Sample records for extraction efficiency lipid

  1. FTIR Spectroscopy for Evaluation and Monitoring of Lipid Extraction Efficiency for Oleaginous Fungi.

    PubMed

    Forfang, Kristin; Zimmermann, Boris; Kosa, Gergely; Kohler, Achim; Shapaval, Volha

    2017-01-01

    To assess whether Fourier Transform Infrared (FTIR) spectroscopy could be used to evaluate and monitor lipid extraction processes, the extraction methods of Folch, Bligh and Lewis were used. Biomass of the oleaginous fungi Mucor circinelloides and Mortierella alpina were employed as lipid-rich material for the lipid extraction. The presence of lipids was determined by recording infrared spectra of all components in the lipid extraction procedure, such as the biomass before and after extraction, the water and extract phases. Infrared spectra revealed the incomplete extraction after all three extraction methods applied to M.circinelloides and it was shown that mechanical disruption using bead beating and HCl treatment were necessary to complete the extraction in this species. FTIR spectroscopy was used to identify components, such as polyphosphates, that may have negatively affected the extraction process and resulted in differences in extraction efficiency between M.circinelloides and M.alpina. Residual lipids could not be detected in the infrared spectra of M.alpina biomass after extraction using the Folch and Lewis methods, indicating their complete lipid extraction in this species. Bligh extraction underestimated the fatty acid content of both M.circinelloides and M.alpina biomass and an increase in the initial solvent-to-sample ratio (from 3:1 to 20:1) was needed to achieve complete extraction and a lipid-free IR spectrum. In accordance with previous studies, the gravimetric lipid yield was shown to overestimate the potential of the SCO producers and FAME quantification in GC-FID was found to be the best-suited method for lipid quantification. We conclude that FTIR spectroscopy can serve as a tool for evaluating the lipid extraction efficiency, in addition to identifying components that may affect lipid extraction processes.

  2. FTIR Spectroscopy for Evaluation and Monitoring of Lipid Extraction Efficiency for Oleaginous Fungi

    PubMed Central

    Zimmermann, Boris; Kosa, Gergely; Kohler, Achim; Shapaval, Volha

    2017-01-01

    To assess whether Fourier Transform Infrared (FTIR) spectroscopy could be used to evaluate and monitor lipid extraction processes, the extraction methods of Folch, Bligh and Lewis were used. Biomass of the oleaginous fungi Mucor circinelloides and Mortierella alpina were employed as lipid-rich material for the lipid extraction. The presence of lipids was determined by recording infrared spectra of all components in the lipid extraction procedure, such as the biomass before and after extraction, the water and extract phases. Infrared spectra revealed the incomplete extraction after all three extraction methods applied to M.circinelloides and it was shown that mechanical disruption using bead beating and HCl treatment were necessary to complete the extraction in this species. FTIR spectroscopy was used to identify components, such as polyphosphates, that may have negatively affected the extraction process and resulted in differences in extraction efficiency between M.circinelloides and M.alpina. Residual lipids could not be detected in the infrared spectra of M.alpina biomass after extraction using the Folch and Lewis methods, indicating their complete lipid extraction in this species. Bligh extraction underestimated the fatty acid content of both M.circinelloides and M.alpina biomass and an increase in the initial solvent-to-sample ratio (from 3:1 to 20:1) was needed to achieve complete extraction and a lipid-free IR spectrum. In accordance with previous studies, the gravimetric lipid yield was shown to overestimate the potential of the SCO producers and FAME quantification in GC-FID was found to be the best-suited method for lipid quantification. We conclude that FTIR spectroscopy can serve as a tool for evaluating the lipid extraction efficiency, in addition to identifying components that may affect lipid extraction processes. PMID:28118388

  3. Current lipid extraction methods are significantly enhanced adding a water treatment step in Chlorella protothecoides.

    PubMed

    Ren, Xiaojie; Zhao, Xinhe; Turcotte, François; Deschênes, Jean-Sébastien; Tremblay, Réjean; Jolicoeur, Mario

    2017-02-11

    Microalgae have the potential to rapidly accumulate lipids of high interest for the food, cosmetics, pharmaceutical and energy (e.g. biodiesel) industries. However, current lipid extraction methods show efficiency limitation and until now, extraction protocols have not been fully optimized for specific lipid compounds. The present study thus presents a novel lipid extraction method, consisting in the addition of a water treatment of biomass between the two-stage solvent extraction steps of current extraction methods. The resulting modified method not only enhances lipid extraction efficiency, but also yields a higher triacylglycerols (TAG) ratio, which is highly desirable for biodiesel production. Modification of four existing methods using acetone, chloroform/methanol (Chl/Met), chloroform/methanol/H 2 O (Chl/Met/H 2 O) and dichloromethane/methanol (Dic/Met) showed respective lipid extraction yield enhancement of 72.3, 35.8, 60.3 and 60.9%. The modified acetone method resulted in the highest extraction yield, with 68.9 ± 0.2% DW total lipids. Extraction of TAG was particularly improved with the water treatment, especially for the Chl/Met/H 2 O and Dic/Met methods. The acetone method with the water treatment led to the highest extraction level of TAG with 73.7 ± 7.3 µg/mg DW, which is 130.8 ± 10.6% higher than the maximum value obtained for the four classical methods (31.9 ± 4.6 µg/mg DW). Interestingly, the water treatment preferentially improved the extraction of intracellular fractions, i.e. TAG, sterols, and free fatty acids, compared to the lipid fractions of the cell membranes, which are constituted of phospholipids (PL), acetone mobile polar lipids and hydrocarbons. Finally, from the 32 fatty acids analyzed for both neutral lipids (NL) and polar lipids (PL) fractions, it is clear that the water treatment greatly improves NL-to-PL ratio for the four standard methods assessed. Water treatment of biomass after the first solvent extraction step helps the subsequent release of intracellular lipids in the second extraction step, thus improving the global lipids extraction yield. In addition, the water treatment positively modifies the intracellular lipid class ratios of the final extract, in which TAG ratio is significantly increased without changes in the fatty acids composition. The novel method thus provides an efficient way to improve lipid extraction yield of existing methods, as well as selectively favoring TAG, a lipid of the upmost interest for biodiesel production.

  4. Understanding the mechanisms of lipid extraction from microalga Chlamydomonas reinhardtii after electrical field solicitations and mechanical stress within a microfluidic device.

    PubMed

    Bensalem, Sakina; Lopes, Filipa; Bodénès, Pierre; Pareau, Dominique; Français, Olivier; Le Pioufle, Bruno

    2018-06-01

    One way envisioned to overcome part of the issues biodiesel production encounters today is to develop a simple, economically viable and eco-friendly process for the extraction of lipids from microalgae. This study investigates the lipid extraction efficiency from the microalga Chlamydomonas reinhardtii as well as the underlying mechanisms. We propose a new methodology combining a pulsed electric field (PEF) application and mechanical stresses as a pretreatment to improve lipid extraction with solvents. Cells enriched in lipids are therefore submitted to electric field pulses creating pores on the cell membrane and then subjected to a mechanical stress by applying cyclic pressures on the cell wall (using a microfluidic device). Results showed an increase in lipid extraction when cells were pretreated by the combination of both methods. Microscopic observations showed that both pretreatments affect the cell structure. Finally, the dependency of solvent lipid extraction efficiency with the cell wall structure is discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Review of the harvesting and extraction program within the National Alliance for Advanced Biofuels and Bioproducts

    DOE PAGES

    Marrone, Babetta L.; Lacey, Ronald E.; Anderson, Daniel B.; ...

    2017-08-07

    Energy-efficient and scalable harvesting and lipid extraction processes must be developed in order for the algal biofuels and bioproducts industry to thrive. The major challenge for harvesting is the handling of large volumes of cultivation water to concentrate low amounts of biomass. For lipid extraction, the major energy and cost drivers are associated with disrupting the algae cell wall and drying the biomass before solvent extraction of the lipids. Here we review the research and development conducted by the Harvesting and Extraction Team during the 3-year National Alliance for Advanced Biofuels and Bioproducts (NAABB) algal consortium project. The harvesting andmore » extraction team investigated five harvesting and three wet extraction technologies at lab bench scale for effectiveness, and conducted a techoeconomic study to evaluate their costs and energy efficiency compared to available baseline technologies. Based on this study, three harvesting technologies were selected for further study at larger scale. We evaluated the selected harvesting technologies: electrocoagulation, membrane filtration, and ultrasonic harvesting, in a field study at minimum scale of 100 L/h. None of the extraction technologies were determined to be ready for scale-up; therefore, an emerging extraction technology (wet solvent extraction) was selected from industry to provide scale-up data and capabilities to produce lipid and lipid-extracted materials for the NAABB program. One specialized extraction/adsorption technology was developed that showed promise for recovering high value co-products from lipid extracts. Overall, the NAABB Harvesting and Extraction Team improved the readiness level of several innovative, energy efficient technologies to integrate with algae production processes and captured valuable lessons learned about scale-up challenges.« less

  6. Review of the harvesting and extraction program within the National Alliance for Advanced Biofuels and Bioproducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marrone, Babetta L.; Lacey, Ronald E.; Anderson, Daniel B.

    Energy-efficient and scalable harvesting and lipid extraction processes must be developed in order for the algal biofuels and bioproducts industry to thrive. The major challenge for harvesting is the handling of large volumes of cultivation water to concentrate low amounts of biomass. For lipid extraction, the major energy and cost drivers are associated with disrupting the algae cell wall and drying the biomass before solvent extraction of the lipids. Here we review the research and development conducted by the Harvesting and Extraction Team during the 3-year National Alliance for Advanced Biofuels and Bioproducts (NAABB) algal consortium project. The harvesting andmore » extraction team investigated five harvesting and three wet extraction technologies at lab bench scale for effectiveness, and conducted a techoeconomic study to evaluate their costs and energy efficiency compared to available baseline technologies. Based on this study, three harvesting technologies were selected for further study at larger scale. We evaluated the selected harvesting technologies: electrocoagulation, membrane filtration, and ultrasonic harvesting, in a field study at minimum scale of 100 L/h. None of the extraction technologies were determined to be ready for scale-up; therefore, an emerging extraction technology (wet solvent extraction) was selected from industry to provide scale-up data and capabilities to produce lipid and lipid-extracted materials for the NAABB program. One specialized extraction/adsorption technology was developed that showed promise for recovering high value co-products from lipid extracts. Overall, the NAABB Harvesting and Extraction Team improved the readiness level of several innovative, energy efficient technologies to integrate with algae production processes and captured valuable lessons learned about scale-up challenges.« less

  7. Surfactants assist in lipid extraction from wet Nannochloropsis sp.

    PubMed

    Wu, Chongchong; Xiao, Ye; Lin, Weiguo; Zhu, Junying; De la Hoz Siegler, Hector; Zong, Mingsheng; Rong, Junfeng

    2017-11-01

    An efficient approach involving surfactant treatment, or the modification and utilization of surfactants that naturally occur in algae (algal-based surfactants), was developed to assist in the extraction of lipids from wet algae. Surfactants were found to be able to completely replace polar organic solvents in the extraction process. The highest yield of algal lipids extracted by hexane and algal-based surfactants was 78.8%, followed by 78.2% for hexane and oligomeric surfactant extraction, whereas the lipid yield extracted by hexane and ethanol was only 60.5%. In addition, the saponifiable lipids extracted by exploiting algal-based surfactants and hexane, or adding oligomeric surfactant and hexane, accounted for 78.6% and 75.4% of total algal lipids, respectively, which was more than 10% higher than the lipids extracted by hexane and ethanol. This work presents a method to extract lipids from algae using only nonpolar organic solvents, while obtaining high lipid yields and high selectivity to saponifiables. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. ASE extraction method for simultaneous carbon and nitrogen stable isotope analysis in soft tissues of aquatic organisms.

    PubMed

    Bodin, Nathalie; Budzinski, Hélène; Le Ménach, Karyn; Tapie, Nathalie

    2009-06-08

    Since lipids are depleted in 13C relative to proteins and carbohydrates, variations in lipid composition among species and within individuals significantly influence delta13C and may result in misleading ecological interpretations. Whereas lipid extraction before IRMS analysis constitutes a way of stable isotope result lipid-normalisation, such a procedure was given up because of the un-controlled effects of the methods used (i.e., "Bligh & Dyer", Soxhlet, etc.) on delta15N. The aim of this work was to develop a simple, rapid and efficient lipid extraction method allowing for simultaneous C and N stable isotope analysis in the biological soft tissues of aquatic organisms. The goal was to be free from the lipid influence on delta13C values without interfering with delta15N values. For that purpose, the modern automated pressurized liquid extraction technique ASE (accelerated solvent extraction) was selected. Eel muscles representative of a broad range of fat contents were extracted via ASE by using different semi-polar solvents (100% dichloromethane and 80% n-hexane/20% acetone) and by operating at different temperature (ambient temperature and 100 degrees C) and pressure (750 and 1900 psi) conditions. The results were discussed in terms of lipid extraction efficiency as well as delta13C and delta15N variability.

  9. Fatty acids from high rate algal pond's microalgal biomass and osmotic stress effects.

    PubMed

    Drira, Neila; Dhouibi, Nedra; Hammami, Saoussen; Piras, Alessandra; Rosa, Antonella; Porcedda, Silvia; Dhaouadi, Hatem

    2017-11-01

    The extraction of oil from a wild microalgae biomass collected from a domestic wastewater treatment facility's high rate algal pond (HRAP) was investigated. An experiment plan was used to determine the most efficient extraction method, the optimal temperature, time and solvent system based on total lipids yield. Microwave-assisted extraction was the most efficient method whether in n-hexane or in a mixture of chloroform/methanol compared to Soxhlet, homogenization, and ultrasounds assisted extractions. This same wild biomass was cultivated in a photobioreactor (PBR) and the effect of osmotic stress was studied. The lipids extraction yield after 3days of stress increased by more than four folds without any significant loss of biomass, however, the quality of extracted total lipids in terms of saturated, monounsaturated and polyunsaturated fatty acids was not affected by salinity change in the culture medium. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A robust and efficient method for the extraction of plant extracellular surface lipids as applied to the analysis of silks and seedling leaves of maize

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loneman, Derek M.; Peddicord, Layton; Al-Rashid, Amani

    Aerial plant organs possess a diverse array of extracellular surface lipids, including both non-polar and amphipathic constituents that collectively provide a primary line of defense against environmental stressors. Extracellular surface lipids on the stigmatic silks of maize are composed primarily of saturated and unsaturated linear hydrocarbons, as well as fatty acids, and aldehydes. To efficiently extract lipids of differing polarities from maize silks, five solvent systems (hexanes; hexanes:diethyl ether (95:5); hexanes:diethyl ether (90:10); chloroform:hexanes (1:1) and chloroform) were tested by immersing fresh silks in solvent for different extraction times. Surface lipid recovery and the relative composition of individual constituents weremore » impacted to varying degrees depending on solvent choice and duration of extraction. Analyses were performed using both silks and leaves to demonstrate the utility of the solvent- and time-optimized protocol in comparison to extraction with the commonly used chloroform solvent. Overall, the preferred solvent system was identified as hexanes:diethyl ether (90:10), based on its effectiveness in extracting surface hydrocarbons and fatty acids as well as its reduced propensity to extract presumed internal fatty acids. Metabolite profiling of wildtype and glossy1 seedlings, which are impaired in surface lipid biosynthesis, demonstrated the ability of the preferred solvent to extract extracellular surface lipids rich in amphipathic compounds (aldehydes and alcohols). In addition to the expected deficiencies in dotriacontanal and dotriacontan-1-ol for gl1 seedlings, an unexpected increase in fatty acid recovery was observed in gl1 seedlings extracted in chloroform, suggesting that chloro-form extracts lipids from internal tissues of gl1 seedlings. This highlights the importance of extraction method when evaluating mutants that have altered cuticular lipid compositions. Lastly, metabolite profiling of silks from maize inbreds B73 and Mo17, exposed to different environments and harvested at different ages, revealed differences in hydrocarbon and fatty acid composition, demonstrating the dynamic nature of surface lipid accumulation on silks.« less

  11. A robust and efficient method for the extraction of plant extracellular surface lipids as applied to the analysis of silks and seedling leaves of maize

    DOE PAGES

    Loneman, Derek M.; Peddicord, Layton; Al-Rashid, Amani; ...

    2017-07-11

    Aerial plant organs possess a diverse array of extracellular surface lipids, including both non-polar and amphipathic constituents that collectively provide a primary line of defense against environmental stressors. Extracellular surface lipids on the stigmatic silks of maize are composed primarily of saturated and unsaturated linear hydrocarbons, as well as fatty acids, and aldehydes. To efficiently extract lipids of differing polarities from maize silks, five solvent systems (hexanes; hexanes:diethyl ether (95:5); hexanes:diethyl ether (90:10); chloroform:hexanes (1:1) and chloroform) were tested by immersing fresh silks in solvent for different extraction times. Surface lipid recovery and the relative composition of individual constituents weremore » impacted to varying degrees depending on solvent choice and duration of extraction. Analyses were performed using both silks and leaves to demonstrate the utility of the solvent- and time-optimized protocol in comparison to extraction with the commonly used chloroform solvent. Overall, the preferred solvent system was identified as hexanes:diethyl ether (90:10), based on its effectiveness in extracting surface hydrocarbons and fatty acids as well as its reduced propensity to extract presumed internal fatty acids. Metabolite profiling of wildtype and glossy1 seedlings, which are impaired in surface lipid biosynthesis, demonstrated the ability of the preferred solvent to extract extracellular surface lipids rich in amphipathic compounds (aldehydes and alcohols). In addition to the expected deficiencies in dotriacontanal and dotriacontan-1-ol for gl1 seedlings, an unexpected increase in fatty acid recovery was observed in gl1 seedlings extracted in chloroform, suggesting that chloro-form extracts lipids from internal tissues of gl1 seedlings. This highlights the importance of extraction method when evaluating mutants that have altered cuticular lipid compositions. Lastly, metabolite profiling of silks from maize inbreds B73 and Mo17, exposed to different environments and harvested at different ages, revealed differences in hydrocarbon and fatty acid composition, demonstrating the dynamic nature of surface lipid accumulation on silks.« less

  12. Recycling of lipid-extracted hydrolysate as nitrogen supplementation for production of thraustochytrid biomass.

    PubMed

    Lowrey, Joshua; Armenta, Roberto E; Brooks, Marianne S

    2016-08-01

    Efficient resource usage is important for cost-effective microalgae production, where the incorporation of waste streams and recycled water into the process has great potential. This study builds upon emerging research on nutrient recycling in thraustochytrid production, where waste streams are recovered after lipid extraction and recycled into future cultures. This research investigates the nitrogen flux of recycled hydrolysate derived from enzymatic lipid extraction of thraustochytrid biomass. Results indicated the proteinaceous content of the recycled hydrolysate can offset the need to supply fresh nitrogen in a secondary culture, without detrimental impact upon the produced biomass. The treatment employing the recycled hydrolysate with no nitrogen addition accumulated 14.86 g L(-1) of biomass in 141 h with 43.3 % (w/w) lipid content compared to the control which had 9.26 g L(-1) and 46.9 % (w/w), respectively. This improved nutrient efficiency and wastewater recovery represents considerable potential for enhanced resource efficiency of commercial thraustochytrid production.

  13. Use of solvent mixtures for total lipid extraction of Chlorella vulgaris and gas chromatography FAME analysis.

    PubMed

    Moradi-Kheibari, Narges; Ahmadzadeh, Hossein; Hosseini, Majid

    2017-09-01

    Lipid extraction is the bottleneck step for algae-based biodiesel production. Herein, 12 solvent mixture systems (mixtures of three non-polar and two polar organic solvents) were examined to evaluate their effects on the total lipid yield from Chlorella vulgaris (C. vulgaris). Moreover, the extraction yields of three solvent systems with maximum extraction efficiency of esterifiable lipids were determined by acidic transesterification and GC-FID analysis. Three solvent systems, which resulted in a higher extraction yield, were further subjected to fatty acid methyl ester (FAME) analysis. The total lipid extraction yields (based on dry biomass) were (38.57 ± 1.51), (25.33 ± 0.58), and (25.17 ± 1.14) %, for chloroform-methanol (1:2) (C1M2), hexane-methanol (1:2) (H1M2), and chloroform-methanol (2:1) (C2M1), respectively. The extraction efficiency of C1M2 was approximately 1.5 times higher than H1M2 and C2M1, whereas the FAME profile of extracted lipids by H1M2 and C1M2 were almost identical. Moreover, the esterifiable lipid extraction yields of (18.14 ± 2.60), (16.66 ± 0.35), and (13.22 ± 0.31) % (based on dry biomass) were obtained for C1M2, H1M2, and C2M1 solvent mixture systems, respectively. The biodiesel fuel properties produced from C. vulgaris were empirically predicted and compared to that of the EN 14214 and ASTM 6751 standard specifications.

  14. Multi-class multi-residue analysis of veterinary drugs in meat using enhanced matrix removal lipid cleanup and liquid chromatography-tandem mass spectrometry.

    PubMed

    Zhao, Limian; Lucas, Derick; Long, David; Richter, Bruce; Stevens, Joan

    2018-05-11

    This study presents the development and validation of a quantitation method for the analysis of multi-class, multi-residue veterinary drugs using lipid removal cleanup cartridges, enhanced matrix removal lipid (EMR-Lipid), for different meat matrices by liquid chromatography tandem mass spectrometry detection. Meat samples were extracted using a two-step solid-liquid extraction followed by pass-through sample cleanup. The method was optimized based on the buffer and solvent composition, solvent additive additions, and EMR-Lipid cartridge cleanup. The developed method was then validated in five meat matrices, porcine muscle, bovine muscle, bovine liver, bovine kidney and chicken liver to evaluate the method performance characteristics, such as absolute recoveries and precision at three spiking levels, calibration curve linearity, limit of quantitation (LOQ) and matrix effect. The results showed that >90% of veterinary drug analytes achieved satisfactory recovery results of 60-120%. Over 97% analytes achieved excellent reproducibility results (relative standard deviation (RSD) < 20%), and the LOQs were 1-5 μg/kg in the evaluated meat matrices. The matrix co-extractive removal efficiency by weight provided by EMR-lipid cartridge cleanup was 42-58% in samples. The post column infusion study showed that the matrix ion suppression was reduced for samples with the EMR-Lipid cartridge cleanup. The reduced matrix ion suppression effect was also confirmed with <15% frequency of compounds with significant quantitative ion suppression (>30%) for all tested veterinary drugs in all of meat matrices. The results showed that the two-step solid-liquid extraction provides efficient extraction for the entire spectrum of veterinary drugs, including the difficult classes such as tetracyclines, beta-lactams etc. EMR-Lipid cartridges after extraction provided efficient sample cleanup with easy streamlined protocol and minimal impacts on analytes recovery, improving method reliability and consistency. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Maximizing Lipid Yield in Neochloris oleoabundans Algae Extraction by Stressing and Using Multiple Extraction Stages with N-Ethylbutylamine as Switchable Solvent

    PubMed Central

    2017-01-01

    The extraction yield of lipids from nonbroken Neochloris oleoabundans was maximized by using multiple extraction stages and using stressed algae. Experimental parameters that affect the extraction were investigated. The study showed that with wet algae (at least) 18 h extraction time was required for maximum yield at room temperature and a solvent/feed ratio of 1:1 (w/w). For fresh water (FW), nonstressed, nonbroken Neochloris oleoabundans, 13.1 wt % of lipid extraction yield (based on dry algae mass) was achieved, which could be improved to 61.3 wt % for FW stressed algae after four extractions, illustrating that a combination of stressing the algae and applying the solvent N-ethylbutylamine in multiple stages of extraction results in almost 5 times higher yield and is very promising for further development of energy-efficient lipid extraction technology targeting nonbroken wet microalgae. PMID:28781427

  16. Review of the harvesting and extraction of advanced biofuels and bioproducts

    Treesearch

    Babette L. Marrone;  Ronald E.  Lacey;  Daniel B. Anderson;  James Bonner;  Jim Coons;  Taraka Dale;  Cara Meghan Downes;  Sandun Fernando;  Christopher  Fuller;  Brian Goodall;  Johnathan E. Holladay;  Kiran Kadam;  Daniel  Kalb;  Wei  Liu;  John B. Mott;  Zivko Nikolov;  Kimberly L. Ogden;  Richard T. Sayre;  Brian G. Trewyn;  José A. Olivares

    2017-01-01

    Energy-efficient and scalable harvesting and lipid extraction processes must be developed in order for the algal biofuels and bioproducts industry to thrive. The major challenge for harvesting is the handling of large volumes of cultivation water to concentrate low amounts of biomass. For lipid extraction, the major energy and cost drivers are associated with...

  17. Isolation and lipid degradation profile of Raoultella planticola strain 232-2 capable of efficiently catabolizing edible oils under acidic conditions.

    PubMed

    Sugimori, Daisuke; Watanabe, Mika; Utsue, Tomohiro

    2013-01-01

    The lipids (fats and oils) degradation capabilities of soil microorganisms were investigated for possible application in treatment of lipids-contaminated wastewater. We isolated a strain of the bacterium Raoultella planticola strain 232-2 that is capable of efficiently catabolizing lipids under acidic conditions such as in grease traps in restaurants and food processing plants. The strain 232-2 efficiently catabolized a mixture (mixed lipids) of commercial vegetable oil, lard, and beef tallow (1:1:1, w/w/w) at 20-35 °C, pH 3-9, and 1,000-5,000 ppm lipid content. Highly effective degradation rate was observed at 35 °C and pH 4.0, and the 24-h degradation rate was 62.5 ± 10.5 % for 3,000 ppm mixed lipids. The 24-h degradation rate for 3,000 ppm commercial vegetable oil, lard, beef tallow, mixed lipids, and oleic acid was 71.8 %, 58.7 %, 56.1 %, 55.3 ± 8.5 %, and 91.9 % at pH 4 and 30 °C, respectively. R. planticola NBRC14939 (type strain) was also able to efficiently catabolize the lipids after repeated subculturing. The composition of the culture medium strongly influenced the degradation efficiency, with yeast extract supporting more complete dissimilation than BactoPeptone or beef extract. The acid tolerance of strain 232-2 is proposed to result from neutralization of the culture medium by urease-mediated decomposition of urea to NH(3). The rate of lipids degradation increased with the rates of neutralization and cell growth. Efficient lipids degradation using strain 232-2 has been achieved in the batch treatment of a restaurant wastewater.

  18. Simultaneous treatment (cell disruption and lipid extraction) of wet microalgae using hydrodynamic cavitation for enhancing the lipid yield.

    PubMed

    Lee, Ilgyu; Han, Jong-In

    2015-06-01

    Simultaneous treatment (combining with cell disruption and lipid extraction) using hydrodynamic cavitation (HC) was applied to Nannochloropsis salina to demonstrate a simple and integrated way to produce oil from wet microalgae. A high lipid yield from the HC (25.9-99.0%) was observed compared with autoclave (16.2-66.5%) and ultrasonication (5.4-26.9%) in terms of the specific energy input (500-10,000 kJ/kg). The optimal conditions for the simultaneous treatment were established using a statistical approach. The efficiency of the simultaneous method was also demonstrated by comparing each separate treatment. The maximum lipid yield (predicted: 45.9% and experimental: 45.5%) was obtained using 0.89% sulfuric acid with a cavitation number of 1.17 for a reaction time of 25.05 min via response surface methodology. Considering its comparable extractability, energy-efficiency, and potential for scale-up, HC may be a promising method to achieve industrial-scale microalgae operation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Ligand Extraction Properties of the GM2 Activator Protein and Its Interactions with Lipid Vesicles

    PubMed Central

    Ran, Yong; Fanucci, Gail E.

    2009-01-01

    Abstract The GM2 activator protein (GM2AP) is an accessory protein required for the enzymatic conversion of GM2 to GM3 by hydrolases in the lysosomal compartments of cells. Here, GM2AP interactions with lipid vesicles are investigated by sucrose-loaded vesicle sedimentation and gel filtration assays, and the effects of pH and lipid composition on membrane binding and lipid extraction are characterized. The sedimentation experiments allow for facile quantification of the percentage of protein in solution and on the bilayer surface, with detailed analysis of the protein:lipid complex that remains in solution. Optimum binding and ligand extraction is found for pH 4.8 where <15% of the protein remains surface associated regardless of the lipid composition. In addition to extracting GM2, we find that GM2AP readily extracts dansyl-headgroup-labeled lipids as well as other phospholipids from vesicles. The ability of GM2AP to extract dansyl-DHPE from vesicles is altered by pH and the specific ligand GM2. Although the unique endosomal lipid, bis(monoacylglycero)phosphate, is not required for ligand extraction, it does enhance the extraction efficiency of GM2 when cholesterol is present in the vesicles. PMID:19580763

  20. Ligand extraction properties of the GM2 activator protein and its interactions with lipid vesicles.

    PubMed

    Ran, Yong; Fanucci, Gail E

    2009-07-08

    The GM2 activator protein (GM2AP) is an accessory protein required for the enzymatic conversion of GM2 to GM3 by hydrolases in the lysosomal compartments of cells. Here, GM2AP interactions with lipid vesicles are investigated by sucrose-loaded vesicle sedimentation and gel filtration assays, and the effects of pH and lipid composition on membrane binding and lipid extraction are characterized. The sedimentation experiments allow for facile quantification of the percentage of protein in solution and on the bilayer surface, with detailed analysis of the protein:lipid complex that remains in solution. Optimum binding and ligand extraction is found for pH 4.8 where <15% of the protein remains surface associated regardless of the lipid composition. In addition to extracting GM2, we find that GM2AP readily extracts dansyl-headgroup-labeled lipids as well as other phospholipids from vesicles. The ability of GM2AP to extract dansyl-DHPE from vesicles is altered by pH and the specific ligand GM2. Although the unique endosomal lipid, bis(monoacylglycero)phosphate, is not required for ligand extraction, it does enhance the extraction efficiency of GM2 when cholesterol is present in the vesicles.

  1. Lipase-mediated lipid removal from propolis extract and its antiradical and antimicrobial activity.

    PubMed

    Park, Hyein; Bae, Song Hwan; Park, Yooheon; Choi, Hyeon-Son; Suh, Hyung Joo

    2015-06-01

    Propolis contains many antioxidants such as polyphenols and flavonoids. However, propolis-derived lipid components interrupt an efficient isolation of antioxidants from propolis extract. We examined the effectiveness of various lipase treatments for the removal of lipids from propolis extract and evaluated the biological features of the extract. Lipase OF and Novozyme 435 treatments did not reduce fatty acid level in propolis extract. However, Lipozyme TL IM-treated propolis extract showed a significant decrease in fatty acid level, suggesting the removal of lipids. Lipozyme RM IM also significantly decreased the fatty acid level of the extract, but was accompanied by the reduction of polyphenols and flavonoids, which are antioxidants. In Lipozyme TL IM treatment, an increase in active flavonoids, such as Artepillin C and kaempferide, was observed, with a slight increase of ferric reducing/antioxidant power (FRAP) radical-scavenging activity. In addition, antimicrobial activity towards skin health-related bacteria such as Staphylococcus epidermidis and Propionibacterium acnes was enhanced by Lipozyme TL IM treatment. Lipozyme TL IM treatment effectively removes lipids from propolis extract and enhances antibacterial activity. Therefore, we suggest that Lipozyme TL IM is a useful lipase for lipid removal of propolis extract. © 2014 Society of Chemical Industry.

  2. Effects of different biomass drying and lipid extraction methods on algal lipid yield, fatty acid profile, and biodiesel quality.

    PubMed

    Hussain, Javid; Liu, Yan; Lopes, Wilson A; Druzian, Janice I; Souza, Carolina O; Carvalho, Gilson C; Nascimento, Iracema A; Liao, Wei

    2015-03-01

    Three lipid extraction methods of hexane Soxhlet (Sox-Hex), Halim (HIP), and Bligh and Dyer (BD) were applied on freeze-dried (FD) and oven-dried (OD) Chlorella vulgaris biomass to evaluate their effects on lipid yield, fatty acid profile, and algal biodiesel quality. Among these three methods, HIP was the preferred one for C. vulgaris lipid recovery considering both extraction efficiency and solvent toxicity. It had the highest lipid yields of 20.0 and 22.0% on FD and OD biomass, respectively, with corresponding neutral lipid yields of 14.8 and 12.7%. The lipid profiling analysis showed that palmitic, oleic, linoleic, and α-linolenic acids were the major fatty acids in the algal lipids, and there were no significant differences on the amount of these acids between different drying and extraction methods. Correlative models applied to the fatty acid profiles concluded that high contents of palmitic and oleic acids in algal lipids contributed to balancing the ratio of saturated and unsaturated fatty acids and led to a high-quality algal biodiesel.

  3. Downstream Processing of Synechocystis for Biofuel Production

    NASA Astrophysics Data System (ADS)

    Sheng, Jie

    Lipids and free fatty acids (FFA) from cyanobacterium Synechocystis can be used for biofuel (e.g. biodiesel or renewable diesel) production. In order to utilize and scale up this technique, downstream processes including culturing and harvest, cell disruption, and extraction were studied. Several solvents/solvent systems were screened for lipid extraction from Synechocystis. Chloroform + methanol-based Folch and Bligh & Dyer methods were proved to be "gold standard" for small-scale analysis due to their highest lipid recoveries that were confirmed by their penetration of the cell membranes, higher polarity, and stronger interaction with hydrogen bonds. Less toxic solvents, such as methanol and MTBE, or direct transesterification of biomass (without preextraction step) gave only slightly lower lipid-extraction yields and can be considered for large-scale application. Sustained exposure to high and low temperature extremes severely lowered the biomass and lipid productivity. Temperature stress also triggered changes of lipid quality such as the degree of unsaturation; thus, it affected the productivities and quality of Synechocystis-derived biofuel. Pulsed electric field (PEF) was evaluated for cell disruption prior to lipid extraction. A treatment intensity > 35 kWh/m3 caused significant damage to the plasma membrane, cell wall, and thylakoid membrane, and it even led to complete disruption of some cells into fragments. Treatment by PEF enhanced the potential for the low-toxicity solvent isopropanol to access lipid molecules during subsequent solvent extraction, leading to lower usage of isopropanol for the same extraction efficiency. Other cell-disruption methods also were tested. Distinct disruption effects to the cell envelope, plasma membrane, and thylakoid membranes were observed that were related to extraction efficiency. Microwave and ultrasound had significant enhancement of lipid extraction. Autoclaving, ultrasound, and French press caused significant release of lipid into the medium, which may increase solvent usage and make medium recycling difficult. Production of excreted FFA by mutant Synechocystis has the potential of reducing the complexity of downstream processing. Major problems, such as FFA precipitation and biodegradation by scavengers, account for FFA loss in operation. Even a low concentration of FFA scavengers could consume FFA at a high rate that outpaced FFA production rate. Potential strategies to overcome FFA loss include high pH, adsorptive resin, and sterilization techniques.

  4. An improved high-throughput lipid extraction method for the analysis of human brain lipids.

    PubMed

    Abbott, Sarah K; Jenner, Andrew M; Mitchell, Todd W; Brown, Simon H J; Halliday, Glenda M; Garner, Brett

    2013-03-01

    We have developed a protocol suitable for high-throughput lipidomic analysis of human brain samples. The traditional Folch extraction (using chloroform and glass-glass homogenization) was compared to a high-throughput method combining methyl-tert-butyl ether (MTBE) extraction with mechanical homogenization utilizing ceramic beads. This high-throughput method significantly reduced sample handling time and increased efficiency compared to glass-glass homogenizing. Furthermore, replacing chloroform with MTBE is safer (less carcinogenic/toxic), with lipids dissolving in the upper phase, allowing for easier pipetting and the potential for automation (i.e., robotics). Both methods were applied to the analysis of human occipital cortex. Lipid species (including ceramides, sphingomyelins, choline glycerophospholipids, ethanolamine glycerophospholipids and phosphatidylserines) were analyzed via electrospray ionization mass spectrometry and sterol species were analyzed using gas chromatography mass spectrometry. No differences in lipid species composition were evident when the lipid extraction protocols were compared, indicating that MTBE extraction with mechanical bead homogenization provides an improved method for the lipidomic profiling of human brain tissue.

  5. Experimental study and thermodynamic modeling for determining the effect of non-polar solvent (hexane)/polar solvent (methanol) ratio and moisture content on the lipid extraction efficiency from Chlorella vulgaris.

    PubMed

    Malekzadeh, Mohammad; Abedini Najafabadi, Hamed; Hakim, Maziar; Feilizadeh, Mehrzad; Vossoughi, Manouchehr; Rashtchian, Davood

    2016-02-01

    In this research, organic solvent composed of hexane and methanol was used for lipid extraction from dry and wet biomass of Chlorella vulgaris. The results indicated that lipid and fatty acid extraction yield was decreased by increasing the moisture content of biomass. However, the maximum extraction efficiency was attained by applying equivolume mixture of hexane and methanol for both dry and wet biomass. Thermodynamic modeling was employed to estimate the effect of hexane/methanol ratio and moisture content on fatty acid extraction yield. Hansen solubility parameter was used in adjusting the interaction parameters of the model, which led to decrease the number of tuning parameters from 6 to 2. The results indicated that the model can accurately estimate the fatty acid recovery with average absolute deviation percentage (AAD%) of 13.90% and 15.00% for the two cases of using 6 and 2 adjustable parameters, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Detergent assisted lipid extraction from wet yeast biomass for biodiesel: A response surface methodology approach.

    PubMed

    Yellapu, Sravan Kumar; Bezawada, Jyothi; Kaur, Rajwinder; Kuttiraja, Mathiazhakan; Tyagi, Rajeshwar D

    2016-10-01

    The lipid extraction from the microbial biomass is a tedious and high cost dependent process. In the present study, detergent assisted lipids extraction from the culture of the yeast Yarrowia lipolytica SKY-7 was carried out. Response surface methodology (RSM) was used to investigate the effect of three principle parameters (N-LS concentration, time and temperature) on microbial lipid extraction efficiency % (w/w). The results obtained by statistical analysis showed that the quadratic model fits in all cases. Maximum lipid recovery of 95.3±0.3% w/w was obtained at the optimum level of process variables [N-LS concentration 24.42mg (equal to 48mgN-LS/g dry biomass), treatment time 8.8min and reaction temperature 30.2°C]. Whereas the conventional chloroform and methanol extraction to achieve total lipid recovery required 12h at 60°C. The study confirmed that oleaginous yeast biomass treatment with N-lauroyl sarcosine would be a promising approach for industrial scale microbial lipid recovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Total lipid extraction of homogenized and intact lean fish muscles using pressurized fluid extraction and batch extraction techniques.

    PubMed

    Isaac, Giorgis; Waldebäck, Monica; Eriksson, Ulla; Odham, Göran; Markides, Karin E

    2005-07-13

    The reliability and efficiency of pressurized fluid extraction (PFE) technique for the extraction of total lipid content from cod and the effect of sample treatment on the extraction efficiency have been evaluated. The results were compared with two liquid-liquid extraction methods, traditional and modified methods according to Jensen. Optimum conditions were found to be with 2-propanol/n-hexane (65:35, v/v) as a first and n-hexane/diethyl ether (90:10, v/v) as a second solvent, 115 degrees C, and 10 min of static time. PFE extracts were cleaned up using the same procedure as in the methods according to Jensen. When total lipid yields obtained from homogenized cod muscle using PFE were compared yields obtained with original and modified Jensen methods, PFE gave significantly higher yields, approximately 10% higher (t test, P < 0.05). Infrared and NMR spectroscopy suggested that the additional material that inflates the gravimetric results is rather homogeneous and is primarily consists of phospholipid with headgroups of inositidic and/or glycosidic nature. The comparative study demonstrated that PFE is an alternative suitable technique to extract total lipid content from homogenized cod (lean fish) and herring (fat fish) muscle showing a precision comparable to that obtained with the traditional and modified Jensen methods. Despite the necessary cleanup step, PFE showed important advantages in the solvent consumption was cut by approximately 50% and automated extraction was possible.

  8. On plate graphite supported sample processing for simultaneous lipid and protein identification by matrix assisted laser desorption ionization mass spectrometry.

    PubMed

    Calvano, Cosima Damiana; van der Werf, Inez Dorothé; Sabbatini, Luigia; Palmisano, Francesco

    2015-05-01

    The simultaneous identification of lipids and proteins by matrix assisted laser desorption ionization-mass spectrometry (MALDI-MS) after direct on-plate processing of micro-samples supported on colloidal graphite is demonstrated. Taking advantages of large surface area and thermal conductivity, graphite provided an ideal substrate for on-plate proteolysis and lipid extraction. Indeed proteins could be efficiently digested on-plate within 15 min, providing sequence coverages comparable to those obtained by conventional in-solution overnight digestion. Interestingly, detection of hydrophilic phosphorylated peptides could be easily achieved without any further enrichment step. Furthermore, lipids could be simultaneously extracted/identified without any additional treatment/processing step as demonstrated for model complex samples such as milk and egg. The present approach is simple, efficient, of large applicability and offers great promise for protein and lipid identification in very small samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Cell disruption and lipid extraction for microalgal biorefineries: A review.

    PubMed

    Lee, Soo Youn; Cho, Jun Muk; Chang, Yong Keun; Oh, You-Kwan

    2017-11-01

    The microalgae-based biorefinement process has attracted much attention from academic and industrial researchers attracted to its biofuel, food and nutraceutical applications. In this paper, recent developments in cell-disruption and lipid-extraction methods, focusing on four biotechnologically important microalgal species (namely, Chlamydomonas, Haematococcus, Chlorella, and Nannochloropsis spp.), are reviewed. The structural diversity and rigidity of microalgal cell walls complicate the development of efficient downstream processing methods for cell-disruption and subsequent recovery of intracellular lipid and pigment components. Various mechanical, chemical and biological cell-disruption methods are discussed in detail and compared based on microalgal species and status (wet/dried), scale, energy consumption, efficiency, solvent extraction, and synergistic combinations. The challenges and prospects of the downstream processes for the future development of eco-friendly and economical microalgal biorefineries also are outlined herein. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A novel microalgal lipid extraction method using biodiesel (fatty acid methyl esters) as an extractant.

