindrica wet and dried leaf extracts. The wet extracts study was conducted with three different solvents system (water, ethanol, and n-Hexane) against Escherichia coli and Staphylococcus aureus. While, the dried extracts study was conducted with four different solvents system (water, ethanol, chloroform and n-Hexane) against three types of bacteria, Escherichia coli, Staphylococcus epidermidis and Staphylococcus aureus. The study showed that ethanol was the best solvent for extraction of phenolic and flavonoid. Antibacterial actitivity was measured by zone of inhibition which obtained from agar-disk diffusion method. The widest area of zone of inhibition was showed by wet extracts with ethanol against S. aureus and E. coli are 14.30 and 13.30 mm, respectively. While, the zone of inhibition dried extracts with ethanol against S. aureus, S. epidermidis and E. coli are 9.32, 6.59 and 6.20 mm, respectively. In conclusion, both type of extracts showed significant antibacterial activity against gram-positive bacteria as crude extracts.

  5. The potential of papaya leaf extract in controlling Ganoderma boninense

    NASA Astrophysics Data System (ADS)

    Tay, Z. H.; Chong, K. P.

    2016-06-01

    Basal Stem Rot (BSR) disease causes significant losses to the oil palm industry. Numerous controls have been applied in managing the disease but no conclusive result was reported. This study investigated the antifungal potential of papaya leaf extracts against Ganoderma boninense, the causal pathogen of BSR. Among the five different solvents tested in extraction of compounds from papaya leaf, methanol and acetone gave the highest yield. In vitro antifungal activity of the methanol and acetone extracts were evaluated against G. boninense using agar dilution at four concentrations: 5 mg mL-1, 15 mg mL-1, 30 mg mL-1and 45 mg mL-1. The results indicated a positive correlation between the concentration of leaf extracts and the inhibition of G. boninense. ED50 of methanol and acetone crude extracts were determined to be 32.016 mg mL-1and 65.268 mg mL-1, respectively. The extracts were later semi-purified using solid phase extraction (SPE) and the nine bioactive compounds were identified: decanoic acid, 2-methyl-, Z,Z-10-12-Hexadecadien-1-ol acetate, dinonanoin monocaprylin, 2-chloroethyl oleate, phenol,4-(1-phenylethyl)-, phenol,2,4-bis(1-phenylethyl)-, phenol-2-(1-phenylethyl)-, ethyl iso-allocholate and 1- monolinoleoylglycerol trimethylsilyl ether. The findings suggest that papaya leaf extracts have the ability to inhibit the growth of G. boninense, where a higher concentration of the extract exhibits better inhibition effects.

  6. Medicinal potential from in vivo and acclimatized plants of Cleome rosea.

    PubMed

    Simões, Claudia; De Mattos, José Carlos P; Sabino, Kátia C C; Caldeira-de-Araújo, Adriano; Coelho, Marsen G P; Albarello, Norma; Figueiredo, Solange F L

    2006-02-01

    Methanolic extracts obtained from different organs of Cleome rosea, collected from its natural habitat and from in vitro-propagated plants, were submitted to in vitro biological assays. Inhibition of nitric oxide (NO) production by J774 macrophages and antioxidant effects by protecting the plasmid DNA from the SnCl(2)-induced damage were evaluated. Extracts from the stem of both origins and leaf of natural plants inhibited NO production. The plasmid DNA strand breaks induced by SnCl(2) were reduced by extracts from either leaf or stem of both sources. On the other hand, root extracts did not show any kind of effects on plasmid DNA, and presented significant toxic effects to J774 cells. The results showed that C. rosea presents medicinal potential and that the acclimatization process reduces the plant toxicity both to plasmid DNA and to J774 cells, suggesting the use of biotechnology tools to obtain elite plants as source of botanical material for pharmacological and phytochemical studies.

  7. Lemongrass effects on IL-1beta and IL-6 production by macrophages.

    PubMed

    Sforcin, J M; Amaral, J T; Fernandes, A; Sousa, J P B; Bastos, J K

    2009-01-01

    Cymbopogon citratus has been widely recognised for its ethnobotanical and medicinal usefulness. Its insecticidal, antimicrobial and therapeutic properties have been reported, but little is known about its effect on the immune system. This work aimed to investigate the in vivo effect of a water extract of lemongrass on pro-inflammatory cytokine (IL-1beta and IL-6) production by macrophages of BALB/c mice. The action of lemongrass essential oil on cytokine production by macrophages was also analysed in vitro. The chemical composition of the extract and the oil was also investigated. Treatment of mice with water extract of lemongrass inhibited macrophages to produce IL-1beta but induced IL-6 production by these cells. Lemongrass essential oil inhibited the cytokine production in vitro. Linalool oxide and epoxy-linalool oxide were found to be the major components of lemongrass water extract, and neral and geranial were the major compounds of its essential oil. Taken together, these data suggest an anti-inflammatory action of this natural product.

  8. Anti-inflammatory activity of copao (Eulychnia acida Phil., Cactaceae) fruits.

    PubMed

    Jiménez-Aspee, Felipe; Alberto, Maria Rosa; Quispe, Cristina; Soriano, Maria del Pilar Caramantin; Theoduloz, Cristina; Zampini, Iris Catiana; Isla, Maria Ines; Schmeda-Hirschmann, Guillermo

    2015-06-01

    Copao (Eulychnia acida Phil., Cactaceae) is an endemic species occurring in northern Chile. The edible fruits of this plant are valued for its acidic and refreshing taste. Phenolic-enriched extracts from copao fruit pulp and epicarp, collected in the Elqui and Limari river valleys, were assessed by its in vitro ability to inhibit the pro-inflammatory enzymes lipoxygenase (LOX) and cyclooxygenases (COX-1 and COX-2). At 100 μg/mL, pulp extracts showed better effect towards LOX than epicarp extract, while COX-2 inhibition was observed for both epicarp and pulp samples. In general, the extracts were inactive towards COX-1. A positive correlation was observed between the anti-inflammatory activity and the main phenolic compounds found in this fruit. Copao fruits from the Limari valley, a main place of collection and commercialization, showed major activity, adding evidence on the possible health-beneficial effects of this native Chilean fruit.

  9. Hypotriacylglycerolemic and antiobesity properties of a new fermented tea product obtained by tea-rolling processing of third-crop green tea (Camellia sinensis) leaves and loquat (Eriobotrya japonica) leaves.

    PubMed

    Tanaka, Kazunari; Tamaru, Shizuka; Nishizono, Shoko; Miyata, Yuji; Tamaya, Kei; Matsui, Toshiro; Tanaka, Takashi; Echizen, Yoshie; Ikeda, Ikuo

    2010-01-01

    We manufactured a new fermented tea by tea-rolling processing of third-crop green tea (Camellia sinensis) leaves and loquat (Eriobotrya japonica) leaves. The mixed fermented tea extract inhibited pancreatic lipase activity in vitro, and effectively suppressed postprandial hypertriacylglycerolemia in rats. Rats fed a diet containing 1% freeze-dried fermented tea extract for 4 weeks had a significantly lower liver triacylglycerol concentration and white adipose tissue weight than those fed the control diet lacking fermented tea extract. The activity of fatty acid synthase in hepatic cytosol markedly decreased in the fermented tea extract group as compared to the control group. The serum and liver triacylglycerol- and body fat-lowering effects of the mixed fermented tea extract were strong relative to the level of dietary supplementation. These results suggest that the new fermented tea product exhibited hypotriacylglycerolemic and antiobesity properties through suppression of both liver fatty acid synthesis and postprandial hypertriacylglycerolemia by inhibition of pancreatic lipase.

