High fidelity quantum teleportation assistance with quantum neural network
NASA Astrophysics Data System (ADS)
Huang, Chunhui; Wu, Bichun
2014-09-01
In this paper, a high fidelity scheme of quantum teleportation based on quantum neural network (QNN) is proposed. The QNN is composed of multi-bit control-not gates. The quantum teleportation of a qubit state via two-qubit entangled channels is investigated by solving the master equation in Lindblad operators with a noisy environment. To ensure the security of quantum teleportation, the indirect training of QNN is employed. Only 10% of teleported information is extracted for the training of QNN parameters. Then the outputs are corrected by the other QNN at Bob's side. We build a random series of numbers ranged in [0, π] as inputs and simulate the properties of our teleportation scheme. The results show that the fidelity of quantum teleportation system is significantly improved to approach 1 by the error-correction of QNN. It illustrates that the distortion can be eliminated perfectly and the high fidelity of quantum teleportation could be implemented.
Al-Ghareeb, Amal Z; Cooper, Simon J
2016-01-01
This integrative review identified, critically appraised and synthesised the existing evidence on the barriers and enablers to using high-fidelity human patient simulator manikins (HPSMs) in undergraduate nursing education. In nursing education, specifically at the undergraduate level, a range of low to high-fidelity simulations have been used as teaching aids. However, nursing educators encounter challenges when introducing new teaching methods or technology, despite the prevalence of high-fidelity HPSMs in nursing education. An integrative review adapted a systematic approach. Medline, CINAHL plus, ERIC, PsychINFO, EMBASE, SCOPUS, Science Direct, Cochrane database, Joanna Brigge Institute, ProQuest, California Simulation Alliance, Simulation Innovative Recourses Center and the search engine Google Scholar were searched. Keywords were selected and specific inclusion/exclusion criteria were applied. The review included all research designs for papers published between 2000 and 2015 that identified the barriers and enablers to using high-fidelity HPSMs in undergraduate nursing education. Studies were appraised using the Critical Appraisal Skills Programme criteria. Thematic analysis was undertaken and emergent themes were extracted. Twenty-one studies were included in the review. These studies adopted quasi-experimental, prospective non-experimental and descriptive designs. Ten barriers were identified, including "lack of time," "fear of technology" and "workload issues." Seven enablers were identified, including "faculty training," "administrative support" and a "dedicated simulation coordinator." Barriers to simulation relate specifically to the complex technologies inherent in high-fidelity HPSMs approaches. Strategic approaches that support up-skilling and provide dedicated technological support may overcome these barriers. Copyright © 2015 Elsevier Ltd. All rights reserved.
2014-10-26
From the parameterization results, we extract adaptive and anisotropic T-meshes for the further T- spline surface construction. Finally, a gradient flow...field-based method [7, 12] to generate adaptive and anisotropic quadrilateral meshes, which can be used as the control mesh for high-order T- spline ...parameterization results, we extract adaptive and anisotropic T-meshes for the further T- spline surface construction. Finally, a gradient flow-based
Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits.
Chow, Jerry M; Gambetta, Jay M; Córcoles, A D; Merkel, Seth T; Smolin, John A; Rigetti, Chad; Poletto, S; Keefe, George A; Rothwell, Mary B; Rozen, J R; Ketchen, Mark B; Steffen, M
2012-08-10
We use quantum process tomography to characterize a full universal set of all-microwave gates on two superconducting single-frequency single-junction transmon qubits. All extracted gate fidelities, including those for Clifford group generators, single-qubit π/4 and π/8 rotations, and a two-qubit controlled-not, exceed 95% (98%), without (with) subtracting state preparation and measurement errors. Furthermore, we introduce a process map representation in the Pauli basis which is visually efficient and informative. This high-fidelity gate set serves as a critical building block towards scalable architectures of superconducting qubits for error correction schemes and pushes up on the known limits of quantum gate characterization.
Universal Quantum Gate Set Approaching Fault-Tolerant Thresholds with Superconducting Qubits
NASA Astrophysics Data System (ADS)
Chow, Jerry M.; Gambetta, Jay M.; Córcoles, A. D.; Merkel, Seth T.; Smolin, John A.; Rigetti, Chad; Poletto, S.; Keefe, George A.; Rothwell, Mary B.; Rozen, J. R.; Ketchen, Mark B.; Steffen, M.
2012-08-01
We use quantum process tomography to characterize a full universal set of all-microwave gates on two superconducting single-frequency single-junction transmon qubits. All extracted gate fidelities, including those for Clifford group generators, single-qubit π/4 and π/8 rotations, and a two-qubit controlled-not, exceed 95% (98%), without (with) subtracting state preparation and measurement errors. Furthermore, we introduce a process map representation in the Pauli basis which is visually efficient and informative. This high-fidelity gate set serves as a critical building block towards scalable architectures of superconducting qubits for error correction schemes and pushes up on the known limits of quantum gate characterization.
Walton, Holly; Spector, Aimee; Tombor, Ildiko; Michie, Susan
2017-11-01
Understanding the effectiveness of complex, face-to-face health behaviour change interventions requires high-quality measures to assess fidelity of delivery and engagement. This systematic review aimed to (1) identify the types of measures used to monitor fidelity of delivery of, and engagement with, complex, face-to-face health behaviour change interventions and (2) describe the reporting of psychometric and implementation qualities. Electronic databases were searched, systematic reviews and reference lists were hand-searched, and 21 experts were contacted to identify articles. Studies that quantitatively measured fidelity of delivery of, and/or engagement with, a complex, face-to-face health behaviour change intervention for adults were included. Data on interventions, measures, and psychometric and implementation qualities were extracted and synthesized using narrative analysis. Sixty-six studies were included: 24 measured both fidelity of delivery and engagement, 20 measured fidelity of delivery, and 22 measured engagement. Measures of fidelity of delivery included observation (n = 17; 38.6%), self-report (n = 15; 34%), quantitatively rated qualitative interviews (n = 1; 2.3%), or multiple measures (n = 11; 25%). Measures of engagement included self-report (n = 18; 39.1%), intervention records (n = 11; 24%), or multiple measures (n = 17; 37%). Fifty-one studies (77%) reported at least one psychometric or implementation quality; 49 studies (74.2%) reported at least one psychometric quality, and 17 studies (25.8%) reported at least one implementation quality. Fewer than half of the reviewed studies measured both fidelity of delivery of, and engagement with complex, face-to-face health behaviour change interventions. More studies reported psychometric qualities than implementation qualities. Interpretation of intervention outcomes from fidelity of delivery and engagement measurements may be limited due to a lack of reporting of psychometric and implementation qualities. Statement of contribution What is already known on this subject? Evidence of fidelity and engagement is needed to understand effectiveness of complex interventions Evidence of fidelity and engagement are rarely reported High-quality measures are needed to measure fidelity and engagement What does this study add? Evidence that indicators of quality of measures are reported in some studies Evidence that psychometric qualities are reported more frequently than implementation qualities A recommendation for intervention evaluations to report indicators of quality of fidelity and engagement measures. © 2017 The Authors. British Journal of Health Psychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.
ERIC Educational Resources Information Center
Lieberman-Betz, Rebecca G.
2015-01-01
This article examined the reporting of four elements of fidelity of implementation (FOI) in parent-mediated early communication treatment studies. Thirty-five studies were reviewed to extract information regarding reporting of dosage, adherence, quality, and participant responsiveness for both practitioners and parents involved in parent-delivered…
Issenberg, S Barry; McGaghie, William C; Petrusa, Emil R; Lee Gordon, David; Scalese, Ross J
2005-01-01
1969 to 2003, 34 years. Simulations are now in widespread use in medical education and medical personnel evaluation. Outcomes research on the use and effectiveness of simulation technology in medical education is scattered, inconsistent and varies widely in methodological rigor and substantive focus. Review and synthesize existing evidence in educational science that addresses the question, 'What are the features and uses of high-fidelity medical simulations that lead to most effective learning?'. The search covered five literature databases (ERIC, MEDLINE, PsycINFO, Web of Science and Timelit) and employed 91 single search terms and concepts and their Boolean combinations. Hand searching, Internet searches and attention to the 'grey literature' were also used. The aim was to perform the most thorough literature search possible of peer-reviewed publications and reports in the unpublished literature that have been judged for academic quality. Four screening criteria were used to reduce the initial pool of 670 journal articles to a focused set of 109 studies: (a) elimination of review articles in favor of empirical studies; (b) use of a simulator as an educational assessment or intervention with learner outcomes measured quantitatively; (c) comparative research, either experimental or quasi-experimental; and (d) research that involves simulation as an educational intervention. Data were extracted systematically from the 109 eligible journal articles by independent coders. Each coder used a standardized data extraction protocol. Qualitative data synthesis and tabular presentation of research methods and outcomes were used. Heterogeneity of research designs, educational interventions, outcome measures and timeframe precluded data synthesis using meta-analysis. Coding accuracy for features of the journal articles is high. The extant quality of the published research is generally weak. The weight of the best available evidence suggests that high-fidelity medical simulations facilitate learning under the right conditions. These include the following: providing feedback--51 (47%) journal articles reported that educational feedback is the most important feature of simulation-based medical education; repetitive practice--43 (39%) journal articles identified repetitive practice as a key feature involving the use of high-fidelity simulations in medical education; curriculum integration--27 (25%) journal articles cited integration of simulation-based exercises into the standard medical school or postgraduate educational curriculum as an essential feature of their effective use; range of difficulty level--15 (14%) journal articles address the importance of the range of task difficulty level as an important variable in simulation-based medical education; multiple learning strategies--11 (10%) journal articles identified the adaptability of high-fidelity simulations to multiple learning strategies as an important factor in their educational effectiveness; capture clinical variation--11 (10%) journal articles cited simulators that capture a wide variety of clinical conditions as more useful than those with a narrow range; controlled environment--10 (9%) journal articles emphasized the importance of using high-fidelity simulations in a controlled environment where learners can make, detect and correct errors without adverse consequences; individualized learning--10 (9%) journal articles highlighted the importance of having reproducible, standardized educational experiences where learners are active participants, not passive bystanders; defined outcomes--seven (6%) journal articles cited the importance of having clearly stated goals with tangible outcome measures that will more likely lead to learners mastering skills; simulator validity--four (3%) journal articles provided evidence for the direct correlation of simulation validity with effective learning. While research in this field needs improvement in terms of rigor and quality, high-fidelity medical simulations are educationally effective and simulation-based education complements medical education in patient care settings.
NASA Technical Reports Server (NTRS)
Alexandrov, N. M.; Nielsen, E. J.; Lewis, R. M.; Anderson, W. K.
2000-01-01
First-order approximation and model management is a methodology for a systematic use of variable-fidelity models or approximations in optimization. The intent of model management is to attain convergence to high-fidelity solutions with minimal expense in high-fidelity computations. The savings in terms of computationally intensive evaluations depends on the ability of the available lower-fidelity model or a suite of models to predict the improvement trends for the high-fidelity problem, Variable-fidelity models can be represented by data-fitting approximations, variable-resolution models. variable-convergence models. or variable physical fidelity models. The present work considers the use of variable-fidelity physics models. We demonstrate the performance of model management on an aerodynamic optimization of a multi-element airfoil designed to operate in the transonic regime. Reynolds-averaged Navier-Stokes equations represent the high-fidelity model, while the Euler equations represent the low-fidelity model. An unstructured mesh-based analysis code FUN2D evaluates functions and sensitivity derivatives for both models. Model management for the present demonstration problem yields fivefold savings in terms of high-fidelity evaluations compared to optimization done with high-fidelity computations alone.
Automatic 3D high-fidelity traffic interchange modeling using 2D road GIS data
NASA Astrophysics Data System (ADS)
Wang, Jie; Shen, Yuzhong
2011-03-01
3D road models are widely used in many computer applications such as racing games and driving simulations. However, almost all high-fidelity 3D road models were generated manually by professional artists at the expense of intensive labor. There are very few existing methods for automatically generating 3D high-fidelity road networks, especially for those existing in the real world. Real road network contains various elements such as road segments, road intersections and traffic interchanges. Among them, traffic interchanges present the most challenges to model due to their complexity and the lack of height information (vertical position) of traffic interchanges in existing road GIS data. This paper proposes a novel approach that can automatically produce 3D high-fidelity road network models, including traffic interchange models, from real 2D road GIS data that mainly contain road centerline information. The proposed method consists of several steps. The raw road GIS data are first preprocessed to extract road network topology, merge redundant links, and classify road types. Then overlapped points in the interchanges are detected and their elevations are determined based on a set of level estimation rules. Parametric representations of the road centerlines are then generated through link segmentation and fitting, and they have the advantages of arbitrary levels of detail with reduced memory usage. Finally a set of civil engineering rules for road design (e.g., cross slope, superelevation) are selected and used to generate realistic road surfaces. In addition to traffic interchange modeling, the proposed method also applies to other more general road elements. Preliminary results show that the proposed method is highly effective and useful in many applications.
Influence of oxidized purine processing on strand directionality of mismatch repair.
Repmann, Simone; Olivera-Harris, Maite; Jiricny, Josef
2015-04-17
Replicative DNA polymerases are high fidelity enzymes that misincorporate nucleotides into nascent DNA with a frequency lower than [1/10(5)], and this precision is improved to about [1/10(7)] by their proofreading activity. Because this fidelity is insufficient to replicate most genomes without error, nature evolved postreplicative mismatch repair (MMR), which improves the fidelity of DNA replication by up to 3 orders of magnitude through correcting biosynthetic errors that escaped proofreading. MMR must be able to recognize non-Watson-Crick base pairs and excise the misincorporated nucleotides from the nascent DNA strand, which carries by definition the erroneous genetic information. In eukaryotes, MMR is believed to be directed to the nascent strand by preexisting discontinuities such as gaps between Okazaki fragments in the lagging strand or breaks in the leading strand generated by the mismatch-activated endonuclease of the MutL homologs PMS1 in yeast and PMS2 in vertebrates. We recently demonstrated that the eukaryotic MMR machinery can make use also of strand breaks arising during excision of uracils or ribonucleotides from DNA. We now show that intermediates of MutY homolog-dependent excision of adenines mispaired with 8-oxoguanine (G(O)) also act as MMR initiation sites in extracts of human cells or Xenopus laevis eggs. Unexpectedly, G(O)/C pairs were not processed in these extracts and failed to affect MMR directionality, but extracts supplemented with exogenous 8-oxoguanine DNA glycosylase (OGG1) did so. Because OGG1-mediated excision of G(O) might misdirect MMR to the template strand, our findings suggest that OGG1 activity might be inhibited during MMR. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Figure of Merit for Asteroid Regolith Simulants
NASA Astrophysics Data System (ADS)
Metzger, P.; Britt, D.; Covey, S.; Lewis, J. S.
2017-09-01
High fidelity asteroid simulant has been developed, closely matching the mineral and elemental abundances of reference meteorites representing the target asteroid classes. The first simulant is a CI class based upon the Orgueil meteorite, and several other simulants are being developed. They will enable asteroid mining and water extraction tests, helping mature the technologies for space resource utilization for both commercial and scientific/exploration activities in space.
Neural network explanation using inversion.
Saad, Emad W; Wunsch, Donald C
2007-01-01
An important drawback of many artificial neural networks (ANN) is their lack of explanation capability [Andrews, R., Diederich, J., & Tickle, A. B. (1996). A survey and critique of techniques for extracting rules from trained artificial neural networks. Knowledge-Based Systems, 8, 373-389]. This paper starts with a survey of algorithms which attempt to explain the ANN output. We then present HYPINV, a new explanation algorithm which relies on network inversion; i.e. calculating the ANN input which produces a desired output. HYPINV is a pedagogical algorithm, that extracts rules, in the form of hyperplanes. It is able to generate rules with arbitrarily desired fidelity, maintaining a fidelity-complexity tradeoff. To our knowledge, HYPINV is the only pedagogical rule extraction method, which extracts hyperplane rules from continuous or binary attribute neural networks. Different network inversion techniques, involving gradient descent as well as an evolutionary algorithm, are presented. An information theoretic treatment of rule extraction is presented. HYPINV is applied to example synthetic problems, to a real aerospace problem, and compared with similar algorithms using benchmark problems.
Grady, Janet L; Kehrer, Rosemary G; Trusty, Carole E; Entin, Eileen B; Entin, Elliot E; Brunye, Tad T
2008-09-01
Simulation technologies are gaining widespread acceptance across a variety of educational domains and applications. The current research examines whether basic nursing procedure training with high-fidelity versus low-fidelity mannequins results in differential skill acquisition and perceptions of simulator utility. Fifty-two first-year students were taught nasogastric tube and indwelling urinary catheter insertion in one of two ways. The first group learned nasogastric tube and urinary catheter insertion using high-fidelity and low-fidelity mannequins, respectively, and the second group learned nasogastric tube and urinary catheter insertion using low-fidelity and high-fidelity mannequins, respectively. The dependent measures included student performance on nasogastric tube and urinary catheter insertion testing, as measured by observer-based instruments, and self-report questionnaires probing student attitudes about the use of simulation in nursing education. Results demonstrated higher performance with high-fidelity than with low-fidelity mannequin training. In response to a self-report posttraining questionnaire, participants expressed a more positive attitude toward the high-fidelity mannequin, especially regarding its responsiveness and realism.
Evaluating display fidelity and interaction fidelity in a virtual reality game.
McMahan, Ryan P; Bowman, Doug A; Zielinski, David J; Brady, Rachael B
2012-04-01
In recent years, consumers have witnessed a technological revolution that has delivered more-realistic experiences in their own homes through high-definition, stereoscopic televisions and natural, gesture-based video game consoles. Although these experiences are more realistic, offering higher levels of fidelity, it is not clear how the increased display and interaction aspects of fidelity impact the user experience. Since immersive virtual reality (VR) allows us to achieve very high levels of fidelity, we designed and conducted a study that used a six-sided CAVE to evaluate display fidelity and interaction fidelity independently, at extremely high and low levels, for a VR first-person shooter (FPS) game. Our goal was to gain a better understanding of the effects of fidelity on the user in a complex, performance-intensive context. The results of our study indicate that both display and interaction fidelity significantly affect strategy and performance, as well as subjective judgments of presence, engagement, and usability. In particular, performance results were strongly in favor of two conditions: low-display, low-interaction fidelity (representative of traditional FPS games) and high-display, high-interaction fidelity (similar to the real world).
Vidal, Á M; Vieira, L J; Ferreira, C F; Souza, F V D; Souza, A S; Ledo, C A S
2015-07-14
Molecular markers are efficient for assessing the genetic fidelity of various species of plants after in vitro culture. In this study, we evaluated the genetic fidelity and variability of micropropagated cassava plants (Manihot esculenta Crantz) using inter-simple sequence repeat markers. Twenty-two cassava accessions from the Embrapa Cassava & Fruits Germplasm Bank were used. For each accession, DNA was extracted from a plant maintained in the field and from 3 plants grown in vitro. For DNA amplification, 27 inter-simple sequence repeat primers were used, of which 24 generated 175 bands; 100 of those bands were polymorphic and were used to study genetic variability among accessions of cassava plants maintained in the field. Based on the genetic distance matrix calculated using the arithmetic complement of the Jaccard's index, genotypes were clustered using the unweighted pair group method using arithmetic averages. The number of bands per primer was 2-13, with an average of 7.3. For most micropropagated accessions, the fidelity study showed no genetic variation between plants of the same accessions maintained in the field and those maintained in vitro, confirming the high genetic fidelity of the micropropagated plants. However, genetic variability was observed among different accessions grown in the field, and clustering based on the dissimilarity matrix revealed 7 groups. Inter-simple sequence repeat markers were efficient for detecting the genetic homogeneity of cassava plants derived from meristem culture, demonstrating the reliability of this propagation system.
Gonzalez-Cota, Alan; Chiravuri, Srinivas; Stansfield, R Brent; Brummett, Chad M; Hamstra, Stanley J
2013-01-01
The purpose of this study was to determine whether high-fidelity simulators provide greater benefit than low-fidelity models in training fluoroscopy-guided transforaminal epidural injection. This educational study was a single-center, prospective, randomized 3-arm pretest-posttest design with a control arm. Eighteen anesthesia and physical medicine and rehabilitation residents were instructed how to perform a fluoroscopy-guided transforaminal epidural injection and assessed by experts on a reusable injectable phantom cadaver. The high- and low-fidelity groups received 30 minutes of supervised hands-on practice according to group assignment, and the control group received 30 minutes of didactic instruction from an expert. We found no differences at posttest between the high- and low-fidelity groups on global ratings of performance (P = 0.17) or checklist scores (P = 0.81). Participants who received either form of hands-on training significantly outperformed the control group on both the global rating of performance (control vs low-fidelity, P = 0.0048; control vs high-fidelity, P = 0.0047) and the checklist (control vs low-fidelity, P = 0.0047; control vs high-fidelity, P = 0.0047). Training an epidural procedure using a low-fidelity model may be equally effective as training on a high-fidelity model. These results are consistent with previous research on a variety of interventional procedures and further demonstrate the potential impact of simple, low-fidelity training models.
Complete tomography of a high-fidelity solid-state entangled spin-photon qubit pair.
De Greve, Kristiaan; McMahon, Peter L; Yu, Leo; Pelc, Jason S; Jones, Cody; Natarajan, Chandra M; Kim, Na Young; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Hadfield, Robert H; Forchel, Alfred; Fejer, M M; Yamamoto, Yoshihisa
2013-01-01
Entanglement between stationary quantum memories and photonic qubits is crucial for future quantum communication networks. Although high-fidelity spin-photon entanglement was demonstrated in well-isolated atomic and ionic systems, in the solid-state, where massively parallel, scalable networks are most realistically conceivable, entanglement fidelities are typically limited due to intrinsic environmental interactions. Distilling high-fidelity entangled pairs from lower-fidelity precursors can act as a remedy, but the required overhead scales unfavourably with the initial entanglement fidelity. With spin-photon entanglement as a crucial building block for entangling quantum network nodes, obtaining high-fidelity entangled pairs becomes imperative for practical realization of such networks. Here we report the first results of complete state tomography of a solid-state spin-photon-polarization-entangled qubit pair, using a single electron-charged indium arsenide quantum dot. We demonstrate record-high fidelity in the solid-state of well over 90%, and the first (99.9%-confidence) achievement of a fidelity that will unambiguously allow for entanglement distribution in solid-state quantum repeater networks.
Gaussian functional regression for output prediction: Model assimilation and experimental design
NASA Astrophysics Data System (ADS)
Nguyen, N. C.; Peraire, J.
2016-03-01
In this paper, we introduce a Gaussian functional regression (GFR) technique that integrates multi-fidelity models with model reduction to efficiently predict the input-output relationship of a high-fidelity model. The GFR method combines the high-fidelity model with a low-fidelity model to provide an estimate of the output of the high-fidelity model in the form of a posterior distribution that can characterize uncertainty in the prediction. A reduced basis approximation is constructed upon the low-fidelity model and incorporated into the GFR method to yield an inexpensive posterior distribution of the output estimate. As this posterior distribution depends crucially on a set of training inputs at which the high-fidelity models are simulated, we develop a greedy sampling algorithm to select the training inputs. Our approach results in an output prediction model that inherits the fidelity of the high-fidelity model and has the computational complexity of the reduced basis approximation. Numerical results are presented to demonstrate the proposed approach.
Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling.
Perdikaris, P; Raissi, M; Damianou, A; Lawrence, N D; Karniadakis, G E
2017-02-01
Multi-fidelity modelling enables accurate inference of quantities of interest by synergistically combining realizations of low-cost/low-fidelity models with a small set of high-fidelity observations. This is particularly effective when the low- and high-fidelity models exhibit strong correlations, and can lead to significant computational gains over approaches that solely rely on high-fidelity models. However, in many cases of practical interest, low-fidelity models can only be well correlated to their high-fidelity counterparts for a specific range of input parameters, and potentially return wrong trends and erroneous predictions if probed outside of their validity regime. Here we put forth a probabilistic framework based on Gaussian process regression and nonlinear autoregressive schemes that is capable of learning complex nonlinear and space-dependent cross-correlations between models of variable fidelity, and can effectively safeguard against low-fidelity models that provide wrong trends. This introduces a new class of multi-fidelity information fusion algorithms that provide a fundamental extension to the existing linear autoregressive methodologies, while still maintaining the same algorithmic complexity and overall computational cost. The performance of the proposed methods is tested in several benchmark problems involving both synthetic and real multi-fidelity datasets from computational fluid dynamics simulations.
Negative ion-driven associated particle neutron generator
Antolak, A. J.; Leung, K. N.; Morse, D. H.; ...
2015-10-09
We describe an associated particle neutron generator that employs a negative ion source to produce high neutron flux from a small source size. Furthermore, negative ions produced in an rf-driven plasma source are extracted through a small aperture to form a beam which bombards a positively biased, high voltage target electrode. Electrons co-extracted with the negative ions are removed by a permanent magnet electron filter. The use of negative ions enables high neutron output (100% atomic ion beam), high quality imaging (small neutron source size), and reliable operation (no high voltage breakdowns). Finally, the neutron generator can operate in eithermore » pulsed or continuous-wave (cw) mode and has been demonstrated to produce 10 6 D-D n/s (equivalent to similar to 10 8 D-T n/s) from a 1 mm-diameter neutron source size to facilitate high fidelity associated particle imaging.« less
Multi-fidelity stochastic collocation method for computation of statistical moments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Xueyu, E-mail: xueyu-zhu@uiowa.edu; Linebarger, Erin M., E-mail: aerinline@sci.utah.edu; Xiu, Dongbin, E-mail: xiu.16@osu.edu
We present an efficient numerical algorithm to approximate the statistical moments of stochastic problems, in the presence of models with different fidelities. The method extends the multi-fidelity approximation method developed in . By combining the efficiency of low-fidelity models and the accuracy of high-fidelity models, our method exhibits fast convergence with a limited number of high-fidelity simulations. We establish an error bound of the method and present several numerical examples to demonstrate the efficiency and applicability of the multi-fidelity algorithm.
Raedeke, Thomas D; Dlugonski, Deirdre
2017-12-01
This study was designed to compare a low versus high theoretical fidelity pedometer intervention applying social-cognitive theory on step counts and self-efficacy. Fifty-six public university employees participated in a 10-week randomized controlled trial with 2 conditions that varied in theoretical fidelity. Participants in the high theoretical fidelity condition wore a pedometer and participated in a weekly group walk followed by a meeting to discuss cognitive-behavioral strategies targeting self-efficacy. Participants in the low theoretical fidelity condition met for a group walk and also used a pedometer as a motivational tool and to monitor steps. Step counts were assessed throughout the 10-week intervention and after a no-treatment follow-up (20 weeks and 30 weeks). Self-efficacy was measured preintervention and postintervention. Participants in the high theoretical fidelity condition increased daily steps by 2,283 from preintervention to postintervention, whereas participants in the low fidelity condition demonstrated minimal change during the same time period (p = .002). Individuals attending at least 80% of the sessions in the high theoretical fidelity condition showed an increase of 3,217 daily steps (d = 1.03), whereas low attenders increased by 925 (d = 0.40). Attendance had minimal impact in the low theoretical fidelity condition. Follow-up data revealed that step counts were at least somewhat maintained. For self-efficacy, participants in the high, compared with those in the low, theoretical fidelity condition showed greater improvements. Findings highlight the importance of basing activity promotion efforts on theory. The high theoretical fidelity intervention that included cognitive-behavioral strategies targeting self-efficacy was more effective than the low theoretical fidelity intervention, especially for those with high attendance.
An information theoretic approach to use high-fidelity codes to calibrate low-fidelity codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Allison, E-mail: lewis.allison10@gmail.com; Smith, Ralph; Williams, Brian
For many simulation models, it can be prohibitively expensive or physically infeasible to obtain a complete set of experimental data to calibrate model parameters. In such cases, one can alternatively employ validated higher-fidelity codes to generate simulated data, which can be used to calibrate the lower-fidelity code. In this paper, we employ an information-theoretic framework to determine the reduction in parameter uncertainty that is obtained by evaluating the high-fidelity code at a specific set of design conditions. These conditions are chosen sequentially, based on the amount of information that they contribute to the low-fidelity model parameters. The goal is tomore » employ Bayesian experimental design techniques to minimize the number of high-fidelity code evaluations required to accurately calibrate the low-fidelity model. We illustrate the performance of this framework using heat and diffusion examples, a 1-D kinetic neutron diffusion equation, and a particle transport model, and include initial results from the integration of the high-fidelity thermal-hydraulics code Hydra-TH with a low-fidelity exponential model for the friction correlation factor.« less
Gilmer, Todd P; Stefancic, Ana; Katz, Marian L; Sklar, Marisa; Tsemberis, Sam; Palinkas, Lawrence A
2014-11-01
Permanent supported housing programs are being implemented throughout the United States. This study examined the relationship between fidelity to the Housing First model and residential outcomes among clients of full service partnerships (FSPs) in California. This study had a mixed-methods design. Quantitative administrative and survey data were used to describe FSP practices and to examine the association between fidelity to Housing First and residential outcomes in the year before and after enrollment of 6,584 FSP clients in 86 programs. Focus groups at 20 FSPs provided qualitative data to enhance the understanding of these findings with actual accounts of housing-related experiences in high- and low-fidelity programs. Prior to enrollment, the mean days of homelessness were greater at high- versus low-fidelity (101 versus 46 days) FSPs. After adjustment for individual characteristics, the analysis found that days spent homeless after enrollment declined by 87 at high-fidelity programs and by 34 at low-fidelity programs. After adjustment for days spent homeless before enrollment, days spent homeless after enrollment declined by 63 at high-fidelity programs and by 53 at low-fidelity programs. After enrollment, clients at high-fidelity programs spent more than 60 additional days in apartments than clients at low-facility programs. Differences were found between high- and low-fidelity FSPs in client choice in housing and how much clients' goals were considered in housing placement. Programs with greater fidelity to the Housing First model enrolled clients with longer histories of homelessness and placed most of them in apartments.
ERIC Educational Resources Information Center
Lievens, Filip; Patterson, Fiona
2011-01-01
In high-stakes selection among candidates with considerable domain-specific knowledge and experience, investigations of whether high-fidelity simulations (assessment centers; ACs) have incremental validity over low-fidelity simulations (situational judgment tests; SJTs) are lacking. Therefore, this article integrates research on the validity of…
Wind Farm Flow Modeling using an Input-Output Reduced-Order Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annoni, Jennifer; Gebraad, Pieter; Seiler, Peter
Wind turbines in a wind farm operate individually to maximize their own power regardless of the impact of aerodynamic interactions on neighboring turbines. There is the potential to increase power and reduce overall structural loads by properly coordinating turbines. To perform control design and analysis, a model needs to be of low computational cost, but retains the necessary dynamics seen in high-fidelity models. The objective of this work is to obtain a reduced-order model that represents the full-order flow computed using a high-fidelity model. A variety of methods, including proper orthogonal decomposition and dynamic mode decomposition, can be used tomore » extract the dominant flow structures and obtain a reduced-order model. In this paper, we combine proper orthogonal decomposition with a system identification technique to produce an input-output reduced-order model. This technique is used to construct a reduced-order model of the flow within a two-turbine array computed using a large-eddy simulation.« less
A multi-fidelity framework for physics based rotor blade simulation and optimization
NASA Astrophysics Data System (ADS)
Collins, Kyle Brian
New helicopter rotor designs are desired that offer increased efficiency, reduced vibration, and reduced noise. Rotor Designers in industry need methods that allow them to use the most accurate simulation tools available to search for these optimal designs. Computer based rotor analysis and optimization have been advanced by the development of industry standard codes known as "comprehensive" rotorcraft analysis tools. These tools typically use table look-up aerodynamics, simplified inflow models and perform aeroelastic analysis using Computational Structural Dynamics (CSD). Due to the simplified aerodynamics, most design studies are performed varying structural related design variables like sectional mass and stiffness. The optimization of shape related variables in forward flight using these tools is complicated and results are viewed with skepticism because rotor blade loads are not accurately predicted. The most accurate methods of rotor simulation utilize Computational Fluid Dynamics (CFD) but have historically been considered too computationally intensive to be used in computer based optimization, where numerous simulations are required. An approach is needed where high fidelity CFD rotor analysis can be utilized in a shape variable optimization problem with multiple objectives. Any approach should be capable of working in forward flight in addition to hover. An alternative is proposed and founded on the idea that efficient hybrid CFD methods of rotor analysis are ready to be used in preliminary design. In addition, the proposed approach recognizes the usefulness of lower fidelity physics based analysis and surrogate modeling. Together, they are used with high fidelity analysis in an intelligent process of surrogate model building of parameters in the high fidelity domain. Closing the loop between high and low fidelity analysis is a key aspect of the proposed approach. This is done by using information from higher fidelity analysis to improve predictions made with lower fidelity models. This thesis documents the development of automated low and high fidelity physics based rotor simulation frameworks. The low fidelity framework uses a comprehensive code with simplified aerodynamics. The high fidelity model uses a parallel processor capable CFD/CSD methodology. Both low and high fidelity frameworks include an aeroacoustic simulation for prediction of noise. A synergistic process is developed that uses both the low and high fidelity frameworks together to build approximate models of important high fidelity metrics as functions of certain design variables. To test the process, a 4-bladed hingeless rotor model is used as a baseline. The design variables investigated include tip geometry and spanwise twist distribution. Approximation models are built for metrics related to rotor efficiency and vibration using the results from 60+ high fidelity (CFD/CSD) experiments and 400+ low fidelity experiments. Optimization using the approximation models found the Pareto Frontier anchor points, or the design having maximum rotor efficiency and the design having minimum vibration. Various Pareto generation methods are used to find designs on the frontier between these two anchor designs. When tested in the high fidelity framework, the Pareto anchor designs are shown to be very good designs when compared with other designs from the high fidelity database. This provides evidence that the process proposed has merit. Ultimately, this process can be utilized by industry rotor designers with their existing tools to bring high fidelity analysis into the preliminary design stage of rotors. In conclusion, the methods developed and documented in this thesis have made several novel contributions. First, an automated high fidelity CFD based forward flight simulation framework has been built for use in preliminary design optimization. The framework was built around an integrated, parallel processor capable CFD/CSD/AA process. Second, a novel method of building approximate models of high fidelity parameters has been developed. The method uses a combination of low and high fidelity results and combines Design of Experiments, statistical effects analysis, and aspects of approximation model management. And third, the determination of rotor blade shape variables through optimization using CFD based analysis in forward flight has been performed. This was done using the high fidelity CFD/CSD/AA framework and method mentioned above. While the low and high fidelity predictions methods used in the work still have inaccuracies that can affect the absolute levels of the results, a framework has been successfully developed and demonstrated that allows for an efficient process to improve rotor blade designs in terms of a selected choice of objective function(s). Using engineering judgment, this methodology could be applied today to investigate opportunities to improve existing designs. With improvements in the low and high fidelity prediction components that will certainly occur, this framework could become a powerful tool for future rotorcraft design work. (Abstract shortened by UMI.)
Considerations on the Optimal and Efficient Processing of Information-Bearing Signals
ERIC Educational Resources Information Center
Harms, Herbert Andrew
2013-01-01
Noise is a fundamental hurdle that impedes the processing of information-bearing signals, specifically the extraction of salient information. Processing that is both optimal and efficient is desired; optimality ensures the extracted information has the highest fidelity allowed by the noise, while efficiency ensures limited resource usage. Optimal…
Experimental entanglement purification of arbitrary unknown states.
Pan, Jian-Wei; Gasparoni, Sara; Ursin, Rupert; Weihs, Gregor; Zeilinger, Anton
2003-05-22
Distribution of entangled states between distant locations is essential for quantum communication over large distances. But owing to unavoidable decoherence in the quantum communication channel, the quality of entangled states generally decreases exponentially with the channel length. Entanglement purification--a way to extract a subset of states of high entanglement and high purity from a large set of less entangled states--is thus needed to overcome decoherence. Besides its important application in quantum communication, entanglement purification also plays a crucial role in error correction for quantum computation, because it can significantly increase the quality of logic operations between different qubits. Here we demonstrate entanglement purification for general mixed states of polarization-entangled photons using only linear optics. Typically, one photon pair of fidelity 92% could be obtained from two pairs, each of fidelity 75%. In our experiments, decoherence is overcome to the extent that the technique would achieve tolerable error rates for quantum repeaters in long-distance quantum communication. Our results also imply that the requirement of high-accuracy logic operations in fault-tolerant quantum computation can be considerably relaxed.
High-Fidelity Simulations of Electromagnetic Propagation and RF Communication Systems
2017-05-01
addition to high -fidelity RF propagation modeling, lower-fidelity mod- els, which are less computationally burdensome, are available via a C++ API...expensive to perform, requiring roughly one hour of computer time with 36 available cores and ray tracing per- formed by a single high -end GPU...ER D C TR -1 7- 2 Military Engineering Applied Research High -Fidelity Simulations of Electromagnetic Propagation and RF Communication
Hoekstra, Femke; van Offenbeek, Marjolein A G; Dekker, Rienk; Hettinga, Florentina J; Hoekstra, Trynke; van der Woude, Lucas H V; van der Schans, Cees P
2017-12-01
Although the importance of evaluating implementation fidelity is acknowledged, little is known about heterogeneity in fidelity over time. This study aims to generate insight into the heterogeneity in implementation fidelity trajectories of a health promotion program in multidisciplinary settings and the relationship with changes in patients' health behavior. This study used longitudinal data from the nationwide implementation of an evidence-informed physical activity promotion program in Dutch rehabilitation care. Fidelity scores were calculated based on annual surveys filled in by involved professionals (n = ± 70). Higher fidelity scores indicate a more complete implementation of the program's core components. A hierarchical cluster analysis was conducted on the implementation fidelity scores of 17 organizations at three different time points. Quantitative and qualitative data were used to explore organizational and professional differences between identified trajectories. Regression analyses were conducted to determine differences in patient outcomes. Three trajectories were identified as the following: 'stable high fidelity' (n = 9), 'moderate and improving fidelity' (n = 6), and 'unstable fidelity' (n = 2). The stable high fidelity organizations were generally smaller, started earlier, and implemented the program in a more structured way compared to moderate and improving fidelity organizations. At the implementation period's start and end, support from physicians and physiotherapists, professionals' appreciation, and program compatibility were rated more positively by professionals working in stable high fidelity organizations as compared to the moderate and improving fidelity organizations (p < .05). Qualitative data showed that the stable high fidelity organizations had often an explicit vision and strategy about the implementation of the program. Intriguingly, the trajectories were not associated with patients' self-reported physical activity outcomes (adjusted model β = - 651.6, t(613) = - 1032, p = .303). Differences in organizational-level implementation fidelity trajectories did not result in outcome differences at patient-level. This suggests that an effective implementation fidelity trajectory is contingent on the local organization's conditions. More specifically, achieving stable high implementation fidelity required the management of tensions: realizing a localized change vision, while safeguarding the program's standardized core components and engaging the scarce physicians throughout the process. When scaling up evidence-informed health promotion programs, we propose to tailor the management of implementation tensions to local organizations' starting position, size, and circumstances. The Netherlands National Trial Register NTR3961 . Registered 18 April 2013.
The Need for High Fidelity Lunar Regolith Simulants
NASA Technical Reports Server (NTRS)
Gaier, James R.
2007-01-01
The case is made for the need to have high fidelity lunar regolith simulants to verify the performance of structures and mechanisms to be used on the lunar surface. Minor constituents will in some cases have major consequences. Small amounts of sulfur in the regolith can poison catalysts, and metallic iron on the surface of nano-sized dust particles may cause a dramatic increase in its toxicity. So the definition of a high fidelity simulant is application dependent. For example, in situ resource utilization will require high fidelity in chemistry, meaning careful attention to the minor components and phases; but some other applications, such as the abrasive effects on suit fabrics, might be relatively insensitive to minor component chemistry. The lunar environment itself will change the surface chemistry of the simulant, so to have a high fidelity simulant at must be used in a high fidelity simulated environment to get a high fidelity simulation. Research must be conducted to determine how sensitive technologies will be to minor components and environmental factors before they can be dismissed as unimportant.
Driving qubit phase gates with sech shaped pulses
NASA Astrophysics Data System (ADS)
Long, Junling; Ku, Hsiang-Sheng; Wu, Xian; Lake, Russell; Barnes, Edwin; Economou, Sophia; Pappas, David
As shown in 1932 by Rozen and Zener, the Rabi model has a unique solution whereby, for a given pulse length or amplitude, a sech(t/sigma) shaped pulse can be used to drive complete oscillations around the Bloch sphere that are independent of detuning with only a resultant detuning-dependent phase accumulation. Using this property, single qubit phase gates and two-qubit CZ gates have been proposed. In this work we explore the effect of different drive pulse shapes, i.e. square, Gaussian, and sech, as a function of detuning for Rabi oscillations of a superconducting transmon qubit. An arbitrary, single-qubit phase gate is demonstrated with the sech(t/sigma) pulse, and full tomography is performed to extract the fidelity. This is the first step towards high fidelity, low leakage two qubit CZ gates, and illustrates the efficacy of using analytic solutions of the qubit drive prior to optimal pulse shaping.
NASA Astrophysics Data System (ADS)
Dai, Yan-Wei; Hu, Bing-Quan; Zhao, Jian-Hui; Zhou, Huan-Qiang
2010-09-01
The ground-state fidelity per lattice site is computed for the quantum three-state Potts model in a transverse magnetic field on an infinite-size lattice in one spatial dimension in terms of the infinite matrix product state algorithm. It is found that, on the one hand, a pinch point is identified on the fidelity surface around the critical point, and on the other hand, the ground-state fidelity per lattice site exhibits bifurcations at pseudo critical points for different values of the truncation dimension, which in turn approach the critical point as the truncation dimension becomes large. This implies that the ground-state fidelity per lattice site enables us to capture spontaneous symmetry breaking when the control parameter crosses the critical value. In addition, a finite-entanglement scaling of the von Neumann entropy is performed with respect to the truncation dimension, resulting in a precise determination of the central charge at the critical point. Finally, we compute the transverse magnetization, from which the critical exponent β is extracted from the numerical data.
Effects of VR system fidelity on analyzing isosurface visualization of volume datasets.
Laha, Bireswar; Bowman, Doug A; Socha, John J
2014-04-01
Volume visualization is an important technique for analyzing datasets from a variety of different scientific domains. Volume data analysis is inherently difficult because volumes are three-dimensional, dense, and unfamiliar, requiring scientists to precisely control the viewpoint and to make precise spatial judgments. Researchers have proposed that more immersive (higher fidelity) VR systems might improve task performance with volume datasets, and significant results tied to different components of display fidelity have been reported. However, more information is needed to generalize these results to different task types, domains, and rendering styles. We visualized isosurfaces extracted from synchrotron microscopic computed tomography (SR-μCT) scans of beetles, in a CAVE-like display. We ran a controlled experiment evaluating the effects of three components of system fidelity (field of regard, stereoscopy, and head tracking) on a variety of abstract task categories that are applicable to various scientific domains, and also compared our results with those from our prior experiment using 3D texture-based rendering. We report many significant findings. For example, for search and spatial judgment tasks with isosurface visualization, a stereoscopic display provides better performance, but for tasks with 3D texture-based rendering, displays with higher field of regard were more effective, independent of the levels of the other display components. We also found that systems with high field of regard and head tracking improve performance in spatial judgment tasks. Our results extend existing knowledge and produce new guidelines for designing VR systems to improve the effectiveness of volume data analysis.
NASA Astrophysics Data System (ADS)
Bryson, Dean Edward
A model's level of fidelity may be defined as its accuracy in faithfully reproducing a quantity or behavior of interest of a real system. Increasing the fidelity of a model often goes hand in hand with increasing its cost in terms of time, money, or computing resources. The traditional aircraft design process relies upon low-fidelity models for expedience and resource savings. However, the reduced accuracy and reliability of low-fidelity tools often lead to the discovery of design defects or inadequacies late in the design process. These deficiencies result either in costly changes or the acceptance of a configuration that does not meet expectations. The unknown opportunity cost is the discovery of superior vehicles that leverage phenomena unknown to the designer and not illuminated by low-fidelity tools. Multifidelity methods attempt to blend the increased accuracy and reliability of high-fidelity models with the reduced cost of low-fidelity models. In building surrogate models, where mathematical expressions are used to cheaply approximate the behavior of costly data, low-fidelity models may be sampled extensively to resolve the underlying trend, while high-fidelity data are reserved to correct inaccuracies at key locations. Similarly, in design optimization a low-fidelity model may be queried many times in the search for new, better designs, with a high-fidelity model being exercised only once per iteration to evaluate the candidate design. In this dissertation, a new multifidelity, gradient-based optimization algorithm is proposed. It differs from the standard trust region approach in several ways, stemming from the new method maintaining an approximation of the inverse Hessian, that is the underlying curvature of the design problem. Whereas the typical trust region approach performs a full sub-optimization using the low-fidelity model at every iteration, the new technique finds a suitable descent direction and focuses the search along it, reducing the number of low-fidelity evaluations required. This narrowing of the search domain also alleviates the burden on the surrogate model corrections between the low- and high-fidelity data. Rather than requiring the surrogate to be accurate in a hyper-volume bounded by the trust region, the model needs only to be accurate along the forward-looking search direction. Maintaining the approximate inverse Hessian also allows the multifidelity algorithm to revert to high-fidelity optimization at any time. In contrast, the standard approach has no memory of the previously-computed high-fidelity data. The primary disadvantage of the proposed algorithm is that it may require modifications to the optimization software, whereas standard optimizers may be used as black-box drivers in the typical trust region method. A multifidelity, multidisciplinary simulation of aeroelastic vehicle performance is developed to demonstrate the optimization method. The numerical physics models include body-fitted Euler computational fluid dynamics; linear, panel aerodynamics; linear, finite-element computational structural mechanics; and reduced, modal structural bases. A central element of the multifidelity, multidisciplinary framework is a shared parametric, attributed geometric representation that ensures the analysis inputs are consistent between disciplines and fidelities. The attributed geometry also enables the transfer of data between disciplines. The new optimization algorithm, a standard trust region approach, and a single-fidelity quasi-Newton method are compared for a series of analytic test functions, using both polynomial chaos expansions and kriging to correct discrepancies between fidelity levels of data. In the aggregate, the new method requires fewer high-fidelity evaluations than the trust region approach in 51% of cases, and the same number of evaluations in 18%. The new approach also requires fewer low-fidelity evaluations, by up to an order of magnitude, in almost all cases. The efficacy of both multifidelity methods compared to single-fidelity optimization depends significantly on the behavior of the high-fidelity model and the quality of the low-fidelity approximation, though savings are realized in a large number of cases. The multifidelity algorithm is also compared to the single-fidelity quasi-Newton method for complex aeroelastic simulations. The vehicle design problem includes variables for planform shape, structural sizing, and cruise condition with constraints on trim and structural stresses. Considering the objective function reduction versus computational expenditure, the multifidelity process performs better in three of four cases in early iterations. However, the enforcement of a contracting trust region slows the multifidelity progress. Even so, leveraging the approximate inverse Hessian, the optimization can be seamlessly continued using high-fidelity data alone. Ultimately, the proposed new algorithm produced better designs in all four cases. Investigating the return on investment in terms of design improvement per computational hour confirms that the multifidelity advantage is greatest in early iterations, and managing the transition to high-fidelity optimization is critical.
Robust Tomography using Randomized Benchmarking
NASA Astrophysics Data System (ADS)
Silva, Marcus; Kimmel, Shelby; Johnson, Blake; Ryan, Colm; Ohki, Thomas
2013-03-01
Conventional randomized benchmarking (RB) can be used to estimate the fidelity of Clifford operations in a manner that is robust against preparation and measurement errors -- thus allowing for a more accurate and relevant characterization of the average error in Clifford gates compared to standard tomography protocols. Interleaved RB (IRB) extends this result to the extraction of error rates for individual Clifford gates. In this talk we will show how to combine multiple IRB experiments to extract all information about the unital part of any trace preserving quantum process. Consequently, one can compute the average fidelity to any unitary, not just the Clifford group, with tighter bounds than IRB. Moreover, the additional information can be used to design improvements in control. MS, BJ, CR and TO acknowledge support from IARPA under contract W911NF-10-1-0324.
Curran, Vernon; Fleet, Lisa; White, Susan; Bessell, Clare; Deshpandey, Akhil; Drover, Anne; Hayward, Mark; Valcour, James
2015-03-01
The neonatal resuscitation program (NRP) has been developed to educate physicians and other health care providers about newborn resuscitation and has been shown to improve neonatal resuscitation skills. Simulation-based training is recommended as an effective modality for instructing neonatal resuscitation and both low and high-fidelity manikin simulators are used. There is limited research that has compared the effect of low and high-fidelity manikin simulators for NRP learning outcomes, and more specifically on teamwork performance and confidence. The purpose of this study was to examine the effect of using low versus high-fidelity manikin simulators in NRP instruction. A randomized posttest-only control group study design was conducted. Third year undergraduate medical students participated in NRP instruction and were assigned to an experimental group (high-fidelity manikin simulator) or control group (low-fidelity manikin simulator). Integrated skills station (megacode) performance, participant satisfaction, confidence and teamwork behaviour scores were compared between the study groups. Participants in the high-fidelity manikin simulator instructional group reported significantly higher total scores in overall satisfaction (p = 0.001) and confidence (p = 0.001). There were no significant differences in teamwork behaviour scores, as observed by two independent raters, nor differences on mandatory integrated skills station performance items at the p < 0.05 level. Medical students' reported greater satisfaction and confidence with high-fidelity manikin simulators, but did not demonstrate overall significantly improved teamwork or integrated skills station performance. Low and high-fidelity manikin simulators facilitate similar levels of objectively measured NRP outcomes for integrated skills station and teamwork performance.
High Fidelity System Simulation of Multiple Components in Support of the UEET Program
NASA Technical Reports Server (NTRS)
Plybon, Ronald C.; VanDeWall, Allan; Sampath, Rajiv; Balasubramaniam, Mahadevan; Mallina, Ramakrishna; Irani, Rohinton
2006-01-01
The High Fidelity System Simulation effort has addressed various important objectives to enable additional capability within the NPSS framework. The scope emphasized High Pressure Turbine and High Pressure Compressor components. Initial effort was directed at developing and validating intermediate fidelity NPSS model using PD geometry and extended to high-fidelity NPSS model by overlaying detailed geometry to validate CFD against rig data. Both "feedforward" and feedback" approaches of analysis zooming was employed to enable system simulation capability in NPSS. These approaches have certain benefits and applicability in terms of specific applications "feedback" zooming allows the flow-up of information from high-fidelity analysis to be used to update the NPSS model results by forcing the NPSS solver to converge to high-fidelity analysis predictions. This apporach is effective in improving the accuracy of the NPSS model; however, it can only be used in circumstances where there is a clear physics-based strategy to flow up the high-fidelity analysis results to update the NPSS system model. "Feed-forward" zooming approach is more broadly useful in terms of enabling detailed analysis at early stages of design for a specified set of critical operating points and using these analysis results to drive design decisions early in the development process.
NASA Astrophysics Data System (ADS)
Zhou, Xiran; Liu, Jun; Liu, Shuguang; Cao, Lei; Zhou, Qiming; Huang, Huawen
2014-02-01
High spatial resolution and spectral fidelity are basic standards for evaluating an image fusion algorithm. Numerous fusion methods for remote sensing images have been developed. Some of these methods are based on the intensity-hue-saturation (IHS) transform and the generalized IHS (GIHS), which may cause serious spectral distortion. Spectral distortion in the GIHS is proven to result from changes in saturation during fusion. Therefore, reducing such changes can achieve high spectral fidelity. A GIHS-based spectral preservation fusion method that can theoretically reduce spectral distortion is proposed in this study. The proposed algorithm consists of two steps. The first step is spectral modulation (SM), which uses the Gaussian function to extract spatial details and conduct SM of multispectral (MS) images. This method yields a desirable visual effect without requiring histogram matching between the panchromatic image and the intensity of the MS image. The second step uses the Gaussian convolution function to restore lost edge details during SM. The proposed method is proven effective and shown to provide better results compared with other GIHS-based methods.
The Need for High Fidelity Lunar Regolith Simulants
NASA Technical Reports Server (NTRS)
Gaier, James R.
2008-01-01
The case is made for the need to have high fidelity lunar regolith simulants to verify the performance of structures, mechanisms, and processes to be used on the lunar surface. Minor constituents will in some cases have major consequences. Small amounts of sulfur in the regolith can poison catalysts, and metallic iron on the surface of nano-sized dust particles may cause a dramatic increase in its toxicity. So the definition of a high fidelity simulant is application-dependent. For example, in situ resource utilization will require high fidelity in chemistry, meaning careful attention to the minor components and phases; but some other applications, such as the abrasive effects on suit fabrics, might be relatively insensitive to minor component chemistry while abrasion of some metal components may be highly dependent on trace components. The lunar environment itself will change the surface chemistry of the simulant, so to have a high fidelity simulant it must be used in a high fidelity simulated environment to get an accurate simulation. Research must be conducted to determine how sensitive technologies will be to minor components and environmental factors before they can be dismissed as unimportant.
A Hybrid Optimization Framework with POD-based Order Reduction and Design-Space Evolution Scheme
NASA Astrophysics Data System (ADS)
Ghoman, Satyajit S.
The main objective of this research is to develop an innovative multi-fidelity multi-disciplinary design, analysis and optimization suite that integrates certain solution generation codes and newly developed innovative tools to improve the overall optimization process. The research performed herein is divided into two parts: (1) the development of an MDAO framework by integration of variable fidelity physics-based computational codes, and (2) enhancements to such a framework by incorporating innovative features extending its robustness. The first part of this dissertation describes the development of a conceptual Multi-Fidelity Multi-Strategy and Multi-Disciplinary Design Optimization Environment (M3 DOE), in context of aircraft wing optimization. M 3 DOE provides the user a capability to optimize configurations with a choice of (i) the level of fidelity desired, (ii) the use of a single-step or multi-step optimization strategy, and (iii) combination of a series of structural and aerodynamic analyses. The modularity of M3 DOE allows it to be a part of other inclusive optimization frameworks. The M 3 DOE is demonstrated within the context of shape and sizing optimization of the wing of a Generic Business Jet aircraft. Two different optimization objectives, viz. dry weight minimization, and cruise range maximization are studied by conducting one low-fidelity and two high-fidelity optimization runs to demonstrate the application scope of M3 DOE. The second part of this dissertation describes the development of an innovative hybrid optimization framework that extends the robustness of M 3 DOE by employing a proper orthogonal decomposition-based design-space order reduction scheme combined with the evolutionary algorithm technique. The POD method of extracting dominant modes from an ensemble of candidate configurations is used for the design-space order reduction. The snapshot of candidate population is updated iteratively using evolutionary algorithm technique of fitness-driven retention. This strategy capitalizes on the advantages of evolutionary algorithm as well as POD-based reduced order modeling, while overcoming the shortcomings inherent with these techniques. When linked with M3 DOE, this strategy offers a computationally efficient methodology for problems with high level of complexity and a challenging design-space. This newly developed framework is demonstrated for its robustness on a nonconventional supersonic tailless air vehicle wing shape optimization problem.
Plasma Processing of Lunar Regolith Simulant for Diverse Applications
NASA Technical Reports Server (NTRS)
Schofield, Elizabeth C.; Sen, Subhayu; O'Dell, J. Scott
2008-01-01
Versatile manufacturing technologies for extracting resources from the moon are needed to support future space missions. Of particular interest is the production of gases and metals from lunar resources for life support, propulsion, and in-space fabrication. Deposits made from lunar regolith could yield highly emissive coatings and near-net shaped parts for replacement or repair of critical components. Equally important is development of high fidelity lunar simulants for ground based validation of potential lunar surface operations. Described herein is an innovative plasma processing technique for insitu production of gases, metals, coatings, and deposits from lunar regolith, and synthesis of high fidelity lunar simulant from NASA issued lunar simulant JSC-1. Initial plasma reduction trials of JSC-1 lunar simulant have indicated production of metallic iron and magnesium. Evolution of carbon monoxide has been detected subsequent to reduction of the simulant using the plasma process. Plasma processing of the simulant has also resulted in glassy phases resembling the volcanic glass and agglutinates found in lunar regolith. Complete and partial glassy phase deposits have been obtained by varying the plasma process variables. Experimental techniques, product characterization, and process gas analysis will be discussed.
Economical Unsteady High-Fidelity Aerodynamics for Structural Optimization with a Flutter Constraint
NASA Technical Reports Server (NTRS)
Bartels, Robert E.; Stanford, Bret K.
2017-01-01
Structural optimization with a flutter constraint for a vehicle designed to fly in the transonic regime is a particularly difficult task. In this speed range, the flutter boundary is very sensitive to aerodynamic nonlinearities, typically requiring high-fidelity Navier-Stokes simulations. However, the repeated application of unsteady computational fluid dynamics to guide an aeroelastic optimization process is very computationally expensive. This expense has motivated the development of methods that incorporate aspects of the aerodynamic nonlinearity, classical tools of flutter analysis, and more recent methods of optimization. While it is possible to use doublet lattice method aerodynamics, this paper focuses on the use of an unsteady high-fidelity aerodynamic reduced order model combined with successive transformations that allows for an economical way of utilizing high-fidelity aerodynamics in the optimization process. This approach is applied to the common research model wing structural design. As might be expected, the high-fidelity aerodynamics produces a heavier wing than that optimized with doublet lattice aerodynamics. It is found that the optimized lower skin of the wing using high-fidelity aerodynamics differs significantly from that using doublet lattice aerodynamics.
Extraction of Volatiles from Regolith or Soil on Mars, the Moon, and Asteroids
NASA Technical Reports Server (NTRS)
Linne, Diane; Kleinhenz, Julie; Trunek, Andrew; Hoffman, Stephen; Collins, Jacob
2017-01-01
NASA's Advanced Exploration Systems ISRU Technology Project is evaluating concepts to extract water from all resource types Near-term objectives: Produce high-fidelity mass, power, and volume estimates for mining and processing systems Identify critical challenges for development focus Begin demonstration of component and subsystem technologies in relevant environment Several processor types: Closed processors either partially or completely sealed during processing Open air processors operates at Mars ambient conditions In-situ processors Extract product directly without excavation of raw resource Design features Elimination of sweep gas reduces dust particles in water condensate Pressure maintained by height of soil in hopper Model developed to evaluate key design parameters Geometry: conveyor diameter, screw diameter, shaft diameter, flight spacing and pitch Operational: screw speed vs. screw length (residence time) Thermal: Heat flux, heat transfer to soil Testing to demonstrate feasibility and performance Agglomeration, clogging Pressure rise forced flow to condenser.
Quantum-entanglement storage and extraction in quantum network node
NASA Astrophysics Data System (ADS)
Shan, Zhuoyu; Zhang, Yong
Quantum computing and quantum communication have become the most popular research topic. Nitrogen-vacancy (NV) centers in diamond have been shown the great advantage of implementing quantum information processing. The generation of entanglement between NV centers represents a fundamental prerequisite for all quantum information technologies. In this paper, we propose a scheme to realize the high-fidelity storage and extraction of quantum entanglement information based on the NV centers at room temperature. We store the entangled information of a pair of entangled photons in the Bell state into the nuclear spins of two NV centers, which can make these two NV centers entangled. And then we illuminate how to extract the entangled information from NV centers to prepare on-demand entangled states for optical quantum information processing. The strategy of engineering entanglement demonstrated here maybe pave the way towards a NV center-based quantum network.
Photon extraction and conversion for scalable ion-trap quantum computing
NASA Astrophysics Data System (ADS)
Clark, Susan; Benito, Francisco; McGuinness, Hayden; Stick, Daniel
2014-03-01
Trapped ions represent one of the most mature and promising systems for quantum information processing. They have high-fidelity one- and two-qubit gates, long coherence times, and their qubit states can be reliably prepared and detected. Taking advantage of these inherent qualities in a system with many ions requires a means of entangling spatially separated ion qubits. One architecture achieves this entanglement through the use of emitted photons to distribute quantum information - a favorable strategy if photon extraction can be made efficient and reliable. Here I present results for photon extraction from an ion in a cavity formed by integrated optics on a surface trap, as well as results in frequency converting extracted photons for long distance transmission or interfering with photons from other types of optically active qubits. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U. S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Concept Maps: A Tool to Prepare for High Fidelity Simulation in Nursing
ERIC Educational Resources Information Center
Daley, Barbara J.; Beman, Sarah Black; Morgan, Sarah; Kennedy, Linda; Sheriff, Mandy
2017-01-01
In this study, the use of concept mapping as a method to prepare for high fidelity simulated learning experiences was investigated. Fourth year baccalaureate nursing students were taught how to use concept maps as a way to prepare for high fidelity simulated nursing experiences. Students prepared concept maps for two simulated experiences…
Maneval, Rhonda; Fowler, Kimberly A; Kays, John A; Boyd, Tiffany M; Shuey, Jennifer; Harne-Britner, Sarah; Mastrine, Cynthia
2012-03-01
This study was conducted to determine whether the addition of high-fidelity patient simulation to new nurse orientation enhanced critical thinking and clinical decision-making skills. A pretest-posttest design was used to assess critical thinking and clinical decision-making skills in two groups of graduate nurses. Compared with the control group, the high-fidelity patient simulation group did not show significant improvement in mean critical thinking or clinical decision-making scores. When mean scores were analyzed, both groups showed an increase in critical thinking scores from pretest to posttest, with the high-fidelity patient simulation group showing greater gains in overall scores. However, neither group showed a statistically significant increase in mean test scores. The effect of high-fidelity patient simulation on critical thinking and clinical decision-making skills remains unclear. Copyright 2012, SLACK Incorporated.
High-Fidelity Simulation for Neonatal Nursing Education: An Integrative Review of the Literature.
Cooper, Allyson
2015-01-01
The lack of safe avenues to develop neonatal nursing competencies using human subjects leads to the notion that simulation education for neonatal nurses might be an ideal form of education. This integrative literature review compares traditional, teacher-centered education with high-fidelity simulation education for neonatal nurses. It examines the theoretical frameworks used in neonatal nursing education and outlines the advantages of this type of training, including improving communication and teamwork; providing an innovative pedagogical approach; and aiding in skill acquisition, confidence, and participant satisfaction. The importance of debriefing is also examined. High-fidelity simulation is not without disadvantages, including its significant cost, the time associated with training, the need for very complex technical equipment, and increased faculty resource requirements. Innovative uses of high-fidelity simulation in neonatal nursing education are suggested. High-fidelity simulation has great potential but requires additional research to fully prove its efficacy.
Combining Phase Identification and Statistic Modeling for Automated Parallel Benchmark Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Ye; Ma, Xiaosong; Liu, Qing Gary
2015-01-01
Parallel application benchmarks are indispensable for evaluating/optimizing HPC software and hardware. However, it is very challenging and costly to obtain high-fidelity benchmarks reflecting the scale and complexity of state-of-the-art parallel applications. Hand-extracted synthetic benchmarks are time-and labor-intensive to create. Real applications themselves, while offering most accurate performance evaluation, are expensive to compile, port, reconfigure, and often plainly inaccessible due to security or ownership concerns. This work contributes APPRIME, a novel tool for trace-based automatic parallel benchmark generation. Taking as input standard communication-I/O traces of an application's execution, it couples accurate automatic phase identification with statistical regeneration of event parameters tomore » create compact, portable, and to some degree reconfigurable parallel application benchmarks. Experiments with four NAS Parallel Benchmarks (NPB) and three real scientific simulation codes confirm the fidelity of APPRIME benchmarks. They retain the original applications' performance characteristics, in particular the relative performance across platforms.« less
Li, Chen; Wang, Haiwei; Yuan, Tiangang; Woodman, Andrew; Yang, Decheng; Zhou, Guohui; Cameron, Craig E; Yu, Li
2018-05-01
Previous studies have shown that the FMDV Asia1/YS/CHA/05 high-fidelity mutagen-resistant variants are attenuated (Zeng et al., 2014). Here, we introduced the same single or multiple-amino-acid substitutions responsible for increased 3D pol fidelity of type Asia1 FMDV into the type O FMDV O/YS/CHA/05 infectious clone. The rescued viruses O-DA and O-DAMM are lower replication fidelity mutants and showed an attenuated phenotype. These results demonstrated that the same amino acid substitution of 3D pol in different serotypes of FMDV strains had different effects on viral fidelity. In addition, nucleoside analogues were used to select high-fidelity mutagen-resistant type O FMDV variants. The rescued mutagen-resistant type O FMDV high-fidelity variants exhibited significantly attenuated fitness and a reduced virulence phenotype. These results have important implications for understanding the molecular mechanism of FMDV evolution and pathogenicity, especially in developing a safer modified live-attenuated vaccine against FMDV. Copyright © 2018 Elsevier Inc. All rights reserved.
Cultured High-Fidelity Three-Dimensional Human Urogenital Tract Carcinomas and Process
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J. (Inventor); Prewett, Tacey L. (Inventor); Spaulding, Glenn F. (Inventor); Wolf, David A. (Inventor)
1998-01-01
Artificial high-fidelity three-dimensional human urogenital tract carcinomas are propagated under in vitro-microgravity conditions from carcinoma cells. Artificial high-fidelity three-dimensional human urogenital tract carcinomas are also propagated from a coculture of normal urogenital tract cells inoculated with carcinoma cells. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.
An Automatic Medium to High Fidelity Low-Thrust Global Trajectory Toolchain; EMTG-GMAT
NASA Technical Reports Server (NTRS)
Beeson, Ryne T.; Englander, Jacob A.; Hughes, Steven P.; Schadegg, Maximillian
2015-01-01
Solving the global optimization, low-thrust, multiple-flyby interplanetary trajectory problem with high-fidelity dynamical models requires an unreasonable amount of computational resources. A better approach, and one that is demonstrated in this paper, is a multi-step process whereby the solution of the aforementioned problem is solved at a lower-fidelity and this solution is used as an initial guess for a higher-fidelity solver. The framework presented in this work uses two tools developed by NASA Goddard Space Flight Center: the Evolutionary Mission Trajectory Generator (EMTG) and the General Mission Analysis Tool (GMAT). EMTG is a medium to medium-high fidelity low-thrust interplanetary global optimization solver, which now has the capability to automatically generate GMAT script files for seeding a high-fidelity solution using GMAT's local optimization capabilities. A discussion of the dynamical models as well as thruster and power modeling for both EMTG and GMAT are given in this paper. Current capabilities are demonstrated with examples that highlight the toolchains ability to efficiently solve the difficult low-thrust global optimization problem with little human intervention.
Kabel, Joey; Hosemann, Peter; Zayachuk, Yevhen; ...
