Glauser, Gaétan; Grund, Baptiste; Gassner, Anne-Laure; Menin, Laure; Henry, Hugues; Bromirski, Maciej; Schütz, Frédéric; McMullen, Justin; Rochat, Bertrand
2016-03-15
A paradigm shift is underway in the field of quantitative liquid chromatography-mass spectrometry (LC-MS) analysis thanks to the arrival of recent high-resolution mass spectrometers (HRMS). The capability of HRMS to perform sensitive and reliable quantifications of a large variety of analytes in HR-full scan mode is showing that it is now realistic to perform quantitative and qualitative analysis with the same instrument. Moreover, HR-full scan acquisition offers a global view of sample extracts and allows retrospective investigations as virtually all ionized compounds are detected with a high sensitivity. In time, the versatility of HRMS together with the increasing need for relative quantification of hundreds of endogenous metabolites should promote a shift from triple-quadrupole MS to HRMS. However, a current "pitfall" in quantitative LC-HRMS analysis is the lack of HRMS-specific guidance for validated quantitative analyses. Indeed, false positive and false negative HRMS detections are rare, albeit possible, if inadequate parameters are used. Here, we investigated two key parameters for the validation of LC-HRMS quantitative analyses: the mass accuracy (MA) and the mass-extraction-window (MEW) that is used to construct the extracted-ion-chromatograms. We propose MA-parameters, graphs, and equations to calculate rational MEW width for the validation of quantitative LC-HRMS methods. MA measurements were performed on four different LC-HRMS platforms. Experimentally determined MEW values ranged between 5.6 and 16.5 ppm and depended on the HRMS platform, its working environment, the calibration procedure, and the analyte considered. The proposed procedure provides a fit-for-purpose MEW determination and prevents false detections.
Zhang, Yu-Tian; Xiao, Mei-Feng; Deng, Kai-Wen; Yang, Yan-Tao; Zhou, Yi-Qun; Zhou, Jin; He, Fu-Yuan; Liu, Wen-Long
2018-06-01
Nowadays, to research and formulate an efficiency extraction system for Chinese herbal medicine, scientists have always been facing a great challenge for quality management, so that the transitivity of Q-markers in quantitative analysis of TCM was proposed by Prof. Liu recently. In order to improve the quality of extraction from raw medicinal materials for clinical preparations, a series of integrated mathematic models for transitivity of Q-markers in quantitative analysis of TCM were established. Buyanghuanwu decoction (BYHWD) was a commonly TCMs prescription, which was used to prevent and treat the ischemic heart and brain diseases. In this paper, we selected BYHWD as an extraction experimental subject to study the quantitative transitivity of TCM. Based on theory of Fick's Rule and Noyes-Whitney equation, novel kinetic models were established for extraction of active components. Meanwhile, fitting out kinetic equations of extracted models and then calculating the inherent parameters in material piece and Q-marker quantitative transfer coefficients, which were considered as indexes to evaluate transitivity of Q-markers in quantitative analysis of the extraction process of BYHWD. HPLC was applied to screen and analyze the potential Q-markers in the extraction process. Fick's Rule and Noyes-Whitney equation were adopted for mathematically modeling extraction process. Kinetic parameters were fitted and calculated by the Statistical Program for Social Sciences 20.0 software. The transferable efficiency was described and evaluated by potential Q-markers transfer trajectory via transitivity availability AUC, extraction ratio P, and decomposition ratio D respectively. The Q-marker was identified with AUC, P, D. Astragaloside IV, laetrile, paeoniflorin, and ferulic acid were studied as potential Q-markers from BYHWD. The relative technologic parameters were presented by mathematic models, which could adequately illustrate the inherent properties of raw materials preparation and affection of Q-markers transitivity in equilibrium processing. AUC, P, D for potential Q-markers of AST-IV, laetrile, paeoniflorin, and FA were obtained, with the results of 289.9 mAu s, 46.24%, 22.35%; 1730 mAu s, 84.48%, 1.963%; 5600 mAu s, 70.22%, 0.4752%; 7810 mAu s, 24.29%, 4.235%, respectively. The results showed that the suitable Q-markers were laetrile and paeoniflorin in our study, which exhibited acceptable traceability and transitivity in the extraction process of TCMs. Therefore, these novel mathematic models might be developed as a new standard to control TCMs quality process from raw medicinal materials to product manufacturing. Copyright © 2018 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Vasudevan, Srivathsan; Chen, George Chung Kit; Andika, Marta; Agarwal, Shuchi; Chen, Peng; Olivo, Malini
2010-09-01
Red blood cells (RBCs) have been found to undergo ``programmed cell death,'' or eryptosis, and understanding this process can provide more information about apoptosis of nucleated cells. Photothermal (PT) response, a label-free photothermal noninvasive technique, is proposed as a tool to monitor the cell death process of living human RBCs upon glucose depletion. Since the physiological status of the dying cells is highly sensitive to photothermal parameters (e.g., thermal diffusivity, absorption, etc.), we applied linear PT response to continuously monitor the death mechanism of RBC when depleted of glucose. The kinetics of the assay where the cell's PT response transforms from linear to nonlinear regime is reported. In addition, quantitative monitoring was performed by extracting the relevant photothermal parameters from the PT response. Twofold increases in thermal diffusivity and size reduction were found in the linear PT response during cell death. Our results reveal that photothermal parameters change earlier than phosphatidylserine externalization (used for fluorescent studies), allowing us to detect the initial stage of eryptosis in a quantitative manner. Hence, the proposed tool, in addition to detection of eryptosis earlier than fluorescence, could also reveal physiological status of the cells through quantitative photothermal parameter extraction.
Crystallography of ordered colloids using optical microscopy. 2. Divergent-beam technique.
Rogers, Richard B; Lagerlöf, K Peter D
2008-04-10
A technique has been developed to extract quantitative crystallographic data from randomly oriented colloidal crystals using a divergent-beam approach. This technique was tested on a series of diverse experimental images of colloidal crystals formed from monodisperse suspensions of sterically stabilized poly-(methyl methacrylate) spheres suspended in organic index-matching solvents. Complete sets of reciprocal lattice basis vectors were extracted in all but one case. When data extraction was successful, results appeared to be accurate to about 1% for lattice parameters and to within approximately 2 degrees for orientation. This approach is easier to implement than a previously developed parallel-beam approach with the drawback that the divergent-beam approach is not as robust in certain situations with random hexagonal close-packed crystals. The two techniques are therefore complimentary to each other, and between them it should be possible to extract quantitative crystallographic data with a conventional optical microscope from any closely index-matched colloidal crystal whose lattice parameters are compatible with visible wavelengths.
Zhu, Hongchun; Cai, Lijie; Liu, Haiying; Huang, Wei
2016-01-01
Multi-scale image segmentation and the selection of optimal segmentation parameters are the key processes in the object-oriented information extraction of high-resolution remote sensing images. The accuracy of remote sensing special subject information depends on this extraction. On the basis of WorldView-2 high-resolution data, the optimal segmentation parameters methodof object-oriented image segmentation and high-resolution image information extraction, the following processes were conducted in this study. Firstly, the best combination of the bands and weights was determined for the information extraction of high-resolution remote sensing image. An improved weighted mean-variance method was proposed andused to calculatethe optimal segmentation scale. Thereafter, the best shape factor parameter and compact factor parameters were computed with the use of the control variables and the combination of the heterogeneity and homogeneity indexes. Different types of image segmentation parameters were obtained according to the surface features. The high-resolution remote sensing images were multi-scale segmented with the optimal segmentation parameters. Ahierarchical network structure was established by setting the information extraction rules to achieve object-oriented information extraction. This study presents an effective and practical method that can explain expert input judgment by reproducible quantitative measurements. Furthermore the results of this procedure may be incorporated into a classification scheme. PMID:27362762
Zhu, Hongchun; Cai, Lijie; Liu, Haiying; Huang, Wei
2016-01-01
Multi-scale image segmentation and the selection of optimal segmentation parameters are the key processes in the object-oriented information extraction of high-resolution remote sensing images. The accuracy of remote sensing special subject information depends on this extraction. On the basis of WorldView-2 high-resolution data, the optimal segmentation parameters methodof object-oriented image segmentation and high-resolution image information extraction, the following processes were conducted in this study. Firstly, the best combination of the bands and weights was determined for the information extraction of high-resolution remote sensing image. An improved weighted mean-variance method was proposed andused to calculatethe optimal segmentation scale. Thereafter, the best shape factor parameter and compact factor parameters were computed with the use of the control variables and the combination of the heterogeneity and homogeneity indexes. Different types of image segmentation parameters were obtained according to the surface features. The high-resolution remote sensing images were multi-scale segmented with the optimal segmentation parameters. Ahierarchical network structure was established by setting the information extraction rules to achieve object-oriented information extraction. This study presents an effective and practical method that can explain expert input judgment by reproducible quantitative measurements. Furthermore the results of this procedure may be incorporated into a classification scheme.
Elayavilli, Ravikumar Komandur; Liu, Hongfang
2016-01-01
Computational modeling of biological cascades is of great interest to quantitative biologists. Biomedical text has been a rich source for quantitative information. Gathering quantitative parameters and values from biomedical text is one significant challenge in the early steps of computational modeling as it involves huge manual effort. While automatically extracting such quantitative information from bio-medical text may offer some relief, lack of ontological representation for a subdomain serves as impedance in normalizing textual extractions to a standard representation. This may render textual extractions less meaningful to the domain experts. In this work, we propose a rule-based approach to automatically extract relations involving quantitative data from biomedical text describing ion channel electrophysiology. We further translated the quantitative assertions extracted through text mining to a formal representation that may help in constructing ontology for ion channel events using a rule based approach. We have developed Ion Channel ElectroPhysiology Ontology (ICEPO) by integrating the information represented in closely related ontologies such as, Cell Physiology Ontology (CPO), and Cardiac Electro Physiology Ontology (CPEO) and the knowledge provided by domain experts. The rule-based system achieved an overall F-measure of 68.93% in extracting the quantitative data assertions system on an independently annotated blind data set. We further made an initial attempt in formalizing the quantitative data assertions extracted from the biomedical text into a formal representation that offers potential to facilitate the integration of text mining into ontological workflow, a novel aspect of this study. This work is a case study where we created a platform that provides formal interaction between ontology development and text mining. We have achieved partial success in extracting quantitative assertions from the biomedical text and formalizing them in ontological framework. The ICEPO ontology is available for download at http://openbionlp.org/mutd/supplementarydata/ICEPO/ICEPO.owl.
Three-dimensional biofilm structure quantification.
Beyenal, Haluk; Donovan, Conrad; Lewandowski, Zbigniew; Harkin, Gary
2004-12-01
Quantitative parameters describing biofilm physical structure have been extracted from three-dimensional confocal laser scanning microscopy images and used to compare biofilm structures, monitor biofilm development, and quantify environmental factors affecting biofilm structure. Researchers have previously used biovolume, volume to surface ratio, roughness coefficient, and mean and maximum thicknesses to compare biofilm structures. The selection of these parameters is dependent on the availability of software to perform calculations. We believe it is necessary to develop more comprehensive parameters to describe heterogeneous biofilm morphology in three dimensions. This research presents parameters describing three-dimensional biofilm heterogeneity, size, and morphology of biomass calculated from confocal laser scanning microscopy images. This study extends previous work which extracted quantitative parameters regarding morphological features from two-dimensional biofilm images to three-dimensional biofilm images. We describe two types of parameters: (1) textural parameters showing microscale heterogeneity of biofilms and (2) volumetric parameters describing size and morphology of biomass. The three-dimensional features presented are average (ADD) and maximum diffusion distances (MDD), fractal dimension, average run lengths (in X, Y and Z directions), aspect ratio, textural entropy, energy and homogeneity. We discuss the meaning of each parameter and present the calculations in detail. The developed algorithms, including automatic thresholding, are implemented in software as MATLAB programs which will be available at site prior to publication of the paper.
Infrared thermography quantitative image processing
NASA Astrophysics Data System (ADS)
Skouroliakou, A.; Kalatzis, I.; Kalyvas, N.; Grivas, TB
2017-11-01
Infrared thermography is an imaging technique that has the ability to provide a map of temperature distribution of an object’s surface. It is considered for a wide range of applications in medicine as well as in non-destructive testing procedures. One of its promising medical applications is in orthopaedics and diseases of the musculoskeletal system where temperature distribution of the body’s surface can contribute to the diagnosis and follow up of certain disorders. Although the thermographic image can give a fairly good visual estimation of distribution homogeneity and temperature pattern differences between two symmetric body parts, it is important to extract a quantitative measurement characterising temperature. Certain approaches use temperature of enantiomorphic anatomical points, or parameters extracted from a Region of Interest (ROI). A number of indices have been developed by researchers to that end. In this study a quantitative approach in thermographic image processing is attempted based on extracting different indices for symmetric ROIs on thermograms of the lower back area of scoliotic patients. The indices are based on first order statistical parameters describing temperature distribution. Analysis and comparison of these indices result in evaluating the temperature distribution pattern of the back trunk expected in healthy, regarding spinal problems, subjects.
van Dijk, R; van Assen, M; Vliegenthart, R; de Bock, G H; van der Harst, P; Oudkerk, M
2017-11-27
Stress cardiovascular magnetic resonance (CMR) perfusion imaging is a promising modality for the evaluation of coronary artery disease (CAD) due to high spatial resolution and absence of radiation. Semi-quantitative and quantitative analysis of CMR perfusion are based on signal-intensity curves produced during the first-pass of gadolinium contrast. Multiple semi-quantitative and quantitative parameters have been introduced. Diagnostic performance of these parameters varies extensively among studies and standardized protocols are lacking. This study aims to determine the diagnostic accuracy of semi- quantitative and quantitative CMR perfusion parameters, compared to multiple reference standards. Pubmed, WebOfScience, and Embase were systematically searched using predefined criteria (3272 articles). A check for duplicates was performed (1967 articles). Eligibility and relevance of the articles was determined by two reviewers using pre-defined criteria. The primary data extraction was performed independently by two researchers with the use of a predefined template. Differences in extracted data were resolved by discussion between the two researchers. The quality of the included studies was assessed using the 'Quality Assessment of Diagnostic Accuracy Studies Tool' (QUADAS-2). True positives, false positives, true negatives, and false negatives were subtracted/calculated from the articles. The principal summary measures used to assess diagnostic accuracy were sensitivity, specificity, andarea under the receiver operating curve (AUC). Data was pooled according to analysis territory, reference standard and perfusion parameter. Twenty-two articles were eligible based on the predefined study eligibility criteria. The pooled diagnostic accuracy for segment-, territory- and patient-based analyses showed good diagnostic performance with sensitivity of 0.88, 0.82, and 0.83, specificity of 0.72, 0.83, and 0.76 and AUC of 0.90, 0.84, and 0.87, respectively. In per territory analysis our results show similar diagnostic accuracy comparing anatomical (AUC 0.86(0.83-0.89)) and functional reference standards (AUC 0.88(0.84-0.90)). Only the per territory analysis sensitivity did not show significant heterogeneity. None of the groups showed signs of publication bias. The clinical value of semi-quantitative and quantitative CMR perfusion analysis remains uncertain due to extensive inter-study heterogeneity and large differences in CMR perfusion acquisition protocols, reference standards, and methods of assessment of myocardial perfusion parameters. For wide spread implementation, standardization of CMR perfusion techniques is essential. CRD42016040176 .
Preliminary experiments on pharmacokinetic diffuse fluorescence tomography of CT-scanning mode
NASA Astrophysics Data System (ADS)
Zhang, Yanqi; Wang, Xin; Yin, Guoyan; Li, Jiao; Zhou, Zhongxing; Zhao, Huijuan; Gao, Feng; Zhang, Limin
2016-10-01
In vivo tomographic imaging of the fluorescence pharmacokinetic parameters in tissues can provide additional specific and quantitative physiological and pathological information to that of fluorescence concentration. This modality normally requires a highly-sensitive diffuse fluorescence tomography (DFT) working in dynamic way to finally extract the pharmacokinetic parameters from the measured pharmacokinetics-associated temporally-varying boundary intensity. This paper is devoted to preliminary experimental validation of our proposed direct reconstruction scheme of instantaneous sampling based pharmacokinetic-DFT: A highly-sensitive DFT system of CT-scanning mode working with parallel four photomultiplier-tube photon-counting channels is developed to generate an instantaneous sampling dataset; A direct reconstruction scheme then extracts images of the pharmacokinetic parameters using the adaptive-EKF strategy. We design a dynamic phantom that can simulate the agent metabolism in living tissue. The results of the dynamic phantom experiments verify the validity of the experiment system and reconstruction algorithms, and demonstrate that system provides good resolution, high sensitivity and quantitativeness at different pump speed.
An algorithm for automatic parameter adjustment for brain extraction in BrainSuite
NASA Astrophysics Data System (ADS)
Rajagopal, Gautham; Joshi, Anand A.; Leahy, Richard M.
2017-02-01
Brain Extraction (classification of brain and non-brain tissue) of MRI brain images is a crucial pre-processing step necessary for imaging-based anatomical studies of the human brain. Several automated methods and software tools are available for performing this task, but differences in MR image parameters (pulse sequence, resolution) and instrumentand subject-dependent noise and artefacts affect the performance of these automated methods. We describe and evaluate a method that automatically adapts the default parameters of the Brain Surface Extraction (BSE) algorithm to optimize a cost function chosen to reflect accurate brain extraction. BSE uses a combination of anisotropic filtering, Marr-Hildreth edge detection, and binary morphology for brain extraction. Our algorithm automatically adapts four parameters associated with these steps to maximize the brain surface area to volume ratio. We evaluate the method on a total of 109 brain volumes with ground truth brain masks generated by an expert user. A quantitative evaluation of the performance of the proposed algorithm showed an improvement in the mean (s.d.) Dice coefficient from 0.8969 (0.0376) for default parameters to 0.9509 (0.0504) for the optimized case. These results indicate that automatic parameter optimization can result in significant improvements in definition of the brain mask.
Automated extraction of pleural effusion in three-dimensional thoracic CT images
NASA Astrophysics Data System (ADS)
Kido, Shoji; Tsunomori, Akinori
2009-02-01
It is important for diagnosis of pulmonary diseases to measure volume of accumulating pleural effusion in threedimensional thoracic CT images quantitatively. However, automated extraction of pulmonary effusion correctly is difficult. Conventional extraction algorithm using a gray-level based threshold can not extract pleural effusion from thoracic wall or mediastinum correctly, because density of pleural effusion in CT images is similar to those of thoracic wall or mediastinum. So, we have developed an automated extraction method of pulmonary effusion by use of extracting lung area with pleural effusion. Our method used a template of lung obtained from a normal lung for segmentation of lungs with pleural effusions. Registration process consisted of two steps. First step was a global matching processing between normal and abnormal lungs of organs such as bronchi, bones (ribs, sternum and vertebrae) and upper surfaces of livers which were extracted using a region-growing algorithm. Second step was a local matching processing between normal and abnormal lungs which were deformed by the parameter obtained from the global matching processing. Finally, we segmented a lung with pleural effusion by use of the template which was deformed by two parameters obtained from the global matching processing and the local matching processing. We compared our method with a conventional extraction method using a gray-level based threshold and two published methods. The extraction rates of pleural effusions obtained from our method were much higher than those obtained from other methods. Automated extraction method of pulmonary effusion by use of extracting lung area with pleural effusion is promising for diagnosis of pulmonary diseases by providing quantitative volume of accumulating pleural effusion.
Modulating Wnt Signaling Pathway to Enhance Allograft Integration in Orthopedic Trauma Treatment
2013-10-01
presented below. Quantitative output provides an extensive set of data but we have chosen to present the most relevant parameters that are reflected in...multiple parameters . Most samples have been mechanically tested and data extracted for multiple parameters . Histological evaluation of subset of...Sumner, D. R. Saline Irrigation Does Not Affect Bone Formation or Fixation Strength of Hydroxyapatite /Tricalcium Phosphate-Coated Implants in a Rat Model
Singh, Rashmi; Sharma, Shatruhan; Sharma, Veena
2015-07-01
To compare and elucidate the antioxidant efficacy of ethanolic and hydroethanolic extracts of Indigofera tinctoria Linn. (Fabaceae family). Various in-vitro antioxidant assays and free radical-scavenging assays were done. Quantitative measurements of various phytoconstituents, reductive abilities and chelating potential were carried out along with standard compounds. Half inhibitory concentration (IC50) values for ethanol and hydroethanol extracts were analyzed and compared with respective standards. Hydroethanolic extracts showed considerably more potent antioxidant activity in comparison to ethanol extracts. Hydroethanolic extracts had lower IC50 values than ethanol extracts in the case of DPPH, metal chelation and hydroxyl radical-scavenging capacity (829, 659 and 26.7 μg/mL) but had slightly higher values than ethanol in case of SO2- and NO2-scavenging activity (P<0.001 vs standard). Quantitative measurements also showed that the abundance of phenolic and flavonoid bioactive phytoconstituents were significantly (P<0.001) greater in hydroethanol extracts (212.920 and 149.770 mg GAE and rutin/g of plant extract respectively) than in ethanol extracts (211.691 and 132.603 mg GAE and rutin/g of plant extract respectively). Karl Pearson's correlation analysis (r2) between various antioxidant parameters and bioactive components also associated the antioxidant potential of I. tinctoria with various phytoconstituents, especially phenolics, flavonoids, saponins and tannins. This study may be helpful to draw the attention of researchers towards the hydroethanol extracts of I. tinctoria, which has a high yield, and great prospects in herbal industries to produce inexpensive and powerful herbal products.
Zhao, Mingtao; Kuo, Anthony N; Izatt, Joseph A
2010-04-26
Capable of three-dimensional imaging of the cornea with micrometer-scale resolution, spectral domain-optical coherence tomography (SDOCT) offers potential advantages over Placido ring and Scheimpflug photography based systems for accurate extraction of quantitative keratometric parameters. In this work, an SDOCT scanning protocol and motion correction algorithm were implemented to minimize the effects of patient motion during data acquisition. Procedures are described for correction of image data artifacts resulting from 3D refraction of SDOCT light in the cornea and from non-idealities of the scanning system geometry performed as a pre-requisite for accurate parameter extraction. Zernike polynomial 3D reconstruction and a recursive half searching algorithm (RHSA) were implemented to extract clinical keratometric parameters including anterior and posterior radii of curvature, central cornea optical power, central corneal thickness, and thickness maps of the cornea. Accuracy and repeatability of the extracted parameters obtained using a commercial 859nm SDOCT retinal imaging system with a corneal adapter were assessed using a rigid gas permeable (RGP) contact lens as a phantom target. Extraction of these parameters was performed in vivo in 3 patients and compared to commercial Placido topography and Scheimpflug photography systems. The repeatability of SDOCT central corneal power measured in vivo was 0.18 Diopters, and the difference observed between the systems averaged 0.1 Diopters between SDOCT and Scheimpflug photography, and 0.6 Diopters between SDOCT and Placido topography.
Extracting 3D Parametric Curves from 2D Images of Helical Objects.
Willcocks, Chris G; Jackson, Philip T G; Nelson, Carl J; Obara, Boguslaw
2017-09-01
Helical objects occur in medicine, biology, cosmetics, nanotechnology, and engineering. Extracting a 3D parametric curve from a 2D image of a helical object has many practical applications, in particular being able to extract metrics such as tortuosity, frequency, and pitch. We present a method that is able to straighten the image object and derive a robust 3D helical curve from peaks in the object boundary. The algorithm has a small number of stable parameters that require little tuning, and the curve is validated against both synthetic and real-world data. The results show that the extracted 3D curve comes within close Hausdorff distance to the ground truth, and has near identical tortuosity for helical objects with a circular profile. Parameter insensitivity and robustness against high levels of image noise are demonstrated thoroughly and quantitatively.
Larue, Ruben T H M; Defraene, Gilles; De Ruysscher, Dirk; Lambin, Philippe; van Elmpt, Wouter
2017-02-01
Quantitative analysis of tumour characteristics based on medical imaging is an emerging field of research. In recent years, quantitative imaging features derived from CT, positron emission tomography and MR scans were shown to be of added value in the prediction of outcome parameters in oncology, in what is called the radiomics field. However, results might be difficult to compare owing to a lack of standardized methodologies to conduct quantitative image analyses. In this review, we aim to present an overview of the current challenges, technical routines and protocols that are involved in quantitative imaging studies. The first issue that should be overcome is the dependency of several features on the scan acquisition and image reconstruction parameters. Adopting consistent methods in the subsequent target segmentation step is evenly crucial. To further establish robust quantitative image analyses, standardization or at least calibration of imaging features based on different feature extraction settings is required, especially for texture- and filter-based features. Several open-source and commercial software packages to perform feature extraction are currently available, all with slightly different functionalities, which makes benchmarking quite challenging. The number of imaging features calculated is typically larger than the number of patients studied, which emphasizes the importance of proper feature selection and prediction model-building routines to prevent overfitting. Even though many of these challenges still need to be addressed before quantitative imaging can be brought into daily clinical practice, radiomics is expected to be a critical component for the integration of image-derived information to personalize treatment in the future.
Zeng, Shanshan; Wang, Lu; Zhang, Lei; Qu, Haibin; Gong, Xingchu
2013-06-01
An activity-based approach to optimize the ultrasonic-assisted extraction of antioxidants from Pericarpium Citri Reticulatae (Chenpi in Chinese) was developed. Response surface optimization based on a quantitative composition-activity relationship model showed the relationships among product chemical composition, antioxidant activity of extract, and parameters of extraction process. Three parameters of ultrasonic-assisted extraction, including the ethanol/water ratio, Chenpi amount, and alkaline amount, were investigated to give optimum extraction conditions for antioxidants of Chenpi: ethanol/water 70:30 v/v, Chenpi amount of 10 g, and alkaline amount of 28 mg. The experimental antioxidant yield under the optimum conditions was found to be 196.5 mg/g Chenpi, and the antioxidant activity was 2023.8 μmol Trolox equivalents/g of the Chenpi powder. The results agreed well with the second-order polynomial regression model. This presented approach promised great application potentials in both food and pharmaceutical industries. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chu, Chu; Wei, Mengmeng; Wang, Shan; Zheng, Liqiong; He, Zheng; Cao, Jun; Yan, Jizhong
2017-09-15
A simple and effective method was developed for determining lignans in Schisandrae Chinensis Fructus by using a micro-matrix solid phase dispersion (MSPD) technique coupled with microemulsion electrokinetic chromatography (MEEKC). Molecular sieve, TS-1, was applied as a solid supporting material in micro MSPD extraction for the first time. Parameters that affect extraction efficiency, such as type of dispersant, mass ratio of the sample to the dispersant, grinding time, elution solvent and volume were optimized. The optimal extraction conditions involve dispersing 25mg of powdered Schisandrae samples with 50mg of TS-1 by a mortar and pestle. A grinding time of 150s was adopted. The blend was then transferred to a solid-phase extraction cartridge and the target analytes were eluted with 500μL of methanol. Moreover, several parameters affecting MEEKC separation were studied, including the type of oil, SDS concentration, type and concentration of cosurfactant, and concentration of organic modifier. A satisfactory linearity (R>0.9998) was obtained, and the calculated limits of quantitation were less than 2.77μg/mL. Finally, the micro MSPD-MEEKC method was successfully applied to the analysis of lignans in complex Schisandrae fructus samples. Copyright © 2017 Elsevier B.V. All rights reserved.
A biphasic parameter estimation method for quantitative analysis of dynamic renal scintigraphic data
NASA Astrophysics Data System (ADS)
Koh, T. S.; Zhang, Jeff L.; Ong, C. K.; Shuter, B.
2006-06-01
Dynamic renal scintigraphy is an established method in nuclear medicine, commonly used for the assessment of renal function. In this paper, a biphasic model fitting method is proposed for simultaneous estimation of both vascular and parenchymal parameters from renal scintigraphic data. These parameters include the renal plasma flow, vascular and parenchymal mean transit times, and the glomerular extraction rate. Monte Carlo simulation was used to evaluate the stability and confidence of the parameter estimates obtained by the proposed biphasic method, before applying the method on actual patient study cases to compare with the conventional fitting approach and other established renal indices. The various parameter estimates obtained using the proposed method were found to be consistent with the respective pathologies of the study cases. The renal plasma flow and extraction rate estimated by the proposed method were in good agreement with those previously obtained using dynamic computed tomography and magnetic resonance imaging.
NASA Astrophysics Data System (ADS)
Edmiston, John Kearney
This work explores the field of continuum plasticity from two fronts. On the theory side, we establish a complete specification of a phenomenological theory of plasticity for single crystals. The model serves as an alternative to the popular crystal plasticity formulation. Such a model has been previously proposed in the literature; the new contribution made here is the constitutive framework and resulting simulations. We calibrate the model to available data and use a simple numerical method to explore resulting predictions in plane strain boundary value problems. Results show promise for further investigation of the plasticity model. Conveniently, this theory comes with a corresponding experimental tool in X-ray diffraction. Recent advances in hardware technology at synchrotron sources have led to an increased use of the technique for studies of plasticity in the bulk of materials. The method has been successful in qualitative observations of material behavior, but its use in quantitative studies seeking to extract material properties is open for investigation. Therefore in the second component of the thesis several contributions are made to synchrotron X-ray diffraction experiments, in terms of method development as well as the quantitative reporting of constitutive parameters. In the area of method development, analytical tools are developed to determine the available precision of this type of experiment—a crucial aspect to determine if the method is to be used for quantitative studies. We also extract kinematic information relating to intragranular inhomogeneity which is not accessible with traditional methods of data analysis. In the area of constitutive parameter identification, we use the method to extract parameters corresponding to the proposed formulation of plasticity for a titanium alloy (HCP) which is continuously sampled by X-ray diffraction during uniaxial extension. These results and the lessons learned from the efforts constitute early reporting of the quantitative profitability of undertaking such a line of experimentation for the study of plastic deformation processes.
A risk-based approach to management of leachables utilizing statistical analysis of extractables.
Stults, Cheryl L M; Mikl, Jaromir; Whelehan, Oliver; Morrical, Bradley; Duffield, William; Nagao, Lee M
2015-04-01
To incorporate quality by design concepts into the management of leachables, an emphasis is often put on understanding the extractable profile for the materials of construction for manufacturing disposables, container-closure, or delivery systems. Component manufacturing processes may also impact the extractable profile. An approach was developed to (1) identify critical components that may be sources of leachables, (2) enable an understanding of manufacturing process factors that affect extractable profiles, (3) determine if quantitative models can be developed that predict the effect of those key factors, and (4) evaluate the practical impact of the key factors on the product. A risk evaluation for an inhalation product identified injection molding as a key process. Designed experiments were performed to evaluate the impact of molding process parameters on the extractable profile from an ABS inhaler component. Statistical analysis of the resulting GC chromatographic profiles identified processing factors that were correlated with peak levels in the extractable profiles. The combination of statistically significant molding process parameters was different for different types of extractable compounds. ANOVA models were used to obtain optimal process settings and predict extractable levels for a selected number of compounds. The proposed paradigm may be applied to evaluate the impact of material composition and processing parameters on extractable profiles and utilized to manage product leachables early in the development process and throughout the product lifecycle.
Analysis of airborne MAIS imaging spectrometric data for mineral exploration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Jinnian; Zheng Lanfen; Tong Qingxi
1996-11-01
The high spectral resolution imaging spectrometric system made quantitative analysis and mapping of surface composition possible. The key issue will be the quantitative approach for analysis of surface parameters for imaging spectrometer data. This paper describes the methods and the stages of quantitative analysis. (1) Extracting surface reflectance from imaging spectrometer image. Lab. and inflight field measurements are conducted for calibration of imaging spectrometer data, and the atmospheric correction has also been used to obtain ground reflectance by using empirical line method and radiation transfer modeling. (2) Determining quantitative relationship between absorption band parameters from the imaging spectrometer data andmore » chemical composition of minerals. (3) Spectral comparison between the spectra of spectral library and the spectra derived from the imagery. The wavelet analysis-based spectrum-matching techniques for quantitative analysis of imaging spectrometer data has beer, developed. Airborne MAIS imaging spectrometer data were used for analysis and the analysis results have been applied to the mineral and petroleum exploration in Tarim Basin area china. 8 refs., 8 figs.« less
Characterization of Structural and Configurational Properties of DNA by Atomic Force Microscopy.
Meroni, Alice; Lazzaro, Federico; Muzi-Falconi, Marco; Podestà, Alessandro
2018-01-01
We describe a method to extract quantitative information on DNA structural and configurational properties from high-resolution topographic maps recorded by atomic force microscopy (AFM). DNA molecules are deposited on mica surfaces from an aqueous solution, carefully dehydrated, and imaged in air in Tapping Mode. Upon extraction of the spatial coordinates of the DNA backbones from AFM images, several parameters characterizing DNA structure and configuration can be calculated. Here, we explain how to obtain the distribution of contour lengths, end-to-end distances, and gyration radii. This modular protocol can be also used to characterize other statistical parameters from AFM topographies.
Dijkhoff, Rebecca A P; Maas, Monique; Martens, Milou H; Papanikolaou, Nikolaos; Lambregts, Doenja M J; Beets, Geerard L; Beets-Tan, Regina G H
2017-05-01
The aim of this study was to assess correlation between quantitative and semiquantitative parameters in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in rectal cancer patients, both in a primary staging and restaging setting. Nineteen patients were included with DCE-MRI before and/or after neoadjuvant therapy. DCE-MRI was performed with gadofosveset trisodium (Ablavar ® , Lantheus Medical Imaging, North Billerica, Massachusetts, USA). Regions of interest were placed in the tumor and quantitative parameters were extracted with Olea Sphere 2.2 software permeability module using the extended Tofts model. Semiquantitative parameters were calculated on a pixel-by-pixel basis. Spearman rank correlation tests were used for assessment of correlation between parameters. A p value ≤0.05 was considered statistically significant. Strong positive correlations were found between mean peak enhancement and mean K trans : 0.79 (all patients, p<0.0001), 0.83 (primary staging, p = 0.003), and 0.81 (restaging, p = 0.054). Mean wash-in correlated significantly with mean V p and K ep (0.79 and 0.58, respectively, p<0.0001 and p = 0.009) in all patients. Mean wash-in showed a significant correlation with mean K ep (0.67, p = 0.033) in the primary staging group. On the restaging MRI, mean wash-in only strongly correlated with mean V p (0.81, p = 0.054). This study shows a strong correlation between quantitative and semiquantitative parameters in DCE-MRI for rectal cancer. Peak enhancement correlates strongly with K trans and wash-in showed strong correlation with V p and K ep . These parameters have been reported to predict tumor aggressiveness and response in rectal cancer. Therefore, semiquantitative analyses might be a surrogate for quantitative analyses.
Quantitative analysis of ground penetrating radar data in the Mu Us Sandland
NASA Astrophysics Data System (ADS)
Fu, Tianyang; Tan, Lihua; Wu, Yongqiu; Wen, Yanglei; Li, Dawei; Duan, Jinlong
2018-06-01
Ground penetrating radar (GPR), which can reveal the sedimentary structure and development process of dunes, is widely used to evaluate aeolian landforms. The interpretations for GPR profiles are mostly based on qualitative descriptions of geometric features of the radar reflections. This research quantitatively analyzed the waveform parameter characteristics of different radar units by extracting the amplitude and time interval parameters of GPR data in the Mu Us Sandland in China, and then identified and interpreted different sedimentary structures. The results showed that different types of radar units had specific waveform parameter characteristics. The main waveform parameter characteristics of sand dune radar facies and sandstone radar facies included low amplitudes and wide ranges of time intervals, ranging from 0 to 0.25 and 4 to 33 ns respectively, and the mean amplitudes changed gradually with time intervals. The amplitude distribution curves of various sand dune radar facies were similar as unimodal distributions. The radar surfaces showed high amplitudes with time intervals concentrated in high-value areas, ranging from 0.08 to 0.61 and 9 to 34 ns respectively, and the mean amplitudes changed drastically with time intervals. The amplitude and time interval values of lacustrine radar facies were between that of sand dune radar facies and radar surfaces, ranging from 0.08 to 0.29 and 11 to 30 ns respectively, and the mean amplitude and time interval curve was approximately trapezoidal. The quantitative extraction and analysis of GPR reflections could help distinguish various radar units and provide evidence for identifying sedimentary structure in aeolian landforms.
Libong, Danielle; Bouchonnet, Stéphane; Ricordel, Ivan
2003-01-01
A gas chromatography-ion trap tandem mass spectrometry (GC-ion trap MS-MS) method for detection and quantitation of LSD in whole blood is presented. The sample preparation process, including a solid-phase extraction step with Bond Elut cartridges, was performed with 2 mL of whole blood. Eight microliters of the purified extract was injected with a cold on-column injection method. Positive chemical ionization was performed using acetonitrile as reagent gas; LSD was detected in the MS-MS mode. The chromatograms obtained from blood extracts showed the great selectivity of the method. GC-MS quantitation was performed using lysergic acid methylpropylamide as the internal standard. The response of the MS was linear for concentrations ranging from 0.02 ng/mL (detection threshold) to 10.0 ng/mL. Several parameters such as the choice of the capillary column, the choice of the internal standard and that of the ionization mode (positive CI vs. EI) were rationalized. Decomposition pathways under both ionization modes were studied. Within-day and between-day stability were evaluated.
Sevenster, M; Buurman, J; Liu, P; Peters, J F; Chang, P J
2015-01-01
Accumulating quantitative outcome parameters may contribute to constructing a healthcare organization in which outcomes of clinical procedures are reproducible and predictable. In imaging studies, measurements are the principal category of quantitative para meters. The purpose of this work is to develop and evaluate two natural language processing engines that extract finding and organ measurements from narrative radiology reports and to categorize extracted measurements by their "temporality". The measurement extraction engine is developed as a set of regular expressions. The engine was evaluated against a manually created ground truth. Automated categorization of measurement temporality is defined as a machine learning problem. A ground truth was manually developed based on a corpus of radiology reports. A maximum entropy model was created using features that characterize the measurement itself and its narrative context. The model was evaluated in a ten-fold cross validation protocol. The measurement extraction engine has precision 0.994 and recall 0.991. Accuracy of the measurement classification engine is 0.960. The work contributes to machine understanding of radiology reports and may find application in software applications that process medical data.
Spatiotemporal Imaging of Magnetization Dynamics at the Nanoscale: Breaking the Diffraction Limit
2016-03-09
modulations frequency. In the future under our new AFOSR contract, we plan to fabricate a new generation of devices with appropriate impedance match to a...quantitatively extract relevant thermal parameters from our experiment including the temperature change and the magnto- thermoelectric coefficient. Response
Yang, Guang; Sun, Qiushi; Hu, Zhiyan; Liu, Hua; Zhou, Tingting; Fan, Guorong
2015-10-01
In this study, an accelerated solvent extraction dispersive liquid-liquid microextraction coupled with gas chromatography and mass spectrometry was established and employed for the extraction, concentration and analysis of essential oil constituents from Ligusticum chuanxiong Hort. Response surface methodology was performed to optimize the key parameters in accelerated solvent extraction on the extraction efficiency, and key parameters in dispersive liquid-liquid microextraction were discussed as well. Two representative constituents in Ligusticum chuanxiong Hort, (Z)-ligustilide and n-butylphthalide, were quantitatively analyzed. It was shown that the qualitative result of the accelerated solvent extraction dispersive liquid-liquid microextraction approach was in good agreement with that of hydro-distillation, whereas the proposed approach took far less extraction time (30 min), consumed less plant material (usually <1 g, 0.01 g for this study) and solvent (<20 mL) than the conventional system. To sum up, the proposed method could be recommended as a new approach in the extraction and analysis of essential oil. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bieri, Stefan; Ilias, Yara; Bicchi, Carlo; Veuthey, Jean-Luc; Christen, Philippe
2006-04-21
An effective combination of focused microwave-assisted extraction (FMAE) with solid-phase microextraction (SPME) prior to gas chromatography (GC) is described for the selective extraction and quantitative analysis of cocaine from coca leaves (Erythroxylum coca). This approach required switching from an organic extraction solvent to an aqueous medium more compatible with SPME liquid sampling. SPME was performed in the direct immersion mode with a universal 100 microm polydimethylsiloxane (PDMS) coated fibre. Parameters influencing this extraction step, such as solution pH, sampling time and temperature are discussed. Furthermore, the overall extraction process takes into account the stability of cocaine in alkaline aqueous solutions at different temperatures. Cocaine degradation rate was determined by capillary electrophoresis using the short end injection procedure. In the selected extraction conditions, less than 5% of cocaine was degraded after 60 min. From a qualitative point of view, a significant gain in selectivity was obtained with the incorporation of SPME in the extraction procedure. As a consequence of SPME clean-up, shorter columns could be used and analysis time was reduced to 6 min compared to 35 min with conventional GC. Quantitative results led to a cocaine content of 0.70 +/- 0.04% in dry leaves (RSD <5%) which agreed with previous investigations.
NASA Technical Reports Server (NTRS)
Gaffey, M. J.
2003-01-01
Mineralogy is the key to determining the compositional history of the asteroids and to determining the genetic relationships between the asteroids and meteorites. The most sophisticated remote mineralogical characterizations involve the quantitative extraction of specific diagnostic parameters from reflectance spectra and the use of quantitative interpretive calibrations to determine the presence, abundance and/or composition of mineral phases in a surface material. Although this approach is potentially subject to systematic errors, it provides the only consistent set of asteroid surface material characterizations.
Yaripour, Saeid; Mohammadi, Ali; Esfanjani, Isa; Walker, Roderick B; Nojavan, Saeed
2018-01-01
In this study, for the first time, an electro-driven microextraction method named electromembrane extraction combined with a simple high performance liquid chromatography and ultraviolet detection was developed and validated for the quantitation of zolpidem in biological samples. Parameters influencing electromembrane extraction were evaluated and optimized. The membrane consisted of 2-ethylhexanol immobilized in the pores of a hollow fiber. As a driving force, a 150 V electric field was applied to facilitate the analyte migration from the sample matrix to an acceptor solution through a supported liquid membrane. The pHs of donor and acceptor solutions were optimized to 6.0 and 2.0, respectively. The enrichment factor was obtained >75 within 15 minutes. The effect of carbon nanotubes (as solid nano-sorbents) on the membrane performance and EME efficiency was evaluated. The method was linear over the range of 10-1000 ng/mL for zolpidem (R 2 >0.9991) with repeatability ( %RSD) between 0.3 % and 7.3 % ( n = 3). The limits of detection and quantitation were 3 and 10 ng/mL, respectively. The sensitivity of HPLC-UV for the determination of zolpidem was enhanced by electromembrane extraction. Finally, the method was employed for the quantitation of zolpidem in biological samples with relative recoveries in the range of 60-79 %.
Yaripour, Saeid; Mohammadi, Ali; Esfanjani, Isa; Walker, Roderick B.; Nojavan, Saeed
2018-01-01
In this study, for the first time, an electro-driven microextraction method named electromembrane extraction combined with a simple high performance liquid chromatography and ultraviolet detection was developed and validated for the quantitation of zolpidem in biological samples. Parameters influencing electromembrane extraction were evaluated and optimized. The membrane consisted of 2-ethylhexanol immobilized in the pores of a hollow fiber. As a driving force, a 150 V electric field was applied to facilitate the analyte migration from the sample matrix to an acceptor solution through a supported liquid membrane. The pHs of donor and acceptor solutions were optimized to 6.0 and 2.0, respectively. The enrichment factor was obtained >75 within 15 minutes. The effect of carbon nanotubes (as solid nano-sorbents) on the membrane performance and EME efficiency was evaluated. The method was linear over the range of 10-1000 ng/mL for zolpidem (R2 >0.9991) with repeatability ( %RSD) between 0.3 % and 7.3 % (n = 3). The limits of detection and quantitation were 3 and 10 ng/mL, respectively. The sensitivity of HPLC-UV for the determination of zolpidem was enhanced by electromembrane extraction. Finally, the method was employed for the quantitation of zolpidem in biological samples with relative recoveries in the range of 60-79 %. PMID:29805344
Pilot clinical study for quantitative spectral diagnosis of non-melanoma skin cancer.
Rajaram, Narasimhan; Reichenberg, Jason S; Migden, Michael R; Nguyen, Tri H; Tunnell, James W
2010-12-01
Several research groups have demonstrated the non-invasive diagnostic potential of diffuse optical spectroscopy (DOS) and laser-induced fluorescence (LIF) techniques for early cancer detection. By combining both modalities, one can simultaneously measure quantitative parameters related to the morphology, function and biochemical composition of tissue and use them to diagnose malignancy. The objective of this study was to use a quantitative reflectance/fluorescence spectroscopic technique to determine the optical properties of normal skin and non-melanoma skin cancers and the ability to accurately classify them. An additional goal was to determine the ability of the technique to differentiate non-melanoma skin cancers from normal skin. The study comprised 48 lesions measured from 40 patients scheduled for a biopsy of suspected non-melanoma skin cancers. White light reflectance and laser-induced fluorescence spectra (wavelength range = 350-700 nm) were collected from each suspected lesion and adjacent clinically normal skin using a custom-built, optical fiber-based clinical instrument. After measurement, the skin sites were biopsied and categorized according to histopathology. Using a quantitative model, we extracted various optical parameters from the measured spectra that could be correlated to the physiological state of tissue. Scattering from cancerous lesions was significantly lower than normal skin for every lesion group, whereas absorption parameters were significantly higher. Using numerical cut-offs for our optical parameters, our clinical instrument could classify basal cell carcinomas with a sensitivity and specificity of 94% and 89%, respectively. Similarly, the instrument classified actinic keratoses and squamous cell carcinomas with a sensitivity of 100% and specificity of 50%. The measured optical properties and fluorophore contributions of normal skin and non-melanoma skin cancers are significantly different from each other and correlate well with tissue pathology. A diagnostic algorithm that combines these extracted properties holds promise for the potential non-invasive diagnosis of skin cancer. Copyright © 2010 Wiley-Liss, Inc.
Mei, Kai; Kopp, Felix K; Bippus, Rolf; Köhler, Thomas; Schwaiger, Benedikt J; Gersing, Alexandra S; Fehringer, Andreas; Sauter, Andreas; Münzel, Daniela; Pfeiffer, Franz; Rummeny, Ernst J; Kirschke, Jan S; Noël, Peter B; Baum, Thomas
2017-12-01
Osteoporosis diagnosis using multidetector CT (MDCT) is limited to relatively high radiation exposure. We investigated the effect of simulated ultra-low-dose protocols on in-vivo bone mineral density (BMD) and quantitative trabecular bone assessment. Institutional review board approval was obtained. Twelve subjects with osteoporotic vertebral fractures and 12 age- and gender-matched controls undergoing routine thoracic and abdominal MDCT were included (average effective dose: 10 mSv). Ultra-low radiation examinations were achieved by simulating lower tube currents and sparse samplings at 50%, 25% and 10% of the original dose. BMD and trabecular bone parameters were extracted in T10-L5. Except for BMD measurements in sparse sampling data, absolute values of all parameters derived from ultra-low-dose data were significantly different from those derived from original dose images (p<0.05). BMD, apparent bone fraction and trabecular thickness were still consistently lower in subjects with than in those without fractures (p<0.05). In ultra-low-dose scans, BMD and microstructure parameters were able to differentiate subjects with and without vertebral fractures, suggesting osteoporosis diagnosis is feasible. However, absolute values differed from original values. BMD from sparse sampling appeared to be more robust. This dose-dependency of parameters should be considered for future clinical use. • BMD and quantitative bone parameters are assessable in ultra-low-dose in vivo MDCT scans. • Bone mineral density does not change significantly when sparse sampling is applied. • Quantitative trabecular bone microstructure measurements are sensitive to dose reduction. • Osteoporosis subjects could be differentiated even at 10% of original dose. • Radiation exposure should be considered when comparing quantitative bone parameters.
Quantifying properties of hot and dense QCD matter through systematic model-to-data comparison
Bernhard, Jonah E.; Marcy, Peter W.; Coleman-Smith, Christopher E.; ...
2015-05-22
We systematically compare an event-by-event heavy-ion collision model to data from the CERN Large Hadron Collider. Using a general Bayesian method, we probe multiple model parameters including fundamental quark-gluon plasma properties such as the specific shear viscosity η/s, calibrate the model to optimally reproduce experimental data, and extract quantitative constraints for all parameters simultaneously. Furthermore, the method is universal and easily extensible to other data and collision models.
NASA Astrophysics Data System (ADS)
García-Florentino, Cristina; Maguregui, Maite; Marguí, Eva; Torrent, Laura; Queralt, Ignasi; Madariaga, Juan Manuel
2018-05-01
In this work, a Total Reflection X-ray fluorescence (TXRF) spectrometry based quantitative methodology for elemental characterization of liquid extracts and solids belonging to old building materials and their degradation products from a building of the beginning of 20th century with a high historic cultural value in Getxo, (Basque Country, North of Spain) is proposed. This quantification strategy can be considered a faster methodology comparing to traditional Energy or Wavelength Dispersive X-ray fluorescence (ED-XRF and WD-XRF) spectrometry based methodologies or other techniques such as Inductively Coupled Plasma Mass Spectrometry (ICP-MS). In particular, two kinds of liquid extracts were analysed: (i) water soluble extracts from different mortars and (ii) acid extracts from mortars, black crusts, and calcium carbonate formations. In order to try to avoid the acid extraction step of the materials and their degradation products, it was also studied the TXRF direct measurement of the powdered solid suspensions in water. With this aim, different parameters such as the deposition volume and the measuring time were studied for each kind of samples. Depending on the quantified element, the limits of detection achieved with the TXRF quantitative methodologies for liquid extracts and solids were set around 0.01-1.2 and 2-200 mg/L respectively. The quantification of K, Ca, Ti, Mn, Fe, Zn, Rb, Sr, Sn and Pb in the liquid extracts was proved to be a faster alternative to other more classic quantification techniques (i.e. ICP-MS), accurate enough to obtain information about the composition of the acidic soluble part of the materials and their degradation products. Regarding the solid samples measured as suspensions, it was quite difficult to obtain stable and repetitive suspensions affecting in this way the accuracy of the results. To cope with this problem, correction factors based on the quantitative results obtained using ED-XRF were calculated to improve the accuracy of the TXRF results.
Impact of observational incompleteness on the structural properties of protein interaction networks
NASA Astrophysics Data System (ADS)
Kuhnt, Mathias; Glauche, Ingmar; Greiner, Martin
2007-01-01
The observed structure of protein interaction networks is corrupted by many false positive/negative links. This observational incompleteness is abstracted as random link removal and a specific, experimentally motivated (spoke) link rearrangement. Their impact on the structural properties of gene-duplication-and-mutation network models is studied. For the degree distribution a curve collapse is found, showing no sensitive dependence on the link removal/rearrangement strengths and disallowing a quantitative extraction of model parameters. The spoke link rearrangement process moves other structural observables, like degree correlations, cluster coefficient and motif frequencies, closer to their counterparts extracted from the yeast data. This underlines the importance to take a precise modeling of the observational incompleteness into account when network structure models are to be quantitatively compared to data.
USDA-ARS?s Scientific Manuscript database
Direct analysis in real time (DART) ionization coupled to a high resolution mass spectrometer (MS) was used for screening of aflatoxins from a variety of surfaces and the rapid quantitative analysis of aflatoxins extracted from corn. Sample preparation procedure and instrument parameter settings wer...
NASA Astrophysics Data System (ADS)
Nandy, Sreyankar; Mostafa, Atahar; Kumavor, Patrick D.; Sanders, Melinda; Brewer, Molly; Zhu, Quing
2016-10-01
A spatial frequency domain imaging (SFDI) system was developed for characterizing ex vivo human ovarian tissue using wide-field absorption and scattering properties and their spatial heterogeneities. Based on the observed differences between absorption and scattering images of different ovarian tissue groups, six parameters were quantitatively extracted. These are the mean absorption and scattering, spatial heterogeneities of both absorption and scattering maps measured by a standard deviation, and a fitting error of a Gaussian model fitted to normalized mean Radon transform of the absorption and scattering maps. A logistic regression model was used for classification of malignant and normal ovarian tissues. A sensitivity of 95%, specificity of 100%, and area under the curve of 0.98 were obtained using six parameters extracted from the SFDI images. The preliminary results demonstrate the diagnostic potential of the SFDI method for quantitative characterization of wide-field optical properties and the spatial distribution heterogeneity of human ovarian tissue. SFDI could be an extremely robust and valuable tool for evaluation of the ovary and detection of neoplastic changes of ovarian cancer.
Quantitative analysis of three-dimensional biological cells using interferometric microscopy
NASA Astrophysics Data System (ADS)
Shaked, Natan T.; Wax, Adam
2011-06-01
Live biological cells are three-dimensional microscopic objects that constantly adjust their sizes, shapes and other biophysical features. Wide-field digital interferometry (WFDI) is a holographic technique that is able to record the complex wavefront of the light which has interacted with in-vitro cells in a single camera exposure, where no exogenous contrast agents are required. However, simple quasi-three-dimensional holographic visualization of the cell phase profiles need not be the end of the process. Quantitative analysis should permit extraction of numerical parameters which are useful for cytology or medical diagnosis. Using a transmission-mode setup, the phase profile represents the multiplication between the integral refractive index and the thickness of the sample. These coupled variables may not be distinct when acquiring the phase profiles of dynamic cells. Many morphological parameters which are useful for cell biologists are based on the cell thickness profile rather than on its phase profile. We first overview methods to decouple the cell thickness and its refractive index using the WFDI-based phase profile. Then, we present a whole-cell-imaging approach which is able to extract useful numerical parameters on the cells even in cases where decoupling of cell thickness and refractive index is not possible or desired.
NASA Astrophysics Data System (ADS)
Buchmann, Jens; Kaplan, Bernhard A.; Prohaska, Steffen; Laufer, Jan
2017-03-01
Quantitative photoacoustic tomography (qPAT) aims to extract physiological parameters, such as blood oxygen saturation (sO2), from measured multi-wavelength image data sets. The challenge of this approach lies in the inherently nonlinear fluence distribution in the tissue, which has to be accounted for by using an appropriate model, and the large scale of the inverse problem. In addition, the accuracy of experimental and scanner-specific parameters, such as the wavelength dependence of the incident fluence, the acoustic detector response, the beam profile and divergence, needs to be considered. This study aims at quantitative imaging of blood sO2, as it has been shown to be a more robust parameter compared to absolute concentrations. We propose a Monte-Carlo-based inversion scheme in conjunction with a reduction in the number of variables achieved using image segmentation. The inversion scheme is experimentally validated in tissue-mimicking phantoms consisting of polymer tubes suspended in a scattering liquid. The tubes were filled with chromophore solutions at different concentration ratios. 3-D multi-spectral image data sets were acquired using a Fabry-Perot based PA scanner. A quantitative comparison of the measured data with the output of the forward model is presented. Parameter estimates of chromophore concentration ratios were found to be within 5 % of the true values.
Krůček, Martin; Vrška, Tomáš; Král, Kamil
2017-01-01
Terrestrial laser scanning is a powerful technology for capturing the three-dimensional structure of forests with a high level of detail and accuracy. Over the last decade, many algorithms have been developed to extract various tree parameters from terrestrial laser scanning data. Here we present 3D Forest, an open-source non-platform-specific software application with an easy-to-use graphical user interface with the compilation of algorithms focused on the forest environment and extraction of tree parameters. The current version (0.42) extracts important parameters of forest structure from the terrestrial laser scanning data, such as stem positions (X, Y, Z), tree heights, diameters at breast height (DBH), as well as more advanced parameters such as tree planar projections, stem profiles or detailed crown parameters including convex and concave crown surface and volume. Moreover, 3D Forest provides quantitative measures of between-crown interactions and their real arrangement in 3D space. 3D Forest also includes an original algorithm of automatic tree segmentation and crown segmentation. Comparison with field data measurements showed no significant difference in measuring DBH or tree height using 3D Forest, although for DBH only the Randomized Hough Transform algorithm proved to be sufficiently resistant to noise and provided results comparable to traditional field measurements. PMID:28472167
Validation of quantitative method for azoxystrobin residues in green beans and peas.
Abdelraheem, Ehab M H; Hassan, Sayed M; Arief, Mohamed M H; Mohammad, Somaia G
2015-09-01
This study presents a method validation for extraction and quantitative analysis of azoxystrobin residues in green beans and peas using HPLC-UV and the results confirmed by GC-MS. The employed method involved initial extraction with acetonitrile after the addition of salts (magnesium sulfate and sodium chloride), followed by a cleanup step by activated neutral carbon. Validation parameters; linearity, matrix effect, LOQ, specificity, trueness and repeatability precision were attained. The spiking levels for the trueness and the precision experiments were (0.1, 0.5, 3 mg/kg). For HPLC-UV analysis, mean recoveries ranged between 83.69% to 91.58% and 81.99% to 107.85% for green beans and peas, respectively. For GC-MS analysis, mean recoveries ranged from 76.29% to 94.56% and 80.77% to 100.91% for green beans and peas, respectively. According to these results, the method has been proven to be efficient for extraction and determination of azoxystrobin residues in green beans and peas. Copyright © 2015 Elsevier Ltd. All rights reserved.
Quantitatively in Situ Imaging Silver Nanowire Hollowing Kinetics
Yu, Le; Yan, Zhongying; Cai, Zhonghou; ...
2016-09-28
We report the in-situ investigation of the morphological evolution of silver nanowires to hollow silver oxide nanotubes using transmission x-ray microscopy (TXM). Complex silver diffusion kinetics and hollowing process via the Kirkendall effect have been captured in real time. Further quantitative x-ray absorption analysis reveals the difference between the longitudinal and radial diffusions. In conclusion, the diffusion coefficient of silver in its oxide nanoshell is, for the first time, calculated to be 1.2 × 10 -13 cm 2/s from the geometrical parameters extracted from the TXM images.
Determination of T-2 and HT-2 toxins from maize by direct analysis in real time mass spectrometry
USDA-ARS?s Scientific Manuscript database
Direct analysis in real time (DART) ionization coupled to mass spectrometry (MS) was used for the rapid quantitative analysis of T-2 toxin, and the related HT-2 toxin, extracted from corn. Sample preparation procedures and instrument parameters were optimized to obtain sensitive and accurate determi...
A technique for automatically extracting useful field of view and central field of view images.
Pandey, Anil Kumar; Sharma, Param Dev; Aheer, Deepak; Kumar, Jay Prakash; Sharma, Sanjay Kumar; Patel, Chetan; Kumar, Rakesh; Bal, Chandra Sekhar
2016-01-01
It is essential to ensure the uniform response of the single photon emission computed tomography gamma camera system before using it for the clinical studies by exposing it to uniform flood source. Vendor specific acquisition and processing protocol provide for studying flood source images along with the quantitative uniformity parameters such as integral and differential uniformity. However, a significant difficulty is that the time required to acquire a flood source image varies from 10 to 35 min depending both on the activity of Cobalt-57 flood source and the pre specified counts in the vendors protocol (usually 4000K-10,000K counts). In case the acquired total counts are less than the total prespecified counts, and then the vendor's uniformity processing protocol does not precede with the computation of the quantitative uniformity parameters. In this study, we have developed and verified a technique for reading the flood source image, remove unwanted information, and automatically extract and save the useful field of view and central field of view images for the calculation of the uniformity parameters. This was implemented using MATLAB R2013b running on Ubuntu Operating system and was verified by subjecting it to the simulated and real flood sources images. The accuracy of the technique was found to be encouraging, especially in view of practical difficulties with vendor-specific protocols. It may be used as a preprocessing step while calculating uniformity parameters of the gamma camera in lesser time with fewer constraints.
Farina, Roberto; Bressan, Eriberto; Taut, Andrei; Cucchi, Alessandro; Trombelli, Leonardo
2014-10-01
To address the criticisms raised by Anitua et al. (European Journal of Oral Implantology, 6, 2013, 9-11) to the article "Plasma Rich in Growth Factors (PRGF) in Human Post-Extraction Sockets: an Histological and Histomorphometric Study.", recently published by Farina and colleagues (Clinical Oral Implants Research 2012; doi: 10.1111/clr.12033). All the methodological aspects criticized in the letter by Anitua et al. were thoroughly reconsidered and discussed in a structured short communication. When indicated, pertinent, additional material was included to reinforce our considerations. As most clinical studies in implant dentistry, including previous studies evaluating the efficacy/effectiveness of PRGF, the study by Farina et al. has some limitations. However, it is currently the only published controlled trial using quantitative parameters related to PRGF-induced early bone formation. Despite all limitations, the results of the study by Farina et al., which were based on different quantitative parameters (micro-CT scan, immunohistochemical markers of wound healing and bone deposition), indicated a limited effect of PRGF on early bone formation in extraction sockets. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Quantitative radiomic profiling of glioblastoma represents transcriptomic expression.
Kong, Doo-Sik; Kim, Junhyung; Ryu, Gyuha; You, Hye-Jin; Sung, Joon Kyung; Han, Yong Hee; Shin, Hye-Mi; Lee, In-Hee; Kim, Sung-Tae; Park, Chul-Kee; Choi, Seung Hong; Choi, Jeong Won; Seol, Ho Jun; Lee, Jung-Il; Nam, Do-Hyun
2018-01-19
Quantitative imaging biomarkers have increasingly emerged in the field of research utilizing available imaging modalities. We aimed to identify good surrogate radiomic features that can represent genetic changes of tumors, thereby establishing noninvasive means for predicting treatment outcome. From May 2012 to June 2014, we retrospectively identified 65 patients with treatment-naïve glioblastoma with available clinical information from the Samsung Medical Center data registry. Preoperative MR imaging data were obtained for all 65 patients with primary glioblastoma. A total of 82 imaging features including first-order statistics, volume, and size features, were semi-automatically extracted from structural and physiologic images such as apparent diffusion coefficient and perfusion images. Using commercially available software, NordicICE, we performed quantitative imaging analysis and collected the dataset composed of radiophenotypic parameters. Unsupervised clustering methods revealed that the radiophenotypic dataset was composed of three clusters. Each cluster represented a distinct molecular classification of glioblastoma; classical type, proneural and neural types, and mesenchymal type. These clusters also reflected differential clinical outcomes. We found that extracted imaging signatures does not represent copy number variation and somatic mutation. Quantitative radiomic features provide a potential evidence to predict molecular phenotype and treatment outcome. Radiomic profiles represents transcriptomic phenotypes more well.
Xu, Pengcheng; Yu, Haitao; Li, Xinxin
2016-05-03
Activation-energy (Ea) value for trace-amount adsorption of gas molecules on material is rapidly and inexpensively obtained, for the first time, from a microgravimetric analysis experiment. With the material loaded, a resonant microcantilever is used to record in real time the adsorption process at two temperatures. The kinetic parameter Ea is thereby extracted by solving the Arrhenius equation. As an example, two CO2 capture nanomaterials are examined by the Ea extracting method for evaluation/optimization and, thereby, demonstrating the applicability of the microgravimetric analysis method. The achievement helps to solve the absence in rapid quantitative characterization of sorption kinetics and opens a new route to investigate molecule adsorption processes and materials.
Scherr, M K; Seitz, M; Müller-Lisse, U G; Ingrisch, M; Reiser, M F; Müller-Lisse, U L
2010-12-01
Various MR methods, including MR-spectroscopy (MRS), dynamic, contrast-enhanced MRI (DCE-MRI), and diffusion-weighted imaging (DWI) have been applied to improve test quality of standard MRI of the prostate. To determine if quantitative, model-based MR-perfusion (MRP) with gadobenate dimeglumine (Gd-BOPTA) discriminates between prostate cancer, benign tissue, and transitional zone (TZ) tissue. 27 patients (age, 65±4 years; PSA 11.0±6.1 ng/ml) with clinical suspicion of prostate cancer underwent standard MRI, 3D MR-spectroscopy (MRS), and MRP with Gd-BOPTA. Based on results of combined MRI/MRS and subsequent guided prostate biopsy alone (17/27), biopsy and radical prostatectomy (9/27), or sufficient negative follow-up (7/27), maps of model-free, deconvolution-based mean transit time (dMTT) were generated for 29 benign regions (bROIs), 14 cancer regions (cROIs), and 18 regions of transitional zone (tzROIs). Applying a 2-compartment exchange model, quantitative perfusion analysis was performed including as parameters: plasma flow (PF), plasma volume (PV), plasma mean transit time (PMTT), extraction flow (EFL), extraction fraction (EFR), interstitial volume (IV) and interstitial mean transit time (IMTT). Two-sided T-tests (significance level p<0.05) discriminated bROIs vs. cROIs and cROIs vs. tzROIs, respectively. PMTT discriminated best between bROIs (11.8±3.0 s) and cROIs (24.3±9.6 s) (p<0.0001), while PF, PV, PS, EFR, IV, IMTT also differed significantly (p 0.00002-0.0136). Discrimination between cROIs and tzROIs was insignificant for all parameters except PV (14.3±2.5 ml vs. 17.6±2.6 ml, p<0.05). Besides MRI, MRS and DWI quantitative, 2-compartment MRP with Gd-BOPTA discriminates between prostate cancer and benign tissue with several parameters. However, distinction of prostate cancer and TZ does not appear to be reliable. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Meijun Li,; Ellis, Geoffrey S.
2015-01-01
Dibenzofuran (DBF), its alkylated homologues, and benzo[b]naphthofurans (BNFs) are common oxygen-heterocyclic aromatic compounds in crude oils and source rock extracts. A series of positional isomers of alkyldibenzofuran and benzo[b]naphthofuran were identified in mass chromatograms by comparison with internal standards and standard retention indices. The response factors of dibenzofuran in relation to internal standards were obtained by gas chromatography-mass spectrometry analyses of a set of mixed solutions with different concentration ratios. Perdeuterated dibenzofuran and dibenzothiophene are optimal internal standards for quantitative analyses of furan compounds in crude oils and source rock extracts. The average concentration of the total DBFs in oils derived from siliciclastic lacustrine rock extracts from the Beibuwan Basin, South China Sea, was 518 μg/g, which is about 5 times that observed in the oils from carbonate source rocks in the Tarim Basin, Northwest China. The BNFs occur ubiquitously in source rock extracts and related oils of various origins. The results of this work suggest that the relative abundance of benzo[b]naphthofuran isomers, that is, the benzo[b]naphtho[2,1-d]furan/{benzo[b]naphtho[2,1-d]furan + benzo[b]naphtho[1,2-d]furan} ratio, may be a potential molecular geochemical parameter to indicate oil migration pathways and distances.
Clinical value of protein expression of kallikrein-related peptidase 7 (KLK7) in ovarian cancer.
Dorn, Julia; Gkazepis, Apostolos; Kotzsch, Matthias; Kremer, Marcus; Propping, Corinna; Mayer, Katharina; Mengele, Karin; Diamandis, Eleftherios P; Kiechle, Marion; Magdolen, Viktor; Schmitt, Manfred
2014-01-01
Expression of the kallikrein-related peptidase 7 (KLK7) is dysregulated in ovarian cancer. We assessed KLK7 expression by ELISA and quantitative immunohistochemistry and analyzed its association with clinicopathological parameters and patients' outcome. KLK7 antigen concentrations were determined in tumor tissue extracts of 98 ovarian cancer patients by ELISA. For analysis of KLK7 immunoexpression in ovarian cancer tissue microarrays, a manual quantitative scoring system as well as a software tool for quantitative high-throughput automated image analysis was used. In immunohistochemical analyses, expression levels of KLK7 were not associated with patients' outcome. However, in multivariate analyses, KLK7 antigen levels in tumor tissue extracts were significantly associated with both overall and progression-free survival: ovarian cancer patients with high KLK7 levels had a significantly, 2-fold lower risk of death [hazard ratio (HR)=0.51, 95% confidence interval (CI)=0.29-0.90, p=0.019] or relapse [HR=0.47, 95% CI=0.25-0.91, p=0.024), as compared with patients who displayed low KLK7 levels. Our results indicate that - in contrast to earlier findings - high KLK7 antigen levels in tumor tissue extracts may be associated with a better prognosis of ovarian cancer patients.
Tsai, Dung-Ying; Chen, Chien-Liang; Ding, Wang-Hsien
2014-07-01
A simple and effective method for the rapid determination of five salicylate and benzophenone-type UV absorbing substances in marketed fish is described. The method involves the use of matrix solid-phase dispersion (MSPD) prior to their determination by on-line silylation gas chromatography tandem mass spectrometry (GC-MS/MS). The parameters that affect the extraction efficiency were optimized using a Box-Behnken design method. The optimal extraction conditions involved dispersing 0.5g of freeze-dried powdered fish with 1.0g of Florisil using a mortar and pestle. This blend was then transferred to a solid-phase extraction (SPE) cartridge containing 1.0g of octadecyl bonded silica (C18), as the clean-up co-sorbent. The target analytes were then eluted with 7mL of acetonitrile. The extract was derivatized on-line in the GC injection-port by reaction with a trimethylsilylating (TMS) reagent. The TMS-derivatives were then identified and quantitated by GC-MS/MS. The limits of quantitation (LOQs) were less than 0.1ng/g. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wei, Fanan; Yang, Haitao; Liu, Lianqing; Li, Guangyong
2017-03-01
Dynamic mechanical behaviour of living cells has been described by viscoelasticity. However, quantitation of the viscoelastic parameters for living cells is far from sophisticated. In this paper, combining inverse finite element (FE) simulation with Atomic Force Microscope characterization, we attempt to develop a new method to evaluate and acquire trustworthy viscoelastic index of living cells. First, influence of the experiment parameters on stress relaxation process is assessed using FE simulation. As suggested by the simulations, cell height has negligible impact on shape of the force-time curve, i.e. the characteristic relaxation time; and the effect originates from substrate can be totally eliminated when stiff substrate (Young's modulus larger than 3 GPa) is used. Then, so as to develop an effective optimization strategy for the inverse FE simulation, the parameters sensitivity evaluation is performed for Young's modulus, Poisson's ratio, and characteristic relaxation time. With the experiment data obtained through typical stress relaxation measurement, viscoelastic parameters are extracted through the inverse FE simulation by comparing the simulation results and experimental measurements. Finally, reliability of the acquired mechanical parameters is verified with different load experiments performed on the same cell.
Numerical framework for the modeling of electrokinetic flows
NASA Astrophysics Data System (ADS)
Deshpande, Manish; Ghaddar, Chahid; Gilbert, John R.; St. John, Pamela M.; Woudenberg, Timothy M.; Connell, Charles R.; Molho, Joshua; Herr, Amy; Mungal, Godfrey; Kenny, Thomas W.
1998-09-01
This paper presents a numerical framework for design-based analyses of electrokinetic flow in interconnects. Electrokinetic effects, which can be broadly divided into electrophoresis and electroosmosis, are of importance in providing a transport mechanism in microfluidic devices for both pumping and separation. Models for the electrokinetic effects can be derived and coupled to the fluid dynamic equations through appropriate source terms. In the design of practical microdevices, however, accurate coupling of the electrokinetic effects requires the knowledge of several material and physical parameters, such as the diffusivity and the mobility of the solute in the solvent. Additionally wall-based effects such as chemical binding sites might exist that affect the flow patterns. In this paper, we address some of these issues by describing a synergistic numerical/experimental process to extract the parameters required. Experiments were conducted to provide the numerical simulations with a mechanism to extract these parameters based on quantitative comparisons with each other. These parameters were then applied in predicting further experiments to validate the process. As part of this research, we have created NetFlow, a tool for micro-fluid analyses. The tool can be validated and applied in existing technologies by first creating test structures to extract representations of the physical phenomena in the device, and then applying them in the design analyses to predict correct behavior.
Mohn, Tobias; Cutting, Brian; Ernst, Beat; Hamburger, Matthias
2007-09-28
Glucosinolates have attracted significant interest due to the chemopreventive properties of some of their transformation products. Numerous protocols for the extraction and analysis of glucosinolates have been published, but limited effort has been devoted to optimize and validate crucial extraction parameters and sample preparation steps. We carried out a systematic optimization and validation of a quantitative assay for the direct analysis of intact glucosinolates in Isatis tinctoria leaves (woad, Brassicaceae). Various parameters such as solvent composition, particle size, temperature, and number of required extraction steps were optimized using pressurized liquid extraction (PLE). We observed thermal degradation of glucosinolates at temperatures above 50 degrees C, and loss of >60% within 10min at 100 degrees C, but no enzymatic degradation in the leaf samples at ambient temperature. Excellent peak shape and resolution was obtained by reversed-phase chromatography on a Phenomenex Aqua column using 10mM ammonium formate as ion-pair reagent. Detection was carried out by electrospray ionisation mass spectrometry in the negative ion mode. Analysis of cruciferous vegetables and spices such as broccoli (Brassica oleracea L. var. italica), garden cress (Lepidium sativum L.) and black mustard (Sinapis nigra L.) demonstrated the general applicability of the method.
Quantitative Evaluation of Performance during Robot-assisted Treatment.
Peri, E; Biffi, E; Maghini, C; Servodio Iammarrone, F; Gagliardi, C; Germiniasi, C; Pedrocchi, A; Turconi, A C; Reni, G
2016-01-01
This article is part of the Focus Theme of Methods of Information in Medicine on "Methodologies, Models and Algorithms for Patients Rehabilitation". The great potential of robots in extracting quantitative and meaningful data is not always exploited in clinical practice. The aim of the present work is to describe a simple parameter to assess the performance of subjects during upper limb robotic training exploiting data automatically recorded by the robot, with no additional effort for patients and clinicians. Fourteen children affected by cerebral palsy (CP) performed a training with Armeo®Spring. Each session was evaluated with P, a simple parameter that depends on the overall performance recorded, and median and interquartile values were computed to perform a group analysis. Median (interquartile) values of P significantly increased from 0.27 (0.21) at T0 to 0.55 (0.27) at T1 . This improvement was functionally validated by a significant increase of the Melbourne Assessment of Unilateral Upper Limb Function. The parameter described here was able to show variations in performance over time and enabled a quantitative evaluation of motion abilities in a way that is reliable with respect to a well-known clinical scale.
Villagrasa, M; Guillamón, M; Navarro, A; Eljarrat, E; Barceló, D
2008-02-01
A new analytical method for the quantitative determination of benzoxazolinones and their degradation products in agricultural soils based on the use of pressurized liquid extraction (PLE) followed by solid-phase extraction (SPE) and then instrumental determination using liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS-MS) is described. Using this method, the characterization, separation and quantitative detection of a mixture of two benzoxazolinones, benzoxazolin-2-one (BOA) and 6-methoxybenzoxazolin-2-one (MBOA) and their degradation products, 2-aminophenol (APH), N-(2-hydroxyphenyl)malonamic acid (HMPMA), 2-amino-3-H-phenoxazin-3-one (APO), 9-methoxy-2-amino-3-H-phenoxazin-3-one (AMPO), 2-acetylamino-3-H-phenoxazin-3-one (AAPO) and 2-acetylamino-9-methoxy-2-amino-3-H-phenoxazin-3-one (AAMPO) was achieved. The complete LC-ESI-MS-MS precursor-product ion fragmentation pathways for the degradation products of benzoxazolinones are described for the first time. Quantitative analysis was done in the multiple reaction mode using two specific combinations of precursor-product ion transitions for each compound. The optimized method was quality assessed by the measure of parameter as recovery, linearity, sensitivity, repeatability and reproducibility. Recoveries of the analytes ranged from 53 to 123%. The developed method offered improvements to the sensitivity as compared with our previously LC-MS method, with detection limits down to 2.4-21 ng/g of dry weight. This achievement allows us to identify and quantify for the first time degradation products of benzoxazolinones in real agricultural soil samples. Analytes were found in the range of 20.6-149 ng/g dry weight.
Yang, Yu-Chiao; Wei, Ming-Chi; Hong, Show-Jen
2014-01-03
This study evaluated ultrasound-assisted supercritical carbon dioxide (USC-CO2) extraction for determining the extraction yields of oils and the contents of eugenol, β-caryophyllene, eugenyl acetate and α-humulene from clove buds. Compared to traditional SC-CO2 extraction, USC-CO2 extraction might provide a 13.5% increase in the extraction yield for the oil while utilizing less severe operating parameters, such as temperature, pressure, CO2 flow rate and the time consumed by the process. Our results were comparable to those obtained using the heat reflux extraction method, though the yield was improved by 20.8% using USC-CO2. In kinetic studies, the USC-CO2 extraction of clove oil followed second-order kinetics. The activation energy for the oil extraction was 76.56kJ/mol. The USC-CO2 procedure facilitated the use of mild extraction conditions, improved extraction efficiency and the quality of products and is a potential method for industry. Copyright © 2013 Elsevier B.V. All rights reserved.
Furusawa, Naoto
2006-09-01
A technique is presented for the economical, routine, and quantitative analysis of contamination by dichloro-diphenyl-trichloroethanes (DDTs) [pp'-DDT, pp'-dichlorodiphenyl dichloroethylene, and pp'-dichlorodiphenyl dichloreothane in beef tallow and chicken fat samples, based on their separation using matrix solid-phase dispersion (MSPD) extraction with Toyobo-KF, an activated carbon fiber. Toyobo-KF is a newly applied MSPD sorbent, and it is followed by reversed-phase high-performance liquid chromatography (HPLC) with a photodiode array detector. The resulting analytical performance parameters [recoveries of spiked DDTs (0.1, 0.2, and 0.4 microg/g) > or = 81%, with relative standard deviations of < or = 8% (n = 5), and quantitation limits < or = 0.03 microg/g], with minimal handling and cost-efficiency, indicate that the present MSPD-HPLC method may be a useful tool for routine monitoring of DDT contamination in meat.
Starvin, A M; Rao, T Prasada
2004-09-10
As a part of removal of toxic heavy metals from hazardous wastes, solid phase extraction (SPE) of mercury(II) at trace and ultra trace levels was studied using 1-(2-thiazolylazo)-2-naphthol (TAN) functionalized activated carbon (AC). The SPE material removes traces of mercury(II) quantitatively in the pH range 6.0 +/- 0.2. Other parameters that influence quantitative recovery of mercury(II), viz. percent concentration of TAN in AC, amount of TAN-AC, preconcentration time and volume of aqueous phase were varied and optimized. The possible means of removal of Hg(II) from other metal ions that are likely to be present in the wastes of the chloroalkali industry is discussed. The potential of TAN-functionalized AC SPE material for decontaminating mercury from the brine sludge and cell house effluent of a chloralkali plant has been evaluated.