  10. Chemical Analysis and Study of Phenolics, Antioxidant Activity, and Antibacterial Effect of the Wood and Bark of Maclura tinctoria (L.) D. Don ex Steud.

    PubMed Central

    Lamounier, K. C.; Cunha, L. C. S.; de Morais, S. A. L.; de Aquino, F. J. T.; Chang, R.; do Nascimento, E. A.; de Souza, M. G. M.; Martins, C. H. G.; Cunha, W. R.

    2012-01-01

    Maclura tinctoria (L.) D. Don ex Steud. has one of the highest qualities among the coefficients for Brazilian woods (up to 9.6) and resistance rates equivalent to Indian teak (Tectona grandis). In this study, the macromolecular constituents and total phenols compounds as well as the antioxidant and antibacterial activities of this wood were evaluated. Total phenols and proanthocyanidin levels were higher in wood when compared with bark levels. The antioxidant activity of wood extracts (IC50 = 18.7 μg/mL) was more effective than that of bark extracts (IC50 = 20.9 μg/mL). Wood and bark extracts revealed a high potential for inhibition of aerobic and anaerobic bacteria. The bark extracts were the most active (MIC from 20 to 60 μg/mL). Both antioxidant activity and high potential for bacteria inhibition turn these extracts promising for drug formulations, especially as antibacterial agent. PMID:22454666

  11. Analgesic properties of the aqueous and ethanol extracts of the leaves of Kalanchoe crenata (Crassulaceae).

    PubMed

    Nguelefack, T B; Fotio, A L; Watcho, P; Wansi, S L; Dimo, T; Kamanyi, A

    2004-05-01

    The aqueous and ethanol extracts of the dry leaves of Kalanchoe crenata (300 and 600 mg/kg) were evaluated for their analgesic properties on the pain induced by acetic acid, formalin and heat in mice and by pressure on rats. The ethanol extract of K. crenata at a dose of 600 mg/kg produced an inhibition of 61.13% on pain induced by acetic acid and 50.13% for that induced by formalin. An inhibition of 67.18% was observed on pain induced by heat 45 min after the administration of the extract. The aqueous extract administered at a dose of 600 mg/kg produced a maximum effect of 25% on pain induced by pressure. These activities were similar to those produced by a paracetamol-codeine association, while indomethacin exhibited a protective effect only against the writhing test. Our results suggest that the leaves of K. crenata could be a source of analgesic compounds. Copyright 2004 John Wiley & Sons, Ltd.

  12. Whitening effect of Sophora flavescens extract.

    PubMed

    Shin, Dae Hyun; Cha, Youn Jeong; Joe, Gi Jung; Yang, Kyeong Eun; Jang, Ik-Soon; Kim, Bo Hyeon; Kim, Jung Min

    2013-11-01

    Sophora flavescens Ait. (Leguminosae) has been proposed as a new whitening agent for cosmetics, because it has a strong ability to inhibit tyrosinase, a key enzyme in the formation of melanin. We conducted a study to determine whether ethanol extract of the roots of S. flavescens has the potential for use as a whitening cosmetic agent by investigating its underlying mechanisms of action. To elucidate the mechanism of action of S. flavescens extract, we used DNA microarray technology. We investigated the changes in the mRNA levels of genes associated with the formation and transport of melanosomes. We also identified the formation and transport of melanosomes with immunohistochemistry and immunofluorescence analyses. Finally, the skin-whitening effect in vivo of S. flavescens extract was analyzed on human skin. We found that S. flavescens extract strongly inhibited tyrosinase activity (IC50, 10.4 μg/mL). Results also showed that key proteins involved in the formation and transport of melanosomes were dramatically downregulated at both mRNA and protein level in keratinocytes exposed to S. flavescens extract. In addition, a clinical trial of a cream containing 0.05% S. flavescens extract on human skin showed it had a significant effect on skin whitening by mechanical and visual evaluation (1.14-fold). This study provides important clues toward understanding the effects of S. flavescens extract on the formation and transport of melanosomes. From these results, we suggest that naturally occurring S. flavescens extract might be useful as a new whitening agent in cosmetics.

  13. Antitumor Activities of Rauwolfia vomitoria Extract and Potentiation of Gemcitabine Effects Against Pancreatic Cancer.

    PubMed

    Yu, Jun; Chen, Qi

    2014-05-01

    Pancreatic cancer is one of the most lethal malignancies with very limited treatment option. In the effort of enhancing the effect of the conventional chemotherapeutic drug gemcitabine against pancreatic cancer, we investigatedin vitroandin vivothe anticancer effect of a β-carboline-enriched extract from the plantRauwolfia vomitoria(Rau), either alone or in combination with gemcitabine, in preclinical pancreatic cancer models. Rau induced apoptosis in pancreatic cancer cells in a concentration-dependent manner, and completely inhibited colony formation of PANC-1 cells in soft agar. The combination of Rau and gemcitabine had synergistic effect in inhibiting cell growth with dose reduction effect for gemcitabine. In an orthotopic pancreatic cancer mouse model, PANC-1 tumor growth was significantly suppressed by Rau treatment. Metastasis was inhibited by Rau. Adding Rau to gemcitabine treatment reduced tumor burden and metastatic potential in the gemcitabine non-responsive tumor. These data suggest that Rau possesses anti-pancreatic cancer activity and could improve effect of gemcitabine. © The Author(s) 2014.

  14. Antimicrobial activities of pomelo (Citrus maxima) seed and pulp ethanolic extract

    NASA Astrophysics Data System (ADS)

    Sahlan, Muhamad; Damayanti, Vina; Tristantini, Dewi; Hermansyah, Heri; Wijanarko, Anondho; Olivia, Yuko

    2018-02-01

    Grapefruit (Citrus paradisi) seed extract is generally used as naturopathic medications, supplements, antiseptic and disinfecting agents and also as preservatives in food and cosmetics products. In vitro studies have demonstrated that grapefruit seed extract has anti bacterial properties against a range of gram-positive and gram-negative organisms. Indonesian grapefruit, known as pomelo (C. maxima), has similar characteristics, contents and is under the same genus (Citrus) as grapefruit; however it has not been completely utilized as a preservative. In this work we analyze the antimicrobial activities of ethanolic extract of Indonesian pomelo (C. maxima) seeds and pulp compared to the grapefruit (C. paradisi) seeds and pulp ethanolic extract. Ethanolic extracts of pomelo and grapefruit seeds and pulp are investigated for activities against Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Candida albicans. The level of antimicrobial effects is established using agar diffusion method. Both of the ethanolic do not show any antimicrobial activities against C. albicans. The ethanolic extract of pomelo seeds and pulp used in this research give positive results with growth inhibition effect on B. subtilis, S. aureus and E. coli. The zones of inhibition ranges from 22 - 30 mm in diameter, which is higher to grapefruit seeds and pulp ethanolic extract (17 - 25 mm). Ethanolic extract of pomelo seeds and pulp has an antimicrobial effect, which makes it a natural preparation for use as an alternative preservative for food and cosmetic.

  15. Inhibition of venom serine proteinase and metalloproteinase activities by Renealmia alpinia (Zingiberaceae) extracts: comparison of wild and in vitro propagated plants.