    PubMed

    Huang, Wen-Can; Park, Chan Woo; Kim, Jong-Duk

    2017-02-01

    Although microalgae are considered promising renewable sources of biodiesel, the high cost of the downstream process is a significant obstacle in large-scale biodiesel production. In this study, a novel approach for microalgal biodiesel production was developed by using the biodiesel as an extractant. First, wet microalgae with 70% water content were incubated with a mixture of biodiesel/methanol and penetration of the mixture through the cell membrane and swelling of the lipids contained in microalgae was confirmed. Significant increases of lipid droplets were observed by confocal microscopy. Second, the swelled lipid droplets in microalgae were squeezed out using mechanical stress across the cell membrane and washed with methanol. The lipid extraction efficiency reached 68%. This process does not require drying of microalgae or solvent recovery, which the most energy-intensive step in solvent-based biodiesel production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Recent developments of downstream processing for microbial lipids and conversion to biodiesel.

    PubMed

    Yellapu, Sravan Kumar; Bharti; Kaur, Rajwinder; Kumar, Lalit R; Tiwari, Bhagyashree; Zhang, Xiaolei; Tyagi, Rajeshwar D

    2018-05-01

    With increasing global population and depleting resources, there is an apparent demand for radical unprecedented innovation to satisfy the basal needs of lives. Hence, non-conventional renewable energy resources like biodiesel have been worked out in past few decades. Biofuel (e.g. Biodiesel) serves to be the most sustainable answer to solve "food vs. fuel crisis". In biorefinery process, lipid extraction from oleaginous microbial lipids is an integral part as it facilitates the release of fatty acids. Direct lipid extraction from wet cell-biomass is favorable in comparison to dry-cell biomass because it eliminates the application of expensive dehydration. However, this process is not commercialized yet, instead, it requires intensive research and development in order to establish robust approaches for lipid extraction that can be practically applied on an industrial scale. This review aims for the critical presentation on cell disruption, lipid recovery and purification to support extraction from wet cell-biomass for an efficient transesterification. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Total milk fat extraction and quantification of polar and neutral lipids of cow, goat, and ewe milk by using a pressurized liquid system and chromatographic techniques.

    PubMed

    Castro-Gómez, M P; Rodriguez-Alcalá, L M; Calvo, M V; Romero, J; Mendiola, J A; Ibañez, E; Fontecha, J

    2014-11-01

    Although milk polar lipids such as phospholipids and sphingolipids located in the milk fat globule membrane constitute 0.1 to 1% of the total milk fat, those lipid fractions are gaining increasing interest because of their potential beneficial effects on human health and technological properties. In this context, the accurate quantification of the milk polar lipids is crucial for comparison of different milk species, products, or dairy treatments. Although the official International Organization for Standardization-International Dairy Federation method for milk lipid extraction gives satisfactory results for neutral lipids, it has important disadvantages in terms of polar lipid losses. Other methods using mixtures of solvents such as chloroform:methanol are highly efficient for extracting polar lipids but are also associated with low sample throughput, long time, and large solvent consumption. As an alternative, we have optimized the milk fat extraction yield by using a pressurized liquid extraction (PLE) method at different temperatures and times in comparison with those traditional lipid extraction procedures using 2:1 chloroform:methanol as a mixture of solvents. Comparison of classical extraction methods with the developed PLE procedure were carried out using raw whole milk from different species (cows, ewes, and goats) and considering fat yield, fatty acid methyl ester composition, triacylglyceride species, cholesterol content, and lipid class compositions, with special attention to polar lipids such as phospholipids and sphingolipids. The developed PLE procedure was validated for milk fat extraction and the results show that this method performs a complete or close to complete extraction of all lipid classes and in less time than the official and Folch methods. In conclusion, the PLE method optimized in this study could be an alternative to carry out milk fat extraction as a routine method. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Influence of sample preparation on lipidomics analysis of polar lipids in adipose tissue.

    PubMed

    López-Bascón, M A; Calderón-Santiago, M; Sánchez-Ceinos, J; Fernández-Vega, A; Guzmán-Ruiz, R; López-Miranda, J; Malagon, M M; Priego-Capote, F

    2018-01-15

    The main limitations of lipidomics analysis are the chemical complexity of the lipids, the range of concentrations at which they exist, and the variety of samples usually analyzed. These limitations particularly affect the characterization of polar lipids owing to the interference of neutral lipids, essentially acylglycerides, which are at high concentration and suppress ionization of low concentrated lipids in mass spectrometry detection. The influence of sample preparation on lipidomics analysis of polar lipids in adipose tissue by LC-MS/MS was the aim of this research. Two common extractants used for lipids isolation, methanol:chloroform (MeOH:CHCl 3 ) and methyl tert-butyl ether (MTBE), were qualitatively and quantitatively compared for the extraction of the main families of lipids. The obtained results showed that each family of lipids is influenced differently by the extractant used. However, as a general trend, the use of MTBE as extractant led to higher extraction efficiency for unsaturated fatty acids, glycerophospholipids and ceramides, while MeOH:CHCl 3 favored the isolation of saturated fatty acids and plasmalogens. The implementation of a solid-phase extraction (SPE) step for selective isolation of glycerophospholipids prior to LC-MS/MS analysis was assayed to evaluate its influence on lipids detection coverage as compared to direct analysis. This step was critical to enhance the detection coverage of glycerophospholipids by removal of ionization suppression effects caused by acylglycerides. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Effects of acidification, lipid removal and mathematical normalization on carbon and nitrogen stable isotope compositions in beaked whale (Ziphiidae) bone.

    PubMed

    Tatsch, Ana Carolina C; Secchi, Eduardo R; Botta, Silvina

    2016-02-15

    The analysis of stable isotopes in tissues such as teeth and bones has been used to study long-term trophic ecology and habitat use in marine mammals. However, carbon isotope ratios (δ(13) C values) can be altered by the presence of (12) C-rich lipids and carbonates. Lipid extraction and acidification are common treatments used to remove these compounds. The impact of lipids and carbonates on carbon and nitrogen isotope ratios (δ(15) N values), however, varies among tissues and/or species, requiring taxon-specific protocols to be developed. The effects of lipid extraction and acidification and their interaction on carbon and nitrogen isotope values were studied for beaked whale (Ziphiidae) bone samples. δ(13) C and δ(15) N values were determined in quadruplicate samples: control, lipid-extracted, acidified and lipid-extracted followed by acidification. Samples were analyzed by means of elemental analysis isotope ratio mass spectrometry. Furthermore, the efficiency of five mathematical models developed for estimating lipid-normalized δ(13) C values from untreated δ(13) C values was tested. Significant increases in δ(13) C values were observed after lipid extraction. No significant changes in δ(13) C values were found in acidified samples. An interaction between both treatments was demonstrated for δ(13) C but not for δ(15) N values. No change was observed in δ(15) N values for lipid-extracted and/or acidified samples. Although all tested models presented good predictive power to estimate lipid-free δ(13) C values, linear models performed best. Given the observed changes in δ(13) C values after lipid extraction, we recommend a priori lipid extraction or a posteriori lipid normalization, through simple linear models, for beaked whale bones. Furthermore, acidification seems to be an unnecessary step before stable isotope analysis, at least for bone samples of ziphiids. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Comparison of ambient solvent extraction methods for the analysis of fatty acids in non-starch lipids of flour and starch

    PubMed Central

    Bahrami, Niloufar; Yonekura, Lina; Linforth, Robert; Carvalho da Silva, Margarida; Hill, Sandra; Penson, Simon; Chope, Gemma; Fisk, Ian Denis

    2014-01-01

    BACKGROUND Lipids are minor components of flours, but are major determinants of baking properties and end-product quality. To the best of our knowledge, there is no single solvent system currently known that efficiently extracts all non-starch lipids from all flours without the risk of chemical, mechanical or thermal damage. This paper compares nine ambient solvent systems (monophasic and biphasic) with varying polarities: Bligh and Dyer (BD); modified Bligh and Dyer using HCl (BDHCL); modified BD using NaCl (BDNaCl); methanol–chloroform–hexane (3:2:1, v/v); Hara and Radin (hexane–isopropanol, 3:2, v/v); water-saturated n-butanol; chloroform; methanol and hexane for their ability to extract total non-starch lipids (separated by lipid classes) from wheat flour (Triticum aestivum L.). Seven ambient extraction protocols were further compared for their ability to extract total non-starch lipids from three alternative samples: barley flour (Hordeum vulgare L.), maize starch (Zea mays L.) and tapioca starch (Manihot esculenta Crantz). RESULTS For wheat flour the original BD method and those containing HCl or NaCl tended to extract the maximum lipid and a significant correlation between lipid extraction yield (especially the glycolipids and phospholipids) and the polarity of the solvent was observed. For the wider range of samples BD and BD HCl repeatedly offered the maximum extraction yield and using pooled standardized (by sample) data from all flours, total non-starch lipid extraction yield was positively correlated with solvent polarity (r = 0.5682, P < 0.05) and water ratio in the solvent mixture (r = 0.5299, P < 0.05). CONCLUSION In general, BD-based methods showed better extraction yields compared to methods without the addition of water and, most interestingly, there was much greater method dependence of lipid yields in the starches when compared to the flour samples, which is due to the differences in lipid profiles between the two sample types (flours and starches). PMID:24132804

  16. Simultaneous cell disruption and lipid extraction of wet aurantiochytrium sp. KRS101 using a high shear mixer.

    PubMed

    Kwak, Minsoo; Kang, Seul Gi; Hong, Won-Kyung; Han, Jong-In; Chang, Yong Keun

    2018-05-01

    Microalgae are regarded as a promising source of biofuels, and the concept of a microalgae-based biorefinery has attracted increasing attention in recent years. From an economic perspective, however, the process remains far from competitive with fossil fuels. This is particularly true of lipid extraction, due in part to the energy-intensive drying step. As a result, wet extraction methods have been studied as an economic alternative. In the present study, a novel extraction approach which utilizes high shear stress mixing was adopted and demonstrated for simultaneous lipid extraction and cell disruption to enable the retrieval of lipids directly from concentrated wet biomass. When a high shear mixer (HSM) was used to extract lipid from a dense biomass (> 350 g/L) of the oleaginous algae Aurantiochytrium sp., it exhibited a yield of esterifiable lipids which exceeded 80% in 10 min at 15,000 rpm with various solvent types. The HSM was found to improve the lipid yields substantially with solvents less miscible with either lipids or water, such that the range of Hansen solubility parameters for the usable solvents became 3.3 times wider (14.9-26.5 MPa 1/2 ). The HSM, which appeared effectively to loosen the water barrier that prevents solvent molecules from penetrating through the cell envelope, was found to be more efficient with hexane, hexane/isopropanol, and ethanol, all of which showed nearly identical lipid yields compared to the dry extraction process. The HSM can, indeed, offer a powerful mechanical means of lipid extraction with non-polar and less toxic solvents from wet biomass.

  17. Progress on lipid extraction from wet algal biomass for biodiesel production.

    PubMed

    Ghasemi Naghdi, Forough; González González, Lina M; Chan, William; Schenk, Peer M

    2016-11-01

    Lipid recovery and purification from microalgal cells continues to be a significant bottleneck in biodiesel production due to high costs involved and a high energy demand. Therefore, there is a considerable necessity to develop an extraction method which meets the essential requirements of being safe, cost-effective, robust, efficient, selective, environmentally friendly, feasible for large-scale production and free of product contamination. The use of wet concentrated algal biomass as a feedstock for oil extraction is especially desirable as it would avoid the requirement for further concentration and/or drying. This would save considerable costs and circumvent at least two lengthy processes during algae-based oil production. This article provides an overview on recent progress that has been made on the extraction of lipids from wet algal biomass. The biggest contributing factors appear to be the composition of algal cell walls, pre-treatments of biomass and the use of solvents (e.g. a solvent mixture or solvent-free lipid extraction). We compare recently developed wet extraction processes for oleaginous microalgae and make recommendations towards future research to improve lipid extraction from wet algal biomass. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  18. Optimizing pressurized liquid extraction of microbial lipids using the response surface method.

    PubMed

    Cescut, J; Severac, E; Molina-Jouve, C; Uribelarrea, J-L

    2011-01-21

    Response surface methodology (RSM) was used for the determination of optimum extraction parameters to reach maximum lipid extraction yield with yeast. Total lipids were extracted from oleaginous yeast (Rhodotorula glutinis) using pressurized liquid extraction (PLE). The effects of extraction parameters on lipid extraction yield were studied by employing a second-order central composite design. The optimal condition was obtained as three cycles of 15 min at 100°C with a ratio of 144 g of hydromatrix per 100 g of dry cell weight. Different analysis methods were used to compare the optimized PLE method with two conventional methods (Soxhlet and modification of Bligh and Dyer methods) under efficiency, selectivity and reproducibility criteria thanks to gravimetric analysis, GC with flame ionization detector, High Performance Liquid Chromatography linked to Evaporative Light Scattering Detector (HPLC-ELSD) and thin-layer chromatographic analysis. For each sample, the lipid extraction yield with optimized PLE was higher than those obtained with referenced methods (Soxhlet and Bligh and Dyer methods with, respectively, a recovery of 78% and 85% compared to PLE method). Moreover, the use of PLE led to major advantages such as an analysis time reduction by a factor of 10 and solvent quantity reduction by 70%, compared with traditional extraction methods. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. The ability of in vitro antioxidant assays to predict the efficiency of a cod protein hydrolysate and brown seaweed extract to prevent oxidation in marine food model systems.

    PubMed

    Jónsdóttir, Rósa; Geirsdóttir, Margrét; Hamaguchi, Patricia Y; Jamnik, Polona; Kristinsson, Hordur G; Undeland, Ingrid

    2016-04-01

    The ability of different in vitro antioxidant assays to predict the efficiency of cod protein hydrolysate (CPH) and Fucus vesiculosus ethyl acetate extract (EA) towards lipid oxidation in haemoglobin-fortified washed cod mince and iron-containing cod liver oil emulsion was evaluated. The progression of oxidation was followed by sensory analysis, lipid hydroperoxides and thiobarbituric acid-reactive substances (TBARS) in both systems, as well as loss of redness and protein carbonyls in the cod system. The in vitro tests revealed high reducing capacity, high DPPH radical scavenging properties and a high oxygen radical absorbance capacity (ORAC) value of the EA which also inhibited lipid and protein oxidation in the cod model system. The CPH had a high metal chelating capacity and was efficient against oxidation in the cod liver oil emulsion. The results indicate that the F. vesiculosus extract has a potential as an excellent natural antioxidant against lipid oxidation in fish muscle foods while protein hydrolysates are more promising for fish oil emulsions. The usefulness of in vitro assays to predict the antioxidative properties of new natural ingredients in foods thus depends on the knowledge about the food systems, particularly the main pro-oxidants present. © 2015 Society of Chemical Industry.

  20. Lipid Production of Heterotrophic Chlorella sp. from Hydrolysate Mixtures of Lipid-Extracted Microalgal Biomass Residues and Molasses.

    PubMed

    Zheng, Hongli; Ma, Xiaochen; Gao, Zhen; Wan, Yiqin; Min, Min; Zhou, Wenguang; Li, Yun; Liu, Yuhuan; Huang, He; Chen, Paul; Ruan, Roger

    2015-10-01

    This study investigated the feasibility of lipid production of Chlorella sp. from waste materials. Lipid-extracted microalgal biomass residues (LMBRs) and molasses were hydrolyzed, and their hydrolysates were analyzed. Five different hydrolysate mixture ratios (w/w) of LMBRs/molasses (1/0, 1/1, 1/4, 1/9, and 0/1) were used to cultivate Chlorella sp. The results showed that carbohydrate and protein were the two main compounds in the LMBRs, and carbohydrate was the main compound in the molasses. The highest biomass concentration of 5.58 g/L, Y biomass/sugars of 0.59 g/g, lipid productivity of 335 mg/L/day, and Y lipids/sugars of 0.25 g/g were obtained at the hydrolysate mixture ratio of LMBRs/molasses of 1/4. High C/N ratio promoted the conversion of sugars into lipids. The lipids extracted from Chlorella sp. shared similar lipid profile of soybean oil and is therefore a potential viable biodiesel feedstock. These results showed that Chlorella sp. can utilize mixed sugars and amino acids from LMBRs and molasses to accumulate lipids efficiently, thus reducing the cost of microalgal biodiesel production and improving its economic viability.

  1. A robust and efficient method for the extraction of plant extracellular surface lipids as applied to the analysis of silks and seedling leaves of maize

    USDA-ARS?s Scientific Manuscript database

    Aerial plant organs possess a diverse array of extracellular surface lipids, including both non-polar and amphipathic constituents that collectively provide a primary line of defense against environmental stressors. Extracellular surface lipids on the stigmatic silks of maize are composed primarily ...

  2. Seaweed allelopathy to corals: are active compounds on, or in, seaweeds?

    NASA Astrophysics Data System (ADS)

    Longo, G. O.; Hay, M. E.

    2017-03-01

    Numerous seaweeds produce secondary metabolites that are allelopathic to corals. To date, most of the compounds identified in this interaction are lipid-soluble instead of water-soluble. Thus, understanding whether these compounds are stored internally where they would not contact corals, or occur on external surfaces where they could be transferred to corals, is critical to understanding seaweed-coral interactions and to informing realistic experiments on chemically mediated interactions. We conducted field experiments assessing the effects of lipid-soluble extracts from macroalgal surfaces alone versus total lipid-soluble extracts from both internal and external tissues on the coral Pocillopora verrucosa. Extracts of the red algae Amansia rhodantha and Asparagopsis taxiformis, the green alga Chlorodesmis fastigiata, and the brown alga Dictyota bartayresiana suppressed coral photochemical efficiency; in these bioactive species, the total lipid-soluble extracts were not more potent than surface-only extracts despite the concentration of total extracts being many times greater than surface-only extracts. This suggests that previous assays with total extracts may be ecologically meaningful, but also that future assays should be conducted with the simpler, less concentrated, and more ecologically relevant surface extracts. Allelopathic effects of As. taxiformis and C. fastigiata were significantly greater than the effect of D. bartayresiana, with effects of Am. rhodantha intermediate between these groups. Neither surface-only nor total lipid-soluble extracts of the seaweed Turbinaria ornata were allelopathic, and its lack of potency differed significantly from all other species. Our results suggest that lipid-soluble, allelopathic compounds are usually deployed on seaweed surfaces where they can be effective in surface-mediated interactions against other species.

  3. Extraction and identification of cyclobutanones from irradiated cheese employing a rapid direct solvent extraction method.

    PubMed

    Tewfik, Ihab

    2008-01-01

    2-Alkylcyclobutanones (cyclobutanones) are accepted as chemical markers for irradiated foods containing lipid. However, current extraction procedures (Soxhlet-florisil chromatography) for the isolation of these markers involve a long and tedious clean-up regime prior to gas chromatography-mass spectrophotometry identification. This paper outlines an alternative isolation and clean-up method for the extraction of cyclobutanones in irradiated Camembert cheese. The newly developed direct solvent extraction method enables the efficient screening of large numbers of food samples and is not as resource intensive as the BS EN 1785:1997 method. Direct solvent extraction appears to be a simple, robust method and has the added advantage of a considerably shorter extraction time for the analysis of foods containing lipid.

  4. "Bligh and Dyer" and Folch Methods for Solid-Liquid-Liquid Extraction of Lipids from Microorganisms. Comprehension of Solvatation Mechanisms and towards Substitution with Alternative Solvents.

    PubMed

    Breil, Cassandra; Abert Vian, Maryline; Zemb, Thomas; Kunz, Werner; Chemat, Farid

    2017-03-27

    Bligh and Dyer (B & D) or Folch procedures for the extraction and separation of lipids from microorganisms and biological tissues using chloroform/methanol/water have been used tens of thousands of times and are "gold standards" for the analysis of extracted lipids. Based on the Conductor-like Screening MOdel for realistic Solvatation (COSMO-RS), we select ethanol and ethyl acetate as being potentially suitable for the substitution of methanol and chloroform. We confirm this by performing solid-liquid extraction of yeast ( Yarrowia lipolytica IFP29 ) and subsequent liquid-liquid partition-the two steps of routine extraction. For this purpose, we consider similar points in the ternary phase diagrams of water/methanol/chloroform and water/ethanol/ethyl acetate, both in the monophasic mixtures and in the liquid-liquid miscibility gap. Based on high performance thin-layer chromatography (HPTLC) to obtain the distribution of lipids classes, and gas chromatography coupled with a flame ionisation detector (GC/FID) to obtain fatty acid profiles, this greener solvents pair is found to be almost as effective as the classic methanol-chloroform couple in terms of efficiency and selectivity of lipids and non-lipid material. Moreover, using these bio-sourced solvents as an alternative system is shown to be as effective as the classical system in terms of the yield of lipids extracted from microorganism tissues, independently of their apparent hydrophilicity.

  5. “Bligh and Dyer” and Folch Methods for Solid–Liquid–Liquid Extraction of Lipids from Microorganisms. Comprehension of Solvatation Mechanisms and towards Substitution with Alternative Solvents

    PubMed Central

    Breil, Cassandra; Abert Vian, Maryline; Zemb, Thomas; Kunz, Werner; Chemat, Farid

    2017-01-01

    Bligh and Dyer (B & D) or Folch procedures for the extraction and separation of lipids from microorganisms and biological tissues using chloroform/methanol/water have been used tens of thousands of times and are “gold standards” for the analysis of extracted lipids. Based on the Conductor-like Screening MOdel for realistic Solvatation (COSMO-RS), we select ethanol and ethyl acetate as being potentially suitable for the substitution of methanol and chloroform. We confirm this by performing solid–liquid extraction of yeast (Yarrowia lipolytica IFP29) and subsequent liquid–liquid partition—the two steps of routine extraction. For this purpose, we consider similar points in the ternary phase diagrams of water/methanol/chloroform and water/ethanol/ethyl acetate, both in the monophasic mixtures and in the liquid–liquid miscibility gap. Based on high performance thin-layer chromatography (HPTLC) to obtain the distribution of lipids classes, and gas chromatography coupled with a flame ionisation detector (GC/FID) to obtain fatty acid profiles, this greener solvents pair is found to be almost as effective as the classic methanol–chloroform couple in terms of efficiency and selectivity of lipids and non-lipid material. Moreover, using these bio-sourced solvents as an alternative system is shown to be as effective as the classical system in terms of the yield of lipids extracted from microorganism tissues, independently of their apparent hydrophilicity. PMID:28346372

  6. Macronutrients and micronutrients of soybean oil bodies extracted at different pH.

    PubMed

    Chen, Yeming; Cao, Yanyun; Zhao, Luping; Kong, Xiangzhen; Hua, Yufei

    2014-07-01

    In this study, the macronutrients and micronutrients of pH 6.8, 8.0, 9.5, and 11.0 extracted soybean oil bodies (OBs) were examined, revealing that soybean OBs might be used as a natural carrier for bioactive components (unsaturated fatty acids, phospholipid, tocopherol, and phytosterol). pH 6.8 extracted OBs (dry basis) contained 85.88% neutral lipid, 8.18% protein, and 5.85% polar lipid (mainly phospholipid) by gravimetric analysis. The percentage of neutral lipid was increased, while those of protein and polar lipid were decreased with increasing pH. Tocopherol (about 75 mg/100 g neutral lipid of OBs) was not affected, while phytosterol was decreased (136 to 110 mg/100 g neutral lipid of OBs) with increasing pH. The detectable total monosaccaride (galactosamine, glucosamine, and glucose) content of extracted OBs was low and also decreased (35.80 to 6.13 mg/100 g neutral lipid of OBs) with increasing pH. The protein of extracted OBs had higher percentage of essential amino acids than soybean protein isolate with tryptophan and methionine as limited amino acids. The fatty acid composition of extracted OBs was rich in linoleic acid (about 59%), oleic acid (about 20%), and α-linolenic acid (about 7%). Oil bodies (OBs) from soybean and other plant seeds are greatly examined owing to their potential utilizations in food ingredients. The determination of its macronutrients and micronutrients would be very meaningful for its efficient utilization in the future. © 2014 Institute of Food Technologists®

  7. A protocol for pressurized liquid extraction and processing methods to isolate modern and ancient bone cholesterol for compound-specific stable isotope analysis.

    PubMed

    Laffey, Ann O; Krigbaum, John; Zimmerman, Andrew R

    2017-02-15

    Bone lipid compound-specific isotope analysis (CSIA) and bone collagen and apatite stable isotope ratio analysis are important sources of ecological and paleodietary information. Pressurized liquid extraction (PLE) is quicker and utilizes less solvent than traditional methods of lipid extraction such as soxhlet and ultrasonication. This study facilitates dietary analysis by optimizing and testing a standardized methodology for PLE of bone cholesterol. Modern and archaeological bones were extracted by PLE using varied temperatures, solvent solutions, and sample weights. The efficiency of PLE was assessed via quantification of cholesterol yields. Stable isotopic ratio integrity was evaluated by comparing isotopic signatures (δ 13 C and δ 18 O values) of cholesterol derived from whole bone, bone collagen and bone apatite. Gas chromatography/mass spectrometry (GC/MS) and gas chromatography isotope ratio mass spectrometry (GC/IRMS) were conducted on purified collagen and lipid extracts to assess isotopic responses to PLE. Lipid yield was optimized at two PLE extraction cycles of 75 °C using dichloromethane/methanol (2:1 v/v) as a solvent with 0.25-0.75 g bone sample. Following lipid extraction, saponification combined with the derivatization of the neutral fraction using trimethylsilylation yielded nearly twice the cholesterol of non-saponified or non-derivatized samples. It was also found that lipids extracted from purified bone collagen and apatite could be used for cholesterol CSIA. There was no difference in the bulk δ 13 C values of collagen extracted from bone with or without lipid. However, there was a significant depletion in 18 O of bone apatite due to lipid presence or processing. These results should assist sample selection and provide an effective, alternative extraction method for bone cholesterol that may be used for isotopic and paleodietary analysis. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Biodiesel from wet microalgae: extraction with hexane after the microwave-assisted transesterification of lipids.

    PubMed

    Cheng, Jun; Huang, Rui; Li, Tao; Zhou, Junhu; Cen, Kefa

    2014-10-01

    A chloroform-free novel process for the efficient production of biodiesel from wet microalgae is proposed. Crude biodiesel is produced through extraction with hexane after microwave-assisted transesterification (EHMT) of lipids in wet microalgae. Effects of different parameters, including reaction temperature, reaction time, methanol dosage, and catalyst dosage, on fatty acids methyl esters (FAMEs) yield are investigated. The yield of FAME extracted into the hexane from the wet microalgae is increased 6-fold after the transesterification of lipids. The yield of FAME obtained through EHMT of lipids in wet microalgae is comparable to that obtained through direct transesterification of dried microalgae biomass with chloroform; however, FAME content in crude biodiesel obtained through EHMT is 86.74%, while that in crude biodiesel obtained through the chloroform-based process is 75.93%. EHMT ensures that polar pigments present in microalgae are not extracted into crude biodiesel, which leads to a 50% reduction in nitrogen content in crude biodiesel. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Production Strategies and Applications of Microbial Single Cell Oils

    PubMed Central

    Ochsenreither, Katrin; Glück, Claudia; Stressler, Timo; Fischer, Lutz; Syldatk, Christoph

    2016-01-01

    Polyunsaturated fatty acids (PUFAs) of the ω-3 and ω-6 class (e.g., α-linolenic acid, linoleic acid) are essential for maintaining biofunctions in mammalians like humans. Due to the fact that humans cannot synthesize these essential fatty acids, they must be taken up from different food sources. Classical sources for these fatty acids are porcine liver and fish oil. However, microbial lipids or single cell oils, produced by oleaginous microorganisms such as algae, fungi and bacteria, are a promising source as well. These single cell oils can be used for many valuable chemicals with applications not only for nutrition but also for fuels and are therefore an ideal basis for a bio-based economy. A crucial point for the establishment of microbial lipids utilization is the cost-effective production and purification of fuels or products of higher value. The fermentative production can be realized by submerged (SmF) or solid state fermentation (SSF). The yield and the composition of the obtained microbial lipids depend on the type of fermentation and the particular conditions (e.g., medium, pH-value, temperature, aeration, nitrogen source). From an economical point of view, waste or by-product streams can be used as cheap and renewable carbon and nitrogen sources. In general, downstream processing costs are one of the major obstacles to be solved for full economic efficiency of microbial lipids. For the extraction of lipids from microbial biomass cell disruption is most important, because efficiency of cell disruption directly influences subsequent downstream operations and overall extraction efficiencies. A multitude of cell disruption and lipid extraction methods are available, conventional as well as newly emerging methods, which will be described and discussed in terms of large scale applicability, their potential in a modern biorefinery and their influence on product quality. Furthermore, an overview is given about applications of microbial lipids or derived fatty acids with emphasis on food applications. PMID:27761130

  10. The antioxidative activity of plant extracts in cooked pork patties as evaluated by descriptive sensory profiling and chemical analysis.

    PubMed

    Nissen, Lise R; Byrne, Derek V; Bertelsen, Grete; Skibsted, Leif H

    2004-11-01

    Antioxidative efficiency of extracts of rosemary, green tea, coffee and grape skin in precooked pork patties was investigated during storage under retail conditions (10 days, 4 °C, atmospheric air), using descriptive sensory profiling following reheating and quantitative measurements of hexanal, thiobarbituric acid reactive substances (TBARS) and vitamin E as indicators of lipid oxidation. The initial oxidative status of pork patties (evaluated by ANOVA) showed a significant lower level of secondary oxidation products and higher levels of vitamin E in patties with extracts incorporated, indicating that the extracts retarded lipid oxidation during processing of the meat. Data analysis for the storage study was based on qualitative overview of sensory/chemical variation by principal component analysis (PCA) and quantitative ANOVA-PLSR for determination of the relationship between design variables (days of chill-storage, extract treatment) versus sensory-chemical variables and PLSR for elucidating the predictive ability of the chemical methods for sensory terms. Lipid oxidation was seen to involve a decrease in perception of meat flavour/odour and a concomitant increase in the off-flavour/odours linseed, rancid. TBARS, hexanal and vitamin E were all significant predictive indices (P<0.05) for the majority of the sensory terms, while vitamin E through negative correlation with TBARS and hexanal displayed its antioxidative effect and thus, its ability to preserve sensory fresh meat flavour/odour. The effect of the various extracts incorporated in the product was clearly related to the degree of lipid oxidation and an overall ranking of the antioxidative efficiency of extracts in declining order became apparent: Rosemary>Grape skin>Tea>Coffee>Reference. Furthermore, the relation between extracts and vitamin E indicated that the extracts, to some extent, interacted with the vitamin and prevented it from degrading. In conclusion, the rosemary extract displayed potential for maintaining sensory eating quality in processed pork products.

  11. Effect of ethanolic flax (Linum usitatissimum L.) extracts on lipid oxidation and changes in nutritive value of frozen-stored meat products.

    PubMed

    Waszkowiak, Katarzyna; Szymandera-Buszka, Krystyna; Hęś, Marzanna

    2014-01-01

    Flaxseed (Linum usitatissimum L.) is an important source of phenolic compounds, mainly lignans. Antioxidant capacities of flaxseed extracts that contain the compounds have been reported earlier. However, there is a lack of accessible information about their activity against lipid oxidation in meat products. Therefore, the effect of ethanolic flaxseed extracts (EFEs) on lipid stability and changes in nutritive value of frozen-stored meat products (pork meatballs and burgers) was determined. EFEs from three Polish flax varieties (Szafir, Oliwin, Jantarol) were applied in the study. During 150-day storage of meat products, the lipid oxidation (peroxide and TBARS value) and thiamine retention were periodically monitored, alongside with methionine and lysine availability and protein digestibility. The addition of EFEs significantly limited lipid oxidation in stored meatballs and burgers. EFE from brown seeds of Szafir var. was superior to the others from golden seeds of Jantarol and Oliwin. Moreover, the extracts reduced changes in thiamine and available lysine content, as well as protein digestibility, during storage time. The effect of EFE addition on available methionine retention was limited. The ethanolic flaxseed extracts exhibit antioxidant activity during frozen storage of meat products. They can be utilized to prolong shelf-life of the products by protecting them against lipid oxidation and deterioration of their nutritional quality. However, antioxidant efficiency of the extracts seems to depend on chemical composition of raw material (flax variety). Further investigations should be carried on to explain the issue.

  12. Recovery of Fuel-Precursor Lipids from Oleaginous Yeast

    DOE PAGES

    Kruger, Jacob S.; Cleveland, Nicholas S.; Yeap, Rou Yi; ...

    2018-01-24

    Bio-derived lipids offer a potentially promising intermediate to displace petroleum-derived diesel. One of the key challenges for the production of lipids via microbial cell mass is that these products are stored intracellularly and must be extracted and recovered efficiently and economically. Thus, improved methods of cell lysis and lipid extraction are needed. In this study, we examine lipid extraction from wet oleaginous yeast in combination with seven different cell lysis approaches encompassing both physical and chemical techniques (high-pressure homogenization, microwave and conventional thermal treatments, bead beating, acid, base, and enzymatic treatments) to facilitate lipid extraction from a model oleaginous yeastmore » strain, Lipomyces starkeyi. Of the seven techniques investigated, acid treatment led to the highest lipid recovery yields. Further exploration of acid treatment and integration with an economic model revealed that treatment at 170 degrees C for 60 min at 1 wt% H 2SO 4 and 8 wt% yeast solids represents a viable option for both lipid recovery yield and process economics, enabling experimental lipid recovery yields of 88.5-93.0% to be achieved at a corresponding estimated minimum fuel selling price (MFSP) of $5.13-$5.61/gallon of gasoline equivalent (GGE). The same acid treatment conditions applied to two other strains of oleaginous yeast (Cutaneotrichosporon curvatus and Rhodotorula toruloides) resulted in similar lipid recovery yields. In pretreatment experiments scaled up to 300 mL, slightly lower temperatures or shorter pretreatment times, along with higher yeast solids loading, resulted in higher lipid yields than the conditions identified from the small-scale runs. Two replicate runs carried out at 170 degrees C for 30 min using 1 wt% H2SO4 and 19 wt% yeast solids achieved an average lipid recovery of 96.1% at a corresponding estimated MFSP of $4.89/GGE. In all cases, the lipids are primarily triglycerides and free fatty acids comprised mainly of palmitic, stearic, and oleic acids, with smaller fractions of polar lipids. The fatty acid composition of the lipids extracted from the wet treated cell mass is the same as that in freeze-dried whole oleaginous yeast cell mass, suggesting the acid treatment renders all lipids extractable. This work demonstrates that acid treatment is a robust and effective cell lysis technique in a microbial lipid-based biofuel scenario and provides a baseline for further scale-up and process integration.« less

  13. Recovery of Fuel-Precursor Lipids from Oleaginous Yeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, Jacob S.; Cleveland, Nicholas S.; Yeap, Rou Yi

    Bio-derived lipids offer a potentially promising intermediate to displace petroleum-derived diesel. One of the key challenges for the production of lipids via microbial cell mass is that these products are stored intracellularly and must be extracted and recovered efficiently and economically. Thus, improved methods of cell lysis and lipid extraction are needed. In this study, we examine lipid extraction from wet oleaginous yeast in combination with seven different cell lysis approaches encompassing both physical and chemical techniques (high-pressure homogenization, microwave and conventional thermal treatments, bead beating, acid, base, and enzymatic treatments) to facilitate lipid extraction from a model oleaginous yeastmore » strain, Lipomyces starkeyi. Of the seven techniques investigated, acid treatment led to the highest lipid recovery yields. Further exploration of acid treatment and integration with an economic model revealed that treatment at 170 degrees C for 60 min at 1 wt% H 2SO 4 and 8 wt% yeast solids represents a viable option for both lipid recovery yield and process economics, enabling experimental lipid recovery yields of 88.5-93.0% to be achieved at a corresponding estimated minimum fuel selling price (MFSP) of $5.13-$5.61/gallon of gasoline equivalent (GGE). The same acid treatment conditions applied to two other strains of oleaginous yeast (Cutaneotrichosporon curvatus and Rhodotorula toruloides) resulted in similar lipid recovery yields. In pretreatment experiments scaled up to 300 mL, slightly lower temperatures or shorter pretreatment times, along with higher yeast solids loading, resulted in higher lipid yields than the conditions identified from the small-scale runs. Two replicate runs carried out at 170 degrees C for 30 min using 1 wt% H2SO4 and 19 wt% yeast solids achieved an average lipid recovery of 96.1% at a corresponding estimated MFSP of $4.89/GGE. In all cases, the lipids are primarily triglycerides and free fatty acids comprised mainly of palmitic, stearic, and oleic acids, with smaller fractions of polar lipids. The fatty acid composition of the lipids extracted from the wet treated cell mass is the same as that in freeze-dried whole oleaginous yeast cell mass, suggesting the acid treatment renders all lipids extractable. This work demonstrates that acid treatment is a robust and effective cell lysis technique in a microbial lipid-based biofuel scenario and provides a baseline for further scale-up and process integration.« less

  14. Noncatalytic transformation of the crude lipid of ChlorellaI vulgaris into fatty acid methyl ester (FAME) with charcoal via a thermo-chemical process.

    PubMed

    Kwon, Eilhann E; Jeon, Young Jae; Yi, Haakrho

    2013-02-01

    The noncatalytic transformation of the crude lipid of Chlorella vulgaris (C. vulgaris) into fatty acid methyl ester (FAME) via a thermo-chemical process was mainly investigated in this work. The crude lipid of C. vulgaris was recovered by means of solvent extraction from C. vulgaris cultivated in a raceway pond. The conventional catalyzed transesterification of crude lipid of C. vulgaris is notably inhibited by the impurities contained in the crude lipid of C. vulgaris. These impurities are inevitably derived from the solvent extraction process for C. vulgaris. However, this work presents the noncatalytic transesterification of microalgal lipid into FAME, which could be an alternative option. For example, the noncatalytic transformation of microalgal lipid into FAME provides evidence that the esterification of free fatty acids (FFAs) and the transesterification of triglycerides can be combined into a single step less susceptible to the impurities and with a high conversion efficiency (∼97%). Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Controlling Styrene Maleic Acid Lipid Particles through RAFT.

    PubMed

    Smith, Anton A A; Autzen, Henriette E; Laursen, Tomas; Wu, Vincent; Yen, Max; Hall, Aaron; Hansen, Scott D; Cheng, Yifan; Xu, Ting

    2017-11-13

    The ability of styrene maleic acid copolymers to dissolve lipid membranes into nanosized lipid particles is a facile method of obtaining membrane proteins in solubilized lipid discs while conserving part of their native lipid environment. While the currently used copolymers can readily extract membrane proteins in native nanodiscs, their highly disperse composition is likely to influence the dispersity of the discs as well as the extraction efficiency. In this study, reversible addition-fragmentation chain transfer was used to control the polymer architecture and dispersity of molecular weights with a high-precision. Based on Monte Carlo simulations of the polymerizations, the monomer composition was predicted and allowed a structure-function analysis of the polymer architecture, in relation to their ability to assemble into lipid nanoparticles. We show that a higher degree of control of the polymer architecture generates more homogeneous samples. We hypothesize that low dispersity copolymers, with control of polymer architecture are an ideal framework for the rational design of polymers for customized isolation and characterization of integral membrane proteins in native lipid bilayer systems.

  16. Highly efficient extraction and lipase-catalyzed transesterification of triglycerides from Chlorella sp. KR-1 for production of biodiesel.

    PubMed

    Lee, Ok Kyung; Kim, Young Hyun; Na, Jeong-Geol; Oh, You-Kwan; Lee, Eun Yeol

    2013-11-01

    We developed a method for the highly efficient lipid extraction and lipase-catalyzed transesterification of triglyceride from Chlorella sp. KR-1 using dimethyl carbonate (DMC). Almost all of the total lipids, approximately 38.9% (w/w) of microalgae dry weight, were extracted from the dried microalgae biomass using a DMC and methanol mixture (7:3 (v/v)). The extracted triglycerides were transesterified into fatty acid methyl esters (FAMEs) using Novozyme 435 as the biocatalyst in DMC. Herein, DMC was used as the reaction medium and acyl acceptor. The reaction conditions were optimized and the FAMEs yield was 293.82 mg FAMEs/g biomass in 6 h of reaction time at 60 °C in the presence of 0.2% (v/v) water. Novozyme 435 was reused more than ten times while maintaining relative FAMEs conversion that was greater than 90% of the initial FAMEs conversion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Microbial lipid extraction from Lipomyces starkeyi using irreversible electroporation.

    PubMed

    Karim, Ahasanul; Yousuf, Abu; Islam, M Amirul; Naif, Yasir H; Faizal, Che Ku Mohammad; Alam, Md Zahangir; Pirozzi, Domenico

    2018-02-21

    The aim of the study was to investigate the feasibility of using irreversible electroporation (EP) as a microbial cell disruption technique to extract intracellular lipid within short time and in an eco-friendly manner. An EP circuit was designed and fabricated to obtain 4 kV with frequency of 100 Hz of square waves. The yeast cells of Lipomyces starkeyi (L. starkeyi) were treated by EP for 2-10 min where the distance between electrodes was maintained at 2, 4, and 6 cm. Colony forming units (CFU) were counted to observe the cell viability under the high voltage electric field. The forces of the pulsing electric field caused significant damage to the cell wall of L. starkeyi and the disruption of microbial cells was visualized by field emission scanning electron microscopic (FESEM) image. After breaking the cell wall, lipid was extracted and measured to assess the efficiency of EP over other techniques. The extent of cell inactivation was up to 95% when the electrodes were placed at the distance of 2 cm, which provided high treatment intensity (36.7 kWh m -3 ). At this condition, maximum lipid (63 mg g -1 ) was extracted when the biomass was treated for 10 min. During the comparison, EP could extract 31.88% lipid while the amount was 11.89% for ultrasonic and 16.8% for Fenton's reagent. The results recommend that the EP is a promising technique for lowering the time and solvent usage for lipid extraction from microbial biomass. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.