Boo, Chelsea C; Parker, Christine H; Jackson, Lauren S
2018-01-01
Food allergy is a growing public health concern, with many individuals reporting allergies to multiple food sources. Compliance with food labeling regulations and prevention of inadvertent cross-contact in manufacturing requires the use of reliable methods for the detection and quantitation of allergens in processed foods. In this work, a novel liquid chromatography-tandem mass spectrometry multiple-reaction monitoring method for multiallergen detection and quantitation of egg, milk, and peanut was developed and evaluated in an allergen-incurred baked sugar cookie matrix. A systematic evaluation of method parameters, including sample extraction, concentration, and digestion, were optimized for candidate allergen peptide markers. The optimized method enabled the reliable detection and quantitation of egg, milk, and peanut allergens in sugar cookies, with allergen concentrations as low as 5 ppm allergen-incurred ingredient.
Busman, Mark; Liu, Jihong; Zhong, Hongjian; Bobell, John R; Maragos, Chris M
2014-01-01
Direct analysis in real time (DART) ionisation coupled to a high-resolution mass spectrometer (MS) was used for screening of aflatoxins from a variety of surfaces and the rapid quantitative analysis of a common form of aflatoxin, AFB1, extracted from corn. Sample preparation procedure and instrument parameter settings were optimised to obtain sensitive and accurate determination of aflatoxin AFB1. 84:16 acetonitrile water extracts of corn were analysed by DART-MS. The lowest calibration level (LCL) for aflatoxin AFB1 was 4 μg kg⁻¹. Quantitative analysis was performed with the use of matrix-matched standards employing the ¹³C-labelled internal standard for AFB1. DART-MS of spiked corn extracts gave linear response in the range 4-1000 μg kg⁻¹. Good recoveries (94-110%) and repeatabilities (RSD = 0.7-6.9%) were obtained at spiking levels of 20 and 100 μg kg⁻¹ with the use of an isotope dilution technique. Trueness of data obtained for AFB1 in maize by DART-MS was demonstrated by analysis of corn certified reference materials.
Spectral Analysis and Experimental Modeling of Ice Accretion Roughness
NASA Technical Reports Server (NTRS)
Orr, D. J.; Breuer, K. S.; Torres, B. E.; Hansman, R. J., Jr.
1996-01-01
A self-consistent scheme for relating wind tunnel ice accretion roughness to the resulting enhancement of heat transfer is described. First, a spectral technique of quantitative analysis of early ice roughness images is reviewed. The image processing scheme uses a spectral estimation technique (SET) which extracts physically descriptive parameters by comparing scan lines from the experimentally-obtained accretion images to a prescribed test function. Analysis using this technique for both streamwise and spanwise directions of data from the NASA Lewis Icing Research Tunnel (IRT) are presented. An experimental technique is then presented for constructing physical roughness models suitable for wind tunnel testing that match the SET parameters extracted from the IRT images. The icing castings and modeled roughness are tested for enhancement of boundary layer heat transfer using infrared techniques in a "dry" wind tunnel.
Quantitative IR microscopy and spectromics open the way to 3D digital pathology.
Bobroff, Vladimir; Chen, Hsiang-Hsin; Delugin, Maylis; Javerzat, Sophie; Petibois, Cyril
2017-04-01
Currently, only mass-spectrometry (MS) microscopy brings a quantitative analysis of chemical contents of tissue samples in 3D. Here, the reconstruction of a 3D quantitative chemical images of a biological tissue by FTIR spectro-microscopy is reported. An automated curve-fitting method is developed to extract all intense absorption bands constituting IR spectra. This innovation benefits from three critical features: (1) the correction of raw IR spectra to make them quantitatively comparable; (2) the automated and iterative data treatment allowing to transfer the IR-absorption spectrum into a IR-band spectrum; (3) the reconstruction of an 3D IR-band matrix (x, y, z for voxel position and a 4 th dimension with all IR-band parameters). Spectromics, which is a new method for exploiting spectral data for tissue metadata reconstruction, is proposed to further translate the related chemical information in 3D, as biochemical and anatomical tissue parameters. An example is given with oxidative stress distribution and the reconstruction of blood vessels in tissues. The requirements of IR microscopy instrumentation to propose 3D digital histology as a clinical routine technology is briefly discussed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Acharya, Kamal R.; Dhand, Navneet K.; Whittington, Richard J.; Plain, Karren M.
2017-01-01
Molecular tests such as polymerase chain reaction (PCR) are increasingly being applied for the diagnosis of Johne’s disease, a chronic intestinal infection of ruminants caused by Mycobacterium avium subspecies paratuberculosis (MAP). Feces, as the primary test sample, presents challenges in terms of effective DNA isolation, with potential for PCR inhibition and ultimately for reduced analytical and diagnostic sensitivity. However, limited evidence is available regarding the magnitude and diagnostic implications of PCR inhibition for the detection of MAP in feces. This study aimed to investigate the presence and diagnostic implications of PCR inhibition in a quantitative PCR assay for MAP (High-throughput Johne’s test) to investigate the characteristics of samples prone to inhibition and to identify measures that can be taken to overcome this. In a study of fecal samples derived from a high prevalence, endemically infected cattle herd, 19.94% of fecal DNA extracts showed some evidence of inhibition. Relief of inhibition by a five-fold dilution of the DNA extract led to an average increase in quantification of DNA by 3.3-fold that consequently increased test sensitivity of the qPCR from 55 to 80% compared to fecal culture. DNA extracts with higher DNA and protein content had 19.33 and 10.94 times higher odds of showing inhibition, respectively. The results suggest that the current test protocol is sensitive for herd level diagnosis of Johne’s disease but that test sensitivity and individual level diagnosis could be enhanced by relief of PCR inhibition, achieved by five-fold dilution of the DNA extract. Furthermore, qualitative and quantitative parameters derived from absorbance measures of DNA extracts could be useful for prediction of inhibitory fecal samples. PMID:28210245
Analysis of atomic force microscopy data for surface characterization using fuzzy logic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Mousa, Amjed, E-mail: aalmousa@vt.edu; Niemann, Darrell L.; Niemann, Devin J.
2011-07-15
In this paper we present a methodology to characterize surface nanostructures of thin films. The methodology identifies and isolates nanostructures using Atomic Force Microscopy (AFM) data and extracts quantitative information, such as their size and shape. The fuzzy logic based methodology relies on a Fuzzy Inference Engine (FIE) to classify the data points as being top, bottom, uphill, or downhill. The resulting data sets are then further processed to extract quantitative information about the nanostructures. In the present work we introduce a mechanism which can consistently distinguish crowded surfaces from those with sparsely distributed structures and present an omni-directional searchmore » technique to improve the structural recognition accuracy. In order to demonstrate the effectiveness of our approach we present a case study which uses our approach to quantitatively identify particle sizes of two specimens each with a unique gold nanoparticle size distribution. - Research Highlights: {yields} A Fuzzy logic analysis technique capable of characterizing AFM images of thin films. {yields} The technique is applicable to different surfaces regardless of their densities. {yields} Fuzzy logic technique does not require manual adjustment of the algorithm parameters. {yields} The technique can quantitatively capture differences between surfaces. {yields} This technique yields more realistic structure boundaries compared to other methods.« less
Sereshti, Hassan; Samadi, Soheila; Jalali-Heravi, Mehdi
2013-03-08
Ultrasound assisted extraction (UAE) followed by dispersive liquid-liquid microextraction (DLLME) was used for extraction and preconcentration of volatile constituents of six tea plants. The preconcentrated compounds were analyzed by gas chromatography-mass spectrometry (GC-MS). Totally, 42 compounds were identified and caffeine was quantitatively determined. The main parameters (factors) of the extraction process were optimized by using a central composite design (CCD). Methanol and chloroform were selected as the extraction solvent and preconcentration solvent, respectively .The optimal conditions were obtained as 21 in for sonication time; 32°C for temperature; 27 L for volume of extraction solvent and 7.4% for salt concentration (NaCl/H(2)O). The determination coefficient (R(2)) was 0.9988. The relative standard deviation (RSD %) was 4.8 (n=5), and the enhancement factors (EFs) were 4.0-42.6. Copyright © 2013 Elsevier B.V. All rights reserved.
Zachariadis, G A; Rosenberg, E
2009-04-15
A method for the determination of organotin compounds in urine samples based on liquid-liquid extraction (LLE) in hexane and gas chromatographic separation was developed and optimized. Seven organotin species, namely monobutyltin (MBT), dibutyltin (DBT), tributyltin (TBT), tetrabutyltin (TeBT), monophenyltin (MPhT), diphenyltin (DPhT) and triphenyltin (TPhT), were in situ derivatized by sodium tetraethylborate (NaBEt(4)) to form ethylated less polar derivatives directly in the urine matrix. The critical parameters which have a significant effect on the yield of the successive liquid-liquid extraction procedure were examined, by using standard solutions of tetrabutyltin in hexane. The method was optimized for use in direct analysis of undiluted human urine samples and ways to overcome practical problems such as foam formation during extraction, due to various constituents of urine are discussed. After thorough optimization of the extraction procedure, all examined species could be determined after 3 min of simultaneous derivatization and extraction at room temperature and 5 min phase separation by centrifugation. Gas chromatography with a microwave-induced plasma atomic emission detector (MIP-AED) as element specific detector was employed for quantitative measurements, while a quadrupole mass spectrometric detector (MS) was used as molecular specific detector. The detection limits were between 0.42 and 0.67 microg L(-1) (as Sn) for the quantitative LLE-GC-MIP-AED method and the precision between 4.2% and 11.7%, respectively.
Cell classification using big data analytics plus time stretch imaging (Conference Presentation)
NASA Astrophysics Data System (ADS)
Jalali, Bahram; Chen, Claire L.; Mahjoubfar, Ata
2016-09-01
We show that blood cells can be classified with high accuracy and high throughput by combining machine learning with time stretch quantitative phase imaging. Our diagnostic system captures quantitative phase images in a flow microscope at millions of frames per second and extracts multiple biophysical features from individual cells including morphological characteristics, light absorption and scattering parameters, and protein concentration. These parameters form a hyperdimensional feature space in which supervised learning and cell classification is performed. We show binary classification of T-cells against colon cancer cells, as well classification of algae cell strains with high and low lipid content. The label-free screening averts the negative impact of staining reagents on cellular viability or cell signaling. The combination of time stretch machine vision and learning offers unprecedented cell analysis capabilities for cancer diagnostics, drug development and liquid biopsy for personalized genomics.
Vega, Victor A; Young, Michelle; Todd, Sarah
2016-01-01
An extraction for aflatoxin M1 from bovine milk samples is described. The samples were extracted by adding 10 mL acetonitrile to 10 g of sample. The extract was salted out with sodium chloride and magnesium sulfate to separate the water and acetonitrile. The organic layer was dried down and reconstituted in water before being subjected to an immunoaffinity column for cleanup. Once the analyte was isolated, quantitation was obtained by LC with fluorescence detection. LC/fluorescence parameters were optimized with an Agilent Poroshell 120 C18 LC column resulting in a 4 min run time. To test the procedure's robustness, three different kinds of matrixes were fortified at three different levels each. Whole milk, reduced fat milk, and skim milk samples were fortified at approximately 0.25, 0.5, and 1.0 μg/kg. Recoveries from all samples ranged from 70 to 100%. Confirmation was accomplished by injecting the samples in an ion trap mass spectrometer. The method presented here entails an extraction step followed by an immunoaffinity column clean-up that leads to fast analysis time and consistent recoveries with an uncertainty measurement of 10.5% and method detection limit of less than 0.011 μg/kg.
Ye, Hui; Zhu, Lin; Wang, Lin; Liu, Huiying; Zhang, Jun; Wu, Mengqiu; Wang, Guangji; Hao, Haiping
2016-02-11
Multiple reaction monitoring (MRM) is a universal approach for quantitative analysis because of its high specificity and sensitivity. Nevertheless, optimization of MRM parameters remains as a time and labor-intensive task particularly in multiplexed quantitative analysis of small molecules in complex mixtures. In this study, we have developed an approach named Stepped MS(All) Relied Transition (SMART) to predict the optimal MRM parameters of small molecules. SMART requires firstly a rapid and high-throughput analysis of samples using a Stepped MS(All) technique (sMS(All)) on a Q-TOF, which consists of serial MS(All) events acquired from low CE to gradually stepped-up CE values in a cycle. The optimal CE values can then be determined by comparing the extracted ion chromatograms for the ion pairs of interest among serial scans. The SMART-predicted parameters were found to agree well with the parameters optimized on a triple quadrupole from the same vendor using a mixture of standards. The parameters optimized on a triple quadrupole from a different vendor was also employed for comparison, and found to be linearly correlated with the SMART-predicted parameters, suggesting the potential applications of the SMART approach among different instrumental platforms. This approach was further validated by applying to simultaneous quantification of 31 herbal components in the plasma of rats treated with a herbal prescription. Because the sMS(All) acquisition can be accomplished in a single run for multiple components independent of standards, the SMART approach are expected to find its wide application in the multiplexed quantitative analysis of complex mixtures. Copyright © 2015 Elsevier B.V. All rights reserved.
Hamers, F P; Lankhorst, A J; van Laar, T J; Veldhuis, W B; Gispen, W H
2001-02-01
Analysis of locomotion is an important tool in the study of peripheral and central nervous system damage. Most locomotor scoring systems in rodents are based either upon open field locomotion assessment, for example, the BBB score or upon foot print analysis. The former yields a semiquantitative description of locomotion as a whole, whereas the latter generates quantitative data on several selected gait parameters. In this paper, we describe the use of a newly developed gait analysis method that allows easy quantitation of a large number of locomotion parameters during walkway crossing. We were able to extract data on interlimb coordination, swing duration, paw print areas (total over stance, and at 20-msec time resolution), stride length, and base of support: Similar data can not be gathered by any single previously described method. We compare changes in gait parameters induced by two different models of spinal cord injury in rats, transection of the dorsal half of the spinal cord and spinal cord contusion injury induced by the NYU or MASCIS device. Although we applied this method to rats with spinal cord injury, the usefulness of this method is not limited to rats or to the investigation of spinal cord injuries alone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
E Nazaretski; J Thibodaux; I Vekhter
2011-12-31
We report the local measurements of the magnetic penetration depth in a superconducting Nb film using magnetic force microscopy (MFM). We developed a method for quantitative extraction of the penetration depth from single-parameter simultaneous fits to the lateral and height profiles of the MFM signal, and demonstrate that the obtained value is in excellent agreement with that obtained from the bulk magnetization measurements.
Spectral Quantitation Of Hydroponic Nutrients
NASA Technical Reports Server (NTRS)
Schlager, Kenneth J.; Kahle, Scott J.; Wilson, Monica A.; Boehlen, Michelle
1996-01-01
Instrument continuously monitors hydroponic solution by use of absorption and emission spectrometry to determine concentrations of principal nutrients, including nitrate, iron, potassium, calcium, magnesium, phosphorus, sodium, and others. Does not depend on extraction and processing of samples, use of such surrograte parameters as pH or electrical conductivity for control, or addition of analytical reagents to solution. Solution not chemically altered by analysis and can be returned to hydroponic process stream after analysis.
Ilias, Yara; Bieri, Stefan; Christen, Philippe; Veuthey, Jean-Luc
2006-08-01
By its simplicity and rapidity, solid-phase microextraction (SPME) appears as an interesting alternative for sample introduction in fast gas chromatography (fast GC). This combination depends on numerous parameters affecting the desorption step (i.e., the release of compounds from the SPME fiber coating to the GC column). In this study, different liner diameters, injection temperatures, and gas flow rates are evaluated to accelerate the thermal desorption process in the injection port. This process is followed with real-time direct coupling a split/splitless injector to a mass spectrometer by means of a short capillary. It is shown that an effective, quantitative, and rapid transfer of cocaine (COC) and cocaethylene (CE) is performed with a 0.75-mm i.d. liner, at 280 degrees C and 4 mL/min gas flow rate. The 7-microm polydimethylsiloxane (PDMS) coating is selected for combination with fast GC because the 100-microm PDMS fiber presents some limitations caused by fiber bleeding. Finally, the developed SPME-fast GC method is applied to perform in less than 5 min, the quantitation of COC extracted from coca leaves by focused microwave-assisted extraction. An amount of 7.6 +/- 0.5 mg of COC per gram of dry mass is found, which is in good agreement with previously published results.
Lerner, Eitan; Ploetz, Evelyn; Hohlbein, Johannes; Cordes, Thorben; Weiss, Shimon
2016-07-07
Single-molecule, protein-induced fluorescence enhancement (PIFE) serves as a molecular ruler at molecular distances inaccessible to other spectroscopic rulers such as Förster-type resonance energy transfer (FRET) or photoinduced electron transfer. In order to provide two simultaneous measurements of two distances on different molecular length scales for the analysis of macromolecular complexes, we and others recently combined measurements of PIFE and FRET (PIFE-FRET) on the single molecule level. PIFE relies on steric hindrance of the fluorophore Cy3, which is covalently attached to a biomolecule of interest, to rotate out of an excited-state trans isomer to the cis isomer through a 90° intermediate. In this work, we provide a theoretical framework that accounts for relevant photophysical and kinetic parameters of PIFE-FRET, show how this framework allows the extraction of the fold-decrease in isomerization mobility from experimental data, and show how these results provide information on changes in the accessible volume of Cy3. The utility of this model is then demonstrated for experimental results on PIFE-FRET measurement of different protein-DNA interactions. The proposed model and extracted parameters could serve as a benchmark to allow quantitative comparison of PIFE effects in different biological systems.
Meischl, Florian; Kirchler, Christian Günter; Jäger, Michael Andreas; Huck, Christian Wolfgang; Rainer, Matthias
2018-02-01
We present a novel method for the quantitative determination of the clean-up efficiency to provide a calculated parameter for peak purity through iterative fitting in conjunction with design of experiments. Rosemary extracts were used and analyzed before and after solid-phase extraction using a self-fabricated mixed-mode sorbent based on poly(N-vinylimidazole/ethylene glycol dimethacrylate). Optimization was performed by variation of washing steps using a full three-level factorial design and response surface methodology. Separation efficiency of rosmarinic acid from interfering compounds was calculated using an iterative fit of Gaussian-like signals and quantifications were performed by the separate integration of the two interfering peak areas. Results and recoveries were analyzed using Design-Expert® software and revealed significant differences between the washing steps. Optimized parameters were considered and used for all further experiments. Furthermore, the solid-phase extraction procedure was tested and compared with commercial available sorbents. In contrast to generic protocols of the manufacturers, the optimized procedure showed excellent recoveries and clean-up rates for the polymer with ion exchange properties. Finally, rosemary extracts from different manufacturing areas and application types were studied to verify the developed method for its applicability. The cleaned-up extracts were analyzed by liquid chromatography with tandem mass spectrometry for detailed compound evaluation to exclude any interference from coeluting molecules. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Molina-Calle, M; Sánchez de Medina, V; Delgado de la Torre, M P; Priego-Capote, F; Luque de Castro, M D
2016-07-01
Stevia is a currently well-known plant thanks to the presence of steviol glycosides, which are considered as sweeteners obtained from a natural source. In this research, a method based on LC-MS/MS by using a triple quadrupole detector was developed for quantitation of 8 steviol glycosides in extracts from Stevia leaves. The ionization and fragmentation parameters for selected reaction monitoring were optimized. Detection and quantitation limits ranging from 0.1 to 0.5ng/mL and from 0.5 to 1ng/mL, respectively, were achieved: the lowest attained so far. The steviol glycosides were quantified in extracts from leaves of seven varieties of Stevia cultivated in laboratory, greenhouse and field. Plants cultivated in field presented higher concentration of steviol glycosides than those cultivated in greenhouse. Thus, the way of cultivation clearly influences the concentration of these compounds. The inclusion of branches together with leaves as raw material was also evaluated, showing that this inclusion modifies, either positively or negatively, the concentration of steviol glycosides. Copyright © 2016 Elsevier B.V. All rights reserved.
Brunnenberg, M; Lindenblatt, H; Gouzoulis-Mayfrank, E; Kovar, K A
1998-11-20
A HPLC method has been developed for the analogue of Ecstasy MDE and its major metabolites N-ethyl-4-hydroxy-3-methoxyamphetamine (HME) and 3,4-methylenedioxyamphetamine (MDA) in human plasma. In the course of our investigations we found that the methylenedioxyamphetamines and HME exhibit fluorescence at 322 nm. Therefore the detection could be carried out with a fluorescence (FL) detector. Solid-phase extraction was used for sample preparation and yielded high recovery rates greater than 95%. The limit of quantitation for MDE and its metabolites in the extracts was between 1.5 and 8.9 ng/ml and the method standard deviations were less than 5%. This sensitive, rapid and reliable analytical method has been used successfully in the quantitation of the substances in plasma samples obtained from 14 volunteers in two clinical studies after p.o. administration of 100 to 140 mg MDE*HCI. The maximum plasma concentrations were 235-465 ng/ml (MDE), 67-673 ng/ml (HME) and 7-33 ng/ml (MDA), respectively. Pharmacokinetic parameters have been investigated using the plasma concentration curves.
Hu, Bin; Li, Cheng; Zhang, Zhiqing; Zhao, Qing; Zhu, Yadong; Su, Zhao; Chen, Yizi
2017-09-15
Microwave-assisted extraction (MAE) of oil from silkworm pupae was firstly performed in the present research. The response surface methodology was applied to optimize the parameters for MAE. The yield of oil by MAE was 30.16% under optimal conditions of a mixed solvent consisting of ethanol and n-hexane (1:1, v/v), microwave power (360W), liquid to solid ratio (7.5/1mL/g), microwave time (29min). Moreover, oil extracted by MAE was quantitatively (yield) and qualitatively (fatty acid profile) similar to those obtained using Soxhlet extraction (SE), but oil extracted by MAE exhibited favourable physicochemical properties and oxidation stability. Additionally, oil extracted by MAE had a higher content of total phenolic, and it showed stronger antioxidant activities. Scanning electron microscopy revealed that microwave technique efficiently promoted the release of oil by breaking down the cell structure of silkworm pupae. Therefore, MAE can be an effective method for the silkworm pupal oil extraction. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mycotoxin Analysis of Human Urine by LC-MS/MS: A Comparative Extraction Study
Escrivá, Laura; Font, Guillermina
2017-01-01
The lower mycotoxin levels detected in urine make the development of sensitive and accurate analytical methods essential. Three extraction methods, namely salting-out liquid–liquid extraction (SALLE), miniQuEChERS (quick, easy, cheap, effective, rugged, and safe), and dispersive liquid–liquid microextraction (DLLME), were evaluated and compared based on analytical parameters for the quantitative LC-MS/MS measurement of 11 mycotoxins (AFB1, AFB2, AFG1, AFG2, OTA, ZEA, BEA, EN A, EN B, EN A1 and EN B1) in human urine. DLLME was selected as the most appropriate methodology, as it produced better validation results for recovery (79–113%), reproducibility (RSDs < 12%), and repeatability (RSDs < 15%) than miniQuEChERS (71–109%, RSDs <14% and <24%, respectively) and SALLE (70–108%, RSDs < 14% and < 24%, respectively). Moreover, the lowest detection (LODS) and quantitation limits (LOQS) were achieved with DLLME (LODs: 0.005–2 μg L−1, LOQs: 0.1–4 μg L−1). DLLME methodology was used for the analysis of 10 real urine samples from healthy volunteers showing the presence of ENs B, B1 and A1 at low concentrations. PMID:29048356
Cao, Wan; Ye, Li-Hong; Cao, Jun; Xu, Jing-Jing; Peng, Li-Qing; Zhu, Qiong-Yao; Zhang, Qian-Yun; Hu, Shuai-Shuai
2015-08-07
An analytical procedure based on miniaturized solid phase extraction (SPE) and ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry was developed and validated for determination of six flavanones in Citrus fruits. The mesoporous molecular sieve SBA-15 as a solid sorbent was characterised by Fourier transform-infrared spectroscopy and scanning electron microscopy. Additionally, compared with reported extraction techniques, the mesoporous SBA-15 based SPE method possessed the advantages of shorter analysis time and higher sensitivity. Furthermore, considering the different nature of the tested compounds, all of the parameters, including the SBA-15 amount, solution pH, elution solvent, and the sorbent type, were investigated in detail. Under the optimum condition, the instrumental detection and quantitation limits calculated were less than 4.26 and 14.29ngmL(-1), respectively. The recoveries obtained for all the analytes were ranging from 89.22% to 103.46%. The experimental results suggested that SBA-15 was a promising material for the purification and enrichment of target flavanones from complex citrus fruit samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Linearly Supporting Feature Extraction for Automated Estimation of Stellar Atmospheric Parameters
NASA Astrophysics Data System (ADS)
Li, Xiangru; Lu, Yu; Comte, Georges; Luo, Ali; Zhao, Yongheng; Wang, Yongjun
2015-05-01
We describe a scheme to extract linearly supporting (LSU) features from stellar spectra to automatically estimate the atmospheric parameters {{T}{\\tt{eff} }}, log g, and [Fe/H]. “Linearly supporting” means that the atmospheric parameters can be accurately estimated from the extracted features through a linear model. The successive steps of the process are as follow: first, decompose the spectrum using a wavelet packet (WP) and represent it by the derived decomposition coefficients; second, detect representative spectral features from the decomposition coefficients using the proposed method Least Absolute Shrinkage and Selection Operator (LARS)bs; third, estimate the atmospheric parameters {{T}{\\tt{eff} }}, log g, and [Fe/H] from the detected features using a linear regression method. One prominent characteristic of this scheme is its ability to evaluate quantitatively the contribution of each detected feature to the atmospheric parameter estimate and also to trace back the physical significance of that feature. This work also shows that the usefulness of a component depends on both the wavelength and frequency. The proposed scheme has been evaluated on both real spectra from the Sloan Digital Sky Survey (SDSS)/SEGUE and synthetic spectra calculated from Kurucz's NEWODF models. On real spectra, we extracted 23 features to estimate {{T}{\\tt{eff} }}, 62 features for log g, and 68 features for [Fe/H]. Test consistencies between our estimates and those provided by the Spectroscopic Parameter Pipeline of SDSS show that the mean absolute errors (MAEs) are 0.0062 dex for log {{T}{\\tt{eff} }} (83 K for {{T}{\\tt{eff} }}), 0.2345 dex for log g, and 0.1564 dex for [Fe/H]. For the synthetic spectra, the MAE test accuracies are 0.0022 dex for log {{T}{\\tt{eff} }} (32 K for {{T}{\\tt{eff} }}), 0.0337 dex for log g, and 0.0268 dex for [Fe/H].
NASA Astrophysics Data System (ADS)
Singla, Neeru; Dubey, Kavita; Srivastava, Vishal; Ahmad, Azeem; Mehta, D. S.
2018-02-01
We developed an automated high-resolution full-field spatial coherence tomography (FF-SCT) microscope for quantitative phase imaging that is based on the spatial, rather than the temporal, coherence gating. The Red and Green color laser light was used for finding the quantitative phase images of unstained human red blood cells (RBCs). This study uses morphological parameters of unstained RBCs phase images to distinguish between normal and infected cells. We recorded the single interferogram by a FF-SCT microscope for red and green color wavelength and average the two phase images to further reduced the noise artifacts. In order to characterize anemia infected from normal cells different morphological features were extracted and these features were used to train machine learning ensemble model to classify RBCs with high accuracy.
de Santi-Rampazzo, Ana Paula; Schoffen, João Paulo Ferreira; Cirilo, Carla Possani; Zapater, Mariana Cristina Vicente Umada; Vicentini, Fernando Augusto; Soares, Andréia Assunção; Peralta, Rosane Marina; Bracht, Adelar; Buttow, Nilza Cristina; Natali, Maria Raquel Marçal
2015-01-01
This study evaluated the effects of the supplementation with aqueous extract of Agaricus blazei Murrill (ABM) on biometric and blood parameters and quantitative morphology of the myenteric plexus and jejunal wall in aging Wistar rats. The animals were euthanized at 7 (C7), 12 (C12 and CA12), and 23 months of age (C23 and CA23). The CA12 and CA23 groups received a daily dose of ABM extract (26 mg/animal) via gavage, beginning at 7 months of age. A reduction in food intake was observed with aging, with increases in the Lee index, retroperitoneal fat, intestinal length, and levels of total cholesterol and total proteins. Aging led to a reduction of the total wall thickness, mucosa tunic, villus height, crypt depth, and number of goblet cells. In the myenteric plexus, aging quantitatively decreased the population of HuC/D+ neuronal and S100+ glial cells, with maintenance of the nNOS+ nitrergic subpopulation and increase in the cell body area of these populations. Supplementation with the ABM extract preserved the myenteric plexus in old animals, in which no differences were detected in the density and cell body profile of neurons and glial cells in the CA12 and CA23 groups, compared with C7 group. The supplementation with the aqueous extract of ABM efficiently maintained myenteric plexus homeostasis, which positively influenced the physiology and prevented the death of the neurons and glial cells. PMID:25960748
Optical spectroscopy for quantitative sensing in human pancreatic tissues
NASA Astrophysics Data System (ADS)
Wilson, Robert H.; Chandra, Malavika; Lloyd, William; Chen, Leng-Chun; Scheiman, James; Simeone, Diane; McKenna, Barbara; Mycek, Mary-Ann
2011-07-01
Pancreatic adenocarcinoma has a five-year survival rate of only 6%, largely because current diagnostic methods cannot reliably detect the disease in its early stages. Reflectance and fluorescence spectroscopies have the potential to provide quantitative, minimally-invasive means of distinguishing pancreatic adenocarcinoma from normal pancreatic tissue and chronic pancreatitis. The first collection of wavelength-resolved reflectance and fluorescence spectra and time-resolved fluorescence decay curves from human pancreatic tissues was acquired with clinically-compatible instrumentation. Mathematical models of reflectance and fluorescence extracted parameters related to tissue morphology and biochemistry that were statistically significant for distinguishing between pancreatic tissue types. These results suggest that optical spectroscopy has the potential to detect pancreatic disease in a clinical setting.
Complexity-aware simple modeling.
Gómez-Schiavon, Mariana; El-Samad, Hana
2018-02-26
Mathematical models continue to be essential for deepening our understanding of biology. On one extreme, simple or small-scale models help delineate general biological principles. However, the parsimony of detail in these models as well as their assumption of modularity and insulation make them inaccurate for describing quantitative features. On the other extreme, large-scale and detailed models can quantitatively recapitulate a phenotype of interest, but have to rely on many unknown parameters, making them often difficult to parse mechanistically and to use for extracting general principles. We discuss some examples of a new approach-complexity-aware simple modeling-that can bridge the gap between the small-scale and large-scale approaches. Copyright © 2018 Elsevier Ltd. All rights reserved.
Desert plains classification based on Geomorphometrical parameters (Case study: Aghda, Yazd)
NASA Astrophysics Data System (ADS)
Tazeh, mahdi; Kalantari, Saeideh
2013-04-01
This research focuses on plains. There are several tremendous methods and classification which presented for plain classification. One of The natural resource based classification which is mostly using in Iran, classified plains into three types, Erosional Pediment, Denudation Pediment Aggradational Piedmont. The qualitative and quantitative factors to differentiate them from each other are also used appropriately. In this study effective Geomorphometrical parameters in differentiate landforms were applied for plain. Geomorphometrical parameters are calculable and can be extracted using mathematical equations and the corresponding relations on digital elevation model. Geomorphometrical parameters used in this study included Percent of Slope, Plan Curvature, Profile Curvature, Minimum Curvature, the Maximum Curvature, Cross sectional Curvature, Longitudinal Curvature and Gaussian Curvature. The results indicated that the most important affecting Geomorphometrical parameters for plain and desert classifications includes: Percent of Slope, Minimum Curvature, Profile Curvature, and Longitudinal Curvature. Key Words: Plain, Geomorphometry, Classification, Biophysical, Yazd Khezarabad.
Iron Compounds and the Color of Soils in the Sakhalin Island
NASA Astrophysics Data System (ADS)
Vodyanitskii, Yu. N.; Kirillova, N. P.; Manakhov, D. V.; Karpukhin, M. M.
2018-02-01
Numerical parameters of soil color were studied according to the CIE-L*a*b color system before and after the Tamm's and Mehra-Jackson's treatments; we also determined the total Fe content in the samples from the main genetic horizons of the alluvial gray-humus soil, two profiles of burozems, and two profiles of podzols in the Sakhalin Island. In the analyzed samples, the numerical color parameters L* (lightness), a* (redness) and b* (yellowness) are found to vary within 46-73, 3-11, and 8-28, respectively. A linear relationship is revealed between the numerical values of a* parameters and Fe content in the Mehra-Jackson extracts; the regression equations are derived with the determination coefficients ( R 2): 0.49 (typical burozem), 0.79 (podzolized burozem), 0.96 (shallow-podzolic mucky podzol), 0.98 (gray-humus gley alluvial soil). For the surface-podzolic mucky podzol contaminated with petroleum hydrocarbons, R 2 was equal to only 0.03. In the gray humus (AY) and structural-metamorphic (BM) horizons of the studied soils, a* and b* parameters decrease after their treatment with the Tamm's reagent by 2 points on average. After the Mehra-Jackson treatment, the a* parameter decreased by 6 (AY) and 8 (BM) points; whereas b* parameter, by 10 and 15 points, respectively. In the E horizons of podzols, the Tamm's treatment increased a* and b* parameters by 1 point; whereas the Mehra-Jackson's treatment decreased these parameters by only 1 and 3 points, respectively. The redness (a*) decreased maximally in the lower gley horizon of the alluvial gray humus soil, i.e., by 6 (in the Tamm's extract) and 10 points (in the Mehra-Jackson's) extract. Yellowness (b*) decreased by 12 and 17 points, respectively. The revealed color specifics in the untreated samples and the color transformation under the impact of reagents in the studied soils and horizons may serve as an additional parameter that characterizes quantitatively the object of investigation in the reference databases.
Simultaneous HPLC quantitative analysis of active compounds in leaves of Moringa oleifera Lam.
Vongsak, Boonyadist; Sithisarn, Pongtip; Gritsanapan, Wandee
2014-08-01
Moringa oleifera Lam. has been used as a traditional medicine for the treatment of numerous diseases. A simultaneous high-performance liquid chromatography (HPLC) analysis was developed and validated for the determination of the contents of crypto-chlorogenic acid, isoquercetin and astragalin, the primary antioxidative compounds, in M. oleifera leaves. HPLC analysis was successfully conducted by using a Hypersil BDS C18 column, eluted with a gradient of methanol-1% acetic acid with a flow rate of 1 mL/min, and detected at 334 nm. Parameters for the validation included linearity, precision, accuracy and limits of detection and quantitation. The developed HPLC method was precise, with relative standard deviation < 2%. The recovery values of crypto-chlorogenic acid, isoquercetin and astragalin in M. oleifera leaf extracts were 98.50, 98.47 and 98.59%, respectively. The average contents of these compounds in the dried ethanolic extracts of the leaves of M. oleifera collected from different regions of Thailand were 0.081, 0.120 and 0.153% (w/w), respectively. The developed HPLC method was appropriate and practical for the simultaneous analysis of crypto-chlorogenic acid, isoquercetin and astragalin in the leaf extract of M. oleifera. This work is valuable as guidance for the standardization of the leaf extracts and pharmaceutical products of M. oleifera. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Supercritical Carbon Dioxide Extraction of Carotenoids from Pumpkin (Cucurbita spp.): A Review
Durante, Miriana; Lenucci, Marcello Salvatore; Mita, Giovanni
2014-01-01
Carotenoids are well known for their nutritional properties and health promoting effects representing attractive ingredients to develop innovative functional foods, nutraceutical and pharmaceutical preparations. Pumpkin (Cucurbita spp.) flesh has an intense yellow/orange color owing to the high level of carotenoids, mainly α-carotene, β-carotene, β-cryptoxanthin, lutein and zeaxanthin. There is considerable interest in extracting carotenoids and other bioactives from pumpkin flesh. Extraction procedures able to preserve nutritional and pharmacological properties of carotenoids are essential. Conventional extraction methods, such as organic solvent extraction (CSE), have been used to extract carotenoids from plant material for a long time. In recent years, supercritical carbon dioxide (SC-CO2) extraction has received a great deal of attention because it is a green technology suitable for the extraction of lipophylic molecules and is able to give extracts of high quality and totally free from potentially toxic chemical solvents. Here, we review the results obtained so far on SC-CO2 extraction efficiency and quali-quantitative composition of carotenoids from pumpkin flesh. In particular, we consider the effects of (1) dehydration pre-treatments; (2) extraction parameters (temperature and pressure); the use of water, ethanol and olive oil singularly or in combination as entrainers or pumpkin seeds as co-matrix. PMID:24756094
Supercritical carbon dioxide extraction of carotenoids from pumpkin (Cucurbita spp.): a review.
Durante, Miriana; Lenucci, Marcello Salvatore; Mita, Giovanni
2014-04-21
Carotenoids are well known for their nutritional properties and health promoting effects representing attractive ingredients to develop innovative functional foods, nutraceutical and pharmaceutical preparations. Pumpkin (Cucurbita spp.) flesh has an intense yellow/orange color owing to the high level of carotenoids, mainly α-carotene, β-carotene, β-cryptoxanthin, lutein and zeaxanthin. There is considerable interest in extracting carotenoids and other bioactives from pumpkin flesh. Extraction procedures able to preserve nutritional and pharmacological properties of carotenoids are essential. Conventional extraction methods, such as organic solvent extraction (CSE), have been used to extract carotenoids from plant material for a long time. In recent years, supercritical carbon dioxide (SC-CO2) extraction has received a great deal of attention because it is a green technology suitable for the extraction of lipophylic molecules and is able to give extracts of high quality and totally free from potentially toxic chemical solvents. Here, we review the results obtained so far on SC-CO2 extraction efficiency and quali-quantitative composition of carotenoids from pumpkin flesh. In particular, we consider the effects of (1) dehydration pre-treatments; (2) extraction parameters (temperature and pressure); the use of water, ethanol and olive oil singularly or in combination as entrainers or pumpkin seeds as co-matrix.
Optimization of brain PET imaging for a multicentre trial: the French CATI experience.
Habert, Marie-Odile; Marie, Sullivan; Bertin, Hugo; Reynal, Moana; Martini, Jean-Baptiste; Diallo, Mamadou; Kas, Aurélie; Trébossen, Régine
2016-12-01
CATI is a French initiative launched in 2010 to handle the neuroimaging of a large cohort of subjects recruited for an Alzheimer's research program called MEMENTO. This paper presents our test protocol and results obtained for the 22 PET centres (overall 13 different scanners) involved in the MEMENTO cohort. We determined acquisition parameters using phantom experiments prior to patient studies, with the aim of optimizing PET quantitative values to the highest possible per site, while reducing, if possible, variability across centres. Jaszczak's and 3D-Hoffman's phantom measurements were used to assess image spatial resolution (ISR), recovery coefficients (RC) in hot and cold spheres, and signal-to-noise ratio (SNR). For each centre, the optimal reconstruction parameters were chosen as those maximizing ISR and RC without a noticeable decrease in SNR. Point-spread-function (PSF) modelling reconstructions were discarded. The three figures of merit extracted from the images reconstructed with optimized parameters and routine schemes were compared, as were volumes of interest ratios extracted from Hoffman acquisitions. The net effect of the 3D-OSEM reconstruction parameter optimization was investigated on a subset of 18 scanners without PSF modelling reconstruction. Compared to the routine parameters of the 22 PET centres, average RC in the two smallest hot and cold spheres and average ISR remained stable or were improved with the optimized reconstruction, at the expense of slight SNR degradation, while the dispersion of values was reduced. For the subset of scanners without PSF modelling, the mean RC of the smallest hot sphere obtained with the optimized reconstruction was significantly higher than with routine reconstruction. The putamen and caudate-to-white matter ratios measured on 3D-Hoffman acquisitions of all centres were also significantly improved by the optimization, while the variance was reduced. This study provides guidelines for optimizing quantitative results for multicentric PET neuroimaging trials.
Nomura, J-I; Uwano, I; Sasaki, M; Kudo, K; Yamashita, F; Ito, K; Fujiwara, S; Kobayashi, M; Ogasawara, K
2017-12-01
Preoperative hemodynamic impairment in the affected cerebral hemisphere is associated with the development of cerebral hyperperfusion following carotid endarterectomy. Cerebral oxygen extraction fraction images generated from 7T MR quantitative susceptibility mapping correlate with oxygen extraction fraction images on positron-emission tomography. The present study aimed to determine whether preoperative oxygen extraction fraction imaging generated from 7T MR quantitative susceptibility mapping could identify patients at risk for cerebral hyperperfusion following carotid endarterectomy. Seventy-seven patients with unilateral internal carotid artery stenosis (≥70%) underwent preoperative 3D T2*-weighted imaging using a multiple dipole-inversion algorithm with a 7T MR imager. Quantitative susceptibility mapping images were then obtained, and oxygen extraction fraction maps were generated. Quantitative brain perfusion single-photon emission CT was also performed before and immediately after carotid endarterectomy. ROIs were automatically placed in the bilateral middle cerebral artery territories in all images using a 3D stereotactic ROI template, and affected-to-contralateral ratios in the ROIs were calculated on quantitative susceptibility mapping-oxygen extraction fraction images. Ten patients (13%) showed post-carotid endarterectomy hyperperfusion (cerebral blood flow increases of ≥100% compared with preoperative values in the ROIs on brain perfusion SPECT). Multivariate analysis showed that a high quantitative susceptibility mapping-oxygen extraction fraction ratio was significantly associated with the development of post-carotid endarterectomy hyperperfusion (95% confidence interval, 33.5-249.7; P = .002). Sensitivity, specificity, and positive- and negative-predictive values of the quantitative susceptibility mapping-oxygen extraction fraction ratio for the prediction of the development of post-carotid endarterectomy hyperperfusion were 90%, 84%, 45%, and 98%, respectively. Preoperative oxygen extraction fraction imaging generated from 7T MR quantitative susceptibility mapping identifies patients at risk for cerebral hyperperfusion following carotid endarterectomy. © 2017 by American Journal of Neuroradiology.
An optimized method for measuring fatty acids and cholesterol in stable isotope-labeled cells
Argus, Joseph P.; Yu, Amy K.; Wang, Eric S.; Williams, Kevin J.; Bensinger, Steven J.
2017-01-01
Stable isotope labeling has become an important methodology for determining lipid metabolic parameters of normal and neoplastic cells. Conventional methods for fatty acid and cholesterol analysis have one or more issues that limit their utility for in vitro stable isotope-labeling studies. To address this, we developed a method optimized for measuring both fatty acids and cholesterol from small numbers of stable isotope-labeled cultured cells. We demonstrate quantitative derivatization and extraction of fatty acids from a wide range of lipid classes using this approach. Importantly, cholesterol is also recovered, albeit at a modestly lower yield, affording the opportunity to quantitate both cholesterol and fatty acids from the same sample. Although we find that background contamination can interfere with quantitation of certain fatty acids in low amounts of starting material, our data indicate that this optimized method can be used to accurately measure mass isotopomer distributions for cholesterol and many fatty acids isolated from small numbers of cultured cells. Application of this method will facilitate acquisition of lipid parameters required for quantifying flux and provide a better understanding of how lipid metabolism influences cellular function. PMID:27974366
Quantitative phase and amplitude imaging using Differential-Interference Contrast (DIC) microscopy
NASA Astrophysics Data System (ADS)
Preza, Chrysanthe; O'Sullivan, Joseph A.
2009-02-01
We present an extension of the development of an alternating minimization (AM) method for the computation of a specimen's complex transmittance function (magnitude and phase) from DIC images. The ability to extract both quantitative phase and amplitude information from two rotationally-diverse DIC images (i.e., acquired by rotating the sample) extends previous efforts in computational DIC microscopy that have focused on quantitative phase imaging only. Simulation results show that the inverse problem at hand is sensitive to noise as well as to the choice of the AM algorithm parameters. The AM framework allows constraints and penalties on the magnitude and phase estimates to be incorporated in a principled manner. Towards this end, Green and De Pierro's "log-cosh" regularization penalty is applied to the magnitude of differences of neighboring values of the complex-valued function of the specimen during the AM iterations. The penalty is shown to be convex in the complex space. A procedure to approximate the penalty within the iterations is presented. In addition, a methodology to pre-compute AM parameters that are optimal with respect to the convergence rate of the AM algorithm is also presented. Both extensions of the AM method are investigated with simulations.
Improving the hadron physics of non-Standard-Model decays: example bounds on R-parity violation
NASA Astrophysics Data System (ADS)
Daub, J. T.; Dreiner, H. K.; Hanhart, C.; Kubis, B.; Meißner, U.-G.
2013-01-01
Using the example of selected decays driven by R-parity-violating supersymmetric operators, we demonstrate how strong final-state interactions can be controlled quantitatively with high precision, thus allowing for a more accurate extraction of effective parameters from data. In our examples we focus on the lepton-flavor-violating decays τ → μπ + π - . InR-parityviolationthesecanariseduetotheproductoftwocouplings. We find bounds that are an order of magnitude stronger than previous ones.
Spin structure of electron subbands in (110)-grown quantum wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nestoklon, M. O.; Tarasenko, S. A.; Jancu, J.-M.
We present the theory of fine structure of electron states in symmetric and asymmetric zinc-blende-type quantum wells with the (110) crystallographic orientation. By combining the symmetry analysis, sp{sup 3}d{sup 5}s* tight-binding method, and envelope-function approach we obtain quantitative description of in-plane wave vector, well width and applied electric field dependencies of the zero-magnetic-field spin splitting of electron subbands and extract spin-orbit-coupling parameters.
Stability of deep features across CT scanners and field of view using a physical phantom
NASA Astrophysics Data System (ADS)
Paul, Rahul; Shafiq-ul-Hassan, Muhammad; Moros, Eduardo G.; Gillies, Robert J.; Hall, Lawrence O.; Goldgof, Dmitry B.
2018-02-01
Radiomics is the process of analyzing radiological images by extracting quantitative features for monitoring and diagnosis of various cancers. Analyzing images acquired from different medical centers is confounded by many choices in acquisition, reconstruction parameters and differences among device manufacturers. Consequently, scanning the same patient or phantom using various acquisition/reconstruction parameters as well as different scanners may result in different feature values. To further evaluate this issue, in this study, CT images from a physical radiomic phantom were used. Recent studies showed that some quantitative features were dependent on voxel size and that this dependency could be reduced or removed by the appropriate normalization factor. Deep features extracted from a convolutional neural network, may also provide additional features for image analysis. Using a transfer learning approach, we obtained deep features from three convolutional neural networks pre-trained on color camera images. An we examination of the dependency of deep features on image pixel size was done. We found that some deep features were pixel size dependent, and to remove this dependency we proposed two effective normalization approaches. For analyzing the effects of normalization, a threshold has been used based on the calculated standard deviation and average distance from a best fit horizontal line among the features' underlying pixel size before and after normalization. The inter and intra scanner dependency of deep features has also been evaluated.
A Model for the Estimation of Hepatic Insulin Extraction After a Meal.
Piccinini, Francesca; Dalla Man, Chiara; Vella, Adrian; Cobelli, Claudio
2016-09-01
Quantitative assessment of hepatic insulin extraction (HE) after an oral glucose challenge, e.g., a meal, is important to understand the regulation of carbohydrate metabolism. The aim of the current study is to develop a model of system for estimating HE. Nine different models, of increasing complexity, were tested on data of 204 normal subjects, who underwent a mixed meal tolerance test, with frequent measurement of plasma glucose, insulin, and C-peptide concentrations. All these models included a two-compartment model of C-peptide kinetics, an insulin secretion model, a compartmental model of insulin kinetics (with number of compartments ranging from one to three), and different HE descriptions, depending on plasma glucose and insulin. Model performances were compared on the basis of data fit, precision of parameter estimates, and parsimony criteria. The three-compartment model of insulin kinetics, coupled with HE depending on glucose concentration, showed the best fit and a good ability to precisely estimate the parameters. In addition, the model calculates basal and total indices of HE ( HE b and HE tot , respectively), and provides an index of HE sensitivity to glucose ( S G HE ). A new physiologically based HE model has been developed, which allows an improved quantitative description of glucose regulation. The use of the new model provides an in-depth description of insulin kinetics, thus enabling a better understanding of a given subject's metabolic state.
Quantitative characterization of genetic parts and circuits for plant synthetic biology.
Schaumberg, Katherine A; Antunes, Mauricio S; Kassaw, Tessema K; Xu, Wenlong; Zalewski, Christopher S; Medford, June I; Prasad, Ashok
2016-01-01
Plant synthetic biology promises immense technological benefits, including the potential development of a sustainable bio-based economy through the predictive design of synthetic gene circuits. Such circuits are built from quantitatively characterized genetic parts; however, this characterization is a significant obstacle in work with plants because of the time required for stable transformation. We describe a method for rapid quantitative characterization of genetic plant parts using transient expression in protoplasts and dual luciferase outputs. We observed experimental variability in transient-expression assays and developed a mathematical model to describe, as well as statistical normalization methods to account for, this variability, which allowed us to extract quantitative parameters. We characterized >120 synthetic parts in Arabidopsis and validated our method by comparing transient expression with expression in stably transformed plants. We also tested >100 synthetic parts in sorghum (Sorghum bicolor) protoplasts, and the results showed that our method works in diverse plant groups. Our approach enables the construction of tunable gene circuits in complex eukaryotic organisms.
Low rank magnetic resonance fingerprinting.
Mazor, Gal; Weizman, Lior; Tal, Assaf; Eldar, Yonina C
2016-08-01
Magnetic Resonance Fingerprinting (MRF) is a relatively new approach that provides quantitative MRI using randomized acquisition. Extraction of physical quantitative tissue values is preformed off-line, based on acquisition with varying parameters and a dictionary generated according to the Bloch equations. MRF uses hundreds of radio frequency (RF) excitation pulses for acquisition, and therefore high under-sampling ratio in the sampling domain (k-space) is required. This under-sampling causes spatial artifacts that hamper the ability to accurately estimate the quantitative tissue values. In this work, we introduce a new approach for quantitative MRI using MRF, called Low Rank MRF. We exploit the low rank property of the temporal domain, on top of the well-known sparsity of the MRF signal in the generated dictionary domain. We present an iterative scheme that consists of a gradient step followed by a low rank projection using the singular value decomposition. Experiments on real MRI data demonstrate superior results compared to conventional implementation of compressed sensing for MRF at 15% sampling ratio.
NASA Astrophysics Data System (ADS)
Šic Žlabur, Jana; Voća, Sandra; Dobričević, Nadica; Brnčić, Mladen; Dujmić, Filip; Rimac Brnčić, Suzana
2015-04-01
The aim of the present study was to reveal an effective extraction procedure for maximization of the yield of steviol glycosides and total phenolic compounds as well as antioxidant activity in stevia extracts. Ultrasound assisted extraction was compared with conventional solvent extraction. The examined solvents were water (100°C/24 h) and 70% ethanol (at 70°C for 30 min). Qualitative and quantitative analyses of steviol glycosides in the extracts obtained were performed using high performance liquid chromatography. Total phenolic compounds, flavonoids, and radical scavenging capacity by 2, 2-azino-di-3-ethylbenzothialozine- sulphonic acid) assay were also determined. The highest content of steviol glycosides, total phenolic compounds, and flavonoids in stevia extracts were obtained when ultrasound assisted extraction was used. The antioxidant activity of the extracts was correlated with the total amount of phenolic compounds. The results indicated that the examined sonication parameters represented as the probe diameter (7 and 22 mm) and treatment time (2, 4, 6, 8, and 10 min) significantly contributed to the yield of steviol glycosides, total phenolic compounds, and flavonoids. The optimum conditions for the maximum yield of steviol glycosides, total phenolic compounds, and flavonoids were as follows: extraction time 10 min, probe diameter 22 mm, and temperature 81.2°C.
[Assessment of skin aging grading based on computer vision].
Li, Lingyu; Xue, Jinxia; He, Xiangqian; Zhang, Sheng; Fan, Chu
2017-06-01
Skin aging is the most intuitive and obvious sign of the human aging processes. Qualitative and quantitative determination of skin aging is of particular importance for the evaluation of human aging and anti-aging treatment effects. To solve the problem of subjectivity of conventional skin aging grading methods, the self-organizing map (SOM) network was used to explore an automatic method for skin aging grading. First, the ventral forearm skin images were obtained by a portable digital microscope and two texture parameters, i.e. , mean width of skin furrows and the number of intersections were extracted by image processing algorithm. Then, the values of texture parameters were taken as inputs of SOM network to train the network. The experimental results showed that the network achieved an overall accuracy of 80.8%, compared with the aging grading results by human graders. The designed method appeared to be rapid and objective, which can be used for quantitative analysis of skin images, and automatic assessment of skin aging grading.
Kamble, Prajakta P; Kore, Maheshkumar V; Patil, Sushama A; Jadhav, Jyoti P; Attar, Yasmin C
2018-06-01
Tithonia rotundifolia is an easily available and abundant inulin rich weed reported to be competitive and allelopathic. This weed inulin is hydrolyzed by inulinase into fructose. Response surface methodology was employed to optimize culture conditions for the inulinase production from Arthrobacter mysorens strain no.1 isolated from rhizospheric area of Tithonia weed. Initially, Plackett- Burman design was used for screening 11 nutritional parameters for inulinase production including inulin containing weeds as cost effective substrate. The experiment shows that amongst the 11 parameters studied, K 2 HPO 4 , Inulin, Agave sisalana extract and Tithonia rotundifolia were the most significant variables for inulinase production. Quantitative effects of these 4 factors were further investigated using Box Behnken design. The medium having 0.27% K 2 HPO 4 , 2.54% Inulin, 6.57% Agave sisalana extract and 7.27% Tithonia rotundifolia extract were found to be optimum for maximum inulinase production. The optimization strategies used showed 2.12 fold increase in inulinase yield (1669.45 EU/ml) compared to non-optimized medium (787 EU/ml). Fructose produced by the action of inulinase was further confirmed by spectrophotometer, osazone, HPTLC and FTIR methods. Thus Tithonia rotundifolia can be used as an eco-friendly, economically feasible and promising alternative substrate for commercial inulinase production yielding fructose from Arthrobacter mysorens strain no.1. Copyright © 2018 Elsevier B.V. All rights reserved.
Removal of BCG artefact from concurrent fMRI-EEG recordings based on EMD and PCA.
Javed, Ehtasham; Faye, Ibrahima; Malik, Aamir Saeed; Abdullah, Jafri Malin
2017-11-01
Simultaneous electroencephalography (EEG) and functional magnetic resonance image (fMRI) acquisitions provide better insight into brain dynamics. Some artefacts due to simultaneous acquisition pose a threat to the quality of the data. One such problematic artefact is the ballistocardiogram (BCG) artefact. We developed a hybrid algorithm that combines features of empirical mode decomposition (EMD) with principal component analysis (PCA) to reduce the BCG artefact. The algorithm does not require extra electrocardiogram (ECG) or electrooculogram (EOG) recordings to extract the BCG artefact. The method was tested with both simulated and real EEG data of 11 participants. From the simulated data, the similarity index between the extracted BCG and the simulated BCG showed the effectiveness of the proposed method in BCG removal. On the other hand, real data were recorded with two conditions, i.e. resting state (eyes closed dataset) and task influenced (event-related potentials (ERPs) dataset). Using qualitative (visual inspection) and quantitative (similarity index, improved normalized power spectrum (INPS) ratio, power spectrum, sample entropy (SE)) evaluation parameters, the assessment results showed that the proposed method can efficiently reduce the BCG artefact while preserving the neuronal signals. Compared with conventional methods, namely, average artefact subtraction (AAS), optimal basis set (OBS) and combined independent component analysis and principal component analysis (ICA-PCA), the statistical analyses of the results showed that the proposed method has better performance, and the differences were significant for all quantitative parameters except for the power and sample entropy. The proposed method does not require any reference signal, prior information or assumption to extract the BCG artefact. It will be very useful in circumstances where the reference signal is not available. Copyright © 2017 Elsevier B.V. All rights reserved.
El Darra, Nada; Rajha, Hiba N; Ducasse, Marie-Agnès; Turk, Mohammad F; Grimi, Nabil; Maroun, Richard G; Louka, Nicolas; Vorobiev, Eugène
2016-12-15
This work studies the effect of pulsed electric field (PEF) treatment at moderate and high field strengths (E=0.8kV/cm & 5kV/cm) prior and during alcoholic fermentation (AF) of red grapes on improving different parameters of pre-treated extracts: pH, °Brix, colour intensity (CI), total polyphenols content (TPI) of Cabernet Sauvignon red wine. Similar trends were observed for treating grapes using moderate and high electric field strength on the enhancement of CI and TPI of the wine after AF. The application of PEF using moderate strengths at different times during cold maceration (CM) (0, 2 and 4days) was more efficient for treatment during CM. The treatment during AF showed lower extraction rate compared to treating during CM and prior to AF. Our results clearly show that the best time for applying the PEF-treatment through the red fermentation is during the CM step. Copyright © 2016. Published by Elsevier Ltd.
Contini, Claudia; Álvarez, Rocío; O'Sullivan, Michael; Dowling, Denis P; Gargan, Sean Óg; Monahan, Frank J
2014-03-01
An antioxidant active packaging was prepared by coating a citrus extract, consisting of a mixture of carboxylic acids and flavanones, on polyethylene terephthalate trays. The effect of the packaging in reducing lipid oxidation in cooked turkey meat and on meat pH, colour characteristics and sensorial parameters was investigated. An untrained sensory panel evaluated the odour, taste, tenderness, juiciness and overall acceptability of the meat, using triangle, paired preference and quantitative response scale tests. A comparison between the antioxidant effects of the different components of the extract was also carried out. The packaging led to a significant reduction in lipid oxidation. After 2 days of refrigerated storage the sensory panel detected differences in odour and, after 4 days, rated the meat stored in the active packaging higher for tenderness and overall acceptability. Citric acid appeared to be the most important component of the extract with regard to its antioxidant potency. Copyright © 2013 Elsevier Ltd. All rights reserved.
Quantitative characterisation of sedimentary grains
NASA Astrophysics Data System (ADS)
Tunwal, Mohit; Mulchrone, Kieran F.; Meere, Patrick A.
2016-04-01
Analysis of sedimentary texture helps in determining the formation, transportation and deposition processes of sedimentary rocks. Grain size analysis is traditionally quantitative, whereas grain shape analysis is largely qualitative. A semi-automated approach to quantitatively analyse shape and size of sand sized sedimentary grains is presented. Grain boundaries are manually traced from thin section microphotographs in the case of lithified samples and are automatically identified in the case of loose sediments. Shape and size paramters can then be estimated using a software package written on the Mathematica platform. While automated methodology already exists for loose sediment analysis, the available techniques for the case of lithified samples are limited to cases of high definition thin section microphotographs showing clear contrast between framework grains and matrix. Along with the size of grain, shape parameters such as roundness, angularity, circularity, irregularity and fractal dimension are measured. A new grain shape parameter developed using Fourier descriptors has also been developed. To test this new approach theoretical examples were analysed and produce high quality results supporting the accuracy of the algorithm. Furthermore sandstone samples from known aeolian and fluvial environments from the Dingle Basin, County Kerry, Ireland were collected and analysed. Modern loose sediments from glacial till from County Cork, Ireland and aeolian sediments from Rajasthan, India have also been collected and analysed. A graphical summary of the data is presented and allows for quantitative distinction between samples extracted from different sedimentary environments.
Quantitative analysis of comparative genomic hybridization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manoir, S. du; Bentz, M.; Joos, S.
1995-01-01
Comparative genomic hybridization (CGH) is a new molecular cytogenetic method for the detection of chromosomal imbalances. Following cohybridization of DNA prepared from a sample to be studied and control DNA to normal metaphase spreads, probes are detected via different fluorochromes. The ratio of the test and control fluorescence intensities along a chromosome reflects the relative copy number of segments of a chromosome in the test genome. Quantitative evaluation of CGH experiments is required for the determination of low copy changes, e.g., monosomy or trisomy, and for the definition of the breakpoints involved in unbalanced rearrangements. In this study, a programmore » for quantitation of CGH preparations is presented. This program is based on the extraction of the fluorescence ratio profile along each chromosome, followed by averaging of individual profiles from several metaphase spreads. Objective parameters critical for quantitative evaluations were tested, and the criteria for selection of suitable CGH preparations are described. The granularity of the chromosome painting and the regional inhomogeneity of fluorescence intensities in metaphase spreads proved to be crucial parameters. The coefficient of variation of the ratio value for chromosomes in balanced state (CVBS) provides a general quality criterion for CGH experiments. Different cutoff levels (thresholds) of average fluorescence ratio values were compared for their specificity and sensitivity with regard to the detection of chromosomal imbalances. 27 refs., 15 figs., 1 tab.« less
Quantitative Analysis of Intracellular Motility Based on Optical Flow Model
Li, Heng
2017-01-01
Analysis of cell mobility is a key issue for abnormality identification and classification in cell biology research. However, since cell deformation induced by various biological processes is random and cell protrusion is irregular, it is difficult to measure cell morphology and motility in microscopic images. To address this dilemma, we propose an improved variation optical flow model for quantitative analysis of intracellular motility, which not only extracts intracellular motion fields effectively but also deals with optical flow computation problem at the border by taking advantages of the formulation based on L1 and L2 norm, respectively. In the energy functional of our proposed optical flow model, the data term is in the form of L2 norm; the smoothness of the data changes with regional features through an adaptive parameter, using L1 norm near the edge of the cell and L2 norm away from the edge. We further extract histograms of oriented optical flow (HOOF) after optical flow field of intracellular motion is computed. Then distances of different HOOFs are calculated as the intracellular motion features to grade the intracellular motion. Experimental results show that the features extracted from HOOFs provide new insights into the relationship between the cell motility and the special pathological conditions. PMID:29065574
Gao, Haoshi; Huang, Hongzhang; Zheng, Aini; Yu, Nuojun; Li, Ning
2017-11-01
In this study, we analyzed danshen (Salvia miltiorrhiza) constituents using biopartitioning and microemulsion high-performance liquid chromatography (MELC). The quantitative retention-activity relationships (QRARs) of the constituents were established to model their pharmacokinetic (PK) parameters and chromatographic retention data, and generate their biological effectiveness fingerprints. A high-performance liquid chromatography (HPLC) method was established to determine the abundance of the extracted danshen constituents, such as sodium danshensu, rosmarinic acid, salvianolic acid B, protocatechuic aldehyde, cryptotanshinone, and tanshinone IIA. And another HPLC protocol was established to determine the abundance of those constituents in rat plasma samples. An experimental model was built in Sprague Dawley (SD) rats, and calculated the corresponding PK parameterst with 3P97 software package. Thirty-five model drugs were selected to test the PK parameter prediction capacities of the various MELC systems and to optimize the chromatographic protocols. QRARs and generated PK fingerprints were established. The test included water/oil-soluble danshen constituents and the prediction capacity of the regression model was validated. The results showed that the model had good predictability. Copyright © 2017. Published by Elsevier B.V.
Digital holographic microscopy for toxicity testing and cell culture quality control
NASA Astrophysics Data System (ADS)
Kemper, Björn
2018-02-01
For the example of digital holographic microscopy (DHM), it is illustrated how label-free biophysical parameter sets can be extracted from quantitative phase images of adherent and suspended cells, and how the retrieved data can be applied for in-vitro toxicity testing and cell culture quality assessment. This includes results from the quantification of the reactions of cells to toxic substances as well as data from sophisticated monitoring of cell alterations that are related to changes of cell culture conditions.
Photoluminescence properties of non-stoichiometric strontium zirconate powder phosphor
NASA Astrophysics Data System (ADS)
Jarý, V.; Boháček, P.; Mihóková, E.; Havlák, L.; Trunda, B.; Nikl, M.
2013-03-01
Excitation and emission spectra and decay kinetics of non-stoichiometric strontium zirconate powder phosphor were measured in the 8-500 K temperature interval. Phenomenological model was applied to extract quantitative parameters of the excited state levels and nonradiative quenching pathways related to the luminescence centre. Delayed recombination integrals measurement was employed to investigate the occurrence of thermally induced ionization of the excited state of the emission centre. The nature of the emission centre itself is suggested. Suitability for phosphor and scintillation application is discussed.
Parisis, Nikolaos A; Giokas, Dimosthenis L; Vlessidis, Athanasios G; Evmiridis, Nicholaos P
2005-12-02
The ability of vesicle-coated silica to aid the extraction of organic compounds from water prior to liquid chromatographic analysis is presented for the first time. The method is based on the formation of silica supported cationic multi-lamellar vesicles of gemini surfactants inherently ensuring the presence of hydrophilic and hydrophobic sites for the partitioning of analytes bearing different properties. Method development is illustrated by studying the adsolubilization of UV absorbing chemicals from swimming pool water. Due to the requirement for external energy input (intense shearing) a method based on solid-phase dispersion (SPD) was applied producing better results than off-line solid-phase extraction (SPE). Meticulous investigation of the experimental parameters was conducted in order to elucidate the mechanisms behind the proposed extraction pattern. Analyte recoveries were quantitative under the optimum experimental conditions offering recoveries higher than 96% with RSD values below 5%.
Pal Anagoni, Suresh; Kauser, Asma; Maity, Gopal; Upadhyayula, Vijayasarathi V R
2018-02-01
Chemical warfare agents such as organophosphorus nerve agents, mustard agents, and psychotomimetic agent like 3-quinuclidinylbenzilate degrade in the environment and form acidic degradation products, the analysis of which is difficult under normal analytical conditions. In the present work, a simultaneous extraction and derivatization method in which the analytes are butylated followed by gas chromatography and mass spectrometric identification of the analytes from aqueous and soil samples was carried out. The extraction was carried out using ion-pair solid-phase extraction with tetrabutylammonium hydroxide followed by gas chromatography with mass spectrometry in the electron ionization mode. Various parameters such as optimum concentration of the ion-pair reagent, pH of the sample, extraction solvent, and type of ion-pair reagent were optimized. The method was validated for various parameters such as linearity, accuracy, precision, and limit of detection and quantification. The method was observed to be linear from 1 to 1000 ng/mL range in selected ion monitoring mode. The extraction recoveries were in the range of 85-110% from the matrixes with the limit of quantification for alkyl phosphonic acids at 1 ng/mL, thiodiglycolic acid at 20 ng/mL, and benzilic acid at 50 ng/mL with intra- and interday precisions below 15%. The developed method was applied for the samples prepared in the scenario of challenging inspection. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pourmortazavi, Seied Mahdi; Taghdiri, Mehdi; Makari, Vajihe; Rahimi-Nasrabadi, Mehdi
2015-02-05
The present study is dealing with the green synthesis of silver nanoparticles using the aqueous extract of Eucalyptus oleosa as a green synthesis procedure without any catalyst, template or surfactant. Colloidal silver nanoparticles were synthesized by reacting aqueous AgNO3 with E. oleosa leaf extract at non-photomediated conditions. The significance of some synthesis conditions such as: silver nitrate concentration, concentration of the plant extract, time of synthesis reaction and temperature of plant extraction procedure on the particle size of synthesized silver particles was investigated and optimized. The participations of the studied factors in controlling the particle size of reduced silver were quantitatively evaluated via analysis of variance (ANOVA). The results of this investigation showed that silver nanoparticles could be synthesized by tuning significant parameters, while performing the synthesis procedure at optimum conditions leads to form silver nanoparticles with 21nm as averaged size. Ultraviolet-visible spectroscopy was used to monitor the development of silver nanoparticles formation. Meanwhile, produced silver nanoparticles were characterized by scanning electron microscopy, energy-dispersive X-ray, and FT-IR techniques. Copyright © 2014 Elsevier B.V. All rights reserved.
Spent brewer's yeast extract as an ingredient in cooked hams.
Pancrazio, Gaston; Cunha, Sara C; de Pinho, Paula Guedes; Loureiro, Mónica; Meireles, Sónia; Ferreira, Isabel M P L V O; Pinho, Olívia
2016-11-01
This work describes the effect of the incorporation of 1% spent yeast extract into cooked hams. Physical/chemical/sensorial characteristics and changes during 12 and 90days storage were evaluated on control and treated cooked hams processed for 1.5, 2.0, 2.5 or 3h. Spent yeast extract addition increased hardness, chewiness, ash, protein and free amino acid content. Similar volatile profiles were obtained, although there were some quantitative differences. No advantages were observed for increased cooking time. No significant differences were observed for physical and sensorial parameters of cooked hams with spent yeast extract at 12 and 90days post production, but His, aldehydes and esters increased at the end of storage. This behaviour was similar to that observed for control hams. The higher hardness of cooked ham with 1% yeast extract was due to the stronger gel formed during cooking and was maintained during storage. This additive acts as gel stabilizer for cooked ham production and could potentially improve other processing characteristics. Copyright © 2016 Elsevier Ltd. All rights reserved.
Removal of sudan dyes from water with C18-functional ultrafine magnetic silica nanoparticles.
Jiang, Chunzhu; Sun, Ying; Yu, Xi; Zhang, Lei; Sun, Xiumin; Gao, Yan; Zhang, Hanqi; Song, Daqian
2012-01-30
In this study, the new C(18)-functionalized ultrafine magnetic silica nanoparticles (C(18)-UMS NPs) were successfully synthesized and applied for extraction of sudan dyes in water samples based on the magnetic solid-phase extraction (MSPE). The extraction and concentration were carried out in one step by blending C(18)-UMS NPs and water samples. The sudan dyes adsorbed C(18)-UMS NPs were isolated from the matrix easily with an external magnetic field. After desorption the quantitation of sudan dyes was done by ultra fast liquid chromatography (UFLC). Satisfactory extraction recovery can be obtained with only 50 mg C(18)-UMS NPs. The effects of experimental parameters, including the amount of the nanoparticles, extraction time, pH value, desorption solvent, volume of desorption solvent and desorption time were investigated. The limits of detection for sudan I, II, III and IV were 0.066, 0.070, 0.12 and 0.12 ng mL(-1), respectively. Recoveries obtained by analyzing the six spiked water samples were between 68% and 103%. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Romero, Rodrigo; Sienra, Rosario; Richter, Pablo
A rapid analytical approach for determination of polycyclic aromatic hydrocarbons (PAHs) present in real samples of particulate matter (PM10 filters) was investigated, based on the use of water under sub critical conditions, and the subsequent determination by GC-MS (SIM). The method avoids the use of large volumes of organic solvents as dichloromethane, toluene or other unhealthy liquid organic mixtures which are normally used in time-consuming conventional sample preparation methods. By using leaching times <1 h, the method allows determination of PAHs in the range of ng/m 3 (detection limits between 0.05 and 0.2 ng/m 3 for 1458 m 3 of sampled air) with a precision expressed as RSD between 5.6% and 11.2%. The main idea behind this approach is to raise the temperature and pressure of water inside a miniaturized laboratory-made extraction unit and to decrease its dielectric constant from 80 to nearly 20. This effect allows an increase in the solubility of low polarity hydrocarbons such as PAHs. In this way, an extraction step of a few minutes can be sufficient for a quantitative extraction of airborne particles collected in high volume PM10 samplers. Parameters such as: extraction flow, static or dynamic extraction times and water volume were optimized by using a standard reference material. Technical details are given and a comparison using real samples is made between the conventional Soxhlet extraction method and the proposed approach. The proposed approach can be used as a quantitative method to characterize low molecular PAHs and simultaneously as a screening method for high molecular weight PAHs, because the recoveries are not quantitative for molecular weights over 202. In the specific case of the Santiago metropolitan area, due to the frequent occurrence of particulate matter during high pollution episodes, this approach was applied as an efficient short-time screening method for urban PAHs. Application of this screening method is recommended especially during the winter, when periods of clear detriment of the atmospheric and meteorological conditions occur in the area.
Wnt signalling pathway parameters for mammalian cells.
Tan, Chin Wee; Gardiner, Bruce S; Hirokawa, Yumiko; Layton, Meredith J; Smith, David W; Burgess, Antony W
2012-01-01
Wnt/β-catenin signalling regulates cell fate, survival, proliferation and differentiation at many stages of mammalian development and pathology. Mutations of two key proteins in the pathway, APC and β-catenin, have been implicated in a range of cancers, including colorectal cancer. Activation of Wnt signalling has been associated with the stabilization and nuclear accumulation of β-catenin and consequential up-regulation of β-catenin/TCF gene transcription. In 2003, Lee et al. constructed a computational model of Wnt signalling supported by experimental data from analysis of time-dependent concentration of Wnt signalling proteins in Xenopus egg extracts. Subsequent studies have used the Xenopus quantitative data to infer Wnt pathway dynamics in other systems. As a basis for understanding Wnt signalling in mammalian cells, a confocal live cell imaging measurement technique is developed to measure the cell and nuclear volumes of MDCK, HEK293T cells and 3 human colorectal cancer cell lines and the concentrations of Wnt signalling proteins β-catenin, Axin, APC, GSK3β and E-cadherin. These parameters provide the basis for formulating Wnt signalling models for kidney/intestinal epithelial mammalian cells. There are significant differences in concentrations of key proteins between Xenopus extracts and mammalian whole cell lysates. Higher concentrations of Axin and lower concentrations of APC are present in mammalian cells. Axin concentrations are greater than APC in kidney epithelial cells, whereas in intestinal epithelial cells the APC concentration is higher than Axin. Computational simulations based on Lee's model, with this new data, suggest a need for a recalibration of the model.A quantitative understanding of Wnt signalling in mammalian cells, in particular human colorectal cancers requires a detailed understanding of the concentrations of key protein complexes over time. Simulations of Wnt signalling in mammalian cells can be initiated with the parameters measured in this report.
Zang, Qing-Ce; Wang, Jia-Bo; Kong, Wei-Jun; Jin, Cheng; Ma, Zhi-Jie; Chen, Jing; Gong, Qian-Feng; Xiao, Xiao-He
2011-12-01
The fingerprints of artificial Calculus bovis extracts from different solvents were established by ultra-performance liquid chromatography (UPLC) and the anti-bacterial activities of artificial C. bovis extracts on Staphylococcus aureus (S. aureus) growth were studied by microcalorimetry. The UPLC fingerprints were evaluated using hierarchical clustering analysis. Some quantitative parameters obtained from the thermogenic curves of S. aureus growth affected by artificial C. bovis extracts were analyzed using principal component analysis. The spectrum-effect relationships between UPLC fingerprints and anti-bacterial activities were investigated using multi-linear regression analysis. The results showed that peak 1 (taurocholate sodium), peak 3 (unknown compound), peak 4 (cholic acid), and peak 6 (chenodeoxycholic acid) are more significant than the other peaks with the standard parameter estimate 0.453, -0.166, 0.749, 0.025, respectively. So, compounds cholic acid, taurocholate sodium, and chenodeoxycholic acid might be the major anti-bacterial components in artificial C. bovis. Altogether, this work provides a general model of the combination of UPLC chromatography and anti-bacterial effect to study the spectrum-effect relationships of artificial C. bovis extracts, which can be used to discover the main anti-bacterial components in artificial C. bovis or other Chinese herbal medicines with anti-bacterial effects. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yang, Cui; Zhao, Jinhua; Wang, Juan; Yu, Hongling; Piao, Xiangfan; Li, Donghao
2013-07-26
A novel organic solvent-free mode of gas purge microsyringe extraction, termed water-based gas purge microsyringe extraction, was developed. This technique can directly extract target compounds in wet samples without any drying process. Parameters affecting the extraction efficiency were investigated. Under optimal extraction conditions, the recoveries of alkylphenols were between 87.6 and 105.8%, and reproducibility was between 5.2 and 12.1%. The technique was also used to determine six kinds of alkylphenols (APs) from samples of Laminaria japonica Aresh. The OP and NP were detected in all the samples, and concentrations ranged from 26.0 to 54.5ngg(-1) and 45.0-180.4ngg(-1), respectively. The 4-n-butylphenol was detected in only one sample and its concentration was very low. Other APs were not detected in L. japonica Aresh samples. The experimental results demonstrated that the technique is fast, simple, non-polluting, allows for quantitative extraction, and a drying process was not required for wet samples. Since only aqueous solution and a conventional microsyringe were used, this technique proved affordable, efficient, and convenient for the extraction of volatile and semivolatile ionizable compounds. Copyright © 2013 Elsevier B.V. All rights reserved.
A method for the extraction and quantitation of phycoerythrin from algae
NASA Technical Reports Server (NTRS)
Stewart, D. E.
1982-01-01
A summary of a new technique for the extraction and quantitation of phycoerythrin (PHE) from algal samples is described. Results of analysis of four extracts representing three PHE types from algae including cryptomonad and cyanophyte types are presented. The method of extraction and an equation for quantitation are given. A graph showing the relationship of concentration and fluorescence units that may be used with samples fluorescing around 575-580 nm (probably dominated by cryptophytes in estuarine waters) and 560 nm (dominated by cyanophytes characteristics of the open ocean) is provided.
Barbosa, Jocelyn; Lee, Kyubum; Lee, Sunwon; Lodhi, Bilal; Cho, Jae-Gu; Seo, Woo-Keun; Kang, Jaewoo
2016-03-12
Facial palsy or paralysis (FP) is a symptom that loses voluntary muscles movement in one side of the human face, which could be very devastating in the part of the patients. Traditional methods are solely dependent to clinician's judgment and therefore time consuming and subjective in nature. Hence, a quantitative assessment system becomes apparently invaluable for physicians to begin the rehabilitation process; and to produce a reliable and robust method is challenging and still underway. We introduce a novel approach for a quantitative assessment of facial paralysis that tackles classification problem for FP type and degree of severity. Specifically, a novel method of quantitative assessment is presented: an algorithm that extracts the human iris and detects facial landmarks; and a hybrid approach combining the rule-based and machine learning algorithm to analyze and prognosticate facial paralysis using the captured images. A method combining the optimized Daugman's algorithm and Localized Active Contour (LAC) model is proposed to efficiently extract the iris and facial landmark or key points. To improve the performance of LAC, appropriate parameters of initial evolving curve for facial features' segmentation are automatically selected. The symmetry score is measured by the ratio between features extracted from the two sides of the face. Hybrid classifiers (i.e. rule-based with regularized logistic regression) were employed for discriminating healthy and unhealthy subjects, FP type classification, and for facial paralysis grading based on House-Brackmann (H-B) scale. Quantitative analysis was performed to evaluate the performance of the proposed approach. Experiments show that the proposed method demonstrates its efficiency. Facial movement feature extraction on facial images based on iris segmentation and LAC-based key point detection along with a hybrid classifier provides a more efficient way of addressing classification problem on facial palsy type and degree of severity. Combining iris segmentation and key point-based method has several merits that are essential for our real application. Aside from the facial key points, iris segmentation provides significant contribution as it describes the changes of the iris exposure while performing some facial expressions. It reveals the significant difference between the healthy side and the severe palsy side when raising eyebrows with both eyes directed upward, and can model the typical changes in the iris region.