    PubMed

    Patiño, Arley Camilo; Benjumea, Dora María; Pereañez, Jaime Andrés

    2013-09-16

    The plant Renealmia alpinia has been used in folk medicine to treat snakebites in the northwest region of Colombia. In addition, it has been shown to neutralize edema-forming, hemorrhagic, lethal, and defibrin(ogen)ating activities of Bothrops asper venom. In this work, extracts of Renealmia alpinia obtained by micropropagation (in vitro) and from specimens collected in the wild were tested and compared in their capacity to inhibit enzymatic and toxic activities of a snake venom metalloproteinase isolated from Bothrops atrox (Batx-I) venom and a serine proteinase (Cdc SII) from Crotalus durissus cumanensis venom. We have investigated the inhibition capacity of Renealmia alpinia extracts on enzymatic and toxic actions of isolated toxins, a metalloproteinase and a serine proteinase. The protocols investigated included inhibition of proteolytic activity on azocasein, inhibition of proteolytic activity on fibrinogen, inhibition of pro-coagulant activity, inhibition of hemorrhagic activity and inhibition of edema-forming activity. Colorimetric assays detected the presence of terpenoids, flavonoids, tannins and coumarins in Renealmia alpinia extracts. Renealmia alpinia extracts inhibited the enzymatic, hemorrhagic and fibrinogenolytic activities of Batx-I. Extracts also inhibited coagulant, defibrin(ogen)ating and edema-forming activities of Cdc SII. Results highlight that Renealmia alpinia in vitro extract displayed comparable inhibitory capacity on venom proteinases that Renealmia alpinia wild extract. No alteration was observed in the electrophoretic pattern of venom proteinases after incubation with Renealmia alpinia extracts, thus excluding proteolytic degradation or protein denaturation/precipitation as a mechanism of inhibition. Our results showed that Renealmia alpinia wild and in vitro extracts contain compounds that neutralize metallo- and serine proteinases present in snake venoms. The mechanism of inhibition is not related to proteolytic degradation of the enzymes nor protein aggregation, but is likely to depend on molecular interactions of secondary metabolites in the plant with these venom proteinases. Crown Copyright © 2013 Published by Elsevier Ireland Ltd. All rights reserved.

  16. Protection against β-amyloid induced abnormal synaptic function and cell death by Ginkgolide J

    PubMed Central

    Vitolo, Ottavio; Gong, Bing; Cao, Zixuan; Ishii, Hideki; Jaracz, Stanislav; Nakanishi, Koji; Arancio, Ottavio; Dzyuba, Sergei V.; Lefort, Roger; Shelanski, Michael

    2009-01-01

    A new Ginkgo biloba extract P8A (TTL), 70% enriched with terpene trilactones, prevents Aβ1-42 induced inhibition of long-term potentiation in the CA1 region of mouse hippocampal slices. This neuroprotective effect is attributed in large part to ginkgolide J that completely replicates the effect of the extract. Ginkgolide J is also capable of inhibiting cell death of rodent hippocampal neurons caused by Aβ1-42. This beneficial and multi-faceted mode of action of the ginkgolide makes it a new and promising lead in designing therapies against Alzheimer’s disease. PMID:17640772

  17. Effect of the components extracted from the needles of Taxus baccata on protein biosynthesis in a cell-free rat liver system.

    PubMed

    Sredzińska, K; Gajko, A; Gałasiński, W; Gindzieński, A

    1999-01-01

    Various species of Taxus contain taxanes that promote polymerization and stabilization of microtubules. They have been reported as antineoplastic compounds with highly effective chemiotherapeutic application. A decrease in incorporation of the radiolabelled precursors into DNA, RNA and proteins in vivo has been reported too. The preliminary results have shown that also the other compounds present in the aqueous extract from Taxus baccata needles, participate in the inhibition of the protein biosynthesis. The binding site of eEF-2 on the ribosome seems to be the target of this inhibition process.

  18. Allelopathy effect of rice straw on the germination and growth of Echinochloa crus-galli (L.) P. Beauv

    NASA Astrophysics Data System (ADS)

    Anuar, Fitryana Dewi Khairul; Ismail B., S.; Ahmad, Wan Juliana Wan

    2015-09-01

    A study on the effect of extract and decomposing rice straw of MR220 CL2, MR253 and MR263 on the germination and seedling growth of Echinochloa crus-galli has been conducted in the laboratory and greenhouse of Universiti Kebangsaan Malaysia. Three concentrations of aqueous extract (25, 50 and 100 g L-1) and decomposing rice straw (5, 10 and 15 g 500g-1) were used in the experiment. The experimental design used was the Complete Randomized Design (CRD) to evaluate the allelopathic effect of various concentrations of rice straw on various growth parameters of the test plants. All the experiments were carried out in three replications and conducted twice. Results showed that the rice straw extract of all the varieties showed significant effects on the germination and seedling growth of E. crus-galli. Aqueous extract of MR263 showed the greatest reduction on the germination of E.crus-galli compared to the other varieties at 100 g L-1 concentration (26% as compared to control). As the extract concentration of rice straw increased, the radicle length of E. crus-galli was significantly reduced. The radicle and hypocotyl length of E. crus-galli was significantly inhibited by 82.28% and 41.13% respectively at 100 g L-1 concentration of the aqueous extract of MR263. Decomposing rice straw of all rice varieties inhibited germination and all the growth parameters of the test plants. As the concentration of rice debris increased, the radicle length of the test plant decreased for all treatments. Decomposing rice straw of MR220 CL2 showed the greatest inhibitory effect on the growth of E. crus-galli compared to the other varieties. It inhibited the radicle, hypocotyl, fresh and dry weight of the test plants by 63.29%, 62.61%, 83.68% and 82.49% respectively as compared to the control. Therefore, rice straw of MR220 CL2, MR253 and MR263 showed allelopathic characteristics as they inhibited the germination and various growth parameters of E. crus-galli. However, further studies need to be conducted to determine the mode of action of the allelochemicals involved in rice allelopathy.

  19. Inhibition of the transcription factor c-Jun by the MAPK family, and not the NF-κB pathway, suggests that peanut extract has anti-inflammatory properties.

    PubMed

    Catalán, Úrsula; Fernández-Castillejo, Sara; Anglès, Neus; Morelló, Jose Ramón; Yebras, Martí; Solà, Rosa

    2012-10-01

    Tumor necrosis factor-α (TNF-α) is involved in inflammatory responses in atherosclerosis. We propose an in vitro cellular assay to evaluate the anti-inflammatory mechanisms of potential modifiers such as food extracts. In the current model we assessed an anti-inflammatory effect of polyphenol-rich peanut extract in lipopolysaccharide (LPS)-induced THP-1 monocytes. THP-1 monocytes were incubated with peanut extract (5, 25, 50 and 100 μg/mL) consisting of 39% flavonols, 37% flavanols and 24% phenolic acid (or BAY 11-7082 (5 μM) as experiment control) for 1 h and then stimulated with LPS (500 ng/mL) for 4 h. Cytotoxicity was measured as lactate dehydrogenase (LDH) activity release. NF-κB and MAPK family were determined by TransAm kit while TNF-α mRNA levels and its mRNA stability by RT-PCR. Intra- and extracellular TNF-α protein was measured by ELISA, and TNF-α converting enzyme (TACE) activity by a fluorimetric assay. Peanut extract inhibited the maximal LPS-induced extracellular TNF-α protein secretion by 18%, 29% and 47% at 25, 50 and 100 μg/mL, respectively (P<0.05). LPS stimulation revealed that 85% of TNF-α was released extracellularly while 15% remained intracellular. Peanut extract did not modify NF-κB but, instead, reduced c-Jun transcription factor activity (P<0.05), decreased TNF-α mRNA (albeit non-significantly) and had no effect on mRNA stability and TACE activity. Polyphenol-rich peanut extract reduces extracellular TNF-α protein by inhibiting c-Jun transcription factor from MAPK family, suggesting an anti-inflammatory effect. The proposed THP-1 monocyte model could be used to assess food extract impact (site and size effects) on the inflammation pathway. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Phytochemicals and botanical extracts regulate NF-κB and Nrf2/ARE reporter activities in DI TNC1 astrocytes

    PubMed Central

    Ajit, Deepa; Simonyi, Agnes; Li, Runting; Chen, Zihong; Hannink, Mark; Fritsche, Kevin L.; Mossine, Valeri V.; Smith, Robert E.; Dobbs, Thomas K.; Luo, Rensheng; Folk, William R.; Gu, Zezong; Lubahn, Dennis B.; Weisman, Gary A.; Sun, Grace Y.