2018-01-24
We present that ceramic fiber–matrix composites (CFMCs) are exciting materials for engineering applications in extreme environments. By integrating ceramic fibers within a ceramic matrix, CFMCs allow an intrinsically brittle material to exhibit sufficient structural toughness for use in gas turbines and nuclear reactors. Chemical stability under high temperature and irradiation coupled with high specific strength make these materials unique and increasingly popular in extreme settings. This paper first offers a review of the importance and growing body of research on fiber–matrix interfaces as they relate to composite toughening mechanisms. Second, micropillar compression is explored experimentally as a high-fidelity method formore » extracting interface properties compared with traditional fiber push-out testing. Three significant interface properties that govern composite toughening were extracted. For a 50-nm-pyrolytic carbon interface, the following were observed: a fracture energy release rate of ~2.5 J/m 2, an internal friction coefficient of 0.25 ± 0.04, and a debond shear strength of 266 ± 24 MPa. Lastly, this research supports micromechanical evaluations as a unique bridge between theoretical physics models for microcrack propagation and empirically driven finite element models for bulk CFMCs.« less
Rolling ball sifting algorithm for the augmented visual inspection of carotid bruit auscultation
NASA Astrophysics Data System (ADS)
Huang, Adam; Lee, Chung-Wei; Liu, Hon-Man
2016-07-01
Carotid bruits are systolic sounds associated with turbulent blood flow through atherosclerotic stenosis in the neck. They are audible intermittent high-frequency (above 200 Hz) sounds mixed with background noise and transmitted low-frequency (below 100 Hz) heart sounds that wax and wane periodically. It is a nontrivial task to extract both bruits and heart sounds with high fidelity for further computer-aided auscultation and diagnosis. In this paper we propose a rolling ball sifting algorithm that is capable to filter signals with a sharper frequency selectivity mechanism in the time domain. By rolling two balls (one above and one below the signal) of a suitable radius, the balls are large enough to roll over bruits and yet small enough to ride on heart sound waveforms. The high-frequency bruits can then be extracted according to a tangibility criterion by using the local extrema touched by the balls. Similarly, the low-frequency heart sounds can be acquired by a larger radius. By visualizing the periodicity information of both the extracted heart sounds and bruits, the proposed visual inspection method can potentially improve carotid bruit diagnosis accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kabel, Joey; Hosemann, Peter; Zayachuk, Yevhen
We present that ceramic fiber–matrix composites (CFMCs) are exciting materials for engineering applications in extreme environments. By integrating ceramic fibers within a ceramic matrix, CFMCs allow an intrinsically brittle material to exhibit sufficient structural toughness for use in gas turbines and nuclear reactors. Chemical stability under high temperature and irradiation coupled with high specific strength make these materials unique and increasingly popular in extreme settings. This paper first offers a review of the importance and growing body of research on fiber–matrix interfaces as they relate to composite toughening mechanisms. Second, micropillar compression is explored experimentally as a high-fidelity method formore » extracting interface properties compared with traditional fiber push-out testing. Three significant interface properties that govern composite toughening were extracted. For a 50-nm-pyrolytic carbon interface, the following were observed: a fracture energy release rate of ~2.5 J/m 2, an internal friction coefficient of 0.25 ± 0.04, and a debond shear strength of 266 ± 24 MPa. Lastly, this research supports micromechanical evaluations as a unique bridge between theoretical physics models for microcrack propagation and empirically driven finite element models for bulk CFMCs.« less
Multi-fidelity methods for uncertainty quantification in transport problems
NASA Astrophysics Data System (ADS)
Tartakovsky, G.; Yang, X.; Tartakovsky, A. M.; Barajas-Solano, D. A.; Scheibe, T. D.; Dai, H.; Chen, X.
2016-12-01
We compare several multi-fidelity approaches for uncertainty quantification in flow and transport simulations that have a lower computational cost than the standard Monte Carlo method. The cost reduction is achieved by combining a small number of high-resolution (high-fidelity) simulations with a large number of low-resolution (low-fidelity) simulations. We propose a new method, a re-scaled Multi Level Monte Carlo (rMLMC) method. The rMLMC is based on the idea that the statistics of quantities of interest depends on scale/resolution. We compare rMLMC with existing multi-fidelity methods such as Multi Level Monte Carlo (MLMC) and reduced basis methods and discuss advantages of each approach.
State-conditional coherent charge qubit oscillations in a Si/SiGe quadruple quantum dot
NASA Astrophysics Data System (ADS)
Ward, Daniel R.; Kim, Dohun; Savage, Donald E.; Lagally, Max G.; Foote, Ryan H.; Friesen, Mark; Coppersmith, Susan N.; Eriksson, Mark A.
2016-10-01
Universal quantum computation requires high-fidelity single-qubit rotations and controlled two-qubit gates. Along with high-fidelity single-qubit gates, strong efforts have been made in developing robust two-qubit logic gates in electrically gated quantum dot systems to realise a compact and nanofabrication-compatible architecture. Here we perform measurements of state-conditional coherent oscillations of a charge qubit. Using a quadruple quantum dot formed in a Si/SiGe heterostructure, we show the first demonstration of coherent two-axis control of a double quantum dot charge qubit in undoped Si/SiGe, performing Larmor and Ramsey oscillation measurements. We extract the strength of the capacitive coupling between a pair of double quantum dots by measuring the detuning energy shift (≈75 μeV) of one double dot depending on the excess charge configuration of the other double dot. We further demonstrate that the strong capacitive coupling allows fast, state-conditional Landau-Zener-Stückelberg oscillations with a conditional π phase flip time of about 80 ps, showing a promising pathway towards multi-qubit entanglement and control in semiconductor quantum dots.
State-conditional coherent charge qubit oscillations in a Si/SiGe quadruple quantum dot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Daniel R.; Kim, Dohun; Savage, Donald E.
Universal quantum computation requires high-fidelity single-qubit rotations and controlled two-qubit gates. Along with high-fidelity single-qubit gates, strong efforts have been made in developing robust two-qubit logic gates in electrically gated quantum dot systems to realise a compact and nanofabrication-compatible architecture. Here we perform measurements of state-conditional coherent oscillations of a charge qubit. Using a quadruple quantum dot formed in a Si/SiGe heterostructure, we show the first demonstration of coherent two-axis control of a double quantum dot charge qubit in undoped Si/SiGe, performing Larmor and Ramsey oscillation measurements. We extract the strength of the capacitive coupling between a pair of doublemore » quantum dots by measuring the detuning energy shift (≈75 μeV) of one double dot depending on the excess charge configuration of the other double dot. Finally, we further demonstrate that the strong capacitive coupling allows fast, state-conditional Landau–Zener–Stückelberg oscillations with a conditional π phase flip time of about 80 ps, showing a promising pathway towards multi-qubit entanglement and control in semiconductor quantum dots.« less
State-conditional coherent charge qubit oscillations in a Si/SiGe quadruple quantum dot
Ward, Daniel R.; Kim, Dohun; Savage, Donald E.; ...
2016-10-18
Universal quantum computation requires high-fidelity single-qubit rotations and controlled two-qubit gates. Along with high-fidelity single-qubit gates, strong efforts have been made in developing robust two-qubit logic gates in electrically gated quantum dot systems to realise a compact and nanofabrication-compatible architecture. Here we perform measurements of state-conditional coherent oscillations of a charge qubit. Using a quadruple quantum dot formed in a Si/SiGe heterostructure, we show the first demonstration of coherent two-axis control of a double quantum dot charge qubit in undoped Si/SiGe, performing Larmor and Ramsey oscillation measurements. We extract the strength of the capacitive coupling between a pair of doublemore » quantum dots by measuring the detuning energy shift (≈75 μeV) of one double dot depending on the excess charge configuration of the other double dot. Finally, we further demonstrate that the strong capacitive coupling allows fast, state-conditional Landau–Zener–Stückelberg oscillations with a conditional π phase flip time of about 80 ps, showing a promising pathway towards multi-qubit entanglement and control in semiconductor quantum dots.« less
ERIC Educational Resources Information Center
Raedeke, Thomas D.; Dlugonski, Deirdre
2017-01-01
Purpose: This study was designed to compare a low versus high theoretical fidelity pedometer intervention applying social-cognitive theory on step counts and self-efficacy. Method: Fifty-six public university employees participated in a 10-week randomized controlled trial with 2 conditions that varied in theoretical fidelity. Participants in the…
Creation of a Rapid High-Fidelity Aerodynamics Module for a Multidisciplinary Design Environment
NASA Technical Reports Server (NTRS)
Srinivasan, Muktha; Whittecar, William; Edwards, Stephen; Mavris, Dimitri N.
2012-01-01
In the traditional aerospace vehicle design process, each successive design phase is accompanied by an increment in the modeling fidelity of the disciplinary analyses being performed. This trend follows a corresponding shrinking of the design space as more and more design decisions are locked in. The correlated increase in knowledge about the design and decrease in design freedom occurs partly because increases in modeling fidelity are usually accompanied by significant increases in the computational expense of performing the analyses. When running high fidelity analyses, it is not usually feasible to explore a large number of variations, and so design space exploration is reserved for conceptual design, and higher fidelity analyses are run only once a specific point design has been selected to carry forward. The designs produced by this traditional process have been recognized as being limited by the uncertainty that is present early on due to the use of lower fidelity analyses. For example, uncertainty in aerodynamics predictions produces uncertainty in trajectory optimization, which can impact overall vehicle sizing. This effect can become more significant when trajectories are being shaped by active constraints. For example, if an optimal trajectory is running up against a normal load factor constraint, inaccuracies in the aerodynamic coefficient predictions can cause a feasible trajectory to be considered infeasible, or vice versa. For this reason, a trade must always be performed between the desired fidelity and the resources available. Apart from this trade between fidelity and computational expense, it is very desirable to use higher fidelity analyses earlier in the design process. A large body of work has been performed to this end, led by efforts in the area of surrogate modeling. In surrogate modeling, an up-front investment is made by running a high fidelity code over a Design of Experiments (DOE); once completed, the DOE data is used to create a surrogate model, which captures the relationships between input variables and responses into regression equations. Depending on the dimensionality of the problem and the fidelity of the code for which a surrogate model is being created, the initial DOE can itself be computationally prohibitive to run. Cokriging, a modeling approach from the field of geostatistics, provides a desirable compromise between computational expense and fidelity. To do this, cokriging leverages a large body of data generated by a low fidelity analysis, combines it with a smaller set of data from a higher fidelity analysis, and creates a kriging surrogate model with prediction fidelity approaching that of the higher fidelity analysis. When integrated into a multidisciplinary environment, a disciplinary analysis module employing cokriging can raise the analysis fidelity without drastically impacting the expense of design iterations. This is demonstrated through the creation of an aerodynamics analysis module in NASA s OpenMDAO framework. Aerodynamic analyses including Missile DATCOM, APAS, and USM3D are leveraged to create high fidelity aerodynamics decks for parametric vehicle geometries, which are created in NASA s Vehicle Sketch Pad (VSP). Several trade studies are performed to examine the achieved level of model fidelity, and the overall impact to vehicle design is quantified.
High-fidelity in vivo replication of DNA base shape mimics without Watson–Crick hydrogen bonds
Delaney, James C.; Henderson, Paul T.; Helquist, Sandra A.; Morales, Juan C.; Essigmann, John M.; Kool, Eric T.
2003-01-01
We report studies testing the importance of Watson–Crick hydrogen bonding, base-pair geometry, and steric effects during DNA replication in living bacterial cells. Nonpolar DNA base shape mimics of thymine and adenine (abbreviated F and Q, respectively) were introduced into Escherichia coli by insertion into a phage genome followed by transfection of the vector into bacteria. Genetic assays showed that these two base mimics were bypassed with moderate to high efficiency in the cells and with very high efficiency under damage-response (SOS induction) conditions. Under both sets of conditions, the T-shape mimic (F) encoded genetic information in the bacteria as if it were thymine, directing incorporation of adenine opposite it with high fidelity. Similarly, the A mimic (Q) directed incorporation of thymine opposite itself with high fidelity. The data establish that Watson–Crick hydrogen bonding is not necessary for high-fidelity replication of a base pair in vivo. The results suggest that recognition of DNA base shape alone serves as the most powerful determinant of fidelity during transfer of genetic information in a living organism. PMID:12676985
High Fidelity Simulation of Atomization in Diesel Engine Sprays
2015-09-01
ARL-RP-0555 ● SEP 2015 US Army Research Laboratory High Fidelity Simulation of Atomization in Diesel Engine Sprays by L Bravo...ARL-RP-0555 ● SEP 2015 US Army Research Laboratory High Fidelity Simulation of Atomization in Diesel Engine Sprays by L...Simulation of Atomization in Diesel Engine Sprays 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) L Bravo, CB Ivey, D
Implementation Fidelity in Community-Based Interventions
Breitenstein, Susan M.; Gross, Deborah; Garvey, Christine; Hill, Carri; Fogg, Louis; Resnick, Barbara
2012-01-01
Implementation fidelity is the degree to which an intervention is delivered as intended and is critical to successful translation of evidence-based interventions into practice. Diminished fidelity may be why interventions that work well in highly controlled trials may fail to yield the same outcomes when applied in real life contexts. The purpose of this paper is to define implementation fidelity and describe its importance for the larger science of implementation, discuss data collection methods and current efforts in measuring implementation fidelity in community-based prevention interventions, and present future research directions for measuring implementation fidelity that will advance implementation science. PMID:20198637
NPSS Multidisciplinary Integration and Analysis
NASA Technical Reports Server (NTRS)
Hall, Edward J.; Rasche, Joseph; Simons, Todd A.; Hoyniak, Daniel
2006-01-01
The objective of this task was to enhance the capability of the Numerical Propulsion System Simulation (NPSS) by expanding its reach into the high-fidelity multidisciplinary analysis area. This task investigated numerical techniques to convert between cold static to hot running geometry of compressor blades. Numerical calculations of blade deformations were iteratively done with high fidelity flow simulations together with high fidelity structural analysis of the compressor blade. The flow simulations were performed with the Advanced Ducted Propfan Analysis (ADPAC) code, while structural analyses were performed with the ANSYS code. High fidelity analyses were used to evaluate the effects on performance of: variations in tip clearance, uncertainty in manufacturing tolerance, variable inlet guide vane scheduling, and the effects of rotational speed on the hot running geometry of the compressor blades.
Generation and applications of an ultrahigh-fidelity four-photon Greenberger-Horne-Zeilinger state.
Zhang, Chao; Huang, Yun-Feng; Zhang, Cheng-Jie; Wang, Jian; Liu, Bi-Heng; Li, Chuan-Feng; Guo, Guang-Can
2016-11-28
High-quality entangled photon pairs generated via spontaneous parametric down-conversion have made great contributions to the modern quantum information science and the fundamental tests of quantum mechanics. However, the quality of the entangled states decreases sharply when moving from biphoton to multiphoton experiments, mainly due to the lack of interactions between photons. Here, for the first time, we generate a four-photon Greenberger-Horne-Zeilinger state with a fidelity of 98%, which is even comparable to the best fidelity of biphoton entangled states. Thus, it enables us to demonstrate an ultrahigh-fidelity entanglement swapping-the key ingredient in various quantum information tasks. Our results push the fidelity of multiphoton entanglement generation to a new level and would be useful in some demanding tasks, e.g., we successfully demonstrate the genuine multipartite nonlocality of the observed state in the nonsignaling scenario by violating a novel Hardy-like inequality, which requires very high state-fidelity.
Implementing a high-fidelity simulation program in a community college setting.
Tuoriniemi, Pamela; Schott-Baer, Darlene
2008-01-01
Despite their relatively high cost, there is heightened interest by faculty in undergraduate nursing programs to implement high-fidelity simulation (HFS) programs. High-fidelity simulators are appealing because they allow students to experience high-risk, low-volume patient problems in a realistic setting. The decision to purchase a simulator is the first step in the process of implementing and maintaining an HFS lab. Knowledge, technical skill, commitment, and considerable time are needed to develop a successful program. The process, as experienced by one community college nursing program, is described.
Denadai, Rafael; Oshiiwa, Marie; Saad-Hossne, Rogério
2014-03-01
The search for alternative and effective forms of training simulation is needed due to ethical and medico-legal aspects involved in training surgical skills on living patients, human cadavers and living animals. To evaluate if the bench model fidelity interferes in the acquisition of elliptical excision skills by novice medical students. Forty novice medical students were randomly assigned to 5 practice conditions with instructor-directed elliptical excision skills' training (n = 8): didactic materials (control); organic bench model (low-fidelity); ethylene-vinyl acetate bench model (low-fidelity); chicken legs' skin bench model (high-fidelity); or pig foot skin bench model (high-fidelity). Pre- and post-tests were applied. Global rating scale, effect size, and self-perceived confidence based on Likert scale were used to evaluate all elliptical excision performances. The analysis showed that after training, the students practicing on bench models had better performance based on Global rating scale (all P < 0.0000) and felt more confident to perform elliptical excision skills (all P < 0.0000) when compared to the control. There was no significant difference (all P > 0.05) between the groups that trained on bench models. The magnitude of the effect (basic cutaneous surgery skills' training) was considered large (>0.80) in all measurements. The acquisition of elliptical excision skills after instructor-directed training on low-fidelity bench models was similar to the training on high-fidelity bench models; and there was a more substantial increase in elliptical excision performances of students that trained on all simulators compared to the learning on didactic materials.
Lu, Hsuan-Hao; Lukens, Joseph M.; Peters, Nicholas A.; ...
2018-01-18
In this paper, we report the experimental realization of high-fidelity photonic quantum gates for frequency-encoded qubits and qutrits based on electro-optic modulation and Fourier-transform pulse shaping. Our frequency version of the Hadamard gate offers near-unity fidelity (0.99998±0.00003), requires only a single microwave drive tone for near-ideal performance, functions across the entire C band (1530–1570 nm), and can operate concurrently on multiple qubits spaced as tightly as four frequency modes apart, with no observable degradation in the fidelity. For qutrits, we implement a 3×3 extension of the Hadamard gate: the balanced tritter. This tritter—the first ever demonstrated for frequency modes—attains fidelitymore » 0.9989±0.0004. Finally, these gates represent important building blocks toward scalable, high-fidelity quantum information processing based on frequency encoding.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Hsuan-Hao; Lukens, Joseph M.; Peters, Nicholas A.
In this paper, we report the experimental realization of high-fidelity photonic quantum gates for frequency-encoded qubits and qutrits based on electro-optic modulation and Fourier-transform pulse shaping. Our frequency version of the Hadamard gate offers near-unity fidelity (0.99998±0.00003), requires only a single microwave drive tone for near-ideal performance, functions across the entire C band (1530–1570 nm), and can operate concurrently on multiple qubits spaced as tightly as four frequency modes apart, with no observable degradation in the fidelity. For qutrits, we implement a 3×3 extension of the Hadamard gate: the balanced tritter. This tritter—the first ever demonstrated for frequency modes—attains fidelitymore » 0.9989±0.0004. Finally, these gates represent important building blocks toward scalable, high-fidelity quantum information processing based on frequency encoding.« less
Rotorcraft Research at the NASA Vertical Motion Simulator
NASA Technical Reports Server (NTRS)
Aponso, Bimal Lalith; Tran, Duc T.; Schroeder, Jeffrey A.
2009-01-01
In the 1970 s the role of the military helicopter evolved to encompass more demanding missions including low-level nap-of-the-earth flight and operation in severely degraded visual environments. The Vertical Motion Simulator (VMS) at the NASA Ames Research Center was built to provide a high-fidelity simulation capability to research new rotorcraft concepts and technologies that could satisfy these mission requirements. The VMS combines a high-fidelity large amplitude motion system with an adaptable simulation environment including interchangeable and configurable cockpits. In almost 30 years of operation, rotorcraft research on the VMS has contributed significantly to the knowledge-base on rotorcraft performance, handling qualities, flight control, and guidance and displays. These contributions have directly benefited current rotorcraft programs and flight safety. The high fidelity motion system in the VMS was also used to research simulation fidelity. This research provided a fundamental understanding of pilot cueing modalities and their effect on simulation fidelity.
Secure alignment of coordinate systems using quantum correlation
NASA Astrophysics Data System (ADS)
Rezazadeh, F.; Mani, A.; Karimipour, V.
2017-08-01
We show that two parties far apart can use shared entangled states and classical communication to align their coordinate systems with a very high fidelity. Moreover, compared with previous methods proposed for such a task, i.e., sending parallel or antiparallel pairs or groups of spin states, our method has the extra advantages of using single-qubit measurements and also being secure, so that third parties do not extract any information about the aligned coordinate system established between the two parties. The latter property is important in many other quantum information protocols in which measurements inevitably play a significant role.
Observation of entanglement between itinerant microwave photons and a superconducting qubit.
Eichler, C; Lang, C; Fink, J M; Govenius, J; Filipp, S; Wallraff, A
2012-12-14
A localized qubit entangled with a propagating quantum field is well suited to study nonlocal aspects of quantum mechanics and may also provide a channel to communicate between spatially separated nodes in a quantum network. Here, we report the on-demand generation and characterization of Bell-type entangled states between a superconducting qubit and propagating microwave fields composed of zero-, one-, and two-photon Fock states. Using low noise linear amplification and efficient data acquisition we extract all relevant correlations between the qubit and the photon states and demonstrate entanglement with high fidelity.
First-Order Frameworks for Managing Models in Engineering Optimization
NASA Technical Reports Server (NTRS)
Alexandrov, Natlia M.; Lewis, Robert Michael
2000-01-01
Approximation/model management optimization (AMMO) is a rigorous methodology for attaining solutions of high-fidelity optimization problems with minimal expense in high- fidelity function and derivative evaluation. First-order AMMO frameworks allow for a wide variety of models and underlying optimization algorithms. Recent demonstrations with aerodynamic optimization achieved three-fold savings in terms of high- fidelity function and derivative evaluation in the case of variable-resolution models and five-fold savings in the case of variable-fidelity physics models. The savings are problem dependent but certain trends are beginning to emerge. We give an overview of the first-order frameworks, current computational results, and an idea of the scope of the first-order framework applicability.
Vermeulen, Joeri; Beeckman, Katrien; Turcksin, Rivka; Van Winkel, Lies; Gucciardo, Léonardo; Laubach, Monika; Peersman, Wim; Swinnen, Eva
2017-06-01
Simulation training is a powerful and evidence-based teaching method in healthcare. It allows students to develop essential competences that are often difficult to achieve during internships. High-Fidelity Perinatal Simulation exposes them to real-life scenarios in a safe environment. Although student midwives' experiences need to be considered to make the simulation training work, these have been overlooked so far. To explore the experiences of last-year student midwives with High-Fidelity Perinatal Simulation training. A qualitative descriptive study, using three focus group conversations with last-year student midwives (n=24). Audio tapes were transcribed and a thematic content analysis was performed. The entire data set was coded according to recurrent or common themes. To achieve investigator triangulation and confirm themes, discussions among the researchers was incorporated in the analysis. Students found High-Fidelity Perinatal Simulation training to be a positive learning method that increased both their competence and confidence. Their experiences varied over the different phases of the High-Fidelity Perinatal Simulation training. Although uncertainty, tension, confusion and disappointment were experienced throughout the simulation trajectory, they reported that this did not affect their learning and confidence-building. As High-Fidelity Perinatal Simulation training constitutes a helpful learning experience in midwifery education, it could have a positive influence on maternal and neonatal outcomes. In the long term, it could therefore enhance the midwifery profession in several ways. The present study is an important first step in opening up the debate about the pedagogical use of High-Fidelity Perinatal Simulation training within midwifery education. Copyright © 2017 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.
Mejía, Vilma; Gonzalez, Carlos; Delfino, Alejandro E; Altermatt, Fernando R; Corvetto, Marcia A
The primary purpose of this study was to compare the effect of high fidelity simulation versus a computer-based case solving self-study, in skills acquisition about malignant hyperthermia on first year anesthesiology residents. After institutional ethical committee approval, 31 first year anesthesiology residents were enrolled in this prospective randomized single-blinded study. Participants were randomized to either a High Fidelity Simulation Scenario or a computer-based Case Study about malignant hyperthermia. After the intervention, all subjects' performance in was assessed through a high fidelity simulation scenario using a previously validated assessment rubric. Additionally, knowledge tests and a satisfaction survey were applied. Finally, a semi-structured interview was done to assess self-perception of reasoning process and decision-making. 28 first year residents finished successfully the study. Resident's management skill scores were globally higher in High Fidelity Simulation versus Case Study, however they were significant in 4 of the 8 performance rubric elements: recognize signs and symptoms (p = 0.025), prioritization of initial actions of management (p = 0.003), recognize complications (p = 0.025) and communication (p = 0.025). Average scores from pre- and post-test knowledge questionnaires improved from 74% to 85% in the High Fidelity Simulation group, and decreased from 78% to 75% in the Case Study group (p = 0.032). Regarding the qualitative analysis, there was no difference in factors influencing the student's process of reasoning and decision-making with both teaching strategies. Simulation-based training with a malignant hyperthermia high-fidelity scenario was superior to computer-based case study, improving knowledge and skills in malignant hyperthermia crisis management, with a very good satisfaction level in anesthesia residents. Copyright © 2018 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.
Sun, Xiuhua; Yang, Weichun; Pan, Tao; Woolley, Adam T
2008-07-01
Immunoaffinity monolith pretreatment columns have been coupled with capillary electrophoresis separation in poly(methyl methacrylate) (PMMA) microchips. Microdevices were designed with eight reservoirs to enable the electrically controlled transport of selected analytes and solutions to carry out integrated immunoaffinity extraction and electrophoretic separation. The PMMA microdevices were fabricated reproducibly and with high fidelity by solvent imprinting and thermal bonding methods. Monoliths with epoxy groups for antibody immobilization were prepared by direct in situ photopolymerization of glycidyl methacrylate and ethylene glycol dimethacrylate in a porogenic solvent consisting of 70% 1-dodecanol and 30% cyclohexanol. Antifluorescein isothiocyanate was utilized as a model affinity group in the monoliths, and the immobilization process was optimized. A mean elution efficiency of 92% was achieved for the monolith-based extraction of fluorescein isothiocyanate (FITC)-tagged human serum albumin. FITC-tagged proteins were purified from a contaminant protein and then separated electrophoretically using these devices. The developed immunoaffinity column/capillary electrophoresis microdevices show great promise for combining sample pretreatment and separation in biomolecular analysis.
Sun, Xiuhua; Yang, Weichun; Pan, Tao; Woolley, Adam T.
2008-01-01
Immunoaffinity monolith pretreatment columns have been coupled with capillary electrophoresis separation in poly(methyl methacrylate) (PMMA) microchips. Microdevices were designed with 8 reservoirs to enable the electrically controlled transport of selected analytes and solutions to carry out integrated immunoaffinity extraction and electrophoretic separation. The PMMA microdevices were fabricated reproducibly and with high fidelity by solvent imprinting and thermal bonding methods. Monoliths with epoxy groups for antibody immobilization were prepared by direct in-situ photopolymerization of glycidyl methacrylate and ethylene dimethacrylate in a porogenic solvent consisting of 70% dodecanol and 30% hexanol. Anti-fluorescein isothiocyanate (FITC) was utilized as a model affinity group in the monoliths, and the immobilization process was optimized. A mean elution efficiency of 92% was achieved for the monolith-based extraction of FITC-tagged human serum albumin. FITC-tagged proteins were purified from a contaminant protein and then separated electrophoretically using these devices. The developed immunoaffinity column/capillary electrophoresis microdevices show great promise for combining sample pretreatment and separation in biomolecular analysis. PMID:18479142
Applications of fidelity measures to complex quantum systems
2016-01-01
We revisit fidelity as a measure for the stability and the complexity of the quantum motion of single-and many-body systems. Within the context of cold atoms, we present an overview of applications of two fidelities, which we call static and dynamical fidelity, respectively. The static fidelity applies to quantum problems which can be diagonalized since it is defined via the eigenfunctions. In particular, we show that the static fidelity is a highly effective practical detector of avoided crossings characterizing the complexity of the systems and their evolutions. The dynamical fidelity is defined via the time-dependent wave functions. Focusing on the quantum kicked rotor system, we highlight a few practical applications of fidelity measurements in order to better understand the large variety of dynamical regimes of this paradigm of a low-dimensional system with mixed regular–chaotic phase space. PMID:27140967
Tokunaga, Yuuki; Kuwashiro, Shin; Yamamoto, Takashi; Koashi, Masato; Imoto, Nobuyuki
2008-05-30
We experimentally demonstrate a simple scheme for generating a four-photon entangled cluster state with fidelity over 0.860+/-0.015. We show that the fidelity is high enough to guarantee that the produced state is distinguished from Greenberger-Horne-Zeilinger, W, and Dicke types of genuine four-qubit entanglement. We also demonstrate basic operations of one-way quantum computing using the produced state and show that the output state fidelities surpass classical bounds, which indicates that the entanglement in the produced state essentially contributes to the quantum operation.
Implementation of a Text-Based Content Intervention in Secondary Social Studies Classes.
Wanzek, Jeanne; Vaughn, Sharon
2016-12-01
We describe teacher fidelity (adherence to the components of the treatment as specified by the research team) based on a series of studies of a multicomponent intervention, Promoting Acceleration of Comprehension and Content Through Text (PACT), with middle and high school social studies teachers and their students. Findings reveal that even with highly specified materials and implementing practices that are aligned with effective reading comprehension and content instruction, teachers' fidelity was consistently low for some components and high for others. Teachers demonstrated consistently high implementation fidelity and quality for the instructional components of building background knowledge (comprehension canopy) and teaching key content vocabulary (essential words), whereas we recorded consistently lower fidelity and quality of implementation for the instructional components of critical reading and knowledge application. © 2016 Wiley Periodicals, Inc.
A comparison of select image-compression algorithms for an electronic still camera
NASA Technical Reports Server (NTRS)
Nerheim, Rosalee
1989-01-01
This effort is a study of image-compression algorithms for an electronic still camera. An electronic still camera can record and transmit high-quality images without the use of film, because images are stored digitally in computer memory. However, high-resolution images contain an enormous amount of information, and will strain the camera's data-storage system. Image compression will allow more images to be stored in the camera's memory. For the electronic still camera, a compression algorithm that produces a reconstructed image of high fidelity is most important. Efficiency of the algorithm is the second priority. High fidelity and efficiency are more important than a high compression ratio. Several algorithms were chosen for this study and judged on fidelity, efficiency and compression ratio. The transform method appears to be the best choice. At present, the method is compressing images to a ratio of 5.3:1 and producing high-fidelity reconstructed images.
Stimulated Brillouin scattering continuous wave phase conjugation in step-index fiber optics.
Massey, Steven M; Spring, Justin B; Russell, Timothy H
2008-07-21
Continuous wave (CW) stimulated Brillouin scattering (SBS) phase conjugation in step-index optical fibers was studied experimentally and modeled as a function of fiber length. A phase conjugate fidelity over 80% was measured from SBS in a 40 m fiber using a pinhole technique. Fidelity decreases with fiber length, and a fiber with a numerical aperture (NA) of 0.06 was found to generate good phase conjugation fidelity over longer lengths than a fiber with 0.13 NA. Modeling and experiment support previous work showing the maximum interaction length which yields a high fidelity phase conjugate beam is inversely proportional to the fiber NA(2), but find that fidelity remains high over much longer fiber lengths than previous models calculated. Conditions for SBS beam cleanup in step-index fibers are discussed.
Phosphate-binding pocket in Dicer-2 PAZ domain for high-fidelity siRNA production
Kandasamy, Suresh K.
2016-01-01
The enzyme Dicer produces small silencing RNAs such as micro-RNAs (miRNAs) and small interfering RNAs (siRNAs). In Drosophila, Dicer-1 produces ∼22–24-nt miRNAs from pre-miRNAs, whereas Dicer-2 makes 21-nt siRNAs from long double-stranded RNAs (dsRNAs). How Dicer-2 precisely makes 21-nt siRNAs with a remarkably high fidelity is unknown. Here we report that recognition of the 5′-monophosphate of a long dsRNA substrate by a phosphate-binding pocket in the Dicer-2 PAZ (Piwi, Argonaute, and Zwille/Pinhead) domain is crucial for the length fidelity, but not the efficiency, in 21-nt siRNA production. Loss of the length fidelity, meaning increased length heterogeneity of siRNAs, caused by point mutations in the phosphate-binding pocket of the Dicer-2 PAZ domain decreased RNA silencing activity in vivo, showing the importance of the high fidelity to make 21-nt siRNAs. We propose that the 5′-monophosphate of a long dsRNA substrate is anchored by the phosphate-binding pocket in the Dicer-2 PAZ domain and the distance between the pocket and the RNA cleavage active site in the RNaseIII domain corresponds to the 21-nt pitch in the A-form duplex of a long dsRNA substrate, resulting in high-fidelity 21-nt siRNA production. This study sheds light on the molecular mechanism by which Dicer-2 produces 21-nt siRNAs with a remarkably high fidelity for efficient RNA silencing. PMID:27872309
NASA Astrophysics Data System (ADS)
Horton, Scott
This research study investigated the effects of high fidelity graphics on both learning and presence, or the "sense of being there," inside a Virtual Learning Environment (VLE). Four versions of a VLE on the subject of the element mercury were created, each with a different combination of high and low fidelity polygon models and high and low fidelity shaders. A total of 76 college age (18+ years of age) participants were randomly assigned to one of the four conditions. The participants interacted with the VLE and then completed several posttest measures on learning, presence, and attitudes towards the VLE experience. Demographic information was also collected, including age, computer gameplay experience, number of virtual environments interacted with, gender and time spent in this virtual environment. The data was analyzed as a 2 x 2 between subjects ANOVA. The main effects of shader fidelity and polygon fidelity were both non-significant for both learning and all presence subscales inside the VLE. In addition, there was no significant interaction between shader fidelity and model fidelity. However, there were two significant results on the supplementary variables. First, gender was found to have a significant main effect on all the presence subscales. Females reported higher average levels of presence than their male counterparts. Second, gameplay hours, or the number of hours a participant played computer games per week, also had a significant main effect on participant score on the learning measure. The participants who reported playing 15+ hours of computer games per week, the highest amount of time in the variable, had the highest score as a group on the mercury learning measure while those participants that played 1-5 hours per week had the lowest scores.
Denadai, Rafael; Oshiiwa, Marie; Saad-Hossne, Rogério
2014-01-01
Background: The search for alternative and effective forms of training simulation is needed due to ethical and medico-legal aspects involved in training surgical skills on living patients, human cadavers and living animals. Aims: To evaluate if the bench model fidelity interferes in the acquisition of elliptical excision skills by novice medical students. Materials and Methods: Forty novice medical students were randomly assigned to 5 practice conditions with instructor-directed elliptical excision skills’ training (n = 8): didactic materials (control); organic bench model (low-fidelity); ethylene-vinyl acetate bench model (low-fidelity); chicken legs’ skin bench model (high-fidelity); or pig foot skin bench model (high-fidelity). Pre- and post-tests were applied. Global rating scale, effect size, and self-perceived confidence based on Likert scale were used to evaluate all elliptical excision performances. Results: The analysis showed that after training, the students practicing on bench models had better performance based on Global rating scale (all P < 0.0000) and felt more confident to perform elliptical excision skills (all P < 0.0000) when compared to the control. There was no significant difference (all P > 0.05) between the groups that trained on bench models. The magnitude of the effect (basic cutaneous surgery skills’ training) was considered large (>0.80) in all measurements. Conclusion: The acquisition of elliptical excision skills after instructor-directed training on low-fidelity bench models was similar to the training on high-fidelity bench models; and there was a more substantial increase in elliptical excision performances of students that trained on all simulators compared to the learning on didactic materials. PMID:24700937
Use of High Fidelity Methods in Multidisciplinary Optimization-A Preliminary Survey
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.; Kwak, Dochan (Technical Monitor)
2002-01-01
Multidisciplinary optimization is a key element of design process. To date multidiscipline optimization methods that use low fidelity methods are well advanced. Optimization methods based on simple linear aerodynamic equations and plate structural equations have been applied to complex aerospace configurations. However, use of high fidelity methods such as the Euler/ Navier-Stokes for fluids and 3-D (three dimensional) finite elements for structures has begun recently. As an activity of Multidiscipline Design Optimization Technical Committee (MDO TC) of AIAA (American Institute of Aeronautics and Astronautics), an effort was initiated to assess the status of the use of high fidelity methods in multidisciplinary optimization. Contributions were solicited through the members MDO TC committee. This paper provides a summary of that survey.
Measuring trainer fidelity in the transfer of suicide prevention training
Cross, Wendi F.; Pisani, Anthony R.; Schmeelk-Cone, Karen; Xia, Yinglin; Tu, Xin; McMahon, Marcie; Munfakh, Jimmie Lou; Gould, Madelyn S.
2014-01-01
Background Finding effective and efficient models to train large numbers of suicide prevention interventionists, including ‘hotline’ crisis counselors, is a high priority. Train-the-trainer (TTT) models are widely used but understudied. Aims To assess the extent to which trainers following TTT delivered the Applied Suicide Intervention Skills Training (ASIST) program with fidelity, and to examine fidelity across two trainings and seven training segments. Methods We recorded and reliably rated trainer fidelity, defined as adherence to program content and competence of program delivery, for 34 newly trained ASIST trainers delivering the program to crisis center staff on two separate occasions. A total of 324 observations were coded. Trainer demographics were also collected. Results On average, trainers delivered two-thirds of the program. Previous training was associated with lower levels of trainer adherence to the program. 18% of trainers' observations were rated as solidly competent. Trainers did not improve fidelity from their first to second training. Significantly higher fidelity was found for lectures and lower fidelity was found for interactive training activities including asking about suicide and creating a safe plan. Conclusions We found wide variability in trainer fidelity to the ASIST program following TTT and few trainers had high levels of both adherence and competence. More research is needed to examine the cost-effectiveness of TTT models. PMID:24901061
Lillard, Angeline S
2012-06-01
Research on the outcomes of Montessori education is scarce and results are inconsistent. One possible reason for the inconsistency is variations in Montessori implementation fidelity. To test whether outcomes vary according to implementation fidelity, we examined preschool children enrolled in high fidelity classic Montessori programs, lower fidelity Montessori programs that supplemented the program with conventional school activities, and, for comparison, conventional programs. Children were tested at the start and end of the school year on a range of social and academic skills. Although they performed no better in the fall, children in Classic Montessori programs, as compared with children in Supplemented Montessori and Conventional programs, showed significantly greater school-year gains on outcome measures of executive function, reading, math, vocabulary, and social problem-solving, suggesting that high fidelity Montessori implementation is associated with better outcomes than lower fidelity Montessori programs or conventional programs. Copyright © 2012 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Persing, T. Ray; Bellish, Christine A.; Brandon, Jay; Kenney, P. Sean; Carzoo, Susan; Buttrill, Catherine; Guenther, Arlene
2005-01-01
Several aircraft airframe modeling approaches are currently being used in the DoD community for acquisition, threat evaluation, training, and other purposes. To date there has been no clear empirical study of the impact of airframe simulation fidelity on piloted real-time aircraft simulation study results, or when use of a particular level of fidelity is indicated. This paper documents a series of piloted simulation studies using three different levels of airframe model fidelity. This study was conducted using the NASA Langley Differential Maneuvering Simulator. Evaluations were conducted with three pilots for scenarios requiring extensive maneuvering of the airplanes during air combat. In many cases, a low-fidelity modified point-mass model may be sufficient to evaluate the combat effectiveness of the aircraft. However, in cases where high angle-of-attack flying qualities and aerodynamic performance are a factor or when precision tracking ability of the aircraft must be represented, use of high-fidelity models is indicated.
Comparison of Performance Predictions for New Low-Thrust Trajectory Tools
NASA Technical Reports Server (NTRS)
Polsgrove, Tara; Kos, Larry; Hopkins, Randall; Crane, Tracie
2006-01-01
Several low thrust trajectory optimization tools have been developed over the last 3% years by the Low Thrust Trajectory Tools development team. This toolset includes both low-medium fidelity and high fidelity tools which allow the analyst to quickly research a wide mission trade space and perform advanced mission design. These tools were tested using a set of reference trajectories that exercised each tool s unique capabilities. This paper compares the performance predictions of the various tools against several of the reference trajectories. The intent is to verify agreement between the high fidelity tools and to quantify the performance prediction differences between tools of different fidelity levels.
A Transfer of Training Study of Control Loader Dynamics
NASA Technical Reports Server (NTRS)
Cardullo, Frank M.; Stanco, Anthony A.; Kelly, Lon C.; Houck, Jacob A.; Grube, Richard C.
2011-01-01
The control inceptor used in a simulated vehicle is an important part in maintaining the fidelity of a simulation. The force feedback provided by the control inceptor gives the operator important cues to maintain adequate performance. The dynamics of a control inceptor are typically based on a second order spring mass damper system with damping, force gradient, breakout force, and natural frequency parameters. Changing these parameters can have a great effect on pilot or driver control of the vehicle. The neuromuscular system has a very important role in manipulating the control inceptor within a vehicle. Many studies by McRuer, Aponso, and Hess have dealt with modeling the neuromuscular system and quantifying the effects of a high fidelity control loader as compared to a low fidelity control loader. Humans are adaptive in nature and their control behavior changes based on different control loader dynamics. Humans will change their control behavior to maintain tracking bandwidth and minimize tracking error. This paper reports on a quasi-transfer of training experiment which was performed at the NASA Langley Research Center. The quasi transfer of training study used a high fidelity control loader and a low fidelity control loader. Subjects trained in both simulations and then were transferred to the high fidelity control loader simulation. The parameters for the high fidelity control loader were determined from the literature. The low fidelity control loader parameters were found through testing of a simple computer joystick. A disturbance compensatory task is employed. The compensatory task involves implementing a simple horizon out the window display. A disturbance consisting of a sum of sines is used. The task consists of the subject compensating for the disturbance on the roll angle of the aircraft. The vehicle dynamics are represented as 1/s and 1/s2. The subject will try to maintain level flight throughout the experiment. The subjects consist of non-pilots to remove any effects of pilot experience. First, this paper discusses the implementation of the disturbance compensation task. Second, the high and low fidelity parameters used within the experiment are presented. Finally, an explanation of results from the experiments is presented.
Gu, Yuqi; Witter, Tobias; Livingston, Patty; Rao, Purnima; Varshney, Terry; Kuca, Tom; Dylan Bould, M
2017-12-01
As simulator fidelity (i.e., realism) increases from low to high, the simulator more closely resembles the real environment, but it also becomes more expensive. It is generally assumed that the use of high-fidelity simulators results in better learning; however, the effect of fidelity on learning non-technical skills (NTS) is unknown. This was a non-inferiority trial comparing the efficacy of high- vs low-fidelity simulators on learning NTS. Thirty-six postgraduate medical trainees were recruited for the trial. During the pre-test phase, the trainees were randomly assigned to manage a scenario using either a high-fidelity simulator (HFS) or a low-fidelity simulator (LFS), followed by expert debriefing. All trainees then underwent a video recorded post-test scenario on a HFS, and the NTS were assessed between the two groups. The primary outcome was the overall post-test Ottawa Global Rating Scale (OGRS), while controlling for overall pre-test OGRS scores. Non-inferiority between the LFS and HFS was based on a non-inferiority margin of greater than 1. For our primary outcome, the mean (SD) post-test overall OGRS score was not significantly different between the HFS and LFS groups after controlling for pre-test overall OGRS scores [3.8 (0.9) vs 4.0 (0.9), respectively; mean difference, 0.2; 95% confidence interval, -0.4 to 0.8; P = 0.48]. For our secondary outcomes, the post-test total OGRS score was not significantly different between the HFS and LFS groups after controlling for pre-test total OGRS scores (P = 0.33). There were significant improvements in mean overall (P = 0.01) and total (P = 0.003) OGRS scores from pre-test to post-test. There were no significant associations between postgraduate year (P = 0.82) and specialty (P = 0.67) on overall OGRS performance. This study suggests that low-fidelity simulators are non-inferior to the more costly high-fidelity simulators for teaching NTS to postgraduate medical trainees.
Toomey, Elaine; Matthews, James; Hurley, Deirdre A
2017-08-04
Despite an increasing awareness of the importance of fidelity of delivery within complex behaviour change interventions, it is often poorly assessed. This mixed methods study aimed to establish the fidelity of delivery of a complex self-management intervention and explore the reasons for these findings using a convergent/triangulation design. Feasibility trial of the Self-management of Osteoarthritis and Low back pain through Activity and Skills (SOLAS) intervention (ISRCTN49875385), delivered in primary care physiotherapy. 60 SOLAS sessions were delivered across seven sites by nine physiotherapists. Fidelity of delivery of prespecified intervention components was evaluated using (1) audio-recordings (n=60), direct observations (n=24) and self-report checklists (n=60) and (2) individual interviews with physiotherapists (n=9). Quantitatively, fidelity scores were calculated using percentage means and SD of components delivered. Associations between fidelity scores and physiotherapist variables were analysed using Spearman's correlations. Interviews were analysed using thematic analysis to explore potential reasons for fidelity scores. Integration of quantitative and qualitative data occurred at an interpretation level using triangulation. Quantitatively, fidelity scores were high for all assessment methods; with self-report (92.7%) consistently higher than direct observations (82.7%) or audio-recordings (81.7%). There was significant variation between physiotherapists' individual scores (69.8% - 100%). Both qualitative and quantitative data (from physiotherapist variables) found that physiotherapists' knowledge (Spearman's association at p=0.003) and previous experience (p=0.008) were factors that influenced their fidelity. The qualitative data also postulated participant-level (eg, individual needs) and programme-level factors (eg, resources) as additional elements that influenced fidelity. The intervention was delivered with high fidelity. This study contributes to the limited evidence regarding fidelity assessment methods within complex behaviour change interventions. The findings suggest a combination of quantitative methods is suitable for the assessment of fidelity of delivery. A mixed methods approach provided a more insightful understanding of fidelity and its influencing factors. ISRCTN49875385; Pre-results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Toomey, Elaine; Matthews, James; Hurley, Deirdre A
2017-01-01
Objectives and design Despite an increasing awareness of the importance of fidelity of delivery within complex behaviour change interventions, it is often poorly assessed. This mixed methods study aimed to establish the fidelity of delivery of a complex self-management intervention and explore the reasons for these findings using a convergent/triangulation design. Setting Feasibility trial of the Self-management of Osteoarthritis and Low back pain through Activity and Skills (SOLAS) intervention (ISRCTN49875385), delivered in primary care physiotherapy. Methods and outcomes 60 SOLAS sessions were delivered across seven sites by nine physiotherapists. Fidelity of delivery of prespecified intervention components was evaluated using (1) audio-recordings (n=60), direct observations (n=24) and self-report checklists (n=60) and (2) individual interviews with physiotherapists (n=9). Quantitatively, fidelity scores were calculated using percentage means and SD of components delivered. Associations between fidelity scores and physiotherapist variables were analysed using Spearman’s correlations. Interviews were analysed using thematic analysis to explore potential reasons for fidelity scores. Integration of quantitative and qualitative data occurred at an interpretation level using triangulation. Results Quantitatively, fidelity scores were high for all assessment methods; with self-report (92.7%) consistently higher than direct observations (82.7%) or audio-recordings (81.7%). There was significant variation between physiotherapists’ individual scores (69.8% - 100%). Both qualitative and quantitative data (from physiotherapist variables) found that physiotherapists’ knowledge (Spearman’s association at p=0.003) and previous experience (p=0.008) were factors that influenced their fidelity. The qualitative data also postulated participant-level (eg, individual needs) and programme-level factors (eg, resources) as additional elements that influenced fidelity. Conclusion The intervention was delivered with high fidelity. This study contributes to the limited evidence regarding fidelity assessment methods within complex behaviour change interventions. The findings suggest a combination of quantitative methods is suitable for the assessment of fidelity of delivery. A mixed methods approach provided a more insightful understanding of fidelity and its influencing factors. Trial registration number ISRCTN49875385; Pre-results. PMID:28780544
High-fidelity gates towards a scalable superconducting quantum processor
NASA Astrophysics Data System (ADS)
Chow, Jerry M.; Corcoles, Antonio D.; Gambetta, Jay M.; Rigetti, Chad; Johnson, Blake R.; Smolin, John A.; Merkel, Seth; Poletto, Stefano; Rozen, Jim; Rothwell, Mary Beth; Keefe, George A.; Ketchen, Mark B.; Steffen, Matthias
2012-02-01
We experimentally explore the implementation of high-fidelity gates on multiple superconducting qubits coupled to multiple resonators. Having demonstrated all-microwave single and two qubit gates with fidelities > 90% on multi-qubit single-resonator systems, we expand the application to qubits across two resonators and investigate qubit coupling in this circuit. The coupled qubit-resonators are building blocks towards two-dimensional lattice networks for the application of surface code quantum error correction algorithms.
Vincent, Mary Anne; Sheriff, Susan; Mellott, Susan
2015-02-01
High-fidelity simulation has become a growing educational modality among institutions of higher learning ever since the Institute of Medicine recommended that it be used to improve patient safety in 2000. However, there is limited research on the effect of high-fidelity simulation on psychomotor clinical performance improvement of undergraduate nursing students being evaluated by experts using reliable and valid appraisal instruments. The purpose of this integrative review and meta-analysis is to explore what researchers have established about the impact of high-fidelity simulation on improving the psychomotor clinical performance of undergraduate nursing students. Only eight of the 1120 references met inclusion criteria. A meta-analysis using Hedges' g to compute the effect size and direction of impact yielded a range of -0.26 to +3.39. A positive effect was shown in seven of eight studies; however, there were five different research designs and six unique appraisal instruments used among these studies. More research is necessary to determine if high-fidelity simulation improves psychomotor clinical performance in undergraduate nursing students. Nursing programs from multiple sites having a standardized curriculum and using the same appraisal instruments with established reliability and validity are ideal for this work.
Assessing fidelity of delivery of smoking cessation behavioural support in practice.
Lorencatto, Fabiana; West, Robert; Christopherson, Charlotte; Michie, Susan
2013-04-04
Effectiveness of evidence-based behaviour change interventions is likely to be undermined by failure to deliver interventions as planned. Behavioural support for smoking cessation can be a highly cost-effective, life-saving intervention. However, in practice, outcomes are highly variable. Part of this may be due to variability in fidelity of intervention implementation. To date, there have been no published studies on this. The present study aimed to: evaluate a method for assessing fidelity of behavioural support; assess fidelity of delivery in two English Stop-Smoking Services; and compare the extent of fidelity according to session types, duration, individual practitioners, and component behaviour change techniques (BCTs). Treatment manuals and transcripts of 34 audio-recorded behavioural support sessions were obtained from two Stop-Smoking Services and coded into component BCTs using a taxonomy of 43 BCTs. Inter-rater reliability was assessed using percentage agreement. Fidelity was assessed by examining the proportion of BCTs specified in the manuals that were delivered in individual sessions. This was assessed by session type (i.e., pre-quit, quit, post-quit), duration, individual practitioner, and BCT. Inter-coder reliability was high (87.1%). On average, 66% of manual-specified BCTs were delivered per session (SD 15.3, range: 35% to 90%). In Service 1, average fidelity was highest for post-quit sessions (69%) and lowest for pre-quit (58%). In Service 2, fidelity was highest for quit-day (81%) and lowest for post-quit sessions (56%). Session duration was not significantly correlated with fidelity. Individual practitioner fidelity ranged from 55% to 78%. Individual manual-specified BCTs were delivered on average 63% of the time (SD 28.5, range: 0 to 100%). The extent to which smoking cessation behavioural support is delivered as specified in treatment manuals can be reliably assessed using transcripts of audiotaped sessions. This allows the investigation of the implementation of evidence-based practice in relation to smoking cessation, a first step in designing interventions to improve it. There are grounds for believing that fidelity in the English Stop-Smoking Services may be low and that routine monitoring is warranted.
NASA Astrophysics Data System (ADS)
White, Justin; Olson, Britton; Morgan, Brandon; McFarland, Jacob; Lawrence Livermore National Laboratory Team; University of Missouri-Columbia Team
2015-11-01
This work presents results from a large eddy simulation of a high Reynolds number Rayleigh-Taylor instability and Richtmyer-Meshkov instability. A tenth-order compact differencing scheme on a fixed Eulerian mesh is utilized within the Ares code developed at Lawrence Livermore National Laboratory. (LLNL) We explore the self-similar limit of the mixing layer growth in order to evaluate the k-L-a Reynolds Averaged Navier Stokes (RANS) model (Morgan and Wickett, Phys. Rev. E, 2015). Furthermore, profiles of turbulent kinetic energy, turbulent length scale, mass flux velocity, and density-specific-volume correlation are extracted in order to aid the creation a high fidelity LES data set for RANS modeling. Prepared by LLNL under Contract DE-AC52-07NA27344.
Comparison and evaluation on image fusion methods for GaoFen-1 imagery
NASA Astrophysics Data System (ADS)
Zhang, Ningyu; Zhao, Junqing; Zhang, Ling
2016-10-01
Currently, there are many research works focusing on the best fusion method suitable for satellite images of SPOT, QuickBird, Landsat and so on, but only a few of them discuss the application of GaoFen-1 satellite images. This paper proposes a novel idea by using four fusion methods, such as principal component analysis transform, Brovey transform, hue-saturation-value transform, and Gram-Schmidt transform, from the perspective of keeping the original image spectral information. The experimental results showed that the transformed images by the four fusion methods not only retain high spatial resolution on panchromatic band but also have the abundant spectral information. Through comparison and evaluation, the integration of Brovey transform is better, but the color fidelity is not the premium. The brightness and color distortion in hue saturation-value transformed image is the largest. Principal component analysis transform did a good job in color fidelity, but its clarity still need improvement. Gram-Schmidt transform works best in color fidelity, and the edge of the vegetation is the most obvious, the fused image sharpness is higher than that of principal component analysis. Brovey transform, is suitable for distinguishing the Gram-Schmidt transform, and the most appropriate for GaoFen-1 satellite image in vegetation and non-vegetation area. In brief, different fusion methods have different advantages in image quality and class extraction, and should be used according to the actual application information and image fusion algorithm.
Fidelity and outcomes in six integrated dual disorders treatment programs.
Chandler, Daniel W
2011-02-01
Fidelity scores and outcomes were measured in six outpatient programs in California which implemented Integrated Dual Disorders Treatment (IDDT). Outcomes were measured for 1 year in four sites and 2 years in two sites; fidelity was assessed at 6 month intervals. Three of the six sites achieved high fidelity (at least a 4 on a 5 point fidelity scale) and three moderate fidelity (at least a 3). Retention in treatment, mental health functioning, stage of substance abuse treatment, abstinence, and psychiatric hospitalization were measured. Outcomes for individual programs were generally positive but not consistent within programs or across programs. Using pooled data in a longitudinal regression model with random effects at person level and adjustment of standard errors for clustering by site, change over time was not statistically significant for the primary outcomes. Fidelity scores had limited association with positive outcomes.
Commentary: Learning from Variations in Fidelity of Implementation
ERIC Educational Resources Information Center
Balu, Rekha; Doolittle, Fred
2016-01-01
The articles in this special issue discuss efforts to improve academic reading outcomes for students and ways to achieve high implementation fidelity of promising strategies. At times the authors discuss if--and how--strong fidelity is associated with strong outcomes and potentially even impacts (the difference between program and control group…
ERIC Educational Resources Information Center
Lillard, Angeline S.
2012-01-01
Research on the outcomes of Montessori education is scarce and results are inconsistent. One possible reason for the inconsistency is variations in Montessori implementation fidelity. To test whether outcomes vary according to implementation fidelity, we examined preschool children enrolled in high fidelity classic Montessori programs, lower…
Uncertainty quantification for PZT bimorph actuators
NASA Astrophysics Data System (ADS)
Bravo, Nikolas; Smith, Ralph C.; Crews, John
2018-03-01
In this paper, we discuss the development of a high fidelity model for a PZT bimorph actuator used for micro-air vehicles, which includes the Robobee. We developed a high-fidelity model for the actuator using the homogenized energy model (HEM) framework, which quantifies the nonlinear, hysteretic, and rate-dependent behavior inherent to PZT in dynamic operating regimes. We then discussed an inverse problem on the model. We included local and global sensitivity analysis of the parameters in the high-fidelity model. Finally, we will discuss the results of Bayesian inference and uncertainty quantification on the HEM.
Fiber-Coupled Cavity-QED Source of Identical Single Photons
NASA Astrophysics Data System (ADS)
Snijders, H.; Frey, J. A.; Norman, J.; Post, V. P.; Gossard, A. C.; Bowers, J. E.; van Exter, M. P.; Löffler, W.; Bouwmeester, D.
2018-03-01
We present a fully fiber-coupled source of high-fidelity single photons. An (In,Ga)As semiconductor quantum dot is embedded in an optical Fabry-Perot microcavity with a robust design and rigidly attached single-mode fibers, which enables through-fiber cross-polarized resonant laser excitation and photon extraction. Even without spectral filtering, we observe that the incident coherent light pulses are transformed into a stream of single photons with high purity (97%) and indistinguishability (90%), which is measured at an in-fiber brightness of 5% with an excellent cavity-mode-to-fiber coupling efficiency of 85%. Our results pave the way for fully fiber-integrated photonic quantum networks. Furthermore, our method is equally applicable to fiber-coupled solid-state cavity-QED-based photonic quantum gates.
Benefits of computer screen-based simulation in learning cardiac arrest procedures.
Bonnetain, Elodie; Boucheix, Jean-Michel; Hamet, Maël; Freysz, Marc
2010-07-01
What is the best way to train medical students early so that they acquire basic skills in cardiopulmonary resuscitation as effectively as possible? Studies have shown the benefits of high-fidelity patient simulators, but have also demonstrated their limits. New computer screen-based multimedia simulators have fewer constraints than high-fidelity patient simulators. In this area, as yet, there has been no research on the effectiveness of transfer of learning from a computer screen-based simulator to more realistic situations such as those encountered with high-fidelity patient simulators. We tested the benefits of learning cardiac arrest procedures using a multimedia computer screen-based simulator in 28 Year 2 medical students. Just before the end of the traditional resuscitation course, we compared two groups. An experiment group (EG) was first asked to learn to perform the appropriate procedures in a cardiac arrest scenario (CA1) in the computer screen-based learning environment and was then tested on a high-fidelity patient simulator in another cardiac arrest simulation (CA2). While the EG was learning to perform CA1 procedures in the computer screen-based learning environment, a control group (CG) actively continued to learn cardiac arrest procedures using practical exercises in a traditional class environment. Both groups were given the same amount of practice, exercises and trials. The CG was then also tested on the high-fidelity patient simulator for CA2, after which it was asked to perform CA1 using the computer screen-based simulator. Performances with both simulators were scored on a precise 23-point scale. On the test on a high-fidelity patient simulator, the EG trained with a multimedia computer screen-based simulator performed significantly better than the CG trained with traditional exercises and practice (16.21 versus 11.13 of 23 possible points, respectively; p<0.001). Computer screen-based simulation appears to be effective in preparing learners to use high-fidelity patient simulators, which present simulations that are closer to real-life situations.
High-fidelity data embedding for image annotation.
He, Shan; Kirovski, Darko; Wu, Min
2009-02-01
High fidelity is a demanding requirement for data hiding, especially for images with artistic or medical value. This correspondence proposes a high-fidelity image watermarking for annotation with robustness to moderate distortion. To achieve the high fidelity of the embedded image, we introduce a visual perception model that aims at quantifying the local tolerance to noise for arbitrary imagery. Based on this model, we embed two kinds of watermarks: a pilot watermark that indicates the existence of the watermark and an information watermark that conveys a payload of several dozen bits. The objective is to embed 32 bits of metadata into a single image in such a way that it is robust to JPEG compression and cropping. We demonstrate the effectiveness of the visual model and the application of the proposed annotation technology using a database of challenging photographic and medical images that contain a large amount of smooth regions.
High Fidelity Tape Transfer Printing Based On Chemically Induced Adhesive Strength Modulation
NASA Astrophysics Data System (ADS)
Sim, Kyoseung; Chen, Song; Li, Yuhang; Kammoun, Mejdi; Peng, Yun; Xu, Minwei; Gao, Yang; Song, Jizhou; Zhang, Yingchun; Ardebili, Haleh; Yu, Cunjiang
2015-11-01
Transfer printing, a two-step process (i.e. picking up and printing) for heterogeneous integration, has been widely exploited for the fabrication of functional electronics system. To ensure a reliable process, strong adhesion for picking up and weak or no adhesion for printing are required. However, it is challenging to meet the requirements of switchable stamp adhesion. Here we introduce a simple, high fidelity process, namely tape transfer printing(TTP), enabled by chemically induced dramatic modulation in tape adhesive strength. We describe the working mechanism of the adhesion modulation that governs this process and demonstrate the method by high fidelity tape transfer printing several types of materials and devices, including Si pellets arrays, photodetector arrays, and electromyography (EMG) sensors, from their preparation substrates to various alien substrates. High fidelity tape transfer printing of components onto curvilinear surfaces is also illustrated.
Surrogate based wind farm layout optimization using manifold mapping
NASA Astrophysics Data System (ADS)
Kaja Kamaludeen, Shaafi M.; van Zuijle, Alexander; Bijl, Hester
2016-09-01
High computational cost associated with the high fidelity wake models such as RANS or LES serves as a primary bottleneck to perform a direct high fidelity wind farm layout optimization (WFLO) using accurate CFD based wake models. Therefore, a surrogate based multi-fidelity WFLO methodology (SWFLO) is proposed. The surrogate model is built using an SBO method referred as manifold mapping (MM). As a verification, optimization of spacing between two staggered wind turbines was performed using the proposed surrogate based methodology and the performance was compared with that of direct optimization using high fidelity model. Significant reduction in computational cost was achieved using MM: a maximum computational cost reduction of 65%, while arriving at the same optima as that of direct high fidelity optimization. The similarity between the response of models, the number of mapping points and its position, highly influences the computational efficiency of the proposed method. As a proof of concept, realistic WFLO of a small 7-turbine wind farm is performed using the proposed surrogate based methodology. Two variants of Jensen wake model with different decay coefficients were used as the fine and coarse model. The proposed SWFLO method arrived at the same optima as that of the fine model with very less number of fine model simulations.
Takei, Nobuyuki; Yonezawa, Hidehiro; Aoki, Takao; Furusawa, Akira
2005-06-10
We experimentally demonstrate continuous-variable quantum teleportation beyond the no-cloning limit. We teleport a coherent state and achieve the fidelity of 0.70 +/- 0.02 that surpasses the no-cloning limit of 2/3. Surpassing the limit is necessary to transfer the nonclassicality of an input quantum state. By using our high-fidelity teleporter, we demonstrate entanglement swapping, namely, teleportation of quantum entanglement, as an example of transfer of nonclassicality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McInerney, Peter; Adams, Paul; Hadi, Masood Z.
As larger-scale cloning projects become more prevalent, there is an increasing need for comparisons among high fidelity DNA polymerases used for PCR amplification. All polymerases marketed for PCR applications are tested for fidelity properties (i.e., error rate determination) by vendors, and numerous literature reports have addressed PCR enzyme fidelity. Nonetheless, it is often difficult to make direct comparisons among different enzymes due to numerous methodological and analytical differences from study to study. We have measured the error rates for 6 DNA polymerases commonly used in PCR applications, including 3 polymerases typically used for cloning applications requiring high fidelity. Error ratemore » measurement values reported here were obtained by direct sequencing of cloned PCR products. The strategy employed here allows interrogation of error rate across a very large DNA sequence space, since 94 unique DNA targets were used as templates for PCR cloning. The six enzymes included in the study, Taq polymerase, AccuPrime-Taq High Fidelity, KOD Hot Start, cloned Pfu polymerase, Phusion Hot Start, and Pwo polymerase, we find the lowest error rates with Pfu , Phusion, and Pwo polymerases. Error rates are comparable for these 3 enzymes and are >10x lower than the error rate observed with Taq polymerase. Mutation spectra are reported, with the 3 high fidelity enzymes displaying broadly similar types of mutations. For these enzymes, transition mutations predominate, with little bias observed for type of transition.« less
Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase
McInerney, Peter; Adams, Paul; Hadi, Masood Z.
2014-01-01
As larger-scale cloning projects become more prevalent, there is an increasing need for comparisons among high fidelity DNA polymerases used for PCR amplification. All polymerases marketed for PCR applications are tested for fidelity properties (i.e., error rate determination) by vendors, and numerous literature reports have addressed PCR enzyme fidelity. Nonetheless, it is often difficult to make direct comparisons among different enzymes due to numerous methodological and analytical differences from study to study. We have measured the error rates for 6 DNA polymerases commonly used in PCR applications, including 3 polymerases typically used for cloning applications requiring high fidelity. Error ratemore » measurement values reported here were obtained by direct sequencing of cloned PCR products. The strategy employed here allows interrogation of error rate across a very large DNA sequence space, since 94 unique DNA targets were used as templates for PCR cloning. The six enzymes included in the study, Taq polymerase, AccuPrime-Taq High Fidelity, KOD Hot Start, cloned Pfu polymerase, Phusion Hot Start, and Pwo polymerase, we find the lowest error rates with Pfu , Phusion, and Pwo polymerases. Error rates are comparable for these 3 enzymes and are >10x lower than the error rate observed with Taq polymerase. Mutation spectra are reported, with the 3 high fidelity enzymes displaying broadly similar types of mutations. For these enzymes, transition mutations predominate, with little bias observed for type of transition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maunz, Peter; Wilhelm, Lukas
Qubits can be encoded in clock states of trapped ions. These states are well isolated from the environment resulting in long coherence times [1] while enabling efficient high-fidelity qubit interactions mediated by the Coulomb coupled motion of the ions in the trap. Quantum states can be prepared with high fidelity and measured efficiently using fluorescence detection. State preparation and detection with 99.93% fidelity have been realized in multiple systems [1,2]. Single qubit gates have been demonstrated below rigorous fault-tolerance thresholds [1,3]. Two qubit gates have been realized with more than 99.9% fidelity [4,5]. Quantum algorithms have been demonstrated on systemsmore » of 5 to 15 qubits [6–8].« less
Driving many distant atoms into high-fidelity steady state entanglement via Lyapunov control.
Li, Chuang; Song, Jie; Xia, Yan; Ding, Weiqiang
2018-01-22
Based on Lyapunov control theory in closed and open systems, we propose a scheme to generate W state of many distant atoms in the cavity-fiber-cavity system. In the closed system, the W state is generated successfully even when the coupling strength between the cavity and fiber is extremely weak. In the presence of atomic spontaneous emission or cavity and fiber decay, the photon-measurement and quantum feedback approaches are proposed to improve the fidelity, which enable efficient generation of high-fidelity W state in the case of large dissipation. Furthermore, the time-optimal Lyapunov control is investigated to shorten the evolution time and improve the fidelity in open systems.
Multi-fidelity machine learning models for accurate bandgap predictions of solids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pilania, Ghanshyam; Gubernatis, James E.; Lookman, Turab
Here, we present a multi-fidelity co-kriging statistical learning framework that combines variable-fidelity quantum mechanical calculations of bandgaps to generate a machine-learned model that enables low-cost accurate predictions of the bandgaps at the highest fidelity level. Additionally, the adopted Gaussian process regression formulation allows us to predict the underlying uncertainties as a measure of our confidence in the predictions. In using a set of 600 elpasolite compounds as an example dataset and using semi-local and hybrid exchange correlation functionals within density functional theory as two levels of fidelities, we demonstrate the excellent learning performance of the method against actual high fidelitymore » quantum mechanical calculations of the bandgaps. The presented statistical learning method is not restricted to bandgaps or electronic structure methods and extends the utility of high throughput property predictions in a significant way.« less
Multi-fidelity machine learning models for accurate bandgap predictions of solids
Pilania, Ghanshyam; Gubernatis, James E.; Lookman, Turab
2016-12-28
Here, we present a multi-fidelity co-kriging statistical learning framework that combines variable-fidelity quantum mechanical calculations of bandgaps to generate a machine-learned model that enables low-cost accurate predictions of the bandgaps at the highest fidelity level. Additionally, the adopted Gaussian process regression formulation allows us to predict the underlying uncertainties as a measure of our confidence in the predictions. In using a set of 600 elpasolite compounds as an example dataset and using semi-local and hybrid exchange correlation functionals within density functional theory as two levels of fidelities, we demonstrate the excellent learning performance of the method against actual high fidelitymore » quantum mechanical calculations of the bandgaps. The presented statistical learning method is not restricted to bandgaps or electronic structure methods and extends the utility of high throughput property predictions in a significant way.« less
Target modelling for SAR image simulation
NASA Astrophysics Data System (ADS)
Willis, Chris J.