  18. Antidyslipidemic effect and antioxidant activity of anthraquinone derivatives from Rheum emodi rhizomes in dyslipidemic rats.

    PubMed

    Mishra, Sunil K; Tiwari, Shashi; Shrivastava, Atul; Srivastava, Shishir; Boudh, Goutam K; Chourasia, Shivendra K; Chaturvedi, Upma; Mir, Snober S; Saxena, Anil K; Bhatia, Gitika; Lakshmi, Vijai

    2014-04-01

    The aim of the present study was to evaluate the antidyslipidemic effect of ethanolic extract of Rheum emodi rhizomes and its constituents in Triton-WR-1339 and high-fat diet (HFD)-induced dyslipidemic rats. In preliminary screening, the ethanolic extract showed significant activity in Triton-treated rats. Bioassay-guided fractionation of the ethanolic extract resulted in the identification of four anthraquinone derivatives, viz. chrysophanol, emodin, chrysophanol 8-O-β-D-glucopyranoside and emodin 8-O-β-D-glucopyranoside as active constituents. All these compounds significantly reduced plasma lipid levels. The most active compound emodin showed significant lipid-lowering activity in the HFD-fed model. In addition, these compounds showed significant antioxidant activity. The effect of emodin on enzymes modulating lipid metabolism confirms and supports the efficiency of emodin as a potent antidyslipidemic agent.

  19. A rapid analytical method to quantify complex organohalogen contaminant mixtures in large samples of high lipid mammalian tissues.

    PubMed

    Desforges, Jean-Pierre; Eulaers, Igor; Periard, Luke; Sonne, Christian; Dietz, Rune; Letcher, Robert J

    2017-06-01

    In vitro investigations of the health impact of individual chemical compounds have traditionally been used in risk assessments. However, humans and wildlife are exposed to a plethora of potentially harmful chemicals, including organohalogen contaminants (OHCs). An alternative exposure approach to individual or simple mixtures of synthetic OHCs is to isolate the complex mixture present in free-ranging wildlife, often non-destructively sampled from lipid rich adipose. High concentration stock volumes required for in vitro investigations do, however, pose a great analytical challenge to extract sufficient amounts of complex OHC cocktails. Here we describe a novel method to easily, rapidly and efficiently extract an environmentally accumulated and therefore relevant contaminant cocktail from large (10-50 g) marine mammal blubber samples. We demonstrate that lipid freeze-filtration with acetonitrile removes up to 97% of blubber lipids, with minimal effect on the efficiency of OHC recovery. Sample extracts after freeze-filtration were further processed to remove residual trace lipids via high-pressure gel permeation chromatography and solid phase extraction. Average recoveries of OHCs from triplicate analysis of killer whale (Orcinus orca), polar bear (Ursus maritimus) and pilot whale (Globicephala spp.) blubber standard reference material (NIST SRM-1945) ranged from 68 to 80%, 54-92% and 58-145%, respectively, for 13 C-enriched internal standards of six polychlorinated biphenyl congeners, 16 organochlorine pesticides and four brominated flame retardants. This approach to rapidly generate OHC mixtures shows great potential for experimental exposures using complex contaminant mixtures, research or monitoring driven contaminant quantification in biological samples, as well as the untargeted identification of emerging contaminants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Cell-wall disruption and lipid/astaxanthin extraction from microalgae: Chlorella and Haematococcus.

    PubMed

    Kim, Dong-Yeon; Vijayan, Durairaj; Praveenkumar, Ramasamy; Han, Jong-In; Lee, Kyubock; Park, Ji-Yeon; Chang, Won-Seok; Lee, Jin-Suk; Oh, You-Kwan

    2016-01-01

    Recently, biofuels and nutraceuticals produced from microalgae have emerged as major interests, resulting in intensive research of the microalgal biorefinery process. In this paper, recent developments in cell-wall disruption and extraction methods are reviewed, focusing on lipid and astaxanthin production from the biotechnologically important microalgae Chlorella and Haematococcus, respectively. As a common, critical bottleneck for recovery of intracellular components such as lipid and astaxanthin from these microalgae, the composition and structure of rigid, thick cell-walls were analyzed. Various chemical, physical, physico-chemical, and biological methods applied for cell-wall breakage and lipid/astaxanthin extraction from Chlorella and Haematococcus are discussed in detail and compared based on efficiency, energy consumption, type and dosage of solvent, biomass concentration and status (wet/dried), toxicity, scalability, and synergistic combinations. This report could serve as a useful guide to the implementation of practical downstream processes for recovery of valuable products from microalgae including Chlorella and Haematococcus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Fast ultrasound-assisted extraction of polar (phenols) and nonpolar (lipids) fractions in Heterotheca inuloides Cass.

    PubMed

    Ricárdez, O F Mijangos; Ruiz-Jiménez, J; Lagunez-Rivera, L; de Castro, M D Luque

    2011-01-01

    Heterotheca inuloides Cass., also known as "arnica", is used in traditional medicine in Mexico. Development of fast methods for the extraction of lipidic and phenolic fractions from arnica plants and their subsequent characterization. Ultrasound was applied to accelerate extraction of the target compounds from this plant and reduce the use of organic solvents as compared with conventional methods. Gas chromatography-ion trap mass spectrometry and liquid chromatography with diode-array detection were used for the characterization of the lipidic and phenolic fractions, respectively. Under optimal extraction conditions, 9 and 55 min were necessary to complete extraction of the lipidic and phenolic fractions, respectively. The fatty acids present at the highest concentrations in H. inuloides were eicosatetraenoic n3 (24.6 μg/g), cis-9-hexadecenoic n7 (23.1 μg/g), exacosanoic (22.7 μg/g) and cis-9-octadecenoic acid (21.3 μg/g), while the rest were in the range 7.6-1.3 μg/g. The most concentrated phenols were guaiacol (41.5 μg/g), catechin (38.7 μg/g), ellagic acid (35.9 μg/g), carbolic acid (24.2 μg/g) and p-coumaric acid (19.5 μg/g), while the rest were in the range 5.1-0.4 μg/g. Ultrasound reduces the time necessary to complete the extraction 160 and 26 times, the extraction volume 2.5 and 4 times, and increases the extraction efficiency 5 and 3 times for lipidic and phenolic fractions, respectively, in comparison with conventional extraction methods. In addition, the characterization of the lipidic and phenolic fractions constitutes a first approach to the H. inuloides metabolome. Copyright © 2011 John Wiley & Sons, Ltd.

  2. Assessment of the Antioxidant Activity of Silybum marianum Seed Extract and Its Protective Effect against DNA Oxidation, Protein Damage and Lipid Peroxidation

    PubMed Central

    Serçe, Aynur; Toptancı, Bircan Çeken; Tanrıkut, Sevil Emen; Altaş, Sevcan; Kızıl, Göksel; Kızıl, Süleyman

    2016-01-01

    Summary Antioxidant properties of ethanol extract of Silybum marianum (milk thistle) seeds was investigated. We have also investigated the protein damage activated by oxidative Fenton reaction and its prevention by Silybum marianum seed extract. Antioxidant potential of Silybum marianum seed ethanol extract was measured using different in vitro methods, such as lipid peroxidation, 1,1–diphenyl–2–picrylhydrazyl (DPPH) and ferric reducing power assays. The extract significantly decreased DNA damage caused by hydroxyl radicals. Protein damage induced by hydroxyl radicals was also efficiently inhibited, which was confirmed by the presence of protein damage markers, such as protein carbonyl formation and by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE). The present study shows that milk thistle seeds have good DPPH free radical scavenging activity and can prevent lipid peroxidation. Therefore, Silybum marianum can be used as potentially rich source of antioxidants and food preservatives. The results suggest that the seeds may have potential beneficial health effects providing opportunities to develop value-added products. PMID:28115903

  3. Assessment of the Antioxidant Activity of Silybum marianum Seed Extract and Its Protective Effect against DNA Oxidation, Protein Damage and Lipid Peroxidation.

    PubMed

    Serçe, Aynur; Toptancı, Bircan Çeken; Tanrıkut, Sevil Emen; Altaş, Sevcan; Kızıl, Göksel; Kızıl, Süleyman; Kızıl, Murat

    2016-12-01

    Antioxidant properties of ethanol extract of Silybum marianum (milk thistle) seeds was investigated. We have also investigated the protein damage activated by oxidative Fenton reaction and its prevention by Silybum marianum seed extract. Antioxidant potential of Silybum marianum seed ethanol extract was measured using different in vitro methods, such as lipid peroxidation, 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ferric reducing power assays. The extract significantly decreased DNA damage caused by hydroxyl radicals. Protein damage induced by hydroxyl radicals was also efficiently inhibited, which was confirmed by the presence of protein damage markers, such as protein carbonyl formation and by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The present study shows that milk thistle seeds have good DPPH free radical scavenging activity and can prevent lipid peroxidation. Therefore, Silybum marianum can be used as potentially rich source of antioxidants and food preservatives. The results suggest that the seeds may have potential beneficial health effects providing opportunities to develop value-added products.

  4. Optimization of lipid extraction from Salvinia molesta for biodiesel production using RSM and its FAME analysis.

    PubMed

    Mubarak, M; Shaija, A; Suchithra, T V

    2016-07-01

    The higher areal productivity and lipid content of microalgae and aquatic weed makes them the best alternative feedstocks for biodiesel production. Hence, an efficient and economic method of extracting lipid or oil from aquatic weed, Salvinia molesta is an important step towards biodiesel production. Since Salvinia molesta is an unexplored feedstock, its total lipid content was first measured as 16 % using Bligh and Dyer's method which was quite sufficient for further investigation. For extracting more amount of lipid from Salvinia molesta, methanol: chloroform in the ratio 2:1 v/v was identified as the most suitable solvent system using Soxhlet apparatus. Based on the literature and the preliminary experimentations, parameters such as solvent to biomass ratio, temperature, and time were identified as significant for lipid extraction. These parameters were then optimized using response surface methodology with central composite design, where experiments were performed using twenty combinations of these extraction parameters with Minitab-17 software. A lipid yield of 92.4 % from Salvinia molesta was obtained with Soxhlet apparatus using methanol and chloroform (2:1 v/v) as solvent system, at the optimized conditions of temperature (85 °C), solvent to biomass ratio (20:1), and time (137 min), whereas a predicted lipid yield of 93.5 % with regression model. Fatty acid methyl ester (FAME) analysis of S. molesta lipid using gas chromatograph mass spectroscopy (GCMS) with flame ionization detector showed that fatty acids such as C16:0, C16:1, C18:1, and C18:2 contributed more than 9 % weight of total fatty acids. FAME consisted of 56.32, 28.08, and 15.59 % weight of monounsaturated, saturated, and polyunsaturated fatty acids, respectively. Higher cetane number and superior oxidation stability of S. molesta FAME could be attributed to its higher monounsaturated content and lower polyunsaturated content as compared to biodiesels produced from C. vulgaris, Sunflower, and Jatropha.

  5. Nutrient recycling of lipid-extracted waste in the production of an oleaginous thraustochytrid.

    PubMed

    Lowrey, Joshua; Brooks, Marianne S; Armenta, Roberto E

    2016-05-01

    Improving the economics of microalgae production for the recovery of microbial oil requires a comprehensive exploration of the measures needed to improve productivity as well as to reduce the overall processing costs. One avenue for cost reduction involves recycling the effluent waste water remaining after lipid extraction. This study investigates the feasibility of recycling those wastes for growing thraustochytrid biomass, a heterotrophic microalgae, where wastes were generated from the enzymatic extraction of the lipids from the cell biomass. It was demonstrated that secondary cultures of the tested thraustochytrid grown in the recycled wastes performed favorably in terms of cell and oil production (20.48 g cells L(-1) and 40.9 % (w/w) lipid) compared to the control (13.63 g cells L(-1) and 56.8 % (w/w) lipid). Further, the significant uptake of solubilized cell material (in the form of amino acids) demonstrated that the recycled waste has the potential for offsetting the need for fresh medium components. These results indicate that the implementation of a nutrient recycling strategy for industrial microalgae production could be possible, with significant added benefits such as conserving water resources, improving production efficiency, and decreasing material inputs.

  6. An efficient and scalable extraction and quantification method for algal derived biofuel.

    PubMed

    Lohman, Egan J; Gardner, Robert D; Halverson, Luke; Macur, Richard E; Peyton, Brent M; Gerlach, Robin

    2013-09-01

    Microalgae are capable of synthesizing a multitude of compounds including biofuel precursors and other high value products such as omega-3-fatty acids. However, accurate analysis of the specific compounds produced by microalgae is important since slight variations in saturation and carbon chain length can affect the quality, and thus the value, of the end product. We present a method that allows for fast and reliable extraction of lipids and similar compounds from a range of algae, followed by their characterization using gas chromatographic analysis with a focus on biodiesel-relevant compounds. This method determines which range of biologically synthesized compounds is likely responsible for each fatty acid methyl ester (FAME) produced; information that is fundamental for identifying preferred microalgae candidates as a biodiesel source. Traditional methods of analyzing these precursor molecules are time intensive and prone to high degrees of variation between species and experimental conditions. Here we detail a new method which uses microwave energy as a reliable, single-step cell disruption technique to extract lipids from live cultures of microalgae. After extractable lipid characterization (including lipid type (free fatty acids, mono-, di- or tri-acylglycerides) and carbon chain length determination) by GC-FID, the same lipid extracts are transesterified into FAMEs and directly compared to total biodiesel potential by GC-MS. This approach provides insight into the fraction of total FAMEs derived from extractable lipids compared to FAMEs derived from the residual fraction (i.e. membrane bound phospholipids, sterols, etc.). This approach can also indicate which extractable lipid compound, based on chain length and relative abundance, is responsible for each FAME. This method was tested on three species of microalgae; the marine diatom Phaeodactylum tricornutum, the model Chlorophyte Chlamydomonas reinhardtii, and the freshwater green alga Chlorella vulgaris. The method is shown to be robust, highly reproducible, and fast, allowing for multiple samples to be analyzed throughout the time course of culturing, thus providing time-resolved information regarding lipid quantity and quality. Total time from harvesting to obtaining analytical results is less than 2h. © 2013.

  7. Evaluation of a recent product to remove lipids and other matrix co-extractives in the analysis of pesticide residues and environmental contaminants in foods.

    PubMed

    Han, Lijun; Matarrita, Jessie; Sapozhnikova, Yelena; Lehotay, Steven J

    2016-06-03

    This study demonstrates the application of a novel lipid removal product to the residue analysis of 65 pesticides and 52 environmental contaminants in kale, pork, salmon, and avocado by fast, low pressure gas chromatography - tandem mass spectrometry (LPGC-MS/MS). Sample preparation involves QuEChERS extraction followed by use of EMR-Lipid ("enhanced matrix removal of lipids") and an additional salting out step for cleanup. The optimal amount of EMR-Lipid was determined to be 500mg for 2.5mL extracts for most of the analytes. The co-extractive removal efficiency by the EMR-Lipid cleanup step was 83-98% for fatty samples and 79% for kale, including 76% removal of chlorophyll. Matrix effects were typically less than ±20%, in part because analyte protectants were used in the LPGC-MS/MS analysis. The recoveries of polycyclic aromatic hydrocarbons and diverse pesticides were mostly 70-120%, whereas recoveries of nonpolar polybrominated diphenyl ethers and polychlorinated biphenyls were mostly lower than 70% through the cleanup procedure. With the use of internal standards, method validation results showed that 76-85 of the 117 analytes achieved satisfactory results (recoveries of 70-120% and RSD≤20%) in pork, avocado, and kale, while 53 analytes had satisfactory results in salmon. Detection limits were 5-10ng/g for all but a few analytes. EMR-Lipid is a new sample preparation tool that serves as another useful option for cleanup in multiresidue analysis, particularly of fatty foods. Published by Elsevier B.V.

  8. Study on Suitable Light Conditions and Efficient Lipid Extraction Technologies for Biodiesel Production Based on Microalgae

    NASA Astrophysics Data System (ADS)

    Wang, Yao; Zhang, Qingtao; Sun, Yuan; Yang, Chengjia

    2018-01-01

    As a new generation biodiesel feedstock, microalgae have most potential to replace fossil fuel. However, the limited scale and high cost are two bottleneck problems. Efficient microwave-assisted lipid extraction technologies and suitable light conditions for Chlorella Sorokiniana need further study for lowering the cost. In this study, three photoperiod groups(24L:0D, 12L:12D, 0L:24D), three illumination intensity groups (1800 lux, 3600 lux, 5400 lux)and four light spectrum groups (Red, green, blue, and white) were used to culture Chlorella Sorokiniana to investigate those effects on algae growth rate and biomass accumulation. The suitable microwave treatment was also studied to achieve an optimizing quantum fracturing technology. 400 w, 750 w and 1000 w microwave power were set and 60 °C, 75 °C, 90 °C microwave conditions were investigated. The results showed that Chlorella Sorokiniana under 24L:0D photoperiod with 5400 lux white light can achieve better growth rate. The 90 °C / 1000w microwave treatment was identified as the most simple, easy, and effective way for lipid extraction from Chlorella Sorokiniana. As the raw material of biodiesel production, C18:1, C18:2 and C18:3 have accounted for important components of fatty acid in Chlorella Sorokiniana. Therefore, Chlorella Sorokiniana is a good raw material for the production of good quality biodiesel under suitable and efficient technologies.

  9. Vaccinium meridionale Swartz extracts and their addition in beef burgers as antioxidant ingredient.

    PubMed

    López-Padilla, Alexis; Martín, Diana; Villanueva Bermejo, David; Jaime, Laura; Ruiz-Rodriguez, Alejandro; Restrepo Flórez, Claudia Estela; Rivero Barrios, Diana Marsela; Fornari, Tiziana

    2018-01-01

    Vaccinium meridionale Swartz (mortiño) constitutes a source of bioactive phytochemicals, but reports related to its efficient and green production are scarce. In this study, pressurized liquid extraction (PLE) and ultrasound-assisted extraction of mortiño were compared. Total phenolic content (TPC) and antioxidant capacity (ABTS •+ ) were determined. Beef burgers with 20 g kg -1 of mortiño (MM) or its PLE extract (ME) were manufactured. Lipid oxidation (TBARS) and instrumental color changes were measured after refrigerated storage. High TPC (up to 72 g gallic acid equivalent kg -1 extract) was determined in mortiño extracts, which was positively correlated with antioxidant activity. TBARS values of beef burgers containing either MM or ME did not change after refrigerated storage, whereas lipid oxidation of control burgers increased significantly. The color of burgers with added MM or ME was different (lower b* and a* values) from that of control burgers. However, the evolution of color after storage was similar between control and ME samples. Mortiño extracts with high TPC can be obtained by PLE. Both mortiño and its PLE extract are able to control lipid oxidation of beef burgers, but the extract is preferred from the color quality point of view. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Lysis of Chlamydomonas reinhardtii by high-intensity focused ultrasound as a function of exposure time.

    PubMed

    Bigelow, Timothy A; Xu, Jin; Stessman, Dan J; Yao, Linxing; Spalding, Martin H; Wang, Tong

    2014-05-01

    Efficient lysis of microalgae for lipid extraction is an important concern when processing biofuels. Historically, ultrasound frequencies in the range of 10-40 kHz have been utilized for this task. However, greater efficiencies might be achievable if higher frequencies could be used. In our study, we evaluated the potential of using 1.1 MHz ultrasound to lyse microalgae for biofuel production while using Chlamydomonas reinhardtii as a model organism. The ultrasound was generated using a spherically focused transducer with a focal length of 6.34 cm and an active diameter of 6.36 cm driven by 20 cycle sine-wave tone bursts at a pulse repetition frequency of 2 kHz (3.6% duty cycle). The time-average acoustic power output was 26.2 W while the spatial-peak-pulse-average intensity (ISPPA) for each tone burst was 41 kW/cm(2). The peak compressional and rarefactional pressures at the focus were 102 and 17 MPa, respectively. The exposure time was varied for the different cases in the experiments from 5s to 9 min and cell lysis was assessed by quantifying the percentage of protein and chlorophyll release into the supernate as well as the lipid extractability. Free radical generation and lipid oxidation for the different ultrasound exposures were also determined. We found that there was a statistically significant increase in lipid extractability for all of the exposures compared to the control. The longer exposures also completely fragmented the cells releasing almost all of the protein and chlorophyll into the supernate. The cavitation activity did not significantly increase lipid oxidation while there was a minor trend of increased free radical production with increased ultrasound exposure. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Peanut skin extract reduces lipid oxidation in cooked chicken patties.

    PubMed

    Munekata, P E S; Calomeni, A V; Rodrigues, C E C; Fávaro-Trindade, C S; Alencar, S M; Trindade, M A

    2015-03-01

    The objectives of this study were to evaluate the antioxidant capacity of peanut skin extract and its effect on the color and lipid oxidation of cooked chicken patties over 15 d of refrigerated storage. The extract was obtained using 80% ethanol and evaluated in terms of total phenolic content, reducing power based on the ferric reducing ability of plasma (FRAP) reagent, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity. The patties were made with ground thigh fillets, chicken skin, and 2% salt. They were homogenized and divided into the following two groups: a control treatment without antioxidants and a peanut skin treatment with 70 mg gallic acid equivalent (GAE)/kg per patty. Analyses of the fatty acid profiles, instrumental colors (L*, a*, and b*) and thiobarbituric acid reactive substances (TBARS) were performed on d 1, 8, and 15 of storage at 1±1ºC. The peanut skin extract resulted in a phenolic content of 32.6±0.7 mg GAE/g dry skin, an antioxidant activity (FRAP) of 26.5±0.8 6 μmol Trolox equivalent/g dry skin, and an efficient concentration (EC50) of 46.5 μg/mL. The total unsaturated fatty acid was approximately 73%, and 39% of this fatty acid content was monounsaturated. The peanut skin extract slowed the decrease in the a* values (P<0.05) but reduced the L* and b* values compared to the control samples during storage (P<0.05). Lipid oxidation was minimized by the peanut skin extract (P<0.05), which resulted in a maximum value of 0.97 malondialdehyde (MDA)/kg compared to values that were close 19 mg MDA/kg patties in the control sample at the end of storage period. Thus, it can be concluded that although peanut skin extract causes little color change, it can be applied as a natural antioxidant to cooked chicken patties because it efficiently inhibits lipid oxidation in this product during refrigerated storage. © 2015 Poultry Science Association Inc.

  12. Combined Enzymatic and Mechanical Cell Disruption and Lipid Extraction of Green Alga Neochloris oleoabundans

    PubMed Central

    Wang, Dongqin; Li, Yanqun; Hu, Xueqiong; Su, Weimin; Zhong, Min

    2015-01-01

    Microalgal biodiesel is one of the most promising renewable fuels. The wet technique for lipids extraction has advantages over the dry method, such as energy-saving and shorter procedure. The cell disruption is a key factor in wet oil extraction to facilitate the intracellular oil release. Ultrasonication, high-pressure homogenization, enzymatic hydrolysis and the combination of enzymatic hydrolysis with high-pressure homogenization and ultrasonication were employed in this study to disrupt the cells of the microalga Neochloris oleoabundans. The cell disruption degree was investigated. The cell morphology before and after disruption was assessed with scanning and transmission electron microscopy. The energy requirements and the operation cost for wet cell disruption were also estimated. The highest disruption degree, up to 95.41%, assessed by accounting method was achieved by the combination of enzymatic hydrolysis and high-pressure homogenization. A lipid recovery of 92.6% was also obtained by the combined process. The combined process was found to be more efficient and economical compared with the individual process. PMID:25853267

  13. Determination of Microalgal Lipid Content and Fatty Acid for Biofuel Production

    PubMed Central

    Chen, Zhipeng; Wang, Lingfeng

    2018-01-01

    Biofuels produced from microalgal biomass have received growing worldwide recognition as promising alternatives to conventional petroleum-derived fuels. Among the processes involved, the downstream refinement process for the extraction of lipids from biomass greatly influences the sustainability and efficiency of the entire biofuel system. This review summarizes and compares the current techniques for the extraction and measurement of microalgal lipids, including the gravimetric methods using organic solvents, CO2-based solvents, ionic liquids and switchable solvents, Nile red lipid visualization method, sulfo-phospho-vanillin method, and the thin-layer chromatography method. Each method has its own competitive advantages and disadvantages. For example, the organic solvents-based gravimetric method is mostly used and frequently employed as a reference standard to validate other methods, but it requires large amounts of samples and is time-consuming and expensive to recover solvents also with low selectivity towards desired products. The pretreatment approaches which aimed to disrupt cells and support subsequent lipid extraction through bead beating, microwave, ultrasonication, chemical methods, and enzymatic disruption are also introduced. Moreover, the principles and procedures for the production and quantification of fatty acids are finally described in detail, involving the preparation of fatty acid methyl esters and their quantification and composition analysis by gas chromatography.

  14. Lipid production in association of filamentous fungi with genetically modified cyanobacterial cells.

    PubMed

    Miranda, Ana F; Taha, Mohamed; Wrede, Digby; Morrison, Paul; Ball, Andrew S; Stevenson, Trevor; Mouradov, Aidyn

    2015-01-01

    Numerous strategies have evolved recently for the generation of genetically modified or synthetic microalgae and cyanobacteria designed for production of ethanol, biodiesel and other fuels. In spite of their obvious attractiveness there are still a number of challenges that can affect their economic viability: the high costs associated with (1) harvesting, which can account for up to 50 % of the total biofuel's cost, (2) nutrients supply and (3) oil extraction. Fungal-assisted bio-flocculation of microalgae is gaining increasing attention due to its high efficiency, no need for added chemicals and low energy inputs. The implementation of renewable alternative carbon, nitrogen and phosphorus sources from agricultural wastes and wastewaters for growing algae and fungi makes this strategy economically attractive. This work demonstrates that the filamentous fungi, Aspergillus fumigatus can efficiently flocculate the unicellular cyanobacteria Synechocystis PCC 6803 and its genetically modified derivatives that have been altered to enable secretion of free fatty acids into growth media. Secreted free fatty acids are potentially used by fungal cells as a carbon source for growth and ex-novo production of lipids. For most of genetically modified strains the total lipid yields extracted from the fungal-cyanobacterial pellets were found to be higher than additive yields of lipids and total free fatty acids produced by fungal and Synechocystis components when grown in mono-cultures. The synergistic effect observed in fungal-Synechocystis associations was also found in bioremediation rates when animal husbandry wastewater was used an alternative source of nitrogen and phosphorus. Fungal assisted flocculation can complement and assist in large scale biofuel production from wild-type and genetically modified Synechocystis PCC 6803 strains by (1) efficient harvesting of cyanobacterial cells and (2) producing of high yields of lipids accumulated in fungal-cyanobacterial pellets.

  15. Extraction of microalgae derived lipids with supercritical carbon dioxide in an industrial relevant pilot plant.

    PubMed

    Lorenzen, Jan; Igl, Nadine; Tippelt, Marlene; Stege, Andrea; Qoura, Farah; Sohling, Ulrich; Brück, Thomas

    2017-06-01

    Microalgae are capable of producing up to 70% w/w triglycerides with respect to their dry cell weight. Since microalgae utilize the greenhouse gas CO 2 , they can be cultivated on marginal lands and grow up to ten times faster than terrestrial plants, the generation of algae oils is a promising option for the development of sustainable bioprocesses, that are of interest for the chemical lubricant, cosmetic and food industry. For the first time we have carried out the optimization of supercritical carbon dioxide (SCCO 2 ) mediated lipid extraction from biomass of the microalgae Scenedesmus obliquus and Scenedesmus obtusiusculus under industrrially relevant conditions. All experiments were carried out in an industrial pilot plant setting, according to current ATEX directives, with batch sizes up to 1.3 kg. Different combinations of pressure (7-80 MPa), temperature (20-200 °C) and CO 2 to biomass ratio (20-200) have been tested on the dried biomass. The most efficient conditions were found to be 12 MPa pressure, a temperature of 20 °C and a CO 2 to biomass ratio of 100, resulting in a high extraction efficiency of up to 92%. Since the optimized CO 2 extraction still yields a crude triglyceride product that contains various algae derived contaminants, such as chlorophyll and carotenoids, a very effective and scalable purification procedure, based on cost efficient bentonite based adsorbers, was devised. In addition to the sequential extraction and purification procedure, we present a consolidated online-bleaching procedure for algae derived oils that is realized within the supercritical CO 2 extraction plant.

  16. Extraction fatty acid as a source to produce biofuel in microalgae Chlorella sp. and Spirulina sp. using supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Tai, Do Chiem; Hai, Dam Thi Thanh; Vinh, Nguyen Hanh; Phung, Le Thi Kim

    2016-06-01

    In this research, the fatty acids of isolated microalgae were extracted by some technologies such as maceration, Soxhlet, ultrasonic-assisted extraction and supercritical fluid extraction; and analyzed for biodiesel production using GC-MS. This work deals with the extraction of microalgae oil from dry biomass by using supercritical fluid extraction method. A complete study at laboratory of the influence of some parameters on the extraction kinetics and yields and on the composition of the oil in terms of lipid classes and profiles is proposed. Two types of microalgae were studied: Chlorella sp. and Spirulina sp. For the extraction of oil from microalgae, supercritical CO2 (SC-CO2) is regarded with interest, being safer than n-hexane and offering a negligible environmental impact, a short extraction time and a high-quality final product. Whilst some experimental papers are available on the supercritical fluid extraction (SFE) of oil from microalgae, only limited information exists on the kinetics of the process. These results demonstrate that supercritical CO2 extraction is an efficient method for the complete recovery of the neutral lipid phase.

  17. Natural lipid extracts and biomembrane-mimicking lipid compositions are disposed to form nonlamellar phases, and they release DNA from lipoplexes most efficiently

    PubMed Central

    Koynova, Rumiana; MacDonald, Robert C.

    2007-01-01

    A viewpoint now emerging is that a critical factor in lipid-mediated transfection (lipofection) is the structural evolution of lipoplexes upon interacting and mixing with cellular lipids. Here we report our finding that lipid mixtures mimicking biomembrane lipid compositions are superior to pure anionic liposomes in their ability to release DNA from lipoplexes (cationic lipid/DNA complexes), even though they have a much lower negative charge density (and thus lower capacity to neutralize the positive charge of the lipoplex lipids). Flow fluorometry revealed that the portion of DNA released after a 30 min incubation of the cationic O-ethylphosphatidylcholine lipoplexes with the anionic phosphatidylserine or phosphatidylglycerol was 19% and 37%, respectively, whereas a mixture mimicking biomembranes (MM: phosphatidylcholine/phosphatidylethanolamine/ phosphatidylserine/cholesterol 45:20:20:15 w/w) and polar lipid extract from bovine liver released 62% and 74%, respectively, of the DNA content. A possible reason for this superior power in releasing DNA by the natural lipid mixtures was suggested by structural experiments: while pure anionic lipids typically form lamellae, the natural lipid mixtures exhibited a surprising predilection to form nonlamellar phases. Thus, the MM mixture arranged into lamellar arrays at physiological temperature, but began to convert to the hexagonal phase at a slightly higher temperature, ∼40-45°C. A propensity to form nonlamellar phases (hexagonal, cubic, micellar) at close to physiological temperatures was also found with the lipid extracts from natural tissues (from bovine liver, brain, and heart). This result reveals that electrostatic interactions are only one of the factors involved in lipid-mediated DNA delivery. The tendency of lipid bilayers to form nonlamellar phases has been described in terms of bilayer “frustration” which imposes a nonzero intrinsic curvature of the two opposing monolayers. Because the stored curvature elastic energy in a “frustrated” bilayer seems to be comparable to the binding energy between cationic lipid and DNA, the balance between these two energies could play a significant role in the lipoplex-membrane interactions and DNA release energetics. PMID:17559800

  18. Natural lipid extracts and biomembrane-mimicking lipid compositions are disposed to form nonlamellar phases, and they release DNA from lipoplexes most efficiently

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koynova, Rumiana; MacDonald, Robert C.

    2010-01-18

    A viewpoint now emerging is that a critical factor in lipid-mediated transfection (lipofection) is the structural evolution of lipoplexes upon interacting and mixing with cellular lipids. Here we report our finding that lipid mixtures mimicking biomembrane lipid compositions are superior to pure anionic liposomes in their ability to release DNA from lipoplexes (cationic lipid/DNA complexes), even though they have a much lower negative charge density (and thus lower capacity to neutralize the positive charge of the lipoplex lipids). Flow fluorometry revealed that the portion of DNA released after a 30-min incubation of the cationic O-ethylphosphatidylcholine lipoplexes with the anionic phosphatidylserinemore » or phosphatidylglycerol was 19% and 37%, respectively, whereas a mixture mimicking biomembranes (MM: phosphatidylcholine/phosphatidylethanolamine/phosphatidylserine /cholesterol 45:20:20:15 w/w) and polar lipid extract from bovine liver released 62% and 74%, respectively, of the DNA content. A possible reason for this superior power in releasing DNA by the natural lipid mixtures was suggested by structural experiments: while pure anionic lipids typically form lamellae, the natural lipid mixtures exhibited a surprising predilection to form nonlamellar phases. Thus, the MM mixture arranged into lamellar arrays at physiological temperature, but began to convert to the hexagonal phase at a slightly higher temperature, {approx} 40-45 C. A propensity to form nonlamellar phases (hexagonal, cubic, micellar) at close to physiological temperatures was also found with the lipid extracts from natural tissues (from bovine liver, brain, and heart). This result reveals that electrostatic interactions are only one of the factors involved in lipid-mediated DNA delivery. The tendency of lipid bilayers to form nonlamellar phases has been described in terms of bilayer 'frustration' which imposes a nonzero intrinsic curvature of the two opposing monolayers. Because the stored curvature elastic energy in a 'frustrated' bilayer seems to be comparable to the binding energy between cationic lipid and DNA, the balance between these two energies could play a significant role in the lipoplex-membrane interactions and DNA release energetics.« less

  19. Avocado by-products as inhibitors of color deterioration and lipid and protein oxidation in raw porcine patties subjected to chilled storage.

    PubMed

    Rodríguez-Carpena, J G; Morcuende, D; Estévez, M

    2011-10-01

    Processing of avocados generates an important amount of by-products such as peels and seeds that are rich in bioactive substances with proven radical suppressing activities. The objective of this study was to evaluate the effectiveness of peel and seed extracts from two avocado varieties-'Hass' and 'Fuerte'-as inhibitors of lipid and protein oxidation and color deterioration of raw porcine patties during chilled storage (4 °C/15 days). Avocado extracts significantly (p<0.05) reduced the loss of redness and the increase of lightness during storage of porcine patties. 'Fuerte' extracts were more efficient at inhibiting discoloration of chilled patties than 'Hass' extracts. Patties treated with avocado extracts had significantly lower amounts of TBA-RS than control ones throughout the storage. 'Hass' avocado extracts significantly inhibited the formation of protein carbonyls in chilled patties at day 15. The present results highlight the potential usage of extracts from avocado by-products as ingredients for the production of muscle foods with enhanced quality traits. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Evaluation of different solvent mixtures in esterifiable lipids extraction from microalgae Botryococcus braunii for biodiesel production.

    PubMed

    Hidalgo, Pamela; Ciudad, Gustavo; Navia, Rodrigo

    2016-02-01

    Non-polar and polar solvents as well as their mixtures were tested for the extraction of microalgae lipids and thus, to evaluate their effect on total and esterifiable lipids extraction yields with potential to be converted to biodiesel. The obtained results show an increase in lipids and esterifiable lipids extraction yields when non-polar and polar solvent mixtures were used. The higher esterifiable lipids extraction yield was 19.2%wt (based on dry biomass) using a chloroform-methanol mixture (75%v/v of methanol), corresponding to a 98.9%wt esterifiable lipids extraction. In addition, esterifiable lipids extraction yield of 18.9%wt (based on dry biomass) was obtained when a petroleum ether-methanol mixture (75%v/v of methanol) was used, corresponding to a 96.9%wt esterifiable lipids extraction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Nanostructured lipid systems modified with waste material of propolis for wound healing: Design, in vitro and in vivo evaluation.

    PubMed

    Rosseto, Hélen Cássia; Toledo, Lucas de Alcântara Sica de; Francisco, Lizziane Maria Belloto de; Esposito, Elisabetta; Lim, Yunsook; Valacchi, Giuseppe; Cortesi, Rita; Bruschi, Marcos Luciano

    2017-10-01

    Propolis, a natural compound that can accelerate the wound healing process, is mainly used as ethanolic extract. The extractive solution may also be obtained from the propolis by-product (BP), transforming this waste material into a pharmaceutical active ingredient. Even if propolis does not show toxicity, when used as an extract over harmed skin or mucosa, the present ethanol content may be harmful to the tissue recovering, besides hindering the drug release. This study describes the development of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) as topical propolis delivery systems and the investigation of their in vitro and in vivo activities. The extracts were evaluated to guarantee their quality, and the lipid dispersions were characterized with respect to morphology (cryo-TEM), size and diffractometry (X-ray) properties. The occlusive capacity of formulations was also evaluated by an in vitro technique, which determines the occlusion factor. The drug entrapment efficiency (EE), as well as the in vitro drug release profile from the nanoparticulate systems was investigated as well. The size analysis performed through 90days was favorable to a topical administration and the polydispersity index, though not ideal in all cases due to the high content of resins and gums from the extracts, were relatively stable for the SLN. The propolis extract contributes to the occlusive potential of the formulations. The human immortalized keratinocytes presented good cell viability when tested with both extracts (propolis and BP) freely or entrapped in the systems. SLN modified with propolis material provided an acceleration of the in vivo wound healing process. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Liposome-containing Hibiscus sabdariffa calyx extract formulations with increased antioxidant activity, improved dermal penetration and reduced dermal toxicity.

    PubMed

    Pinsuwan, Sirirat; Amnuaikit, Thanaporn; Ungphaiboon, Suwipa; Itharat, Arunporn

    2010-12-01

    Hibiscus sabdariffa Linn, or Roselle, is a medicinal plant used extensively in traditional Thai medicine since ancient times. The extracts of Roselle calyces possess antioxidant activity and have potential for development as active ingredients in cosmetic products. However the limitations of using Roselle extracts in cosmetics are its low skin permeation and dermal irritation. Liposome technology is an obvious approach that might overcome these problems. Liposome formulations of standardized Roselle extracts were developed with various lipid components. The formulation showing the highest entrapment efficiency was selected for stability, skin permeation and dermal irritability studies. The liposome formulation with the highest entrapment efficiency (83%) and smalôlest particle size (332 mm) was formulated with phosphatidylcholine from soybean (SPC): Tween 80: deoxycholic acid (DA); 84:16:2.5 weight ratio, total lipid of 200 g/mL and 10% w/v Roselle extract in final liposomal preparation. This liposome formulation was found to be stable after storage at 4 degrees C, protected from light, for 2 months. The in vitro skin permeation studies, using freshly excised pig skin and modified Franz-diffusion cells, showed that the liposome formulation was able to considerably increased the rate of permeation of active compounds in Roselle extracts compared to the Roselle extract solution. The in vivo dermal irritability testing on rabbit skin showed that the liposome formulation dramatically decreased skin irritability compared to the unformulated extract. These results showed that the liposomes containing Roselle extracts had good stability, high entrapment efficacy, increased skin permeation and low skin irritation.

  3. Effect of olive leaf (Olea europea L.) extracts on protein and lipid oxidation in cooked pork meat patties enriched with n-3 fatty acids.

    PubMed

    Botsoglou, Evropi; Govaris, Alexandros; Ambrosiadis, Ioannis; Fletouris, Dimitrios; Papageorgiou, Georgios

    2014-01-30

    The effect of olive leaf extracts on lipid and protein oxidation of cooked pork patties refrigerated stored for 9 days was evaluated. Patties were prepared from longissimus dorsi muscle of pigs, and dietary supplemented with linseed oil. Results showed that dietary linseed oil modified the fatty acid composition of pork patties by increasing (P ≤ 0.05) n-3 (α-linolenic acid) and decreasing (P ≤ 0.05) n-6 (linoleic acid) fatty acids. Olive leaf extracts at supplementation levels of 200 and, especially, of 300 mg gallic acid equivalents kg⁻¹ meat, delayed lipid oxidation by reducing (P ≤ 0.05) both primary (conjugated dienes and hydroperoxides) and secondary (malondialdehyde) oxidation products. They also inhibited protein oxidation in a concentration-dependent manner by reducing (P ≤ 0.05) protein carbonyls and increasing (P ≤ 0.05) protein sulfhydryls. In addition, they improved sensory attributes of the n-3 enriched patties. Results suggested that olive leaf extracts might be useful to the meat industry as an efficient alternative to synthetic antioxidants. © 2013 Society of Chemical Industry.

  4. Characterization by high-performance liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry of the lipid fraction of Spirulina platensis pressurized ethanol extract.

    PubMed

    Herrero, Miguel; Vicente, María J; Cifuentes, Alejandro; Ibáñez, Elena

    2007-01-01

    Microalgae have been suggested as a potential source for new functional ingredients, making possible the development of new functional foods from natural origin. Among the natural ingredients, polyunsaturated fatty acids (PUFAs) have generally been identified as an interesting group of compounds with biological activity, mainly related to their anti-inflammatory properties. In this regard, the use of environmentally friendly extraction procedures (e.g. pressurized liquid extraction, PLE) to obtain such natural ingredients is also becoming necessary. In this work, an exhaustive characterization of the lipid fraction of a pressurized ethanolic extract of the microalga Spirulina platensis is carried out. To achieve this objective high-performance liquid chromatography (HPLC) coupled to quadrupole time-of-flight mass spectrometry (QTOF-MS) is employed. The use of the QTOF analyzer allows the selection and isolation of precursor ions as well as providing the high efficiency, sensitivity and mass accuracy required. By means of this powerful hyphenated technique, it was possible to identify several polar lipids in an extract of S. platensis (some of them, to our knowledge, described for the first time in this work), including four free fatty acids, four monogalactosyl monoacylglycerols, three phosphatidylglycerols and two sulfoquinovosyl diacylglycerols.