    2016-01-01

    The increase in oxidative stress and inflammatory responses associated with neurodegenerative diseases has drawn considerable attention towards understanding the transcriptional signaling pathways involving NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) and Nrf2 (Nuclear Factor Erythroid 2-like 2). Our recent studies with immortalized murine microglial cells (BV-2) demonstrated effects of botanical polyphenols to inhibit lipopolysaccharide (LPS)-induced nitric oxide (NO) and enhance Nrf2-mediated antioxidant responses (Sun et al., 2015). In this study, an immortalized rat astrocyte (DI TNC1) cell line expressing a luciferase reporter driven by the NF-κB or the Nrf2/Antioxidant Response Element (ARE) promoter was used to assess regulation of these two pathways by phytochemiscals such as quercetin, rutin, cyanidin, cyanidin-3-O-glucoside, as well as botanical extracts from Withania somnifera (Ashwagandha), Sutherlandia frutescens (Sutherlandia) and Euterpe oleracea (Açaí). Quercetin effectively inhibited LPS-induced NF-κB reporter activity and stimulated Nrf2/ARE reporter activity in DI TNC1 astrocytes. Cyanidin and the glycosides showed similar effects but only at much higher concentrations. All three botanical extracts effectively inhibited LPS-induced NF-κB reporter activity. These extracts were capable of enhancing ARE activity by themselves and further enhanced ARE activity in the presence of LPS. Quercetin and botanical extracts induced Nrf2 and HO-1 protein expression. Interestingly, Ashwagandha extract was more active in inducing Nrf2 and HO-1 expression in DI TNC1 astrocytes as compared to Sutherlandia and Açaí extracts. In summary, this study demonstrated NF-kB and Nrf2/ARE promotor activities in DI TNC1 astrocytes, and further showed differences in ability for specific botanical polyphenols and extracts to down-regulate LPS-induced NF-kB and up-regulate the NRF2/ARE activities in these cells. PMID:27166148

  1. The inhibitory effects of wine phenolics on lysozyme activity against lactic acid bacteria.

    PubMed

    Guzzo, F; Cappello, M S; Azzolini, M; Tosi, E; Zapparoli, G

    2011-08-15

    The lysozyme of hen's egg white is used in winemaking to control spontaneous lactic acid bacteria (LAB). A total of eight LAB strains, isolated from grape must and wine, were used to assess the inhibitory effects of wine phenolics on lysozyme activity. The presence of phenolics, extracted from grape pomace, in growth medium reduced the mortality rate due to the lysozyme activity. This effect was especially clear in the case of strains belonging to Lactobacillus uvarum, Pediococcus parvulus and Oenococccus oeni, which are more sensitive to lysozyme than L. plantarum and L. hilgardii strains. Cell lysis assays carried out on four strains sensitive to lysozyme and Micrococcus lysodeikticus ATCC 4698, used as a reference strain, confirmed the inhibition of grape pomace phenolics on the muramidase. There was no interference from non-flavonoids, flavanols and flavonol compounds, when they were tested individually, on the lysozyme activity against the strains. Anthocyanins extracted from grape skins slightly inhibited the activity only against M. lysodeikticus. However, proanthocyanidins extracted from seed berries, strongly inhibited the lysozyme. In this extract, dimers were the predominant oligomers of flavan-3-ol. The study demonstrated that the effectiveness of lysozyme against LAB in red winemaking is related to the amount of low molecular weight proanthocyanidins that are released when the grapes are macerating. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Antihyperalgesic effect of a Cannabis sativa extract in a rat model of neuropathic pain: mechanisms involved.

    PubMed

    Comelli, Francesca; Giagnoni, Gabriella; Bettoni, Isabella; Colleoni, Mariapia; Costa, Barbara

    2008-08-01

    This study aimed to give a rationale for the employment of phytocannabinoid formulations to treat neuropathic pain. It was found that a controlled cannabis extract, containing multiple cannabinoids, in a defined ratio, and other non-cannabinoid fractions (terpenes and flavonoids) provided better antinociceptive efficacy than the single cannabinoid given alone, when tested in a rat model of neuropathic pain. The results also demonstrated that such an antihyperalgesic effect did not involve the cannabinoid CB1 and CB2 receptors, whereas it was mediated by vanilloid receptors TRPV1. The non-psychoactive compound, cannabidiol, is the only component present at a high level in the extract able to bind to this receptor: thus cannabidiol was the drug responsible for the antinociceptive behaviour observed. In addition, the results showed that after chronic oral treatment with cannabis extract the hepatic total content of cytochrome P450 was strongly inhibited as well as the intestinal P-glycoprotein activity. It is suggested that the inhibition of hepatic metabolism determined an increased bioavailability of cannabidiol resulting in a greater effect. However, in the light of the well known antioxidant and antiinflammatory properties of terpenes and flavonoids which could significantly contribute to the therapeutic effects, it cannot be excluded that the synergism observed might be achieved also in the absence of the cytochrome P450 inhibition.

  3. Antitumor effects of Marginisporum crassissimum (Rhodophyceae), a marine red alga.

    PubMed

    Hiroishi, S; Sugie, K; Yoshida, T; Morimoto, J; Taniguchi, Y; Imai, S; Kurebayashi, J

    2001-06-26

    Marginisporum crassissimum (Yendo) Ganesan, a marine red alga found in the ordinal coastal sea around Japan, revealed antitumor (antimetastatic) effects in vitro and in vivo. In in vitro experiments, extracts of this alga inhibited not only the growth of several tumor cell lines, such as B16-BL6 (a mouse melanoma cell line), JYG-B (a mouse mammary carcinoma cell line) and KPL-1 (a human mammary carcinoma cell line), but also invasion of B16-BL6 cells in a culture system. In in vivo experiments, the lung metastasis of B16-BL6 cells inoculated to the tail vein of B57BL/6J mice was inhibited by intraperitoneal administration of an extract from the alga. In addition, life prolongation of B57BL/6J mice inoculated with B16-BL6 cells was also observed by the intraperitoneal administration of the extract. An effective substance showing B16-BL6 growth inhibition in vitro was partially purified by filtration and hydrophobic column chromatography, and was revealed to be sensitive to trypsin-digestion and heat-treatment. The molecular weight of the substance was greater than 100 kDa. This is the first study demonstrating antitumor (antimetastatic) effects of M. crassissimum.

  4. [Effects of bryophytes in dark coniferous forest of Changbai Mountains on three conifers seed germination and seedling growth].