Relating interesting quantitative time series patterns with text events and text features
NASA Astrophysics Data System (ADS)
Wanner, Franz; Schreck, Tobias; Jentner, Wolfgang; Sharalieva, Lyubka; Keim, Daniel A.
2013-12-01
In many application areas, the key to successful data analysis is the integrated analysis of heterogeneous data. One example is the financial domain, where time-dependent and highly frequent quantitative data (e.g., trading volume and price information) and textual data (e.g., economic and political news reports) need to be considered jointly. Data analysis tools need to support an integrated analysis, which allows studying the relationships between textual news documents and quantitative properties of the stock market price series. In this paper, we describe a workflow and tool that allows a flexible formation of hypotheses about text features and their combinations, which reflect quantitative phenomena observed in stock data. To support such an analysis, we combine the analysis steps of frequent quantitative and text-oriented data using an existing a-priori method. First, based on heuristics we extract interesting intervals and patterns in large time series data. The visual analysis supports the analyst in exploring parameter combinations and their results. The identified time series patterns are then input for the second analysis step, in which all identified intervals of interest are analyzed for frequent patterns co-occurring with financial news. An a-priori method supports the discovery of such sequential temporal patterns. Then, various text features like the degree of sentence nesting, noun phrase complexity, the vocabulary richness, etc. are extracted from the news to obtain meta patterns. Meta patterns are defined by a specific combination of text features which significantly differ from the text features of the remaining news data. Our approach combines a portfolio of visualization and analysis techniques, including time-, cluster- and sequence visualization and analysis functionality. We provide two case studies, showing the effectiveness of our combined quantitative and textual analysis work flow. The workflow can also be generalized to other application domains such as data analysis of smart grids, cyber physical systems or the security of critical infrastructure, where the data consists of a combination of quantitative and textual time series data.
Arabidopsis phenotyping through Geometric Morphometrics.
Manacorda, Carlos A; Asurmendi, Sebastian
2018-06-18
Recently, much technical progress was achieved in the field of plant phenotyping. High-throughput platforms and the development of improved algorithms for rosette image segmentation make it now possible to extract shape and size parameters for genetic, physiological and environmental studies on a large scale. The development of low-cost phenotyping platforms and freeware resources make it possible to widely expand phenotypic analysis tools for Arabidopsis. However, objective descriptors of shape parameters that could be used independently of platform and segmentation software used are still lacking and shape descriptions still rely on ad hoc or even sometimes contradictory descriptors, which could make comparisons difficult and perhaps inaccurate. Modern geometric morphometrics is a family of methods in quantitative biology proposed to be the main source of data and analytical tools in the emerging field of phenomics studies. Based on the location of landmarks (corresponding points) over imaged specimens and by combining geometry, multivariate analysis and powerful statistical techniques, these tools offer the possibility to reproducibly and accurately account for shape variations amongst groups and measure them in shape distance units. Here, a particular scheme of landmarks placement on Arabidopsis rosette images is proposed to study shape variation in the case of viral infection processes. Shape differences between controls and infected plants are quantified throughout the infectious process and visualized. Quantitative comparisons between two unrelated ssRNA+ viruses are shown and reproducibility issues are assessed. Combined with the newest automated platforms and plant segmentation procedures, geometric morphometric tools could boost phenotypic features extraction and processing in an objective, reproducible manner.
Gangeh, Mehrdad; Tadayyon, Hadi; Sadeghi-Naini, Ali; Gandhi, Sonal; Wright, Frances C.; Slodkowska, Elzbieta; Curpen, Belinda; Tran, William; Czarnota, Gregory J.
2018-01-01
Background Pathological response of breast cancer to chemotherapy is a prognostic indicator for long-term disease free and overall survival. Responses of locally advanced breast cancer in the neoadjuvant chemotherapy (NAC) settings are often variable, and the prediction of response is imperfect. The purpose of this study was to detect primary tumor responses early after the start of neoadjuvant chemotherapy using quantitative ultrasound (QUS), textural analysis and molecular features in patients with locally advanced breast cancer. Methods The study included ninety six patients treated with neoadjuvant chemotherapy. Breast tumors were scanned with a clinical ultrasound system prior to chemotherapy treatment, during the first, fourth and eighth week of treatment, and prior to surgery. Quantitative ultrasound parameters and scatterer-based features were calculated from ultrasound radio frequency (RF) data within tumor regions of interest. Additionally, texture features were extracted from QUS parametric maps. Prior to therapy, all patients underwent a core needle biopsy and histological subtypes and biomarker ER, PR, and HER2 status were determined. Patients were classified into three treatment response groups based on combination of clinical and pathological analyses: complete responders (CR), partial responders (PR), and non-responders (NR). Response classifications from QUS parameters, receptors status and pathological were compared. Discriminant analysis was performed on extracted parameters using a support vector machine classifier to categorize subjects into CR, PR, and NR groups at all scan times. Results Of the 96 patients, the number of CR, PR and NR patients were 21, 52, and 23, respectively. The best prediction of treatment response was achieved with the combination mean QUS values, texture and molecular features with accuracies of 78%, 86% and 83% at weeks 1, 4, and 8, after treatment respectively. Mean QUS parameters or clinical receptors status alone predicted the three response groups with accuracies less than 60% at all scan time points. Recurrence free survival (RFS) of response groups determined based on combined features followed similar trend as determined based on clinical and pathology. Conclusions This work demonstrates the potential of using QUS, texture and molecular features for predicting the response of primary breast tumors to chemotherapy early, and guiding the treatment planning of refractory patients. PMID:29298305
Jansen, S M; de Bruin, D M; van Berge Henegouwen, M I; Strackee, S D; Veelo, D P; van Leeuwen, T G; Gisbertz, S S
2018-06-01
Anastomotic leakage is one of the most severe complications after esophageal resection with gastric tube reconstruction. Impaired perfusion of the gastric fundus is seen as the main contributing factor for this complication. Optical modalities show potential in recognizing compromised perfusion in real time, when ischemia is still reversible. This review provides an overview of optical techniques with the aim to evaluate the (1) quantitative measurement of change in perfusion in gastric tube reconstruction and (2) to test which parameters are the most predictive for anastomotic leakage.A Pubmed, MEDLINE, and Embase search was performed and articles on laser Doppler flowmetry (LDF), near-infrared spectroscopy (NIRS), laser speckle contrast imaging (LSCI), fluorescence imaging (FI), sidestream darkfield microscopy (SDF), and optical coherence tomography (OCT) regarding blood flow in gastric tube surgery were reviewed. Two independent reviewers critically appraised articles and extracted the data: Primary outcome was quantitative measure of perfusion change; secondary outcome was successful prediction of necrosis or anastomotic leakage by measured perfusion parameters.Thirty-three articles (including 973 patients and 73 animals) were selected for data extraction, quality assessment, and risk of bias (QUADAS-2). LDF, NIRS, LSCI, and FI were investigated in gastric tube surgery; all had a medium level of evidence. IDEAL stage ranges from 1 to 3. Most articles were found on LDF (n = 12), which is able to measure perfusion in arbitrary perfusion units with a significant lower amount in tissue with necrosis development and on FI (n = 12). With FI blood flow routes could be observed and flow was qualitative evaluated in rapid, slow, or low flow. NIRS uses mucosal oxygen saturation and hemoglobin concentration as perfusion parameters. With LSCI, a decrease of perfusion units is observed toward the gastric fundus intraoperatively. The perfusion units (LDF, LSCI), although arbitrary and not absolute values, and low flow or length of demarcation to the anastomosis (FI) both seem predictive values for necrosis intraoperatively. SDF and OCT are able to measure microvascular flow, intraoperative prediction of necrosis is not yet described.Optical techniques aim to improve perfusion monitoring by real-time, high-resolution, and high-contrast measurements and could therefore be valuable in intraoperative perfusion mapping. LDF and LSCI use perfusion units, and are therefore subjective in interpretation. FI visualizes influx directly, but needs a quantitative parameter for interpretation during surgery.
Multiplexed Colorimetric Solid-Phase Extraction
NASA Technical Reports Server (NTRS)
Gazda, Daniel B.; Fritz, James S.; Porter, Marc D.
2009-01-01
Multiplexed colorimetric solid-phase extraction (MC-SPE) is an extension of colorimetric solid-phase extraction (C-SPE) an analytical platform that combines colorimetric reagents, solid phase extraction, and diffuse reflectance spectroscopy to quantify trace analytes in water. In CSPE, analytes are extracted and complexed on the surface of an extraction membrane impregnated with a colorimetric reagent. The analytes are then quantified directly on the membrane surface using a handheld diffuse reflectance spectrophotometer. Importantly, the use of solid-phase extraction membranes as the matrix for impregnation of the colorimetric reagents creates a concentration factor that enables the detection of low concentrations of analytes in small sample volumes. In extending C-SPE to a multiplexed format, a filter holder that incorporates discrete analysis channels and a jig that facilitates the concurrent operation of multiple sample syringes have been designed, enabling the simultaneous determination of multiple analytes. Separate, single analyte membranes, placed in a readout cartridge create unique, analyte-specific addresses at the exit of each channel. Following sample exposure, the diffuse reflectance spectrum of each address is collected serially and the Kubelka-Munk function is used to quantify each water quality parameter via calibration curves. In a demonstration, MC-SPE was used to measure the pH of a sample and quantitate Ag(I) and Ni(II).
Lianou, Alexandra; Moschonas, Galatios; Nychas, George-John E; Panagou, Efstathios Z
2018-04-01
The objective of the present study was the assessment and quantitative description of the growth behavior of Listeria monocytogenes as a function of temperature in vanilla cream pudding, formulated with or without cinnamon extract. Commercially prepared pasteurized vanilla cream pudding, formulated with (0.1% w/w) or without cinnamon extract, was inoculated with a five-strain mixture of L. monocytogenes (ca. 2logCFU/g) and stored aerobically at 4, 8, 12 and 16°C. At appropriate time intervals, L. monocytogenes populations were determined, and the primary model of Baranyi and Roberts was fitted to the derived microbiological data for the estimation of the pathogen's growth kinetic parameters. The effect of temperature on maximum specific growth rate (μ max ) was then modeled for each product type using a square-root-type model, and the developed models were validated using independent growth data generated during storage of inoculated vanilla cream samples under dynamic temperature conditions. Although the kinetic behavior of the pathogen was similar in cream with and without cinnamon extract during storage at higher temperatures, significant (P<0.05) differences were observed between the two product types at 4°C. With regard to secondary modelling, the estimated values of T min for cream with and without cinnamon extract were 0.39°C and -2.54°C, respectively, while the dynamic models exhibited satisfactory performance. Finally, as demonstrated by the findings of pulsed-field gel electrophoresis, both temperature and cinnamon extract affected the pathogen's strains dominating during storage. According to the collected data, cinnamon extract exhibits an important potential of enhancing the microbiological safety of vanilla cream pudding, provided that efficient temperature control is in place. The developed models should be useful in quantitative microbial risk assessment regarding the studied cream products. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sun, Wanxin; Chang, Shi; Tai, Dean C S; Tan, Nancy; Xiao, Guangfa; Tang, Huihuan; Yu, Hanry
2008-01-01
Liver fibrosis is associated with an abnormal increase in an extracellular matrix in chronic liver diseases. Quantitative characterization of fibrillar collagen in intact tissue is essential for both fibrosis studies and clinical applications. Commonly used methods, histological staining followed by either semiquantitative or computerized image analysis, have limited sensitivity, accuracy, and operator-dependent variations. The fibrillar collagen in sinusoids of normal livers could be observed through second-harmonic generation (SHG) microscopy. The two-photon excited fluorescence (TPEF) images, recorded simultaneously with SHG, clearly revealed the hepatocyte morphology. We have systematically optimized the parameters for the quantitative SHG/TPEF imaging of liver tissue and developed fully automated image analysis algorithms to extract the information of collagen changes and cell necrosis. Subtle changes in the distribution and amount of collagen and cell morphology are quantitatively characterized in SHG/TPEF images. By comparing to traditional staining, such as Masson's trichrome and Sirius red, SHG/TPEF is a sensitive quantitative tool for automated collagen characterization in liver tissue. Our system allows for enhanced detection and quantification of sinusoidal collagen fibers in fibrosis research and clinical diagnostics.
NASA Astrophysics Data System (ADS)
Vidovič, Luka; Milanič, Matija; Majaron, Boris
2015-07-01
We combine pulsed photothermal radiometry (PPTR) depth profiling with diffuse reflectance spectroscopy (DRS) measurements for a comprehensive analysis of bruise evolution in vivo. While PPTR enables extraction of detailed depth distribution and concentration profiles of selected absorbers (e.g. melanin, hemoglobin), DRS provides information in a wide range of visible wavelengths and thus offers an additional insight into dynamics of the hemoglobin degradation products. Combining the two approaches enables us to quantitatively characterize bruise evolution dynamics. Our results indicate temporal variations of the bruise evolution parameters in the course of bruise self-healing process. The obtained parameter values and trends represent a basis for a future development of an objective technique for bruise age determination.
Pardo, O; Yusà, V; Coscollà, C; León, N; Pastor, A
2007-07-01
A selective and sensitive procedure has been developed and validated for the determination of acrylamide in difficult matrices, such as coffee and chocolate. The proposed method includes pressurised fluid extraction (PFE) with acetonitrile, florisil clean-up purification inside the PFE extraction cell and detection by liquid chromatography (LC) coupled to atmospheric pressure ionisation in positive mode tandem mass spectrometry (APCI-MS-MS). Comparison of ionisation sources (atmospheric pressure chemical ionisation (APCI), atmospheric pressure photoionization (APPI) and the combined APCI/APPI) and clean-up procedures were carried out to improve the analytical signal. The main parameters affecting the performance of the different ionisation sources were previously optimised using statistical design of experiments (DOE). PFE parameters were also optimised by DOE. For quantitation, an isotope dilution approach was used. The limit of quantification (LOQ) of the method was 1 microg kg(-1) for coffee and 0.6 microg kg(-1) for chocolate. Recoveries ranged between 81-105% in coffee and 87-102% in chocolate. The accuracy was evaluated using a coffee reference test material FAPAS T3008. Using the optimised method, 20 coffee and 15 chocolate samples collected from Valencian (Spain) supermarkets, were investigated for acrylamide, yielding median levels of 146 microg kg(-1) in coffee and 102 microg kg(-1) in chocolate.
Lerch, Oliver; Temme, Oliver; Daldrup, Thomas
2014-07-01
The analysis of opioids, cocaine, and metabolites from blood serum is a routine task in forensic laboratories. Commonly, the employed methods include many manual or partly automated steps like protein precipitation, dilution, solid phase extraction, evaporation, and derivatization preceding a gas chromatography (GC)/mass spectrometry (MS) or liquid chromatography (LC)/MS analysis. In this study, a comprehensively automated method was developed from a validated, partly automated routine method. This was possible by replicating method parameters on the automated system. Only marginal optimization of parameters was necessary. The automation relying on an x-y-z robot after manual protein precipitation includes the solid phase extraction, evaporation of the eluate, derivatization (silylation with N-methyl-N-trimethylsilyltrifluoroacetamide, MSTFA), and injection into a GC/MS. A quantitative analysis of almost 170 authentic serum samples and more than 50 authentic samples of other matrices like urine, different tissues, and heart blood on cocaine, benzoylecgonine, methadone, morphine, codeine, 6-monoacetylmorphine, dihydrocodeine, and 7-aminoflunitrazepam was conducted with both methods proving that the analytical results are equivalent even near the limits of quantification (low ng/ml range). To our best knowledge, this application is the first one reported in the literature employing this sample preparation system.
VIPAR, a quantitative approach to 3D histopathology applied to lymphatic malformations
Hägerling, René; Drees, Dominik; Scherzinger, Aaron; Dierkes, Cathrin; Martin-Almedina, Silvia; Butz, Stefan; Gordon, Kristiana; Schäfers, Michael; Hinrichs, Klaus; Vestweber, Dietmar; Goerge, Tobias; Mansour, Sahar; Mortimer, Peter S.
2017-01-01
BACKGROUND. Lack of investigatory and diagnostic tools has been a major contributing factor to the failure to mechanistically understand lymphedema and other lymphatic disorders in order to develop effective drug and surgical therapies. One difficulty has been understanding the true changes in lymph vessel pathology from standard 2D tissue sections. METHODS. VIPAR (volume information-based histopathological analysis by 3D reconstruction and data extraction), a light-sheet microscopy–based approach for the analysis of tissue biopsies, is based on digital reconstruction and visualization of microscopic image stacks. VIPAR allows semiautomated segmentation of the vasculature and subsequent nonbiased extraction of characteristic vessel shape and connectivity parameters. We applied VIPAR to analyze biopsies from healthy lymphedematous and lymphangiomatous skin. RESULTS. Digital 3D reconstruction provided a directly visually interpretable, comprehensive representation of the lymphatic and blood vessels in the analyzed tissue volumes. The most conspicuous features were disrupted lymphatic vessels in lymphedematous skin and a hyperplasia (4.36-fold lymphatic vessel volume increase) in the lymphangiomatous skin. Both abnormalities were detected by the connectivity analysis based on extracted vessel shape and structure data. The quantitative evaluation of extracted data revealed a significant reduction of lymphatic segment length (51.3% and 54.2%) and straightness (89.2% and 83.7%) for lymphedematous and lymphangiomatous skin, respectively. Blood vessel length was significantly increased in the lymphangiomatous sample (239.3%). CONCLUSION. VIPAR is a volume-based tissue reconstruction data extraction and analysis approach that successfully distinguished healthy from lymphedematous and lymphangiomatous skin. Its application is not limited to the vascular systems or skin. FUNDING. Max Planck Society, DFG (SFB 656), and Cells-in-Motion Cluster of Excellence EXC 1003. PMID:28814672
VIPAR, a quantitative approach to 3D histopathology applied to lymphatic malformations.
Hägerling, René; Drees, Dominik; Scherzinger, Aaron; Dierkes, Cathrin; Martin-Almedina, Silvia; Butz, Stefan; Gordon, Kristiana; Schäfers, Michael; Hinrichs, Klaus; Ostergaard, Pia; Vestweber, Dietmar; Goerge, Tobias; Mansour, Sahar; Jiang, Xiaoyi; Mortimer, Peter S; Kiefer, Friedemann
2017-08-17
Lack of investigatory and diagnostic tools has been a major contributing factor to the failure to mechanistically understand lymphedema and other lymphatic disorders in order to develop effective drug and surgical therapies. One difficulty has been understanding the true changes in lymph vessel pathology from standard 2D tissue sections. VIPAR (volume information-based histopathological analysis by 3D reconstruction and data extraction), a light-sheet microscopy-based approach for the analysis of tissue biopsies, is based on digital reconstruction and visualization of microscopic image stacks. VIPAR allows semiautomated segmentation of the vasculature and subsequent nonbiased extraction of characteristic vessel shape and connectivity parameters. We applied VIPAR to analyze biopsies from healthy lymphedematous and lymphangiomatous skin. Digital 3D reconstruction provided a directly visually interpretable, comprehensive representation of the lymphatic and blood vessels in the analyzed tissue volumes. The most conspicuous features were disrupted lymphatic vessels in lymphedematous skin and a hyperplasia (4.36-fold lymphatic vessel volume increase) in the lymphangiomatous skin. Both abnormalities were detected by the connectivity analysis based on extracted vessel shape and structure data. The quantitative evaluation of extracted data revealed a significant reduction of lymphatic segment length (51.3% and 54.2%) and straightness (89.2% and 83.7%) for lymphedematous and lymphangiomatous skin, respectively. Blood vessel length was significantly increased in the lymphangiomatous sample (239.3%). VIPAR is a volume-based tissue reconstruction data extraction and analysis approach that successfully distinguished healthy from lymphedematous and lymphangiomatous skin. Its application is not limited to the vascular systems or skin. Max Planck Society, DFG (SFB 656), and Cells-in-Motion Cluster of Excellence EXC 1003.
El-Shahawi, M S; Bashammakh, A S; Bahaffi, S O
2007-06-15
A novel and low cost liquid-liquid extraction procedure for the separation of gold(III) at trace level from aqueous medium of pH 5-9 has been developed. The method has been based upon the formation of a yellow colored ternary complex ion associate of tetrachloro gold(III) complex anion, AuCl(4)(-) with the ion-pair reagent 1-(3,5-diamino-6-chloropyrazinecarboxyl) guanidine hydrochloride monohydrate, namely amiloride, DPG(+).Cl(-). The effect of various parameters, e.g. pH, organic solvent, shaking time, etc. on the preconcentration of gold(III) from the aqueous media by the DPG(+).Cl(-) reagent has been investigated. The colored gold species was quantitatively extracted into 4-methyl pentan-2-one. The chemical composition of the ion associate of DPG(+).Cl(-) with AuCl(4)(-) in the organic solvent has been determined by the Job's method. The molar absorptivity (2.19x10(4)Lmol(-1)cm(-1)) of the associate DPG(+).AuCl(4)(-) at 362nm enabled a convenient application of the developed extraction procedure for the separation and AAS determination of traces of aurate ions. Mono-valence gold ions after oxidation to gold(III) with bromine water in HCl (1.0molL(-1)) media have been also extracted quantitatively from the aqueous media by the developed procedure. The chemical speciation of mono- and/or tri-valence gold species spiked to fresh and industrial wastewater samples has been achieved. The method has been also applied successfully from the separation of gold(I) and gold(III) species from metallic ions and silver. The developed method has also the advantage of freedom from most diverse ions.
Predicting loop–helix tertiary structural contacts in RNA pseudoknots
Cao, Song; Giedroc, David P.; Chen, Shi-Jie
2010-01-01
Tertiary interactions between loops and helical stems play critical roles in the biological function of many RNA pseudoknots. However, quantitative predictions for RNA tertiary interactions remain elusive. Here we report a statistical mechanical model for the prediction of noncanonical loop–stem base-pairing interactions in RNA pseudoknots. Central to the model is the evaluation of the conformational entropy for the pseudoknotted folds with defined loop–stem tertiary structural contacts. We develop an RNA virtual bond-based conformational model (Vfold model), which permits a rigorous computation of the conformational entropy for a given fold that contains loop–stem tertiary contacts. With the entropy parameters predicted from the Vfold model and the energy parameters for the tertiary contacts as inserted parameters, we can then predict the RNA folding thermodynamics, from which we can extract the tertiary contact thermodynamic parameters from theory–experimental comparisons. These comparisons reveal a contact enthalpy (ΔH) of −14 kcal/mol and a contact entropy (ΔS) of −38 cal/mol/K for a protonated C+•(G–C) base triple at pH 7.0, and (ΔH = −7 kcal/mol, ΔS = −19 cal/mol/K) for an unprotonated base triple. Tests of the model for a series of pseudoknots show good theory–experiment agreement. Based on the extracted energy parameters for the tertiary structural contacts, the model enables predictions for the structure, stability, and folding pathways for RNA pseudoknots with known or postulated loop–stem tertiary contacts from the nucleotide sequence alone. PMID:20100813
Micucci, Matteo; Aldini, Rita; Cevenini, Monica; Colliva, Carolina; Spinozzi, Silvia; Roda, Giulia; Montagnani, Marco; Camborata, Cecilia; Camarda, Luca; Chiarini, Alberto; Mazzella, Giuseppe; Budriesi, Roberta
2013-01-01
Curcuma extract exerts a myorelaxant effect on the mouse intestine. In view of a possible use of curcuma extract in motor functional disorders of the gastrointestinal tract, a safety profile study has been carried out in the mouse. Thirty mice were used to study the in vitro effect of curcuma on gallbladder, bladder, aorta and trachea smooth muscular layers and hearth inotropic and chronotropic activity. The myorelaxant effect on the intestine was also thoroughly investigated. Moreover, curcuma extract (200 mg/Kg/day) was orally administered to twenty mice over 28 days and serum liver and lipids parameters were evaluated. Serum, bile and liver bile acids qualitative and quantitative composition was were also studied. In the intestine, curcuma extract appeared as a not competitive inhibitor through cholinergic, histaminergic and serotoninergic receptors and showed spasmolytic effect on K(+) induced contraction at the level of L type calcium channels. No side effect was observed on bladder, aorta, trachea and heart when we used a dose that is effective on the intestine. An increase in gallbladder tone and contraction was observed. Serum liver and lipids parameters were normal, while a slight increase in serum and liver bile acids concentration and a decrease in bile were observed. Although these data are consistent with the safety of curcuma extract as far as its effect on the smooth muscular layers of different organs and on the heart, the mild cholestatic effect observed in absence of alteration of liver function tests must be further evaluated and the effective dose with minimal side effects considered.
Curcuma longa L. as a Therapeutic Agent in Intestinal Motility Disorders. 2: Safety Profile in Mouse
Micucci, Matteo; Aldini, Rita; Cevenini, Monica; Colliva, Carolina; Spinozzi, Silvia; Roda, Giulia; Montagnani, Marco; Camborata, Cecilia; Camarda, Luca; Chiarini, Alberto; Mazzella, Giuseppe; Budriesi, Roberta
2013-01-01
Background Curcuma extract exerts a myorelaxant effect on the mouse intestine. In view of a possible use of curcuma extract in motor functional disorders of the gastrointestinal tract, a safety profile study has been carried out in the mouse. Methods Thirty mice were used to study the in vitro effect of curcuma on gallbladder, bladder, aorta and trachea smooth muscular layers and hearth inotropic and chronotropic activity. The myorelaxant effect on the intestine was also thoroughly investigated. Moreover, curcuma extract (200 mg/Kg/day) was orally administered to twenty mice over 28 days and serum liver and lipids parameters were evaluated. Serum, bile and liver bile acids qualitative and quantitative composition was were also studied. Results In the intestine, curcuma extract appeared as a not competitive inhibitor through cholinergic, histaminergic and serotoninergic receptors and showed spasmolytic effect on K+ induced contraction at the level of L type calcium channels. No side effect was observed on bladder, aorta, trachea and heart when we used a dose that is effective on the intestine. An increase in gallbladder tone and contraction was observed. Serum liver and lipids parameters were normal, while a slight increase in serum and liver bile acids concentration and a decrease in bile were observed. Conclusions Although these data are consistent with the safety of curcuma extract as far as its effect on the smooth muscular layers of different organs and on the heart, the mild cholestatic effect observed in absence of alteration of liver function tests must be further evaluated and the effective dose with minimal side effects considered. PMID:24260512
He, Fu-yuan; Deng, Kai-wen; Huang, Sheng; Liu, Wen-long; Shi, Ji-lian
2013-09-01
The paper aims to elucidate and establish a new mathematic model: the total quantum statistical moment standard similarity (TQSMSS) on the base of the original total quantum statistical moment model and to illustrate the application of the model to medical theoretical research. The model was established combined with the statistical moment principle and the normal distribution probability density function properties, then validated and illustrated by the pharmacokinetics of three ingredients in Buyanghuanwu decoction and of three data analytical method for them, and by analysis of chromatographic fingerprint for various extracts with different solubility parameter solvents dissolving the Buyanghanwu-decoction extract. The established model consists of four mainly parameters: (1) total quantum statistical moment similarity as ST, an overlapped area by two normal distribution probability density curves in conversion of the two TQSM parameters; (2) total variability as DT, a confidence limit of standard normal accumulation probability which is equal to the absolute difference value between the two normal accumulation probabilities within integration of their curve nodical; (3) total variable probability as 1-Ss, standard normal distribution probability within interval of D(T); (4) total variable probability (1-beta)alpha and (5) stable confident probability beta(1-alpha): the correct probability to make positive and negative conclusions under confident coefficient alpha. With the model, we had analyzed the TQSMS similarities of pharmacokinetics of three ingredients in Buyanghuanwu decoction and of three data analytical methods for them were at range of 0.3852-0.9875 that illuminated different pharmacokinetic behaviors of each other; and the TQSMS similarities (ST) of chromatographic fingerprint for various extracts with different solubility parameter solvents dissolving Buyanghuanwu-decoction-extract were at range of 0.6842-0.999 2 that showed different constituents with various solvent extracts. The TQSMSS can characterize the sample similarity, by which we can quantitate the correct probability with the test of power under to make positive and negative conclusions no matter the samples come from same population under confident coefficient a or not, by which we can realize an analysis at both macroscopic and microcosmic levels, as an important similar analytical method for medical theoretical research.
Hsu, Ching-Lin; Ding, Wang-Hsien
2009-12-15
A rapid and environmental-friendly injection-port derivatization with gas chromatography-mass spectrometry (GC-MS) method was developed to determine selected low-molecular weight (LMW) dicarboxylic acids (from C2 to C10) in atmospheric aerosol samples. The parameters related to the derivatization process (i.e., type of ion-pair reagent, injection-port temperature and concentration of ion-pair reagent) were optimized. Tetrabutylammonium hydroxide (TBA-OH) 20 mM in methanol gave excellent yield for di-butyl ester dicarboxylate derivatives at injection-port temperature at 300 degrees C. Solid-phase extraction (SPE) method instead of rotary evaporation was used to concentrate analytes from filter extracts. The recovery from filter extracts ranged from 78 to 95% with relative standard deviation (RSD) less than 12%. Limits of quantitation (LOQs) ranged from 25 to 250 pg/m(3). The concentrations of di-carboxylated C2-C5 and total C6-C10 in particles of atmospheric aerosols ranged from 91.9 to 240, 11.3 to 56.7, 9.2 to 49.2, 8.7 to 35.3 and n.d. to 37.8 ng/m(3), respectively. Oxalic acid (C2) was the dominant LMW-dicarboxylic acids detected in aerosol samples. The quantitative results were comparable to the results obtained by the off-line derivatization.
Nicolotti, Luca; Cordero, Chiara; Cagliero, Cecilia; Liberto, Erica; Sgorbini, Barbara; Rubiolo, Patrizia; Bicchi, Carlo
2013-10-10
The study proposes an investigation strategy that simultaneously provides detailed profiling and quantitative fingerprinting of food volatiles, through a "comprehensive" analytical platform that includes sample preparation by Headspace Solid Phase Microextraction (HS-SPME), separation by two-dimensional comprehensive gas chromatography coupled with mass spectrometry detection (GC×GC-MS) and data processing using advanced fingerprinting approaches. Experiments were carried out on roasted hazelnuts and on Gianduja pastes (sugar, vegetable oil, hazelnuts, cocoa, nonfat dried milk, vanilla flavorings) and demonstrated that the information potential of each analysis can better be exploited if suitable quantitation methods are applied. Quantitation approaches through Multiple Headspace Extraction and Standard Addition were compared in terms of performance parameters (linearity, precision, accuracy, Limit of Detection and Limit of Quantitation) under headspace linearity conditions. The results on 19 key analytes, potent odorants, and technological markers, and more than 300 fingerprint components, were used for further processing to obtain information concerning the effect of the matrix on volatile release, and to produce an informative chemical blueprint for use in sensomics and flavoromics. The importance of quantitation approaches in headspace analysis of solid matrices of complex composition, and the advantages of MHE, are also critically discussed. Copyright © 2013 Elsevier B.V. All rights reserved.
Haage, Pernilla; Kronstrand, Robert; Carlsson, Björn; Kugelberg, Fredrik C; Josefsson, Martin
2016-02-05
The analgesic drug tramadol and its metabolites are chiral compounds, with the (+)- and (-)-enantiomers showing different pharmacological and toxicological effects. This novel enantioselective method, based on LC-MS/MS in reversed phase mode, enabled measurement of the parent compound and its three main metabolites O-desmethyltramadol, N-desmethyltramadol and N,O-didesmethyltramadol simultaneously. Whole blood samples of 0.5g were fortified with internal standards (tramadol-(13)C-D3 and O-desmethyl-cis-tramadol-D6) and extracted under basic conditions (pH 11) by liquid-liquid extraction. Chromatography was performed on a chiral alpha-1-acid glycoprotein (AGP) column preceded by an AGP guard column. The mobile phase consisted of 0.8% acetonitrile and 99.2% ammonium acetate (20mM, pH 7.2). A post-column infusion with 0.05% formic acid in acetonitrile was used to enhance sensitivity. Quantitation as well as enantiomeric ratio measurements were covered by quality controls. Validation parameters for all eight enantiomers included selectivity (high), matrix effects (no ion suppression/enhancement), calibration model (linear, weight 1/X(2), in the range of 0.25-250ng/g), limit of quantitation (0.125-0.50ng/g), repeatability (2-6%) and intermediate precision (2-7%), accuracy (83-114%), dilution integrity (98-115%), carry over (not exceeding 0.07%) and stability (stable in blood and extract). The method was applied to blood samples from a healthy volunteer administrated a single 100mg dose and to a case sample concerning an impaired driver, which confirmed its applicability in human pharmacokinetic studies as well as in toxicological and forensic investigations. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ayoub, B. M.
2017-11-01
Two simple spectrophotometric methods were developed for determination of empagliflozin and metformin by manipulating their ratio spectra with application on a recently approved pharmaceutical combination, Synjardy® tablets. A spiking technique was used to increase the concentration of empagliflozin after extraction from the tablets to allow its simultaneous determination with metformin. Validation parameters according to ICH guidelines were acceptable over the concentration range of 2-12 μg/mL for both drugs using constant multiplication and spectrum subtraction methods. The optimized methods are suitable for QC labs.
Mohammadi, Ali; Mohammadi, Somayeh; Bayandori Moghaddam, Abdolmajid; Masoumi, Vahideh; Walker, Roderick B
2014-10-01
In this study, a simple method was developed and validated to detect trace levels of benzaldehyde in injectable pharmaceutical formulations by solid-phase microextraction coupled with gas chromatography-flame ionization detector. Polyaniline was electrodeposited on a platinum wire in trifluoroacetic acid solvent by cyclic voltammetry technique. This fiber shows high thermal and mechanical stability and high performance in extraction of benzaldehyde. Extraction and desorption time and temperature, salt effect and gas chromatography parameters were optimized as key parameters. At the optimum conditions, the fiber shows good linearity between peak area ratio of benzaldehyde/3-chlorobenzaldehyde and benzaldehyde concentration in the range of 50-800 ng/mL with percent relative standard deviation values ranging from 0.75 to 8.64% (n = 3). The limits of quantitation and detection were 50 and 16 ng/mL, respectively. The method has the requisite selectivity, sensitivity, accuracy and precision to assay benzaldehyde in injectable pharmaceutical dosage forms. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Chromosomal locus tracking with proper accounting of static and dynamic errors
Backlund, Mikael P.; Joyner, Ryan; Moerner, W. E.
2015-01-01
The mean-squared displacement (MSD) and velocity autocorrelation (VAC) of tracked single particles or molecules are ubiquitous metrics for extracting parameters that describe the object’s motion, but they are both corrupted by experimental errors that hinder the quantitative extraction of underlying parameters. For the simple case of pure Brownian motion, the effects of localization error due to photon statistics (“static error”) and motion blur due to finite exposure time (“dynamic error”) on the MSD and VAC are already routinely treated. However, particles moving through complex environments such as cells, nuclei, or polymers often exhibit anomalous diffusion, for which the effects of these errors are less often sufficiently treated. We present data from tracked chromosomal loci in yeast that demonstrate the necessity of properly accounting for both static and dynamic error in the context of an anomalous diffusion that is consistent with a fractional Brownian motion (FBM). We compare these data to analytical forms of the expected values of the MSD and VAC for a general FBM in the presence of these errors. PMID:26172745
SS-mPMG and SS-GA: tools for finding pathways and dynamic simulation of metabolic networks.
Katsuragi, Tetsuo; Ono, Naoaki; Yasumoto, Keiichi; Altaf-Ul-Amin, Md; Hirai, Masami Y; Sriyudthsak, Kansuporn; Sawada, Yuji; Yamashita, Yui; Chiba, Yukako; Onouchi, Hitoshi; Fujiwara, Toru; Naito, Satoshi; Shiraishi, Fumihide; Kanaya, Shigehiko
2013-05-01
Metabolomics analysis tools can provide quantitative information on the concentration of metabolites in an organism. In this paper, we propose the minimum pathway model generator tool for simulating the dynamics of metabolite concentrations (SS-mPMG) and a tool for parameter estimation by genetic algorithm (SS-GA). SS-mPMG can extract a subsystem of the metabolic network from the genome-scale pathway maps to reduce the complexity of the simulation model and automatically construct a dynamic simulator to evaluate the experimentally observed behavior of metabolites. Using this tool, we show that stochastic simulation can reproduce experimentally observed dynamics of amino acid biosynthesis in Arabidopsis thaliana. In this simulation, SS-mPMG extracts the metabolic network subsystem from published databases. The parameters needed for the simulation are determined using a genetic algorithm to fit the simulation results to the experimental data. We expect that SS-mPMG and SS-GA will help researchers to create relevant metabolic networks and carry out simulations of metabolic reactions derived from metabolomics data.
Bağda, Esra; Altundağ, Hüseyin; Soylak, Mustafa
2017-10-01
In the present work, simple and sensitive extraction methods for selective determination of manganese have been successfully developed. The methods were based on solubilization of manganese in deep eutectic solvent medium. Three deep eutectic solvents with choline chloride (vitamin B4) and tartaric/oxalic/citric acids have been prepared. Extraction parameters were optimized with using standard reference material (1573a tomato leaves). The quantitative recovery values were obtained with 1.25 g/L sample to deep eutectic solvent (DES) volume, at 95 °C for 2 h. The limit of detection was found as 0.50, 0.34, and 1.23 μg/L for DES/tartaric, DES/oxalic, and DES/citric acid, respectively. At optimum conditions, the analytical signal was linear for the range of 10-3000 μg/L for all studied DESs with the correlation coefficient >0.99. The extraction methods were applied to different real samples such as basil herb, spinach, dill, and cucumber barks. The known amount of manganese was spiked to samples, and good recovery results were obtained.
Ma, Haiyan; Ran, Congcong; Li, Mengjiao; Gao, Jinglin; Wang, Xinyu; Zhang, Lina; Bian, Jing; Li, Junmei; Jiang, Ye
2018-04-01
Mycotoxins are potential food pollutants produced by fungi. Among them, aflatoxins (AFs) are the most toxic. Therefore, AFs were selected as models, and a sensitive, simple and green graphene oxide (GO)-based stir bar sorptive extraction (SBSE) method was developed for extraction and determination of AFs with high performance liquid chromatography-laser-induced fluorescence detector (HPLC-LIF). This method improved the sensitivity of AFs detection and solved the deposition difficulty of the direct use of GO as adsorbent. Several parameters including a spiked amount of NaCl, stirring rate, extraction time and desorption time were investigated. Under optimal conditions, the quantitative method had low limits of detection of 2.4-8.0 pg/mL, which were better than some reported AFs analytical methods. The developed method has been applied to soy milk samples with good recoveries ranging from 80.5 to 102.3%. The prepared GO-based SBSE can be used as a sensitive screening technique for detecting AFs in soy milk.
Morales-Navarrete, Hernán; Segovia-Miranda, Fabián; Klukowski, Piotr; Meyer, Kirstin; Nonaka, Hidenori; Marsico, Giovanni; Chernykh, Mikhail; Kalaidzidis, Alexander; Zerial, Marino; Kalaidzidis, Yannis
2015-01-01
A prerequisite for the systems biology analysis of tissues is an accurate digital three-dimensional reconstruction of tissue structure based on images of markers covering multiple scales. Here, we designed a flexible pipeline for the multi-scale reconstruction and quantitative morphological analysis of tissue architecture from microscopy images. Our pipeline includes newly developed algorithms that address specific challenges of thick dense tissue reconstruction. Our implementation allows for a flexible workflow, scalable to high-throughput analysis and applicable to various mammalian tissues. We applied it to the analysis of liver tissue and extracted quantitative parameters of sinusoids, bile canaliculi and cell shapes, recognizing different liver cell types with high accuracy. Using our platform, we uncovered an unexpected zonation pattern of hepatocytes with different size, nuclei and DNA content, thus revealing new features of liver tissue organization. The pipeline also proved effective to analyse lung and kidney tissue, demonstrating its generality and robustness. DOI: http://dx.doi.org/10.7554/eLife.11214.001 PMID:26673893
Nonlinear Acoustical Assessment of Precipitate Nucleation
NASA Technical Reports Server (NTRS)
Cantrell, John H.; Yost, William T.
2004-01-01
The purpose of the present work is to show that measurements of the acoustic nonlinearity parameter in heat treatable alloys as a function of heat treatment time can provide quantitative information about the kinetics of precipitate nucleation and growth in such alloys. Generally, information on the kinetics of phase transformations is obtained from time-sequenced electron microscopical examination and differential scanning microcalorimetry. The present nonlinear acoustical assessment of precipitation kinetics is based on the development of a multiparameter analytical model of the effects on the nonlinearity parameter of precipitate nucleation and growth in the alloy system. A nonlinear curve fit of the model equation to the experimental data is then used to extract the kinetic parameters related to the nucleation and growth of the targeted precipitate. The analytical model and curve fit is applied to the assessment of S' precipitation in aluminum alloy 2024 during artificial aging from the T4 to the T6 temper.
Li, Chen; Nagasaki, Masao; Koh, Chuan Hock; Miyano, Satoru
2011-05-01
Mathematical modeling and simulation studies are playing an increasingly important role in helping researchers elucidate how living organisms function in cells. In systems biology, researchers typically tune many parameters manually to achieve simulation results that are consistent with biological knowledge. This severely limits the size and complexity of simulation models built. In order to break this limitation, we propose a computational framework to automatically estimate kinetic parameters for a given network structure. We utilized an online (on-the-fly) model checking technique (which saves resources compared to the offline approach), with a quantitative modeling and simulation architecture named hybrid functional Petri net with extension (HFPNe). We demonstrate the applicability of this framework by the analysis of the underlying model for the neuronal cell fate decision model (ASE fate model) in Caenorhabditis elegans. First, we built a quantitative ASE fate model containing 3327 components emulating nine genetic conditions. Then, using our developed efficient online model checker, MIRACH 1.0, together with parameter estimation, we ran 20-million simulation runs, and were able to locate 57 parameter sets for 23 parameters in the model that are consistent with 45 biological rules extracted from published biological articles without much manual intervention. To evaluate the robustness of these 57 parameter sets, we run another 20 million simulation runs using different magnitudes of noise. Our simulation results concluded that among these models, one model is the most reasonable and robust simulation model owing to the high stability against these stochastic noises. Our simulation results provide interesting biological findings which could be used for future wet-lab experiments.
Cai, Ying; Yan, Zhihong; Wang, Lijia; NguyenVan, Manh; Cai, Qingyun
2016-01-15
A magnetic solid phase extraction (MSPE) protocol combining a static headspace gas chromatography coupled to mass spectrometry (HS-GC-MS) method has been developed for extraction, and determination of 16 polycyclic aromatic hydrocarbons (PAHs) in drinking water samples. Magnetic nanoparticles (MNPs) were coated with 3-aminopropyltriethoxysilane and modified by cholesterol chloroformate. Transmission electron microscope, vibrating sample magnetometer, Fourier transform infrared spectrometry and X-ray photoelectron spectroscopy were used to characterize the cholesterol-functionalized sorbents, and the main parameters affecting the extraction as well as HS sampling, such as sorbent amount, extraction time, oven temperature and equilibration time have been investigated and established. Combination with HS sampling, the MSPE procedure was simple, fast and environmentally friendly, without need of any organic solvent. Method validation proved the feasibility of the developed sorbents for the quantitation of the investigated analytes at trace levels obtaining the limit of detection (S/N=3) ranging from 0.20 to 7.8 ng/L. Good values for intra and inter-day precision were obtained (RSDs ≤ 9.9%). The proposed method was successfully applied to drinking water samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Wang, Xiaobo; Ye, Nengsheng; Wang, Jifen; Gu, Xuexin
2010-07-01
A method was developed for the simultaneous determination of cocaine (COC) and its metabolite ecgonine methyl ester (EME) in human blood using gas chromatography-mass spectrometry (GC-MS) and gas chromatography-flame ionization detection (GC-FID). The blood sample was prepared by microwave extraction (MWE). The optimal parameters of MWE were as follows: 6 mL of chloroform-isopropanol (9: 1, v/v) mixture as extraction solvent, the pH value of the sample was adjusted at 10.0 with 0.05 mol/L Na2CO3-NaHCO3 buffer, the extraction was performed at 40 degrees C for 6 min. The COC and EME in the extract were qualified using GC-MS and quantitated using GC-FID. The average recoveries of COC and EME were from 79.91% to 99.85%, the relative standard deviations were less than 3.10%, and the limits of detection (LOD) were 60 and 40 mg/L, respectively. In the method COC and EME were detected without derivatization. The method is rapid, accurate and sensitive, and can be used for the simultaneous determination of COC and EME in blood samples.
Wu, Xiaoling; Yang, Miyi; Zeng, Haozhe; Xi, Xuefei; Zhang, Sanbing; Lu, Runhua; Gao, Haixiang; Zhou, Wenfeng
2016-11-01
In this study, a simple effervescence-assisted dispersive solid-phase extraction method was developed to detect fungicides in honey and juice. Most significantly, an innovative ionic-liquid-modified magnetic β-cyclodextrin/attapulgite sorbent was used because its large specific surface area enhanced the extraction capacity and also led to facile separation. A one-factor-at-a-time approach and orthogonal design were employed to optimize the experimental parameters. Under the optimized conditions, the entire extraction procedure was completed within 3 min. In addition, the calibration curves exhibited good linearity, and high enrichment factors were achieved for pure water and honey samples. For the honey samples, the extraction efficiencies for the target fungicides ranged from 77.0 to 94.3% with relative standard deviations of 2.3-5.44%. The detection and quantitation limits were in the ranges of 0.07-0.38 and 0.23-1.27 μg/L, respectively. Finally, the developed technique was successfully applied to real samples, and satisfactory results were achieved. This analytical technique is cost-effective, environmentally friendly, and time-saving. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yu, Li; Li, Peiwu; Zhang, Qi; Zhang, Wen; Ding, Xiaoxia; Wang, Xiupin
2013-11-29
In this paper, graphene oxide (GO) was synthesized and specifically selected by centrifugation to extract four aflatoxins (B1, B2, G1, and G2) as an effective adsorbent. Then, the amount of aflatoxins was quantitatively measured by high-performance liquid chromatography (HPLC). The GO was characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), and ultraviolet (UV) spectrophotometer. Several parameters that could affect the extraction efficiency, including the GO amount, methanol concentration in the extraction solvent, spiked amount, extraction time, and elution cycle, were also investigated and optimized in this work. Under optimal conditions, good linear relationships were achieved with the correlation coefficient (r) ranging from 0.99217 to 0.99995. The detection limit of this method for the four aflatoxins ranged from 0.08 to 0.65ng/g. Finally, the proposed method has been successfully applied to determine aflatoxins in peanut samples. The results show that the recoveries of the four aflatoxins range from 85.1% to 100.8% with the relative standard deviations between 2.1% and 7.9%. Copyright © 2013 Elsevier B.V. All rights reserved.
A more quantitative extraction of arsenic-containing compounds from seafood matrices is essential in developing better dietary exposure estimates. More quantitative extraction often implies a more chemically aggressive set of extraction conditions. However, these conditions may...
Tandel, Devang; Shah, Purvi; Patel, Kalpana; Thakkar, Vaishali; Patel, Kirti; Gandhi, Tejal
2016-11-01
A rapid and sensitive reversed-phase high-performance liquid chromatography (HPLC) method using novel salting-out assisted liquid-liquid extraction technique has been developed for the quantitative determination of febuxostat (FEB), used for the treatment of gout, in rat plasma. The method was validated according to US FDA guideline. Separation was achieved using a Phenomenex Luna-C 18 (250 × 4.60 mm, 5 µm) column and mobile phase composed of potassium dihydrogen orthophosphate buffer 25 mM, adjusted to pH 6.8 with triethylamine:methanol in a ratio of 35:65 (v/v) showing retention time 5.56 and 8.86 min for FEB and internal standard, respectively. The optimal salting-out parameters; 1 mL of acetonitrile and 200 µL of 2 M ammonium acetate salt showed extraction recovery >90% for FEB from plasma. This extraction procedure afforded clear samples resulting in convenient and cost-saving procedure and showed good linear relationship (r > 0.9997) between peak area ratio and concentration from 0.3 to 20 µg/mL. The results of pharmacokinetic study showed that absorption profile of spherical agglomerate of FEB compared to marketed formulation was higher indicating greater systemic absorption. In conclusion, the developed SALLE-HPLC method with simple ultraviolet detection offered a number of advantages including good quantitative ability, wide linear range, high recovery, short analysis time as well as low cost. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Fırat, Merve; Bakırdere, Sezgin; Fındıkoğlu, Maral Selin; Kafa, Emine Betül; Yazıcı, Elif; Yolcu, Melda; Büyükpınar, Çağdaş; Chormey, Dotse Selali; Sel, Sabriye; Turak, Fatma
2017-03-01
This study was performed to develop a sensitive analytical method for the determination of cadmium by slotted quartz tube-flame atomic absorption spectrometry (SQT-FAAS) after dispersive liquid-liquid microextraction (DLLME). The parameters affecting the cadmium complex formation and its extraction output were optimized to obtain high extraction efficiency. These included the pH and amount of the buffer solution, and the concentration of the ligand. The DLLME method was comprehensively optimized based on the type and amount of extraction solvent, dispersive solvent and salt. The type and period of mixing needed for a more effective extraction was also investigated. In order to further improve the sensitivity for the determination of cadmium, the flame atomic absorption spectrometry was fitted with a slotted quartz tube to increase the residence time of cadmium atoms in the pathway of incident light from a hollow cathode lamp. The limits of detection and quantitation (LOD and LOQ) for the FAAS were found to be 42 and 140 μg L- 1, respectively. Under the optimum conditions, LOD and LOQ of the FAAS after DLLME were calculated as 1.3 and 4.4 μg L- 1, respectively. Combining both optimized parameters of the DLLME and SQT-FAAS gave 0.5 and 1.5 μg L- 1 as LOD and LOQ, respectively. Accuracy of the method was also checked using a wastewater certified reference material (EU-L-2), and the result was in good agreement with the certified value.
Fang, Xinsheng; Wang, Jianhua; Zhou, Hongying; Jiang, Xingkai; Zhu, Lixiang; Gao, Xin
2009-07-01
An optimized microwave-assisted extraction method using water (MAE-W) as the extractant and an efficient HPLC analysis method were first developed for the fast extraction and simultaneous determination of D(+)-(3,4-dihydroxyphenyl) lactic acid (Dla), salvianolic acid B (SaB), and lithospermic acid (La) in radix Salviae Miltiorrhizae. The key parameters of MAE-W were optimized. It was found that the degradation of SaB was inhibited when using the optimized MAE-W and the stable content of Dla, La, and SaB in danshen was obtained. Furthermore, compared to the conventional extraction methods, the proposed MAE-W is a more rapid method with higher yield and lower solvent consumption with a reproducibility (RSD <6%). In addition, using water as extractant is safe and helpful for environment protection, which could be referred to as green extraction. The separation and quantitative determination of the three compounds was carried out by a developed reverse-phase high-performance liquid chromatographic (RP-HPLC) method with UV detection. Highly efficient separation was obtained using gradient solvent system. The optimized HPLC analysis method was validated to have specificity, linearity, precision, and accuracy. The results indicated that MAE-W followed by HPLC-UV determination is an appropriate alternative to previously proposed method for quality control of radix Salviae Miltiorrhizae.
Caldas, Sergiane Souza; Soares, Bruno Meira; Abreu, Fiamma; Castro, Ítalo Braga; Fillmann, Gilberto; Primel, Ednei Gilberto
2018-03-01
This paper reports the development of an analytical method employing vortex-assisted matrix solid-phase dispersion (MSPD) for the extraction of diuron, Irgarol 1051, TCMTB (2-thiocyanomethylthiobenzothiazole), DCOIT (4,5-dichloro-2-n-octyl-3-(2H)-isothiazolin-3-one), and dichlofluanid from sediment samples. Separation and determination were performed by liquid chromatography tandem-mass spectrometry. Important MSPD parameters, such as sample mass, mass of C18, and type and volume of extraction solvent, were investigated by response surface methodology. Quantitative recoveries were obtained with 2.0 g of sediment sample, 0.25 g of C18 as the solid support, and 10 mL of methanol as the extraction solvent. The MSPD method was suitable for the extraction and determination of antifouling biocides in sediment samples, with recoveries between 61 and 103% and a relative standard deviation lower than 19%. Limits of quantification between 0.5 and 5 ng g -1 were obtained. Vortex-assisted MPSD was shown to be fast and easy to use, with the advantages of low cost and reduced solvent consumption compared to the commonly employed techniques for the extraction of booster biocides from sediment samples. Finally, the developed method was applied to real samples. Results revealed that the developed extraction method is effective and simple, thus allowing the determination of biocides in sediment samples.
Fanali, Chiara; Tripodo, Giusy; Russo, Marina; Della Posta, Susanna; Pasqualetti, Valentina; De Gara, Laura
2018-03-22
Hazelnut kernel phenolic compounds were recovered applying two different extraction approaches, namely ultrasound-assisted solid/liquid extraction (UA-SLE) and solid-phase extraction (SPE). Different solvents were tested evaluating total phenolic compounds and total flavonoids contents together to antioxidant activity. The optimum extraction conditions, in terms of the highest value of total phenolic compounds extracted together to other parameters like simplicity and cost were selected for method validation and individual phenolic compounds analysis. The UA-SLE protocol performed using 0.1 g of defatted sample and 15 mL of extraction solvent (1 mL methanol/1 mL water/8 mL methanol 0.1% formic acid/5 mL acetonitrile) was selected. The analysis of hazelnut kernel individual phenolic compounds was obtained by HPLC coupled with DAD and MS detections. Quantitative analysis was performed using a mixture of six phenolic compounds belonging to phenolic classes' representative of hazelnut. Then, the method was fully validated and the resulting RSD% values for retention time repeatability were below 1%. A good linearity was obtained giving R 2 no lower than 0.997.The accuracy of the extraction method was also assessed. Finally, the method was applied to the analysis of phenolic compounds in three different hazelnut kernel varieties observing a similar qualitative profile with differences in the quantity of detected compounds. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Minerva exoplanet detection sensitivity from simulated observations
NASA Astrophysics Data System (ADS)
McCrady, Nate; Nava, C.
2014-01-01
Small rocky planets induce radial velocity signals that are difficult to detect in the presence of stellar noise sources of comparable or larger amplitude. Minerva is a dedicated, robotic observatory that will attain 1 meter per second precision to detect these rocky planets in the habitable zone around nearby stars. We present results of an ongoing project investigating Minerva’s planet detection sensitivity as a function of observational cadence, planet mass, and orbital parameters (period, eccentricity, and argument of periastron). Radial velocity data is simulated with realistic observing cadence, accounting for weather patterns at Mt. Hopkins, Arizona. Instrumental and stellar noise are added to the simulated observations, including effects of oscillation, jitter, starspots and rotation. We extract orbital parameters from the simulated RV data using the RVLIN code. A Monte Carlo analysis is used to explore the parameter space and evaluate planet detection completeness. Our results will inform the Minerva observing strategy by providing a quantitative measure of planet detection sensitivity as a function of orbital parameters and cadence.
Zheng, Hailiang; Li, Ming; Yin, Pengbin; Peng, Ye; Gao, Yuan; Zhang, Lihai; Tang, Peifu
2015-01-01
Background Calcaneal quantitative ultrasound (QUS), which is used in the evaluation of osteoporosis, is believed to be intimately associated with the characteristics of the proximal femur. However, the specific associations of calcaneal QUS with characteristics of the hip sub-regions remain unclear. Design A cross-sectional assessment of 53 osteoporotic patients was performed for the skeletal status of the heel and hip. Methods We prospectively enrolled 53 female osteoporotic patients with femoral fractures. Calcaneal QUS, dual energy X-ray absorptiometry (DXA), and hip structural analysis (HSA) were performed for each patient. Femoral heads were obtained during the surgery, and principal compressive trabeculae (PCT) were extracted by a three-dimensional printing technique-assisted method. Pearson’s correlation between QUS measurement with DXA, HSA-derived parameters and Young’s modulus were calculated in order to evaluate the specific association of QUS with the parameters for the hip sub-regions, including the femoral neck, trochanteric and Ward’s areas, and the femoral shaft, respectively. Results Significant correlations were found between estimated BMD (Est.BMD) and BMD of different sub-regions of proximal femur. However, the correlation coefficient of trochanteric area (r = 0.356, p = 0.009) was higher than that of the neck area (r = 0.297, p = 0.031) and total proximal femur (r = 0.291, p = 0.034). Furthermore, the quantitative ultrasound index (QUI) was significantly correlated with the HSA-derived parameters of the trochanteric area (r value: 0.315–0.356, all p<0.05) as well as with the Young’s modulus of PCT from the femoral head (r = 0.589, p<0.001). Conclusion The calcaneal bone had an intimate association with the trochanteric cancellous bone. To a certain extent, the parameters of the calcaneal QUS can reflect the characteristics of the trochanteric area of the proximal hip, although not specifically reflective of those of the femoral neck or shaft. PMID:26710123
Zhou, Lijun; Xing, Rong; Xie, Lin; Rao, Tai; Wang, Qian; Ye, Wei; Fu, Hanxu; Xiao, Jingcheng; Shao, Yuhao; Kang, Dian; Wang, Guangji; Liang, Yan
2015-07-15
Notoginsenosides, the main active gradients of Chinese traditional medicine Panax notoginseng, possesses a variety of biological activities including antioxidant property, anti-hyperglycemic, anti-obese, etc. However, pharmacokinetic evaluation for notoginsenosides is still a formidable task due to their low concentrations and complex components in vivo. The summation of this work generated a rapid and sensitive method for quantitative analysis of multi-notoginsenoside in rat plasma based on ultra fast liquid chromatographic-tandem mass spectrometric. After liquid-liquid extraction by n-butanol, notoginsenoside R1, Rg3, Rd, Rg2, Rb2, Rf, Rg1, Rb1 and Re were simultaneously monitored in negative ionization mode after separating on a Thermo ODS C18 column (5mm 50mm×2.1mm) by a binary gradient elution, and all compounds were analyzed within 9min. Multiple reaction monitoring (MRM) was performed as follows: R1 (m/z 967.7→637.4), Rg3 (m/z 819.6→621.4), Rd (m/z 981.6→783.5), Rg2 (m/z 819.6→475.4), Rb2 (m/z 1113.4→783.4), Rf (m/z 835.6→475.4), Rg1 (m/z 835.6→637.6), Rb1 (m/z 1143.7→945.6), Re (m/z 981.6→637.4), internal standard (digoxin, m/z 815.5→779.4). Validation parameters (linearity, sensitivity, intra-and inter-assay precision and accuracy, recovery and matrix effect) were within acceptable ranges and biological extracts were stable during the entire storing and preparing process. This UFLC-MS/MS approach was further validated by being applied to the pharmacokinetic study for P. Notoginseng extract in rats, and the pharmacokinetic parameters were calculated by Winolin software. Thus, the presently developed methodology was simple, robust, accurate, precise, and would be useful for the pharmacokinetic studies for all kinds of notoginsenosides and other herbal saponins. Copyright © 2015 Elsevier B.V. All rights reserved.
Correa Shokiche, Carlos; Schaad, Laura; Triet, Ramona; Jazwinska, Anna; Tschanz, Stefan A.; Djonov, Valentin
2016-01-01
Background Researchers evaluating angiomodulating compounds as a part of scientific projects or pre-clinical studies are often confronted with limitations of applied animal models. The rough and insufficient early-stage compound assessment without reliable quantification of the vascular response counts, at least partially, to the low transition rate to clinics. Objective To establish an advanced, rapid and cost-effective angiogenesis assay for the precise and sensitive assessment of angiomodulating compounds using zebrafish caudal fin regeneration. It should provide information regarding the angiogenic mechanisms involved and should include qualitative and quantitative data of drug effects in a non-biased and time-efficient way. Approach & Results Basic vascular parameters (total regenerated area, vascular projection area, contour length, vessel area density) were extracted from in vivo fluorescence microscopy images using a stereological approach. Skeletonization of the vasculature by our custom-made software Skelios provided additional parameters including “graph energy” and “distance to farthest node”. The latter gave important insights into the complexity, connectivity and maturation status of the regenerating vascular network. The employment of a reference point (vascular parameters prior amputation) is unique for the model and crucial for a proper assessment. Additionally, the assay provides exceptional possibilities for correlative microscopy by combining in vivo-imaging and morphological investigation of the area of interest. The 3-way correlative microscopy links the dynamic changes in vivo with their structural substrate at the subcellular level. Conclusions The improved zebrafish fin regeneration model with advanced quantitative analysis and optional 3-way correlative morphology is a promising in vivo angiogenesis assay, well-suitable for basic research and preclinical investigations. PMID:26950851
Separation of thorium from lanthanides by solvent extraction with ionizable crown ethers.
Du, H S; Wood, D J; Elshani, S; Wai, C M
1993-02-01
Thorium and the lanthanides are extracted by alpha-(sym-dibenzo-16-crown-5-oxy)acetic acid and its analogues in different pH ranges. At pH 4.5, Th is quantitatively extracted by the crown ether carboxylic acids into chloroform whereas the extraction of the lanthanides is negligible. Separation of Th from the lanthanides can be achieved by solvent extraction under this condition. The extraction does not require specific counteranions and is reversible with respect to pH. Trace amounts of Th in water can be quantitatively recovered using this extraction system for neutron activation analysis. The nature of the extracted Th complex and the mechanism of extraction are discussed.
Demeke, Tigst; Ratnayaka, Indira; Phan, Anh
2009-01-01
The quality of DNA affects the accuracy and repeatability of quantitative PCR results. Different DNA extraction and purification methods were compared for quantification of Roundup Ready (RR) soybean (event 40-3-2) by real-time PCR. DNA was extracted using cetylmethylammonium bromide (CTAB), DNeasy Plant Mini Kit, and Wizard Magnetic DNA purification system for food. CTAB-extracted DNA was also purified using the Zymo (DNA Clean & Concentrator 25 kit), Qtip 100 (Qiagen Genomic-Tip 100/G), and QIAEX II Gel Extraction Kit. The CTAB extraction method provided the largest amount of DNA, and the Zymo purification kit resulted in the highest percentage of DNA recovery. The Abs260/280 and Abs260/230 ratios were less than the expected values for some of the DNA extraction and purification methods used, indicating the presence of substances that could inhibit PCR reactions. Real-time quantitative PCR results were affected by the DNA extraction and purification methods used. Further purification or dilution of the CTAB DNA was required for successful quantification of RR soybean. Less variability of quantitative PCR results was observed among experiments and replications for DNA extracted and/or purified by CTAB, CTAB+Zymo, CTAB+Qtip 100, and DNeasy methods. Correct and repeatable results for real-time PCR quantification of RR soybean were achieved using CTAB DNA purified with Zymo and Qtip 100 methods.
Jafari, Mostafa; Ebrahimzadeh, Homeira; Banitaba, Mohamma Hossein
2015-11-01
In this work a rapid and simple method for creatinine determination in urine and plasma samples based on aqueous derivatization of creatinine and complete vaporization of sample (as low as 10 µL), followed by ion mobility spectrometry analysis has been proposed. The effect of four important parameters (extraction temperature, total volume of solution, desorption temperature and extraction time) on ion mobility signal has been studied. Under the optimized conditions, the quantitative response of ion mobility spectrometry for creatinine was linear in the range of 0-500 mg L(-1) with a detection limit of 0.6 mg L(-1) in urine and 0-250 mg L(-1) with a detection limit of 2.6 mg L(-1) in plasma sample. The limit of quantitation of creatinine was 2.1 mg L(-1) and 8.7 mg L(-1) in urine and plasma samples, respectively. The relative standard deviation of the method was found to be 13%. The method was successfully applied to the analysis of creatinine in biological samples, showing recoveries from 92% to 104% in urine and 101-110% in plasma samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Wang, Yiqin; Yan, Hanxia; Yan, Jianjun; Yuan, Fengyin; Xu, Zhaoxia; Liu, Guoping; Xu, Wenjie
2015-01-01
Objective. This research provides objective and quantitative parameters of the traditional Chinese medicine (TCM) pulse conditions for distinguishing between patients with the coronary heart disease (CHD) and normal people by using the proposed classification approach based on Hilbert-Huang transform (HHT) and random forest. Methods. The energy and the sample entropy features were extracted by applying the HHT to TCM pulse by treating these pulse signals as time series. By using the random forest classifier, the extracted two types of features and their combination were, respectively, used as input data to establish classification model. Results. Statistical results showed that there were significant differences in the pulse energy and sample entropy between the CHD group and the normal group. Moreover, the energy features, sample entropy features, and their combination were inputted as pulse feature vectors; the corresponding average recognition rates were 84%, 76.35%, and 90.21%, respectively. Conclusion. The proposed approach could be appropriately used to analyze pulses of patients with CHD, which can lay a foundation for research on objective and quantitative criteria on disease diagnosis or Zheng differentiation. PMID:26180536
Guo, Rui; Wang, Yiqin; Yan, Hanxia; Yan, Jianjun; Yuan, Fengyin; Xu, Zhaoxia; Liu, Guoping; Xu, Wenjie
2015-01-01
Objective. This research provides objective and quantitative parameters of the traditional Chinese medicine (TCM) pulse conditions for distinguishing between patients with the coronary heart disease (CHD) and normal people by using the proposed classification approach based on Hilbert-Huang transform (HHT) and random forest. Methods. The energy and the sample entropy features were extracted by applying the HHT to TCM pulse by treating these pulse signals as time series. By using the random forest classifier, the extracted two types of features and their combination were, respectively, used as input data to establish classification model. Results. Statistical results showed that there were significant differences in the pulse energy and sample entropy between the CHD group and the normal group. Moreover, the energy features, sample entropy features, and their combination were inputted as pulse feature vectors; the corresponding average recognition rates were 84%, 76.35%, and 90.21%, respectively. Conclusion. The proposed approach could be appropriately used to analyze pulses of patients with CHD, which can lay a foundation for research on objective and quantitative criteria on disease diagnosis or Zheng differentiation.
Accurate airway centerline extraction based on topological thinning using graph-theoretic analysis.
Bian, Zijian; Tan, Wenjun; Yang, Jinzhu; Liu, Jiren; Zhao, Dazhe
2014-01-01
The quantitative analysis of the airway tree is of critical importance in the CT-based diagnosis and treatment of popular pulmonary diseases. The extraction of airway centerline is a precursor to identify airway hierarchical structure, measure geometrical parameters, and guide visualized detection. Traditional methods suffer from extra branches and circles due to incomplete segmentation results, which induce false analysis in applications. This paper proposed an automatic and robust centerline extraction method for airway tree. First, the centerline is located based on the topological thinning method; border voxels are deleted symmetrically to preserve topological and geometrical properties iteratively. Second, the structural information is generated using graph-theoretic analysis. Then inaccurate circles are removed with a distance weighting strategy, and extra branches are pruned according to clinical anatomic knowledge. The centerline region without false appendices is eventually determined after the described phases. Experimental results show that the proposed method identifies more than 96% branches and keep consistency across different cases and achieves superior circle-free structure and centrality.
Ni, Yan; Su, Mingming; Qiu, Yunping; Jia, Wei
2017-01-01
ADAP-GC is an automated computational pipeline for untargeted, GC-MS-based metabolomics studies. It takes raw mass spectrometry data as input and carries out a sequence of data processing steps including construction of extracted ion chromatograms, detection of chromatographic peak features, deconvolution of co-eluting compounds, and alignment of compounds across samples. Despite the increased accuracy from the original version to version 2.0 in terms of extracting metabolite information for identification and quantitation, ADAP-GC 2.0 requires appropriate specification of a number of parameters and has difficulty in extracting information of compounds that are in low concentration. To overcome these two limitations, ADAP-GC 3.0 was developed to improve both the robustness and sensitivity of compound detection. In this paper, we report how these goals were achieved and compare ADAP-GC 3.0 against three other software tools including ChromaTOF, AnalyzerPro, and AMDIS that are widely used in the metabolomics community. PMID:27461032
Ni, Yan; Su, Mingming; Qiu, Yunping; Jia, Wei; Du, Xiuxia
2016-09-06
ADAP-GC is an automated computational pipeline for untargeted, GC/MS-based metabolomics studies. It takes raw mass spectrometry data as input and carries out a sequence of data processing steps including construction of extracted ion chromatograms, detection of chromatographic peak features, deconvolution of coeluting compounds, and alignment of compounds across samples. Despite the increased accuracy from the original version to version 2.0 in terms of extracting metabolite information for identification and quantitation, ADAP-GC 2.0 requires appropriate specification of a number of parameters and has difficulty in extracting information on compounds that are in low concentration. To overcome these two limitations, ADAP-GC 3.0 was developed to improve both the robustness and sensitivity of compound detection. In this paper, we report how these goals were achieved and compare ADAP-GC 3.0 against three other software tools including ChromaTOF, AnalyzerPro, and AMDIS that are widely used in the metabolomics community.
NASA Astrophysics Data System (ADS)
Zahri, S.; Belloncle, C.; Charrier, F.; Pardon, P.; Quideau, S.; Charrier, B.
2007-03-01
Two European oak species ( Q. petraea and Q. robur) have a high content of phenols which may participate in the alteration of colour upon UV irradiation. To study the photodegradation process of oak surfaces, the two oak species extractives, vescalagin, castalagin, ellagic acid and gallic acid were analysed quantitatively by HPLC before and after UV irradiation. Irradiation time was altered between 3, 24, 72, 96, 120, 144, 192 and 216 h. In parallel, any colour changes of Oak wood surface was followed after 120 h of UV-irradiation by measuring CIELAB parameters (DL*, Da*, Db* and DE*). We observed that 60% of total phenol content of extractives decreased after the maximal exposure time. Our findings also showed that castalagin and gallic acid were destroyed after 216 h and vescalagin and ellagic acid after 72 h. This study proves the photosenibility of oakwood extractives which, supplementary to lignin degradation, would strongly result in the discolouration of oak heartwood.
Cardador, Maria Jose; Gallego, Mercedes
2012-01-25
Chloroacetic, bromoacetic, and iodoacetic acids can be found in alcoholic beverages when they are used as preservatives/stabilizers or as disinfectants. As they are toxic components, their addition is not permitted under European Union and U.S. regulations. To date, no sensitive methods are available, and those proposed are very laborious. This paper describes a sensitive and straightforward method for the determination of the three monohalogenated acetic acids (m-HAAs) in wines and beers using static headspace extraction coupled with gas chromatography-mass spectrometry. Prior to extraction, the target analytes were esterified to increase their volatility, and all parameters related to the extraction/methylation process were optimized to achieve high efficiency (>90%). The study examined the influence both of the ethanol concentration on the headspace partitioning and of the primary acids present in wine on the derivatization reaction of the m-HAAs. The proposed method allows the determination of these compounds at microgram per liter levels in alcoholic beverages.
Parkinson, Don-Roger; Churchill, Tonia J; Rolls, Wyn
2008-11-01
Methyl benzoate - as a biomarker for mold growth - was used as a specific target compound to indicate outgassed MVOC products from mold. Both real and surrogate samples were analyzed from a variety of matrices including: carpet, ceiling tiles, dried paint surfaces, wallboard and wallboard paper. Sampling parameters, including: desorption, extraction time, incubation temperature, pH, salt effects and spinning rate, were optimized. Results suggest that extraction and detection of methyl benzoate amongst other MVOCs can be accomplished cleanly by SPME-GC/MS methods. With detection limits (LOD = 1.5 ppb) and linearity (0.999) over a range of 100 ppm to 2 ppb, this work demonstrates that such a green technique can be contemplated for use in quick assessment or as part of an ongoing assessment strategy to detect mold growth in common indoor buildings and materials for both qualitative and quantitative determinations. Of importance, no matrix effects are observed under optimized extraction conditions.
Insight into the CH3NH3PbI3/C interface in hole-conductor-free mesoscopic perovskite solar cells
NASA Astrophysics Data System (ADS)
Li, Jiangwei; Niu, Guangda; Li, Wenzhe; Cao, Kun; Wang, Mingkui; Wang, Liduo
2016-07-01
Perovskite solar cells (PSCs) with hole-conductor-free mesoscopic architecture have shown superb stability and great potential in practical application. The printable carbon counter electrodes take full responsibility of extracting holes from the active CH3NH3PbI3 absorbers. However, an in depth study of the CH3NH3PbI3/C interface properties, such as the structural formation process and the effect of interfacial conditions on hole extraction, is still lacking. Herein, we present, for the first time, an insight into the spatial confinement induced CH3NH3PbI3/C interface formation by in situ photoluminescence observations during the crystallization process of CH3NH3PbI3. The derived reaction kinetics allows a quantitative description of the perovskite formation process. In addition, we found that the interfacial contact between carbon and perovskite was dominant for hole extraction efficiency and associated with the photovoltaic parameter of short circuit current density (JSC). Consequently, we conducted a solvent vapor assisted process of PbI2 diffusion to carefully control the CH3NH3PbI3/C interface with less unreacted PbI2 barrier. The improvement of interface conditions thereby contributes to a high hole extraction proved by the charge extraction resistance and PL lifetime change, resulting in the increased JSC valve.Perovskite solar cells (PSCs) with hole-conductor-free mesoscopic architecture have shown superb stability and great potential in practical application. The printable carbon counter electrodes take full responsibility of extracting holes from the active CH3NH3PbI3 absorbers. However, an in depth study of the CH3NH3PbI3/C interface properties, such as the structural formation process and the effect of interfacial conditions on hole extraction, is still lacking. Herein, we present, for the first time, an insight into the spatial confinement induced CH3NH3PbI3/C interface formation by in situ photoluminescence observations during the crystallization process of CH3NH3PbI3. The derived reaction kinetics allows a quantitative description of the perovskite formation process. In addition, we found that the interfacial contact between carbon and perovskite was dominant for hole extraction efficiency and associated with the photovoltaic parameter of short circuit current density (JSC). Consequently, we conducted a solvent vapor assisted process of PbI2 diffusion to carefully control the CH3NH3PbI3/C interface with less unreacted PbI2 barrier. The improvement of interface conditions thereby contributes to a high hole extraction proved by the charge extraction resistance and PL lifetime change, resulting in the increased JSC valve. Electronic supplementary information (ESI) available: Fig. S1-S11, Tables S1, S2 and details of the Avrami model for reaction kinetics. See DOI: 10.1039/c6nr03359h
ERIC Educational Resources Information Center
Usher, Karyn M.; Simmons, Carolyn R.; Keating, Daniel W.; Rossi, Henry F., III
2015-01-01
Chemical separations are an important part of an undergraduate chemistry curriculum. Sophomore students often get experience with liquid-liquid extraction in organic chemistry classes, but liquid-liquid extraction is not as often introduced as a quantitative sample preparation method in honors general chemistry or quantitative analysis classes.…
Zener Diode Compact Model Parameter Extraction Using Xyce-Dakota Optimization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buchheit, Thomas E.; Wilcox, Ian Zachary; Sandoval, Andrew J
This report presents a detailed process for compact model parameter extraction for DC circuit Zener diodes. Following the traditional approach of Zener diode parameter extraction, circuit model representation is defined and then used to capture the different operational regions of a real diode's electrical behavior. The circuit model contains 9 parameters represented by resistors and characteristic diodes as circuit model elements. The process of initial parameter extraction, the identification of parameter values for the circuit model elements, is presented in a way that isolates the dependencies between certain electrical parameters and highlights both the empirical nature of the extraction andmore » portions of the real diode physical behavior which of the parameters are intended to represent. Optimization of the parameters, a necessary part of a robost parameter extraction process, is demonstrated using a 'Xyce-Dakota' workflow, discussed in more detail in the report. Among other realizations during this systematic approach of electrical model parameter extraction, non-physical solutions are possible and can be difficult to avoid because of the interdependencies between the different parameters. The process steps described are fairly general and can be leveraged for other types of semiconductor device model extractions. Also included in the report are recommendations for experiment setups for generating optimum dataset for model extraction and the Parameter Identification and Ranking Table (PIRT) for Zener diodes.« less
Chu, Shaogang; Covaci, Adrian; Haraguchi, Koichi; Schepens, Paul
2002-12-01
An optimised method is described for the determination of 27 methyl sulfone polychlorobiphenyls (PCBs) and DDE in biota samples. Initially, the samples were extracted by hot Soxhlet and the methyl sulfones were separated by liquid/liquid extraction with concentrated sulfuric acid and back-extracted with hexane. The parameters of the back-extraction were studied and it was found that for a quantitative extraction of the methyl sulfones from the concentrated acid layer, a 50% dilution with cold water should be done. The hexane layer containing the methyl sulfones was further cleaned-up on basic silica (33% KOH) and Florisil. After concentration, the extract was analysed by gas chromatography-mass spectrometry (GC-MS) with electron capture negative ionisation (ECNI) in selected ion monitoring mode (SIM). It was shown that, for methyl sulfones, the ion formation was dependent on the chlorine substitution, position of the MeSO2-group and the ion source temperature. If the ion source temperature was higher than 200 degrees C, [M-CH3]- was the predominant ion for most methyl sulfones. Therefore, for increased sensitivity, quantitation of most congeners was done using [M-CH3]- ions instead of the molecular ion as used in previously reported methods. The method was validated for the determination of 26 tri- to hepta- 3- and 4-substituted MeSO2-PCBs and 3-MeSO2-DDE in animal and human tissues. Good sensitivity and selectivity of the method were obtained. Limits of detection (LODs) ranged from 0.06 to 0.10 ng g(-1) lipid weight. Average recoveries of individual congeners from vegetable oil spiked with individual standards (3.33 ng g(-1)) ranged from 73 to 112% with a mean value of 89%. The coefficients of variation ranged from 5.2 to 12.2%, which is within the acceptable range for environmental analyses.