2014-10-01
This paper examines target models that might be used in simulations of Synthetic Aperture Radar imagery. We examine the basis for scattering phenomena in SAR, and briefly review the Swerling target model set, before considering extensions to this set discussed in the literature. Methods for simulating and extracting parameters for the extended Swerling models are presented. It is shown that in many cases the more elaborate extended Swerling models can be represented, to a high degree of fidelity, by simpler members of the model set. Further, it is shown that it is quite unlikely that these extended models would be selected when fitting models to typical data samples.
NASA Technical Reports Server (NTRS)
Putnam, William M.
2011-01-01
Earth system models like the Goddard Earth Observing System model (GEOS-5) have been pushing the limits of large clusters of multi-core microprocessors, producing breath-taking fidelity in resolving cloud systems at a global scale. GPU computing presents an opportunity for improving the efficiency of these leading edge models. A GPU implementation of GEOS-5 will facilitate the use of cloud-system resolving resolutions in data assimilation and weather prediction, at resolutions near 3.5 km, improving our ability to extract detailed information from high-resolution satellite observations and ultimately produce better weather and climate predictions
Polarization entangled photons from quantum dots embedded in nanowires.
Huber, Tobias; Predojević, Ana; Khoshnegar, Milad; Dalacu, Dan; Poole, Philip J; Majedi, Hamed; Weihs, Gregor
2014-12-10
In this Letter, we present entanglement generated from a novel structure: a single InAsP quantum dot embedded in an InP nanowire. These structures can grow in a site-controlled way and exhibit high collection efficiency; we detect 0.5 million biexciton counts per second coupled into a single mode fiber with a standard commercial avalanche photo diode. If we correct for the known setup losses and detector efficiency, we get an extraction efficiency of 15(3) %. For the measured polarization entanglement, we observe a fidelity of 0.76(2) to a reference maximally entangled state as well as a concurrence of 0.57(6).
NASA Astrophysics Data System (ADS)
Shaw, Amelia R.; Smith Sawyer, Heather; LeBoeuf, Eugene J.; McDonald, Mark P.; Hadjerioua, Boualem
2017-11-01
Hydropower operations optimization subject to environmental constraints is limited by challenges associated with dimensionality and spatial and temporal resolution. The need for high-fidelity hydrodynamic and water quality models within optimization schemes is driven by improved computational capabilities, increased requirements to meet specific points of compliance with greater resolution, and the need to optimize operations of not just single reservoirs but systems of reservoirs. This study describes an important advancement for computing hourly power generation schemes for a hydropower reservoir using high-fidelity models, surrogate modeling techniques, and optimization methods. The predictive power of the high-fidelity hydrodynamic and water quality model CE-QUAL-W2 is successfully emulated by an artificial neural network, then integrated into a genetic algorithm optimization approach to maximize hydropower generation subject to constraints on dam operations and water quality. This methodology is applied to a multipurpose reservoir near Nashville, Tennessee, USA. The model successfully reproduced high-fidelity reservoir information while enabling 6.8% and 6.6% increases in hydropower production value relative to actual operations for dissolved oxygen (DO) limits of 5 and 6 mg/L, respectively, while witnessing an expected decrease in power generation at more restrictive DO constraints. Exploration of simultaneous temperature and DO constraints revealed capability to address multiple water quality constraints at specified locations. The reduced computational requirements of the new modeling approach demonstrated an ability to provide decision support for reservoir operations scheduling while maintaining high-fidelity hydrodynamic and water quality information as part of the optimization decision support routines.
Shaw, Amelia R.; Sawyer, Heather Smith; LeBoeuf, Eugene J.; ...
2017-10-24
Hydropower operations optimization subject to environmental constraints is limited by challenges associated with dimensionality and spatial and temporal resolution. The need for high-fidelity hydrodynamic and water quality models within optimization schemes is driven by improved computational capabilities, increased requirements to meet specific points of compliance with greater resolution, and the need to optimize operations of not just single reservoirs but systems of reservoirs. This study describes an important advancement for computing hourly power generation schemes for a hydropower reservoir using high-fidelity models, surrogate modeling techniques, and optimization methods. The predictive power of the high-fidelity hydrodynamic and water quality model CE-QUAL-W2more » is successfully emulated by an artificial neural network, then integrated into a genetic algorithm optimization approach to maximize hydropower generation subject to constraints on dam operations and water quality. This methodology is applied to a multipurpose reservoir near Nashville, Tennessee, USA. The model successfully reproduced high-fidelity reservoir information while enabling 6.8% and 6.6% increases in hydropower production value relative to actual operations for dissolved oxygen (DO) limits of 5 and 6 mg/L, respectively, while witnessing an expected decrease in power generation at more restrictive DO constraints. Exploration of simultaneous temperature and DO constraints revealed capability to address multiple water quality constraints at specified locations. Here, the reduced computational requirements of the new modeling approach demonstrated an ability to provide decision support for reservoir operations scheduling while maintaining high-fidelity hydrodynamic and water quality information as part of the optimization decision support routines.« less
Costello, John P; Olivieri, Laura J; Krieger, Axel; Thabit, Omar; Marshall, M Blair; Yoo, Shi-Joon; Kim, Peter C; Jonas, Richard A; Nath, Dilip S
2014-07-01
The current educational approach for teaching congenital heart disease (CHD) anatomy to students involves instructional tools and techniques that have significant limitations. This study sought to assess the feasibility of utilizing present-day three-dimensional (3D) printing technology to create high-fidelity synthetic heart models with ventricular septal defect (VSD) lesions and applying these models to a novel, simulation-based educational curriculum for premedical and medical students. Archived, de-identified magnetic resonance images of five common VSD subtypes were obtained. These cardiac images were then segmented and built into 3D computer-aided design models using Mimics Innovation Suite software. An Objet500 Connex 3D printer was subsequently utilized to print a high-fidelity heart model for each VSD subtype. Next, a simulation-based educational curriculum using these heart models was developed and implemented in the instruction of 29 premedical and medical students. Assessment of this curriculum was undertaken with Likert-type questionnaires. High-fidelity VSD models were successfully created utilizing magnetic resonance imaging data and 3D printing. Following instruction with these high-fidelity models, all students reported significant improvement in knowledge acquisition (P < .0001), knowledge reporting (P < .0001), and structural conceptualization (P < .0001) of VSDs. It is feasible to use present-day 3D printing technology to create high-fidelity heart models with complex intracardiac defects. Furthermore, this tool forms the foundation for an innovative, simulation-based educational approach to teach students about CHD and creates a novel opportunity to stimulate their interest in this field. © The Author(s) 2014.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaw, Amelia R.; Sawyer, Heather Smith; LeBoeuf, Eugene J.
Hydropower operations optimization subject to environmental constraints is limited by challenges associated with dimensionality and spatial and temporal resolution. The need for high-fidelity hydrodynamic and water quality models within optimization schemes is driven by improved computational capabilities, increased requirements to meet specific points of compliance with greater resolution, and the need to optimize operations of not just single reservoirs but systems of reservoirs. This study describes an important advancement for computing hourly power generation schemes for a hydropower reservoir using high-fidelity models, surrogate modeling techniques, and optimization methods. The predictive power of the high-fidelity hydrodynamic and water quality model CE-QUAL-W2more » is successfully emulated by an artificial neural network, then integrated into a genetic algorithm optimization approach to maximize hydropower generation subject to constraints on dam operations and water quality. This methodology is applied to a multipurpose reservoir near Nashville, Tennessee, USA. The model successfully reproduced high-fidelity reservoir information while enabling 6.8% and 6.6% increases in hydropower production value relative to actual operations for dissolved oxygen (DO) limits of 5 and 6 mg/L, respectively, while witnessing an expected decrease in power generation at more restrictive DO constraints. Exploration of simultaneous temperature and DO constraints revealed capability to address multiple water quality constraints at specified locations. Here, the reduced computational requirements of the new modeling approach demonstrated an ability to provide decision support for reservoir operations scheduling while maintaining high-fidelity hydrodynamic and water quality information as part of the optimization decision support routines.« less
NASA Astrophysics Data System (ADS)
Takemiya, Tetsushi
In modern aerospace engineering, the physics-based computational design method is becoming more important, as it is more efficient than experiments and because it is more suitable in designing new types of aircraft (e.g., unmanned aerial vehicles or supersonic business jets) than the conventional design method, which heavily relies on historical data. To enhance the reliability of the physics-based computational design method, researchers have made tremendous efforts to improve the fidelity of models. However, high-fidelity models require longer computational time, so the advantage of efficiency is partially lost. This problem has been overcome with the development of variable fidelity optimization (VFO). In VFO, different fidelity models are simultaneously employed in order to improve the speed and the accuracy of convergence in an optimization process. Among the various types of VFO methods, one of the most promising methods is the approximation management framework (AMF). In the AMF, objective and constraint functions of a low-fidelity model are scaled at a design point so that the scaled functions, which are referred to as "surrogate functions," match those of a high-fidelity model. Since scaling functions and the low-fidelity model constitutes surrogate functions, evaluating the surrogate functions is faster than evaluating the high-fidelity model. Therefore, in the optimization process, in which gradient-based optimization is implemented and thus many function calls are required, the surrogate functions are used instead of the high-fidelity model to obtain a new design point. The best feature of the AMF is that it may converge to a local optimum of the high-fidelity model in much less computational time than the high-fidelity model. However, through literature surveys and implementations of the AMF, the author xx found that (1) the AMF is very vulnerable when the computational analysis models have numerical noise, which is very common in high-fidelity models, and that (2) the AMF terminates optimization erroneously when the optimization problems have constraints. The first problem is due to inaccuracy in computing derivatives in the AMF, and the second problem is due to erroneous treatment of the trust region ratio, which sets the size of the domain for an optimization in the AMF. In order to solve the first problem of the AMF, automatic differentiation (AD) technique, which reads the codes of analysis models and automatically generates new derivative codes based on some mathematical rules, is applied. If derivatives are computed with the generated derivative code, they are analytical, and the required computational time is independent of the number of design variables, which is very advantageous for realistic aerospace engineering problems. However, if analysis models implement iterative computations such as computational fluid dynamics (CFD), which solves system partial differential equations iteratively, computing derivatives through the AD requires a massive memory size. The author solved this deficiency by modifying the AD approach and developing a more efficient implementation with CFD, and successfully applied the AD to general CFD software. In order to solve the second problem of the AMF, the governing equation of the trust region ratio, which is very strict against the violation of constraints, is modified so that it can accept the violation of constraints within some tolerance. By accepting violations of constraints during the optimization process, the AMF can continue optimization without terminating immaturely and eventually find the true optimum design point. With these modifications, the AMF is referred to as "Robust AMF," and it is applied to airfoil and wing aerodynamic design problems using Euler CFD software. The former problem has 21 design variables, and the latter 64. In both problems, derivatives computed with the proposed AD method are first compared with those computed with the finite differentiation (FD) method, and then, the Robust AMF is implemented along with the sequential quadratic programming (SQP) optimization method with only high-fidelity models. The proposed AD method computes derivatives more accurately and faster than the FD method, and the Robust AMF successfully optimizes shapes of the airfoil and the wing in a much shorter time than SQP with only high-fidelity models. These results clearly show the effectiveness of the Robust AMF. Finally, the feasibility of reducing computational time for calculating derivatives and the necessity of AMF with an optimum design point always in the feasible region are discussed as future work.
Effect of laser pulse shaping parameters on the fidelity of quantum logic gates.
Zaari, Ryan R; Brown, Alex
2012-09-14
The effect of varying parameters specific to laser pulse shaping instruments on resulting fidelities for the ACNOT(1), NOT(2), and Hadamard(2) quantum logic gates are studied for the diatomic molecule (12)C(16)O. These parameters include varying the frequency resolution, adjusting the number of frequency components and also varying the amplitude and phase at each frequency component. A time domain analytic form of the original discretized frequency domain laser pulse function is derived, providing a useful means to infer the resulting pulse shape through variations to the aforementioned parameters. We show that amplitude variation at each frequency component is a crucial requirement for optimal laser pulse shaping, whereas phase variation provides minimal contribution. We also show that high fidelity laser pulses are dependent upon the frequency resolution and increasing the number of frequency components provides only a small incremental improvement to quantum gate fidelity. Analysis through use of the pulse area theorem confirms the resulting population dynamics for one or two frequency high fidelity laser pulses and implies similar dynamics for more complex laser pulse shapes. The ability to produce high fidelity laser pulses that provide both population control and global phase alignment is attributed greatly to the natural evolution phase alignment of the qubits involved within the quantum logic gate operation.
State resolved vibrational relaxation modeling for strongly nonequilibrium flows
NASA Astrophysics Data System (ADS)
Boyd, Iain D.; Josyula, Eswar
2011-05-01
Vibrational relaxation is an important physical process in hypersonic flows. Activation of the vibrational mode affects the fundamental thermodynamic properties and finite rate relaxation can reduce the degree of dissociation of a gas. Low fidelity models of vibrational activation employ a relaxation time to capture the process at a macroscopic level. High fidelity, state-resolved models have been developed for use in continuum gas dynamics simulations based on computational fluid dynamics (CFD). By comparison, such models are not as common for use with the direct simulation Monte Carlo (DSMC) method. In this study, a high fidelity, state-resolved vibrational relaxation model is developed for the DSMC technique. The model is based on the forced harmonic oscillator approach in which multi-quantum transitions may become dominant at high temperature. Results obtained for integrated rate coefficients from the DSMC model are consistent with the corresponding CFD model. Comparison of relaxation results obtained with the high-fidelity DSMC model shows significantly less excitation of upper vibrational levels in comparison to the standard, lower fidelity DSMC vibrational relaxation model. Application of the new DSMC model to a Mach 7 normal shock wave in carbon monoxide provides better agreement with experimental measurements than the standard DSMC relaxation model.
Mills, Brennen W; Carter, Owen B-J; Rudd, Cobie J; Claxton, Louise A; Ross, Nathan P; Strobel, Natalie A
2016-02-01
High-fidelity simulation-based training is often avoided for early-stage students because of the assumption that while practicing newly learned skills, they are ill suited to processing multiple demands, which can lead to "cognitive overload" and poorer learning outcomes. We tested this assumption using a mixed-methods experimental design manipulating psychological immersion. Thirty-nine randomly assigned first-year paramedicine students completed low- or high-environmental fidelity simulations [low-environmental fidelity simulations (LF(en)S) vs. high-environmental fidelity simulation (HF(en)S)] involving a manikin with obstructed airway (SimMan3G). Psychological immersion and cognitive burden were determined via continuous heart rate, eye tracking, self-report questionnaire (National Aeronautics and Space Administration Task Load Index), independent observation, and postsimulation interviews. Performance was assessed by successful location of obstruction and time-to-termination. Eye tracking confirmed that students attended to multiple, concurrent stimuli in HF(en)S and interviews consistently suggested that they experienced greater psychological immersion and cognitive burden than their LF(en)S counterparts. This was confirmed by significantly higher mean heart rate (P < 0.001) and National Aeronautics and Space Administration Task Load Index mental demand (P < 0.05). Although group allocation did not influence the proportion of students who ultimately revived the patient (58% vs. 30%, P < 0.10), the HF(en)S students did so significantly more quickly (P < 0.01). The LF(en)S students had low immersion resulting in greater assessment anxiety. High-environmental fidelity simulation engendered immersion and a sense of urgency in students, whereas LF(en)S created assessment anxiety and slower performance. We conclude that once early-stage students have learned the basics of a clinical skill, throwing them in the "deep end" of high-fidelity simulation creates significant additional cognitive burden but this has considerable educational merit.
2004-11-01
Target Centroid 98 RANW / R SC GIS 04071 Data valid as of 11 Mar 04 rogertargets_a#2.apr Figure 2-3. Chemical/Industrial and High Fidelity Urban...existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding...Fidelity Targets, NTTR Nevada Division of Wildlife – Nevada Test and Training Range JDAM Targets Nevada Natural Heritage Program – Data Request received 8
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikuta, Rikizo; Kato, Hiroshi; Kusaka, Yoshiaki
We experimentally demonstrate a high-fidelity visible-to-telecommunicationwavelength conversion of a photon by using a solid-state-based difference frequency generation. In the experiment, one half of a pico-second visible entangled photon pair at 780 nm is converted to a 1522-nm photon. Using superconducting single-photon detectors with low dark count rates and small timing jitters, we observed a fidelity of 0.93±0.04 after the wavelength conversion.
Kelly, Stephanie A.; Oswalt, Krista; Melnyk, Bernadette Mazurek; Jacobson, Diana
2015-01-01
Fidelity in implementing an intervention is critical to accurately determine and interpret the effects of an intervention. It is important to monitor the manner in which the behavioral intervention is implemented (e.g. adaptations, delivery as intended and dose). Few interventions are implemented with 100% fidelity. In this study, high school health teachers implemented the intervention. To attribute study findings to the intervention, it was vital to know to what degree the intervention was implemented. Therefore, the purposes of this study were to evaluate intervention fidelity and to compare implementation fidelity between the creating opportunities for personal empowerment (COPE) Healthy Lifestyles TEEN (thinking, emotions, exercise, and nutrition) program, the experimental intervention and Healthy Teens, an attention-control intervention, in a randomized controlled trial with 779 adolescents from 11 high schools in the southwest region of the United States. Thirty teachers participated in this study. Findings indicated that the attention-control teachers implemented their intervention with greater fidelity than COPE TEEN teachers. It is possible due to the novel intervention and the teachers’ unfamiliarity with cognitive-behavioral skills building, COPE TEEN teachers had less fidelity. It is important to assess novel skill development prior to the commencement of experimental interventions and to provide corrective feedback during the course of implementation. PMID:25355179
Orbit Stability of OSIRIS-REx in the Vicinity of Bennu Using a High-Fidelity Solar Radiation Model
NASA Technical Reports Server (NTRS)
Williams, Trevor; Hughes, Kyle; Mashiku, Alinda; Longuski, James
2015-01-01
The OSIRIS-REx mission (Origins Spectral Interpretation Resource Identification Security Regolith EXPlorer) is an asteroid sample return mission to Bennu (RQ36) that is scheduled to launch in 2016. The planned science operations precluding the small retrieval involve operations in terminator orbits (orbit plane is perpendicular to the sun). Over longer durations the solar radiation pressure (SRP) perturbs the orbit causing it to precess. Our work involves: modeling high fidelity SRP model to capture the perturbations during attitude changes; design a stable orbit from the high fidelity models to analyze the stability over time.
Lattice Boltzmann for Airframe Noise Predictions
NASA Technical Reports Server (NTRS)
Barad, Michael; Kocheemoolayil, Joseph; Kiris, Cetin
2017-01-01
Increase predictive use of High-Fidelity Computational Aero- Acoustics (CAA) capabilities for NASA's next generation aviation concepts. CFD has been utilized substantially in analysis and design for steady-state problems (RANS). Computational resources are extremely challenged for high-fidelity unsteady problems (e.g. unsteady loads, buffet boundary, jet and installation noise, fan noise, active flow control, airframe noise, etc) ü Need novel techniques for reducing the computational resources consumed by current high-fidelity CAA Need routine acoustic analysis of aircraft components at full-scale Reynolds number from first principles Need an order of magnitude reduction in wall time to solution!
NASA Technical Reports Server (NTRS)
Arnold, Steven M. (Technical Monitor); Bansal, Yogesh; Pindera, Marek-Jerzy
2004-01-01
The High-Fidelity Generalized Method of Cells is a new micromechanics model for unidirectionally reinforced periodic multiphase materials that was developed to overcome the original model's shortcomings. The high-fidelity version predicts the local stress and strain fields with dramatically greater accuracy relative to the original model through the use of a better displacement field representation. Herein, we test the high-fidelity model's predictive capability in estimating the elastic moduli of periodic composites characterized by repeating unit cells obtained by rotation of an infinite square fiber array through an angle about the fiber axis. Such repeating unit cells may contain a few or many fibers, depending on the rotation angle. In order to analyze such multi-inclusion repeating unit cells efficiently, the high-fidelity micromechanics model's framework is reformulated using the local/global stiffness matrix approach. The excellent agreement with the corresponding results obtained from the standard transformation equations confirms the new model's predictive capability for periodic composites characterized by multi-inclusion repeating unit cells lacking planes of material symmetry. Comparison of the effective moduli and local stress fields with the corresponding results obtained from the original Generalized Method of Cells dramatically highlights the original model's shortcomings for certain classes of unidirectional composites.
NASA Astrophysics Data System (ADS)
Mohrfeld-Halterman, J. A.; Uddin, M.
2016-07-01
We described in this paper the development of a high fidelity vehicle aerodynamic model to fit wind tunnel test data over a wide range of vehicle orientations. We also present a comparison between the effects of this proposed model and a conventional quasi steady-state aerodynamic model on race vehicle simulation results. This is done by implementing both of these models independently in multi-body quasi steady-state simulations to determine the effects of the high fidelity aerodynamic model on race vehicle performance metrics. The quasi steady state vehicle simulation is developed with a multi-body NASCAR Truck vehicle model, and simulations are conducted for three different types of NASCAR race tracks, a short track, a one and a half mile intermediate track, and a higher speed, two mile intermediate race track. For each track simulation, the effects of the aerodynamic model on handling, maximum corner speed, and drive force metrics are analysed. The accuracy of the high-fidelity model is shown to reduce the aerodynamic model error relative to the conventional aerodynamic model, and the increased accuracy of the high fidelity aerodynamic model is found to have realisable effects on the performance metric predictions on the intermediate tracks resulting from the quasi steady-state simulation.
Feasibility and fidelity of practising surgical fixation on a virtual ulna bone
LeBlanc, Justin; Hutchison, Carol; Hu, Yaoping; Donnon, Tyrone
2013-01-01
Background Surgical simulators provide a safe environment to learn and practise psychomotor skills. A goal for these simulators is to achieve high levels of fidelity. The purpose of this study was to develop a reliable surgical simulator fidelity questionnaire and to assess whether a newly developed virtual haptic simulator for fixation of an ulna has comparable levels of fidelity as Sawbones. Methods Simulator fidelity questionnaires were developed. We performed a stratified randomized study with surgical trainees. They performed fixation of the ulna using a virtual simulator and Sawbones. They completed the fidelity questionnaires after each procedure. Results Twenty-two trainees participated in the study. The reliability of the fidelity questionnaire for each separate domain (environment, equipment, psychological) was Cronbach α greater than 0.70, except for virtual environment. The Sawbones had significantly higher levels of fidelity than the virtual simulator (p < 0.001) with a large effect size difference (Cohen d < 1.3). Conclusion The newly developed fidelity questionnaire is a reliable tool that can potentially be used to determine the fidelity of other surgical simulators. Increasing the fidelity of this virtual simulator is required before its use as a training tool for surgical fixation. The virtual simulator brings with it the added benefits of repeated, independent safe use with immediate, objective feedback and the potential to alter the complexity of the skill. PMID:23883510
ERIC Educational Resources Information Center
Kopp, Jason P.; Hulleman, Chris S.; Harackiewicz, Judith M.; Rozek, Chris
2012-01-01
Assessing fidelity of implementation is becoming increasingly important in education research, in particular as a tool for understanding variations in treatment effectiveness. Fidelity of implementation is defined as "the determination of how well an intervention is implemented in comparison with the original program design during an efficacy…
Wang, Carolyn L; Schopp, Jennifer G; Petscavage, Jonelle M; Paladin, Angelisa M; Richardson, Michael L; Bush, William H
2011-06-01
The objective of our study was to assess whether high-fidelity simulation-based training is more effective than traditional didactic lecture to train radiology residents in the management of contrast reactions. This was a prospective study of 44 radiology residents randomized into a simulation group versus a lecture group. All residents attended a contrast reaction didactic lecture. Four months later, baseline knowledge was assessed with a written test, which we refer to as the "pretest." After the pretest, the 21 residents in the lecture group attended a repeat didactic lecture and the 23 residents in the simulation group underwent high-fidelity simulation-based training with five contrast reaction scenarios. Next, all residents took a second written test, which we refer to as the "posttest." Two months after the posttest, both groups took a third written test, which we refer to as the "delayed posttest," and underwent performance testing with a high-fidelity severe contrast reaction scenario graded on predefined critical actions. There was no statistically significant difference between the simulation and lecture group pretest, immediate posttest, or delayed posttest scores. The simulation group performed better than the lecture group on the severe contrast reaction simulation scenario (p = 0.001). The simulation group reported improved comfort in identifying and managing contrast reactions and administering medications after the simulation training (p ≤ 0.04) and was more comfortable than the control group (p = 0.03), which reported no change in comfort level after the repeat didactic lecture. When compared with didactic lecture, high-fidelity simulation-based training of contrast reaction management shows equal results on written test scores but improved performance during a high-fidelity severe contrast reaction simulation scenario.
ERIC Educational Resources Information Center
Palmer, Elizabeth; Edwards, Taylor; Racchini, James
2014-01-01
High-fidelity simulation is frequently used in nursing education to provide students with simulated experiences prior to and throughout clinical coursework that involves direct patient care. These high-tech exercises take advantage of the benefits of a standardized patient or mock patient encounter, while eliminating some of the drawbacks…
High-fidelity quantum gates on quantum-dot-confined electron spins in low-Q optical microcavities
NASA Astrophysics Data System (ADS)
Li, Tao; Gao, Jian-Cun; Deng, Fu-Guo; Long, Gui-Lu
2018-04-01
We propose some high-fidelity quantum circuits for quantum computing on electron spins of quantum dots (QD) embedded in low-Q optical microcavities, including the two-qubit controlled-NOT gate and the multiple-target-qubit controlled-NOT gate. The fidelities of both quantum gates can, in principle, be robust to imperfections involved in a practical input-output process of a single photon by converting the infidelity into a heralded error. Furthermore, the influence of two different decay channels is detailed. By decreasing the quality factor of the present microcavity, we can largely increase the efficiencies of these quantum gates while their high fidelities remain unaffected. This proposal also has another advantage regarding its experimental feasibility, in that both quantum gates can work faithfully even when the QD-cavity systems are non-identical, which is of particular importance in current semiconductor QD technology.
Site fidelity, mate fidelity, and breeding dispersal in American kestrels
Steenhof, K.; Peterson, B.E.
2009-01-01
We assessed mate fidelity, nest-box fidelity, and breeding dispersal distances of American Kestrels (falco sparverius) nesting in boxes in southwestern Idaho from 1990 through 2006. Seventy-seven percent of boxes had different males and 87% had different females where nest-box occupants were identified in consecutive years. High turnover rates were partly a result of box-switching. Forty-eight percent of males and 58% of females that nested within the study area in successive years used different boxes. The probability of changing boxes was unrelated to gender, nesting success in the prior year, or years of nesting experience. Breeding dispersal distances for birds that moved to different boxes averaged 2.2 km for males (max = 22 km) and 3.2 km for females (max = 32 km). Approximately 70% of birds that nested in consecutive years on the study area had a different mate in the second year. Mate fidelity was related to box fidelity but not to prior nesting success or years of nesting experience. Mate changes occurred 32% of the time when the previous mate was known to be alive and nesting in the area. Kestrels that switched mates and boxes did not improve or decrease their subsequent nesting success. Kestrels usually switched to mates with less experience and lower lifetime productivity than their previous mates. The costs of switching boxes and mates were low, and there were no obvious benefits to fidelity. The cost of "waiting" for a previous mate that might have died could be high in species with high annual mortality.
Crofts, Joanna F; Bartlett, Christine; Ellis, Denise; Hunt, Linda P; Fox, Robert; Draycott, Timothy J
2006-12-01
To evaluate the effectiveness of simulation training for shoulder dystocia management and compare training using a high-fidelity mannequin with that using traditional devices. Training was undertaken in six hospitals and a medical simulation center in the United Kingdom. Midwives and obstetricians working for participating hospitals were eligible for inclusion. One hundred forty participants (45 doctors, 95 midwives) were randomized to training with a high-fidelity training mannequin (incorporating force perception training) or traditional low-fidelity mannequins. Performance was assessed pre- and posttraining, using a videoed, standardized shoulder dystocia simulation. Outcome measures were delivery, head-to-body delivery time, use of appropriate and inappropriate actions, force applied, and communication. One hundred thirty-two participants completed the posttraining assessment. All training was associated with improved performance: use of basic maneuvers 114 of 140 (81.4%) to 125 of 132 (94.7%) (P=.002), successful deliveries 60 of 140 (42.9%) to 110 of 132 (83.3%) (P<.001), good communication with the patient 79 of 139 (56.8%) to 109 of 132 (82.6%) (P<.001), pre- and posttraining, respectively. Training with the high-fidelity mannequin was associated with a higher successful delivery rate than training with traditional devices: 94% compared with 72% (odds ratio 6.53, 95% confidence interval 2.05-20.81; P=.002). Total applied force was significantly lower for those who had undergone force training (2,030 Newton seconds versus 2,916 Newton seconds; P=.006) but there was no significant difference in the peak applied force 102 Newtons versus 112 Newtons (P=.242). This study verifies the need for shoulder dystocia training; before training only 43% participants could achieve delivery. All training with mannequins improved the management of simulated shoulder dystocia. Training on a high-fidelity mannequin, including force perception teaching, offered additional training benefits. I.
Progress in the Utilization of High-Fidelity Simulation in Basic Science Education
ERIC Educational Resources Information Center
Helyer, Richard; Dickens, Peter
2016-01-01
High-fidelity patient simulators are mainly used to teach clinical skills and remain underutilized in teaching basic sciences. This article summarizes our current views on the use of simulation in basic science education and identifies pitfalls and opportunities for progress.
GIS Data Based Automatic High-Fidelity 3D Road Network Modeling
NASA Technical Reports Server (NTRS)
Wang, Jie; Shen, Yuzhong
2011-01-01
3D road models are widely used in many computer applications such as racing games and driving simulations_ However, almost all high-fidelity 3D road models were generated manually by professional artists at the expense of intensive labor. There are very few existing methods for automatically generating 3D high-fidelity road networks, especially those existing in the real world. This paper presents a novel approach thai can automatically produce 3D high-fidelity road network models from real 2D road GIS data that mainly contain road. centerline in formation. The proposed method first builds parametric representations of the road centerlines through segmentation and fitting . A basic set of civil engineering rules (e.g., cross slope, superelevation, grade) for road design are then selected in order to generate realistic road surfaces in compliance with these rules. While the proposed method applies to any types of roads, this paper mainly addresses automatic generation of complex traffic interchanges and intersections which are the most sophisticated elements in the road networks
NASA Astrophysics Data System (ADS)
Ariyarit, Atthaphon; Sugiura, Masahiko; Tanabe, Yasutada; Kanazaki, Masahiro
2018-06-01
A multi-fidelity optimization technique by an efficient global optimization process using a hybrid surrogate model is investigated for solving real-world design problems. The model constructs the local deviation using the kriging method and the global model using a radial basis function. The expected improvement is computed to decide additional samples that can improve the model. The approach was first investigated by solving mathematical test problems. The results were compared with optimization results from an ordinary kriging method and a co-kriging method, and the proposed method produced the best solution. The proposed method was also applied to aerodynamic design optimization of helicopter blades to obtain the maximum blade efficiency. The optimal shape obtained by the proposed method achieved performance almost equivalent to that obtained using the high-fidelity, evaluation-based single-fidelity optimization. Comparing all three methods, the proposed method required the lowest total number of high-fidelity evaluation runs to obtain a converged solution.
ERIC Educational Resources Information Center
Kelly, Stephanie A.; Oswalt, Krista; Melnyk, Bernadette Mazurek; Jacobson, Diana
2015-01-01
Fidelity in implementing an intervention is critical to accurately determine and interpret the effects of an intervention. It is important to monitor the manner in which the behavioral intervention is implemented (e.g. adaptations, delivery as intended and dose). Few interventions are implemented with 100% fidelity. In this study, high school…
High order magnetic optics for high dynamic range proton radiography at a kinetic energy of 800 MeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sjue, S. K. L., E-mail: sjue@lanl.gov; Mariam, F. G.; Merrill, F. E.
2016-01-15
Flash radiography with 800 MeV kinetic energy protons at Los Alamos National Laboratory is an important experimental tool for investigations of dynamic material behavior driven by high explosives or pulsed power. The extraction of quantitative information about density fields in a dynamic experiment from proton generated images requires a high fidelity model of the proton imaging process. It is shown that accurate calculations of the transmission through the magnetic lens system require terms beyond second order for protons far from the tune energy. The approach used integrates the correlated multiple Coulomb scattering distribution simultaneously over the collimator and the imagemore » plane. Comparison with a series of static calibration images demonstrates the model’s accurate reproduction of both the transmission and blur over a wide range of tune energies in an inverse identity lens that consists of four quadrupole electromagnets.« less
High order magnetic optics for high dynamic range proton radiography at a kinetic energy 800 MeV
Sjue, Sky K. L.; Morris, Christopher L.; Merrill, Frank Edward; ...
2016-01-14
Flash radiography with 800 MeV kinetic energy protons at Los Alamos National Laboratory is an important experimental tool for investigations of dynamic material behavior driven by high explosives or pulsed power. The extraction of quantitative information about density fields in a dynamic experiment from proton generated images requires a high fidelity model of the protonimaging process. It is shown that accurate calculations of the transmission through the magnetic lens system require terms beyond second order for protons far from the tune energy. The approach used integrates the correlated multiple Coulomb scattering distribution simultaneously over the collimator and the image plane.more » Furthermore, comparison with a series of static calibrationimages demonstrates the model’s accurate reproduction of both the transmission and blur over a wide range of tune energies in an inverse identity lens that consists of four quadrupole electromagnets.« less
A high-throughput assay for the comprehensive profiling of DNA ligase fidelity
Lohman, Gregory J. S.; Bauer, Robert J.; Nichols, Nicole M.; Mazzola, Laurie; Bybee, Joanna; Rivizzigno, Danielle; Cantin, Elizabeth; Evans, Thomas C.
2016-01-01
DNA ligases have broad application in molecular biology, from traditional cloning methods to modern synthetic biology and molecular diagnostics protocols. Ligation-based detection of polynucleotide sequences can be achieved by the ligation of probe oligonucleotides when annealed to a complementary target sequence. In order to achieve a high sensitivity and low background, the ligase must efficiently join correctly base-paired substrates, while discriminating against the ligation of substrates containing even one mismatched base pair. In the current study, we report the use of capillary electrophoresis to rapidly generate mismatch fidelity profiles that interrogate all 256 possible base-pair combinations at a ligation junction in a single experiment. Rapid screening of ligase fidelity in a 96-well plate format has allowed the study of ligase fidelity in unprecedented depth. As an example of this new method, herein we report the ligation fidelity of Thermus thermophilus DNA ligase at a range of temperatures, buffer pH and monovalent cation strength. This screen allows the selection of reaction conditions that maximize fidelity without sacrificing activity, while generating a profile of specific mismatches that ligate detectably under each set of conditions. PMID:26365241
A high-throughput assay for the comprehensive profiling of DNA ligase fidelity.
Lohman, Gregory J S; Bauer, Robert J; Nichols, Nicole M; Mazzola, Laurie; Bybee, Joanna; Rivizzigno, Danielle; Cantin, Elizabeth; Evans, Thomas C
2016-01-29
DNA ligases have broad application in molecular biology, from traditional cloning methods to modern synthetic biology and molecular diagnostics protocols. Ligation-based detection of polynucleotide sequences can be achieved by the ligation of probe oligonucleotides when annealed to a complementary target sequence. In order to achieve a high sensitivity and low background, the ligase must efficiently join correctly base-paired substrates, while discriminating against the ligation of substrates containing even one mismatched base pair. In the current study, we report the use of capillary electrophoresis to rapidly generate mismatch fidelity profiles that interrogate all 256 possible base-pair combinations at a ligation junction in a single experiment. Rapid screening of ligase fidelity in a 96-well plate format has allowed the study of ligase fidelity in unprecedented depth. As an example of this new method, herein we report the ligation fidelity of Thermus thermophilus DNA ligase at a range of temperatures, buffer pH and monovalent cation strength. This screen allows the selection of reaction conditions that maximize fidelity without sacrificing activity, while generating a profile of specific mismatches that ligate detectably under each set of conditions. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Spawning site fidelity of wild and hatchery lake trout (Salvelinus namaycush) in northern Lake Huron
Binder, Thomas; Riley, Stephen C.; Holbrook, Christopher; Hansen, Michael J.; Bergstedt, Roger A.; Bronte, Charles R.; He, Ji; Krueger, Charles C.
2016-01-01
Fidelity to high-quality spawning sites helps ensure that adults repeatedly spawn at sites that maximize reproductive success. Fidelity is also an important behavioural characteristic to consider when hatchery-reared individuals are stocked for species restoration, because artificial rearing environments may interfere with cues that guide appropriate spawning site selection. Acoustic telemetry was used in conjunction with Cormack–Jolly–Seber capture–recapture models to compare degree of spawning site fidelity of wild and hatchery-reared lake trout (Salvelinus namaycush) in northern Lake Huron. Annual survival was estimated to be between 77% and 81% and did not differ among wild and hatchery males and females. Site fidelity estimates were high in both wild and hatchery-reared lake trout (ranging from 0.78 to 0.94, depending on group and time filter), but were slightly lower in hatchery-reared fish than in wild fish. The ecological implication of the small difference in site fidelity between wild and hatchery-reared lake trout is unclear, but similarities in estimates suggest that many hatchery-reared fish use similar spawning sites to wild fish and that most return to those sites annually for spawning.
High-fidelity readout in circuit quantum electrodynamics using the Jaynes-Cummings nonlinearity.
Reed, M D; DiCarlo, L; Johnson, B R; Sun, L; Schuster, D I; Frunzio, L; Schoelkopf, R J
2010-10-22
We demonstrate a qubit readout scheme that exploits the Jaynes-Cummings nonlinearity of a superconducting cavity coupled to transmon qubits. We find that, in the strongly driven dispersive regime of this system, there is the unexpected onset of a high-transmission "bright" state at a critical power which depends sensitively on the initial qubit state. A simple and robust measurement protocol exploiting this effect achieves a single-shot fidelity of 87% using a conventional sample design and experimental setup, and at least 61% fidelity to joint correlations of three qubits.
Visual information processing; Proceedings of the Meeting, Orlando, FL, Apr. 20-22, 1992
NASA Technical Reports Server (NTRS)
Huck, Friedrich O. (Editor); Juday, Richard D. (Editor)
1992-01-01
Topics discussed in these proceedings include nonlinear processing and communications; feature extraction and recognition; image gathering, interpolation, and restoration; image coding; and wavelet transform. Papers are presented on noise reduction for signals from nonlinear systems; driving nonlinear systems with chaotic signals; edge detection and image segmentation of space scenes using fractal analyses; a vision system for telerobotic operation; a fidelity analysis of image gathering, interpolation, and restoration; restoration of images degraded by motion; and information, entropy, and fidelity in visual communication. Attention is also given to image coding methods and their assessment, hybrid JPEG/recursive block coding of images, modified wavelets that accommodate causality, modified wavelet transform for unbiased frequency representation, and continuous wavelet transform of one-dimensional signals by Fourier filtering.
Film grain noise modeling in advanced video coding
NASA Astrophysics Data System (ADS)
Oh, Byung Tae; Kuo, C.-C. Jay; Sun, Shijun; Lei, Shawmin
2007-01-01
A new technique for film grain noise extraction, modeling and synthesis is proposed and applied to the coding of high definition video in this work. The film grain noise is viewed as a part of artistic presentation by people in the movie industry. On one hand, since the film grain noise can boost the natural appearance of pictures in high definition video, it should be preserved in high-fidelity video processing systems. On the other hand, video coding with film grain noise is expensive. It is desirable to extract film grain noise from the input video as a pre-processing step at the encoder and re-synthesize the film grain noise and add it back to the decoded video as a post-processing step at the decoder. Under this framework, the coding gain of the denoised video is higher while the quality of the final reconstructed video can still be well preserved. Following this idea, we present a method to remove film grain noise from image/video without distorting its original content. Besides, we describe a parametric model containing a small set of parameters to represent the extracted film grain noise. The proposed model generates the film grain noise that is close to the real one in terms of power spectral density and cross-channel spectral correlation. Experimental results are shown to demonstrate the efficiency of the proposed scheme.
McGregor, W. Glenn; Wei, Dong; Maher, Veronica M.; McCormick, J. Justin
1999-01-01
Xeroderma pigmentosum (XP) is a rare genetic disease characterized by a greatly increased susceptibility to sunlight-induced skin cancer. Cells from the majority of patients are defective in nucleotide excision repair. However, cells from one set of patients, XP variants, exhibit normal repair but are abnormally slow in replicating DNA containing UV photoproducts. The frequency of UV radiation-induced mutations in the XP variant cells is significantly higher than that in normal human cells. Furthermore, the kinds of UV-induced mutations differ very significantly from normal. Instead of transitions, mainly C→T, 30% of the base substitutions consist of C→A transversions, all arising from photoproducts located in one strand. Mutations involving cytosine in the other strand are almost all C→T transitions. Forty-five percent of the substitutions involve thymine, and the majority are transversions. To test the hypothesis that the UV hypermutability and the abnormal spectrum of mutations result from abnormal bypass of photoproducts in DNA, we compared extracts from XP variant cells with those from HeLa cells and a fibroblast cell strain, MSU-1.2, for the ability to replicate a UV-irradiated form I M13 phage. The M13 template contains a simian virus 40 origin of replication located directly to the left or to the right of the target gene, lacZα, so that the template for the leading and lagging strands of DNA replication is defined. Reduction of replication to ∼37% of the control value required only 1 photoproduct per template for XP variant cell extracts, but ∼2.2 photoproducts for HeLa or MSU-1.2 cell extracts. The frequency of mutants induced was four times higher with XP variant cell extracts than with HeLa or MSU-1.2 cell extracts. With XP variant cell extracts, the proportion of C→A transversions reached as high as 43% with either M13 template and arose from photoproducts located in the template for leading-strand synthesis; with HeLa or MSU-1.2 cell extracts, this value was only 5%, and these arose from photoproducts in either strand. With the XP variant extracts, 26% of the substitutions involved thymine, and virtually all were T→A transversions. Sequence analysis of the coding region of the catalytic subunit of DNA polymerase delta in XP variant cell lines revealed two polymorphisms, but these do not account for the reduced bypass fidelity. Our data indicate that the UV hypermutability of XP variant cells results from reduced bypass fidelity and that unlike for normal cells, bypass of photoproducts involving cytosine in the template for the leading strand differs significantly from that of photoproducts in the lagging strand. PMID:9858539
Rådmark, Magnus; Zukowski, Marek; Bourennane, Mohamed
2009-10-09
Quantum multiphoton interferometry has now reached the six-photon stage. Thus far, the observed fidelities of entangled states never reached 2/3. We report a high fidelity (estimated at 88%) experiment in which six-qubit singlet correlations were observed. With such a high fidelity we are able to demonstrate the central property of these "singlet" correlations, their "rotational invariance," by performing a full set of measurements in three complementary polarization bases. The patterns are almost indistinguishable. The data reveal genuine six-photon entanglement. We also study several five-photon states, which result upon detection of one of the photons. Multiphoton singlet states survive some types of depolarization and are thus important in quantum communication schemes.
Jeyaprakash, Ayyamperumal; Hoy, Marjorie A
2004-07-01
Amplifying microbial DNA by the polymerase chain reaction (PCR) from single phytoseiid mites has been difficult, perhaps due to the low titer of bacteria and to interference by the relatively larger amounts of mite genomic DNA. In this paper we evaluate the efficiency of standard and high-fidelity PCR protocols subsequent to amplification of the whole genome by a multiple displacement amplification (MDA) procedure developed by Dean et al. DNA from the phytoseiid Phytoseiulus persimilis (Athias-Henriot) was tested because it lacks a Cytophaga-like organism (CLO) and we could add known amounts of a plasmid containing a cloned 16S rRNA gene fragment from a CLO from Metaseiulus occidentalis (Nesbitt). P. persimilis genomic DNA was mixed with the serially diluted plasmid and amplified using MDA followed by either standard or high-fidelity PCR. MDA followed by high-fidelity PCR was most efficient and successfully amplified an expected 1.5-kb band from as little as 0.01fg of the plasmid, which is equivalent to about 1 copy. MDA followed by high-fidelity PCR also consistently amplified Wolbachia- or CLO-specific products from naturally infected single females or eggs of M. occidentalis, which will allow detailed studies of infection frequency and transmission of several microorganisms associated with this predatory mite.
Degrees of reality: airway anatomy of high-fidelity human patient simulators and airway trainers.
Schebesta, Karl; Hüpfl, Michael; Rössler, Bernhard; Ringl, Helmut; Müller, Michael P; Kimberger, Oliver
2012-06-01
Human patient simulators and airway training manikins are widely used to train airway management skills to medical professionals. Furthermore, these patient simulators are employed as standardized "patients" to evaluate airway devices. However, little is known about how realistic these patient simulators and airway-training manikins really are. This trial aimed to evaluate the upper airway anatomy of four high-fidelity patient simulators and two airway trainers in comparison with actual patients by means of radiographic measurements. The volume of the pharyngeal airspace was the primary outcome parameter. Computed tomography scans of 20 adult trauma patients without head or neck injuries were compared with computed tomography scans of four high-fidelity patient simulators and two airway trainers. By using 14 predefined distances, two cross-sectional areas and three volume parameters of the upper airway, the manikins' similarity to a human patient was assessed. The pharyngeal airspace of all manikins differed significantly from the patients' pharyngeal airspace. The HPS Human Patient Simulator (METI®, Sarasota, FL) was the most realistic high-fidelity patient simulator (6/19 [32%] of all parameters were within the 95% CI of human airway measurements). The airway anatomy of four high-fidelity patient simulators and two airway trainers does not reflect the upper airway anatomy of actual patients. This finding may impact airway training and confound comparative airway device studies.
NASA Astrophysics Data System (ADS)
Huang, Wei; Chen, Xiu; Wang, Yueyun
2018-03-01
Landsat data are widely used in various earth observations, but the clouds interfere with the applications of the images. This paper proposes a weighted variational gradient-based fusion method (WVGBF) for high-fidelity thin cloud removal of Landsat images, which is an improvement of the variational gradient-based fusion (VGBF) method. The VGBF method integrates the gradient information from the reference band into visible bands of cloudy image to enable spatial details and remove thin clouds. The VGBF method utilizes the same gradient constraints to the entire image, which causes the color distortion in cloudless areas. In our method, a weight coefficient is introduced into the gradient approximation term to ensure the fidelity of image. The distribution of weight coefficient is related to the cloud thickness map. The map is built on Independence Component Analysis (ICA) by using multi-temporal Landsat images. Quantitatively, we use R value to evaluate the fidelity in the cloudless regions and metric Q to evaluate the clarity in the cloud areas. The experimental results indicate that the proposed method has the better ability to remove thin cloud and achieve high fidelity.
Damschroder, Laura J; Goodrich, David E; Kim, Hyungjin Myra; Holleman, Robert; Gillon, Leah; Kirsh, Susan; Richardson, Caroline R; Lutes, Lesley D
2016-09-01
Practical and valid instruments are needed to assess fidelity of coaching for weight loss. The purpose of this study was to develop and validate the ASPIRE Coaching Fidelity Checklist (ACFC). Classical test theory guided ACFC development. Principal component analyses were used to determine item groupings. Psychometric properties, internal consistency, and inter-rater reliability were evaluated for each subscale. Criterion validity was tested by predicting weight loss as a function of coaching fidelity. The final 19-item ACFC consists of two domains (session process and session structure) and five subscales (sets goals and monitor progress, assess and personalize self-regulatory content, manages the session, creates a supportive and empathetic climate, and stays on track). Four of five subscales showed high internal consistency (Cronbach alphas > 0.70) for group-based coaching; only two of five subscales had high internal reliability for phone-based coaching. All five sub-scales were positively and significantly associated with weight loss for group- but not for phone-based coaching. The ACFC is a reliable and valid instrument that can be used to assess fidelity and guide skill-building for weight management interventionists.
The use of virtual patient scenarios as a vehicle for teaching professionalism.
Marei, H F; Al-Eraky, M M; Almasoud, N N; Donkers, J; Van Merrienboer, J J G
2018-05-01
This study aimed to measure students' perceptions of virtual patient scenarios (VPs) for developing ethical reasoning skills and to explore features in VP design that are necessary to promote professionalism. Sixty-five dental students participated in learning sessions that involved collaborative practice with five VPs (four high fidelity and one low fidelity), followed by reflection sessions. Students' perceptions towards the use of VPs in developing ethical reasoning skills were assessed using a questionnaire that involved 10 closed and three open-ended questions. High-fidelity VPs were perceived as significantly better for developing ethical reasoning skills than low-fidelity VPs. Analyses of answers to open-ended questions revealed two new features that are specific for VPs intended for teaching professionalism, which are VP dramatic structure and how it should end. VPs intended for teaching professionalism need to have high fidelity, follow a specific dramatic structure and should include multiple plausible endings. The use of VPs as part of a collaborative activity that is followed by a reflection session is perceived as an effective tool for the development of ethical reasoning skills in dental education. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
High-Fidelity Multidisciplinary Design Optimization of Aircraft Configurations
NASA Technical Reports Server (NTRS)
Martins, Joaquim R. R. A.; Kenway, Gaetan K. W.; Burdette, David; Jonsson, Eirikur; Kennedy, Graeme J.
2017-01-01
To evaluate new airframe technologies we need design tools based on high-fidelity models that consider multidisciplinary interactions early in the design process. The overarching goal of this NRA is to develop tools that enable high-fidelity multidisciplinary design optimization of aircraft configurations, and to apply these tools to the design of high aspect ratio flexible wings. We develop a geometry engine that is capable of quickly generating conventional and unconventional aircraft configurations including the internal structure. This geometry engine features adjoint derivative computation for efficient gradient-based optimization. We also added overset capability to a computational fluid dynamics solver, complete with an adjoint implementation and semiautomatic mesh generation. We also developed an approach to constraining buffet and started the development of an approach for constraining utter. On the applications side, we developed a new common high-fidelity model for aeroelastic studies of high aspect ratio wings. We performed optimal design trade-o s between fuel burn and aircraft weight for metal, conventional composite, and carbon nanotube composite wings. We also assessed a continuous morphing trailing edge technology applied to high aspect ratio wings. This research resulted in the publication of 26 manuscripts so far, and the developed methodologies were used in two other NRAs. 1
Competency: Does High Fidelity Simulation Make a Difference?
ERIC Educational Resources Information Center
Valente, Alice M.
2010-01-01
High fidelity simulation is a well documented adjunctive teaching method in medical and nurse practitioner programs, but few studies of effectiveness on this technology on the development of competency have emphasized pre-licensure associate degree level programs. This study explored student competency in the application of the nursing process…
Using nonfaculty registered nurses to facilitate high-fidelity human patient simulation activities.
Foster, Janet G; Sheriff, Susan; Cheney, Susan
2008-01-01
Maximizing faculty resources using nonfaculty registered nurses to supervise high-fidelity human-patient simulation is an innovative strategy for addressing the nursing faculty shortage and preparing graduates to practice safely in hospitals. The authors describe their use of nonfaculty registered nurses and its outcomes.
Automated synthetic scene generation
NASA Astrophysics Data System (ADS)
Givens, Ryan N.
Physics-based simulations generate synthetic imagery to help organizations anticipate system performance of proposed remote sensing systems. However, manually constructing synthetic scenes which are sophisticated enough to capture the complexity of real-world sites can take days to months depending on the size of the site and desired fidelity of the scene. This research, sponsored by the Air Force Research Laboratory's Sensors Directorate, successfully developed an automated approach to fuse high-resolution RGB imagery, lidar data, and hyperspectral imagery and then extract the necessary scene components. The method greatly reduces the time and money required to generate realistic synthetic scenes and developed new approaches to improve material identification using information from all three of the input datasets.
Bright nanoscale source of deterministic entangled photon pairs violating Bell's inequality.
Jöns, Klaus D; Schweickert, Lucas; Versteegh, Marijn A M; Dalacu, Dan; Poole, Philip J; Gulinatti, Angelo; Giudice, Andrea; Zwiller, Val; Reimer, Michael E
2017-05-10
Global, secure quantum channels will require efficient distribution of entangled photons. Long distance, low-loss interconnects can only be realized using photons as quantum information carriers. However, a quantum light source combining both high qubit fidelity and on-demand bright emission has proven elusive. Here, we show a bright photonic nanostructure generating polarization-entangled photon pairs that strongly violates Bell's inequality. A highly symmetric InAsP quantum dot generating entangled photons is encapsulated in a tapered nanowire waveguide to ensure directional emission and efficient light extraction. We collect ~200 kHz entangled photon pairs at the first lens under 80 MHz pulsed excitation, which is a 20 times enhancement as compared to a bare quantum dot without a photonic nanostructure. The performed Bell test using the Clauser-Horne-Shimony-Holt inequality reveals a clear violation (S CHSH > 2) by up to 9.3 standard deviations. By using a novel quasi-resonant excitation scheme at the wurtzite InP nanowire resonance to reduce multi-photon emission, the entanglement fidelity (F = 0.817 ± 0.002) is further enhanced without temporal post-selection, allowing for the violation of Bell's inequality in the rectilinear-circular basis by 25 standard deviations. Our results on nanowire-based quantum light sources highlight their potential application in secure data communication utilizing measurement-device-independent quantum key distribution and quantum repeater protocols.
Tidal Energy Resource Assessment for McMurdo Station, Antarctica
2016-12-01
highest power coefficient possible, only to provide a high- fidelity data set for a simple geometry turbine model at reasonably high blade chord Reynolds...highest power coefficient possible, only to provide a high-fidelity data set for a simple geometry turbine model at reasonably high blade chord...Reynolds numbers. Tip speed ratio, , is defined as = where is the anglular velocity of the blade and is the
ERIC Educational Resources Information Center
Kimemia, Judy
2017-01-01
Purpose: The purpose of this project was to compare web-based to high-fidelity simulation training in the management of high risk/low occurrence anesthesia related events, to enhance knowledge acquisition for Certified Registered Nurse Anesthetists (CRNAs). This project was designed to answer the question: Is web-based training as effective as…
CTF (Subchannel) Calculations and Validation L3:VVI.H2L.P15.01
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon, Natalie
The goal of the Verification and Validation Implementation (VVI) High to Low (Hi2Lo) process is utilizing a validated model in a high resolution code to generate synthetic data for improvement of the same model in a lower resolution code. This process is useful in circumstances where experimental data does not exist or it is not sufficient in quantity or resolution. Data from the high-fidelity code is treated as calibration data (with appropriate uncertainties and error bounds) which can be used to train parameters that affect solution accuracy in the lower-fidelity code model, thereby reducing uncertainty. This milestone presents a demonstrationmore » of the Hi2Lo process derived in the VVI focus area. The majority of the work performed herein describes the steps of the low-fidelity code used in the process with references to the work detailed in the companion high-fidelity code milestone (Reference 1). The CASL low-fidelity code used to perform this work was Cobra Thermal Fluid (CTF) and the high-fidelity code was STAR-CCM+ (STAR). The master branch version of CTF (pulled May 5, 2017 – Reference 2) was utilized for all CTF analyses performed as part of this milestone. The statistical and VVUQ components of the Hi2Lo framework were performed using Dakota version 6.6 (release date May 15, 2017 – Reference 3). Experimental data from Westinghouse Electric Company (WEC – Reference 4) was used throughout the demonstrated process to compare with the high-fidelity STAR results. A CTF parameter called Beta was chosen as the calibration parameter for this work. By default, Beta is defined as a constant mixing coefficient in CTF and is essentially a tuning parameter for mixing between subchannels. Since CTF does not have turbulence models like STAR, Beta is the parameter that performs the most similar function to the turbulence models in STAR. The purpose of the work performed in this milestone is to tune Beta to an optimal value that brings the CTF results closer to those measured in the WEC experiments.« less
Morrison, Janet D; Becker, Heather; Stuifbergen, Alexa K
2017-12-01
Careful consideration of intervention fidelity is critical to establishing the validity and reliability of research findings, yet such reports are often lacking in the research literature. It is imperative that intervention fidelity be methodically evaluated and reported to promote the translation of effective interventions into sound evidence-based practice. The purpose of this article is to explore strategies used to promote intervention fidelity, incorporating examples from a multisite clinical trial, that illustrate the National Institutes of Health Behavior Change Consortium's 5 domains for recommended treatment practices: (1) study design, (2) facilitator training, (3) intervention delivery, (4) intervention receipt, and (5) intervention enactment. A multisite randomized clinical trial testing the efficacy of a computer-assisted cognitive rehabilitation intervention for adults with multiple sclerosis is used to illustrate strategies promoting intervention fidelity. Data derived from audiotapes of intervention classes, audits of computer exercises completed by participants, participant class attendance, and goal attainment scaling suggested relatively high fidelity to the intervention protocol. This study illustrates how to report intervention fidelity in the literature guided by best practice strategies, which may serve to promote fidelity monitoring and reporting in future studies.
Xu, Liang; Wang, Wei; Chong, Jenny; Shin, Ji Hyun; Xu, Jun; Wang, Dong
2016-01-01
Accurate genetic information transfer is essential for life. As a key enzyme involved in the first step of gene expression, RNA polymerase II (Pol II) must maintain high transcriptional fidelity while it reads along DNA template and synthesizes RNA transcript in a stepwise manner during transcription elongation. DNA lesions or modifications may lead to significant changes in transcriptional fidelity or transcription elongation dynamics. In this review, we will summarize recent progress towards understanding the molecular basis of RNA Pol II transcriptional fidelity control and impacts of DNA lesions and modifications on Pol II transcription elongation. PMID:26392149
High fidelity simulations of infrared imagery with animated characters
NASA Astrophysics Data System (ADS)
Näsström, F.; Persson, A.; Bergström, D.; Berggren, J.; Hedström, J.; Allvar, J.; Karlsson, M.
2012-06-01
High fidelity simulations of IR signatures and imagery tend to be slow and do not have effective support for animation of characters. Simplified rendering methods based on computer graphics methods can be used to overcome these limitations. This paper presents a method to combine these tools and produce simulated high fidelity thermal IR data of animated people in terrain. Infrared signatures for human characters have been calculated using RadThermIR. To handle multiple character models, these calculations use a simplified material model for the anatomy and clothing. Weather and temperature conditions match the IR-texture used in the terrain model. The calculated signatures are applied to the animated 3D characters that, together with the terrain model, are used to produce high fidelity IR imagery of people or crowds. For high level animation control and crowd simulations, HLAS (High Level Animation System) has been developed. There are tools available to create and visualize skeleton based animations, but tools that allow control of the animated characters on a higher level, e.g. for crowd simulation, are usually expensive and closed source. We need the flexibility of HLAS to add animation into an HLA enabled sensor system simulation framework.
Prowse, Phuong-Tu; Nagel, Tricia
2014-01-01
The aim of this study was to design and trial an Adherence Scale to measure fidelity of Motivational Care Planning (MCP) within a clinical trial. This culturally adapted therapy MCP uses a client centered holistic approach that emphasises family and culture to motivate healthy life style changes. The Motivational Care Planning-Adherence Scale (MCP-AS) was developed through consultation with Aboriginal and Islander Mental Health Initiative (AIMhi) Indigenous and non-Indigenous trainers, and review of MCP training resources. The resultant ten-item scale incorporates a 9-Point Likert Scale with a supporting protocol manual and uses objective, behaviourally anchored criteria for each scale point. A fidelity assessor piloted the tool through analysis of four audio-recordings of MCP (conducted by Indigenous researchers within a study in remote communities in Northern Australia). File audits of the remote therapy sessions were utilised as an additional source of information. A Gold Standard Motivational Care Planning training video was also assessed using the MCP-AS. The Motivational Care Planning-Adherence Scale contains items measuring both process and content of therapy sessions. This scale was used successfully to assess therapy through observation of audio or video-recorded sessions and review of clinical notes. Treatment fidelity measured by the MCP-AS within the pilot study indicated high fidelity ratings. Ratings were high across the three domains of rapport, motivation, and self-management with especially high ratings for positive feedback and engagement, review of stressors and goal setting. The Motivational Care Planning-Adherence Scale has the potential to provide a measure of quality of delivery of Motivation Care Planning. The pilot findings suggest that despite challenges within the remote Indigenous community setting, Indigenous therapists delivered therapy that was of high fidelity. While developed as a research tool, the scale has the potential to support fidelity of delivery of Motivation Care Planning in clinical, supervision and training settings. Larger studies are needed to establish inter-rater reliability and internal and external validity.
Bartoli, Carlo R.; Rogers, Benjamin D.; Ionan, Constantine E.; Koenig, Steven C.; Pantalos, George M.
2013-01-01
OBJECTIVE Counterpulsation with an intraaortic balloon pump (IABP) has not achieved the same successes or clinical use in pediatric patients as in adults. In a pediatric animal model, IABP efficacy was investigated to determine whether IABP timing with a high-fidelity blood pressure signal may improve counterpulsation therapy versus a low-fidelity signal. METHODS In Yorkshire piglets (n=19, 13.0±0.5 kg) with coronary ligation-induced acute ischemic left ventricular failure, pediatric IABPs (5 or 7cc) were placed in the descending thoracic aorta. Inflation and deflation were timed with traditional criteria from low-fidelity (fluid-filled) and high-fidelity (micromanometer) blood pressure signals during 1:1 support. Aortic, carotid, and coronary hemodynamics were measured with pressure and flow transducers. Myocardial oxygen consumption was calculated from coronary sinus and arterial blood samples. Left ventricular myocardial blood flow and end-organ blood flow were measured with microspheres. RESULTS Despite significant suprasystolic diastolic augmentation and afterload reduction at heart rates of 105±3bmp, left ventricular myocardial blood flow, myocardial oxygen consumption, the myocardial oxygen supply/demand relationship, cardiac output, and end-organ blood flow did not change. Statistically significant end-diastolic coronary, carotid, and aortic flow reversal occurred with IABP deflation. Inflation and deflation timed with a high-fidelity versus low-fidelity signal did not attenuate systemic flow reversal or improve the myocardial oxygen supply/demand relationship. CONCLUSIONS Systemic end-diastolic flow reversal limited counterpulsation efficacy in a pediatric model of acute left ventricular failure. Adjustment of IABP inflation and deflation timing with traditional criteria and a high-fidelity blood pressure waveform did not improve IABP efficacy or attenuate flow reversal. End-diastolic flow reversal may limit the efficacy of IABP counterpulsation therapy in pediatric patients with traditional timing criteria. Investigation of alternative deflation timing strategies is warranted. PMID:24139614
Bartoli, Carlo R; Rogers, Benjamin D; Ionan, Constantine E; Pantalos, George M
2014-05-01
Counterpulsation with an intra-aortic balloon pump (IABP) has not achieved the same success or clinical use in pediatric patients as in adults. In a pediatric animal model, IABP efficacy was investigated to determine whether IABP timing with a high-fidelity blood pressure signal may improve counterpulsation therapy versus a low-fidelity signal. In Yorkshire piglets (n = 19; weight, 13.0 ± 0.5 kg) with coronary ligation-induced acute ischemic left ventricular failure, pediatric IABPs (5 or 7 mL) were placed in the descending thoracic aorta. Inflation and deflation were timed with traditional criteria from low-fidelity (fluid-filled) and high-fidelity (micromanometer) blood pressure signals during 1:1 support. Aortic, carotid, and coronary hemodynamics were measured with pressure and flow transducers. Myocardial oxygen consumption was calculated from coronary sinus and arterial blood samples. Left ventricular myocardial blood flow and end-organ blood flow were measured with microspheres. Despite significant suprasystolic diastolic augmentation and afterload reduction at heart rates of 105 ± 3 beats per minute, left ventricular myocardial blood flow, myocardial oxygen consumption, the myocardial oxygen supply/demand relationship, cardiac output, and end-organ blood flow did not change. Statistically significant end-diastolic coronary, carotid, and aortic flow reversal occurred with IABP deflation. Inflation and deflation timed with a high-fidelity versus low-fidelity signal did not attenuate systemic flow reversal or improve the myocardial oxygen supply/demand relationship. Systemic end-diastolic flow reversal limited counterpulsation efficacy in a pediatric model of acute left ventricular failure. Adjustment of IABP inflation and deflation timing with traditional criteria and a high-fidelity blood pressure waveform did not improve IABP efficacy or attenuate flow reversal. End-diastolic flow reversal may limit the efficacy of IABP counterpulsation therapy in pediatric patients with traditional timing criteria. Investigation of alternative deflation timing strategies is warranted. Copyright © 2014 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
Multifunctional Collaborative Modeling and Analysis Methods in Engineering Science
NASA Technical Reports Server (NTRS)
Ransom, Jonathan B.; Broduer, Steve (Technical Monitor)
2001-01-01
Engineers are challenged to produce better designs in less time and for less cost. Hence, to investigate novel and revolutionary design concepts, accurate, high-fidelity results must be assimilated rapidly into the design, analysis, and simulation process. This assimilation should consider diverse mathematical modeling and multi-discipline interactions necessitated by concepts exploiting advanced materials and structures. Integrated high-fidelity methods with diverse engineering applications provide the enabling technologies to assimilate these high-fidelity, multi-disciplinary results rapidly at an early stage in the design. These integrated methods must be multifunctional, collaborative, and applicable to the general field of engineering science and mechanics. Multifunctional methodologies and analysis procedures are formulated for interfacing diverse subdomain idealizations including multi-fidelity modeling methods and multi-discipline analysis methods. These methods, based on the method of weighted residuals, ensure accurate compatibility of primary and secondary variables across the subdomain interfaces. Methods are developed using diverse mathematical modeling (i.e., finite difference and finite element methods) and multi-fidelity modeling among the subdomains. Several benchmark scalar-field and vector-field problems in engineering science are presented with extensions to multidisciplinary problems. Results for all problems presented are in overall good agreement with the exact analytical solution or the reference numerical solution. Based on the results, the integrated modeling approach using the finite element method for multi-fidelity discretization among the subdomains is identified as most robust. The multiple-method approach is advantageous when interfacing diverse disciplines in which each of the method's strengths are utilized. The multifunctional methodology presented provides an effective mechanism by which domains with diverse idealizations are interfaced. This capability rapidly provides the high-fidelity results needed in the early design phase. Moreover, the capability is applicable to the general field of engineering science and mechanics. Hence, it provides a collaborative capability that accounts for interactions among engineering analysis methods.