    PubMed

    Lin, Fei; Hao, Zhanqing; Ye, Ji; Jiang, Ping

    2006-08-01

    This paper studied the effects of Hylocomium splendens and Rhytidiadelphus triquetrus, the main bryophytes in dark coniferous forests of Changbai Mountains, on the seed germination and seedling growth of Pinus koraiensis, Picea koraiensis and Larix olgensis. The results indicated that at definite concentrations, the water extract of H. splendens inhibited Picea koraiensis seed germination, while that of R. triquetrus promoted it. Although the water extracts of the two bryophytes had no obvious effects on the seed germination of Picea koraiensis and Larix olgensis, they expedited the occurrence of the tree species' daily germination peak. The water extracts of test bryophytes inhibited the seedling growth of P. koraiensis and Picea koraiensis, but promoted that of Larix olgensis. The living shoots of the two bryophytes had no obvious effects on the seed germination of Picea koraiensis and Larix olgensis, but delayed the daily germination peak of Picea koraiensis while promoted that of Larix olgensis, andthe killed shoots inhibited the seed germination of all test tree species. Living shoots in larger amounts promoted the seedling growth of Picea koraiensis and Larix olgensis, but killed shoots were inadverse.

  5. Cancer chemopreventive and anticancer evaluation of extracts and fractions from marine macro- and microorganisms collected from Twilight Zone waters around Guam.

    PubMed

    Schupp, Peter J; Kohlert-Schupp, Claudia; Whitefield, Susanna; Engemann, Anna; Rohde, Sven; Hemscheidt, Thomas; Pezzuto, John M; Kondratyuk, Tamara P; Park, Eun-Jung; Marler, Laura; Rostama, Bahman; Wright, Anthony D

    2009-12-01

    The cancer chemopreventive and cytotoxic properties of 50 extracts derived from Twilight Zone (50-150 m) sponges, gorgonians and associated bacteria, together with 15 extracts from shallow water hard corals, as well as 16 fractions derived from the methanol solubles of the Twilight Zone sponge Suberea sp, were assessed in a series of bioassays. These assays included: Induction of quinone reductase (QR), inhibition of TNF-alpha activated nuclear factor kappa B (NFkappaB), inhibition of aromatase, interaction with retinoid X receptor (RXR), inhibition of nitric oxide (NO) synthase, inhibition 2,2-diphenyl-1-picrylhydrazyl radical scavenging (DPPH), and inhibition of HL-60 and MCF-7 cell proliferation. The results of these assays showed that at least 10 extracts and five fractions inhibited NFkappaB by greater than 60%, two extracts and two fractions inhibited DPPH by more than 50%, nine extracts and two fractions affected the survival of HL-60 cells, no extracts or fractions affected RXR, three extracts and six fractions affected quinone reductase (QR), three extracts and 12 fractions significantly inhibited aromatase, four extracts and five fractions inhibited nitric oxide synthase, and one extract and no fractions inhibited the growth of MCF-7 cells by more than 95%. These data revealed the tested samples to have many and varied activities, making them, as shown with the extract of the Suberea species, useful starting points for further fractionation and purification. Moreover, the large number of samples demonstrating activity in only one or sometimes two assays accentuates the potential of the Twilight Zone, as a largely unexplored habitat, for the discovery of selectively bioactive compounds. The overall high hit rate in many of the employed assays is considered to be a significant finding in terms of "normal" hit rates associated with similar samples from shallower depths.

  6. Evaluation of the effect of Cassia surattensis Burm. f., flower methanolic extract on the growth and morphology of Aspergillus niger.

    PubMed

    Sumathy, V; Zakaria, Z; Chen, Y; Latha, L Y; Jothy, S L; Vijayarathna, S; Sasidharan, S

    2013-06-01

    Cassia (C.) surattensis Burm. f. (Leguminosae), a medicinal herb native to tropical equatorial Asia, was commonly used in folk medicine to treat various diseases. The aim of the present study is to investigate the effects of methanolic flower extract of C. surattensis against Aspergillus (A.) niger. Antifungal activity of C. surattensis flower extract was studied by using agar disc diffusion method, broth dilution method, percentage of hyphal growth inhibition and scanning electron microscopy (SEM) observation. The extract exhibited good antifungal activity with zone of inhibition 15 mm and minimum inhibitory concentration (MIC) 6.25 mg/ml. The flower extract exhibited considerable antifungal activity against A. niger with a IC50 of 2.49 mg/ml on the hyphal growth. In scanning electron microscopy (SEM) squashed, collapsed, empty and deformation of hyphae were the major changes observed. Shrunken conidiophores were the obvious alteration on the spores. Morphological alterations observed on A. niger caused by the flower extract could be the contribution of chemical compounds present in the Cassia flower. Phytochemical screening reveals the presence of carbohydrate, tannins, saponins and phenols in the extract. The amount of tannin, total phenolics and flavonoids were estimated to be 55.14 ± 3.11 mg/g, 349.87 ± 5.41 mg/g gallic acid equivalent and 89.64 ± 3.21 mg/g catechin equivalent respectively. C. surattensis flower extract potently inhibited the growth of A. niger and are, therefore, excellent candidates for use as the lead compounds for the development of novel antifungal agents.

  7. Immunosuppressive phenolic compounds from Hydnora abyssinica A. Braun.

    PubMed

    Koko, Waleed S; Mesaik, Mohamed A; Ranjitt, Rosa; Galal, Mohamed; Choudhary, Muhammad I

    2015-11-09

    Hydnora abyssinica (HA) A. Braun is an endemic Sudanese medicinal plant traditionally used as anti-inflammatory and against many infectious diseases. However, it proved to be very rich in phenols and tannins, so the present study was undertaken to investigate the immunomodulatory potential of the whole plant ethanolic extract and its isolated compounds. Lymphocyte proliferation, chemiluminescence and superoxide reduction assays were used for immunomodulatory evaluation. While, MTT (3-(4, 5-dimethylthazol-2-yl)-2, 5-diphenyl tetrazonium bromide) test was performed on 3 T3 cell line clone in order to evaluate the cytoxicity effect of the extracts and isolated compounds of phenolic derivatives which were carried out by chromotographic techniques. Catechin, (1), tyrosol (2) and benzoic acid, 3, 4, dihydroxy-, ethyl ester (3) compounds were isolated from HA ethanolic extract which revealed potent immunosuppressive activity against reactive oxygen species from both polymorph nuclear cells (PMNs) (45-90 % inhibition) and mononuclear cells (MNCs) (30 -65 % inhibition), T lymphocyte proliferation assay (70-93 % inhibition) as well as potent inhibitory effect against superoxide production (42-71 % inhibition) at concentrations of 6.25-100 μg/mL. Catechin (1) was found the most potent immunosuppressive agent among all constituents examined. These results can support the traditional uses of H. abyssinica extracts as anti-inflammatory and immunosuppressive and further investigations of the mode of action and other pharmacological studies are highly desirable.

  8. Ramalina capitata (Ach.) Nyl. acetone extract: HPLC analysis, genotoxicity, cholinesterase, antioxidant and antibacterial activity.

    PubMed

    Zrnzevic, Ivana; Stankovic, Miroslava; Stankov Jovanovic, Vesna; Mitic, Violeta; Dordevic, Aleksandra; Zlatanovic, Ivana; Stojanovic, Gordana

    2017-01-01

    In the present investigation, effects of Ramalina capitata acetone extract on micronucleus distribution on human lymphocytes, on cholinesterase activity and antioxidant activity (by the CUPRAC method) were examined, for the first time as well as its HPLC profile. Additionally, total phenolic compounds (TPC), antioxidant properties (estimated via DPPH, ABTS and TRP assays) and antibacterial activity were determined. The predominant phenolic compounds in this extract were evernic, everninic and obtusatic acids. Acetone extract of R. capitata at concentration of 2 μg mL -1 decreased a frequency of micronuclei (MN) for 14.8 %. The extract reduces the concentration of DPPH and ABTS radicals for 21.2 and 36.1 % (respectively). Values for total reducing power (TRP) and cupric reducing capacity (CUPRAC) were 0.4624 ± 0.1064 μg ascorbic acid equivalents (AAE) per mg of dry extract, and 6.1176 ± 0.2964 μg Trolox equivalents (TE) per mg of dry extract, respectively. The total phenol content was 670.6376 ± 66.554 μg galic acid equivalents (GAE) per mg of dry extract. Tested extract at concentration of 2 mg mL -1 exhibited inhibition effect (5.2 %) on pooled human serum cholinesterase. The antimicrobial assay showed that acetone extract had inhibition effect towards Gram-positive strains. The results of manifested antioxidant activity, reducing the number of micronuclei in human lymphocytes, and antibacterial activity recommends R. capitata extract for further in vivo studies.