Cassia grandis fruit extract reduces the blood glucose level in alloxan-induced diabetic rats.
Prada, Ariadna Lafourcade; Amado, Jesús Rafael Rodríguez; Keita, Hady; Zapata, Edgar Puente; Carvalho, Helison; Lima, Emersom Silva; de Sousa, Tatiane Pereira; Carvalho, José Carlos Tavares
2018-04-16
Cassia grandis Lf fruits are ethnobotanically used for digestive disorders, anemia, and for reducing blood glucose. However, there are no studies about the antidiabetic activity nor the oral toxicity of the plant fruit-extracts. This paper aims to evaluate the hypoglycemic effect of C. grandis fruits extract in vivo, and assess the acute oral toxicity, and sub-acute oral toxicity. The antioxidant activity and the α-glycosidase inhibitor effect were also evaluated. The extract was obtained by maceration of the fruit pulp with 70% hydroalcoholic solution (1:2, m:v). The extractive solution was concentrated in a vacuum rotary evaporator, up to a drug: solvent ratio of 2:1 (g/ml). Soluble solids, relative density, refractive index, pH, total phenolics, and flavonoids were determined. A preliminary phytochemical screening was made, followed by the quantitation of volatiles by GC/MS. The acute and sub-acute oral toxicity was evaluated in Sprague Dawley rats, by using biochemical and hematological parameters. The radical scavenging activity (DPPH, ABTS) and α-glycosidase inhibitory effect were tested. The hypoglycemic effect was assessed in alloxan-induced diabetic rats. The extract of C. grandis contains alkaloids, coumarins, flavonoids, free amino acids, amines, phenols, tannins, reduced sugars, resins, saponins, steroids, and triterpenes, plus 38 volatile compounds, being linalool the most abundant (1,66%). The extract exhibited an LD 50 > 2000 mg/kg, and after a continuous administration (1000 mg/kg, 28-days), the hematological and biochemical parameters were normal. The extract showed hypoglycemic effect, being the dose 200 mg/kg no statistically different from glibenclamide at 25 mg/kg. Good antioxidant activity and a potent α-glycosidase inhibitory effect were also observed. C. grandis extract is an excellent hypoglycemic and non-toxic plant product. The hypoglycemic mechanism could be associated with the antioxidant effect and with the α-glycosidase inhibition. Up to the best of our knowledge, this is the first report on the hypoglycemic effect in vivo of C. grandis fruits extract. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kertesz, Vilmos; Weiskittel, Taylor M.; Vavek, Marissa
Currently, absolute quantitation aspects of droplet-based surface sampling for thin tissue analysis using a fully automated autosampler/HPLC-ESI-MS/MS system are not fully evaluated. Knowledge of extraction efficiency and its reproducibility is required to judge the potential of the method for absolute quantitation of analytes from thin tissue sections. Methods: Adjacent thin tissue sections of propranolol dosed mouse brain (10- μm-thick), kidney (10- μm-thick) and liver (8-, 10-, 16- and 24- μm-thick) were obtained. Absolute concentration of propranolol was determined in tissue punches from serial sections using standard bulk tissue extraction protocols and subsequent HPLC separations and tandem mass spectrometric analysis. Thesemore » values were used to determine propranolol extraction efficiency from the tissues with the droplet-based surface sampling approach. Results: Extraction efficiency of propranolol using 10- μm-thick brain, kidney and liver thin tissues using droplet-based surface sampling varied between ~45-63%. Extraction efficiency decreased from ~65% to ~36% with liver thickness increasing from 8 μm to 24 μm. Randomly selecting half of the samples as standards, precision and accuracy of propranolol concentrations obtained for the other half of samples as quality control metrics were determined. Resulting precision ( ±15%) and accuracy ( ±3%) values, respectively, were within acceptable limits. In conclusion, comparative quantitation of adjacent mouse thin tissue sections of different organs and of various thicknesses by droplet-based surface sampling and by bulk extraction of tissue punches showed that extraction efficiency was incomplete using the former method, and that it depended on the organ and tissue thickness. However, once extraction efficiency was determined and applied, the droplet-based approach provided the required quantitation accuracy and precision for assay validations. Furthermore, this means that once the extraction efficiency was calibrated for a given tissue type and drug, the droplet-based approach provides a non-labor intensive and high-throughput means to acquire spatially resolved quantitative analysis of multiple samples of the same type.« less
Kertesz, Vilmos; Weiskittel, Taylor M.; Vavek, Marissa; ...
2016-06-22
Currently, absolute quantitation aspects of droplet-based surface sampling for thin tissue analysis using a fully automated autosampler/HPLC-ESI-MS/MS system are not fully evaluated. Knowledge of extraction efficiency and its reproducibility is required to judge the potential of the method for absolute quantitation of analytes from thin tissue sections. Methods: Adjacent thin tissue sections of propranolol dosed mouse brain (10- μm-thick), kidney (10- μm-thick) and liver (8-, 10-, 16- and 24- μm-thick) were obtained. Absolute concentration of propranolol was determined in tissue punches from serial sections using standard bulk tissue extraction protocols and subsequent HPLC separations and tandem mass spectrometric analysis. Thesemore » values were used to determine propranolol extraction efficiency from the tissues with the droplet-based surface sampling approach. Results: Extraction efficiency of propranolol using 10- μm-thick brain, kidney and liver thin tissues using droplet-based surface sampling varied between ~45-63%. Extraction efficiency decreased from ~65% to ~36% with liver thickness increasing from 8 μm to 24 μm. Randomly selecting half of the samples as standards, precision and accuracy of propranolol concentrations obtained for the other half of samples as quality control metrics were determined. Resulting precision ( ±15%) and accuracy ( ±3%) values, respectively, were within acceptable limits. In conclusion, comparative quantitation of adjacent mouse thin tissue sections of different organs and of various thicknesses by droplet-based surface sampling and by bulk extraction of tissue punches showed that extraction efficiency was incomplete using the former method, and that it depended on the organ and tissue thickness. However, once extraction efficiency was determined and applied, the droplet-based approach provided the required quantitation accuracy and precision for assay validations. Furthermore, this means that once the extraction efficiency was calibrated for a given tissue type and drug, the droplet-based approach provides a non-labor intensive and high-throughput means to acquire spatially resolved quantitative analysis of multiple samples of the same type.« less
NASA Astrophysics Data System (ADS)
Gibergans-Báguena, J.; Llasat, M. C.
2007-12-01
The objective of this paper is to present the improvement of quantitative forecasting of daily rainfall in Catalonia (NE Spain) from an analogues technique, taking into account synoptic and local data. This method is based on an analogues sorting technique: meteorological situations similar to the current one, in terms of 700 and 1000 hPa geopotential fields at 00 UTC, complemented with the inclusion of some thermodynamic parameters extracted from an historical data file. Thermodynamic analysis acts as a highly discriminating feature for situations in which the synoptic situation fails to explain either atmospheric phenomena or rainfall distribution. This is the case in heavy rainfall situations, where the existence of instability and high water vapor content is essential. With the objective of including these vertical thermodynamic features, information provided by the Palma de Mallorca radiosounding (Spain) has been used. Previously, a selection of the most discriminating thermodynamic parameters for the daily rainfall was made, and then the analogues technique applied to them. Finally, three analog forecasting methods were applied for the quantitative daily rainfall forecasting in Catalonia. The first one is based on analogies from geopotential fields to synoptic scale; the second one is exclusively based on the search of similarity from local thermodynamic information and the third method combines the other two methods. The results show that this last method provides a substantial improvement of quantitative rainfall estimation.
Bjornsson, Christopher S; Lin, Gang; Al-Kofahi, Yousef; Narayanaswamy, Arunachalam; Smith, Karen L; Shain, William; Roysam, Badrinath
2009-01-01
Brain structural complexity has confounded prior efforts to extract quantitative image-based measurements. We present a systematic ‘divide and conquer’ methodology for analyzing three-dimensional (3D) multi-parameter images of brain tissue to delineate and classify key structures, and compute quantitative associations among them. To demonstrate the method, thick (~100 μm) slices of rat brain tissue were labeled using 3 – 5 fluorescent signals, and imaged using spectral confocal microscopy and unmixing algorithms. Automated 3D segmentation and tracing algorithms were used to delineate cell nuclei, vasculature, and cell processes. From these segmentations, a set of 23 intrinsic and 8 associative image-based measurements was computed for each cell. These features were used to classify astrocytes, microglia, neurons, and endothelial cells. Associations among cells and between cells and vasculature were computed and represented as graphical networks to enable further analysis. The automated results were validated using a graphical interface that permits investigator inspection and corrective editing of each cell in 3D. Nuclear counting accuracy was >89%, and cell classification accuracy ranged from 81–92% depending on cell type. We present a software system named FARSIGHT implementing our methodology. Its output is a detailed XML file containing measurements that may be used for diverse quantitative hypothesis-driven and exploratory studies of the central nervous system. PMID:18294697
Challenges and Opportunities for Extracting Cardiovascular Risk Biomarkers from Imaging Data
NASA Astrophysics Data System (ADS)
Kakadiaris, I. A.; Mendizabal-Ruiz, E. G.; Kurkure, U.; Naghavi, M.
Complications attributed to cardiovascular diseases (CDV) are the leading cause of death worldwide. In the United States, sudden heart attack remains the number one cause of death and accounts for the majority of the 280 billion burden of cardiovascular diseases. In spite of the advancements in cardiovascular imaging techniques, the rate of deaths due to unpredicted heart attack remains high. Thus, novel computational tools are of critical need, in order to mine quantitative parameters from the imaging data for early detection of persons with a high likelihood of developing a heart attack in the near future (vulnerable patients). In this paper, we present our progress in the research of computational methods for the extraction of cardiovascular risk biomarkers from cardiovascular imaging data. In particular, we focus on the methods developed for the analysis of intravascular ultrasound (IVUS) data.
Collagen morphology and texture analysis: from statistics to classification
Mostaço-Guidolin, Leila B.; Ko, Alex C.-T.; Wang, Fei; Xiang, Bo; Hewko, Mark; Tian, Ganghong; Major, Arkady; Shiomi, Masashi; Sowa, Michael G.
2013-01-01
In this study we present an image analysis methodology capable of quantifying morphological changes in tissue collagen fibril organization caused by pathological conditions. Texture analysis based on first-order statistics (FOS) and second-order statistics such as gray level co-occurrence matrix (GLCM) was explored to extract second-harmonic generation (SHG) image features that are associated with the structural and biochemical changes of tissue collagen networks. Based on these extracted quantitative parameters, multi-group classification of SHG images was performed. With combined FOS and GLCM texture values, we achieved reliable classification of SHG collagen images acquired from atherosclerosis arteries with >90% accuracy, sensitivity and specificity. The proposed methodology can be applied to a wide range of conditions involving collagen re-modeling, such as in skin disorders, different types of fibrosis and muscular-skeletal diseases affecting ligaments and cartilage. PMID:23846580
Quantitative first-principles theory of interface absorption in multilayer heterostructures
Hachtel, Jordan A.; Sachan, Ritesh; Mishra, Rohan; ...
2015-09-03
The unique chemical bonds and electronic states of interfaces result in optical properties that are different from those of the constituting bulk materials. In the nanoscale regime, the interface effects can be dominant and impact the optical response of devices. Using density functional theory (DFT), the interface effects can be calculated, but DFT is computationally limited to small systems. In this paper, we describe a method to combine DFT with macroscopic methodologies to extract the interface effect on absorption in a consistent and quantifiable manner. The extracted interface effects are an independent parameter and can be applied to more complicatedmore » systems. Finally, we demonstrate, using NiSi 2/Si heterostructures, that by varying the relative volume fractions of interface and bulk, we can tune the spectral range of the heterostructure absorption.« less
ERIC Educational Resources Information Center
Valverde, Juan; This, Herve; Vignolle, Marc
2007-01-01
A simple method for the quantitative determination of photosynthetic pigments extracted from green beans using thin-layer chromatography is proposed. Various extraction methods are compared, and it is shown how a simple flatbed scanner and free software for image processing can give a quantitative determination of pigments. (Contains 5 figures.)
USDA-ARS?s Scientific Manuscript database
A high resolution GC/MS with Selected Ion Monitor (SIM) method focusing on the characterization and quantitative analysis of ginkgolic acids (GAs) in Ginkgo biloba L. plant materials, extracts and commercial products was developed and validated. The method involved sample extraction with (1:1) meth...
A method was developed for the confirmed identification and quantitation of 17B-estradiol, estrone, 17B-ethynylestrodial and 16a-hydroxy-17B-estradiol (estriol) in ground water and swine lagoon samples. Centrifuged and filtered samples were extracted using solid phase extraction...
NASA Astrophysics Data System (ADS)
Kainerstorfer, Jana M.; Amyot, Franck; Demos, Stavros G.; Hassan, Moinuddin; Chernomordik, Victor; Hitzenberger, Christoph K.; Gandjbakhche, Amir H.; Riley, Jason D.
2009-07-01
Quantitative assessment of skin chromophores in a non-invasive fashion is often desirable. Especially pixel wise assessment of blood volume and blood oxygenation is beneficial for improved diagnostics. We utilized a multi-spectral imaging system for acquiring diffuse reflectance images of healthy volunteers' lower forearm. Ischemia and reactive hyperemia was introduced by occluding the upper arm with a pressure cuff for 5min with 180mmHg. Multi-spectral images were taken every 30s, before, during and after occlusion. Image reconstruction for blood volume and blood oxygenation was performed, using a two layered skin model. As the images were taken in a non-contact way, strong artifacts related to the shape (curvature) of the arms were observed, making reconstruction of optical / physiological parameters highly inaccurate. We developed a curvature correction method, which is based on extracting the curvature directly from the intensity images acquired and does not require any additional measures on the object imaged. The effectiveness of the algorithm was demonstrated, on reconstruction results of blood volume and blood oxygenation for in vivo data during occlusion of the arm. Pixel wise assessment of blood volume and blood oxygenation was made possible over the entire image area and comparison of occlusion effects between veins and surrounding skin was performed. Induced ischemia during occlusion and reactive hyperemia afterwards was observed and quantitatively assessed. Furthermore, the influence of epidermal thickness on reconstruction results was evaluated and the exact knowledge of this parameter for fully quantitative assessment was pointed out.
NASA Astrophysics Data System (ADS)
Chen, Zhe; Qiu, Zurong; Huo, Xinming; Fan, Yuming; Li, Xinghua
2017-03-01
A fiber-capacitive drop analyzer is an instrument which monitors a growing droplet to produce a capacitive opto-tensiotrace (COT). Each COT is an integration of fiber light intensity signals and capacitance signals and can reflect the unique physicochemical property of a liquid. In this study, we propose a solution analytical and concentration quantitative method based on multivariate statistical methods. Eight characteristic values are extracted from each COT. A series of COT characteristic values of training solutions at different concentrations compose a data library of this kind of solution. A two-stage linear discriminant analysis is applied to analyze different solution libraries and establish discriminant functions. Test solutions can be discriminated by these functions. After determining the variety of test solutions, Spearman correlation test and principal components analysis are used to filter and reduce dimensions of eight characteristic values, producing a new representative parameter. A cubic spline interpolation function is built between the parameters and concentrations, based on which we can calculate the concentration of the test solution. Methanol, ethanol, n-propanol, and saline solutions are taken as experimental subjects in this paper. For each solution, nine or ten different concentrations are chosen to be the standard library, and the other two concentrations compose the test group. By using the methods mentioned above, all eight test solutions are correctly identified and the average relative error of quantitative analysis is 1.11%. The method proposed is feasible which enlarges the applicable scope of recognizing liquids based on the COT and improves the concentration quantitative precision, as well.
Sabu, Thomas K.; Shiju, Raj T.
2010-01-01
The present study provides data to decide on the most appropriate method for sampling of ground-dwelling arthropods measured in a moist-deciduous forest in the Western Ghats in South India. The abundance of ground-dwelling arthropods was compared among large numbers of samples obtained using pitfall trapping, Berlese and Winkler extraction methods. Highest abundance and frequency of most of the represented taxa indicated pitfall trapping as the ideal method for sampling of ground-dwelling arthropods. However, with possible bias towards surface-active taxa, pitfall-trapping data is inappropriate for quantitative studies, and Berlese extraction is the better alternative. Berlese extraction is the better method for quantitative measurements than the other two methods, whereas pitfall trapping would be appropriate for qualitative measurements. A comparison of the Berlese and Winkler extraction data shows that in a quantitative multigroup approach, Winkler extraction was inferior to Berlese extraction because the total number of arthropods caught was the lowest; and many of the taxa that were caught from an identical sample via Berlese extraction method were not caught. Significantly a greater frequency and higher abundance of arthropods belonging to Orthoptera, Blattaria, and Diptera occurred in pitfall-trapped samples and Psocoptera and Acariformes in Berlese-extracted samples than that were obtained in the other two methods, indicating that both methods are useful, one complementing the other, eliminating a chance for possible under-representation of taxa in quantitative studies. PMID:20673122
Cankar, Katarina; Štebih, Dejan; Dreo, Tanja; Žel, Jana; Gruden, Kristina
2006-01-01
Background Real-time PCR is the technique of choice for nucleic acid quantification. In the field of detection of genetically modified organisms (GMOs) quantification of biotech products may be required to fulfil legislative requirements. However, successful quantification depends crucially on the quality of the sample DNA analyzed. Methods for GMO detection are generally validated on certified reference materials that are in the form of powdered grain material, while detection in routine laboratories must be performed on a wide variety of sample matrixes. Due to food processing, the DNA in sample matrixes can be present in low amounts and also degraded. In addition, molecules of plant origin or from other sources that affect PCR amplification of samples will influence the reliability of the quantification. Further, the wide variety of sample matrixes presents a challenge for detection laboratories. The extraction method must ensure high yield and quality of the DNA obtained and must be carefully selected, since even components of DNA extraction solutions can influence PCR reactions. GMO quantification is based on a standard curve, therefore similarity of PCR efficiency for the sample and standard reference material is a prerequisite for exact quantification. Little information on the performance of real-time PCR on samples of different matrixes is available. Results Five commonly used DNA extraction techniques were compared and their suitability for quantitative analysis was assessed. The effect of sample matrix on nucleic acid quantification was assessed by comparing 4 maize and 4 soybean matrixes. In addition 205 maize and soybean samples from routine analysis were analyzed for PCR efficiency to assess variability of PCR performance within each sample matrix. Together with the amount of DNA needed for reliable quantification, PCR efficiency is the crucial parameter determining the reliability of quantitative results, therefore it was chosen as the primary criterion by which to evaluate the quality and performance on different matrixes and extraction techniques. The effect of PCR efficiency on the resulting GMO content is demonstrated. Conclusion The crucial influence of extraction technique and sample matrix properties on the results of GMO quantification is demonstrated. Appropriate extraction techniques for each matrix need to be determined to achieve accurate DNA quantification. Nevertheless, as it is shown that in the area of food and feed testing matrix with certain specificities is impossible to define strict quality controls need to be introduced to monitor PCR. The results of our study are also applicable to other fields of quantitative testing by real-time PCR. PMID:16907967
Wang, Kai; Liu, Menglong; Su, Zhongqing; Yuan, Shenfang; Fan, Zheng
2018-08-01
To characterize fatigue cracks, in the undersized stage in particular, preferably in a quantitative and precise manner, a two-dimensional (2D) analytical model is developed for interpreting the modulation mechanism of a "breathing" crack on guided ultrasonic waves (GUWs). In conjunction with a modal decomposition method and a variational principle-based algorithm, the model is capable of analytically depicting the propagating and evanescent waves induced owing to the interaction of probing GUWs with a "breathing" crack, and further extracting linear and nonlinear wave features (e.g., reflection, transmission, mode conversion and contact acoustic nonlinearity (CAN)). With the model, a quantitative correlation between CAN embodied in acquired GUWs and crack parameters (e.g., location and severity) is obtained, whereby a set of damage indices is proposed via which the severity of the crack can be evaluated quantitatively. The evaluation, in principle, does not entail a benchmarking process against baseline signals. As validation, the results obtained from the analytical model are compared with those from finite element simulation, showing good consistency. This has demonstrated accuracy of the developed analytical model in interpreting contact crack-induced CAN, and spotlighted its application to quantitative evaluation of fatigue damage. Copyright © 2018 Elsevier B.V. All rights reserved.
On, Jiwon; Pyo, Heesoo; Myung, Seung-Woon
2018-10-15
The aim of this study was to optimize the dispersive liquid-liquid microextraction (DLLME) parameters for simultaneous analysis through DLLME-gas chromatography-mass spectrometry (GC-MS) of six iodo-trihalomethanes, four haloacetonitriles, and one halonitromethane, which are residual disinfection products found in drinking water. Eleven disinfection by-product (DBPs) remaining in aqueous samples were extracted and concentrated using a simple, rapid, and environmentally friendly DLLME method, and then analyzed simultaneously by GC-MS. The optimized DLLME parameters were a sample volume of 5 mL, 100 μL of dichloromethane as the extraction solvent, 1 mL of methanol as the dispersion solvent, an extraction time of 60 s, and 1.5 g of sodium chloride for the salting out effect. The enrichment factor values obtained using the established DLLME-GC-MS method were 19.8-141.5, and the limit of detection and limit of quantification were 0.22-1.19 μg/L and 0.75-3.98 μg/L, respectively. The calibration curves had correlation coefficients (r 2 ) of 0.9958-0.9992 in the concentration range of 0.5-40 μg/L, and they exhibited good linearity in quantitative analysis. This new method could be useful for analyzing eleven DBPs that remain in drinking water. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Uchidate, M.
2018-09-01
In this study, with the aim of establishing a systematic knowledge on the impact of summit extraction methods and stochastic model selection in rough contact analysis, the contact area ratio (A r /A a ) obtained by statistical contact models with different summit extraction methods was compared with a direct simulation using the boundary element method (BEM). Fifty areal topography datasets with different autocorrelation functions in terms of the power index and correlation length were used for investigation. The non-causal 2D auto-regressive model which can generate datasets with specified parameters was employed in this research. Three summit extraction methods, Nayak’s theory, 8-point analysis and watershed segmentation, were examined. With regard to the stochastic model, Bhushan’s model and BGT (Bush-Gibson-Thomas) model were applied. The values of A r /A a from the stochastic models tended to be smaller than BEM. The discrepancy between the Bhushan’s model with the 8-point analysis and BEM was slightly smaller than Nayak’s theory. The results with the watershed segmentation was similar to those with the 8-point analysis. The impact of the Wolf pruning on the discrepancy between the stochastic analysis and BEM was not very clear. In case of the BGT model which employs surface gradients, good quantitative agreement against BEM was obtained when the Nayak’s bandwidth parameter was large.
Albertsen, Mads; Karst, Søren M; Ziegler, Anja S; Kirkegaard, Rasmus H; Nielsen, Per H
2015-01-01
DNA extraction and primer choice have a large effect on the observed community structure in all microbial amplicon sequencing analyses. Although the biases are well known, no comprehensive analysis has been conducted in activated sludge communities. In this study we systematically explored the impact of a number of parameters on the observed microbial community: bead beating intensity, primer choice, extracellular DNA removal, and various PCR settings. In total, 176 samples were subjected to 16S rRNA amplicon sequencing, and selected samples were investigated through metagenomics and metatranscriptomics. Quantitative fluorescence in situ hybridization was used as a DNA extraction-independent method for qualitative comparison. In general, an effect on the observed community was found on all parameters tested, although bead beating and primer choice had the largest effect. The effect of bead beating intensity correlated with cell-wall strength as seen by a large increase in DNA from Gram-positive bacteria (up to 400%). However, significant differences were present at lower phylogenetic levels within the same phylum, suggesting that additional factors are at play. The best primer set based on in silico analysis was found to underestimate a number of important bacterial groups. For 16S rRNA gene analysis in activated sludge we recommend using the FastDNA SPIN Kit for Soil with four times the normal bead beating and V1-3 primers.
Aldeek, Fadi; Hsieh, Kevin C; Ugochukwu, Obiadada N; Gerard, Ghislain; Hammack, Walter
2018-05-23
We developed and validated a method for the extraction, identification, and quantitation of four nitrofuran metabolites, 3-amino-2-oxazolidinone (AOZ), 3-amino-5-morpholinomethyl-2-oxazolidinone (AMOZ), semicarbazide (SC), and 1-aminohydantoin (AHD), as well as chloramphenicol and florfenicol in a variety of seafood commodities. Samples were extracted by liquid-liquid extraction techniques, analyzed by ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), and quantitated using commercially sourced, derivatized nitrofuran metabolites, with their isotopically labeled internal standards in-solvent. We obtained recoveries of 90-100% at various fortification levels. The limit of detection (LOD) was set at 0.25 ng/g for AMOZ and AOZ, 1 ng/g for AHD and SC, and 0.1 ng/g for the phenicols. Various extraction methods, standard stability, derivatization efficiency, and improvements to conventional quantitation techniques were also investigated. We successfully applied this method to the identification and quantitation of nitrofuran metabolites and phenicols in 102 imported seafood products. Our results revealed that four of the samples contained residues from banned veterinary drugs.
NASA Astrophysics Data System (ADS)
Liu, Jia; Liu, Longli; Xue, Yong; Dong, Jing; Hu, Yingcui; Hill, Richard; Guang, Jie; Li, Chi
2017-01-01
Workflow for remote sensing quantitative retrieval is the ;bridge; between Grid services and Grid-enabled application of remote sensing quantitative retrieval. Workflow averts low-level implementation details of the Grid and hence enables users to focus on higher levels of application. The workflow for remote sensing quantitative retrieval plays an important role in remote sensing Grid and Cloud computing services, which can support the modelling, construction and implementation of large-scale complicated applications of remote sensing science. The validation of workflow is important in order to support the large-scale sophisticated scientific computation processes with enhanced performance and to minimize potential waste of time and resources. To research the semantic correctness of user-defined workflows, in this paper, we propose a workflow validation method based on tacit knowledge research in the remote sensing domain. We first discuss the remote sensing model and metadata. Through detailed analysis, we then discuss the method of extracting the domain tacit knowledge and expressing the knowledge with ontology. Additionally, we construct the domain ontology with Protégé. Through our experimental study, we verify the validity of this method in two ways, namely data source consistency error validation and parameters matching error validation.
Quantitative contrast-enhanced mammography for contrast medium kinetics studies
NASA Astrophysics Data System (ADS)
Arvanitis, C. D.; Speller, R.
2009-10-01
Quantitative contrast-enhanced mammography, based on a dual-energy approach, aims to extract quantitative and temporal information of the tumour enhancement after administration of iodinated vascular contrast media. Simulations using analytical expressions and optimization of critical parameters essential for the development of quantitative contrast-enhanced mammography are presented. The procedure has been experimentally evaluated using a tissue-equivalent phantom and an amorphous silicon active matrix flat panel imager. The x-ray beams were produced by a tungsten target tube and spectrally shaped using readily available materials. Measurement of iodine projected thickness in mg cm-2 has been performed. The effect of beam hardening does not introduce nonlinearities in the measurement of iodine projected thickness for values of thicknesses found in clinical investigations. However, scattered radiation introduces significant deviations from slope equal to unity when compared with the actual iodine projected thickness. Scatter correction before the analysis of the dual-energy images provides accurate iodine projected thickness measurements. At 10% of the exposure used in clinical mammography, signal-to-noise ratios in excess of 5 were achieved for iodine projected thicknesses less than 3 mg cm-2 within a 4 cm thick phantom. For the extraction of temporal information, a limited number of low-dose images were used with the phantom incorporating a flow of iodinated contrast medium. The results suggest that spatial and temporal information of iodinated contrast media can be used to indirectly measure the tumour microvessel density and determine its uptake and washout from breast tumours. The proposed method can significantly improve tumour detection in dense breasts. Its application to perform in situ x-ray biopsy and assessment of the oncolytic effect of anticancer agents is foreseeable.
Retinal status analysis method based on feature extraction and quantitative grading in OCT images.
Fu, Dongmei; Tong, Hejun; Zheng, Shuang; Luo, Ling; Gao, Fulin; Minar, Jiri
2016-07-22
Optical coherence tomography (OCT) is widely used in ophthalmology for viewing the morphology of the retina, which is important for disease detection and assessing therapeutic effect. The diagnosis of retinal diseases is based primarily on the subjective analysis of OCT images by trained ophthalmologists. This paper describes an OCT images automatic analysis method for computer-aided disease diagnosis and it is a critical part of the eye fundus diagnosis. This study analyzed 300 OCT images acquired by Optovue Avanti RTVue XR (Optovue Corp., Fremont, CA). Firstly, the normal retinal reference model based on retinal boundaries was presented. Subsequently, two kinds of quantitative methods based on geometric features and morphological features were proposed. This paper put forward a retinal abnormal grading decision-making method which was used in actual analysis and evaluation of multiple OCT images. This paper showed detailed analysis process by four retinal OCT images with different abnormal degrees. The final grading results verified that the analysis method can distinguish abnormal severity and lesion regions. This paper presented the simulation of the 150 test images, where the results of analysis of retinal status showed that the sensitivity was 0.94 and specificity was 0.92.The proposed method can speed up diagnostic process and objectively evaluate the retinal status. This paper aims on studies of retinal status automatic analysis method based on feature extraction and quantitative grading in OCT images. The proposed method can obtain the parameters and the features that are associated with retinal morphology. Quantitative analysis and evaluation of these features are combined with reference model which can realize the target image abnormal judgment and provide a reference for disease diagnosis.
NASA Astrophysics Data System (ADS)
Pande, Chaitanya B.; Moharir, Kanak
2017-05-01
A morphometric analysis of Shanur basin has been carried out using geoprocessing techniques in GIS. These techniques are found relevant for the extraction of river basin and its drainage networks. The extracted drainage network was classified according to Strahler's system of classification and it reveals that the terrain exhibits dendritic to sub-dendritic drainage pattern. Hence, from the study, it is concluded that remote sensing data (SRTM-DEM data of 30 m resolution) coupled with geoprocessing techniques prove to be a competent tool used in morphometric analysis and evaluation of linear, slope, areal and relief aspects of morphometric parameters. The combined outcomes have established the topographical and even recent developmental situations in basin. It will also change the setup of the region. It therefore needs to analyze high level parameters of drainage and environment for suitable planning and management of water resource developmental plan and land resource development plan. The Shanur drainage basin is sprawled over an area of 281.33 km2. The slope of the basin varies from 1 to 10 %, and the slope variation is chiefly controlled by the local geology and erosion cycles. The main stream length ratio of the basin is 14.92 indicating that the study area is elongated with moderate relief and steep slopes. The morphometric parameters of the stream have been analyzed and calculated by applying standard methods and techniques viz. Horton (Trans Am Geophys Union 13:350-361, 1945), Miller (A quantitative geomorphologic study of drainage basin characteristics in the clinch mountain area, Virginia and Tennessee Columbia University, Department of Geology, Technical Report, No. 3, Contract N6 ONR 271-300, 1953), and Strahler (Handbook of applied hydrology, McGraw Hill Book Company, New York, 1964). GIS based on analysis of all morphometric parameters and the erosional development of the area by the streams has been progressed well beyond maturity and lithology is an influence in the drainage development. These studies are very useful for planning of rainwater harvesting and watershed management.
Parametric study of minimum reactor mass in energy-storage dc-to-dc converters
NASA Technical Reports Server (NTRS)
Wong, R. C.; Owen, H. A., Jr.; Wilson, T. G.
1981-01-01
Closed-form analytical solutions for the design equations of a minimum-mass reactor for a two-winding voltage-or-current step-up converter are derived. A quantitative relationship between the three parameters - minimum total reactor mass, maximum output power, and switching frequency - is extracted from these analytical solutions. The validity of the closed-form solution is verified by a numerical minimization procedure. A computer-aided design procedure using commercially available toroidal cores and magnet wires is also used to examine how the results from practical designs follow the predictions of the analytical solutions.
Can home-monitoring of sleep predict depressive episodes in bipolar patients?
Migliorini, M; Mariani, S; Bertschy, G; Kosel, M; Bianchi, A M
2015-08-01
The aim of this study is the evaluation of the autonomic regulations during depressive stages in bipolar patients in order to test new quantitative and objective measures to detect such events. A sensorized T-shirt was used to record ECG signal and body movements during the night, from which HRV data and sleep macrostructure were estimated and analyzed. 9 out of 20 features extracted resulted to be significant (p<;0.05) in discriminating among depressive and non-depressive states. Such features are representation of HRV dynamics in both linear and non-linear domain and parameters linked to sleep modulations.
Quantitative vs. subjective portal verification using digital portal images.
Bissett, R; Leszczynski, K; Loose, S; Boyko, S; Dunscombe, P
1996-01-15
Off-line, computer-aided prescription (simulator) and treatment (portal) image registration using chamfer matching has been implemented on PC based viewing station. The purposes of this study were (a) to evaluate the performance of interactive anatomy and field edge extraction and subsequent registration, and (b) to compare observer's perceptions of field accuracy with measured discrepancies following anatomical registration. Prescription-treatment image pairs for 48 different patients were examined in this study. Digital prescription images were produced with the aid of a television camera and a digital frame grabber, while the treatment images were obtained directly from an on-line portal imaging system. To facilitate perception of low contrast anatomical detail, on-line portal images were enhanced with selective adaptive histogram equalization prior to extraction of anatomical edges. Following interactive extraction of anatomical and field border information by an experienced observer, the identified anatomy was registered using chamfer matching. The degree of conformity between the prescription and treatment fields was quantified using several parameters, which included relative prescription field coverage and overcoverage, as well as the translational and rotational displacements as measured by chamfer matching applied to the boundaries of the two fields. These quantitative measures were compared with subjective evaluations made by four radiation oncologists. All the images in this series that included a range of the most commonly seen treatment sites were registered and the conformity parameters were found. The mean treatment/prescription field coverage and overcoverage were approximately 95 and 7%, respectively before registration. The mean translational displacement in the transverse and cranio-caudal directions were 2.9 and 3.4 mm, respectively. The mean rotational displacement was approximately 2 degrees. For all four oncologists, the portals classified as unacceptable, in terms of the field placement, exhibited significantly higher (p < 0.03) translational errors in the transverse direction. The field coverages were significantly lower (p < 0.05) and the translational errors in the cranio-caudal direction were significantly higher (p < 0.05) for the portals rated as unacceptable by two of the oncologists. From the parameters that were used to quantify the degree of conformity between the prescription and treatment fields, the translational error in the transverse direction correlated best with the oncologists' assessments on the field placement. Field coverage and translational error in the cranio-caudal direction correlated well with assessments of only two out of the four participating oncologists. This can be explained by the fact that for the majority of treatment sites included in the study the positioning of field borders was more critical for the transverse direction. A conclusion for the design of future quantitative and automated on-line portal verification systems is that they will have to model different perceived significances of different types of localization errors intrinsic to oncologist evaluation of portal images.
Sharma, Dharmendar Kumar; Irfanullah, Mir; Basu, Santanu Kumar; Madhu, Sheri; De, Suman; Jadhav, Sameer; Ravikanth, Mangalampalli; Chowdhury, Arindam
2017-01-18
While fluorescence microscopy has become an essential tool amongst chemists and biologists for the detection of various analyte within cellular environments, non-uniform spatial distribution of sensors within cells often restricts extraction of reliable information on relative abundance of analytes in different subcellular regions. As an alternative to existing sensing methodologies such as ratiometric or FRET imaging, where relative proportion of analyte with respect to the sensor can be obtained within cells, we propose a methodology using spectrally-resolved fluorescence microscopy, via which both the relative abundance of sensor as well as their relative proportion with respect to the analyte can be simultaneously extracted for local subcellular regions. This method is exemplified using a BODIPY sensor, capable of detecting mercury ions within cellular environments, characterized by spectral blue-shift and concurrent enhancement of emission intensity. Spectral emission envelopes collected from sub-microscopic regions allowed us to compare the shift in transition energies as well as integrated emission intensities within various intracellular regions. Construction of a 2D scatter plot using spectral shifts and emission intensities, which depend on the relative amount of analyte with respect to sensor and the approximate local amounts of the probe, respectively, enabled qualitative extraction of relative abundance of analyte in various local regions within a single cell as well as amongst different cells. Although the comparisons remain semi-quantitative, this approach involving analysis of multiple spectral parameters opens up an alternative way to extract spatial distribution of analyte in heterogeneous systems. The proposed method would be especially relevant for fluorescent probes that undergo relatively nominal shift in transition energies compared to their emission bandwidths, which often restricts their usage for quantitative ratiometric imaging in cellular media due to strong cross-talk between energetically separated detection channels.
NASA Astrophysics Data System (ADS)
Sharma, Dharmendar Kumar; Irfanullah, Mir; Basu, Santanu Kumar; Madhu, Sheri; De, Suman; Jadhav, Sameer; Ravikanth, Mangalampalli; Chowdhury, Arindam
2017-03-01
While fluorescence microscopy has become an essential tool amongst chemists and biologists for the detection of various analyte within cellular environments, non-uniform spatial distribution of sensors within cells often restricts extraction of reliable information on relative abundance of analytes in different subcellular regions. As an alternative to existing sensing methodologies such as ratiometric or FRET imaging, where relative proportion of analyte with respect to the sensor can be obtained within cells, we propose a methodology using spectrally-resolved fluorescence microscopy, via which both the relative abundance of sensor as well as their relative proportion with respect to the analyte can be simultaneously extracted for local subcellular regions. This method is exemplified using a BODIPY sensor, capable of detecting mercury ions within cellular environments, characterized by spectral blue-shift and concurrent enhancement of emission intensity. Spectral emission envelopes collected from sub-microscopic regions allowed us to compare the shift in transition energies as well as integrated emission intensities within various intracellular regions. Construction of a 2D scatter plot using spectral shifts and emission intensities, which depend on the relative amount of analyte with respect to sensor and the approximate local amounts of the probe, respectively, enabled qualitative extraction of relative abundance of analyte in various local regions within a single cell as well as amongst different cells. Although the comparisons remain semi-quantitative, this approach involving analysis of multiple spectral parameters opens up an alternative way to extract spatial distribution of analyte in heterogeneous systems. The proposed method would be especially relevant for fluorescent probes that undergo relatively nominal shift in transition energies compared to their emission bandwidths, which often restricts their usage for quantitative ratiometric imaging in cellular media due to strong cross-talk between energetically separated detection channels. Dedicated to Professor Kankan Bhattacharyya.
NASA Astrophysics Data System (ADS)
Yan, X. L.; Coetsee, E.; Wang, J. Y.; Swart, H. C.; Terblans, J. J.
2017-07-01
The polycrystalline Ni/Cu multilayer thin films consisting of 8 alternating layers of Ni and Cu were deposited on a SiO2 substrate by means of electron beam evaporation in a high vacuum. Concentration-depth profiles of the as-deposited multilayered Ni/Cu thin films were determined with Auger electron spectroscopy (AES) in combination with Ar+ ion sputtering, under various bombardment conditions with the samples been stationary as well as rotating in some cases. The Mixing-Roughness-Information depth (MRI) model used for the fittings of the concentration-depth profiles accounts for the interface broadening of the experimental depth profiling. The interface broadening incorporates the effects of atomic mixing, surface roughness and information depth of the Auger electrons. The roughness values extracted from the MRI model fitting of the depth profiling data agrees well with those measured by atomic force microscopy (AFM). The ion sputtering induced surface roughness during the depth profiling was accordingly quantitatively evaluated from the fitted MRI parameters with sample rotation and stationary conditions. The depth resolutions of the AES depth profiles were derived directly from the values determined by the fitting parameters in the MRI model.
NASA Astrophysics Data System (ADS)
Lee, Minsuk; Won, Youngjae; Park, Byungjun; Lee, Seungrag
2017-02-01
Not only static characteristics but also dynamic characteristics of the red blood cell (RBC) contains useful information for the blood diagnosis. Quantitative phase imaging (QPI) can capture sample images with subnanometer scale depth resolution and millisecond scale temporal resolution. Various researches have been used QPI for the RBC diagnosis, and recently many researches has been developed to decrease the process time of RBC information extraction using QPI by the parallel computing algorithm, however previous studies are interested in the static parameters such as morphology of the cells or simple dynamic parameters such as root mean square (RMS) of the membrane fluctuations. Previously, we presented a practical blood test method using the time series correlation analysis of RBC membrane flickering with QPI. However, this method has shown that there is a limit to the clinical application because of the long computation time. In this study, we present an accelerated time series correlation analysis of RBC membrane flickering using the parallel computing algorithm. This method showed consistent fractal scaling exponent results of the surrounding medium and the normal RBC with our previous research.
NASA Astrophysics Data System (ADS)
Banerjee, Paromita; Soni, Jalpa; Ghosh, Nirmalya; Sengupta, Tapas K.
2013-02-01
It is of considerable current interest to develop various methods which help to understand and quantify the cellular association in growing bacterial colonies and is also important in terms of detection and identification of a bacterial species. A novel approach is used here to probe the morphological structural changes occurring during the growth of the bacterial colony of Bacillus thuringiensis under different environmental conditions (in normal nutrient agar, in presence of glucose - acting as additional nutrient and additional 3mM arsenate as additional toxic material). This approach combines the quantitative Mueller matrix polarimetry to extract intrinsic polarization properties and inverse analysis of the polarization preserving part of the light scattering spectra to determine the fractal parameter H (Hurst exponent) using Born approximation. Interesting differences are observed in the intrinsic polarization parameters and also in the Hurst exponent, which is a measurement of the fractality of a pattern formed by bacteria while growing as a colony. These findings are further confirmed with optical microscopic studies of the same sample and the results indicate a very strong and distinct dependence on the environmental conditions during growth, which can be exploited to quantify different bacterial species and their growth patterns.
Hakeem Said, Inamullah; Gencer, Selin; Ullrich, Matthias S; Kuhnert, Nikolai
2018-06-01
Dietary phenolic compounds are often transformed by gut microbiota prior to absorption. This transformation may modulate their biological activities. Many fundamental questions still need to be addressed to understand how the gut microbiota-diet interactions affect human health. Herein, a UHPLC-QTOF mass spectrometry-based method for the quantification of uptake and determination of intracellular bacterial concentrations of dietary phenolics from coffee and tea was developed. Quantitative uptake data for selected single purified phenolics were determined. The specific uptake from mixtures containing up to four dietary relevant compounds was investigated to assess changes of uptake parameters in a mixture model system. Indeed, perturbation of bacteria by several compounds alters uptake parameter in particular t max . Finally, model bacteria were dosed with complex dietary mixtures such as diluted tea or coffee extracts. The uptake kinetics of the twenty most abundant phenolics was quantified and the findings are discussed. For the first time, quantitative data on in-vitro uptake of dietary phenolics from food matrices were obtained indicating a time-dependent differential uptake of nutritional compounds. Copyright © 2018. Published by Elsevier Ltd.
Ibaraki, Masanobu; Sato, Kaoru; Mizuta, Tetsuro; Kitamura, Keishi; Miura, Shuichi; Sugawara, Shigeki; Shinohara, Yuki; Kinoshita, Toshibumi
2009-09-01
A modified version of row-action maximum likelihood algorithm (RAMLA) using a 'subset-dependent' relaxation parameter for noise suppression, or dynamic RAMLA (DRAMA), has been proposed. The aim of this study was to assess the capability of DRAMA reconstruction for quantitative (15)O brain positron emission tomography (PET). Seventeen healthy volunteers were studied using a 3D PET scanner. The PET study included 3 sequential PET scans for C(15)O, (15)O(2) and H (2) (15) O. First, the number of main iterations (N (it)) in DRAMA was optimized in relation to image convergence and statistical image noise. To estimate the statistical variance of reconstructed images on a pixel-by-pixel basis, a sinogram bootstrap method was applied using list-mode PET data. Once the optimal N (it) was determined, statistical image noise and quantitative parameters, i.e., cerebral blood flow (CBF), cerebral blood volume (CBV), cerebral metabolic rate of oxygen (CMRO(2)) and oxygen extraction fraction (OEF) were compared between DRAMA and conventional FBP. DRAMA images were post-filtered so that their spatial resolutions were matched with FBP images with a 6-mm FWHM Gaussian filter. Based on the count recovery data, N (it) = 3 was determined as an optimal parameter for (15)O PET data. The sinogram bootstrap analysis revealed that DRAMA reconstruction resulted in less statistical noise, especially in a low-activity region compared to FBP. Agreement of quantitative values between FBP and DRAMA was excellent. For DRAMA images, average gray matter values of CBF, CBV, CMRO(2) and OEF were 46.1 +/- 4.5 (mL/100 mL/min), 3.35 +/- 0.40 (mL/100 mL), 3.42 +/- 0.35 (mL/100 mL/min) and 42.1 +/- 3.8 (%), respectively. These values were comparable to corresponding values with FBP images: 46.6 +/- 4.6 (mL/100 mL/min), 3.34 +/- 0.39 (mL/100 mL), 3.48 +/- 0.34 (mL/100 mL/min) and 42.4 +/- 3.8 (%), respectively. DRAMA reconstruction is applicable to quantitative (15)O PET study and is superior to conventional FBP in terms of image quality.
Acoustic Facies Analysis of Side-Scan Sonar Data
NASA Astrophysics Data System (ADS)
Dwan, Fa Shu
Acoustic facies analysis methods have allowed the generation of system-independent values for the quantitative seafloor acoustic parameter, backscattering strength, from GLORIA and (TAMU) ^2 side-scan sonar data. The resulting acoustic facies parameters enable quantitative comparisons of data collected by different sonar systems, data from different environments, and measurements made with survey geometries. Backscattering strength values were extracted from the sonar amplitude data by inversion based on the sonar equation. Image processing products reveal seafloor features and patterns of relative intensity. To quantitatively compare data collected at different times or by different systems, and to ground truth-measurements and geoacoustic models, quantitative corrections must be made on any given data set for system source level, beam pattern, time-varying gain, processing gain, transmission loss, absorption, insonified area contribution, and grazing angle effects. In the sonar equation, backscattering strength is the sonar parameter which is directly related to seafloor properties. The GLORIA data used in this study are from the edge of a distal lobe of the Monterey Fan. An interfingered region of strong and weak seafloor signal returns from a flat seafloor region provides an ideal data set for this study. Inversion of imagery data from the region allows the quantitative definition of different acoustic facies. The (TAMU) ^2 data used are from a calibration site near the Green Canyon area of the Gulf of Mexico. Acoustic facies analysis techniques were implemented to generate statistical information for acoustic facies based on the estimates of backscattering strength. The backscattering strength values have been compared with Lambert's Law and other functions to parameterize the description of the acoustic facies. The resulting Lambertian constant values range from -26 dB to -36 dB. A modified Lambert relationship, which consists of both intercept and slope terms, appears to represent the BSS versus grazing angle profiles better based on chi^2 testing and error ellipse generation. Different regression functions, composed of trigonometric functions, were analyzed for different segments of the BSS profiles. A cotangent or sine/cosine function shows promising results for representing the entire grazing angle span of the BSS profiles.
Hydrophobic ionic liquids for quantitative bacterial cell lysis with subsequent DNA quantification.
Fuchs-Telka, Sabine; Fister, Susanne; Mester, Patrick-Julian; Wagner, Martin; Rossmanith, Peter
2017-02-01
DNA is one of the most frequently analyzed molecules in the life sciences. In this article we describe a simple and fast protocol for quantitative DNA isolation from bacteria based on hydrophobic ionic liquid supported cell lysis at elevated temperatures (120-150 °C) for subsequent PCR-based analysis. From a set of five hydrophobic ionic liquids, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide was identified as the most suitable for quantitative cell lysis and DNA extraction because of limited quantitative PCR inhibition by the aqueous eluate as well as no detectable DNA uptake. The newly developed method was able to efficiently lyse Gram-negative bacterial cells, whereas Gram-positive cells were protected by their thick cell wall. The performance of the final protocol resulted in quantitative DNA extraction efficiencies for Gram-negative bacteria similar to those obtained with a commercial kit, whereas the number of handling steps, and especially the time required, was dramatically reduced. Graphical Abstract After careful evaluation of five hydrophobic ionic liquids, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([BMPyr + ][Ntf 2 - ]) was identified as the most suitable ionic liquid for quantitative cell lysis and DNA extraction. When used for Gram-negative bacteria, the protocol presented is simple and very fast and achieves DNA extraction efficiencies similar to those obtained with a commercial kit. ddH 2 O double-distilled water, qPCR quantitative PCR.
Yaripour, Saeid; Mohammadi, Ali; Nojavan, Saeed
2016-07-01
In the present study, for the first time electromembrane extraction followed by high-performance liquid chromatography coupled with ultraviolet detection was developed and validated for the determination of tartrazine in some food samples. The parameters influencing electromembrane extraction were evaluated and optimized. The membrane consists of 1-octanol immobilized in the pores of a hollow fiber. As a driving force, a 30 V electrical field was applied to make the analyte migrate from sample solution with pH 3, through the supported liquid membrane into an acceptor solution with pH 10. Best preconcentration (enrichment factor >21) was obtained in extraction duration of 15 min. Effects of some solid nano-sorbents like carbon nanotubes and molecularly imprinted polymers on membrane performance and electromembrane extraction efficiency were evaluated. The method provided the linearity in the range 25-1000 ng/mL for tartrazine (R(2) > 0.9996) with repeatability range (RSD) between 3.8 and 8.5% (n = 3). The limits of detection and quantitation were 7.5 and 25 ng/mL, respectively. Finally, the method was applied to the determination and quantification of tartrazine from some food samples with relative recoveries in the range between 90 and 98%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Friedman, Stuart; Stanke, Fred; Yang, Yongliang; Amster, Oskar
Scanning Microwave Impedance Microscopy (sMIM) is a mode for Atomic Force Microscopy (AFM) enabling imaging of unique contrast mechanisms and measurement of local permittivity and conductivity at the 10's of nm length scale. sMIM has been applied to a variety of systems including nanotubes, nanowires, 2D materials, photovoltaics and semiconductor devices. Early results were largely semi-quantitative. This talk will focus on techniques for extracting quantitative physical parameters such as permittivity, conductivity, doping concentrations and thin film properties from sMIM data. Particular attention will be paid to non-linear materials where sMIM has been used to acquire nano-scale capacitance-voltage curves. These curves can be used to identify the dopant type (n vs p) and doping level in doped semiconductors, both bulk samples and devices. Supported in part by DOE-SBIR DE-SC0009856.
Developing a database for pedestrians' earthquake emergency evacuation in indoor scenarios.
Zhou, Junxue; Li, Sha; Nie, Gaozhong; Fan, Xiwei; Tan, Jinxian; Li, Huayue; Pang, Xiaoke
2018-01-01
With the booming development of evacuation simulation software, developing an extensive database in indoor scenarios for evacuation models is imperative. In this paper, we conduct a qualitative and quantitative analysis of the collected videotapes and aim to provide a complete and unitary database of pedestrians' earthquake emergency response behaviors in indoor scenarios, including human-environment interactions. Using the qualitative analysis method, we extract keyword groups and keywords that code the response modes of pedestrians and construct a general decision flowchart using chronological organization. Using the quantitative analysis method, we analyze data on the delay time, evacuation speed, evacuation route and emergency exit choices. Furthermore, we study the effect of classroom layout on emergency evacuation. The database for indoor scenarios provides reliable input parameters and allows the construction of real and effective constraints for use in software and mathematical models. The database can also be used to validate the accuracy of evacuation models.
Steinhaus, Martin; Fritsch, Helge T; Schieberle, Peter
2003-11-19
A stable isotope dilution assay (SIDA) was developed for the quantitation of both linalool enantiomers using synthesized [2H(2)]R/S-linalool as the internal standard. For enrichment of the target compound from beer, a solid phase microextraction method (SPME) was developed. In comparison to the more time-consuming extraction/distillation cleanup of the beer samples, the results obtained by SPME/SIDA were very similar, even under nonequilibration conditions. Analysis of five different types of beer showed significant differences in the linalool concentrations, which were clearly correlated with the intensity of the hoppy aroma note as evaluated by a sensory panel. In addition, significant differences in the R/S ratios were measured in the beers. The SPME/SIDA yielded exact data independently from headspace sampling parameters, such as exposure time or ionic strength of the solution.
Systems Biology-Driven Hypotheses Tested In Vivo: The Need to Advancing Molecular Imaging Tools.
Verma, Garima; Palombo, Alessandro; Grigioni, Mauro; La Monaca, Morena; D'Avenio, Giuseppe
2018-01-01
Processing and interpretation of biological images may provide invaluable insights on complex, living systems because images capture the overall dynamics as a "whole." Therefore, "extraction" of key, quantitative morphological parameters could be, at least in principle, helpful in building a reliable systems biology approach in understanding living objects. Molecular imaging tools for system biology models have attained widespread usage in modern experimental laboratories. Here, we provide an overview on advances in the computational technology and different instrumentations focused on molecular image processing and analysis. Quantitative data analysis through various open source software and algorithmic protocols will provide a novel approach for modeling the experimental research program. Besides this, we also highlight the predictable future trends regarding methods for automatically analyzing biological data. Such tools will be very useful to understand the detailed biological and mathematical expressions under in-silico system biology processes with modeling properties.
Moazami, Hamid Reza; Nojavan, Saeed; Zahedi, Pegah; Davarani, Saied Saeed Hosseiny
2014-09-02
In order to understand the limitations of electromebrane extraction procedure better, a simple equivalent circuit has been proposed for a supported liquid membrane consisting of a resistor and a low leakage capacitor in series. To verify the equivalent circuit, it was subjected to a simulated periodical polarity changing potential and the resulting time variation of the current was compared with that of a real electromembrane extraction system. The results showed a good agreement between the simulated current patterns and those of the real ones. In order to investigate the impact of various limiting factors, the corresponding values of the equivalent circuit were estimated for a real electromembrane extraction system and were attributed to the physical parameters of the extraction system. A dual charge transfer mechanism was proposed for electromembrane extraction by combining general migration equation and fundamental aspects derived from the simulation. Dual mechanism comprises a current dependent contribution of analyte in total current and could support the possibility of an improvement in performance of an electromembrane extraction by application of an asymmetric polarity changing potential. The optimization of frequency and duty cycle of the asymmetric polarity exchanging potential resulted in a higher recovery (2.17 times greater) in comparison with the conventional electromebrane extraction. The simulation also provided more quantitative approaches toward the investigation of the mechanism of extraction and contribution of different limiting factors in electromembrane extraction. Results showed that the buildup of the double layer is the main limiting factor and the Joule heating has lesser impact on the performance of an electromebrane extraction system. Copyright © 2014 Elsevier B.V. All rights reserved.
Johansson, M; Lenngren, S
1988-11-18
Extraction of the hydrophobic tertiary amine bromhexine from plasma using cyclohexane-heptafluorobutanol (99.5:0.5, v/v) was studied at different pH values. The extraction yield from buffer solutions was quantitative at pH greater than 4.1, but from plasma the extraction yield decreased with increasing pH. Furthermore, at pH 8.4 the extraction yield varied greatly (56-99%) in different human plasma. The addition of lipoproteins to phosphate buffer, at pH 8.1, decreased the extraction yields considerably. Quantitative extraction from plasma was obtained by using a very long extraction time at pH 8.4 or by decreasing the pH to 5.4. The chromatographic system consisted of a reversed-phase column (Nucleosil C18, 5 microns) with an acidic mobile phase (methanol-phosphate buffer, pH 2) containing an aliphatic tertiary amine. UV detection at 308 or 254 nm was used. The limit of quantitation was 5 ng/ml using 3.00 ml of plasma and detection at 254 nm. The intra-assay precision for bromhexine was better than 3.6% at 5 ng/ml.
Micro-electromembrane extraction across free liquid membranes. Instrumentation and basic principles.
Kubáň, Pavel; Boček, Petr
2014-06-13
A micro-electromembrane extraction (μ-EME) technique using electrically induced transfer of charged analytes across free liquid membranes (FLMs) was presented. A disposable extraction unit was proposed and it was made of a short segment of transparent perfluoroalkoxy tubing, which was successively filled with three liquid plugs serving as acceptor solution, FLM and donor solution. These plugs formed a three-phase extraction system, which was precisely defined, that was stable and required μL to sub-μL volumes of all respective solutions. Basic instrumental set-up and extraction principles of μ-EME were examined using an anionic and a cationic dye, 4,5-dihydroxy-3-(p-sulfophenylazo)-2,7-naphthalene disulfonic acid trisodium salt (SPADNS) and crystal violet, respectively. Transfers of the charged dyes from donor into acceptor solutions across FLMs consisting of 1-pentanol were visualized by a microscope camera and quantitative measurements were performed by UV-vis spectrophotometry. The effects of operational parameters of μ-EME system were comprehensively investigated and experimental measurements were accompanied with theoretical calculations. Extraction recoveries above 60% were achieved for 5min μ-EME of 1mM SPADNS at 100V with repeatability values below 5%. Selectivity of FLMs was additionally examined by capillary electrophoretic analyses of acceptor solutions and the potential of FLMs for μ-EME pretreatment of samples with artificial complex matrices was demonstrated. Copyright © 2014 Elsevier B.V. All rights reserved.
Wu, Chang-Guang; Li, Sheng; Ren, Hua-Dong; Yao, Xiao-Hua; Huang, Zi-Jie
2012-06-01
Soil loss prediction models such as universal soil loss equation (USLE) and its revised universal soil loss equation (RUSLE) are the useful tools for risk assessment of soil erosion and planning of soil conservation at regional scale. To make a rational estimation of vegetation cover and management factor, the most important parameters in USLE or RUSLE, is particularly important for the accurate prediction of soil erosion. The traditional estimation based on field survey and measurement is time-consuming, laborious, and costly, and cannot rapidly extract the vegetation cover and management factor at macro-scale. In recent years, the development of remote sensing technology has provided both data and methods for the estimation of vegetation cover and management factor over broad geographic areas. This paper summarized the research findings on the quantitative estimation of vegetation cover and management factor by using remote sensing data, and analyzed the advantages and the disadvantages of various methods, aimed to provide reference for the further research and quantitative estimation of vegetation cover and management factor at large scale.
Wang, Ying Yi; Wang, Kai; Xu, Zuo Yu; Song, Yan; Wang, Chu Nan; Zhang, Chong Qing; Sun, Xi Lin; Shen, Bao Zhong
2017-01-01
Considering the general application of dedicated small-animal positron emission tomography/computed tomography is limited, an acceptable alternative in many situations might be clinical PET/CT. To estimate the feasibility of using clinical PET/CT with [F-18]-fluoro-2-deoxy-D-glucose for high-resolution dynamic imaging and quantitative analysis of cancer xenografts in nude mice. Dynamic clinical PET/CT scans were performed on xenografts for 60 min after injection with [F-18]-fluoro-2-deoxy-D-glucose. Scans were reconstructed with or without SharpIR method in two phases. And mice were sacrificed to extracting major organs and tumors, using ex vivo γ-counting as a reference. Strikingly, we observed that the image quality and the correlation between the all quantitive data from clinical PET/CT and the ex vivo counting was better with the SharpIR reconstructions than without. Our data demonstrate that clinical PET/CT scanner with SharpIR reconstruction is a valuable tool for imaging small animals in preclinical cancer research, offering dynamic imaging parameters, good image quality and accurate data quatification. PMID:28881772
Wang, Ying Yi; Wang, Kai; Xu, Zuo Yu; Song, Yan; Wang, Chu Nan; Zhang, Chong Qing; Sun, Xi Lin; Shen, Bao Zhong
2017-08-08
Considering the general application of dedicated small-animal positron emission tomography/computed tomography is limited, an acceptable alternative in many situations might be clinical PET/CT. To estimate the feasibility of using clinical PET/CT with [F-18]-fluoro-2-deoxy-D-glucose for high-resolution dynamic imaging and quantitative analysis of cancer xenografts in nude mice. Dynamic clinical PET/CT scans were performed on xenografts for 60 min after injection with [F-18]-fluoro-2-deoxy-D-glucose. Scans were reconstructed with or without SharpIR method in two phases. And mice were sacrificed to extracting major organs and tumors, using ex vivo γ-counting as a reference. Strikingly, we observed that the image quality and the correlation between the all quantitive data from clinical PET/CT and the ex vivo counting was better with the SharpIR reconstructions than without. Our data demonstrate that clinical PET/CT scanner with SharpIR reconstruction is a valuable tool for imaging small animals in preclinical cancer research, offering dynamic imaging parameters, good image quality and accurate data quatification.
Lu, Shao Hua; Li, Bao Qiong; Zhai, Hong Lin; Zhang, Xin; Zhang, Zhuo Yong
2018-04-25
Terahertz time-domain spectroscopy has been applied to many fields, however, it still encounters drawbacks in multicomponent mixtures analysis due to serious spectral overlapping. Here, an effective approach to quantitative analysis was proposed, and applied on the determination of the ternary amino acids in foxtail millet substrate. Utilizing three parameters derived from the THz-TDS, the images were constructed and the Tchebichef image moments were used to extract the information of target components. Then the quantitative models were obtained by stepwise regression. The correlation coefficients of leave-one-out cross-validation (R loo-cv 2 ) were more than 0.9595. As for external test set, the predictive correlation coefficients (R p 2 ) were more than 0.8026 and the root mean square error of prediction (RMSE p ) were less than 1.2601. Compared with the traditional methods (PLS and N-PLS methods), our approach is more accurate, robust and reliable, and can be a potential excellent approach to quantify multicomponent with THz-TDS spectroscopy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhang, Zhen; Xia, Shumin; Kanchanawong, Pakorn
2017-05-22
The stress fibers are prominent organization of actin filaments that perform important functions in cellular processes such as migration, polarization, and traction force generation, and whose collective organization reflects the physiological and mechanical activities of the cells. Easily visualized by fluorescence microscopy, the stress fibers are widely used as qualitative descriptors of cell phenotypes. However, due to the complexity of the stress fibers and the presence of other actin-containing cellular features, images of stress fibers are relatively challenging to quantitatively analyze using previously developed approaches, requiring significant user intervention. This poses a challenge for the automation of their detection, segmentation, and quantitative analysis. Here we describe an open-source software package, SFEX (Stress Fiber Extractor), which is geared for efficient enhancement, segmentation, and analysis of actin stress fibers in adherent tissue culture cells. Our method made use of a carefully chosen image filtering technique to enhance filamentous structures, effectively facilitating the detection and segmentation of stress fibers by binary thresholding. We subdivided the skeletons of stress fiber traces into piecewise-linear fragments, and used a set of geometric criteria to reconstruct the stress fiber networks by pairing appropriate fiber fragments. Our strategy enables the trajectory of a majority of stress fibers within the cells to be comprehensively extracted. We also present a method for quantifying the dimensions of the stress fibers using an image gradient-based approach. We determine the optimal parameter space using sensitivity analysis, and demonstrate the utility of our approach by analyzing actin stress fibers in cells cultured on various micropattern substrates. We present an open-source graphically-interfaced computational tool for the extraction and quantification of stress fibers in adherent cells with minimal user input. This facilitates the automated extraction of actin stress fibers from fluorescence images. We highlight their potential uses by analyzing images of cells with shapes constrained by fibronectin micropatterns. The method we reported here could serve as the first step in the detection and characterization of the spatial properties of actin stress fibers to enable further detailed morphological analysis.
NASA Astrophysics Data System (ADS)
Krasin, V. P.; Soyustova, S. I.
2018-07-01
Along with other liquid metals liquid lithium-tin alloys can be considered as an alternative to the use of solid plasma facing components of a future fusion reactor. Therefore, parameters characterizing both the ability to retain hydrogen isotopes and those that determine the extraction of tritium from a liquid metal can be of particular importance. Theoretical correlations based on the coordination cluster model have been used to obtain Sieverts' constants for solutions of hydrogen in liquid Li-Sn alloys. The results of theoretical computations are compared with the previously published experimental values for two alloys of the Li-Sn system. The Butler equation in combination with the equations describing the thermodynamic potentials of a binary solution is used to calculate the surface composition and surface tension of liquid Li-Sn alloys.
Positron emission tomography (PET) advances in neurological applications
NASA Astrophysics Data System (ADS)
Sossi, V.
2003-09-01
Positron Emission Tomography (PET) is a functional imaging modality used in brain research to map in vivo neurotransmitter and receptor activity and to investigate glucose utilization or blood flow patterns both in healthy and disease states. Such research is made possible by the wealth of radiotracers available for PET, by the fact that metabolic and kinetic parameters of particular processes can be extracted from PET data and by the continuous development of imaging techniques. In recent years great advancements have been made in the areas of PET instrumentation, data quantification and image reconstruction that allow for more detailed and accurate biological information to be extracted from PET data. It is now possible to quantitatively compare data obtained either with different tracers or with the same tracer under different scanning conditions. These sophisticated imaging approaches enable detailed investigation of disease mechanisms and system response to disease and/or therapy.
Ladoux, Benoit; Quivy, Jean-Pierre; Doyle, Patrick; Roure, Olivia du; Almouzni, Geneviève; Viovy, Jean-Louis
2000-01-01
Fluorescence videomicroscopy and scanning force microscopy were used to follow, in real time, chromatin assembly on individual DNA molecules immersed in cell-free systems competent for physiological chromatin assembly. Within a few seconds, molecules are already compacted into a form exhibiting strong similarities to native chromatin fibers. In these extracts, the compaction rate is more than 100 times faster than expected from standard biochemical assays. Our data provide definite information on the forces involved (a few piconewtons) and on the reaction path. DNA compaction as a function of time revealed unique features of the assembly reaction in these extracts. They imply a sequential process with at least three steps, involving DNA wrapping as the final event. An absolute and quantitative measure of the kinetic parameters of the early steps in chromatin assembly under physiological conditions could thus be obtained. PMID:11114182
Soylak, Mustafa; Unsal, Yunus Emre
2011-10-01
A preconcentration-separation procedure has been established based on solid-phase extraction of Fe(III) and Pb(II) on bucky tubes (BTs) disc. Fe(III) and Pb(II) ions were quantitatively recovered at pH 6. The influences of the analytical parameters like sample volume, flow rates on the recoveries of analytes on BT disc were investigated. The effects of co-existing ions on the recoveries were also studied. The detection limits for iron and lead were found 1.6 and 4.9 μg L⁻¹, respectively. The validation of the presented method was checked by the analysis of TMDA-51.3 fortified water certified reference material. The presented procedure was successfully applied to the separation-preconcentration and determination of iron and lead content of some natural water and herbal plant samples from Kayseri, Turkey.
Iyappan, Anandhi; Younesi, Erfan; Redolfi, Alberto; Vrooman, Henri; Khanna, Shashank; Frisoni, Giovanni B; Hofmann-Apitius, Martin
2017-01-01
Ontologies and terminologies are used for interoperability of knowledge and data in a standard manner among interdisciplinary research groups. Existing imaging ontologies capture general aspects of the imaging domain as a whole such as methodological concepts or calibrations of imaging instruments. However, none of the existing ontologies covers the diagnostic features measured by imaging technologies in the context of neurodegenerative diseases. Therefore, the Neuro-Imaging Feature Terminology (NIFT) was developed to organize the knowledge domain of measured brain features in association with neurodegenerative diseases by imaging technologies. The purpose is to identify quantitative imaging biomarkers that can be extracted from multi-modal brain imaging data. This terminology attempts to cover measured features and parameters in brain scans relevant to disease progression. In this paper, we demonstrate the systematic retrieval of measured indices from literature and how the extracted knowledge can be further used for disease modeling that integrates neuroimaging features with molecular processes.
Mapping local anisotropy axis for scattering media using backscattering Mueller matrix imaging
NASA Astrophysics Data System (ADS)
He, Honghui; Sun, Minghao; Zeng, Nan; Du, E.; Guo, Yihong; He, Yonghong; Ma, Hui
2014-03-01
Mueller matrix imaging techniques can be used to detect the micro-structure variations of superficial biological tissues, including the sizes and shapes of cells, the structures in cells, and the densities of the organelles. Many tissues contain anisotropic fibrous micro-structures, such as collagen fibers, elastin fibers, and muscle fibers. Changes of these fibrous structures are potentially good indicators for some pathological variations. In this paper, we propose a quantitative analysis technique based on Mueller matrix for mapping local anisotropy axis of scattering media. By conducting both experiments on silk sample and Monte Carlo simulation based on the sphere-cylinder scattering model (SCSM), we extract anisotropy axis parameters from different backscattering Mueller matrix elements. Moreover, we testify the possible applications of these parameters for biological tissues. The preliminary experimental results of human cancerous samples show that, these parameters are capable to map the local axis of fibers. Since many pathological changes including early stage cancers affect the well aligned structures for tissues, the experimental results indicate that these parameters can be used as potential tools in clinical applications for biomedical diagnosis purposes.
Gong, Xingchu; Zhang, Ying; Pan, Jianyang; Qu, Haibin
2014-01-01
A solvent recycling reflux extraction process for Panax notoginseng was optimized using a design space approach to improve the batch-to-batch consistency of the extract. Saponin yields, total saponin purity, and pigment yield were defined as the process critical quality attributes (CQAs). Ethanol content, extraction time, and the ratio of the recycling ethanol flow rate and initial solvent volume in the extraction tank (RES) were identified as the critical process parameters (CPPs) via quantitative risk assessment. Box-Behnken design experiments were performed. Quadratic models between CPPs and process CQAs were developed, with determination coefficients higher than 0.88. As the ethanol concentration decreases, saponin yields first increase and then decrease. A longer extraction time leads to higher yields of the ginsenosides Rb1 and Rd. The total saponin purity increases as the ethanol concentration increases. The pigment yield increases as the ethanol concentration decreases or extraction time increases. The design space was calculated using a Monte-Carlo simulation method with an acceptable probability of 0.90. Normal operation ranges to attain process CQA criteria with a probability of more than 0.914 are recommended as follows: ethanol content of 79–82%, extraction time of 6.1–7.1 h, and RES of 0.039–0.040 min−1. Most of the results of the verification experiments agreed well with the predictions. The verification experiment results showed that the selection of proper operating ethanol content, extraction time, and RES within the design space can ensure that the CQA criteria are met. PMID:25470598
NASA Astrophysics Data System (ADS)
Banerjee, Paromita; Soni, Jalpa; Purwar, Harsh; Ghosh, Nirmalya; Sengupta, Tapas K.
2013-03-01
Development of methods for quantification of cellular association and patterns in growing bacterial colony is of considerable current interest, not only to help understand multicellular behavior of a bacterial species but also to facilitate detection and identification of a bacterial species in a given space and under a given set of condition(s). We have explored quantitative spectral light scattering polarimetry for probing the morphological and structural changes taking place during colony formations of growing Bacillus thuringiensis bacteria under different conditions (in normal nutrient agar representing favorable growth environment, in the presence of 1% glucose as an additional nutrient, and 3 mM sodium arsenate as toxic material). The method is based on the measurement of spectral 3×3 Mueller matrices (which involves linear polarization measurements alone) and its subsequent analysis via polar decomposition to extract the intrinsic polarization parameters. Moreover, the fractal micro-optical parameter, namely, the Hurst exponent H, is determined via fractal-Born approximation-based inverse analysis of the polarization-preserving component of the light scattering spectra. Interesting differences are noted in the derived values for the H parameter and the intrinsic polarization parameters (linear diattenuation d, linear retardance δ, and linear depolarization Δ coefficients) of the growing bacterial colonies under different conditions. The bacterial colony growing in presence of 1% glucose exhibit the strongest fractality (lowest value of H), whereas that growing in presence of 3 mM sodium arsenate showed the weakest fractality. Moreover, the values for δ and d parameters are found to be considerably higher for the colony growing in presence of glucose, indicating more structured growth pattern. These findings are corroborated further with optical microscopic studies conducted on the same samples.
Li, Xue; Ahmad, Imad A Haidar; Tam, James; Wang, Yan; Dao, Gina; Blasko, Andrei
2018-02-05
A Total Organic Carbon (TOC) based analytical method to quantitate trace residues of clean-in-place (CIP) detergents CIP100 ® and CIP200 ® on the surfaces of pharmaceutical manufacturing equipment was developed and validated. Five factors affecting the development and validation of the method were identified: diluent composition, diluent volume, extraction method, location for TOC sample preparation, and oxidant flow rate. Key experimental parameters were optimized to minimize contamination and to improve the sensitivity, recovery, and reliability of the method. The optimized concentration of the phosphoric acid in the swabbing solution was 0.05M, and the optimal volume of the sample solution was 30mL. The swab extraction method was 1min sonication. The use of a clean room, as compared to an isolated lab environment, was not required for method validation. The method was demonstrated to be linear with a correlation coefficient (R) of 0.9999. The average recoveries from stainless steel surfaces at multiple spike levels were >90%. The repeatability and intermediate precision results were ≤5% across the 2.2-6.6ppm range (50-150% of the target maximum carry over, MACO, limit). The method was also shown to be sensitive with a detection limit (DL) of 38ppb and a quantitation limit (QL) of 114ppb. The method validation demonstrated that the developed method is suitable for its intended use. The methodology developed in this study is generally applicable to the cleaning verification of any organic detergents used for the cleaning of pharmaceutical manufacturing equipment made of electropolished stainless steel material. Copyright © 2017 Elsevier B.V. All rights reserved.
Molecularly imprinted polymers for the detection of illegal drugs and additives: a review.
Xiao, Deli; Jiang, Yue; Bi, Yanping
2018-04-04
This review (with 154 refs.) describes the current status of using molecularly imprinted polymers in the extraction and quantitation of illicit drugs and additives. The review starts with an introduction into some synthesis methods (lump MIPs, spherical MIPs, surface imprinting) of MIPs using illicit drugs and additives as templates. The next section covers applications, with subsections on the detection of illegal additives in food, of doping in sports, and of illicit addictive drugs. A particular focus is directed towards current limitations and challenges, on the optimization of methods for preparation of MIPs, their applicability to aqueous samples, the leakage of template molecules, and the identification of the best balance between adsorption capacity and selectivity factor. At last, the need for convincing characterization methods, the lack of uniform parameters for defining selectivity, and the merits and demerits of MIPs prepared using nanomaterials are addressed. Strategies are suggested to solve existing problems, and future developments are discussed with respect to a more widespread use in relevant fields. Graphical abstract This review gives a comprehensive overview of the advances made in molecularly imprinting of polymers for use in the extraction and quantitation of illicit drugs and additives. Methods for syntheses, highlighted applications, limitations and current challenges are specifically addressed.
Sub-chronic Hepatotoxicity of Anacardium occidentale (Anacardiaceae) Inner Stem Bark Extract in Rats
Okonkwo, T. J. N.; Okorie, O.; Okonta, J. M.; Okonkwo, C. J.
2010-01-01
The extracts of Anacardium occidentale have been used in the management of different cardiovascular disorders in Nigeria. These have necessitated the assessment of the toxicity of this plant extract in sub-chronic administration. The inner stem bark of Anacardium occidentale was extracted with 80 % methanol and quantitatively analysed for antinutrients and some heavy metals. The phytochemical compositions and acute toxicity of the extract were determined also. Toxicity profiles of the extract on some liver function parameters were evaluated following a sub-chronic oral administration at doses of 1.44 and 2.87 g/kg. The phytochemical screening of extract revealed the presence of high amount of tannins, moderate saponins and trace of free reducing sugars. The antinutrient levels were 5.75 % (tannins), 2.50 % (oxalates), 2.00 % (saponins), 0.25 % (phytate) and 0.03 % (cyanide). The quantity of iron detected from dried crude was 8.92 mg/100 g, while lead and cadmium were non-detectable. The extract had LD50of 2.154g/kg p.o. in mice. Sub-chronic administration of the extract significantly increased the serum levels of alanine aminotransaminase and aspartate aminotransaminase, which are indicative of liver damage. The serum levels of alkaline phosphatase and total protein of the treated animals were not significantly increased. The effects of sub-chronically administered extract on hepatocytes were minimal as the serum alkaline phosphatase; total bilirubin and total protein levels in treated animals were not significant (p< 0.05). Thus, sub-chronic administrations of Anacardium occidentale inner stem bark extract did not significantly (p< 0.05) depress the function of hepatocytes in Wistar rats. PMID:21188045
Patil, A A; Sachin, B S; Shinde, D B; Wakte, P S
2013-07-01
Coumestan wedelolactone is an important phytocomponent from Eclipta alba (L.) Hassk. It possesses diverse pharmacological activities, which have prompted the development of various extraction techniques and strategies for its better utilization. The aim of the present study is to develop and optimize supercritical carbon dioxide assisted sample preparation and HPLC identification of wedelolactone from E. alba (L.) Hassk. The response surface methodology was employed to study the optimization of sample preparation using supercritical carbon dioxide for wedelolactone from E. alba (L.) Hassk. The optimized sample preparation involves the investigation of quantitative effects of sample preparation parameters viz. operating pressure, temperature, modifier concentration and time on yield of wedelolactone using Box-Behnken design. The wedelolactone content was determined using validated HPLC methodology. The experimental data were fitted to second-order polynomial equation using multiple regression analysis and analyzed using the appropriate statistical method. By solving the regression equation and analyzing 3D plots, the optimum extraction conditions were found to be: extraction pressure, 25 MPa; temperature, 56 °C; modifier concentration, 9.44% and extraction time, 60 min. Optimum extraction conditions demonstrated wedelolactone yield of 15.37 ± 0.63 mg/100 g E. alba (L.) Hassk, which was in good agreement with the predicted values. Temperature and modifier concentration showed significant effect on the wedelolactone yield. The supercritical carbon dioxide extraction showed higher selectivity than the conventional Soxhlet assisted extraction method. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Zhang, Yaping; Yang, Jun; Shi, Ronghua; Su, Qingde; Yao, Li; Li, Panpan
2011-07-01
A method was developed to determine eight acetanilide herbicides from cereal crops based on accelerated solvent extraction (ASE) and solid-phase extraction (SPE) followed by gas chromatography-electron capture detector (GC-ECD) analysis. During the ASE process, the effect of four parameters (temperature, static time, static cycles and solvent) on the extraction efficiency was considered and compared with shake-flask extraction method. After extraction with ASE, four SPE tubes (graphitic carbon black/primary secondary amine (GCB/PSA), GCB, Florisil and alumina-N) were assayed for comparison to obtain the best clean-up efficiency. The results show that GCB/PSA cartridge gave the best recoveries and cleanest chromatograms. The analytical process was validated by the analysis of spiked blank samples. Performance characteristics such as linearity, limit of detection (LOD), limit of quantitation (LOQ), precision and recovery were studied. At 0.05 mg/kg spiked level, recoveries and precision values for rice, wheat and maize were 82.3-115.8 and 1.1-13.6%, respectively. For all the herbicides, LOD and LOQ ranged from 0.8 to 1.7 μg/kg and from 2.4 to 5.3 μg/kg, respectively. The proposed analytical methodology was applied for the analysis of the targets in samples; only three herbicides, propyzamid, metolachlor and diflufenican, were detected in two samples. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Akkaya, Erhan; Chormey, Dotse Selali; Bakırdere, Sezgin
2017-09-20
In this study, solidified floating organic drop microextraction (SFODME) by 1-undecanol was combined with slotted quartz tube flame atomic absorption spectrometry (SQT-FAAS) for the determination of cadmium at trace levels. Formation of a complex with 4,4'-dimethyl-2,2'-bipyridine facilitated the extraction of cadmium from aqueous solutions. Several chemical variables were optimized in order to obtain high extraction outputs. Parameters such as concentration of the ligand, pH, and amount of buffer solution were optimized to enhance the formation of cadmium complex. The SFODME method was assisted by dispersion of extractor solvent into aqueous solutions using 2-propanol. Under the optimum extraction and instrumental conditions, the limit of detection and limit of quantitation values obtained for cadmium using the combined methods (SFODME-SQT-FAAS) were found to be 0.4 and 1.3 μg L -1 , respectively. Matrix effects on the method were also examined for tap water and wastewater, and spiked recovery results were found to be very satisfactory. Graphical Abstract SFODME-SQT-FAAS system for sensitive determination of cadmium.