Watson, T F; Weber, B; House, M G; Büch, H; Simmons, M Y
2015-10-16
We demonstrate high-fidelity electron spin read-out of a precision placed single donor in silicon via spin selective tunneling to either the D(+) or D(-) charge state of the donor. By performing read-out at the stable two electron D(0)↔D(-) charge transition we can increase the tunnel rates to a nearby single electron transistor charge sensor by nearly 2 orders of magnitude, allowing faster qubit read-out (1 ms) with minimum loss in read-out fidelity (98.4%) compared to read-out at the D(+)↔D(0) transition (99.6%). Furthermore, we show that read-out via the D(-) charge state can be used to rapidly initialize the electron spin qubit in its ground state with a fidelity of F(I)=99.8%.
Bennett, Michael I; Hughes, Nicola; Johnson, Mark I
2011-06-01
The benefits of transcutaneous electrical nerve stimulation (TENS) for pain relief have not been reliably established, as most systematic reviews find poor methodological quality in many studies. The paradox within the evidence base for TENS is that despite identified sources of bias that may lead to an overestimation of treatment effects, no benefits for TENS can be clearly demonstrated. Conventional assessments of quality assume a single direction of bias, and little work has been undertaken examining other directions of bias. Our hypothesis was that low fidelity in studies (bias leading to an underestimation of treatment effects) may account for inconclusive findings. We included 38 studies from 3 recently published Cochrane systematic reviews that examined TENS for acute, chronic, and cancer pain. We extracted data relating to treatment allocation, application of TENS and to the assessment of outcomes. We quantified these data and judged this against standardised assessment criteria using a "traffic light" approach based on the number of studies reaching the standard. We identified significant sources of potential bias in both directions in relation to study design and implementation fidelity that have not been quantified previously. Suboptimal dosing of TENS and inappropriate outcome assessment were particularly prevalent weaknesses indicating low fidelity. We propose criteria for judging directions of bias in future studies of TENS that may be adapted to assess other trials in which implementation fidelity is important, such as other nonpharmacological interventions for pain. Poor implementation fidelity was identified as a significant source of bias in systematic reviews of TENS studies and might explain lack of consistent treatment effects of TENS in pain. Here, criteria for assessing methodology are proposed for use in designing future clinical trials of TENS. Copyright © 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Inaccurate DNA synthesis in cell extracts of yeast producing active human DNA polymerase iota.
Makarova, Alena V; Grabow, Corinn; Gening, Leonid V; Tarantul, Vyacheslav Z; Tahirov, Tahir H; Bessho, Tadayoshi; Pavlov, Youri I
2011-01-31
Mammalian Pol ι has an unusual combination of properties: it is stimulated by Mn(2+) ions, can bypass some DNA lesions and misincorporates "G" opposite template "T" more frequently than incorporates the correct "A." We recently proposed a method of detection of Pol ι activity in animal cell extracts, based on primer extension opposite the template T with a high concentration of only two nucleotides, dGTP and dATP (incorporation of "G" versus "A" method of Gening, abbreviated as "misGvA"). We provide unambiguous proof of the "misGvA" approach concept and extend the applicability of the method for the studies of variants of Pol ι in the yeast model system with different cation cofactors. We produced human Pol ι in baker's yeast, which do not have a POLI ortholog. The "misGvA" activity is absent in cell extracts containing an empty vector, or producing catalytically dead Pol ι, or Pol ι lacking exon 2, but is robust in the strain producing wild-type Pol ι or its catalytic core, or protein with the active center L62I mutant. The signature pattern of primer extension products resulting from inaccurate DNA synthesis by extracts of cells producing either Pol ι or human Pol η is different. The DNA sequence of the template is critical for the detection of the infidelity of DNA synthesis attributed to DNA Pol ι. The primer/template and composition of the exogenous DNA precursor pool can be adapted to monitor replication fidelity in cell extracts expressing various error-prone Pols or mutator variants of accurate Pols. Finally, we demonstrate that the mutation rates in yeast strains producing human DNA Pols ι and η are not elevated over the control strain, despite highly inaccurate DNA synthesis by their extracts.
Spin qubit transport in a double quantum dot
NASA Astrophysics Data System (ADS)
Zhao, Xinyu; Hu, Xuedong
Long distance spin communication is a crucial ingredient to scalable quantum computer architectures based on electron spin qubits. One way to transfer spin information over a long distance on chip is via electron transport. Here we study the transport of an electron spin qubit in a double quantum dot by tuning the interdot detuning voltage. We identify a parameter regime where spin relaxation hot-spots can be avoided and high-fidelity spin transport is possible. Within this parameter space, the spin transfer fidelity is determined by the operation speed and the applied magnetic field. In particular, near zero detuning, a proper choice of operation speed is essential to high fidelity. In addition, we also investigate the modification of the effective g-factor by the interdot detuning, which could lead to a phase error between spin up and down states. The results presented in this work could be a useful guidance for experimentally achieving high-fidelity spin qubit transport. We thank financial support by US ARO via Grant W911NF1210609.
The Relationship Between Fidelity and Learning in Aviation Training and Assessment
NASA Technical Reports Server (NTRS)
Noble, Cliff
2002-01-01
Flight simulators can be designed to train pilots or assess their flight performance. Low-Fidelity simulators maximize the initial learning rate of novice pilots and minimize initial costs; whereas, expensive, high-fidelity simulators predict the realworld in-flight performance of expert pilots (Fink & Shriver, 1978 Hays & Singer 1989; Kinkade & Wheaton. 1972). Although intuitively appealing and intellectually convenient to generalize concepts of learning and assessment, what holds true for the role of fidelity in assessment may not always hold true for learning, and vice versa. To bring clarity to this issue, the author distinguishes the role of fidelity in learning from its role in assessment as a function of skill level by applying the hypothesis of Alessi (1988) and reviewing the Laughery, Ditzian, and Houtman (1982) study on simulator validity. Alessi hypothesized that there is it point beyond which one additional unit of flight-simulator fidelity results in a diminished rate of learning. The author of this current paper also suggests the existence of an optimal point beyond which one additional unit of flight-simulator fidelity results in a diminished rate of practical assessment of nonexpert pilot performance.
High fidelity quantum gates with vibrational qubits.
Berrios, Eduardo; Gruebele, Martin; Shyshlov, Dmytro; Wang, Lei; Babikov, Dmitri
2012-11-26
Physical implementation of quantum gates acting on qubits does not achieve a perfect fidelity of 1. The actual output qubit may not match the targeted output of the desired gate. According to theoretical estimates, intrinsic gate fidelities >99.99% are necessary so that error correction codes can be used to achieve perfect fidelity. Here we test what fidelity can be accomplished for a CNOT gate executed by a shaped ultrafast laser pulse interacting with vibrational states of the molecule SCCl(2). This molecule has been used as a test system for low-fidelity calculations before. To make our test more stringent, we include vibrational levels that do not encode the desired qubits but are close enough in energy to interfere with population transfer by the laser pulse. We use two complementary approaches: optimal control theory determines what the best possible pulse can do; a more constrained physical model calculates what an experiment likely can do. Optimal control theory finds pulses with fidelity >0.9999, in excess of the quantum error correction threshold with 8 × 10(4) iterations. On the other hand, the physical model achieves only 0.9992 after 8 × 10(4) iterations. Both calculations converge as an inverse power law toward unit fidelity after >10(2) iterations/generations. In principle, the fidelities necessary for quantum error correction are reachable with qubits encoded by molecular vibrations. In practice, it will be challenging with current laboratory instrumentation because of slow convergence past fidelities of 0.99.
High Fidelity: Investing in Evaluation Training. Ask the Team
ERIC Educational Resources Information Center
Fetters, Jenni
2013-01-01
High-quality training is a crucial investment in establishing and maintaining implementation fidelity as well as building educators' trust in the new process. Training approaches for educator evaluation vary both in format (i.e., how it's delivered) and content (i.e., what is provided). Train-the-trainer sessions, online professional learning…
Designing High Fidelity Simulation to Maximize Student Registered Nursing Decision-Making Ability
ERIC Educational Resources Information Center
Deckers, Cathleen
2011-01-01
The current healthcare environment is a complex system of patients, procedures, and equipment that strives to deliver safe and effective medical care. High fidelity simulation provides healthcare educators with a tool to create safety conscious practitioners utilizing an environment that replicates practice without risk to patients. Using HFS…
76 FR 60047 - Agency Information Collection Activities; Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-28
... Response: Periodic. Total Annual Labor Cost: $18,300 per year ($12,900 for testing + $5,400 for disclosures... and Estimated Burden: (a) Testing--High fidelity manufacturers--300 new products/year x 1 hour each = 300 hours; and (b) Disclosures--High fidelity manufacturers--[(300 new products/ year x 1...
ERIC Educational Resources Information Center
Rossler, Kelly Lynn
2013-01-01
High-fidelity human patient simulation has emerged as a valuable medium to reinforce educational content within programs of nursing. As simulation learning experiences have been identified as augmenting both didactic lecture content and clinical learning, these experiences have expanded to incorporate interprofessional education. Review of…
The Impact of Human Patient Simulation on the Attainment of Learning Outcomes
ERIC Educational Resources Information Center
Re, Antonio
2011-01-01
Human patient simulation, and more specifically, high fidelity patient simulation is a growing teaching technique that enables students in medical and health related professions to learn through interacting with a simulator. This study examined the uses of high fidelity simulation with 106 students enrolled in nursing and respiratory therapist…
The Development of the Simulation Thinking Rubric
ERIC Educational Resources Information Center
Doolen, Jessica
2012-01-01
High fidelity simulation has become a widespread and costly learning strategy in nursing education because it can fill the gap left by a shortage of clinical sites. In addition, high fidelity simulation is an active learning strategy that is thought to increase higher order thinking such as clinical reasoning and judgment skills in nursing…
Framework for Multidisciplinary Analysis, Design, and Optimization with High-Fidelity Analysis Tools
NASA Technical Reports Server (NTRS)
Orr, Stanley A.; Narducci, Robert P.
2009-01-01
A plan is presented for the development of a high fidelity multidisciplinary optimization process for rotorcraft. The plan formulates individual disciplinary design problems, identifies practical high-fidelity tools and processes that can be incorporated in an automated optimization environment, and establishes statements of the multidisciplinary design problem including objectives, constraints, design variables, and cross-disciplinary dependencies. Five key disciplinary areas are selected in the development plan. These are rotor aerodynamics, rotor structures and dynamics, fuselage aerodynamics, fuselage structures, and propulsion / drive system. Flying qualities and noise are included as ancillary areas. Consistency across engineering disciplines is maintained with a central geometry engine that supports all multidisciplinary analysis. The multidisciplinary optimization process targets the preliminary design cycle where gross elements of the helicopter have been defined. These might include number of rotors and rotor configuration (tandem, coaxial, etc.). It is at this stage that sufficient configuration information is defined to perform high-fidelity analysis. At the same time there is enough design freedom to influence a design. The rotorcraft multidisciplinary optimization tool is built and substantiated throughout its development cycle in a staged approach by incorporating disciplines sequentially.
High-Fidelity Buckling Analysis of Composite Cylinders Using the STAGS Finite Element Code
NASA Technical Reports Server (NTRS)
Hilburger, Mark W.
2014-01-01
Results from previous shell buckling studies are presented that illustrate some of the unique and powerful capabilities in the STAGS finite element analysis code that have made it an indispensable tool in structures research at NASA over the past few decades. In particular, prototypical results from the development and validation of high-fidelity buckling simulations are presented for several unstiffened thin-walled compression-loaded graphite-epoxy cylindrical shells along with a discussion on the specific methods and user-defined subroutines in STAGS that are used to carry out the high-fidelity simulations. These simulations accurately account for the effects of geometric shell-wall imperfections, shell-wall thickness variations, local shell-wall ply-gaps associated with the fabrication process, shell-end geometric imperfections, nonuniform applied end loads, and elastic boundary conditions. The analysis procedure uses a combination of nonlinear quasi-static and transient dynamic solution algorithms to predict the prebuckling and unstable collapse response characteristics of the cylinders. Finally, the use of high-fidelity models in the development of analysis-based shell-buckling knockdown (design) factors is demonstrated.
Investigation of Control Inceptor Dynamics and Effect on Human Subject Performance
NASA Technical Reports Server (NTRS)
Stanco, Anthony A.; Cardullo, Frank M.; Houck, Jacob A.; Grube, Richard C.; Kelly, Lon C.
2013-01-01
The control inceptor used in a vehicle simulation is an important part of adequately representing the dynamics of the vehicle. The inceptor characteristics are typically based on a second order spring mass damper system with damping, force gradient, breakout force, and natural frequency parameters. Changing these parameters can have a great effect on pilot control of the vehicle. A quasi transfer of training experiment was performed employing a high fidelity and a low fidelity control inceptor. A disturbance compensatory task was employed which involved a simple horizon line disturbed in roll by a sum of sinusoids presented in an out-the-window display. Vehicle dynamics were modeled as 1/s and 1/s2. The task was to maintain level flight. Twenty subjects were divided between the high and the low fidelity training groups. Each group was trained to a performance asymptote, and then transferred to the high fidelity simulation. RMS tracking error, a PSD analysis, and a workload analysis were performed to quantify the transfer of training effect. Quantitative results of the experiments show that there is no significant difference between the high and low fidelity training groups for 1/s plant dynamics. For 1/s2 plant dynamics there is a greater difference in tracking performance and PSD; and the subjects are less correlated with the input disturbance function
NASA Technical Reports Server (NTRS)
Toups, Zachary O.; Hamilton, William A.; Kerne, Andruid
2012-01-01
Team coordination is essential across domains, enabling efficiency and safety. As technology improves, our temptation is to simulate with ever-higher fidelity, by making simulators re-create reality through their physical interfaces, functionality, and by making participants believe they are undertaking the simulated task. However, high-fidelity simulations often miss salient human-human work practices. We introduce the concept of zero-fidelity simulation (ZFS), a move away from literal high-fidelity mimesis of the concrete environment. ZFS alternatively models cooperation and communication as the basis of simulation. The ZFS Team Coordination Game (TeC) is developed from observation of fire emergency response work practice. We identify ways in which team members are mutually dependent on one another for information, and use these as the basis for the ZFS game design. The design creates a need for cooperation by restricting individual activity and requiring communication. The present research analyzes the design of interdependence in the validated ZFS TeC game. We successfully simulate interdependence between roles in emergency response without simulating the concrete environment.
High-speed and high-fidelity system and method for collecting network traffic
Weigle, Eric H [Los Alamos, NM
2010-08-24
A system is provided for the high-speed and high-fidelity collection of network traffic. The system can collect traffic at gigabit-per-second (Gbps) speeds, scale to terabit-per-second (Tbps) speeds, and support additional functions such as real-time network intrusion detection. The present system uses a dedicated operating system for traffic collection to maximize efficiency, scalability, and performance. A scalable infrastructure and apparatus for the present system is provided by splitting the work performed on one host onto multiple hosts. The present system simultaneously addresses the issues of scalability, performance, cost, and adaptability with respect to network monitoring, collection, and other network tasks. In addition to high-speed and high-fidelity network collection, the present system provides a flexible infrastructure to perform virtually any function at high speeds such as real-time network intrusion detection and wide-area network emulation for research purposes.
Point-of-care ultrasound education: the increasing role of simulation and multimedia resources.
Lewiss, Resa E; Hoffmann, Beatrice; Beaulieu, Yanick; Phelan, Mary Beth
2014-01-01
This article reviews the current technology, literature, teaching models, and methods associated with simulation-based point-of-care ultrasound training. Patient simulation appears particularly well suited for learning point-of-care ultrasound, which is a required core competency for emergency medicine and other specialties. Work hour limitations have reduced the opportunities for clinical practice, and simulation enables practicing a skill multiple times before it may be used on patients. Ultrasound simulators can be categorized into 2 groups: low and high fidelity. Low-fidelity simulators are usually static simulators, meaning that they have nonchanging anatomic examples for sonographic practice. Advantages are that the model may be reused over time, and some simulators can be homemade. High-fidelity simulators are usually high-tech and frequently consist of many computer-generated cases of virtual sonographic anatomy that can be scanned with a mock probe. This type of equipment is produced commercially and is more expensive. High-fidelity simulators provide students with an active and safe learning environment and make a reproducible standardized assessment of many different ultrasound cases possible. The advantages and disadvantages of using low- versus high-fidelity simulators are reviewed. An additional concept used in simulation-based ultrasound training is blended learning. Blended learning may include face-to-face or online learning often in combination with a learning management system. Increasingly, with simulation and Web-based learning technologies, tools are now available to medical educators for the standardization of both ultrasound skills training and competency assessment.
Gallo, Carlos; Pantin, Hilda; Villamar, Juan; Prado, Guillermo; Tapia, Maria; Ogihara, Mitsunori; Cruden, Gracelyn; Brown, C Hendricks
2015-09-01
Careful fidelity monitoring and feedback are critical to implementing effective interventions. A wide range of procedures exist to assess fidelity; most are derived from observational assessments (Schoenwald and Garland, Psycholog Assess 25:146-156, 2013). However, these fidelity measures are resource intensive for research teams in efficacy/effectiveness trials, and are often unattainable or unmanageable for the host organization to rate when the program is implemented on a large scale. We present a first step towards automated processing of linguistic patterns in fidelity monitoring of a behavioral intervention using an innovative mixed methods approach to fidelity assessment that uses rule-based, computational linguistics to overcome major resource burdens. Data come from an effectiveness trial of the Familias Unidas intervention, an evidence-based, family-centered preventive intervention found to be efficacious in reducing conduct problems, substance use and HIV sexual risk behaviors among Hispanic youth. This computational approach focuses on "joining," which measures the quality of the working alliance of the facilitator with the family. Quantitative assessments of reliability are provided. Kappa scores between a human rater and a machine rater for the new method for measuring joining reached 0.83. Early findings suggest that this approach can reduce the high cost of fidelity measurement and the time delay between fidelity assessment and feedback to facilitators; it also has the potential for improving the quality of intervention fidelity ratings.
Gallo, Carlos; Pantin, Hilda; Villamar, Juan; Prado, Guillermo; Tapia, Maria; Ogihara, Mitsunori; Cruden, Gracelyn; Brown, C Hendricks
2014-01-01
Careful fidelity monitoring and feedback are critical to implementing effective interventions. A wide range of procedures exist to assess fidelity; most are derived from observational assessments (Schoenwald et al, 2013). However, these fidelity measures are resource intensive for research teams in efficacy/effectiveness trials, and are often unattainable or unmanageable for the host organization to rate when the program is implemented on a large scale. We present a first step towards automated processing of linguistic patterns in fidelity monitoring of a behavioral intervention using an innovative mixed methods approach to fidelity assessment that uses rule-based, computational linguistics to overcome major resource burdens. Data come from an effectiveness trial of the Familias Unidas intervention, an evidence-based, family-centered preventive intervention found to be efficacious in reducing conduct problems, substance use and HIV sexual risk behaviors among Hispanic youth. This computational approach focuses on “joining,” which measures the quality of the working alliance of the facilitator with the family. Quantitative assessments of reliability are provided. Kappa scores between a human rater and a machine rater for the new method for measuring joining reached .83. Early findings suggest that this approach can reduce the high cost of fidelity measurement and the time delay between fidelity assessment and feedback to facilitators; it also has the potential for improving the quality of intervention fidelity ratings. PMID:24500022
Static analysis techniques for semiautomatic synthesis of message passing software skeletons
Sottile, Matthew; Dagit, Jason; Zhang, Deli; ...
2015-06-29
The design of high-performance computing architectures demands performance analysis of large-scale parallel applications to derive various parameters concerning hardware design and software development. The process of performance analysis and benchmarking an application can be done in several ways with varying degrees of fidelity. One of the most cost-effective ways is to do a coarse-grained study of large-scale parallel applications through the use of program skeletons. The concept of a “program skeleton” that we discuss in this article is an abstracted program that is derived from a larger program where source code that is determined to be irrelevant is removed formore » the purposes of the skeleton. In this work, we develop a semiautomatic approach for extracting program skeletons based on compiler program analysis. Finally, we demonstrate correctness of our skeleton extraction process by comparing details from communication traces, as well as show the performance speedup of using skeletons by running simulations in the SST/macro simulator.« less
Williams, Alex H; Kim, Tony Hyun; Wang, Forea; Vyas, Saurabh; Ryu, Stephen I; Shenoy, Krishna V; Schnitzer, Mark; Kolda, Tamara G; Ganguli, Surya
2018-06-27
Perceptions, thoughts, and actions unfold over millisecond timescales, while learned behaviors can require many days to mature. While recent experimental advances enable large-scale and long-term neural recordings with high temporal fidelity, it remains a formidable challenge to extract unbiased and interpretable descriptions of how rapid single-trial circuit dynamics change slowly over many trials to mediate learning. We demonstrate a simple tensor component analysis (TCA) can meet this challenge by extracting three interconnected, low-dimensional descriptions of neural data: neuron factors, reflecting cell assemblies; temporal factors, reflecting rapid circuit dynamics mediating perceptions, thoughts, and actions within each trial; and trial factors, describing both long-term learning and trial-to-trial changes in cognitive state. We demonstrate the broad applicability of TCA by revealing insights into diverse datasets derived from artificial neural networks, large-scale calcium imaging of rodent prefrontal cortex during maze navigation, and multielectrode recordings of macaque motor cortex during brain machine interface learning. Copyright © 2018 Elsevier Inc. All rights reserved.
Development and Implementation of CFD-Informed Models for the Advanced Subchannel Code CTF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blyth, Taylor S.; Avramova, Maria
The research described in this PhD thesis contributes to the development of efficient methods for utilization of high-fidelity models and codes to inform low-fidelity models and codes in the area of nuclear reactor core thermal-hydraulics. The objective is to increase the accuracy of predictions of quantities of interests using high-fidelity CFD models while preserving the efficiency of low-fidelity subchannel core calculations. An original methodology named Physics- based Approach for High-to-Low Model Information has been further developed and tested. The overall physical phenomena and corresponding localized effects, which are introduced by the presence of spacer grids in light water reactor (LWR)more » cores, are dissected in corresponding four building basic processes, and corresponding models are informed using high-fidelity CFD codes. These models are a spacer grid-directed cross-flow model, a grid-enhanced turbulent mixing model, a heat transfer enhancement model, and a spacer grid pressure loss model. The localized CFD-models are developed and tested using the CFD code STAR-CCM+, and the corresponding global model development and testing in sub-channel formulation is performed in the thermal- hydraulic subchannel code CTF. The improved CTF simulations utilize data-files derived from CFD STAR-CCM+ simulation results covering the spacer grid design desired for inclusion in the CTF calculation. The current implementation of these models is examined and possibilities for improvement and further development are suggested. The validation experimental database is extended by including the OECD/NRC PSBT benchmark data. The outcome is an enhanced accuracy of CTF predictions while preserving the computational efficiency of a low-fidelity subchannel code.« less
Development and Implementation of CFD-Informed Models for the Advanced Subchannel Code CTF
NASA Astrophysics Data System (ADS)
Blyth, Taylor S.
The research described in this PhD thesis contributes to the development of efficient methods for utilization of high-fidelity models and codes to inform low-fidelity models and codes in the area of nuclear reactor core thermal-hydraulics. The objective is to increase the accuracy of predictions of quantities of interests using high-fidelity CFD models while preserving the efficiency of low-fidelity subchannel core calculations. An original methodology named Physics-based Approach for High-to-Low Model Information has been further developed and tested. The overall physical phenomena and corresponding localized effects, which are introduced by the presence of spacer grids in light water reactor (LWR) cores, are dissected in corresponding four building basic processes, and corresponding models are informed using high-fidelity CFD codes. These models are a spacer grid-directed cross-flow model, a grid-enhanced turbulent mixing model, a heat transfer enhancement model, and a spacer grid pressure loss model. The localized CFD-models are developed and tested using the CFD code STAR-CCM+, and the corresponding global model development and testing in sub-channel formulation is performed in the thermal-hydraulic subchannel code CTF. The improved CTF simulations utilize data-files derived from CFD STAR-CCM+ simulation results covering the spacer grid design desired for inclusion in the CTF calculation. The current implementation of these models is examined and possibilities for improvement and further development are suggested. The validation experimental database is extended by including the OECD/NRC PSBT benchmark data. The outcome is an enhanced accuracy of CTF predictions while preserving the computational efficiency of a low-fidelity subchannel code.
Simulation Learning PC Screen-Based vs. High Fidelity
2011-08-01
D., Burgess, L., Berg, B . and Connolly, K . (2009). Teaching mass casualty triage skills using iterative multimanikin simulations. Prehospital...SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC a. REPORT U b . ABSTRACT U...learning PC screen-based vs. high fidelity – progress chart Attachment B . Approved Protocol - Simulation Learning: PC-Screen Based (PCSB) versus High
Zaari, Ryan R; Brown, Alex
2011-07-28
The importance of the ro-vibrational state energies on the ability to produce high fidelity binary shaped laser pulses for quantum logic gates is investigated. The single frequency 2-qubit ACNOT(1) and double frequency 2-qubit NOT(2) quantum gates are used as test cases to examine this behaviour. A range of diatomics is sampled. The laser pulses are optimized using a genetic algorithm for binary (two amplitude and two phase parameter) variation on a discretized frequency spectrum. The resulting trends in the fidelities were attributed to the intrinsic molecular properties and not the choice of method: a discretized frequency spectrum with genetic algorithm optimization. This is verified by using other common laser pulse optimization methods (including iterative optimal control theory), which result in the same qualitative trends in fidelity. The results differ from other studies that used vibrational state energies only. Moreover, appropriate choice of diatomic (relative ro-vibrational state arrangement) is critical for producing high fidelity optimized quantum logic gates. It is also suggested that global phase alignment imposes a significant restriction on obtaining high fidelity regions within the parameter search space. Overall, this indicates a complexity in the ability to provide appropriate binary laser pulse control of diatomics for molecular quantum computing. © 2011 American Institute of Physics
Fidelity of the representation of value in decision-making
Dowding, Ben A.
2017-01-01
The ability to make optimal decisions depends on evaluating the expected rewards associated with different potential actions. This process is critically dependent on the fidelity with which reward value information can be maintained in the nervous system. Here we directly probe the fidelity of value representation following a standard reinforcement learning task. The results demonstrate a previously-unrecognized bias in the representation of value: extreme reward values, both low and high, are stored significantly more accurately and precisely than intermediate rewards. The symmetry between low and high rewards pertained despite substantially higher frequency of exposure to high rewards, resulting from preferential exploitation of more rewarding options. The observed variation in fidelity of value representation retrospectively predicted performance on the reinforcement learning task, demonstrating that the bias in representation has an impact on decision-making. A second experiment in which one or other extreme-valued option was omitted from the learning sequence showed that representational fidelity is primarily determined by the relative position of an encoded value on the scale of rewards experienced during learning. Both variability and guessing decreased with the reduction in the number of options, consistent with allocation of a limited representational resource. These findings have implications for existing models of reward-based learning, which typically assume defectless representation of reward value. PMID:28248958
Steigerwald, Sarah N.; Park, Jason; Hardy, Krista M.; Gillman, Lawrence; Vergis, Ashley S.
2015-01-01
Background Considerable resources have been invested in both low- and high-fidelity simulators in surgical training. The purpose of this study was to investigate if the Fundamentals of Laparoscopic Surgery (FLS, low-fidelity box trainer) and LapVR (high-fidelity virtual reality) training systems correlate with operative performance on the Global Operative Assessment of Laparoscopic Skills (GOALS) global rating scale using a porcine cholecystectomy model in a novice surgical group with minimal laparoscopic experience. Methods Fourteen postgraduate year 1 surgical residents with minimal laparoscopic experience performed tasks from the FLS program and the LapVR simulator as well as a live porcine laparoscopic cholecystectomy. Performance was evaluated using standardized FLS metrics, automatic computer evaluations, and a validated global rating scale. Results Overall, FLS score did not show an association with GOALS global rating scale score on the porcine cholecystectomy. None of the five LapVR task scores were significantly associated with GOALS score on the porcine cholecystectomy. Conclusions Neither the low-fidelity box trainer or the high-fidelity virtual simulator demonstrated significant correlation with GOALS operative scores. These findings offer caution against the use of these modalities for brief assessments of novice surgical trainees, especially for predictive or selection purposes. PMID:26641071
NASA Technical Reports Server (NTRS)
Kim, Won S.; Bejczy, Antal K.
1993-01-01
A highly effective predictive/preview display technique for telerobotic servicing in space under several seconds communication time delay has been demonstrated on a large laboratory scale in May 1993, involving the Jet Propulsion Laboratory as the simulated ground control station and, 2500 miles away, the Goddard Space Flight Center as the simulated satellite servicing set-up. The technique is based on a high-fidelity calibration procedure that enables a high-fidelity overlay of 3-D graphics robot arm and object models over given 2-D TV camera images of robot arm and objects. To generate robot arm motions, the operator can confidently interact in real time with the graphics models of the robot arm and objects overlaid on an actual camera view of the remote work site. The technique also enables the operator to generate high-fidelity synthetic TV camera views showing motion events that are hidden in a given TV camera view or for which no TV camera views are available. The positioning accuracy achieved by this technique for a zoomed-in camera setting was about +/-5 mm, well within the allowable +/-12 mm error margin at the insertion of a 45 cm long tool in the servicing task.
DDDAMS-based Urban Surveillance and Crowd Control via UAVs and UGVs
2015-12-04
for crowd dynamics modeling by incorporating multi-resolution data, where a grid-based method is used to model crowd motion with UAVs’ low -resolution...information and more computational intensive (and time-consuming). Given that the deployment of fidelity selection results in simulation faces computational... low fidelity information FOV y (A) DR x (A) DR y (A) Not detected high fidelity information Table 1: Parameters for UAV and UGV for their detection
Survey of CIG Data Base Generation from Imagery.
1980-09-01
world as measured by training transfer. There is no conclusive research as to therequired degree of realism or fidelity necessary to train. In order to...driving force behind emphasizing perceptual fidelity as opposed to realisn is the high cost of realism . Replication of all sensible attri- butes of the...and specification of visual simulation systems will con- tinue to je based on physical fidelity to the real world until those trade-offs on realism
EBT Fidelity Trajectories Across Training Cohorts Using the Interagency Collaborative Team Strategy
Hecht, Debra; Aarons, Greg; Fettes, Danielle; Hurlburt, Michael; Ledesma, Karla
2015-01-01
The Interdisciplinary Collaborative Team (ICT) strategy uses front-line providers as adaptation, training and quality control agents for multi-agency EBT implementation. This study tests whether an ICT transmits fidelity to subsequent provider cohorts. SafeCare was implemented by home visitors from multiple community-based agencies contracting with child welfare. Client-reported fidelity trajectories for 5,769 visits, 957 clients and 45 providers were compared using three-level growth models. Provider cohorts trained and live-coached by the ICT attained benchmark fidelity after 12 weeks, and this was sustained. Hispanic clients reported high cultural competency, supporting a cultural adaptation crafted by the ICT. PMID:25586878
EBT Fidelity Trajectories Across Training Cohorts Using the Interagency Collaborative Team Strategy.
Chaffin, Mark; Hecht, Debra; Aarons, Greg; Fettes, Danielle; Hurlburt, Michael; Ledesma, Karla
2016-03-01
The Interdisciplinary Collaborative Team (ICT) strategy uses front-line providers as adaptation, training and quality control agents for multi-agency EBT implementation. This study tests whether an ICT transmits fidelity to subsequent provider cohorts. SafeCare was implemented by home visitors from multiple community-based agencies contracting with child welfare. Client-reported fidelity trajectories for 5,769 visits, 957 clients and 45 providers were compared using three-level growth models. Provider cohorts trained and live-coached by the ICT attained benchmark fidelity after 12 weeks, and this was sustained. Hispanic clients reported high cultural competency, supporting a cultural adaptation crafted by the ICT.
Jelsma, Judith G M; Mertens, Vera-Christina; Forsberg, Lisa; Forsberg, Lars
2015-07-01
Many randomized controlled trials in which motivational interviewing (MI) is a key intervention make no provision for the assessment of treatment fidelity. This methodological shortcoming makes it impossible to distinguish between high- and low-quality MI interventions, and, consequently, to know whether MI provision has contributed to any intervention effects. This article makes some practical recommendations for the collection, selection, coding and reporting of MI fidelity data, as measured using the Motivational Interviewing Treatment Integrity Code. We hope that researchers will consider these recommendations and include MI fidelity measures in future studies. Copyright © 2015 Elsevier Inc. All rights reserved.
Commentary: Learning from Variations in Fidelity of Implementation.
Balu, Rekha; Doolittle, Fred
2016-12-01
The articles in this special issue discuss efforts to improve academic reading outcomes for students and ways to achieve high implementation fidelity of promising strategies. At times the authors discuss if-and how-strong fidelity is associated with strong outcomes and potentially even impacts (the difference between program and control group outcomes). We want to explore this theme in two ways: (a) learning from the variation in fidelity to think about potential points of entry and levers for improvement in implementation, and (b) broadening the evaluation focus to include "service contrast" as a factor driving impacts on student outcomes. We conclude with suggestions for future research. © 2016 Wiley Periodicals, Inc.
A method for assessing fidelity of delivery of telephone behavioral support for smoking cessation.
Lorencatto, Fabiana; West, Robert; Bruguera, Carla; Michie, Susan
2014-06-01
Behavioral support for smoking cessation is delivered through different modalities, often guided by treatment manuals. Recently developed methods for assessing fidelity of delivery have shown that face-to-face behavioral support is often not delivered as specified in the service treatment manual. This study aimed to extend this method to evaluate fidelity of telephone-delivered behavioral support. A treatment manual and transcripts of 75 audio-recorded behavioral support sessions were obtained from the United Kingdom's national Quitline service and coded into component behavior change techniques (BCTs) using a taxonomy of 45 smoking cessation BCTs. Interrater reliability was assessed using percentage agreement. Fidelity was assessed by comparing the number of BCTs identified in the manual with those delivered in telephone sessions by 4 counselors. Fidelity was assessed according to session type, duration, counselor, and BCT. Differences between self-reported and actual BCT use were examined. Average coding reliability was high (81%). On average, 41.8% of manual-specified BCTs were delivered per session (SD = 16.2), with fidelity varying by counselor from 32% to 49%. Fidelity was highest in pre-quit sessions (46%) and for BCT "give options for additional support" (95%). Fidelity was lowest for quit-day sessions (35%) and BCT "set graded tasks" (0%). Session duration was positively correlated with fidelity (r = .585; p < .01). Significantly fewer BCTs were used than were reported as being used, t(15) = -5.52, p < .001. The content of telephone-delivered behavioral support can be reliably coded in terms of BCTs. This can be used to assess fidelity to treatment manuals and to in turn identify training needs. The observed low fidelity underlines the need to establish routine procedures for monitoring delivery of behavioral support. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Brittian, Aerika S.; Lerner, Richard M.
2014-01-01
Although Eriksonian theory suggests that adolescents’ sense of fidelity is a key component of healthy development, research on this psychosocial construct has been limited. The current study developed an index of youth fidelity, examined the developmental course of this construct, explored the influence of contextual factors on different fidelity trajectories, and tested if trajectories were associated with later indicators of adolescents’ positive development. Participants included 1,941 ethnically diverse youth (61% female) participants in the 4-H Study of Positive Youth Development who were recruited from schools and youth development programs across the United States. Results suggested that three types of developmental trajectories existed among youth: high and increasing, moderate and increasing, and low and decreasing. Fidelity group membership varied in relation to social relationships and psychosocial and behavioral characteristics (i.e., contribution, substance use, and delinquency). Girls were more likely than boys to be in the highest fidelity trajectories. Directions for future research and implications for enhancing the thriving of adolescents are discussed. PMID:22545838
NASA Astrophysics Data System (ADS)
Yi, Jin; Li, Xinyu; Xiao, Mi; Xu, Junnan; Zhang, Lin
2017-01-01
Engineering design often involves different types of simulation, which results in expensive computational costs. Variable fidelity approximation-based design optimization approaches can realize effective simulation and efficiency optimization of the design space using approximation models with different levels of fidelity and have been widely used in different fields. As the foundations of variable fidelity approximation models, the selection of sample points of variable-fidelity approximation, called nested designs, is essential. In this article a novel nested maximin Latin hypercube design is constructed based on successive local enumeration and a modified novel global harmony search algorithm. In the proposed nested designs, successive local enumeration is employed to select sample points for a low-fidelity model, whereas the modified novel global harmony search algorithm is employed to select sample points for a high-fidelity model. A comparative study with multiple criteria and an engineering application are employed to verify the efficiency of the proposed nested designs approach.
Debriefing after High-Fidelity Simulation and Knowledge Retention: A Quasi-Experimental Study
ERIC Educational Resources Information Center
Olson, Susan L.
2013-01-01
High-fidelity simulation (HFS) use in nursing education has been a frequent research topic in recent years. Previous research included studies on the use of HFS with nursing students, focusing on their feelings of self-confidence and anxiety. However, research focused specifically on the debriefing portion of HFS was limited. This quantitative,…
Capacity Development and Multi-Tiered Systems of Support: Guiding Principles
ERIC Educational Resources Information Center
Sugai, George; Simonsen, Brandi; Freeman, Jennifer; La Salle, Tamika
2016-01-01
Implementation of multi-tiered systems of support is occurring within and across a number of countries with an increased recent focus on the development of local system capacity to maintain high levels of practice implementation fidelity. The purpose of this paper is to describe the importance of local capacity development in the high fidelity and…
ERIC Educational Resources Information Center
Harris, David M.; Bellew, Christine; Cheng, Zixi J.; Cendán, Juan C.; Kibble, Jonathan D.
2014-01-01
The use of high-fidelity patient simulators (HFPSs) has expanded throughout medical, nursing, and allied health professions education in the last decades. These manikins can be programmed to represent pathological states and are used to teach clinical skills as well as clinical reasoning. First, the students are typically oriented either to the…
ERIC Educational Resources Information Center
McCormick, Kiyan
2014-01-01
Simulated learning experiences using high-fidelity human patient simulators (HPS) are increasingly being integrated into baccalaureate nursing programs. Thus, the purpose of this study was to examine relationships among learning style, critical thinking disposition, critical thinking, and clinical judgment during high-fidelity human patient…
ERIC Educational Resources Information Center
Tivener, Kristin Ann; Gloe, Donna Sue
2015-01-01
Context: High-fidelity simulation is widely used in healthcare for the training and professional education of students though literature of its application to athletic training education remains sparse. Objective: This research attempts to address a wide-range of data. This includes athletic training student knowledge acquisition from…
Evaluating Outcomes of High Fidelity Simulation Curriculum in a Community College Nursing Program
ERIC Educational Resources Information Center
Denlea, Gregory Richard
2017-01-01
This study took place at a Wake Technical Community College, a multi-campus institution in Raleigh, North Carolina. An evaluation of the return on investment in high fidelity simulation used by an associate degree of nursing program was conducted with valid and reliable instruments. The study demonstrated that comparable student outcomes are…
ERIC Educational Resources Information Center
Rossing, Thomas D.
1980-01-01
Described are the components for a high-fidelity sound-reproducing system which focuses on various program sources, the amplifier, and loudspeakers. Discussed in detail are amplifier power and distortion, air suspension, loudspeaker baffles and enclosures, bass-reflex enclosure, drone cones, rear horn and acoustic labyrinth enclosures, horn…
Developing High-Fidelity Health Care Simulation Scenarios: A Guide for Educators and Professionals
ERIC Educational Resources Information Center
Alinier, Guillaume
2011-01-01
The development of appropriate scenarios is critical in high-fidelity simulation training. They need to be developed to address specific learning objectives, while not preventing other learning points from emerging. Buying a patient simulator, finding a volunteer to act as the patient, or even obtaining ready-made scenarios from another simulation…
ERIC Educational Resources Information Center
Subiaul, Francys; Patterson, Eric M.; Schilder, Brian; Renner, Elizabeth; Barr, Rachel
2015-01-01
In contrast to other primates, human children's imitation performance goes from low to high fidelity soon after infancy. Are such changes associated with the development of other forms of learning? We addressed this question by testing 215 children (26-59 months) on two social conditions (imitation, emulation)--involving a demonstration--and two…
Orbit Stability of OSIRIS-REx in the Vicinity of Bennu Using a High-Fidelity Solar Radiation Model
NASA Technical Reports Server (NTRS)
Williams, Trevor W.; Hughes, Kyle M.; Mashiku, Alinda K.; Longuski, James M.
2015-01-01
Solar radiation pressure is one of the largest perturbing forces on the OSIRISRex trajectory as it orbits the asteroid Bennu. In this work, we investigate how forces due to solar radiation perturb the OSIRIS-REx trajectory in a high-fidelity model. The model accounts for Bennu's non-spherical gravity field, third-body gravity forces from the Sun and Jupiter, as well as solar radiation forces acting on a simplified spacecraft model. Such high-fidelity simulations indicate significant solar radiation pressure perturbations from the nominal orbit. Modifications to the initial design of the nominal orbit are found using a variation of parameters approach that reduce the perturbation in eccentricity by a factor of one-half.
Fast, high-fidelity readout of multiple qubits
NASA Astrophysics Data System (ADS)
Bronn, N. T.; Abdo, B.; Inoue, K.; Lekuch, S.; Córcoles, A. D.; Hertzberg, J. B.; Takita, M.; Bishop, L. S.; Gambetta, J. M.; Chow, J. M.
2017-05-01
Quantum computing requires a delicate balance between coupling quantum systems to external instruments for control and readout, while providing enough isolation from sources of decoherence. Circuit quantum electrodynamics has been a successful method for protecting superconducting qubits, while maintaining the ability to perform readout [1, 2]. Here, we discuss improvements to this method that allow for fast, high-fidelity readout. Specifically, the integration of a Purcell filter, which allows us to increase the resonator bandwidth for fast readout, the incorporation of a Josephson parametric converter, which enables us to perform high-fidelity readout by amplifying the readout signal while adding the minimum amount of noise required by quantum mechanics, and custom control electronics, which provide us with the capability of fast decision and control.
High-fidelity cluster state generation for ultracold atoms in an optical lattice.
Inaba, Kensuke; Tokunaga, Yuuki; Tamaki, Kiyoshi; Igeta, Kazuhiro; Yamashita, Makoto
2014-03-21
We propose a method for generating high-fidelity multipartite spin entanglement of ultracold atoms in an optical lattice in a short operation time with a scalable manner, which is suitable for measurement-based quantum computation. To perform the desired operations based on the perturbative spin-spin interactions, we propose to actively utilize the extra degrees of freedom (DOFs) usually neglected in the perturbative treatment but included in the Hubbard Hamiltonian of atoms, such as, (pseudo-)charge and orbital DOFs. Our method simultaneously achieves high fidelity, short operation time, and scalability by overcoming the following fundamental problem: enhancing the interaction strength for shortening the operation time breaks the perturbative condition of the interaction and inevitably induces unwanted correlations among the spin and extra DOFs.
Xu, Zhongxiao; Wu, Yuelong; Tian, Long; Chen, Lirong; Zhang, Zhiying; Yan, Zhihui; Li, Shujing; Wang, Hai; Xie, Changde; Peng, Kunchi
2013-12-13
Long-lived and high-fidelity memory for a photonic polarization qubit (PPQ) is crucial for constructing quantum networks. We present a millisecond storage system based on electromagnetically induced transparency, in which a moderate magnetic field is applied on a cold-atom cloud to lift Zeeman degeneracy and, thus, the PPQ states are stored as two magnetic-field-insensitive spin waves. Especially, the influence of magnetic-field-sensitive spin waves on the storage performances is almost totally avoided. The measured average fidelities of the polarization states are 98.6% at 200 μs and 78.4% at 4.5 ms, respectively.
Augustsson, Hanna; von Thiele Schwarz, Ulrica; Stenfors-Hayes, Terese; Hasson, Henna
2015-06-01
The workplace has been suggested as an important arena for health promotion, but little is known about how the organizational setting influences the implementation of interventions. The aims of this study are to evaluate implementation fidelity in an organizational-level occupational health intervention and to investigate possible explanations for variations in fidelity between intervention units. The intervention consisted of an integration of health promotion, occupational health and safety, and a system for continuous improvements (Kaizen) and was conducted in a quasi-experimental design at a Swedish hospital. Implementation fidelity was evaluated with the Conceptual Framework for Implementation Fidelity and implementation factors used to investigate variations in fidelity with the Framework for Evaluating Organizational-level Interventions. A multi-method approach including interviews, Kaizen notes, and questionnaires was applied. Implementation fidelity differed between units even though the intervention was introduced and supported in the same way. Important differences in all elements proposed in the model for evaluating organizational-level interventions, i.e., context, intervention, and mental models, were found to explain the differences in fidelity. Implementation strategies may need to be adapted depending on the local context. Implementation fidelity, as well as pre-intervention implementation elements, is likely to affect the implementation success and needs to be assessed in intervention research. The high variation in fidelity across the units indicates the need for adjustments to the type of designs used to assess the effects of interventions. Thus, rather than using designs that aim to control variation, it may be necessary to use those that aim at exploring and explaining variation, such as adapted study designs.
Site fidelity, territory fidelity, and natal philopatry in Willow Flycatchers (Empidonax traillii)
Sedgwick, James A.
2004-01-01
I investigated the causes and consequences of adult breeding-site fidelity, territory fidelity, and natal philopatry in Willow Flycatchers (Empidonax traillii) in southeastern Oregon over a 10-year period, testing the general hypothesis that fidelity and dispersal distances are influenced by previous breeding performance. Willow Flycatchers adhered to the generally observed tendencies of passerine birds for low natal philopatry and high breedingsite fidelity. Site fidelity (return to the study area) of adult males (52.0%) and females (51.3%), and median dispersal distances between seasons (16 m vs. 19 m) were similar. Previous breeding performance and residency (age-experience), but not study-site quality, explained site fidelity in females. Site fidelity of females rearing 4–5 young (64.4%) exceeded that of unsuccessful females (40.0%), breeding dispersal was less (successful: 15 m; unsuccessful: 33 m), and novice residents were more site-faithful than former residents. Probability of site fidelity was higher for previously successful females (odds ratio = 4.76), those with greater seasonal fecundity (odds ratio = 1.58), novice residents (odds ratio = 1.41), and unparasitized females (odds ratio = 2.76). Male site fidelity was not related to residency, site quality, or previous breeding performance. Territory fidelity (return to the previous territory) in females was best explained by previous breeding performance, but not by site quality or residency. Previously successful females were more likely to return to their territory of the previous season than either unsuccessful (odds ratio = 14.35) or parasitized birds (odds ratio = 6.38). Male territory fidelity was not related to residency, site quality, or previous breeding performance. Natal philopatry was low (7.8%) and similar for males and females. Site quality appeared to influence philopatry, given that no birds reared at a low-quality study site returned there to breed, and birds reared there dispersed farther than birds reared at two other study sites. My results partially support the hypothesis that site fidelity is an adaptive response: (1) previously successful females that switched territories underperformed those that did not switch (P = 0.01); and (2) previously unsuccessful females that switched territories outperformed those that did not switch, but not significantly (P = 0.22).
Rojas, David; Kapralos, Bill; Cristancho, Sayra; Collins, Karen; Hogue, Andrew; Conati, Cristina; Dubrowski, Adam
2012-01-01
Despite the benefits associated with virtual learning environments and serious games, there are open, fundamental issues regarding simulation fidelity and multi-modal cue interaction and their effect on immersion, transfer of knowledge, and retention. Here we describe the results of a study that examined the effect of ambient (background) sound on the perception of visual fidelity (defined with respect to texture resolution). Results suggest that the perception of visual fidelity is dependent on ambient sound and more specifically, white noise can have detrimental effects on our perception of high quality visuals. The results of this study will guide future studies that will ultimately aid in developing an understanding of the role that fidelity, and multi-modal interactions play with respect to knowledge transfer and retention for users of virtual simulations and serious games.
Multifamily Group Psychoeducation in New York State: Implementation and Fidelity Outcomes.
Kealey, Edith M; Leckman-Westin, Emily; Jewell, Thomas C; Finnerty, Molly T
2015-11-01
The study examined implementation outcomes from a large state initiative to support dissemination of multifamily group (MFG) psychoeducation in outpatient mental health settings. Thirty-one sites participated in the project. Baseline training in the MFG model was followed by monthly expert consultation delivered in either a group (16 sites) or individual format (15 sites). Research staff assessed fidelity to the MFG model by telephone at baseline and 12, 18, and 24 months and documented time to completion of three key milestones: holding a family joining session, a family educational workshop, and an MFG meeting. Intent-to-train analyses found that 12 sites (39%) achieved high fidelity to the MFG model, and 20 (65%) achieved moderate or high fidelity. Mean scores on the Family Psychoeducation Fidelity Assessment Scale increased over time. Twenty-five sites (81%) conducted at least one joining session, and 20 (65%) conducted at least one MFG. Mean±SD time from baseline to the first group was 11.75±4.78 months. Programs that held the first joining session within four to 12 months after training were significantly more likely than programs that did not to conduct a group (p<.05). No significant differences were found by consultation format. Implementation of moderate- to high-fidelity MFG programs in routine outpatient mental health settings is feasible. Sites that moved very quickly or very slowly in early implementation stages were less likely to be successful in conducting an MFG. More research on the efficiency and effectiveness of consultation formats is needed to guide future implementation efforts.
Use of VR Technology and Passive Haptics for MANPADS Training System
2017-09-01
this setup also does not offer a variety of challenging scenarios needed for good training as the aircraft are mostly flying in landing or take-off... customized high-fidelity immersive training facilities are limited. Moreover, low trainee throughput from such high-end facilities is an ongoing obstacle...opportunities allow few operators to fire during live exercises. Simulation training is effective, but customized high-fidelity immersive training
Development of Adaptive Model Refinement (AMoR) for Multiphysics and Multifidelity Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turinsky, Paul
This project investigated the development and utilization of Adaptive Model Refinement (AMoR) for nuclear systems simulation applications. AMoR refers to utilization of several models of physical phenomena which differ in prediction fidelity. If the highest fidelity model is judged to always provide or exceeded the desired fidelity, than if one can determine the difference in a Quantity of Interest (QoI) between the highest fidelity model and lower fidelity models, one could utilize the fidelity model that would just provide the magnitude of the QoI desired. Assuming lower fidelity models require less computational resources, in this manner computational efficiency can bemore » realized provided the QoI value can be accurately and efficiently evaluated. This work utilized Generalized Perturbation Theory (GPT) to evaluate the QoI, by convoluting the GPT solution with the residual of the highest fidelity model determined using the solution from lower fidelity models. Specifically, a reactor core neutronics problem and thermal-hydraulics problem were studied to develop and utilize AMoR. The highest fidelity neutronics model was based upon the 3D space-time, two-group, nodal diffusion equations as solved in the NESTLE computer code. Added to the NESTLE code was the ability to determine the time-dependent GPT neutron flux. The lower fidelity neutronics model was based upon the point kinetics equations along with utilization of a prolongation operator to determine the 3D space-time, two-group flux. The highest fidelity thermal-hydraulics model was based upon the space-time equations governing fluid flow in a closed channel around a heat generating fuel rod. The Homogenous Equilibrium Mixture (HEM) model was used for the fluid and Finite Difference Method was applied to both the coolant and fuel pin energy conservation equations. The lower fidelity thermal-hydraulic model was based upon the same equations as used for the highest fidelity model but now with coarse spatial meshing, corrected somewhat by employing effective fuel heat conduction values. The effectiveness of switching between the highest fidelity model and lower fidelity model as a function of time was assessed using the neutronics problem. Based upon work completed to date, one concludes that the time switching is effective in annealing out differences between the highest and lower fidelity solutions. The effectiveness of using a lower fidelity GPT solution, along with a prolongation operator, to estimate the QoI was also assessed. The utilization of a lower fidelity GPT solution was done in an attempt to avoid the high computational burden associated with solving for the highest fidelity GPT solution. Based upon work completed to date, one concludes that the lower fidelity adjoint solution is not sufficiently accurate with regard to estimating the QoI; however, a formulation has been revealed that may provide a path for addressing this shortcoming.« less
NASA Astrophysics Data System (ADS)
Mudunuru, M. K.; Karra, S.; Vesselinov, V. V.
2017-12-01
The efficiency of many hydrogeological applications such as reactive-transport and contaminant remediation vastly depends on the macroscopic mixing occurring in the aquifer. In the case of remediation activities, it is fundamental to enhancement and control of the mixing through impact of the structure of flow field which is impacted by groundwater pumping/extraction, heterogeneity, and anisotropy of the flow medium. However, the relative importance of these hydrogeological parameters to understand mixing process is not well studied. This is partially because to understand and quantify mixing, one needs to perform multiple runs of high-fidelity numerical simulations for various subsurface model inputs. Typically, high-fidelity simulations of existing subsurface models take hours to complete on several thousands of processors. As a result, they may not be feasible to study the importance and impact of model inputs on mixing. Hence, there is a pressing need to develop computationally efficient models to accurately predict the desired QoIs for remediation and reactive-transport applications. An attractive way to construct computationally efficient models is through reduced-order modeling using machine learning. These approaches can substantially improve our capabilities to model and predict remediation process. Reduced-Order Models (ROMs) are similar to analytical solutions or lookup tables. However, the method in which ROMs are constructed is different. Here, we present a physics-informed ML framework to construct ROMs based on high-fidelity numerical simulations. First, random forests, F-test, and mutual information are used to evaluate the importance of model inputs. Second, SVMs are used to construct ROMs based on these inputs. These ROMs are then used to understand mixing under perturbed vortex flows. Finally, we construct scaling laws for certain important QoIs such as degree of mixing and product yield. Scaling law parameters dependence on model inputs are evaluated using cluster analysis. We demonstrate application of the developed method for model analyses of reactive-transport and contaminant remediation at the Los Alamos National Laboratory (LANL) chromium contamination sites. The developed method is directly applicable for analyses of alternative site remediation scenarios.
van Lieshout, Sanne; Mevissen, Fraukje; de Waal, Esri; Kok, Gerjo
2017-06-01
Schools are a common setting for adolescents to receive health education, but implementation of these programs with high levels of completeness and fidelity is not self-evident. Programs that are only partially implemented (completeness) or not implemented as instructed (fidelity) are unlikely to be effective. Therefore, it is important to identify which determinants affect completeness and fidelity of program implementation. As part of the launch of Long Live Love+ (LLL+), an online school-based sexuality education program for adolescents aged 15-17, we performed a process evaluation among teachers and students to measure the levels of completeness and fidelity, identify factors influencing teachers' implementation, and to evaluate the students' response. Sixteen Biology teachers from nine secondary schools throughout the Netherlands who implemented LLL+ were interviewed and 60 students participated in 13 focus group discussions. Results showed that teachers' completeness ranged between 22-100% (M = 75%). Fidelity was high, but many teachers added elements. Teachers and students enjoyed LLL+, particularly the diversity in the exercises and its interactive character. The most important factors that influenced implementation were time and organizational constraints, lack of awareness on the impact of completeness and fidelity, and student response. These factors should be taken into account when developing school-based prevention programs. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Fidelity assessment of a UH-60A simulation on the NASA Ames vertical motion simulator
NASA Technical Reports Server (NTRS)
Atencio, Adolph, Jr.
1993-01-01
Helicopter handling qualities research requires that a ground-based simulation be a high-fidelity representation of the actual helicopter, especially over the frequency range of the investigation. This experiment was performed to assess the current capability to simulate the UH-60A Black Hawk helicopter on the Vertical Motion Simulator (VMS) at NASA Ames, to develop a methodology for assessing the fidelity of a simulation, and to find the causes for lack of fidelity. The approach used was to compare the simulation to the flight vehicle for a series of tasks performed in flight and in the simulator. The results show that subjective handling qualities ratings from flight to simulator overlap, and the mathematical model matches the UH-60A helicopter very well over the range of frequencies critical to handling qualities evaluation. Pilot comments, however, indicate a need for improvement in the perceptual fidelity of the simulation in the areas of motion and visual cuing. The methodology used to make the fidelity assessment proved useful in showing differences in pilot work load and strategy, but additional work is needed to refine objective methods for determining causes of lack of fidelity.
Unbiased multi-fidelity estimate of failure probability of a free plane jet
NASA Astrophysics Data System (ADS)
Marques, Alexandre; Kramer, Boris; Willcox, Karen; Peherstorfer, Benjamin
2017-11-01
Estimating failure probability related to fluid flows is a challenge because it requires a large number of evaluations of expensive models. We address this challenge by leveraging multiple low fidelity models of the flow dynamics to create an optimal unbiased estimator. In particular, we investigate the effects of uncertain inlet conditions in the width of a free plane jet. We classify a condition as failure when the corresponding jet width is below a small threshold, such that failure is a rare event (failure probability is smaller than 0.001). We estimate failure probability by combining the frameworks of multi-fidelity importance sampling and optimal fusion of estimators. Multi-fidelity importance sampling uses a low fidelity model to explore the parameter space and create a biasing distribution. An unbiased estimate is then computed with a relatively small number of evaluations of the high fidelity model. In the presence of multiple low fidelity models, this framework offers multiple competing estimators. Optimal fusion combines all competing estimators into a single estimator with minimal variance. We show that this combined framework can significantly reduce the cost of estimating failure probabilities, and thus can have a large impact in fluid flow applications. This work was funded by DARPA.
Bland, Andrew J; Topping, Annie; Tobbell, Jane
2014-07-01
High-fidelity patient simulation is a method of education increasingly utilised by educators of nursing to provide authentic learning experiences. Fidelity and authenticity, however, are not conceptually equivalent. Whilst fidelity is important when striving to replicate a life experience such as clinical practice, authenticity can be produced with low fidelity. A challenge for educators of undergraduate nursing is to ensure authentic representation of the clinical situation which is a core component for potential success. What is less clear is the relationship between fidelity and authenticity in the context of simulation based learning. Authenticity does not automatically follow fidelity and as a result, educators of nursing cannot assume that embracing the latest technology-based educational tools will in isolation provide a learning environment perceived authentic by the learner. As nursing education programmes increasingly adopt simulators that offer the possibility of representing authentic real world situations, there is an urgency to better articulate and understand the terms fidelity and authenticity. Without such understanding there is a real danger that simulation as a teaching and learning resource in nurse education will never reach its potential and be misunderstood, creating a potential barrier to learning. This paper examines current literature to promote discussion within nurse education, concluding that authenticity in the context of simulation-based learning is complex, relying on far more than engineered fidelity. Copyright © 2014 Elsevier Ltd. All rights reserved.
2016-05-24
experimental data. However, the time and length scales, and energy deposition rates in the canonical laboratory flames that have been studied over the...is to obtain high-fidelity experimental data critically needed to validate research codes at relevant conditions, and to develop systematic and...validated with experimental data. However, the time and length scales, and energy deposition rates in the canonical laboratory flames that have been
Faithful state transfer between two-level systems via an actively cooled finite-temperature cavity
NASA Astrophysics Data System (ADS)
Sárkány, Lőrinc; Fortágh, József; Petrosyan, David
2018-03-01
We consider state transfer between two qubits—effective two-level systems represented by Rydberg atoms—via a common mode of a microwave cavity at finite temperature. We find that when both qubits have the same coupling strength to the cavity field, at large enough detuning from the cavity mode frequency, quantum interference between the transition paths makes the swap of the excitation between the qubits largely insensitive to the number of thermal photons in the cavity. When, however, the coupling strengths are different, the photon-number-dependent differential Stark shift of the transition frequencies precludes efficient transfer. Nevertheless, using an auxiliary cooling system to continuously extract the cavity photons, we can still achieve a high-fidelity state transfer between the qubits.
Fluid/Structure Interaction Studies of Aircraft Using High Fidelity Equations on Parallel Computers
NASA Technical Reports Server (NTRS)
Guruswamy, Guru; VanDalsem, William (Technical Monitor)
1994-01-01
Abstract Aeroelasticity which involves strong coupling of fluids, structures and controls is an important element in designing an aircraft. Computational aeroelasticity using low fidelity methods such as the linear aerodynamic flow equations coupled with the modal structural equations are well advanced. Though these low fidelity approaches are computationally less intensive, they are not adequate for the analysis of modern aircraft such as High Speed Civil Transport (HSCT) and Advanced Subsonic Transport (AST) which can experience complex flow/structure interactions. HSCT can experience vortex induced aeroelastic oscillations whereas AST can experience transonic buffet associated structural oscillations. Both aircraft may experience a dip in the flutter speed at the transonic regime. For accurate aeroelastic computations at these complex fluid/structure interaction situations, high fidelity equations such as the Navier-Stokes for fluids and the finite-elements for structures are needed. Computations using these high fidelity equations require large computational resources both in memory and speed. Current conventional super computers have reached their limitations both in memory and speed. As a result, parallel computers have evolved to overcome the limitations of conventional computers. This paper will address the transition that is taking place in computational aeroelasticity from conventional computers to parallel computers. The paper will address special techniques needed to take advantage of the architecture of new parallel computers. Results will be illustrated from computations made on iPSC/860 and IBM SP2 computer by using ENSAERO code that directly couples the Euler/Navier-Stokes flow equations with high resolution finite-element structural equations.
Goel, M K; Mehrotra, S; Kukreja, A K; Shanker, K; Khanuja, S P S
2009-01-01
Rauwolfia serpentina holds an important position in the pharmaceutical world because of its immense anti-hypertensive properties resulting from the presence of reserpine in the oleoresin fraction of the roots. Poor seed viability, low seed germination rate, and enormous genetic variability are the major constraints for the commercial cultivation of R. serpentina through conventional mode. The present optimized protocol offers an impeccable end to end method from the establishment of aseptic cultures to in-vitro plantlet production employing semisolid as well liquid nutrient culture medium and assessment of their genetic fidelity using polymerase chain reaction based rapid amplification of polymorphic DNA analysis. In vitro shoots multiplied on Murashige and Skoog basal liquid nutrients supplemented with benzo[a]pyrene (1.0 mg/L) and NAA (0.1 mg/L) and in-vitro rhizogenesis was observed in modified MS basal nutrient containing NAA (1.0 mg/L) and 2% sucrose. In-vitro raised plants exhibited 90-95% survival under glass house/field condition and 85% similarity in the plants regenerated through this protocol. Field established plants were harvested and extraction of indole alkaloid particularly reserpine, ajmaline and ajmalicine and their simultaneous quantitation was performed using monolithic reverse phase high-performance liquid chromatography (HPLC).
ERIC Educational Resources Information Center
Vieck, Jana
2013-01-01
The purpose of this study was to examine the impact of moderate- and high-fidelity patient simulator use on the critical thinking skills of associate degree nursing students. This quantitative study used a quasi-experimental design and the Health Sciences Reasoning Test (HSRT) to evaluate the critical thinking skills of third semester nursing…
ERIC Educational Resources Information Center
Harris, David M.; Ryan, Kathleen; Rabuck, Cynthia
2012-01-01
Students are relying on technology for learning more than ever, and educators need to adapt to facilitate student learning. High-fidelity patient simulators (HFPS) are usually reserved for the clinical years of medical education and are geared to improve clinical decision skills, teamwork, and patient safety. Finding ways to incorporate HFPS into…
Modeling of Passive Acoustic Liners from High Fidelity Numerical Simulations
NASA Astrophysics Data System (ADS)
Ferrari, Marcello do Areal Souto
Noise reduction in aviation has been an important focus of study in the last few decades. One common solution is setting up acoustic liners in the internal walls of the engines. However, measurements in the laboratory with liners are expensive and time consuming. The present work proposes a nonlinear physics-based time domain model to predict the acoustic behavior of a given liner in a defined flow condition. The parameters of the model are defined by analysis of accurate numerical solutions of the flow obtained from a high-fidelity numerical code. The length of the cavity is taken into account by using an analytical procedure to account for internal reflections in the interior of the cavity. Vortices and jets originated from internal flow separations are confirmed to be important mechanisms of sound absorption, which defines the overall efficiency of the liner. Numerical simulations at different frequency, geometry and sound pressure level are studied in detail to define the model parameters. Comparisons with high-fidelity numerical simulations show that the proposed model is accurate, robust, and can be used to define a boundary condition simulating a liner in a high-fidelity code.
Comparison of Low-Thrust Control Laws for Application in Planetocentric Space
NASA Technical Reports Server (NTRS)
Falck, Robert D.; Sjauw, Waldy K.; Smith, David A.
2014-01-01
Recent interest at NASA for the application of solar electric propulsion for the transfer of significant payloads in cislunar space has led to the development of high-fidelity simulations of such missions. With such transfers involving transfer times on the order of months, simulation time can be significant. In the past, the examination of such missions typically began with the use of lower-fidelity trajectory optimization tools such as SEPSPOT to develop and tune guidance laws which delivered optimal or near- optimal trajectories, where optimal is generally defined as minimizing propellant expenditure or time of flight. The transfer of these solutions to a high-fidelity simulation is typically an iterative process whereby the initial solution may nearly, but not precisely, meet mission objectives. Further tuning of the guidance algorithm is typically necessary when accounting for high-fidelity perturbations such as those due to more detailed gravity models, secondary-body effects, solar radiation pressure, etc. While trajectory optimization is a useful method for determining optimal performance metrics, algorithms which deliver nearly optimal performance with minimal tuning are an attractive alternative.
NASA Astrophysics Data System (ADS)
Hu, Jiexiang; Zhou, Qi; Jiang, Ping; Shao, Xinyu; Xie, Tingli
2018-01-01
Variable-fidelity (VF) modelling methods have been widely used in complex engineering system design to mitigate the computational burden. Building a VF model generally includes two parts: design of experiments and metamodel construction. In this article, an adaptive sampling method based on improved hierarchical kriging (ASM-IHK) is proposed to refine the improved VF model. First, an improved hierarchical kriging model is developed as the metamodel, in which the low-fidelity model is varied through a polynomial response surface function to capture the characteristics of a high-fidelity model. Secondly, to reduce local approximation errors, an active learning strategy based on a sequential sampling method is introduced to make full use of the already required information on the current sampling points and to guide the sampling process of the high-fidelity model. Finally, two numerical examples and the modelling of the aerodynamic coefficient for an aircraft are provided to demonstrate the approximation capability of the proposed approach, as well as three other metamodelling methods and two sequential sampling methods. The results show that ASM-IHK provides a more accurate metamodel at the same simulation cost, which is very important in metamodel-based engineering design problems.
Creation of a High-fidelity, Low-cost Pediatric Skull Fracture Ultrasound Phantom.
Soucy, Zachary P; Mills, Lisa; Rose, John S; Kelley, Kenneth; Ramirez, Francisco; Kuppermann, Nathan
2015-08-01
Over the past decade, point-of-care ultrasound has become a common tool used for both procedures and diagnosis. Developing high-fidelity phantoms is critical for training in new and novel point-of-care ultrasound applications. Detecting skull fractures on ultrasound imaging in the younger-than-2-year-old patient is an emerging area of point-of-care ultrasound research. Identifying a skull fracture on ultrasound imaging in this age group requires knowledge of the appearance and location of sutures to distinguish them from fractures. There are currently no commercially available pediatric skull fracture models. We outline a novel approach to building a cost-effective, simple, high-fidelity pediatric skull fracture phantom to meet a unique training requirement. © 2015 by the American Institute of Ultrasound in Medicine.