  9. In vitro and in vivo assessment of meadowsweet (Filipendula ulmaria) as anti-inflammatory agent.

    PubMed

    Katanić, Jelena; Boroja, Tatjana; Mihailović, Vladimir; Nikles, Stefanie; Pan, San-Po; Rosić, Gvozden; Selaković, Dragica; Joksimović, Jovana; Mitrović, Slobodanka; Bauer, Rudolf

    2016-12-04

    Meadowsweet (Filipendula ulmaria (L.) Maxim, Rosaceae) has been traditionally used in most European countries for the treatment of inflammatory diseases due to its antipyretic, analgesic, astringent, and anti-rheumatic properties. However, there is little scientific evidence on F. ulmaria anti-inflammatory effects regarding its impact on cyclooxygenases enzymatic activity and in vivo assessment of anti-inflammatory potential. This study aims to reveal the anti-inflammatory activity of methanolic extracts from the aerial parts (FUA) and roots (FUR) of F. ulmaria, both in in vitro and in vivo conditions. The characteristic phenolic compounds in F. ulmaria extracts were monitored via high performance thin layer chromatography (HPTLC). The in vitro anti-inflammatory activity of F. ulmaria extracts was evaluated using cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) enzyme assays, and an assay for determining COX-2 gene expression. The in vivo anti-inflammatory effect of F. ulmaria extracts was determined in two doses (100 and 200 mg/kg b.w.) with hot plate test and carrageenan-induced paw edema test in rats. Inflammation was also evaluated by histopathological and immunohistochemical analysis. FUA extract showed the presence of rutoside, spiraeoside, and isoquercitrin. Both F. ulmaria extracts at a concentration of 50μg/mL were able to inhibit COX-1 and -2 enzyme activities, whereby FUA extract (62.84% and 46.43% inhibition, respectively) was double as effective as the root extract (32.11% and 20.20%, respectively). Extracts hardly inhibited the level of COX-2 gene expression in THP-1 cells at a concentration of 25μg/mL (10.19% inhibition by FUA and 8.54% by FUR). In the hot plate test, both extracts in two doses (100 and 200mg/kg b.w.), exhibited an increase in latency time when compared with the control group (p<0.05). In the carrageenan-induced acute inflammation test, FUA at doses of 100 and 200mg/kg b.w., and FUR at 200mg/kg, were able to significantly reduce the mean maximal swelling of rat paw until 6h of treatment. Indomethacin, FUA, and FUR extracts significantly decreased inflammation score and this effect was more pronounced after 24h, compared to the control group (p<0.05). The observed results of in vitro and, for the first time, in vivo anti-inflammatory activity of meadowsweet extracts, provide support of the traditional use of this plant in the treatment of different inflammatory conditions. Further investigation of the anti-inflammatory compounds could reveal the mechanism of anti-inflammatory action of these extracts. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. In vitro activity of natural and chemical products on sporulation of Eimeria species oocysts of chickens.

    PubMed

    Gadelhaq, Sahar M; Arafa, Waleed M; Abolhadid, Shawky M

    2018-02-15

    This study was designed to investigate the ability of two herbal extracts and different chemical substances to inhibit or disrupt sporulation of Eimeria species oocysts of the chickens. The two herbal extracts were Allium sativum (garlic) and Moringa olifiera while the chemical substances included commercial disinfectants and diclazuril. Field isolates of Eimeria oocysts were propagated in chickens to obtain a continuous source of oocysts. The collected unsporulated oocysts (10 5 oocysts/5 ml) were dispensed into 5 cm Petri dish. Three replicates were used for each treatment. The treated oocysts were incubated for 48 h at 25-29 °C and 80% relative humidity. The results showed that herbal extracts, the commercial recommended dose of Dettol, TH4, Phenol, Virkon ® S, and Diclazuril 20% have no effect on the sporulation. While Sodium hypochlorite showed a significant degree of sporulation inhibition reached to 49.67%. Moreover, 70% ethanol, and 10% formalin showed 100% sporulation inhibition. It was concluded that 70% ethanol and 10% formalin are the most effective methods to inhibit Eimeria species sporulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Evaluation of the calcium-antagonist, antidiarrhoeic and central nervous system activities of Baccharis serraefolia.

    PubMed

    Tortoriello, J; Aguilar-Santamaría, L

    1996-09-01

    Baccharis serraefolia is a widely used plant to treat diarrhoea in Mexican traditional medicine. Although the methanolic extract of this plant has shown an important dose-dependent spasmolytic activity, its underlying mechanism has not been studied. In the present work, the methanolic extract of B. serraefolia significantly delayed the onset of tonic seizures induced by strychnine and pentylenetetrazol; besides, it diminished the death rate and number of animals that exhibited convulsions. It produced potentiation of the hypnotic effect of pentobarbital. Oral administration produced an inhibition of gastrointestinal transit in mice as effective as that produced by loperamide. As to the effect on smooth muscles, the active extract produced an inhibition of contraction induced electrically, which could not be reversed by naloxone. The calcium concentration-contraction curve showed a rightward displacement when the extract was added to isolated guinea pig ileum depolarized with high K+ and cumulative concentrations of Ca2+. The results suggest that the methanolic extract does not interact with classical opiate receptors and its effects, at least that produced on smooth muscle, may be due to a probable interference with calcium influx and/or calcium release from an intra-cellular store.

  12. Anti-influenza virus activity of extracts from the stems of Jatropha multifida Linn. collected in Myanmar.

    PubMed

    Shoji, Masaki; Woo, So-Yeun; Masuda, Aki; Win, Nwet Nwet; Ngwe, Hla; Takahashi, Etsuhisa; Kido, Hiroshi; Morita, Hiroyuki; Ito, Takuya; Kuzuhara, Takashi

    2017-02-07

    To contribute to the development of novel anti-influenza drugs, we investigated the anti-influenza activity of crude extracts from 118 medicinal plants collected in Myanmar. We discovered that extract from the stems of Jatropha multifida Linn. showed anti-influenza activity. J. multifida has been used in traditional medicine for the treatment of various diseases, and the stem has been reported to possess antimicrobial, antimalarial, and antitumor activities. However, the anti-influenza activity of this extract has not yet been investigated. We prepared water (H 2 O), ethyl acetate (EtOAc), n-hexane (Hex), and chloroform (CHCl 3 ) extracts from the stems of J. multifida collected in Myanmar, and examined the survival of Madin-Darby canine kidney (MDCK) cells infected with the influenza A (H1N1) virus, and the inhibitory effects of these crude extracts on influenza A viral infection and growth in MDCK cells. The H 2 O extracts from the stems of J. multifida promoted the survival of MDCK cells infected with the influenza A H1N1 virus. The EtOAc and CHCl 3 extracts resulted in similar, but weaker, effects. The H 2 O, EtOAc, and CHCl 3 extracts from the stems of J. multifida inhibited influenza A virus H1N1 infection; the H 2 O extract possessed the strongest inhibitory effect on influenza infection in MDCK cells. The EtOAc, Hex, and CHCl 3 extracts all inhibited the growth of influenza A H1N1 virus, and the CHCl 3 extract demonstrated the strongest activity in MDCK cells. The H 2 O or CHCl 3 extracts from the stems of J. multifida collected in Myanmar demonstrated the strongest inhibition of influenza A H1N1 viral infection or growth in MDCK cells, respectively. These results indicated that the stems of J. multifida could be regarded as an anti-influenza herbal medicine as well as a potential crude drug source for the development of anti-influenza compounds.