Planning Robot-Control Parameters With Qualitative Reasoning
NASA Technical Reports Server (NTRS)
Peters, Stephen F.
1993-01-01
Qualitative-reasoning planning algorithm helps to determine quantitative parameters controlling motion of robot. Algorithm regarded as performing search in multidimensional space of control parameters from starting point to goal region in which desired result of robotic manipulation achieved. Makes use of directed graph representing qualitative physical equations describing task, and interacts, at each sampling period, with history of quantitative control parameters and sensory data, to narrow search for reliable values of quantitative control parameters.
A simple method for the quantitative determination of elemental sulfur on oxidized sulfide minerals is described. Extraction of elemental sulfur in perchloroethylene and subsequent analysis with high-performance liquid chromatography were used to ascertain the total elemental ...
Soil samples from the GenCorp Lawrence Brownfields site were analyzed with a commercial semi-quantitative enzyme-linked immunosorbent assay (ELISA) using a methanol shake extraction. Many of the soil samples were extremely oily, with total petroleum hydrocarbon levels up to 240...
Phasegram Analysis of Vocal Fold Vibration Documented With Laryngeal High-speed Video Endoscopy.
Herbst, Christian T; Unger, Jakob; Herzel, Hanspeter; Švec, Jan G; Lohscheller, Jörg
2016-11-01
In a recent publication, the phasegram, a bifurcation diagram over time, has been introduced as an intuitive visualization tool for assessing the vibratory states of oscillating systems. Here, this nonlinear dynamics approach is augmented with quantitative analysis parameters, and it is applied to clinical laryngeal high-speed video (HSV) endoscopic recordings of healthy and pathological phonations. HSV data from a total of 73 females diagnosed as healthy (n = 42), or with functional dysphonia (n = 15) or with unilateral vocal fold paralysis (n = 16), were quantitatively analyzed. Glottal area waveforms (GAW) and left and right hemi-GAWs (hGAW) were extracted from the HSV recordings. Based on Poincaré sections through phase space-embedded signals, two novel quantitative parameters were computed: the phasegram entropy (PE) and the phasegram complexity estimate (PCE), inspired by signal entropy and correlation dimension computation, respectively. Both PE and PCE assumed higher average values (suggesting more irregular vibrations) for the pathological as compared with the healthy participants, thus significantly discriminating healthy group from the paralysis group (P = 0.02 for both PE and PCE). Comparisons of individual PE or PCE data for the left and the right hGAW within each subject resulted in asymmetry measures for the regularity of vocal fold vibration. The PCE-based asymmetry measure revealed significant differences between the healthy group and the paralysis group (P = 0.03). Quantitative phasegram analysis of GAW and hGAW data is a promising tool for the automated processing of HSV data in research and in clinical practice. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ojima, Nobutoshi; Fujiwara, Izumi; Inoue, Yayoi; Tsumura, Norimichi; Nakaguchi, Toshiya; Iwata, Kayoko
2011-03-01
Uneven distribution of skin color is one of the biggest concerns about facial skin appearance. Recently several techniques to analyze skin color have been introduced by separating skin color information into chromophore components, such as melanin and hemoglobin. However, there are not many reports on quantitative analysis of unevenness of skin color by considering type of chromophore, clusters of different sizes and concentration of the each chromophore. We propose a new image analysis and simulation method based on chromophore analysis and spatial frequency analysis. This method is mainly composed of three techniques: independent component analysis (ICA) to extract hemoglobin and melanin chromophores from a single skin color image, an image pyramid technique which decomposes each chromophore into multi-resolution images, which can be used for identifying different sizes of clusters or spatial frequencies, and analysis of the histogram obtained from each multi-resolution image to extract unevenness parameters. As the application of the method, we also introduce an image processing technique to change unevenness of melanin component. As the result, the method showed high capabilities to analyze unevenness of each skin chromophore: 1) Vague unevenness on skin could be discriminated from noticeable pigmentation such as freckles or acne. 2) By analyzing the unevenness parameters obtained from each multi-resolution image for Japanese ladies, agerelated changes were observed in the parameters of middle spatial frequency. 3) An image processing system modulating the parameters was proposed to change unevenness of skin images along the axis of the obtained age-related change in real time.
Algorithm of pulmonary emphysema extraction using thoracic 3D CT images
NASA Astrophysics Data System (ADS)
Saita, Shinsuke; Kubo, Mitsuru; Kawata, Yoshiki; Niki, Noboru; Nakano, Yasutaka; Ohmatsu, Hironobu; Tominaga, Keigo; Eguchi, Kenji; Moriyama, Noriyuki
2007-03-01
Recently, due to aging and smoking, emphysema patients are increasing. The restoration of alveolus which was destroyed by emphysema is not possible, thus early detection of emphysema is desired. We describe a quantitative algorithm for extracting emphysematous lesions and quantitatively evaluate their distribution patterns using low dose thoracic 3-D CT images. The algorithm identified lung anatomies, and extracted low attenuation area (LAA) as emphysematous lesion candidates. Applying the algorithm to thoracic 3-D CT images and then by follow-up 3-D CT images, we demonstrate its potential effectiveness to assist radiologists and physicians to quantitatively evaluate the emphysematous lesions distribution and their evolution in time interval changes.
Algorithm of pulmonary emphysema extraction using low dose thoracic 3D CT images
NASA Astrophysics Data System (ADS)
Saita, S.; Kubo, M.; Kawata, Y.; Niki, N.; Nakano, Y.; Omatsu, H.; Tominaga, K.; Eguchi, K.; Moriyama, N.
2006-03-01
Recently, due to aging and smoking, emphysema patients are increasing. The restoration of alveolus which was destroyed by emphysema is not possible, thus early detection of emphysema is desired. We describe a quantitative algorithm for extracting emphysematous lesions and quantitatively evaluate their distribution patterns using low dose thoracic 3-D CT images. The algorithm identified lung anatomies, and extracted low attenuation area (LAA) as emphysematous lesion candidates. Applying the algorithm to 100 thoracic 3-D CT images and then by follow-up 3-D CT images, we demonstrate its potential effectiveness to assist radiologists and physicians to quantitatively evaluate the emphysematous lesions distribution and their evolution in time interval changes.
Kadoum, A M
1968-07-01
A simple, aqueous acetonitrile partition cleanup method for analyses of some common organophosphorus insecticide residues is described. The procedure described is for cleanup and quantitative recovery of parathion, methyl parathion, diazinon, malathion and thimet from different extracts. Those insecticides in the purified extracts of ground water, grain, soil, plant and animal tissues can be detected quantitatively by gas chromatography with an electron capture-detector at 0.01 ppm. Cleanup is satisfactory for paper and thin-layer chromatography for further identification of individual insecticides in the extracts.
QUANTITATIVE RADIO-CHEMICAL ANALYSIS-SOLVENT EXTRACTION OF MOLYBDENUM-99
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wish, L.
1961-09-12
A method was developed for the rapid quantitative separation of Mo/sup 99/ from fission product mixtures. It is based on the extraction of Mo into a solution of alpha -benzoin oxime in chloroform. The main contaminants are Zr, Nb, and 1. The first two are eliminated by couple with fluoride and the third by volatilization or solvent extraction. About 5% of the Te/sup 99/ daughter is extracted with its parent, and it is necessary to wait 48 hrs for equilibrium of fission product mixtures by this method and a standard radiochemical gravimetric procedure showed agreement within 1 to 2%. (auth)
Analysis of photographic X-ray images. [S-054 telescope on Skylab
NASA Technical Reports Server (NTRS)
Krieger, A. S.
1977-01-01
Some techniques used to extract quantitative data from the information contained in photographic images produced by grazing incidence soft X-ray optical systems are described. The discussion is focussed on the analysis of the data returned by the S-054 X-Ray Spectrographic Telescope Experiment on Skylab. The parameters of the instrument and the procedures used for its calibration are described. The technique used to convert photographic density to focal plane X-ray irradiance is outlined. The deconvolution of the telescope point response function from the image data is discussed. Methods of estimating the temperature, pressure, and number density of coronal plasmas are outlined.
Soft Listeria: actin-based propulsion of liquid drops.
Boukellal, Hakim; Campás, Otger; Joanny, Jean-François; Prost, Jacques; Sykes, Cécile
2004-06-01
We study the motion of oil drops propelled by actin polymerization in cell extracts. Drops deform and acquire a pearlike shape under the action of the elastic stresses exerted by the actin comet, a tail of cross-linked actin filaments. We solve this free boundary problem and calculate the drop shape taking into account the elasticity of the actin gel and the variation of the polymerization velocity with normal stress. The pressure balance on the liquid drop imposes a zero propulsive force if gradients in surface tension or internal pressure are not taken into account. Quantitative parameters of actin polymerization are obtained by fitting theory to experiment.
Photoacoustic resonance spectroscopy for biological tissue characterization
NASA Astrophysics Data System (ADS)
Gao, Fei; Feng, Xiaohua; Zheng, Yuanjin; Ohl, Claus-Dieter
2014-06-01
By "listening to photons," photoacoustics allows the probing of chromosomes in depth beyond the optical diffusion limit. Here we report the photoacoustic resonance effect induced by multiburst modulated laser illumination, which is theoretically modeled as a damped mass-string oscillator and a resistor-inductor-capacitor (RLC) circuit. Through sweeping the frequency of multiburst modulated laser, the photoacoustic resonance effect is observed experimentally on phantoms and porcine tissues. Experimental results demonstrate different spectra for each phantom and tissue sample to show significant potential for spectroscopic analysis, fusing optical absorption and mechanical vibration properties. Unique RLC circuit parameters are extracted to quantitatively characterize phantom and biological tissues.
Observation of the immune response of cells and tissue through multimodal label-free microscopy
NASA Astrophysics Data System (ADS)
Pavillon, Nicolas; Smith, Nicholas I.
2017-02-01
We present applications of a label-free approach to assess the immune response based on the combination of interferometric microscopy and Raman spectroscopy, which makes it possible to simultaneously acquire morphological and molecular information of live cells. We employ this approach to derive statistical models for predicting the activation state of macrophage cells based both on morphological parameters extracted from the high-throughput full-field quantitative phase imaging, and on the molecular content information acquired through Raman spectroscopy. We also employ a system for 3D imaging based on coherence gating, enabling specific targeting of the Raman channel to structures of interest within tissue.
NASA Astrophysics Data System (ADS)
Wang, Ximing; Kim, Bokkyu; Park, Ji Hoon; Wang, Erik; Forsyth, Sydney; Lim, Cody; Ravi, Ragini; Karibyan, Sarkis; Sanchez, Alexander; Liu, Brent
2017-03-01
Quantitative imaging biomarkers are used widely in clinical trials for tracking and evaluation of medical interventions. Previously, we have presented a web based informatics system utilizing quantitative imaging features for predicting outcomes in stroke rehabilitation clinical trials. The system integrates imaging features extraction tools and a web-based statistical analysis tool. The tools include a generalized linear mixed model(GLMM) that can investigate potential significance and correlation based on features extracted from clinical data and quantitative biomarkers. The imaging features extraction tools allow the user to collect imaging features and the GLMM module allows the user to select clinical data and imaging features such as stroke lesion characteristics from the database as regressors and regressands. This paper discusses the application scenario and evaluation results of the system in a stroke rehabilitation clinical trial. The system was utilized to manage clinical data and extract imaging biomarkers including stroke lesion volume, location and ventricle/brain ratio. The GLMM module was validated and the efficiency of data analysis was also evaluated.
Wu, Jingming; Lee, Hian Kee
2006-10-15
Injection port derivatization following ion-pair hollow fiber-protected liquid-phase microextraction (LPME) for the trace determination of acidic herbicides (2,4-dichlorobenzoic acid, 2,4-dichlorophenoxyacetic acid, 2-(2,4-dichlorophenoxy)propionic acid, 3,5-dichlorobenzoic acid, 2-(2,4,5-trichlorophenoxy)propionic acid) in aqueous samples by gas chromatography/mass spectrometry (GC/MS) was developed. Prior to GC injection port derivatization, acidic herbicides were converted into their ion-pair complexes with tetrabutylammonium chloride in aqueous samples and then extracted by 1-octanol impregnated in the hollow fiber. Upon injection, ion pairs of acidic herbicides were quantitatively derivatized to their butyl esters in the GC injection port. Thus, several parameters related to the derivatization process (i.e., injection temperature, purge-off time) were evaluated, and main parameters affecting the hollow fiber-protected LPME procedure such as extraction organic solvent, ion-pair reagent type, pH of aqueous medium, concentration of ion-pair reagent, sodium chloride concentration added to the aqueous medium, stirring speed, and extraction time profile, optimized. At the selected extraction and derivatization conditions, no matrix effects were observed. This method proved good repeatability (RSDs <12.3%, n = 6) and good linearity (r2 > or = 0.9939) for spiked deionized water samples for five analytes. The limits of detection were in the range of 0.51-13.7 ng x L(-1) (S/N =3) under GC/MS selected ion monitoring mode. The results demonstrated that injection port derivatization following ion-pair hollow fiber-protected LPME was a simple, rapid, and accurate method for the determination of trace acidic herbicides from aqueous samples. In addition, this method proved to be environmentally friendly since it completely avoided open derivatization with potentially hazardous reagents.
Basalo, Carlos; Mohn, Tobias; Hamburger, Matthias
2006-10-01
The extraction methods in selected monographs of the European and the Swiss Pharmacopoeia were compared to pressurized liquid extraction (PLE) with respect to the yield of constituents to be dosed in the quantitative assay for the respective herbal drugs. The study included five drugs, Belladonnae folium, Colae semen, Boldo folium, Tanaceti herba and Agni casti fructus. They were selected to cover different classes of compounds to be analyzed and different extraction methods to be used according to the monographs. Extraction protocols for PLE were optimized by varying the solvents and number of extraction cycles. In PLE, yields > 97 % of extractable analytes were typically achieved with two extraction cycles. For alkaloid-containing drugs, the addition of ammonia prior to extraction significantly increased the yield and reduced the number of extraction cycles required for exhaustive extraction. PLE was in all cases superior to the extraction protocol of the pharmacopoeia monographs (taken as 100 %), with differences ranging from 108 % in case of parthenolide in Tanaceti herba to 343 % in case of alkaloids in Boldo folium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhandari, Deepak; Kertesz, Vilmos; Van Berkel, Gary J
RATIONALE: Ascorbic acid (AA) and folic acid (FA) are water-soluble vitamins and are usually fortified in food and dietary supplements. For the safety of human health, proper intake of these vitamins is recommended. Improvement in the analysis time required for the quantitative determination of these vitamins in food and nutritional formulations is desired. METHODS: A simple and fast (~5 min) in-tube sample preparation was performed, independently for FA and AA, by mixing extraction solvent with a powdered sample aliquot followed by agitation, centrifugation, and filtration to recover an extract for analysis. Quantitative detection was achieved by flow-injection (1 L injectionmore » volume) electrospray ionization tandem mass spectrometry (ESI-MS/MS) in negative ion mode using the method of standard addition. RESULTS: Method of standard addition was employed for the quantitative estimation of each vitamin in a sample extract. At least 2 spiked and 1 non-spiked sample extract were injected in triplicate for each quantitative analysis. Given an injection-to-injection interval of approximately 2 min, about 18 min was required to complete the quantitative estimation of each vitamin. The concentration values obtained for the respective vitamins in the standard reference material (SRM) 3280 using this approach were within the statistical range of the certified values provided in the NIST Certificate of Analysis. The estimated limit of detections of FA and AA were 13 and 5.9 ng/g, respectively. CONCLUSIONS: Flow-injection ESI-MS/MS was successfully applied for the rapid quantitation of FA and AA in SRM 3280 multivitamin/multielement tablets.« less
Tao, Jianfei; Jiang, Peng; Peng, Chengcheng; Li, Min; Liu, Runhui; Zhang, Weidong
2016-07-15
To investigate the effect of Shexiang Baoxin Pill (SBP), a tranditional Chinese medicine, on the pharmacokinetic (PK) parameters of simvastatin in healthy volunteers' plasma, a quantitative method was developed using an Agilent G6410A rapid performance liquid chromatography (RPLC) coupled with triple quadrupole mass spectrometry system. The established method was rapid with high extraction recovery and successfully applied for the determination of simvastatin in plasma of 16 healthy volunteers. The results demonstrated that the MRT(0-∞), T1/2 and Tmax value of simvastatin were significantly decreased, while the AUC(0-t) and Cmax values of smivastatin were increased by SBP. The pharmacokinetic study demonstrated that the metabolism parameters of simvastatin could be affected by SBP and the potential drug-drug interaction should be noted in the future clinical practice. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Avoine, Amaury; Hong, Phan Ngoc; Frederich, Hugo; Frigerio, Jean-Marc; Coolen, Laurent; Schwob, Catherine; Nga, Pham Thu; Gallas, Bruno; Maître, Agnès
2012-10-01
Self-assembled artificial opals (in particular silica opals) constitute a model system to study the optical properties of three-dimensional photonic crystals. The silica optical index is a key parameter to correctly describe an opal but is difficult to measure at the submicrometer scale and usually treated as a free parameter. Here, we propose a method to extract the silica index from the opal reflection spectra and we validate it by comparison with two independent methods based on infrared measurements. We show that this index gives a correct description of the opal reflection spectra, either by a band structure or by a Bragg approximation. In particular, we are able to provide explanations in quantitative agreement with the measurements for two features : the observation of a second reflection peak in specular direction, and the quasicollapse of the p-polarized main reflection peak at a typical angle of 54∘.
Error Analysis and Validation for Insar Height Measurement Induced by Slant Range
NASA Astrophysics Data System (ADS)
Zhang, X.; Li, T.; Fan, W.; Geng, X.
2018-04-01
InSAR technique is an important method for large area DEM extraction. Several factors have significant influence on the accuracy of height measurement. In this research, the effect of slant range measurement for InSAR height measurement was analysis and discussed. Based on the theory of InSAR height measurement, the error propagation model was derived assuming no coupling among different factors, which directly characterise the relationship between slant range error and height measurement error. Then the theoretical-based analysis in combination with TanDEM-X parameters was implemented to quantitatively evaluate the influence of slant range error to height measurement. In addition, the simulation validation of InSAR error model induced by slant range was performed on the basis of SRTM DEM and TanDEM-X parameters. The spatial distribution characteristics and error propagation rule of InSAR height measurement were further discussed and evaluated.
Using particle tracking to measure flow instabilities in an undergraduate laboratory experiment
NASA Astrophysics Data System (ADS)
Kelley, Douglas H.; Ouellette, Nicholas T.
2011-03-01
Much of the drama and complexity of fluid flow occurs because its governing equations lack unique solutions. The observed behavior depends on the stability of the multitude of solutions, which can change with the experimental parameters. Instabilities cause sudden global shifts in behavior. We have developed a low-cost experiment to study a classical fluid instability. By using an electromagnetic technique, students drive Kolmogorov flow in a thin fluid layer and measure it quantitatively with a webcam. They extract positions and velocities from movies of the flow using Lagrangian particle tracking and compare their measurements to several theoretical predictions, including the effect of the drive current, the spatial structure of the flow, and the parameters at which instability occurs. The experiment can be tailored to undergraduates at any level or to graduate students by appropriate emphasis on the physical phenomena and the sophisticated mathematics that govern them.
Fuzzy similarity measures for ultrasound tissue characterization
NASA Astrophysics Data System (ADS)
Emara, Salem M.; Badawi, Ahmed M.; Youssef, Abou-Bakr M.
1995-03-01
Computerized ultrasound tissue characterization has become an objective means for diagnosis of diseases. It is difficult to differentiate diffuse liver diseases, namely cirrhotic and fatty liver from a normal one, by visual inspection from the ultrasound images. The visual criteria for differentiating diffused diseases is rather confusing and highly dependent upon the sonographer's experience. The need for computerized tissue characterization is thus justified to quantitatively assist the sonographer for accurate differentiation and to minimize the degree of risk from erroneous interpretation. In this paper we used the fuzzy similarity measure as an approximate reasoning technique to find the maximum degree of matching between an unknown case defined by a feature vector and a family of prototypes (knowledge base). The feature vector used for the matching process contains 8 quantitative parameters (textural, acoustical, and speckle parameters) extracted from the ultrasound image. The steps done to match an unknown case with the family of prototypes (cirr, fatty, normal) are: Choosing the membership functions for each parameter, then obtaining the fuzzification matrix for the unknown case and the family of prototypes, then by the linguistic evaluation of two fuzzy quantities we obtain the similarity matrix, then by a simple aggregation method and the fuzzy integrals we obtain the degree of similarity. Finally, we find that the similarity measure results are comparable to the neural network classification techniques and it can be used in medical diagnosis to determine the pathology of the liver and to monitor the extent of the disease.
Garcia, Ernest V; Taylor, Andrew; Folks, Russell; Manatunga, Daya; Halkar, Raghuveer; Savir-Baruch, Bital; Dubovsky, Eva
2012-09-01
Decision support systems for imaging analysis and interpretation are rapidly being developed and will have an increasing impact on the practice of medicine. RENEX is a renal expert system to assist physicians evaluate suspected obstruction in patients undergoing mercaptoacetyltriglycine (MAG3) renography. RENEX uses quantitative parameters extracted from the dynamic renal scan data using QuantEM™II and heuristic rules in the form of a knowledge base gleaned from experts to determine if a kidney is obstructed; however, RENEX does not have access to and could not consider the clinical information available to diagnosticians interpreting these studies. We designed and implemented a methodology to incorporate clinical information into RENEX, implemented motion detection and evaluated this new comprehensive system (iRENEX) in a pilot group of 51 renal patients. To reach a conclusion as to whether a kidney is obstructed, 56 new clinical rules were added to the previously reported 60 rules used to interpret quantitative MAG3 parameters. All the clinical rules were implemented after iRENEX reached a conclusion on obstruction based on the quantitative MAG3 parameters, and the evidence of obstruction was then modified by the new clinical rules. iRENEX consisted of a library to translate parameter values to certainty factors, a knowledge base with 116 heuristic interpretation rules, a forward chaining inference engine to determine obstruction and a justification engine. A clinical database was developed containing patient histories and imaging report data obtained from the hospital information system associated with the pertinent MAG3 studies. The system was fine-tuned and tested using a pilot group of 51 patients (21 men, mean age 58.2 ± 17.1 years, 100 kidneys) deemed by an expert panel to have 61 unobstructed and 39 obstructed kidneys. iRENEX, using only quantitative MAG3 data agreed with the expert panel in 87 % (34/39) of obstructed and 90 % (55/61) of unobstructed kidneys. iRENEX, using both quantitative and clinical data agreed with the expert panel in 95 % (37/39) of obstructed and 92 % (56/61) of unobstructed kidneys. The clinical information significantly (p < 0.001) increased iRENEX certainty in detecting obstruction over using the quantitative data alone. Our renal expert system for detecting renal obstruction has been substantially expanded to incorporate the clinical information available to physicians as well as advanced quality control features and was shown to interpret renal studies in a pilot group at a standardized expert level. These encouraging results warrant a prospective study in a large population of patients with and without renal obstruction to establish the diagnostic performance of iRENEX.
Li, Xianjiang; Xing, Jiawei; Chang, Cuilan; Wang, Xin; Bai, Yu; Yan, Xiuping; Liu, Huwei
2014-06-01
MIL-101(Cr) is an excellent metal-organic framework with high surface area and nanoscale cavities, making it promising in solid-phase extraction. Herein, we used MIL-101(Cr) as a solid-phase extraction packing material combined with fast detection of direct analysis in real time mass spectrometry (DART-MS) for the analysis of triazine herbicides. After systematic optimization of the operation parameters, including the gas temperature of DART, the moving speed of the 1D platform, solvent for desorption, amount of MIL-101(Cr) extraction time, eluent volume and salt concentration, this method can realize the simultaneous detection of five kinds of triazine herbicides. The limits of detection were 0.1∼0.2 ng/mL and the linear ranges covered more than two orders of magnitude with the quantitation limits of 0.5∼1 ng/mL. Moreover, the developed method has been applied for the analysis of lake water samples and the recoveries for spiked analytes were in the range of 85∼110%. These results showed that solid-phase extraction with metal-organic frameworks is an efficient sample preparation approach for DART-MS analysis and could find more applications in environmental analysis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kamble, Bhagyashree; Gupta, Ankur; Patil, Dada; Khatal, Laxman; Janrao, Shirish; Moothedath, Ismail; Duraiswamy, Basavan
2013-05-01
A sensitive and rapid high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method has been developed and validated for the determination of gymnemagenin (GMG), a triterpene sapogenin from Gymnema sylvestre, in rat plasma using withaferin A as the internal standard (IS). Plasma samples were simply extracted using liquid-liquid extraction with tetra-butyl methyl ether. Chromatographic separation was performed on Luna C(18) column using gradient elution of water and methanol (with 0.1% formic acid and 0.3% ammonia) at a flow rate of 0.8 mL/min. GMG and IS were eluted at 4.64 and 4.36 min, ionized in negative and positive mode, respectively, and quantitatively estimated using multiple reaction monitoring (MRM) mode. Two MRM transitions were selected at m/z 505.70 → 455.5 and m/z 471.50 → 281.3 for GMG and IS, respectively. The assay was linear over the concentration range of 5.280-300.920 ng/mL. The mean plasma extraction recoveries for GMG and IS were found to be 80.92 ± 8.70 and 55.63 ± 0.76%, respectively. The method was successfully applied for the determination of pharmacokinetic parameters of GMG after oral administration of G. sylvestre extract. Copyright © 2012 John Wiley & Sons, Ltd.
Wang, J; Ashley, K; Marlow, D; England, E C; Carlton, G
1999-03-01
A simple, fast, sensitive, and economical field method was developed and evaluated for the determination of hexavalent chromium (CrVI) in environmental and workplace air samples. By means of ultrasonic extraction in combination with a strong anion-exchange solid-phase extraction (SAE-SPE) technique, the filtration, isolation, and determination of CrVI in the presence of trivalent chromium (CrIII) and potential interferents was achieved. The method entails (1) ultrasonication in basic ammonium buffer solution to extract CrVI from environmental matrixes; (2) SAE-SPE to separate CrVI from CrIII and interferences; (3) elution/acidification of the eluate; (4) complexation of chromium with 1,5-diphenylcarbazide; and (5) spectrophotometric determination of the colored chromium-diphenylcarbazone complex. Several critical parameters were optimized in order to effect the extraction of both soluble (K2CrO4) and insoluble (PbCrO4) forms of CrVI without inducing CrIII oxidation or CrVI reduction. The method allowed for the dissolution and purification of CrVI from environmental and workplace air sample matrixes for up to 24 samples simultaneously in less than 90 min (including ultrasonication). The results demonstrated that the method was simple, fast, quantitative, and sufficiently sensitive for the determination of occupational exposures of CrVI. The method is applicable for on-site monitoring of CrVI in environmental and industrial hygiene samples.
Insight into the CH3NH3PbI3/C interface in hole-conductor-free mesoscopic perovskite solar cells.
Li, Jiangwei; Niu, Guangda; Li, Wenzhe; Cao, Kun; Wang, Mingkui; Wang, Liduo
2016-08-07
Perovskite solar cells (PSCs) with hole-conductor-free mesoscopic architecture have shown superb stability and great potential in practical application. The printable carbon counter electrodes take full responsibility of extracting holes from the active CH3NH3PbI3 absorbers. However, an in depth study of the CH3NH3PbI3/C interface properties, such as the structural formation process and the effect of interfacial conditions on hole extraction, is still lacking. Herein, we present, for the first time, an insight into the spatial confinement induced CH3NH3PbI3/C interface formation by in situ photoluminescence observations during the crystallization process of CH3NH3PbI3. The derived reaction kinetics allows a quantitative description of the perovskite formation process. In addition, we found that the interfacial contact between carbon and perovskite was dominant for hole extraction efficiency and associated with the photovoltaic parameter of short circuit current density (JSC). Consequently, we conducted a solvent vapor assisted process of PbI2 diffusion to carefully control the CH3NH3PbI3/C interface with less unreacted PbI2 barrier. The improvement of interface conditions thereby contributes to a high hole extraction proved by the charge extraction resistance and PL lifetime change, resulting in the increased JSC valve.
Sun, Shihao; Wang, Hui; Xie, Jianping; Su, Yue
2016-01-01
Jujube extract is commonly used as a food additive and flavoring. The sensory properties of the extract, especially sweetness, are a critical factor determining the product quality and therefore affecting consumer acceptability. Small molecular carbohydrates make major contribution to the sweetness of the jujube extract, and their types and contents in the extract have direct influence on quality of the product. So, an appropriate qualitative and quantitative method for determination of the carbohydrates is vitally important for quality control of the product. High performance liquid chromatography-evaporative light scattering detection (HPLC-ELSD), liquid chromatography-electronic spay ionization tandem mass spectrometry (LC-ESI-MS/MS), and gas chromatography-mass spectrometry (GC-MS) methods have been developed and applied to determining small molecular carbohydrates in jujube extract, respectively. Eight sugars and alditols were identified from the extract, including rhamnose, xylitol, arabitol, fructose, glucose, inositol, sucrose, and maltose. Comparisons were carried out to investigate the performance of the methods. Although the methods have been found to perform satisfactorily, only three sugars (fructose, glucose and inositol) could be detected by all these methods. Meanwhile, a similar quantitative result for the three sugars can be obtained by the methods. Eight sugars and alditols in the jujube extract were determined by HPLC-ELSD, LC-ESI-MS/MS and GC-MS, respectively. The LC-ELSD method and the LC-ESI-MS/MS method with good precision and accuracy were suitable for quantitative analysis of carbohydrates in jujube extract; although the performance of the GC-MS method for quantitative analysis was inferior to the other methods, it has a wider scope in qualitative analysis. A multi-analysis technique should be adopted in order to obtain complete constituents of about the carbohydrates in jujube extract, and the methods should be employed according to the purpose of analysis.
Comparison of results from simple expressions for MOSFET parameter extraction
NASA Technical Reports Server (NTRS)
Buehler, M. G.; Lin, Y.-S.
1988-01-01
In this paper results are compared from a parameter extraction procedure applied to the linear, saturation, and subthreshold regions for enhancement-mode MOSFETs fabricated in a 3-micron CMOS process. The results indicate that the extracted parameters differ significantly depending on the extraction algorithm and the distribution of I-V data points. It was observed that KP values vary by 30 percent, VT values differ by 50 mV, and Delta L values differ by 1 micron. Thus for acceptance of wafers from foundries and for modeling purposes, the extraction method and data point distribution must be specified. In this paper measurement and extraction procedures that will allow a consistent evaluation of measured parameters are discussed.
Su, Rihui; Ruan, Guihua; Chen, Zhengyi; Du, Fuyou; Li, Jianping
2015-12-01
A new class of solid-phase extraction column prepared with grafted mercapto-silica polymerized high internal phase emulsion particles was used for the preconcentration of trace lead. First, mercapto-silica polymerized high internal phase emulsion particles were synthesized by using high internal phase emulsion polymerization and carefully assembled in a polyethylene syringe column. The influences of various parameters including adsorption pH value, adsorption and desorption solvents, flow rate of the adsorption and desorption procedure were optimized, respectively, and the suitable uploading sample volumes, adsorption capacity, and reusability of solid phase extraction column were also investigated. Under the optimum conditions, Pb(2+) could be preconcentrated quantitatively over a wide pH range (2.0-5.0). In the presence of foreign ions, such as Na(+) , K(+) , Ca(2+) , Zn(2+) , Mg(2+) , Cu(2+) , Fe(2+) , Cd(2+) , Cl(-) and NO3 (-) , Pb(2+) could be recovered successfully. The prepared solid-phase extraction column performed with high stability and desirable durability, which allowed more than 100 replicate extractions without measurable changes of performance. The feasibility of the developed method was further validated by the extraction of Pb(2+) in rice samples. At three spiked levels of 40.0, 200 and 800 μg/kg, the average recoveries for Pb(2+) in rice samples ranged from 87.3 to 105.2%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Iram, Wajiha; Anjum, Tehmina; Iqbal, Mazhar; Ghaffar, Abdul; Abbas, Mateen
2015-01-01
This study explores the detoxification potential of Corymbia citriodora plant extracts against aflatoxin B1 and B2 (AFB1; 100 μg L−1 and AFB2; 50 μg L−1) in In vitro and In vivo assays. Detoxification was qualitatively and quantitatively analyzed by TLC and HPLC, respectively. The study was carried out by using different parameters of optimal temperature, pH and incubation time period. Results indicated that C. citriodora leaf extract(s) more effectively degrade AFB1 and AFB2 i.e. 95.21% and 92.95% respectively than C. citriodora branch extract, under optimized conditions. The structural elucidation of degraded toxin products was done by LCMS/MS analysis. Ten degraded products of AFB1 and AFB2 and their fragmentation pathways were proposed based on molecular formulas and MS/MS spectra. Toxicity of these degraded products was significantly reduced as compared to that of parent compounds because of the removal of double bond in the terminal furan ring. The biological toxicity of degraded toxin was further analyzed by brine shrimps bioassay, which showed that only 17.5% mortality in larvae was recorded as compared to untreated toxin where 92.5% mortality was observed after 96hr of incubation. Therefore, our finding suggests that C. citriodora leaf extract can be used as an effective tool for the detoxification of aflatoxins. PMID:26423838
Liu, Haibo; Gan, Ning; Chen, Yinji; Ding, Qingqing; Huang, Jie; Lin, Saichai; Cao, Yuting; Li, Tianhua
2016-09-01
A quick and specific pretreatment method based on a series of extraction clean-up disks, consisting of molecularly imprinted polymer monoliths and C18 adsorbent, was developed for the specific enrichment of salbutamol and clenbuterol residues in food. The molecularly imprinted monolithic polymer disk was synthesized using salbutamol as a template through a one-step synthesis process. It can simultaneously and specifically recognize salbutamol and clenbuterol. The monolithic polymer disk and series of C18 disks were assembled with a syringe to form a set of tailor-made devices for the extraction of target molecules. In a single run, salbutamol and clenbuterol can be specifically extracted, cleaned, and eluted by methanol/acetic acid/H2 O. The target molecules, after a silylation derivatization reaction were detected by gas chromatography-mass spectrometry. The parameters including solvent desorption, sample pH, and the cycles of reloading were investigated and discussed. Under the optimized extraction and clean-up conditions, the limits of detection and quantitation were determined as 0.018-0.022 and 0.042-0.049 ng/g for salbutamol and clenbuterol, respectively. The assay described was convenient, rapid, and specific; thereby potentially efficient in the high-throughput analysis of β2 -agonists residues in real food samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Quantitative Probes of Electron-Phonon Coupling in an Organic Charge-Transfer Material
NASA Astrophysics Data System (ADS)
Rury, Aaron; Sorenson, Shayne; Driscoll, Eric; Dawlaty, Jahan
While organic charge transfer (CT) materials may provide alternatives to inorganic materials in electronics and photonics applications, properties central to applications remain understudied in these organic materials. Specifically, electron-phonon coupling plays a pivotal role in electronic applications yet this coupling in CT materials remains difficult to directly characterize. To better understand the suitability of organic CT materials for electronic applications, we have devised an experimental technique that can directly assess electron-phonon coupling in a model organic CT material. Upon non-resonant interaction with an ultrafast laser pulse, we show that coherent excitation of Raman-active lattice vibrations of quinhydrone, a 1:1 co-crystal of the hydroquinone and p-benzoquinone, modulates the energies of electronic transitions probed by a white light pulse. Using a well-established theoretical framework of vibrational quantum beat spectra across the probe bandwidth, we quantitatively extract the parameters describing these electronic transitions to characterize electron-phonon coupling in this material. In conjunction with temperature-dependent resonance Raman measurements, we assess the hypothesis that several sharp transitions in the near-IR correspond to previously unknown excitonic states of this material. These results and their interpretation set the foundation for further elucidation of the one of the most important parameters in the application of organic charge-transfer materials to electronics and photonics.
Sample extraction and injection with a microscale preconcentrator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Alex Lockwood; Chan, Helena Kai Lun
2007-09-01
This report details the development of a microfabricated preconcentrator that functions as a fully integrated chemical extractor-injector for a microscale gas chromatograph (GC). The device enables parts-per-billion detection and quantitative analysis of volatile organic compounds (VOCs) in indoor air with size and power advantages over macro-scale systems. The 44 mm{sup 3} preconcentrator extracts VOCs using highly adsorptive, granular forms of graphitized carbon black and carbon molecular sieves. The micron-sized silicon cavities have integrated heating and temperature sensing allowing low power, yet rapid heating to thermally desorb the collected VOCs (GC injection). The keys to device construction are a new adsorbent-solventmore » filling technique and solvent-tolerant wafer-level silicon-gold eutectic bonding technology. The product is the first granular adsorbent preconcentrator integrated at the wafer level. Other advantages include exhaustive VOC extraction and injection peak widths an order of magnitude narrower than predecessor prototypes. A mass transfer model, the first for any microscale preconcentrator, is developed to describe both adsorption and desorption behaviors. The physically intuitive model uses implicit and explicit finite differences to numerically solve the required partial differential equations. The model is applied to the adsorption and desorption of decane at various concentrations to extract Langmuir adsorption isotherm parameters from effluent curve measurements where properties are unknown a priori.« less
Wang, Tao; Ansai, Toshihiro; Lee, Seung-Woo
2017-01-15
ZSM-5 zeolite-loaded poly(dimethylsiloxane) (PDMS) hybrid thin films were demonstrated for efficient thin-film microextraction (TFME) coupled with gas chromatography-mass spectrometry for analyzing organic volatiles in water. The extraction efficiency for a series of aliphatic alcohols and two aromatic compounds was significantly improved owing to the presence of ZSM-5 zeolites. The extraction efficiency of the hybrid films was increased in proportion to the content of ZSM-5 in the PDMS film, with 20wt% of ZSM-5 showing the best results. The 20wt% ZSM-5/PDMS hybrid film exhibited higher volatile organic content extraction compared with the single-component PDMS film or PDMS hybrid films containing other types of zeolite (e.g., SAPO-34). Limits of detection and limits of quantitation for individual analytes were in the range of 0.0034-0.049ppb and of 0.010-0.15 ppb, respectively. The effects of experimental parameters such as extraction time and temperature were optimized, and the molecular dispersion of the zeolites in/on the hybrid film matrix was confirmed with scanning electron microscopy and atomic force microscopy. Furthermore, the optimized hybrid film was preliminarily tested for the analysis of organic volatiles contained in commercially available soft drinks. Copyright © 2016 Elsevier B.V. All rights reserved.
Gao, Leihong; Zou, Jing; Liu, Haihong; Zeng, Jingbin; Wang, Yiru; Chen, Xi
2013-04-01
A method for the quantitative determination of bisphenol A in thermal printing paper was developed and validated. Bisphenol A was extracted from the paper samples using 2% NaOH solution, then the extracted analyte was enriched using single-drop microextraction followed by HPLC analysis. Several parameters relating to the single-drop microextraction efficiency including extraction solvent, extraction temperature and time, stirring rate, and pH of donor phase were studied and optimized. Spiked recovery of bisphenol A at 20 and 5 mg/g was found to be 95.8 and 108%, and the method detection limit and method quantification limit was 0.03 and 0.01 mg/g, respectively. Under the optimized conditions, the proposed method was applied to the determination of bisphenol A in seven types of thermal printing paper samples, and the concentration of bisphenol A was found in the range of 0.53-20.9 mg/g. The considerably minimum usage of organic solvents (5 μL 1-octanol) and high enrichment factor (189-197) in the sample preparation are the two highlighted advantages in comparison with previously published works. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Warriner, David R; Brown, Alistair G; Varma, Susheel; Sheridan, Paul J; Lawford, Patricia; Hose, David R; Al-Mohammad, Abdallah; Shi, Yubing
2014-01-01
The American Heart Association (AHA)/American College of Cardiology (ACC) guidelines for the classification of heart failure (HF) are descriptive but lack precise and objective measures which would assist in categorising such patients. Our aim was two fold, firstly to demonstrate quantitatively the progression of HF through each stage using a meta-analysis of existing left ventricular (LV) pressure-volume (PV) loop data and secondly use the LV PV loop data to create stage specific HF models. A literature search yielded 31 papers with PV data, representing over 200 patients in different stages of HF. The raw pressure and volume data were extracted from the papers using a digitising software package and the means were calculated. The data demonstrated that, as HF progressed, stroke volume (SV), ejection fraction (EF%) decreased while LV volumes increased. A 2-element lumped parameter model was employed to model the mean loops and the error was calculated between the loops, demonstrating close fit between the loops. The only parameter that was consistently and statistically different across all the stages was the elastance (Emax). For the first time, the authors have created a visual and quantitative representation of the AHA/ACC stages of LVSD-HF, from normal to end-stage. The study demonstrates that robust, load-independent and reproducible parameters, such as elastance, can be used to categorise and model HF, complementing the existing classification. The modelled PV loops establish previously unknown physiological parameters for each AHA/ACC stage of LVSD-HF, such as LV elastance and highlight that it this parameter alone, in lumped parameter models, that determines the severity of HF. Such information will enable cardiovascular modellers with an interest in HF, to create more accurate models of the heart as it fails.
Chen, Liang-Jin; Zhu, Mao-Xu; Yang, Gui-Peng; Huang, Xiang-Li
2013-01-01
Reactive Fe(III) oxides in gravity-core sediments collected from the East China Sea inner shelf were quantified by using three selective extractions (acidic hydroxylamine, acidic oxalate, bicarbonate-citrate buffered sodium dithionite). Also the reactivity of Fe(III) oxides in the sediments was characterized by kinetic dissolution using ascorbic acid as reductant at pH 3.0 and 7.5 in combination with the reactive continuum model. Three parameters derived from the kinetic method: m 0 (theoretical initial amount of ascorbate-reducible Fe(III) oxides), k' (rate constant) and γ (heterogeneity of reactivity), enable a quantitative characterization of Fe(III) oxide reactivity in a standardized way. Amorphous Fe(III) oxides quantified by acidic hydroxylamine extraction were quickly consumed in the uppermost layer during early diagenesis but were not depleted over the upper 100 cm depth. The total amounts of amorphous and poorly crystalline Fe(III) oxides are highly available for efficient buffering of dissolved sulfide. As indicated by the m 0, k' and γ, the surface sediments always have the maximum content, reactivity and heterogeneity of reactive Fe(III) oxides, while the three parameters simultaneously downcore decrease, much more quickly in the upper layer than at depth. Albeit being within a small range (within one order of magnitude) of the initial rates among sediments at different depths, incongruent dissolution could result in huge discrepancies of the later dissolution rates due to differentiating heterogeneity, which cannot be revealed by selective extraction. A strong linear correlation of the m 0 at pH 3.0 with the dithionite-extractable Fe(III) suggests that the m 0 may represent Fe(III) oxide assemblages spanning amorphous and crystalline Fe(III) oxides. Maximum microbially available Fe(III) predicted by the m 0 at pH 7.5 may include both amorphous and a fraction of other less reactive Fe(III) phases.
Chen, Liang-Jin; Zhu, Mao-Xu; Yang, Gui-Peng; Huang, Xiang-Li
2013-01-01
Reactive Fe(III) oxides in gravity-core sediments collected from the East China Sea inner shelf were quantified by using three selective extractions (acidic hydroxylamine, acidic oxalate, bicarbonate-citrate buffered sodium dithionite). Also the reactivity of Fe(III) oxides in the sediments was characterized by kinetic dissolution using ascorbic acid as reductant at pH 3.0 and 7.5 in combination with the reactive continuum model. Three parameters derived from the kinetic method: m 0 (theoretical initial amount of ascorbate-reducible Fe(III) oxides), k′ (rate constant) and γ (heterogeneity of reactivity), enable a quantitative characterization of Fe(III) oxide reactivity in a standardized way. Amorphous Fe(III) oxides quantified by acidic hydroxylamine extraction were quickly consumed in the uppermost layer during early diagenesis but were not depleted over the upper 100 cm depth. The total amounts of amorphous and poorly crystalline Fe(III) oxides are highly available for efficient buffering of dissolved sulfide. As indicated by the m 0, k′ and γ, the surface sediments always have the maximum content, reactivity and heterogeneity of reactive Fe(III) oxides, while the three parameters simultaneously downcore decrease, much more quickly in the upper layer than at depth. Albeit being within a small range (within one order of magnitude) of the initial rates among sediments at different depths, incongruent dissolution could result in huge discrepancies of the later dissolution rates due to differentiating heterogeneity, which cannot be revealed by selective extraction. A strong linear correlation of the m 0 at pH 3.0 with the dithionite-extractable Fe(III) suggests that the m 0 may represent Fe(III) oxide assemblages spanning amorphous and crystalline Fe(III) oxides. Maximum microbially available Fe(III) predicted by the m 0 at pH 7.5 may include both amorphous and a fraction of other less reactive Fe(III) phases. PMID:24260377
Espresso coffee foam delays cooling of the liquid phase.
Arii, Yasuhiro; Nishizawa, Kaho
2017-04-01
Espresso coffee foam, called crema, is known to be a marker of the quality of espresso coffee extraction. However, the role of foam in coffee temperature has not been quantitatively clarified. In this study, we used an automatic machine for espresso coffee extraction. We evaluated whether the foam prepared using the machine was suitable for foam analysis. After extraction, the percentage and consistency of the foam were measured using various techniques, and changes in the foam volume were tracked over time. Our extraction method, therefore, allowed consistent preparation of high-quality foam. We also quantitatively determined that the foam phase slowed cooling of the liquid phase after extraction. High-quality foam plays an important role in delaying the cooling of espresso coffee.
Løhre, Camilla; Vik Halleraker, Hilde; Barth, Tanja
2017-01-01
The interest and on-going research on utilisation of lignin as feedstock for production of renewable and sustainable aromatics is expanding and shows great potential. This study investigates the applicability of semi-continuously organosolv extracted lignin in Lignin-to-Liquid (LtL) solvolysis, using formic acid as hydrogen donor and water as solvent under high temperature–high pressure (HTHP) conditions. The high purity of the organosolv lignin provides high conversion yields at up to 94% based on lignin mass input. The formic acid input is a dominating parameter in lignin conversion. Carbon balance calculations of LtL-solvolysis experiments also indicate that formic acid can give a net carbon contribution to the bio-oils, in addition to its property as hydrogenation agent. Compound specific quantification of the ten most abundant components in the LtL-oils describe up to 10% of the bio-oil composition, and reaction temperature is shown to be the dominating parameter for the structures present. The structural and quantitative results from this study identify components of considerable value in the LtL-oil, and support the position of this oil as a potentially important source of building blocks for the chemical and pharmaceutical industry. PMID:28124994
Extracting physical quantities from BES data
NASA Astrophysics Data System (ADS)
Fox, Michael; Field, Anthony; Schekochihin, Alexander; van Wyk, Ferdinand; MAST Team
2015-11-01
We propose a method to extract the underlying physical properties of turbulence from measurements, thereby facilitating quantitative comparisons between theory and experiment. Beam Emission Spectroscopy (BES) diagnostics record fluctuating intensity time series, which are related to the density field in the plasma through Point-Spread Functions (PSFs). Assuming a suitable form for the correlation function of the underlying turbulence, analytical expressions are derived that relate the correlation parameters of the intensity field: the radial and poloidal correlation lengths and wavenumbers, the correlation time and the fluctuation amplitude, to the equivalent correlation properties of the density field. In many cases, the modification caused by the PSFs is substantial enough to change conclusions about physics. Our method is tested by applying PSFs to the ``real'' density field, generated by non-linear gyrokinetic simulations of MAST, to create synthetic turbulence data, from which the method successfully recovers the correlation function of the ``real'' density field. This method is applied to BES data from MAST to determine the scaling of the 2D structure of the ion-scale turbulence with equilibrium parameters, including the ExB flow shear. Work funded by the Euratom research and training programme 2014-2018 under grant agreement No 633053 and from the RCUK Energy Programme [grant number EP/I501045].
Direct identification of predator-prey dynamics in gyrokinetic simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, Sumire, E-mail: sumire.kobayashi@lpp.polytechnique.fr; Gürcan, Özgür D; Diamond, Patrick H.
2015-09-15
The interaction between spontaneously formed zonal flows and small-scale turbulence in nonlinear gyrokinetic simulations is explored in a shearless closed field line geometry. It is found that when clear limit cycle oscillations prevail, the observed turbulent dynamics can be quantitatively captured by a simple Lotka-Volterra type predator-prey model. Fitting the time traces of full gyrokinetic simulations by such a reduced model allows extraction of the model coefficients. Scanning physical plasma parameters, such as collisionality and density gradient, it was observed that the effective growth rates of turbulence (i.e., the prey) remain roughly constant, in spite of the higher and varyingmore » level of primary mode linear growth rates. The effective growth rate that was extracted corresponds roughly to the zonal-flow-modified primary mode growth rate. It was also observed that the effective damping of zonal flows (i.e., the predator) in the parameter range, where clear predator-prey dynamics is observed, (i.e., near marginal stability) agrees with the collisional damping expected in these simulations. This implies that the Kelvin-Helmholtz-like instability may be negligible in this range. The results imply that when the tertiary instability plays a role, the dynamics becomes more complex than a simple Lotka-Volterra predator prey.« less
Ramus, Claire; Hovasse, Agnès; Marcellin, Marlène; Hesse, Anne-Marie; Mouton-Barbosa, Emmanuelle; Bouyssié, David; Vaca, Sebastian; Carapito, Christine; Chaoui, Karima; Bruley, Christophe; Garin, Jérôme; Cianférani, Sarah; Ferro, Myriam; Van Dorssaeler, Alain; Burlet-Schiltz, Odile; Schaeffer, Christine; Couté, Yohann; Gonzalez de Peredo, Anne
2016-01-30
Proteomic workflows based on nanoLC-MS/MS data-dependent-acquisition analysis have progressed tremendously in recent years. High-resolution and fast sequencing instruments have enabled the use of label-free quantitative methods, based either on spectral counting or on MS signal analysis, which appear as an attractive way to analyze differential protein expression in complex biological samples. However, the computational processing of the data for label-free quantification still remains a challenge. Here, we used a proteomic standard composed of an equimolar mixture of 48 human proteins (Sigma UPS1) spiked at different concentrations into a background of yeast cell lysate to benchmark several label-free quantitative workflows, involving different software packages developed in recent years. This experimental design allowed to finely assess their performances in terms of sensitivity and false discovery rate, by measuring the number of true and false-positive (respectively UPS1 or yeast background proteins found as differential). The spiked standard dataset has been deposited to the ProteomeXchange repository with the identifier PXD001819 and can be used to benchmark other label-free workflows, adjust software parameter settings, improve algorithms for extraction of the quantitative metrics from raw MS data, or evaluate downstream statistical methods. Bioinformatic pipelines for label-free quantitative analysis must be objectively evaluated in their ability to detect variant proteins with good sensitivity and low false discovery rate in large-scale proteomic studies. This can be done through the use of complex spiked samples, for which the "ground truth" of variant proteins is known, allowing a statistical evaluation of the performances of the data processing workflow. We provide here such a controlled standard dataset and used it to evaluate the performances of several label-free bioinformatics tools (including MaxQuant, Skyline, MFPaQ, IRMa-hEIDI and Scaffold) in different workflows, for detection of variant proteins with different absolute expression levels and fold change values. The dataset presented here can be useful for tuning software tool parameters, and also testing new algorithms for label-free quantitative analysis, or for evaluation of downstream statistical methods. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fan, Li; Lin, Changhu; Duan, Wenjuan; Wang, Xiao; Liu, Jianhua; Liu, Feng
2015-01-01
An ultrahigh pressure extraction (UPE)-high performance liquid chromatography (HPLC)/diode array detector (DAD) method was established to evaluate the quality of Lonicera japonica Thunb. Ten active components, including neochlorogenic acid, chlorogenic acid, 4-dicaffeoylquinic acid, caffeic acid, rutin, luteoloside, isochlorogenic acid B, isochlorogenic acid A, isochlorogenic acid C, and quercetin, were qualitatively evaluated and quantitatively determined. Scanning electron microscope images elucidated the bud surface microstructure and extraction mechanism. The optimal extraction conditions of the UPE were 60% methanol solution, 400 MPa of extraction pressure, 3 min of extraction time, and 1:30 (g/mL) solid:liquid ratio. Under the optimized conditions, the total extraction yield of 10 active components was 57.62 mg/g. All the components showed good linearity (r2 ≥ 0.9994) and recoveries. This method was successfully applied to quantify 10 components in 22 batches of L. japonica samples from different areas. Compared with heat reflux extraction and ultrasonic-assisted extraction, UPE can be considered as an alternative extraction technique for fast extraction of active ingredient from L. japonica.
Zenil, Hector; Kiani, Narsis A.; Ball, Gordon; Gomez-Cabrero, David
2016-01-01
Systems in nature capable of collective behaviour are nonlinear, operating across several scales. Yet our ability to account for their collective dynamics differs in physics, chemistry and biology. Here, we briefly review the similarities and differences between mathematical modelling of adaptive living systems versus physico-chemical systems. We find that physics-based chemistry modelling and computational neuroscience have a shared interest in developing techniques for model reductions aiming at the identification of a reduced subsystem or slow manifold, capturing the effective dynamics. By contrast, as relations and kinetics between biological molecules are less characterized, current quantitative analysis under the umbrella of bioinformatics focuses on signal extraction, correlation, regression and machine-learning analysis. We argue that model reduction analysis and the ensuing identification of manifolds bridges physics and biology. Furthermore, modelling living systems presents deep challenges as how to reconcile rich molecular data with inherent modelling uncertainties (formalism, variables selection and model parameters). We anticipate a new generative data-driven modelling paradigm constrained by identified governing principles extracted from low-dimensional manifold analysis. The rise of a new generation of models will ultimately connect biology to quantitative mechanistic descriptions, thereby setting the stage for investigating the character of the model language and principles driving living systems. This article is part of the themed issue ‘Multiscale modelling at the physics–chemistry–biology interface’. PMID:27698038
Déglon, Julien; Versace, François; Lauer, Estelle; Widmer, Christèle; Mangin, Patrice; Thomas, Aurélien; Staub, Christian
2012-06-01
Dried blood spots (DBS) sampling has gained popularity in the bioanalytical community as an alternative to conventional plasma sampling, as it provides numerous benefits in terms of sample collection and logistics. The aim of this work was to show that these advantages can be coupled with a simple and cost-effective sample pretreatment, with subsequent rapid LC-MS/MS analysis for quantitation of 15 benzodiazepines, six metabolites and three Z-drugs. For this purpose, a simplified offline procedure was developed that consisted of letting a 5-µl DBS infuse directly into 100 µl of MeOH, in a conventional LC vial. The parameters related to the DBS pretreatment, such as extraction time or internal standard addition, were investigated and optimized, demonstrating that passive infusion in a regular LC vial was sufficient to quantitatively extract the analytes of interest. The method was validated according to international criteria in the therapeutic concentration ranges of the selected compounds. The presented strategy proved to be efficient for the rapid analysis of the selected drugs. Indeed, the offline sample preparation was reduced to a minimum, using a small amount of organic solvent and consumables, without affecting the accuracy of the method. Thus, this approach enables simple and rapid DBS analysis, even when using a non-DBS-dedicated autosampler, while lowering the costs and environmental impact.
Liang, Gaozhen; Dong, Chunwang; Hu, Bin; Zhu, Hongkai; Yuan, Haibo; Jiang, Yongwen; Hao, Guoshuang
2018-05-18
Withering is the first step in the processing of congou black tea. With respect to the deficiency of traditional water content detection methods, a machine vision based NDT (Non Destructive Testing) method was established to detect the moisture content of withered leaves. First, according to the time sequences using computer visual system collected visible light images of tea leaf surfaces, and color and texture characteristics are extracted through the spatial changes of colors. Then quantitative prediction models for moisture content detection of withered tea leaves was established through linear PLS (Partial Least Squares) and non-linear SVM (Support Vector Machine). The results showed correlation coefficients higher than 0.8 between the water contents and green component mean value (G), lightness component mean value (L * ) and uniformity (U), which means that the extracted characteristics have great potential to predict the water contents. The performance parameters as correlation coefficient of prediction set (Rp), root-mean-square error of prediction (RMSEP), and relative standard deviation (RPD) of the SVM prediction model are 0.9314, 0.0411 and 1.8004, respectively. The non-linear modeling method can better describe the quantitative analytical relations between the image and water content. With superior generalization and robustness, the method would provide a new train of thought and theoretical basis for the online water content monitoring technology of automated production of black tea.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owens, J; Hok, S; Alcaraz, A
Tetramethylenedisulfotetramine, commonly known as tetramine, is a highly neurotoxic rodenticide (human oral LD{sub 50} = 0.1 mg/kg) used in hundreds of deliberate food poisoning events in China. Here we describe a method for quantitation of tetramine spiked into beverages, including milk, juice, tea, cola, and water and cleaned up by C8 solid phase extraction and liquid-liquid extraction. Quantitation by high performance liquid chromatography tandem mass spectrometry (LC/MS/MS) was based upon fragmentation of m/z 347 to m/z 268. The method was validated by gas chromatography mass spectrometry (GC/MS) operated in SIM mode for ions m/z 212, 240, and 360. The limitmore » of quantitation was 0.10 {micro}g/mL by LC/MS/MS versus 0.15 {micro}g/mL for GC/MS. Fortifications of the beverages at 2.5 {micro}g/mL and 0.25 {micro}g/mL were recovered ranging from 73-128% by liquid-liquid extraction for GC/MS analysis, 13-96% by SPE and 10-101% by liquid-liquid extraction for LC/MS/MS analysis.« less
Modelling and analysis of creep deformation and fracture in a 1 Cr 1/2 Mo ferritic steel
NASA Astrophysics Data System (ADS)
Dyson, B. F.; Osgerby, D.
A quantitative model, based upon a proposed new mechanism of creep deformation in particle-hardened alloys, has been validated by analysis of creep data from a 13CrMo 4 4 (1Cr 1/2 Mo) material tested under a range of stresses and temperatures. The methodology that has been used to extract the model parameters quantifies, as a first approximation, only the main degradation (damage) processes - in the case of the 1CR 1/2 Mo steel, these are considered to be the parallel operation of particle-coarsening and a progressively increasing stress due to a constant-load boundary condition. These 'global' model parameters can then be modified (only slightly) as required to obtain a detailed description and 'fit' to the rupture lifetime and strain/time trajectory of any individual test. The global model parameter approach may be thought of as predicting average behavior and the detailed fits as taking account of uncertainties (scatter) due to variability in the material. Using the global parameter dataset, predictions have also been made of behavior under biaxial stressing; constant straining rate; constant total strain (stress relaxation) and the likely success or otherwise of metallographic and mechanical remanent lifetime procedures.
Giraud, Nicolas; Blackledge, Martin; Goldman, Maurice; Böckmann, Anja; Lesage, Anne; Penin, François; Emsley, Lyndon
2005-12-28
A detailed analysis of nitrogen-15 longitudinal relaxation times in microcrystalline proteins is presented. A theoretical model to quantitatively interpret relaxation times is developed in terms of motional amplitude and characteristic time scale. Different averaging schemes are examined in order to propose an analysis of relaxation curves that takes into account the specificity of MAS experiments. In particular, it is shown that magic angle spinning averages the relaxation rate experienced by a single spin over one rotor period, resulting in individual relaxation curves that are dependent on the orientation of their corresponding carousel with respect to the rotor axis. Powder averaging thus leads to a nonexponential behavior in the observed decay curves. We extract dynamic information from experimental decay curves, using a diffusion in a cone model. We apply this study to the analysis of spin-lattice relaxation rates of the microcrystalline protein Crh at two different fields and determine differential dynamic parameters for several residues in the protein.
Dumbryte, Irma; Linkeviciene, Laura; Linkevicius, Tomas; Malinauskas, Mangirdas
2017-07-26
The study aimed at introducing current available techniques for enamel microcracks (EMCs) detection, and presenting a method for direct quantitative analysis of an individual EMC. Measurements of the detailed EMCs characteristics (location, length, and width) were taken from the reconstructed images of the buccal tooth surface (teeth extracted from two age groups of patients) employing a scanning electron microscopy (SEM) and our derived formulas before and after ceramic brackets removal. Measured parameters of EMCs for younger age group were 2.41 µm (width), 3.68 mm (length) before and 2.73 µm, 3.90 mm after debonding; for older -4.03 µm, 4.35 mm before and 4.80 µm, 4.37 mm after brackets removal. Following debonding EMCs increased for both groups, however the changes in width and length were statistically insignificant. Regardless of the age group, proposed method enabled precise detection of the same EMC before and after debonding, and quantitative examination of its characteristics.
Shu, Ting; Zhang, Bob; Tang, Yuan Yan
2017-01-01
At present, heart disease is the number one cause of death worldwide. Traditionally, heart disease is commonly detected using blood tests, electrocardiogram, cardiac computerized tomography scan, cardiac magnetic resonance imaging, and so on. However, these traditional diagnostic methods are time consuming and/or invasive. In this paper, we propose an effective noninvasive computerized method based on facial images to quantitatively detect heart disease. Specifically, facial key block color features are extracted from facial images and analyzed using the Probabilistic Collaborative Representation Based Classifier. The idea of facial key block color analysis is founded in Traditional Chinese Medicine. A new dataset consisting of 581 heart disease and 581 healthy samples was experimented by the proposed method. In order to optimize the Probabilistic Collaborative Representation Based Classifier, an analysis of its parameters was performed. According to the experimental results, the proposed method obtains the highest accuracy compared with other classifiers and is proven to be effective at heart disease detection.
Alothman, Zeid A; Al-Shaalan, Nora H; Habila, Mohamed A; Unsal, Yunus E; Tuzen, Mustafa; Soylak, Mustafa
2015-02-01
A dispersive liquid-liquid microextraction procedure for lead(II) as its 5-(4-dimethylaminobenzylidene) rhodanine complex has been established prior to its microsampling flame atomic absorption spectrometric determination. The influences of various analytical parameters including pH, solvent type and volume, dispersive solvent type and volume, 5-(4-dimethylaminobenzylidene) rhodanine amount, salt effect, and centrifugation time and speed were investigated. The effects of certain alkali, alkaline earth, and transition metal ions on the quantitative extraction of lead(II) were also studied. Quantitative recoveries were obtained at pH 6. The enrichment factor was calculated as 125. The detection limit for lead is 1.1 μg/L. The accuracy of the method was tested with the additions recovery test and analysis of the standard reference materials (SPS-WW2 waste water, NIST SRM 1515 apple leaves, and TMDA-51.3 fortified water). Applications of the present procedure were tested by analyzing water and food samples.
NASA Astrophysics Data System (ADS)
Chen, Xinzhong; Lo, Chiu Fan Bowen; Zheng, William; Hu, Hai; Dai, Qing; Liu, Mengkun
2017-11-01
Over the last decade, scattering-type scanning near-field optical microscopy and spectroscopy have been widely used in nano-photonics and material research due to their fine spatial resolution and broad spectral range. A number of simplified analytical models have been proposed to quantitatively understand the tip-scattered near-field signal. However, a rigorous interpretation of the experimental results is still lacking at this stage. Numerical modelings, on the other hand, are mostly done by simulating the local electric field slightly above the sample surface, which only qualitatively represents the near-field signal rendered by the tip-sample interaction. In this work, we performed a more comprehensive numerical simulation which is based on realistic experimental parameters and signal extraction procedures. By directly comparing to the experiments as well as other simulation efforts, our methods offer a more accurate quantitative description of the near-field signal, paving the way for future studies of complex systems at the nanoscale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guan, He; Lv, Hongliang; Guo, Hui, E-mail: hguan@stu.xidian.edu.cn
2015-11-21
Impact ionization affects the radio-frequency (RF) behavior of high-electron-mobility transistors (HEMTs), which have narrow-bandgap semiconductor channels, and this necessitates complex parameter extraction procedures for HEMT modeling. In this paper, an enhanced small-signal equivalent circuit model is developed to investigate the impact ionization, and an improved method is presented in detail for direct extraction of intrinsic parameters using two-step measurements in low-frequency and high-frequency regimes. The practicability of the enhanced model and the proposed direct parameter extraction method are verified by comparing the simulated S-parameters with published experimental data from an InAs/AlSb HEMT operating over a wide frequency range. The resultsmore » demonstrate that the enhanced model with optimal intrinsic parameter values that were obtained by the direct extraction approach can effectively characterize the effects of impact ionization on the RF performance of HEMTs.« less
Cilia, M.; Fish, T.; Yang, X.; Mclaughlin, M.; Thannhauser, T. W.
2009-01-01
Protein extraction methods can vary widely in reproducibility and in representation of the total proteome, yet there are limited data comparing protein isolation methods. The methodical comparison of protein isolation methods is the first critical step for proteomic studies. To address this, we compared three methods for isolation, purification, and solubilization of insect proteins. The aphid Schizaphis graminum, an agricultural pest, was the source of insect tissue. Proteins were extracted using TCA in acetone (TCA-acetone), phenol, or multi-detergents in a chaotrope solution. Extracted proteins were solubilized in a multiple chaotrope solution and examined using 1-D and 2-D electrophoresis and compared directly using 2-D Difference Gel Electrophoresis (2-D DIGE). Mass spectrometry was used to identify proteins from each extraction type. We were unable to ascribe the differences in the proteins extracted to particular physical characteristics, cell location, or biological function. The TCA-acetone extraction yielded the greatest amount of protein from aphid tissues. Each extraction method isolated a unique subset of the aphid proteome. The TCA-acetone method was explored further for its quantitative reliability using 2-D DIGE. Principal component analysis showed that little of the variation in the data was a result of technical issues, thus demonstrating that the TCA-acetone extraction is a reliable method for preparing aphid proteins for a quantitative proteomics experiment. These data suggest that although the TCA-acetone method is a suitable method for quantitative aphid proteomics, a combination of extraction approaches is recommended for increasing proteome coverage when using gel-based separation techniques. PMID:19721822
Chaieb, Nadia; López-Mesas, Montserrat; Luis González, Johannes; Mars, Messaoud; Valiente, Manuel
2015-01-01
Flavonoids are polyphenolic compounds found ubiquitously in foods of plant origin. They are commonly extracted from plant materials with ethanol, methanol, water, their combination or even with acidified extracting solutions. The disadvantages of these methods are the use of high quantity of organic solvent, the possible loss of analytes in the different steps and the laborious process of the techniques. In addition, the complexity of the phenolic mixtures present in plant materials requires a preliminary clean-up and fractionation of the crude extracts. To develop a hollow fibre liquid phase micro-extraction (HF-LPME) method for a one step clean-up and pre-concentration of flavonoids. Two flavonoids (catechin and rutin) has been extracted by HF-LPME and analysed by HPLC. The related driving force for the liquid membrane has been studied by means of facilitated and non-facilitated transport. Different ionic and non-ionic water insoluble compounds [trioctylamine (TOA), tributyl phosphate (TBP), trioctylphosphine oxide (TOPO) and methyltrioctylammonium chloride (aliquat 336)] were used as carriers. The liquid membrane was constituted by a solution of n-decanol in the presence or absence of carriers. Maximum enrichment factors were obtained with n-decanol/aliquat 336 (20%) as organic liquid membrane, sodium hydroxide (NaOH) (0.1 M) as donor solution, sodium chloride (NaCl) (2 M) as acceptor solution and 3 h as extraction time. Under these conditions, good results for validation parameters were obtained [for linearity, limit of detection (LOD), limit of quantitation (LOQ) and repeatability]. The developed method is simple, effective and has been successfully applied to determine catechin and rutin in ethanolic extracts of faba beans. Copyright © 2015 John Wiley & Sons, Ltd.
Popescu, V; Battaglini, M; Hoogstrate, W S; Verfaillie, S C J; Sluimer, I C; van Schijndel, R A; van Dijk, B W; Cover, K S; Knol, D L; Jenkinson, M; Barkhof, F; de Stefano, N; Vrenken, H
2012-07-16
Brain atrophy studies often use FSL-BET (Brain Extraction Tool) as the first step of image processing. Default BET does not always give satisfactory results on 3DT1 MR images, which negatively impacts atrophy measurements. Finding the right alternative BET settings can be a difficult and time-consuming task, which can introduce unwanted variability. To systematically analyze the performance of BET in images of MS patients by varying its parameters and options combinations, and quantitatively comparing its results to a manual gold standard. Images from 159 MS patients were selected from different MAGNIMS consortium centers, and 16 different 3DT1 acquisition protocols at 1.5 T or 3T. Before running BET, one of three pre-processing pipelines was applied: (1) no pre-processing, (2) removal of neck slices, or (3) additional N3 inhomogeneity correction. Then BET was applied, systematically varying the fractional intensity threshold (the "f" parameter) and with either one of the main BET options ("B" - bias field correction and neck cleanup, "R" - robust brain center estimation, or "S" - eye and optic nerve cleanup) or none. For comparison, intracranial cavity masks were manually created for all image volumes. FSL-FAST (FMRIB's Automated Segmentation Tool) tissue-type segmentation was run on all BET output images and on the image volumes masked with the manual intracranial cavity masks (thus creating the gold-standard tissue masks). The resulting brain tissue masks were quantitatively compared to the gold standard using Dice overlap coefficient (DOC). Normalized brain volumes (NBV) were calculated with SIENAX. NBV values obtained using for SIENAX other BET settings than default were compared to gold standard NBV with the paired t-test. The parameter/preprocessing/options combinations resulted in 20,988 BET runs. The median DOC for default BET (f=0.5, g=0) was 0.913 (range 0.321-0.977) across all 159 native scans. For all acquisition protocols, brain extraction was substantially improved for lower values of "f" than the default value. Using native images, optimum BET performance was observed for f=0.2 with option "B", giving median DOC=0.979 (range 0.867-0.994). Using neck removal before BET, optimum BET performance was observed for f=0.1 with option "B", giving median DOC 0.983 (range 0.844-0.996). Using the above BET-options for SIENAX instead of default, the NBV values obtained from images after neck removal with f=0.1 and option "B" did not differ statistically from NBV values obtained with gold-standard. Although default BET performs reasonably well on most 3DT1 images of MS patients, the performance can be improved substantially. The removal of the neck slices, either externally or within BET, has a marked positive effect on the brain extraction quality. BET option "B" with f=0.1 after removal of the neck slices seems to work best for all acquisition protocols. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Park, A.; Dominek, A. K.
1990-01-01
Constitutive parameter extraction from S parameter data using a rectangular waveguide whose cross section is partially filled with a material sample as opposed to being completely filled was examined. One reason for studying a partially filled geometry is to analyze the effect of air gaps between the sample and fixture for the extraction of constitutive parameters. Air gaps can occur in high temperature parameter measurements when the sample was prepared at room temperature. Single port and two port measurement approaches to parameter extraction are also discussed.
NASA Astrophysics Data System (ADS)
Eilert, Arnold James
1995-01-01
The utility of near-IR spectroscopy for routine quantitative analyses of a wide variety of compositional, chemical, or physical parameters of organic materials is well understood. It can be used for relatively fast and inexpensive non-destructive bulk material analysis before, during, and after processing. It has been demonstrated as being a particularly useful technique for numerous analytical applications in cereal (food and feed) science and industry. Further fulfillment of the potential of near-IR spectroscopic analysis, both in the process and laboratory environment, is reliant upon the development of instrumentation that is capable of meeting the challenges of increasingly difficult applications. One approach to the development of near-IR spectroscopic instrumentation that holds a great deal of promise is acousto-optic tunable filter (AOTF) technology. A combination of attributes offered by AOTF spectrometry, including speed, optical throughput, wavelength reproducibility, ruggedness (no -moving-parts operation) and flexibility, make it particularly desirable for numerous applications. A series of prototype (research model) acousto -optic tunable filter instruments were developed and tested in order to investigate the feasibility of the technology for quantitative near-IR spectrometry. Development included design, component procurement, assembly and/or configuration of the optical and electronic subsystems of which each functional spectrometer arrangement was comprised, as well as computer interfacing and acquisition/control software development. Investigation of this technology involved an evolution of several operational spectrometer systems, each of which offered improvements over its predecessor. Appropriate testing was conducted at various stages of development. Demonstrations of the potential applicability of our AOTF spectrometer to quantitative process monitoring or laboratory analysis of numerous organic substances, including food materials, were performed. Lipid determination in foods by spectroscopic analysis of a solvent used after cold batch extraction and simulated supercritical fluid extraction monitoring were among the applications tested. The ultimate performance specifications of our instrument included full-range wavelength coverage from 1250 to 2400 nm (with random, segmented range, or continuous range wavelength access capability), real -time quantitative analysis rates in excess of 150 determinations per second, and full range (2 nm increment) scanning speeds of 200 milliseconds.
Patel, Harilal; Ghoghari, Ashok; Bhatt, Chandrakant; Shah, Shaival; Jha, Anilkumar; Desai, Nirmal; Srinivas, Nuggehally R
2017-10-01
Propafenone is a potent antiarrhythmic agent; clinically propafenone has been used for a number of cardiac arrhythmias because it possesses multiple modes of action, via beta adrenergic receptor blockade and calcium antagonistic activity. Propafenone (PPF) exhibits extensive saturable presystemic biotransformation (first-pass effect) resulting in two active metabolites: 5-hydroxypropafenone (5-OH PPF) formed by CYP2D6 and N-depropylpropafenone (NDP) formed by both CYP3A4 and CYP1A2 enzymes. A specific and sensitive LC-MS/MS method was developed and validated for quantitation of PPF, 5-OH PPF and NDP using turboion spray in a positive ion mode. A solid-phase extraction was employed for the extraction from human plasma. Chromatographic separation of analytes was achieved using an ACE-5 C 8 (50 × 4.6 mm) column with a gradient mobile phase comprising ammonium acetate containing 0.01% TFA in purified water and acetonitrile. The retention times achieved were 1.36, 1.23, 1.24 min and 1.34 min for PPF, 5-OH PPF, NDP and IS (carbamazepine), respectively. Quantitation was performed by monitoring multiple reaction monitoring transition pairs of m/z 342.30 to m/z 116.20, m/z 358.30 to m/z 116.20, m/z 300.30 to m/z 74.20 and m/z 237.20 to m/z 194.10, respectively. The developed method was validated for various parameters. The calibration curves of PPF and 5-OH PPF showed linearity from 1 to 500 ng/mL, with a lower limit of quantitation of 1.0 ng/mL and for NDP linearity from 0.1 to 25 ng/mL with a lower limit of quantitation of 0.1 ng/mL. The bias and precision for intra- and-inter batch assays were <10 and 5%, respectively. The developed assay was used to evaluate pharmacokinetic properties of propafenone and its major metabolites in healthy human subjects. Copyright © 2017 John Wiley & Sons, Ltd.
Wang, Yaping; Nie, Jingxin; Yap, Pew-Thian; Li, Gang; Shi, Feng; Geng, Xiujuan; Guo, Lei; Shen, Dinggang
2014-01-01
Accurate and robust brain extraction is a critical step in most neuroimaging analysis pipelines. In particular, for the large-scale multi-site neuroimaging studies involving a significant number of subjects with diverse age and diagnostic groups, accurate and robust extraction of the brain automatically and consistently is highly desirable. In this paper, we introduce population-specific probability maps to guide the brain extraction of diverse subject groups, including both healthy and diseased adult human populations, both developing and aging human populations, as well as non-human primates. Specifically, the proposed method combines an atlas-based approach, for coarse skull-stripping, with a deformable-surface-based approach that is guided by local intensity information and population-specific prior information learned from a set of real brain images for more localized refinement. Comprehensive quantitative evaluations were performed on the diverse large-scale populations of ADNI dataset with over 800 subjects (55∼90 years of age, multi-site, various diagnosis groups), OASIS dataset with over 400 subjects (18∼96 years of age, wide age range, various diagnosis groups), and NIH pediatrics dataset with 150 subjects (5∼18 years of age, multi-site, wide age range as a complementary age group to the adult dataset). The results demonstrate that our method consistently yields the best overall results across almost the entire human life span, with only a single set of parameters. To demonstrate its capability to work on non-human primates, the proposed method is further evaluated using a rhesus macaque dataset with 20 subjects. Quantitative comparisons with popularly used state-of-the-art methods, including BET, Two-pass BET, BET-B, BSE, HWA, ROBEX and AFNI, demonstrate that the proposed method performs favorably with superior performance on all testing datasets, indicating its robustness and effectiveness. PMID:24489639
Estimation of π-π Electronic Couplings from Current Measurements.