Measuring Implementation Fidelity in a Community-Based Parenting Intervention
Breitenstein, Susan M.; Fogg, Louis; Garvey, Christine; Hill, Carri; Resnick, Barbara; Gross, Deborah
2012-01-01
Background Establishing the feasibility and validity of implementation fidelity monitoring strategies is an important methodological step in implementing evidence-based interventions on a large scale. Objectives The objective of the study was to examine the reliability and validity of the Fidelity Checklist, a measure designed to assess group leader adherence and competence delivering a parent training intervention (the Chicago Parent Program) in child care centers serving low-income families. Method The sample included 9 parent groups (12 group sessions each), 12 group leaders, and 103 parents. Independent raters reviewed 106 audiotaped parent group sessions and coded group leaders’ fidelity on the Adherence and Competence Scales of the Fidelity Checklist. Group leaders completed self-report adherence checklists and a measure of parent engagement in the intervention. Parents completed measures of consumer satisfaction and child behavior. Results High interrater agreement (Adherence Scale = 94%, Competence Scale = 85%) and adequate intraclass correlation coefficients (Adherence Scale = .69, Competence Scale = .91) were achieved for the Fidelity Checklist. Group leader adherence changed over time, but competence remained stable. Agreement between group leader self-report and independent ratings on the Adherence Scale was 85%; disagreements were more frequently due to positive bias in group leader self-report. Positive correlations were found between group leader adherence and parent attendance and engagement in the intervention and between group leader competence and parent satisfaction. Although child behavior problems improved, improvements were not related to fidelity. Discussion The results suggest that the Fidelity Checklist is a feasible, reliable, and valid measure of group leader implementation fidelity in a group-based parenting intervention. Future research will be focused on testing the Fidelity Checklist with diverse and larger samples and generalizing to other group-based interventions using a similar intervention model. PMID:20404777
Drach, Andrew; Khalighi, Amir H; Sacks, Michael S
2018-02-01
Multiple studies have demonstrated that the pathological geometries unique to each patient can affect the durability of mitral valve (MV) repairs. While computational modeling of the MV is a promising approach to improve the surgical outcomes, the complex MV geometry precludes use of simplified models. Moreover, the lack of complete in vivo geometric information presents significant challenges in the development of patient-specific computational models. There is thus a need to determine the level of detail necessary for predictive MV models. To address this issue, we have developed a novel pipeline for building attribute-rich computational models of MV with varying fidelity directly from the in vitro imaging data. The approach combines high-resolution geometric information from loaded and unloaded states to achieve a high level of anatomic detail, followed by mapping and parametric embedding of tissue attributes to build a high-resolution, attribute-rich computational models. Subsequent lower resolution models were then developed and evaluated by comparing the displacements and surface strains to those extracted from the imaging data. We then identified the critical levels of fidelity for building predictive MV models in the dilated and repaired states. We demonstrated that a model with a feature size of about 5 mm and mesh size of about 1 mm was sufficient to predict the overall MV shape, stress, and strain distributions with high accuracy. However, we also noted that more detailed models were found to be needed to simulate microstructural events. We conclude that the developed pipeline enables sufficiently complex models for biomechanical simulations of MV in normal, dilated, repaired states. Copyright © 2017 John Wiley & Sons, Ltd.
Replication fidelity improvement of PMMA microlens array based on weight evaluation and optimization
NASA Astrophysics Data System (ADS)
Jiang, Bing-yan; Shen, Long-jiang; Peng, Hua-jiang; Yin, Xiang-lin
2007-12-01
High replication fidelity is a prerequisite of high quality plastic microlens array in injection molding. But, there's not an economical and practical method to evaluate and improve the replication fidelity until now. Based on part weight evaluation and optimization, this paper presents a new method of replication fidelity improvement. Firstly, a simplified analysis model of PMMA micro columns arrays (5×16) with 200μm diameter was set up. And then, Flow (3D) module of Moldflow MPI6.0 based on Navier-Stokes equations was used to calculate the weight of the micro columns arrays in injection molding. The effects of processing parameters (melt temperature, mold temperature, injection time, packing pressure and packing time) on the part weight were investigated in the simulations. The simulation results showed that the mold temperature and the injection time have important effects on the filling of micro columns; the optimal mold temperature and injection time for better replication fidelity could be determined by the curves of mold temperature vs part weight and injection time vs part weight. At last, the effects of processing parameters on part weight of micro columns array were studied experimentally. The experimental results showed that the increase of melt temperature and mold temperature can make the packing pressure transfer to micro cavity more effectively through runner system, and increase the part weight. From the observation results of the image measuring apparatus, it was discovered that the higher the part weight, the better the filling of the microstructures. In conclusion, part weight can be used to evaluate the replication fidelity of micro-feature structured parts primarily; which is an economical and practical method to improve the replication fidelity of microlens arrays based on weight evaluation and optimization.
Housing first on a large scale: Fidelity strengths and challenges in the VA's HUD-VASH program.
Kertesz, Stefan G; Austin, Erika L; Holmes, Sally K; DeRussy, Aerin J; Van Deusen Lukas, Carol; Pollio, David E
2017-05-01
Housing First (HF) combines permanent supportive housing and supportive services for homeless individuals and removes traditional treatment-related preconditions for housing entry. There has been little research describing strengths and shortfalls of HF implementation outside of research demonstration projects. The U.S. Department of Veterans Affairs (VA) has transitioned to an HF approach in a supportive housing program serving over 85,000 persons. This offers a naturalistic window to study fidelity when HF is adopted on a large scale. We operationalized HF into 20 criteria grouped into 5 domains. We assessed 8 VA medical centers twice (1 year apart), scoring each criterion using a scale ranging from 1 ( low fidelity ) to 4 ( high fidelity ). There were 2 HF domains (no preconditions and rapidly offering permanent housing) for which high fidelity was readily attained. There was uneven progress in prioritizing the most vulnerable clients for housing support. Two HF domains (sufficient supportive services and a modern recovery philosophy) had considerably lower fidelity. Interviews suggested that operational issues such as shortfalls in staffing and training likely hindered performance in these 2 domains. In this ambitious national HF program, the largest to date, we found substantial fidelity in focusing on permanent housing and removal of preconditions to housing entry. Areas of concern included the adequacy of supportive services and adequacy in deployment of a modern recovery philosophy. Under real-world conditions, large-scale implementation of HF is likely to require significant additional investment in client service supports to assure that results are concordant with those found in research studies. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
High-Fidelity Design of Multimodal Restorative Interventions in Gulf War Illness
2017-10-01
Bockmayr A, Klarner H, Siebert H. Time series dependent analysis of unparametrized Thomas networks. IEEE/ACM Transactions on Computational Biology and...Award Number: W81XWH-15-1-0582 TITLE:High-Fidelity Design of Multimodal Restorative Interventions in Gulf War Illness PRINCIPAL INVESTIGATOR...not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation. REPORT
ERIC Educational Resources Information Center
Hall, Rachel Mattson
2013-01-01
High Fidelity Simulation is a teaching strategy that is becoming well-entrenched in the world of nursing education and is rapidly expanding due to the challenges and demands of the health care environment. The problem addressed in this study is the conflicting research results regarding the effectiveness of HFS for students' knowledge acquisition…
ERIC Educational Resources Information Center
Kuznar, Kathleen A.
2009-01-01
One of the newest methodologies in nursing education is high-fidelity human patient simulation (HPS). Many nursing educators have embraced the method as it offers a strategy to facilitate cognitive, affective, and psychomotor outcomes. Despite their popularity, however, HPS systems are costly and, in an era of cost containment and tuition…
LEONARD REITSMA; PAMELA HUNT; SHERMAN L. BURSON III; BENJAMIN B. STEELE
2002-01-01
We studied the dispersion of Northern Waterthrushes (Seiurus novaboracensis) in southwestern Puerto Rico during four nonbreeding seasons, 1996â1999. Densities were high (up to 13 birds/ha) on a 3-ha mature black mangrove (Avicennia germinans) study plot, but were significantly lower during periods of high water levels. Individuals exhibited site fidelity within and...
ERIC Educational Resources Information Center
Howard, Sheri
2017-01-01
The purpose of this study is to compare satisfaction, self-confidence, and engagement of baccalaureate nursing students using defined observational roles and expectations versus traditional observer role assignments in high fidelity simulation and debriefing and to evaluate student perceptions of these constructs. The NLN/Jeffries Simulation…
ERIC Educational Resources Information Center
Lisha, Nadra E.; Sun, Ping; Rohrbach, Louise A.; Spruijt-Metz, Donna; Unger, Jennifer B.; Sussman, Steve
2012-01-01
The present study provides an implementation fidelity, process, and immediate outcomes evaluation of Project Towards No Drug Abuse (TND), a drug prevention program targeting continuation high school youth (n = 1426) at risk for drug abuse. A total of 24 schools participated in three randomized conditions: TND Only, TND and motivational…
ERIC Educational Resources Information Center
Duvall, Judy Jo
2012-01-01
There are many driving forces to increase the use of high-fidelity simulation (HFS) in nursing education, as well as many factors that may influence the implementation of this teaching strategy. These include the motivation of nurse educators to use HFS, the technological readiness of nurse educators to use HFS and the changing demographics of the…
Evaluation of high fidelity patient simulator in assessment of performance of anaesthetists.
Weller, J M; Bloch, M; Young, S; Maze, M; Oyesola, S; Wyner, J; Dob, D; Haire, K; Durbridge, J; Walker, T; Newble, D
2003-01-01
There is increasing emphasis on performance-based assessment of clinical competence. The High Fidelity Patient Simulator (HPS) may be useful for assessment of clinical practice in anaesthesia, but needs formal evaluation of validity, reliability, feasibility and effect on learning. We set out to assess the reliability of a global rating scale for scoring simulator performance in crisis management. Using a global rating scale, three judges independently rated videotapes of anaesthetists in simulated crises in the operating theatre. Five anaesthetists then independently rated subsets of these videotapes. There was good agreement between raters for medical management, behavioural attributes and overall performance. Agreement was high for both the initial judges and the five additional raters. Using a global scale to assess simulator performance, we found good inter-rater reliability for scoring performance in a crisis. We estimate that two judges should provide a reliable assessment. High fidelity simulation should be studied further for assessing clinical performance.
Gaber, Rikki; Mallett, Kimberly A.; Hultgren, Brittney; Turrisi, Rob; Gilbertsen, Margaret L.; Martini, Mary C.; Robinson, June K.
2014-01-01
Background Melanoma can metastasize but is often successfully treated when discovered in an early stage. Melanoma patients and their skin check partners can learn skin self-examination (SSE) skills and these skills can be improved by practice. The purpose of this study is to determine the degree of fidelity with which educational in-person SSE intervention can be delivered by trained research coordinators to patients at risk of developing another melanoma and their skin check partners. Methods The in-person intervention was performed in two iterations. In phase 1 (2006-2008), the research coordinators were trained to perform the intervention using a written script. In phase 2 (2011-2013), the research coordinators were trained to perform the intervention with a PowerPoint aid. Each research coordinator was individually counseled by one of the authors (KM) to insure standardization and enhance fidelity of intervention delivery. Phase 1 and Phase 2 were compared on 16 fidelity components. Further, Phase 2 fidelity was assessed by comparing mean scores of fidelity across the five research coordinators who delivered the intervention. Results Phase 2, which utilized a PowerPoint aid, was delivered with a higher degree of fidelity compared to phase 1with four fidelity components with significantly higher fidelity than Phase 1: 1) Explained details of melanoma, χ2 (1, n = 199)= 96.31, p < .001, 2) Discussed when to call doctor, χ2 (1, n = 199) = 53.68, p < .001 3) Explained assessment at month 1, χ2 (1, n = 199)= 12.39, p < .01, and 4) Explained assessment at month 2, χ2 (1, n = 199) = 117.75, p < .001. Further, no significant differences on mean fidelity were found across research coordinators in Phase 2. Discussion When using the PowerPoint aide, the research coordinators delivered the intervention with high fidelity (all scores >14) and there were no mean differences in fidelity across research coordinators, indicating consistency in fidelity. This can be attributed to the standardization and cueing that the PowerPoint program offered. Supervision was also a key component in establishing and maintaining fidelity of the patient educational process. This method of intervention delivery enables trained healthcare professionals to deliver an educational intervention in an effective, consistent manner. PMID:25414761
Gaber, Rikki; Mallett, Kimberly A; Hultgren, Brittney; Turrisi, Rob; Gilbertsen, Margaret L; Martini, Mary C; Robinson, June K
2014-01-01
Melanoma can metastasize but is often successfully treated when discovered in an early stage. Melanoma patients and their skin check partners can learn skin self-examination (SSE) skills and these skills can be improved by practice. The purpose of this study is to determine the degree of fidelity with which educational in-person SSE intervention can be delivered by trained research coordinators to patients at risk of developing another melanoma and their skin check partners. The in-person intervention was performed in two iterations. In phase 1 (2006-2008), the research coordinators were trained to perform the intervention using a written script. In phase 2 (2011-2013), the research coordinators were trained to perform the intervention with a PowerPoint aid. Each research coordinator was individually counseled by one of the authors (KM) to insure standardization and enhance fidelity of intervention delivery. Phase 1 and Phase 2 were compared on 16 fidelity components. Further, Phase 2 fidelity was assessed by comparing mean scores of fidelity across the five research coordinators who delivered the intervention. Phase 2, which utilized a PowerPoint aid, was delivered with a higher degree of fidelity compared to phase 1with four fidelity components with significantly higher fidelity than Phase 1: 1) Explained details of melanoma, χ 2 (1, n = 199)= 96.31, p < .001, 2) Discussed when to call doctor, χ 2 (1, n = 199) = 53.68, p < .001 3) Explained assessment at month 1, χ 2 (1, n = 199)= 12.39, p < .01, and 4) Explained assessment at month 2, χ 2 (1, n = 199) = 117.75, p < .001. Further, no significant differences on mean fidelity were found across research coordinators in Phase 2. When using the PowerPoint aide, the research coordinators delivered the intervention with high fidelity (all scores >14) and there were no mean differences in fidelity across research coordinators, indicating consistency in fidelity. This can be attributed to the standardization and cueing that the PowerPoint program offered. Supervision was also a key component in establishing and maintaining fidelity of the patient educational process. This method of intervention delivery enables trained healthcare professionals to deliver an educational intervention in an effective, consistent manner.
Attenuation of Foot-and-Mouth Disease Virus by Engineered Viral Polymerase Fidelity.
Rai, Devendra K; Diaz-San Segundo, Fayna; Campagnola, Grace; Keith, Anna; Schafer, Elizabeth A; Kloc, Anna; de Los Santos, Teresa; Peersen, Olve; Rieder, Elizabeth
2017-08-01
Foot-and-mouth disease virus (FMDV) RNA-dependent RNA polymerase (RdRp) (3D pol ) catalyzes viral RNA synthesis. Its characteristic low fidelity and absence of proofreading activity allow FMDV to rapidly mutate and adapt to dynamic environments. In this study, we used the structure of FMDV 3D pol in combination with previously reported results from similar picornaviral polymerases to design point mutations that would alter replication fidelity. In particular, we targeted Trp237 within conserved polymerase motif A because of the low reversion potential inherent in the single UGG codon. Using biochemical and genetic tools, we show that the replacement of tryptophan 237 with phenylalanine imparts higher fidelity, but replacements with isoleucine and leucine resulted in lower-fidelity phenotypes. Viruses containing these W237 substitutions show in vitro growth kinetics and plaque morphologies similar to those of the wild-type (WT) A 24 Cruzeiro strain in BHK cells, and both high- and low-fidelity variants retained fitness during coinfection with the wild-type virus. The higher-fidelity W237F (W237F HF ) mutant virus was more resistant to the mutagenic nucleoside analogs ribavirin and 5-fluorouracil than the WT virus, whereas the lower-fidelity W237I (W237I LF ) and W237L LF mutant viruses exhibited lower ribavirin resistance. Interestingly, the variant viruses showed heterogeneous and slightly delayed growth kinetics in primary porcine kidney cells, and they were significantly attenuated in mouse infection experiments. These data demonstrate, for a single virus, that either increased or decreased RdRp fidelity attenuates virus growth in animals, which is a desirable feature for the development of safer and genetically more stable vaccine candidates. IMPORTANCE Foot-and-mouth disease (FMD) is the most devastating disease affecting livestock worldwide. Here, using structural and biochemical analyses, we have identified FMDV 3D pol mutations that affect polymerase fidelity. Recombinant FMDVs containing substitutions at 3D pol tryptophan residue 237 were genetically stable and displayed plaque phenotypes and growth kinetics similar to those of the wild-type virus in cell culture. We further demonstrate that viruses harboring either a W237F HF substitution or W237I LF and W237L LF mutations were highly attenuated in animals. Our study shows that obtaining 3D pol fidelity variants by protein engineering based on polymerase structure and function could be exploited for the development of attenuated FMDV vaccine candidates that are safer and more stable than strains obtained by selective pressure via mutagenic nucleotides or adaptation approaches. Copyright © 2017 American Society for Microbiology.
Attenuation of Foot-and-Mouth Disease Virus by Engineered Viral Polymerase Fidelity
Rai, Devendra K.; Diaz-San Segundo, Fayna; Campagnola, Grace; Keith, Anna; Schafer, Elizabeth A.; Kloc, Anna; de los Santos, Teresa; Peersen, Olve
2017-01-01
ABSTRACT Foot-and-mouth disease virus (FMDV) RNA-dependent RNA polymerase (RdRp) (3Dpol) catalyzes viral RNA synthesis. Its characteristic low fidelity and absence of proofreading activity allow FMDV to rapidly mutate and adapt to dynamic environments. In this study, we used the structure of FMDV 3Dpol in combination with previously reported results from similar picornaviral polymerases to design point mutations that would alter replication fidelity. In particular, we targeted Trp237 within conserved polymerase motif A because of the low reversion potential inherent in the single UGG codon. Using biochemical and genetic tools, we show that the replacement of tryptophan 237 with phenylalanine imparts higher fidelity, but replacements with isoleucine and leucine resulted in lower-fidelity phenotypes. Viruses containing these W237 substitutions show in vitro growth kinetics and plaque morphologies similar to those of the wild-type (WT) A24 Cruzeiro strain in BHK cells, and both high- and low-fidelity variants retained fitness during coinfection with the wild-type virus. The higher-fidelity W237F (W237FHF) mutant virus was more resistant to the mutagenic nucleoside analogs ribavirin and 5-fluorouracil than the WT virus, whereas the lower-fidelity W237I (W237ILF) and W237LLF mutant viruses exhibited lower ribavirin resistance. Interestingly, the variant viruses showed heterogeneous and slightly delayed growth kinetics in primary porcine kidney cells, and they were significantly attenuated in mouse infection experiments. These data demonstrate, for a single virus, that either increased or decreased RdRp fidelity attenuates virus growth in animals, which is a desirable feature for the development of safer and genetically more stable vaccine candidates. IMPORTANCE Foot-and-mouth disease (FMD) is the most devastating disease affecting livestock worldwide. Here, using structural and biochemical analyses, we have identified FMDV 3Dpol mutations that affect polymerase fidelity. Recombinant FMDVs containing substitutions at 3Dpol tryptophan residue 237 were genetically stable and displayed plaque phenotypes and growth kinetics similar to those of the wild-type virus in cell culture. We further demonstrate that viruses harboring either a W237FHF substitution or W237ILF and W237LLF mutations were highly attenuated in animals. Our study shows that obtaining 3Dpol fidelity variants by protein engineering based on polymerase structure and function could be exploited for the development of attenuated FMDV vaccine candidates that are safer and more stable than strains obtained by selective pressure via mutagenic nucleotides or adaptation approaches. PMID:28515297
Coordinating DNA polymerase traffic during high and low fidelity synthesis.
Sutton, Mark D
2010-05-01
With the discovery that organisms possess multiple DNA polymerases (Pols) displaying different fidelities, processivities, and activities came the realization that mechanisms must exist to manage the actions of these diverse enzymes to prevent gratuitous mutations. Although many of the Pols encoded by most organisms are largely accurate, and participate in DNA replication and DNA repair, a sizeable fraction display a reduced fidelity, and act to catalyze potentially error-prone translesion DNA synthesis (TLS) past lesions that persist in the DNA. Striking the proper balance between use of these different enzymes during DNA replication, DNA repair, and TLS is essential for ensuring accurate duplication of the cell's genome. This review highlights mechanisms that organisms utilize to manage the actions of their different Pols. A particular emphasis is placed on discussion of current models for how different Pols switch places with each other at the replication fork during high fidelity replication and potentially error-pone TLS. Copyright (c) 2010 Elsevier B.V. All rights reserved.
The Simplified Aircraft-Based Paired Approach With the ALAS Alerting Algorithm
NASA Technical Reports Server (NTRS)
Perry, Raleigh B.; Madden, Michael M.; Torres-Pomales, Wilfredo; Butler, Ricky W.
2013-01-01
This paper presents the results of an investigation of a proposed concept for closely spaced parallel runways called the Simplified Aircraft-based Paired Approach (SAPA). This procedure depends upon a new alerting algorithm called the Adjacent Landing Alerting System (ALAS). This study used both low fidelity and high fidelity simulations to validate the SAPA procedure and test the performance of the new alerting algorithm. The low fidelity simulation enabled a determination of minimum approach distance for the worst case over millions of scenarios. The high fidelity simulation enabled an accurate determination of timings and minimum approach distance in the presence of realistic trajectories, communication latencies, and total system error for 108 test cases. The SAPA procedure and the ALAS alerting algorithm were applied to the 750-ft parallel spacing (e.g., SFO 28L/28R) approach problem. With the SAPA procedure as defined in this paper, this study concludes that a 750-ft application does not appear to be feasible, but preliminary results for 1000-ft parallel runways look promising.
NASA Technical Reports Server (NTRS)
Cheng, Rendy P.; Tischler, Mark B.; Celi, Roberto
2006-01-01
This research describes a new methodology for the extraction of a high-order, linear time invariant model, which allows the periodicity of the helicopter response to be accurately captured. This model provides the needed level of dynamic fidelity to permit an analysis and optimization of the AFCS and HHC algorithms. The key results of this study indicate that the closed-loop HHC system has little influence on the AFCS or on the vehicle handling qualities, which indicates that the AFCS does not need modification to work with the HHC system. However, the results show that the vibration response to maneuvers must be considered during the HHC design process, and this leads to much higher required HHC loop crossover frequencies. This research also demonstrates that the transient vibration responses during maneuvers can be reduced by optimizing the closed-loop higher harmonic control algorithm using conventional control system analyses.
Millimeter-wave micro-Doppler measurements of small UAVs
NASA Astrophysics Data System (ADS)
Rahman, Samiur; Robertson, Duncan A.
2017-05-01
This paper discusses the micro-Doppler signatures of small UAVs obtained from a millimeter-wave radar system. At first, simulation results are shown to demonstrate the theoretical concept. It is illustrated that whilst the propeller rotation rate of the small UAVs is quite high, millimeter-wave radar systems are capable of capturing the full micro-Doppler spread. Measurements of small UAVs have been performed with both CW and FMCW radars operating at 94 GHz. The CW radar was used for obtaining micro-Doppler signatures of individual propellers. The field test data of a flying small UAV was collected with the FMCW radar and was processed to extract micro-Doppler signatures. The high fidelity results clearly reveal features such as blade flashes and propeller rotation modulation lines which can be used to classify targets. This work confirms that millimeter-wave radar is suitable for the detection and classification of small UAVs at usefully long ranges.
Isolation and characterization of high affinity aptamers against DNA polymerase iota.
Lakhin, Andrei V; Kazakov, Andrei A; Makarova, Alena V; Pavlov, Yuri I; Efremova, Anna S; Shram, Stanislav I; Tarantul, Viacheslav Z; Gening, Leonid V
2012-02-01
Human DNA-polymerase iota (Pol ι) is an extremely error-prone enzyme and the fidelity depends on the sequence context of the template. Using the in vitro systematic evolution of ligands by exponential enrichment (SELEX) procedure, we obtained an oligoribonucleotide with a high affinity to human Pol ι, named aptamer IKL5. We determined its dissociation constant with homogenous preparation of Pol ι and predicted its putative secondary structure. The aptamer IKL5 specifically inhibits DNA-polymerase activity of the purified enzyme Pol ι, but did not inhibit the DNA-polymerase activities of human DNA polymerases beta and kappa. IKL5 suppressed the error-prone DNA-polymerase activity of Pol ι also in cellular extracts of the tumor cell line SKOV-3. The aptamer IKL5 is useful for studies of the biological role of Pol ι and as a potential drug to suppress the increase of the activity of this enzyme in malignant cells.
Fero, Laura J; O'Donnell, John M; Zullo, Thomas G; Dabbs, Annette DeVito; Kitutu, Julius; Samosky, Joseph T; Hoffman, Leslie A
2010-10-01
This paper is a report of an examination of the relationship between metrics of critical thinking skills and performance in simulated clinical scenarios. Paper and pencil assessments are commonly used to assess critical thinking but may not reflect simulated performance. In 2007, a convenience sample of 36 nursing students participated in measurement of critical thinking skills and simulation-based performance using videotaped vignettes, high-fidelity human simulation, the California Critical Thinking Disposition Inventory and California Critical Thinking Skills Test. Simulation-based performance was rated as 'meeting' or 'not meeting' overall expectations. Test scores were categorized as strong, average, or weak. Most (75.0%) students did not meet overall performance expectations using videotaped vignettes or high-fidelity human simulation; most difficulty related to problem recognition and reporting findings to the physician. There was no difference between overall performance based on method of assessment (P = 0.277). More students met subcategory expectations for initiating nursing interventions (P ≤ 0.001) using high-fidelity human simulation. The relationship between videotaped vignette performance and critical thinking disposition or skills scores was not statistically significant, except for problem recognition and overall critical thinking skills scores (Cramer's V = 0.444, P = 0.029). There was a statistically significant relationship between overall high-fidelity human simulation performance and overall critical thinking disposition scores (Cramer's V = 0.413, P = 0.047). Students' performance reflected difficulty meeting expectations in simulated clinical scenarios. High-fidelity human simulation performance appeared to approximate scores on metrics of critical thinking best. Further research is needed to determine if simulation-based performance correlates with critical thinking skills in the clinical setting. © 2010 The Authors. Journal of Advanced Nursing © 2010 Blackwell Publishing Ltd.
Fero, Laura J.; O’Donnell, John M.; Zullo, Thomas G.; Dabbs, Annette DeVito; Kitutu, Julius; Samosky, Joseph T.; Hoffman, Leslie A.
2018-01-01
Aim This paper is a report of an examination of the relationship between metrics of critical thinking skills and performance in simulated clinical scenarios. Background Paper and pencil assessments are commonly used to assess critical thinking but may not reflect simulated performance. Methods In 2007, a convenience sample of 36 nursing students participated in measurement of critical thinking skills and simulation-based performance using videotaped vignettes, high-fidelity human simulation, the California Critical Thinking Disposition Inventory and California Critical Thinking Skills Test. Simulation- based performance was rated as ‘meeting’ or ‘not meeting’ overall expectations. Test scores were categorized as strong, average, or weak. Results Most (75·0%) students did not meet overall performance expectations using videotaped vignettes or high-fidelity human simulation; most difficulty related to problem recognition and reporting findings to the physician. There was no difference between overall performance based on method of assessment (P = 0·277). More students met subcategory expectations for initiating nursing interventions (P ≤ 0·001) using high-fidelity human simulation. The relationship between video-taped vignette performance and critical thinking disposition or skills scores was not statistically significant, except for problem recognition and overall critical thinking skills scores (Cramer’s V = 0·444, P = 0·029). There was a statistically significant relationship between overall high-fidelity human simulation performance and overall critical thinking disposition scores (Cramer’s V = 0·413, P = 0·047). Conclusion Students’ performance reflected difficulty meeting expectations in simulated clinical scenarios. High-fidelity human simulation performance appeared to approximate scores on metrics of critical thinking best. Further research is needed to determine if simulation-based performance correlates with critical thinking skills in the clinical setting. PMID:20636471
Robitaille, Arnaud; Perron, Roger; Germain, Jean-François; Tanoubi, Issam; Georgescu, Mihai
2015-04-01
Transcutaneous cardiac pacing (TCP) is a potentially lifesaving technique that is part of the recommended treatment for symptomatic bradycardia. Transcutaneous cardiac pacing however is used uncommonly, and its successful application is not straightforward. Simulation could, therefore, play an important role in the teaching and assessment of TCP competence. However, even the highest-fidelity mannequins available on the market have important shortcomings, which limit the potential of simulation. Six criteria defining clinical competency in TCP were established and used as a starting point in the creation of an improved TCP simulator. The goal was a model that could be used to assess experienced clinicians, an objective that justifies the additional effort required by the increased fidelity. The proposed 2-mannequin model (TMM) combines a highly modified Human Patient Simulator with a SimMan 3G, the latter being used solely to provide the electrocardiography (ECG) tracing. The TMM improves the potential of simulation to assess experienced clinicians (1) by reproducing key features of TCP, like using the same multifunctional pacing electrodes used clinically, allowing dual ECG monitoring, and responding with upper body twitching when stimulated, but equally importantly (2) by reproducing key pitfalls of the technique, like allowing pacing electrode misplacement and reproducing false signs of ventricular capture, commonly, but erroneously, used clinically to establish that effective pacing has been achieved (like body twitching, electrical artifact on the ECG, and electrical capture without ventricular capture). The proposed TMM uses a novel combination of 2 high-fidelity mannequins to improve TCP simulation until upgraded mannequins become commercially available.
Simulator technology as a tool for education in cardiac care.
Hravnak, Marilyn; Beach, Michael; Tuite, Patricia
2007-01-01
Assisting nurses in gaining the cognitive and psychomotor skills necessary to safely and effectively care for patients with cardiovascular disease can be challenging for educators. Ideally, nurses would have the opportunity to synthesize and practice these skills in a protected training environment before application in the dynamic clinical setting. Recently, a technology known as high fidelity human simulation was introduced, which permits learners to interact with a simulated patient. The dynamic physiologic parameters and physical assessment capabilities of the simulated patient provide for a realistic learning environment. This article describes the High Fidelity Human Simulation Laboratory at the University of Pittsburgh School of Nursing and presents strategies for using this technology as a tool in teaching complex cardiac nursing care at the basic and advanced practice nursing levels. The advantages and disadvantages of high fidelity human simulation in learning are discussed.
Autonomous Aerobraking: Thermal Analysis and Response Surface Development
NASA Technical Reports Server (NTRS)
Dec, John A.; Thornblom, Mark N.
2011-01-01
A high-fidelity thermal model of the Mars Reconnaissance Orbiter was developed for use in an autonomous aerobraking simulation study. Response surface equations were derived from the high-fidelity thermal model and integrated into the autonomous aerobraking simulation software. The high-fidelity thermal model was developed using the Thermal Desktop software and used in all phases of the analysis. The use of Thermal Desktop exclusively, represented a change from previously developed aerobraking thermal analysis methodologies. Comparisons were made between the Thermal Desktop solutions and those developed for the previous aerobraking thermal analyses performed on the Mars Reconnaissance Orbiter during aerobraking operations. A variable sensitivity screening study was performed to reduce the number of variables carried in the response surface equations. Thermal analysis and response surface equation development were performed for autonomous aerobraking missions at Mars and Venus.
Band-selective shaped pulse for high fidelity quantum control in diamond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Yan-Chun; Xing, Jian; Liu, Gang-Qin
High fidelity quantum control of qubits is crucially important for realistic quantum computing, and it becomes more challenging when there are inevitable interactions between qubits. We introduce a band-selective shaped pulse, refocusing BURP (REBURP) pulse, to cope with the problems. The electron spin of nitrogen-vacancy centers in diamond is flipped with high fidelity by the REBURP pulse. In contrast with traditional rectangular pulses, the shaped pulse has almost equal excitation effect in a sharply edged region (in frequency domain). So the three sublevels of host {sup 14}N nuclear spin can be flipped accurately simultaneously, while unwanted excitations of other sublevelsmore » (e.g., of a nearby {sup 13}C nuclear spin) is well suppressed. Our scheme can be used for various applications such as quantum metrology, quantum sensing, and quantum information process.« less
Lim, Hyang-Tag; Hong, Kang-Hee; Kim, Yoon-Ho
2015-10-21
Quantum coherence and entanglement, which are essential resources for quantum information, are often degraded and lost due to decoherence. Here, we report a proof-of-principle experimental demonstration of high fidelity entanglement distribution over decoherence channels via qubit transduction. By unitarily switching the initial qubit encoding to another, which is insensitive to particular forms of decoherence, we have demonstrated that it is possible to avoid the effect of decoherence completely. In particular, we demonstrate high-fidelity distribution of photonic polarization entanglement over quantum channels with two types of decoherence, amplitude damping and polarization-mode dispersion, via qubit transduction between polarization qubits and dual-rail qubits. These results represent a significant breakthrough in quantum communication over decoherence channels as the protocol is input-state independent, requires no ancillary photons and symmetries, and has near-unity success probability.
Lim, Hyang-Tag; Hong, Kang-Hee; Kim, Yoon-Ho
2015-01-01
Quantum coherence and entanglement, which are essential resources for quantum information, are often degraded and lost due to decoherence. Here, we report a proof-of-principle experimental demonstration of high fidelity entanglement distribution over decoherence channels via qubit transduction. By unitarily switching the initial qubit encoding to another, which is insensitive to particular forms of decoherence, we have demonstrated that it is possible to avoid the effect of decoherence completely. In particular, we demonstrate high-fidelity distribution of photonic polarization entanglement over quantum channels with two types of decoherence, amplitude damping and polarization-mode dispersion, via qubit transduction between polarization qubits and dual-rail qubits. These results represent a significant breakthrough in quantum communication over decoherence channels as the protocol is input-state independent, requires no ancillary photons and symmetries, and has near-unity success probability. PMID:26487083
SOWFA Super-Controller: A High-Fidelity Tool for Evaluating Wind Plant Control Approaches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleming, P.; Gebraad, P.; van Wingerden, J. W.
2013-01-01
This paper presents a new tool for testing wind plant controllers in the Simulator for Offshore Wind Farm Applications (SOWFA). SOWFA is a high-fidelity simulator for the interaction between wind turbine dynamics and the fluid flow in a wind plant. The new super-controller testing environment in SOWFA allows for the implementation of the majority of the wind plant control strategies proposed in the literature.
Simulation Learning: PC-Screen Based (PCSB) versus High Fidelity Simulation (HFS)
2012-08-01
methods for the use of simulation for teaching clinical skills to military and civilian clinicians . High fidelity simulation is an expensive method of...without the knowledge and approval of the IRB. Changes include, but not limited to, modifications in study design, recruitment process and number of...Person C-Collar simulation algorithm Pathway A Scenario A - Spinal stabilization: Sub processes Legend: Pathway Points Complex task to be performed by
Compact Single Site Resolution Cold Atom Experiment for Adiabatic Quantum Computing
2016-02-03
goal of our scientific investigation is to demonstrate high fidelity and fast atom-atom entanglement between physically 1. REPORT DATE (DD-MM-YYYY) 4...of our scientific investigation is to demonstrate high fidelity and fast atom-atom entanglement between physically separated and optically addressed...Specifically, we will design and construct a set of compact single atom traps with integrated optics, suitable for heralded entanglement and loophole
High-fidelity patient simulation in nursing education: an integrative review.
Weaver, Amy
2011-01-01
An integrative review was undertaken to analyze studies published since 1998 on the use of high-fidelity patient simulation (HFPS) in undergraduate nursing education. This review found that HFPS benefits nursing students in terms of knowledge, value, realism, and learner satisfaction;findings were mixed in the areas of student confidence, knowledge transfer, and stress. Further research in these and other areas will determine whether its increased use is warranted.
Feng, Shaoqi; Qin, Chuan; Shang, Kuanping; Pathak, Shibnath; Lai, Weicheng; Guan, Binbin; Clements, Matthew; Su, Tiehui; Liu, Guangyao; Lu, Hongbo; Scott, Ryan P; Ben Yoo, S J
2017-04-17
This paper demonstrates rapidly reconfigurable, high-fidelity optical arbitrary waveform generation (OAWG) in a heterogeneous photonic integrated circuit (PIC). The heterogeneous PIC combines advantages of high-speed indium phosphide (InP) modulators and low-loss, high-contrast silicon nitride (Si3N4) arrayed waveguide gratings (AWGs) so that high-fidelity optical waveform syntheses with rapid waveform updates are possible. The generated optical waveforms spanned a 160 GHz spectral bandwidth starting from an optical frequency comb consisting of eight comb lines separated by 20 GHz channel spacing. The Error Vector Magnitude (EVM) values of the generated waveforms were approximately 16.4%. The OAWG module can rapidly and arbitrarily reconfigure waveforms upon every pulse arriving at 2 ns repetition time. The result of this work indicates the feasibility of truly dynamic optical arbitrary waveform generation where the reconfiguration rate or the modulator bandwidth must exceed the channel spacing of the AWG and the optical frequency comb.
High-fidelity spin entanglement using optimal control.
Dolde, Florian; Bergholm, Ville; Wang, Ya; Jakobi, Ingmar; Naydenov, Boris; Pezzagna, Sébastien; Meijer, Jan; Jelezko, Fedor; Neumann, Philipp; Schulte-Herbrüggen, Thomas; Biamonte, Jacob; Wrachtrup, Jörg
2014-02-28
Precise control of quantum systems is of fundamental importance in quantum information processing, quantum metrology and high-resolution spectroscopy. When scaling up quantum registers, several challenges arise: individual addressing of qubits while suppressing cross-talk, entangling distant nodes and decoupling unwanted interactions. Here we experimentally demonstrate optimal control of a prototype spin qubit system consisting of two proximal nitrogen-vacancy centres in diamond. Using engineered microwave pulses, we demonstrate single electron spin operations with a fidelity F≈0.99. With additional dynamical decoupling techniques, we further realize high-quality, on-demand entangled states between two electron spins with F>0.82, mostly limited by the coherence time and imperfect initialization. Crosstalk in a crowded spectrum and unwanted dipolar couplings are simultaneously eliminated to a high extent. Finally, by high-fidelity entanglement swapping to nuclear spin quantum memory, we demonstrate nuclear spin entanglement over a length scale of 25 nm. This experiment underlines the importance of optimal control for scalable room temperature spin-based quantum information devices.
Validation of a Low-Thrust Mission Design Tool Using Operational Navigation Software
NASA Technical Reports Server (NTRS)
Englander, Jacob A.; Knittel, Jeremy M.; Williams, Ken; Stanbridge, Dale; Ellison, Donald H.
2017-01-01
Design of flight trajectories for missions employing solar electric propulsion requires a suitably high-fidelity design tool. In this work, the Evolutionary Mission Trajectory Generator (EMTG) is presented as a medium-high fidelity design tool that is suitable for mission proposals. EMTG is validated against the high-heritage deep-space navigation tool MIRAGE, demonstrating both the accuracy of EMTG's model and an operational mission design and navigation procedure using both tools. The validation is performed using a benchmark mission to the Jupiter Trojans.
Intervention Fidelity in Family-Based Prevention Counseling for Adolescent Problem Behaviors
ERIC Educational Resources Information Center
Hogue, Aaron; Liddle, Howard A.; Singer, Alisa; Leckrone, Jodi
2005-01-01
This study examined fidelity in multidimensional family prevention (MDFP), a family-based prevention counseling model for adolescents at high risk for substance abuse and related behavior problems, in comparison to two empirically based treatments for adolescent drug abuse: multidimensional family therapy (MDFT) and cognitive-behavioral therapy…
Progress towards a microwave-based high-fidelity Toffoli gate with superconducting qubits
NASA Astrophysics Data System (ADS)
Rigetti, Chad; Chow, Jerry; Corcoles, Antonio; Rozen, Jim; Keefe, George; Rothwell, Mary Beth; Rohrs, Jack; Borstelmann, Mark; Divincenzo, David; Ketchen, Mark; Steffen, Matthias
2011-03-01
We describe recent progress at IBM towards a microwave-based implementation of the Toffoli gate using three capacitively shunted flux qubits dispersively coupled to a resonator. We discuss the device architecture and the microwave protocol, along with expected limits to gate fidelity and scaling.
Yang, Huiqin; Thompson, Carl; Bland, Martin
2012-12-01
Apparent overconfidence and underconfidence in clinicians making clinical judgements could be a feature of evaluative research designs that fail to accurately represent clinical environments. To test the effect of improved realism of clinical judgement tasks on confidence calibration performance of nurses and student nurses. A comparative confidence calibration analysis. The study was conducted in a large university of Northern England. Ninety-seven participants rated their confidence - using a scale that ranged from 0 (no confidence) to 100 (totally confident) on dichotomous clinical judgements of critical event risk. The judgements were in response to 25 paper-based and 25 higher fidelity scenarios using a computerised patient simulator and clinical equipment. Scenarios, and judgement criteria of 'correctness', were generated from real patient cases. Using a series of calibration measures (calibration, resolution and over/underconfidence), participants' confidence was calibrated against the proportion of correct judgements. The calibration measures generated by the paper-based and high fidelity clinical simulation conditions were compared. Participants made significantly less accurate clinical judgements of risk in the high fidelity clinical simulations compared to the paper simulations (P=0.0002). They were significantly less confident in high fidelity clinical simulations than paper simulations (P=0.03). However, there was no significant difference of over/underconfidence for participants between the two simulated settings (P=0.06). Participants were no better calibrated in the high fidelity clinical simulations than paper simulations, P=0.85. Likewise, participants had no better ability of discriminating correct judgements from incorrect judgements as measured by the resolution statistic in high fidelity clinical simulations than paper simulations, P=0.76. Improving the realism of simulated judgement tasks led to reduced confidence and judgement accuracy in participants but did not alter confidence calibration. These findings suggest that judgemental miscalibration of confidence in nurses may be a systematic cognitive bias and that simply making scenarios more realistic may not be a sufficient condition for correction. Copyright © 2012 Elsevier Ltd. All rights reserved.
Xiong, Ai-Sheng; Yao, Quan-Hong; Peng, Ri-He; Li, Xian; Fan, Hui-Qin; Cheng, Zong-Ming; Li, Yi
2004-07-07
Chemical synthesis of DNA sequences provides a powerful tool for modifying genes and for studying gene function, structure and expression. Here, we report a simple, high-fidelity and cost-effective PCR-based two-step DNA synthesis (PTDS) method for synthesis of long segments of DNA. The method involves two steps. (i) Synthesis of individual fragments of the DNA of interest: ten to twelve 60mer oligonucleotides with 20 bp overlap are mixed and a PCR reaction is carried out with high-fidelity DNA polymerase Pfu to produce DNA fragments that are approximately 500 bp in length. (ii) Synthesis of the entire sequence of the DNA of interest: five to ten PCR products from the first step are combined and used as the template for a second PCR reaction using high-fidelity DNA polymerase pyrobest, with the two outermost oligonucleotides as primers. Compared with the previously published methods, the PTDS method is rapid (5-7 days) and suitable for synthesizing long segments of DNA (5-6 kb) with high G + C contents, repetitive sequences or complex secondary structures. Thus, the PTDS method provides an alternative tool for synthesizing and assembling long genes with complex structures. Using the newly developed PTDS method, we have successfully obtained several genes of interest with sizes ranging from 1.0 to 5.4 kb.
Model-Based Testability Assessment and Directed Troubleshooting of Shuttle Wiring Systems
NASA Technical Reports Server (NTRS)
Deb, Somnath; Domagala, Chuck; Shrestha, Roshan; Malepati, Venkatesh; Cavanaugh, Kevin; Patterson-Hine, Ann; Sanderfer, Dwight; Cockrell, Jim; Norvig, Peter (Technical Monitor)
2000-01-01
We have recently completed a pilot study on the Space shuttle wiring system commissioned by the Wiring Integrity Research (WIRe) team at NASA Ames Research Center, As the space shuttle ages, it is experiencing wiring degradation problems including arcing, chaffing insulation breakdown and broken conductors. A systematic and comprehensive test process is required to thoroughly test and quality assure (QA) the wiring systems. The NASA WIRe team recognized the value of a formal model based analysis for risk-assessment and fault coverage analysis. However. wiring systems are complex and involve over 50,000 wire segments. Therefore, NASA commissioned this pilot study with Qualtech Systems. Inc. (QSI) to explore means of automatically extracting high fidelity multi-signal models from wiring information database for use with QSI's Testability Engineering and Maintenance System (TEAMS) tool.
VEDA: a web-based virtual environment for dynamic atomic force microscopy.
Melcher, John; Hu, Shuiqing; Raman, Arvind
2008-06-01
We describe here the theory and applications of virtual environment dynamic atomic force microscopy (VEDA), a suite of state-of-the-art simulation tools deployed on nanoHUB (www.nanohub.org) for the accurate simulation of tip motion in dynamic atomic force microscopy (dAFM) over organic and inorganic samples. VEDA takes advantage of nanoHUB's cyberinfrastructure to run high-fidelity dAFM tip dynamics computations on local clusters and the teragrid. Consequently, these tools are freely accessible and the dAFM simulations are run using standard web-based browsers without requiring additional software. A wide range of issues in dAFM ranging from optimal probe choice, probe stability, and tip-sample interaction forces, power dissipation, to material property extraction and scanning dynamics over hetereogeneous samples can be addressed.
Invited Article: VEDA: A web-based virtual environment for dynamic atomic force microscopy
NASA Astrophysics Data System (ADS)
Melcher, John; Hu, Shuiqing; Raman, Arvind
2008-06-01
We describe here the theory and applications of virtual environment dynamic atomic force microscopy (VEDA), a suite of state-of-the-art simulation tools deployed on nanoHUB (www.nanohub.org) for the accurate simulation of tip motion in dynamic atomic force microscopy (dAFM) over organic and inorganic samples. VEDA takes advantage of nanoHUB's cyberinfrastructure to run high-fidelity dAFM tip dynamics computations on local clusters and the teragrid. Consequently, these tools are freely accessible and the dAFM simulations are run using standard web-based browsers without requiring additional software. A wide range of issues in dAFM ranging from optimal probe choice, probe stability, and tip-sample interaction forces, power dissipation, to material property extraction and scanning dynamics over hetereogeneous samples can be addressed.
Use of an UROV to develop 3-D optical models of submarine environments
NASA Astrophysics Data System (ADS)
Null, W. D.; Landry, B. J.
2017-12-01
The ability to rapidly obtain high-fidelity bathymetry is crucial for a broad range of engineering, scientific, and defense applications ranging from bridge scour, bedform morphodynamics, and coral reef health to unexploded ordnance detection and monitoring. The present work introduces the use of an Underwater Remotely Operated Vehicle (UROV) to develop 3-D optical models of submarine environments. The UROV used a Raspberry Pi camera mounted to a small servo which allowed for pitch control. Prior to video data collection, in situ camera calibration was conducted with the system. Multiple image frames were extracted from the underwater video for 3D reconstruction using Structure from Motion (SFM). This system provides a simple and cost effective solution to obtaining detailed bathymetry in optically clear submarine environments.
Numerical study of phase conjugation in stimulated Brillouin scattering from an optical waveguide
NASA Astrophysics Data System (ADS)
Lehmberg, R. H.
1983-05-01
Stimulated Brillouin scattering (SBS) in a multimode optical waveguide is examined, and the parameters that affect the wavefront conjugation fidelity are studied. The nonlinear propagation code is briefly described and the calculated quantities are defined. The parameter study in the low reflectivity limit is described, and the effects of pump depletion are considered. The waveguide produced significantly higher fidelities than the focused configuration, in agreement with several experimental studies. The light scattered back through the phase aberrator exhibited a farfield intenstiy profile closely matching that of the incident beam; however, the nearfield intensity exhibited large and rapid spatial inhomogeneities across the entire aberrator, even for conjugation fidelities as high as 98 percent. In the absence of pump depletion, the fidelity increased with average pump intensity for amplitude gains up to around e to the 10th and then decreased slowly and monotonically with higher intensity. For all cases, pump depletion significantly enhanced the fidelity of the wavefront conjugation by inhibiting the small-scale pulling effect.
Courbin, Nicolas; Besnard, Aurélien; Péron, Clara; Saraux, Claire; Fort, Jérôme; Perret, Samuel; Tornos, Jérémy; Grémillet, David
2018-04-16
Spatio-temporally stable prey distributions coupled with individual foraging site fidelity are predicted to favour individual resource specialisation. Conversely, predators coping with dynamic prey distributions should diversify their individual diet and/or shift foraging areas to increase net intake. We studied individual specialisation in Scopoli's shearwaters (Calonectris diomedea) from the highly dynamic Western Mediterranean, using daily prey distributions together with resource selection, site fidelity and trophic-level analyses. As hypothesised, we found dietary diversification, low foraging site fidelity and almost no individual specialisation in resource selection. Crucially, shearwaters switched daily foraging tactics, selecting areas with contrasting prey of varying trophic levels. Overall, information use and plastic resource selection of individuals with reduced short-term foraging site fidelity allow predators to overcome prey field lability. Our study is an essential step towards a better understanding of individual responses to enhanced environmental stochasticity driven by global changes, and of pathways favouring population persistence. © 2018 John Wiley & Sons Ltd/CNRS.
NASA Astrophysics Data System (ADS)
Sawada, A.; Faniel, S.; Mineshige, S.; Kawabata, S.; Saito, K.; Kobayashi, K.; Sekine, Y.; Sugiyama, H.; Koga, T.
2018-05-01
We report an approach for examining electron properties using information about the shape and size of a nanostructure as a measurement reference. This approach quantifies the spin precession angles per unit length directly by considering the time-reversal interferences on chaotic return trajectories within mesoscopic ring arrays (MRAs). Experimentally, we fabricated MRAs using nanolithography in InGaAs quantum wells which had a gate-controllable spin-orbit interaction (SOI). As a result, we observed an Onsager symmetry related to relativistic magnetic fields, which provided us with indispensable information for the semiclassical billiard ball simulation. Our simulations, developed based on the real-space formalism of the weak localization/antilocalization effect including the degree of freedom for electronic spin, reproduced the experimental magnetoconductivity (MC) curves with high fidelity. The values of five distinct electron parameters (Fermi wavelength, spin precession angles per unit length for two different SOIs, impurity scattering length, and phase coherence length) were thereby extracted from a single MC curve. The methodology developed here is applicable to wide ranges of nanomaterials and devices, providing a diagnostic tool for exotic properties of two-dimensional electron systems.
NASA Technical Reports Server (NTRS)
Selle, L. C.; Bellan, Josette
2006-01-01
Transitional databases from Direct Numerical Simulation (DNS) of three-dimensional mixing layers for single-phase flows and two-phase flows with evaporation are analyzed and used to examine the typical hypothesis that the scalar dissipation Probability Distribution Function (PDF) may be modeled as a Gaussian. The databases encompass a single-component fuel and four multicomponent fuels, two initial Reynolds numbers (Re), two mass loadings for two-phase flows and two free-stream gas temperatures. Using the DNS calculated moments of the scalar-dissipation PDF, it is shown, consistent with existing experimental information on single-phase flows, that the Gaussian is a modest approximation of the DNS-extracted PDF, particularly poor in the range of the high scalar-dissipation values, which are significant for turbulent reaction rate modeling in non-premixed flows using flamelet models. With the same DNS calculated moments of the scalar-dissipation PDF and making a change of variables, a model of this PDF is proposed in the form of the (beta)-PDF which is shown to approximate much better the DNS-extracted PDF, particularly in the regime of the high scalar-dissipation values. Several types of statistical measures are calculated over the ensemble of the fourteen databases. For each statistical measure, the proposed (beta)-PDF model is shown to be much superior to the Gaussian in approximating the DNS-extracted PDF. Additionally, the agreement between the DNS-extracted PDF and the (beta)-PDF even improves when the comparison is performed for higher initial Re layers, whereas the comparison with the Gaussian is independent of the initial Re values. For two-phase flows, the comparison between the DNS-extracted PDF and the (beta)-PDF also improves with increasing free-stream gas temperature and mass loading. The higher fidelity approximation of the DNS-extracted PDF by the (beta)-PDF with increasing Re, gas temperature and mass loading bodes well for turbulent reaction rate modeling.
Inaccurate DNA Synthesis in Cell Extracts of Yeast Producing Active Human DNA Polymerase Iota
Makarova, Alena V.; Grabow, Corinn; Gening, Leonid V.; Tarantul, Vyacheslav Z.; Tahirov, Tahir H.; Bessho, Tadayoshi; Pavlov, Youri I.
2011-01-01
Mammalian Pol ι has an unusual combination of properties: it is stimulated by Mn2+ ions, can bypass some DNA lesions and misincorporates “G” opposite template “T” more frequently than incorporates the correct “A.” We recently proposed a method of detection of Pol ι activity in animal cell extracts, based on primer extension opposite the template T with a high concentration of only two nucleotides, dGTP and dATP (incorporation of “G” versus “A” method of Gening, abbreviated as “misGvA”). We provide unambiguous proof of the “misGvA” approach concept and extend the applicability of the method for the studies of variants of Pol ι in the yeast model system with different cation cofactors. We produced human Pol ι in baker's yeast, which do not have a POLI ortholog. The “misGvA” activity is absent in cell extracts containing an empty vector, or producing catalytically dead Pol ι, or Pol ι lacking exon 2, but is robust in the strain producing wild-type Pol ι or its catalytic core, or protein with the active center L62I mutant. The signature pattern of primer extension products resulting from inaccurate DNA synthesis by extracts of cells producing either Pol ι or human Pol η is different. The DNA sequence of the template is critical for the detection of the infidelity of DNA synthesis attributed to DNA Pol ι. The primer/template and composition of the exogenous DNA precursor pool can be adapted to monitor replication fidelity in cell extracts expressing various error-prone Pols or mutator variants of accurate Pols. Finally, we demonstrate that the mutation rates in yeast strains producing human DNA Pols ι and η are not elevated over the control strain, despite highly inaccurate DNA synthesis by their extracts. PMID:21304950
High-fidelity simulations of a standing-wave thermoacoustic-piezoelectric engine
NASA Astrophysics Data System (ADS)
Lin, Jeffrey; Scalo, Carlo; Hesselink, Lambertus
2014-11-01
We have carried out time-domain three-dimensional and one-dimensional numerical simulations of a thermoacoustic Stirling heat engine (TASHE). The TASHE model adopted for our study is that of a standing-wave engine: a thermal gradient is imposed in a resonator tube and is capped with a piezoelectric diaphragm in a Helmholtz resonator cavity for acoustic energy extraction. The 0.51 m engine sustains 500 Pa pressure oscillations with atmospheric air and pressure. Such an engine is interesting in practice as an external heat engine with no mechanically-moving parts. Our numerical setup allows for both the evaluation of the nonlinear effects of scaling and the effect of a fully electromechanically-coupled impedance boundary condition, representative of a piezoelectric element. The thermoacoustic stack is fully resolved. Previous modeling efforts have focused on steady-state solvers with impedances or nonlinear effects without energy extraction. Optimization of scaling and the impedance for power output can now be simultaneously applied; engines of smaller sizes and higher frequencies suitable for piezoelectric energy extraction can be studied with three-dimensional solvers without restriction. Results at a low-amplitude regime were validated against results obtained from the steady-state solver DeltaEC and from experimental results in literature. Pressure and velocity amplitudes within the cavities match within 2% difference.
Minimum requirements for predictive pore-network modeling of solute transport in micromodels
NASA Astrophysics Data System (ADS)
Mehmani, Yashar; Tchelepi, Hamdi A.
2017-10-01
Pore-scale models are now an integral part of analyzing fluid dynamics in porous materials (e.g., rocks, soils, fuel cells). Pore network models (PNM) are particularly attractive due to their computational efficiency. However, quantitative predictions with PNM have not always been successful. We focus on single-phase transport of a passive tracer under advection-dominated regimes and compare PNM with high-fidelity direct numerical simulations (DNS) for a range of micromodel heterogeneities. We identify the minimum requirements for predictive PNM of transport. They are: (a) flow-based network extraction, i.e., discretizing the pore space based on the underlying velocity field, (b) a Lagrangian (particle tracking) simulation framework, and (c) accurate transfer of particles from one pore throat to the next. We develop novel network extraction and particle tracking PNM methods that meet these requirements. Moreover, we show that certain established PNM practices in the literature can result in first-order errors in modeling advection-dominated transport. They include: all Eulerian PNMs, networks extracted based on geometric metrics only, and flux-based nodal transfer probabilities. Preliminary results for a 3D sphere pack are also presented. The simulation inputs for this work are made public to serve as a benchmark for the research community.
NASA Astrophysics Data System (ADS)
Manard, Benjamin T.; Marcus, R. Kenneth
2012-08-01
Capillary-channeled polymer (C-CP) fibers are employed in a micropipette tip format to affect a stationary phase for the solid phase extraction (SPE) of proteins from buffer solutions prior to MALDI-MS analysis. Proteins readily adsorb to the polypropylene (PP) C-CP fibers while buffer species are easily washed off the tips using DI-H2O. Elution of the solutes is achieved with an aliquot of 50:50 ACN:H2O, which is compatible with the subsequent spotting on the MALDI target with the matrix solution. Lysozyme and cytochrome c are used as test species, with a primary buffer composition of 100 mM Tris-HCl. In this case, direct MALDI-MS produces no discernible protein signals. SPE on the C-CP fibers yields high fidelity mass spectra for 1 μL sample volumes. Limits of detection for cytochrome c in 100 mM Tris-HCl are on the order of 40 nM. Extraction of cytochrome c from buffer concentrations of up to 1 M Tris-HCl, provides signal recoveries that are suppressed by only ~50 % versus neat protein solutions. Finally, extraction of 3.1 μM cytochrome c from a synthetic urine matrix exhibits excellent recovery.
High-Fidelity Single-Shot Readout for a Spin Qubit via an Enhanced Latching Mechanism
NASA Astrophysics Data System (ADS)
Harvey-Collard, Patrick; D'Anjou, Benjamin; Rudolph, Martin; Jacobson, N. Tobias; Dominguez, Jason; Ten Eyck, Gregory A.; Wendt, Joel R.; Pluym, Tammy; Lilly, Michael P.; Coish, William A.; Pioro-Ladrière, Michel; Carroll, Malcolm S.
2018-04-01
The readout of semiconductor spin qubits based on spin blockade is fast but suffers from a small charge signal. Previous work suggested large benefits from additional charge mapping processes; however, uncertainties remain about the underlying mechanisms and achievable fidelity. In this work, we study the single-shot fidelity and limiting mechanisms for two variations of an enhanced latching readout. We achieve average single-shot readout fidelities greater than 99.3% and 99.86% for the conventional and enhanced readout, respectively, the latter being the highest to date for spin blockade. The signal amplitude is enhanced to a full one-electron signal while preserving the readout speed. Furthermore, layout constraints are relaxed because the charge sensor signal is no longer dependent on being aligned with the conventional (2,0)-(1,1) charge dipole. Silicon donor-quantum-dot qubits are used for this study, for which the dipole insensitivity substantially relaxes donor placement requirements. One of the readout variations also benefits from a parametric lifetime enhancement by replacing the spin-relaxation process with a charge-metastable one. This provides opportunities to further increase the fidelity. The relaxation mechanisms in the different regimes are investigated. This work demonstrates a readout that is fast, has a one-electron signal, and results in higher fidelity. It further predicts that going beyond 99.9% fidelity in a few microseconds of measurement time is within reach.
Advances in High-Fidelity Multi-Physics Simulation Techniques
2008-01-01
predictor - corrector method is used to advance the solution in time. 33 x (m) y (m ) 0 1 2 3.00001 0 1 2 3 4 5 40 x 50 Grid 3 Figure 17: Typical...Unclassified c . THIS PAGE Unclassified 17. LIMITATION OF ABSTRACT: SAR 18. NUMBER OF PAGES 60 Datta Gaitonde 19b. TELEPHONE...advanced parallel computing platforms. The motivation to develop high-fidelity algorithms derives from considerations in various areas of current
ARC integration into the NEAMS Workbench
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stauff, N.; Gaughan, N.; Kim, T.
2017-01-01
One of the objectives of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Integration Product Line (IPL) is to facilitate the deployment of the high-fidelity codes developed within the program. The Workbench initiative was launched in FY-2017 by the IPL to facilitate the transition from conventional tools to high fidelity tools. The Workbench provides a common user interface for model creation, real-time validation, execution, output processing, and visualization for integrated codes.
High-Fidelity Simulation for Advanced Cardiac Life Support Training
Davis, Lindsay E.; Storjohann, Tara D.; Spiegel, Jacqueline J.; Beiber, Kellie M.
2013-01-01
Objective. To determine whether a high-fidelity simulation technique compared with lecture would produce greater improvement in advanced cardiac life support (ACLS) knowledge, confidence, and overall satisfaction with the training method. Design. This sequential, parallel-group, crossover trial randomized students into 2 groups distinguished by the sequence of teaching technique delivered for ACLS instruction (ie, classroom lecture vs high-fidelity simulation exercise). Assessment. Test scores on a written examination administered at baseline and after each teaching technique improved significantly from baseline in all groups but were highest when lecture was followed by simulation. Simulation was associated with a greater degree of overall student satisfaction compared with lecture. Participation in a simulation exercise did not improve pharmacy students’ knowledge of ACLS more than attending a lecture, but it was associated with improved student confidence in skills and satisfaction with learning and application. Conclusions. College curricula should incorporate simulation to complement but not replace lecture for ACLS education. PMID:23610477
Implementing a strand of a scalable fault-tolerant quantum computing fabric.
Chow, Jerry M; Gambetta, Jay M; Magesan, Easwar; Abraham, David W; Cross, Andrew W; Johnson, B R; Masluk, Nicholas A; Ryan, Colm A; Smolin, John A; Srinivasan, Srikanth J; Steffen, M
2014-06-24
With favourable error thresholds and requiring only nearest-neighbour interactions on a lattice, the surface code is an error-correcting code that has garnered considerable attention. At the heart of this code is the ability to perform a low-weight parity measurement of local code qubits. Here we demonstrate high-fidelity parity detection of two code qubits via measurement of a third syndrome qubit. With high-fidelity gates, we generate entanglement distributed across three superconducting qubits in a lattice where each code qubit is coupled to two bus resonators. Via high-fidelity measurement of the syndrome qubit, we deterministically entangle the code qubits in either an even or odd parity Bell state, conditioned on the syndrome qubit state. Finally, to fully characterize this parity readout, we develop a measurement tomography protocol. The lattice presented naturally extends to larger networks of qubits, outlining a path towards fault-tolerant quantum computing.
General solution to inhomogeneous dephasing and smooth pulse dynamical decoupling
NASA Astrophysics Data System (ADS)
Zeng, Junkai; Deng, Xiu-Hao; Russo, Antonio; Barnes, Edwin
2018-03-01
In order to achieve the high-fidelity quantum control needed for a broad range of quantum information technologies, reducing the effects of noise and system inhomogeneities is an essential task. It is well known that a system can be decoupled from noise or made insensitive to inhomogeneous dephasing dynamically by using carefully designed pulse sequences based on square or delta-function waveforms such as Hahn spin echo or CPMG. However, such ideal pulses are often challenging to implement experimentally with high fidelity. Here, we uncover a new geometrical framework for visualizing all possible driving fields, which enables one to generate an unlimited number of smooth, experimentally feasible pulses that perform dynamical decoupling or dynamically corrected gates to arbitrarily high order. We demonstrate that this scheme can significantly enhance the fidelity of single-qubit operations in the presence of noise and when realistic limitations on pulse rise times and amplitudes are taken into account.
High-fidelity simulation for advanced cardiac life support training.
Davis, Lindsay E; Storjohann, Tara D; Spiegel, Jacqueline J; Beiber, Kellie M; Barletta, Jeffrey F
2013-04-12
OBJECTIVE. To determine whether a high-fidelity simulation technique compared with lecture would produce greater improvement in advanced cardiac life support (ACLS) knowledge, confidence, and overall satisfaction with the training method. DESIGN. This sequential, parallel-group, crossover trial randomized students into 2 groups distinguished by the sequence of teaching technique delivered for ACLS instruction (ie, classroom lecture vs high-fidelity simulation exercise). ASSESSMENT. Test scores on a written examination administered at baseline and after each teaching technique improved significantly from baseline in all groups but were highest when lecture was followed by simulation. Simulation was associated with a greater degree of overall student satisfaction compared with lecture. Participation in a simulation exercise did not improve pharmacy students' knowledge of ACLS more than attending a lecture, but it was associated with improved student confidence in skills and satisfaction with learning and application. CONCLUSIONS. College curricula should incorporate simulation to complement but not replace lecture for ACLS education.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutland, Christopher J.
2009-04-26
The Terascale High-Fidelity Simulations of Turbulent Combustion (TSTC) project is a multi-university collaborative effort to develop a high-fidelity turbulent reacting flow simulation capability utilizing terascale, massively parallel computer technology. The main paradigm of the approach is direct numerical simulation (DNS) featuring the highest temporal and spatial accuracy, allowing quantitative observations of the fine-scale physics found in turbulent reacting flows as well as providing a useful tool for development of sub-models needed in device-level simulations. Under this component of the TSTC program the simulation code named S3D, developed and shared with coworkers at Sandia National Laboratories, has been enhanced with newmore » numerical algorithms and physical models to provide predictive capabilities for turbulent liquid fuel spray dynamics. Major accomplishments include improved fundamental understanding of mixing and auto-ignition in multi-phase turbulent reactant mixtures and turbulent fuel injection spray jets.« less
Self-Reflection of Video-Recorded High-Fidelity Simulations and Development of Clinical Judgment.
Bussard, Michelle E
2016-09-01
Nurse educators are increasingly using high-fidelity simulators to improve prelicensure nursing students' ability to develop clinical judgment. Traditionally, oral debriefing sessions have immediately followed the simulation scenarios as a method for students to connect theory to practice and therefore develop clinical judgment. Recently, video recording of the simulation scenarios is being incorporated. This qualitative, interpretive description study was conducted to identify whether self-reflection on video-recorded high-fidelity simulation (HFS) scenarios helped prelicensure nursing students to develop clinical judgment. Tanner's clinical judgment model was the framework for this study. Four themes emerged from this study: Confidence, Communication, Decision Making, and Change in Clinical Practice. This study indicated that self-reflection of video-recorded HFS scenarios is beneficial for prelicensure nursing students to develop clinical judgment. [J Nurs Educ. 2016;55(9):522-527.]. Copyright 2016, SLACK Incorporated.
Effect of sway on image fidelity in whole-body digitizing
NASA Astrophysics Data System (ADS)
Corner, Brian D.; Hu, Anmin
1998-03-01
For 3D digitizers to be useful data collection tools in scientific and human factors engineering applications, the models created from scan data must match the original object very closely. Factors such as ambient light, characteristics of the object's surface, and object movement, among others can affect the quality of the image produced by any 3D digitizing system. Recently, Cyberware has developed a whole body digitizer for collecting data on human size and shape. With a digitizing time of about 15 seconds, the effect subject movement, or sway, on model fidelity is an important issue to be addressed. The effect of sway is best measured by comparing the dimensions of an object of known geometry to the model of the same object captured by the digitizer. Since it is difficult to know the geometry of a human body accurately, it was decided to compare an object of simple geometry to its digitized counterpart. Preliminary analysis showed that a single cardboard tube would provide the best artifact for detecting sway. A tube was attached to the subjects using supports that allowed the cylinder to stand away from the body. The stand-off was necessary to minimize occluded areas. Multiple scans were taken of 1 subject and the cylinder extracted from the images. Comparison of the actual cylinder dimensions to those extracted from the whole body images found the effect of sway to be minimal. This follows earlier findings that anthropometric dimensions extracted from whole body scans are very close to the same dimensions measured using standard manual methods. Recommendations for subject preparation and stabilization are discussed.