  5. Investigation of biomass concentration, lipid production, and cellulose content in Chlorella vulgaris cultures using response surface methodology.

    PubMed

    Aguirre, Ana-Maria; Bassi, Amarjeet

    2013-08-01

    The microalgae Chlorella vulgaris produce lipids that after extraction from cells can be converted into biodiesel. However, these lipids cannot be efficiently extracted from cells due to the presence of the microalgae cell wall, which acts as a barrier for lipid removal when traditional extraction methods are employed. Therefore, a microalgae system with high lipid productivity and thinner cell walls could be more suitable for lipid production from microalgae. This study addresses the effect of culture conditions, specifically carbon dioxide and sodium nitrate concentrations, on biomass concentration and the ratio of lipid productivity/cellulose content. Optimization of culture conditions was done by response surface methodology. The empirical model for biomass concentration (R(2)  = 96.0%) led to a predicted maximum of 1123.2 mg dw L(-1) when carbon dioxide and sodium nitrate concentrations were 2.33% (v/v) and 5.77 mM, respectively. For lipid productivity/cellulose content ratio (R(2)  = 95.2%) the maximum predicted value was 0.46 (mg lipid L(-1)  day(-1) )(mg cellulose mg biomass(-1) )(-1) when carbon dioxide concentration was 4.02% (v/v) and sodium nitrate concentration was 3.21 mM. A common optimum point for both variables (biomass concentration and lipid productivity/cellulose content ratio) was also found, predicting a biomass concentration of 1119.7 mg dw L(-1) and lipid productivity/cellulose content ratio of 0.44 (mg lipid L(-1)  day(-1) )(mg cellulose mg biomass(-1) )(-1) for culture conditions of 3.77% (v/v) carbon dioxide and 4.01 mM sodium nitrate. The models were experimentally validated and results supported their accuracy. This study shows that it is possible to improve lipid productivity/cellulose content by manipulation of culture conditions, which may be applicable to any scale of bioreactors. Copyright © 2013 Wiley Periodicals, Inc.

  6. A highly efficient method for extracting next-generation sequencing quality RNA from adipose tissue of recalcitrant animal species.

    PubMed

    Sharma, Davinder; Golla, Naresh; Singh, Dheer; Onteru, Suneel K

    2018-03-01

    The next-generation sequencing (NGS) based RNA sequencing (RNA-Seq) and transcriptome profiling offers an opportunity to unveil complex biological processes. Successful RNA-Seq and transcriptome profiling requires a large amount of high-quality RNA. However, NGS-quality RNA isolation is extremely difficult from recalcitrant adipose tissue (AT) with high lipid content and low cell numbers. Further, the amount and biochemical composition of AT lipid varies depending upon the animal species which can pose different degree of resistance to RNA extraction. Currently available approaches may work effectively in one species but can be almost unproductive in another species. Herein, we report a two step protocol for the extraction of NGS quality RNA from AT across a broad range of animal species. © 2017 Wiley Periodicals, Inc.

  7. A comparative study: the impact of different lipid extraction methods on current microalgal lipid research

    PubMed Central

    2014-01-01

    Microalgae cells have the potential to rapidly accumulate lipids, such as triacylglycerides that contain fatty acids important for high value fatty acids (e.g., EPA and DHA) and/or biodiesel production. However, lipid extraction methods for microalgae cells are not well established, and there is currently no standard extraction method for the determination of the fatty acid content of microalgae. This has caused a few problems in microlagal biofuel research due to the bias derived from different extraction methods. Therefore, this study used several extraction methods for fatty acid analysis on marine microalga Tetraselmis sp. M8, aiming to assess the potential impact of different extractions on current microalgal lipid research. These methods included classical Bligh & Dyer lipid extraction, two other chemical extractions using different solvents and sonication, direct saponification and supercritical CO2 extraction. Soxhlet-based extraction was used to weigh out the importance of solvent polarity in the algal oil extraction. Coupled with GC/MS, a Thermogravimetric Analyser was used to improve the quantification of microalgal lipid extractions. Among these extractions, significant differences were observed in both, extract yield and fatty acid composition. The supercritical extraction technique stood out most for effective extraction of microalgal lipids, especially for long chain unsaturated fatty acids. The results highlight the necessity for comparative analyses of microalgae fatty acids and careful choice and validation of analytical methodology in microalgal lipid research. PMID:24456581

  8. Evaluation of food grade solvents for lipid extraction and impact of storage temperature on fatty acid composition of edible seaweeds Laminaria digitata (Phaeophyceae) and Palmaria palmata (Rhodophyta).

    PubMed

    Schmid, Matthias; Guihéneuf, Freddy; Stengel, Dagmar B

    2016-10-01

    This study evaluated the impact of different food- and non-food grade extraction solvents on yield and fatty acid composition of the lipid extracts of two seaweed species (Palmaria palmata and Laminaria digitata). The application of chloroform/methanol and three different food grade solvents (ethanol, hexane, ethanol/hexane) revealed significant differences in both, extraction yield and fatty acid composition. The extraction efficiency, in terms of yields of total fatty acids (TFA), was in the order: chloroform/methanol>ethanol>hexane>ethanol/hexane for both species. Highest levels of polyunsaturated fatty acids (PUFA) were achieved by the extraction with ethanol. Additionally the effect of storage temperature on the stability of PUFA in ground and freeze-dried seaweed biomass was investigated. Seaweed samples were stored for a total duration of 22months at three different temperatures (-20°C, 4°C and 20°C). Levels of TFA and PUFA were only stable after storage at -20°C for the two seaweed species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Aqueous extract of Chrysobalanus icaco leaves, in lower doses, prevent fat gain in obese high-fat fed mice.

    PubMed

    White, P A S; Cercato, L M; Batista, V S; Camargo, E A; De Lucca, W; Oliveira, A S; Silva, F T; Goes, T C; Oliveira, E R A; Moraes, V R S; Nogueira, P C L; De Oliveira E Silva, A M; Quintans-Junior, L J; Lima, B S; Araújo, A A S; Santos, M R V

    2016-02-17

    Due to the rise in obesity, the necessity for resources and treatments that could reduce the morbidity and mortality associated to this pandemia has emerged. The development of new anti-obesity drugs through herbal sources has been increasing in the past decades which are being used not only as medicine but also as food supplements. Previous studies with the aqueous extract of Chrysobalanus icaco L (AECI) have demonstrated activity on lowering blood glucose levels and body weight. Investigate C. icaco effects in overall adiposity and glycemic homeostasis. C57BL/6J mice were randomly assigned to standard chow (SC) or high-fat diet (HFD) and treated with AECI in 0.35mg/mL or 0.7mg/mL concentrations ad libitum. Food intake, feed efficiency, metabolic efficiency, body, fat pads and gastrocnemius weight, adiposity index, serum lipids, fecal lipid excretion, locomotor activity in the open field test and insulin and glucose tolerance tests were analyzed and compared. The major components of the extract were demonstrated through HPLC and its antioxidant activity analyzed through DPPH and lipid peroxidation. The AECI in the 0.35mg/mL concentration did not affect food intake or body weight. However, it promoted lower adipose tissue gain, TG levels, and fecal lipid excretion, increased locomotor activity and lean mass weight, and normalized insulin sensitivity and glucose tolerance. Moreover, AECI showed the presence of myricetin 3-O-glucuronide, rutin, quercitrin and myricitrin and demonstrated high-antioxidant activity. AECI in lower concentrations can prevent fat storage or enhance fat utilization through the increase of locomotor activity. Also, this reinforces its ability to maintain glucose homeostasis through the normalization of insulin sensitivity and glucose tolerance despite the high-fat diet intake. These activities could be associated to the extract's polyphenol content. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Development of Houttuynia cordata Extract-Loaded Solid Lipid Nanoparticles for Oral Delivery: High Drug Loading Efficiency and Controlled Release.

    PubMed

    Kim, Ju-Heon; Baek, Jong-Suep; Park, Jin-Kyu; Lee, Bong-Joo; Kim, Min-Soo; Hwang, Sung-Joo; Lee, Jae-Young; Cho, Cheong-Weon

    2017-12-13

    Houttuynia cordata ( H. cordata ) has been used for diuresis and detoxification in folk medicine as well as a herbal medicine with antiviral and antibacterial activities. H. cordata extract-loaded solid lipid nanoparticles (H-SLNs) were prepared with various concentration of poloxamer 188 or poloxamer 407 by a hot homogenization and ultrasonication method. H-SLNs dispersion was freeze-dried with or without trehalose as a cryoprotectant. The physicochemical characteristics of H-SLNs were evaluated by dynamic laser scattering (DLS), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). Additionally, the in vitro release and in vitro cytotoxicity of H-SLNs were measured. Encapsulation efficiencies of H-SLNs (as quercitrin) were 92.9-95.9%. The SEM images of H-SLNs showed that H-SLNs have a spherical morphology. DSC and FT-IR showed that there were no interactions between ingredients. The increased extent of particle size of freeze-dried H-SLNs with trehalose was significantly lower than that of H-SLNs without trehalose. H-SLNs provided sustained release of quercitrin from H. cordata extracts. Cell viability of Caco-2 cells was over 70% according to the concentration of various formulation. Therefore, it was suggested that SLNs could be good carrier for administering H. cordata extracts.

  11. Optimization of lipids' ultrasonic extraction and production from Chlorella sp. using response-surface methodology.

    PubMed

    Hadrich, Bilel; Akremi, Ismahen; Dammak, Mouna; Barkallah, Mohamed; Fendri, Imen; Abdelkafi, Slim

    2018-04-17

    Three steps are very important in order to produce microalgal lipids: (1) controlling microalgae cultivation via experimental and modeling investigations, (2) optimizing culture conditions to maximize lipids production and to determine the fatty acid profile the most appropriate for biodiesel synthesis, and (3) optimizing the extraction of the lipids accumulated in the microalgal cells. Firstly, three kinetics models, namely logistic, logistic-with-lag and modified Gompertz, were tested to fit the experimental kinetics of the Chlorella sp. microalga culture established on standard conditions. Secondly, the response-surface methodology was used for two optimizations in this study. The first optimization was established for lipids production from Chlorella sp. culture under different culture conditions. In fact, different levels of nitrate concentrations, salinities and light intensities were applied to the culture medium in order to study their influences on lipids production and determine their fatty acid profile. The second optimization was concerned with the lipids extraction factors: ultrasonic's time and temperature, and chloroform-methanol solvent ratio. All models (logistic, logistic-with-lag and modified Gompertz) applied for the experimental kinetics of Chlorella sp. show a very interesting fitting quality. The logistic model was chosen to describe the Chlorella sp. kinetics, since it yielded the most important statistical criteria: coefficient of determination of the order of 94.36%; adjusted coefficient of determination equal to 93.79% and root mean square error reaching 3.685 cells · ml - 1 . Nitrate concentration and the two interactions involving the light intensity (Nitrate concentration × light intensity, and salinities × light intensity) showed a very significant influence on lipids production in the first optimization (p < 0.05). Yet, only the quadratic term of chloroform-methanol solvent ratio showed a significant influence on lipids extraction relative to the second step of optimization (p < 0.05). The two most abundant fatty acid methyl esters (≈72%) derived from the Chlorella sp. microalga cultured in the determined optimal conditions are: palmitic acid (C16:0) and oleic acid (C18:1) with the corresponding yields of 51.69% and 20.55% of total fatty acids, respectively. Only the nitrate deficiency and the high intensity of light can influence the microalgal lipids production. The corresponding fatty acid methyl esters composition is very suitable for biodiesel production. Lipids extraction is efficient only over long periods of time when using a solvent with a 2/1 chloroform/methanol ratio.

  12. Evaluation of various solvent systems for lipid extraction from wet microalgal biomass and its effects on primary metabolites of lipid-extracted biomass.

    PubMed

    Ansari, Faiz Ahmad; Gupta, Sanjay Kumar; Shriwastav, Amritanshu; Guldhe, Abhishek; Rawat, Ismail; Bux, Faizal

    2017-06-01

    Microalgae have tremendous potential to grow rapidly, synthesize, and accumulate lipids, proteins, and carbohydrates. The effects of solvent extraction of lipids on other metabolites such as proteins and carbohydrates in lipid-extracted algal (LEA) biomass are crucial aspects of algal biorefinery approach. An effective and economically feasible algae-based oil industry will depend on the selection of suitable solvent/s for lipid extraction, which has minimal effect on metabolites in lipid-extracted algae. In current study, six solvent systems were employed to extract lipids from dry and wet biomass of Scenedesmus obliquus. To explore the biorefinery concept, dichloromethane/methanol (2:1 v/v) was a suitable solvent for dry biomass; it gave 18.75% lipids (dry cell weight) in whole algal biomass, 32.79% proteins, and 24.73% carbohydrates in LEA biomass. In the case of wet biomass, in order to exploit all three metabolites, isopropanol/hexane (2:1 v/v) is an appropriate solvent system which gave 7.8% lipids (dry cell weight) in whole algal biomass, 20.97% proteins, and 22.87% carbohydrates in LEA biomass. Graphical abstract: Lipid extraction from wet microalgal biomass and biorefianry approach.

  13. Evaluation of in-situ fatty acid extraction protocols for the analysis of staphylococcal cell membrane associated fatty acids by gas chromatography.

    PubMed

    Crompton, Marcus J; Dunstan, R Hugh

    2018-05-01

    The composition and integrity of the bacterial cytoplasmic membrane is critical to the survival of staphylococci in dynamic environments and it is important to investigate how the cell membrane responds to changes in the environmental conditions. The staphylococcal membrane differs from eukaryotic and many other bacterial cell membranes by having a high abundance of branch fatty acids and relatively few unsaturated fatty acids. The range of available methods for extraction and efficient analyses of staphylococcal fatty acids was initially appraised to identify the best potential procedures for appraisal. Staphylococcus aureus subsp. aureus Rosenbach (ATCC® 29213) was grown under optimal conditions to generate a cell biomass to compare the efficiencies of three approaches to extract and prepare methyl esters of the membrane fatty acids: (1) acidic direct transesterification of lipids, (2) modified basic direct transesterification of membrane lipids with adjusted reaction times and temperatures, and (3) base catalysed hydrolysis followed by acid catalysed esterification in two separate chemical reactions (MIDI process). All methods were able to extract fatty acids from the cell mass effectively where these lipids represented approximately 5% of the cellular dry mass. The acidic transesterification method had the least number of steps, the lowest coefficient of variation at 6.7% and good resistance to tolerating water. Basic transesterification was the least accurate method showing the highest coefficient of variation (26%). The MIDI method showed good recoveries, but had twice the number of steps and a coefficient of variation of 16%. It was also found that there was no need to use an anti-oxidant such as BHT for the protection of polyunsaturated fatty acids when the GC-MS injection liner was clean. It was concluded that the acidic transesterification procedures formed the most efficient and reproducible method for the analyses of staphylococcal membrane fatty acids. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  14. Concurrent profiling of polar metabolites and lipids in human plasma using HILIC-FTMS

    NASA Astrophysics Data System (ADS)

    Cai, Xiaoming; Li, Ruibin

    2016-11-01

    Blood plasma is the most popularly used sample matrix for metabolite profiling studies, which aim to achieve global metabolite profiling and biomarker discovery. However, most of the current studies on plasma metabolite profiling focused on either the polar metabolites or lipids. In this study, a comprehensive analysis approach based on HILIC-FTMS was developed to concurrently examine polar metabolites and lipids. The HILIC-FTMS method was developed using mixed standards of polar metabolites and lipids, the separation efficiency of which is better in HILIC mode than in C5 and C18 reversed phase (RP) chromatography. This method exhibits good reproducibility in retention times (CVs < 3.43%) and high mass accuracy (<3.5 ppm). In addition, we found MeOH/ACN/Acetone (1:1:1, v/v/v) as extraction cocktail could achieve desirable gathering of demanded extracts from plasma samples. We further integrated the MeOH/ACN/Acetone extraction with the HILIC-FTMS method for metabolite profiling and smoking-related biomarker discovery in human plasma samples. Heavy smokers could be successfully distinguished from non smokers by univariate and multivariate statistical analysis of the profiling data, and 62 biomarkers for cigarette smoke were found. These results indicate that our concurrent analysis approach could be potentially used for clinical biomarker discovery, metabolite-based diagnosis, etc.

  15. Chitosan-Coated Cinnamon/Oregano-Loaded Solid Lipid Nanoparticles to Augment 5-Fluorouracil Cytotoxicity for Colorectal Cancer: Extract Standardization, Nanoparticle Optimization, and Cytotoxicity Evaluation.

    PubMed

    Kamel, Kamel M; Khalil, Islam A; Rateb, Mostafa E; Elgendy, Hosieny; Elhawary, Seham

    2017-09-13

    This study aimed to coat lipid-based nanocarriers with chitosan to encapsulate nutraceuticals, minimize opsonization, and facilitate passive-targeting. Phase one was concerned with standardization according to the World Health Organization. Qualitative analysis using liquid chromatography-high-resolution mass spectrometry (LC-HRMS/MS) investigated the active constituents, especially reported cytotoxic agents. Cinnamaldehyde and rosmarinic acid were selected to be quantified using high-performance liquid chromatography. Phase two was aimed to encapsulate both extracts in solid lipid nanoparticles (core) and chitosan (shell) to gain the advantages of both materials properties. The developed experimental model suggested an optimum formulation with 2% lipid, 2.3% surfactant, and 0.4% chitosan to achieve a particle size of 254.77 nm, polydispersity index of 0.28, zeta potential of +15.26, and entrapment efficiency percentage of 77.3% and 69.1% for cinnamon and oregano, respectively. Phase three was focused on the evaluation of cytotoxic activity unencapsulated/encapsulated cinnamon and oregano extracts with/without 5-fluorouracil on HCT-116 cells. This study confirmed the success of the suggested combination with 5-fluorouracil for treating human colon carcinoma with a low dose leading to decreasing side effects and allowing uninterrupted therapy.

  16. Classification of ginseng berry (Panax ginseng C.A. MEYER) extract using 1H NMR spectroscopy and its inhibition of lipid accumulation in 3 T3-L1 cells.

    PubMed

    Yang, Seung Ok; Park, Hae Ran; Sohn, Eun Suk; Lee, Sang Won; Kim, Hyung Don; Kim, Young Chang; Kim, Kee Hong; Na, Sae Won; Choi, Hyung-Kyoon; Arasu, Mariadhas Valan; Kim, Young Ock

    2014-11-24

    Panax ginseng is a famous traditional medicine in Korea for its beneficial effect on obesity, cardiac and liver associated diseases. The aim of this study was to investigate the metabolite in Panax ginseng (P. ginseng, Aralicaceae) berries depending on the ripen stages and evaluate its potential inhibition on adipocyte differentiation in 3 T3-L1 cells. Different ripening stage samples of P. ginseng berry were analyzed through global metabolite profiling by NMR spectroscopy. Lipid accumulation in the cells was analyzed by Oil Red O staining. The PLS-DA clearly distinguished P. ginseng berry extract (PGBE) according to the partial ripe (PR), ripe(R) and fully ripe (FR) stage. Lipid accumulation of PGBE was examined by measuring triglyceride content and Oil-Red O staining. These results suggested that the FR stage of PGBE decrease in lipid accumulation during adipocyte differentiation and the amount of threonine, asparagine, fumarate, tyraine, tyrosine, and phenylalanine increased with longer ripening of ginseng berries. Metabolite profiling of P. ginseng was identified by 1H NMR spectra. P. ginseng extract efficiently inhibits adipogenesis in 3 T3-L1 adipocytes concluded that the P. ginseng has the antiobesity properties.

  17. A simple protocol for Matrix Assisted Laser Desorption Ionization- time of flight-mass spectrometry (MALDI-TOF-MS) analysis of lipids and proteins in single microsamples of paintings.

    PubMed

    van der Werf, Inez D; Calvano, Cosima D; Palmisano, Francesco; Sabbatini, Luigia

    2012-03-09

    A simple protocol, based on Bligh-Dyer (BD) extraction followed by MALDI-TOF-MS analysis, for fast identification of paint binders in single microsamples is proposed. For the first time it is demonstrated that the BD method is effective for the simultaneous extraction of lipids and proteins from complex, and atypical matrices, such as pigmented paint layers. The protocol makes use of an alternative denaturing anionic detergent (RapiGest™) in order to improve efficiency of protein digestion and purification step. Detection of various lipid classes, such as triacylglycerols (TAGs) and phospholipids (PLs), and their oxidation by-products was accomplished, whereas proteins could be identified by peptide mass fingerprinting. The effect of pigments on ageing of lipids and proteins was also investigated. Finally, the proposed protocol was successfully applied to the study of a late-15th century Italian panel painting allowing the identification of various proteinaceous and lipid sections in organic binders, such as egg yolk, egg white, animal glue, casein, and drying oil. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Isolation and quantification of Quillaja saponaria Molina saponins and lipids in iscom-matrix and iscoms.

    PubMed

    Behboudi, S; Morein, B; Rönnberg, B

    1995-12-01

    In the iscom, multiple copies of antigen are attached by hydrophobic interaction to a matrix which is built up by Quillaja triterpenoid saponins and lipids. Thus, the iscom presents antigen in multimeric form in a small particle with a built-in adjuvant resulting in a highly immunogenic antigen formulation. We have designed a chloroform-methanol-water extraction procedure to isolate the triterpenoid saponins and lipids incorporated into iscom-matrix and iscoms. The triterpenoids in the triterpenoid phase were quantitated using orcinol sulfuric acid detecting their carbohydrate chains and by HPLC. The cholesterol and phosphatidylcholine in the lipid phase were quantitated by HPLC and a commercial colorimetric method for the cholesterol. The quantitative methods showed an almost total separation and recovery of triterpenoids and lipids in their respective phases, while protein was detected in all phases after extraction. The protein content was determined by the method of Lowry and by amino acid analysis. Amino acid analysis was shown to be the reliable method of the two to quantitate proteins in iscoms. In conclusion, simple, reproducible and efficient procedures have been designed to isolate and quantitate the triterpenoids and lipids added for preparation of iscom-matrix and iscoms. The procedures described should also be useful to adequately define constituents in prospective vaccines.

  19. Liposomal lipid and plasmid DNA delivery to B16/BL6 tumors after intraperitoneal administration of cationic liposome DNA aggregates.

    PubMed

    Reimer, D L; Kong, S; Monck, M; Wyles, J; Tam, P; Wasan, E K; Bally, M B

    1999-05-01

    The transfer of plasmid expression vectors to cells is essential for transfection after administration of lipid-based DNA formulations (lipoplexes). A murine i.p. B16/BL6 tumor model was used to characterize DNA delivery, liposomal lipid delivery, and gene transfer after regional (i.p.) administration of free plasmid DNA and DNA lipoplexes. DNA lipoplexes were prepared using cationic dioleoyldimethylammonium chloride/dioleoylphosphatidylethanolamine (50:50 mol ratio) liposomes mixed with plasmid DNA (1 microgram DNA/10 nmol lipid). The plasmid used contained the chloramphenicol acetyltransferase gene and chloramphenicol acetyltransferase expression (mU/g tumor) was measured to estimate transfection efficiency. Tumor-associated DNA and liposomal lipid levels were measured to estimate the efficiency of lipid-mediated DNA delivery to tumors. Plasmid DNA delivery was estimated using [3H]-labeled plasmid as a tracer, dot blot analysis, and/or Southern analysis. Liposomal lipid delivery was estimated using [14C]-dioleoylphosphatidylethanolamine as a liposomal lipid marker. Gene expression in the B16/BL6 tumors was highly variable, with values ranging from greater than 2,000 mU/g tumor to less than 100 mU/g tumor. There was a tendency to observe enhanced transfection in small (<250 mg) tumors. Approximately 18% of the injected dose of DNA was associated with these small tumors 2 h after i.p. administration. Southern analysis of extracted tumor DNA indicated that plasmid DNA associated with tumors was intact 24 h after administration. DNA and associated liposomal lipid are efficiently bound to tumors after regional administration; however, it is unclear whether delivery is sufficient to abet internalization and appropriate subcellular localization of the expression vector.

  20. The effect of antioxidants on quantitative changes of lysine and methionine in linoleic acid emulsions at different pH conditions.

    PubMed

    Hęś, Marzanna; Gliszczyńska-Świgło, Anna; Gramza-Michałowska, Anna

    2017-01-01

    Plants are an important source of phenolic compounds. The antioxidant capacities of green tea, thyme and rosemary extracts that contain these compounds have been reported earlier. However, there is a lack of accessible information about their activity against lipid oxidation in emulsions and inhibit the interaction of lipid oxidation products with amino acids. Therefore, the influence of green tea, thyme and rosemary extracts and BHT (butylated hydroxytoluene) on quantitative changes in lysine and methionine in linoleic acid emulsions at a pH of isoelectric point and a pH lower than the isoelectric point of amino acids was investigated. Total phenolic contents in plant extracts were determined spectrophotometrically by using Folin-Ciocalteu's reagent, and individual phenols by using HPLC. The level of oxidation of emulsion was determined using the measurement of peroxides and TBARS (thiobarbituric acid reactive substances). Methionine and lysine in the system were reacted with sodium nitroprusside and trinitrobenzenesulphonic acid respectively, and the absorbance of the complexes was measured. Extract of green tea had the highest total polyphenol content. The system containing antioxidants and amino acid protected linoleic acid more efficiently than by the addition of antioxidants only. Lysine and methionine losses in samples without the addition of antioxidants were lower in their isoelectric points than below these points. Antioxidants decrease the loss of amino acids. The protective properties of antioxidants towards methionine were higher in a pH of isoelectric point whereas towards lysine in pH below this point. Green tea, thyme and rosemary extracts exhibit antioxidant activity in linoleic acid emulsions. Moreover, they can be utilized to inhibit quantitative changes in amino acids in lipid emulsions. However, the antioxidant efficiency of these extracts seems to depend on pH conditions. Further investigations should be carried out to clarify this issue.

  1. Onion extract structural changes during in vitro digestion and its potential antioxidant effect on brain lipids obtained from low- and high-fat-fed mice.

    PubMed

    Hur, S J; Lee, S J; Kim, D H; Chun, S C; Lee, S K

    2013-12-01

    This study investigated the effects of onion (Allium cepa, L.) extract on the antioxidant activity of lipids in low-and high-fat-fed mouse brain lipids and its structural change during in vitro human digestion. The onion extracts were passed through an in vitro human digestion model that simulated the composition of the mouth, stomach, and small intestine juice. The brain lipids were collected from low- and high-fat-fed mouse brain and then incubated with the in vitro-digested onion extracts to determine the lipid oxidation. The results confirmed that the main phenolics of onion extract were kaempferol, myricetin, quercetin, and quercitrin. The quercetin content increased with digestion of the onion extract. Antioxidant activity was strongly influenced by in vitro human digestion of both onion extract and quercetin standard. After digestion by the small intestine, the antioxidant activity values were dramatically increased, whereas the antioxidant activity was less influenced by digestion in the stomach for both onion extract and quercetin standard. The inhibitory effect of lipid oxidation of onion extract in mouse brain lipids increased after digestion in the stomach. The inhibitory effect of lipid oxidation of onion extract was higher in the high-fat-fed mouse brain lipids than that in the low-fat-fed mouse brain lipids. The major study finding is that the antioxidative effect of onion extract may be higher in high-fat-fed mouse brain lipids than that in low-fat-fed mouse brain lipids. Thus, dietary onion may have important applications as a natural antioxidant agent in a high-fat diet.

  2. Effect of lipid extraction on analyses of stable carbon and stable nitrogen isotopes in coastal organisms of the Aleutian archipelago

    USGS Publications Warehouse

    Ricca, M.A.; Miles, A.K.; Anthony, R.G.; Deng, X.; Hung, S.S.O.

    2007-01-01

    We tested whether extracting lipids reduced confounding variation in ??13C and ??15N values by analyzing paired lipid-extracted (LE) and non-lipid-extracted (NLE) samples of bald eagle (Haliaeetus leucocephalus (L., 1766)) whole eggs, muscle tissue from nine seabird and one terrestrial bird species, muscle tissue from four marine fish species, and blue mussels (Mytilus edulis L., 1758) collected from the Aleutian archipelago, Alaska. Lipid extraction significantly increased ??13C by an average of 2.0??? in whole eggs, 0.8??? in avian muscle, 0.2??? in fish muscle, and 0.6??? in blue mussels. Lower ??13C values in NLE samples covaried positively with lipid content across all sample types. Lower ??13C values in NLE samples were not correlated with lipid content within bald eagle eggs and blue mussels, but covaried positively with percent lipid in avian and fish muscles. Neither lipid extraction nor percent lipid significantly changed ??15N values for any sample type. Lower ??13C values in most NLE avian and fish muscle tissues should not confound interpretation of pelagic versus nearshore sources of primary production, but lipid extraction may be necessary when highly precise estimates of ??13C are needed. Lipid extraction may not be necessary when only ??15N is of interest. ?? 2007 NRC.

  3. Significant Enrichment of Polyunsaturated Fatty Acids (PUFAs) in the Lipids Extracted by Supercritical CO2 from the Livers of Australian Rock Lobsters (Jasus edwardsii).

    PubMed

    Nguyen, Trung T; Zhang, Wei; Barber, Andrew R; Su, Peng; He, Shan

    2015-05-13

    Australian rock lobster (Jasus edwardsii) liver contains approximately 24.3% (w/w) lipids, which can contain a high amount of polyunsaturated fatty acids (PUFAs). However, this material has been found to be contaminated with arsenic (240 mg/kg) and cadmium (8 mg/kg). The high level of contaminants in the raw material and the large amount of PUFAs in the lipids prove a significant challenge in the extraction of high-quality lipids from this byproduct by conventional methods. Supercritical carbon dioxide (SC-CO2) extraction is a highly promising technology for lipid extraction with advantages including low contamination and low oxidation. The technique was optimized to achieve nearly 94% extraction of lipids relative to conventional Soxhlet extraction in Australian rock lobster liver at conditions of 35 MPa and 50 °C for 4 h. The extracted lipids are significantly enriched in PUFAs at 31.3% of total lipids, 4 times higher than those in the lipids recovered by Soxhlet extraction (7.8%). Specifically, the concentrations of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in SC-CO2 extraction are 7 times higher than those obtained by Soxhlet extraction. Moreover, very small amounts of toxic heavy metals such as lead (Pb), arsenic (As), mercury (Hg), and cadmium (Cd) were detected in the SC-CO2-extracted lipids, 0.5-27 times lower than those in the Soxhlet-extracted lipids, which are 40-200 times lower than the regulatory limit maximum values. The low levels of contaminants and the high proportion of PUFAs (dominated by DHA and EPA) found in the SC-CO2-extracted lipids from Australian rock lobster liver suggest that the material could potentially be used as a valuable source of essential fatty acids for human consumption.

  4. Human Milk MicroRNA and Total RNA Differ Depending on Milk Fractionation

    PubMed Central

    Alsaweed, Mohammed; Hepworth, Anna R.; Lefèvre, Christophe; Hartmann, Peter E.; Geddes, Donna T.

    2015-01-01

    ABSTRACT MicroRNA have been recently discovered in human milk signifying potentially important functions for both the lactating breast and the infant. Whilst human milk microRNA have started to be explored, little data exist on the evaluation of sample processing, and analysis to ensure that a full spectrum of microRNA can be obtained. Human milk comprises three main fractions: cells, skim milk, and lipids. Typically, the skim milk fraction has been measured in isolation despite evidence that the lipid fraction may contain more microRNA. This study aimed to standardize isolation of microRNA and total RNA from all three fractions of human milk to determine the most appropriate sampling and analysis procedure for future studies. Three different methods from eight commercially available kits were tested for their efficacy in extracting total RNA and microRNA from the lipid, skim, and cell fractions of human milk. Each fraction yielded different concentrations of RNA and microRNA, with the highest quantities found in the cell and lipid fractions, and the lowest in skim milk. The column‐based phenol‐free method was the most efficient extraction method for all three milk fractions. Two microRNAs were expressed and validated in the three milk fractions by qPCR using the three recommended extraction kits for each fraction. High expression levels were identified in the skim and lipid milk factions for these microRNAs. These results suggest that careful consideration of both the human milk sample preparation and extraction protocols should be made prior to embarking upon research in this area. J. Cell. Biochem. 116: 2397–2407, 2015. © 2015 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc. PMID:25925799

  5. Human Milk MicroRNA and Total RNA Differ Depending on Milk Fractionation.

    PubMed

    Alsaweed, Mohammed; Hepworth, Anna R; Lefèvre, Christophe; Hartmann, Peter E; Geddes, Donna T; Hassiotou, Foteini

    2015-10-01

    MicroRNA have been recently discovered in human milk signifying potentially important functions for both the lactating breast and the infant. Whilst human milk microRNA have started to be explored, little data exist on the evaluation of sample processing, and analysis to ensure that a full spectrum of microRNA can be obtained. Human milk comprises three main fractions: cells, skim milk, and lipids. Typically, the skim milk fraction has been measured in isolation despite evidence that the lipid fraction may contain more microRNA. This study aimed to standardize isolation of microRNA and total RNA from all three fractions of human milk to determine the most appropriate sampling and analysis procedure for future studies. Three different methods from eight commercially available kits were tested for their efficacy in extracting total RNA and microRNA from the lipid, skim, and cell fractions of human milk. Each fraction yielded different concentrations of RNA and microRNA, with the highest quantities found in the cell and lipid fractions, and the lowest in skim milk. The column-based phenol-free method was the most efficient extraction method for all three milk fractions. Two microRNAs were expressed and validated in the three milk fractions by qPCR using the three recommended extraction kits for each fraction. High expression levels were identified in the skim and lipid milk factions for these microRNAs. These results suggest that careful consideration of both the human milk sample preparation and extraction protocols should be made prior to embarking upon research in this area. © 2015 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.

  6. Diethylstilbestrol in fish tissue determined through subcritical fluid extraction and with GC-MS

    NASA Astrophysics Data System (ADS)

    Qiao, Qinghui; Shi, Nianrong; Feng, Xiaomei; Lu, Jie; Han, Yuqian; Xue, Changhu

    2016-06-01

    As the key point in sex hormone analysis, sample pre-treatment technology has attracted scientists' attention all over the world, and the development trend of sample preparation forwarded to faster and more efficient technologies. Taking economic and environmental concerns into account, subcritical fluid extraction as a faster and more efficient method has stood out as a sample pre-treatment technology. This new extraction technology can overcome the shortcomings of supercritical fluid and achieve higher extraction efficiency at relatively low pressures and temperatures. In this experiment, a simple, sensitive and efficient method has been developed for the determination of diethylstilbestrol (DES) in fish tissue using subcritical 1,1,1,2-tetrafluoroethane (R134a) extraction in combination with gas chromatography-mass spectrometry (GC-MS). After extraction, freezing-lipid filtration was utilized to remove fatty co-extract. Further purification steps were performed with C18 and NH2 solid phase extraction (SPE). Finally, the analyte was derived by heptafluorobutyric anhydride (HFBA), followed by GC-MS analysis. Response surface methodology (RSM) was employed to optimizing the extraction condition, and the optimized was as follows: extraction pressure, 4.3 MPa; extraction temperature, 26°C; amount of co-solvent volume, 4.7 mL. Under this condition, at a spiked level of 1, 5, 10 μg kg-1, the mean recovery of DES was more than 90% with relative standard deviations (RSDs) less than 10%. Finally, the developed method has been successfully used to analyzing the real samples.

  7. Identification of α-tocotrienolquinone epoxides and development of an efficient molecular distillation procedure for quantitation of α-tocotrienol oxidation products in food matrices by high-performance liquid chromatography with diode array and fluorescence detection.

    PubMed

    Büsing, Anne; Drotleff, Astrid M; Ternes, Waldemar

    2012-08-29

    The aim of this study was to investigate the most important oxidation products of α-tocotrienol (α-T3) along with other tocochromanols in lipid matrices and tocotrienol-rich foods. For this purpose, an efficient molecular distillation procedure was developed for the extraction of analytes, and α-T3-spiked and thermally oxidized natural lipids (lard and wheat germ oil) and α-T3-rich foods (wholemeal rye bread and oil from dried brewer's spent grain) were investigated through HPLC-DAD-F. The following α-T3 oxidation products were extractable from lipid matrices along with tocochromanols: α-tocotrienolquinone (α-T3Q), α-tocotrienolquinone-4a,5-epoxide (α-T3Q-4a,5-E), α-tocotrienolquinone-7,8-epoxide (α-T3Q-7,8-E), 7-formyl-β-tocotrienol (7-FβT3), and 5-formyl-γ-tocotrienol (5-FγT3). Recovery rates were as high as 88% and enrichment factors up to 124. The proposed method allows the investigation of α-T3Q, α-T3Q-4a,5-E, α-T3Q-7,8-E, 7-FβT3, and 5-FγT3 in small quantities (<0.78 μg/g) in lipid matrices, which is necessary for the investigation and analysis of the formation kinetics of these oxidation products in fat, oils, and tocotrienol-rich foods.

  8. Enhancement of Lipid Extraction from Marine Microalga, Scenedesmus Associated with High-Pressure Homogenization Process

    PubMed Central

    Cho, Seok-Cheol; Choi, Woon-Yong; Oh, Sung-Ho; Lee, Choon-Geun; Seo, Yong-Chang; Kim, Ji-Seon; Song, Chi-Ho; Kim, Ga-Vin; Lee, Shin-Young; Kang, Do-Hyung; Lee, Hyeon-Yong

    2012-01-01

    Marine microalga, Scenedesmus sp., which is known to be suitable for biodiesel production because of its high lipid content, was subjected to the conventional Folch method of lipid extraction combined with high-pressure homogenization pretreatment process at 1200 psi and 35°C. Algal lipid yield was about 24.9% through this process, whereas only 19.8% lipid can be obtained by following a conventional lipid extraction procedure using the solvent, chloroform : methanol (2 : 1, v/v). Present approach requires 30 min process time and a moderate working temperature of 35°C as compared to the conventional extraction method which usually requires >5 hrs and 65°C temperature. It was found that this combined extraction process followed second-order reaction kinetics, which means most of the cellular lipids were extracted during initial periods of extraction, mostly within 30 min. In contrast, during the conventional extraction process, the cellular lipids were slowly and continuously extracted for >5 hrs by following first-order kinetics. Confocal and scanning electron microscopy revealed altered texture of algal biomass pretreated with high-pressure homogenization. These results clearly demonstrate that the Folch method coupled with high-pressure homogenization pretreatment can easily destruct the rigid cell walls of microalgae and release the intact lipids, with minimized extraction time and temperature, both of which are essential for maintaining good quality of the lipids for biodiesel production. PMID:22969270

  9. Combination of counterpropagation artificial neural networks and antioxidant activities for comprehensive evaluation of associated-extraction efficiency of various cyclodextrins in the traditional Chinese formula Xue-Zhi-Ning.

    PubMed

    Sun, Lili; Yang, Jianwen; Wang, Meng; Zhang, Huijie; Liu, Yanan; Ren, Xiaoliang; Qi, Aidi

    2015-11-10

    Xue-Zhi-Ning (XZN) is a widely used traditional Chinese medicine formula to treat hyperlipidemia. Recently, cyclodextrins (CDs) have been extensively used to minimize problems relative to medicine bioavailability, such as low solubility and poor stability. The objective of this study was to determine the associated-extraction efficiency of various CDs in XZN. Three various type CDs were evaluated, including native CDs (α-CD, β-CD), hydrophilic CD derivatives (HP-β-CD and Me-β-CD), and ionic CD derivatives (SBE-β-CD and CM-β-CD). An ultra high-performance liquid chromatography (UHPLC) fingerprint was applied to determine the components in CD extracts and original aqueous extract (OAE). A counterpropagation artificial neural network (CP-ANN) was used to analyze the components in different extracts and compare the selective extraction of various CDs. Extraction efficiencies of the various CDs in terms of extracted components follow the ranking, ionic CD derivatives>hydrophilic CD derivatives>native CDs>OAE. Besides, different types of CDs have their own selective extraction and ionic CD derivatives present the strongest associated-extraction efficiency. Antioxidant potentials of various extracts were evaluated by determining the inhibition of spontaneous, H2O2-induced, CCl4-induced and Fe(2+)/ascorbic acid-induced lipid peroxidation (LPO) and analyzing the scavenging capacity for DPPH and hydroxyl radicals. The order of extraction efficiencies of the various CDs relative to antioxidant activities is as follows: SBE-β-CD>CM-β-CD>HP-β-CD>Me-β-CD>β-CD>α-CD. It can be demonstrated that all of the CDs studied increase the extraction efficiency and that ionic CD derivatives (SBE-β-CD and CM-β-CD) present the highest extraction capability in terms of amount extracted and antioxidant activities of extracts. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Extraction of microalgal lipids and the influence of polar lipids on biodiesel production by lipase-catalyzed transesterification.

    PubMed

    Navarro López, Elvira; Robles Medina, Alfonso; González Moreno, Pedro Antonio; Esteban Cerdán, Luis; Molina Grima, Emilio

    2016-09-01

    In order to obtain microalgal saponifiable lipids (SLs) fractions containing different polar lipid (glycolipids and phospholipids) contents, SLs were extracted from wet Nannochloropsis gaditana microalgal biomass using seven extraction systems, and the polar lipid contents of some fractions were reduced by low temperature acetone crystallization. We observed that the polar lipid content in the extracted lipids depended on the polarity of the first solvent used in the extraction system. Lipid fractions with polar lipid contents between 75.1% and 15.3% were obtained. Some of these fractions were transformed into fatty acid methyl esters (FAMEs, biodiesel) by methanolysis, catalyzed by the lipases Novozym 435 and Rhizopus oryzae in tert-butanol medium. We observed that the reaction velocity was higher the lower the polar lipid content, and that the final FAME conversions achieved after using the same lipase batch to catalyze consecutive reactions decreased in relation to an increase in the polar lipid content. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Nanostructured Lipid Carriers (NLC) as Vehicles for Topical Administration of Sesamol: In Vitro Percutaneous Absorption Study and Evaluation of Antioxidant Activity.