Trasobares, J; Rech, J; Jonckheere, T; Martin, T; Aleveque, O; Levillain, E; Diez-Cabanes, V; Olivier, Y; Cornil, J; Nys, J P; Sivakumarasamy, R; Smaali, K; Leclere, P; Fujiwara, A; Théron, D; Vuillaume, D; Clément, N
2017-05-10
The π-π interactions between organic molecules are among the most important parameters for optimizing the transport and optical properties of organic transistors, light-emitting diodes, and (bio-) molecular devices. Despite substantial theoretical progress, direct experimental measurement of the π-π electronic coupling energy parameter t has remained an old challenge due to molecular structural variability and the large number of parameters that affect the charge transport. Here, we propose a study of π-π interactions from electrochemical and current measurements on a large array of ferrocene-thiolated gold nanocrystals. We confirm the theoretical prediction that t can be assessed from a statistical analysis of current histograms. The extracted value of t ≈35 meV is in the expected range based on our density functional theory analysis. Furthermore, the t distribution is not necessarily Gaussian and could be used as an ultrasensitive technique to assess intermolecular distance fluctuation at the subangström level. The present work establishes a direct bridge between quantum chemistry, electrochemistry, organic electronics, and mesoscopic physics, all of which were used to discuss results and perspectives in a quantitative manner.
Magenes, G; Bellazzi, R; Malovini, A; Signorini, M G
2016-08-01
The onset of fetal pathologies can be screened during pregnancy by means of Fetal Heart Rate (FHR) monitoring and analysis. Noticeable advances in understanding FHR variations were obtained in the last twenty years, thanks to the introduction of quantitative indices extracted from the FHR signal. This study searches for discriminating Normal and Intra Uterine Growth Restricted (IUGR) fetuses by applying data mining techniques to FHR parameters, obtained from recordings in a population of 122 fetuses (61 healthy and 61 IUGRs), through standard CTG non-stress test. We computed N=12 indices (N=4 related to time domain FHR analysis, N=4 to frequency domain and N=4 to non-linear analysis) and normalized them with respect to the gestational week. We compared, through a 10-fold crossvalidation procedure, 15 data mining techniques in order to select the more reliable approach for identifying IUGR fetuses. The results of this comparison highlight that two techniques (Random Forest and Logistic Regression) show the best classification accuracy and that both outperform the best single parameter in terms of mean AUROC on the test sets.
O'Sullivan, F; Kirrane, J; Muzi, M; O'Sullivan, J N; Spence, A M; Mankoff, D A; Krohn, K A
2010-03-01
Kinetic quantitation of dynamic positron emission tomography (PET) studies via compartmental modeling usually requires the time-course of the radio-tracer concentration in the arterial blood as an arterial input function (AIF). For human and animal imaging applications, significant practical difficulties are associated with direct arterial sampling and as a result there is substantial interest in alternative methods that require no blood sampling at the time of the study. A fixed population template input function derived from prior experience with directly sampled arterial curves is one possibility. Image-based extraction, including requisite adjustment for spillover and recovery, is another approach. The present work considers a hybrid statistical approach based on a penalty formulation in which the information derived from a priori studies is combined in a Bayesian manner with information contained in the sampled image data in order to obtain an input function estimate. The absolute scaling of the input is achieved by an empirical calibration equation involving the injected dose together with the subject's weight, height and gender. The technique is illustrated in the context of (18)F -Fluorodeoxyglucose (FDG) PET studies in humans. A collection of 79 arterially sampled FDG blood curves are used as a basis for a priori characterization of input function variability, including scaling characteristics. Data from a series of 12 dynamic cerebral FDG PET studies in normal subjects are used to evaluate the performance of the penalty-based AIF estimation technique. The focus of evaluations is on quantitation of FDG kinetics over a set of 10 regional brain structures. As well as the new method, a fixed population template AIF and a direct AIF estimate based on segmentation are also considered. Kinetics analyses resulting from these three AIFs are compared with those resulting from radially sampled AIFs. The proposed penalty-based AIF extraction method is found to achieve significant improvements over the fixed template and the segmentation methods. As well as achieving acceptable kinetic parameter accuracy, the quality of fit of the region of interest (ROI) time-course data based on the extracted AIF, matches results based on arterially sampled AIFs. In comparison, significant deviation in the estimation of FDG flux and degradation in ROI data fit are found with the template and segmentation methods. The proposed AIF extraction method is recommended for practical use.
Constraints on Average Radial Anisotropy in the Lower Mantle
NASA Astrophysics Data System (ADS)
Trampert, J.; De Wit, R. W. L.; Kaeufl, P.; Valentine, A. P.
2014-12-01
Quantifying uncertainties in seismological models is challenging, yet ideally quality assessment is an integral part of the inverse method. We invert centre frequencies for spheroidal and toroidal modes for three parameters of average radial anisotropy, density and P- and S-wave velocities in the lower mantle. We adopt a Bayesian machine learning approach to extract the information on the earth model that is available in the normal mode data. The method is flexible and allows us to infer probability density functions (pdfs), which provide a quantitative description of our knowledge of the individual earth model parameters. The parameters describing shear- and P-wave anisotropy show little deviations from isotropy, but the intermediate parameter η carries robust information on negative anisotropy of ~1% below 1900 km depth. The mass density in the deep mantle (below 1900 km) shows clear positive deviations from existing models. Other parameters (P- and shear-wave velocities) are close to PREM. Our results require that the average mantle is about 150K colder than commonly assumed adiabats and consist of a mixture of about 60% perovskite and 40% ferropericlase containing 10-15% iron. The anisotropy favours a specific orientation of the two minerals. This observation has important consequences for the nature of mantle flow.
Variations in algorithm implementation among quantitative texture analysis software packages
NASA Astrophysics Data System (ADS)
Foy, Joseph J.; Mitta, Prerana; Nowosatka, Lauren R.; Mendel, Kayla R.; Li, Hui; Giger, Maryellen L.; Al-Hallaq, Hania; Armato, Samuel G.
2018-02-01
Open-source texture analysis software allows for the advancement of radiomics research. Variations in texture features, however, result from discrepancies in algorithm implementation. Anatomically matched regions of interest (ROIs) that captured normal breast parenchyma were placed in the magnetic resonance images (MRI) of 20 patients at two time points. Six first-order features and six gray-level co-occurrence matrix (GLCM) features were calculated for each ROI using four texture analysis packages. Features were extracted using package-specific default GLCM parameters and using GLCM parameters modified to yield the greatest consistency among packages. Relative change in the value of each feature between time points was calculated for each ROI. Distributions of relative feature value differences were compared across packages. Absolute agreement among feature values was quantified by the intra-class correlation coefficient. Among first-order features, significant differences were found for max, range, and mean, and only kurtosis showed poor agreement. All six second-order features showed significant differences using package-specific default GLCM parameters, and five second-order features showed poor agreement; with modified GLCM parameters, no significant differences among second-order features were found, and all second-order features showed poor agreement. While relative texture change discrepancies existed across packages, these differences were not significant when consistent parameters were used.
A new assessment model for tumor heterogeneity analysis with [18]F-FDG PET images.
Wang, Ping; Xu, Wengui; Sun, Jian; Yang, Chengwen; Wang, Gang; Sa, Yu; Hu, Xin-Hua; Feng, Yuanming
2016-01-01
It has been shown that the intratumor heterogeneity can be characterized with quantitative analysis of the [18]F-FDG PET image data. The existing models employ multiple parameters for feature extraction which makes it difficult to implement in clinical settings for the quantitative characterization. This article reports an easy-to-use and differential SUV based model for quantitative assessment of the intratumor heterogeneity from 3D [18]F-FDG PET image data. An H index is defined to assess tumor heterogeneity by summing voxel-wise distribution of differential SUV from the [18]F-FDG PET image data. The summation is weighted by the distance of SUV difference among neighboring voxels from the center of the tumor and can thus yield increased values for tumors with peripheral sub-regions of high SUV that often serves as an indicator of augmented malignancy. Furthermore, the sign of H index is used to differentiate the rate of change for volume averaged SUV from its center to periphery. The new model with the H index has been compared with a widely-used model of gray level co-occurrence matrix (GLCM) for image texture characterization with phantoms of different configurations and the [18]F-FDG PET image data of 6 lung cancer patients to evaluate its effectiveness and feasibility for clinical uses. The comparison of the H index and GLCM parameters with the phantoms demonstrate that the H index can characterize the SUV heterogeneity in all of 6 2D phantoms while only 1 GLCM parameter can do for 1 and fail to differentiate for other 2D phantoms. For the 8 3D phantoms, the H index can clearly differentiate all of them while the 4 GLCM parameters provide complicated patterns in the characterization. Feasibility study with the PET image data from 6 lung cancer patients show that the H index provides an effective single-parameter metric to characterize tumor heterogeneity in terms of the local SUV variation, and it has higher correlation with tumor volume change after radiotherapy (R(2) = 0.83) than the 4 GLCM parameters (R(2) = 0.63, 0.73, 0.59 and 0.75 for Energy, Contrast, Local Homogeneity and Entropy respectively). The new model of the H index has the capacity to characterize the intratumor heterogeneity feature from 3D [18]F-FDG PET image data. As a single parameter with an intuitive definition, the H index offers potential for clinical applications.
Optimization of Fe2+ supplement in anaerobic digestion accounting for the Fe-bioavailability.
Cai, Yafan; Zhao, Xiaoling; Zhao, Yubin; Wang, Hongliang; Yuan, Xufeng; Zhu, Wanbin; Cui, Zongjun; Wang, Xiaofen
2018-02-01
Fe is widely used as an additive in anaerobic digestion, but its bioavailability and the mechanism by which it enhances digestion are unclear. In this study, sequential extraction was used to measure Fe bioavailability, while biochemical parameters, kinetics model and Q-PCR (fluorescence quantitative PCR) were used to explore its mechanism of stimulation. The results showed that sequential extraction is a suitable method to assess the anaerobic system bioavailability of Fe, which is low and fluctuates to a limited extent (1.7 to -3.1wt%), indicating that it would be easy for Fe levels to be insufficient. Methane yield increased when the added Fe 2+ was 10-500mg/L. Appropriate amounts of Fe 2+ accelerated the decomposition of rice straw and facilitated methanogen metabolism, thereby improving reactor performance. The modified Gompertz model better fitted the results than the first-order kinetic model. Feasibility analysis showed that addition of Fe 2+ at ≤50mg/L was suitable. Copyright © 2017. Published by Elsevier Ltd.
Freitas, Andreia; Barbosa, Jorge; Ramos, Fernando
2015-01-22
A multiresidue quantitative screening method covering 39 antibiotics from 7 different families by ultra-high-pressure-liquid-chromatography-tandem mass spectrometry (UHPLC-MS/MS) is described. Sulfonamides, trimethoprim, tetracyclines, macrolides, quinolones, penicillins and chloramphenicol are simultaneously detected in liver tissue. A simple sample treatment method consisting of extraction with a mixture of acetonitrile and ethylenediaminetetraacetic acid (EDTA) followed by solid-phase extraction (SPE) with a hydrophilic-lipophilic balanced (HLB) cartridge was developed. The methodology was validated, in accordance with Decision 2002/657/EC, by evaluating the following required parameters: decision limit (CCα), detection capability (CCβ), specificity, repeatability and reproducibility. The precision, in terms of the relative standard deviation, was under 22% for all of the compounds, and the recoveries were between 80% and 110%. The CCα and CCβ were determined according to the maximum residue limit (MRL) or the minimum required performance limit (MRPL), when established. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mazurek, Sylwester; Szostak, Roman; Kita, Agnieszka
2016-12-01
Potato chips are important products in the snack industry. The most significant parameter monitored during their quality control process is fat content. The Soxhlet method, which is applied for this purpose, is time consuming and expensive. We demonstrate that both infrared and Raman spectroscopy can effectively replace the extraction method. Raman, mid-infrared (MIR) and near-infrared (NIR) spectra of the homogenised laboratory-prepared chips were recorded. On the basis of obtained spectra, partial least squares (PLS) calibration models were constructed. They were characterised by the values of relative standard errors of prediction (RSEP) in the 1.0-1.9% range for both calibration and validation data sets. Using the developed models, six commercial products were successfully quantified with recovery in the 98.5-102.3% range against the AOAC extraction method. The proposed method for fat quantification in potato chips based on Raman spectroscopy can be easily adopted for on-line product analysis.
Iyappan, Anandhi; Younesi, Erfan; Redolfi, Alberto; Vrooman, Henri; Khanna, Shashank; Frisoni, Giovanni B.; Hofmann-Apitius, Martin
2017-01-01
Ontologies and terminologies are used for interoperability of knowledge and data in a standard manner among interdisciplinary research groups. Existing imaging ontologies capture general aspects of the imaging domain as a whole such as methodological concepts or calibrations of imaging instruments. However, none of the existing ontologies covers the diagnostic features measured by imaging technologies in the context of neurodegenerative diseases. Therefore, the Neuro-Imaging Feature Terminology (NIFT) was developed to organize the knowledge domain of measured brain features in association with neurodegenerative diseases by imaging technologies. The purpose is to identify quantitative imaging biomarkers that can be extracted from multi-modal brain imaging data. This terminology attempts to cover measured features and parameters in brain scans relevant to disease progression. In this paper, we demonstrate the systematic retrieval of measured indices from literature and how the extracted knowledge can be further used for disease modeling that integrates neuroimaging features with molecular processes. PMID:28731430
Cai, Ying; Yan, Zhihong; NguyenVan, Manh; Wang, Lijia; Cai, Qingyun
2015-08-07
Fluorenyl functionalized superparamagnetic core/shell magnetic nanoparticles (MNPs, Fe3O4@SiO2@Flu) were prepared and characterized by transmission electron microscope, X-ray diffraction and infrared spectroscopy. The MNPs having an average diameter of 200nm were then used as solid-phase extraction sorbent for the determination of 16 priority pollutants polycyclic aromatic hydrocarbons (PAHs) in water samples designated by United States Environmental Protection Agency (U.S. EPA). The main influencing parameters, including sorbent amount, desorption solvent, sample volume and extraction time were optimized. Analyses were performed on gas chromatography-mass spectrometry (GC-MS) using selected ion monitoring (SIM) mode. Method validation proved the feasibility of the developed sorbents for the quantitation of the investigated analytes at trace levels. Limit of detection ranging from 0.5 to 4.0ng/L were obtained. The repeatability was investigated by evaluating the intra- and inter-day precisions with relative standard deviations (RSDs) lower than 13.1%. Finally, the proposed method was successfully applied for the determination of PAHs in water samples with the recoveries in the range of 96.0-106.7%. Copyright © 2015 Elsevier B.V. All rights reserved.
He, Huan; Zhuang, Yuan; Peng, Ying; Gao, Zhanqi; Yang, Shaogui; Sun, Cheng
2014-02-01
A porous and highly efficient polyaniline-based solid-phase microextraction (SPME) coating was successfully prepared by the electrochemical deposition method. A method based on headspace SPME followed by HPLC was established to rapidly determine trace chlorophenols in water samples. Influential parameters for the SPME, including extraction mode, extraction temperature and time, pH and ionic strength procedures, were investigated intensively. Under the optimized conditions, the proposed method was linear in the range of 0.5-200 μg/L for 4-chlorophenol and 2,4,6-trichlorophenol, 0.2-200 μg/L for 2,4-dichlorophenol and 2-200 μg/L for 2,3,4,6-tetrachlorophenol and pentachlorophenol, with satisfactory correlation coefficients (>0.99). RSDs were <15% (n = 5) and LODs were relatively low (0.10-0.50 μg/L). Compared to commercial 85 μm polyacrylate and 60 μm polydimethylsiloxane/divinylbenzene fibers, the homemade polyaniline fiber showed a higher extraction efficiency. The proposed method has been successfully applied to the determination of chlorophenols in water samples with satisfactory recoveries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Peng; Li, Li-Min; Xia, Jing; Cao, Shuai; Hu, Xin; Lian, Hong-Zhen; Ji, Shen
2015-12-01
An analytical method that combined high-performance liquid chromatography with inductively coupled plasma mass spectrometry has been developed for the determination of hexavalent chromium in traditional Chinese medicines. Hexavalent chromium was extracted using the alkaline solution. The parameters such as the concentration of alkaline and the extraction temperature have been optimized to minimize the interconversion between trivalent chromium and hexavalent chromium. The extracted hexavalent chromium was separated on a weak anion exchange column in isocratic mode, followed by inductively coupled plasma mass spectrometry determination. To obtain a better chromatographic resolution and sensitivity, 75 mM NH4 NO3 at pH 7 was selected as the mobile phase. The linearity of the proposed method was investigated in the range of 0.2-5.0 μg L(-1) (r(2) = 0.9999) for hexavalent chromium. The limits of detection and quantitation are 0.1 and 0.3 μg L(-1) , respectively. The developed method was successfully applied to the determination of hexavalent chromium in Chloriti lapis and Lumbricus with satisfactory recoveries of 95.8-112.8%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ursache, Florentina-Mihaela; Ghinea, Ioana Otilia; Turturică, Mihaela; Aprodu, Iuliana; Râpeanu, Gabriela; Stănciuc, Nicoleta
2017-10-15
The effect of thermal processing (50-100°C) on the degradation of the phytochemicals in sea buckthorn extract was investigated using chromatographic, fluorescence and FT-IR spectroscopy techniques and degradation kinetics. Heating the sea buckthorn extract resulted in structural changes that led to red- or blue-shifts in maximum emission, depending on temperature and excitation wavelengths. The attenuated total reflectance analysis of the sea buckthorn extract revealed a satisfactory thermostability of compounds at high temperatures. A fractional conversion kinetic model was used to describe the mechanism of degradation in terms of rate and activation energy. Activation energies for total carotenoids, polyphenolic, flavonoids, and antioxidant activity were 8.45±0.93kJ/mol, 2.50±0.66kJ/mol, 22.50±7.26kJ/mol and 15.22±2.75kJ/mol, respectively. The kinetic parameters evidence a higher thermal stability of carotenoids and polyphenols, suggesting higher degradation rates for flavonoids and antioxidant activity. Our results demonstrate that industrial process optimization in terms of time-temperature combinations demands product specific kinetic data. Copyright © 2017 Elsevier Ltd. All rights reserved.
Makoś, Patrycja; Fernandes, André; Boczkaj, Grzegorz
2018-06-01
We present a new method for simultaneous determination of 22 monoaromatic and polycyclic aromatic hydrocarbons in postoxidative effluents from the production of petroleum bitumen using dispersive liquid-liquid microextraction coupled to gas chromatography and mass spectrometry. The eight extraction parameters including the type and volume of extraction and disperser solvent, pH, salting out effect, extraction, and centrifugation time were optimized. The low detection limit ranging from 0.36 to 28 μg/L, limit of quantitation (1.1-84 μg/L), good reproducibility, and wide linear ranges, as well as the recoveries ranging from 71.74 to 114.67% revealed that the new method allows the determination of aromatic hydrocarbons at low concentration levels in industrial effluents having a very complex composition. The developed method was applied to the determination of content of mono- and polycyclic aromatic hydrocarbons in samples of raw postoxidative effluents in which 15 compounds were identified at concentrations ranging from 1.21 to 1017.0 μg/L as well as in effluents after chemical treatment. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Saito-Shida, Shizuka; Sakai, Takatoshi; Nemoto, Satoru; Akiyama, Hiroshi
2017-07-01
A simple and reliable multiresidue method for quantitative determination of veterinary drugs in bovine muscle and milk using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) was developed. Critical MS parameters such as capillary voltage, cone voltage, collision energy, desolvation gas temperature and extraction mass window were carefully optimised to obtain the best possible sensitivity. Analytical samples were prepared using extraction with acetonitrile and hexane in the presence of anhydrous sodium sulphate and acetic acid, followed by ODS cartridge clean-up. The developed method was validated for 82 veterinary drugs in bovine muscle and milk at spike levels of 0.01 and 0.1 mg kg - 1 . With the exception of cefoperazone and phenoxymethylpenicillin, all these compounds exhibited sufficient signal intensity at 0.01 μg ml -1 (equivalent to 0.01 mg kg - 1 ), indicating the high sensitivity of the developed method. For most targets, the determined accuracies were within 70-120%, with repeatability and reproducibility being below 20% at both levels. Except for sulfathiazole in bovine muscle, no interfering peaks at target compound retention times were detected in the blank extract, indicating that the developed method is highly selective. The absence of sulfathiazole in bovine muscle was confirmed by simultaneous acquisition at low and high collision energies to afford exact masses of molecular adduct and fragment ions. Satisfactory linearity was observed for all compounds, with matrix effects being negligible for most targets in bovine muscle and milk at both spike levels. Overall, the results suggest that the developed LC-QTOF-MS method is suitable for routine regulatory-purpose analysis of veterinary drugs in bovine muscle and milk.
Reverse phase HPLC method for detection and quantification of lupin seed γ-conglutin.
Mane, Sharmilee; Bringans, Scott; Johnson, Stuart; Pareek, Vishnu; Utikar, Ranjeet
2017-09-15
A simple, selective and accurate reverse phase HPLC method was developed for detection and quantitation of γ-conglutin from lupin seed extract. A linear gradient of water and acetonitrile containing trifluoroacetic acid (TFA) on a reverse phase column (Agilent Zorbax 300SB C-18), with a flow rate of 0.8ml/min was able to produce a sharp and symmetric peak of γ-conglutin with a retention time at 29.16min. The identity of γ-conglutin in the peak was confirmed by mass spectrometry (MS/MS identification) and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) analysis. The data obtained from MS/MS analysis was matched against the specified database to obtain the exact match for the protein of interest. The proposed method was validated in terms of specificity, linearity, sensitivity, precision, recovery and accuracy. The analytical parameters revealed that the validated method was capable of selectively performing a good chromatographic separation of γ-conglutin from the lupin seed extract with no interference of the matrix. The detection and quantitation limit of γ-conglutin were found to be 2.68μg/ml and 8.12μg/ml respectively. The accuracy (precision and recovery) analysis of the method was conducted under repeatable conditions on different days. Intra-day and inter-day precision values less than 0.5% and recovery greater than 97% indicated high precision and accuracy of the method for analysis of γ-conglutin. The method validation findings were reproducible and can be successfully applied for routine analysis of γ-conglutin from lupin seed extract. Copyright © 2017 Elsevier B.V. All rights reserved.
Comparison of atmospheric correction algorithms for the Coastal Zone Color Scanner
NASA Technical Reports Server (NTRS)
Tanis, F. J.; Jain, S. C.
1984-01-01
Before Nimbus-7 Costal Zone Color Scanner (CZC) data can be used to distinguish between coastal water types, methods must be developed for the removal of spatial variations in aerosol path radiance. These can dominate radiance measurements made by the satellite. An assessment is presently made of the ability of four different algorithms to quantitatively remove haze effects; each was adapted for the extraction of the required scene-dependent parameters during an initial pass through the data set The CZCS correction algorithms considered are (1) the Gordon (1981, 1983) algorithm; (2) the Smith and Wilson (1981) iterative algorityhm; (3) the pseudooptical depth method; and (4) the residual component algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gyulassy, Miklos; Romatschke, Paul; Bass, Steffen
2015-08-31
During the 5-year funding period (2010-2015), the JET Collaboration carried out a comprehensive research program with coordinated efforts involving all PI members and external associated members according to the plan and milestones outlined in the approved JET proposal. We identified important issues in the study of parton energy loss and made significant progress toward NLO calculations; advanced event-by-event hydrodynamic simulations of bulk matter evolution; developed Monte Carlo tools that combine different parton energy loss approaches, hydrodynamic models and parton recombination model for jet hadronization; and carried out the first comprehensive phenomenological study to extract the jet transport parameter.
The evolution of phase holographic imaging from a research idea to publicly traded company
NASA Astrophysics Data System (ADS)
Egelberg, Peter
2018-02-01
Recognizing the value and unmet need for label-free kinetic cell analysis, Phase Holograhic Imaging defines its market segment as automated, easy to use and affordable time-lapse cytometry. The process of developing new technology, meeting customer expectations, sources of corporate funding and R&D adjustments prompted by field experience will be reviewed. Additionally, it is discussed how relevant biological information can be extracted from a sequence of quantitative phase images, with negligible user assistance and parameter tweaking, to simultaneously provide cell culture characteristics such as cell growth rate, viability, division rate, mitosis duration, phagocytosis rate, migration, motility and cell-cell adherence without requiring any artificial cell manipulation.
Yap, Felix Y; Bui, James T; Knuttinen, M Grace; Walzer, Natasha M; Cotler, Scott J; Owens, Charles A; Berkes, Jamie L; Gaba, Ron C
2013-01-01
The quantitative relationship between tumor morphology and malignant potential has not been explored in liver tumors. We designed a computer algorithm to analyze shape features of hepatocellular carcinoma (HCC) and tested feasibility of morphologic analysis. Cross-sectional images from 118 patients diagnosed with HCC between 2007 and 2010 were extracted at the widest index tumor diameter. The tumor margins were outlined, and point coordinates were input into a MATLAB (MathWorks Inc., Natick, Massachusetts, USA) algorithm. Twelve shape descriptors were calculated per tumor: the compactness, the mean radial distance (MRD), the RD standard deviation (RDSD), the RD area ratio (RDAR), the zero crossings, entropy, the mean Feret diameter (MFD), the Feret ratio, the convex hull area (CHA) and perimeter (CHP) ratios, the elliptic compactness (EC), and the elliptic irregularity (EI). The parameters were correlated with the levels of alpha-fetoprotein (AFP) as an indicator of tumor aggressiveness. The quantitative morphometric analysis was technically successful in all cases. The mean parameters were as follows: compactness 0.88±0.086, MRD 0.83±0.056, RDSD 0.087±0.037, RDAR 0.045±0.023, zero crossings 6±2.2, entropy 1.43±0.16, MFD 4.40±3.14 cm, Feret ratio 0.78±0.089, CHA 0.98±0.027, CHP 0.98±0.030, EC 0.95±0.043, and EI 0.95±0.023. MFD and RDAR provided the widest value range for the best shape discrimination. The larger tumors were less compact, more concave, and less ellipsoid than the smaller tumors (P < 0.0001). AFP-producing tumors displayed greater morphologic irregularity based on several parameters, including compactness, MRD, RDSD, RDAR, entropy, and EI (P < 0.05 for all). Computerized HCC image analysis using shape descriptors is technically feasible. Aggressively growing tumors have wider diameters and more irregular margins. Future studies will determine further clinical applications for this morphologic analysis.
Stout, Peter R; Gehlhausen, Jay M; Horn, Carl K; Klette, Kevin L
2002-10-01
A novel extraction and derivatization procedure for the cocaine metabolite benzoylecgonine (BZE) was developed and evaluated for use in a high-volume forensic urine analysis laboratory. Extractions utilized a Speedisk 48 positive pressure extraction manifold and polymer-based cation-exchange extraction columns. Samples were derivatized by the addition of pentafluoropropionic anhydride and pentafluoropropanol. All analyses were performed in selected ion monitoring mode; ions included m/z 421, 300, 272, 429, and 303 with m/z 421 to 429 ratio used for quantitation. The average extraction efficiency was 80%. Seventy-five common over-the-counter products, including prescription drugs, drug metabolites, and other drugs of abuse, demonstrated no significant interference with respect to chromatography or quantitation. The limit of detection and limit of quantitation were calculated at 12.5 ng/mL, and the assay was linear from 12.5 to 20,000 ng/mL with an r2 of 0.99932. A series of 20 precision samples (100 ng/mL) produced an average response of 97.8 ng/mL and a percent coefficient of variation of 4.1%. A set of 79 archived human urine samples that had previously been found to contain BZE were analyzed by 3 separate laboratories. The results did not differ significantly from prior quantitation or between laboratories. The Speedisk has proven viable for a high-volume production facility reducing overall cost of analysis by decreasing analysis time and minimizing waste production while meeting strict forensic requirements.
A quantification model for the structure of clay materials.
Tang, Liansheng; Sang, Haitao; Chen, Haokun; Sun, Yinlei; Zhang, Longjian
2016-07-04
In this paper, the quantification for clay structure is explicitly explained, and the approach and goals of quantification are also discussed. The authors consider that the purpose of the quantification for clay structure is to determine some parameters that can be used to quantitatively characterize the impact of clay structure on the macro-mechanical behaviour. According to the system theory and the law of energy conservation, a quantification model for the structure characteristics of clay materials is established and three quantitative parameters (i.e., deformation structure potential, strength structure potential and comprehensive structure potential) are proposed. And the corresponding tests are conducted. The experimental results show that these quantitative parameters can accurately reflect the influence of clay structure on the deformation behaviour, strength behaviour and the relative magnitude of structural influence on the above two quantitative parameters, respectively. These quantitative parameters have explicit mechanical meanings, and can be used to characterize the structural influences of clay on its mechanical behaviour.
Ekeberg, Dag; Flaete, Per-Otto; Eikenes, Morten; Fongen, Monica; Naess-Andresen, Carl Fredrik
2006-03-24
A method for quantitative determination of extractives from heartwood of Scots pine (Pinus sylvestris L.) using gas chromatography (GC) with flame ionization detection (FID) was developed. The limit of detection (LOD) was 0.03 mg/g wood and the linear range (r = 0.9994) was up to 10 mg/g with accuracy within +/- 10% and precision of 18% relative standard deviation. The identification of the extractives was performed using gas chromatography combined with mass spectrometry (GC-MS). The yields of extraction by Soxhlet were tested for solid wood, small particles and fine powder. Small particles were chosen for further analysis. This treatment gave good yields of the most important extractives: pinosylvin, pinosylvin monomethyl ether, resin acids and free fatty acids. The method is used to demonstrate the variation of these extractives across stems and differences in north-south direction.
LFQuant: a label-free fast quantitative analysis tool for high-resolution LC-MS/MS proteomics data.
Zhang, Wei; Zhang, Jiyang; Xu, Changming; Li, Ning; Liu, Hui; Ma, Jie; Zhu, Yunping; Xie, Hongwei
2012-12-01
Database searching based methods for label-free quantification aim to reconstruct the peptide extracted ion chromatogram based on the identification information, which can limit the search space and thus make the data processing much faster. The random effect of the MS/MS sampling can be remedied by cross-assignment among different runs. Here, we present a new label-free fast quantitative analysis tool, LFQuant, for high-resolution LC-MS/MS proteomics data based on database searching. It is designed to accept raw data in two common formats (mzXML and Thermo RAW), and database search results from mainstream tools (MASCOT, SEQUEST, and X!Tandem), as input data. LFQuant can handle large-scale label-free data with fractionation such as SDS-PAGE and 2D LC. It is easy to use and provides handy user interfaces for data loading, parameter setting, quantitative analysis, and quantitative data visualization. LFQuant was compared with two common quantification software packages, MaxQuant and IDEAL-Q, on the replication data set and the UPS1 standard data set. The results show that LFQuant performs better than them in terms of both precision and accuracy, and consumes significantly less processing time. LFQuant is freely available under the GNU General Public License v3.0 at http://sourceforge.net/projects/lfquant/. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hossain, Mohammad Amzad; AL-Raqmi, Khulood Ahmed Salim; AL-Mijizy, Zawan Hamood; Weli, Afaf Mohammed; Al-Riyami, Qasim
2013-09-01
To prepare various crude extracts using different polarities of solvent and to quantitatively evaluate their total phenol, flavonoids contents and phytochemical screening of Thymus vulgaris collected from Al Jabal Al Akhdar, Nizwa, Sultanate of Oman. The leave sample was extracted with methanol and evaporated. Then it was defatted with water and extracted with different polarities organic solvents with increasing polarities. The prepare hexane, chloroform, ethyl acetate, butanol and methanol crude extracts were used for their evaluation of total phenol, flavonoids contents and phytochemical screening study. The established conventional methods were used for quantitative determination of total phenol, flavonoids contents and phytochemical screening. Phytochemical screening for various crude extracts were tested and shown positive result for flavonoids, saponins and steroids compounds. The result for total phenol content was the highest in butanol and the lowest in methanol crude extract whereas the total flavonoids contents was the highest in methanol and the lowest hexane crude extract. The crude extracts from locally grown Thymus vulgaris showed high concentration of flavonoids and it could be used as antibiotics for different curable and uncurable diseases.
Anderson, M A; Wachs, T; Henion, J D
1997-02-01
A method based on ionspray liquid chromatography/tandem mass spectrometry (LC/MS/MS) was developed for the determination of reserpine in equine plasma. A comparison was made of the isolation of reserpine from plasma by liquid-liquid extraction and by solid-phase extraction. A structural analog, rescinnamine, was used as the internal standard. The reconstituted extracts were analyzed by ionspray LC/MS/MS in the selected reaction monitoring (SRM) mode. The calibration graph for reserpine extracted from equine plasma obtained using liquid-liquid extraction was linear from 10 to 5000 pg ml-1 and that using solid-phase extraction from 100 to 5000 pg ml-1. The lower level of quantitation (LLQ) using liquid-liquid and solid-phase extraction was 50 and 200 pg ml-1, respectively. The lower level of detection for reserpine by LC/MS/MS was 10 pg ml-1. The intra-assay accuracy did not exceed 13% for liquid-liquid and 12% for solid-phase extraction. The recoveries for the LLQ were 68% for liquid-liquid and 58% for solid-phase extraction.
Ozcan, Adnan; Ozcan, Asiye Safa
2004-10-08
This study compares conventional Soxhlet extraction and analytical scale supercritical fluid extraction (SFE) for their yields in extracting of hydrocarbons from arid-land plant Euphorbia macroclada. The plant material was firstly sequentially extracted with supercritical carbon dioxide, modified with 10% methanol (v/v) in the optimum conditions that is a pressure of 400atm and a temperature of 50 degrees C and then it was sonicated in methylene chloride for an additional 4h. E. macroclada was secondly extracted by using a Soxhlet apparatus at 30 degrees C for 8h in methylene chloride. The validated SFE was then compared to the extraction yield of E. macroclada with a Soxhlet extraction by using the Student's t-test at the 95% confidence level. All of extracts were fractionated with silica-gel in a glass column to get better hydrocarbon yields. Thus, the highest hydrocarbons yield from E. macroclada was achieved with SFE (5.8%) when it compared with Soxhlet extractions (1.1%). Gas chromatography (GC) analysis was performed to determine the quantitative hydrocarbons from plant material. The greatest quantitative hydrocarbon recovery from GC was obtained by supercritical carbon dioxide extract (0.6mgg(-1)).
Vascular responses to radiotherapy and androgen-deprivation therapy in experimental prostate cancer
2012-01-01
Background Radiotherapy (RT) and androgen-deprivation therapy (ADT) are standard treatments for advanced prostate cancer (PC). Tumor vascularization is recognized as an important physiological feature likely to impact on both RT and ADT response, and this study therefore aimed to characterize the vascular responses to RT and ADT in experimental PC. Methods Using mice implanted with CWR22 PC xenografts, vascular responses to RT and ADT by castration were visualized in vivo by DCE MRI, before contrast-enhancement curves were analyzed both semi-quantitatively and by pharmacokinetic modeling. Extracted image parameters were correlated to the results from ex vivo quantitative fluorescent immunohistochemical analysis (qIHC) of tumor vascularization (9 F1), perfusion (Hoechst 33342), and hypoxia (pimonidazole), performed on tissue sections made from tumors excised directly after DCE MRI. Results Compared to untreated (Ctrl) tumors, an improved and highly functional vascularization was detected in androgen-deprived (AD) tumors, reflected by increases in DCE MRI parameters and by increased number of vessels (VN), vessel density ( VD), and vessel area fraction ( VF) from qIHC. Although total hypoxic fractions ( HF) did not change, estimated acute hypoxia scores ( AHS) – the proportion of hypoxia staining within 50 μm from perfusion staining – were increased in AD tumors compared to in Ctrl tumors. Five to six months after ADT renewed castration-resistant (CR) tumor growth appeared with an even further enhanced tumor vascularization. Compared to the large vascular changes induced by ADT, RT induced minor vascular changes. Correlating DCE MRI and qIHC parameters unveiled the semi-quantitative parameters area under curve ( AUC) from initial time-points to strongly correlate with VD and VF, whereas estimation of vessel size ( VS) by DCE MRI required pharmacokinetic modeling. HF was not correlated to any DCE MRI parameter, however, AHS may be estimated after pharmacokinetic modeling. Interestingly, such modeling also detected tumor necrosis very strongly. Conclusions DCE MRI reliably allows non-invasive assessment of tumors’ vascular function. The findings of increased tumor vascularization after ADT encourage further studies into whether these changes are beneficial for combined RT, or if treatment with anti-angiogenic therapy may be a strategy to improve the therapeutic efficacy of ADT in advanced PC. PMID:22621752
NASA Astrophysics Data System (ADS)
Elfarnawany, Mai; Alam, S. Riyahi; Agrawal, Sumit K.; Ladak, Hanif M.
2017-02-01
Cochlear implant surgery is a hearing restoration procedure for patients with profound hearing loss. In this surgery, an electrode is inserted into the cochlea to stimulate the auditory nerve and restore the patient's hearing. Clinical computed tomography (CT) images are used for planning and evaluation of electrode placement, but their low resolution limits the visualization of internal cochlear structures. Therefore, high resolution micro-CT images are used to develop atlas-based segmentation methods to extract these nonvisible anatomical features in clinical CT images. Accurate registration of the high and low resolution CT images is a prerequisite for reliable atlas-based segmentation. In this study, we evaluate and compare different non-rigid B-spline registration parameters using micro-CT and clinical CT images of five cadaveric human cochleae. The varying registration parameters are cost function (normalized correlation (NC), mutual information and mean square error), interpolation method (linear, windowed-sinc and B-spline) and sampling percentage (1%, 10% and 100%). We compare the registration results visually and quantitatively using the Dice similarity coefficient (DSC), Hausdorff distance (HD) and absolute percentage error in cochlear volume. Using MI or MSE cost functions and linear or windowed-sinc interpolation resulted in visually undesirable deformation of internal cochlear structures. Quantitatively, the transforms using 100% sampling percentage yielded the highest DSC and smallest HD (0.828+/-0.021 and 0.25+/-0.09mm respectively). Therefore, B-spline registration with cost function: NC, interpolation: B-spline and sampling percentage: moments 100% can be the foundation of developing an optimized atlas-based segmentation algorithm of intracochlear structures in clinical CT images.
Thakran, S; Gupta, P K; Kabra, V; Saha, I; Jain, P; Gupta, R K; Singh, A
2018-06-14
The objective of this study was to quantify the hemodynamic parameters using first pass analysis of T 1 -perfusion magnetic resonance imaging (MRI) data of human breast and to compare these parameters with the existing tracer kinetic parameters, semi-quantitative and qualitative T 1 -perfusion analysis in terms of lesion characterization. MRI of the breast was performed in 50 women (mean age, 44±11 [SD] years; range: 26-75) years with a total of 15 benign and 35 malignant breast lesions. After pre-processing, T 1 -perfusion MRI data was analyzed using qualitative approach by two radiologists (visual inspection of the kinetic curve into types I, II or III), semi-quantitative (characterization of kinetic curve types using empirical parameters), generalized-tracer-kinetic-model (tracer kinetic parameters) and first pass analysis (hemodynamic-parameters). Chi-squared test, t-test, one-way analysis-of-variance (ANOVA) using Bonferroni post-hoc test and receiver-operating-characteristic (ROC) curve were used for statistical analysis. All quantitative parameters except leakage volume (Ve), qualitative (type-I and III) and semi-quantitative curves (type-I and III) provided significant differences (P<0.05) between benign and malignant lesions. Kinetic parameters, particularly volume transfer coefficient (K trans ) provided a significant difference (P<0.05) between all grades except grade-II vs III. The hemodynamic parameter (relative-leakage-corrected-breast-blood-volume [rBBVcorr) provided a statistically significant difference (P<0.05) between all grades. It also provided highest sensitivity and specificity among all parameters in differentiation between different grades of malignant breast lesions. Quantitative parameters, particularly rBBVcorr and K trans provided similar sensitivity and specificity in differentiating benign from malignant breast lesions for this cohort. Moreover, rBBVcorr provided better differentiation between different grades of malignant breast lesions among all the parameters. Copyright © 2018. Published by Elsevier Masson SAS.
Mashhadizadeh, Mohammad Hossein; Amoli-Diva, Mitra; Pourghazi, Kamyar
2013-12-13
A new, simple, fast, and environmental friendly sample preconcentration technique based on the modified Fe3O4 nanoparticles has been developed for extraction, and determination of ochratoxin A (OTA). Magnetic nanoparticles were coated with 3-(trimethoxysilyl)-1-propanethiol and modified by ethylene glycol bis-mercaptoacetate. Transmission electron microscopy, X-ray diffraction, and Fourier transform infrared spectrometry were used to characterize the adsorbents and the main parameters affecting the extraction and desorption efficiencies, such as pH of sample solution, sample volume, desorption conditions, extraction and desorption times, salt addition, and co-existing interferences have been investigated and established. Under optimal conditions, OTA was extracted and analyzed using high performance liquid chromatography with fluorescence detection. The mobile phase consists of acetonitrile:water:acetic acid (99:99:2, v/v/v) and fluorescence detection was performed with excitation and emission wavelengths at 333 and 477nm, respectively. An enrichment factor of 24 was achieved for OTA with relative standard deviation of <7%. The proposed method was applied to twenty samples of cereals (rice, wheat, and corn). The limits of detection of 0.06, 0.03, and 0.05ngmL(-1) and limits of quantitation of 0.19, 0.11, and 0.15ngmL(-1), were found for rice, wheat, and corn samples, respectively. The recoveries of OTA for spiked samples were ranged from 87 to 93%. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benker, Dennis; Delmau, Laetitia Helene; Dryman, Joshua Cory
This report presents the studies carried out to demonstrate the possibility of quantitatively extracting trivalent actinides and lanthanides from highly acidic solutions using a neutral ligand-based solvent extraction system. These studies stemmed from the perceived advantage of such systems over cationexchange- based solvent extraction systems that require an extensive feed adjustment to make a low-acid feed. The targeted feed solutions are highly acidic aqueous phases obtained after the dissolution of curium targets during a californium (Cf) campaign. Results obtained with actual Cf campaign solutions, but highly diluted to be manageable in a glove box, are presented, followed by results ofmore » tests run in the hot cells with Cf campaign rework solutions. It was demonstrated that a solvent extraction system based on the tetraoctyl diglycolamide molecule is capable of quantitatively extracting trivalent actinides from highly acidic solutions. This system was validated using actual feeds from a Cf campaign.« less
Tess, D A; Cole, R O; Toler, S M
1995-12-15
A simple and highly sensitive reversed-phase fluorimetric HPLC method for the quantitation of droloxifene from rat, monkey, and human plasma as well as human serum is described. This assay employs solid-phase extraction and has a dynamic range of 25 to 10,000 pg/ml. Sample extraction (efficiencies > 86%) was accomplished using a benzenesulfonic acid (SCX) column with water and methanol rinses. Droloxifene and internal standard were eluted with 1 ml of 3.5% (v/v) ammonium hydroxide (30%) in methanol. Samples were quantitated using post-column UV-photochemical cyclization coupled with fluorimetric detection with excitation and emission wavelengths of 260 nm and 375 nm, respectively. Relative ease of sample extraction and short run times allow for the analysis of approximately 100 samples per day.
Oil shale extraction using super-critical extraction
NASA Technical Reports Server (NTRS)
Compton, L. E. (Inventor)
1983-01-01
Significant improvement in oil shale extraction under supercritical conditions is provided by extracting the shale at a temperature below 400 C, such as from about 250 C to about 350 C, with a solvent having a Hildebrand solubility parameter within 1 to 2 Hb of the solubility parameter for oil shale bitumen.
Simultaneous extraction and quantitation of several bioactive amines in cheese and chocolate.
Baker, G B; Wong, J T; Coutts, R T; Pasutto, F M
1987-04-17
A method is described for simultaneous extraction and quantitation of the amines 2-phenylethylamine, tele-methylhistamine, histamine, tryptamine, m- and p-tyramine, 3-methoxytyramine, 5-hydroxytryptamine, cadaverine, putrescine, spermidine and spermine. This method is based on extractive derivatization of the amines with a perfluoroacylating agent, pentafluorobenzoyl chloride, under basic aqueous conditions. Analysis was done on a gas chromatograph equipped with an electron-capture detector and a capillary column system. The procedure is relatively rapid and provides derivatives with good chromatographic properties. Its application to analysis of the above amines in cheese and chocolate products is described.
Sun, T T; Liu, W H; Zhang, Y Q; Li, L H; Wang, R; Ye, Y Y
2017-08-01
Objective: To explore the differential between the value of dynamic contrast-enhanced MRI quantitative pharmacokinetic parameters and relative pharmacokinetic quantitative parameters in breast lesions. Methods: Retrospective analysis of 255 patients(262 breast lesions) who was obtained by clinical palpation , ultrasound or full-field digital mammography , and then all lessions were pathologically confirmed in Zhongda Hospital, Southeast University from May 2012 to May 2016. A 3.0 T MRI scanner was used to obtain the quantitative MR pharmacokinetic parameters: volume transfer constant (K(trans)), exchange rate constant (k(ep))and extravascular extracellular volume fraction (V(e)). And measured the quantitative pharmacokinetic parameters of normal glands tissues which on the same side of the same level of the lesions; and then calculated the value of relative pharmacokinetic parameters: rK(rans)、rk(ep) and rV(e).To explore the diagnostic value of two pharmacokinetic parameters in differential diagnosis of benign and malignant breast lesions using receiver operating curves and model of logistic regression. Results: (1)There were significant differences between benign lesions and malignant lesions in K(trans) and k(ep) ( t =15.489, 15.022, respectively, P <0.05), there were no significant differences between benign lesions and malignant lesions in V(e)( t =-2.346, P >0.05). The areas under the ROC curve(AUC)of K(trans), k(ep) and V(e) between malignant and benign lesions were 0.933, 0.948 and 0.387, the sensitivity of K(trans), k(ep) and V(e) were 77.1%, 85.0%, 51.0% , and the specificity of K(trans), k(ep) and V(e) were 96.3%, 93.6%, 60.8% for the differential diagnosis of breast lesions if taken the maximum Youden's index as cut-off. (2)There were significant differences between benign lesions and malignant lesions in rK(trans), rk(ep) and rV(e) ( t =14.177, 11.726, 2.477, respectively, P <0.05). The AUC of rK(trans), rk(ep) and rV(e) between malignant and benign lesions were 0.963, 0.903 and 0.575, the sensitivity of rK(trans), rk(ep) and rV(e) were 85.6%, 71.9%, 52.9% , and the specificity of rK(trans), rk(ep) and rV(e) were 94.5%, 92.7%, 60.6% for the differential diagnosis of breast lesions.(3)There was no significant difference in the area under the ROC curve between the predictive probability of quantitative pharmacokinetic parameters and the prediction probability of relative quantitative pharmacokinetic parameters( Z =0.867, P =0.195). Conclusion: There was no significant difference between the quantitative parameter values (K(trans,) k(ep)) and the relative quantitative parameter values (rK(trans,) rk(ep)) in diagnosis of breast lesions, which were important parameters in differential diagnosis of benign and malignant breast lesions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, F.; Ozawa, N.; Hanai, J.
Twenty-one water-soluble acid dyes, including eleven azo, five triphenylmethane four xanthene, one naphthol derivatives, used at practical concentrations for food coloration, were quantitatively extracted from water and various carbonated beverages into a 0.1 M quinine-chloroform solution in the presence of 0.5 M boric acid by brief shaking. Quantitative extraction of these dyes was also accomplished by the 0.1 M quinine-chloroform solution made conveniently from chloroform, quinine hydrochloride, and sodium hydroxide added successively to water or beverages containing boric acid. Quinine acted as a countercation on the dyes having sulfonic and/or carboxylic acid group(s) to form chloroform-soluble ion-pair complexes. The diacidicmore » base alkaloid interacted with each acid group of mono-, di-, tri-, and tetrasulfonic acid dyes approximately in the ratio 0.8-0.9 to 1. The dyes in the chloroform solution were quantitatively concentrated into a small volume of sodium hydroxide solution also by brief shaking. The convenient quinine-chloroform method was applicable to the quantitative extraction of a mixture of 12 dyes from carbonated beverages, which are all currently used for food coloration. A high-pressure liquid chromatographic method is also presented for the systematic separation and determination of these 12 dyes following their concentration into the aqueous alkaline solution. The chromatogram was monitored by double-wavelength absorptiometry in the visible and ultraviolet ray regions.« less
Kim, Ji-Young; Kim, Ji Hyun; Moon, Jae Hoon; Kim, Kyoung Min; Oh, Tae Jung; Lee, Dong-Hwa; So, Young; Lee, Won Woo
2018-01-01
Quantitative parameters from Tc-99m pertechnetate single-photon emission computed tomography/computed tomography (SPECT/CT) are emerging as novel diagnostic markers for functional thyroid diseases. We intended to assess the utility of SPECT/CT parameters in patients with destructive thyroiditis. Thirty-five destructive thyroiditis patients (7 males and 28 females; mean age, 47.3 ± 13.0 years) and 20 euthyroid patients (6 males and 14 females; mean age, 45.0 ± 14.8 years) who underwent Tc-99m pertechnetate quantitative SPECT/CT were retrospectively enrolled. Quantitative parameters from the SPECT/CT (%uptake, standardized uptake value [SUV], thyroid volume, and functional thyroid mass [SUVmean × thyroid volume]) and thyroid hormone levels were investigated to assess correlations and predict the prognosis for destructive thyroiditis. The occurrence of hypothyroidism was the outcome for prognosis. All the SPECT/CT quantitative parameters were significantly lower in the 35 destructive thyroiditis patients compared to the 20 euthyroid patients using the same SPECT/CT scanner and protocol ( p < 0.001 for all parameters). T3 and free T4 did not correlate with any SPECT/CT parameters, but thyroid-stimulating hormone (TSH) significantly correlated with %uptake ( p = 0.004), SUVmean ( p < 0.001), SUVmax ( p = 0.002), and functional thyroid mass ( p < 0.001). Of the 35 destructive thyroiditis patients, 16 progressed to hypothyroidism. On univariate and multivariate analyses, only T3 levels were associated with the later occurrence of hypothyroidism ( p = 0.002, exp(β) = 1.022, 95% confidence interval: 1.008 - 1.035). Novel quantitative SPECT/CT parameters could discriminate patients with destructive thyroiditis from euthyroid patients, suggesting the robustness of the quantitative SPECT/CT approach. However, disease progression of destructive thyroiditis could not be predicted using the parameters, as these only correlated with TSH, but not with T3, the sole predictor of the later occurrence of hypothyroidism.
Kim, Ji-Young; Kim, Ji Hyun; Moon, Jae Hoon; Kim, Kyoung Min; Oh, Tae Jung; Lee, Dong-Hwa; So, Young
2018-01-01
Objective Quantitative parameters from Tc-99m pertechnetate single-photon emission computed tomography/computed tomography (SPECT/CT) are emerging as novel diagnostic markers for functional thyroid diseases. We intended to assess the utility of SPECT/CT parameters in patients with destructive thyroiditis. Materials and Methods Thirty-five destructive thyroiditis patients (7 males and 28 females; mean age, 47.3 ± 13.0 years) and 20 euthyroid patients (6 males and 14 females; mean age, 45.0 ± 14.8 years) who underwent Tc-99m pertechnetate quantitative SPECT/CT were retrospectively enrolled. Quantitative parameters from the SPECT/CT (%uptake, standardized uptake value [SUV], thyroid volume, and functional thyroid mass [SUVmean × thyroid volume]) and thyroid hormone levels were investigated to assess correlations and predict the prognosis for destructive thyroiditis. The occurrence of hypothyroidism was the outcome for prognosis. Results All the SPECT/CT quantitative parameters were significantly lower in the 35 destructive thyroiditis patients compared to the 20 euthyroid patients using the same SPECT/CT scanner and protocol (p < 0.001 for all parameters). T3 and free T4 did not correlate with any SPECT/CT parameters, but thyroid-stimulating hormone (TSH) significantly correlated with %uptake (p = 0.004), SUVmean (p < 0.001), SUVmax (p = 0.002), and functional thyroid mass (p < 0.001). Of the 35 destructive thyroiditis patients, 16 progressed to hypothyroidism. On univariate and multivariate analyses, only T3 levels were associated with the later occurrence of hypothyroidism (p = 0.002, exp(β) = 1.022, 95% confidence interval: 1.008 – 1.035). Conclusion Novel quantitative SPECT/CT parameters could discriminate patients with destructive thyroiditis from euthyroid patients, suggesting the robustness of the quantitative SPECT/CT approach. However, disease progression of destructive thyroiditis could not be predicted using the parameters, as these only correlated with TSH, but not with T3, the sole predictor of the later occurrence of hypothyroidism. PMID:29713225
Mouly, P P; Gaydou, E M; Corsetti, J
1999-03-01
The carotenoid pigment profiles of authentic pure orange juices from Spain and Florida and an industrial paprika (Capsicum annuum) extract used for food coloring were obtained using reversed-phase liquid chromatography with a C18 packed column and an acetone/methanol/water eluent system. The procedure involving the carotenoid extraction is described. Both retention times and spectral properties using photodiode array detection for characterization of the major carotenoids at 430 and 519 nm are given. The influence of external addition of tangerine juice and/or paprika extract on orange juice color is described using the U.S. Department of Agriculture scale and adulterated orange juice. The procedure for quantitation of externally added paprika extract to orange juice is investigated, and the limit of quantitation, coefficient of variation, and recoveries are determined.
Yankson, Kweku K.; Steck, Todd R.
2009-01-01
We present a simple strategy for isolating and accurately enumerating target DNA from high-clay-content soils: desorption with buffers, an optional magnetic capture hybridization step, and quantitation via real-time PCR. With the developed technique, μg quantities of DNA were extracted from mg samples of pure kaolinite and a field clay soil. PMID:19633108
Choi, Seon-Young; Nguyen, Viet Tu; Lee, Jae-Chun; Kang, Ho; Pandey, B D
2014-08-15
The present paper is focused on solvent extraction of hazardous Cd(II) from acidic chloride media by Cyanex 921, a new extractant mixed with 10% (v/v) TBP in xylene. The optimum conditions for extraction and stripping of Cd(II) were investigated with an aqueous feed of 0.1 mol/L Cd(II) in 2.0 mol/L HCl. McCabe-Thiele diagram was in good agreement with the simulation studies, showing the quantitative extraction (99.9%) of Cd(II) within two counter-current stages utilizing 0.30 mol/L Cyanex 921 at O/A ratio of 3/2 in 10 min. Stoichiometry of the complexes extracted was determined and confirmed by numerical treatment and graphical method, revealing the formation of HCdCl3 · 2L and HCdCl3 · 4L for Cyanex 921(L) concentration in the range 0.03-0.1 mol/L and 0.1-1.0 mol/L, respectively. The thermodynamic parameters for the extraction of cadmium were also determined. The stripping efficiency of cadmium from the loaded organic with 0.10 mol/L HCl was 99.6% in a three-stage counter-current process at an O/A ratio of 2/3. Cyanex 921 was successfully applied for the separation of Cd(II) from Ni(II) in the simulated leach liquor of spent Ni-Cd batteries. The study demonstrates the applicability of the present hydrometallurgical approach for the treatment of hazardous waste, the spent Ni-Cd batteries. Copyright © 2014 Elsevier B.V. All rights reserved.
Barik, S P; Park, K H; Nam, C W
2014-12-15
A process for recovering V(V) and Ni(II) from an industrial solid waste using sulfuric acid leaching, solvent extraction, precipitation and crystallization has been developed. The leaching parameters investigated were time, temperature and H2SO4 concentration. To quantify the linear and interaction coefficients a 2(3) full factorial experimental design was used. Regression equations for the extraction of V(V) and Ni(II) were determined and the adequacy of these equations was tested by Student's t-Test. More than 98% of both V(V) and Ni(II) were extracted in 90 min using 1.35 M H2SO4 at 40 °C. In addition, solvent extraction of V(V) with LIX 84-I in kerosene from the acidic leach liquor bearing 10.922 g/L V(V) and 18.871 g/L of Ni(II) was investigated. V(V) was extracted selectively using 40% LIX 84-I followed by stripping with NH4OH solution. McCabe-Thiele plots at O:A = 2:3 with 40% LIX 84-I and O:A = 3:1 with 15% (v/v) NH4OH showed two and three theoretical stages are needed for quantitative extraction and stripping of V(V), respectively. Ni(II) was selectively recovered from the V(V) free raffinate by adding ammonium oxalate at 60 °C. The purity of different products such as ammonium vanadate, nickel oxalate and nickel oxide obtained during the processes were analyzed and confirmed from the XRD studies. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chen, Yuehua; Wang, Huiyong; Pei, Yuanchao; Wang, Jianji
2018-05-15
It is significant to develop sustainable strategies for the selective separation of rare earth from transition metals from fundamental and practical viewpoint. In this work, an environmentally friendly solvent extraction approach has been developed to selectively separate neodymium (III) from cobalt (II) and nickel (II) by using an ionic liquid-based aqueous two phase system (IL-ATPS). For this purpose, a hydrophilic ionic liquid (IL) tetrabutylphosphonate nitrate ([P 4444 ][NO 3 ]) was prepared and used for the formation of an ATPS with NaNO 3 . Binodal curves of the ATPSs have been determined for the design of extraction process. The extraction parameters such as contact time, aqueous phase pH, content of phase-formation components of NaNO 3 and the ionic liquid have been investigated systematically. It is shown that under optimal conditions, the extraction efficiency of neodymium (III) is as high as 99.7%, and neodymium (III) can be selectively separated from cobalt (II) and nickel (II) with a separation factor of 10 3 . After extraction, neodymium (III) can be stripped from the IL-rich phase by using dilute aqueous sodium oxalate, and the ILs can be quantitatively recovered and reused in the next extraction process. Since [P 4444 ][NO 3 ] works as one of the components of the ATPS and the extractant for the neodymium, no organic diluent, extra etractant and fluorinated ILs are used in the separation process. Thus, the strategy described here shows potential in green separation of neodymium from cobalt and nickel by using simple IL-based aqueous two-phase system. Copyright © 2018 Elsevier B.V. All rights reserved.
Dependence of quantitative accuracy of CT perfusion imaging on system parameters
NASA Astrophysics Data System (ADS)
Li, Ke; Chen, Guang-Hong
2017-03-01
Deconvolution is a popular method to calculate parametric perfusion parameters from four dimensional CT perfusion (CTP) source images. During the deconvolution process, the four dimensional space is squeezed into three-dimensional space by removing the temporal dimension, and a prior knowledge is often used to suppress noise associated with the process. These additional complexities confound the understanding about deconvolution-based CTP imaging system and how its quantitative accuracy depends on parameters and sub-operations involved in the image formation process. Meanwhile, there has been a strong clinical need in answering this question, as physicians often rely heavily on the quantitative values of perfusion parameters to make diagnostic decisions, particularly during an emergent clinical situation (e.g. diagnosis of acute ischemic stroke). The purpose of this work was to develop a theoretical framework that quantitatively relates the quantification accuracy of parametric perfusion parameters with CTP acquisition and post-processing parameters. This goal was achieved with the help of a cascaded systems analysis for deconvolution-based CTP imaging systems. Based on the cascaded systems analysis, the quantitative relationship between regularization strength, source image noise, arterial input function, and the quantification accuracy of perfusion parameters was established. The theory could potentially be used to guide developments of CTP imaging technology for better quantification accuracy and lower radiation dose.
Bellon, L; Maloney, L; Zinnen, S P; Sandberg, J A; Johnson, K E
2000-08-01
Versatile bioanalytical assays to detect chemically stabilized hammerhead ribozyme and putative ribozyme metabolites from plasma are described. The extraction protocols presented are based on serial solid-phase extractions performed on a 96-well plate format and are compatible with either IEX-HPLC or CGE back-end analysis. A validation of both assays confirmed that both the HPLC and the CGE methods possess the required linearity, accuracy, and precision to accurately measure concentrations of hammerhead ribozyme extracted from plasma. These methods should be of general use to detect and quantitate ribozymes from other biological fluids such as serum and urine. Copyright 2000 Academic Press.
Thoma, Brent; Camorlinga, Paola; Chan, Teresa M; Hall, Andrew Koch; Murnaghan, Aleisha; Sherbino, Jonathan
2018-01-01
Quantitative research is one of the many research methods used to help educators advance their understanding of questions in medical education. However, little research has been done on how to succeed in publishing in this area. We conducted a scoping review to identify key recommendations and reporting guidelines for quantitative educational research and scholarship. Medline, ERIC, and Google Scholar were searched for English-language articles published between 2006 and January 2016 using the search terms, "research design," "quantitative," "quantitative methods," and "medical education." A hand search was completed for additional references during the full-text review. Titles/abstracts were reviewed by two authors (BT, PC) and included if they focused on quantitative research in medical education and outlined reporting guidelines, or provided recommendations on conducting quantitative research. One hundred articles were reviewed in parallel with the first 30 used for calibration and the subsequent 70 to calculate Cohen's kappa coefficient. Two reviewers (BT, PC) conducted a full text review and extracted recommendations and reporting guidelines. A simple thematic analysis summarized the extracted recommendations. Sixty-one articles were reviewed in full, and 157 recommendations were extracted. The thematic analysis identified 86 items, 14 categories, and 3 themes. Fourteen quality evaluation tools and reporting guidelines were found. Discussion This paper provides guidance for junior researchers in the form of key quality markers and reporting guidelines. We hope that quantitative researchers in medical education will be informed by the results and that further work will be done to refine the list of recommendations.
Inflation of Unreefed and Reefed Extraction Parachutes
NASA Technical Reports Server (NTRS)
Ray, Eric S.; Varela, Jose G.
2015-01-01
Data from the Orion and several other test programs have been used to reconstruct inflation parameters for 28 ft Do extraction parachutes as well as the parent aircraft pitch response during extraction. The inflation force generated by extraction parachutes is recorded directly during tow tests but is usually inferred from the payload accelerometer during Low Velocity Airdrop Delivery (LVAD) flight test extractions. Inflation parameters are dependent on the type of parent aircraft, number of canopies, and standard vs. high altitude extraction conditions. For standard altitudes, single canopy inflations are modeled as infinite mass, but the non-symmetric inflations in a cluster are modeled as finite mass. High altitude extractions have necessitated reefing the extraction parachutes, which are best modeled as infinite mass for those conditions. Distributions of aircraft pitch profiles and inflation parameters have been generated for use in Monte Carlo simulations of payload extractions.
Nojavan, Saeed; Bidarmanesh, Tina; Mohammadi, Ali; Yaripour, Saeid
2016-03-01
In the present study, for the first time electromembrane extraction followed by high performance liquid chromatography coupled with ultraviolet detection was optimized and validated for quantification of four gonadotropin-releasing hormone agonist anticancer peptides (alarelin, leuprolide, buserelin and triptorelin) in biological and aqueous samples. The parameters influencing electromigration were investigated and optimized. The membrane consists 95% of 1-octanol and 5% di-(2-ethylhexyl)-phosphate immobilized in the pores of a hollow fiber. A 20 V electrical field was applied to make the analytes migrate from sample solution with pH 7.0, through the supported liquid membrane into an acidic acceptor solution with pH 1.0 which was located inside the lumen of hollow fiber. Extraction recoveries in the range of 49 and 71% within 15 min extraction time were obtained in different biological matrices which resulted in preconcentration factors in the range of 82-118 and satisfactory repeatability (7.1 < RSD% < 19.8). The method offers good linearity (2.0-1000 ng/mL) with estimation of regression coefficient higher than 0.998. The procedure allows very low detection and quantitation limits of 0.2 and 0.6 ng/mL, respectively. Finally, it was applied to determination and quantification of peptides in human plasma and wastewater samples and satisfactory results were yielded. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mohd, N I; Zain, N N M; Raoov, M; Mohamad, S
2018-04-01
A new cloud point methodology was successfully used for the extraction of carcinogenic pesticides in milk samples as a prior step to their determination by spectrophotometry. In this work, non-ionic silicone surfactant, also known as 3-(3-hydroxypropyl-heptatrimethylxyloxane), was chosen as a green extraction solvent because of its structure and properties. The effect of different parameters, such as the type of surfactant, concentration and volume of surfactant, pH, salt, temperature, incubation time and water content on the cloud point extraction of carcinogenic pesticides such as atrazine and propazine, was studied in detail and a set of optimum conditions was established. A good correlation coefficient ( R 2 ) in the range of 0.991-0.997 for all calibration curves was obtained. The limit of detection was 1.06 µg l -1 (atrazine) and 1.22 µg l -1 (propazine), and the limit of quantitation was 3.54 µg l -1 (atrazine) and 4.07 µg l -1 (propazine). Satisfactory recoveries in the range of 81-108% were determined in milk samples at 5 and 1000 µg l -1 , respectively, with low relative standard deviation, n = 3 of 0.301-7.45% in milk matrices. The proposed method is very convenient, rapid, cost-effective and environmentally friendly for food analysis.
Real time blood testing using quantitative phase imaging.
Pham, Hoa V; Bhaduri, Basanta; Tangella, Krishnarao; Best-Popescu, Catherine; Popescu, Gabriel
2013-01-01
We demonstrate a real-time blood testing system that can provide remote diagnosis with minimal human intervention in economically challenged areas. Our instrument combines novel advances in label-free optical imaging with parallel computing. Specifically, we use quantitative phase imaging for extracting red blood cell morphology with nanoscale sensitivity and NVIDIA's CUDA programming language to perform real time cellular-level analysis. While the blood smear is translated through focus, our system is able to segment and analyze all the cells in the one megapixel field of view, at a rate of 40 frames/s. The variety of diagnostic parameters measured from each cell (e.g., surface area, sphericity, and minimum cylindrical diameter) are currently not available with current state of the art clinical instruments. In addition, we show that our instrument correctly recovers the red blood cell volume distribution, as evidenced by the excellent agreement with the cell counter results obtained on normal patients and those with microcytic and macrocytic anemia. The final data outputted by our instrument represent arrays of numbers associated with these morphological parameters and not images. Thus, the memory necessary to store these data is of the order of kilobytes, which allows for their remote transmission via, for example, the cellular network. We envision that such a system will dramatically increase access for blood testing and furthermore, may pave the way to digital hematology.
Quantitative Gait Measurement With Pulse-Doppler Radar for Passive In-Home Gait Assessment
Skubic, Marjorie; Rantz, Marilyn; Cuddihy, Paul E.
2014-01-01
In this paper, we propose a pulse-Doppler radar system for in-home gait assessment of older adults. A methodology has been developed to extract gait parameters including walking speed and step time using Doppler radar. The gait parameters have been validated with a Vicon motion capture system in the lab with 13 participants and 158 test runs. The study revealed that for an optimal step recognition and walking speed estimation, a dual radar set up with one radar placed at foot level and the other at torso level is necessary. An excellent absolute agreement with intraclass correlation coefficients of 0.97 was found for step time estimation with the foot level radar. For walking speed, although both radars show excellent consistency they all have a system offset compared to the ground truth due to walking direction with respect to the radar beam. The torso level radar has a better performance (9% offset on average) in the speed estimation compared to the foot level radar (13%–18% offset). Quantitative analysis has been performed to compute the angles causing the systematic error. These lab results demonstrate the capability of the system to be used as a daily gait assessment tool in home environments, useful for fall risk assessment and other health care applications. The system is currently being tested in an unstructured home environment. PMID:24771566
Quantitative gait measurement with pulse-Doppler radar for passive in-home gait assessment.
Wang, Fang; Skubic, Marjorie; Rantz, Marilyn; Cuddihy, Paul E
2014-09-01
In this paper, we propose a pulse-Doppler radar system for in-home gait assessment of older adults. A methodology has been developed to extract gait parameters including walking speed and step time using Doppler radar. The gait parameters have been validated with a Vicon motion capture system in the lab with 13 participants and 158 test runs. The study revealed that for an optimal step recognition and walking speed estimation, a dual radar set up with one radar placed at foot level and the other at torso level is necessary. An excellent absolute agreement with intraclass correlation coefficients of 0.97 was found for step time estimation with the foot level radar. For walking speed, although both radars show excellent consistency they all have a system offset compared to the ground truth due to walking direction with respect to the radar beam. The torso level radar has a better performance (9% offset on average) in the speed estimation compared to the foot level radar (13%-18% offset). Quantitative analysis has been performed to compute the angles causing the systematic error. These lab results demonstrate the capability of the system to be used as a daily gait assessment tool in home environments, useful for fall risk assessment and other health care applications. The system is currently being tested in an unstructured home environment.
Estimating the Effective System Dead Time Parameter for Correlated Neutron Counting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Croft, Stephen; Cleveland, Steve; Favalli, Andrea
We present that neutron time correlation analysis is one of the main technical nuclear safeguards techniques used to verify declarations of, or to independently assay, special nuclear materials. Quantitative information is generally extracted from the neutron-event pulse train, collected from moderated assemblies of 3He proportional counters, in the form of correlated count rates that are derived from event-triggered coincidence gates. These count rates, most commonly referred to as singles, doubles and triples rates etc., when extracted using shift-register autocorrelation logic, are related to the reduced factorial moments of the time correlated clusters of neutrons emerging from the measurement items. Correctingmore » these various rates for dead time losses has received considerable attention recently. The dead time losses for the higher moments in particular, and especially for large mass (high rate and highly multiplying) items, can be significant. Consequently, even in thoughtfully designed systems, accurate dead time treatments are needed if biased mass determinations are to be avoided. In support of this effort, in this paper we discuss a new approach to experimentally estimate the effective system dead time of neutron coincidence counting systems. It involves counting a random neutron source (e.g. AmLi is a good approximation to a source without correlated emission) and relating the second and higher moments of the neutron number distribution recorded in random triggered interrogation coincidence gates to the effective value of dead time parameter. We develop the theoretical basis of the method and apply it to the Oak Ridge Large Volume Active Well Coincidence Counter using sealed AmLi radionuclide neutron sources and standard multiplicity shift register electronics. The method is simple to apply compared to the predominant present approach which involves using a set of 252Cf sources of wide emission rate, it gives excellent precision in a conveniently short time, and it yields consistent results as a function of the order of the moment used to extract the dead time parameter. In addition, this latter observation is reassuring in that it suggests the assumptions underpinning the theoretical analysis are fit for practical application purposes. However, we found that the effective dead time parameter obtained is not constant, as might be expected for a parameter that in the dead time model is characteristic of the detector system, but rather, varies systematically with gate width.« less
Estimating the Effective System Dead Time Parameter for Correlated Neutron Counting
Croft, Stephen; Cleveland, Steve; Favalli, Andrea; ...
2017-04-29
We present that neutron time correlation analysis is one of the main technical nuclear safeguards techniques used to verify declarations of, or to independently assay, special nuclear materials. Quantitative information is generally extracted from the neutron-event pulse train, collected from moderated assemblies of 3He proportional counters, in the form of correlated count rates that are derived from event-triggered coincidence gates. These count rates, most commonly referred to as singles, doubles and triples rates etc., when extracted using shift-register autocorrelation logic, are related to the reduced factorial moments of the time correlated clusters of neutrons emerging from the measurement items. Correctingmore » these various rates for dead time losses has received considerable attention recently. The dead time losses for the higher moments in particular, and especially for large mass (high rate and highly multiplying) items, can be significant. Consequently, even in thoughtfully designed systems, accurate dead time treatments are needed if biased mass determinations are to be avoided. In support of this effort, in this paper we discuss a new approach to experimentally estimate the effective system dead time of neutron coincidence counting systems. It involves counting a random neutron source (e.g. AmLi is a good approximation to a source without correlated emission) and relating the second and higher moments of the neutron number distribution recorded in random triggered interrogation coincidence gates to the effective value of dead time parameter. We develop the theoretical basis of the method and apply it to the Oak Ridge Large Volume Active Well Coincidence Counter using sealed AmLi radionuclide neutron sources and standard multiplicity shift register electronics. The method is simple to apply compared to the predominant present approach which involves using a set of 252Cf sources of wide emission rate, it gives excellent precision in a conveniently short time, and it yields consistent results as a function of the order of the moment used to extract the dead time parameter. In addition, this latter observation is reassuring in that it suggests the assumptions underpinning the theoretical analysis are fit for practical application purposes. However, we found that the effective dead time parameter obtained is not constant, as might be expected for a parameter that in the dead time model is characteristic of the detector system, but rather, varies systematically with gate width.« less
Estimating the effective system dead time parameter for correlated neutron counting
NASA Astrophysics Data System (ADS)
Croft, Stephen; Cleveland, Steve; Favalli, Andrea; McElroy, Robert D.; Simone, Angela T.
2017-11-01
Neutron time correlation analysis is one of the main technical nuclear safeguards techniques used to verify declarations of, or to independently assay, special nuclear materials. Quantitative information is generally extracted from the neutron-event pulse train, collected from moderated assemblies of 3He proportional counters, in the form of correlated count rates that are derived from event-triggered coincidence gates. These count rates, most commonly referred to as singles, doubles and triples rates etc., when extracted using shift-register autocorrelation logic, are related to the reduced factorial moments of the time correlated clusters of neutrons emerging from the measurement items. Correcting these various rates for dead time losses has received considerable attention recently. The dead time losses for the higher moments in particular, and especially for large mass (high rate and highly multiplying) items, can be significant. Consequently, even in thoughtfully designed systems, accurate dead time treatments are needed if biased mass determinations are to be avoided. In support of this effort, in this paper we discuss a new approach to experimentally estimate the effective system dead time of neutron coincidence counting systems. It involves counting a random neutron source (e.g. AmLi is a good approximation to a source without correlated emission) and relating the second and higher moments of the neutron number distribution recorded in random triggered interrogation coincidence gates to the effective value of dead time parameter. We develop the theoretical basis of the method and apply it to the Oak Ridge Large Volume Active Well Coincidence Counter using sealed AmLi radionuclide neutron sources and standard multiplicity shift register electronics. The method is simple to apply compared to the predominant present approach which involves using a set of 252Cf sources of wide emission rate, it gives excellent precision in a conveniently short time, and it yields consistent results as a function of the order of the moment used to extract the dead time parameter. This latter observation is reassuring in that it suggests the assumptions underpinning the theoretical analysis are fit for practical application purposes. However, we found that the effective dead time parameter obtained is not constant, as might be expected for a parameter that in the dead time model is characteristic of the detector system, but rather, varies systematically with gate width.
Ferreira-Gonzalez, A; Yanovich, S; Langley, M R; Weymouth, L A; Wilkinson, D S; Garrett, C T
2000-01-01
Accurate and rapid diagnosis of CMV disease in immunocompromised individuals remains a challenge. Quantitative polymerase chain reaction (QPCR) methods for detection of CMV in peripheral blood mononuclear cells (PBMC) have improved the positive and negative predictive value of PCR for diagnosis of CMV disease. However, detection of CMV in plasma has demonstrated a lower negative predictive value for plasma as compared with PBMC. To enhance the sensitivity of the QPCR assay for plasma specimens, plasma samples were centrifuged before nucleic-acid extraction and the extracted DNA resolubilized in reduced volume. Optimization of the nucleic-acid extraction focused on decreasing or eliminating the presence of inhibitors in the pelleted plasma. Quantitation was achieved by co-amplifying an internal quantitative standard (IS) with the same primer sequences as CMV. PCR products were detected by hybridization in a 96-well microtiter plate coated with a CMV or IS specific probe. The precision of the QPCR assay for samples prepared from untreated and from pelleted plasma was then assessed. The coefficient of variation for both types of samples was almost identical and the magnitude of the coefficient of variations was reduced by a factor of ten if the data were log transformed. Linearity of the QPCR assay extended over a 3.3-log range for both types of samples but the range of linearity for pelleted plasma was 20 to 40,000 viral copies/ml (vc/ml) in contrast to 300 to 400,000 vc/ml for plasma. Thus, centrifugation of plasma before nucleic-acid extraction and resuspension of extracted CMV DNA in reduced volume enhanced the analytical sensitivity approximately tenfold over the dynamic range of the assay. Copyright 2000 Wiley-Liss, Inc.
Quantitative proteomics in biological research.
Wilm, Matthias
2009-10-01
Proteomics has enabled the direct investigation of biological material, at first through the analysis of individual proteins, then of lysates from cell cultures, and finally of extracts from tissues and biopsies from entire organisms. Its latest manifestation - quantitative proteomics - allows deeper insight into biological systems. This article reviews the different methods used to extract quantitative information from mass spectra. It follows the technical developments aimed toward global proteomics, the attempt to characterize every expressed protein in a cell by at least one peptide. When applications of the technology are discussed, the focus is placed on yeast biology. In particular, differential quantitative proteomics, the comparison between an experiment and its control, is very discriminating for proteins involved in the process being studied. When trying to understand biological processes on a molecular level, differential quantitative proteomics tends to give a clearer picture than global transcription analyses. As a result, MS has become an even more indispensable tool for biochemically motivated biological research.
Pungency Quantitation of Hot Pepper Sauces Using HPLC
NASA Astrophysics Data System (ADS)
Betts, Thomas A.
1999-02-01
A class of compounds known as capsaicinoids are responsible for the "heat" of hot peppers. To determine the pungency of a particular pepper or pepper product, one may quantify the capsaicinoids and relate those concentrations to the perceived heat. The format of the laboratory described here allows students to collectively develop an HPLC method for the quantitation of the two predominant capsaicinoids (capsaicin and dihydrocapsaicin) in hot-pepper products. Each small group of students investigated one of the following aspects of the method: detector wavelength, mobile-phase composition, extraction of capsaicinoids, calibration, and quantitation. The format of the lab forced students to communicate and cooperate to develop this method. The resulting HPLC method involves extraction with acetonitrile followed by solid-phase extraction clean-up, an isocratic 80:20 methanol-water mobile phase, a 4.6 mm by 25 cm C-18 column, and UV absorbance detection at 284 nm. The method developed by the students was then applied to the quantitation of capsaicinoids in a variety of hot pepper sauces. Editor's Note on Hazards in our April 2000 issue addresses the above.