Multi-Fidelity Uncertainty Propagation for Cardiovascular Modeling
NASA Astrophysics Data System (ADS)
Fleeter, Casey; Geraci, Gianluca; Schiavazzi, Daniele; Kahn, Andrew; Marsden, Alison
2017-11-01
Hemodynamic models are successfully employed in the diagnosis and treatment of cardiovascular disease with increasing frequency. However, their widespread adoption is hindered by our inability to account for uncertainty stemming from multiple sources, including boundary conditions, vessel material properties, and model geometry. In this study, we propose a stochastic framework which leverages three cardiovascular model fidelities: 3D, 1D and 0D models. 3D models are generated from patient-specific medical imaging (CT and MRI) of aortic and coronary anatomies using the SimVascular open-source platform, with fluid structure interaction simulations and Windkessel boundary conditions. 1D models consist of a simplified geometry automatically extracted from the 3D model, while 0D models are obtained from equivalent circuit representations of blood flow in deformable vessels. Multi-level and multi-fidelity estimators from Sandia's open-source DAKOTA toolkit are leveraged to reduce the variance in our estimated output quantities of interest while maintaining a reasonable computational cost. The performance of these estimators in terms of computational cost reductions is investigated for a variety of output quantities of interest, including global and local hemodynamic indicators. Sandia National Labs is a multimission laboratory managed and operated by NTESS, LLC, for the U.S. DOE under contract DE-NA0003525. Funding for this project provided by NIH-NIBIB R01 EB018302.
Evaluating intervention fidelity: an example from a high-intensity interval training study.
Taylor, Kathryn L; Weston, Matthew; Batterham, Alan M
2015-01-01
Intervention fidelity refers to the degree to which an experimental manipulation has been implemented as intended, but simple, robust methods for quantifying fidelity have not been well documented. Therefore, we aim to illustrate a rigorous quantitative evaluation of intervention fidelity, using data collected during a high-intensity interval training intervention. Single-group measurement study. Seventeen adolescents (mean age ± standard deviation [SD] 14.0 ± 0.3 years) attended a 10-week high-intensity interval training intervention, comprising two exercise sessions per week. Sessions consisted of 4-7 45-s maximal effort repetitions, interspersed with 90-s rest. We collected heart rate data at 5-s intervals and recorded the peak heart rate for each repetition. The high-intensity exercise criterion was ≥ 90% of individual maximal heart rate. For each participant, we calculated the proportion of total exercise repetitions exceeding this threshold. A linear mixed model was applied to properly separate the variability in peak heart rate between- and within-subjects. Results are presented both as intention to treat (including missed sessions) and per protocol (only participants with 100% attendance; n=8). For intention to treat, the median (interquartile range) proportion of repetitions meeting the high-intensity criterion was 58% (42% to 68%). The mean peak heart rate was 85% of maximal, with a between-subject SD of 7.8 (95% confidence interval 5.4 to 11.3) percentage points and a within-subject SD of 15.1 (14.6 to 15.6) percentage points. For the per protocol analysis, the median proportion of high-intensity repetitions was 68% (47% to 86%). The mean peak heart rate was 91% of maximal, with between- and within-subject SDs of 3.1 (-1.3 to 4.6) and 3.4 (3.2 to 3.6) percentage points, respectively. Synthesising information on exercise session attendance and compliance (exercise intensity) quantifies the intervention dose and informs evaluations of treatment fidelity.
Development of a measure of model fidelity for mental health Crisis Resolution Teams.
Lloyd-Evans, Brynmor; Bond, Gary R; Ruud, Torleif; Ivanecka, Ada; Gray, Richard; Osborn, David; Nolan, Fiona; Henderson, Claire; Mason, Oliver; Goater, Nicky; Kelly, Kathleen; Ambler, Gareth; Morant, Nicola; Onyett, Steve; Lamb, Danielle; Fahmy, Sarah; Brown, Ellie; Paterson, Beth; Sweeney, Angela; Hindle, David; Fullarton, Kate; Frerichs, Johanna; Johnson, Sonia
2016-12-01
Crisis Resolution Teams (CRTs) provide short-term intensive home treatment to people experiencing mental health crisis. Trial evidence suggests CRTs can be effective at reducing hospital admissions and increasing satisfaction with acute care. When scaled up to national level however, CRT implementation and outcomes have been variable. We aimed to develop and test a fidelity scale to assess adherence to a model of best practice for CRTs, based on best available evidence. A concept mapping process was used to develop a CRT fidelity scale. Participants (n = 68) from a range of stakeholder groups prioritised and grouped statements (n = 72) about important components of the CRT model, generated from a literature review, national survey and qualitative interviews. These data were analysed using Ariadne software and the resultant cluster solution informed item selection for a CRT fidelity scale. Operational criteria and scoring anchor points were developed for each item. The CORE CRT fidelity scale was then piloted in 75 CRTs in the UK to assess the range of scores achieved and feasibility for use in a 1-day fidelity review process. Trained reviewers (n = 16) rated CRT service fidelity in a vignette exercise to test the scale's inter-rater reliability. There were high levels of agreement within and between stakeholder groups regarding the most important components of the CRT model. A 39-item measure of CRT model fidelity was developed. Piloting indicated that the scale was feasible for use to assess CRT model fidelity and had good face validity. The wide range of item scores and total scores across CRT services in the pilot demonstrate the measure can distinguish lower and higher fidelity services. Moderately good inter-rater reliability was found, with an estimated correlation between individual ratings of 0.65 (95% CI: 0.54 to 0.76). The CORE CRT Fidelity Scale has been developed through a rigorous and systematic process. Promising initial testing indicates its value in assessing adherence to a model of CRT best practice and to support service improvement monitoring and planning. Further research is required to establish its psychometric properties and international applicability.
ERIC Educational Resources Information Center
Shapley, Kelly S.; Sheehan, Daniel; Maloney, Catherine; Caranikas-Walker, Fanny
2010-01-01
In a pilot study of the Technology Immersion model, high-need middle schools were "immersed" in technology by providing a laptop for each student and teacher, wireless Internet access, curricular and assessment resources, professional development, and technical and pedagogical support. This article examines the fidelity of model…
Attenuation of foot-and-mouth disease virus by engineered viral polymerase fidelity
USDA-ARS?s Scientific Manuscript database
The foot-and-mouth disease virus (FMDV) RNA dependent RNA polymerase (RdRp or 3Dpol) catalyzes viral RNA synthesis. The 3Dpol is a low fidelity enzyme incapable of proofreading which results in a high mutation frequencies that allow the virus to rapidly adapt to different environments. In this study...
Nursing Simulation: A Review of the Past 40 Years
ERIC Educational Resources Information Center
Nehring, Wendy M.; Lashley, Felissa R.
2009-01-01
Simulation, in its many forms, has been a part of nursing education and practice for many years. The use of games, computer-assisted instruction, standardized patients, virtual reality, and low-fidelity to high-fidelity mannequins have appeared in the past 40 years, whereas anatomical models, partial task trainers, and role playing were used…
ERIC Educational Resources Information Center
Mincic, Melissa; Smith, Barbara J.; Strain, Phil
2009-01-01
Implementing the Pyramid Model with fidelity and achieving positive outcomes for children and their families requires that administrators understand their roles in the implementation process. Every administrative decision impacts program quality and sustainability. This Policy Brief underscores the importance of facilitative administrative…
ERIC Educational Resources Information Center
Curran, Vernon; Fleet, Lisa; White, Susan; Bessell, Clare; Deshpandey, Akhil; Drover, Anne; Hayward, Mark; Valcour, James
2015-01-01
The neonatal resuscitation program (NRP) has been developed to educate physicians and other health care providers about newborn resuscitation and has been shown to improve neonatal resuscitation skills. Simulation-based training is recommended as an effective modality for instructing neonatal resuscitation and both low and high-fidelity manikin…
Fidelity and over-wintering of sea turtles.
Broderick, Annette C; Coyne, Michael S; Fuller, Wayne J; Glen, Fiona; Godley, Brendan J
2007-06-22
While fidelity to breeding sites is well demonstrated in marine turtles, emerging knowledge of migratory routes and key foraging sites is of limited conservation value unless levels of fidelity can be established. We tracked green (Chelonia mydas, n=10) and loggerhead (Caretta caretta, n=10) turtles during their post-nesting migration from the island of Cyprus to their foraging grounds. After intervals of 2-5 years, five of these females were recaptured at the nesting beach and tracked for a second migration. All five used highly similar migratory routes to return to the same foraging and over-wintering areas. None of the females visited other foraging habitats over the study period (units lasted on average 305 days; maximum, 1356 days), moving only to deeper waters during the winter months where they demonstrated extremely long resting dives of up to 10.2h (the longest breath-holding dive recorded for a marine vertebrate). High levels of fidelity and the relatively discrete nature of the home ranges demonstrate that protection of key migratory pathways, foraging and over-wintering sites can serve as an important tool for the future conservation of marine turtles.
Optimization of a solid-state electron spin qubit using Gate Set Tomography
Dehollain, Juan P.; Muhonen, Juha T.; Blume-Kohout, Robin J.; ...
2016-10-13
Here, state of the art qubit systems are reaching the gate fidelities required for scalable quantum computation architectures. Further improvements in the fidelity of quantum gates demands characterization and benchmarking protocols that are efficient, reliable and extremely accurate. Ideally, a benchmarking protocol should also provide information on how to rectify residual errors. Gate Set Tomography (GST) is one such protocol designed to give detailed characterization of as-built qubits. We implemented GST on a high-fidelity electron-spin qubit confined by a single 31P atom in 28Si. The results reveal systematic errors that a randomized benchmarking analysis could measure but not identify, whereasmore » GST indicated the need for improved calibration of the length of the control pulses. After introducing this modification, we measured a new benchmark average gate fidelity of 99.942(8)%, an improvement on the previous value of 99.90(2)%. Furthermore, GST revealed high levels of non-Markovian noise in the system, which will need to be understood and addressed when the qubit is used within a fault-tolerant quantum computation scheme.« less
NASA Astrophysics Data System (ADS)
Liu, Jiechao; Jayakumar, Paramsothy; Stein, Jeffrey L.; Ersal, Tulga
2016-11-01
This paper investigates the level of model fidelity needed in order for a model predictive control (MPC)-based obstacle avoidance algorithm to be able to safely and quickly avoid obstacles even when the vehicle is close to its dynamic limits. The context of this work is large autonomous ground vehicles that manoeuvre at high speed within unknown, unstructured, flat environments and have significant vehicle dynamics-related constraints. Five different representations of vehicle dynamics models are considered: four variations of the two degrees-of-freedom (DoF) representation as lower fidelity models and a fourteen DoF representation with combined-slip Magic Formula tyre model as a higher fidelity model. It is concluded that the two DoF representation that accounts for tyre nonlinearities and longitudinal load transfer is necessary for the MPC-based obstacle avoidance algorithm in order to operate the vehicle at its limits within an environment that includes large obstacles. For less challenging environments, however, the two DoF representation with linear tyre model and constant axle loads is sufficient.
Broken symmetry in a two-qubit quantum control landscape
NASA Astrophysics Data System (ADS)
Bukov, Marin; Day, Alexandre G. R.; Weinberg, Phillip; Polkovnikov, Anatoli; Mehta, Pankaj; Sels, Dries
2018-05-01
We analyze the physics of optimal protocols to prepare a target state with high fidelity in a symmetrically coupled two-qubit system. By varying the protocol duration, we find a discontinuous phase transition, which is characterized by a spontaneous breaking of a Z2 symmetry in the functional form of the optimal protocol, and occurs below the quantum speed limit. We study in detail this phase and demonstrate that even though high-fidelity protocols come degenerate with respect to their fidelity, they lead to final states of different entanglement entropy shared between the qubits. Consequently, while globally both optimal protocols are equally far away from the target state, one is locally closer than the other. An approximate variational mean-field theory which captures the physics of the different phases is developed.
Experimental magic state distillation for fault-tolerant quantum computing.
Souza, Alexandre M; Zhang, Jingfu; Ryan, Colm A; Laflamme, Raymond
2011-01-25
Any physical quantum device for quantum information processing (QIP) is subject to errors in implementation. In order to be reliable and efficient, quantum computers will need error-correcting or error-avoiding methods. Fault-tolerance achieved through quantum error correction will be an integral part of quantum computers. Of the many methods that have been discovered to implement it, a highly successful approach has been to use transversal gates and specific initial states. A critical element for its implementation is the availability of high-fidelity initial states, such as |0〉 and the 'magic state'. Here, we report an experiment, performed in a nuclear magnetic resonance (NMR) quantum processor, showing sufficient quantum control to improve the fidelity of imperfect initial magic states by distilling five of them into one with higher fidelity.
High-Fidelity Preservation of Quantum Information During Trapped-Ion Transport
NASA Astrophysics Data System (ADS)
Kaufmann, Peter; Gloger, Timm F.; Kaufmann, Delia; Johanning, Michael; Wunderlich, Christof
2018-01-01
A promising scheme for building scalable quantum simulators and computers is the synthesis of a scalable system using interconnected subsystems. A prerequisite for this approach is the ability to faithfully transfer quantum information between subsystems. With trapped atomic ions, this can be realized by transporting ions with quantum information encoded into their internal states. Here, we measure with high precision the fidelity of quantum information encoded into hyperfine states of a
Optimal control of fast and high-fidelity quantum state transfer in spin-1/2 chains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiong-Peng; Shao, Bin, E-mail: sbin610@bit.edu.cn; Hu, Shuai
Spin chains are promising candidates for quantum communication and computation. Using quantum optimal control (OC) theory based on the Krotov method, we present a protocol to perform quantum state transfer with fast and high fidelity by only manipulating the boundary spins in a quantum spin-1/2 chain. The achieved speed is about one order of magnitude faster than that is possible in the Lyapunov control case for comparable fidelities. Additionally, it has a fundamental limit for OC beyond which optimization is not possible. The controls are exerted only on the couplings between the boundary spins and their neighbors, so that themore » scheme has good scalability. We also demonstrate that the resulting OC scheme is robust against disorder in the chain.« less
Bowman, D; Harte, T L; Chardonnet, V; De Groot, C; Denny, S J; Le Goc, G; Anderson, M; Ireland, P; Cassettari, D; Bruce, G D
2017-05-15
We demonstrate simultaneous control of both the phase and amplitude of light using a conjugate gradient minimisation-based hologram calculation technique and a single phase-only spatial light modulator (SLM). A cost function, which incorporates the inner product of the light field with a chosen target field within a defined measure region, is efficiently minimised to create high fidelity patterns in the Fourier plane of the SLM. A fidelity of F = 0.999997 is achieved for a pattern resembling an LG10 mode with a calculated light-usage efficiency of 41.5%. Possible applications of our method in optical trapping and ultracold atoms are presented and we show uncorrected experimental realisation of our patterns with F = 0.97 and 7.8% light efficiency.
La Porte, Sherry L; Eigenbrot, Charles; Ultsch, Mark; Ho, Wei-Hsien; Foletti, Davide; Forgie, Alison; Lindquist, Kevin C; Shelton, David L; Pons, Jaume
2014-01-01
Nerve growth factor (NGF) is indispensable during normal embryonic development and critical for the amplification of pain signals in adults. Intervention in NGF signaling holds promise for the alleviation of pain resulting from human diseases such as osteoarthritis, cancer and chronic lower back disorders. We developed a fast, high-fidelity method to convert a hybridoma-derived NGF-targeted mouse antibody into a clinical candidate. This method, termed Library Scanning Mutagenesis (LSM), resulted in the ultra-high affinity antibody tanezumab, a first-in-class anti-hyperalgesic specific for an NGF epitope. Functional and structural comparisons between tanezumab and the mouse 911 precursor antibody using neurotrophin-specific cell survival assays and X-ray crystal structures of both Fab-antigen complexes illustrated high fidelity retention of the NGF epitope. These results suggest the potential for wide applicability of the LSM method for optimization of well-characterized antibodies during humanization. PMID:24830649
Developing Capture Mechanisms and High-Fidelity Dynamic Models for the MXER Tether System
NASA Technical Reports Server (NTRS)
Canfield, Steven L.
2007-01-01
A team consisting of collaborators from Tennessee Technological University (TTU), Marshall Space Flight Center, BD Systems, and the University of Delaware (herein called the TTU team) conducted specific research and development activities in MXER tether systems during the base period of May 15, 2004 through September 30, 2006 under contract number NNM04AB13C. The team addressed two primary topics related to the MXER tether system: 1) Development of validated high-fidelity dynamic models of an elastic rotating tether and 2) development of feasible mechanisms to enable reliable rendezvous and capture. This contractor report will describe in detail the activities that were performed during the base period of this cycle-2 MXER tether activity and will summarize the results of this funded activity. The primary deliverables of this project were the quad trap, a robust capture mechanism proposed, developed, tested, and demonstrated with a high degree of feasibility and the detailed development of a validated high-fidelity elastic tether dynamic model provided through multiple formulations.
Simple All-Microwave Entangling Gate for Fixed-Frequency Superconducting Qubits
NASA Astrophysics Data System (ADS)
Chow, Jerry M.; Córcoles, A. D.; Gambetta, Jay M.; Rigetti, Chad; Johnson, B. R.; Smolin, John A.; Rozen, J. R.; Keefe, George A.; Rothwell, Mary B.; Ketchen, Mark B.; Steffen, M.
2011-08-01
We demonstrate an all-microwave two-qubit gate on superconducting qubits which are fixed in frequency at optimal bias points. The gate requires no additional subcircuitry and is tunable via the amplitude of microwave irradiation on one qubit at the transition frequency of the other. We use the gate to generate entangled states with a maximal extracted concurrence of 0.88, and quantum process tomography reveals a gate fidelity of 81%.
Detection of reflecting surfaces by a statistical model
NASA Astrophysics Data System (ADS)
He, Qiang; Chu, Chee-Hung H.
2009-02-01
Remote sensing is widely used assess the destruction from natural disasters and to plan relief and recovery operations. How to automatically extract useful features and segment interesting objects from digital images, including remote sensing imagery, becomes a critical task for image understanding. Unfortunately, current research on automated feature extraction is ignorant of contextual information. As a result, the fidelity of populating attributes corresponding to interesting features and objects cannot be satisfied. In this paper, we present an exploration on meaningful object extraction integrating reflecting surfaces. Detection of specular reflecting surfaces can be useful in target identification and then can be applied to environmental monitoring, disaster prediction and analysis, military, and counter-terrorism. Our method is based on a statistical model to capture the statistical properties of specular reflecting surfaces. And then the reflecting surfaces are detected through cluster analysis.
Compressed Sensing Quantum Process Tomography for Superconducting Quantum Gates
NASA Astrophysics Data System (ADS)
Rodionov, Andrey
An important challenge in quantum information science and quantum computing is the experimental realization of high-fidelity quantum operations on multi-qubit systems. Quantum process tomography (QPT) is a procedure devised to fully characterize a quantum operation. We first present the results of the estimation of the process matrix for superconducting multi-qubit quantum gates using the full data set employing various methods: linear inversion, maximum likelihood, and least-squares. To alleviate the problem of exponential resource scaling needed to characterize a multi-qubit system, we next investigate a compressed sensing (CS) method for QPT of two-qubit and three-qubit quantum gates. Using experimental data for two-qubit controlled-Z gates, taken with both Xmon and superconducting phase qubits, we obtain estimates for the process matrices with reasonably high fidelities compared to full QPT, despite using significantly reduced sets of initial states and measurement configurations. We show that the CS method still works when the amount of data is so small that the standard QPT would have an underdetermined system of equations. We also apply the CS method to the analysis of the three-qubit Toffoli gate with simulated noise, and similarly show that the method works well for a substantially reduced set of data. For the CS calculations we use two different bases in which the process matrix is approximately sparse (the Pauli-error basis and the singular value decomposition basis), and show that the resulting estimates of the process matrices match with reasonably high fidelity. For both two-qubit and three-qubit gates, we characterize the quantum process by its process matrix and average state fidelity, as well as by the corresponding standard deviation defined via the variation of the state fidelity for different initial states. We calculate the standard deviation of the average state fidelity both analytically and numerically, using a Monte Carlo method. Overall, we show that CS QPT offers a significant reduction in the needed amount of experimental data for two-qubit and three-qubit quantum gates.
2001-12-01
instrumented with a high fidelity, dual-sensor micromanometer to measure left ventricular and aortic pressure and a transit-time ultrasound probe to...isoflurane in 100% oxy- gen) prior to insertion of the high -fidelity pressure micromanome- ters during cardiac fluoroscopy. Once the micromanometer trans...and allowed to fully recover from the isoflurane seda- tion for a period of 60 min, during which blood pressure and aortic flow were monitored to ensure
Solar Sail Spaceflight Simulation
NASA Technical Reports Server (NTRS)
Lisano, Michael; Evans, James; Ellis, Jordan; Schimmels, John; Roberts, Timothy; Rios-Reyes, Leonel; Scheeres, Daniel; Bladt, Jeff; Lawrence, Dale; Piggott, Scott
2007-01-01
The Solar Sail Spaceflight Simulation Software (S5) toolkit provides solar-sail designers with an integrated environment for designing optimal solar-sail trajectories, and then studying the attitude dynamics/control, navigation, and trajectory control/correction of sails during realistic mission simulations. Unique features include a high-fidelity solar radiation pressure model suitable for arbitrarily-shaped solar sails, a solar-sail trajectory optimizer, capability to develop solar-sail navigation filter simulations, solar-sail attitude control models, and solar-sail high-fidelity force models.
High-fidelity large area nano-patterning of silicon with femtosecond light sheet
NASA Astrophysics Data System (ADS)
Sidhu, Mehra S.; Munjal, Pooja; Singh, Kamal P.
2018-01-01
We employ a femtosecond light sheet generated by a cylindrical lens to rapidly produce high-fidelity nano-structures over large area on silicon surface. The Fourier analysis of electron microscopy images of the laser-induced surface structures reveals sharp peaks indicating good homogeneity. We observed an emergence of second-order spatial periodicity on increasing the scan speed. Our reliable approach may rapidly nano-pattern curved solid surfaces and tiny objects for diverse potential applications in optical devices, structural coloring, plasmonic substrates and in high-harmonic generation.
Interprofessional education in pharmacology using high-fidelity simulation.
Meyer, Brittney A; Seefeldt, Teresa M; Ngorsuraches, Surachat; Hendrickx, Lori D; Lubeck, Paula M; Farver, Debra K; Heins, Jodi R
2017-11-01
This study examined the feasibility of an interprofessional high-fidelity pharmacology simulation and its impact on pharmacy and nursing students' perceptions of interprofessionalism and pharmacology knowledge. Pharmacy and nursing students participated in a pharmacology simulation using a high-fidelity patient simulator. Faculty-facilitated debriefing included discussion of the case and collaboration. To determine the impact of the activity on students' perceptions of interprofessionalism and their ability to apply pharmacology knowledge, surveys were administered to students before and after the simulation. Attitudes Toward Health Care Teams scale (ATHCT) scores improved from 4.55 to 4.72 on a scale of 1-6 (p = 0.005). Almost all (over 90%) of the students stated their pharmacology knowledge and their ability to apply that knowledge improved following the simulation. A simulation in pharmacology is feasible and favorably affected students' interprofessionalism and pharmacology knowledge perceptions. Pharmacology is a core science course required by multiple health professions in early program curricula, making it favorable for incorporation of interprofessional learning experiences. However, reports of high-fidelity interprofessional simulation in pharmacology courses are limited. This manuscript contributes to the literature in the field of interprofessional education by demonstrating that an interprofessional simulation in pharmacology is feasible and can favorably affect students' perceptions of interprofessionalism. This manuscript provides an example of a pharmacology interprofessional simulation that faculty in other programs can use to build similar educational activities. Copyright © 2017 Elsevier Inc. All rights reserved.
High-Fidelity Simulation: Preparing Dental Hygiene Students for Managing Medical Emergencies.
Bilich, Lisa A; Jackson, Sarah C; Bray, Brenda S; Willson, Megan N
2015-09-01
Medical emergencies can occur at any time in the dental office, so being prepared to properly manage the situation can be the difference between life and death. The entire dental team must be properly trained regarding all aspects of emergency management in the dental clinic. The aim of this study was to evaluate a new educational approach using a high-fidelity simulator to prepare dental hygiene students for medical emergencies. This study utilized high-fidelity simulation (HFS) to evaluate the abilities of junior dental hygiene students at Eastern Washington University to handle a medical emergency in the dental hygiene clinic. Students were given a medical emergency scenario requiring them to assess the emergency and implement life-saving protocols in a simulated "real-life" situation using a high-fidelity manikin. Retrospective data were collected for four years from the classes of 2010 through 2013 (N=114). The results indicated that learning with simulation was effective in helping the students identify the medical emergency in a timely manner, implement emergency procedures correctly, locate and correctly utilize contents of the emergency kit, administer appropriate intervention/treatment for a specific patient, and provide the patient with appropriate follow-up instructions. For dental hygiene programs seeking to enhance their curricula in the area of medical emergencies, this study suggests that HFS is an effective tool to prepare students to appropriately handle medical emergencies. Faculty calibration is essential to standardize simulation.
NASA Astrophysics Data System (ADS)
Wang, Peng; Ebeling, Carl G.; Gerton, Jordan; Menon, Rajesh
In this paper, we demonstrate hyper-spectral imaging of fluorescent microspheres in a scanning-confocal-fluorescence microscope by spatially dispersing the spectra using a novel broadband diffractive optic, and applying a nonlinear optimization technique to extract the full-incident spectra. This broadband diffractive optic has a designed optical efficiency of over 90% across the entire visible spectrum. We used this technique to create two-color images of two fluorophores and also extracted their emission spectra with good fidelity. This method can be extended to image both spatially and spectrally overlapping fluorescent samples. Full control in the number of emission spectra and the feasibility of enhanced imaging speed are demonstrated as well.
Wavelets in music analysis and synthesis: timbre analysis and perspectives
NASA Astrophysics Data System (ADS)
Alves Faria, Regis R.; Ruschioni, Ruggero A.; Zuffo, Joao A.
1996-10-01
Music is a vital element in the process of comprehending the world where we live and interact with. Frequency it exerts a subtle but expressive influence over a society's evolution line. Analysis and synthesis of music and musical instruments has always been associated with forefront technologies available at each period of human history, and there is no surprise in witnessing now the use of digital technologies and sophisticated mathematical tools supporting its development. Fourier techniques have been employed for years as a tool to analyze timbres' spectral characteristics, and re-synthesize them from these extracted parameters. Recently many modern implementations, based on spectral modeling techniques, have been leading to the development of new generations of music synthesizers, capable of reproducing natural sounds with high fidelity, and producing novel timbres as well. Wavelets are a promising tool on the development of new generations of music synthesizers, counting on its advantages over the Fourier techniques in representing non-periodic and transient signals, with complex fine textures, as found in music. In this paper we propose and introduce the use of wavelets addressing its perspectives towards musical applications. The central idea is to investigate the capacities of wavelets in analyzing, extracting features and altering fine timbre components in a multiresolution time- scale, so as to produce high quality synthesized musical sounds.
Banaszek, Daniel; You, Daniel; Chang, Justues; Pickell, Michael; Hesse, Daniel; Hopman, Wilma M; Borschneck, Daniel; Bardana, Davide
2017-04-05
Work-hour restrictions as set forth by the Accreditation Council for Graduate Medical Education (ACGME) and other governing bodies have forced training programs to seek out new learning tools to accelerate acquisition of both medical skills and knowledge. As a result, competency-based training has become an important part of residency training. The purpose of this study was to directly compare arthroscopic skill acquisition in both high-fidelity and low-fidelity simulator models and to assess skill transfer from either modality to a cadaveric specimen, simulating intraoperative conditions. Forty surgical novices (pre-clerkship-level medical students) voluntarily participated in this trial. Baseline demographic data, as well as data on arthroscopic knowledge and skill, were collected prior to training. Subjects were randomized to 5-week independent training sessions on a high-fidelity virtual reality arthroscopic simulator or on a bench-top arthroscopic setup, or to an untrained control group. Post-training, subjects were asked to perform a diagnostic arthroscopy on both simulators and in a simulated intraoperative environment on a cadaveric knee. A more difficult surprise task was also incorporated to evaluate skill transfer. Subjects were evaluated using the Global Rating Scale (GRS), the 14-point arthroscopic checklist, and a timer to determine procedural efficiency (time per task). Secondary outcomes focused on objective measures of virtual reality simulator motion analysis. Trainees on both simulators demonstrated a significant improvement (p < 0.05) in arthroscopic skills compared with baseline scores and untrained controls, both in and ex vivo. The virtual reality simulation group consistently outperformed the bench-top model group in the diagnostic arthroscopy crossover tests and in the simulated cadaveric setup. Furthermore, the virtual reality group demonstrated superior skill transfer in the surprise skill transfer task. Both high-fidelity and low-fidelity simulation trainings were effective in arthroscopic skill acquisition. High-fidelity virtual reality simulation was superior to bench-top simulation in the acquisition of arthroscopic skills, both in the laboratory and in vivo. Further clinical investigation is needed to interpret the importance of these results.
Mihalic, Sharon F; Fagan, Abigail A; Argamaso, Susanne
2008-01-18
Widespread replication of effective prevention programs is unlikely to affect the incidence of adolescent delinquency, violent crime, and substance use until the quality of implementation of these programs by community-based organizations can be assured. This paper presents the results of a process evaluation employing qualitative and quantitative methods to assess the extent to which 432 schools in 105 sites implemented the LifeSkills Training (LST) drug prevention program with fidelity. Regression analysis was used to examine factors influencing four dimensions of fidelity: adherence, dosage, quality of delivery, and student responsiveness. Although most sites faced common barriers, such as finding room in the school schedule for the program, gaining full support from key participants (i.e., site coordinators, principals, and LST teachers), ensuring teacher participation in training workshops, and classroom management difficulties, most schools involved in the project implemented LST with very high levels of fidelity. Across sites, 86% of program objectives and activities required in the three-year curriculum were delivered to students. Moreover, teachers were observed using all four recommended teaching practices, and 71% of instructors taught all the required LST lessons. Multivariate analyses found that highly rated LST program characteristics and better student behavior were significantly related to a greater proportion of material taught by teachers (adherence). Instructors who rated the LST program characteristics as ideal were more likely to teach all lessons (dosage). Student behavior and use of interactive teaching techniques (quality of delivery) were positively related. No variables were related to student participation (student responsiveness). Although difficult, high implementation fidelity by community-based organizations can be achieved. This study suggests some important factors that organizations should consider to ensure fidelity, such as selecting programs with features that minimize complexity while maximizing flexibility. Time constraints in the classroom should be considered when choosing a program. Student behavior also influences program delivery, so schools should train teachers in the use of classroom management skills. This project involved comprehensive program monitoring and technical assistance that likely facilitated the identification and resolution of problems and contributed to the overall high quality of implementation. Schools should recognize the importance of training and technical assistance to ensure quality program delivery.
Clark, Daniel E.; Koenen, Kiana K. G.; Whitney, Jillian J.; MacKenzie, Kenneth G.; DeStefano, Stephen
2016-01-01
While the breeding ecology of gulls (Laridae) has been well studied, their movements and spatial organization during the non-breeding season is poorly understood. The seasonal movements, winter-site fidelity, and site persistence of Ring-billed (Larus delawarensis) and Herring (L. argentatus) gulls to wintering areas were studied from 2008–2012. Satellite transmitters were deployed on Ring-billed Gulls (n = 21) and Herring Gulls (n = 14). Ten Ring-billed and six Herring gulls were tracked over multiple winters and > 300 wing-tagged Ring-billed Gulls were followed to determine winter-site fidelity and persistence. Home range overlap for individuals between years ranged between 0–1.0 (95% minimum convex polygon) and 0.31–0.79 (kernel utilization distributions). Ringbilled and Herring gulls remained at local wintering sites during the non-breeding season from 20–167 days and 74–161 days, respectively. The probability of a tagged Ring-billed Gull returning to the same site in subsequent winters was high; conversely, there was a low probability of a Ring-billed Gull returning to a different site. Ring-billed and Herring gulls exhibited high winter-site fidelity, but exhibited variable site persistence during the winter season, leading to a high probability of encountering the same individuals in subsequent winters.
Thermal Protection System Mass Estimating Relationships for Blunt-Body, Earth Entry Spacecraft
NASA Technical Reports Server (NTRS)
Sepka, Steven A.; Samareh, Jamshid A.
2015-01-01
System analysis and design of any entry system must balance the level fidelity for each discipline against the project timeline. One way to inject high fidelity analysis earlier in the design effort is to develop surrogate models for the high-fidelity disciplines. Surrogate models for the Thermal Protection System (TPS) are formulated as Mass Estimating Relationships (MERs). The TPS MERs are presented that predict the amount of TPS necessary for safe Earth entry for blunt-body spacecraft using simple correlations that closely match estimates from NASA's high-fidelity ablation modeling tool, the Fully Implicit Ablation and Thermal Analysis Program (FIAT). These MERs provide a first order estimate for rapid feasibility studies. There are 840 different trajectories considered in this study, and each TPS MER has a peak heating limit. MERs for the vehicle forebody include the ablators Phenolic Impregnated Carbon Ablator (PICA) and Carbon Phenolic atop Advanced Carbon-Carbon. For the aftbody, the materials are Silicone Impregnated Reusable Ceramic Ablator (SIRCA), Acusil II, SLA-561V, and LI-900. The MERs are accurate to within 14% (at one standard deviation) of FIAT prediction, and the most any MER under predicts FIAT TPS thickness is 18.7%. This work focuses on the development of these MERs, the resulting equations, model limitations, and model accuracy.
McCormack, Jane; Baker, Elise; Masso, Sarah; Crowe, Kathryn; McLeod, Sharynne; Wren, Yvonne; Roulstone, Sue
2017-06-01
Implementation fidelity refers to the degree to which an intervention or programme adheres to its original design. This paper examines implementation fidelity in the Sound Start Study, a clustered randomised controlled trial of computer-assisted support for children with speech sound disorders (SSD). Sixty-three children with SSD in 19 early childhood centres received computer-assisted support (Phoneme Factory Sound Sorter [PFSS] - Australian version). Educators facilitated the delivery of PFSS targeting phonological error patterns identified by a speech-language pathologist. Implementation data were gathered via (1) the computer software, which recorded when and how much intervention was completed over 9 weeks; (2) educators' records of practice sessions; and (3) scoring of fidelity (intervention procedure, competence and quality of delivery) from videos of intervention sessions. Less than one-third of children received the prescribed number of days of intervention, while approximately one-half participated in the prescribed number of intervention plays. Computer data differed from educators' data for total number of days and plays in which children participated; the degree of match was lower as data became more specific. Fidelity to intervention procedures, competency and quality of delivery was high. Implementation fidelity may impact intervention outcomes and so needs to be measured in intervention research; however, the way in which it is measured may impact on data.
Proofreading of DNA polymerase: a new kinetic model with higher-order terminal effects
NASA Astrophysics Data System (ADS)
Song, Yong-Shun; Shu, Yao-Gen; Zhou, Xin; Ou-Yang, Zhong-Can; Li, Ming
2017-01-01
The fidelity of DNA replication by DNA polymerase (DNAP) has long been an important issue in biology. While numerous experiments have revealed details of the molecular structure and working mechanism of DNAP which consists of both a polymerase site and an exonuclease (proofreading) site, there were quite a few theoretical studies on the fidelity issue. The first model which explicitly considered both sites was proposed in the 1970s and the basic idea was widely accepted by later models. However, all these models did not systematically investigate the dominant factor on DNAP fidelity, i.e. the higher-order terminal effects through which the polymerization pathway and the proofreading pathway coordinate to achieve high fidelity. In this paper, we propose a new and comprehensive kinetic model of DNAP based on some recent experimental observations, which includes previous models as special cases. We present a rigorous and unified treatment of the corresponding steady-state kinetic equations of any-order terminal effects, and derive analytical expressions for fidelity in terms of kinetic parameters under bio-relevant conditions. These expressions offer new insights on how the higher-order terminal effects contribute substantially to the fidelity in an order-by-order way, and also show that the polymerization-and-proofreading mechanism is dominated only by very few key parameters. We then apply these results to calculate the fidelity of some real DNAPs, which are in good agreements with previous intuitive estimates given by experimentalists.
Tuzer, Hilal; Dinc, Leyla; Elcin, Melih
2016-10-01
Existing research literature indicates that the use of various simulation techniques in the training of physical examination skills develops students' cognitive and psychomotor abilities in a realistic learning environment while improving patient safety. The study aimed to compare the effects of the use of a high-fidelity simulator and standardized patients on the knowledge and skills of students conducting thorax-lungs and cardiac examinations, and to explore the students' views and learning experiences. A mixed-method explanatory sequential design. The study was conducted in the Simulation Laboratory of a Nursing School, the Training Center at the Faculty of Medicine, and in the inpatient clinics of the Education and Research Hospital. Fifty-two fourth-year nursing students. Students were randomly assigned to Group I and Group II. The students in Group 1 attended the thorax-lungs and cardiac examination training using a high-fidelity simulator, while the students in Group 2 using standardized patients. After the training sessions, all students practiced their skills on real patients in the clinical setting under the supervision of the investigator. Knowledge and performance scores of all students increased following the simulation activities; however, the students that worked with standardized patients achieved significantly higher knowledge scores than those that worked with the high-fidelity simulator; however, there was no significant difference in performance scores between the groups. The mean performance scores of students on real patients were significantly higher compared to the post-simulation assessment scores (p<0.001). Results of this study revealed that use of standardized patients was more effective than the use of a high-fidelity simulator in increasing the knowledge scores of students on thorax-lungs and cardiac examinations; however, practice on real patients increased performance scores of all students without any significant difference in two groups. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dankbaar, Mary E W; Alsma, Jelmer; Jansen, Els E H; van Merrienboer, Jeroen J G; van Saase, Jan L C M; Schuit, Stephanie C E
2016-08-01
Simulation games are becoming increasingly popular in education, but more insight in their critical design features is needed. This study investigated the effects of fidelity of open patient cases in adjunct to an instructional e-module on students' cognitive skills and motivation. We set up a three-group randomized post-test-only design: a control group working on an e-module; a cases group, combining the e-module with low-fidelity text-based patient cases, and a game group, combining the e-module with a high-fidelity simulation game with the same cases. Participants completed questionnaires on cognitive load and motivation. After a 4-week study period, blinded assessors rated students' cognitive emergency care skills in two mannequin-based scenarios. In total 61 students participated and were assessed; 16 control group students, 20 cases students and 25 game students. Learning time was 2 h longer for the cases and game groups than for the control group. Acquired cognitive skills did not differ between groups. The game group experienced higher intrinsic and germane cognitive load than the cases group (p = 0.03 and 0.01) and felt more engaged (p < 0.001). Students did not profit from working on open cases (in adjunct to an e-module), which nonetheless challenged them to study longer. The e-module appeared to be very effective, while the high-fidelity game, although engaging, probably distracted students and impeded learning. Medical educators designing motivating and effective skills training for novices should align case complexity and fidelity with students' proficiency level. The relation between case-fidelity, motivation and skills development is an important field for further study.
ERIC Educational Resources Information Center
McMaster, Kristen L.; Jung, Pyung-Gang; Brandes, Dana; Pinto, Viveca; Fuchs, Douglas; Kearns, Devin; Lemons, Christopher; Sáenz, Laura; Yen, Loulee
2014-01-01
Teachers are often asked to implement research-based instructional programs with fidelity and to ensure that all students reach high academic standards. These requests sometimes conflict when teachers find that not all their students are benefiting from the research-backed programs. In this article, we suggest that researchers and teachers can…
Experimental purification of two-atom entanglement.
Reichle, R; Leibfried, D; Knill, E; Britton, J; Blakestad, R B; Jost, J D; Langer, C; Ozeri, R; Seidelin, S; Wineland, D J
2006-10-19
Entanglement is a necessary resource for quantum applications--entanglement established between quantum systems at different locations enables private communication and quantum teleportation, and facilitates quantum information processing. Distributed entanglement is established by preparing an entangled pair of quantum particles in one location, and transporting one member of the pair to another location. However, decoherence during transport reduces the quality (fidelity) of the entanglement. A protocol to achieve entanglement 'purification' has been proposed to improve the fidelity after transport. This protocol uses separate quantum operations at each location and classical communication to distil high-fidelity entangled pairs from lower-fidelity pairs. Proof-of-principle experiments distilling entangled photon pairs have been carried out. However, these experiments obtained distilled pairs with a low probability of success and required destruction of the entangled pairs, rendering them unavailable for further processing. Here we report efficient and non-destructive entanglement purification with atomic quantum bits. Two noisy entangled pairs were created and distilled into one higher-fidelity pair available for further use. Success probabilities were above 35 per cent. The many applications of entanglement purification make it one of the most important techniques in quantum information processing.
NASA Astrophysics Data System (ADS)
Tauscher, Keith A.; Burns, Jack O.; Rapetti, David; Mirocha, Jordan; Monsalve, Raul A.
2017-01-01
The Dark Ages Radio Explorer (DARE) is a mission concept proposed to NASA in which a crossed dipole antenna collects low frequency (40-120 MHz) radio measurements above the farside of the Moon to detect and characterize the global 21-cm signal from the early (z~35-11) Universe's neutral hydrogen. Simulated data for DARE includes: 1) the global signal modeled using the ares code, 2) spectrally smooth Galactic foregrounds with spatial structure taken from multiple radio foreground maps averaged over a large, well characterized beam, 3) systematics introduced in the data by antenna/receiver reflections, and 4) the Moon. This simulated data is fed into a signal extraction pipeline. As the signal is 4-5 orders of magnitude below the Galactic synchrotron contribution, it is best extracted from the data using Bayesian techniques which take full advantage of prior knowledge of the instrument and foregrounds. For the DARE pipeline, we use the affine-invariant MCMC algorithm implemented in the Python package, emcee. The pipeline also employs singular value decomposition to use known spectral features of the antenna and receiver to form a natural basis with which to fit instrumental systematics. Taking advantage of high-fidelity measurements of the antenna beam (to ~20 ppm) and precise calibration of the instrument, the pipeline extracts the global 21-cm signal with an average RMS error of 10-15 mK for multiple signal models.
Crystal plasticity modeling of β phase deformation in Ti-6Al-4V
NASA Astrophysics Data System (ADS)
Moore, John A.; Barton, Nathan R.; Florando, Jeff; Mulay, Rupalee; Kumar, Mukul
2017-10-01
Ti-6Al-4V is an alloy of titanium that dominates titanium usage in applications ranging from mass-produced consumer goods to high-end aerospace parts. The material’s structure on a microscale is known to affect its mechanical properties but these effects are not fully understood. Specifically, this work will address the effects of low volume fraction intergranular β phase on Ti-6Al-4V’s mechanical response during the transition from elastic to plastic deformation. A crystal plasticity-based finite element model is used to fully resolve the deformation of the β phase for the first time. This high fidelity model captures mechanisms difficult to access via experiments or lower fidelity models. The results are used to assess lower fidelity modeling assumptions and identify phenomena that have ramifications for failure of the material.
Decoherence and Fidelity in Teleportation of Coherent Photon-Added Two-Mode Squeezed Thermal States
NASA Astrophysics Data System (ADS)
Li, Heng-Mei; Yuan, Hong-Chun; Wan, Zhi-Long; Wang, Zhen
2018-04-01
We theoretically introduce a kind of non-Gaussian entangled resources, i.e., coherent photon-added two-mode squeezed thermal states (CPA-TMSTS), by successively performing coherent photon addition operation to the two-mode squeezed thermal states. The normalization factor related to bivariate Hermite polynomials is obtained. Based upon it, the nonclassicality and decoherence process are analyzed by virtue of the Wigner function. It is shown that the coherent photon addition operation is an effective way in generating partial negative values of Wigner function, which clearly manifests the nonclassicality and non-Gaussianity of the target states. Additionally, the fidelity in teleporting coherent states using CPA-TMSTS as entangled resource is quantified both analytically and numerically. It is found that the CPA-TMSTS is an entangled resource of high-efficiency and high-fidelity in quantum teleportation.
Roseate Tern breeding dispersal and fidelity: Responses to two newly restored colony sites
Spendelow, Jeffrey A.; Monticelli, David; Nichols, James D.; Hines, James; Nisbet, Ian; Cormons, Grace; Hays, Helen; Hatch, Jeremy; Mostello, Carolyn
2016-01-01
We used 22 yr of capture–mark–reencounter (CMR) data collected from 1988 to 2009 on about 12,500 birds at what went from three to five coastal colony sites in Massachusetts, New York, and Connecticut, United States, to examine spatial and temporal variation in breeding dispersal/fidelity rates of adult Roseate Terns (Sterna dougallii). At the start of our study, Roseate Terns nested at only one site (Bird Island) in Buzzards Bay, Massachusetts, but two more sites in this bay (Ram and Penikese Islands) were subsequently recolonized and became incorporated into our CMR metapopulation study. We examined four major hypotheses about factors we thought might influence colony-site fidelity and movement rates in the restructured system. We found some evidence that colony-site fidelity remained higher at long-established sites compared with newer ones and that breeding dispersal was more likely to occur among nearby sites than distant ones. Sustained predation at Falkner Island, Connecticut, did not result in a sustained drop in fidelity rates of breeders. Patterns of breeding dispersal differed substantially at the two restored sites. The fidelity of Roseate Terns at Bird dropped quickly after nearby Ram was recolonized in 1994, and fidelity rates for Ram soon approached those for Bird. After an oil spill in Buzzards Bay in April 2003, hazing (deliberate disturbance) of the terns at Ram prior to the start of egg-laying resulted in lowering of fidelity at this site, a decrease in immigration from Bird, and recolonization of Penikese by Roseate Terns. Annual fidelity rates at Penikese increased somewhat several years after the initial recolonization, but they remained much lower there than at all the other sites throughout the study period. The sustained high annual rates of emigration from Penikese resulted in the eventual failure of the restoration effort there, and in 2013, no Roseate Terns nested at this site.
High-Fidelity e-Learning: SEI’s Virtual Training Environment (VTE)
2009-01-01
Assessment 2.4 Collaboration 2.4.1 Peer-Student Collaboration 2.4.2 Instructor Support 2.5 Accessibility 2.6 Modularity 2.6.1 Design for Re-Use 2.6.2 Design ...ing Environment as an implementation of a high-fidelity e-Ieaming system. This report does not cover concepts of pedagogy or instructional design in e...pedagogical agents. This is the basis for Clark and Mayer’s Personalization principle for designing media for e-learning [Clark & Mayer 2003]. E-learning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, E.; Burton, E.; Duran, A.
Accurate and reliable global positioning system (GPS)-based vehicle use data are highly valuable for many transportation, analysis, and automotive considerations. Model-based design, real-world fuel economy analysis, and the growing field of autonomous and connected technologies (including predictive powertrain control and self-driving cars) all have a vested interest in high-fidelity estimation of powertrain loads and vehicle usage profiles. Unfortunately, road grade can be a difficult property to extract from GPS data with consistency. In this report, we present a methodology for appending high-resolution elevation data to GPS speed traces via a static digital elevation model. Anomalous data points in the digitalmore » elevation model are addressed during a filtration/smoothing routine, resulting in an elevation profile that can be used to calculate road grade. This process is evaluated against a large, commercially available height/slope dataset from the Navteq/Nokia/HERE Advanced Driver Assistance Systems product. Results will show good agreement with the Advanced Driver Assistance Systems data in the ability to estimate road grade between any two consecutive points in the contiguous United States.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Candel, Arno; Li, Z.; Ng, C.
The Compact Linear Collider (CLIC) provides a path to a multi-TeV accelerator to explore the energy frontier of High Energy Physics. Its novel two-beam accelerator concept envisions rf power transfer to the accelerating structures from a separate high-current decelerator beam line consisting of power extraction and transfer structures (PETS). It is critical to numerically verify the fundamental and higher-order mode properties in and between the two beam lines with high accuracy and confidence. To solve these large-scale problems, SLAC's parallel finite element electromagnetic code suite ACE3P is employed. Using curvilinear conformal meshes and higher-order finite element vector basis functions, unprecedentedmore » accuracy and computational efficiency are achieved, enabling high-fidelity modeling of complex detuned structures such as the CLIC TD24 accelerating structure. In this paper, time-domain simulations of wakefield coupling effects in the combined system of PETS and the TD24 structures are presented. The results will help to identify potential issues and provide new insights on the design, leading to further improvements on the novel CLIC two-beam accelerator scheme.« less
Athanasiou, Thanos; Long, Susannah J; Beveridge, Iain; Sevdalis, Nick
2017-01-01
Objectives Frontline insights into care delivery correlate with patients’ clinical outcomes. These outcomes might be improved through near-real time identification and mitigation of staff concerns. We evaluated the effects of a prospective frontline surveillance system on patient and team outcomes. Design Prospective, stepped wedge, non-randomised, cluster controlled trial; prespecified per protocol analysis for high-fidelity intervention delivery. Participants Seven interdisciplinary medical ward teams from two hospitals in the UK. Intervention Prospective clinical team surveillance (PCTS): structured daily interdisciplinary briefings to capture staff concerns, with organisational facilitation and feedback. Main measures The primary outcome was excess length of stay (eLOS): an admission more than 24 hours above the local average for comparable patients. Secondary outcomes included safety and teamwork climates, and incident reporting. Mixed-effects models adjusted for time effects, age, comorbidity, palliation status and ward admissions. Safety and teamwork climates were measured with the Safety Attitudes Questionnaire. High-fidelity PCTS delivery comprised high engagement and high briefing frequency. Results Implementation fidelity was variable, both in briefing frequency (median 80% working days/month, IQR 65%–90%) and engagement (median 70 issues/ward/month, IQR 34–113). 1714/6518 (26.3%) intervention admissions had eLOS versus 1279/4927 (26.0%) control admissions, an absolute risk increase of 0.3%. PCTS increased eLOS in the adjusted intention-to-treat model (OR 1.32, 95% CI 1.10 to 1.58, p=0.003). Conversely, high-fidelity PCTS reduced eLOS (OR 0.79, 95% CI 0.67 to 0.94, p=0.006). High-fidelity PCTS also increased total, high-yield and non-nurse incident reports (incidence rate ratios 1.28–1.79, all p<0.002). Sustained PCTS significantly improved safety and teamwork climates over time. Conclusions This study highlighted the potential benefits and pitfalls of ward-level interdisciplinary interventions. While these interventions can improve care delivery in complex, fluid environments, the manner of their implementation is paramount. Suboptimal implementation may have an unexpectedly negative impact on performance. Trial registration number ISRCTN 34806867 (http://www.isrctn.com/ISRCTN34806867). PMID:28720612
Virtual environments for scene of crime reconstruction and analysis
NASA Astrophysics Data System (ADS)
Howard, Toby L. J.; Murta, Alan D.; Gibson, Simon
2000-02-01
This paper describes research conducted in collaboration with Greater Manchester Police (UK), to evalute the utility of Virtual Environments for scene of crime analysis, forensic investigation, and law enforcement briefing and training. We present an illustrated case study of the construction of a high-fidelity virtual environment, intended to match a particular real-life crime scene as closely as possible. We describe and evaluate the combination of several approaches including: the use of the Manchester Scene Description Language for constructing complex geometrical models; the application of a radiosity rendering algorithm with several novel features based on human perceptual consideration; texture extraction from forensic photography; and experiments with interactive walkthroughs and large-screen stereoscopic display of the virtual environment implemented using the MAVERIK system. We also discuss the potential applications of Virtual Environment techniques in the Law Enforcement and Forensic communities.
Direct CFD Predictions of Low Frequency Sounds Generated by a Helicopter Main Rotor
NASA Technical Reports Server (NTRS)
Sim, Ben W.; Potsdam, Mark A.; Conner, Dave A.; Conner, Dave A.; Watts, Michael E.
2010-01-01
The use of CFD to directly predict helicopter main rotor noise is shown to be quite promising as an alternative mean for low frequency source noise evaluation. Results using existing state-of-the-art grid structures and finite-difference schemes demonstrated that small perturbation pressures, associated with acoustics radiation, can be extracted with some degree of fidelity. Accuracy of the predictions are demonstrated via comparing to predictions from conventional acoustic analogy-based models, and with measurements obtained from wind tunnel and flight tests for the MD-902 helicopter at several operating conditions. Findings show that the direct CFD approach is quite successfully in yielding low frequency results due to thickness and steady loading noise mechanisms. Mid-to-high frequency contents, due to blade-vortex interactions, are not predicted due to CFD modeling and grid constraints.
Demonstration of universal parametric entangling gates on a multi-qubit lattice
Reagor, Matthew; Osborn, Christopher B.; Tezak, Nikolas; Staley, Alexa; Prawiroatmodjo, Guenevere; Scheer, Michael; Alidoust, Nasser; Sete, Eyob A.; Didier, Nicolas; da Silva, Marcus P.; Acala, Ezer; Angeles, Joel; Bestwick, Andrew; Block, Maxwell; Bloom, Benjamin; Bradley, Adam; Bui, Catvu; Caldwell, Shane; Capelluto, Lauren; Chilcott, Rick; Cordova, Jeff; Crossman, Genya; Curtis, Michael; Deshpande, Saniya; El Bouayadi, Tristan; Girshovich, Daniel; Hong, Sabrina; Hudson, Alex; Karalekas, Peter; Kuang, Kat; Lenihan, Michael; Manenti, Riccardo; Manning, Thomas; Marshall, Jayss; Mohan, Yuvraj; O’Brien, William; Otterbach, Johannes; Papageorge, Alexander; Paquette, Jean-Philip; Pelstring, Michael; Polloreno, Anthony; Rawat, Vijay; Ryan, Colm A.; Renzas, Russ; Rubin, Nick; Russel, Damon; Rust, Michael; Scarabelli, Diego; Selvanayagam, Michael; Sinclair, Rodney; Smith, Robert; Suska, Mark; To, Ting-Wai; Vahidpour, Mehrnoosh; Vodrahalli, Nagesh; Whyland, Tyler; Yadav, Kamal; Zeng, William; Rigetti, Chad T.
2018-01-01
We show that parametric coupling techniques can be used to generate selective entangling interactions for multi-qubit processors. By inducing coherent population exchange between adjacent qubits under frequency modulation, we implement a universal gate set for a linear array of four superconducting qubits. An average process fidelity of ℱ = 93% is estimated for three two-qubit gates via quantum process tomography. We establish the suitability of these techniques for computation by preparing a four-qubit maximally entangled state and comparing the estimated state fidelity with the expected performance of the individual entangling gates. In addition, we prepare an eight-qubit register in all possible bitstring permutations and monitor the fidelity of a two-qubit gate across one pair of these qubits. Across all these permutations, an average fidelity of ℱ = 91.6 ± 2.6% is observed. These results thus offer a path to a scalable architecture with high selectivity and low cross-talk. PMID:29423443
Strong homing does not predict high site fidelity in juvenile reef fishes
NASA Astrophysics Data System (ADS)
Streit, Robert P.; Bellwood, David R.
2018-03-01
After being displaced, juvenile reef fishes are able to return home over large distances. This strong homing behaviour is extraordinary and may allow insights into the longer-term spatial ecology of fish communities. For example, it appears intuitive that strong homing behaviour should be indicative of long-term site fidelity. However, this connection has rarely been tested. We quantified the site fidelity of juvenile fishes of four species after returning home following displacement. Two species, parrotfishes and Pomacentrus moluccensis, showed significantly reduced site fidelity after returning home. On average, they disappeared from their home sites almost 3 d earlier than expected. Mortality or competitive exclusion does not seem to be the main reasons for their disappearance. Rather, we suggest an increased propensity to relocate after encountering alternative reef locations while homing. It appears that some juvenile fishes may have a higher innate spatial flexibility than their strict homing drive suggests.
Sauer, Juergen; Sonderegger, Andreas
2009-07-01
An empirical study examined the impact of prototype fidelity on user behaviour, subjective user evaluation and emotion. The independent factors of prototype fidelity (paper prototype, computer prototype, fully operational appliance) and aesthetics of design (high vs. moderate) were varied in a between-subjects design. The 60 participants of the experiment were asked to complete two typical tasks of mobile phone usage: sending a text message and suppressing a phone number. Both performance data and a number of subjective measures were recorded. The results suggested that task completion time may be overestimated when a computer prototype is being used. Furthermore, users appeared to compensate for deficiencies in aesthetic design by overrating the aesthetic qualities of reduced fidelity prototypes. Finally, user emotions were more positively affected by the operation of the more attractive mobile phone than by the less appealing one.
Simple all-microwave entangling gate for fixed-frequency superconducting qubits.
Chow, Jerry M; Córcoles, A D; Gambetta, Jay M; Rigetti, Chad; Johnson, B R; Smolin, John A; Rozen, J R; Keefe, George A; Rothwell, Mary B; Ketchen, Mark B; Steffen, M
2011-08-19
We demonstrate an all-microwave two-qubit gate on superconducting qubits which are fixed in frequency at optimal bias points. The gate requires no additional subcircuitry and is tunable via the amplitude of microwave irradiation on one qubit at the transition frequency of the other. We use the gate to generate entangled states with a maximal extracted concurrence of 0.88, and quantum process tomography reveals a gate fidelity of 81%. © 2011 American Physical Society
Realization of a Quantum Integer-Spin Chain with Controllable Interactions
2015-06-17
site participate in the dynamics. We observe the time evolution of the system and verify its coherence by entangling a pair of effective three-level...states generated by the XY Hamiltonian, we can verify entangle - ment between a pair of three-level systems with fidelities of up to 86%. Adding a time...3(b) shows an example of the measured parity curve used to extract the amplitude A and verify entanglement between the qutrit pair . Such measurements
The Total Variation Regularized L1 Model for Multiscale Decomposition
2006-01-01
L1 fidelity term, and presented impressive and successful applications of the TV-L1 model to impulsive noise removal and outlier identification. She...used to filter 1D signal [3], to remove impulsive (salt-n- pepper) noise [35], to extract textures from natural images [45], to remove varying...34, 35, 36] discovery of the usefulness of this model for removing impul- sive noise , Chan and Esedoglu’s [17] further analysis of this model, and a
High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits.
Ballance, C J; Harty, T P; Linke, N M; Sepiol, M A; Lucas, D M
2016-08-05
We demonstrate laser-driven two-qubit and single-qubit logic gates with respective fidelities 99.9(1)% and 99.9934(3)%, significantly above the ≈99% minimum threshold level required for fault-tolerant quantum computation, using qubits stored in hyperfine ground states of calcium-43 ions held in a room-temperature trap. We study the speed-fidelity trade-off for the two-qubit gate, for gate times between 3.8 μs and 520 μs, and develop a theoretical error model which is consistent with the data and which allows us to identify the principal technical sources of infidelity.
Brydges, Ryan; Carnahan, Heather; Rose, Don; Dubrowski, Adam
2010-08-01
In this paper, we tested the over-arching hypothesis that progressive self-guided learning offers equivalent learning benefit vs. proficiency-based training while limiting the need to set proficiency standards. We have shown that self-guided learning is enhanced when students learn on simulators that progressively increase in fidelity during practice. Proficiency-based training, a current gold-standard training approach, requires achievement of a criterion score before students advance to the next learning level. Baccalaureate nursing students (n = 15/group) practised intravenous catheterization using simulators that differed in fidelity (i.e. students' perceived realism). Data were collected in 2008. Proficiency-based students advanced from low- to mid- to high-fidelity after achieving a proficiency criterion at each level. Progressive students self-guided their progression from low- to mid- to high-fidelity. Yoked control students followed an experimenter-defined progressive practice schedule. Open-ended students moved freely between the simulators. One week after practice, blinded experts evaluated students' skill transfer on a standardized patient simulation. Group differences were examined using analyses of variance. Proficiency-based students scored highest on the high-fidelity post-test (effect size = 1.22). An interaction effect showed that the Progressive and Open-ended groups maintained their performance from post-test to transfer test, whereas the Proficiency-based and Yoked control groups experienced a significant decrease (P < 0.05). Surprisingly, most Open-ended students (73%) chose the progressive practice schedule. Progressive training and proficiency-based training resulted in equivalent transfer test performance, suggesting that progressive students effectively self-guided when to transition between simulators. Students' preference for the progressive practice schedule indicates that educators should consider this sequence for simulation-based training.
Patterns of communication in high-fidelity simulation.
Anderson, Judy K; Nelson, Kimberly
2015-01-01
High-fidelity simulation is commonplace in nursing education. However, critical thinking, decision making, and psychomotor skills scenarios are emphasized. Scenarios involving communication occur in interprofessional or intraprofessional settings. The importance of effective nurse-patient communication is reflected in statements from the American Nurses Association and Quality and Safety Education for Nurses, and in the graduate outcomes of most nursing programs. This qualitative study examined the patterns of communication observed in video recordings of a medical-surgical scenario with 71 senior students in a baccalaureate program. Thematic analysis revealed patterns of (a) focusing on tasks, (b) communicating-in-action, and (c) being therapeutic. Additional categories under the patterns included missing opportunities, viewing the "small picture," relying on informing, speaking in "medical tongues," offering choices…okay?, feeling uncomfortable, and using therapeutic techniques. The findings suggest the importance of using high-fidelity simulation to develop expertise in communication. In addition, the findings reinforce the recommendation to prioritize communication aspects of scenarios and debriefing for all simulations. Copyright 2015, SLACK Incorporated.
Enhancing pediatric clinical competency with high-fidelity simulation.
Birkhoff, Susan D; Donner, Carol
2010-09-01
In today's tertiary pediatric hospital setting, the increased complexity of patient care demands seamless coordination and collaboration among multidisciplinary team members. In an effort to enhance patient safety, clinical competence, and teamwork, simulation-based learning has become increasingly integrated into pediatric clinical practice as an innovative educational strategy. The simulated setting provides a risk-free environment where learners can incorporate cognitive, psychomotor, and affective skill acquisition without fear of harming patients. One pediatric university hospital in Southeastern Pennsylvania has enhanced the traditional American Heart Association (AHA) Pediatric Advanced Life Support (PALS) course by integrating high-fidelity simulation into skill acquisition, while still functioning within the guidelines and framework of the AHA educational standards. However, very little research with reliable standardized testing methods has been done to measure the effect of simulation-based learning. This article discusses the AHA guidelines for PALS, evaluation of PALS and nursing clinical competencies, communication among a multidisciplinary team, advantages and disadvantages of simulation, incorporation of high-fidelity simulation into pediatric practice, and suggestions for future practice. Copyright 2010, SLACK Incorporated.
Dunnington, Renee M
2014-01-01
Simulation technology is increasingly being used in nursing education. Previously used primarily for teaching procedural, instrumental, or critical incident types of skills, simulation is now being applied to training related to more dynamic, complex, and interpersonal human contexts. While high fidelity human patient simulators have significantly increased in authenticity, human responses have greater complexity and are qualitatively different than current technology represents. This paper examines the texture of representation by simulation. Through a tracing of historical and contemporary philosophical perspectives on simulation, the nature and limits of the reality of human health responses represented by high fidelity human patient simulation (HF-HPS) are explored. Issues concerning nursing education are raised around the nature of reality represented in HF-HPS. Drawing on Waks, a framework for guiding pedagogical considerations around simulation in nursing education is presented for the ultimate purpose of promoting an educative experience with simulation. © 2013 John Wiley & Sons Ltd.
Coupling two spin qubits with a high-impedance resonator
NASA Astrophysics Data System (ADS)
Harvey, S. P.; Bøttcher, C. G. L.; Orona, L. A.; Bartlett, S. D.; Doherty, A. C.; Yacoby, A.
2018-06-01
Fast, high-fidelity single and two-qubit gates are essential to building a viable quantum information processor, but achieving both in the same system has proved challenging for spin qubits. We propose and analyze an approach to perform a long-distance two-qubit controlled phase (CPHASE) gate between two singlet-triplet qubits using an electromagnetic resonator to mediate their interaction. The qubits couple longitudinally to the resonator, and by driving the qubits near the resonator's frequency, they can be made to acquire a state-dependent geometric phase that leads to a CPHASE gate independent of the initial state of the resonator. Using high impedance resonators enables gate times of order 10 ns while maintaining long coherence times. Simulations show average gate fidelities of over 96% using currently achievable experimental parameters and over 99% using state-of-the-art resonator technology. After optimizing the gate fidelity in terms of parameters tuneable in situ, we find it takes a simple power-law form in terms of the resonator's impedance and quality and the qubits' noise bath.
ERIC Educational Resources Information Center
Quinby, Rose K.; Hanson, Koren; Brooke-Weiss, Blair; Arthur, Michael W.; Hawkins, J. David; Fagan, Abigail A.
2008-01-01
This article describes the degree to which high fidelity implementation of the Communities That Care (CTC) prevention operating system was reached during the first 18 months of intervention in 12 communities in the Community Youth Development Study, a 5-year group randomized controlled trial designed to test the efficacy of the CTC system. CTC…
An Analysis of the Educational Value of Low-Fidelity Anatomy Models as External Representations
ERIC Educational Resources Information Center
Chan, Lap Ki; Cheng, Maurice M. W.
2011-01-01
Although high-fidelity digital models of human anatomy based on actual cross-sectional images of the human body have been developed, reports on the use of physical models in anatomy teaching continue to appear. This article aims to examine the common features shared by these physical models and analyze their educational value based on the…
ERIC Educational Resources Information Center
van Lieshout, Sanne; Mevissen, Fraukje; de Waal, Esri; Kok, Gerjo
2017-01-01
Schools are a common setting for adolescents to receive health education, but implementation of these programs with high levels of completeness and fidelity is not self-evident. Programs that are only partially implemented (completeness) or not implemented as instructed (fidelity) are unlikely to be effective. Therefore, it is important to…
Transmission fidelity is the key to the build-up of cumulative culture
Lewis, Hannah M.; Laland, Kevin N.