    PubMed

    Puglia, Carmelo; Lauro, Maria Rosaria; Offerta, Alessia; Crascì, Lucia; Micicchè, Lucia; Panico, Anna Maria; Bonina, Francesco; Puglisi, Giovanni

    2017-03-01

    Sesamol is a natural phenolic compound extracted from Sesamum indicum seed oil. Sesamol is endowed with several beneficial effects, but its use as a topical agent is strongly compromised by unfavorable chemical-physical properties. Therefore, to improve its characteristics, the aim of the present work was the formulation of nanostructured lipid carriers as drug delivery systems for topical administration of sesamol.Two different nanostructured lipid carrier systems have been produced based on the same solid lipid (Compritol® 888 ATO) but in a mixture with two different kinds of oil phase such as Miglyol® 812 (nanostructured lipid carrier-M) and sesame oil (nanostructured lipid carrier-PLUS). Morphology and dimensional distribution of nanostructured lipid carriers have been characterized by differential scanning calorimetry and photon correlation spectroscopy, respectively. The release pattern of sesamol from nanostructured lipid carriers was evaluated in vitro determining drug percutaneous absorption through excised human skin. Furthermore, an oxygen radical absorbance capacity assay was used to determine their antioxidant activity.From the results obtained, the method used to formulate nanostructured lipid carriers led to a homogeneous dispersion of particles in a nanometric range. Sesamol has been encapsulated efficiently in both nanostructured lipid carriers, with higher encapsulation efficiency values (> 90 %) when sesame oil was used as the oil phase (nanostructured lipid carrier-PLUS). In vitro evidences show that nanostructured lipid carrier dispersions were able to control the rate of sesamol diffusion through the skin, with respect to the reference formulations.Furthermore, the oxygen radical absorbance capacity assay pointed out an interesting and prolonged antioxidant activity of sesamol, especially when vehiculated by nanostructured lipid carrier-PLUS. Georg Thieme Verlag KG Stuttgart · New York.

  12. Utilization of non-conventional systems for conversion of biomass to food components: Recovery optimization and characterizations of algal proteins and lipids

    NASA Technical Reports Server (NTRS)

    Karel, M.; Nakhost, Z.

    1986-01-01

    Protein isolate obtained from green algae (Scenedesmus obliquus) cultivated under controlled conditions was characterized. Molecular weight determination of fractionated algal proteins using SDS-polyacrylamide gel electrophoresis revealed a wide spectrum of molecular weights ranging from 15,000 to 220,000. Isoelectric points of dissociated proteins were in the range of 3.95 to 6.20. Amino acid composition of protein isolate compared favorably with FAO standards. High content of essential amino acids leucine, valine, phenylalanine and lysine makes algal protein isolate a high quality component of closed environment life support system (CELSS) diets. To optimize the removal of algal lipids and pigments supercritical carbon dioxide extraction (with and without ethanol as a co-solvent) was used. Addition of ethanol to supercritical CO2 resulted in more efficient removal of algal lipids and produced protein isolate with a good yield and protein recovery. The protein isolate extracted by the above mixture had an improved water solubility.

  13. An effective placental cotyledons proteins extraction method for 2D gel electrophoresis.

    PubMed

    Tan, Niu J; Daim, Leona D J; Jamil, Amilia A M; Mohtarrudin, Norhafizah; Thilakavathy, Karuppiah

    2017-03-01

    Effective protein extraction is essential especially in producing a well-resolved proteome on 2D gels. A well-resolved placental cotyledon proteome, with good reproducibility, have allowed researchers to study the proteins underlying the physiology and pathophysiology of pregnancy. The aim of this study is to determine the best protein extraction protocol for the extraction of protein from placental cotyledons tissues for a two-dimensional gel electrophoresis (2D-GE). Based on widely used protein extraction strategies, 12 different extraction methodologies were carefully selected, which included one chemical extraction, two mechanical extraction coupled protein precipitations, and nine chemical extraction coupled protein precipitations. Extracted proteins were resolved in a one-dimensional gel electrophoresis and 2D-GE; then, it was compared with set criteria: extraction efficacy, protein resolution, reproducibility, and recovery efficiency. Our results revealed that a better profile was obtained by chemical extraction in comparison to mechanical extraction. We further compared chemical extraction coupled protein precipitation methodologies, where the DNase/lithium chloride-dense sucrose homogenization coupled dichloromethane-methanol precipitation (DNase/LiCl-DSH-D/MPE) method showed good protein extraction efficiency. This, however, was carried out with the best protein resolution and proteome reproducibility on 2D-gels. DNase/LiCl-DSH-D/MPE was efficient in the extraction of proteins from placental cotyledons tissues. In addition, this methodology could hypothetically allow the protein extraction of any tissue that contains highly abundant lipid and glycogen. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A Simple, Cost-Efficient Method to Separate Microalgal Lipids from Wet Biomass Using Surface Energy-Modified Membranes.

    PubMed

    Kwak, Moo Jin; Yoo, Youngmin; Lee, Han Sol; Kim, Jiyeon; Yang, Ji-Won; Han, Jong-In; Im, Sung Gap; Kwon, Jong-Hee

    2016-01-13

    For the efficient separation of lipid extracted from microalgae cells, a novel membrane was devised by introducing a functional polymer coating onto a membrane surface by means of an initiated chemical vapor deposition (iCVD) process. To this end, a steel-use-stainless (SUS) membrane was modified in a way that its surface energy was systemically modified. The surface modification by conformal coating of functional polymer film allowed for selective separation of oil-water mixture, by harnessing the tuned interfacial energy between each liquid phase and the membrane surface. The surface-modified membrane, when used with chloroform-based solvent, exhibited superb permeate flux, breakthrough pressure, and also separation yield: it allowed separation of 95.5 ± 1.2% of converted lipid (FAME) in the chloroform phase from the water/MeOH phase with microalgal debris. This result clearly supported that the membrane-based lipid separation is indeed facilitated by way of membrane being functionalized, enabling us to simplify the whole downstream process of microalgae-derived biodiesel production.

  15. Improved biomass and lipid production in Synechocystis sp. NN using industrial wastes and nano-catalyst coupled transesterification for biodiesel production.

    PubMed

    Jawaharraj, Kalimuthu; Karpagam, Rathinasamy; Ashokkumar, Balasubramaniem; Kathiresan, Shanmugam; Moorthy, Innasi Muthu Ganesh; Arumugam, Muthu; Varalakshmi, Perumal

    2017-10-01

    In this study, the improved biomass (1.6 folds) and lipid (1.3 folds) productivities in Synechocystis sp. NN using agro-industrial wastes supplementation through hybrid response surface methodology-genetic algorithm (RSM-GA) for cost-effective methodologies for biodiesel production was achieved. Besides, efficient harvesting in Synechocystis sp. NN was achieved by electroflocculation (flocculation efficiency 97.8±1.2%) in 10min when compared to other methods. Furthermore, different pretreatment methods were employed for lipid extraction and maximum lipid content of 19.3±0.2% by Synechocystis sp. NN was attained by ultrasonication than microwave and liquid nitrogen assisted pretreatment methods. The highest FAME (fatty acid methyl ester) conversion of 36.5±8.3mg FAME/g biomass was obtained using titanium oxide as heterogeneous nano-catalyst coupled whole-cell transesterification based method. Conclusively, Synechocystis sp. NN may be used as a biodiesel feedstock and its fuel production can be enriched by hybrid RSM-GA and nano-catalyst technologies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Improved Butanol-Methanol (BUME) Method by Replacing Acetic Acid for Lipid Extraction of Biological Samples.

    PubMed

    Cruz, Mutya; Wang, Miao; Frisch-Daiello, Jessica; Han, Xianlin

    2016-07-01

    Extraction of lipids from biological samples is a critical step in lipidomics, especially for shotgun lipidomics where lipid extracts are directly infused into a mass spectrometer. The butanol-methanol (BUME) extraction method was originally developed to extract lipids from plasma samples with 1 % acetic acid. Considering some lipids are sensitive to acidic environments, we modified this protocol by replacing acetic acid with lithium chloride solution and extended the modified extraction to tissue samples. Although no significant reduction of plasmalogen levels in the acidic BUME extracts of rat heart samples was found, the modified method was established to extract various tissue samples, including rat liver, heart, and plasma. Essentially identical profiles of the majority of lipid classes were obtained from the extracts of the modified BUME and traditional Bligh-Dyer methods. However, it was found that neither the original, nor the modified BUME method was suitable for 4-hydroxyalkenal species measurement in biological samples.

  17. Improved Butanol-Methanol (BUME) Method by Replacing Acetic Acid for Lipid Extraction of Biological Samples

    PubMed Central

    Cruz, Mutya; Wang, Miao; Frisch-Daiello, Jessica; Han, Xianlin

    2016-01-01

    Extraction of lipids from biological samples is a critical step in lipidomics, especially for shotgun lipidomics where lipid extracts are directly infused into a mass spectrometer. The butanol-methanol (BUME) extraction method was originally developed to extract lipids from plasma samples with 1% acetic acid. Considering some lipids are sensitive to acidic environments, we modified this protocol by replacing acetic acid with lithium chloride solution and extended the modified extraction to tissue samples. Although no significant reduction of plasmalogen levels in the acidic BUME extracts of rat heart samples was found, the modified method was established to extract various tissue samples, including rat liver, heart, and plasma. Essentially identical profiles of the majority of lipid classes were obtained from the extracts of the modified BUME and traditional Bligh-Dyer methods. However, it was found that neither the original, nor the modified BUME method was suitable for 4-hydroxyalkenal species measurement in biological samples. PMID:27245345

  18. Lipid Extraction Techniques for Stable Isotope Analysis and Ecological Assays.

    PubMed

    Elliott, Kyle H; Roth, James D; Crook, Kevin

    2017-01-01

    Lipid extraction is an important component of many ecological and ecotoxicological measurements. For instance, percent lipid is often used as a measure of body condition, under the assumption that those individuals with higher lipid reserves are healthier. Likewise, lipids are depleted in 13 C compared with protein, and it is consequently a routine to remove lipids prior to measuring carbon isotopes in ecological studies so that variation in lipid content does not obscure variation in diet. We provide detailed methods for two different protocols for lipid extraction: Soxhlet apparatus and manual distillation. We also provide methods for polar and nonpolar solvents. Neutral (nonpolar) solvents remove some lipids but few non-lipid compounds, whereas polar solvents remove most lipids but also many non-lipid compounds. We discuss each of the methods and provide guidelines for best practices. We recommend that, for stable isotope analysis, researchers test for a relationship between the change in carbon stable isotope ratio and the amount of lipid extracted to see if the degree of extraction has an impact on isotope ratios. Stable isotope analysis is widely used by ecologists, and we provide a detailed methodology that minimizes known biases.

  19. Lipid extraction from isolated single nerve cells

    NASA Technical Reports Server (NTRS)

    Krasnov, I. V.

    1977-01-01

    A method of extracting lipids from single neurons isolated from lyophilized tissue is described. The method permits the simultaneous extraction of lipids from 30-40 nerve cells and for each cell provides equal conditions of solvent removal at the conclusion of extraction.

  20. Effects of lipid extraction on nutritive composition of winged bean (Psophocarpus tetragonolobus), rubber seed (Hevea brasiliensis), and tropical almond (Terminalia catappa).

    PubMed

    Jayanegara, Anuraga; Harahap, Rakhmad P; Rozi, Richard F; Nahrowi

    2018-04-01

    This experiment aimed to evaluate the nutritive composition and in vitro rumen fermentability and digestibility of intact and lipid-extracted winged bean, rubber seed, and tropical almond. Soybean, winged bean, rubber seed, and tropical almond were subjected to lipid extraction and chemical composition determination. Lipid extraction was performed through solvent extraction by Soxhlet procedure. Non-extracted and extracted samples of these materials were evaluated for in vitro rumen fermentation and digestibility assay using rumen: Buffer mixture. Parameters measured were gas production kinetics, total volatile fatty acid (VFA) concentration, ammonia, in vitro dry matter (IVDMD) and in vitro organic matter digestibility (IVOMD). Data were analyzed by analysis of variance and Duncan's multiple range test. Soybean, winged bean, rubber seed, and tropical almond contained high amounts of ether extract, i.e., above 20% DM. Crude protein contents of soybean, winged bean, rubber seed, and tropical almond increased by 17.7, 4.7, 55.2, and 126.5% after lipid extraction, respectively. In vitro gas production of intact winged bean was the highest among other materials at various time point intervals (p<0.05), followed by soybean > rubber seed > tropical almond. Extraction of lipid increased in vitro gas production, total VFA concentration, IVDMD, and IVOMD of soybean, winged bean, rubber seed, and tropical almond (p<0.05). After lipid extraction, all feed materials had similar IVDMD and IVOMD values. Lipid extraction improved the nutritional quality of winged bean, rubber seed, and tropical almond.

  1. Antioxidant activity of Crataegus aronia aqueous extract used in traditional Arab medicine in Israel.

    PubMed

    Ljubuncic, Predrag; Portnaya, Irina; Cogan, Uri; Azaizeh, Hassan; Bomzon, Arieh

    2005-10-03

    The medicinal use of extracts prepared from plant parts of the genus Crataegus dates back to ancient times. Furthermore, it has been proposed that its antioxidant constituents account for its beneficial therapeutic effects. A decoction of leaves and unripe fruits from Crataegus aronia syn. azarolus (L) (Rosaceae), the indigenous Israeli hawthorn, is used to treat cardiovascular diseases, cancer, diabetes and sexual weakness in Arab traditional medicine. Because laboratory data on the bioactivity of extracts prepared from the indigenous Israeli hawthorn is lacking, we evaluated the antioxidant and cytotoxic potentials of an extract prepared from leaves and unripe fruits in a variety of cell and cell-free in vitro assays. The antioxidant assays measured: (a) its ability to inhibit (i) oxidation of beta-carotene, (ii) 2,2'-azobis(2-amidino-propan) dihydrochloride (AAPH)-induced plasma oxidation and (iii) iron-induced lipid peroxidation in rat liver homogenates; (b) its ability to scavenge the superoxide (O2-) radical; (c) its effects on the enzyme xanthine oxidase (XO) activity; (d) its effect on the redox state of glutathione (GSH) in cultured Hep G2 cells. In addition, we also evaluated the effects of the extract on cell membrane integrity and mitochondrial respiration in cultured Hep G2 cells. Water-soluble extracts inhibited (1) oxidation of beta-carotene, (2) AAPH-induced plasma oxidation and (3) Fe(2+)-induced lipid peroxidation in rat liver homogenates. In addition, the extract (4) is an efficient scavenger of the O2- (5) increases intracellular GSH levels and (6) is not cytotoxic. Accordingly, we propose that the therapeutic benefit of Crataegus aronia can be, at least in part, attributed to its effective inhibition of oxidative processes, efficient scavenging of O2- and possible increasing GSH biosynthesis.

  2. Microwave-assisted extraction of lipid from fish waste

    NASA Astrophysics Data System (ADS)

    Rahimi, M. A.; Omar, R.; Ethaib, S.; Siti Mazlina, M. K.; Awang Biak, D. R.; Nor Aisyah, R.

    2017-06-01

    Processing fish waste for extraction of value added products such as protein, lipid, gelatin, amino acids, collagen and oil has become one of the most intriguing researches due to its valuable properties. In this study the extraction of lipid from sardine fish waste was carried out using microwave-assisted extraction (MAE) and compared with Soxhlets and Hara and Radin methods. A mixture of two organic solvents isopropanol/hexane and distilled water were used for MAE and Hara and Radin methods. Meanwhile, Soxhlet method utilized only hexane as solvent. The results show that the higher yield of lipid 80.5 mg/g was achieved using distilled water in MAE method at 10 min extraction time. Soxhlet extraction method only produced 46.6 mg/g of lipid after 4 hours of extraction time. Lowest yield of lipid was found at 15.8 mg/g using Hara and Radin method. Based on aforementioned results, it can be concluded MAE method is superior compared to the Soxhlet and Hara and Radin methods which make it an attractive route to extract lipid from fish waste.

  3. Lipid extraction of wet BLT0404 microalgae for biofuel application

    NASA Astrophysics Data System (ADS)

    Mansur, Dieni; Fitriady, Muhammad Arifuddin; Susilaningsih, Dwi; Simanungkalit, Sabar Pangihutan; Agustian, Egi

    2017-01-01

    Recently, research and development of microalgae for biodiesel production were conducted by researchers in the world. This research becomes popular because of an exponential growth of the microalgae under nutrient limitation. Lipid of microalgae grows faster than oil producing land crops. Therefore, microalgae lipid content could improve the economics of biodiesel production. The aim of this study was to investigate yield of lipid extract and chemicals compounds containing in non-acylglycerol neutral lipid from BLT 0404 microalga. The study was conducted because lipid extraction was an important step for biodiesel as well as biofuel production. The extraction was carried out using polar and non-polar mixture solvents. The polar solvent was methanol and non-polar one was chloroform. Process extraction was conducted under various stirring time between the microalgae and methanol and volume ratio between the methanol and chloroform. Methanol as a polar solvent was able to extract polar lipid (phospholipid and glycolipid) because it removed polar membrane lipid and lipid-associated to polar molecule. Moreover, the non-polar solvent was used for extraction non-acylglycerol neutral lipid (hydrocarbons, sterols, ketones, free fatty acids, carotenes, and chlorophylls) for biofuel production. Under ratio of microalgae: methanol: chloroform of 0.8: 4: 2 that stirring time of the microalgae with methanol was 30 min yielded 58% of total lipid extract. The yield value consisted of 14.5% of non-acylglycerol neutral lipid and 43.5% of polar lipid. The non-acylglycerol neutral lipid will be converted into biofuel. Therefore, analysis of its chemical compounds was required. The non-acylglycerol neutral lipid was analyzed by GCMS and found that the extract contained long chains of hydrocarbon compounds. The hydrocarbons consisted of C18-C30 that high peaks with larger percentage area were C20-C26. The results suggested that stirring between microalgae and methanol for 30 min was needed before additional of chloroform. Moreover, the ratio of methanol must be higher than chloroform due to the higher portion of polar lipid content in the microalgae.

  4. Lipid recovery from wet oleaginous microbial biomass for biofuel production: A critical review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Tao; Knoshaug, Eric P.; Pienkos, Philip T.

    Biological lipids derived from oleaginous microorganisms are promising precursors for renewable biofuel productions. Direct lipid extraction from wet cell-biomass is favored because it eliminates the need for costly dehydration. However, the development of a practical and scalable process for extracting lipids from wet cell-biomass is far from ready to be commercialized, instead, requiring intensive research and development to understand the lipid accessibility, mechanisms in mass transfer and establish robust lipid extraction approaches that are practical for industrial applications. Furthermore, this paper aims to present a critical review on lipid recovery in the context of biofuel productions with special attention tomore » cell disruption and lipid mass transfer to support extraction from wet biomass.« less

  5. Lipid recovery from wet oleaginous microbial biomass for biofuel production: A critical review

    DOE PAGES

    Dong, Tao; Knoshaug, Eric P.; Pienkos, Philip T.; ...

    2016-06-15

    Biological lipids derived from oleaginous microorganisms are promising precursors for renewable biofuel productions. Direct lipid extraction from wet cell-biomass is favored because it eliminates the need for costly dehydration. However, the development of a practical and scalable process for extracting lipids from wet cell-biomass is far from ready to be commercialized, instead, requiring intensive research and development to understand the lipid accessibility, mechanisms in mass transfer and establish robust lipid extraction approaches that are practical for industrial applications. Furthermore, this paper aims to present a critical review on lipid recovery in the context of biofuel productions with special attention tomore » cell disruption and lipid mass transfer to support extraction from wet biomass.« less

  6. A comparative evaluation of six principal IgY antibody extraction methods.

    PubMed

    Ren, Hao; Yang, Wenjing; Thirumalai, Diraviyam; Zhang, Xiaoying; Schade, Rüdiger

    2016-03-01

    Egg yolk has been considered a promising source of antibodies. Our study was designed to compare six principal IgY extraction methods (water dilution, polyethylene glycol [PEG] precipitation, caprylic acid extraction, chloroform extraction, phenol extraction, and carrageenan extraction), and to assess their relative extraction efficiencies and the purity of the resulting antibodies. The results showed that the organic solvents (chloroform or phenol) minimised the lipid ratio in the egg yolk. The water dilution, PEG precipitation and caprylic acid extraction methods resulted in high yields, and antibodies purified with PEG and carrageenan exhibited high purity. Our results indicate that phenol extraction would be more suitable for preparing high concentrations of IgY for non-therapeutic usage, while the water dilution and carrageenan extraction methods would be more appropriate for use in the preparation of IgY for oral administration. 2016 FRAME.

  7. Effect of Flaxseed Meals and Extracts on Lipid Stability in a Stored Meat Product.

    PubMed

    Waszkowiak, Katarzyna; Rudzińska, Magdalena

    2014-01-01

    Flaxseeds have been recently in focus due to the antioxidant capacity of some of their compounds. However, there is a lack of easily accessible information concerning their activity against lipid oxidation in food systems. Therefore, the aim of the study was to determine the effect of defatted meals (DFM) and the aqueous extracts (AFE) obtained from brown and golden flaxseeds on lipid oxidation in pork meatballs. Fatty acid composition, peroxide value (PV), thiobarbituric acid reactive substances (TBARS) and cholesterol content were monitored during 6 months of freezer storage. Cholesterol oxidation products were identified and quantified. Both DFM and AFE limited fatty acid and cholesterol oxidation during meatball storage. Their antioxidant effect depended on flax variety (brown or golden) and preparation type (DFM or AFE). Lower level of PV and TBARS, compared with the ones with AFE, were noted in meatballs with DFM. Both DFM and AFE, from the brown seed variety, protect the lipids against oxidation to a higher extent. During the storage, a cholesterol degradation was observed. AFE (particularly from the brown variety) limited changes in cholesterol content. Moreover, they stabilized fatty acid composition of stored meatballs. However, DFM efficiently inhibited cholesterol oxidation.

  8. Comparison of the capture efficiency, prey processing, and nutrient extraction in a generalist and a specialist spider predator.

    PubMed

    García, Luis Fernando; Viera, Carmen; Pekár, Stano

    2018-04-02

    Predators are traditionally classified as generalists and specialists based on the presence of adaptations that increase efficiency of prey capture and consumption and selection of particular prey types. Nevertheless, empirical evidence comparing foraging efficiency between generalist and specialist carnivores is scarce. We compared the prey-capture and feeding efficiency in a generalist and a specialist (araneophagous) spider predator. By using two related species, the generalist Harpactea rubicunda (Dysderidae) and the specialist Nops cf. variabilis (Caponiidae), we evaluated their fundamental trophic niche by studying the acceptance of different prey. Then, we compared their predatory behavior, efficiency in capturing prey of varying sizes, feeding efficiency, and nutrient extraction. Nops accepted only spiders as prey, while Harpactea accepted all offered prey, confirming that Nops is stenophagous, while Harpactea is euryphagous. Further, Nops displayed more specialized (stereotyped) capture behavior than Harpactea, suggesting that Nops is a specialist, while Harpactea is a generalist. The specialist immobilized prey faster, overcame much larger prey, and gained more mass (due to feeding on larger prey) than the generalist. Both the specialist and the generalist spider extracted more proteins than lipids, but the extraction of macronutrients in the specialist was achieved mainly by consuming the prosoma of the focal prey. We show that the specialist has more efficient foraging strategy than the generalist.

  9. A Teaching Laboratory for Comprehensive Lipid Characterization from Food Samples

    ERIC Educational Resources Information Center

    Bendinskas, Kestutis; Weber, Benjamin; Nsouli, Tamara; Nguyen, Hoangvy V.; Joyce, Carolyn; Niri, Vadoud; Jaskolla, Thorsten W.

    2014-01-01

    Traditional and state-of-the-art techniques were combined to probe for various lipid classes from egg yolk and avocado qualitatively and quantitatively. A total lipid extract was isolated using liquid-liquid extraction. An aliquot of the total lipid extract was subjected to transesterification to form volatile fatty acid methyl esters suitable for…

  10. In Vivo Inhibition of Lipid Accumulation in Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Sulistiyani; Purwakusumah, E. P.; Andrianto, D.

    2017-03-01

    This is a preliminary research report on the use of Caenorhabditis elegans as a model to establish anti-obesity screening assay of the natural plant resources. Nematode C. elegans has been used as experimental animal model for understanding lipid accumulation. The objective of this research was to investigate the effect of selected plant extracts on lipid accumulation in C. elegans. Currently no report could be found regarding lipid accumulation in C.elegans treated with ethanolic leaf extracts of jabon merah (Anthocephalus macrophyllus), jati belanda (Guazuma ulmifolia), and Mindi (Melia Azedarach) plants. Lipid accumulation was determined qualitatively using lipid staining method and quantitatively by colorimetry using sulpho-phospho-vanillin reagent. Data showed that lipid accumulation was inhibited up to 72% by extract of M. azedarach, about 35% by both of A. macrophyllus and G. ulmifolia extracts, and up to 25% by orlistat (a synthetic slimming drug). Ethanolic extract of A. macrophyllus, G. ulmifolia, and M. azedarach leaves were shown to inhibit lipid accumulation in C. elegans and M. azedarach leaves extracts was the most effective inhibitor. C.elegans were shown to be an effective model for in vivo lipid accumulation mechanism and potential to be used as a rapid screening assay for bioactive compounds with lipid accumulation inhibitory activity.

  11. Intramyocellular Lipid Droplet Size Rather Than Total Lipid Content is Related to Insulin Sensitivity After 8 Weeks of Overfeeding.

    PubMed

    Covington, Jeffrey D; Johannsen, Darcy L; Coen, Paul M; Burk, David H; Obanda, Diana N; Ebenezer, Philip J; Tam, Charmaine S; Goodpaster, Bret H; Ravussin, Eric; Bajpeyi, Sudip

    2017-12-01

    Intramyocellular lipid (IMCL) is inversely related to insulin sensitivity in sedentary populations, yet no prospective studies in humans have examined IMCL accumulation with overfeeding. Twenty-nine males were overfed a high-fat diet (140% caloric intake, 44% from fat) for 8 weeks. Measures of IMCL, whole-body fat oxidation from a 24-hour metabolic chamber, muscle protein extracts, and muscle ceramide measures were obtained before and after the intervention. Eight weeks of overfeeding did not increase overall IMCL. The content of smaller lipid droplets peripherally located in the myofiber decreased, while increases in larger droplets correlated inversely with glucose disposal rate. Overfeeding resulted in inhibition of Akt activity, which correlated with the reductions in smaller, peripherally located lipid droplets and drastic increases in ceramide content. Additionally, peripherally located lipid droplets were associated with more efficient lipid oxidation. Finally, participants who maintained a greater number of smaller, peripherally located lipid droplets displayed a better resistance to weight gain with overfeeding. These results show that lipid droplet size and location rather than mere IMCL content are important to understanding insulin sensitivity. © 2017 The Obesity Society.

  12. Effects of lipid extraction on stable isotope ratios in avian egg yolk: Is arithmetic correction a reliable alternative?

    USGS Publications Warehouse

    Oppel, S.; Federer, R.N.; O'Brien, D. M.; Powell, A.N.; Hollmén, Tuula E.

    2010-01-01

    Many studies of nutrient allocation to egg production in birds use stable isotope ratios of egg yolk to identify the origin of nutrients. Dry egg yolk contains >50% lipids, which are known to be depleted in 13C. Currently, researchers remove lipids from egg yolk using a chemical lipid-extraction procedure before analyzing the isotopic composition of protein in egg yolk. We examined the effects of chemical lipid extraction on ??13C, ??15N, and ??34S of avian egg yolk and explored the utility of an arithmetic lipid correction model to adjust whole yolk ??13C for lipid content. We analyzed the dried yolk of 15 captive Spectacled Eider (Somateriafischeri) and 20 wild King Eider (S. spectabilis) eggs, both as whole yolk and after lipid extraction with a 2:1 chloroform:methanol solution. We found that chemical lipid extraction leads to an increase of (mean ?? SD) 3.3 ?? 1.1% in ??13C, 1.1 ?? 0.5% in ??15N, and 2.3 ?? 1.1% in ??34S. Arithmetic lipid correction provided accurate values for lipid-extracted S13C in captive Spectacled Eiders fed on a homogeneous high-quality diet. However, arithmetic lipid correction was unreliable for wild King Eiders, likely because of their differential incorporation of macronutrients from isotopically distinct environments during migration. For that reason, we caution against applying arithmetic lipid correction to the whole yolk ??13C of migratory birds, because these methods assume that all egg macronutrients are derived from the same dietary sources. ?? 2010 The American Ornithologists' Union.

  13. Enhanced fluorescence detection using liquid-liquid extraction in a microfluidic droplet system.

    PubMed

    Chen, Yan-Yu; Chen, Zhao-Ming; Wang, Hsiang-Yu

    2012-11-07

    Reducing the fluorescence background in microfluidic assays is important in obtaining accurate outcomes and enhancing the quality of detections. This study demonstrates an integrated process including cell labelling, fluorescence background reduction, and biomolecule detection using liquid-liquid extraction in a microfluidic droplet system. The cellular lipids in Chlorella vulgaris and NIH/3T3 cells were labelled with a hydrophobic dye, Nile red, to investigate the performance of the proposed method. The fluorescence background of the lipid detection can be reduced by 85% and the removal efficiency increased with the volume of continuous phase surrounding a droplet. The removal rate of the fluorescence background increased as the surface area to volume ratio of a droplet increased. Before Nile red was removed from the droplet, the signal to noise ratio was as low as 1.30 and it was difficult to distinguish cells from the background. Removing Nile red increased the signal to noise ratio to 22 and 34 for Chlorella vulgaris and NIH/3T3, respectively, and these were 17 fold and 10 fold of the values before extraction. The proposed method successfully demonstrates the enhancement of fluorescence detection of cellular lipids and has great potential in improving other fluorescence-based detections in microfluidic systems.

  14. Ultrasound extraction and thin layer chromatography-flame ionization detection analysis of the lipid fraction in marine mucilage samples.

    PubMed

    Mecozzi, M; Amici, M; Romanelli, G; Pietrantonio, E; Deluca, A

    2002-07-19

    This paper reports an analytical procedure based on ultrasound to extract lipids in marine mucilage samples. The experimental conditions of the ultrasound procedure (solvent and time) were identified by a FT-IR study performed on different standard samples of lipids and of a standard humic sample, before and after the sonication treatment. This study showed that diethyl ether was a more suitable solvent than methanol for the ultrasonic extraction of lipids from environmental samples because it allowed to minimize the possible oxidative modifications of lipids due to the acoustic cavitation phenomena. The optimized conditions were applied to the extraction of total lipid amount in marine mucilage samples and TLC-flame ionization detection analysis was used to identify the relevant lipid sub-fractions present in samples.

  15. Review on the Extraction Methods of Crude oil from all Generation Biofuels in last few Decades

    NASA Astrophysics Data System (ADS)

    Bhargavi, G.; Nageswara Rao, P.; Renganathan, S.

    2018-03-01

    The ever growing demand for the energy fuels, economy of oil, depletion of energy resources and environmental protection are the inevitable challenges required to be solved meticulously in future decades in order to sustain the life of humans and other creatures. Switching to alternate fuels that are renewable, biodegradable, economically and environmentally friendly can quench the minimum thirst of fuel demands, in addition to mitigation of climate changes. At this moment, production of biofuels has got prominence. The term biofuels broadly refer to the fuels derived from living matter either animals or plants. Among the competent biofuels, biodiesel is one of the promising alternates for diesel engines. Biodiesel is renewable, environmentally friendly, safe to use with wide applications and biodegradable. Due to which, it has become a major focus of intensive global research and development of alternate energy. The present review has been focused specifically on biodiesel. Concerning to the biodiesel production, the major steps includes lipid extraction followed by esterification/transesterification. For the extraction of lipids, several extraction techniques have been put forward irrespective of the generations and feed stocks used. This review provides theoretical background on the two major extraction methods, mechanical and chemical extraction methods. The practical issues of each extraction method such as efficiency of extraction, extraction time, oil sources and its pros and cons are discussed. It is conceived that congregating information on oil extraction methods may helpful in further research advancements to ease biofuel production.

  16. Coconut oil and beef tallow, but not tricaprylin, can replace menhaden oil in the diet of red drum (Sciaenops ocellatus) without adversely affecting growth or fatty acid composition.

    PubMed

    Craig, S R; Gatlin, D M

    1995-12-01

    The ability of juvenile red drum (Sciaenops ocellatus) to utilize medium-chain triglycerides (MCT) and other saturated dietary lipids was investigated in two 6-wk feeding experiments. Diets contained solvent-extracted menhaden fish meal to which menhaden fish oil (control), coconut oil, corn oil, beef tallow or various levels of MCT as tricaprylin (30, 46, 65 and 80% of total lipid) were added. Diets were fed to triplicate groups of juvenile red drum in aquaria containing brackish (6%) water. In the first feeding experiment, red drum fed the control diet had the greatest weight gains and feed efficiencies. Weight gain, but not feed was slightly, of fish fed corn oil and fish fed coconut oil was slightly (P < 0.05) lower. In the second feeding experiment, fish fed coconut oil and those fed beef tallow had significantly higher weight gains and feed efficiencies than did fish fed the control diet. Fish fed the diets containing tricaprylin at all inclusion levels in both feeding experiments had significantly lower weight gains and feed efficiencies and higher levels of beta-hydroxybutyric acid in plasma. Fish fed diets with high levels of MCT also had lower (n-3) and greater (n-6) fatty acid levels in the neutral lipid fraction of muscle tissue compared with fish fed the control diet. Coconut oil and beef tallow consistently resulted in greater liver lipid deposition but had variable effects on other tissue indices. Saturated dietary lipids had variable effects on fatty acid composition of muscle polar and neutral lipid fractions.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Biodiesel production from microbial oil derived from wood isolate Trichoderma reesei.

    PubMed

    Bharathiraja, B; Sowmya, V; Sridharan, Sridevi; Yuvaraj, D; Jayamuthunagai, J; Praveenkumar, R

    2017-09-01

    In the present study Trichoderma reesei, a wood isolate can yield high biomass quantities up to 30g/L, yielding 32.4% of lipids of dry cell weight (DCW). Biodiesel production from Trichoderma reesei involved simple unit operations like filtration and ultrasonication, yet giving good lipid yield with desirable bio-diesel properties. Optimization of ultrasonication conditions was done to ensure maximum lipid extraction. SEM analysis of ultrasonicated samples showed distinct breakage of fungal hyphae. The lipids were found to contain 49.7% saturated fatty acids. Transesterification using chemical and biological catalysts were compared and 96.09% efficiency was observed for lipase-catalyzed transesterification. The bio-diesel properties satisfied ASTM and EN specifications with cetane number: 53.1, iodine value: 63.34g, saponification value: 235.07mg KOH/g, cold flow plugging point: 9.13°C. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Antihyperlipidemic Effect of Different Fractions Obtained from Teucrium polium Hydroalcoholic Extract in Rats.

    PubMed

    Safaeian, Leila; Ghanadian, Mustafa; Shafiee-Moghadam, Zahra

    2018-01-01

    This study was aimed to screen the antihyperlipidemic effect of different fractions of Teucrium polium to obtain the most efficient herbal fraction for isolation of bioactive constituents responsible for hypolipidemic activity. Chloroform, butanol, and aqueous fractions were obtained from hydroalcoholic extract of T. polium aerial parts using partitioning process. To induce hyperlipidemia, dexamethasone (Dex) was injected 10 mg/kg/day (s.c.) for 8 days. In the test groups, animals received 50, 100 and 150 mg/kg of T. polium hydroalcoholic extract and different fractions orally simultaneously with Dex. Serum lipid profile and hepatic marker enzymes were evaluated using biochemical kits. All treatments, especially chloroform and aqueous fractions, reversed serum lipid markers in hyperlipidemic rats. Maximum reduction in triglyceride (60.2%, P < 0.001) and maximum elevation in high-density lipoprotein (HDL) (35.0%, P < 0.01) was observed for chloroform fraction. Maximum cholesterol-lowering effect (29.0%, P < 0.001) and maximum reduction in low-density lipoprotein were found for hydroalcoholic extract (72.9%, P < 0.001). Aqueous fraction improved all lipid markers at the highest dose. Butanol fraction decreased triglyceride at the lowest dose (43.9%, P < 0.001) and increased HDL (33%, P < 0.05) at the highest dose. There was a significant increase in alanine aminotransferase and aspartate aminotransferase levels in all tested groups compared to normal group ( P < 0.001). This study showed strong antihyperlipidemic effect of various fractions derived from hydroalcoholic extract of T. polium . Chloroform and aqueous fractions may be worthy candidates for isolation of bioactive hypolipidemic constituents. However, possible hepatotoxicity should be considered for clinical application.

  19. Separation, hydrolysis and fermentation of pyrolytic sugars to produce ethanol and lipids.

    PubMed

    Lian, Jieni; Chen, Shulin; Zhou, Shuai; Wang, Zhouhong; O'Fallon, James; Li, Chun-Zhu; Garcia-Perez, Manuel

    2010-12-01

    This paper describes a new scheme to convert anhydrosugars found in pyrolysis oils into ethanol and lipids. Pyrolytic sugars were separated from phenols by solvent extraction and were hydrolyzed into glucose using sulfuric acid as a catalyst. Toxicological studies showed that phenols and acids were the main species inhibiting growth of the yeast Saccharomyces cerevisiae. The sulfuric acids, and carboxylic acids from the bio-oils, were neutralized with Ba(OH)(2). The phase rich in sugar was further detoxified with activated carbon. The resulting aqueous phase rich in glucose was fermented with three different yeasts: S. cerevisiae to produce ethanol, and Cryptococcus curvatus and Rhodotorula glutinis to produce lipids. Yields as high as 0.473 g ethanol/g glucose and 0.167 g lipids/g sugar (0.266 g ethanol equivalent/g sugar), were obtained. These results confirm that pyrolytic sugar fermentation to produce ethanol is more efficient than for lipid production. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  20. A simple and efficient method for preparing partially purified phosvitin from egg yolk using ethanol and salts.

    PubMed

    Ko, K Y; Nam, K C; Jo, C; Lee, E J; Ahn, D U

    2011-05-01

    The objective of this study was to develop a new protocol that could be used for large-scale separation of phosvitin from egg yolk using ethanol and salts. Yolk granules, which contain phosvitin, were precipitated after diluting egg yolk with 9 volumes of distilled water. The pH of the yolk solution was adjusted to pH 4.0 to 8.0 using 6 N HCl or NaOH, and then yolk granules containing phosvitin was separated by centrifugation at 3,220 × g for 30 min. Lipids and phospholipids were removed from the insoluble yolk granules using 85% ethanol. The optimal volumes and concentration of ethanol in removing lipids from the precipitants were determined. After centrifugation, the lipid-free precipitants were homogenized with 9 volumes of ammonium sulfate [(NH(4))(2)SO(4)] or NaCl to extract phosvitin. The optimal pH and concentration of (NH(4))(2)SO(4) or NaCl for the highest recovery rate and purity for phosvitin in final solution were determined. At pH 6.0, all the phosvitin in diluted egg yolk solution was precipitated. Among the (NH(4))(2)SO(4) and NaCl conditions tested, 10% (NH(4))(2)SO(4) or 10% NaCl at pH 4.0 yielded the greatest phosvitin extraction from the lipid-free precipitants. The recovery rates of phosvitin using (NH(4))(2)SO(4) and NaCl were 72 and 97%, respectively, and their purity was approximately 85%. Salt was removed from the extract using ultrafiltration. The salt-free phosvitin solution was concentrated using ultrafiltration, the impurities were removed by centrifugation, and the resulting solution was freeze-dried. The partially purified phosvitin was suitable for human use because ethanol was the only solvent used to remove lipids, (NH(4))(2)SO(4) or NaCl was used to extract phosvitin, and ultrafiltration was used to remove salt and concentrate the extract. The developed method was simple and suitable for a large-scale preparation of partially purified phosvitin.

  1. Combination of Garcinia cambogia Extract and Pear Pomace Extract Additively Suppresses Adipogenesis and Enhances Lipolysis in 3T3-L1 Cells.

    PubMed

    Sharma, Kushal; Kang, Siwon; Gong, Dalseong; Oh, Sung-Hwa; Park, Eun-Young; Oak, Min-Ho; Yi, Eunyoung

    2018-01-01

    Inhibition of adipogenesis has been a therapeutic target for reducing obesity and obesity-related disorders such as diabetes, hypertension, atherosclerosis, and cancer. For decades, anti-adipogenic potential of many herbal extracts has been investigated. One example is Garcinia cambogia extract (GE) containing (-)-hydroxycitric acid as an active ingredient. GE is currently marketed as a weight loss supplement, used alone or with other ingredients. Pear pomace extract (PE), another natural product, has been also shown to have anti-adipogenic activity in a recent report. It was tested if the mixture of PE and GE (MIX) would produce more effective anti-adipogenic activity than PE or GE alone. Differentiation of 3T3-L1 preadipocyte was induced by adding insulin, dexamethasone, and isobutylmethylxanthine and lipid accumulation was measured by Oil Red O staining. Cellular markers for adipogenesis and lipolysis such as CCAAT/enhancer binding protein (C/EBP-α), peroxisome proliferator-activated receptor gamma (PPAR-γ), fatty acid synthase (FAS), and hormone-sensitive lipase (HSL) was measured using immunocytochemistry. MIX, compared to PE or GE alone, showed greater inhibition of lipid accumulation. Furthermore, MIX reduced the expression of adipogenesis-related factors C/EBP-α, PPAR-γ, and FAS more than PE or GE alone did. In contrast, the expression of HSL the enzyme required for lipolysis was further enhanced in MIX-treated adipocytes compared to the PE or GE alone treated groups. Anti-adipogenic effect of PE and GE appears synergistic, and the MIX may be a useful therapeutic combination for the treatment of obesity and obesity-related diseases. PE and GE efficiently inhibited adipocyte differentiation by suppressing the expression of adipogenic transcription factor CEBP-α and PPAR-γ.PE and GE significantly decreased the expression of adipogenic enzyme FAS.PE and GE increased the expression of lipid degrading enzyme HSL.Mixture of PE and GE exhibited additive or moderately synergistic effect on adipocyte differentiation and lipid accumulation. Abbreviations used: CEBP-a: CCAT/enhancer binding protein alpha, CI: Combination Index, FAS: Fatty acid synthase, GE: Garcinia cambogia extract, HSL: Hormone sensitive lipase, PE: Pear pomace extract, PPAR-γ: Peroxisome proliferator-activated receptor gamma.