Chen, Weiqi; Wang, Lifei; Van Berkel, Gary J; Kertesz, Vilmos; Gan, Jinping
2016-03-25
Herein, quantitation aspects of a fully automated autosampler/HPLC-MS/MS system applied for unattended droplet-based surface sampling of repaglinide dosed thin tissue sections with subsequent HPLC separation and mass spectrometric analysis of parent drug and various drug metabolites were studied. Major organs (brain, lung, liver, kidney and muscle) from whole-body thin tissue sections and corresponding organ homogenates prepared from repaglinide dosed mice were sampled by surface sampling and by bulk extraction, respectively, and analyzed by HPLC-MS/MS. A semi-quantitative agreement between data obtained by surface sampling and that by employing organ homogenate extraction was observed. Drug concentrations obtained by the two methods followed the same patterns for post-dose time points (0.25, 0.5, 1 and 2 h). Drug amounts determined in the specific tissues was typically higher when analyzing extracts from the organ homogenates. In addition, relative comparison of the levels of individual metabolites between the two analytical methods also revealed good semi-quantitative agreement. Copyright © 2015 Elsevier B.V. All rights reserved.
Schmitz-Afonso, I.; Loyo-Rosales, J.E.; de la Paz Aviles, M.; Rattner, B.A.; Rice, C.P.
2003-01-01
A quantitative method for the simultaneous determination of octylphenol, nonylphenol and the corresponding ethoxylates (1 to 5) in biota is presented. Extraction methods were developed for egg and fish matrices based on accelerated solvent extraction followed by a solid-phase extraction cleanup, using octadecylsilica or aminopropyl cartridges. Identification and quantitation were accomplished by liquid chromatography-electrospray tandem mass spectrometry (LC-MS-MS) and compared to the traditional liquid chromatography with fluorescence spectroscopy detection. LC-MS-MS provides high sensitivity and specificity required for these complex matrices and an accurate quantitation with the use of 13C-labeled internal standards. Quantitation limits by LC-MS-MS ranged from 4 to 12 ng/g in eggs, and from 6 to 22 ng/g in fish samples. These methods were successfully applied to osprey eggs from the Chesapeake Bay and fish from the Great Lakes area. Total levels found in osprey egg samples were up to 18 ng/g wet mass and as high as 8.2 ug/g wet mass in the fish samples.
Chen, Weiqi; Wang, Lifei; Van Berkel, Gary J.; ...
2015-11-03
Herein, quantitation aspects of a fully automated autosampler/HPLC-MS/MS system applied for unattended droplet-based surface sampling of repaglinide dosed thin tissue sections with subsequent HPLC separation and mass spectrometric analysis of parent drug and various drug metabolites was studied. Major organs (brain, lung, liver, kidney, muscle) from whole-body thin tissue sections and corresponding organ homogenates prepared from repaglinide dosed mice were sampled by surface sampling and by bulk extraction, respectively, and analyzed by HPLC-MS/MS. A semi-quantitative agreement between data obtained by surface sampling and that by employing organ homogenate extraction was observed. Drug concentrations obtained by the two methods followed themore » same patterns for post-dose time points (0.25, 0.5, 1 and 2 h). Drug amounts determined in the specific tissues was typically higher when analyzing extracts from the organ homogenates. Furthermore, relative comparison of the levels of individual metabolites between the two analytical methods also revealed good semi-quantitative agreement.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Weiqi; Wang, Lifei; Van Berkel, Gary J.
Herein, quantitation aspects of a fully automated autosampler/HPLC-MS/MS system applied for unattended droplet-based surface sampling of repaglinide dosed thin tissue sections with subsequent HPLC separation and mass spectrometric analysis of parent drug and various drug metabolites was studied. Major organs (brain, lung, liver, kidney, muscle) from whole-body thin tissue sections and corresponding organ homogenates prepared from repaglinide dosed mice were sampled by surface sampling and by bulk extraction, respectively, and analyzed by HPLC-MS/MS. A semi-quantitative agreement between data obtained by surface sampling and that by employing organ homogenate extraction was observed. Drug concentrations obtained by the two methods followed themore » same patterns for post-dose time points (0.25, 0.5, 1 and 2 h). Drug amounts determined in the specific tissues was typically higher when analyzing extracts from the organ homogenates. Furthermore, relative comparison of the levels of individual metabolites between the two analytical methods also revealed good semi-quantitative agreement.« less
NASA Astrophysics Data System (ADS)
Wahi-Anwar, M. Wasil; Emaminejad, Nastaran; Hoffman, John; Kim, Grace H.; Brown, Matthew S.; McNitt-Gray, Michael F.
2018-02-01
Quantitative imaging in lung cancer CT seeks to characterize nodules through quantitative features, usually from a region of interest delineating the nodule. The segmentation, however, can vary depending on segmentation approach and image quality, which can affect the extracted feature values. In this study, we utilize a fully-automated nodule segmentation method - to avoid reader-influenced inconsistencies - to explore the effects of varied dose levels and reconstruction parameters on segmentation. Raw projection CT images from a low-dose screening patient cohort (N=59) were reconstructed at multiple dose levels (100%, 50%, 25%, 10%), two slice thicknesses (1.0mm, 0.6mm), and a medium kernel. Fully-automated nodule detection and segmentation was then applied, from which 12 nodules were selected. Dice similarity coefficient (DSC) was used to assess the similarity of the segmentation ROIs of the same nodule across different reconstruction and dose conditions. Nodules at 1.0mm slice thickness and dose levels of 25% and 50% resulted in DSC values greater than 0.85 when compared to 100% dose, with lower dose leading to a lower average and wider spread of DSC values. At 0.6mm, the increased bias and wider spread of DSC values from lowering dose were more pronounced. The effects of dose reduction on DSC for CAD-segmented nodules were similar in magnitude to reducing the slice thickness from 1.0mm to 0.6mm. In conclusion, variation of dose and slice thickness can result in very different segmentations because of noise and image quality. However, there exists some stability in segmentation overlap, as even at 1mm, an image with 25% of the lowdose scan still results in segmentations similar to that seen in a full-dose scan.
Loescher, Christine M; Morton, David W; Razic, Slavica; Agatonovic-Kustrin, Snezana
2014-09-01
Chromatography techniques such as HPTLC and HPLC are commonly used to produce a chemical fingerprint of a plant to allow identification and quantify the main constituents within the plant. The aims of this study were to compare HPTLC and HPLC, for qualitative and quantitative analysis of the major constituents of Calendula officinalis and to investigate the effect of different extraction techniques on the C. officinalis extract composition from different parts of the plant. The results found HPTLC to be effective for qualitative analysis, however, HPLC was found to be more accurate for quantitative analysis. A combination of the two methods may be useful in a quality control setting as it would allow rapid qualitative analysis of herbal material while maintaining accurate quantification of extract composition. Copyright © 2014 Elsevier B.V. All rights reserved.
Martin, Daniel B; Holzman, Ted; May, Damon; Peterson, Amelia; Eastham, Ashley; Eng, Jimmy; McIntosh, Martin
2008-11-01
Multiple reaction monitoring (MRM) mass spectrometry identifies and quantifies specific peptides in a complex mixture with very high sensitivity and speed and thus has promise for the high throughput screening of clinical samples for candidate biomarkers. We have developed an interactive software platform, called MRMer, for managing highly complex MRM-MS experiments, including quantitative analyses using heavy/light isotopic peptide pairs. MRMer parses and extracts information from MS files encoded in the platform-independent mzXML data format. It extracts and infers precursor-product ion transition pairings, computes integrated ion intensities, and permits rapid visual curation for analyses exceeding 1000 precursor-product pairs. Results can be easily output for quantitative comparison of consecutive runs. Additionally MRMer incorporates features that permit the quantitative analysis experiments including heavy and light isotopic peptide pairs. MRMer is open source and provided under the Apache 2.0 license.
Knold, Lone; Reitov, Marianne; Mortensen, Anna Birthe; Hansen-Møller, Jens
2002-01-01
A rapid and quantitative method for the extraction, derivatization, and liquid chromatography with fluorescence detection of ivermectin (IVM) and doramectin (DOM) residues in porcine liver was developed and validated. IVM and DOM were extracted from the liver samples with acetonitrile, the supernatant was evaporated to dryness at 37 degrees C under nitrogen, and the residue was reconstituted in 1-methylimidazole solution. After 2 min at room temperature, IVM and DOM were converted to a fluorescent derivative and then separated on a Hypersil ODS column. The derivatives of IVM and DOM were detected and quantitated with high specificity by fluorescence (excitation: 365 nm, emission: 475 nm). Abamectin was used as an internal standard. The mean extraction efficiencies from fortified samples (15 ng/g) were 75% for IVM and 70% for DOM. The limit of detection was 0.8 ng/g for both IVM and DOM.
Absolute quantitation of intracellular metabolite concentrations by an isotope ratio-based approach
Bennett, Bryson D; Yuan, Jie; Kimball, Elizabeth H; Rabinowitz, Joshua D
2009-01-01
This protocol provides a method for quantitating the intracellular concentrations of endogenous metabolites in cultured cells. The cells are grown in stable isotope-labeled media to near-complete isotopic enrichment and then extracted in organic solvent containing unlabeled internal standards in known concentrations. The ratio of endogenous metabolite to internal standard in the extract is determined using mass spectrometry (MS). The product of this ratio and the unlabeled standard amount equals the amount of endogenous metabolite present in the cells. The cellular concentration of the metabolite can then be calculated on the basis of intracellular volume of the extracted cells. The protocol is exemplified using Escherichia coli and primary human fibroblasts fed uniformly with 13C-labeled carbon sources, with detection of 13C-assimilation by liquid chromatography–tandem MS. It enables absolute quantitation of several dozen metabolites over ~1 week of work. PMID:18714298
NASA Astrophysics Data System (ADS)
Ando, Masatoshi; Sharp, Nathan; Adams, Douglas
2012-04-01
Current limitations for diagnosing mineralization state of tooth enamel can lead to improper surgical treatments. A method is investigated by which the tooth health state is characterized according to its thermal response, which is hypothesized to be sensitive to increased porosity in enamel that is caused by demineralization. Several specimens consisting of previously extracted human teeth a re prepared by exposure to Streptococcus mutans A32-2 in trypticase-soy-borth supplemented with 5% sucrose at 37°C for 3 or 6 days to de-mineralize two 1×1mm2-windows on each tooth. One of these windows is then re-mineralized with 250 or 1,100ppm-F as NaF for 10 days by pH-cyclic-model. Pulse thermography is used to measure the thermal response of these sections as well as the sound (healthy) portions of the specimen. A spatial profile of the thermal parameters of the specimens is then extracted from the thermography data and are used to compare the sound, de-mineralized, and re-mineralized areas. Results show that the thermal parameters are sensitive to the mineralization state of the tooth and that this method has the potential to accurately and quickly characterize the mineralization state of teeth, thereby allowing future dentists to make informed decisions regarding the best treatment for teeth that have experienced demineralization.
Inhibition effect of graphene oxide on the catalytic activity of acetylcholinesterase enzyme.
Wang, Yong; Gu, Yao; Ni, Yongnian; Kokot, Serge
2015-11-01
Variations in the enzyme activity of acetylcholinesterase (AChE) in the presence of the nano-material, graphene oxide (GO), were investigated with the use of molecular spectroscopy UV-visible and fluorescence methods. From these studies, important kinetic parameters of the enzyme were extracted; these were the maximum reaction rate, Vm , and the Michaelis constant, Km . A comparison of these parameters indicated that GO inhibited the catalytic activity of the AChE because of the presence of the AChE-GO complex. The formation of this complex was confirmed with the use of fluorescence data, which was resolved with the use of the MCR-ALS chemometrics method. Furthermore, it was found that the resonance light-scattering (RLS) intensity of AChE changed in the presence of GO. On this basis, it was demonstrated that the relationship between AChE and GO was linear and such models were used for quantitative analyses of GO. Copyright © 2015 John Wiley & Sons, Ltd.
Quantitative Assessment of Retinopathy Using Multi-parameter Image Analysis
Ghanian, Zahra; Staniszewski, Kevin; Jamali, Nasim; Sepehr, Reyhaneh; Wang, Shoujian; Sorenson, Christine M.; Sheibani, Nader; Ranji, Mahsa
2016-01-01
A multi-parameter quantification method was implemented to quantify retinal vascular injuries in microscopic images of clinically relevant eye diseases. This method was applied to wholemount retinal trypsin digest images of diabetic Akita/+, and bcl-2 knocked out mice models. Five unique features of retinal vasculature were extracted to monitor early structural changes and retinopathy, as well as quantifying the disease progression. Our approach was validated through simulations of retinal images. Results showed fewer number of cells (P = 5.1205e-05), greater population ratios of endothelial cells to pericytes (PCs) (P = 5.1772e-04; an indicator of PC loss), higher fractal dimension (P = 8.2202e-05), smaller vessel coverage (P = 1.4214e-05), and greater number of acellular capillaries (P = 7.0414e-04) for diabetic retina as compared to normal retina. Quantification using the present method would be helpful in evaluating physiological and pathological retinopathy in a high-throughput and reproducible manner. PMID:27186534
One-Cell Doubling Evaluation by Living Arrays of Yeast, ODELAY!
Herricks, Thurston; Dilworth, David J.; Mast, Fred D.; ...
2016-11-16
Cell growth is a complex phenotype widely used in systems biology to gauge the impact of genetic and environmental perturbations. Due to the magnitude of genome-wide studies, resolution is often sacrificed in favor of throughput, creating a demand for scalable, time-resolved, quantitative methods of growth assessment. We present ODELAY (One-cell Doubling Evaluation by Living Arrays of Yeast), an automated and scalable growth analysis platform. High measurement density and single-cell resolution provide a powerful tool for large-scale multiparameter growth analysis based on the modeling of microcolony expansion on solid media. Pioneered in yeast but applicable to other colony forming organisms, ODELAYmore » extracts the three key growth parameters (lag time, doubling time, and carrying capacity) that define microcolony expansion from single cells, simultaneously permitting the assessment of population heterogeneity. The utility of ODELAY is illustrated using yeast mutants, revealing a spectrum of phenotypes arising from single and combinatorial growth parameter perturbations.« less
One-Cell Doubling Evaluation by Living Arrays of Yeast, ODELAY!
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herricks, Thurston; Dilworth, David J.; Mast, Fred D.
Cell growth is a complex phenotype widely used in systems biology to gauge the impact of genetic and environmental perturbations. Due to the magnitude of genome-wide studies, resolution is often sacrificed in favor of throughput, creating a demand for scalable, time-resolved, quantitative methods of growth assessment. We present ODELAY (One-cell Doubling Evaluation by Living Arrays of Yeast), an automated and scalable growth analysis platform. High measurement density and single-cell resolution provide a powerful tool for large-scale multiparameter growth analysis based on the modeling of microcolony expansion on solid media. Pioneered in yeast but applicable to other colony forming organisms, ODELAYmore » extracts the three key growth parameters (lag time, doubling time, and carrying capacity) that define microcolony expansion from single cells, simultaneously permitting the assessment of population heterogeneity. The utility of ODELAY is illustrated using yeast mutants, revealing a spectrum of phenotypes arising from single and combinatorial growth parameter perturbations.« less
Sun, Shi-Hao; Chai, Guo-Bi; Li, Peng; Xie, Jian-Ping; Su, Yue
2017-10-13
Jujube extract is commonly used as a food additive and flavoring. The unique jujube aroma and the mild sweet aroma of the extract are critical factors that determine product quality and affect consumer acceptability. The aroma changes with changes in the extraction condition, which is typically dependent on the characteristics of volatile oils in the extract. Despite their importance, the volatile oils of jujube extract have received less attention compared with the soluble components. So, an appropriate qualitative and quantitative method for determination of the volatile oils is vitally important for quality control of the product. A method coupling steam distillation/drop-by-drop extraction with gas chromatography-mass spectrometry (S3DE/GC-MS) was developed to determine the volatile components of jujube extract. Steam distillation was coupled with solvent extraction; the resulting condensate containing volatile components from jujube extract was drop-by-drop extracted using 2 mL of methyl tertiary butyl ether. The solvent served two purposes. First, the solvent extracted the volatile components from the condensate. Second, the volatile components were pre-concentrated by drop-by-drop accumulation in the solvent. As a result, the extraction, separation, and concentration of analytes in the sample were simultaneously completed in one step. The main parameters affecting the S3DE procedure, such as the water steam bubbling rate, extraction solvent volume, sample weight and S3DE time, were optimized. The standard addition approach was essential to obtain accurate measurements by minimizing matrix effects. Good linearity (R 2 ≥ 0.9887) and good repeatability (RSDs ≤ 10.35%, n = 5) for 16 analytes in spiked standard analyte samples were achieved. With the S3DE/GC-MS method, seventy-six volatile compounds from jujube extract were identified and the content of 16 compounds was measured. The results were similar to those from simultaneous distillation extraction. The developed method was simple, fast, effective, sensitive, and provided an overall profile of the volatile components in jujube extract. Thus, this method can be used to determine the volatile components of extracts. Graphical abstract The diagram of steam distillation/drop-by-drop extraction device.
Teh, Sue-Siang; Birch, Edward John
2014-01-01
The effectiveness of ultrasonic extraction of phenolics and flavonoids from defatted hemp, flax and canola seed cakes was compared to the conventional extraction method. Ultrasonic treatment at room temperature showed increased polyphenol extraction yield and antioxidant capacity by two-fold over the conventional extraction method. Different combinations of ultrasonic treatment parameters consisting of solvent volume (25, 50, 75 and 100 mL), extraction time (20, 30 and 40 min) and temperature (40, 50, 60 and 70 °C) were selected for polyphenol extractions from the seed cakes. The chosen parameters had a significant effect (p<0.05) on the polyphenol extraction yield and subsequent antioxidant capacity from the seed cakes. Application of heat during ultrasonic extraction yielded higher polyphenol content in extracts compared to the non-heated extraction. From an orthogonal design test, the best combination of parameters was 50 mL of solvent volume, 20 min of extraction time and 70 °C of ultrasonic temperature. Copyright © 2013. Published by Elsevier B.V.
Harlé, Alexandre; Lion, Maëva; Husson, Marie; Dubois, Cindy; Merlin, Jean-Louis
2013-01-01
According to the French legislation on medical biology (January 16th, 2010), all biological laboratories must be accredited according to ISO 15189 for at least 50% of their activities before the end of 2016. The extraction of DNA from a sample of interest, whether solid or liquid is one of the critical steps in molecular biology and specifically in somatic or constitutional genetic. The extracted DNA must meet a number of criteria such quality and also be in sufficient concentration to allow molecular biology assays such as the detection of somatic mutations. This paper describes the validation of the extraction and purification of DNA using chromatographic column extraction and quantitative determination by spectrophotometric assay, according to ISO 15189 and the accreditation technical guide in Human Health SH-GTA-04.
Quantitative Monitoring of Microbial Species during Bioleaching of a Copper Concentrate.
Hedrich, Sabrina; Guézennec, Anne-Gwenaëlle; Charron, Mickaël; Schippers, Axel; Joulian, Catherine
2016-01-01
Monitoring of the microbial community in bioleaching processes is essential in order to control process parameters and enhance the leaching efficiency. Suitable methods are, however, limited as they are usually not adapted to bioleaching samples and often no taxon-specific assays are available in the literature for these types of consortia. Therefore, our study focused on the development of novel quantitative real-time PCR (qPCR) assays for the quantification of Acidithiobacillus caldus, Leptospirillum ferriphilum, Sulfobacillus thermosulfidooxidans , and Sulfobacillus benefaciens and comparison of the results with data from other common molecular monitoring methods in order to evaluate their accuracy and specificity. Stirred tank bioreactors for the leaching of copper concentrate, housing a consortium of acidophilic, moderately thermophilic bacteria, relevant in several bioleaching operations, served as a model system. The microbial community analysis via qPCR allowed a precise monitoring of the evolution of total biomass as well as abundance of specific species. Data achieved by the standard fingerprinting methods, terminal restriction fragment length polymorphism (T-RFLP) and capillary electrophoresis single strand conformation polymorphism (CE-SSCP) on the same samples followed the same trend as qPCR data. The main added value of qPCR was, however, to provide quantitative data for each species whereas only relative abundance could be deduced from T-RFLP and CE-SSCP profiles. Additional value was obtained by applying two further quantitative methods which do not require nucleic acid extraction, total cell counting after SYBR Green staining and metal sulfide oxidation activity measurements via microcalorimetry. Overall, these complementary methods allow for an efficient quantitative microbial community monitoring in various bioleaching operations.
Quantitative Monitoring of Microbial Species during Bioleaching of a Copper Concentrate
Hedrich, Sabrina; Guézennec, Anne-Gwenaëlle; Charron, Mickaël; Schippers, Axel; Joulian, Catherine
2016-01-01
Monitoring of the microbial community in bioleaching processes is essential in order to control process parameters and enhance the leaching efficiency. Suitable methods are, however, limited as they are usually not adapted to bioleaching samples and often no taxon-specific assays are available in the literature for these types of consortia. Therefore, our study focused on the development of novel quantitative real-time PCR (qPCR) assays for the quantification of Acidithiobacillus caldus, Leptospirillum ferriphilum, Sulfobacillus thermosulfidooxidans, and Sulfobacillus benefaciens and comparison of the results with data from other common molecular monitoring methods in order to evaluate their accuracy and specificity. Stirred tank bioreactors for the leaching of copper concentrate, housing a consortium of acidophilic, moderately thermophilic bacteria, relevant in several bioleaching operations, served as a model system. The microbial community analysis via qPCR allowed a precise monitoring of the evolution of total biomass as well as abundance of specific species. Data achieved by the standard fingerprinting methods, terminal restriction fragment length polymorphism (T-RFLP) and capillary electrophoresis single strand conformation polymorphism (CE-SSCP) on the same samples followed the same trend as qPCR data. The main added value of qPCR was, however, to provide quantitative data for each species whereas only relative abundance could be deduced from T-RFLP and CE-SSCP profiles. Additional value was obtained by applying two further quantitative methods which do not require nucleic acid extraction, total cell counting after SYBR Green staining and metal sulfide oxidation activity measurements via microcalorimetry. Overall, these complementary methods allow for an efficient quantitative microbial community monitoring in various bioleaching operations. PMID:28066365
NASA Astrophysics Data System (ADS)
Hadia, Sarman K.; Thakker, R. A.; Bhatt, Kirit R.
2016-05-01
The study proposes an application of evolutionary algorithms, specifically an artificial bee colony (ABC), variant ABC and particle swarm optimisation (PSO), to extract the parameters of metal oxide semiconductor field effect transistor (MOSFET) model. These algorithms are applied for the MOSFET parameter extraction problem using a Pennsylvania surface potential model. MOSFET parameter extraction procedures involve reducing the error between measured and modelled data. This study shows that ABC algorithm optimises the parameter values based on intelligent activities of honey bee swarms. Some modifications have also been applied to the basic ABC algorithm. Particle swarm optimisation is a population-based stochastic optimisation method that is based on bird flocking activities. The performances of these algorithms are compared with respect to the quality of the solutions. The simulation results of this study show that the PSO algorithm performs better than the variant ABC and basic ABC algorithm for the parameter extraction of the MOSFET model; also the implementation of the ABC algorithm is shown to be simpler than that of the PSO algorithm.
Courtney, Jane; Woods, Elena; Scholz, Dimitri; Hall, William W; Gautier, Virginie W
2015-01-01
We introduce here MATtrack, an open source MATLAB-based computational platform developed to process multi-Tiff files produced by a photo-conversion time lapse protocol for live cell fluorescent microscopy. MATtrack automatically performs a series of steps required for image processing, including extraction and import of numerical values from Multi-Tiff files, red/green image classification using gating parameters, noise filtering, background extraction, contrast stretching and temporal smoothing. MATtrack also integrates a series of algorithms for quantitative image analysis enabling the construction of mean and standard deviation images, clustering and classification of subcellular regions and injection point approximation. In addition, MATtrack features a simple user interface, which enables monitoring of Fluorescent Signal Intensity in multiple Regions of Interest, over time. The latter encapsulates a region growing method to automatically delineate the contours of Regions of Interest selected by the user, and performs background and regional Average Fluorescence Tracking, and automatic plotting. Finally, MATtrack computes convenient visualization and exploration tools including a migration map, which provides an overview of the protein intracellular trajectories and accumulation areas. In conclusion, MATtrack is an open source MATLAB-based software package tailored to facilitate the analysis and visualization of large data files derived from real-time live cell fluorescent microscopy using photoconvertible proteins. It is flexible, user friendly, compatible with Windows, Mac, and Linux, and a wide range of data acquisition software. MATtrack is freely available for download at eleceng.dit.ie/courtney/MATtrack.zip.
Courtney, Jane; Woods, Elena; Scholz, Dimitri; Hall, William W.; Gautier, Virginie W.
2015-01-01
We introduce here MATtrack, an open source MATLAB-based computational platform developed to process multi-Tiff files produced by a photo-conversion time lapse protocol for live cell fluorescent microscopy. MATtrack automatically performs a series of steps required for image processing, including extraction and import of numerical values from Multi-Tiff files, red/green image classification using gating parameters, noise filtering, background extraction, contrast stretching and temporal smoothing. MATtrack also integrates a series of algorithms for quantitative image analysis enabling the construction of mean and standard deviation images, clustering and classification of subcellular regions and injection point approximation. In addition, MATtrack features a simple user interface, which enables monitoring of Fluorescent Signal Intensity in multiple Regions of Interest, over time. The latter encapsulates a region growing method to automatically delineate the contours of Regions of Interest selected by the user, and performs background and regional Average Fluorescence Tracking, and automatic plotting. Finally, MATtrack computes convenient visualization and exploration tools including a migration map, which provides an overview of the protein intracellular trajectories and accumulation areas. In conclusion, MATtrack is an open source MATLAB-based software package tailored to facilitate the analysis and visualization of large data files derived from real-time live cell fluorescent microscopy using photoconvertible proteins. It is flexible, user friendly, compatible with Windows, Mac, and Linux, and a wide range of data acquisition software. MATtrack is freely available for download at eleceng.dit.ie/courtney/MATtrack.zip. PMID:26485569
NASA Astrophysics Data System (ADS)
Ortolano, Gaetano; Visalli, Roberto; Godard, Gaston; Cirrincione, Rosolino
2018-06-01
We present a new ArcGIS®-based tool developed in the Python programming language for calibrating EDS/WDS X-ray element maps, with the aim of acquiring quantitative information of petrological interest. The calibration procedure is based on a multiple linear regression technique that takes into account interdependence among elements and is constrained by the stoichiometry of minerals. The procedure requires an appropriate number of spot analyses for use as internal standards and provides several test indexes for a rapid check of calibration accuracy. The code is based on an earlier image-processing tool designed primarily for classifying minerals in X-ray element maps; the original Python code has now been enhanced to yield calibrated maps of mineral end-members or the chemical parameters of each classified mineral. The semi-automated procedure can be used to extract a dataset that is automatically stored within queryable tables. As a case study, the software was applied to an amphibolite-facies garnet-bearing micaschist. The calibrated images obtained for both anhydrous (i.e., garnet and plagioclase) and hydrous (i.e., biotite) phases show a good fit with corresponding electron microprobe analyses. This new GIS-based tool package can thus find useful application in petrology and materials science research. Moreover, the huge quantity of data extracted opens new opportunities for the development of a thin-section microchemical database that, using a GIS platform, can be linked with other major global geoscience databases.
Hexaacetato calix(6)arene as the novel extractant for palladium.
Mathew, V J; Khopkar, S M
1997-10-01
A novel method is proposed for the solvent extraction of palladium. A superamolecular compound, hexaacetato calix(6)arene in low concentration in toluene quantitatively extracts microgram concentration of palladium at pH 7.5. It can be stripped from the organic phase with 2 M nitric acid and determined spectrophotometrically as its stannous chloride complex at 635 nm. The probable composition of the extracted species is Pd(HR)(2)Cl. As low as 1x10(-3) M of extractant is adequate for quantitative extraction. Toluene was the best diluent. With nitric and perchloric acid (1.5-3 M) the stripping was complete. Palladium was separated in large ratios from alkali and alkaline earths (1:50). The main group elements were tolerated in higher ratios (1:25), but ions like zinc, cadmium, iron, nickel, platinium, thorium, vanadium and molydenum were tolerated at low concentrations (1:1). The ions showing strong interference were copper, chromium. The relative standard deviation is +/-1.1%.
Biological and analytical characterization of two extracts from Valeriana officinalis.
Circosta, Clara; De Pasquale, Rita; Samperi, Stefania; Pino, Annalisa; Occhiuto, Francesco
2007-06-13
The anticoronaryspastic and antibronchospastic activities of ethanolic and aqueous extracts of Valeriana officinalis L. roots were investigated in anaesthetized guinea-pigs and the results were correlated with the qualitative/quantitative chemical composition of the extracts in order to account for some of the common uses of this plant. The protective effects of orally administered ethanolic and aqueous extracts (50, 100 and 200 mg/kg) were evaluated against pitressin-induced coronary spasm and pressor response in guinea-pigs and were compared with those of nifedipine. Furthermore, the protective effects against histamine-induced and Oleaceae antigen challenge-induced bronchospasm were evaluated. Finally, the two valerian extracts were analytically characterized by qualitative and quantitative chromatographic analysis. The results showed that the two valeriana extracts possessed significant anticoronaryspastic, antihypertensive and antibronchospastic properties. These were similar to those exhibited by nifedipine and are due to the structural features of the active principles they contain. This study justifies the traditional use of this plant in the treatment of some respiratory and cardiovascular disorders.
El-Rami, Fadi; Nelson, Kristina; Xu, Ping
2017-01-01
Streptococcus sanguinis is a commensal and early colonizer of oral cavity as well as an opportunistic pathogen of infectious endocarditis. Extracting the soluble proteome of this bacterium provides deep insights about the physiological dynamic changes under different growth and stress conditions, thus defining “proteomic signatures” as targets for therapeutic intervention. In this protocol, we describe an experimentally verified approach to extract maximal cytoplasmic proteins from Streptococcus sanguinis SK36 strain. A combination of procedures was adopted that broke the thick cell wall barrier and minimized denaturation of the intracellular proteome, using optimized buffers and a sonication step. Extracted proteome was quantitated using Pierce BCA Protein Quantitation assay and protein bands were macroscopically assessed by Coomassie Blue staining. Finally, a high resolution detection of the extracted proteins was conducted through Synapt G2Si mass spectrometer, followed by label-free relative quantification via Progenesis QI. In conclusion, this pipeline for proteomic extraction and analysis of soluble proteins provides a fundamental tool in deciphering the biological complexity of Streptococcus sanguinis. PMID:29152022
NASA Astrophysics Data System (ADS)
Bravo, Jaime; Davis, Scott C.; Roberts, David W.; Paulsen, Keith D.; Kanick, Stephen C.
2015-03-01
Quantification of targeted fluorescence markers during neurosurgery has the potential to improve and standardize surgical distinction between normal and cancerous tissues. However, quantitative analysis of marker fluorescence is complicated by tissue background absorption and scattering properties. Correction algorithms that transform raw fluorescence intensity into quantitative units, independent of absorption and scattering, require a paired measurement of localized white light reflectance to provide estimates of the optical properties. This study focuses on the unique problem of developing a spectral analysis algorithm to extract tissue absorption and scattering properties from white light spectra that contain contributions from both elastically scattered photons and fluorescence emission from a strong fluorophore (i.e. fluorescein). A fiber-optic reflectance device was used to perform measurements in a small set of optical phantoms, constructed with Intralipid (1% lipid), whole blood (1% volume fraction) and fluorescein (0.16-10 μg/mL). Results show that the novel spectral analysis algorithm yields accurate estimates of tissue parameters independent of fluorescein concentration, with relative errors of blood volume fraction, blood oxygenation fraction (BOF), and the reduced scattering coefficient (at 521 nm) of <7%, <1%, and <22%, respectively. These data represent a first step towards quantification of fluorescein in tissue in vivo.
Jõul, Piia; Vaher, Merike; Kuhtinskaja, Maria
2018-05-01
In this study, SPE method using a carbon aerogel(CA)-based sorbent was developed and evaluated for the simultaneous extraction of sulfur mustard (HD) degradation products from environmental water samples. Applied CAs proved to be very promising materials for use as SPE sorbents, due to their high porosity, very low density and a large specific surface area. 10 degradation products of HD, both aliphatic and cyclic (thiodiglycol (TDG), TDG sulfoxide, TDG sulfone, 3,5-dithia-1,7-heptanediol, 3,6-dithia-1,8-octanediol, 1,4-thioxane, 1,3-dithiolane, 1,4-dithiane, 1,2,5-trithiepane, and 1,4,5-oxadithiepane) were extracted on a CA-based SPE cartridge. The concentrations of target analytes in the eluate were determined by HPLC-DAD and CE-DAD. Several parameters affecting the extraction efficiency, including the kind and volume of the eluting solvent, sample loading flow rate, volume and ionic strength as well as the reusability of the cartridge, were investigated and optimized to achieve the best performance for the analytes. A series of quantitative parameters such as linear range, coefficient of determination, LOD, LOQ and precision were examined under the optimized conditions. High sensitivity (LODs 0.17-0.50 μM) and high precision (intraday RSD = 2.0-7.7% and interday RSD = 2.7-9.9%) for all the analytes were achieved. The performance of the CA-based sorbent was compared with that of commonly used SPE sorbents. Applied for the analysis of spiked pore water samples collected from the Bornholm Basin, one of the largest chemical warfare dumping sites in the Baltic Sea, the proposed method allowed high SPE recoveries of all the analytes ranging from 83.5 to 99.7% to be obtained. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ghiasvand, Alireza; Koonani, Samira; Yazdankhah, Fatemeh; Farhadi, Saeid
2018-02-05
A simple, rapid, and reliable headspace solid-phase microextraction (HS-SPME) procedure, reinforced by applying vacuum in the extraction vial, was developed. It was applied for the extraction of nicotine in solid samples prior to determination by gas chromatography-flame ionization detection (GC-FID). First, the surface of a narrow stainless steel wire was made porous and adhesive by platinization to obtain a durable, higher surface area, and resistant fiber. Then, a thin film of sulfonated graphene/polyaniline (Sulf-G/PANI) nanocomposite was synthesized and simultaneously coated on the platinized fiber using the electrophoretic deposition (EPD) method. It was demonstrated that the extraction efficiency remarkably increased by applying the reduced-pressure condition in the extraction vial. To evaluate the conventional HS-SPME and vacuum-assisted HS-SPME (VA-HS-SPME) platforms, all experimental parameters affecting the extraction efficiency including desorption time and temperature, extraction time and temperature and moisture content of sample matrix were optimized. The highest extraction efficiency was obtained at 60°C, 10min (extraction temperature and time) and 280°C, 2min (desorption condition), for VA-HS-SPME strategy, while for conventional HS-SPME the extraction and desorption conditions found to be 100°C, 30min and 280°C, 2min, respectively. The Sulf-G/PANI coated fiber showed high thermal stability, good chemical/mechanical resistance, and long lifetime. For analysis of nicotine in solid samples using VA-HS-SPME-GC-FID, linear dynamic range (LDR) was 0.01-30μgg -1 (R 2 =0.996), the relative standard deviation (RSD%, n=6), for analyses of 1μgg -1 nicotine was calculated 3.4% and limit of detection (LOD) found to be 0.002μgg -1 . The VA-HS-SPME-GC-FID strategy was successfully carried out for quantitation of nicotine in hair and tobacco real samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Quantitative Analysis of the Cervical Texture by Ultrasound and Correlation with Gestational Age.
Baños, Núria; Perez-Moreno, Alvaro; Migliorelli, Federico; Triginer, Laura; Cobo, Teresa; Bonet-Carne, Elisenda; Gratacos, Eduard; Palacio, Montse
2017-01-01
Quantitative texture analysis has been proposed to extract robust features from the ultrasound image to detect subtle changes in the textures of the images. The aim of this study was to evaluate the feasibility of quantitative cervical texture analysis to assess cervical tissue changes throughout pregnancy. This was a cross-sectional study including singleton pregnancies between 20.0 and 41.6 weeks of gestation from women who delivered at term. Cervical length was measured, and a selected region of interest in the cervix was delineated. A model to predict gestational age based on features extracted from cervical images was developed following three steps: data splitting, feature transformation, and regression model computation. Seven hundred images, 30 per gestational week, were included for analysis. There was a strong correlation between the gestational age at which the images were obtained and the estimated gestational age by quantitative analysis of the cervical texture (R = 0.88). This study provides evidence that quantitative analysis of cervical texture can extract features from cervical ultrasound images which correlate with gestational age. Further research is needed to evaluate its applicability as a biomarker of the risk of spontaneous preterm birth, as well as its role in cervical assessment in other clinical situations in which cervical evaluation might be relevant. © 2016 S. Karger AG, Basel.
Effects of ginseng extract on various haematological parameters during aerobic exercise in the rat.
Ferrando, A; Vila, L; Voces, J A; Cabral, A C; Alvarez, A I; Prieto, J G
1999-04-01
The effects of the Ginseng extract on various biochemical and haematological parameters in male Wistar rats subjected to a treadmill exercise protocol were studied for 12 weeks. The results showed increases in the haematological parameters, these increases being greatest for the animals treated with the extract during the third month of the study. The exercise also led to increases in these parameters, while the combination of both exercise and extract produced smaller increases. This study shows a clear physiological response due to the ginseng extract administration that reproduces many of the effects obtained after long-term exercise. The combination of exercise and treatments seems to support the theory that there is no clear synergic effect when the advantages associated with the ingestion of ginseng are compared with the performance of exercise.
Cabezon, L M; Caballero, M; Cela, R; Perez-Bustamante, J A
1984-08-01
A method is proposed for the simultaneous quantitative separation of traces ofCu(II), Cd(II) and Co(II) from sea-water samples by means of the co-flotation (adsorbing colloid flotation) technique with ferric hydroxide as co-precipitant and octadecylamine as collector. The experimental parameters have been studied and optimized. The drawbacks arising from the low solubility of octadecylamine and the corresponding sublates in water have been avoided by use of a 6M hydrochloric acid-MIBK-ethanol (1:2:2 v v ) mixture. The results obtained by means of the proposed method have been compared with those given by the usual ammonium pyrrolidine dithiocarbamate/MIBK extraction method.
Störmer, Elke; Bauer, Steffen; Kirchheiner, Julia; Brockmöller, Jürgen; Roots, Ivar
2003-01-05
A new HPLC method for the simultaneous determination of celecoxib, carboxycelecoxib and hydroxycelecoxib in human plasma samples has been developed. Following a solid-phase extraction procedure, the samples were separated by gradient reversed-phase HLPC (C(18)) and quantified using UV detection at 254 nm. The method was linear over the concentration range 10-500 ng/ml. The intra-assay variability for the three analytes ranged from 4.0 to 12.6% and the inter-assay variability from 4.9 to 14.2%. The achieved limits of quantitation (LOQ) of 10 ng/ml for each analyte allowed the determination of the pharmacokinetic parameters of the analytes after administration of 100 mg celecoxib.
Gong, Ying; Zhang, Xiaofei; He, Li; Yan, Qiuli; Yuan, Fang; Gao, Yanxiang
2015-03-01
Polyphenols was extracted with subcritical water from the sea buckthorn seed residue (after oil recovery), and the extraction parameters were optimized using response surface methodology (RSM). The independent processing variables were extraction temperature, extraction time and the ratio of water to solid. The optimal extraction parameters for the extracts with highest ABTS radical scavenging activity were 120 °C, 36 min and the water to solid ratio of 20, and the maximize antioxidant capacity value was 32.42 mmol Trolox equivalent (TE)/100 g. Under the optimal conditions, the yield of total phenolics, total flavonoids and proanthocyanidins was 36.62 mg gallic acid equivalents (GAE)/g, 19.98 mg rutin equivalent (RE)/g and 10.76 mg catechin equivalents (CE)/g, respectively.
[Study on new extraction technology of astragaloside IV].
Sun, Haiyan; Guan, Su; Huang, Min
2005-08-01
To explore the possibility and the optimal extraction technology of astragaloside IV by SFE-CO2. According the content of astragaloside IV, the optimum extraction technology parameters such as extraction temperature, pressure, extraction time, velocity of fluid and co-solvent were investigated and the result was compared with that of water extraction. The optimum technical parameters were as follows: Extracting pressure 40 Mpa, temperature 45 degrees C, extracting time 2h, co-solvent was 95% ethanol and its dosage was 4ml/g, the ratio of CO2 fluid was 10 kg/kg x h. Extraction technology of astragaloside IV by SFE-CO2 is reliable, stable.
Wei, Shih-Chun; Fan, Shen; Lien, Chia-Wen; Unnikrishnan, Binesh; Wang, Yi-Sheng; Chu, Han-Wei; Huang, Chih-Ching; Hsu, Pang-Hung; Chang, Huan-Tsung
2018-03-20
A graphene oxide (GO) nanosheet-modified N + -nylon membrane (GOM) has been prepared and used as an extraction and spray-ionization substrate for robust mass spectrometric detection of malachite green (MG), a highly toxic disinfectant in liquid samples and fish meat. The GOM is prepared by self-deposition of GO thin film onto an N + -nylon membrane, which has been used for efficient extraction of MG in aquaculture water samples or homogenized fish meat samples. Having a dissociation constant of 2.17 × 10 -9 M -1 , the GOM allows extraction of approximately 98% of 100 nM MG. Coupling of the GOM-spray with an ion-trap mass spectrometer allows quantitation of MG in aquaculture freshwater and seawater samples down to nanomolar levels. Furthermore, the system possesses high selectivity and sensitivity for the quantitation of MG and its metabolite (leucomalachite green) in fish meat samples. With easy extraction and efficient spray ionization properties of GOM, this membrane spray-mass spectrometry technique is relatively simple and fast in comparison to the traditional LC-MS/MS methods for the quantitation of MG and its metabolite in aquaculture products. Copyright © 2017 Elsevier B.V. All rights reserved.
Quantitative analysis of perfumes in talcum powder by using headspace sorptive extraction.
Ng, Khim Hui; Heng, Audrey; Osborne, Murray
2012-03-01
Quantitative analysis of perfume dosage in talcum powder has been a challenge due to interference of the matrix and has so far not been widely reported. In this study, headspace sorptive extraction (HSSE) was validated as a solventless sample preparation method for the extraction and enrichment of perfume raw materials from talcum powder. Sample enrichment is performed on a thick film of poly(dimethylsiloxane) (PDMS) coated onto a magnetic stir bar incorporated in a glass jacket. Sampling is done by placing the PDMS stir bar in the headspace vial by using a holder. The stir bar is then thermally desorbed online with capillary gas chromatography-mass spectrometry. The HSSE method is based on the same principles as headspace solid-phase microextraction (HS-SPME). Nevertheless, a relatively larger amount of extracting phase is coated on the stir bar as compared to SPME. Sample amount and extraction time were optimized in this study. The method has shown good repeatability (with relative standard deviation no higher than 12.5%) and excellent linearity with correlation coefficients above 0.99 for all analytes. The method was also successfully applied in the quantitative analysis of talcum powder spiked with perfume at different dosages. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
García-González, Diego L; Sedman, Jacqueline; van de Voort, Frederik R
2013-04-01
Spectral reconstitution (SR) is a dilution technique developed to facilitate the rapid, automated, and quantitative analysis of viscous oil samples by Fourier transform infrared spectroscopy (FT-IR). This technique involves determining the dilution factor through measurement of an absorption band of a suitable spectral marker added to the diluent, and then spectrally removing the diluent from the sample and multiplying the resulting spectrum to compensate for the effect of dilution on the band intensities. The facsimile spectrum of the neat oil thus obtained can then be qualitatively or quantitatively analyzed for the parameter(s) of interest. The quantitative performance of the SR technique was examined with two transition-metal carbonyl complexes as spectral markers, chromium hexacarbonyl and methylcyclopentadienyl manganese tricarbonyl. The estimation of the volume fraction (VF) of the diluent in a model system, consisting of canola oil diluted to various extents with odorless mineral spirits, served as the basis for assessment of these markers. The relationship between the VF estimates and the true volume fraction (VF(t)) was found to be strongly dependent on the dilution ratio and also depended, to a lesser extent, on the spectral resolution. These dependences are attributable to the effect of changes in matrix polarity on the bandwidth of the ν(CO) marker bands. Excellent VF(t) estimates were obtained by making a polarity correction devised with a variance-spectrum-delineated correction equation. In the absence of such a correction, SR was shown to introduce only a minor and constant bias, provided that polarity differences among all the diluted samples analyzed were minimal. This bias can be built into the calibration of a quantitative FT-IR analytical method by subjecting appropriate calibration standards to the same SR procedure as the samples to be analyzed. The primary purpose of the SR technique is to simplify preparation of diluted samples such that only approximate proportions need to be adhered to, rather than using exact weights or volumes, the marker accounting for minor variations. Additional applications discussed include the use of the SR technique in extraction-based, quantitative, automated FT-IR methods for the determination of moisture, acid number, and base number in lubricating oils, as well as of moisture content in edible oils.
Park, Jinoh; Kim, Hyun-Sook; Hwang, Hye Jeon; Yang, Dong Hyun; Koo, Hyun Jung; Kang, Joon-Won; Kim, Young-Hak
2017-09-01
To evaluate the geographic and demographic variabilities of the quantitative parameters of computed tomography perfusion (CTP) of the left ventricular (LV) myocardium in patients with normal coronary artery on computed tomography angiography (CTA). From a multicenter CTP registry of stress and static computed tomography, we retrospectively recruited 113 patients (mean age, 60 years; 57 men) without perfusion defect on visual assessment and minimal (< 20% of diameter stenosis) or no coronary artery disease on CTA. Using semiautomatic analysis software, quantitative parameters of the LV myocardium, including the myocardial attenuation in stress and rest phases, transmural perfusion ratio (TPR), and myocardial perfusion reserve index (MPRI), were evaluated in 16 myocardial segments. In the lateral wall of the LV myocardium, all quantitative parameters except for MPRI were significantly higher compared with those in the other walls. The MPRI showed consistent values in all myocardial walls (anterior to lateral wall: range, 25% to 27%; p = 0.401). At the basal level of the myocardium, all quantitative parameters were significantly lower than those at the mid- and apical levels. Compared with men, women had significantly higher values of myocardial attenuation and TPR. Age, body mass index, and Framingham risk score were significantly associated with the difference in myocardial attenuation. Geographic and demographic variabilities of quantitative parameters in stress myocardial CTP exist in healthy subjects without significant coronary artery disease. This information may be helpful when assessing myocardial perfusion defects in CTP.
High Performance Liquid Chromatography of Vitamin A: A Quantitative Determination.
ERIC Educational Resources Information Center
Bohman, Ove; And Others
1982-01-01
Experimental procedures are provided for the quantitative determination of Vitamin A (retinol) in food products by analytical liquid chromatography. Standard addition and calibration curve extraction methods are outlined. (SK)
Kimura, Akatsuki; Celani, Antonio; Nagao, Hiromichi; Stasevich, Timothy; Nakamura, Kazuyuki
2015-01-01
Construction of quantitative models is a primary goal of quantitative biology, which aims to understand cellular and organismal phenomena in a quantitative manner. In this article, we introduce optimization procedures to search for parameters in a quantitative model that can reproduce experimental data. The aim of optimization is to minimize the sum of squared errors (SSE) in a prediction or to maximize likelihood. A (local) maximum of likelihood or (local) minimum of the SSE can efficiently be identified using gradient approaches. Addition of a stochastic process enables us to identify the global maximum/minimum without becoming trapped in local maxima/minima. Sampling approaches take advantage of increasing computational power to test numerous sets of parameters in order to determine the optimum set. By combining Bayesian inference with gradient or sampling approaches, we can estimate both the optimum parameters and the form of the likelihood function related to the parameters. Finally, we introduce four examples of research that utilize parameter optimization to obtain biological insights from quantified data: transcriptional regulation, bacterial chemotaxis, morphogenesis, and cell cycle regulation. With practical knowledge of parameter optimization, cell and developmental biologists can develop realistic models that reproduce their observations and thus, obtain mechanistic insights into phenomena of interest.
Yuan, Yue; Zhou, Rong; Li, Dongliang; Luo, Cheng; Li, Guoyou
2018-03-01
A simple and efficient method combining ultrasound-assisted extraction, the conditions of which were optimized by response surface methodology, with liquid chromatography and tandem mass spectrometry was established and validated for the absolute quantification of nine non-volatile neutral glycosides originating from tobacco (Nicotiana tobaccum L.) leaves, comprising three phenolic glycosides, one benzanoid glycoside, and five sesquiterpene glycosides within three isomers, originating from tobacco leaves. Factors of extraction time, sample quantity, extraction solvent, liquid chromatographic conditions, and electrospray ionization parameters were carefully investigated to ensure the selectivity and sensitivity of the method. All calibration curves showed excellent coefficients of determination ranging from 0.9940 to 0.9996, within the range of tested concentrations. The limits of detection and quantification were 2.33-25.9 and 7.06-78.5 ng/mL, respectively. Satisfactory values of accuracy were between 80.1 to 107.9% among different sample matrixes. The relative standard deviations of intra- and inter-day analysis were less than 13.7 and 13.0% respectively. The developed method was successfully applied in a pilot study to determine the amounts of the nine endogenous glycosides in real flue-cured tobacco samples obtained from different habitats in China. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Bo; Wang, Zhi-Wei; Lin, Qin-Bao; Hu, Chang-Ying; Su, Qi-Zhi; Wu, Yu-Mei
2015-07-01
An analytical method for the quantitative determination of 4 antioxidants, 9 ultraviolet (UV) stabilizers, 12 phthalate plasticizers and 2 photoinitiators in plastic food package using accelerated solvent extraction (ASE) coupled with high-performance liquid chromatography-photodiode array detector (HPLC-PDA) has been developed. Parameters affecting the efficiency in the process such as extraction and chromatographic conditions were studied in order to determine operating conditions. The analytical method of ASE-HPLC showed good linearity with good correlation coefficients (R ≥ 0.9833). The limits of detection and quantification were between 0.03 and 0.30 µg mL(-1) and between 0.10 and 1.00 µg mL(-1) for 27 analytes. Average spiked recoveries for most analytes in samples were >70.4% at 10, 20 and 40 µg g(-1) spiked levels, except UV-9 and Irganox 1010 (58.6 and 64.0% spiked at 10 µg g(-1), respectively), the relative standard deviations were in the range from 0.4 to 15.4%. The methodology has been proposed for the analysis of 27 polymer additives in plastic food package. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Wang, Meng; Wu, Lan; Hu, Qiufen; Yang, Yaling
2018-03-01
A rapid, sensitive, precise, and accurate dispersive-magnetic solid-phase extraction technique combined with flame atomic absorption spectrometry was established for pre-concentration and separation of Pd (II) in soil samples. In the developed system, 5-amine-1,10-phenanthroline was used as synergistic complexant; sodium dodecyl sulfate and 2-(5-bromo-2-pyridylazo)-5-diethyl aminophenol ligand coated on magnetic nanoparticles were synthesized by a chemical precipitation method, and then employed as the efficient magnetic adsorbent with good magnetic properties and dispersibility. Various operational parameters affecting the extraction efficiency has been studied and optimized in details. Under the optimum experimental conditions, the detection limit of the mentioned method for palladium ions was 0.12 μg/L, while the relative standard deviation was 1.8%. Finally, the developed method was applied for the analysis of palladium ions in three kinds of soil samples and quantitative recoveries were achieved over the range of 96.7-104.0%. It can be a powerful alternative applied to the determination of traces of Pd ions from various real samples in further researches.
Analysis of ultrasound pulse-echo images for characterization of muscle disease
NASA Astrophysics Data System (ADS)
Leeman, Sidney; Heckmatt, John Z.
1996-04-01
This study aims to extract quantifiable indices characterizing ultrasound propagation and scattering in skeletal muscle, from data acquired using a real-time linear array scanner in a paediatric muscle clinic, in order to establish early diagnosis of Duchenne muscular dystrophy in young children, as well as to chart the progressive severity of the disease. Approximately 40 patients with gait disorders, aged between 1 and 11 years, were scanned with a real-time linear array ultrasound scanner, at 5 MHz. A control group consisted of approximately 50 boys, in the same age range, with no evidence or history of muscle disease. Results show that ultrasound quantitative methods can provide a tight clustering of normal data, and also provide a basis for charting the degree of change in diseased muscle. The most significant (quantitative) parameters derive from the frequency of the attenuation and the muscle echogenicity. The approach provides a discrimination method that is more sensitive than visual assessment of the corresponding image by even an experienced observer. There are also indications that the need for traumatic muscle biopsy may be obviated in some cases.
Assessing Microneurosurgical Skill with Medico-Engineering Technology.
Harada, Kanako; Morita, Akio; Minakawa, Yoshiaki; Baek, Young Min; Sora, Shigeo; Sugita, Naohiko; Kimura, Toshikazu; Tanikawa, Rokuya; Ishikawa, Tatsuya; Mitsuishi, Mamoru
2015-10-01
Most methods currently used to assess surgical skill are rather subjective or not adequate for microneurosurgery. Objective and quantitative microneurosurgical skill assessment systems that are capable of accurate measurements are necessary for the further development of microneurosurgery. Infrared optical motion tracking markers, an inertial measurement unit, and strain gauges were mounted on tweezers to measure many parameters related to instrument manipulation. We then recorded the activity of 23 neurosurgeons. The task completion time, tool path, and needle-gripping force were evaluated for three stitches made in an anastomosis of 0.7-mm artificial blood vessels. Videos of the activity were evaluated by three blinded expert surgeons. Surgeons who had recently done many bypass procedures demonstrated better skills. These skilled surgeons performed the anastomosis with in a shorter time, with a shorter tool path, and with a lesser force when extracting the needle. These results show the potential contribution of the system to microsurgical skill assessment. Quantitative and detailed analysis of surgical tasks helps surgeons better understand the key features of the required skills. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Chen, Xiaochu; Bian, Yanli; Liu, Fengmao; Teng, Peipei; Sun, Pan
2017-10-06
Two simple sample pretreatment for the determination of difenoconazole in cowpea was developed including micellar extraction combined with ionic liquid based vortex-assisted liquid-liquid microextraction (ME-IL-VALLME) prior to high performance liquid chromatography (HPLC), and modified quick, easy, cheap, effective, rugged, and safe method (QuEChERS) coupled with HPLC-MS/MS. In ME-IL-VALLME method, the target analyte was extracted by surfactant Tween 20 micellar solution, then the supernatant was diluted with 3mL water to decrease the solubility of micellar solution. Subsequently, the vortex-assisted liquid-liquid microextraction (VALLME) procedure was performed in the diluted extraction solution by using the ionic liquid of 1-hexyl-3-methylimidazolium hexafluorophosphate ([HMIM]PF 6 ) as the extraction solvent and Tween 20 as an emulsifier to enhance the dispersion of the water-immiscible ionic liquid into the aqueous phase. Parameters that affect the extraction have been investigated in both methods Under the optimum conditions, the limits of quantitation were 0.10 and 0.05mgkg -1 , respectively. And good linearity was achieved with the correlation coefficient higher than 0.9941. The relative recoveries ranged from 78.6 to 94.8% and 92.0 to 118.0% with the relative standard deviations (RSD) of 7.9-9.6% and 1.2-3.2%, respectively. Both methods were quick, simple and inexpensive. However, the ME-IL-VALLME method provides higher enrichment factor compared with conventional QuEChERS method. The ME-IL-VALLME method has a strong potential for the determination of difenoconazole in complex vegetable matrices with HPLC. Copyright © 2017 Elsevier B.V. All rights reserved.
Hu, Cong; He, Man; Chen, Beibei; Zhong, Cheng; Hu, Bin
2013-10-04
In this work, three kinds of metal-organic frameworks (MOFs), MOF-5, MOF-199 and IRMOF-3, were introduced in stir bar sorptive extraction (SBSE) and novel polydimethylsiloxane (PDMS)/MOFs (including PDMS/MOF-5, PDMS/MOF-199 and PDMS/IRMOF-3) coated stir bars were prepared by sol-gel technique. These PDMS/MOFs coatings were characterized and critically compared for the extraction of seven target estrogens (17-β-estradiol, dienestrol, diethylstilbestrol, estrone, 4-t-octylphenol, bisphenol-A and 17α-ethynylestradiol) by SBSE, and the results showed that PDMS/IRMOF-3 exhibited highest extraction efficiency. Based on the above facts, a novel method of PDMS/IRMOF-3 coating SBSE-high performance liquid chromatography ultraviolet (HPLC-UV) detection was developed for the determination of seven target estrogens in environmental waters. Several parameters affecting extraction of seven target estrogens by SBSE (PDMS/IRMOF-3) including extraction time, stirring rate, pH, ionic strength, desorption solvent and desorption time were investigated. Under the optimal experimental conditions, the limits of detection (LODs, S/N=3) were found to be in the range of 0.15-0.35 μg/L. The linear range was 2-2,500 μg/L for 17α-ethynylestradiol and 1-2,500 μg/L for other estrogens. The relative standard deviations (RSDs) were in the range of 3.7-9.9% (n=8, c=20 μg/L) and the enrichment factors were from 30.3 to 55.6-fold (theoretical enrichment factor was 100-fold). The proposed method was successfully applied to the analysis of estrogens in environmental water samples, and quantitative recoveries were obtained for the spiking experiments. Copyright © 2013 Elsevier B.V. All rights reserved.
[Application of CWT to extract characteristic monitoring parameters during spine surgery].
Chen, Penghui; Wu, Baoming; Hu, Yong
2005-10-01
It is necessary to monitor intraoperative spinal function in order to prevent spinal neurological deficit during spine surgery. This study aims to extract characteristic electrophysiological monitoring parameters during surgical treatment of scoliosis. The problem, "the monitoring parameters in time domain are of great variability and are sensitive to noise", may also be solved in this study. By use of continuous wavelet transform to analyze the intraoperative cortical somatosensory evoked potential (CSEP), three new characteristic monitoring parameters in time-frequency domain (TFD) are extracted. The results indicate that the variability of CSEP characteristic parameters in TFD is lower than the variability of those in time domain. Therefore, the TFD characteristic monitoring parameters are more stable and reliable parameters of latency and amplitude in time domain. The application of TFD monitoring parameters during spine surgery may avoid spinal injury effectively.
Retinal Nerve Fiber Layer Segmentation on FD-OCT Scans of Normal Subjects and Glaucoma Patients.
Mayer, Markus A; Hornegger, Joachim; Mardin, Christian Y; Tornow, Ralf P
2010-11-08
Automated measurements of the retinal nerve fiber layer thickness on circular OCT B-Scans provide physicians additional parameters for glaucoma diagnosis. We propose a novel retinal nerve fiber layer segmentation algorithm for frequency domain data that can be applied on scans from both normal healthy subjects, as well as glaucoma patients, using the same set of parameters. In addition, the algorithm remains almost unaffected by image quality. The main part of the segmentation process is based on the minimization of an energy function consisting of gradient and local smoothing terms. A quantitative evaluation comparing the automated segmentation results to manually corrected segmentations from three reviewers is performed. A total of 72 scans from glaucoma patients and 132 scans from normal subjects, all from different persons, composed the database for the evaluation of the segmentation algorithm. A mean absolute error per A-Scan of 2.9 µm was achieved on glaucomatous eyes, and 3.6 µm on healthy eyes. The mean absolute segmentation error over all A-Scans lies below 10 µm on 95.1% of the images. Thus our approach provides a reliable tool for extracting diagnostic relevant parameters from OCT B-Scans for glaucoma diagnosis.
Retinal Nerve Fiber Layer Segmentation on FD-OCT Scans of Normal Subjects and Glaucoma Patients
Mayer, Markus A.; Hornegger, Joachim; Mardin, Christian Y.; Tornow, Ralf P.
2010-01-01
Automated measurements of the retinal nerve fiber layer thickness on circular OCT B-Scans provide physicians additional parameters for glaucoma diagnosis. We propose a novel retinal nerve fiber layer segmentation algorithm for frequency domain data that can be applied on scans from both normal healthy subjects, as well as glaucoma patients, using the same set of parameters. In addition, the algorithm remains almost unaffected by image quality. The main part of the segmentation process is based on the minimization of an energy function consisting of gradient and local smoothing terms. A quantitative evaluation comparing the automated segmentation results to manually corrected segmentations from three reviewers is performed. A total of 72 scans from glaucoma patients and 132 scans from normal subjects, all from different persons, composed the database for the evaluation of the segmentation algorithm. A mean absolute error per A-Scan of 2.9 µm was achieved on glaucomatous eyes, and 3.6 µm on healthy eyes. The mean absolute segmentation error over all A-Scans lies below 10 µm on 95.1% of the images. Thus our approach provides a reliable tool for extracting diagnostic relevant parameters from OCT B-Scans for glaucoma diagnosis. PMID:21258556
Ultrasensitive investigations of biological systems by fluorescence correlation spectroscopy.
Haustein, Elke; Schwille, Petra
2003-02-01
Fluorescence correlation spectroscopy (FCS) extracts information about molecular dynamics from the tiny fluctuations that can be observed in the emission of small ensembles of fluorescent molecules in thermodynamic equilibrium. Employing a confocal setup in conjunction with highly dilute samples, the average number of fluorescent particles simultaneously within the measurement volume (approximately 1 fl) is minimized. Among the multitude of chemical and physical parameters accessible by FCS are local concentrations, mobility coefficients, rate constants for association and dissociation processes, and even enzyme kinetics. As any reaction causing an alteration of the primary measurement parameters such as fluorescence brightness or mobility can be monitored, the application of this noninvasive method to unravel processes in living cells is straightforward. Due to the high spatial resolution of less than 0.5 microm, selective measurements in cellular compartments, e.g., to probe receptor-ligand interactions on cell membranes, are feasible. Moreover, the observation of local molecular dynamics provides access to environmental parameters such as local oxygen concentrations, pH, or viscosity. Thus, this versatile technique is of particular attractiveness for researchers striving for quantitative assessment of interactions and dynamics of small molecular quantities in biologically relevant systems.
Cell death monitoring using quantitative optical coherence tomography methods
NASA Astrophysics Data System (ADS)
Farhat, Golnaz; Yang, Victor X. D.; Kolios, Michael C.; Czarnota, Gregory J.
2011-03-01
Cell death is characterized by a series of predictable morphological changes, which modify the light scattering properties of cells. We present a multi-parametric approach to detecting changes in subcellular morphology related to cell death using optical coherence tomography (OCT). Optical coherence tomography data were acquired from acute myeloid leukemia (AML) cells undergoing apoptosis over a period of 48 hours. Integrated backscatter (IB) and spectral slope (SS) were computed from OCT backscatter spectra and statistical parameters were extracted from a generalized gamma (GG) distribution fit to OCT signal intensity histograms. The IB increased by 2-fold over 48 hours with significant increases observed as early as 4 hours. The SS increased in steepness by 2.5-fold with significant changes at 12 hours, while the GG parameters were sensitive to apoptotic changes at 24 to 48 hours. Histology slides indicated nuclear condensation and fragmentation at 24 hours, suggesting the late scattering changes could be related to nuclear structure. A second series of measurements from AML cells treated with cisplatin, colchicine or ionizing radiation suggested that the GG parameters could potentially differentiate between modes of cell death. Distinct cellular morphology was observed in histology slides obtained from cells treated under each condition.
Dresch, Jacqueline M; Liu, Xiaozhou; Arnosti, David N; Ay, Ahmet
2010-10-24
Quantitative models of gene expression generate parameter values that can shed light on biological features such as transcription factor activity, cooperativity, and local effects of repressors. An important element in such investigations is sensitivity analysis, which determines how strongly a model's output reacts to variations in parameter values. Parameters of low sensitivity may not be accurately estimated, leading to unwarranted conclusions. Low sensitivity may reflect the nature of the biological data, or it may be a result of the model structure. Here, we focus on the analysis of thermodynamic models, which have been used extensively to analyze gene transcription. Extracted parameter values have been interpreted biologically, but until now little attention has been given to parameter sensitivity in this context. We apply local and global sensitivity analyses to two recent transcriptional models to determine the sensitivity of individual parameters. We show that in one case, values for repressor efficiencies are very sensitive, while values for protein cooperativities are not, and provide insights on why these differential sensitivities stem from both biological effects and the structure of the applied models. In a second case, we demonstrate that parameters that were thought to prove the system's dependence on activator-activator cooperativity are relatively insensitive. We show that there are numerous parameter sets that do not satisfy the relationships proferred as the optimal solutions, indicating that structural differences between the two types of transcriptional enhancers analyzed may not be as simple as altered activator cooperativity. Our results emphasize the need for sensitivity analysis to examine model construction and forms of biological data used for modeling transcriptional processes, in order to determine the significance of estimated parameter values for thermodynamic models. Knowledge of parameter sensitivities can provide the necessary context to determine how modeling results should be interpreted in biological systems.
Numerous extraction methods have been developed and used in the quantitation of both photopigments and mycosporine amino acids (MAAs) found in Symbiodinium sp. and zooanthellate metazoans. We have development of a simple, mild extraction procedure using methanol, which when coupl...
Sanchez-Prado, Lucia; Lamas, J Pablo; Lores, Marta; Garcia-Jares, Carmen; Llompart, Maria
2010-11-15
An effective one-step sample preparation methodology for the determination of multiclass preservatives in cosmetics has been developed, applying, for the first time to this kind of matrix, pressurized liquid extraction (PLE) and a very simple, cheap, and fast derivatization procedure: acetylation with acetic anhydride and pyridine. A multifactorial experimental design has been used to evaluate and optimize the main experimental parameters potentially affecting the extraction process. In the final conditions the sample was mixed with Florisil as the dispersing sorbent and extracted with ethyl acetate for 15 min at 120 °C. One of the main goals of this work was to demonstrate the possibility of carrying out direct cosmetic preservative acetylation by simply adding the derivatization reagents into the PLE cell. The extract was then analyzed by GC/MS without any further cleanup or concentration step. The accuracy, precision, linearity, and detection limits (LODs) were evaluated to assess the performance of the proposed method. Quantitative recoveries were obtained, and relative standard deviation values were lower than 10% in all cases. The obtained LODs ranged from 0.000004% to 0.0001% (w/w), values far below the established restrictions in the European Cosmetics Regulation, making this multicomponent analytical method suitable for routine control. Finally, several cosmetic products such as moisturizing and antiwrinkle creams and lotions, hand creams, sunscreen and after-sun creams, baby lotions, and hair care products were analyzed. All the samples contained several of the target cosmetic ingredients, in some cases at quite high concentrations, although the actual European Cosmetics Regulation was fulfilled in all cases.
Tan, Liang; Geng, Dan-dan; Hu, Feng-zu; Dong, Qi
2016-01-01
In this study, the 10 accessions of rhubarb seeds from different habitats in China were investigated. Lipids were removed using petroleum ether, and the effective components were then separated using accelerated solvent extraction with 80% aqueous methanol. An off-line 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging method was used as the marker to evaluate the total antioxidant capability of extracts. On-line high-performance liquid chromatography-diode-array detectors-electrospray ionization-tandem mass spectrometry (HPLC-DAD-ESI-MS(n)) and HPLC-DAD-DPPH assays were developed for rapid identification and quantification of individual free-radical scavengers in extracts of rhubarb seeds. Ten free-radical scavengers from methanolic extracts of the rhubarb seeds were screened, five of which were identified and quantitatively analyzed: epicatechin, myricetin, hyperoside, quercitrin and quercetin. All were identified in rhubarb seeds for the first time and can be regarded as the major potent antioxidants in rhubarb seeds due to representing most of the total free-radical scavenging activity. Preliminary analysis of structures was performed for another five antioxidants. Based on our validation results, the developed method can be used for rapid separation, convenient identification and quantification of the multiple antioxidative constituents in rhubarb seeds, featuring good quantification parameters, accuracy and precision. The results are important to clarify the material basis and therapeutic mechanism of rhubarb seeds. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Zhang, Zhen-Shan; Liu, Yu-Lan; Che, Li-Ming
2018-03-01
Supercritical carbon dioxide extraction (SC-CO 2 ) technology was used to extract oil from Eucommia ulmoides seed. The optimum conditions and significant parameters in SC-CO 2 were obtained using response surface methodology (RSM). The qualities of the extracted oil were evaluated by physicochemical properties, fatty acid composition, vitamin E composition. It was found that the optimum extraction parameters were at pressure of 37 MPa, temperature of 40°C, extraction time of 125 min and CO 2 flow rate of 2.6 SL/min. Pressure, temperature and time were identified as significant parameter effecting on extraction yield. The importance of evaluated parameters decreased in the order of pressure > extraction time > temperature > CO 2 flow rate. GC analysis indicated that E. ulmoides seed oil contained about 61% of linolenic acid and its fatty acid composition was similar with that of flaxseed oil and perilla oil. The content and composition of vitamin E was determined using HPLC. The E. ulmoides seed oil was rich in vitamin E (190.72 mg/100 g), the predominant vitamin E isomers were γ- tocopherol and δ- tocopherol, which accounted for 70.87% and 24.81% of the total vitamin E, respectively. The high yield and good physicochemical properties of extracted oil support the notion that SC-CO 2 technology is an effective technique for extracting oil from E. ulmoides seed.
Mousavi, Fatemeh; Pawliszyn, Janusz
2013-11-25
1-Vinyl-3-octadecylimidazolium bromide ionic liquid [C18VIm]Br was prepared and used for the modification of mercaptopropyl-functionalized silica (Si-MPS) through surface radical chain-transfer addition. The synthesized octadecylimidazolium-modified silica (SiImC18) was characterized by thermogravimetric analysis (TGA), infrared spectroscopy (IR), (13)C NMR and (29)Si NMR spectroscopy and used as an extraction phase for the automated 96-blade solid phase microextraction (SPME) system with thin-film geometry using polyacrylonitrile (PAN) glue. The new proposed extraction phase was applied for extraction of aminoacids from grape pulp, and LC-MS-MS method was developed for separation of model compounds. Extraction efficiency, reusability, linearity, limit of detection, limit of quantitation and matrix effect were evaluated. The whole process of sample preparation for the proposed method requires 270min for 96 samples simultaneously (60min preconditioning, 90min extraction, 60min desorption and 60min for carryover step) using 96-blade SPME system. Inter-blade and intra-blade reproducibility were in the respective ranges of 5-13 and 3-10% relative standard deviation (RSD) for all model compounds. Limits of detection and quantitation of the proposed SPME-LC-MS/MS system for analysis of analytes were found to range from 0.1 to 1.0 and 0.5 to 3.0μgL(-1), respectively. Standard addition calibration was applied for quantitative analysis of aminoacids from grape juice and the results were validated with solvent extraction (SE) technique. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, J
Purpose: To investigate the potential utility of in-line phase-contrast imaging (ILPCI) technique with synchrotron radiation in detecting early hepatocellular carcinoma and cavernous hemangioma of live using in vitro model system. Methods: Without contrast agents, three typical early hepatocellular carcinoma specimens and three typical cavernous hemangioma of live specimens were imaged using ILPCI. To quantitatively discriminate early hepatocellular carcinoma tissues and cavernous hemangioma tissues, the projection images texture feature based on gray level co-occurrence matrix (GLCM) were extracted. The texture parameters of energy, inertia, entropy, correlation, sum average, sum entropy, difference average, difference entropy and inverse difference moment, were obtained respectively.more » Results: In the ILPCI planar images of early hepatocellular carcinoma specimens, vessel trees were clearly visualized on the micrometer scale. Obvious distortion deformation was presented, and the vessel mostly appeared as a ‘dry stick’. Liver textures appeared not regularly. In the ILPCI planar images of cavernous hemangioma of live specimens, typical vessels had not been found compared with the early hepatocellular carcinoma planar images. The planar images of cavernous hemangioma of live specimens clearly displayed the dilated hepatic sinusoids with the diameter of less than 100 microns, but all of them were overlapped with each other. The texture parameters of energy, inertia, entropy, correlation, sum average, sum entropy, and difference average, showed a statistically significant between the two types specimens image (P<0.01), except the texture parameters of difference entropy and inverse difference moment(P>0.01). Conclusion: The results indicate that there are obvious changes in morphological levels including vessel structures and liver textures. The study proves that this imaging technique has a potential value in evaluating early hepatocellular carcinoma and cavernous hemangioma of live.« less
Wu, Q; Zhao, X; You, H
2017-05-18
This study aimed to test the diagnostic performance of a fully quantitative fibrosis assessment tool for liver fibrosis in patients with chronic hepatitis B (CHB), primary biliary cirrhosis (PBC) and non-alcoholic steatohepatitis (NASH). A total of 117 patients with liver fibrosis were included in this study, including 50 patients with CHB, 49 patients with PBC and 18 patients with NASH. All patients underwent liver biopsy (LB). Fibrosis stages were assessed by two experienced pathologists. Histopathological images of LB slices were processed by second harmonic generation (SHG)/two-photon excited fluorescence (TPEF) microscopy without staining, a system called qFibrosis (quantitative fibrosis) system. Altogether 101 quantitative features of the SHG/TPEF images were acquired. The parameters of aggregated collagen in portal, septal and fibrillar areas increased significantly with stages of liver fibrosis in PBC and CHB (P<0.05), but the same was not found for parameters of distributed collagen (P>0.05). There was a significant correlation between parameters of aggregated collagen in portal, septal and fibrillar areas and stages of liver fibrosis from CHB and PBC (P<0.05), but no correlation was found between the distributed collagen parameters and the stages of liver fibrosis from those patients (P>0.05). There was no significant correlation between NASH parameters and stages of fibrosis (P>0.05). For CHB and PBC patients, the highest correlation was between septal parameters and fibrosis stages, the second highest was between portal parameters and fibrosis stages and the lowest correlation was between fibrillar parameters and fibrosis stages. The correlation between the septal parameters of the PBC and stages is significantly higher than the parameters of the other two areas (P<0.05). The qFibrosis candidate parameters based on CHB were also applicable for quantitative analysis of liver fibrosis in PBC patients. Different parameters should be selected for liver fibrosis assessment in different stages of PBC compared with CHB.
Wu, Q.; Zhao, X.; You, H.
2017-01-01
This study aimed to test the diagnostic performance of a fully quantitative fibrosis assessment tool for liver fibrosis in patients with chronic hepatitis B (CHB), primary biliary cirrhosis (PBC) and non-alcoholic steatohepatitis (NASH). A total of 117 patients with liver fibrosis were included in this study, including 50 patients with CHB, 49 patients with PBC and 18 patients with NASH. All patients underwent liver biopsy (LB). Fibrosis stages were assessed by two experienced pathologists. Histopathological images of LB slices were processed by second harmonic generation (SHG)/two-photon excited fluorescence (TPEF) microscopy without staining, a system called qFibrosis (quantitative fibrosis) system. Altogether 101 quantitative features of the SHG/TPEF images were acquired. The parameters of aggregated collagen in portal, septal and fibrillar areas increased significantly with stages of liver fibrosis in PBC and CHB (P<0.05), but the same was not found for parameters of distributed collagen (P>0.05). There was a significant correlation between parameters of aggregated collagen in portal, septal and fibrillar areas and stages of liver fibrosis from CHB and PBC (P<0.05), but no correlation was found between the distributed collagen parameters and the stages of liver fibrosis from those patients (P>0.05). There was no significant correlation between NASH parameters and stages of fibrosis (P>0.05). For CHB and PBC patients, the highest correlation was between septal parameters and fibrosis stages, the second highest was between portal parameters and fibrosis stages and the lowest correlation was between fibrillar parameters and fibrosis stages. The correlation between the septal parameters of the PBC and stages is significantly higher than the parameters of the other two areas (P<0.05). The qFibrosis candidate parameters based on CHB were also applicable for quantitative analysis of liver fibrosis in PBC patients. Different parameters should be selected for liver fibrosis assessment in different stages of PBC compared with CHB. PMID:28538834
Quantitative analysis of professionally trained versus untrained voices.
Siupsinskiene, Nora
2003-01-01
The aim of this study was to compare healthy trained and untrained voices as well as healthy and dysphonic trained voices in adults using combined voice range profile and aerodynamic tests, to define the normal range limiting values of quantitative voice parameters and to select the most informative quantitative voice parameters for separation between healthy and dysphonic trained voices. Three groups of persons were evaluated. One hundred eighty six healthy volunteers were divided into two groups according to voice training: non-professional speakers group consisted of 106 untrained voices persons (36 males and 70 females) and professional speakers group--of 80 trained voices persons (21 males and 59 females). Clinical group consisted of 103 dysphonic professional speakers (23 males and 80 females) with various voice disorders. Eighteen quantitative voice parameters from combined voice range profile (VRP) test were analyzed: 8 of voice range profile, 8 of speaking voice, overall vocal dysfunction degree and coefficient of sound, and aerodynamic maximum phonation time. Analysis showed that healthy professional speakers demonstrated expanded vocal abilities in comparison to healthy non-professional speakers. Quantitative voice range profile parameters- pitch range, high frequency limit, area of high frequencies and coefficient of sound differed significantly between healthy professional and non-professional voices, and were more informative than speaking voice or aerodynamic parameters in showing the voice training. Logistic stepwise regression revealed that VRP area in high frequencies was sufficient to discriminate between healthy and dysphonic professional speakers for male subjects (overall discrimination accuracy--81.8%) and combination of three quantitative parameters (VRP high frequency limit, maximum voice intensity and slope of speaking curve) for female subjects (overall model discrimination accuracy--75.4%). We concluded that quantitative voice assessment with selected parameters might be useful for evaluation of voice education for healthy professional speakers as well as for detection of vocal dysfunction and evaluation of rehabilitation effect in dysphonic professionals.