2012-01-01
Many animals have socially transmitted behavioural traditions, but human culture appears unique in that it is cumulative, i.e. human cultural traits increase in diversity and complexity over time. It is often suggested that high-fidelity cultural transmission is necessary for cumulative culture to occur through refinement, a process known as ‘ratcheting’, but this hypothesis has never been formally evaluated. We discuss processes of information transmission and loss of traits from a cognitive viewpoint alongside other cultural processes of novel invention (generation of entirely new traits), modification (refinement of existing traits) and combination (bringing together two established traits to generate a new trait). We develop a simple cultural transmission model that does not assume major evolutionary changes (e.g. in brain architecture) and show that small changes in the fidelity with which information is passed between individuals can lead to cumulative culture. In comparison, modification and combination have a lesser influence on, and novel invention appears unimportant to, the ratcheting process. Our findings support the idea that high-fidelity transmission is the key driver of human cumulative culture, and that progress in cumulative culture depends more on trait combination than novel invention or trait modification. PMID:22734060
Fidelity and over-wintering of sea turtles
Broderick, Annette C; Coyne, Michael S; Fuller, Wayne J; Glen, Fiona; Godley, Brendan J
2007-01-01
While fidelity to breeding sites is well demonstrated in marine turtles, emerging knowledge of migratory routes and key foraging sites is of limited conservation value unless levels of fidelity can be established. We tracked green (Chelonia mydas, n=10) and loggerhead (Caretta caretta, n=10) turtles during their post-nesting migration from the island of Cyprus to their foraging grounds. After intervals of 2–5 years, five of these females were recaptured at the nesting beach and tracked for a second migration. All five used highly similar migratory routes to return to the same foraging and over-wintering areas. None of the females visited other foraging habitats over the study period (units lasted on average 305 days; maximum, 1356 days), moving only to deeper waters during the winter months where they demonstrated extremely long resting dives of up to 10.2 h (the longest breath-holding dive recorded for a marine vertebrate). High levels of fidelity and the relatively discrete nature of the home ranges demonstrate that protection of key migratory pathways, foraging and over-wintering sites can serve as an important tool for the future conservation of marine turtles. PMID:17456456
Organic preservation of fossil musculature with ultracellular detail
McNamara, Maria; Orr, Patrick J.; Kearns, Stuart L.; Alcalá, Luis; Anadón, Pere; Peñalver-Mollá, Enrique
2010-01-01
The very labile (decay-prone), non-biomineralized, tissues of organisms are rarely fossilized. Occurrences thereof are invaluable supplements to a body fossil record dominated by biomineralized tissues, which alone are extremely unrepresentative of diversity in modern and ancient ecosystems. Fossil examples of extremely labile tissues (e.g. muscle) that exhibit a high degree of morphological fidelity are almost invariably replicated by inorganic compounds such as calcium phosphate. There is no consensus as to whether such tissues can be preserved with similar morphological fidelity as organic remains, except when enclosed inside amber. Here, we report fossilized musculature from an approximately 18 Myr old salamander from lacustrine sediments of Ribesalbes, Spain. The muscle is preserved organically, in three dimensions, and with the highest fidelity of morphological preservation yet documented from the fossil record. Preserved ultrastructural details include myofilaments, endomysium, layering within the sarcolemma, and endomysial circulatory vessels infilled with blood. Slight differences between the fossil tissues and their counterparts in extant amphibians reflect limited degradation during fossilization. Our results provide unequivocal evidence that high-fidelity organic preservation of extremely labile tissues is not only feasible, but likely to be common. This is supported by the discovery of similarly preserved tissues in the Eocene Grube Messel biota. PMID:19828545
Transmission fidelity is the key to the build-up of cumulative culture.
Lewis, Hannah M; Laland, Kevin N
2012-08-05
Many animals have socially transmitted behavioural traditions, but human culture appears unique in that it is cumulative, i.e. human cultural traits increase in diversity and complexity over time. It is often suggested that high-fidelity cultural transmission is necessary for cumulative culture to occur through refinement, a process known as 'ratcheting', but this hypothesis has never been formally evaluated. We discuss processes of information transmission and loss of traits from a cognitive viewpoint alongside other cultural processes of novel invention (generation of entirely new traits), modification (refinement of existing traits) and combination (bringing together two established traits to generate a new trait). We develop a simple cultural transmission model that does not assume major evolutionary changes (e.g. in brain architecture) and show that small changes in the fidelity with which information is passed between individuals can lead to cumulative culture. In comparison, modification and combination have a lesser influence on, and novel invention appears unimportant to, the ratcheting process. Our findings support the idea that high-fidelity transmission is the key driver of human cumulative culture, and that progress in cumulative culture depends more on trait combination than novel invention or trait modification.
Barnes, W M
1994-01-01
A target length limitation to PCR amplification of DNA has been identified and addressed. Concomitantly, the base-pair fidelity, the ability to use PCR products as primers, and the maximum yield of target fragment were increased. These improvements were achieved by the combination of a high level of an exonuclease-free, N-terminal deletion mutant of Taq DNA polymerase, Klentaq1, with a very low level of a thermostable DNA polymerase exhibiting a 3'-exonuclease activity (Pfu, Vent, or Deep Vent). At least 35 kb can be amplified to high yields from 1 ng of lambda DNA template. Images PMID:8134376
A high repetition deterministic single ion source
NASA Astrophysics Data System (ADS)
Sahin, C.; Geppert, P.; Müllers, A.; Ott, H.
2017-12-01
We report on a deterministic single ion source with high repetition rate and high fidelity. The source employs a magneto-optical trap, where ultracold rubidium atoms are photoionized. The electrons herald the creation of a corresponding ion, whose timing information is used to manipulate its trajectory in flight. We demonstrate an ion rate of up to 4× {10}4 {{{s}}}-1 and achieve a fidelity for single ion operation of 98%. The technique can be used for all atomic species, which can be laser-cooled, and opens up new applications in ion microscopy, ion implantation and surface spectroscopy.
Towards developing high-fidelity simulated learning environment training modules in audiology.
Dzulkarnain, A A; Rahmat, S; Mohd Puzi, N A F; Badzis, M
2017-02-01
This discussion paper reviews and synthesises the literature on simulated learning environment (SLE) from allied health sciences, medical and nursing in general and audiology specifically. The focus of the paper is on discussing the use of high-fidelity (HF) SLE and describing the challenges for developing a HF SLE for clinical audiology training. Through the review of the literature, this paper discusses seven questions, (i) What is SLE? (ii) What are the types of SLEs? (iii) How is SLE classified? (iv) What is HF SLE? (v) What types of SLEs are available in audiology and their level of fidelity? (vi) What are the components needed for developing HF SLE? (vii) What are the possible types of HF SLEs that are suitable for audiology training? Publications were identified by structured searches from three major databases PubMed, Web of Knowledge and PsychInfo and from the reference lists of relevant articles. The authors discussed and mapped the levels of fidelity of SLE audiology training modules from the literature and the learning domains involved in the clinical audiology courses. The discussion paper has highlighted that most of the existing SLE audiology training modules consist of either low- or medium-fidelity types of simulators. Those components needed to achieve a HF SLE for audiology training are also highlighted. Overall, this review recommends that the combined approach of different levels and types of SLE could be used to obtain a HF SLE training module in audiology training.
High fidelity, low cost moulage as a valid simulation tool to improve burns education.
Pywell, M J; Evgeniou, E; Highway, K; Pitt, E; Estela, C M
2016-06-01
Simulation allows the opportunity for repeated practice in controlled, safe conditions. Moulage uses materials such as makeup to simulate clinical presentations. Moulage fidelity can be assessed by face validity (realism) and content validity (appropriateness). The aim of this project is to compare the fidelity of professional moulage to non-professional moulage in the context of a burns management course. Four actors were randomly assigned to a professional make-up artist or a course faculty member for moulage preparation such that two actors were in each group. Participants completed the actor-based burn management scenarios and answered a ten-question Likert-scale questionnaire on face and content validity. Mean scores and a linear mixed effects model were used to compare professional and non-professional moulage. Cronbach's alpha assessed internal consistency. Twenty participants experienced three out of four scenarios and at the end of the course completed a total of 60 questionnaires. Professional moulage had higher average ratings for face (4.30 v 3.80; p=0.11) and content (4.30 v 4.00; p=0.06) validity. Internal consistency of face (α=0.91) and content (α=0.85) validity questions was very good. The fidelity of professionally prepared moulage, as assessed by content validity, was higher than non-professionally prepared moulage. We have shown that using professional techniques and low cost materials we can prepare quality high fidelity moulage simulations. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Butler, Troy; Wildey, Timothy
2018-01-01
In thist study, we develop a procedure to utilize error estimates for samples of a surrogate model to compute robust upper and lower bounds on estimates of probabilities of events. We show that these error estimates can also be used in an adaptive algorithm to simultaneously reduce the computational cost and increase the accuracy in estimating probabilities of events using computationally expensive high-fidelity models. Specifically, we introduce the notion of reliability of a sample of a surrogate model, and we prove that utilizing the surrogate model for the reliable samples and the high-fidelity model for the unreliable samples gives preciselymore » the same estimate of the probability of the output event as would be obtained by evaluation of the original model for each sample. The adaptive algorithm uses the additional evaluations of the high-fidelity model for the unreliable samples to locally improve the surrogate model near the limit state, which significantly reduces the number of high-fidelity model evaluations as the limit state is resolved. Numerical results based on a recently developed adjoint-based approach for estimating the error in samples of a surrogate are provided to demonstrate (1) the robustness of the bounds on the probability of an event, and (2) that the adaptive enhancement algorithm provides a more accurate estimate of the probability of the QoI event than standard response surface approximation methods at a lower computational cost.« less
Development and validation of a high-fidelity phonomicrosurgical trainer.
Klein, Adam M; Gross, Jennifer
2017-04-01
To validate the use of a high-fidelity phonomicrosurgical trainer. A high-fidelity phonomicrosurgical trainer, based on a previously validated model by Contag et al., 1 was designed with multilayered vocal folds that more closely mimic the consistency of true vocal folds, containing intracordal lesions to practice phonomicrosurgical removal. A training module was developed to simulate the true phonomicrosurgical experience. A validation study with novice and expert surgeons was conducted. Novices and experts were instructed to remove the lesion from the synthetic vocal folds, and novices were given four training trials. Performances were measured by the amount of time spent and tissue injury (microflap, superficial, deep) to the vocal fold. An independent Student t test and Fisher exact tests were used to compare subjects. A matched-paired t test and Wilcoxon signed rank tests were used to compare novice performance on the first and fourth trials and assess for improvement. Experts completed the excision with less total errors than novices (P = .004) and made less injury to the microflap (P = .05) and superficial tissue (P = .003). Novices improved their performance with training, making less total errors (P = .002) and superficial tissue injuries (P = .02) and spending less time for removal (P = .002) after several practice trials. This high-fidelity phonomicrosurgical trainer has been validated for novice surgeons. It can distinguish between experts and novices; and after training, it helped to improve novice performance. N/A. Laryngoscope, 127:888-893, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.
Undergraduate interprofessional education using high-fidelity paediatric simulation.
Stewart, Moira; Kennedy, Neil; Cuene-Grandidier, Hazel
2010-06-01
High-fidelity simulation is becoming increasingly important in the delivery of teaching and learning to health care professionals within a safe environment. Its use in an interprofessional context and at undergraduate level has the potential to facilitate the learning of good communication and teamworking, in addition to clinical knowledge and skills. Interprofessional teaching and learning workshops using high-fidelity paediatric simulation were developed and delivered to undergraduate medical and nursing students at Queen's University Belfast. Learning outcomes common to both professions, and essential in the clinical management of sick children, included basic competencies, communication and teamworking skills. Quantitative and qualitative evaluation was undertaken using published questionnaires. Quantitative results - the 32-item questionnaire was analysed for reliability using spss. Responses were positive for both groups of students across four domains - acquisition of knowledge and skills, communication and teamworking, professional identity and role awareness, and attitudes to shared learning. Qualitative results - thematic content analysis was used to analyse open-ended responses. Students from both groups commented that an interprofessional education (IPE) approach to paediatric simulation improved clinical and practice-based skills, and provided a safe learning environment. Students commented that there should be more interprofessional and simulation learning opportunities. High-fidelity paediatric simulation, used in an interprofessional context, has the potential to meet the requirements of undergraduate medical and nursing curricula. Further research is needed into the long-term benefits for patient care, and its generalisability to other areas within health care teaching and learning. © Blackwell Publishing Ltd 2010.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, Troy; Wildey, Timothy
In thist study, we develop a procedure to utilize error estimates for samples of a surrogate model to compute robust upper and lower bounds on estimates of probabilities of events. We show that these error estimates can also be used in an adaptive algorithm to simultaneously reduce the computational cost and increase the accuracy in estimating probabilities of events using computationally expensive high-fidelity models. Specifically, we introduce the notion of reliability of a sample of a surrogate model, and we prove that utilizing the surrogate model for the reliable samples and the high-fidelity model for the unreliable samples gives preciselymore » the same estimate of the probability of the output event as would be obtained by evaluation of the original model for each sample. The adaptive algorithm uses the additional evaluations of the high-fidelity model for the unreliable samples to locally improve the surrogate model near the limit state, which significantly reduces the number of high-fidelity model evaluations as the limit state is resolved. Numerical results based on a recently developed adjoint-based approach for estimating the error in samples of a surrogate are provided to demonstrate (1) the robustness of the bounds on the probability of an event, and (2) that the adaptive enhancement algorithm provides a more accurate estimate of the probability of the QoI event than standard response surface approximation methods at a lower computational cost.« less
NASA Technical Reports Server (NTRS)
Veres, Joseph P.
2002-01-01
A high-fidelity simulation of a commercial turbofan engine has been created as part of the Numerical Propulsion System Simulation Project. The high-fidelity computer simulation utilizes computer models that were developed at NASA Glenn Research Center in cooperation with turbofan engine manufacturers. The average-passage (APNASA) Navier-Stokes based viscous flow computer code is used to simulate the 3D flow in the compressors and turbines of the advanced commercial turbofan engine. The 3D National Combustion Code (NCC) is used to simulate the flow and chemistry in the advanced aircraft combustor. The APNASA turbomachinery code and the NCC combustor code exchange boundary conditions at the interface planes at the combustor inlet and exit. This computer simulation technique can evaluate engine performance at steady operating conditions. The 3D flow models provide detailed knowledge of the airflow within the fan and compressor, the high and low pressure turbines, and the flow and chemistry within the combustor. The models simulate the performance of the engine at operating conditions that include sea level takeoff and the altitude cruise condition.
Crystal plasticity modeling of β phase deformation in Ti-6Al-4V
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, John A.; Barton, Nathan R.; Florando, Jeff
Ti-6Al-4V is an alloy of titanium that dominates titanium usage in applications ranging from mass-produced consumer goods to high-end aerospace parts. The material's structure on a microscale is known to affect its mechanical properties but these effects are not fully understood. Specifically, this work will address the effects of low volume fraction intergranular β phase on Ti-6Al-4V's mechanical response during the transition from elastic to plastic deformation. A crystal plasticity-based finite element model is used to fully resolve the deformation of the β phase for the first time. This high fidelity model captures mechanisms difficult to access via experiments ormore » lower fidelity models. Lastly, the results are used to assess lower fidelity modeling assumptions and identify phenomena that have ramifications for failure of the material.« less
Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin.
Arroyo-Camejo, Silvia; Lazariev, Andrii; Hell, Stefan W; Balasubramanian, Gopalakrishnan
2014-09-12
At its most fundamental level, circuit-based quantum computation relies on the application of controlled phase shift operations on quantum registers. While these operations are generally compromised by noise and imperfections, quantum gates based on geometric phase shifts can provide intrinsically fault-tolerant quantum computing. Here we demonstrate the high-fidelity realization of a recently proposed fast (non-adiabatic) and universal (non-Abelian) holonomic single-qubit gate, using an individual solid-state spin qubit under ambient conditions. This fault-tolerant quantum gate provides an elegant means for achieving the fidelity threshold indispensable for implementing quantum error correction protocols. Since we employ a spin qubit associated with a nitrogen-vacancy colour centre in diamond, this system is based on integrable and scalable hardware exhibiting strong analogy to current silicon technology. This quantum gate realization is a promising step towards viable, fault-tolerant quantum computing under ambient conditions.
Crystal plasticity modeling of β phase deformation in Ti-6Al-4V
Moore, John A.; Barton, Nathan R.; Florando, Jeff; ...
2017-08-24
Ti-6Al-4V is an alloy of titanium that dominates titanium usage in applications ranging from mass-produced consumer goods to high-end aerospace parts. The material's structure on a microscale is known to affect its mechanical properties but these effects are not fully understood. Specifically, this work will address the effects of low volume fraction intergranular β phase on Ti-6Al-4V's mechanical response during the transition from elastic to plastic deformation. A crystal plasticity-based finite element model is used to fully resolve the deformation of the β phase for the first time. This high fidelity model captures mechanisms difficult to access via experiments ormore » lower fidelity models. Lastly, the results are used to assess lower fidelity modeling assumptions and identify phenomena that have ramifications for failure of the material.« less
Islands in the sea: extreme female natal site fidelity in the Australian sea lion, Neophoca cinerea.
Campbell, R A; Gales, N J; Lento, G M; Baker, C S
2008-02-23
Pinnipeds (seals, fur seals, sea lions and walrus) form large breeding aggregations with females often remaining faithful to a natal site or area. In these cases, females are philopatric to regional areas on broad geographical scales of hundreds to thousands of kilometers. An investigation of variation in a control region sequence of mtDNA in the Australian sea lion (Neophoca cinerea) has shown a case of extreme female natal site fidelity that has resulted in almost fixed population differentiation across its range (PhiST=0.93). This high level of population subdivision over short geographical distances (approx. 60 km) is unparalleled in any social marine mammal and reflects the unique life-history traits of this rare species. The high level of population subdivision and exclusive female natal site fidelity has important ramifications for conservation management, and poses many interesting questions of both academic and applied interest.
Tsujimoto, Yoshiaki; Tanaka, Motoki; Iwasaki, Nobuo; Ikuta, Rikizo; Miki, Shigehito; Yamashita, Taro; Terai, Hirotaka; Yamamoto, Takashi; Koashi, Masato; Imoto, Nobuyuki
2018-01-23
We experimentally demonstrate a high-fidelity entanglement swapping and a generation of the Greenberger-Horne-Zeilinger (GHZ) state using polarization-entangled photon pairs at telecommunication wavelength produced by spontaneous parametric down conversion with continuous-wave pump light. While spatially separated sources asynchronously emit photon pairs, the time-resolved photon detection guarantees the temporal indistinguishability of photons without active timing synchronizations of pump lasers and/or adjustment of optical paths. In the experiment, photons are sufficiently narrowed by fiber-based Bragg gratings with the central wavelengths of 1541 nm & 1580 nm, and detected by superconducting nanowire single-photon detectors with low timing jitters. The observed fidelities of the final states for entanglement swapping and the generated three-qubit state were 0.84 ± 0.04 and 0.70 ± 0.05, respectively.
Retrieval of high-fidelity memory arises from distributed cortical networks.
Wais, Peter E; Jahanikia, Sahar; Steiner, Daniel; Stark, Craig E L; Gazzaley, Adam
2017-04-01
Medial temporal lobe (MTL) function is well established as necessary for memory of facts and events. It is likely that lateral cortical regions critically guide cognitive control processes to tune in high-fidelity details that are most relevant for memory retrieval. Here, convergent results from functional and structural MRI show that retrieval of detailed episodic memory arises from lateral cortical-MTL networks, including regions of inferior frontal and angular gyrii. Results also suggest that recognition of items based on low-fidelity, generalized information, rather than memory arising from retrieval of relevant episodic details, is not associated with functional connectivity between MTL and lateral cortical regions. Additionally, individual differences in microstructural properties in white matter pathways, associated with distributed MTL-cortical networks, are positively correlated with better performance on a mnemonic discrimination task. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
A Mixed-Fidelity Approach for Design of Low-Boom Supersonic Aircraft
NASA Technical Reports Server (NTRS)
Li, Wu; Shields, Elwood; Geiselhart, Karl A.
2010-01-01
This paper documents a mixed-fidelity approach for the design of low-boom supersonic aircraft as a viable approach for designing a practical low-boom supersonic configuration. A low-boom configuration that is based on low-fidelity analysis is used as the baseline. Tail lift is included to help tailor the aft portion of the ground signature. A comparison of low- and high-fidelity analysis results demonstrates the necessity of using computational fluid dynamics (CFD) analysis in a low-boom supersonic configuration design process. The fuselage shape is modified iteratively to obtain a configuration with a CFD equivalent-area distribution that matches a predetermined low-boom target distribution. The mixed-fidelity approach can easily refine the low-fidelity low-boom baseline into a low-boom configuration with the use of CFD equivalent-area analysis. The ground signature of the final configuration is calculated by using a state-of-the-art CFD-based boom analysis method that generates accurate midfield pressure distributions for propagation to the ground with ray tracing. The ground signature that is propagated from a midfield pressure distribution has a shaped ramp front, which is similar to the ground signature that is propagated from the CFD equivalent-area distribution. This result confirms the validity of the low-boom supersonic configuration design by matching a low-boom equivalent-area target, which is easier to accomplish than matching a low-boom midfield pressure target.
Importance of single molecular determinants in the fidelity of expanded genetic codes.
Antonczak, Alicja K; Simova, Zuzana; Yonemoto, Isaac T; Bochtler, Matthias; Piasecka, Anna; Czapinska, Honorata; Brancale, Andrea; Tippmann, Eric M
2011-01-25
The site-selective encoding of noncanonical amino acids (NAAs) is a powerful technique for the installation of novel chemical functional groups in proteins. This is often achieved by recoding a stop codon and requires two additional components: an evolved aminoacyl tRNA synthetase (AARS) and a cognate tRNA. Analysis of the most successful AARSs reveals common characteristics. The highest fidelity NAA systems derived from the Methanocaldococcus jannaschii tyrosyl AARS feature specific mutations to two residues reported to interact with the hydroxyl group of the substrate tyrosine. We demonstrate that the restoration of just one of these determinants for amino acid specificity results in the loss of fidelity as the evolved AARSs become noticeably promiscuous. These results offer a partial explanation of a recently retracted strategy for the synthesis of glycoproteins. Similarly, we reinvestigated a tryptophanyl AARS reported to allow the site-selective incorporation of 5-hydroxy tryptophan within mammalian cells. In multiple experiments, the enzyme displayed elements of promiscuity despite its previous characterization as a high fidelity enzyme. Given the many similarities of the TyrRSs and TrpRSs reevaluated here, our findings can be largely combined, and in doing so they reinforce the long-established central dogma regarding the molecular basis by which these enzymes contribute to the fidelity of translation. Thus, our view is that the central claims of fidelity reported in several NAA systems remain unproven and unprecedented.
Importance of single molecular determinants in the fidelity of expanded genetic codes
Antonczak, Alicja K.; Simova, Zuzana; Yonemoto, Isaac T.; Bochtler, Matthias; Piasecka, Anna; Czapińska, Honorata; Brancale, Andrea; Tippmann, Eric M.
2011-01-01
The site-selective encoding of noncanonical amino acids (NAAs) is a powerful technique for the installation of novel chemical functional groups in proteins. This is often achieved by recoding a stop codon and requires two additional components: an evolved aminoacyl tRNA synthetase (AARS) and a cognate tRNA. Analysis of the most successful AARSs reveals common characteristics. The highest fidelity NAA systems derived from the Methanocaldococcus jannaschii tyrosyl AARS feature specific mutations to two residues reported to interact with the hydroxyl group of the substrate tyrosine. We demonstrate that the restoration of just one of these determinants for amino acid specificity results in the loss of fidelity as the evolved AARSs become noticeably promiscuous. These results offer a partial explanation of a recently retracted strategy for the synthesis of glycoproteins. Similarly, we reinvestigated a tryptophanyl AARS reported to allow the site-selective incorporation of 5-hydroxy tryptophan within mammalian cells. In multiple experiments, the enzyme displayed elements of promiscuity despite its previous characterization as a high fidelity enzyme. Given the many similarities of the TyrRSs and TrpRSs reevaluated here, our findings can be largely combined, and in doing so they reinforce the long-established central dogma regarding the molecular basis by which these enzymes contribute to the fidelity of translation. Thus, our view is that the central claims of fidelity reported in several NAA systems remain unproven and unprecedented. PMID:21224416
Infinite projected entangled-pair state algorithm for ruby and triangle-honeycomb lattices
NASA Astrophysics Data System (ADS)
Jahromi, Saeed S.; Orús, Román; Kargarian, Mehdi; Langari, Abdollah
2018-03-01
The infinite projected entangled-pair state (iPEPS) algorithm is one of the most efficient techniques for studying the ground-state properties of two-dimensional quantum lattice Hamiltonians in the thermodynamic limit. Here, we show how the algorithm can be adapted to explore nearest-neighbor local Hamiltonians on the ruby and triangle-honeycomb lattices, using the corner transfer matrix (CTM) renormalization group for 2D tensor network contraction. Additionally, we show how the CTM method can be used to calculate the ground-state fidelity per lattice site and the boundary density operator and entanglement entropy (EE) on an infinite cylinder. As a benchmark, we apply the iPEPS method to the ruby model with anisotropic interactions and explore the ground-state properties of the system. We further extract the phase diagram of the model in different regimes of the couplings by measuring two-point correlators, ground-state fidelity, and EE on an infinite cylinder. Our phase diagram is in agreement with previous studies of the model by exact diagonalization.
Fang, Ruogu; Karlsson, Kolbeinn; Chen, Tsuhan; Sanelli, Pina C.
2014-01-01
Blood-brain-barrier permeability (BBBP) measurements extracted from the perfusion computed tomography (PCT) using the Patlak model can be a valuable indicator to predict hemorrhagic transformation in patients with acute stroke. Unfortunately, the standard Patlak model based PCT requires excessive radiation exposure, which raised attention on radiation safety. Minimizing radiation dose is of high value in clinical practice but can degrade the image quality due to the introduced severe noise. The purpose of this work is to construct high quality BBBP maps from low-dose PCT data by using the brain structural similarity between different individuals and the relations between the high- and low-dose maps. The proposed sparse high-dose induced (shd-Patlak) model performs by building a high-dose induced prior for the Patlak model with a set of location adaptive dictionaries, followed by an optimized estimation of BBBP map with the prior regularized Patlak model. Evaluation with the simulated low-dose clinical brain PCT datasets clearly demonstrate that the shd-Patlak model can achieve more significant gains than the standard Patlak model with improved visual quality, higher fidelity to the gold standard and more accurate details for clinical analysis. PMID:24200529
3D spherical-cap fitting procedure for (truncated) sessile nano- and micro-droplets & -bubbles.
Tan, Huanshu; Peng, Shuhua; Sun, Chao; Zhang, Xuehua; Lohse, Detlef
2016-11-01
In the study of nanobubbles, nanodroplets or nanolenses immobilised on a substrate, a cross-section of a spherical cap is widely applied to extract geometrical information from atomic force microscopy (AFM) topographic images. In this paper, we have developed a comprehensive 3D spherical-cap fitting procedure (3D-SCFP) to extract morphologic characteristics of complete or truncated spherical caps from AFM images. Our procedure integrates several advanced digital image analysis techniques to construct a 3D spherical-cap model, from which the geometrical parameters of the nanostructures are extracted automatically by a simple algorithm. The procedure takes into account all valid data points in the construction of the 3D spherical-cap model to achieve high fidelity in morphology analysis. We compare our 3D fitting procedure with the commonly used 2D cross-sectional profile fitting method to determine the contact angle of a complete spherical cap and a truncated spherical cap. The results from 3D-SCFP are consistent and accurate, while 2D fitting is unavoidably arbitrary in the selection of the cross-section and has a much lower number of data points on which the fitting can be based, which in addition is biased to the top of the spherical cap. We expect that the developed 3D spherical-cap fitting procedure will find many applications in imaging analysis.
Experiential Fidelity: Leveraging the Mind to Improve the VR Experience
NASA Astrophysics Data System (ADS)
Beckhaus, Steffi; Lindeman, Robert W.
Much of Virtual Reality (VR) is about creating environments that are believable. But though the visual and audio experiences we provide today are already of a rather high sensory fidelity, there is still something lacking; something hinders us from fully buying into the worlds we experience through VR technology. We introduce the notion of Experiential Fidelity, which is an attempt to create a deeper sense of presence by carefully designing the user experience. We suggest to guide the users' frame of mind in a way that their expectations, attitude, and attention are aligned with the actual VR experience, and that the user's own imagination is stimulated to complete the experience. This work was inspired by a collection of personal magic moments and factors that were named by leading researchers in VR. We present those magic moments and some thoughts on how we can tap into experiential fidelity. We propose to do this not through technological means, but rather through the careful use of suggestion and allusion. By priming the user's mind prior to exposure to our virtual worlds, we can assist her in entering a mental state that is more willing to believe, even using the limited actual fidelity available today.
Information theoretic approach for assessing image fidelity in photon-counting arrays.
Narravula, Srikanth R; Hayat, Majeed M; Javidi, Bahram
2010-02-01
The method of photon-counting integral imaging has been introduced recently for three-dimensional object sensing, visualization, recognition and classification of scenes under photon-starved conditions. This paper presents an information-theoretic model for the photon-counting imaging (PCI) method, thereby providing a rigorous foundation for the merits of PCI in terms of image fidelity. This, in turn, can facilitate our understanding of the demonstrated success of photon-counting integral imaging in compressive imaging and classification. The mutual information between the source and photon-counted images is derived in a Markov random field setting and normalized by the source-image's entropy, yielding a fidelity metric that is between zero and unity, which respectively corresponds to complete loss of information and full preservation of information. Calculations suggest that the PCI fidelity metric increases with spatial correlation in source image, from which we infer that the PCI method is particularly effective for source images with high spatial correlation; the metric also increases with the reduction in photon-number uncertainty. As an application to the theory, an image-classification problem is considered showing a congruous relationship between the fidelity metric and classifier's performance.
ERIC Educational Resources Information Center
Grierson, Lawrence E. M.
2014-01-01
Much has been made in the recent medical education literature of the incorrect characterization of simulation along a continuum of low to high fidelity (Cook et al. "JAMA" 306(9): 978-988, 2011; Norman et al. "Med Educ" 46(7): 636-647, 2012; Teteris et al. "Adv Health Sci Educ" 17(1): 137-144, 2012). For the most…
ERIC Educational Resources Information Center
Grimsley, Douglas L.
This study is the first in a series which was conducted under the name STRANGER III, and which was to examine trainee's long-term memory of motor skills. This phase examined the effects of varying fidelity of training devices on acquisition, retention, and reinstatement of ability to perform a 92-step procedural task. Three versions of the Section…
A daylong clinical laboratory: from gaming to high-fidelity simulators.
Bantz, Diana; Dancer, Michelle Mattice; Hodson-Carlton, Kay; Van Hove, Sharon
2007-01-01
Meeting required objectives in the clinical setting can be difficult because of low exposure to critical events. This has been further compounded by an increase in the number of enrolling students without a reciprocal rise in the number of field-related clinical sites. As simulation gains popularity in nursing, exploration of its use and benefits to teach nursing-related concepts is desirable. The authors discuss a variety of teaching strategies ranging from the use of games to high-fidelity simulators that have been incorporated into an all-day clinical simulation campus laboratory.
Dshell++: A Component Based, Reusable Space System Simulation Framework
NASA Technical Reports Server (NTRS)
Lim, Christopher S.; Jain, Abhinandan
2009-01-01
This paper describes the multi-mission Dshell++ simulation framework for high fidelity, physics-based simulation of spacecraft, robotic manipulation and mobility systems. Dshell++ is a C++/Python library which uses modern script driven object-oriented techniques to allow component reuse and a dynamic run-time interface for complex, high-fidelity simulation of spacecraft and robotic systems. The goal of the Dshell++ architecture is to manage the inherent complexity of physicsbased simulations while supporting component model reuse across missions. The framework provides several features that support a large degree of simulation configurability and usability.
NASA Astrophysics Data System (ADS)
MacCallum, T.; Poynter, J.; Bearden, D.
A human mission to Mars, or a base on the Moon or Mars, is a longer and more complex mission than any space endeavor undertaken to date. Ground simulations provide a relevant, analogous environment for testing technologies and learning how to manage complex, long duration missions, while addressing inherent mission risks. Multiphase human missions and settlements that may preclude a rapid return to Earth, require high fidelity, end-to-end, at least full mission duration tests in order to evaluate a system's ability to sustain the crew for the entire mission and return the crew safely to Earth. Moreover, abort scenarios are essentially precluded in many mission scenarios, though certain risks may only become evident late in the mission. Aging and compounding effects cannot be simulated through accelerated tests for all aspects of the mission. Until such high fidelity long duration simulations are available, and in order to help prepare those simulations and mission designs, it is important to extract as many lessons as possible from analogous environments. Possibly the best analogue for a long duration space mission is the two year mission of Biosphere 2. Biosphere 2 is a three-acre materially closed ecological system that supported eight crewmembers with food, air and water in a sunlight driven bioregenerative system for two years. It was designed for research applicable to environmental management on Earth and the development of human life support for space. A brief overview of the two-year Biosphere 2 mission is presented, followed by select data and lessons learned that are applicable to the design and operation of a long duration human space mission, settlement or test bed. These lessons include technical, programmatic, and psychological issues
Texture generation for use in synthetic infrared scenes
NASA Astrophysics Data System (ADS)
Ota, Clem Z.; Rollins, John M.; Bleiweiss, Max P.
1996-06-01
In the process of creating synthetic scenes for use in simulations/visualizations, texture is used as a surrogate to 'high' spatial definition. For example, if one were to measure the location of every blade of grass and all of the characteristics of each blade of grass in a lawn, then in the process of composing a scene of the lawn, it would be expected that the result would appear 'real;' however, because this process is excruciatingly laborious, various techniques have been devised to place the required details in the scene through the use of texturing. Experience gained during the recent Smart Weapons Operability Enhancement Joint Test and Evaluation (SWOE JT&E) has shown the need for higher fidelity texturing algorithms and a better parameterization of those that are in use. In this study, four aspects of the problem have been analyzed: texture extraction, texture insertion, texture metrics, and texture creation algorithms. The results of extracting real texture from an image, measuring it with a variety of metrics, and generating similar texture with three different algorithms is presented. These same metrics can be used to define clutter and to make comparisons between 'real' and synthetic (or artificial) scenes in an objective manner.
Silica-on-silicon waveguide quantum circuits.
Politi, Alberto; Cryan, Martin J; Rarity, John G; Yu, Siyuan; O'Brien, Jeremy L
2008-05-02
Quantum technologies based on photons will likely require an integrated optics architecture for improved performance, miniaturization, and scalability. We demonstrate high-fidelity silica-on-silicon integrated optical realizations of key quantum photonic circuits, including two-photon quantum interference with a visibility of 94.8 +/- 0.5%; a controlled-NOT gate with an average logical basis fidelity of 94.3 +/- 0.2%; and a path-entangled state of two photons with fidelity of >92%. These results show that it is possible to directly "write" sophisticated photonic quantum circuits onto a silicon chip, which will be of benefit to future quantum technologies based on photons, including information processing, communication, metrology, and lithography, as well as the fundamental science of quantum optics.
A Comparative Study of High and Low Fidelity Fan Models for Turbofan Engine System Simulation
NASA Technical Reports Server (NTRS)
Reed, John A.; Afjeh, Abdollah A.
1991-01-01
In this paper, a heterogeneous propulsion system simulation method is presented. The method is based on the formulation of a cycle model of a gas turbine engine. The model includes the nonlinear characteristics of the engine components via use of empirical data. The potential to simulate the entire engine operation on a computer without the aid of data is demonstrated by numerically generating "performance maps" for a fan component using two flow models of varying fidelity. The suitability of the fan models were evaluated by comparing the computed performance with experimental data. A discussion of the potential benefits and/or difficulties in connecting simulations solutions of differing fidelity is given.
Betzler, Benjamin R.; Chandler, David; Davidson, Eva E.; ...
2017-05-08
A high-fidelity model of the High Flux Isotope Reactor (HFIR) with a low-enriched uranium (LEU) fuel design and a representative experiment loading has been developed to serve as a new reference model for LEU conversion studies. With the exception of the fuel elements, this HFIR LEU model is completely consistent with the current highly enriched uranium HFIR model. Results obtained with the new LEU model provide a baseline for analysis of alternate LEU fuel designs and further optimization studies. The newly developed HFIR LEU model has an explicit representation of the HFIR-specific involute fuel plate geometry, including the within-plate fuelmore » meat contouring, and a detailed geometry model of the fuel element side plates. Such high-fidelity models are necessary to accurately account for the self-shielding from 238U and the depletion of absorber materials present in the side plates. In addition, a method was developed to account for fuel swelling in the high-density LEU fuel plates during the depletion simulation. In conclusion, calculated time-dependent metrics for the HFIR LEU model include fission rate and cumulative fission density distributions, flux and reaction rates for relevant experiment locations, point kinetics data, and reactivity coefficients.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Betzler, Benjamin R.; Chandler, David; Davidson, Eva E.
A high-fidelity model of the High Flux Isotope Reactor (HFIR) with a low-enriched uranium (LEU) fuel design and a representative experiment loading has been developed to serve as a new reference model for LEU conversion studies. With the exception of the fuel elements, this HFIR LEU model is completely consistent with the current highly enriched uranium HFIR model. Results obtained with the new LEU model provide a baseline for analysis of alternate LEU fuel designs and further optimization studies. The newly developed HFIR LEU model has an explicit representation of the HFIR-specific involute fuel plate geometry, including the within-plate fuelmore » meat contouring, and a detailed geometry model of the fuel element side plates. Such high-fidelity models are necessary to accurately account for the self-shielding from 238U and the depletion of absorber materials present in the side plates. In addition, a method was developed to account for fuel swelling in the high-density LEU fuel plates during the depletion simulation. In conclusion, calculated time-dependent metrics for the HFIR LEU model include fission rate and cumulative fission density distributions, flux and reaction rates for relevant experiment locations, point kinetics data, and reactivity coefficients.« less
Collaborative classification of hyperspectral and visible images with convolutional neural network
NASA Astrophysics Data System (ADS)
Zhang, Mengmeng; Li, Wei; Du, Qian
2017-10-01
Recent advances in remote sensing technology have made multisensor data available for the same area, and it is well-known that remote sensing data processing and analysis often benefit from multisource data fusion. Specifically, low spatial resolution of hyperspectral imagery (HSI) degrades the quality of the subsequent classification task while using visible (VIS) images with high spatial resolution enables high-fidelity spatial analysis. A collaborative classification framework is proposed to fuse HSI and VIS images for finer classification. First, the convolutional neural network model is employed to extract deep spectral features for HSI classification. Second, effective binarized statistical image features are learned as contextual basis vectors for the high-resolution VIS image, followed by a classifier. The proposed approach employs diversified data in a decision fusion, leading to an integration of the rich spectral information, spatial information, and statistical representation information. In particular, the proposed approach eliminates the potential problems of the curse of dimensionality and excessive computation time. The experiments evaluated on two standard data sets demonstrate better classification performance offered by this framework.
Multi-parameter fiber optic sensors based on fiber random grating
NASA Astrophysics Data System (ADS)
Xu, Yanping; Zhang, Mingjiang; Lu, Ping; Mihailov, Stephen; Bao, Xiaoyi
2017-04-01
Two novel configurations of multi-parameter fiber-optic sensing systems based on the fiber random grating are reported. The fiber random grating is fabricated through femtosecond laser induced refractive index modification over a 10cm standard telecom single mode fiber. In one configuration, the reflective spectrum of the fiber random grating is directly detected and a wavelength-division spectral cross-correlation algorithm is adopted to extract the spectral shifts for simultaneous measurement of temperature, axial strain, and surrounding refractive index. In the other configuration, a random fiber ring laser is constructed by incorporating the random feedback from the random grating. Numerous polarization-dependent spectral filters are formed along the random grating and superimposed to provide multiple lasing lines with high signal-to-noise ratio up to 40dB, which enables a high-fidelity multi-parameter sensing scheme by monitoring the spectral shifts of the lasing lines. Without the need of phase mask for fabrication and with the high physical strength, the random grating based sensors are much simpler and more compact, which could be potentially an excellent alternative for liquid medical sample sensing in biomedical and biochemical applications.
Chen, Ya-Bing; Lan, Dao-Liang; Tang, Cheng; Yang, Xiao-Nong; Li, Jian
2015-01-01
To more efficiently identify the microbial community of the yak rumen, the standardization of DNA extraction is key to ensure fidelity while studying environmental microbial communities. In this study, we systematically compared the efficiency of several extraction methods based on DNA yield, purity, and 16S rDNA sequencing to determine the optimal DNA extraction methods whose DNA products reflect complete bacterial communities. The results indicate that method 6 (hexadecyltrimethylammomium bromide-lysozyme-physical lysis by bead beating) is recommended for the DNA isolation of the rumen microbial community due to its high yield, operational taxonomic unit, bacterial diversity, and excellent cell-breaking capability. The results also indicate that the bead-beating step is necessary to effectively break down the cell walls of all of the microbes, especially Gram-positive bacteria. Another aim of this study was to preliminarily analyze the bacterial community via 16S rDNA sequencing. The microbial community spanned approximately 21 phyla, 35 classes, 75 families, and 112 genera. A comparative analysis showed some variations in the microbial community between yaks and cattle that may be attributed to diet and environmental differences. Interestingly, numerous uncultured or unclassified bacteria were found in yak rumen, suggesting that further research is required to determine the specific functional and ecological roles of these bacteria in yak rumen. In summary, the investigation of the optimal DNA extraction methods and the preliminary evaluation of the bacterial community composition of yak rumen support further identification of the specificity of the rumen microbial community in yak and the discovery of distinct gene resources.
High-Fidelity Computational Aerodynamics of the Elytron 4S UAV
NASA Technical Reports Server (NTRS)
Ventura Diaz, Patricia; Yoon, Seokkwan; Theodore, Colin R.
2018-01-01
High-fidelity Computational Fluid Dynamics (CFD) have been carried out for the Elytron 4S Unmanned Aerial Vehicle (UAV), also known as the converticopter "proto12". It is the scaled wind tunnel model of the Elytron 4S, an Urban Air Mobility (UAM) concept, a tilt-wing, box-wing rotorcraft capable of Vertical Take-Off and Landing (VTOL). The three-dimensional unsteady Navier-Stokes equations are solved on overset grids employing high-order accurate schemes, dual-time stepping, and a hybrid turbulence model using NASA's CFD code OVERFLOW. The Elytron 4S UAV has been simulated in airplane mode and in helicopter mode.
NASA Astrophysics Data System (ADS)
Peng, Di; Wang, Shaofei; Liu, Yingzheng
2016-04-01
Fast pressure-sensitive paint (PSP) is very useful in flow diagnostics due to its fast response and high spatial resolution, but its applications in low-speed flows are usually challenging due to limitations of paint's pressure sensitivity and the capability of high-speed imagers. The poor signal-to-noise ratio in low-speed cases makes it very difficult to extract useful information from the PSP data. In this study, unsteady PSP measurements were made on a flat plate behind a cylinder in a low-speed wind tunnel (flow speed from 10 to 17 m/s). Pressure fluctuations (Δ P) on the plate caused by vortex-plate interaction were recorded continuously by fast PSP (using a high-speed camera) and a microphone array. Power spectrum of pressure fluctuations and phase-averaged Δ P obtained from PSP and microphone were compared, showing good agreement in general. Proper orthogonal decomposition (POD) was used to reduce noise in PSP data and extract the dominant pressure features. The PSP results reconstructed from selected POD modes were then compared to the pressure data obtained simultaneously with microphone sensors. Based on the comparison of both instantaneous Δ P and root-mean-square of Δ P, it was confirmed that POD analysis could effectively remove noise while preserving the instantaneous pressure information with good fidelity, especially for flows with strong periodicity. This technique extends the application range of fast PSP and can be a powerful tool for fundamental fluid mechanics research at low speed.
Selection of UV Resins for Nanostructured Molds for Thermal-NIL.
Jia, Zheng; Choi, Junseo; Park, Sunggook
2018-06-18
Nanoimprint molds made of soft polymeric materials have advantages of low demolding force and low fabrication cost over Si or metal-based hard molds. However, such advantages are often sacrificed by their reduced replication fidelity associated with the low mechanical strength. In this paper, we studied replication fidelity of different UV-resin molds copied from a Si master mold via UV nanoimprint lithography (NIL) and their thermal imprinting performance into a thermoplastic polymer. Four different UV resins were studied: two were high surface energy UV resins based on tripropyleneglycol diacrylate (TPGDA resin) and polypropyleneglycol diacrylate (PPGDA resin), and the other two were commercially available, low surface energy poly-urethane acrylate (PUA resin) and fluorine-containing (MD 700) UV resins. The replication fidelity among the four UV-resins during UV nanoimprint lithograph from a Si master with sharp nanostructures was in the increasing order of (poorest) PUA resin < MD 700 < PPGDA resin < TPGDA resin (best). The results show that the high surface energy and small monomer size are keys to achieving good UV resin filling into sharp nanostructures over the viscosity of the resin solution. When the four UV-resin molds were used for thermal-NIL into a thermoplastic polymer, the replication fidelity was in the increasing order of (poorest) MD 700 < TPGDA resin < PUA resin (best), which follows the same order of their Young's moduli. Our results indicate that the selection of an appropriate UV resin for NIL molds requires consideration of the replication fidelities in the mold fabrication and the subsequent thermal-NIL into thermoplastic polymers. © 2018 IOP Publishing Ltd.
Brunette, Mary F; Asher, Dianne; Whitley, Rob; Lutz, Wilma J; Wieder, Barbara L; Jones, Amanda M; McHugo, Gregory J
2008-09-01
Approximately half of the people who have serious mental illnesses experience a co-occurring substance use disorder at some point in their lifetime. Integrated dual disorders treatment, a program to treat persons with co-occurring disorders, improves outcomes but is not widely available in public mental health settings. This report describes the extent to which this intervention was implemented by 11 community mental health centers participating in a large study of practice implementation. Facilitators and barriers to implementation are described. Trained implementation monitors conducted regular site visits over two years. During visits, monitors interviewed key informants, conducted ethnographic observations of implementation efforts, and assessed fidelity to the practice model. These data were coded and used as a basis for detailed site reports summarizing implementation processes. The authors reviewed the reports and distilled the three top facilitators and barriers for each site. The most prominent cross-site facilitators and barriers were identified. Two sites reached high fidelity, six sites reached moderate fidelity, and three sites remained at low fidelity over the two years. Prominent facilitators and barriers to implementation with moderate to high fidelity were administrative leadership, consultation and training, supervisor mastery and supervision, chronic staff turnover, and finances. Common facilitators and barriers to implementation of integrated dual disorders treatment emerged across sites. The results confirmed the importance of the use of the consultant-trainer in the model of implementation, as well as the need for intensive activities at multiple levels to facilitate implementation. Further research on service implementation is needed, including but not limited to clarifying strategies to overcome barriers.
Patel, Monita R; Westreich, Daniel; Yotebieng, Marcel; Nana, Mbonze; Eron, Joseph J; Behets, Frieda; Van Rie, Annelies
2015-05-01
Among patients with tuberculosis and human immunodeficiency virus type 1, CD4-stratified initiation of antiretroviral therapy (ART) is recommended, with earlier ART in those with low CD4 counts. However, the impact of implementation fidelity to this recommendation is unknown. We examined a prospective cohort study of 395 adult patients diagnosed with tuberculosis and human immunodeficiency virus between August 2007 and November 2009 in Kinshasa, Democratic Republic of the Congo. ART was to be initiated after 1 month of tuberculosis treatment at a CD4 count of <100 cells/mm(3) or World Health Organization stage 4 (other than extrapulmonary tuberculosis) and after 2 months of tuberculosis treatment at a CD4 count of 100-350 cells/mm(3). We used the parametric g-formula to estimate the impact of implementation fidelity on 6-month mortality. Observed implementation fidelity was low (46%); 54% of patients either experienced delays in ART initiation or did not initiate ART, which could be avoided under perfect implementation fidelity. The observed mortality risk was 12.0% (95% confidence interval (CI): 8.2, 15.7); under complete (counterfactual) implementation fidelity, the mortality risk was 7.8% (95% CI: 2.4, 12.3), corresponding to a risk reduction of 4.2% (95% CI: 0.3, 8.1) and a preventable fraction of 35.1% (95% CI: 2.9, 67.9). Strategies to achieve high implementation fidelity to CD4-stratified ART timing are needed to maximize survival benefit. © The Author 2015. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Muntinga, Maaike E; Van Leeuwen, Karen M; Schellevis, François G; Nijpels, Giel; Jansen, Aaltje P D
2015-01-22
Implementation fidelity, the degree to which a care program is implemented as intended, can influence program impact. Since results of trials that aim to implement comprehensive care programs for frail, older people have been conflicting, assessing implementation fidelity alongside these trials is essential to differentiate between flaws inherent to the program and implementation issues. This study demonstrates how a theory-based assessment of fidelity can increase insight in the implementation process of a complex intervention in primary elderly care. The Geriatric Care Model was implemented among 35 primary care practices in the Netherlands. During home visits, practice nurses conducted a comprehensive geriatric assessment and wrote a tailored care plan. Multidisciplinary team consultations were organized with the aim to enhance the coordination between professionals caring for a single patient with complex needs. To assess fidelity, we identified 5 key intervention components and formulated corresponding research questions using Carroll's framework for fidelity. Adherence (coverage, frequency, duration, content) was assessed per intervention component during and at the end of the intervention period. Two moderating factors (participant responsiveness and facilitation strategies) were assessed at the end of the intervention. Adherence to the geriatric assessments and care plans was high, but decreased over time. Adherence to multidisciplinary consultations was initially poor, but increased over time. We found that individual differences in adherence between practice nurses and primary care physicians were moderate, while differences in participant responsiveness (satisfaction, involvement) were more distinct. Nurses deviated from protocol due to contextual factors and personal work routines. Adherence to the Geriatric Care Model was high for most of the essential intervention components. Study limitations include the limited number of assessed moderating factors. We argue that a longitudinal investigation of adherence per intervention component is essential for a complete understanding of the implementation process, but that such investigations may be complicated by practical and methodological challenges. The Netherlands National Trial Register (NTR). 2160 .
An intelligent tutoring system for the investigation of high performance skill acquisition
NASA Technical Reports Server (NTRS)
Fink, Pamela K.; Herren, L. Tandy; Regian, J. Wesley
1991-01-01
The issue of training high performance skills is of increasing concern. These skills include tasks such as driving a car, playing the piano, and flying an aircraft. Traditionally, the training of high performance skills has been accomplished through the use of expensive, high-fidelity, 3-D simulators, and/or on-the-job training using the actual equipment. Such an approach to training is quite expensive. The design, implementation, and deployment of an intelligent tutoring system developed for the purpose of studying the effectiveness of skill acquisition using lower-cost, lower-physical-fidelity, 2-D simulation. Preliminary experimental results are quite encouraging, indicating that intelligent tutoring systems are a cost-effective means of training high performance skills.
Novel approach to multispectral image compression on the Internet
NASA Astrophysics Data System (ADS)
Zhu, Yanqiu; Jin, Jesse S.
2000-10-01
Still image coding techniques such as JPEG have been always applied onto intra-plane images. Coding fidelity is always utilized in measuring the performance of intra-plane coding methods. In many imaging applications, it is more and more necessary to deal with multi-spectral images, such as the color images. In this paper, a novel approach to multi-spectral image compression is proposed by using transformations among planes for further compression of spectral planes. Moreover, a mechanism of introducing human visual system to the transformation is provided for exploiting the psycho visual redundancy. The new technique for multi-spectral image compression, which is designed to be compatible with the JPEG standard, is demonstrated on extracting correlation among planes based on human visual system. A high measure of compactness in the data representation and compression can be seen with the power of the scheme taken into account.
Design, Optimization, and Evaluation of A1-2139 Compression Panel with Integral T-Stiffeners
NASA Technical Reports Server (NTRS)
Mulani, Sameer B.; Havens, David; Norris, Ashley; Bird, R. Keith; Kapania, Rakesh K.; Olliffe, Robert
2012-01-01
A T-stiffened panel was designed and optimized for minimum mass subjected to constraints on buckling load, yielding, and crippling or local stiffener failure using a new analysis and design tool named EBF3PanelOpt. The panel was designed for a compression loading configuration, a realistic load case for a typical aircraft skin-stiffened panel. The panel was integrally machined from 2139 aluminum alloy plate and was tested in compression. The panel was loaded beyond buckling and strains and out-of-plane displacements were extracted from 36 strain gages and one linear variable displacement transducer. A digital photogrammetric system was used to obtain full field displacements and strains on the smooth (unstiffened) side of the panel. The experimental data were compared with the strains and out-of-plane deflections from a high-fidelity nonlinear finite element analysis.
Trends and individual differences in response to short-haul flight operations
NASA Technical Reports Server (NTRS)
Chidester, Thomas R.
1990-01-01
A survey of airline pilots was undertaken to determine normative patterns and individual differences in mood and sleep during short-haul flight operations. The results revealed that over the course of a typical 2-d trip, pilots experience a decline in positive mood, or activity, and an increase in negative mood, or tension. On layovers, pilots report experiencing sleep of shorter duration and poorer quality than at home. These patterns are very similar to those reported by Gander and Graeber (1987) and by Gander et al. (1988), using high-fidelity sleep and activity monitoring equipment. Examination of the impact of two personality dimensions extracted from the Jenkins Activity Survey measure of the Type A personality, Achievement Striving and Impatience/Irritability, suggested that Impatience/Irritability may serve as a marker of individuals most likely to experience health-related problems on trips. Achievement Striving may serve as a predictor of performance in crew settings.
Trends and individual differences in response to short-haul fight operations
NASA Technical Reports Server (NTRS)
Chidester, T. R.
1990-01-01
A survey of airline pilots was undertaken to determine normative patterns and individual differences in mood and sleep during short-haul flight operations. The results revealed that over the course of a typical 2-d trip, pilots experience a decline in positive mood, or activity, and an increase in negative mood, or tension. On layovers, pilots report experiencing sleep of shorter duration and poorer quality than at home. These patterns are very similar to those reported by Gander and Graeber and by Gander et al. using high-fidelity sleep and activity monitoring equipment. Examination of the impact of two personality dimensions extracted from the Jenkins Activity Survey measure of the Type A personality, Achievement Striving and Impatience/Irritability, suggested that Impatience/Irritability may serve as a marker of individuals most likely to experience health-related problems on trips. Achievement Striving may serve as a predictor of performance in crew settings.
A study of navigation in virtual space
NASA Technical Reports Server (NTRS)
Darken, Rudy; Sibert, John L.; Shumaker, Randy
1994-01-01
In the physical world, man has developed efficient methods for navigation and orientation. These methods are dependent on the high-fidelity stimuli presented by the environment. When placed in a virtual world which cannot offer stimuli of the same quality due to computing constraints and immature technology, tasks requiring the maintenance of position and orientation knowledge become laborious. In this paper, we present a representative set of techniques based on principles of navigation derived from real world analogs including human and avian navigation behavior and cartography. A preliminary classification of virtual worlds is presented based on the size of the world, the density of objects in the world, and the level of activity taking place in the world. We also summarize an informal study we performed to determine how the tools influenced the subjects' navigation strategies and behavior. We conclude that principles extracted from real world navigation aids such as maps can be seen to apply in virtual environments.
A limited-angle CT reconstruction method based on anisotropic TV minimization.
Chen, Zhiqiang; Jin, Xin; Li, Liang; Wang, Ge
2013-04-07
This paper presents a compressed sensing (CS)-inspired reconstruction method for limited-angle computed tomography (CT). Currently, CS-inspired CT reconstructions are often performed by minimizing the total variation (TV) of a CT image subject to data consistency. A key to obtaining high image quality is to optimize the balance between TV-based smoothing and data fidelity. In the case of the limited-angle CT problem, the strength of data consistency is angularly varying. For example, given a parallel beam of x-rays, information extracted in the Fourier domain is mostly orthogonal to the direction of x-rays, while little is probed otherwise. However, the TV minimization process is isotropic, suggesting that it is unfit for limited-angle CT. Here we introduce an anisotropic TV minimization method to address this challenge. The advantage of our approach is demonstrated in numerical simulation with both phantom and real CT images, relative to the TV-based reconstruction.
Structural and thermal response of 30 cm diameter ion thruster optics
NASA Technical Reports Server (NTRS)
Macrae, G. S.; Zavesky, R. J.; Gooder, S. T.
1989-01-01
Tabular and graphical data are presented which are intended for use in calibrating and validating structural and thermal models of ion thruster optics. A 30 cm diameter, two electrode, mercury ion thruster was operated using two different electrode assembly designs. With no beam extraction, the transient and steady state temperature profiles and center electrode gaps were measured for three discharge powers. The data showed that the electrode mount design had little effect on the temperatures, but significantly impacted the motion of the electrode center. Equilibrium electrode gaps increased with one design and decreased with the other. Equilibrium displacements in excess of 0.5 mm and gap changes of 0.08 mm were measured at 450 W discharge power. Variations in equilibrium gaps were also found among assemblies of the same design. The presented data illustrate the necessity for high fidelity ion optics models and development of experimental techniques to allow their validation.
Multi-fidelity Gaussian process regression for prediction of random fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parussini, L.; Venturi, D., E-mail: venturi@ucsc.edu; Perdikaris, P.
We propose a new multi-fidelity Gaussian process regression (GPR) approach for prediction of random fields based on observations of surrogate models or hierarchies of surrogate models. Our method builds upon recent work on recursive Bayesian techniques, in particular recursive co-kriging, and extends it to vector-valued fields and various types of covariances, including separable and non-separable ones. The framework we propose is general and can be used to perform uncertainty propagation and quantification in model-based simulations, multi-fidelity data fusion, and surrogate-based optimization. We demonstrate the effectiveness of the proposed recursive GPR techniques through various examples. Specifically, we study the stochastic Burgersmore » equation and the stochastic Oberbeck–Boussinesq equations describing natural convection within a square enclosure. In both cases we find that the standard deviation of the Gaussian predictors as well as the absolute errors relative to benchmark stochastic solutions are very small, suggesting that the proposed multi-fidelity GPR approaches can yield highly accurate results.« less
Lederer, Alyssa M; King, Mindy H; Sovinski, Danielle; Seo, Dong-Chul; Kim, Nayoung
2015-01-01
Curtailing childhood obesity is a public health imperative. Although multicomponent school-based programs reduce obesity among children, less is known about the implementation fidelity of these interventions. This study examines process evaluation findings for the Healthy, Energetic Ready, Outstanding, Enthusiastic, Schools (HEROES) Initiative, a tri-state school-based childhood obesity prevention intervention based on the coordinated school health (CSH) model. Site visits were conducted that included key stakeholder interviews, observation, and document review. Scores were given for 8 domains, and a total implementation score was calculated. Two-way analyses of variance were conducted to examine the relationship of 4 school-level characteristics: elementary vs. middle/high schools, public vs. private schools, district vs. building level implementation, and socioeconomic status on each implementation area. Overall, schools had high fidelity scores, although some domains were implemented more successfully than others. Three school-level characteristics were associated with 1 or more domains, with elementary schools and schools implementing at the building level consistently having higher implementation scores than their counterparts. Process evaluation findings provide insight into successes and challenges schools implementing the CSH approach may encounter. Although preliminary, these findings on school-level characteristics establish a new area of research related to school-based childhood obesity prevention programs' implementation fidelity. © 2014, American School Health Association.
Schwendler, Teresa; Shipley, Cara; Budd, Nadine; Trude, Angela; Surkan, Pamela J.; Steeves, Elizabeth Anderson; de Morais Sato, Priscila; Eckmann, Thomas; Loh, Hong; Gittelsohn, Joel
2017-01-01
Higher rates of obesity and obesity-related chronic disease are prevalent in communities where there is limited access to affordable, healthy food. The B’More Healthy Communities for Kids (BHCK) trial worked at multiple levels of the food environment including food wholesalers and corner stores to improve the surrounding community’s access to healthy food. The objective of this article is to describe the development and implementation of BHCK’s corner store and wholesaler interventions through formal process evaluation. Researchers evaluated each level of the intervention to assess reach, dose delivered, and fidelity. Corner store and wholesaler reach, dose delivered, and fidelity were measured by number of interactions, promotional materials distributed, and maintenance of study materials, respectively. Overall, the corner store implementation showed moderate reach, dose delivered, and high fidelity. The wholesaler intervention was implemented with high reach, dose, and fidelity. The program held 355 corner store interactive sessions and had 9,347 community member interactions, 21% of which were with children between the ages of 10 and 14 years. There was a 15% increase in corner store promoted food stocking during Wave 1 and a 17% increase during Wave 2. These findings demonstrate a successfully implemented food retailer intervention in a low-income urban setting. PMID:28343413
Subiaul, Francys; Patterson, Eric M; Schilder, Brian; Renner, Elizabeth; Barr, Rachel
2015-11-01
In contrast to other primates, human children's imitation performance goes from low to high fidelity soon after infancy. Are such changes associated with the development of other forms of learning? We addressed this question by testing 215 children (26-59 months) on two social conditions (imitation, emulation) - involving a demonstration - and two asocial conditions (trial-and-error, recall) - involving individual learning - using two touchscreen tasks. The tasks required responding to either three different pictures in a specific picture order (Cognitive: Airplane→Ball→Cow) or three identical pictures in a specific spatial order (Motor-Spatial: Up→Down→Right). There were age-related improvements across all conditions and imitation, emulation and recall performance were significantly better than trial-and-error learning. Generalized linear models demonstrated that motor-spatial imitation fidelity was associated with age and motor-spatial emulation performance, but cognitive imitation fidelity was only associated with age. While this study provides evidence for multiple imitation mechanisms, the development of one of those mechanisms - motor-spatial imitation - may be bootstrapped by the development of another social learning skill - motor-spatial emulation. Together, these findings provide important clues about the development of imitation, which is arguably a distinctive feature of the human species. © 2014 John Wiley & Sons Ltd.
HIGH-FIDELITY SIMULATION-DRIVEN MODEL DEVELOPMENT FOR COARSE-GRAINED COMPUTATIONAL FLUID DYNAMICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanna, Botros N.; Dinh, Nam T.; Bolotnov, Igor A.
Nuclear reactor safety analysis requires identifying various credible accident scenarios and determining their consequences. For a full-scale nuclear power plant system behavior, it is impossible to obtain sufficient experimental data for a broad range of risk-significant accident scenarios. In single-phase flow convective problems, Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) can provide us with high fidelity results when physical data are unavailable. However, these methods are computationally expensive and cannot be afforded for simulation of long transient scenarios in nuclear accidents despite extraordinary advances in high performance scientific computing over the past decades. The major issue is themore » inability to make the transient computation parallel, thus making number of time steps required in high-fidelity methods unaffordable for long transients. In this work, we propose to apply a high fidelity simulation-driven approach to model sub-grid scale (SGS) effect in Coarse Grained Computational Fluid Dynamics CG-CFD. This approach aims to develop a statistical surrogate model instead of the deterministic SGS model. We chose to start with a turbulent natural convection case with volumetric heating in a horizontal fluid layer with a rigid, insulated lower boundary and isothermal (cold) upper boundary. This scenario of unstable stratification is relevant to turbulent natural convection in a molten corium pool during a severe nuclear reactor accident, as well as in containment mixing and passive cooling. The presented approach demonstrates how to create a correction for the CG-CFD solution by modifying the energy balance equation. A global correction for the temperature equation proves to achieve a significant improvement to the prediction of steady state temperature distribution through the fluid layer.« less
High-Fidelity Roadway Modeling and Simulation
NASA Technical Reports Server (NTRS)
Wang, Jie; Papelis, Yiannis; Shen, Yuzhong; Unal, Ozhan; Cetin, Mecit
2010-01-01
Roads are an essential feature in our daily lives. With the advances in computing technologies, 2D and 3D road models are employed in many applications, such as computer games and virtual environments. Traditional road models were generated by professional artists manually using modeling software tools such as Maya and 3ds Max. This approach requires both highly specialized and sophisticated skills and massive manual labor. Automatic road generation based on procedural modeling can create road models using specially designed computer algorithms or procedures, reducing the tedious manual editing needed for road modeling dramatically. But most existing procedural modeling methods for road generation put emphasis on the visual effects of the generated roads, not the geometrical and architectural fidelity. This limitation seriously restricts the applicability of the generated road models. To address this problem, this paper proposes a high-fidelity roadway generation method that takes into account road design principles practiced by civil engineering professionals, and as a result, the generated roads can support not only general applications such as games and simulations in which roads are used as 3D assets, but also demanding civil engineering applications, which requires accurate geometrical models of roads. The inputs to the proposed method include road specifications, civil engineering road design rules, terrain information, and surrounding environment. Then the proposed method generates in real time 3D roads that have both high visual and geometrical fidelities. This paper discusses in details the procedures that convert 2D roads specified in shape files into 3D roads and civil engineering road design principles. The proposed method can be used in many applications that have stringent requirements on high precision 3D models, such as driving simulations and road design prototyping. Preliminary results demonstrate the effectiveness of the proposed method.
Flannery, K B; Fenning, P; Kato, M McGrath; McIntosh, K
2014-06-01
High school is an important time in the educational career of students. It is also a time when adolescents face many behavioral, academic, and social-emotional challenges. Current statistics about the behavioral, academic, and social-emotional challenges faced by adolescents, and the impact on society through incarceration and dropout, have prompted high schools to direct their attention toward keeping students engaged and reducing high-risk behavioral challenges. The purpose of the study was to examine the effects of School-Wide Positive Behavioral Interventions and Supports (SW-PBIS) on the levels of individual student problem behaviors during a 3-year effectiveness trial without random assignment to condition. Participants were 36,653 students in 12 high schools. Eight schools implemented SW-PBIS, and four schools served as comparison schools. Results of a multilevel latent growth model showed statistically significant decreases in student office discipline referrals in SW-PBIS schools, with increases in comparison schools, when controlling for enrollment and percent of students receiving free or reduced price meals. In addition, as fidelity of implementation increased, office discipline referrals significantly decreased. Results are discussed in terms of effectiveness of a SW-PBIS approach in high schools and considerations to enhance fidelity of implementation. PsycINFO Database Record (c) 2014 APA, all rights reserved.
The role of treatment fidelity on outcomes during a randomized field trial of an autism intervention
Mandell, David S; Stahmer, Aubyn C; Shin, Sujie; Xie, Ming; Reisinger, Erica; Marcus, Steven C
2013-01-01
This randomized field trial comparing Strategies for Teaching based on Autism Research and Structured Teaching enrolled educators in 33 kindergarten-through-second-grade autism support classrooms and 119 students, aged 5–8 years in the School District of Philadelphia. Students were assessed at the beginning and end of the academic year using the Differential Ability Scales. Program fidelity was measured through video coding and use of a checklist. Outcomes were assessed using linear regression with random effects for classroom and student. Average fidelity was 57% in Strategies for Teaching based on Autism Research classrooms and 48% in Structured Teaching classrooms. There was a 9.2-point (standard deviation = 9.6) increase in Differential Ability Scales score over the 8-month study period, but no main effect of program. There was a significant interaction between fidelity and group. In classrooms with either low or high program fidelity, students in Strategies for Teaching based on Autism Research experienced a greater gain in Differential Ability Scales score than students in Structured Teaching (11.2 vs 5.5 points and 11.3 vs 8.9 points, respectively). In classrooms with moderate fidelity, students in Structured Teaching experienced a greater gain than students in Strategies for Teaching based on Autism Research (10.1 vs 4.4 points). The results suggest significant variability in implementation of evidence-based practices, even with supports, and also suggest the need to address challenging issues related to implementation measurement in community settings. PMID:23592849
Malard, Lucie A.; McGuigan, Katrina
2016-01-01
The intertidal zone is a transitional environment that undergoes daily environmental fluctuations as tides rise and fall. Relatively few fish species are adapted to endure the physiological pressures of this environment. This study focused on Bathygobius cocosensis (Gobiidae), a common intertidal fish in New South Wales, Australia. We investigated whether shore height impacted site fidelity, survival probability, fish size, and morphological traits with respect to tidal height. Mark-recapture methods were used over a five month period to determine if individuals in high shore pools had greater site fidelity; fish in high tide pools were more than twice as likely to be recaptured in their original pool than fish from low tide pools. High pool individuals were, on average, smaller with larger eyes and longer snouts relative to their size as compared to low pool individuals. We discuss several mechanisms that could cause the observed pattern in morphological variation. Ultimately, this study suggests that within species behaviour and morphology differ by tidal position for an intertidal fish. PMID:27547568
Malard, Lucie A; McGuigan, Katrina; Riginos, Cynthia
2016-01-01
The intertidal zone is a transitional environment that undergoes daily environmental fluctuations as tides rise and fall. Relatively few fish species are adapted to endure the physiological pressures of this environment. This study focused on Bathygobius cocosensis (Gobiidae), a common intertidal fish in New South Wales, Australia. We investigated whether shore height impacted site fidelity, survival probability, fish size, and morphological traits with respect to tidal height. Mark-recapture methods were used over a five month period to determine if individuals in high shore pools had greater site fidelity; fish in high tide pools were more than twice as likely to be recaptured in their original pool than fish from low tide pools. High pool individuals were, on average, smaller with larger eyes and longer snouts relative to their size as compared to low pool individuals. We discuss several mechanisms that could cause the observed pattern in morphological variation. Ultimately, this study suggests that within species behaviour and morphology differ by tidal position for an intertidal fish.