  2. Biofuels from microalgae: lipid extraction and methane production from the residual biomass in a biorefinery approach.

    PubMed

    Hernández, D; Solana, M; Riaño, B; García-González, M C; Bertucco, A

    2014-10-01

    Renewable fuels and energy are of major concern worldwide and new raw materials and processes for its generation are being investigated. Among these raw materials, algae are a promising source of lipids and energy. Thus, in this work four different algae have been used for lipid extraction and biogas generation. Lipids were obtained by supercritical CO2 extraction (SCCO2), while anaerobic digestion of the lipid-exhausted algae biomass was used for biogas production. The extracted oil composition was analyzed (saturated, monounsaturated and polyunsaturated fatty acids) and quantified. The highest lipid yields were obtained from Tetraselmis sp. (11%) and Scenedesmus almeriensis (10%), while the highest methane production from the lipid-exhausted algae biomass corresponded to Tetraselmis sp. (236mLCH4/gVSadded). Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Four Different Methods Comparison for Extraction of Astaxanthin from Green Alga Haematococcus pluvialis

    PubMed Central

    Dong, Shengzhao; Huang, Yi; Zhang, Rui; Wang, Shihui; Liu, Yun

    2014-01-01

    Haematococcus pluvialis is one of the potent organisms for production of astaxanthin. Up to now, no efficient method has been achieved due to its thick cell wall hindering solvent extraction of astaxanthin. In this study, four different methods, hydrochloric acid pretreatment followed by acetone extraction (HCl-ACE), hexane/isopropanol (6 : 4, v/v) mixture solvents extraction (HEX-IPA), methanol extraction followed by acetone extraction (MET-ACE, 2-step extraction), and soy-oil extraction, were intensively evaluated for extraction of astaxanthin from H. pluvialis. Results showed that HCl-ACE method could obtain the highest oil yield (33.3 ± 1.1%) and astaxanthin content (19.8 ± 1.1%). Quantitative NMR analysis provided the fatty acid chain profiles of total lipid extracts. In all cases, oleyl chains were predominant, and high amounts of polyunsaturated fatty acid chains were observed and the major fatty acid components were oleic acid (13–35%), linoleic acid (37–43%), linolenic acid (20–31%), and total saturated acid (17–28%). DPPH radical scavenging activity of extract obtained by HCl-ACE was 73.2 ± 1.0%, which is the highest amongst the four methods. The reducing power of extract obtained by four extraction methods was also examined. It was concluded that the proposed extraction method of HCl-ACE in this work allowed efficient astaxanthin extractability with high antioxidant properties. PMID:24574909

  4. Four different methods comparison for extraction of astaxanthin from green alga Haematococcus pluvialis.

    PubMed

    Dong, Shengzhao; Huang, Yi; Zhang, Rui; Wang, Shihui; Liu, Yun

    2014-01-01

    Haematococcus pluvialis is one of the potent organisms for production of astaxanthin. Up to now, no efficient method has been achieved due to its thick cell wall hindering solvent extraction of astaxanthin. In this study, four different methods, hydrochloric acid pretreatment followed by acetone extraction (HCl-ACE), hexane/isopropanol (6:4, v/v) mixture solvents extraction (HEX-IPA), methanol extraction followed by acetone extraction (MET-ACE, 2-step extraction), and soy-oil extraction, were intensively evaluated for extraction of astaxanthin from H. pluvialis. Results showed that HCl-ACE method could obtain the highest oil yield (33.3±1.1%) and astaxanthin content (19.8±1.1%). Quantitative NMR analysis provided the fatty acid chain profiles of total lipid extracts. In all cases, oleyl chains were predominant, and high amounts of polyunsaturated fatty acid chains were observed and the major fatty acid components were oleic acid (13-35%), linoleic acid (37-43%), linolenic acid (20-31%), and total saturated acid (17-28%). DPPH radical scavenging activity of extract obtained by HCl-ACE was 73.2±1.0%, which is the highest amongst the four methods. The reducing power of extract obtained by four extraction methods was also examined. It was concluded that the proposed extraction method of HCl-ACE in this work allowed efficient astaxanthin extractability with high antioxidant properties.

  5. Non-conventional approaches to food processing in CELSS. I - Algal proteins: Characterization and process optimization

    NASA Technical Reports Server (NTRS)

    Nakhost, Z.; Karel, M.; Krukonis, V. J.

    1987-01-01

    Protein isolate obtained from green algae (Scenedesmus obliquus) cultivated under controlled conditions was characterized. Molecular weight determination of fractionated algal proteins using SDS-polyacrylamide gel electrophoresis revealed a wide spectrum of molecular weights ranging from 15,000 to 220,000. Isoelectric points of dissociated proteins were in the range of 3.95 to 6.20. Amino acid composition of protein isolate compared favorably with FAO standards. High content of essential amino acids leucine, valine, phenylalanine and lysine makes algal protein isolate a high quality component of CELSS diets. To optimize the removal of algal lipids and pigments supercritical carbon dioxide extraction (with and without ethanol as a co-solvent) was used. Addition of ethanol to supercritical CO2 resulted in more efficient removal of algal lipids and produced protein isolate with a good yield and protein recovery. The protein isolate extracted by the above mixture had an improved water solubility.

  6. Non-conventional approaches to food processing in CELSS, 1. Algal proteins: Characterization and process optimization

    NASA Technical Reports Server (NTRS)

    Nakhost, Z.; Karel, M.; Krukonis, V. J.

    1987-01-01

    Protein isolate obtained from green algae cultivated under controlled conditions was characterized. Molecular weight determination of fractionated algal proteins using SDS-polyacrylamide gel electrophoresis revealed a wide spectrum of molecular weights ranging from 15,000 to 220,000. Isoelectric points of dissociated proteins were in the range of 3.95 to 6.20. Amino acid composition of protein isolate compared favorably with FAO standards. High content of essential amino acids leucine, valine, phenylalanine and lysine make algal protein isolate a high quality component of closed ecological life support system diets. To optimize the removal of algal lipids and pigments supercritical carbon dioxide extraction (with and without ethanol as a co-solvent) was used. Addition of ethanol to supercritical carbon dioxide resulted in more efficient removal of algal lipids and produced protein isolate with a good yield and protein recovery. The protein isolate extracted by the above mixture had an improved water solubility.

  7. Evaluation of lipid extractability after flash hydrolysis of algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teymouri, Ali; Adams, Kameron J.; Dong, Tao

    Microalgae is identified as a promising feedstock for producing renewable liquid transportation fuels; however, lipids extraction from microalgae for downstream processing to biofuels is one of the important challenges for algal based biorefineries. This work aims at evaluating the potential of applying flash hydrolysis (FH) as a chemical-free technique to increase the lipids extractability of algal biomass as well as its integration with the hydrothermal liquefaction (HTL) of microalgae to enhance the biocrude yields and characteristics for fuel production. To this aim, the FH process was performed on three different algal species (Scenedesmus sp., Nannochloropsis sp., and Chlorella vulgaris) atmore » 280 degrees C and 10 s of residence time. Following FH, in addition to the nutrients rich hydrolysate, approximately, 40 wt% of solids containing almost all (>90 wt%) the lipids termed as biofuels intermediates (BI), were recovered. Kinetics study on lipids extractability from the BI and their lipid profile analyses were conducted for each algal species. The results showed that the FH process had significantly enhanced the lipids extractability. For all three algae species, lipid yields from BI were higher than that of the raw algae. Lipid yields of Chlorella vulgaris in the first 15 min were more than five times higher (52.3 +/- 0.8 vs. 10.7 +/- 0.9 wt%) than that of raw algae during n-hexane based solvent extraction. The kinetics of lipids extractability followed a zero-order reaction rate for all wet raw microalgae and the BI of Scenedesmus sp., while the BI recovered from the other two algal species were determined as a second-order reaction. Comparison of fatty acids profiles indicated the contribution of the FH process in saturating fatty acids. Subsequent to lipids extraction, a conventional hydrothermal liquefaction was performed at 350 degrees C and 1 h to compare the biocrude yields from raw versus BI of Chlorella vulgaris microalgae. The results showed that the biocrude yields from the BI and its quality was significantly enhanced post FH than that of raw algae. The FH process was proven to be a viable option for lipid extraction by increasing the extent of recovery and decreasing the extraction time. Its integration with HTL notably impact the biocrude yields and characteristics for fuel production.« less

  8. Evaluation of lipid extractability after flash hydrolysis of algae

    DOE PAGES

    Teymouri, Ali; Adams, Kameron J.; Dong, Tao; ...

    2018-07-01

    Microalgae is identified as a promising feedstock for producing renewable liquid transportation fuels; however, lipids extraction from microalgae for downstream processing to biofuels is one of the important challenges for algal based biorefineries. This work aims at evaluating the potential of applying flash hydrolysis (FH) as a chemical-free technique to increase the lipids extractability of algal biomass as well as its integration with the hydrothermal liquefaction (HTL) of microalgae to enhance the biocrude yields and characteristics for fuel production. To this aim, the FH process was performed on three different algal species (Scenedesmus sp., Nannochloropsis sp., and Chlorella vulgaris) atmore » 280 degrees C and 10 s of residence time. Following FH, in addition to the nutrients rich hydrolysate, approximately, 40 wt% of solids containing almost all (>90 wt%) the lipids termed as biofuels intermediates (BI), were recovered. Kinetics study on lipids extractability from the BI and their lipid profile analyses were conducted for each algal species. The results showed that the FH process had significantly enhanced the lipids extractability. For all three algae species, lipid yields from BI were higher than that of the raw algae. Lipid yields of Chlorella vulgaris in the first 15 min were more than five times higher (52.3 +/- 0.8 vs. 10.7 +/- 0.9 wt%) than that of raw algae during n-hexane based solvent extraction. The kinetics of lipids extractability followed a zero-order reaction rate for all wet raw microalgae and the BI of Scenedesmus sp., while the BI recovered from the other two algal species were determined as a second-order reaction. Comparison of fatty acids profiles indicated the contribution of the FH process in saturating fatty acids. Subsequent to lipids extraction, a conventional hydrothermal liquefaction was performed at 350 degrees C and 1 h to compare the biocrude yields from raw versus BI of Chlorella vulgaris microalgae. The results showed that the biocrude yields from the BI and its quality was significantly enhanced post FH than that of raw algae. The FH process was proven to be a viable option for lipid extraction by increasing the extent of recovery and decreasing the extraction time. Its integration with HTL notably impact the biocrude yields and characteristics for fuel production.« less

  9. Optimization of microwave-assisted extraction with saponification (MAES) for the determination of polybrominated flame retardants in aquaculture samples.

    PubMed

    Fajar, N M; Carro, A M; Lorenzo, R A; Fernandez, F; Cela, R

    2008-08-01

    The efficiency of microwave-assisted extraction with saponification (MAES) for the determination of seven polybrominated flame retardants (polybrominated biphenyls, PBBs; and polybrominated diphenyl ethers, PBDEs) in aquaculture samples is described and compared with microwave-assisted extraction (MAE). Chemometric techniques based on experimental designs and desirability functions were used for simultaneous optimization of the operational parameters used in both MAES and MAE processes. Application of MAES to this group of contaminants in aquaculture samples, which had not been previously applied to this type of analytes, was shown to be superior to MAE in terms of extraction efficiency, extraction time and lipid content extracted from complex matrices (0.7% as against 18.0% for MAE extracts). PBBs and PBDEs were determined by gas chromatography with micro-electron capture detection (GC-muECD). The quantification limits for the analytes were 40-750 pg g(-1) (except for BB-15, which was 1.43 ng g(-1)). Precision for MAES-GC-muECD (%RSD < 11%) was significantly better than for MAE-GC-muECD (%RSD < 20%). The accuracy of both optimized methods was satisfactorily demonstrated by analysis of appropriate certified reference material (CRM), WMF-01.

  10. The BUME method: a new rapid and simple chloroform-free method for total lipid extraction of animal tissue

    NASA Astrophysics Data System (ADS)

    Löfgren, Lars; Forsberg, Gun-Britt; Ståhlman, Marcus

    2016-06-01

    In this study we present a simple and rapid method for tissue lipid extraction. Snap-frozen tissue (15-150 mg) is collected in 2 ml homogenization tubes. 500 μl BUME mixture (butanol:methanol [3:1]) is added and automated homogenization of up to 24 frozen samples at a time in less than 60 seconds is performed, followed by a 5-minute single-phase extraction. After the addition of 500 μl heptane:ethyl acetate (3:1) and 500 μl 1% acetic acid a 5-minute two-phase extraction is performed. Lipids are recovered from the upper phase by automated liquid handling using a standard 96-tip robot. A second two-phase extraction is performed using 500 μl heptane:ethyl acetate (3:1). Validation of the method showed that the extraction recoveries for the investigated lipids, which included sterols, glycerolipids, glycerophospholipids and sphingolipids were similar or better than for the Folch method. We also applied the method for lipid extraction of liver and heart and compared the lipid species profiles with profiles generated after Folch and MTBE extraction. We conclude that the BUME method is superior to the Folch method in terms of simplicity, through-put, automation, solvent consumption, economy, health and environment yet delivering lipid recoveries fully comparable to or better than the Folch method.

  11. Effects of molten-salt/ionic-liquid mixture on extraction of docosahexaenoic acid (DHA)-rich lipids from Aurantiochytrium sp. KRS101.

    PubMed

    Choi, Sun-A; Jung, Joo-Young; Kim, Kyochan; Kwon, Jong-Hee; Lee, Jin-Suk; Kim, Seung Wook; Park, Ji-Yeon; Yang, Ji-Won

    2014-11-01

    In this study, lipid extraction from Aurantiochytrium sp. was performed using a molten-salt/ionic-liquid mixture. The total fatty acid content of Aurantiochytrium sp. was 478.8 mg/g cell, from which 145 mg/g cell (30.3% of total fatty acids) of docosahexaenoic acid (DHA) was obtained. FeCl3·6H2O showed a high lipid extraction yield (207.9 mg/g cell), when compared with that of [Emim]OAc, which was only 118.1 mg/g cell; notably however, when FeCl3·6H2O was mixed with [Emim]OAc (5:1, w/w), the yield was increased to 478.6 mg/g cell. When lipid was extracted by the FeCl3·6H2O/[Emim]OAc mixture at a 5:1 (w/w) blending ratio under 90 °C, 30 min reaction conditions, the fatty acid content of the extracted lipid was a high purity 997.7 mg/g lipid, with most of the DHA having been extracted (30.2% of total fatty acids). Overall, lipid extraction from Aurantiochytrium sp. was enhanced by the synergistic effects of the molten-salt/ionic-liquid mixture with different ions.

  12. Central composite design parameterization of microalgae/cyanobacteria co-culture pretreatment for enhanced lipid extraction using an external clamp-on ultrasonic transducer.

    PubMed

    Ellison, Candice R; Overa, Sean; Boldor, Dorin

    2018-05-19

    Lipids extracted from algal biomass could provide an abundant, rapidly growing, high yield feedstock for bio-diesel and other green fuels to supplement current fossil-based sources. Ultrasound pretreatment is a mechanical cell disruption method that has been shown to enhance lipid recovery from algae due to cavitation effects that disrupt algae cell walls. In this study, a locally grown mixture of Chlorella vulgaris/Cyanobacteria leptolyngbya was sonicated in an ultrasonic reactor with a clamp-on transducer prior to solvent lipid extraction. This configuration allows for a non-contact delivery method of ultrasonic energy with improved operational advantages (no fouling of transducer, continuous operation, and fully scalable design). A central composite design (CCD) was implemented to statistically analyze and evaluate the effect of ultrasonic power (350-750 W) and treatment time (5-30 min) on lipid yield. Lipid recovery was found to increase with both ultrasonic power and treatment time. Total lipid yields (on dry biomass basis) extracted via the Bligh and Dyer method from Chlorella vulgaris/cyanobacteria co-culture ranged from 8.3% for untreated algae to 16.9% for algae sonicated with 750 W power for 30 min, which corresponds to more than a doubling of lipid recovery due to ultrasound pretreatment. Increased power and treatment times were found to increase the degree of cell disruption as observed in the SEM and TEM images after ultrasonic pretreatment. Additionally, hexane (1:1 v/v) was evaluated as an alternative to the standard Bligh & Dyer (2:2:1.8 v/v/v chloroform/methanol/cell suspension) lipid extraction solvent system. On average, the Bligh and Dyer method extracted on average over twice the amount of lipids compared to hexane extraction. The lipid profile of the algae extracts indicates high concentrations of lauric acid (12:0), palmitic acid (16:0), stearic acid (18:0), oleic acid (18:1), and linoleic acid (18:2). This particular configuration of an ultrasonic system proved to be a viable method for the pretreatment of algae for enhanced lipid yields. Future research should focus on identifying alternative extraction solvents and expanding the range of treatment conditions to optimize the ultrasonic power and treatment times for maximum lipid recovery. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Solid lipid nanoparticles for delivery of Calendula officinalis extract.

    PubMed

    Arana, Lide; Salado, Clarisa; Vega, Sandra; Aizpurua-Olaizola, Oier; de la Arada, Igor; Suarez, Tatiana; Usobiaga, Aresatz; Arrondo, José Luis R; Alonso, Alicia; Goñi, Félix M; Alkorta, Itziar

    2015-11-01

    Solid lipid nanoparticles (SLN) composed of long-chain fatty acids (palmitic acid, stearic acid or arachidic acid), Epikuron 200 (purified phosphatidylcholine), and bile salts (cholate, taurocholate or taurodeoxycholate) have been prepared by dilution of a microemulsion. A total of five different systems were prepared, and characterized by photon correlation spectroscopy, transmission electron microscopy, differential scanning calorimetry, and infrared spectroscopy. The SLN formulation showing optimal properties (lowest size and polydispersity index and highest zeta potential) was obtained with stearic acid and taurodeoxycholate as cosurfactant. This formulation was loaded with Calendula officinalis extract, a natural compound used on ophthalmic formulations given its anti-inflammatory, emollient, and wound repairing activity. Calendula-loaded SLN preparations were characterized in order to determine loading capacity and entrapment efficiency. In vitro cytotoxicity and wound healing efficacy of Calendula-loaded SLN compared to that of a free plant extract were evaluated on a conjunctival epithelium cell line WKD. Our results suggest that this SLN formulation is a safe and solvent-free Calendula extract delivery system which could provide a controlled therapeutic alternative for reducing disease-related symptoms and improving epithelium repair in ocular surface. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Computing Curvature Sensitivity of Biomolecules in Membranes by Simulated Buckling.

    PubMed

    Elías-Wolff, Federico; Lindén, Martin; Lyubartsev, Alexander P; Brandt, Erik G

    2018-03-13

    Membrane curvature sensing, where the binding free energies of membrane-associated molecules depend on the local membrane curvature, is a key factor to modulate and maintain the shape and organization of cell membranes. However, the microscopic mechanisms are not well understood, partly due to absence of efficient simulation methods. Here, we describe a method to compute the curvature dependence of the binding free energy of a membrane-associated probe molecule that interacts with a buckled membrane, which has been created by lateral compression of a flat bilayer patch. This buckling approach samples a wide range of curvatures in a single simulation, and anisotropic effects can be extracted from the orientation statistics. We develop an efficient and robust algorithm to extract the motion of the probe along the buckled membrane surface, and evaluate its numerical properties by extensive sampling of three coarse-grained model systems: local lipid density in a curved environment for single-component bilayers, curvature preferences of individual lipids in two-component membranes, and curvature sensing by a homotrimeric transmembrane protein. The method can be used to complement experimental data from curvature partition assays and provides additional insight into mesoscopic theories and molecular mechanisms for curvature sensing.

  15. Complete wetting of graphene by biological lipids

    NASA Astrophysics Data System (ADS)

    Luan, Binquan; Huynh, Tien; Zhou, Ruhong

    2016-03-01

    Graphene nanosheets have been demonstrated to extract large amounts of lipid molecules directly out of the cell membrane of bacteria and thus cause serious damage to the cell's integrity. This interesting phenomenon, however, is so far not well understood theoretically. Here through extensive molecular dynamics simulations and theoretical analyses, we show that this phenomenon can be categorized as a complete wetting of graphene by membrane lipids in water. A wetting-based theory was utilized to associate the free energy change during the microscopic extraction of a lipid with the spreading parameter for the macroscopic wetting. With a customized thermodynamic cycle for detailed energetics, we show that the dispersive adhesion between graphene and lipids plays a dominant role during this extraction as manifested by the curved graphene. Our simulation results suggest that biological lipids can completely wet the concave, flat or even convex (with a small curvature) surface of a graphene sheet.Graphene nanosheets have been demonstrated to extract large amounts of lipid molecules directly out of the cell membrane of bacteria and thus cause serious damage to the cell's integrity. This interesting phenomenon, however, is so far not well understood theoretically. Here through extensive molecular dynamics simulations and theoretical analyses, we show that this phenomenon can be categorized as a complete wetting of graphene by membrane lipids in water. A wetting-based theory was utilized to associate the free energy change during the microscopic extraction of a lipid with the spreading parameter for the macroscopic wetting. With a customized thermodynamic cycle for detailed energetics, we show that the dispersive adhesion between graphene and lipids plays a dominant role during this extraction as manifested by the curved graphene. Our simulation results suggest that biological lipids can completely wet the concave, flat or even convex (with a small curvature) surface of a graphene sheet. Electronic supplementary information (ESI) available: The movie showing the simulation trajectory for the extraction of lipids from the membrane. See DOI: 10.1039/C6NR00202A

  16. Quantification of brain lipids by FTIR spectroscopy and partial least squares regression

    NASA Astrophysics Data System (ADS)

    Dreissig, Isabell; Machill, Susanne; Salzer, Reiner; Krafft, Christoph

    2009-01-01

    Brain tissue is characterized by high lipid content. Its content decreases and the lipid composition changes during transformation from normal brain tissue to tumors. Therefore, the analysis of brain lipids might complement the existing diagnostic tools to determine the tumor type and tumor grade. Objective of this work is to extract lipids from gray matter and white matter of porcine brain tissue, record infrared (IR) spectra of these extracts and develop a quantification model for the main lipids based on partial least squares (PLS) regression. IR spectra of the pure lipids cholesterol, cholesterol ester, phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, galactocerebroside and sulfatide were used as references. Two lipid mixtures were prepared for training and validation of the quantification model. The composition of lipid extracts that were predicted by the PLS regression of IR spectra was compared with lipid quantification by thin layer chromatography.

  17. Enhanced skeletal muscle lipid oxidative efficiency in insulin-resistant vs insulin-sensitive nondiabetic, nonobese humans.

    PubMed

    Galgani, Jose E; Vasquez, Karla; Watkins, Guillermo; Dupuy, Aude; Bertrand-Michel, Justine; Levade, Thierry; Moro, Cedric

    2013-04-01

    Skeletal muscle insulin resistance is proposed to result from impaired skeletal muscle lipid oxidative capacity. However, there is no evidence indicating that muscle lipid oxidative capacity is impaired in healthy otherwise insulin-resistant individuals. The objective of the study was to assess muscle lipid oxidative capacity in young, nonobese, glucose-tolerant, insulin-resistant vs insulin-sensitive individuals. In 13 insulin-sensitive [by Matsuda index (MI) (22.6 ± 0.6 [SE] kg/m(2)); 23 ± 1 years; MI 5.9 ± 0.1] and 13 insulin-resistant (23.2 ± 0.6 kg/m(2); 23 ± 3 years; MI 2.2 ± 0.1) volunteers, skeletal muscle biopsy, blood extraction before and after an oral glucose load, and dual-energy x-ray absorptiometry were performed. Skeletal muscle mitochondrial to nuclear DNA ratio, oxidative phosphorylation protein content, and citrate synthase and β-hydroxyacyl-CoA dehydrogenase activities were assessed. Muscle lipids and palmitate oxidation ((14)CO2 and (14)C-acid soluble metabolites production) at 4 [1-(14)C]palmitate concentrations (45-520 μM) were also measured. None of the muscle mitochondrial measures showed differences between groups, except for a higher complex V protein content in insulin-resistant vs insulin-sensitive volunteers (3.5 ± 0.4 vs 2.2 ± 0.4; P = .05). Muscle ceramide content was significantly increased in insulin-resistant vs insulin-sensitive individuals (P = .04). Total palmitate oxidation showed a similar concentration-dependent response in both groups (P = .69). However, lipid oxidative efficiency (CO2 to (14)C-acid soluble metabolites ratio) was enhanced in insulin-resistant vs insulin-sensitive individuals, particularly at the highest palmitate concentration (0.24 ± 0.04 vs 0.12 ± 0.02; P = .02). We found no evidence of impaired muscle mitochondrial oxidative capacity in young, nonobese, glucose-tolerant, otherwise insulin-resistant vs insulin-sensitive individuals. Enhanced muscle lipid oxidative efficiency in insulin resistance could be a potential mechanism to prevent further lipotoxicity.

  18. Preservation of anthocyanins in solid lipid nanoparticles: Optimization of a microemulsion dilution method using the Placket-Burman and Box-Behnken designs.

    PubMed

    Ravanfar, Raheleh; Tamaddon, Ali Mohammad; Niakousari, Mehrdad; Moein, Mahmoud Reza

    2016-05-15

    Anthocyanins are the main polyphenol components from red cabbage (Brassica oleracea L. Var. Capitata f. Rubra) extracts that have inherent antioxidant activities. Anthocyanins are effectively stable in acidic gastric digestion conditions, with nearly 100% phenol content recovery. However, the total phenol content recovery after simulated pancreatic digestion was approximately 25%. To protect anthocyanins against harsh environmental conditions (e.g., pH and temperature), solid lipid nanoparticles were prepared by the dilution of water in oil (w/o) microemulsions containing anthocyanins in aqueous media. The formulations were characterized for particle size and encapsulation efficiency. The formulation parameters (e.g., volume of the internal aqueous phase, homogenization time and the percentages of total lipid, total surfactant or stabilizer) were optimized using the Placket-Burman and Box-Behnken experimental designs. Entrapment efficiency (89.2 ± 0.3%) was calculated when the mean particle size was 455 ± 2 nm. A scanning electron microscopy study revealed the spherical morphology of the particles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Improvement in lipids extraction processes for biodiesel production from wet microalgal pellets grown on diammonium phosphate and sodium bicarbonate combinations.

    PubMed

    Shah, Syed Hasnain; Raja, Iftikhar Ahmed; Mahmood, Qaisar; Pervez, Arshid

    2016-08-01

    Biomass productivity and growth kinetics for microalgae grown on sodium bicarbonate and diammonium phosphate were investigated. Different carbon and nitrogen ratios have shown different growth rates and biomass productivity and C:N ratio 50:10 as mgL(-1) has shown the best production than all. For effective lipids extraction from biomass thermolysis and sonolysis were carried out from wet biomass. Sonolysis at 2.3W intensity for 5min has released 8.58mg at neutral pH. More quantity of lipids was extracted when extraction was made at pH 4 and 10 which resulted 9mg and 9.28mg lipids respectively. Thermal treatment at 100°C for 10min has released 12.82mg lipid at neutral pH. In the same thermolysis at pH 4 and 10 more quantity of lipids was extracted which were 15.16mg and 14.81mg respectively. Finally transesterified lipids were analyzed through GC-MS for FAME composition analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Changes Caused by Fruit Extracts in the Lipid Phase of Biological and Model Membranes

    PubMed Central

    Pruchnik, Hanna; Oszmiański, Jan; Sarapuk, Janusz; Kleszczyńska, Halina

    2010-01-01

    The aim of the study was to determine changes incurred by polyphenolic compounds from selected fruits in the lipid phase of the erythrocyte membrane, in liposomes formed of erythrocyte lipids and phosphatidylcholine liposomes. In particular, the effect of extracts from apple, chokeberry, and strawberry on the red blood cell morphology, on packing order in the lipid hydrophilic phase, on fluidity of the hydrophobic phase, as well as on the temperature of phase transition in DPPC liposomes was studied. In the erythrocyte population, the proportions of echinocytes increased due to incorporation of polyphenolic compounds. Fluorimetry with a laurdan probe indicated increased packing density in the hydrophilic phase of the membrane in presence of polyphenolic extracts, the highest effect being observed for the apple extract. Using the fluorescence probes DPH and TMA-DPH, no effect was noted inside the hydrophobic phase of the membrane, as the lipid bilayer fluidity was not modified. The polyphenolic extracts slightly lowered the phase transition temperature of phosphatidylcholine liposomes. The studies have shown that the phenolic compounds contained in the extracts incorporate into the outer region of the erythrocyte membrane, affecting its shape and lipid packing order, which is reflected in the increasing number of echinocytes. The compounds also penetrate the outer part of the external lipid layer of liposomes formed of natural and DPPC lipids, changing its packing order. PMID:21423329

  1. Switchable hydrophilicity solvents for lipid extraction from microalgae for biofuel production.

    PubMed

    Boyd, Alaina R; Champagne, Pascale; McGinn, Patrick J; MacDougall, Karen M; Melanson, Jeremy E; Jessop, Philip G

    2012-08-01

    A switchable hydrophilicity solvent (SHS) was studied for its effectiveness at extracting lipids from freeze-dried samples of Botryococcus braunii microalgae. The SHS N,N-dimethylcyclohexylamine extracted up to 22 wt.% crude lipid relative to the freeze-dried cell weight. The solvent was removed from the extract with water saturated with carbon dioxide at atmospheric pressure and recovered from the water upon de-carbonation of the mixture. Liquid chromatography-mass spectrometry (LC-MS) showed that the extracted lipids contained high concentrations of long chain tri-, di- and mono-acylglycerols, no phospholipids, and only 4-8% of residual solvent. Unlike extractions with conventional organic solvents, this new method requires neither distillation nor the use of volatile, flammable or chlorinated organic solvents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. The Anti-Inflammatory Effect of Algae-Derived Lipid Extracts on Lipopolysaccharide (LPS)-Stimulated Human THP-1 Macrophages

    PubMed Central

    Robertson, Ruairi C.; Guihéneuf, Freddy; Bahar, Bojlul; Schmid, Matthias; Stengel, Dagmar B.; Fitzgerald, Gerald F.; Ross, R. Paul; Stanton, Catherine

    2015-01-01

    Algae contain a number of anti-inflammatory bioactive compounds such as omega-3 polyunsaturated fatty acids (n-3 PUFA) and chlorophyll a, hence as dietary ingredients, their extracts may be effective in chronic inflammation-linked metabolic diseases such as cardiovascular disease. In this study, anti-inflammatory potential of lipid extracts from three red seaweeds (Porphyra dioica, Palmaria palmata and Chondrus crispus) and one microalga (Pavlova lutheri) were assessed in lipopolysaccharide (LPS)-stimulated human THP-1 macrophages. Extracts contained 34%–42% total fatty acids as n-3 PUFA and 5%–7% crude extract as pigments, including chlorophyll a, β-carotene and fucoxanthin. Pretreatment of the THP-1 cells with lipid extract from P. palmata inhibited production of the pro-inflammatory cytokines interleukin (IL)-6 (p < 0.05) and IL-8 (p < 0.05) while that of P. lutheri inhibited IL-6 (p < 0.01) production. Quantitative gene expression analysis of a panel of 92 genes linked to inflammatory signaling pathway revealed down-regulation of the expression of 14 pro-inflammatory genes (TLR1, TLR2, TLR4, TLR8, TRAF5, TRAF6, TNFSF18, IL6R, IL23, CCR1, CCR4, CCL17, STAT3, MAP3K1) by the lipid extracts. The lipid extracts effectively inhibited the LPS-induced pro-inflammatory signaling pathways mediated via toll-like receptors, chemokines and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling molecules. These results suggest that lipid extracts from P. lutheri, P. palmata, P. dioica and C. crispus can inhibit LPS-induced inflammatory pathways in human macrophages. Therefore, algal lipid extracts should be further explored as anti-inflammatory ingredients for chronic inflammation-linked metabolic diseases. PMID:26308008

  3. Lipid-protein stoichiometries in a crystalline biological membrane: NMR quantitative analysis of the lipid extract of the purple membrane.

    PubMed

    Corcelli, Angela; Lattanzio, Veronica M T; Mascolo, Giuseppe; Papadia, Paride; Fanizzi, Francesco

    2002-01-01

    The lipid/protein stoichiometries of a naturally crystalline biological membrane, the purple membrane (PM) of Halobacterium salinarum, have been obtained by a combination of (31)P- and (1)H-NMR analyses of the lipid extract. In total, 10 lipid molecules per retinal were found to be present in the PM lipid extract: 2-3 molecules of phosphatidylglycerophosphate methyl ester (PGP-Me), 3 of glycolipid sulfate, 1 of phosphatidylglycerol, 1 of archaeal glycocardiolipin (GlyC), 2 of squalene plus minor amounts of phosphatidylglycerosulfate (PGS) and bisphosphatidylglycerol (archaeal cardiolipin) (BPG) and a negligible amount of vitamin MK8. The novel data of the present study are necessary to identify the lipids in the electron density map, and to shed light on the structural relationships of the lipid and protein components of the PM.

  4. Extraction of saponifiable lipids from wet microalgal biomass for biodiesel production.

    PubMed

    Jiménez Callejón, María J; Robles Medina, Alfonso; Macías Sánchez, María D; Hita Peña, Estrella; Esteban Cerdán, Luis; González Moreno, Pedro A; Molina Grima, Emilio

    2014-10-01

    Saponifiable lipids (SLs) were extracted with hexane from wet biomass (86 wt% water) of the microalga Nannochloropsis gaditana in order to transform them into fatty acid methyl esters (FAMEs, biodiesel). The influence of homogenization pressure on SL extraction yield at low temperature (20-22 °C) was studied. Homogenization at 1700 bar tripled the SL extraction yield. Two biomass batches with similar total lipid content but different lipidic compositions were used. Batch 1 contained fewer SLs (12.0 wt%) and neutral saponifiable lipids (NSLs, 7.9 wt%) than batch 2 (21.6 and 17.2 wt%, respectively). For this reason, and due to the selectivity of hexane toward NSLs, high SL yield (69.1 wt%) and purity (71.0 wt%) were obtained from batch 2. Moreover, this extract contains a small percentage of polyunsaturated fatty acids (16.9 wt%), thereby improving the biodiesel quality. Finally, up to 97.0% of extracted SLs were transformed to FAMEs by acid catalyzed transesterification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Improvement of lipid yield from microalgae Spirulina platensis using ultrasound assisted osmotic shock extraction method

    NASA Astrophysics Data System (ADS)

    Adetya, NP; Hadiyanto, H.

    2018-01-01

    Microalgae Spirulina sp. has been identified as potential source of natural food supplement and food colorant. The high water content of microalgae (70-90%) causes an obstacle in biomass dehydration which requires large amounts of energy, eventually damaging the lipid in the microalgae. Therefore, the lipid must be extracted by using a suitable method which complies to wet biomass conditions. One of the methods is applying osmotic shock. This study was aimed to investigate the influence of osmotic agent (NaCl) concentration (10-30%) and extraction time (20-50 min) on yield of lipid and also to determine the optimal conditions in the extraction process through response surface methodology. The extraction was conducted at a temperature of 40°C under ultrasound frequency of 40 kHz. The result showed that the optimum yield lipid obtained was 6.39% in 16.98% NaCl concentration for 36 minutes 10 seconds.

  6. Occurrence and distribution of extractable and non-extractable GDGTs in podzols: implications for the reconstruction of mean air temperature

    NASA Astrophysics Data System (ADS)

    Huguet, Arnaud; Fosse, Céline; Metzger, Pierre; Derenne, Sylvie

    2010-05-01

    Glycerol dialkyl glycerol tetraethers (GDGTs) are complex lipids of high molecular weight, present in cell membranes of archaea and some bacteria. Archaeal membranes are formed predominantly by isoprenoid GDGTs with acyclic or ring-containing biphytanyl chains. Another type of GDGTs with branched instead of isoprenoid alkyl chains was recently discovered in soils. Branched tetraethers were suggested to be produced by anaerobic bacteria and can be used to reconstruct past air temperature and soil pH. Lipids preserved in soils can take two broad chemical forms: extractable lipids, recoverable upon solvent extraction, and non-extractable lipids, linked to the organic or mineral matrix of soils. Moreover, within the extractable pool, core (i.e. "free") lipids and intact polar (i.e. "bound") lipids can be distinguished. These three lipid fractions may respond to environmental changes in different ways and the information derived from these three pools may differ. The aim of the present work was therefore to compare the abundance and distribution of the three GDGT pools in two contrasted podzols: a temperate podzol located 40 km north of Paris and a tropical podzol from the upper Amazon Basin. Five samples were collected from the whole profile of the temperate podzol including the litter layer. Five additional samples were obtained from three profiles of the tropical soil sequence, representative of the transition between a latosol and a well-developed podzol. Vertical and/or lateral variations in GDGT content and composition were highlighted. In particular, in the tropical sequence, GDGTs were present at relatively low concentrations in the early stages of podzolisation and were more abundant in the well-developed podzolic horizons, where higher acidity and increased bacterial activity may favour their stabilization. Concerning the temperate podzol, GDGT distribution was shown to vary greatly with depth in the soil profile, the methylation degree of bacterial GDGTs being notably higher in the surficial than in the deep soil horizons. Bacterial GDGTs were also detected in the litter layer of the temperate podzol, suggesting the presence of branched-GDGT producing bacteria in the litter, probably in anoxic microenvironments. Last, we showed for the first time that substantial amounts of non-extractable GDGTs could be released after acid hydrolysis of solvent-extracted soils, since non-extractable lipids represented in average ca. 25% of total (i.e. extractable + non-extractable) bacterial GDGTs and ca. 30% of total archaeal GDGTs in podzol samples. In addition, we observed that extractable and non-extractable GDGTs could present different distribution patterns. Thus, the average methylation degree of bacterial GDGTs was higher in the extractable than in the non-extractable lipid fraction in three soil horizons of the temperate podzol. Consequently, different mean air temperature values could be derived from extractable and non-extractable bacterial GDGT distributions, suggesting that data obtained from the extractable lipid fraction have to be interpreted with care. MAT values derived from non-extractable GDGTs were shown to be more consistent with MAT records, implying that MAT estimates obtained from the non-extractable pool might be more reliable.

  7. Screening of aphrodisiac property in sea slug, Aplysia dactylomela.

    PubMed

    Hashim, Ridzwan; Roslan, Noor Atika Elliyana Mohd; Zulkipli, Farah Hanis; Daud, Jamaluddin Mohd

    2014-09-01

    To evaluate the aphrodisiac property of Aplysia dactylomela (A. dactylomelan), locally known as 'dugu-dugu', which is one of the sea slug species. Two types of extractions were used; aqueous and lipid. Three doses of each A. dactylomelan extract, respectively; 50, 100, 200 mg/kg were administered (i.p.) to male mice for mounting behavior test. Sildenafil citrate or Viagra® (5 mg/kg) being positive control while negative control received saline solution. The animals treated with lipid extract at the respective dose exhibited mounting behavior, but the mounting frequency decreased at higher doses (100 and 200 mg/kg). However, all doses of aqueous extract did not show any mounting behavior. Meanwhile, in all doses of lipid extracts administered displayed significant difference (P<0.05) from the positive control. Despite this, only the lipid extract of 50 mg/kg showed significant difference (P<0.05) with negative control. This signifies that lipid extracts especially in dose 50 mg/kg have a substantial effect of aphrodisiac property. In addition, the presence of steroids was detected in the phytochemical screening of lipid extract. The findings from this study provides preliminary scientific evidence that A. dactylomela could be used as an alternative medication of natural product for promoting sexual activity in men. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  8. An efficient and economical MTT assay for determining the antioxidant activity of plant natural product extracts and pure compounds.

    PubMed

    Liu, Yunbao; Nair, Muraleedharan G

    2010-07-23

    Antioxidants scavenge free radicals, singlet oxygen, and electrons in cellular redox reactions. The yellow MTT [3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide] is reduced to a purple formazan by mitochondrial enzymes. NADPH is the basis of established in vitro cell viability assays. An antioxidant assay has been developed utilizing the redox reaction between MTT and selected natural product extracts and purified compounds. This simple, fast, and inexpensive MTT antioxidant assay is comparable with the lipid peroxidation inhibitory assay and can be mechanized to achieve high throughput.

  9. Data set for extraction and transesterification of bio-oil from Stoechospermum marginatum, a brown marine algae.

    PubMed

    Venkatesan, Hariram; Godwin, John J; Sivamani, Seralathan

    2017-10-01

    The article presents the experimental data on the extraction and transesterification of bio-oil derived from Stoechospermum marginatum, a brown macro marine algae. The samples were collected from Mandapam region, Gulf of Mannar, Tamil Nadu, India. The bio-oil was extracted using Soxhlet technique with a lipid extraction efficiency of 24.4%. Single stage transesterification was adopted due to lower free fatty acid content. The yield of biodiesel was optimized by varying the process parameters. The obtained data showed the optimum process parameters as reaction time 90 min, reaction temperature 65 °C, catalyst concentration 0.50 g and 8:1 M ratio. Furthermore, the data pertaining to the physio-chemical properties of the derived algal biodiesel were also presented.