  13. Effect of Psidium cattleianum leaf extract on Streptococcus mutans viability, protein expression and acid production.

    PubMed

    Brighenti, F L; Luppens, S B I; Delbem, A C B; Deng, D M; Hoogenkamp, M A; Gaetti-Jardim, E; Dekker, H L; Crielaard, W; ten Cate, J M

    2008-01-01

    Plants naturally produce secondary metabolites that can be used as antimicrobials. The aim of this study was to assess the effects of Psidium cattleianum leaf extract on Streptococcus mutans. The extract (100%) was obtained by decoction of 100 g of leaves in 600 ml of deionized water. To assess killing, S. mutans biofilms were treated with water (negative control) or various extract dilutions [100, 50, 25% (v/v) in water] for 5 or 60 min. To evaluate the effect on protein expression, biofilms were exposed to water or 1.6% (v/v) extract for 120 min, proteins were extracted and submitted to 2-dimensional difference gel electrophoresis. Differentially expressed proteins were identified by mass spectrometry. The effect of 1.6% (v/v) extract on acid production was determined by pH measurements and compared to a water control. Viability was similar after 5 min of treatment with the 100% extract or 60 min with the 50% extract (about 0.03% survival). There were no differences in viability between the biofilms exposed to the 25 or 50% extract after 60 min of treatment (about 0.02% survival). Treatment with the 1.6% extract significantly changed protein expression. The abundance of 24 spots was decreased compared to water (p < 0.05). The extract significantly inhibited acid production (p < 0.05). It is concluded that P. cattleianum leaf extract kills S. mutans grown in biofilms when applied at high concentrations. At low concentrations it inhibits S. mutans acid production and reduces the expression of proteins involved in general metabolism, glycolysis and lactic acid production. (c) 2008 S. Karger AG, Basel

  14. Anti-cholinesterase activity of the standardized extract of Syzygium aromaticum L.

    PubMed

    Dalai, Manoj K; Bhadra, Santanu; Chaudhary, Sushil K; Bandyopadhyay, Arun; Mukherjee, Pulok K

    2014-04-01

    Clove (Syzygium aromaticum) is a well-known culinary spice with strong aroma; contains a high amount of oil known as clove oil. The major phyto-constituent of the clove oil is eugenol. Clove and its oil possess various medicinal uses in indigenous medicine as an antiseptic, anti-oxidant, analgesic and neuroprotective properties. Thus, it draws much attention among researchers from pharmaceutical, food and cosmetic industries. The aim of the present study was to determine the anti-cholinesterase activity of the methanol extract of clove, its oil and eugenol. In vitro anti-cholinesterase activity of S. aromaticum was performed by a thin layer chromatography bio autography, 96 well micro titer plate and kinetic methods. Reverse phase high performance liquid chromatography (RP-HPLC) analysis was carried out to identify the biomarker compound eugenol in clove oil. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition study revealed that eugenol possess better inhibition of the enzymes than extract and oil. Clove extract, its oil and eugenol showed better inhibition of AChE than BChE. Polyphenolic compound eugenol was detected through RP-HPLC analysis. The content of eugenol in essential oil was found to be 0.5 μg/ml. Kinetic analysis of the cholinesterase inhibition study of the extract; clove oil and eugenol have shown that they possess mixed type of inhibition for AChE and non-competitive type of inhibition for BChE. These results might be useful in explaining the effect of clove as anti-cholinesterase agent for the management of cognitive ailments like Alzheimer's disease.

  15. In vitro and cellular activities of the selected fruits residues for skin aging treatment.

    PubMed

    Lourith, Nattaya; Kanlayavattanakul, Mayuree; Chaikul, Puxvadee; Chansriniyom, Chaisak; Bunwatcharaphansakun, Pichaporn

    2017-05-01

    Peel extracts of litchi and rambutan, and that of tamarind seed coat were investigated in relation to their utility in skin-aging treatments. Standardized extracts of tamarind were significantly (p < 0.05) more efficient at O2 •- scavenging (IC50 = 27.44 ± 0.09) than those of litchi and rambutan (IC50 = 29.57 ± 0.30 and 39.49 ± 0.52 μg/ml, respectively) and the quercetin standard (IC50 = 31.88 ± 0.15 μg/ml). Litchi extract proved significantly (p < 0.05) more effective for elastase and collagenase inhibition (88.29 ± 0.25% and 79.46 ± 0.92%, respectively) than tamarind (35.43 ± 0.68% and 57.69 ± 5.97%) or rambutan (31.08 ± 0.38% and 53.99 ± 6.18%). All extracts were safe to human skin fibroblasts and inhibit MMP-2, with litchi extract showing significantly (p < 0.01) enhanced inhibition over the standard, vitamin C (23.75 ± 2.74% and 10.42 ± 5.91% at 0.05 mg/ml, respectively). Extracts suppress melanin production in B16F10 melanoma cells through inhibition of tyrosinase and TRP-2, with litchi extract being the most potent, even more so than kojic acid (standard). These results highlight the potential for adding value to agro-industrial waste, as the basis for the sustainable production of innovative, safe, anti-aging cosmetic products.

  16. Pancreatic lipase inhibitory constituents from Morus alba leaves and optimization for extraction conditions.

    PubMed

    Jeong, Ji Yeon; Jo, Yang Hee; Kim, Seon Beom; Liu, Qing; Lee, Jin Woo; Mo, Eun Jin; Lee, Ki Yong; Hwang, Bang Yeon; Lee, Mi Kyeong

    2015-06-01

    The leaves of Morus alba (Moraceae) have been traditionally used for the treatment of metabolic diseases including diabetes and hyperlipidemia. Thus, inhibitory effect of M. alba leaves on pancreatic lipase and their active constituents were investigated in this study. Twenty phenolic compounds including ten flavonoids, eight benzofurans, one stilbene and one chalcones were isolated from the leaves of M. alba. Among the isolated compounds, morachalcone A (20) exerted strong pancreatic lipase inhibition with IC50 value of 6.2 μM. Other phenolic compounds containing a prenyl group showed moderate pancreatic lipase inhibition with IC50 value of <50 μM. Next, extraction conditions with maximum pancreatic lipase inhibition and phenolic content were optimized using response surface methodology with three-level-three-factor Box-Behnken design. Our results suggested the optimized extraction condition for maximum pancreatic lipase inhibition and phenolic content as ethanol concentration of 74.9%; temperature 57.4 °C and sample/solvent ratio, 1/10. The pancreatic lipase inhibition and total phenolic content under optimized condition were found to be 58.5% and 26.2 μg GAE (gallic acid equivalent)/mg extract, respectively, which were well matched with the predicted value. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Herbal extracts of Tribulus terrestris and Bergenia ligulata inhibit growth of calcium oxalate monohydrate crystals in vitro

    NASA Astrophysics Data System (ADS)

    Joshi, V. S.; Parekh, B. B.; Joshi, M. J.; Vaidya, A. B.