NASA Technical Reports Server (NTRS)
Radoman-Shaw, Brandon; Harvey, Ralph; Costa, Gustavo; Nakley, Leah Michelle; Jacobson, Nathan S.
2016-01-01
Both historical and current investigations of Venus suggest that atmosphererock interactions play a critical role in the evolution of its atmosphere and crust. We have begun a series of systematic experiments designed to further our understanding of atmosphere-driven weathering and secondary mineralization of basaltic materials that may be occurring on Venus today. Our experiments expose representative igneous phases (mineral, glasses and rocks) to a high-fidelity simulation of Venus surface conditions using the NASA Glenn Extreme Environment Rig (GEER) located at the NASA Glenn Research Center in Cleveland, Ohio. GEER is a very large (800L) vessel capable of producing a long-term, high fidelity simulation of both the physical conditions (750 K and 92 bar) and atmospheric chemistry (down to the ppb-level) asso-ciated with the Venusian surface. As of this writing we have just finished the first of several planned experiments: a 42-day exposure of selected mineral, rocks and volcanic glasses. Our goal is to identify and prioritize the reactions taking place and better our understanding of their importance in Venus' climate history.
The effects of mobile applications in cardiopulmonary assessment education.
Yoo, In-Young; Lee, Young-Mi
2015-02-01
Mobile applications can be used as effective simulations for nursing education. However, little is known regarding the effects of mobile application-mediated training on nursing. The aim of this study was to determine the effectiveness of mobile applications by comparing the effectiveness of a high-fidelity human patient simulator to that of a mobile application on student learning. Following lectures on the lungs and the heart, twenty-two students were separated into two groups to perform a simulation exercise. Then, the students' education effects were evaluated based on their knowledge of lung and heart assessments, their clinical assessment skill, and satisfaction with their education. After four weeks, the mobile application group maintained their knowledge, whereas the high-fidelity human patient simulator group exhibited significantly decreased knowledge of the lung assessment. Knowledge of the heart assessment was significantly increased in both groups. There was no significant difference in clinical assessment skill or educational satisfaction between the groups. We found that mobile applications provide educational tools similarly effective to a high-fidelity human patient simulator to maintain memory and to teach cardiopulmonary assessment skills. Copyright © 2014 Elsevier Ltd. All rights reserved.
Implementation of a Smeared Crack Band Model in a Micromechanics Framework
NASA Technical Reports Server (NTRS)
Pineda, Evan J.; Bednarcyk, Brett A.; Waas, Anthony M.; Arnold, Steven M.
2012-01-01
The smeared crack band theory is implemented within the generalized method of cells and high-fidelity generalized method of cells micromechanics models to capture progressive failure within the constituents of a composite material while retaining objectivity with respect to the size of the discretization elements used in the model. An repeating unit cell containing 13 randomly arranged fibers is modeled and subjected to a combination of transverse tension/compression and transverse shear loading. The implementation is verified against experimental data (where available), and an equivalent finite element model utilizing the same implementation of the crack band theory. To evaluate the performance of the crack band theory within a repeating unit cell that is more amenable to a multiscale implementation, a single fiber is modeled with generalized method of cells and high-fidelity generalized method of cells using a relatively coarse subcell mesh which is subjected to the same loading scenarios as the multiple fiber repeating unit cell. The generalized method of cells and high-fidelity generalized method of cells models are validated against a very refined finite element model.
NASA Technical Reports Server (NTRS)
Pineda, Evan J.; Bednarcyk, Brett A.; Waas, Anthony M.; Arnold, Steven M.
2012-01-01
The smeared crack band theory is implemented within the generalized method of cells and high-fidelity generalized method of cells micromechanics models to capture progressive failure within the constituents of a composite material while retaining objectivity with respect to the size of the discretization elements used in the model. An repeating unit cell containing 13 randomly arranged fibers is modeled and subjected to a combination of transverse tension/compression and transverse shear loading. The implementation is verified against experimental data (where available), and an equivalent finite element model utilizing the same implementation of the crack band theory. To evaluate the performance of the crack band theory within a repeating unit cell that is more amenable to a multiscale implementation, a single fiber is modeled with generalized method of cells and high-fidelity generalized method of cells using a relatively coarse subcell mesh which is subjected to the same loading scenarios as the multiple fiber repeating unit cell. The generalized method of cells and high-fidelity generalized method of cells models are validated against a very refined finite element model.
Forward and backward tone mapping of high dynamic range images based on subband architecture
NASA Astrophysics Data System (ADS)
Bouzidi, Ines; Ouled Zaid, Azza
2015-01-01
This paper presents a novel High Dynamic Range (HDR) tone mapping (TM) system based on sub-band architecture. Standard wavelet filters of Daubechies, Symlets, Coiflets and Biorthogonal were used to estimate the proposed system performance in terms of Low Dynamic Range (LDR) image quality and reconstructed HDR image fidelity. During TM stage, the HDR image is firstly decomposed in sub-bands using symmetrical analysis-synthesis filter bank. The transform coefficients are then rescaled using a predefined gain map. The inverse Tone Mapping (iTM) stage is straightforward. Indeed, the LDR image passes through the same sub-band architecture. But, instead of reducing the dynamic range, the LDR content is boosted to an HDR representation. Moreover, in our TM sheme, we included an optimization module to select the gain map components that minimize the reconstruction error, and consequently resulting in high fidelity HDR content. Comparisons with recent state-of-the-art methods have shown that our method provides better results in terms of visual quality and HDR reconstruction fidelity using objective and subjective evaluations.
High Fidelity BWR Fuel Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Su Jong
This report describes the Consortium for Advanced Simulation of Light Water Reactors (CASL) work conducted for completion of the Thermal Hydraulics Methods (THM) Level 3 milestone THM.CFD.P13.03: High Fidelity BWR Fuel Simulation. High fidelity computational fluid dynamics (CFD) simulation for Boiling Water Reactor (BWR) was conducted to investigate the applicability and robustness performance of BWR closures. As a preliminary study, a CFD model with simplified Ferrule spacer grid geometry of NUPEC BWR Full-size Fine-mesh Bundle Test (BFBT) benchmark has been implemented. Performance of multiphase segregated solver with baseline boiling closures has been evaluated. Although the mean values of void fractionmore » and exit quality of CFD result for BFBT case 4101-61 agreed with experimental data, the local void distribution was not predicted accurately. The mesh quality was one of the critical factors to obtain converged result. The stability and robustness of the simulation was mainly affected by the mesh quality, combination of BWR closure models. In addition, the CFD modeling of fully-detailed spacer grid geometry with mixing vane is necessary for improving the accuracy of CFD simulation.« less
Computer image generation: Reconfigurability as a strategy in high fidelity space applications
NASA Technical Reports Server (NTRS)
Bartholomew, Michael J.
1989-01-01
The demand for realistic, high fidelity, computer image generation systems to support space simulation is well established. However, as the number and diversity of space applications increase, the complexity and cost of computer image generation systems also increase. One strategy used to harmonize cost with varied requirements is establishment of a reconfigurable image generation system that can be adapted rapidly and easily to meet new and changing requirements. The reconfigurability strategy through the life cycle of system conception, specification, design, implementation, operation, and support for high fidelity computer image generation systems are discussed. The discussion is limited to those issues directly associated with reconfigurability and adaptability of a specialized scene generation system in a multi-faceted space applications environment. Examples and insights gained through the recent development and installation of the Improved Multi-function Scene Generation System at Johnson Space Center, Systems Engineering Simulator are reviewed and compared with current simulator industry practices. The results are clear; the strategy of reconfigurability applied to space simulation requirements provides a viable path to supporting diverse applications with an adaptable computer image generation system.
Error budgeting single and two qubit gates in a superconducting qubit
NASA Astrophysics Data System (ADS)
Chen, Z.; Chiaro, B.; Dunsworth, A.; Foxen, B.; Neill, C.; Quintana, C.; Wenner, J.; Martinis, John. M.; Google Quantum Hardware Team Team
Superconducting qubits have shown promise as a platform for both error corrected quantum information processing and demonstrations of quantum supremacy. High fidelity quantum gates are crucial to achieving both of these goals, and superconducting qubits have demonstrated two qubit gates exceeding 99% fidelity. In order to improve gate fidelity further, we must understand the remaining sources of error. In this talk, I will demonstrate techniques for quantifying the contributions of control, decoherence, and leakage to gate error, for both single and two qubit gates. I will also discuss the near term outlook for achieving quantum supremacy using a gate-based approach in superconducting qubits. This work is supported Google Inc., and by the National Science Foundation Graduate Research Fellowship under Grant No. DGE 1605114.
Salko, Robert K.; Schmidt, Rodney C.; Avramova, Maria N.
2014-11-23
This study describes major improvements to the computational infrastructure of the CTF subchannel code so that full-core, pincell-resolved (i.e., one computational subchannel per real bundle flow channel) simulations can now be performed in much shorter run-times, either in stand-alone mode or as part of coupled-code multi-physics calculations. These improvements support the goals of the Department Of Energy Consortium for Advanced Simulation of Light Water Reactors (CASL) Energy Innovation Hub to develop high fidelity multi-physics simulation tools for nuclear energy design and analysis.
Experimental demonstration of quantum teleportation of broadband squeezing.
Yonezawa, Hidehiro; Braunstein, Samuel L; Furusawa, Akira
2007-09-14
We demonstrate an unconditional high-fidelity teleporter capable of preserving the broadband entanglement in an optical squeezed state. In particular, we teleport a squeezed state of light and observe -0.8+/-0.2 dB of squeezing in the teleported (output) state. We show that the squeezing criterion translates directly into a sufficient criterion for entanglement of the upper and lower sidebands of the optical field. Thus, this result demonstrates the first unconditional teleportation of broadband entanglement. Our teleporter achieves sufficiently high fidelity to allow the teleportation to be cascaded, enabling, in principle, the construction of deterministic non-Gaussian operations.
NASA Technical Reports Server (NTRS)
Leser, Patrick E.; Hochhalter, Jacob D.; Newman, John A.; Leser, William P.; Warner, James E.; Wawrzynek, Paul A.; Yuan, Fuh-Gwo
2015-01-01
Utilizing inverse uncertainty quantification techniques, structural health monitoring can be integrated with damage progression models to form probabilistic predictions of a structure's remaining useful life. However, damage evolution in realistic structures is physically complex. Accurately representing this behavior requires high-fidelity models which are typically computationally prohibitive. In the present work, a high-fidelity finite element model is represented by a surrogate model, reducing computation times. The new approach is used with damage diagnosis data to form a probabilistic prediction of remaining useful life for a test specimen under mixed-mode conditions.
NASA Astrophysics Data System (ADS)
Goupil, Ph.; Puyou, G.
2013-12-01
This paper presents a high-fidelity generic twin engine civil aircraft model developed by Airbus for advanced flight control system research. The main features of this benchmark are described to make the reader aware of the model complexity and representativeness. It is a complete representation including the nonlinear rigid-body aircraft model with a full set of control surfaces, actuator models, sensor models, flight control laws (FCL), and pilot inputs. Two applications of this benchmark in the framework of European projects are presented: FCL clearance using optimization and advanced fault detection and diagnosis (FDD).
Olaya-Castro, Alexandra; Johnson, Neil F; Quiroga, Luis
2005-03-25
We propose a physically realizable machine which can either generate multiparticle W-like states, or implement high-fidelity 1-->M (M=1,2,...infinity) anticloning of an arbitrary qubit state, in a single step. This universal machine acts as a catalyst in that it is unchanged after either procedure, effectively resetting itself for its next operation. It possesses an inherent immunity to decoherence. Most importantly in terms of practical multiparty quantum communication, the machine's robustness in the presence of decoherence actually increases as the number of qubits M increases.
The Kepler End-to-End Model: Creating High-Fidelity Simulations to Test Kepler Ground Processing
NASA Technical Reports Server (NTRS)
Bryson, Stephen T.; Jenkins, Jon M.; Peters, Dan J.; Tenenbaum, Peter P.; Klaus, Todd C.; Gunter, Jay P.; Cote, Miles T.; Caldwell, Douglas A.
2010-01-01
The Kepler mission is designed to detect the transit of Earth-like planets around Sun-like stars by observing 100,000 stellar targets. Developing and testing the Kepler ground-segment processing system, in particular the data analysis pipeline, requires high-fidelity simulated data. This simulated data is provided by the Kepler End-to-End Model (ETEM). ETEM simulates the astrophysics of planetary transits and other phenomena, properties of the Kepler spacecraft and the format of the downlinked data. Major challenges addressed by ETEM include the rapid production of large amounts of simulated data, extensibility and maintainability.
Meyer, Georg F.; Wong, Li Ting; Timson, Emma; Perfect, Philip; White, Mark D.
2012-01-01
We argue that objective fidelity evaluation of virtual environments, such as flight simulation, should be human-performance-centred and task-specific rather than measure the match between simulation and physical reality. We show how principled experimental paradigms and behavioural models to quantify human performance in simulated environments that have emerged from research in multisensory perception provide a framework for the objective evaluation of the contribution of individual cues to human performance measures of fidelity. We present three examples in a flight simulation environment as a case study: Experiment 1: Detection and categorisation of auditory and kinematic motion cues; Experiment 2: Performance evaluation in a target-tracking task; Experiment 3: Transferrable learning of auditory motion cues. We show how the contribution of individual cues to human performance can be robustly evaluated for each task and that the contribution is highly task dependent. The same auditory cues that can be discriminated and are optimally integrated in experiment 1, do not contribute to target-tracking performance in an in-flight refuelling simulation without training, experiment 2. In experiment 3, however, we demonstrate that the auditory cue leads to significant, transferrable, performance improvements with training. We conclude that objective fidelity evaluation requires a task-specific analysis of the contribution of individual cues. PMID:22957068
Perrin, Karen M; Burke, Somer Goad; O'Connor, Danielle; Walby, Gary; Shippey, Claire; Pitt, Seraphine; McDermott, Robert J; Forthofer, Melinda S
2006-10-26
Disease self-management programs have been a popular approach to reducing morbidity and mortality from chronic disease. Replicating an evidence-based disease management program successfully requires practitioners to ensure fidelity to the original program design. The Florida Health Literacy Study (FHLS) was conducted to investigate the implementation impact of the Pfizer, Inc. Diabetes Mellitus and Hypertension Disease Self-Management Program based on health literacy principles in 14 community health centers in Florida. The intervention components discussed include health educator recruitment and training, patient recruitment, class sessions, utilization of program materials, translation of program manuals, patient retention and follow-up, and technical assistance. This report describes challenges associated with achieving a balance between adaptation for cultural relevance and fidelity when implementing the health education program across clinic sites. This balance was necessary to achieve effectiveness of the disease self-management program. The FHLS program was implemented with a high degree of fidelity to the original design and used original program materials. Adaptations identified as advantageous to program participation are discussed, such as implementing alternate methods for recruiting patients and developing staff incentives for participation. Effective program implementation depends on the talent, skill and willing participation of clinic staff. Program adaptations that conserve staff time and resources and recognize their contribution can increase program effectiveness without jeopardizing its fidelity.
Implementation fidelity of a self-management course for epilepsy: method and assessment.
Wojewodka, G; Hurley, S; Taylor, S J C; Noble, A J; Ridsdale, L; Goldstein, L H
2017-07-11
Complex interventions such as self-management courses are difficult to evaluate due to the many interacting components. The way complex interventions are delivered can influence the effect they have for patients, and can impact the interpretation of outcomes of clinical trials. Implementation fidelity evaluates whether complex interventions are delivered according to protocol. Such assessments have been used for one-to-one psychological interventions; however, the science is still developing for group interventions. We developed and tested an instrument to measure implementation fidelity of a two-day self-management course for people with epilepsy, SMILE(UK). Using audio recordings, we looked at adherence and competence of course facilitators. Adherence was assessed by checklists. Competence was measured by scoring group interaction, an overall impression score and facilitator "didacticism". To measure "didacticism", we developed a novel way to calculate facilitator speech using computer software. Using this new instrument, implementation fidelity of SMILE(UK) was assessed on three modules of the course, for 28% of all courses delivered. Using the instrument for adherence, scores from two independent raters showed substantial agreement with weighted Kappa of 0.67 and high percent agreement of 81.2%. For didacticism, the results from both raters were highly correlated with an intraclass coefficient of 0.97 (p < 0.0001). We found that the courses were delivered with a good level of adherence (> 50% of scored items received the maximum of 2 points) and high competence. Groups were interactive (mean score: 1.9-2.0 out of 2) and the overall impression was on average assessed as "good". Didacticism varied from 42% to 93% of total module time and was not associated with the other competence scores. The instrument devised to measure implementation fidelity was reproducible and easy to use. The courses for the SMILE(UK) study were delivered with a good level of adherence to protocol while not compromising facilitator competence. ISRCTN57937389 .
A stimulus-dependent spike threshold is an optimal neural coder
Jones, Douglas L.; Johnson, Erik C.; Ratnam, Rama
2015-01-01
A neural code based on sequences of spikes can consume a significant portion of the brain's energy budget. Thus, energy considerations would dictate that spiking activity be kept as low as possible. However, a high spike-rate improves the coding and representation of signals in spike trains, particularly in sensory systems. These are competing demands, and selective pressure has presumably worked to optimize coding by apportioning a minimum number of spikes so as to maximize coding fidelity. The mechanisms by which a neuron generates spikes while maintaining a fidelity criterion are not known. Here, we show that a signal-dependent neural threshold, similar to a dynamic or adapting threshold, optimizes the trade-off between spike generation (encoding) and fidelity (decoding). The threshold mimics a post-synaptic membrane (a low-pass filter) and serves as an internal decoder. Further, it sets the average firing rate (the energy constraint). The decoding process provides an internal copy of the coding error to the spike-generator which emits a spike when the error equals or exceeds a spike threshold. When optimized, the trade-off leads to a deterministic spike firing-rule that generates optimally timed spikes so as to maximize fidelity. The optimal coder is derived in closed-form in the limit of high spike-rates, when the signal can be approximated as a piece-wise constant signal. The predicted spike-times are close to those obtained experimentally in the primary electrosensory afferent neurons of weakly electric fish (Apteronotus leptorhynchus) and pyramidal neurons from the somatosensory cortex of the rat. We suggest that KCNQ/Kv7 channels (underlying the M-current) are good candidates for the decoder. They are widely coupled to metabolic processes and do not inactivate. We conclude that the neural threshold is optimized to generate an energy-efficient and high-fidelity neural code. PMID:26082710
High-Fidelity Multidisciplinary Design Using an Integrated Design Environment
2007-08-14
Leovirivakit and A. .Jamneson, -- Case Studies ini Aero-St ruc(t ural NWing Planiforiii aiid Section Op- tifiization". 22`1~ AIAA Applied Aerodynamaiics...design of complete aircraft configurations. The work was focused on four main areas: (1) Flow solution algorithms for unstructured meshes, (2) Aero...Multi-Fidelity Design Optimization Studies for Supersonic lIets" . 13"’" AIAA Aerospace Sciences Meeting kc E’xhibit, AIAA Paper 2005- (0531, Reno. NV
Detection-enhanced steady state entanglement with ions.
Bentley, C D B; Carvalho, A R R; Kielpinski, D; Hope, J J
2014-07-25
Driven dissipative steady state entanglement schemes take advantage of coupling to the environment to robustly prepare highly entangled states. We present a scheme for two trapped ions to generate a maximally entangled steady state with fidelity above 0.99, appropriate for use in quantum protocols. Furthermore, we extend the scheme by introducing detection of our dissipation process, significantly enhancing the fidelity. Our scheme is robust to anomalous heating and requires no sympathetic cooling.
Pattern fidelity in nanoimprinted films using CD-SAXS
NASA Astrophysics Data System (ADS)
Jones, Ronald L.; Soles, Christopher L.; Lin, Eric K.; Hu, Walter; Reano, Ronald M.; Pang, Stella W.; Weigand, Steven J.; Keane, Denis T.; Quintana, John P.
2005-05-01
The primary measure of process quality in nanoimprint lithography (NIL) is the fidelity of pattern transfer, comparing the dimensions of the imprinted pattern to those of the mold. As a potential next generation lithography, NIL is capable of true nanofabrication, producing patterns of sub-10 nm dimensions. Routine production of nanoscale patterns will require new metrologies capable of non-destructive dimensional measurements of both the mold and the pattern with sub-nm precision. In this article, a rapid, non-destructive technique termed Critical Dimension Small Angle X-ray Scattering (CD-SAXS) is used to measure the cross sectional shape of both a pattern master, or mold, and the resulting imprinted films. CD-SAXS data are used to extract periodicity as well as pattern height, width, and sidewall angles. Films of varying materials are molded by thermal embossed NIL at temperatures both near and far from the bulk glass transition (TG). The polymer systems include a photoresist, representing a mixture of a polymer and small molecular components, and two pure homopolymers. Molding at low temperatures (T-TG < 40°C) produces small aspect ratio patterns that maintain periodicity to within a single nanometer, but feature large sidewall angles. While the pattern height does not reach that of the mold until very large imprinting temperatures (T-TG ~ 70°C), the pattern width of the mold is accurately transferred for T-TG > 30°C. In addition to obtaining basic dimensions, CD-SAXS data are used to assess the origin of loss in pattern fidelity.
Andersen, Simone Nyholm; Broberg, Ole
2015-11-01
Current application of work system simulation in participatory ergonomics (PE) design includes a variety of different simulation media. However, the actual influence of the media attributes on the simulation outcome has received less attention. This study investigates two simulation media: full-scale mock-ups and table-top models. The aim is to compare, how the media attributes of fidelity and affordance influence the ergonomics identification and evaluation in PE design of hospital work systems. The results illustrate, how the full-scale mock-ups' high fidelity of room layout and affordance of tool operation support ergonomics identification and evaluation related to the work system entities space and technologies & tools. The table-top models' high fidelity of function relations and affordance of a helicopter view support ergonomics identification and evaluation related to the entity organization. Furthermore, the study addresses the form of the identified and evaluated conditions, being either identified challenges or tangible design criteria. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
High Fidelity Preparation of a Single Atom in Its 2D Center of Mass Ground State
NASA Astrophysics Data System (ADS)
Sompet, Pimonpan; Fung, Yin Hsien; Schwartz, Eyal; Hunter, Matthew D. J.; Phrompao, Jindaratsamee; Andersen, Mikkel F.
2017-04-01
Complete control over quantum states of individual atoms is important for the study of the microscopic world. Here, we present a push button method for high fidelity preparation of a single 85Rb atom in the vibrational ground state of tightly focused optical tweezers. The method combines near-deterministic preparation of a single atom with magnetically-insensitive Raman sideband cooling. We achieve 2D cooling in the radial plane with a ground state population of 0.85, which provides a fidelity of 0.7 for the entire procedure (loading and cooling). The Raman beams couple two sublevels (| F = 3 , m = 0 〉 and | F = 2 , m = 0 〉) that are indifferent to magnetic noise to first order. This leads to long atomic coherence times, and allows us to implement the cooling in an environment where magnetic field fluctuations prohibit previously demonstrated variations. Additionally, we implement the trapping and manipulation of two atoms confined in separate dynamically reconfigurable optical tweezers, to study few-body dynamics.
A plasmid-based lacZα gene assay for DNA polymerase fidelity measurement
Keith, Brian J.; Jozwiakowski, Stanislaw K.; Connolly, Bernard A.
2013-01-01
A significantly improved DNA polymerase fidelity assay, based on a gapped plasmid containing the lacZα reporter gene in a single-stranded region, is described. Nicking at two sites flanking lacZα, and removing the excised strand by thermocycling in the presence of complementary competitor DNA, is used to generate the gap. Simple methods are presented for preparing the single-stranded competitor. The gapped plasmid can be purified, in high amounts and in a very pure state, using benzoylated–naphthoylated DEAE–cellulose, resulting in a low background mutation frequency (∼1 × 10−4). Two key parameters, the number of detectable sites and the expression frequency, necessary for measuring polymerase error rates have been determined. DNA polymerase fidelity is measured by gap filling in vitro, followed by transformation into Escherichia coli and scoring of blue/white colonies and converting the ratio to error rate. Several DNA polymerases have been used to fully validate this straightforward and highly sensitive system. PMID:23098700
Experimental protocol for high-fidelity heralded photon-to-atom quantum state transfer.
Kurz, Christoph; Schug, Michael; Eich, Pascal; Huwer, Jan; Müller, Philipp; Eschner, Jürgen
2014-11-21
A quantum network combines the benefits of quantum systems regarding secure information transmission and calculational speed-up by employing quantum coherence and entanglement to store, transmit and process information. A promising platform for implementing such a network are atom-based quantum memories and processors, interconnected by photonic quantum channels. A crucial building block in this scenario is the conversion of quantum states between single photons and single atoms through controlled emission and absorption. Here we present an experimental protocol for photon-to-atom quantum state conversion, whereby the polarization state of an absorbed photon is mapped onto the spin state of a single absorbing atom with >95% fidelity, while successful conversion is heralded by a single emitted photon. Heralded high-fidelity conversion without affecting the converted state is a main experimental challenge, in order to make the transferred information reliably available for further operations. We record >80 s(-1) successful state transfer events out of 18,000 s(-1) repetitions.
NASA Technical Reports Server (NTRS)
Turner, Mark G.; Reed, John A.; Ryder, Robert; Veres, Joseph P.
2004-01-01
A Zero-D cycle simulation of the GE90-94B high bypass turbofan engine has been achieved utilizing mini-maps generated from a high-fidelity simulation. The simulation utilizes the Numerical Propulsion System Simulation (NPSS) thermodynamic cycle modeling system coupled to a high-fidelity full-engine model represented by a set of coupled 3D computational fluid dynamic (CFD) component models. Boundary conditions from the balanced, steady state cycle model are used to define component boundary conditions in the full-engine model. Operating characteristics of the 3D component models are integrated into the cycle model via partial performance maps generated from the CFD flow solutions using one-dimensional mean line turbomachinery programs. This paper highlights the generation of the high-pressure compressor, booster, and fan partial performance maps, as well as turbine maps for the high pressure and low pressure turbine. These are actually "mini-maps" in the sense that they are developed only for a narrow operating range of the component. Results are compared between actual cycle data at a take-off condition and the comparable condition utilizing these mini-maps. The mini-maps are also presented with comparison to actual component data where possible.
Probing quantum Hall states with single-electron transistors at high magnetic fields
NASA Astrophysics Data System (ADS)
Gustafsson, Martin; Yankowitz, Matthew; Forsythe, Carlos; Zhu, Xiaoyang; Dean, Cory
The sequence of fractional quantum Hall states in graphene is not yet fully understood, largely due to disorder-induced limitations of conventional transport studies. Measurements of magnetotransport in other 2D crystals are further complicated by the difficulties in making ohmic contact to the materials. On the other hand, bulk electronic compressibility can provide clear signatures of the integer and fractional quantum Hall effects, does not require ohmic contact, and can be localized to regions of low disorder. The single-electron transistor (SET) is a suitable tool for such experiments due to its small size and high charge sensitivity, which allow electric fields penetrating the 2D electron system to be detected locally and with high fidelity. Here we report studies of exfoliated 2D van der Waals materials fully encapsulated in flakes of hexagonal boron nitride. SETs are fabricated lithographically on top of the encapsulation, yielding a structure which lends itself to experiments at high electric and magnetic fields. We demonstrate the method on monolayer graphene, where we observe fractional quantum Hall states at all filling factors ν = n / 3 up to n = 17 and extract their associated energy gaps for magnetic fields up to 31 tesla.
Enforcing elemental mass and energy balances for reduced order models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, J.; Agarwal, K.; Sharma, P.
2012-01-01
Development of economically feasible gasification and carbon capture, utilization and storage (CCUS) technologies requires a variety of software tools to optimize the designs of not only the key devices involved (e., g., gasifier, CO{sub 2} adsorber) but also the entire power generation system. High-fidelity models such as Computational Fluid Dynamics (CFD) models are capable of accurately simulating the detailed flow dynamics, heat transfer, and chemistry inside the key devices. However, the integration of CFD models within steady-state process simulators, and subsequent optimization of the integrated system, still presents significant challenges due to the scale differences in both time and length,more » as well the high computational cost. A reduced order model (ROM) generated from a high-fidelity model can serve as a bridge between the models of different scales. While high-fidelity models are built upon the principles of mass, momentum, and energy conservations, ROMs are usually developed based on regression-type equations and hence their predictions may violate the mass and energy conservation laws. A high-fidelity model may also have the mass and energy balance problem if it is not tightly converged. Conservations of mass and energy are important when a ROM is integrated to a flowsheet for the process simulation of the entire chemical or power generation system, especially when recycle streams are connected to the modeled device. As a part of the Carbon Capture Simulation Initiative (CCSI) project supported by the U.S. Department of Energy, we developed a software framework for generating ROMs from CFD simulations and integrating them with Process Modeling Environments (PMEs) for system-wide optimization. This paper presents a method to correct the results of a high-fidelity model or a ROM such that the elemental mass and energy are conserved perfectly. Correction factors for the flow rates of individual species in the product streams are solved using a minimization algorithm based on Lagrangian multiplier method. Enthalpies of product streams are also modified to enforce the energy balance. The approach is illustrated for two ROMs, one based on a CFD model of an entrained-flow gasifier and the other based on the CFD model of a multiphase CO{sub 2} adsorber.« less
NASA Astrophysics Data System (ADS)
Maleki, Yusef; Zheltikov, Aleksei M.
2018-01-01
An ensemble of nitrogen-vacancy (NV) centers coupled to a circuit QED device is shown to enable an efficient, high-fidelity generation of high-N00N states. Instead of first creating entanglement and then increasing the number of entangled particles N , our source of high-N00N states first prepares a high-N Fock state in one of the NV ensembles and then entangles it to the rest of the system. With such a strategy, high-N N00N states can be generated in just a few operational steps with an extraordinary fidelity. Once prepared, such a state can be stored over a longer period of time due to the remarkably long coherence time of NV centers.
Zahurancik, Walter J.; Klein, Seth J.; Suo, Zucai
2014-01-01
Most eukaryotic DNA replication is performed by A- and B-family DNA polymerases which possess a faithful polymerase activity that preferentially incorporates correct over incorrect nucleotides. Additionally, many replicative polymerases have an efficient 3′→5′ exonuclease activity that excises misincorporated nucleotides. Together, these activities contribute to overall low polymerase error frequency (one error per 106–108 incorporations) and support faithful eukaryotic genome replication. Eukaryotic DNA polymerase ϵ (Polϵ) is one of three main replicative DNA polymerases for nuclear genomic replication and is responsible for leading strand synthesis. Here, we employed pre-steady-state kinetic methods and determined the overall fidelity of human Polϵ (hPolϵ) by measuring the individual contributions of its polymerase and 3′→5′ exonuclease activities. The polymerase activity of hPolϵ has a high base substitution fidelity (10−4–10−7) resulting from large decreases in both nucleotide incorporation rate constants and ground-state binding affinities for incorrect relative to correct nucleotides. The 3′→5′ exonuclease activity of hPolϵ further enhances polymerization fidelity by an unprecedented 3.5 × 102 to 1.2 × 104-fold. The resulting overall fidelity of hPolϵ (10−6–10−11) justifies hPolϵ to be a primary enzyme to replicate human nuclear genome (0.1–1.0 error per round). Consistently, somatic mutations in hPolϵ, which decrease its exonuclease activity, are connected with mutator phenotypes and cancer formation. PMID:25414327
Kennedy, Joshua L; Jones, Stacie M; Porter, Nicholas; White, Marjorie L; Gephardt, Grace; Hill, Travis; Cantrell, Mary; Nick, Todd G; Melguizo, Maria; Smith, Chris; Boateng, Beatrice A; Perry, Tamara T; Scurlock, Amy M; Thompson, Tonya M
2013-01-01
Simulation models that used high-fidelity mannequins have shown promise in medical education, particularly for cases in which the event is uncommon. Allergy physicians encounter emergencies in their offices, and these can be the source of much trepidation. To determine if case-based simulations with high-fidelity mannequins are effective in teaching and retention of emergency management team skills. Allergy clinics were invited to Arkansas Children's Hospital Pediatric Understanding and Learning through Simulation Education center for a 1-day workshop to evaluate skills concerning the management of allergic emergencies. A Clinical Emergency Preparedness Team Performance Evaluation was developed to evaluate the competence of teams in several areas: leadership and/or role clarity, closed-loop communication, team support, situational awareness, and scenario-specific skills. Four cases, which focus on common allergic emergencies, were simulated by using high-fidelity mannequins and standardized patients. Teams were evaluated by multiple reviewers by using video recording and standardized scoring. Ten to 12 months after initial training, an unannounced in situ case was performed to determine retention of the skills training. Clinics showed significant improvements for role clarity, teamwork, situational awareness, and scenario-specific skills during the 1-day workshop (all P < .003). Follow-up in situ scenarios 10-12 months later demonstrated retention of skills training at both clinics (all P ≤ .004). Clinical Emergency Preparedness Team Performance Evaluation scores demonstrated improved team management skills with simulation training in office emergencies. Significant recall of team emergency management skills was demonstrated months after the initial training. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Chinnugounder, Sankar; Hippe, Daniel S; Maximin, Suresh; O'Malley, Ryan B; Wang, Carolyn L
2015-01-01
Although subjective and objective benefits of high-fidelity simulation have been reported in medicine, there has been slow adoption in radiology. The purpose of our study was to identify the perceived barriers in the use of high-fidelity hands-on simulation for contrast reaction management training. An IRB exempt 32 questions online web survey was sent to 179 non-military radiology residency program directors listed in the Fellowship and Residency Electronic Interactive Database Access system (FREIDA). Survey questions included the type of contrast reaction management training, cost, time commitment of residents and faculty, and the reasons for not using simulation training. Responses from the survey were summarized as count (percentage), mean ± standard deviation (SD), or median (range). 84 (47%) of 179 programs responded, of which 88% offered CRM training. Most (72%) conducted the CRM training annually while only 4% conducted it more frequently. Didactic lecture was the most frequently used training modality (97%), followed by HFS (30%) and computer-based simulation (CBS) (19%); 5.5% used both HFS and CBS. Of the 51 programs that offer CRM training but do not use HFS, the most common reason reported was insufficient availability (41%). Other reported reasons included cost (33%), no access to simulation centers (33%), lack of trained faculty (27%) and time constraints (27%). Although high-fidelity hands-on simulation training is the best way to reproduce real-life contrast reaction scenarios, many institutions do not provide this training due to constraints such as cost, lack of access or insufficient availability of simulation labs, and lack of trained faculty. As a specialty, radiology needs to better address these barriers at both an institutional and national level. Copyright © 2015 Mosby, Inc. All rights reserved.
Sparks, Jessica L; Crouch, Dustin L; Sobba, Kathryn; Evans, Douglas; Zhang, Jing; Johnson, James E; Saunders, Ian; Thomas, John; Bodin, Sarah; Tonidandel, Ashley; Carter, Jeff; Westcott, Carl; Martin, R Shayn; Hildreth, Amy
2017-09-01
The human patient simulators that are currently used in multidisciplinary operating room team training scenarios cannot simulate surgical tasks because they lack a realistic surgical anatomy. Thus, they eliminate the surgeon's primary task in the operating room. The surgical trainee is presented with a significant barrier when he or she attempts to suspend disbelief and engage in the scenario. To develop and test a simulation-based operating room team training strategy that challenges the communication abilities and teamwork competencies of surgeons while they are engaged in realistic operative maneuvers. This pre-post educational intervention pilot study compared the gains in teamwork skills for midlevel surgical residents at Wake Forest Baptist Medical Center after they participated in a standardized multidisciplinary team training scenario with 3 possible levels of surgical realism: (1) SimMan (Laerdal) (control group, no surgical anatomy); (2) "synthetic anatomy for surgical tasks" mannequin (medium-fidelity anatomy), and (3) a patient simulated by a deceased donor (high-fidelity anatomy). Participation in the simulation scenario and the subsequent debriefing. Teamwork competency was assessed using several instruments with extensive validity evidence, including the Nontechnical Skills assessment, the Trauma Management Skills scoring system, the Crisis Resource Management checklist, and a self-efficacy survey instrument. Participant satisfaction was assessed with a Likert-scale questionnaire. Scenario participants included midlevel surgical residents, anesthesia providers, scrub nurses, and circulating nurses. Statistical models showed that surgical residents exposed to medium-fidelity simulation (synthetic anatomy for surgical tasks) team training scenarios demonstrated greater gains in teamwork skills compared with control groups (SimMan) (Nontechnical Skills video score: 95% CI, 1.06-16.41; Trauma Management Skills video score: 95% CI, 0.61-2.90) and equivalent gains in teamwork skills compared with high-fidelity simulations (deceased donor) (Nontechnical Skills video score: 95% CI, -8.51 to 6.71; Trauma Management Skills video score: 95% CI, -1.70 to 0.49). Including a surgical task in operating room team training significantly enhanced the acquisition of teamwork skills among midlevel surgical residents. Incorporating relatively inexpensive, medium-fidelity synthetic anatomy in human patient simulators was as effective as using high-fidelity anatomies from deceased donors for promoting teamwork skills in this learning group.
ERIC Educational Resources Information Center
Crary, Wendy M.
2012-01-01
The research question of this study was: to what degree do nursing students perceive using the High Fidelity Simulation (HFS) learning environment to be helpful in their ability to achieve clinical competency. The research sub-questions (7) explored the students' demographics as an influence on rating of reality and helpfulness and the…
2011-08-04
AND MULTI-BODY DYNAMICS Jayakumar , Smith, Ross, Jategaonkar, Konarzewski 4 August 2011 UNCLASSIFIED: Distribution Statement A. Approved for public...Autonomous Vehicle in an Off-Road Scenario Using Integrated Sensor, Controller, and Multi-Body Dynamics 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...Cannot neglect vehicle dynamics 4 August 2011 3 UNCLASSIFIED Importance of Simulation Fidelity • Performance evaluation requires entire system
A New Design for Airway Management Training with Mixed Reality and High Fidelity Modeling.
Shen, Yunhe; Hananel, David; Zhao, Zichen; Burke, Daniel; Ballas, Crist; Norfleet, Jack; Reihsen, Troy; Sweet, Robert
2016-01-01
Restoring airway function is a vital task in many medical scenarios. Although various simulation tools have been available for learning such skills, recent research indicated that fidelity in simulating airway management deserves further improvements. In this study, we designed and implemented a new prototype for practicing relevant tasks including laryngoscopy, intubation and cricothyrotomy. A large amount of anatomical details or landmarks were meticulously selected and reconstructed from medical scans, and 3D-printed or molded to the airway intervention model. This training model was augmented by virtually and physically presented interactive modules, which are interoperable with motion tracking and sensor data feedback. Implementation results showed that this design is a feasible approach to develop higher fidelity airway models that can be integrated with mixed reality interfaces.
Loh, Ivory H; Schwendler, Teresa; Trude, Angela C B; Anderson Steeves, Elizabeth T; Cheskin, Lawrence J; Lange, Sarah; Gittelsohn, Joel
2018-01-01
Social media and text messaging show promise as public health interventions, but little evaluation of implementation exists. The B'more Healthy Communities for Kids (BHCK) was a multilevel, multicomponent (wholesalers, food stores, recreation centers) childhood obesity prevention trial that included social media and text-messaging components. The BHCK was implemented in 28 low-income areas of Baltimore City, Maryland, in 2 waves. The texting intervention targeted 241 low-income African American caregivers (of 283), who received 3 texts/week reinforcing key messages, providing nutrition information, and weekly goals. Regular posting on social media platforms (Facebook, Instagram, Twitter) targeted community members and local stakeholders. High implementation standards were set a priori (57 for social media, 11 for texting), with low implementation defined as <50%, medium as 50% to 99%, high as ≥100% of the high standard for each measure. Reach, dose delivered, and fidelity were assessed via web-based analytic tools. Between waves, social media implementation improved from low-moderate to high reach, dose delivered, and fidelity. Text messaging increased from moderate to high in reach and dose delivered, fidelity decreased from high to moderate. Data were used to monitor and revise the BHCK intervention throughout implementation. Our model for evaluating text messaging-based and social media-based interventions may be applicable to other settings.
Aarons, Gregory A; Sommerfeld, David H; Hecht, Debra B; Silovsky, Jane F; Chaffin, Mark J
2009-04-01
Staff retention is an ongoing challenge in mental health and community-based service organizations. Little is known about the impact of evidence-based practice implementation on the mental health and social service workforce. The present study examined the effect of evidence-based practice implementation and ongoing fidelity monitoring on staff retention in a children's services system. The study took place in the context of a statewide, regionally randomized effectiveness trial of an evidence-based intervention designed to reduce child neglect. In the study 21 teams consisting of 153 home-based service providers were followed over a 29-month period. Survival analyses revealed greater staff retention in the condition where the evidence-based practice was implemented along with ongoing fidelity monitoring presented to staff as supportive consultation. These results should help to allay concerns about staff retention when implementing evidence-based practices where there is good values-innovation fit and when fidelity monitoring is designed as an aid and support to service providers in providing a high standard of care for children and families.
Robustness of high-fidelity Rydberg gates with single-site addressability
NASA Astrophysics Data System (ADS)
Goerz, Michael H.; Halperin, Eli J.; Aytac, Jon M.; Koch, Christiane P.; Whaley, K. Birgitta
2014-09-01
Controlled-phase (cphase) gates can be realized with trapped neutral atoms by making use of the Rydberg blockade. Achieving the ultrahigh fidelities required for quantum computation with such Rydberg gates, however, is compromised by experimental inaccuracies in pulse amplitudes and timings, as well as by stray fields that cause fluctuations of the Rydberg levels. We report here a comparative study of analytic and numerical pulse sequences for the Rydberg cphase gate that specifically examines the robustness of the gate fidelity with respect to such experimental perturbations. Analytical pulse sequences of both simultaneous and stimulated Raman adiabatic passage (STIRAP) are found to be at best moderately robust under these perturbations. In contrast, optimal control theory is seen to allow generation of numerical pulses that are inherently robust within a predefined tolerance window. The resulting numerical pulse shapes display simple modulation patterns and can be rationalized in terms of an interference between distinct two-photon Rydberg excitation pathways. Pulses of such low complexity should be experimentally feasible, allowing gate fidelities of order 99.90-99.99% to be achievable under realistic experimental conditions.
Aarons, Gregory A.; Sommerfeld, David H.; Hecht, Debra B.; Silovsky, Jane F.; Chaffin, Mark J.
2009-01-01
Staff retention is an ongoing challenge in mental health and community-based service organizations. Little is known about the impact of evidence-based practice implementation on the mental health and social service workforce. The present study examined the effect of evidence-based practice implementation and ongoing fidelity monitoring on staff retention in a children’s services system. The study took place in the context of a statewide regionally randomized effectiveness trial of an evidence-based intervention designed to reduce child neglect. Twenty-one teams consisting of 153 home-based service providers were followed over a 29 month period. Survival analyses revealed greater staff retention in the condition where the evidence-based practice was implemented along with ongoing fidelity monitoring presented to staff as supportive consultation. These results should help to allay concerns about staff retention when implementing evidence-based practices where there is good values-innovation fit and when fidelity monitoring is designed as an aid and support to service providers in providing a high standard of care for children and families. PMID:19309186
Performance evaluation of objective quality metrics for HDR image compression
NASA Astrophysics Data System (ADS)
Valenzise, Giuseppe; De Simone, Francesca; Lauga, Paul; Dufaux, Frederic
2014-09-01
Due to the much larger luminance and contrast characteristics of high dynamic range (HDR) images, well-known objective quality metrics, widely used for the assessment of low dynamic range (LDR) content, cannot be directly applied to HDR images in order to predict their perceptual fidelity. To overcome this limitation, advanced fidelity metrics, such as the HDR-VDP, have been proposed to accurately predict visually significant differences. However, their complex calibration may make them difficult to use in practice. A simpler approach consists in computing arithmetic or structural fidelity metrics, such as PSNR and SSIM, on perceptually encoded luminance values but the performance of quality prediction in this case has not been clearly studied. In this paper, we aim at providing a better comprehension of the limits and the potentialities of this approach, by means of a subjective study. We compare the performance of HDR-VDP to that of PSNR and SSIM computed on perceptually encoded luminance values, when considering compressed HDR images. Our results show that these simpler metrics can be effectively employed to assess image fidelity for applications such as HDR image compression.
Practical experimental certification of computational quantum gates using a twirling procedure.
Moussa, Osama; da Silva, Marcus P; Ryan, Colm A; Laflamme, Raymond
2012-08-17
Because of the technical difficulty of building large quantum computers, it is important to be able to estimate how faithful a given implementation is to an ideal quantum computer. The common approach of completely characterizing the computation process via quantum process tomography requires an exponential amount of resources, and thus is not practical even for relatively small devices. We solve this problem by demonstrating that twirling experiments previously used to characterize the average fidelity of quantum memories efficiently can be easily adapted to estimate the average fidelity of the experimental implementation of important quantum computation processes, such as unitaries in the Clifford group, in a practical and efficient manner with applicability in current quantum devices. Using this procedure, we demonstrate state-of-the-art coherent control of an ensemble of magnetic moments of nuclear spins in a single crystal solid by implementing the encoding operation for a 3-qubit code with only a 1% degradation in average fidelity discounting preparation and measurement errors. We also highlight one of the advances that was instrumental in achieving such high fidelity control.
Hill, A A; Crotta, M; Wall, B; Good, L; O'Brien, S J; Guitian, J
2017-03-01
Foodborne infection is a result of exposure to complex, dynamic food systems. The efficiency of foodborne infection is driven by ongoing shifts in genetic machinery. Next-generation sequencing technologies can provide high-fidelity data about the genetics of a pathogen. However, food safety surveillance systems do not currently provide similar high-fidelity epidemiological metadata to associate with genetic data. As a consequence, it is rarely possible to transform genetic data into actionable knowledge that can be used to genuinely inform risk assessment or prevent outbreaks. Big data approaches are touted as a revolution in decision support, and pose a potentially attractive method for closing the gap between the fidelity of genetic and epidemiological metadata for food safety surveillance. We therefore developed a simple food chain model to investigate the potential benefits of combining 'big' data sources, including both genetic and high-fidelity epidemiological metadata. Our results suggest that, as for any surveillance system, the collected data must be relevant and characterize the important dynamics of a system if we are to properly understand risk: this suggests the need to carefully consider data curation, rather than the more ambitious claims of big data proponents that unstructured and unrelated data sources can be combined to generate consistent insight. Of interest is that the biggest influencers of foodborne infection risk were contamination load and processing temperature, not genotype. This suggests that understanding food chain dynamics would probably more effectively generate insight into foodborne risk than prescribing the hazard in ever more detail in terms of genotype.
Fidelity to the Cognitive Processing Therapy Protocol: Evaluation of Critical Elements.
Farmer, Courtney C; Mitchell, Karen S; Parker-Guilbert, Kelly; Galovski, Tara E
2017-03-01
The contributions of individual therapy elements to the overall efficacy of evidence-based practices for the treatment of posttraumatic stress disorder (PTSD) are not well-understood. This study first examined the extent to which theoretically important treatment components of Cognitive Processing Therapy (CPT; i.e., skill in Socratic questioning; prioritizing assimilation; attention to practice assignments; emphasis on expression of natural affect) were successfully administered across the course of therapy for 68 PTSD-positive survivors of interpersonal trauma. Therapist fidelity in the administration of these four elements was evaluated in 533 taped CPT sessions of study participants included in one of two randomized controlled CPT treatment trials. Second, we examined therapist fidelity to these components as a predictor of session-to-session PTSD and depression symptom change. Third, follow-up analyses examined the influence of high therapist competence for these four components across an entire course of therapy on symptom change from pre- to posttreatment. Results showed consistently high adherence and more variable competence for these four treatment components. There were no significant effects of therapist fidelity on session-to-session symptom change. However, results showed that overall high therapist competence for "skill in Socratic questioning" and "prioritizing assimilation before overaccommodation" were related to greater client improvement in PTSD severity, but "attention to practice assignments" and "emphasis on expression of natural affect" were not. Overall competence ratings for the four components were not significantly associated with improvement in depressive symptoms. Findings contribute to increased understanding of the relationship between the key treatment components of CPT and symptom change. Copyright © 2016. Published by Elsevier Ltd.
Crotta, M.; Wall, B.; Good, L.; O'Brien, S. J.; Guitian, J.
2017-01-01
Foodborne infection is a result of exposure to complex, dynamic food systems. The efficiency of foodborne infection is driven by ongoing shifts in genetic machinery. Next-generation sequencing technologies can provide high-fidelity data about the genetics of a pathogen. However, food safety surveillance systems do not currently provide similar high-fidelity epidemiological metadata to associate with genetic data. As a consequence, it is rarely possible to transform genetic data into actionable knowledge that can be used to genuinely inform risk assessment or prevent outbreaks. Big data approaches are touted as a revolution in decision support, and pose a potentially attractive method for closing the gap between the fidelity of genetic and epidemiological metadata for food safety surveillance. We therefore developed a simple food chain model to investigate the potential benefits of combining ‘big’ data sources, including both genetic and high-fidelity epidemiological metadata. Our results suggest that, as for any surveillance system, the collected data must be relevant and characterize the important dynamics of a system if we are to properly understand risk: this suggests the need to carefully consider data curation, rather than the more ambitious claims of big data proponents that unstructured and unrelated data sources can be combined to generate consistent insight. Of interest is that the biggest influencers of foodborne infection risk were contamination load and processing temperature, not genotype. This suggests that understanding food chain dynamics would probably more effectively generate insight into foodborne risk than prescribing the hazard in ever more detail in terms of genotype. PMID:28405360
Testing the Feasibility of Fidelity Evaluation in a Multisite, Multiprogram Initiative
ERIC Educational Resources Information Center
Cornish, Disa Lubker; Losch, Mary E.; Avery, Mitchell
2016-01-01
Monitoring fidelity of implementation is a critical task when initiating evidence-based programs. This pilot study sought to identify best practices in a fidelity monitoring process and determine the feasibility of continuing a fidelity monitoring process with a multisite, multiprogram initiative. A fidelity log was created for each of 11…
Testing the Relation between Fidelity of Implementation and Student Outcomes in Math
ERIC Educational Resources Information Center
Crawford, Lindy; Carpenter, Dick M., II; Wilson, Mary T.; Schmeister, Megan; McDonald, Marilee
2012-01-01
The relation between fidelity of implementation and student outcomes in a computer-based middle school mathematics curriculum was measured empirically. Participants included 485 students and 23 teachers from 11 public middle schools across seven states. Implementation fidelity was defined using two constructs: fidelity to structure and fidelity to…
A high fidelity real-time simulation of a small turboshaft engine
NASA Technical Reports Server (NTRS)
Ballin, Mark G.
1988-01-01
A high-fidelity component-type model and real-time digital simulation of the General Electric T700-GE-700 turboshaft engine were developed for use with current generation real-time blade-element rotor helicopter simulations. A control system model based on the specification fuel control system used in the UH-60A Black Hawk helicopter is also presented. The modeling assumptions and real-time digital implementation methods particular to the simulation of small turboshaft engines are described. The validity of the simulation is demonstrated by comparison with analysis-oriented simulations developed by the manufacturer, available test data, and flight-test time histories.
High-Fidelity Micromechanics Model Developed for the Response of Multiphase Materials
NASA Technical Reports Server (NTRS)
Aboudi, Jacob; Pindera, Marek-Jerzy; Arnold, Steven M.
2002-01-01
A new high-fidelity micromechanics model has been developed under funding from the NASA Glenn Research Center for predicting the response of multiphase materials with arbitrary periodic microstructures. The model's analytical framework is based on the homogenization technique, but the method of solution for the local displacement and stress fields borrows concepts previously employed in constructing the higher order theory for functionally graded materials. The resulting closed-form macroscopic and microscopic constitutive equations, valid for both uniaxial and multiaxial loading of periodic materials with elastic and inelastic constitutive phases, can be incorporated into a structural analysis computer code. Consequently, this model now provides an alternative, accurate method.
Experimental observation of four-photon entangled Dicke state with high fidelity.
Kiesel, N; Schmid, C; Tóth, G; Solano, E; Weinfurter, H
2007-02-09
We present the experimental observation of the symmetric four-photon entangled Dicke state with two excitations |D_{4};{(2)}. A simple experimental setup allowed quantum state tomography yielding a fidelity as high as 0.844+/-0.008. We study the entanglement persistency of the state using novel witness operators and focus on the demonstration of a remarkable property: depending on the orientation of a measurement on one photon, the remaining three photons are projected into both inequivalent classes of genuine tripartite entanglement, the Greenberger-Horne-Zeilinger and W class. Furthermore, we discuss possible applications of |D_{4};{(2)} in quantum communication.
Embedded Relative Navigation Sensor Fusion Algorithms for Autonomous Rendezvous and Docking Missions
NASA Technical Reports Server (NTRS)
DeKock, Brandon K.; Betts, Kevin M.; McDuffie, James H.; Dreas, Christine B.
2008-01-01
bd Systems (a subsidiary of SAIC) has developed a suite of embedded relative navigation sensor fusion algorithms to enable NASA autonomous rendezvous and docking (AR&D) missions. Translational and rotational Extended Kalman Filters (EKFs) were developed for integrating measurements based on the vehicles' orbital mechanics and high-fidelity sensor error models and provide a solution with increased accuracy and robustness relative to any single relative navigation sensor. The filters were tested tinough stand-alone covariance analysis, closed-loop testing with a high-fidelity multi-body orbital simulation, and hardware-in-the-loop (HWIL) testing in the Marshall Space Flight Center (MSFC) Flight Robotics Laboratory (FRL).
High-fidelity spin measurement on the nitrogen-vacancy center
NASA Astrophysics Data System (ADS)
Hanks, Michael; Trupke, Michael; Schmiedmayer, Jörg; Munro, William J.; Nemoto, Kae
2017-10-01
Nitrogen-vacancy (NV) centers in diamond are versatile candidates for many quantum information processing tasks, ranging from quantum imaging and sensing through to quantum communication and fault-tolerant quantum computers. Critical to almost every potential application is an efficient mechanism for the high fidelity readout of the state of the electronic and nuclear spins. Typically such readout has been achieved through an optically resonant fluorescence measurement, but the presence of decay through a meta-stable state will limit its efficiency to the order of 99%. While this is good enough for many applications, it is insufficient for large scale quantum networks and fault-tolerant computational tasks. Here we explore an alternative approach based on dipole induced transparency (state-dependent reflection) in an NV center cavity QED system, using the most recent knowledge of the NV center’s parameters to determine its feasibility, including the decay channels through the meta-stable subspace and photon ionization. We find that single-shot measurements above fault-tolerant thresholds should be available in the strong coupling regime for a wide range of cavity-center cooperativities, using a majority voting approach utilizing single photon detection. Furthermore, extremely high fidelity measurements are possible using weak optical pulses.
Efficient experimental design of high-fidelity three-qubit quantum gates via genetic programming
NASA Astrophysics Data System (ADS)
Devra, Amit; Prabhu, Prithviraj; Singh, Harpreet; Arvind; Dorai, Kavita
2018-03-01
We have designed efficient quantum circuits for the three-qubit Toffoli (controlled-controlled-NOT) and the Fredkin (controlled-SWAP) gate, optimized via genetic programming methods. The gates thus obtained were experimentally implemented on a three-qubit NMR quantum information processor, with a high fidelity. Toffoli and Fredkin gates in conjunction with the single-qubit Hadamard gates form a universal gate set for quantum computing and are an essential component of several quantum algorithms. Genetic algorithms are stochastic search algorithms based on the logic of natural selection and biological genetics and have been widely used for quantum information processing applications. We devised a new selection mechanism within the genetic algorithm framework to select individuals from a population. We call this mechanism the "Luck-Choose" mechanism and were able to achieve faster convergence to a solution using this mechanism, as compared to existing selection mechanisms. The optimization was performed under the constraint that the experimentally implemented pulses are of short duration and can be implemented with high fidelity. We demonstrate the advantage of our pulse sequences by comparing our results with existing experimental schemes and other numerical optimization methods.
High-fidelity DNA replication in Mycobacterium tuberculosis relies on a trinuclear zinc center.
Baños-Mateos, Soledad; van Roon, Anne-Marie M; Lang, Ulla F; Maslen, Sarah L; Skehel, J Mark; Lamers, Meindert H
2017-10-11
High-fidelity DNA replication depends on a proofreading 3'-5' exonuclease that is associated with the replicative DNA polymerase. The replicative DNA polymerase DnaE1 from the major pathogen Mycobacterium tuberculosis (Mtb) uses its intrinsic PHP-exonuclease that is distinct from the canonical DEDD exonucleases found in the Escherichia coli and eukaryotic replisomes. The mechanism of the PHP-exonuclease is not known. Here, we present the crystal structure of the Mtb DnaE1 polymerase. The PHP-exonuclease has a trinuclear zinc center, coordinated by nine conserved residues. Cryo-EM analysis reveals the entry path of the primer strand in the PHP-exonuclease active site. Furthermore, the PHP-exonuclease shows a striking similarity to E. coli endonuclease IV, which provides clues regarding the mechanism of action. Altogether, this work provides important insights into the PHP-exonuclease and reveals unique properties that make it an attractive target for novel anti-mycobacterial drugs.The polymerase and histidinol phosphatase (PHP) domain in the DNA polymerase DnaE1 is essential for mycobacterial high-fidelity DNA replication. Here, the authors determine the DnaE1 crystal structure, which reveals the PHP-exonuclease mechanism that can be exploited for antibiotic development.
High-Fidelity Flash Lidar Model Development
NASA Technical Reports Server (NTRS)
Hines, Glenn D.; Pierrottet, Diego F.; Amzajerdian, Farzin
2014-01-01
NASA's Autonomous Landing and Hazard Avoidance Technologies (ALHAT) project is currently developing the critical technologies to safely and precisely navigate and land crew, cargo and robotic spacecraft vehicles on and around planetary bodies. One key element of this project is a high-fidelity Flash Lidar sensor that can generate three-dimensional (3-D) images of the planetary surface. These images are processed with hazard detection and avoidance and hazard relative navigation algorithms, and then are subsequently used by the Guidance, Navigation and Control subsystem to generate an optimal navigation solution. A complex, high-fidelity model of the Flash Lidar was developed in order to evaluate the performance of the sensor and its interaction with the interfacing ALHAT components on vehicles with different configurations and under different flight trajectories. The model contains a parameterized, general approach to Flash Lidar detection and reflects physical attributes such as range and electronic noise sources, and laser pulse temporal and spatial profiles. It also provides the realistic interaction of the laser pulse with terrain features that include varying albedo, boulders, craters slopes and shadows. This paper gives a description of the Flash Lidar model and presents results from the Lidar operating under different scenarios.
Elliott, Lydia; DeCristofaro, Claire; Carpenter, Alesia
2012-09-01
This article describes the development and implementation of integrated use of personal handheld devices (personal digital assistants, PDAs) and high-fidelity simulation in an advanced health assessment course in a graduate family nurse practitioner (NP) program. A teaching tool was developed that can be utilized as a template for clinical case scenarios blending these separate technologies. Review of the evidence-based literature, including peer-reviewed articles and reviews. Blending the technologies of high-fidelity simulation and handheld devices (PDAs) provided a positive learning experience for graduate NP students in a teaching laboratory setting. Combining both technologies in clinical case scenarios offered a more real-world learning experience, with a focus on point-of-care service and integration of interview and physical assessment skills with existing standards of care and external clinical resources. Faculty modeling and advance training with PDA technology was crucial to success. Faculty developed a general template tool and systems-based clinical scenarios integrating PDA and high-fidelity simulation. Faculty observations, the general template tool, and one scenario example are included in this article. ©2012 The Author(s) Journal compilation ©2012 American Academy of Nurse Practitioners.
Development of High Fidelity, Fuel-Like Thermal Simulators for Non-Nuclear Testing
NASA Technical Reports Server (NTRS)
Bragg-Sitton, S. M.; Farmer, J.; Dixon, D.; Kapernick, R.; Dickens, R.; Adams, M.
2007-01-01
Non-nuclear testing can be a valuable tool in development of a space nuclear power or propulsion system. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Work at the NASA Marshall Space Flight Center seeks to develop high fidelity thermal simulators that not only match the static power profile that would be observed in an operating, fueled nuclear reactor, but to also match the dynamic fuel pin performance during feasible transients. Comparison between the fuel pins and thermal simulators is made at the fuel clad surface, which corresponds to the sheath surface in the thermal simulator. Static and dynamic fuel pin performance was determined using SINDA-FLUINT analysis, and the performance of conceptual thermal simulator designs was compared to the expected nuclear performance. Through a series of iterative analysis, a conceptual high fidelity design will be developed, followed by engineering design, fabrication, and testing to validate the overall design process. Although the resulting thermal simulator will be designed for a specific reactor concept, establishing this rigorous design process will assist in streamlining the thermal simulator development for other reactor concepts.
Hamoda, Reem E; Gander, Jennifer C; McPherson, Laura J; Arriola, Kimberly J; Cobb, Loren; Pastan, Stephen O; Plantinga, Laura; Browne, Teri; Hartmann, Erica; Mulloy, Laura; Zayas, Carlos; Krisher, Jenna; Patzer, Rachel E
2018-01-15
The Reducing Disparities in Access to kidNey Transplantation Community Study (RaDIANT) was an End-Stage Renal Disease (ESRD) Network 6-developed, dialysis facility-level randomized trial testing the effectiveness of a 1-year multicomponent education and quality improvement intervention in increasing referral for kidney transplant evaluation among selected Georgia dialysis facilities. To assess implementation of the RaDIANT intervention, we conducted a process evaluation at the conclusion of the intervention period (January-December 2014). We administered a 20-item survey to the staff involved with transplant education in 67 dialysis facilities randomized to participate in intervention activities. Survey items assessed facility participation in the intervention (fidelity and reach), helpfulness and willingness to continue intervention activities (sustainability), suggestions for improving intervention components (sustainability), and factors that may have influenced participation and study outcomes (context). We defined high fidelity to the intervention as completing 11 or more activities, and high participation in an activity as having at least 75% participation across intervention facilities. Staff from 65 of the 67 dialysis facilities completed the questionnaire, and more than half (50.8%) reported high adherence (fidelity) to RaDIANT intervention requirements. Nearly two-thirds (63.1%) of facilities reported that RaDIANT intervention activities were helpful or very helpful, with 90.8% of facilities willing to continue at least one intervention component beyond the study period. Intervention components with high participation emphasized staff and patient-level education, including in-service staff orientations, patient and family education programs, and patient educational materials. Suggested improvements for intervention activities emphasized addressing financial barriers to transplantation, with financial education materials perceived as most helpful among RaDIANT educational materials. Variation in facility-level fidelity of the RADIANT intervention did not significantly influence the mean difference in proportion of patients referred pre- (2013) and post-intervention (2014). We found high fidelity to the RaDIANT multicomponent intervention at the majority of intervention facilities, with sustainability of select intervention components at intervention facilities and feasibility for dissemination across ESRD Networks. Future modification of the intervention should emphasize financial education regarding kidney transplantation and amend intervention components that facilities perceive as time-intensive or non-sustainable. Clinicaltrials.gov number NCT02092727 . Registered 13 Mar 2014 (retrospectively registered).
High-Fidelity PIV of a Naturally Grown High Reynolds Number Turbulent Boundary Layer
NASA Astrophysics Data System (ADS)
Biles, Drummond; White, Chris; Klewicki, Joeseph
2017-11-01
High-fidelity particle image velocimetry data acquired in the Flow Physics Facility (FPF) at the University of New Hampshire is presented. Having a test section length of 72m, the FPF employs the ``big and slow'' approach to obtain well-resolved turbulent boundary layer measurements at high Reynolds number. We report on PIV measurements acquired in the streamwise-wall-normal plane at a downstream position 59m from the test-section inlet over the friction Reynolds number range 7000 < Reτ < 15000 . Local flow tracer seeding is employed through a wall-mounted slot fed by a large volume plenum located 13.4m upstream of the PIV measurement station. Both time-independent and time-dependent turbulent flow statistics are presented and compared to existing data.
Soft-lithography fabrication of microfluidic features using thiol-ene formulations.
Ashley, John F; Cramer, Neil B; Davis, Robert H; Bowman, Christopher N
2011-08-21
In this work, a novel thiol-ene based photopolymerizable resin formulation was shown to exhibit highly desirable characteristics, such as low cure time and the ability to overcome oxygen inhibition, for the photolithographic fabrication of microfluidic devices. The feature fidelity, as well as various aspects of the feature shape and quality, were assessed as functions of various resin attributes, particularly the exposure conditions, initiator concentration and inhibitor to initiator ratio. An optical technique was utilized to evaluate the feature fidelity as well as the feature shape and quality. These results were used to optimize the thiol-ene resin formulation to produce high fidelity, high aspect ratio features without significant reductions in feature quality. For structures with aspect ratios below 2, little difference (<3%) in feature quality was observed between thiol-ene and acrylate based formulations. However, at higher aspect ratios, the thiol-ene resin exhibited significantly improved feature quality. At an aspect ratio of 8, raised feature quality for the thiol-ene resin was dramatically better than that achieved by using the acrylate resin. The use of the thiol-ene based resin enabled fabrication of a pinched-flow microfluidic device that has complex channel geometry, small (50 μm) channel dimensions, and high aspect ratio (14) features. This journal is © The Royal Society of Chemistry 2011
First experiences of high-fidelity simulation training in junior nursing students in Korea.
Lee, Suk Jeong; Kim, Sang Suk; Park, Young-Mi
2015-07-01
This study was conducted to explore first experiences of high-fidelity simulation training in Korean nursing students, in order to develop and establish more effective guidelines for future simulation training in Korea. Thirty-three junior nursing students participated in high-fidelity simulation training for the first time. Using both qualitative and quantitative methods, data were collected from reflective journals and questionnaires of simulation effectiveness after simulation training. Descriptive statistics were used to analyze simulation effectiveness and content analysis was performed with the reflective journal data. Five dimensions and 31 domains, both positive and negative experiences, emerged from qualitative analysis: (i) machine-human interaction in a safe environment; (ii) perceived learning capability; (iii) observational learning; (iv) reconciling practice with theory; and (v) follow-up debriefing effect. More than 70% of students scored high on increased ability to identify changes in the patient's condition, critical thinking, decision-making, effectiveness of peer observation, and debriefing in effectiveness of simulation. This study reported both positive and negative experiences of simulation. The results of this study could be used to set the level of task difficulty in simulation. Future simulation programs can be designed by reinforcing the positive experiences and modifying the negative results. © 2014 The Authors. Japan Journal of Nursing Science © 2014 Japan Academy of Nursing Science.