  10. Composition and Quantitation of Microalgal Lipids by ERETIC 1H NMR Method

    PubMed Central

    Nuzzo, Genoveffa; Gallo, Carmela; d’Ippolito, Giuliana; Cutignano, Adele; Sardo, Angela; Fontana, Angelo

    2013-01-01

    Accurate characterization of biomass constituents is a crucial aspect of research in the biotechnological application of natural products. Here we report an efficient, fast and reproducible method for the identification and quantitation of fatty acids and complex lipids (triacylglycerols, glycolipids, phospholipids) in microalgae under investigation for the development of functional health products (probiotics, food ingredients, drugs, etc.) or third generation biofuels. The procedure consists of extraction of the biological matrix by modified Folch method and direct analysis of the resulting material by proton nuclear magnetic resonance (1H NMR). The protocol uses a reference electronic signal as external standard (ERETIC method) and allows assessment of total lipid content, saturation degree and class distribution in both high throughput screening of algal collection and metabolic analysis during genetic or culturing studies. As proof of concept, the methodology was applied to the analysis of three microalgal species (Thalassiosira weissflogii, Cyclotella cryptica and Nannochloropsis salina) which drastically differ for the qualitative and quantitative composition of their fatty acid-based lipids. PMID:24084790

  11. Extraction and Characterization of Lipids from Salicornia virginica and Salicornia europaea

    NASA Technical Reports Server (NTRS)

    Kulis,Michael J.; Hepp, Aloysius F.; Pham, Phong X.; Ribita, Daniela; Bomani, Bilal M. M.; Duraj, Stan A.

    2010-01-01

    The lipid content from Salicornia virginica and Salicornia europaea is investigated. The plants are leafless halophytes with seeds contained in terminal nodes. The lipids, in the form of cell membranes and oil bodies that come directly from the node cells, are observed using fluorescence microscopy. Two extraction methods as well as the results of extracting from the seeds and from the entire nodes are described. Characterization of the fatty acid components of the lipids using Gas Chromatography in tandem with Mass Spectroscopy is also described. Comparisons are made between the two methods and between the two plant materials as lipid sources.

  12. Use of Solid Phase Extraction in the Biochemistry Laboratory to Separate Different Lipids

    ERIC Educational Resources Information Center

    Flurkey, William H.

    2005-01-01

    Solid-phase extraction (SPE) was used to demonstrate how various lipids and lipid classes could be separated in a biochemistry laboratory setting. Three different SPE methods were chosen on their ability to separate a lipid mixture, consisting of a combination of a either a fatty acid, a triacylglycerol, a mono- or diacylglycerol, phospholipid,…

  13. Low solvent, low temperature method for extracting biodiesel lipids from concentrated microalgal biomass.

    PubMed

    Olmstead, Ian L D; Kentish, Sandra E; Scales, Peter J; Martin, Gregory J O

    2013-11-01

    An industrially relevant method for disrupting microalgal cells and preferentially extracting neutral lipids for large-scale biodiesel production was demonstrated on pastes (20-25% solids) of Nannochloropsis sp. The highly resistant Nannochloropsis sp. cells. were disrupted by incubation for 15 h at 37°C followed by high pressure homogenization at 1200 ± 100 bar. Lipid extraction was performed by twice contacting concentrated algal paste with minimal hexane (solvent:biomass ratios (w/w) of <2:1 and <1.3:1) in a stirred vessel at 35°C. Cell disruption prior to extraction increased lipid recovery 100-fold, with yields of 30-50% w/w obtained in the first hexane contact, and a further 6.5-20% in the second contact. The hexane preferentially extracted neutral lipids over glyco- and phospholipids, with up to 86% w/w of the neutral lipids recovered. The process was effective on wet concentrated paste, required minimal solvent and moderate temperature, and did not require difficult to recover polar solvents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Antioxidant and anti-inflammatory effects of Scoparia dulcis L.

    PubMed

    Coulibaly, Ahmed Y; Kiendrebeogo, Martin; Kehoe, Patrick G; Sombie, Pierre A E D; Lamien, Charles E; Millogo, Jeanne F; Nacoulma, Odile G

    2011-12-01

    Different extracts were obtained from Scoparia dulcis L. (Scrophulariaceae) by successive extraction with hexane, chloroform, and methanol. These extracts exhibited significant antioxidant capacity in various antioxidant models mediated (xantine oxidase and lipoxygenase) or not mediated (2,2-diphenyl-picrylhydrazyl, ferric-reducing antioxidant power, β-carotene bleaching, lipid peroxidation) by enzymes. The antioxidant activity of the extracts was related to their phytochemical composition in terms of polyphenol and carotenoid contents. The chloroform extract was richest in phytochemicals and had the highest antioxidant activity in the different antioxidant systems. All the extracts exhibited less than 50% inhibition on xanthine oxidase but more than 50% inhibition on lipid peroxidation and lipoxygenase. The extracts strongly inhibited lipid peroxidation mediated by lipoxygenase.

  15. [Proteins and saponins in the lipid preparation obtained by extraction of soybean flour].

    PubMed

    Baukova, N A; Alekseeva, S G; Sorokoumova, G M; Selishcheva, A A; Martynova, O M; Rogozhkina, E A; Shvets, V I

    2002-01-01

    A complex lipid preparation was obtained by extraction of soybean flour with organic solvents. This preparation was shown to include not only phospholipids (major components), but also up to 30% saponins. These compounds were identified by TLC, HPLC, and 1H-NMR spectroscopy. Minor components of the lipid extract were represented by polypeptides associated with phospholipids via electrostatic or hydrophobic forces.

  16. Biogenic lipids in particulates from the lower atmosphere over the eastern Atlantic

    NASA Technical Reports Server (NTRS)

    Simoneit, B. R. T.; Chester, R.; Eglinton, G.

    1977-01-01

    The occurrence, isolation, and characterization of terrigenous lipids in aeolian dusts from the eastern Atlantic are discussed. It is pointed out that such lipids have also been found in aeolian dust from other oceanic areas. A description is presented of the collection and extraction of samples. The dust samples were extracted with two aliquots of toluene and methanol (3:1) for lipid analysis. The extracts were concentrated on a rotary evaporator. General aeolian dust collection data and sample descriptions are presented in a table. The origin of the samples is discussed.

  17. Determining the fatty acid composition in plasma and tissues as fatty acid methyl esters using gas chromatography – a comparison of different derivatization and extraction procedures.

    PubMed

    Ostermann, Annika I; Müller, Maike; Willenberg, Ina; Schebb, Nils Helge

    2014-12-01

    Analysis of the fatty acid (FA) composition in biological samples is commonly carried out using gas liquid chromatography (GC) after transesterification to volatile FA methyl esters (FAME). We compared the efficacy of six frequently used protocols for derivatization of different lipid classes as well as for plasma and tissue samples. Transesterification with trimethylsulfonium hydroxide (TMSH) led to insufficient derivatization efficacies for polyunsaturated FAs (PUFA, <50%). Derivatization in presence of potassium hydroxide (KOH) failed at derivatizing free FAs (FFAs). Boron trifluoride (BF3) 7% in hexane/MeOH (1:1) was insufficient for the transesterification of cholesterol ester (CE) as well as triacylglycerols (TGs). In contrast, methanolic hydrochloric acid (HCl) as well as a combination of BF3 with methanolic sodium hydroxide (NaOH+BF3) were suitable for the derivatization of FFAs, polar lipids, TGs, and CEs (derivatization rate >80% for all tested lipids). Regarding plasma samples, all methods led to an overall similar relative FA pattern. However, significant differences were observed, for example, for the relative amount of EPA+DHA (n3-index). Absolute FA plasma concentrations differed considerably among the methods, with low yields for KOH and BF3. We also demonstrate that lipid extraction with tert-butyl methyl ether/methanol (MTBE/MeOH) is as efficient as the classical method according to Bligh and Dyer, making it possible to replace (environmentally) toxic chloroform.We conclude that HCl-catalyzed derivatization in combination with MeOH/MTBE extraction is the most appropriate among the methods tested for the analysis of FA concentrations and FA pattern in small biological samples. A detailed protocol for the analysis of plasma and tissues is included in this article.

  18. Ameliorative Effect of Hexane Extract of Phalaris canariensis on High Fat Diet-Induced Obese and Streptozotocin-Induced Diabetic Mice

    PubMed Central

    Perez Gutierrez, Rosa Martha; Madrigales Ahuatzi, Diana; Horcacitas, Maria del Carmen; Garcia Baez, Efren; Cruz Victoria, Teresa; Mota-Flores, Jose Maria

    2014-01-01

    Obesity is one of the major factors to increase various disorders like diabetes. The present paper emphasizes study related to the antiobesity effect of Phalaris canariensis seeds hexane extract (Al-H) in high-fat diet- (HFD-) induced obese CD1 mice and in streptozotocin-induced mild diabetic (MD) and severely diabetic (SD) mice.AL-H was orally administered to MD and SD mice at a dose of 400 mg/kg once a day for 30 days, and a set of biochemical parameters were studied: glucose, cholesterol, triglycerides, lipid peroxidation, liver and muscle glycogen, ALP, SGOT, SGPT, glucose-6-phosphatase, glucokinase, hexokinase, SOD, CAT, GSH, GPX activities, and the effect on insulin level. HS-H significantly reduced the intake of food and water and body weight loss as well as levels of blood glucose, serum cholesterol, triglyceride, lipoprotein, oxidative stress, showed a protective hepatic effect, and increased HDL-cholesterol, serum insulin in diabetic mice. The mice fed on the high-fat diet and treated with AL-H showed inhibitory activity on the lipid metabolism decreasing body weight and weight of the liver and visceral adipose tissues and cholesterol and triglycerides in the liver. We conclude that AL-H can efficiently reduce serum glucose and inhibit insulin resistance, lipid abnormalities, and oxidative stress in MD and SD mice. Our results demonstrate an antiobesity effect reducing lipid droplet accumulation in the liver, indicating that its therapeutic properties may be due to the interaction plant components soluble in the hexane extract, with any of the multiple targets involved in obesity and diabetes pathogenesis. PMID:24523819

  19. Effect of seabuckthorn leaf extracts on circulating energy fuels, lipid peroxidation and antioxidant parameters in rats during exposure to cold, hypoxia and restraint (C-H-R) stress and post stress recovery.

    PubMed

    Saggu, Shalini; Kumar, Ratan

    2008-06-01

    The present study was carried out to study mechanism of adaptogenic activity of seabuckthorn leaf extract, administered orally in rats both in single and five doses at a dose of 100mg/kg body weight 30min prior to C-H-R exposure. The efficacy of the extract was studied on circulating energy fuels, lipid peroxidation and anti-oxidant parameters in rats on attaining the T(rec) 23 degrees C during C-H-R exposure and after recovery (T(rec) 37 degrees C) from C-H-R induced hypothermia. Single dose treatment in rats restricted rise in blood malondialdehyde (MDA) levels and decrease in glutathione (GSH) and catalase (CAT) levels. Both single and five doses also restricted the rise in serum free fatty acids (FFA) and lactate dehydrogenase (LDH) levels on attaining T(rec) 23 degrees C during C-H-R exposure, suggesting more efficient utilization of FFA for energy production and better maintained cell membrane permeability. This suggested that the adaptogenic activity of the extract might be due to its anti-oxidative activity, maintained blood glucose levels, better utilization of FFA and improved cell membrane permeability.

  20. Comparison of veterinary drug residue results in animal tissues by ultrahigh-performance liquid chromatography coupled to triple quadrupole or quadrupole-time-of-flight tandem mass spectrometry after different sample preparation methods, including use of a commercial lipid removal product.

    PubMed

    Anumol, Tarun; Lehotay, Steven J; Stevens, Joan; Zweigenbaum, Jerry

    2017-04-01

    Veterinary drug residues in animal-derived foods must be monitored to ensure food safety, verify proper veterinary practices, enforce legal limits in domestic and imported foods, and for other purposes. A common goal in drug residue analysis in foods is to achieve acceptable monitoring results for as many analytes as possible, with higher priority given to the drugs of most concern, in an efficient and robust manner. The U.S. Department of Agriculture has implemented a multiclass, multi-residue method based on sample preparation using dispersive solid phase extraction (d-SPE) for cleanup and ultrahigh-performance liquid chromatography-tandem quadrupole mass spectrometry (UHPLC-QQQ) for analysis of >120 drugs at regulatory levels of concern in animal tissues. Recently, a new cleanup product called "enhanced matrix removal for lipids" (EMR-L) was commercially introduced that used a unique chemical mechanism to remove lipids from extracts. Furthermore, high-resolution quadrupole-time-of-flight (Q/TOF) for (U)HPLC detection often yields higher selectivity than targeted QQQ analyzers while allowing retroactive processing of samples for other contaminants. In this study, the use of both d-SPE and EMR-L sample preparation and UHPLC-QQQ and UHPLC-Q/TOF analysis methods for shared spiked samples of bovine muscle, kidney, and liver was compared. The results showed that the EMR-L method provided cleaner extracts overall and improved results for several anthelmintics and tranquilizers compared to the d-SPE method, but the EMR-L method gave lower recoveries for certain β-lactam antibiotics. QQQ vs. Q/TOF detection showed similar mixed performance advantages depending on analytes and matrix interferences, with an advantage to Q/TOF for greater possible analytical scope and non-targeted data collection. Either combination of approaches may be used to meet monitoring purposes, with an edge in efficiency to d-SPE, but greater instrument robustness and less matrix effects when analyzing EMR-L extracts. Graphical abstract Comparison of cleanup methods in the analysis of veterinary drug residues in bovine tissues.

  1. New procedure for extraction of algal lipids from wet biomass: a green clean and scalable process.

    PubMed

    Dejoye Tanzi, Celine; Abert Vian, Maryline; Chemat, Farid

    2013-04-01

    A new procedure, called Simultaneous Distillation and Extraction Process (SDEP), for lipid extraction from wet microalgae (Nannochloropsis oculata and Dunaliella salina) was reported. This method does not require a pre-drying of the biomass and employs alternative solvents such as d-limonene, α-pinene and p-cymene. This procedure has been compared with Soxhlet extraction (Sox) and Bligh & Dyer method (B&D). For N. oculata, results showed that SDEP-cymene provided similar lipid yields to B&D (21.45% and 23.78%), while SDEP-limonene and pinene provided lower yields (18.73% and 18.75% respectively). For D. salina, SDEP-pinene provided the maximum lipid yield (3.29%) compared to the other solvents, which is quite close to B&D result (4.03%). No significant differences in terms of distribution of lipid classes and fatty acid composition have been obtained for different techniques. Evaluation of energy consumption indicates a substantial saving in the extraction cost by SDEP compared to the conventional extraction technique, Soxhlet. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Co-Cultivation of Fungal and Microalgal Cells as an Efficient System for Harvesting Microalgal Cells, Lipid Production and Wastewater Treatment

    PubMed Central

    Wrede, Digby; Taha, Mohamed; Miranda, Ana F.; Kadali, Krishna; Stevenson, Trevor; Ball, Andrew S.; Mouradov, Aidyn

    2014-01-01

    The challenges which the large scale microalgal industry is facing are associated with the high cost of key operations such as harvesting, nutrient supply and oil extraction. The high-energy input for harvesting makes current commercial microalgal biodiesel production economically unfeasible and can account for up to 50% of the total cost of biofuel production. Co-cultivation of fungal and microalgal cells is getting increasing attention because of high efficiency of bio-flocculation of microalgal cells with no requirement for added chemicals and low energy inputs. Moreover, some fungal and microalgal strains are well known for their exceptional ability to purify wastewater, generating biomass that represents a renewable and sustainable feedstock for biofuel production. We have screened the flocculation efficiency of the filamentous fungus A. fumigatus against 11 microalgae representing freshwater, marine, small (5 µm), large (over 300 µm), heterotrophic, photoautotrophic, motile and non-motile strains. Some of the strains are commercially used for biofuel production. Lipid production and composition were analysed in fungal-algal pellets grown on media containing alternative carbon, nitrogen and phosphorus sources contained in wheat straw and swine wastewater, respectively. Co-cultivation of algae and A. fumigatus cells showed additive and synergistic effects on biomass production, lipid yield and wastewater bioremediation efficiency. Analysis of fungal-algal pellet's fatty acids composition suggested that it can be tailored and optimised through co-cultivating different algae and fungi without the need for genetic modification. PMID:25419574

  3. Co-cultivation of fungal and microalgal cells as an efficient system for harvesting microalgal cells, lipid production and wastewater treatment.

    PubMed

    Wrede, Digby; Taha, Mohamed; Miranda, Ana F; Kadali, Krishna; Stevenson, Trevor; Ball, Andrew S; Mouradov, Aidyn

    2014-01-01

    The challenges which the large scale microalgal industry is facing are associated with the high cost of key operations such as harvesting, nutrient supply and oil extraction. The high-energy input for harvesting makes current commercial microalgal biodiesel production economically unfeasible and can account for up to 50% of the total cost of biofuel production. Co-cultivation of fungal and microalgal cells is getting increasing attention because of high efficiency of bio-flocculation of microalgal cells with no requirement for added chemicals and low energy inputs. Moreover, some fungal and microalgal strains are well known for their exceptional ability to purify wastewater, generating biomass that represents a renewable and sustainable feedstock for biofuel production. We have screened the flocculation efficiency of the filamentous fungus A. fumigatus against 11 microalgae representing freshwater, marine, small (5 µm), large (over 300 µm), heterotrophic, photoautotrophic, motile and non-motile strains. Some of the strains are commercially used for biofuel production. Lipid production and composition were analysed in fungal-algal pellets grown on media containing alternative carbon, nitrogen and phosphorus sources contained in wheat straw and swine wastewater, respectively. Co-cultivation of algae and A. fumigatus cells showed additive and synergistic effects on biomass production, lipid yield and wastewater bioremediation efficiency. Analysis of fungal-algal pellet's fatty acids composition suggested that it can be tailored and optimised through co-cultivating different algae and fungi without the need for genetic modification.

  4. Identification of optimum fatty acid extraction methods for two different microalgae Phaeodactylum tricornutum and Haematococcus pluvialis for food and biodiesel applications.

    PubMed

    Otero, Paz; Saha, Sushanta Kumar; Gushin, Joanne Mc; Moane, Siobhan; Barron, John; Murray, Patrick

    2017-07-01

    Microalgae have the potential to synthesize and accumulate lipids which contain high value fatty acids intended for nutrition and biodiesel applications. Nevertheless, lipid extraction methods for microalgae cells are not well established and there is not a standard analytical methodology to extract fatty acids from lipid-producing microalgae. In this paper, current lipid extraction procedures employing organic solvents (chloroform/methanol, 2:1 and 1:2, v/v), sodium hypochlorite solution (NaClO), acid-catalysed hot-water extraction and the saponification process [2.5 M KOH/methanol (1:4, v/v)] have been evaluated with two species of microalgae with different types of cell walls. One is a marine diatom, Phaeodactylum tricornutum, and the other a freshwater green microalga, Haematococcus pluvialis. Lipids from all types of extracts were estimated gravimetrically and their fatty acids were quantified by a HPLC equipped with Q-TOF mass spectrometer. Results indicated significant differences both in lipids yield and fatty acids composition. The chloroform and methanol mixture was the most effective extraction solvent for the unsaturated fatty acids such as DPA (C22:05), DHA, (C22:06), EPA (C20:05) and ARA (C20:04). While acid treatments improved the saturated fatty acids (SFAs) yield, especially the short chain SFA, lauric acid (C12:0), whose amount was 64% higher in P. tricornutum and 156% higher in H. pluvialis compared to organic solvent extractions. Graphical abstract ᅟ.

  5. Development of γ-Oryzanol Rich Extract from Leum Pua Glutinous Rice Bran Loaded Nanostructured Lipid Carriers for Topical Delivery.

    PubMed

    Pornputtapitak, Warangkana; Pantakitcharoenkul, Jaturavit; Panpakdee, Ratchada; Teeranachaideekul, Veerawat; Sinchaipanid, Nuttanan

    2018-02-01

    Leum Pua is native Thai glutinous rice that contains antioxidants higher than white rice and other colored rice. One of the major antioxidants in rice brans is γ-oryzanol (GO). In this study, Leum Pua glutinous rice bran was extracted by different solvents. Oleic acid (~40 g/100 g extract), linoleic acid (~30 g/100 g extract), and palmitic acid (~20 g/100 g extract) were found to be major lipid components in the extracts. Methanol extract showed less variety of lipid components compared to the others. However, hexane extract showed the highest percent of γ-oryzanol compared to other solvents. Therefore, the hexane extract was selected to prepare nanostructured lipid carriers (NLC). The prepared NLC had small particles in the size range of 142.9 ± 0.4 nm for extract-loaded NLC and 137.1 ± 0.5 nm for GO-loaded NLC with narrow size distribution (PI < 0.1) in both formulations. The release profile of extract-loaded NLC formulation was slightly higher than GO-loaded NLC formulation. However, they did not follow the Higuchi model because of small amounts of γ-oryzanol loaded in NLC particles.

  6. Agaricus blazei Murill as an efficient hepatoprotective and antioxidant agent against CCl4-induced liver injury in rats

    PubMed Central

    Al-Dbass, Abeer M.; Al- Daihan, Sooad K.; Bhat, Ramesa Shafi

    2012-01-01

    Agaricus blazei Murill is one of the very popular edible medicinal mushrooms. The present study investigated the protective effect of this biologically active mushroom on the tissue peroxidative damage and abnormal antioxidant levels in carbon tetrachloride induced hepatotoxicity in male albino rats. Male albino rats of Sprague–Dawley strain weighting (120–150 g) were categorized into five groups. The first group served as the normal control, the second and the third groups were treated with Agaricus blazei Mushroom extract and carbon tetrachloride dose, respectively. Fourth group (protective group) was first treated with Agaricus blazei Mushroom extract followed by carbon tetrachloride treatment and fifth (therapeutic group) with carbon tetrachloride first followed by Agaricus blazei Mushroom treatment. The wet fruiting bodies of mushroom Agaricus blazei Murill, crushed and suspended in distilled water was administered orally to the treated groups of male albino rats. The activities of various enzymes (aspartate and alanine transaminase, lactate dehydrogenase, glutathione reductase), levels of non-enzymatic antioxidants (glutathione, vitamin C, vitamin E) and level of lipid peroxidation (malondialdehyde) were determined in the serum of all the experimental animals. Decrease in all the enzymes and non-enzymatic antioxidant, along with an increase in the lipid peroxidative index (malondialdehyde) was found in all the carbon tetrachloride treated rats as compared with normal controls. Also increase level of non-enzymatic antioxidant along with the decrease level in malondialdehyde was found in all experimental animals which were treated with Agaricus blazei Mushroom extract as compared with normal controls. The findings indicate that the extract of Agaricus blazei Murill can protect the liver against carbon tetrachloride induced oxidative damage in rats and is an efficient hepatoprotective and antioxidant agent against carbon tetrachloride induced liver injury. PMID:23961190

  7. Agaricus blazei Murill as an efficient hepatoprotective and antioxidant agent against CCl4-induced liver injury in rats.

    PubMed

    Al-Dbass, Abeer M; Al-Daihan, Sooad K; Bhat, Ramesa Shafi

    2012-07-01

    Agaricus blazei Murill is one of the very popular edible medicinal mushrooms. The present study investigated the protective effect of this biologically active mushroom on the tissue peroxidative damage and abnormal antioxidant levels in carbon tetrachloride induced hepatotoxicity in male albino rats. Male albino rats of Sprague-Dawley strain weighting (120-150 g) were categorized into five groups. The first group served as the normal control, the second and the third groups were treated with Agaricus blazei Mushroom extract and carbon tetrachloride dose, respectively. Fourth group (protective group) was first treated with Agaricus blazei Mushroom extract followed by carbon tetrachloride treatment and fifth (therapeutic group) with carbon tetrachloride first followed by Agaricus blazei Mushroom treatment. The wet fruiting bodies of mushroom Agaricus blazei Murill, crushed and suspended in distilled water was administered orally to the treated groups of male albino rats. The activities of various enzymes (aspartate and alanine transaminase, lactate dehydrogenase, glutathione reductase), levels of non-enzymatic antioxidants (glutathione, vitamin C, vitamin E) and level of lipid peroxidation (malondialdehyde) were determined in the serum of all the experimental animals. Decrease in all the enzymes and non-enzymatic antioxidant, along with an increase in the lipid peroxidative index (malondialdehyde) was found in all the carbon tetrachloride treated rats as compared with normal controls. Also increase level of non-enzymatic antioxidant along with the decrease level in malondialdehyde was found in all experimental animals which were treated with Agaricus blazei Mushroom extract as compared with normal controls. The findings indicate that the extract of Agaricus blazei Murill can protect the liver against carbon tetrachloride induced oxidative damage in rats and is an efficient hepatoprotective and antioxidant agent against carbon tetrachloride induced liver injury.

  8. Hypolipidemic and antioxidative effects of aqueous enzymatic extract from rice bran in rats fed a high-fat and -cholesterol diet.

    PubMed

    Wang, Yu-Xin; Li, Yang; Sun, An-Min; Wang, Feng-Jiao; Yu, Guo-Ping

    2014-09-16

    The aqueous enzymatic extract from rice bran (AEERB) was rich in protein, γ-oryzanol and tocols. The aim of this study was to investigate the effects of AEERB on the regulation of lipid metabolism and the inhibition of oxidative damage. The antioxidant activity of AEERB in vitro was measured in terms of radical scavenging capacity, ferric reducing ability power (FRAP) and linoleic acid emulsion system-ferric thiocyanate method (FTC). Male Wistar rats were fed with a normal diet and a high-fat and high-cholesterol diet with or without AEERB. After treatment, biochemical assays of serum, liver and feces lipid levels, the antioxidant enzyme activity, malondialdehyde (MDA) and protein carbonyl were determined. AEERB is completely soluble in water and rich in hydrophilic and lipophilic functional ingredients. AEERB scavenged DPPH• and ABTS•+ and exhibited antioxidant activity slightly lower than that of ascorbic acid in the linoleic acid system. The administration of AEERB reduced serum lipid levels and the atherogenic index compared with those of the hyperlipidemic diet group (HD). The administration of AEERB significantly lowered liver lipid levels, inhibited hepatic 3-hydroxyl-3-methylglutaryl CoA reductase activity, and efficiently promoted the fecal excretion of total lipids and total cholesterol (TC) (p < 0.05). Dietary AEERB enhanced antioxidant status in the serum, liver and brain by increasing the antioxidant enzyme activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) and decreasing the content of MDA and protein carbonyl. The results indicated that AEERB might act as a potent hypolipidemic and antioxidant functional food.

  9. Bioremediation of Cephalexin with non-living Chlorella sp., biomass after lipid extraction.

    PubMed

    Angulo, E; Bula, L; Mercado, I; Montaño, A; Cubillán, N

    2018-06-01

    In this work, the removal of the Cephalexin by Chlorella sp., nonliving modified by extraction of lipids was evaluated. First, the microalga was grown to completing 20 days and later, the biomass of crop was centrifuged and the extraction of lipids was performed. Two adsorption experiments were performed: (1) with nonliving Chlorella sp. (control), and (2) the obtained biomass after lipid extraction. The high antibiotic removal, 71.19% and 82.77% (control), were obtained at the lowest initial concentration. The contact time between the biosorbent and the antibiotic was 2 h. The adsorption isotherm follows the Freundlich model and the obtained maximum absorption capacity was 63.29 mg of antibiotic/g of biosorbent for lipid-extracted biomass, while the control follows best to the Langmuir model with 129.87 mg/g in maximum absorption capacity. In summary, this biosorbent provides a potential alternative in the removal of Cephalexin. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. The bovine seminal plasma protein PDC-109 extracts phosphorylcholine-containing lipids from the outer membrane leaflet.

    PubMed

    Tannert, Astrid; Kurz, Anke; Erlemann, Karl-Rudolf; Müller, Karin; Herrmann, Andreas; Schiller, Jürgen; Töpfer-Petersen, Edda; Manjunath, Puttaswamy; Müller, Peter

    2007-04-01

    The bovine seminal plasma protein PDC-109 modulates the maturation of bull sperm cells by removing lipids, mainly phosphatidylcholine and cholesterol, from their cellular membrane. Here, we have characterized the process of extraction of endogenous phospholipids and of their respective analogues. By measuring the PDC-109-mediated release of fluorescent phospholipid analogues from lipid vesicles and from biological membranes (human erythrocytes, bovine epididymal sperm cells), we showed that PDC-109 extracts phospholipids with a phosphorylcholine headgroup mainly from the outer leaflet of these membranes. The ability of PDC-109 to extract endogenous phospholipids from epididymal sperm cells was followed by mass spectrometry, which allowed us to characterize the fatty acid pattern of the released lipids. From these cells, PDC-109 extracted phosphatidylcholine and sphingomyelin that contained an enrichment of mono- and di-unsaturated fatty acids as well as short-chain and lyso-phosphatidylcholine species. Based on the results, a model explaining the phospholipid specificity of PDC-109-mediated lipid release is presented.

  11. Therapeutic effect of aqueous extracts of three dietary spices and their mixture on lipid metabolism and oxidative stress in a rat model of chronic alcohol consumption.

    PubMed

    Otunola, Gloria Aderonke; Afolayan, Anthony Jide

    2016-07-01

    The protective effect of aqueous extracts of three dietary spices, garlic, (Allium sativum), ginger (Zingiber officinale) and pepper (Capsicum frutescens) singly and combined was investigated using a rat model of chronic alcohol intake. Rats were given 30% ethanol, with or without aqueous extracts of garlic, ginger, pepper or mixture of the three administered at 200mg/kg body weight by oral gavage for 28 days. Lipid profile, lipid peroxidation, oxidative and antioxidative profiles of serum, faecal, liver, kidney, heart and brain tissues of the rats were analyzed. Alcohol treatment significantly elevated liver enzymes, lipid peroxidation, depleted antioxidant system and induced histopathological changes in the liver. These alterations were markedly ameliorated by treatment with aqueous extracts of the three spices singly or mixed at 200mg/kg body weight. These results suggest that aqueous extracts of garlic, ginger, pepper or a blend of the three protects against alcohol- induced hypercholesterolemia, lipid peroxidation, oxidative stress and liver damage.

  12. Lipid extraction methods from microalgal biomass harvested by two different paths: screening studies toward biodiesel production.

    PubMed

    Ríos, Sergio D; Castañeda, Joandiet; Torras, Carles; Farriol, Xavier; Salvadó, Joan

    2013-04-01

    Microalgae can grow rapidly and capture CO2 from the atmosphere to convert it into complex organic molecules such as lipids (biodiesel feedstock). High scale economically feasible microalgae based oil depends on optimizing the entire process production. This process can be divided in three very different but directly related steps (production, concentration, lipid extraction and transesterification). The aim of this study is to identify the best method of lipid extraction to undergo the potentiality of some microalgal biomass obtained from two different harvesting paths. The first path used all physicals concentration steps, and the second path was a combination of chemical and physical concentration steps. Three microalgae species were tested: Phaeodactylum tricornutum, Nannochloropsis gaditana, and Chaetoceros calcitrans One step lipid extraction-transesterification reached the same fatty acid methyl ester yield as the Bligh and Dyer and soxhlet extraction with n-hexane methods with the corresponding time, cost and solvent saving. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Adjusting membrane lipids under salt stress: the case of the moderate halophilic organism Halobacillus halophilus.

    PubMed

    Lopalco, Patrizia; Angelini, Roberto; Lobasso, Simona; Köcher, Saskia; Thompson, Melanie; Müller, Volker; Corcelli, Angela

    2013-04-01

    The lipid composition of Halobacillus halophilus was investigated by combined thin-layer chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analyses of the total lipid extract. Main polar lipids were found to be sulfoquinovosyldiacylglycerol and phosphatidylglycerol, while cardiolipin was a minor lipid together with phosphatidic acid, alanyl-phosphatidylglycerol and two not yet fully identified lipid components. In addition the analyses of residual lipids, associated with denatured proteins after the lipid extraction, revealed the presence of significant amounts of cardiolipin, indicating that it is a not readily extractable phospholipid. Post decay source mass spectrometry analyses allowed the determination of acyl chains of main lipid components. On increasing the culture medium salinity, an increase in the shorter chains and the presence of chain unsaturations were observed. These changes in the lipid core structures might compensate for the increase in packing and rigidity of phospholipid and sulfoglycolipid polar heads in high-salt medium, therefore contributing to the homeostasis of membrane fluidity and permeability in salt stress conditions. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  14. Optimization of a wet microalgal lipid extraction procedure for improved lipid recovery for biofuel and bioproduct production.

    PubMed

    Sathish, Ashik; Marlar, Tyler; Sims, Ronald C

    2015-10-01

    Methods to convert microalgal biomass to bio based fuels and chemicals are limited by several processing and economic hurdles. Research conducted in this study modified/optimized a previously published procedure capable of extracting transesterifiable lipids from wet algal biomass. This optimization resulted in the extraction of 77% of the total transesterifiable lipids, while reducing the amount of materials and temperature required in the procedure. In addition, characterization of side streams generated demonstrated that: (1) the C/N ratio of the residual biomass or lipid extracted (LE) biomass increased to 54.6 versus 10.1 for the original biomass, (2) the aqueous phase generated contains nitrogen, phosphorous, and carbon, and (3) the solid precipitate phase was composed of up to 11.2 wt% nitrogen (70% protein). The ability to isolate algal lipids and the possibility of utilizing generated side streams as products and/or feedstock material for downstream processes helps promote the algal biorefinery concept. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Quantification and characterisation of fatty acid methyl esters in microalgae: Comparison of pretreatment and purification methods.

    PubMed

    Lage, Sandra; Gentili, Francesco G

    2018-06-01

    A systematic qualitative and quantitative analysis of fatty acid methyl esters (FAMEs) is crucial for microalgae species selection for biodiesel production. The aim of this study is to identify the best method to assess microalgae FAMEs composition and content. A single-step method, was tested with and without purification steps-that is, separation of lipid classes by thin-layer chromatography (TLC) or solid-phase extraction (SPE). The efficiency of a direct transesterification method was also evaluated. Additionally, the yield of the FAMEs and the profiles of the microalgae samples with different pretreatments (boiled in isopropanol, freezing, oven-dried and freeze-dried) were compared. The application of a purification step after lipid extraction proved to be essential for an accurate FAMEs characterisation. The purification methods, which included TLC and SPE, provided superior results compared to not purifying the samples. Freeze-dried microalgae produced the lowest FAMEs yield. However, FAMEs profiles were generally equivalent among the pretreatments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Sida rhomboidea.Roxb extract alleviates pathophysiological changes in experimental in vivo and in vitro models of high fat diet/fatty acid induced non-alcoholic steatohepatitis.

    PubMed

    Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Dandekar, Deven S; Devkar, Ranjitsinh V; Ramachandran, A V

    2012-03-01

    The present study was aim to evaluate protective role of Sida rhomboidea.Roxb (SR) extract against high fat diet/fatty acid induced pathophysiological alterations in experimental model of non-alcoholic steatohepatitis (NASH). Effect of SR extract on plasma levels of markers of hepatic damage, plasma and hepatic lipids, mitochondrial oxidative stress, status of enzymatic and non-enzymatic antioxidants and histopathological changes in liver tissue were evaluated in high fat diet fed C57BL/6J mice. Also, the effect of SR supplementation on lipid accumulation, lipid peroxidation, cytotoxicity and cell viability were evaluated in oleic acid treated HepG2 cells. Supplementation of NASH mice with SR extract prevented high fat diet induced elevation in plasma marker enzymes of liver damage, plasma and hepatic lipids, mitochondrial oxidative stress and compromised enzymatic and non-enzymatic antioxidant status. Further, addition of SR extract to in vitro HepG2 cells minimized oleic acid induced lipid accumulation, higher lipid peroxidation, cytotoxicity and reduced cell viability. These in vivo and in vitro studies suggest that SR extract has the potential of preventing high fat/fatty acid induced NASH mainly due to its hypolipidemic and antioxidant activities. Copyright © 2010 Elsevier GmbH. All rights reserved.

  17. Extraction and Analysis of Food Lipids

    USDA-ARS?s Scientific Manuscript database

    Along with proteins and carbohydrates, lipids are one of the main components of foods. Lipids are often defined as a group of biomolecules that are insoluble in water and soluble in organic solvents such as hexane, diethyl ether or chloroform. Modern methods for the extraction and analysis of lipi...

  18. Subcritical water extraction of lipids from wet algal biomass

    DOEpatents

    Deng, Shuguang; Reddy, Harvind K.; Schaub, Tanner; Holguin, Francisco Omar

    2016-05-03

    Methods of lipid extraction from biomass, in particular wet algae, through conventionally heated subcritical water, and microwave-assisted subcritical water. In one embodiment, fatty acid methyl esters from solids in a polar phase are further extracted to increase biofuel production.

  19. Modified Lipid Extraction Methods for Deep Subsurface Shale

    PubMed Central

    Akondi, Rawlings N.; Trexler, Ryan V.; Pfiffner, Susan M.; Mouser, Paula J.; Sharma, Shikha

    2017-01-01

    Growing interest in the utilization of black shales for hydrocarbon development and environmental applications has spurred investigations of microbial functional diversity in the deep subsurface shale ecosystem. Lipid biomarker analyses including phospholipid fatty acids (PLFAs) and diglyceride fatty acids (DGFAs) represent sensitive tools for estimating biomass and characterizing the diversity of microbial communities. However, complex shale matrix properties create immense challenges for microbial lipid extraction procedures. Here, we test three different lipid extraction methods: modified Bligh and Dyer (mBD), Folch (FOL), and microwave assisted extraction (MAE), to examine their ability in the recovery and reproducibility of lipid biomarkers in deeply buried shales. The lipid biomarkers were analyzed as fatty acid methyl esters (FAMEs) with the GC-MS, and the average PL-FAME yield ranged from 67 to 400 pmol/g, while the average DG-FAME yield ranged from 600 to 3,000 pmol/g. The biomarker yields in the intact phospholipid Bligh and Dyer treatment (mBD + Phos + POPC), the Folch, the Bligh and Dyer citrate buffer (mBD-Cit), and the MAE treatments were all relatively higher and statistically similar compared to the other extraction treatments for both PLFAs and DGFAs. The biomarker yields were however highly variable within replicates for most extraction treatments, although the mBD + Phos + POPC treatment had relatively better reproducibility in the consistent fatty acid profiles. This variability across treatments which is associated with the highly complex nature of deeply buried shale matrix, further necessitates customized methodological developments for the improvement of lipid biomarker recovery. PMID:28790998

  20. Potential application of algicidal bacteria for improved lipid recovery with specific algae.

    PubMed

    Lenneman, Eric M; Wang, Ping; Barney, Brett M

    2014-05-01

    The utility of specific strains of natural algicidal bacteria isolated from shallow wetland sediments was evaluated against several strains of algae with potential immediate or future commercial value. Two strains of bacteria, Pseudomonas pseudoalcaligenes AD6 and Aeromonas hydrophila AD9, were identified and demonstrated to have algicidal activity against the microalgae Neochloris oleoabundans and Dunaliella tertiolecta. These bacteria were further evaluated for the potential to improve lipid extraction using a mild solvent extraction approach. Aeromonas hydrophila AD9 showed a nearly 12-fold increase in lipid extraction with D. tertiolecta, while both bacteria showed a sixfold improvement in lipid extraction with N. oleoabundans. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  1. Organochlorine contaminants in double-crested cormorants from Green Bay, WI: I. Large-scale extraction and isolation from eggs using semi-permeable membrane dialysis

    USGS Publications Warehouse

    Meadows, J.C.; Tillitt, D.E.; Schwartz, T.R.; Schroeder, D.J.; Echols, K.R.; Gale, R.W.; Powell, D.C.; Bursian, S.J.

    1996-01-01

    A 41.3-kg sample of double-crested cormorant (Phalacrocorax auritus) egg contents was extracted, yielding over 2 L of egg lipid. The double-crested cormorant (DCC) egg extract, after clean-up and concentration, was intended for use in egg injection studies to determine the embryotoxicity of the organic contaminants found within the eggs. Large-scale dialysis was used as a preliminary treatment to separate the extracted contaminants from the co-extracted sample lipids. The lipid was dialyzed in 80×5 cm semi-permeable membrane devices (SPMDs) in 50-ml aliquants. After the removal of 87 g of cholesterol by freeze-fractionation, the remaining lipid carryover (56 g) was removed by 100 routine gel permeation chromatography (GPC) operations. A 41,293-g sample was thus extracted and purified to the extent that it could easily be placed at a volume of 5 ml, the volume calculated to be necessary for the egg injection study. Analyses were performed comparing contaminant concentrations in the final purified extract to those present in the original egg material, in the extract after dialysis and cholesterol removal, and in the excluded materials. Recoveries of organochlorine pesticides through dialysis and cholesterol ranged from 96% to 135%. Total polychlorinated biphenyls in the final extract were 96% of those measured in the original egg material. Analysis of excluded lipid and cholesterol indicated that 92% of the polychlorinated dibenzo-dioxins and-furans were separated into the final extract.

  2. Characteristic lipids of Bordetella pertussis: simple fatty acid composition, hydroxy fatty acids, and an ornithine-containing lipid.

    PubMed Central

    Kawai, Y; Moribayashi, A

    1982-01-01

    The lipids and fatty acids of Bordetella pertussis (phases I to IV) were analyzed by thin-layer chromatography, gas-liquid chromatography, and mass spectrometry and compared with those of B. parapertussis and B. bronchiseptica. The major lipid components of the three species were phosphatidylethanolamine, cardiolipin, phosphatidylglycerol, lysophosphatidylethanolamine, and an ornithine-containing lipid. The ornithine-containing lipid was characteristic of the genus Bordetella. The fatty acid composition of the total extractable cellular lipids of B. pertussis was mostly hexadecanoic and hexadecenoic acids (90%) in a ratio of about 1:1. The hexadecenoic acid of B. pertussis was in the cis-9 form. The fatty acid composition of the residual bound lipids was distinctly different from that of the extractable lipids, and residual bound lipids being mainly 3-hydroxytetradecanoic, tetradecanoic, and 3-hydroxydecanoic acids, with 3-hydroxydodecanoic acid occurring in some strains. It was determined that the 3-hydroxy fatty acids were derived from lipid A. The fatty acid composition of the total extractable cellular lipids of B. parapertussis and B. bronchiseptica, mainly composed of hexadecanoic and heptadecacyclopropanoic acid, differed from that of B. pertussis. Although the fatty acid composition of the residual bound lipids of B. parapertussis was similar to that of the residual bound lipids of B. pertussis, 2-hydroxydodecanoic acid was detected only in the bound lipids of B. bronchiseptica. Images PMID:6284719

  3. Characteristic lipids of Bordetella pertussis: simple fatty acid composition, hydroxy fatty acids, and an ornithine-containing lipid.