    2005-02-01

    A large number of people in this world are suffering from urinary stone problem. Calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) containing stones (calculi) are commonly found. In the present study, COM crystals were grown by a double diffusion gel growth technique using U-tubes. The gel was prepared from hydrated sodium metasilicate solution. The gel framework acts like a three-dimensional crucible in which the crystal nuclei are delicately held in the position of their formation, and nutrients are supplied for the growth. This technique can be utilized as a simplified screening static model to study the growth, inhibition and dissolution of urinary stones in vitro. The action of putative litholytic medicinal plants, Tribulus terrestris Linn. ( T.t) and Bergenia ligulata Linn. ( B.l.), has been studied in the growth of COM crystals. Tribulus terrestris and Bergenia ligulata are commonly used as herbal medicines for urinary calculi in India. To verify the inhibitive effect, aqueous extracts of Tribulus terrestris and Bergenia ligulata were added along with the supernatant solutions. The growth was measured and compared, with and without the aqueous extracts. Inhibition of COM crystal growth was observed in the herbal extracts. Maximum inhibition was observed in Bergenia ligulata followed by Tribulus terrestris. The results are discussed.

  18. In vitro Inhibitory Effects of Andrographis paniculata, Gynura procumbens, Ficus deltoidea, and Curcuma xanthorrhiza Extracts and Constituents on Human Liver Glucuronidation Activity.

    PubMed

    Husni, Zulhilmi; Ismail, Sabariah; Zulkiffli, Mohd Halimhilmi; Afandi, Atiqah; Haron, Munirah

    2017-07-01

    Andrographis paniculata , Gynura procumbens , Ficus deltoidea and Curcuma xanthorrhiza are commonly consumed as herbal medicines. However their effects on human liver glucuronidation activity are not yet evaluated. In this study, we evaluate the inhibitory Effects of Andrographis paniculata, Gynura procumbens, Ficus deltoidea and Curcuma xanthorrhiza extracts and their constituents on human liver glucuronidation activity. Herbal extracts (aqueous, methanolic and ethanolic extracts) and their constituents were incubated with human liver microsomes with the addition of UDPGA to initiate the reaction. Working concentrations of herbal extracts and their constituents ranged from 10 μg/mL to 1000 μg/mL and 10 μM to 300 μM respectively. IC50 was determined by monitoring the decrement of glucuronidation activity with the increment of herbal extracts or phytochemical constituent's concentrations. All herbal extracts inhibited human liver glucuronidation activity in range of 34.69 μg/mL to 398.10 μg/mL whereas for the constituents, only xanthorrhizol and curcumin (constituents of Curcuma xanthorrhiza ) inhibited human liver glucuronidation activity with IC50 of 538.50 and 32.26 μM respectively. In the present study, we have proved the capabilities of Andrographis paniculata , Gynura procumbens , Ficus deltoidea and Curcuma xanthorrhiza to interfere with in vitro glucuronidation process in human liver microsomes. This study documented the capabilities of Andrographis paniculata , Gynura procumbens , Ficus deltoidea and Curcuma xanthorrhiza to inhibit human liver glucuronidation activity which may affect the metabolism of therapeutic drugs or hazardous toxicants that follow the same glucuronidation pathway. Abbreviations used: UGT: Uridine 5'-diphospho-glucuronosyltransferase; 4-MU: 4-methylumbelliferone; IC50: Half Maximal Inhibitory Concentration; Km: Michaelis constant; Vmax: Maximum velocity.

  19. In vitro Inhibitory Effects of Andrographis paniculata, Gynura procumbens, Ficus deltoidea, and Curcuma xanthorrhiza Extracts and Constituents on Human Liver Glucuronidation Activity

    PubMed Central

    Husni, Zulhilmi; Ismail, Sabariah; Zulkiffli, Mohd Halimhilmi; Afandi, Atiqah; Haron, Munirah

    2017-01-01

    Background: Andrographis paniculata, Gynura procumbens, Ficus deltoidea and Curcuma xanthorrhiza are commonly consumed as herbal medicines. However their effects on human liver glucuronidation activity are not yet evaluated. Objective: In this study, we evaluate the inhibitory Effects of Andrographis paniculata, Gynura procumbens, Ficus deltoidea and Curcuma xanthorrhiza extracts and their constituents on human liver glucuronidation activity. Materials and Methods: Herbal extracts (aqueous, methanolic and ethanolic extracts) and their constituents were incubated with human liver microsomes with the addition of UDPGA to initiate the reaction. Working concentrations of herbal extracts and their constituents ranged from 10 μg/mL to 1000 μg/mL and 10 μM to 300 μM respectively. IC50 was determined by monitoring the decrement of glucuronidation activity with the increment of herbal extracts or phytochemical constituent's concentrations. Results: All herbal extracts inhibited human liver glucuronidation activity in range of 34.69 μg/mL to 398.10 μg/mL whereas for the constituents, only xanthorrhizol and curcumin (constituents of Curcuma xanthorrhiza) inhibited human liver glucuronidation activity with IC50 of 538.50 and 32.26 μM respectively. Conclusion: In the present study, we have proved the capabilities of Andrographis paniculata, Gynura procumbens, Ficus deltoidea and Curcuma xanthorrhiza to interfere with in vitro glucuronidation process in human liver microsomes. SUMMARY This study documented the capabilities of Andrographis paniculata, Gynura procumbens, Ficus deltoidea and Curcuma xanthorrhiza to inhibit human liver glucuronidation activity which may affect the metabolism of therapeutic drugs or hazardous toxicants that follow the same glucuronidation pathway. Abbreviations used: UGT: Uridine 5’-diphospho-glucuronosyltransferase; 4-MU: 4-methylumbelliferone; IC50: Half Maximal Inhibitory Concentration; Km: Michaelis constant; Vmax: Maximum velocity. PMID:28808386

  20. The effect of sulforaphane on histone deacetylase activity in keratinocytes: differences between in vitro and in vivo analyses

    PubMed Central

    Dickinson, Sally E.; Rusche, Jadrian J.; Bec, Sergiu L.; Horn, David J.; Janda, Jaroslav; Rim, So Hyun; Smith, Catharine L.; Bowden, G. Timothy

    2015-01-01

    Sulforaphane is a natural product found in broccoli which is known to exert many different molecular effects in the cell, including inhibition of histone deacetylase (HDAC) enzymes. Here we examine for the first time the potential for sulforaphane to inhibit HDACs in HaCaT keratinocytes and compare our results with those found using HCT116 colon cancer cells. Significant inhibition of HDAC activity in HCT116 nuclear extracts required prolonged exposure to sulforaphane in the presence of serum. Under the same conditions HaCaT nuclear extracts did not exhibit reduced HDAC activity with sulforaphane treatment. Both cell types displayed down-regulation of HDAC protein levels by sulforaphane treatment. Despite these reductions in HDAC family member protein levels, acetylation of marker proteins (acetylated Histone H3, H4 and tubulin) was decreased by sulforaphane treatment. Timecourse analysis revealed that HDAC6, HDAC3 and acetylated histone H3 protein levels are significantly inhibited as early as 6hr into sulforaphane treatment. Transcript levels of HDAC6 are also suppressed after 48hr of treatment. These results suggest that HDAC activity noted in nuclear extracts is not always translated as expected to target protein acetylation patterns, despite dramatic inhibition of some HDAC protein levels. In addition, our data suggest that keratinocytes are at least partially resistant to the nuclear HDAC inhibitory effects of sulforaphane which is exhibited in HCT116 and other cells. PMID:25307283

Top