Turner, Andrew D; Waack, Julia; Lewis, Adam; Edwards, Christine; Lawton, Linda
2018-02-01
A simple, rapid UHPLC-MS/MS method has been developed and optimised for the quantitation of microcystins and nodularin in wide variety of sample matrices. Microcystin analogues targeted were MC-LR, MC-RR, MC-LA, MC-LY, MC-LF, LC-LW, MC-YR, MC-WR, [Asp3] MC-LR, [Dha7] MC-LR, MC-HilR and MC-HtyR. Optimisation studies were conducted to develop a simple, quick and efficient extraction protocol without the need for complex pre-analysis concentration procedures, together with a rapid sub 5min chromatographic separation of toxins in shellfish and algal supplement tablet powders, as well as water and cyanobacterial bloom samples. Validation studies were undertaken on each matrix-analyte combination to the full method performance characteristics following international guidelines. The method was found to be specific and linear over the full calibration range. Method sensitivity in terms of limits of detection, quantitation and reporting were found to be significantly improved in comparison to LC-UV methods and applicable to the analysis of each of the four matrices. Overall, acceptable recoveries were determined for each of the matrices studied, with associated precision and within-laboratory reproducibility well within expected guidance limits. Results from the formalised ruggedness analysis of all available cyanotoxins, showed that the method was robust for all parameters investigated. The results presented here show that the optimised LC-MS/MS method for cyanotoxins is fit for the purpose of detection and quantitation of a range of microcystins and nodularin in shellfish, algal supplement tablet powder, water and cyanobacteria. The method provides a valuable early warning tool for the rapid, routine extraction and analysis of natural waters, cyanobacterial blooms, algal powders, food supplements and shellfish tissues, enabling monitoring labs to supplement traditional microscopy techniques and report toxicity results within a short timeframe of sample receipt. The new method, now accredited to ISO17025 standard, is simple, quick, applicable to multiple matrices and is highly suitable for use as a routine, high-throughout, fast turnaround regulatory monitoring tool. Copyright © 2017 Elsevier B.V. All rights reserved.
Our goal is to construct a publicly available computational radiomics system for the objective and automated extraction of quantitative imaging features that we believe will yield biomarkers of greater prognostic value compared with routinely extracted descriptors of tumor size. We will create a generalized, open, portable, and extensible radiomics platform that is widely applicable across cancer types and imaging modalities and describe how we will use lung and head and neck cancers as models to validate our developments.
Li, Wenkui; Doherty, John P; Kulmatycki, Kenneth; Smith, Harold T; Tse, Francis Ls
2012-06-01
In support of a pilot clinical trial using acetaminophen as the model compound to assess dried blood spot (DBS) sampling as the method for clinical pharmacokinetic sample collection, a novel sensitive LC-MS/MS method was developed and validated for the simultaneous determination of acetaminophen and its major metabolites, acetaminophen glucuronide and sulfate, in human DBS samples collected by subjects via fingerprick. The validated assay dynamic range was from 50.0 to 5000 ng/ml for each compound using a 1/8´´ (3-mm) disc punched from a DBS sample. Baseline separation of the three analytes was achieved to eliminate the possible impact of insource fragmentation of the conjugated metabolites on the analysis of the parent. The overall extraction efficiency was from 61.3 to 78.8% for the three analytes by direct extraction using methanol. The validated method was successfully implemented in the pilot clinical study with the obtained pharmacokinetic parameters in agreement with the values reported in literature.
NASA Astrophysics Data System (ADS)
Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Beavis, D. R.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Brandin, A. V.; Brovko, S. G.; Bültmann, S.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, L.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chwastowski, J.; Codrington, M. J. M.; Contin, G.; Cramer, J. G.; Crawford, H. J.; Cui, X.; Das, S.; Davila Leyva, A.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Derradi de Souza, R.; Dhamija, S.; di Ruzza, B.; Didenko, L.; Dilks, C.; Ding, F.; Djawotho, P.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Engle, K. S.; Eppley, G.; Eun, L.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Fedorisin, J.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Gangadharan, D. R.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Gliske, S.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Haag, B.; Hamed, A.; Han, L.-X.; Haque, R.; Harris, J. W.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, H. Z.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Kesich, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Kosarzewski, L. K.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; LeVine, M. J.; Li, C.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, Y. G.; Madagodagettige Don, D. M. M. D.; Mahapatra, D. P.; Majka, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; McShane, T. S.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Ohlson, A.; Okorokov, V.; Oldag, E. W.; Olvitt, D. L.; Pachr, M.; Page, B. S.; Pal, S. K.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Peryt, W.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Pujahari, P. R.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Riley, C. K.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ross, J. F.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sangaline, E.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Singaraju, R. N.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solanki, D.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Sun, X.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; Szelezniak, M. A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Vanfossen, J. A.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Vossen, A.; Wada, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, X. L.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, H.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y.; Xu, Z.; Yan, W.; Yang, C.; Yang, Y.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zawisza, Y.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, J. L.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, X.; Zhu, Y. H.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration
2015-07-01
We present results of analyses of two-pion interferometry in Au +Au collisions at √{sNN}=7.7 , 11.5, 19.6, 27, 39, 62.4, and 200 GeV measured in the STAR detector as part of the BNL Relativistic Heavy Ion Collider Beam Energy Scan program. The extracted correlation lengths (Hanbury-Brown-Twiss radii) are studied as a function of beam energy, azimuthal angle relative to the reaction plane, centrality, and transverse mass (mT) of the particles. The azimuthal analysis allows extraction of the eccentricity of the entire fireball at kinetic freeze-out. The energy dependence of this observable is expected to be sensitive to changes in the equation of state. A new global fit method is studied as an alternate method to directly measure the parameters in the azimuthal analysis. The eccentricity shows a monotonic decrease with beam energy that is qualitatively consistent with the trend from all model predictions and quantitatively consistent with a hadronic transport model.
McCloy, J S; Sundaram, S K; Matyas, J; Woskov, P P
2011-05-01
Millimeter wave (MMW) radiometry can be used for simultaneous measurement of emissivity and temperature of materials under extreme environments (high temperature, pressure, and corrosive environments). The state-of-the-art dual channel MMW passive radiometer with active interferometric capabilities at 137 GHz described here allows for radiometric measurements of sample temperature and emissivity up to at least 1600 °C with simultaneous measurement of sample surface dynamics. These capabilities have been used to demonstrate dynamic measurement of melting of powders of simulated lunar regolith and static measurement of emissivity of solid samples. The paper presents the theoretical background and basis for the dual-receiver system, describes the hardware in detail, and demonstrates the data analysis. Post-experiment analysis of emissivity versus temperature allows further extraction from the radiometric data of millimeter wave viewing beam coupling factors, which provide corroboratory evidence to the interferometric data of the process dynamics observed. These results show the promise of the MMW system for extracting quantitative and qualitative process parameters for industrial processes and access to real-time dynamics of materials behavior in extreme environments.
Modelling of Dictyostelium discoideum movement in a linear gradient of chemoattractant.
Eidi, Zahra; Mohammad-Rafiee, Farshid; Khorrami, Mohammad; Gholami, Azam
2017-11-15
Chemotaxis is a ubiquitous biological phenomenon in which cells detect a spatial gradient of chemoattractant, and then move towards the source. Here we present a position-dependent advection-diffusion model that quantitatively describes the statistical features of the chemotactic motion of the social amoeba Dictyostelium discoideum in a linear gradient of cAMP (cyclic adenosine monophosphate). We fit the model to experimental trajectories that are recorded in a microfluidic setup with stationary cAMP gradients and extract the diffusion and drift coefficients in the gradient direction. Our analysis shows that for the majority of gradients, both coefficients decrease over time and become negative as the cells crawl up the gradient. The extracted model parameters also show that besides the expected drift in the direction of the chemoattractant gradient, we observe a nonlinear dependency of the corresponding variance on time, which can be explained by the model. Furthermore, the results of the model show that the non-linear term in the mean squared displacement of the cell trajectories can dominate the linear term on large time scales.
Adamczyk, L.
2015-07-10
In this study, we present results of analyses of two-pion interferometry in Au+Au collisions at √s NN = 7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeV measured in the STAR detector as part of the RHIC Beam Energy Scan program. The extracted correlation lengths (HBT radii) are studied as a function of beam energy, azimuthal angle relative to the reaction plane, centrality, and transverse mass ( mT) of the particles. The azimuthal analysis allows extraction of the eccentricity of the entire fireball at kinetic freeze-out. The energy dependence of this observable is expected to be sensitive to changes inmore » the equation of state. A new global fit method is studied as an alternate method to directly measure the parameters in the azimuthal analysis. The eccentricity shows a monotonic decrease with beam energy that is qualitatively consistent with the trend from all model predictions and quantitatively consistent with a hadronic transport model.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamczyk, L.
In this study, we present results of analyses of two-pion interferometry in Au+Au collisions at √s NN = 7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeV measured in the STAR detector as part of the RHIC Beam Energy Scan program. The extracted correlation lengths (HBT radii) are studied as a function of beam energy, azimuthal angle relative to the reaction plane, centrality, and transverse mass ( mT) of the particles. The azimuthal analysis allows extraction of the eccentricity of the entire fireball at kinetic freeze-out. The energy dependence of this observable is expected to be sensitive to changes inmore » the equation of state. A new global fit method is studied as an alternate method to directly measure the parameters in the azimuthal analysis. The eccentricity shows a monotonic decrease with beam energy that is qualitatively consistent with the trend from all model predictions and quantitatively consistent with a hadronic transport model.« less
A proteomics performance standard to support measurement quality in proteomics.
Beasley-Green, Ashley; Bunk, David; Rudnick, Paul; Kilpatrick, Lisa; Phinney, Karen
2012-04-01
The emergence of MS-based proteomic platforms as a prominent technology utilized in biochemical and biomedical research has increased the need for high-quality MS measurements. To address this need, National Institute of Standards and Technology (NIST) reference material (RM) 8323 yeast protein extract is introduced as a proteomics quality control material for benchmarking the preanalytical and analytical performance of proteomics-based experimental workflows. RM 8323 yeast protein extract is based upon the well-characterized eukaryote Saccharomyces cerevisiae and can be utilized in the design and optimization of proteomics-based methodologies from sample preparation to data analysis. To demonstrate its utility as a proteomics quality control material, we coupled LC-MS/MS measurements of RM 8323 with the NIST MS Quality Control (MSQC) performance metrics to quantitatively assess the LC-MS/MS instrumentation parameters that influence measurement accuracy, repeatability, and reproducibility. Due to the complexity of the yeast proteome, we also demonstrate how NIST RM 8323, along with the NIST MSQC performance metrics, can be used in the evaluation and optimization of proteomics-based sample preparation methods. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xie, Liyang; Lee, Sang Gil; Vance, Terrence M; Wang, Ying; Kim, Bohkyung; Lee, Ji-Young; Chun, Ock K; Bolling, Bradley W
2016-11-15
A single-dose pharmacokinetic trial was conducted in 6 adults to evaluate the bioavailability of anthocyanins and colonic polyphenol metabolites after consumption of 500mg aronia berry extract. UHPLC-MS methods were developed to quantitate aronia berry polyphenols and their metabolites in plasma and urine. While anthocyanins were bioavailable, microbial phenolic catabolites increased ∼10-fold more than anthocyanins in plasma and urine. Among the anthocyanins, cyanidin-3-O-galactoside was rapidly metabolized to peonidin-3-O-galactoside. Aronia polyphenols were absorbed and extensively metabolized with tmax of anthocyanins and other polyphenol catabolites from 1.0h to 6.33h in plasma and urine. Despite significant inter-individual variation in pharmacokinetic parameters, concentrations of polyphenol metabolites in plasma and urine at 24h were positively correlated with total AUC in plasma and urine (r=0.93, and r=0.98, respectively). This suggests that fasting blood and urine collections could be used to estimate polyphenol bioavailability and metabolism after aronia polyphenol consumption. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mendil, Durali; Demirci, Zafer; Uluozlu, Ozgur Dogan; Tuzen, Mustafa; Soylak, Mustafa
2017-04-15
A novel and simple solid phase extraction method was improved and recommended for selenium. Silica gel was modified with 2,6-diamino-4-phenil-1,3,5-triazine and characterized by FTIR, SEM and elemental analysis and used adsorbent for column solid phase extraction of selenium ions. The experimental parameters (pH, flow rates, amounts of the modified silica gel, concentration and type of eluent, volume of sample, etc.) on the recoveries of selenium were optimized. Standard reference materials were analyzed for validation of method. The present method was successfully applied to the detection of total selenium in water and microwave digested some food samples with quantitative recoveries (> 95%). The relative standard deviations were<8%. Matrix influences were not observed. The adsorption capacity of modified silica gel was 5.90mgg -1 . The LOD was 0.015μgL -1 . Enrichment factor was obtained as 50 for the introduced method. Copyright © 2016 Elsevier Ltd. All rights reserved.
Aims: To determine the performance of a rapid, real time polymerase chain reaction (PCR) method for the detection and quantitative analysis Helicobacter pylori at low concentrations in drinking water.
Methods and Results: A rapid DNA extraction and quantitative PCR (QPCR)...
Knittel, Diana N; Stintzing, Florian C; Kammerer, Dietmar R
2015-06-10
Sea squill (Drimia maritima L.) extracts have been used for centuries for the medical treatment of heart diseases. A procedure for the preparation of Drimia extracts applied for such purposes comprising a fermentation step is described in the German Homoeopathic Pharmacopoeia (GHP). However, little is known about the secondary metabolite profile of such extracts and the fate of these components upon processing and storage. Thus, in the present study sea squill extracts were monitored during fermentation and storage by HPLC-DAD-MS(n) and GC-MS to characterise and quantitate individual cardiac glycosides and phenolic compounds. For this purpose, a previously established HPLC method for the separation and quantitation of pharmacologically relevant cardiac glycosides (bufadienolides) was validated. Within 12 months of storage, total bufadienolide contents decreased by about 50%, which was attributed to microbial and plant enzyme activities. The metabolisation and degradation rates of individual bufadienolide glycosides significantly differed, which was attributed to differing structures of the aglycones. Further degradation of bufadienolide aglycones was also observed. Besides reactions well known from human metabolism studies, dehydration of individual compounds was monitored. Quantitatively predominating flavonoids were also metabolised throughout the fermentation process. The present study provides valuable information about the profile and stability of individual cardiac glycosides and phenolic compounds in fermented Drimia extracts prepared for medical applications, and expands the knowledge of cardiac glycoside conversion upon microbial fermentation. Copyright © 2015 Elsevier B.V. All rights reserved.
Wang, Mei; Zhao, Jianping; Avula, Bharathi; Wang, Yan-Hong; Avonto, Cristina; Chittiboyina, Amar G; Wylie, Philip L; Parcher, Jon F; Khan, Ikhlas A
2014-12-17
A high-resolution gas chromatography/mass spectrometry (GC/MS) with selected ion monitor method focusing on the characterization and quantitative analysis of ginkgolic acids (GAs) in Ginkgo biloba L. plant materials, extracts, and commercial products was developed and validated. The method involved sample extraction with (1:1) methanol and 10% formic acid, liquid-liquid extraction with n-hexane, and derivatization with trimethylsulfonium hydroxide (TMSH). Separation of two saturated (C13:0 and C15:0) and six unsaturated ginkgolic acid methyl esters with different positional double bonds (C15:1 Δ8 and Δ10, C17:1 Δ8, Δ10, and Δ12, and C17:2) was achieved on a very polar (88% cyanopropyl) aryl-polysiloxane HP-88 capillary GC column. The double bond positions in the GAs were determined by ozonolysis. The developed GC/MS method was validated according to ICH guidelines, and the quantitation results were verified by comparison with a standard high-performance liquid chromatography method. Nineteen G. biloba authenticated and commercial plant samples and 21 dietary supplements purported to contain G. biloba leaf extracts were analyzed. Finally, the presence of the marker compounds, terpene trilactones and flavonol glycosides for Ginkgo biloba in the dietary supplements was determined by UHPLC/MS and used to confirm the presence of G. biloba leaf extracts in all of the botanical dietary supplements.
Wang, Peng; Liu, Donghui; Gu, Xu; Jiang, Shuren; Zhou, Zhiqiang
2008-01-01
Methods for the enantiomeric quantitative determination of 3 chiral pesticides, paclobutrazol, myclobutanil, and uniconazole, and their residues in soil and water are reported. An effective chiral high-performance liquid chromatographic (HPLC)-UV method using an amylose-tris(3,5-dimethylphenylcarbamate; AD) column was developed for resolving the enantiomers and quantitative determination. The enantiomers were identified by a circular dichroism detector. Validation involved complete resolution of each of the 2 enantiomers, plus determination of linearity, precision, and limit of detection (LOD). The pesticide enantiomers were isolated by solvent extraction from soil and C18 solid-phase extraction from water. The 2 enantiomers of the 3 pesticides could be completely separated on the AD column using n-hexane isopropanol mobile phase. The linearity and precision results indicated that the method was reliable for the quantitative analysis of the enantiomers. LODs were 0.025, 0.05, and 0.05 mg/kg for each enantiomer of paclobutrazol, myclobutanil, and uniconazole, respectively. Recovery and precision data showed that the pretreatment procedures were satisfactory for enantiomer extraction and cleanup. This method can be used for optical purity determination of technical material and analysis of environmental residues.
Wang, Jiaming; Gambetta, Joanna M; Jeffery, David W
2016-05-18
Two rosé wines, representing a tropical and a fruity/floral style, were chosen from a previous study for further exploration by aroma extract dilution analysis (AEDA) and quantitative analysis. Volatiles were extracted using either liquid-liquid extraction (LLE) followed by solvent-assisted flavor evaporation (SAFE) or a recently developed dynamic headspace (HS) sampling method utilizing solid-phase extraction (SPE) cartridges. AEDA was conducted using gas chromatography-mass spectrometry/olfactometry (GC-MS/O) and a total of 51 aroma compounds with a flavor dilution (FD) factor ≥3 were detected. Quantitative analysis of 92 volatiles was undertaken in both wines for calculation of odor activity values. The fruity and floral wine style was mostly driven by 2-phenylethanol, β-damascenone, and a range of esters, whereas 3-SHA and several volatile acids were seen as essential for the tropical style. When extraction methods were compared, HS-SPE was as efficient as SAFE for extracting most esters and higher alcohols, which were associated with fruity and floral characters, but it was difficult to capture volatiles with greater polarity or higher boiling point that may still be important to perceived wine aroma.
Kosulin, K; Dworzak, S; Lawitschka, A; Matthes-Leodolter, S; Lion, T
2016-12-01
Adenoviruses almost invariably proliferate in the gastrointestinal tract prior to dissemination, and critical threshold concentrations in stool correlate with the risk of viremia. Monitoring of adenovirus loads in stool may therefore be important for timely initiation of treatment in order to prevent invasive infection. Comparison of a manual DNA extraction kit in combination with a validated in-house PCR assay with automated extraction on the NucliSENS-EasyMAG device coupled with the Adenovirus R-gene kit (bioMérieux) for quantitative adenovirus analysis in stool samples. Stool specimens spiked with adenovirus concentrations in a range from 10E2-10E11 copies/g and 32 adenovirus-positive clinical stool specimens from pediatric stem cell transplant recipients were tested along with appropriate negative controls. Quantitative analysis of viral load in adenovirus-positive stool specimens revealed a median difference of 0.5 logs (range 0.1-2.2) between the detection systems tested and a difference of 0.3 logs (range 0.0-1.7) when the comparison was restricted to the PCR assays only. Spiking experiments showed a detection limit of 10 2 -10 3 adenovirus copies/g stool revealing a somewhat higher sensitivity offered by the automated extraction. The dynamic range of accurate quantitative analysis by both systems investigated was between 10 3 and 10 8 virus copies/g. The differences in quantitative analysis of adenovirus copy numbers between the systems tested were primarily attributable to the DNA extraction method used, while the qPCR assays revealed a high level of concordance. Both systems showed adequate performance for detection and monitoring of adenoviral load in stool specimens. Copyright © 2016 Elsevier B.V. All rights reserved.
A new method to evaluate image quality of CBCT images quantitatively without observers
Shimizu, Mayumi; Okamura, Kazutoshi; Yoshida, Shoko; Weerawanich, Warangkana; Tokumori, Kenji; Jasa, Gainer R; Yoshiura, Kazunori
2017-01-01
Objectives: To develop an observer-free method for quantitatively evaluating the image quality of CBCT images by applying just-noticeable difference (JND). Methods: We used two test objects: (1) a Teflon (polytetrafluoroethylene) plate phantom attached to a dry human mandible; and (2) a block phantom consisting of a Teflon step phantom and an aluminium step phantom. These phantoms had holes with different depths. They were immersed in water and scanned with a CB MercuRay (Hitachi Medical Corporation, Tokyo, Japan) at tube voltages of 120 kV, 100 kV, 80 kV and 60 kV. Superimposed images of the phantoms with holes were used for evaluation. The number of detectable holes was used as an index of image quality. In detecting holes quantitatively, the threshold grey value (ΔG), which differentiated holes from the background, was calculated using a specific threshold (the JND), and we extracted the holes with grey values above ΔG. The indices obtained by this quantitative method (the extracted hole values) were compared with the observer evaluations (the observed hole values). In addition, the contrast-to-noise ratio (CNR) of the shallowest detectable holes and the deepest undetectable holes were measured to evaluate the contribution of CNR to detectability. Results: The results of this evaluation method corresponded almost exactly with the evaluations made by observers. The extracted hole values reflected the influence of different tube voltages. All extracted holes had an area with a CNR of ≥1.5. Conclusions: This quantitative method of evaluating CBCT image quality may be more useful and less time-consuming than evaluation by observation. PMID:28045343
Wagner, Rebecca; Wetzel, Stephanie J; Kern, John; Kingston, H M Skip
2012-02-01
The employment of chemical weapons by rogue states and/or terrorist organizations is an ongoing concern in the United States. The quantitative analysis of nerve agents must be rapid and reliable for use in the private and public sectors. Current methods describe a tedious and time-consuming derivatization for gas chromatography-mass spectrometry and liquid chromatography in tandem with mass spectrometry. Two solid-phase extraction (SPE) techniques for the analysis of glyphosate and methylphosphonic acid are described with the utilization of isotopically enriched analytes for quantitation via atmospheric pressure chemical ionization-quadrupole time-of-flight mass spectrometry (APCI-Q-TOF-MS) that does not require derivatization. Solid-phase extraction-isotope dilution mass spectrometry (SPE-IDMS) involves pre-equilibration of a naturally occurring sample with an isotopically enriched standard. The second extraction method, i-Spike, involves loading an isotopically enriched standard onto the SPE column before the naturally occurring sample. The sample and the spike are then co-eluted from the column enabling precise and accurate quantitation via IDMS. The SPE methods in conjunction with IDMS eliminate concerns of incomplete elution, matrix and sorbent effects, and MS drift. For accurate quantitation with IDMS, the isotopic contribution of all atoms in the target molecule must be statistically taken into account. This paper describes two newly developed sample preparation techniques for the analysis of nerve agent surrogates in drinking water as well as statistical probability analysis for proper molecular IDMS. The methods described in this paper demonstrate accurate molecular IDMS using APCI-Q-TOF-MS with limits of quantitation as low as 0.400 mg/kg for glyphosate and 0.031 mg/kg for methylphosphonic acid. Copyright © 2012 John Wiley & Sons, Ltd.
High performance curcumin subcritical water extraction from turmeric (Curcuma longa L.).
Valizadeh Kiamahalleh, Mohammad; Najafpour-Darzi, Ghasem; Rahimnejad, Mostafa; Moghadamnia, Ali Akbar; Valizadeh Kiamahalleh, Meisam
2016-06-01
Curcumin is a hydrophobic polyphenolic compound derived from turmeric rhizome, which consists about 2-5% of the total rhizome content and is a more valuable component of turmeric. For reducing the drawbacks of conventional extraction (using organic solvents) of curcumin, the water as a clean solvent was used for extracting curcumin. Subcritical water extraction (SWE) experimental setup was fabricated in a laboratory scale and the influences of some parameters (e.g. extraction temperature, particle size, retention time and pressure) on the yield of extraction were investigated. Optimum extraction conditions such as SWE pressure of 10bar, extractive temperature of 140°C, particle size of 0.71mm and retention time of 14min were defined. The maximum amount of curcumin extracted at the optimum condition was 3.8wt%. The yield of curcumin extraction was more than 76wt% with regards to the maximum possible curcumin content of turmeric, as known to be 5%. The scanning electron microscope (SEM) images from the outer surface of turmeric, before and after extraction, clearly demonstrated the effect of each parameter; changes in porosity and hardness of turmeric that is directly related to the amount of extracted curcumin in process optimization of the extraction parameters. Copyright © 2016 Elsevier B.V. All rights reserved.
Wu, Hui-Fen; Ku, Hsin-Yi; Yen, Jyh-Hao
2008-07-01
A liquid-phase microextraction (LPME) method using a micropipette with disposable tips was demonstrated for coupling to atmospheric pressure MALDI-MS (AP-MALDI/MS) as a concentrating probe for rapid analysis and quantitative determination of nortriptyline drug from biological matrices including human urine and human plasma. This technique was named as micropipette extraction (MPE). The best optimized parameters of MPE coupled to AP-MALDI/MS experiments were extraction solvent, toluene; extraction time, 5 min; sample agitation rate, 480 rpm; sample pH, 7; salt concentration, 30%; hole size of micropipette tips, 0.61 mm (id); and matrix concentration, 1000 ppm using alpha-cyano-4-hydroxycinnamic acid (CHCA) as a matrix. Three detection modes of AP-MALDI/MS analysis including full scan, selective ion monitor (SIM), and selective reaction monitor (SRM) of MS/MS were also compared for the MPE performance. The results clearly demonstrated that the MS/MS method provides a wider linear range and lower LODs but poor RSDs than the full scan and SIM methods. The LOD values for the MPE under SIM and MS/MS modes in water, urine, and plasma were 6.26, 47.5, and 94.9 nM, respectively. The enrichment factors (EFs) of this current approach were 36.5-43.0 fold in water. In addition, compared to single drop microextraction (SDME) and LPME using a dual gauge microsyringe with a hollow fiber (LPME-HF) technique, the LODs acquired by the MPE method under MS/MS modes were comparable to those of LPME-HF and SDME but it is more convenient than both methods. The advantages of this novel method are simple, easy to use, low cost, and no contamination between experiments since disposable tips were used for the micropipettes. The MPE has the potential to be widely used in the future because it only requires a simple micropipette to perform all extraction processes. We believe that this technique can be a powerful tool for MALDI/MS analysis of biological samples and clinical applications.
Haeri, Seyed Ammar; Abbasi, Shahryar; Sajjadifar, Sami
2017-09-15
In the present investigation, extraction and preconcentration of methamphetamine in human urine samples was carried out using a novel bio-dispersive liquid liquid microextraction (Bio-DLLME) technique coupled with magnetic solid phase extraction (MSPE). Bio-DLLME is a kind of microextraction technique based nano-materials which have potential capabilities in many application fields. Bio-DLLME is based on the use of a binary part system consisting of methanol and nano rhaminolipid biosurfactant. Use of this binary mixture is ecologically accepted due to their specificity, biocompatibility and biodegradable nature. The potential of nano rhaminolipid biosurfactant as a biological agent in the extraction of organic compounds has been investigated in recent years. They are able to partition at the oil/water interfaces and reduce the interfacial tension in order to increase solubility of hydrocarbons. The properties of the prepared Fe 3 O 4 @PPy magnetic nanoparticles were characterized using Fourier transform infrared spectroscopy and X-ray diffraction methods The influences of the experimental parameters on the quantitative recovery of analyte were investigated. Under optimized conditions, the enrichment factor was 310, the calibration graph was linear in the methamphetamine concentration range from 1 to 60μgL -1 , with a correlation coefficient of 0.9998. The relative standard deviations for six replicate measurements was 5.2%. Copyright © 2017 Elsevier B.V. All rights reserved.
Hoppe, Elisabeth; Körzdörfer, Gregor; Würfl, Tobias; Wetzl, Jens; Lugauer, Felix; Pfeuffer, Josef; Maier, Andreas
2017-01-01
The purpose of this work is to evaluate methods from deep learning for application to Magnetic Resonance Fingerprinting (MRF). MRF is a recently proposed measurement technique for generating quantitative parameter maps. In MRF a non-steady state signal is generated by a pseudo-random excitation pattern. A comparison of the measured signal in each voxel with the physical model yields quantitative parameter maps. Currently, the comparison is done by matching a dictionary of simulated signals to the acquired signals. To accelerate the computation of quantitative maps we train a Convolutional Neural Network (CNN) on simulated dictionary data. As a proof of principle we show that the neural network implicitly encodes the dictionary and can replace the matching process.
New method for determination of ten pesticides in human blood.
García-Repetto, R; Giménez, M P; Repetto, M
2001-01-01
An analytical method was developed for precise identification and quantitation of 10 pesticides in human blood. The pesticides studied, which have appeared frequently in actual cases, were endosulfan, lindane, parathion, ethyl-azinphos, diazinon, malathion, alachlor, tetradifon, fenthion and dicofol (o-p' and p-p' isomers). The current method replaces an earlier method which involved liquid-liquid extraction with a mixture of n-hexane-benzene (1 + 1). The extraction is performed by solid-phase extraction, with C18 cartridges and 2 internal standards, perthane and triphenylphosphate. Eluates were analyzed by gas chromatography (GC) with nitrogen-phosphorus and electrochemical detectors. Results were confirmed by GC-mass spectrometry in the electron impact mode. Blood blank samples spiked with 2 standard mixtures and an internal standard were used for quantitation. Mean recoveries ranged from 71.83 to 97.10%. Detection and quantitation limits are reported for each pesticide. Examples are provided to show the application of the present method to actual samples.
Subcritical (hot) water with ethanol as modifier was used
to extract nonylphenol polyethoxy carboxylates (NPECs)
with 1-4 ethoxy groups from sludge samples. Quantitative
recovery of native NPECs from sludge was accomplished
by extracting 0.25 g samples for 20 min w...
ERIC Educational Resources Information Center
Lavilla, Isela; Costas, Marta; Pena-Pereira, Francisco; Gil, Sandra; Bendicho, Carlos
2011-01-01
Ultrasound-assisted extraction (UAE) is introduced to upper-level analytical chemistry students as a simple strategy focused on sample preparation for trace-metal determination in biological tissues. Nickel extraction in seafood samples and quantification by electrothermal atomic absorption spectrometry (ETAAS) are carried out by a team of four…
A Teaching Laboratory for Comprehensive Lipid Characterization from Food Samples
ERIC Educational Resources Information Center
Bendinskas, Kestutis; Weber, Benjamin; Nsouli, Tamara; Nguyen, Hoangvy V.; Joyce, Carolyn; Niri, Vadoud; Jaskolla, Thorsten W.
2014-01-01
Traditional and state-of-the-art techniques were combined to probe for various lipid classes from egg yolk and avocado qualitatively and quantitatively. A total lipid extract was isolated using liquid-liquid extraction. An aliquot of the total lipid extract was subjected to transesterification to form volatile fatty acid methyl esters suitable for…
Ligocka, D; Lison, D; Haufroid, V
2002-10-05
The aim of this work was to validate a sensitive method for quantitative analysis of 5-hydroxy-N-methylpyrrolidone (5-HNMP) in urine. This compound has been recommended as a marker for biological monitoring of N-methylpyrrolidone (NMP) exposure. Different solvents and alternative methods of extraction including liquid-liquid extraction (LLE) on Chem Elut and solid-phase extraction (SPE) on Oasis HLB columns were tested. The most efficient extraction of 5-HNMP in urine was LLE with Chem Elut columns and dichloromethane as a solvent (consistently 22% of recovery). The urinary extracts were derivatized by bis(trimethylsilyl)trifluoroacetamide and analysed by gas chromatography-mass spectrometry (GC-MS) with tetradeutered 5-HNMP as an internal standard. The detection limit of this method is 0.017 mg/l urine with an intraassay precision of 1.6-2.6%. The proposed method of extraction is simple and reproducible. Four different m/z signal ratios of TMS-5-HNMP and tetralabelled TMS-5-HNMP have been validated and could be indifferently used in case of unexpected impurities from urine matrix. Copyright 2002 Elsevier Science B.V.
Piatak, N.M.; Seal, R.R.; Sanzolone, R.F.; Lamothe, P.J.; Brown, Z.A.; Adams, M.
2007-01-01
We report results from sequential extraction experiments and the quantitative mineralogy for samples of stream sediments and mine wastes collected from metal mines. Samples were from the Elizabeth, Ely Copper, and Pike Hill Copper mines in Vermont, the Callahan Mine in Maine, and the Martha Mine in New Zealand. The extraction technique targeted the following operationally defined fractions and solid-phase forms: (1) soluble, adsorbed, and exchangeable fractions; (2) carbonates; (3) organic material; (4) amorphous iron- and aluminum-hydroxides and crystalline manganese-oxides; (5) crystalline iron-oxides; (6) sulfides and selenides; and (7) residual material. For most elements, the sum of an element from all extractions steps correlated well with the original unleached concentration. Also, the quantitative mineralogy of the original material compared to that of the residues from two extraction steps gave insight into the effectiveness of reagents at dissolving targeted phases. The data are presented here with minimal interpretation or discussion and further analyses and interpretation will be presented elsewhere.
Chen, Huiping; Li, Xuewen; Xu, Yongli; Lo, Kakei; Zheng, Huizhen; Hu, Haiyan; Wang, Jun; Lin, Yongcheng
2018-05-15
The polar extract of the Dendrobium species or F. fimbriata (a substitute of Dendrobium ), between the fat-soluble extract and polysaccharide has barely been researched. This report worked on the qualitative and quantitative studies of polar extracts from D. nobile , D. officinale , D. loddigesii , and F. fimbriata . Eight water-soluble metabolites containing a new diglucoside, flifimdioside A ( 1 ), and a rare imidazolium-type alkaloid, anosmine ( 4 ), were identified using chromatography as well as spectroscopic techniques. Their contents in the four herbs were high, approximately 0.9⁻3.7 mg/g based on the analysis of quantitative nuclear magnetic resonance (qNMR) spectroscopy. Biological activity evaluation showed that the polar extract of F. fimbriata or its pure component had good antioxidant and neuroprotective activity; compounds 1 ‒ 4 and shihunine ( 8 ) showed weak α-glucosidase inhibitory activity; 4 and 8 had weak anti-inflammatory activity. Under trial conditions, all samples had no cytotoxic activity.
Kline, Margaret C; Duewer, David L; Travis, John C; Smith, Melody V; Redman, Janette W; Vallone, Peter M; Decker, Amy E; Butler, John M
2009-06-01
Modern highly multiplexed short tandem repeat (STR) assays used by the forensic human-identity community require tight control of the initial amount of sample DNA amplified in the polymerase chain reaction (PCR) process. This, in turn, requires the ability to reproducibly measure the concentration of human DNA, [DNA], in a sample extract. Quantitative PCR (qPCR) techniques can determine the number of intact stretches of DNA of specified nucleotide sequence in an extremely small sample; however, these assays must be calibrated with DNA extracts of well-characterized and stable composition. By 2004, studies coordinated by or reported to the National Institute of Standards and Technology (NIST) indicated that a well-characterized, stable human DNA quantitation certified reference material (CRM) could help the forensic community reduce within- and among-laboratory quantitation variability. To ensure that the stability of such a quantitation standard can be monitored and that, if and when required, equivalent replacement materials can be prepared, a measurement of some stable quantity directly related to [DNA] is required. Using a long-established conventional relationship linking optical density (properly designated as decadic attenuance) at 260 nm with [DNA] in aqueous solution, NIST Standard Reference Material (SRM) 2372 Human DNA Quantitation Standard was issued in October 2007. This SRM consists of three quite different DNA extracts: a single-source male, a multiple-source female, and a mixture of male and female sources. All three SRM components have very similar optical densities, and thus very similar conventional [DNA]. The materials perform very similarly in several widely used gender-neutral assays, demonstrating that the combination of appropriate preparation methods and metrologically sound spectrophotometric measurements enables the preparation and certification of quantitation [DNA] standards that are both maintainable and of practical utility.
Ghoneim, Mohamed M; El-Desoky, Hanaa S; Abdel-Galeil, Mohamed M
2011-06-01
Naltrexone HCl (NAL.HCl) has been reduced at the mercury electrode in Britton-Robinson universal buffer of pH values 2-11 with a mechanism involving the quasi-reversible uptake of the first transferring electron followed by a rate-determining protonation step of its C=O double bond at position C-6. Simple, sensitive, selective and reliable linear-sweep and square-wave adsorptive cathodic stripping voltammetry methods have been described for trace quantitation of NAL.HCl in bulk form, commercial formulation and human body fluids without the necessity for sample pretreatment and/or time-consuming extraction steps prior to the analysis. Limits of quantitation of 6.0×10(-9)M and 8.0×10(-10)M NAL.HCl in bulk form or commercial formulation and of 9.0×10(-9) and 1.0×10(-9)M NAL.HCl in spiked human serum samples were achieved by the described linear and square-wave stripping voltammetry methods, respectively. Furthermore, pharmacokinetic parameters of the drug in human plasma samples of healthy volunteers following the administration of an oral single dose of 50mg NAL.HCl (one Revia(®) tablet) were estimated by means of the described square-wave stripping voltammetry method without interferences from the drug's metabolites and/or endogenous human plasma constituents. The estimated pharmacokinetic parameters were favorably compared with those reported in literature. Copyright © 2011 Elsevier B.V. All rights reserved.
Pardo-Giménez, Arturo; Catalán, Luis; Carrasco, Jaime; Álvarez-Ortí, Manuel; Zied, Diego; Pardo, José
2016-08-01
This work assesses the agronomic performance of defatted pistachio meal, after oil extraction, as a nutritional substrate supplement when growing the mushroom species Agaricus bisporus (Lange) Imbach and Pleurotus ostreatus (Jacq.) P. Kumm. Materials were applied at different doses at spawning. Along with non-supplemented substrates, commercial nutritional supplements were used as controls. Proximate analysis of mushrooms is also considered. For the cultivation of champignon, defatted pistachio meal has provided larger mushrooms (unitary weight and cap diameter) with firmer texture and greater content in dry weight and protein, without significant alterations in quantitative parameters. For Pleurotus ostreatus, the supplement led to significant yield increase, even providing up to 34.4% of increment compared to non-supplementation with meal, reaching a biological efficiency of 129.9 kg dt(-1) , when applied to the 15 g kg(-1) compost dose. Supplementation has also been conducted to increase dry weight, protein and fibre within carpophores and to decrease the energy value. Defatted pistachio meal has similar or better results compared to the commercial supplements used as reference. Compost supplementation with defatted pistachio meal in A. bisporus concerns mainly the quantitative parameters (size, texture, dry weight and protein). Based on the results obtained, this technique has greater potential of development for P. ostreatus commercial crops, basically due to expected increases in production, with a direct impact on benefits and crop profitability. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Principles of Quantitative MR Imaging with Illustrated Review of Applicable Modular Pulse Diagrams.
Mills, Andrew F; Sakai, Osamu; Anderson, Stephan W; Jara, Hernan
2017-01-01
Continued improvements in diagnostic accuracy using magnetic resonance (MR) imaging will require development of methods for tissue analysis that complement traditional qualitative MR imaging studies. Quantitative MR imaging is based on measurement and interpretation of tissue-specific parameters independent of experimental design, compared with qualitative MR imaging, which relies on interpretation of tissue contrast that results from experimental pulse sequence parameters. Quantitative MR imaging represents a natural next step in the evolution of MR imaging practice, since quantitative MR imaging data can be acquired using currently available qualitative imaging pulse sequences without modifications to imaging equipment. The article presents a review of the basic physical concepts used in MR imaging and how quantitative MR imaging is distinct from qualitative MR imaging. Subsequently, the article reviews the hierarchical organization of major applicable pulse sequences used in this article, with the sequences organized into conventional, hybrid, and multispectral sequences capable of calculating the main tissue parameters of T1, T2, and proton density. While this new concept offers the potential for improved diagnostic accuracy and workflow, awareness of this extension to qualitative imaging is generally low. This article reviews the basic physical concepts in MR imaging, describes commonly measured tissue parameters in quantitative MR imaging, and presents the major available pulse sequences used for quantitative MR imaging, with a focus on the hierarchical organization of these sequences. © RSNA, 2017.
Technique for quantitative RT-PCR analysis directly from single muscle fibers.
Wacker, Michael J; Tehel, Michelle M; Gallagher, Philip M
2008-07-01
The use of single-cell quantitative RT-PCR has greatly aided the study of gene expression in fields such as muscle physiology. For this study, we hypothesized that single muscle fibers from a biopsy can be placed directly into the reverse transcription buffer and that gene expression data can be obtained without having to first extract the RNA. To test this hypothesis, biopsies were taken from the vastus lateralis of five male subjects. Single muscle fibers were isolated and underwent RNA isolation (technique 1) or placed directly into reverse transcription buffer (technique 2). After cDNA conversion, individual fiber cDNA was pooled and quantitative PCR was performed using primer-probes for beta(2)-microglobulin, glyceraldehyde-3-phosphate dehydrogenase, insulin-like growth factor I receptor, and glucose transporter subtype 4. The no RNA extraction method provided similar quantitative PCR data as that of the RNA extraction method. A third technique was also tested in which we used one-quarter of an individual fiber's cDNA for PCR (not pooled) and the average coefficient of variation between fibers was <8% (cycle threshold value) for all genes studied. The no RNA extraction technique was tested on isolated muscle fibers using a gene known to increase after exercise (pyruvate dehydrogenase kinase 4). We observed a 13.9-fold change in expression after resistance exercise, which is consistent with what has been previously observed. These results demonstrate a successful method for gene expression analysis directly from single muscle fibers.
High-throughput quantitative analysis by desorption electrospray ionization mass spectrometry.
Manicke, Nicholas E; Kistler, Thomas; Ifa, Demian R; Cooks, R Graham; Ouyang, Zheng
2009-02-01
A newly developed high-throughput desorption electrospray ionization (DESI) source was characterized in terms of its performance in quantitative analysis. A 96-sample array, containing pharmaceuticals in various matrices, was analyzed in a single run with a total analysis time of 3 min. These solution-phase samples were examined from a hydrophobic PTFE ink printed on glass. The quantitative accuracy, precision, and limit of detection (LOD) were characterized. Chemical background-free samples of propranolol (PRN) with PRN-d(7) as internal standard (IS) and carbamazepine (CBZ) with CBZ-d(10) as IS were examined. So were two other sample sets consisting of PRN/PRN-d(7) at varying concentration in a biological milieu of 10% urine or porcine brain total lipid extract, total lipid concentration 250 ng/microL. The background-free samples, examined in a total analysis time of 1.5 s/sample, showed good quantitative accuracy and precision, with a relative error (RE) and relative standard deviation (RSD) generally less than 3% and 5%, respectively. The samples in urine and the lipid extract required a longer analysis time (2.5 s/sample) and showed RSD values of around 10% for the samples in urine and 4% for the lipid extract samples and RE values of less than 3% for both sets. The LOD for PRN and CBZ when analyzed without chemical background was 10 and 30 fmol, respectively. The LOD of PRN increased to 400 fmol analyzed in 10% urine, and 200 fmol when analyzed in the brain lipid extract.
Comparison of salivary collection and processing methods for quantitative HHV-8 detection.
Speicher, D J; Johnson, N W
2014-10-01
Saliva is a proved diagnostic fluid for the qualitative detection of infectious agents, but the accuracy of viral load determinations is unknown. Stabilising fluids impede nucleic acid degradation, compared with collection onto ice and then freezing, and we have shown that the DNA Genotek P-021 prototype kit (P-021) can produce high-quality DNA after 14 months of storage at room temperature. Here we evaluate the quantitative capability of 10 collection/processing methods. Unstimulated whole mouth fluid was spiked with a mixture of HHV-8 cloned constructs, 10-fold serial dilutions were produced, and samples were extracted and then examined with quantitative PCR (qPCR). Calibration curves were compared by linear regression and qPCR dynamics. All methods extracted with commercial spin columns produced linear calibration curves with large dynamic range and gave accurate viral loads. Ethanol precipitation of the P-021 does not produce a linear standard curve, and virus is lost in the cell pellet. DNA extractions from the P-021 using commercial spin columns produced linear standard curves with wide dynamic range and excellent limit of detection. When extracted with spin columns, the P-021 enables accurate viral loads down to 23 copies μl(-1) DNA. The quantitative and long-term storage capability of this system makes it ideal for study of salivary DNA viruses in resource-poor settings. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Beveridge, Thomas H J; Girard, Benoit; Kopp, Thomas; Drover, John C G
2005-03-09
Grape seed has a well-known potential for production of oil as a byproduct of winemaking and is currently produced as a specialty oil byproduct of wine manufacture. Seed oils from eight varieties of grapes crushed for wine production in British Columbia were extracted by supercritical carbon dioxide (SCE) and petroleum ether (PE). Oil yields by SCE ranged from 5.85 +/- 0.33 to 13.6 +/- 0.46% (w/w), whereas PE yields ranged from 6.64 +/- 0.16 to 11.17 +/- 0.05% (+/- is standard deviation). The oils contained alpha-, beta-, and gamma-tocopherols and alpha- and gamma-tocotrienols, with gamma-tocotrienol being most important quantitatively. In both SCE- and PE-extracted oils, phytosterols were a prominent feature of the unsaponifiable fraction, with beta-sitosterol quantitatively most important with both extractants. Total phytosterol extraction was higher with SCE than with PE in seven of eight variety extractions. Fatty acid composition of oils from all varieties tested, and from both extraction methods, indicated linoleic acid as the major component ranging from 67.56 to 73.23% of the fatty acids present, in agreement with literature reports.
Zhu, Jingqi; Xiong, Zuogang; Zhang, Jiulong; Qiu, Yuyou; Hua, Ting; Tang, Guangyu
2017-11-14
This study aims to investigate the technical feasibility of semi-quantitative and quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in the assessment of longitudinal changes of marrow perfusion in a rat osteoporosis model, using bone mineral density (BMD) measured by micro-computed tomography (micro-CT) and histopathology as the gold standards. Fifty rats were randomly assigned to the control group (n=25) and ovariectomy (OVX) group whose bilateral ovaries were excised (n=25). Semi-quantitative and quantitative DCE-MRI, micro-CT, and histopathological examinations were performed on lumbar vertebrae at baseline and 3, 6, 9, and 12 weeks after operation. The differences between the two groups in terms of semi-quantitative DCE-MRI parameter (maximum enhancement, E max ), quantitative DCE-MRI parameters (volume transfer constant, K trans ; interstitial volume, V e ; and efflux rate constant, K ep ), micro-CT parameter (BMD), and histopathological parameter (microvessel density, MVD) were compared at each of the time points using an independent-sample t test. The differences in these parameters between baseline and other time points in each group were assessed via Bonferroni's multiple comparison test. A Pearson correlation analysis was applied to assess the relationships between DCE-MRI, micro-CT, and histopathological parameters. In the OVX group, the E max values decreased significantly compared with those of the control group at weeks 6 and 9 (p=0.003 and 0.004, respectively). The K trans values decreased significantly compared with those of the control group from week 3 (p<0.05). However, the V e values decreased significantly only at week 9 (p=0.032), and no difference in the K ep was found between two groups. The BMD values of the OVX group decreased significantly compared with those of the control group from week 3 (p<0.05). Transmission electron microscopy showed tighter gaps between vascular endothelial cells with swollen mitochondria in the OVX group from week 3. The MVD values of the OVX group decreased significantly compared with those of the control group only at week 12 (p=0.023). A weak positive correlation of E max and a strong positive correlation of K trans with MVD were found. Compared with semi-quantitative DCE-MRI, the quantitative DCE-MRI parameter K trans is a more sensitive and accurate index for detecting early reduced perfusion in osteoporotic bone.
Diaz, G J; Ariza, D; Perilla, N S
2004-06-01
A method was validated for the determination of ochratoxin A (OTA) in soluble and green coffee. Performance parameters evaluated included selectivity, accuracy, intermediate precision, linearity, limit of detection, limit of quantitation, and ruggedness. The method was found to be selective for OTA in both matrices tested. Recovery rates from soluble coffee samples ranged from 73.5 to 91.2%, and from green coffee samples from 68.7 to 84.5%. The intermediate precision (RSDr) was between 9.1 and 9.4% for soluble coffee and between 14.3 and 15.5% for green coffee analysis. The linearity of the standard calibration curve (r(2)) was <0.999 for OTA levels of 1.0-20.0 μg/kg in coffee samples. The limit of detection was determined to be 0.01 ng of OTA on column, while the limit of quantitation was found to be 0.03 ng on column. The limit of quantitation is equivalent to 0.6 μg/kg in soluble coffee samples and 0.3 μg/kg in green coffee samples. The results of the ruggedness trial showed two factors are critical for soluble coffee analysis: the extraction method, and the flow rate of the mobile phase. For green coffee analysis two critical factors detected were the extraction method and the storage temperature of the immunoaffinity column.Five samples of soluble coffee and 42 of green coffee were analysed using the validated method. All soluble coffee samples contained OTA at levels that ranged from 8.4 to 13.9 μg/kg. Six of the 42 green coffee samples analysed (14.3%) contained OTA at levels ranging from 0.9 to 19.4 μg/kg. The validated method can be used to monitor OTA levels in Colombian coffee for export or for local consumption.
Quantitative study of FORC diagrams in thermally corrected Stoner- Wohlfarth nanoparticles systems
NASA Astrophysics Data System (ADS)
De Biasi, E.; Curiale, J.; Zysler, R. D.
2016-12-01
The use of FORC diagrams is becoming increasingly popular among researchers devoted to magnetism and magnetic materials. However, a thorough interpretation of this kind of diagrams, in order to achieve quantitative information, requires an appropriate model of the studied system. For that reason most of the FORC studies are used for a qualitative analysis. In magnetic systems thermal fluctuations "blur" the signatures of the anisotropy, volume and particle interactions distributions, therefore thermal effects in nanoparticles systems conspire against a proper interpretation and analysis of these diagrams. Motivated by this fact, we have quantitatively studied the degree of accuracy of the information extracted from FORC diagrams for the special case of single-domain thermal corrected Stoner- Wohlfarth (easy axes along the external field orientation) nanoparticles systems. In this work, the starting point is an analytical model that describes the behavior of a magnetic nanoparticles system as a function of field, anisotropy, temperature and measurement time. In order to study the quantitative degree of accuracy of our model, we built FORC diagrams for different archetypical cases of magnetic nanoparticles. Our results show that from the quantitative information obtained from the diagrams, under the hypotheses of the proposed model, is possible to recover the features of the original system with accuracy above 95%. This accuracy is improved at low temperatures and also it is possible to access to the anisotropy distribution directly from the FORC coercive field profile. Indeed, our simulations predict that the volume distribution plays a secondary role being the mean value and its deviation the only important parameters. Therefore it is possible to obtain an accurate result for the inversion and interaction fields despite the features of the volume distribution.
Efficient extraction strategies of tea (Camellia sinensis) biomolecules.
Banerjee, Satarupa; Chatterjee, Jyotirmoy
2015-06-01
Tea is a popular daily beverage worldwide. Modulation and modifications of its basic components like catechins, alkaloids, proteins and carbohydrate during fermentation or extraction process changes organoleptic, gustatory and medicinal properties of tea. Through these processes increase or decrease in yield of desired components are evident. Considering the varied impacts of parameters in tea production, storage and processes that affect the yield, extraction of tea biomolecules at optimized condition is thought to be challenging. Implementation of technological advancements in green chemistry approaches can minimize the deviation retaining maximum qualitative properties in environment friendly way. Existed extraction processes with optimization parameters of tea have been discussed in this paper including its prospects and limitations. This exhaustive review of various extraction parameters, decaffeination process of tea and large scale cost effective isolation of tea components with aid of modern technology can assist people to choose extraction condition of tea according to necessity.
Zhang, Yin; Diao, Tianxi; Wang, Lei
2014-12-01
Designed to advance the two-way translational process between basic research and clinical practice, translational medicine has become one of the most important areas in biomedicine. The quantitative evaluation of translational medicine is valuable for the decision making of global translational medical research and funding. Using the scientometric analysis and information extraction techniques, this study quantitatively analyzed the scientific articles on translational medicine. The results showed that translational medicine had significant scientific output and impact, specific core field and institute, and outstanding academic status and benefit. While it is not considered in this study, the patent data are another important indicators that should be integrated in the relevant research in the future. © 2014 Wiley Periodicals, Inc.
Sinha, Arun Kumar; Verma, Subash Chandra; Sharma, Upendra Kumar
2007-01-01
A simple and fast method was developed using RP-HPLC for separation and quantitative determination of vanillin and related phenolic compounds in ethanolic extract of pods of Vanilla planifolia. Ten phenolic compounds, namely 4-hydroxybenzyl alcohol, vanillyl alcohol, 3,4-dihydroxybenzaldehyde, 4-hydroxybenzoic acid, vanillic acid, 4-hydroxybenzaldehyde, vanillin, p-coumaric acid, ferulic acid, and piperonal were quantitatively determined using ACN, methanol, and 0.2% acetic acid in water as a mobile phase with a gradient elution mode. The method showed good linearity, high precision, and good recovery of compounds of interest. The present method would be useful for analytical research and for routine analysis of vanilla extracts for their quality control.
NASA Astrophysics Data System (ADS)
Janssen, Paul; Wouters, Steinar H. W.; Cox, Matthijs; Koopmans, Bert
2013-11-01
In recent years, it was discovered that the current through an organic semiconductor, sandwiched between two non-magnetic electrodes, can be changed significantly by applying a small magnetic field. This surprisingly large magnetoresistance effect, often dubbed as organic magnetoresistance (OMAR), has puzzled the young field of organic spintronics during the last decade. Here, we present a detailed study on the voltage and temperature dependence of OMAR, aiming to unravel the lineshapes of the magnetic field effects and thereby gain a deeper fundamental understanding of the underlying microscopic mechanism. Using a full quantitative analysis of the lineshapes, we are able to extract all linewidth parameters and the voltage and temperature dependencies are explained with a recently proposed trion mechanism. Moreover, explicit microscopic simulations show a qualitative agreement to the experimental results.
Karatepe, Aslihan; Soylak, Mustafa; Elçi, Latif
2011-01-01
A new preconcentration method was developed for the determination of trace amounts of Cu(II), Fe(III), Pb(II), Ni(II), and Cd(II) on a double-walled carbon nanotube disk. 4-(2-Thiazolylazo) resorcinol was used as a complexing reagent. The effects of parameters, including pH of the solutions, amounts of complexing reagent, eluent type, sample volume, flow rates of solutions, and matrix ions were examined for quantitative recoveries of the studied analyte ions. The retained metal ions were eluted by 2 M HNO3. The LOD values for the analytes were in the range of 0.7-4.4 microg/mL. Natural water samples and standard reference materials were analyzed by the presented method.
Hirunpanich, Vilasinee; Utaipat, Anocha; Morales, Noppawan Phumala; Bunyapraphatsara, Nuntavan; Sato, Hitoshi; Herunsalee, Angkana; Suthisisang, Chuthamanee
2005-03-01
The present study quantitatively investigated the antioxidant effects of the aqueous extracts from dried calyx of Hibiscus sabdariffa LINN. (roselle) in vitro using rat low-density lipoprotein (LDL). Formations of the conjugated dienes and thiobarbituric acid reactive substances (TBARs) were monitored as markers of the early and later stages of the oxidation of LDL, respectively. Thus, we demonstrated that the dried calyx extracts of roselle exhibits strong antioxidant activity in Cu(2+)-mediated oxidation of LDL (p<0.05) in vitro. The inhibitory effect of the extracts on LDL oxidation was dose-dependent at concentrations ranging from 0.1 to 5 mg/ml. Moreover, 5 mg/ml of roselle inhibited TBARs-formation with greater potency than 100 microM of vitamin E. In conclusion, this study provides a quantitative insight into the potent antioxidant effect of roselle in vitro.
Sklerov, J H; Kalasinsky, K S; Ehorn, C A
1999-10-01
A confirmatory method for the detection and quantitation of lysergic acid diethylamide (LSD) is presented. The method employs gas chromatography-tandem mass spectrometry (GC-MS-MS) using an internal ionization ion trap detector for sensitive MS-MS-in-time measurements of LSD extracted from urine. Following a single-step solid-phase extraction of 5 mL of urine, underivatized LSD can be measured with limits of quantitation and detection of 80 and 20 pg/mL, respectively. Temperature-programmed on-column injections of urine extracts were linear over the concentration range 20-2000 pg/mL (r2 = 0.999). Intraday and interday coefficients of variation were < 6% and < 13%, respectively. This procedure has been applied to quality-control specimens and LSD-positive samples in this laboratory. Comparisons with alternate GC-MS methods and extraction procedures are discussed.
A highly efficient, cell-free translation/translocation system prepared from Xenopus eggs.
Matthews, G; Colman, A
1991-01-01
We describe the use of a Xenopus laevis egg extract for the in vitro translation and post translational modification of membrane and secretory proteins. This extract is capable of the translation and segregation into membranes of microgram per millilitre levels of protein from added mRNAs. Signal sequences of segregated proteins are efficiently cleaved and appropriate N-linked glycosylation patterns are produced. The extract also supports the quantitative assembly of murine immunoglobulin heavy and light chains into tetramers, and two events which take place beyond the endoplasmic reticulum, mannose 6 phosphorylation of murine cathepsin D and O-linked glycosylation of coronavirus E1 protein, also occur, but at reduced efficiency. The stability of the membranes allows protease protection studies and quantitative centrifugal fractionation of segregated and unsegregated proteins to be performed. Conditions for the use of stored extract have also been determined. Images PMID:1754376
2017-01-01
Chemical standardization, along with morphological and DNA analysis ensures the authenticity and advances the integrity evaluation of botanical preparations. Achievement of a more comprehensive, metabolomic standardization requires simultaneous quantitation of multiple marker compounds. Employing quantitative 1H NMR (qHNMR), this study determined the total isoflavone content (TIfCo; 34.5–36.5% w/w) via multimarker standardization and assessed the stability of a 10-year-old isoflavone-enriched red clover extract (RCE). Eleven markers (nine isoflavones, two flavonols) were targeted simultaneously, and outcomes were compared with LC-based standardization. Two advanced quantitative measures in qHNMR were applied to derive quantities from complex and/or overlapping resonances: a quantum mechanical (QM) method (QM-qHNMR) that employs 1H iterative full spin analysis, and a non-QM method that uses linear peak fitting algorithms (PF-qHNMR). A 10 min UHPLC-UV method provided auxiliary orthogonal quantitation. This is the first systematic evaluation of QM and non-QM deconvolution as qHNMR quantitation measures. It demonstrates that QM-qHNMR can account successfully for the complexity of 1H NMR spectra of individual analytes and how QM-qHNMR can be built for mixtures such as botanical extracts. The contents of the main bioactive markers were in good agreement with earlier HPLC-UV results, demonstrating the chemical stability of the RCE. QM-qHNMR advances chemical standardization by its inherent QM accuracy and the use of universal calibrants, avoiding the impractical need for identical reference materials. PMID:28067513
Roszkowska, Anna; Tascon, Marcos; Bojko, Barbara; Goryński, Krzysztof; Dos Santos, Pedro Reck; Cypel, Marcelo; Pawliszyn, Janusz
2018-06-01
The fast and sensitive determination of concentrations of anticancer drugs in specific organs can improve the efficacy of chemotherapy and minimize its adverse effects. In this paper, ex vivo solid-phase microextraction (SPME) coupled to LC-MS/MS as a method for rapidly quantitating doxorubicin (DOX) in lung tissue was optimized. Furthermore, the theoretical and practical challenges related to the real-time monitoring of DOX levels in the lung tissue of a living organism (in vivo SPME) are presented. In addition, several parameters for ex vivo/in vivo SPME studies, such as extraction efficiency of autoclaved fibers, intact/homogenized tissue differences, critical tissue amount, and the absence of an internal standard are thoroughly examined. To both accurately quantify DOX in solid tissue and minimize the error related to the lack of an internal standard, a calibration method at equilibrium conditions was chosen. In optimized ex vivo SPME conditions, the targeted compound was extracted by directly introducing a 15 mm (45 µm thickness) mixed-mode fiber into 15 g of homogenized tissue for 20 min, followed by a desorption step in an optimal solvent mixture. The detection limit for DOX was 2.5 µg g -1 of tissue. The optimized ex vivo SPME method was successfully applied for the analysis of DOX in real pig lung biopsies, providing an averaged accuracy and precision of 103.2% and 12.3%, respectively. Additionally, a comparison between SPME and solid-liquid extraction revealed good agreement. The results presented herein demonstrate that the developed SPME method radically simplifies the sample preparation step and eliminates the need for tissue biopsies. These results suggest that SPME can accurately quantify DOX in different tissue compartments and can be potentially useful for monitoring and adjusting drug dosages during chemotherapy in order to achieve effective and safe concentrations of doxorubicin. Copyright © 2018 Elsevier B.V. All rights reserved.
Decoding 2D-PAGE complex maps: relevance to proteomics.
Pietrogrande, Maria Chiara; Marchetti, Nicola; Dondi, Francesco; Righetti, Pier Giorgio
2006-03-20
This review describes two mathematical approaches useful for decoding the complex signal of 2D-PAGE maps of protein mixtures. These methods are helpful for interpreting the large amount of data of each 2D-PAGE map by extracting all the analytical information hidden therein by spot overlapping. Here the basic theory and application to 2D-PAGE maps are reviewed: the means for extracting information from the experimental data and their relevance to proteomics are discussed. One method is based on the quantitative theory of statistical model of peak overlapping (SMO) using the spot experimental data (intensity and spatial coordinates). The second method is based on the study of the 2D-autocovariance function (2D-ACVF) computed on the experimental digitised map. They are two independent methods that are able to extract equal and complementary information from the 2D-PAGE map. Both methods permit to obtain fundamental information on the sample complexity and the separation performance and to single out ordered patterns present in spot positions: the availability of two independent procedures to compute the same separation parameters is a powerful tool to estimate the reliability of the obtained results. The SMO procedure is an unique tool to quantitatively estimate the degree of spot overlapping present in the map, while the 2D-ACVF method is particularly powerful in simply singling out the presence of order in the spot position from the complexity of the whole 2D map, i.e., spot trains. The procedures were validated by extensive numerical computation on computer-generated maps describing experimental 2D-PAGE gels of protein mixtures. Their applicability to real samples was tested on reference maps obtained from literature sources. The review describes the most relevant information for proteomics: sample complexity, separation performance, overlapping extent, identification of spot trains related to post-translational modifications (PTMs).
Wang, Xiaotong; Zhang, Yue; Niu, Huibin; Geng, Yajing; Wang, Bing; Yang, Xiaomei; Yan, Pengyu; Li, Qing; Bi, Kaishun
2017-05-01
A method of ultra-fast liquid chromatography with tandem mass spectrometry was developed and validated for the simultaneous quantitation of eight bioactive components, including polygalaxanthone III, sibiricaxanthone B, tenuifolin, sibiricose A5, sibiricose A6, tenuifoliside A, ginsenoside Re and ginsenoside Rb1 in rat plasma after oral administration of Kai-Xin-San. The plasma samples were extracted by liquid-liquid extraction using digoxin as an internal standard. Chromatographic separation was performed on a Venusil MP C 18 column (100 mm × 2.1 mm, 3 μm) with methanol and 0.05% acetic acid in water as mobile phase. The tandem mass spectrometric detection was performed in the multiple reaction monitoring with turbo ion spray source in the negative ionization. Validation parameters were within acceptable ranges. The established method has been successfully applied to compare the pharmacokinetic profiles of the analytes between normal and Alzheimer's disease rats. The results indicated that there were significant differences in pharmacokinetic parameters of some components between two groups, which may be due to the mechanisms of Alzheimer's disease and pharmacological effects of the analytes. The pharmacokinetic research in the pathological state might provide more useful information to guide the clinical usage of herbal medicine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Malekzadeh, Mohammad; Abedini Najafabadi, Hamed; Hakim, Maziar; Feilizadeh, Mehrzad; Vossoughi, Manouchehr; Rashtchian, Davood
2016-02-01
In this research, organic solvent composed of hexane and methanol was used for lipid extraction from dry and wet biomass of Chlorella vulgaris. The results indicated that lipid and fatty acid extraction yield was decreased by increasing the moisture content of biomass. However, the maximum extraction efficiency was attained by applying equivolume mixture of hexane and methanol for both dry and wet biomass. Thermodynamic modeling was employed to estimate the effect of hexane/methanol ratio and moisture content on fatty acid extraction yield. Hansen solubility parameter was used in adjusting the interaction parameters of the model, which led to decrease the number of tuning parameters from 6 to 2. The results indicated that the model can accurately estimate the fatty acid recovery with average absolute deviation percentage (AAD%) of 13.90% and 15.00% for the two cases of using 6 and 2 adjustable parameters, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.
A new approach to the extraction of single exponential diode model parameters
NASA Astrophysics Data System (ADS)
Ortiz-Conde, Adelmo; García-Sánchez, Francisco J.
2018-06-01
A new integration method is presented for the extraction of the parameters of a single exponential diode model with series resistance from the measured forward I-V characteristics. The extraction is performed using auxiliary functions based on the integration of the data which allow to isolate the effects of each of the model parameters. A differentiation method is also presented for data with low level of experimental noise. Measured and simulated data are used to verify the applicability of both proposed method. Physical insight about the validity of the model is also obtained by using the proposed graphical determinations of the parameters.
High sensitivity phase retrieval method in grating-based x-ray phase contrast imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Zhao; Gao, Kun; Chen, Jian
2015-02-15
Purpose: Grating-based x-ray phase contrast imaging is considered as one of the most promising techniques for future medical imaging. Many different methods have been developed to retrieve phase signal, among which the phase stepping (PS) method is widely used. However, further practical implementations are hindered, due to its complex scanning mode and high radiation dose. In contrast, the reverse projection (RP) method is a novel fast and low dose extraction approach. In this contribution, the authors present a quantitative analysis of the noise properties of the refraction signals retrieved by the two methods and compare their sensitivities. Methods: Using themore » error propagation formula, the authors analyze theoretically the signal-to-noise ratios (SNRs) of the refraction images retrieved by the two methods. Then, the sensitivities of the two extraction methods are compared under an identical exposure dose. Numerical experiments are performed to validate the theoretical results and provide some quantitative insight. Results: The SNRs of the two methods are both dependent on the system parameters, but in different ways. Comparison between their sensitivities reveals that for the refraction signal, the RP method possesses a higher sensitivity, especially in the case of high visibility and/or at the edge of the object. Conclusions: Compared with the PS method, the RP method has a superior sensitivity and provides refraction images with a higher SNR. Therefore, one can obtain highly sensitive refraction images in grating-based phase contrast imaging. This is very important for future preclinical and clinical implementations.« less
Kristof, Jessica; Sakrison, Kellen; Jin, Xiaoping; Nakamaru, Kenji; Schneider, Matthias; Beckman, Robert A; Freeman, Daniel; Spittle, Cindy; Feng, Wenqin
2017-01-01
In preclinical studies, heregulin ( HRG ) expression was shown to be the most relevant predictive biomarker for response to patritumab, a fully human anti-epidermal growth factor receptor 3 monoclonal antibody. In support of a phase 2 study of erlotinib ± patritumab in non-small cell lung cancer (NSCLC), a reverse-transcription quantitative polymerase chain reaction (RT-qPCR) assay for relative quantification of HRG expression from formalin-fixed paraffin-embedded (FFPE) NSCLC tissue samples was developed and validated and described herein. Test specimens included matched FFPE normal lung and NSCLC and frozen NSCLC tissue, and HRG -positive and HRG -negative cell lines. Formalin-fixed paraffin-embedded tissue was examined for functional performance. Heregulin distribution was also analyzed across 200 NSCLC commercial samples. Applied Biosystems TaqMan Gene Expression Assays were run on the Bio-Rad CFX96 real-time PCR platform. Heregulin RT-qPCR assay specificity, PCR efficiency, PCR linearity, and reproducibility were demonstrated. The final assay parameters included the Qiagen FFPE RNA Extraction Kit for RNA extraction from FFPE NSCLC tissue, 50 ng of RNA input, and 3 reference (housekeeping) genes ( HMBS, IPO8 , and EIF2B1 ), which had expression levels similar to HRG expression levels and were stable among FFPE NSCLC samples. Using the validated assay, unimodal HRG distribution was confirmed across 185 evaluable FFPE NSCLC commercial samples. Feasibility of an RT-qPCR assay for the quantification of HRG expression in FFPE NSCLC specimens was demonstrated.
Kernel machines for epilepsy diagnosis via EEG signal classification: a comparative study.
Lima, Clodoaldo A M; Coelho, André L V
2011-10-01
We carry out a systematic assessment on a suite of kernel-based learning machines while coping with the task of epilepsy diagnosis through automatic electroencephalogram (EEG) signal classification. The kernel machines investigated include the standard support vector machine (SVM), the least squares SVM, the Lagrangian SVM, the smooth SVM, the proximal SVM, and the relevance vector machine. An extensive series of experiments was conducted on publicly available data, whose clinical EEG recordings were obtained from five normal subjects and five epileptic patients. The performance levels delivered by the different kernel machines are contrasted in terms of the criteria of predictive accuracy, sensitivity to the kernel function/parameter value, and sensitivity to the type of features extracted from the signal. For this purpose, 26 values for the kernel parameter (radius) of two well-known kernel functions (namely, Gaussian and exponential radial basis functions) were considered as well as 21 types of features extracted from the EEG signal, including statistical values derived from the discrete wavelet transform, Lyapunov exponents, and combinations thereof. We first quantitatively assess the impact of the choice of the wavelet basis on the quality of the features extracted. Four wavelet basis functions were considered in this study. Then, we provide the average accuracy (i.e., cross-validation error) values delivered by 252 kernel machine configurations; in particular, 40%/35% of the best-calibrated models of the standard and least squares SVMs reached 100% accuracy rate for the two kernel functions considered. Moreover, we show the sensitivity profiles exhibited by a large sample of the configurations whereby one can visually inspect their levels of sensitiveness to the type of feature and to the kernel function/parameter value. Overall, the results evidence that all kernel machines are competitive in terms of accuracy, with the standard and least squares SVMs prevailing more consistently. Moreover, the choice of the kernel function and parameter value as well as the choice of the feature extractor are critical decisions to be taken, albeit the choice of the wavelet family seems not to be so relevant. Also, the statistical values calculated over the Lyapunov exponents were good sources of signal representation, but not as informative as their wavelet counterparts. Finally, a typical sensitivity profile has emerged among all types of machines, involving some regions of stability separated by zones of sharp variation, with some kernel parameter values clearly associated with better accuracy rates (zones of optimality). Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmon, S; Jeraj, R; Galavis, P
Purpose: Sensitivity of PET-derived texture features to reconstruction methods has been reported for features extracted from axial planes; however, studies often utilize three dimensional techniques. This work aims to quantify the impact of multi-plane (3D) vs. single-plane (2D) feature extraction on radiomics-based analysis, including sensitivity to reconstruction parameters and potential loss of spatial information. Methods: Twenty-three patients with solid tumors underwent [{sup 18}F]FDG PET/CT scans under identical protocols. PET data were reconstructed using five sets of reconstruction parameters. Tumors were segmented using an automatic, in-house algorithm robust to reconstruction variations. 50 texture features were extracted using two Methods: 2D patchesmore » along axial planes and 3D patches. For each method, sensitivity of features to reconstruction parameters was calculated as percent difference relative to the average value across reconstructions. Correlations between feature values were compared when using 2D and 3D extraction. Results: 21/50 features showed significantly different sensitivity to reconstruction parameters when extracted in 2D vs 3D (wilcoxon α<0.05), assessed by overall range of variation, Rangevar(%). Eleven showed greater sensitivity to reconstruction in 2D extraction, primarily first-order and co-occurrence features (average Rangevar increase 83%). The remaining ten showed higher variation in 3D extraction (average Range{sub var}increase 27%), mainly co-occurence and greylevel run-length features. Correlation of feature value extracted in 2D and feature value extracted in 3D was poor (R<0.5) in 12/50 features, including eight co-occurrence features. Feature-to-feature correlations in 2D were marginally higher than 3D, ∣R∣>0.8 in 16% and 13% of all feature combinations, respectively. Larger sensitivity to reconstruction parameters were seen for inter-feature correlation in 2D(σ=6%) than 3D (σ<1%) extraction. Conclusion: Sensitivity and correlation of various texture features were shown to significantly differ between 2D and 3D extraction. Additionally, inter-feature correlations were more sensitive to reconstruction variation using single-plane extraction. This work highlights a need for standardized feature extraction/selection techniques in radiomics.« less
Plant extract: a promising biomatrix for ecofriendly, controlled synthesis of silver nanoparticles.
Borase, Hemant P; Salunke, Bipinchandra K; Salunkhe, Rahul B; Patil, Chandrashekhar D; Hallsworth, John E; Kim, Beom S; Patil, Satish V
2014-05-01
Uses of plants extracts are found to be more advantageous over chemical, physical and microbial (bacterial, fungal, algal) methods for silver nanoparticles (AgNPs) synthesis. In phytonanosynthesis, biochemical diversity of plant extract, non-pathogenicity, low cost and flexibility in reaction parameters are accounted for high rate of AgNPs production with different shape, size and applications. At the same time, care has to be taken to select suitable phytofactory for AgNPs synthesis based on certain parameters such as easy availability, large-scale nanosynthesis potential and non-toxic nature of plant extract. This review focuses on synthesis of AgNPs with particular emphasis on biological synthesis using plant extracts. Some points have been given on selection of plant extract for AgNPs synthesis and case studies on AgNPs synthesis using different plant extracts. Reaction parameters contributing to higher yield of nanoparticles are presented here. Synthesis mechanisms and overview of present and future applications of plant-extract-synthesized AgNPs are also discussed here. Limitations associated with use of AgNPs are summarised in the present review.
ERIC Educational Resources Information Center
Loyo-Rosales, Jorge E.; Torrents, Alba; Rosales-Rivera, Georgina C.; Rice, Clifford C.
2006-01-01
Several chemical concepts to the extraction of a water pollutant OPC (octylphenoxyacetic acid) is presented. As an introduction to the laboratory experiment, a discussion on endocrine disrupters is conducted to familiarize the student with the background of the experiment and to explain the need for the extraction and quantitation of the OPC which…
Use of spectral imaging for documentation of skin parameters in face lift procedure
NASA Astrophysics Data System (ADS)
Ruvolo, Eduardo C., Jr.; Bargo, Paulo R.; Dietz, Tim; Scamuffa, Robin; Shoemaker, Kurt; DiBernardo, Barry; Kollias, Nikiforos
2010-02-01
In rhytidectomy the postoperative edema (swelling) and ecchymosis (bruising) can influence the cosmetic results. Evaluation of edema has typically been performed by visual inspection by a trained physician using a fourlevel or, more commonly, a two-level grading(1). Few instruments exist capable of quantitatively assessing edema and ecchymosis in skin. Here we demonstrate that edema and ecchymosis can be objectively quantitated in vivo by a multispectral clinical imaging system (MSCIS). After a feasibility study of induced stasis to the forearms of volunteers and a benchtop study of an edema model, five subjects undergoing rhytidectomy were recruited for a clinical study and multispectral images were taken approximately at days 0, 1, 3, 6, 8, 10, 15, 22 and 29 (according with the day of their visit). Apparent concentrations of oxy-hemoglobin, deoxy-hemoglobin (ecchymosis), melanin, scattering and water (edema) were calculated for each pixel of a spectral image stack. From the blue channel on cross-polarized images bilirubin was extracted. These chromophore maps are two-dimensional quantitative representations of the involved skin areas that demonstrated characteristics of the recovery process of the patient after the procedure. We conclude that multispectral imaging can be a valuable noninvasive tool in the study of edema and ecchymosis and can be used to document these chromophores in vivo and determine the efficacy of treatments in a clinical setting.
A New Kinetic Spectrophotometric Method for the Quantitation of Amorolfine.
Soto, César; Poza, Cristian; Contreras, David; Yáñez, Jorge; Nacaratte, Fallon; Toral, M Inés
2017-01-01
Amorolfine (AOF) is a compound with fungicide activity based on the dual inhibition of growth of the fungal cell membrane, the biosynthesis and accumulation of sterols, and the reduction of ergosterol. In this work a sensitive kinetic and spectrophotometric method for the AOF quantitation based on the AOF oxidation by means of KMnO 4 at 30 min (fixed time), pH alkaline, and ionic strength controlled was developed. Measurements of changes in absorbance at 610 nm were used as criterion of the oxidation progress. In order to maximize the sensitivity, different experimental reaction parameters were carefully studied via factorial screening and optimized by multivariate method. The linearity, intraday, and interday assay precision and accuracy were determined. The absorbance-concentration plot corresponding to tap water spiked samples was rectilinear, over the range of 7.56 × 10 -6 -3.22 × 10 -5 mol L -1 , with detection and quantitation limits of 2.49 × 10 -6 mol L -1 and 7.56 × 10 -6 mol L -1 , respectively. The proposed method was successfully validated for the application of the determination of the drug in the spiked tap water samples and the percentage recoveries were 94.0-105.0%. The method is simple and does not require expensive instruments or complicated extraction steps of the reaction product.
NASA Astrophysics Data System (ADS)
Zhang, Benfeng; Han, Tao; Li, Xinyi; Huang, Yulin; Omori, Tatsuya; Hashimoto, Ken-ya
2018-07-01
This paper investigates how lateral propagation of Rayleigh and shear horizontal (SH) surface acoustic waves (SAWs) changes with rotation angle θ and SiO2 and electrode thicknesses, h SiO2 and h Cu, respectively. The extended thin plate model is used for purpose. First, the extraction method is presented for determining parameters appearing in the extended thin plate model. Then, the model parameters are expressed in polynomials in terms of h SiO2, h Cu, and θ. Finally, a piston mode structure without phase shifters is designed using the extracted parameters. The possible piston mode structures can be searched automatically by use of the polynomial expression. The resonance characteristics are analyzed by both the extended thin plate model and three-dimensional (3D) finite element method (FEM). Agreement between the results of both methods confirms validity and effectiveness of the parameter extraction process and the design technique.