    PubMed

    Kawai, Y; Moribayashi, A

    1982-08-01

    The lipids and fatty acids of Bordetella pertussis (phases I to IV) were analyzed by thin-layer chromatography, gas-liquid chromatography, and mass spectrometry and compared with those of B. parapertussis and B. bronchiseptica. The major lipid components of the three species were phosphatidylethanolamine, cardiolipin, phosphatidylglycerol, lysophosphatidylethanolamine, and an ornithine-containing lipid. The ornithine-containing lipid was characteristic of the genus Bordetella. The fatty acid composition of the total extractable cellular lipids of B. pertussis was mostly hexadecanoic and hexadecenoic acids (90%) in a ratio of about 1:1. The hexadecenoic acid of B. pertussis was in the cis-9 form. The fatty acid composition of the residual bound lipids was distinctly different from that of the extractable lipids, and residual bound lipids being mainly 3-hydroxytetradecanoic, tetradecanoic, and 3-hydroxydecanoic acids, with 3-hydroxydodecanoic acid occurring in some strains. It was determined that the 3-hydroxy fatty acids were derived from lipid A. The fatty acid composition of the total extractable cellular lipids of B. parapertussis and B. bronchiseptica, mainly composed of hexadecanoic and heptadecacyclopropanoic acid, differed from that of B. pertussis. Although the fatty acid composition of the residual bound lipids of B. parapertussis was similar to that of the residual bound lipids of B. pertussis, 2-hydroxydodecanoic acid was detected only in the bound lipids of B. bronchiseptica.

  4. LIPID METHODOLOGY AND POLLUTANT NORMALIZATION RELATIONSHIPS FOR NEUTRAL NONPOLAR ORGANIC POLLUTANTS

    EPA Science Inventory

    This work compares the ability of hexane and chloroform with methanol (C/M) to extract lipid, polychlorinated biphenyls (PCBs), and p,p'-DDE from white croaker (Geneonus lineatus) muscle tissue. Hexane extracted on average 25% of the lipid and 73% of the PCB congeners that were e...

  5. Alternative oil extraction methods from Echium plantagineum L. seeds using advanced techniques and green solvents.

    PubMed

    Castejón, Natalia; Luna, Pilar; Señoráns, Francisco J

    2018-04-01

    The edible oil processing industry involves large losses of organic solvent into the atmosphere and long extraction times. In this work, fast and environmentally friendly alternatives for the production of echium oil using green solvents are proposed. Advanced extraction techniques such as Pressurized Liquid Extraction (PLE), Microwave Assisted Extraction (MAE) and Ultrasound Assisted Extraction (UAE) were evaluated to efficiently extract omega-3 rich oil from Echium plantagineum seeds. Extractions were performed with ethyl acetate, ethanol, water and ethanol:water to develop a hexane-free processing method. Optimal PLE conditions with ethanol at 150 °C during 10 min produced a very similar oil yield (31.2%) to Soxhlet using hexane for 8 h (31.3%). UAE optimized method with ethanol at mild conditions (55 °C) produced a high oil yield (29.1%). Consequently, advanced extraction techniques showed good lipid yields and furthermore, the produced echium oil had the same omega-3 fatty acid composition than traditionally extracted oil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Oil extraction from Scenedesmus obliquus using a continuous microwave system--design, optimization, and quality characterization.

    PubMed

    Balasubramanian, Sundar; Allen, James D; Kanitkar, Akanksha; Boldor, Dorin

    2011-02-01

    A 1.2 kW, 2450 MHz resonant continuous microwave processing system was designed and optimized for oil extraction from green algae (Scenedesmus obliquus). Algae-water suspension (1:1 w/w) was heated to 80 and 95°C, and subjected to extraction for up to 30 min. Maximum oil yield was achieved at 95°C and 30 min. The microwave system extracted 76-77% of total recoverable oil at 20-30 min and 95°C, compared to only 43-47% for water bath control. Extraction time and temperature had significant influence (p<0.0001) on extraction yield. Oil analysis indicated that microwaves extracted oil containing higher percentages of unsaturated and essential fatty acids (indicating higher quality). This study validates for the first time the efficiency of a continuous microwave system for extraction of lipids from algae. Higher oil yields, faster extraction rates and superior oil quality demonstrate this system's feasibility for oil extraction from a variety of feedstock. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Accounting for the effects of lipids in stable isotope (δ13C and δ15N values) analysis of skin and blubber of balaenopterid whales.

    PubMed

    Ryan, Conor; McHugh, Brendan; Trueman, Clive N; Harrod, Chris; Berrow, Simon D; O'Connor, Ian

    2012-12-15

    Stable isotope values (δ(13)C and δ(15)N) of darted skin and blubber biopsies can shed light on habitat use and diet of cetaceans, which are otherwise difficult to study. Non-dietary factors affect isotopic variability, chiefly the depletion of (13)C due to the presence of (12)C-rich lipids. The efficacy of post hoc lipid-correction models (normalization) must be tested. For tissues with high natural lipid content (e.g., whale skin and blubber), chemical lipid extraction or normalization is necessary. C:N ratios, δ(13)C values and δ(15)N values were determined for duplicate control and lipid-extracted skin and blubber of fin (Balaenoptera physalus), humpback (Megaptera novaeangliae) and minke whales (B. acutorostrata) by continuous-flow elemental analysis isotope ratio mass spectrometry (CF-EA-IRMS). Six different normalization models were tested to correct δ(13)C values for the presence of lipids. Following lipid extraction, significant increases in δ(13)C values were observed for both tissues in the three species. Significant increases were also found for δ(15)N values in minke whale skin and fin whale blubber. In fin whale skin, the δ(15)N values decreased, with no change observed in humpback whale skin. Non-linear models generally out-performed linear models and the suitability of models varied by species and tissue, indicating the need for high model specificity, even among these closely related taxa. Given the poor predictive power of the models to estimate lipid-free δ(13)C values, and the unpredictable changes in δ(15)N values due to lipid-extraction, we recommend against arithmetical normalization in accounting for lipid effects on δ(13)C values for balaenopterid skin or blubber samples. Rather, we recommend that duplicate analysis of lipid-extracted (δ(13)C values) and non-treated tissues (δ(15)N values) be used. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Membrane Structure: Spin Labeling and Freeze Etching of Mycoplasma laidlawii*

    PubMed Central

    Tourtellotte, Mark E.; Branton, Daniel; Keith, Alec

    1970-01-01

    A spin-labeled fatty acid was incorporated in vivo into the polar lipids of Mycoplasma laidlawii membranes. The electron paramagnetic resonance signal from either intact cells or their extracted lipids reflected the fatty acid composition of the Mycoplasma membranes. Comparison of signals from intact cells, gramicidin-treated cells, heat-treated cells, and extracted lipids indicates that a major portion of the membrane lipids is in a semiviscous hydrocarbon environment. The results also show that the spin label in the intact membrane is slightly but significantly less mobile than it is in protein-free lipid extracts made from these membranes. Correlated electron microscope examinations using the freeze-etch technique reveal particulate components in the hydrophobic region of the membrane. The mobility of the lipids in the intact cell membrane may be influenced by their association with these particles. Images PMID:4316683

  9. Characterization of oilseed lipids from "DHA-producing Camelina sativa": a new transformed land plant containing long-chain omega-3 oils.

    PubMed

    Mansour, Maged P; Shrestha, Pushkar; Belide, Srinivas; Petrie, James R; Nichols, Peter D; Singh, Surinder P

    2014-02-21

    New and sustainable sources of long-chain (LC, ≥C₂₀) omega-3 oils containing DHA (docosahexaenoic acid, 22:6ω3) are required to meet increasing demands. The lipid content of the oilseed of a novel transgenic, DHA-producing land plant, Camelina sativa, containing microalgal genes able to produce LC omega-3 oils, contained 36% lipid by weight with triacylglycerols (TAG) as the major lipid class in hexane extracts (96% of total lipid). Subsequent chloroform-methanol (CM) extraction recovered further lipid (~50% polar lipid, comprising glycolipids and phospholipids) and residual TAG. The main phospholipid species were phosphatidyl choline and phosphatidyl ethanolamine. The % DHA was: 6.8% (of total fatty acids) in the TAG-rich hexane extract and 4.2% in the polar lipid-rich CM extract. The relative level of ALA (α-linolenic acid, 18:3ω3) in DHA-camelina seed was higher than the control. Major sterols in both DHA- and control camelina seeds were: sitosterol, campesterol, cholesterol, brassicasterol and isofucosterol. C₁₆-C₂₂ fatty alcohols, including iso-branched and odd-chain alcohols were present, including high levels of iso-17:0, 17:0 and 19:0. Other alcohols present were: 16:0, iso-18:0, 18:0 and 18:1 and the proportions varied between the hexane and CM extracts. These iso-branched odd-chain fatty alcohols, to our knowledge, have not been previously reported. These components may be derived from wax esters, or free fatty alcohols.

  10. The Effect of Buckwheat Hull Extract on Lipid Oxidation in Frozen-Stored Meat Products.

    PubMed

    Hęś, Marzanna; Szwengiel, Artur; Dziedzic, Krzysztof; Le Thanh-Blicharz, Joanna; Kmiecik, Dominik; Górecka, Danuta

    2017-04-01

    This study investigated the effect of antioxidants on lipid stability of frozen-stored meat products. Buckwheat hull extract was used to enrich fried meatballs made from ground pork. During 180-d storage of meat products, lipid oxidation (peroxide and 2-thiobarbituric acid reactive substances [TBARS] value) was periodically monitored. The results were compared with butylated hydroxytoluene (BHT). The addition of antioxidants decreased lipid oxidation in stored meatballs. The highest ability to control peroxide and TBARS values was demonstrated for buckwheat hull extract. Moreover, buckwheat hull extract showed a higher 2,2-diphenyl-1-picrylhydrazyl free radical scavenging activity as well as higher Fe(II) ion chelating ability, as compared with BHT. The total content of phenolic compounds are highly correlated to the individual polyphenols in extract of buckwheat hull, among which the following were assayed: 3,4-dihydroxybenzoic acid, 4-hydroxybenzoic acid, gallic acid, isovanillic acid and p-coumaric acid, and flavonoids: isoorientin, quercetin, quercetin 3-d-glucoside, rutin, and vitexin. These results indicate that plant extracts can be used to prolong shelf life of products by protecting them against lipid oxidation and deterioration of their nutritional quality. © 2017 Institute of Food Technologists®.

  11. Combined algal processing: A novel integrated biorefinery process to produce algal biofuels and bioproducts

    DOE PAGES

    Dong, Tao; Knoshaug, Eric P.; Davis, Ryan; ...

    2016-01-18

    Here, the development of an integrated biorefinery process capable of producing multiple products is crucial for commercialization of microalgal biofuel production. Dilute acid pretreatment has been demonstrated as an efficient approach to utilize algal biomass more fully, by hydrolyzing microalgal carbohydrates into fermentable sugars, while making the lipids more extractable, and a protein fraction available for other products. Previously, we have shown that sugar-rich liquor could be separated from solid residue by solid-liquid separation (SLS) to produce ethanol via fermentation. However, process modeling has revealed that approximately 37% of the soluble sugars were lost in the solid cake after themore » SLS. Herein, a Combined Algal Processing (CAP) approach with a simplified configuration has been developed to improve the total energy yield. In CAP, whole algal slurry after acid pretreatment is directly used for ethanol fermentation. The ethanol and microalgal lipids can be sequentially recovered from the fermentation broth by thermal treatment and solvent extraction. Almost all the monomeric fermentable sugars can be utilized for ethanol production without compromising the lipid recovery. The techno-economic analysis (TEA) indicates that the CAP can reduce microalgal biofuel cost by $0.95 per gallon gasoline equivalent (GGE), which is a 9% reduction compared to the previous biorefinery scenario.« less

  12. Method development for mass spectrometry based molecular characterization of fossil fuels and biological samples

    NASA Astrophysics Data System (ADS)

    Mahat, Rajendra K.

    In an analytical (chemical) method development process, the sample preparation step usually determines the throughput and overall success of the analysis. Both targeted and non-targeted methods were developed for the mass spectrometry (MS) based analyses of fossil fuels (coal) and lipidomic analyses of a unique micro-organism, Gemmata obscuriglobus. In the non-targeted coal analysis using GC-MS, a microwave-assisted pressurized sample extraction method was compared with the traditional extraction method, such as Soxhlet. On the other hand, methods were developed to establish a comprehensive lipidomic profile and to confirm the presence of endotoxins (a.k.a. lipopolysaccharides, LPS) in Gemmata.. The performance of pressurized heating techniques employing hot-air oven and microwave irradiation were compared with that of Soxhlet method in terms of percentage extraction efficiency and extracted analyte profiles (via GC-MS). Sub-bituminous (Powder River Range, Wyoming, USA) and bituminous (Fruitland formation, Colorado, USA) coal samples were tested. Overall 30-40% higher extraction efficiencies (by weight) were obtained with a 4 hour hot-air oven and a 20 min microwave-heating extraction in a pressurized container when compared to a 72 hour Soxhlet extraction. The pressurized methods are 25 times more economic in terms of solvent/sample amount used and are 216 times faster in term of time invested for the extraction process. Additionally, same sets of compounds were identified by GC-MS for all the extraction methods used: n-alkanes and diterpanes in the sub-bituminous sample, and n-alkanes and alkyl aromatic compounds in the bituminous coal sample. G. obscuriglobus, a nucleated bacterium, is a micro-organism of high significances from evolutionary, cell and environmental biology standpoints. Although lipidomics is an essential tool in microbiological systematics and chemotaxonomy, complete lipid profile of this bacterium is still lacking. In addition, the presence of LPS and thus outer membrane (OM) in Gemmata is unknown. Global lipidomic analysis of G. obscuriglobus showed fatty acids (FAs) in the range C14 - C22, with octadecanoic and cis-9 hexadecenoic acids (C18:0 and ωc9 C16:1) being the two most abundant FAs. Thirteen different Gram-negative specific 3-hydroxy fatty acids (3-HOFAs) and eukaryote specific sterols (C30; four in number) were identified. Additionally, like a eukaryotic cell, a polyunsaturated fatty acid (PUFA; tent. ω3 C27:3) has also been discovered. The targeted lipidomic study found a series of novel biomarkers in G. obscuriglobus. Compositional analysis of LPS confirmed eight different 3-HOFAs and a sugar-acid, 2-keto 3-deoxy-D-manno -octulosonic acid (Kdo). These two groups of compounds, being unique to a Gram-negative LPS, confirmed the presence of OM in G. obscuriglobus. Moreover, compositional analyses by GC-MS also confirmed glucosamine and hexose and heptose sugars in the LPS. These compositional information obtained from GC-MS analyses were combined with molecular/structural information collected from Matrix-assisted laser desorption and ionization-time of flight (MALDI-TOF) MS. The MALDI-TOF MS showed a cluster of ions separated by 14 u, from m/z 2017.16 to 2143.28. For the most intense ion at m/z 2087.22, a tentative hexa-acylated lipid A structure has been proposed. Identifications of multiple 3-HOFAs by GC-MS and a cluster of ions in MALDI suggest presence of multiple lipid A species, i.e., heterogeneous lipid A molecule, in G. obscuriglobus..

  13. Transfection Studies with Colloidal Systems Containing Highly Purified Bipolar Tetraether Lipids from Sulfolobus acidocaldarius.

    PubMed

    Engelhardt, Konrad H; Pinnapireddy, Shashank Reddy; Baghdan, Elias; Jedelská, Jarmila; Bakowsky, Udo

    2017-01-01

    Lipid vectors are commonly used to facilitate the transfer of nucleic acids into mammalian cells. In this study, two fractions of tetraether lipids from the archaea Sulfolobus acidocaldarius were extracted and purified using different methods. The purified lipid fractions polar lipid fraction E (PLFE) and hydrolysed glycerol-dialkyl-nonitol tetraether (hGDNT) differ in their structures, charge, size, and miscibility from conventional lipids. Liposomes were prepared by mixing tetraether lipids with cholesterol (CH) and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) resulting in stable vectors for gene delivery. Lipoplexes were prepared by complexation of liposomes with a luciferase expressing plasmid (pCMV-luc) at certain nitrogen-to-phosphorus (N/P) ratios and optimised for the transient transfection of ovarian adenocarcinoma cells (SK-OV-3). Complexation efficacy was investigated by gel-red fluorescence assay. Biophysical properties, like size, surface charge, and morphology, were investigated by differential light scattering (DLS), atomic force microscopy (AFM), and scanning electron microscopy (Cryo-SEM), respectively, revealing structural differences between liposomes and lipoplexes. A range of stable transfecting agents containing tetraether lipids were obtained by incorporating 5 mol% of tetraether lipids. Lipoplexes showed a decrease in free gel-red with increasing N/P ratios indicating efficient incorporation of plasmid DNA (pDNA) and remarkable stability. Transfection experiments of the lipoplexes revealed successful and superior transfection of SK-OV-3 cell line compared to the commercially available DOTAP and branched polyethyleneimine (25 kDa bPEI).

  14. Transfection Studies with Colloidal Systems Containing Highly Purified Bipolar Tetraether Lipids from Sulfolobus acidocaldarius

    PubMed Central

    Pinnapireddy, Shashank Reddy; Baghdan, Elias; Jedelská, Jarmila

    2017-01-01

    Lipid vectors are commonly used to facilitate the transfer of nucleic acids into mammalian cells. In this study, two fractions of tetraether lipids from the archaea Sulfolobus acidocaldarius were extracted and purified using different methods. The purified lipid fractions polar lipid fraction E (PLFE) and hydrolysed glycerol-dialkyl-nonitol tetraether (hGDNT) differ in their structures, charge, size, and miscibility from conventional lipids. Liposomes were prepared by mixing tetraether lipids with cholesterol (CH) and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) resulting in stable vectors for gene delivery. Lipoplexes were prepared by complexation of liposomes with a luciferase expressing plasmid (pCMV-luc) at certain nitrogen-to-phosphorus (N/P) ratios and optimised for the transient transfection of ovarian adenocarcinoma cells (SK-OV-3). Complexation efficacy was investigated by gel-red fluorescence assay. Biophysical properties, like size, surface charge, and morphology, were investigated by differential light scattering (DLS), atomic force microscopy (AFM), and scanning electron microscopy (Cryo-SEM), respectively, revealing structural differences between liposomes and lipoplexes. A range of stable transfecting agents containing tetraether lipids were obtained by incorporating 5 mol% of tetraether lipids. Lipoplexes showed a decrease in free gel-red with increasing N/P ratios indicating efficient incorporation of plasmid DNA (pDNA) and remarkable stability. Transfection experiments of the lipoplexes revealed successful and superior transfection of SK-OV-3 cell line compared to the commercially available DOTAP and branched polyethyleneimine (25 kDa bPEI). PMID:28239294

  15. Subcritical n-hexane/isopropanol extraction of lipid from wet microalgal pastes of Scenedesmus obliquus.

    PubMed

    Bian, Xiaoyu; Jin, Wenbiao; Gu, Qiong; Zhou, Xu; Xi, Yuhe; Tu, Renjie; Han, Song-Fang; Xie, Guo-Jun; Gao, Shu-Hong; Wang, Qilin

    2018-02-19

    Subcritical co-solvents of n-hexane/isopropanol were primarily utilized to extract lipid from wet microalgal pastes of Scenedesmus obliquus. The effects of key operational parameters were investigated, and the optimal parameters were obtained: solvent ratio of n-hexane to isopropanol was 3:2 (V:V), phase ratio of co-solvents to microalgal biomass was 35:1 (mL:g), reactor stirring speed was 900 rpm, extraction time was 60 min. Additional pretreatment with acid, ultrasonic and microwave as well as enhanced subcritical pressure/heating treatments were also applied to further study their effects on lipid extraction. The results showed that the lipid recovery rate with acid pretreatment was 8.6 and 6.2% higher than ultrasonic and microwave pretreatment; the optimum enhanced subcritical condition was 55 °C with atmospheric pressure. Under optimal operating conditions, the lipid and FAME yield were 13.5 and 7.2%, which was 82.6 and 135.1% higher than the traditional method. The results indicated that the subcritical n-hexane/isopropanol extraction process had promising application potential.

  16. Panax red ginseng extract regulates energy expenditures by modulating PKA dependent lipid mobilization in adipose tissue.

    PubMed

    Cho, Hae-Mi; Kang, Young-Ho; Yoo, Hanju; Yoon, Seung-Yong; Kang, Sang-Wook; Chang, Eun-Ju; Song, Youngsup

    2014-05-16

    Regulation of balance between lipid accumulation and energy consumption is a critical step for the maintenance of energy homeostasis. Here, we show that Panax red ginseng extract treatments increased energy expenditures and prevented mice from diet induced obesity. Panax red ginseng extracts strongly activated Hormone Specific Lipase (HSL) via Protein Kinase A (PKA). Since activation of HSL induces lipolysis in WAT and fatty acid oxidation in brown adipose tissue (BAT), these results suggest that Panax red ginseng extracts reduce HFD induced obesity by regulating lipid mobilization. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Single Cell Oil Production from Hydrolysates of Inulin by a Newly Isolated Yeast Papiliotrema laurentii AM113 for Biodiesel Making.

    PubMed

    Wang, Guangyuan; Liu, Lin; Liang, Wenxing

    2018-01-01

    Microbial oils are among the most attractive alternative feedstocks for biodiesel production. In this study, a newly isolated yeast strain, AM113 of Papiliotrema laurentii, was identified as a potential lipid producer, which could accumulate a large amount of intracellular lipids from hydrolysates of inulin. P. laurentii AM113 was able to produce 54.6% (w/w) of intracellular oil in its cells and 18.2 g/l of dry cell mass in a fed-batch fermentation. The yields of lipid and biomass were 0.14 and 0.25 g per gram of consumed sugar, respectively. The lipid productivity was 0.092 g of oil per hour. Compositions of the fatty acids produced were C 14:0 (0.9%), C 16:0 (10.8%), C 16:1 (9.7%), C 18:0 (6.5%), C 18:1 (60.3%), and C 18:2 (11.8%). Biodiesel obtained from the extracted lipids could be burnt well. This study not only provides a promising candidate for single cell oil production, but will also probably facilitate more efficient biodiesel production.

  18. Microalgal cell disruption via ultrasonic nozzle spraying.

    PubMed

    Wang, M; Yuan, W

    2015-01-01

    The objective of this study was to understand the effect of operating parameters, including ultrasound amplitude, spraying pressure, nozzle orifice diameter, and initial cell concentration on microalgal cell disruption and lipid extraction in an ultrasonic nozzle spraying system (UNSS). Two algal species including Scenedesmus dimorphus and Nannochloropsis oculata were evaluated. Experimental results demonstrated that the UNSS was effective in the disruption of microalgal cells indicated by significant changes in cell concentration and Nile red-stained lipid fluorescence density between all treatments and the control. It was found that increasing ultrasound amplitude generally enhanced cell disruption and lipid recovery although excessive input energy was not necessary for best results. The effect of spraying pressure and nozzle orifice diameter on cell disruption and lipid recovery was believed to be dependent on the competition between ultrasound-induced cavitation and spraying-generated shear forces. Optimal cell disruption was not always achieved at the highest spraying pressure or biggest nozzle orifice diameter; instead, they appeared at moderate levels depending on the algal strain and specific settings. Increasing initial algal cell concentration significantly reduced cell disruption efficiency. In all UNSS treatments, the effectiveness of cell disruption and lipid recovery was found to be dependent on the algal species treated.

  19. Ultrasound-assisted extraction and bioaccessibility of saponins from edible seeds: quinoa, lentil, fenugreek, soybean and lupin.

    PubMed

    Navarro Del Hierro, Joaquín; Herrera, Teresa; García-Risco, Mónica R; Fornari, Tiziana; Reglero, Guillermo; Martin, Diana

    2018-07-01

    The efficient production of saponin-rich extracts is of increasing interest due to the bioactive properties that have being demonstrated for these compounds. However, saponins have a poor bioavailability. In this respect, the knowledge about the bioaccessibility of saponins as a first step before bioavailability has been scarcely explored. In this study, the production of ultrasound-assisted extracts of saponins from edible seeds (quinoa, soybean, red lentil, fenugreek and lupin) was carried out with ethanol, ethanol:water or water. Extraction yield, total saponin (TSC), fat and total phenolics content (TPC) were determined. Then, the bioaccessibility of saponins after the in vitro gastrointestinal digestion of the extracts was determined and the effect of TPC and fat in the extracts on bioaccessibility was evaluated. The highest saponin-rich extracts were obtained by ethanol, being fenugreek and red lentil the richest extracts (12% and 10%, respectively). Saponins from ethanol:water extracts displayed variable bioaccessibility (from 13% for fenugreek to 83% for lentil), but a bioaccessibility closer to 100% was reached for all ethanol extracts. Correlation studies showed that TPC of the extracts negatively affected the bioaccessibility of saponins, whereas fat of the extracts enhanced this parameter. As summary, ultrasound-assisted extraction is shown as an efficient method for obtaining saponin-rich extracts from edible seeds, being ethanol the most advantageous solvent due to the richness of saponins and the successful bioaccessibility from these extracts, likely caused by the co-extracted fat with ethanol. Regardless of the extracts, phenolic compounds or fat may hinder or enhance the bioaccessibility of saponins, respectively. Additionally, an adequate balance between saponins to lipids has shown to be relevant on such an effect. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Supercritical fluid extraction and characterization of lipids from algae Scenedesmus obliquus

    NASA Technical Reports Server (NTRS)

    Choi, K. J.; Nakhost, Z.; Krukonis, V. J.; Karel, M.

    1987-01-01

    Lipids were extracted from a protein concentrate of green algae (Scenedesmus obliquus), using a one-step supercritical carbon dioxide extraction procedure in presence of ethanol as an entrainer, and were characterized. The compositions of neutral lipids, glycolipids, and phospholipids, separated into individual components by column, thin-layer, and gas-liquid chromatography procedures, are presented. Fatty acid composition patterns indicated that the major fatty acids were 16:0, 16:1, 16:2, 16:3, 16:4, 18:1, 18:2, and 18:3. The lipids of S. obliquus were found to contain relatively high concentrations of polyunsaturated fatty acids and essential fatty acids.

  1. Mango (Mangifera indica L.) peel extract fractions from different cultivars differentially affect lipid accumulation in 3T3-L1 adipocyte cells.

    PubMed

    Taing, Meng-Wong; Pierson, Jean-Thomas; Shaw, Paul N; Dietzgen, Ralf G; Roberts-Thomson, Sarah J; Gidley, Michael J; Monteith, Gregory R

    2013-02-26

    Plant phytochemicals are increasingly recognised as sources of bioactive molecules which may have potential benefit in many health conditions. In mangoes, peel extracts from different cultivars exhibit varying effects on adipogenesis in the 3T3-L1 adipocyte cell line. In this study, the effects of preparative HPLC fractions of methanol peel extracts from Irwin, Nam Doc Mai and Kensington Pride mangoes were evaluated. Fraction 1 contained the most hydrophilic components while subsequent fractions contained increasingly more hydrophobic components. High content imaging was used to assess mango peel fraction effects on lipid accumulation, nuclei count and nuclear area in differentiating 3T3-L1 cells. For all three mango cultivars, the more hydrophilic peel fractions 1-3 inhibited lipid accumulation with greater potency than the more hydrophobic peel fractions 4. For all three cultivars, the more lipophilic fraction 4 had concentrations that enhanced lipid accumulation greater than fractions 1-3 as assessed by lipid droplet integrated intensity. The potency of this fraction 4 varied significantly between cultivars. Using mass spectrometry, five long chain free fatty acids were detected in fraction 4; these were not present in any other peel extract fractions. Total levels varied between cultivars, with Irwin fraction 4 containing the highest levels of these free fatty acids. Lipophilic components appear to be responsible for the lipid accumulation promoting effects of some mango extracts and are the likely cause of the diverse effects of peel extracts from different mango cultivars on lipid accumulation.

  2. Effects of Extract from Cole Pollen on Lipid Metabolism in Experimental Hyperlipidemic Rats

    PubMed Central

    Geng, Yue; Tu, Wen-li; Zhang, Jing-jing; Zhang, Liang; Zhang, Jian

    2014-01-01

    In order to evaluate the effects of extract by SCE (supercritical carbon dioxide extraction) from cole pollen on lipid metabolism in hyperlipidemic rats, the experimental hyperlipidemic rats were established by providing with high fat diets, and randomized into six groups. After four weeks of perfusion diets into stomach, the rats were executed, and lipid levels of serum and hepatic tissue were detected. The serum levels of TC and TG were significantly lower in the pollen extract groups and MC group than in HFC group. Hepatic TC levels were decreased in rats fed pollen extract and lovastatin compared with HFC group. A higher concentration of HDL-C and apoAI in hepatic tissue was measured after intake of the pollen extract compared to the HFC group (P < 0.05). LCAT activity in serum of pollen extract groups was significantly higher than that in HFC group, and also HMG-CoA reductase showed decreasing tendency in pollen extract groups. The contents of DHA in pollen extract groups were found higher than those in HFC group. Cole pollen extract enriched in alpha-linolenic acid is likely to be a novel source of ALA which is probably responsible for favorable lipid changes through promoting transportation, excretion, and metabolism of cholesterol in hepatic tissue and serum. PMID:25152932

  3. The effect of rosemary (Rosmarinus officinalis L.) extract on the oxidative stability of lipids in cow and soy milk enriched with fish oil.

    PubMed

    Qiu, Xujian; Jacobsen, Charlotte; Sørensen, Ann-Dorit Moltke

    2018-10-15

    Lipid oxidation of fish oil enriched cow milk and soy milk supplemented with rosemary extract stored at 2 °C was studied. Both peroxide value and volatile secondary lipid oxidation products were determined to monitor the progress of lipid oxidation. Rosemary extract inhibited lipid oxidation in fish oil enriched cow milk. In contrast, soy milk samples having much higher unsaturated fatty acid content showed higher lipid oxidation stability compared to cow milk. Reduction in the content of chlorogenic acid during storage suggested that this compound may contribute to the lipid oxidation stability of fish oil enriched soy milk product. Total carnosic acid and carnosol concentration declined much faster in soy milk than in cow milk. It is suggested from the results that food components could have significant impact on the fate of bioactive antioxidant compounds in a specific food product during storage. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Biophysical mechanism of the protective effect of blue honeysuckle (Lonicera caerulea L. var. kamtschatica Sevast.) polyphenols extracts against lipid peroxidation of erythrocyte and lipid membranes.

    PubMed

    Bonarska-Kujawa, D; Pruchnik, H; Cyboran, S; Żyłka, R; Oszmiański, J; Kleszczyńska, H

    2014-07-01

    The aim of the present research was to determine the effect of blue honeysuckle fruit and leaf extracts components on the physical properties of erythrocyte and lipid membranes and assess their antioxidant properties. The HPLC analysis showed that the extracts are rich in polyphenol anthocyanins in fruits and flavonoids in leaves. The results indicate that both extracts have antioxidant activity and protect the red blood cell membrane against oxidation induced by UVC irradiation and AAPH. The extracts do not induce hemolysis and slightly increase osmotic resistance of erythrocytes. The research showed that extracts components are incorporated mainly in the external part of the erythrocyte membrane, inducing the formation of echinocytes. The values of generalized polarization and fluorescence anisotropy indicate that the extracts polyphenols alter the packing arrangement of the hydrophilic part of the erythrocyte and lipid membranes, without changing the fluidity of the hydrophobic part. The DSC results also show that the extract components do not change the main phase transition temperature of DPPC membrane. Studies of electric parameters of membranes modified by the extracts showed that they slightly stabilize lipid membranes and do not reduce their specific resistance or capacity. Examination of IR spectra indicates small changes in the degree of hydration in the hydrophilic region of liposomes under the action of the extracts. The location of polyphenolic compounds in the hydrophilic part of the membrane seems to constitute a protective shield of the cell against other substances, the reactive forms of oxygen in particular.

  5. Lipids and Fatty Acids in Algae: Extraction, Fractionation into Lipid Classes, and Analysis by Gas Chromatography Coupled with Flame Ionization Detector (GC-FID).

    PubMed

    Guihéneuf, Freddy; Schmid, Matthias; Stengel, Dagmar B

    2015-01-01

    Despite the number of biochemical studies exploring algal lipids and fatty acid biosynthesis pathways and profiles, analytical methods used by phycologists for this purpose are often diverse and incompletely described. Potential confusion and potential variability of the results between studies can therefore occur due to change of protocols for lipid extraction and fractionation, as well as fatty acid methyl esters (FAME) preparation before gas chromatography (GC) analyses. Here, we describe a step-by-step procedure for the profiling of neutral and polar lipids using techniques such as solid-liquid extraction (SLE), thin-layer chromatography (TLC), and gas chromatography coupled with flame ionization detector (GC-FID). As an example, in this protocol chapter, analyses of neutral and polar lipids from the marine microalga Pavlova lutheri (an EPA/DHA-rich haptophyte) will be outlined to describe the distribution of fatty acid residues within its major lipid classes. This method has been proven to be a reliable technique to assess changes in lipid and fatty acid profiles in several other microalgal species and seaweeds.

  6. In situ visualization of carbonylation and its co-localization with proteins, lipids, DNA and RNA in Caenorhabditis elegans.

    PubMed

    Kuzmic, Mira; Javot, Hélène; Bonzom, Jean-Marc; Lecomte-Pradines, Catherine; Radman, Miroslav; Garnier-Laplace, Jacqueline; Frelon, Sandrine

    2016-12-01

    All key biological macromolecules are susceptible to carbonylation - an irreparable oxidative damage with deleterious biological consequences. Carbonyls in proteins, lipids and DNA from cell extracts have been used as a biomarker of oxidative stress and aging, but formation of insoluble aggregates by carbonylated proteins precludes quantification. Since carbonylated proteins correlate with and become a suspected cause of morbidity and mortality in some organisms, there is a need for their accurate quantification and localization. Using appropriate fluorescent probes, we have developed an in situ detection of total proteins, DNA, RNA, lipids and carbonyl groups at the level of the whole organism. In C. elegans, we found that after UV irradiation carbonylation co-localizes mainly with proteins and, to a lesser degree, with DNA, RNA and lipids. The method efficiency was illustrated by carbonylation induction assessment over 5 different UV doses. The procedure enables the monitoring of carbonylation in the nematode C. elegans during stress, aging and disease along its life cycle including the egg stage. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Effects of aqueous extract of Arctium lappa L. roots on serum lipid metabolism.

    PubMed

    Hou, Bo; Wang, Wencheng; Gao, Hui; Cai, Shanglang; Wang, Chunbo

    2018-01-01

    Objective To identify potential genes that may be involved in lipid metabolism in rats after treatment with aqueous extract of Arctium lappa L (burdock). Methods Rats were randomly divided into six groups: (i) control (standard diet); (ii) model group (high-fat diet only); (iii) high-fat diet and low-dose aqueous burdock root extract (2 g/kg); (iv) high-fat diet and moderate-dose aqueous burdock root extract (4 g/kg); (v) high-fat diet and high-dose aqueous burdock root extract (8 g/kg); and (vi) a positive control group exposed to a high-fat diet and simvastatin (10 mg/kg). Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was performed to find the potential candidate genes involved in the modulation of blood lipids by treatment with aqueous burdock root extract. Results Burdock root extract reduced body weight and cholesterol levels in rats. KEGG analysis revealed 113 genes that were involved in metabolic pathways. Of these, 27 potential genes associated with blood lipid metabolism were identified. Conclusions Aqueous extract of burdock root reduced body weight and cholesterol in rats, possibly by modulating the differential expression of genes.

  8. Collection and conversion of algal lipid

    NASA Astrophysics Data System (ADS)

    Lin, Ching-Chieh

    Sustainable economic activities mandate a significant replacement of fossil energy by renewable forms. Algae-derived biofuels are increasingly seen as an alternative source of energy with potential to supplement the world's ever increasing demand. Our primary objective is, once the algae were cultivated, to eliminate or make more efficient energy-intensive processing steps of collection, drying, grinding, and solvent extraction prior to conversion. To overcome the processing barrier, we propose to streamline from cultivated algae to biodiesel via algal biomass collection by sand filtration, cell rupturing with ozone, and immediate transesterification. To collect the algal biomass, the specific Chlorococcum aquaticum suspension was acidified to pH 3.3 to promote agglomeration prior to sand filtration. The algae-loaded filter bed was drained of free water and added with methanol and ozonated for 2 min to rupture cell membrane to accelerate release of the cellular contents. The methanol solution now containing the dissolved lipid product was collected by draining, while the filter bed was regenerated by further ozonation when needed. The results showed 95% collection of the algal biomass from the suspension and a 16% yield of lipid from the algae, as well as restoration of filtration velocity of the sand bed via ozonation. The results further showed increased lipid yield upon cell rupturing and transesterified products composed entirely of fatty acid methyl ester (FAME) compounds, demonstrating that the rupture and transesterification processes could proceed consecutively in the same medium, requiring no separate steps of drying, extraction, and conversion. The FAME products from algae without exposure to ozone were mainly of 16 to 18 carbons containing up to 3 double bonds, while those from algae having been ozonated were smaller, highly saturated hydrocarbons. The new technique streamlines individual steps from cultivated algal lipid to transesterified products and represents an improvement over existing energy-intensive steps.

  9. Hypolipidemic and Antioxidative Effects of Aqueous Enzymatic Extract from Rice Bran in Rats Fed a High-Fat and -Cholesterol Diet

    PubMed Central

    Wang, Yu-Xin; Li, Yang; Sun, An-Min; Wang, Feng-Jiao; Yu, Guo-Ping

    2014-01-01

    Purpose: The aqueous enzymatic extract from rice bran (AEERB) was rich in protein, γ-oryzanol and tocols. The aim of this study was to investigate the effects of AEERB on the regulation of lipid metabolism and the inhibition of oxidative damage. Methods: The antioxidant activity of AEERB in vitro was measured in terms of radical scavenging capacity, ferric reducing ability power (FRAP) and linoleic acid emulsion system-ferric thiocyanate method (FTC). Male Wistar rats were fed with a normal diet and a high-fat and high-cholesterol diet with or without AEERB. After treatment, biochemical assays of serum, liver and feces lipid levels, the antioxidant enzyme activity, malondialdehyde (MDA) and protein carbonyl were determined. Result: AEERB is completely soluble in water and rich in hydrophilic and lipophilic functional ingredients. AEERB scavenged DPPH• and ABTS•+ and exhibited antioxidant activity slightly lower than that of ascorbic acid in the linoleic acid system. The administration of AEERB reduced serum lipid levels and the atherogenic index compared with those of the hyperlipidemic diet group (HD). The administration of AEERB significantly lowered liver lipid levels, inhibited hepatic 3-hydroxyl-3-methylglutaryl CoA reductase activity, and efficiently promoted the fecal excretion of total lipids and total cholesterol (TC) (p < 0.05). Dietary AEERB enhanced antioxidant status in the serum, liver and brain by increasing the antioxidant enzyme activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) and decreasing the content of MDA and protein carbonyl. Conclusions: The results indicated that AEERB might act as a potent hypolipidemic and antioxidant functional food. PMID:25230211

  10. Characterization of Oilseed Lipids from “DHA-Producing Camelina sativa”: A New Transformed Land Plant Containing Long-Chain Omega-3 Oils

    PubMed Central

    Mansour, Maged P.; Shrestha, Pushkar; Belide, Srinivas; Petrie, James R.; Nichols, Peter D.; Singh, Surinder P.

    2014-01-01

    New and sustainable sources of long-chain (LC, ≥C20) omega-3 oils containing DHA (docosahexaenoic acid, 22:6ω3) are required to meet increasing demands. The lipid content of the oilseed of a novel transgenic, DHA-producing land plant, Camelina sativa, containing microalgal genes able to produce LC omega-3 oils, contained 36% lipid by weight with triacylglycerols (TAG) as the major lipid class in hexane extracts (96% of total lipid). Subsequent chloroform-methanol (CM) extraction recovered further lipid (~50% polar lipid, comprising glycolipids and phospholipids) and residual TAG. The main phospholipid species were phosphatidyl choline and phosphatidyl ethanolamine. The % DHA was: 6.8% (of total fatty acids) in the TAG-rich hexane extract and 4.2% in the polar lipid-rich CM extract. The relative level of ALA (α-linolenic acid, 18:3ω3) in DHA-camelina seed was higher than the control. Major sterols in both DHA- and control camelina seeds were: sitosterol, campesterol, cholesterol, brassicasterol and isofucosterol. C16–C22 fatty alcohols, including iso-branched and odd-chain alcohols were present, including high levels of iso-17:0, 17:0 and 19:0. Other alcohols present were: 16:0, iso-18:0, 18:0 and 18:1 and the proportions varied between the hexane and CM extracts. These iso-branched odd-chain fatty alcohols, to our knowledge, have not been previously reported. These components may be derived from wax esters, or free fatty alcohols. PMID:24566436

  11. Topical vesicular formulations of Curcuma longa extract on recuperating the ultraviolet radiation-damaged skin.

    PubMed

    Kaur, Chanchal Deep; Saraf, Swarnlata

    2011-12-01

      Ultraviolet radiations generate reactive oxygen species, leading to adverse effects on skin properties. Botanical extracts are multifunctional in nature having various properties like photoprotection, anti-aging, moisturizing, antioxidant, astringent, anti-irritant, and antimicrobial activity.   The aim of this study was to formulate creams having Curcuma longa extract loaded novel vesicular systems (liposomes, ethosomes, and transfersomes) and study their photoprotective effect by assessment of skin hydration (Cutometer) and sebum content (Sebumeter).   The alcoholic C. longa extract loaded liposomes, ethosomes, and transfersomes having 0.5-2.0% w/w extract were prepared, evaluated for size, entrapment efficiency, and incorporated into the cream. Their long-term interaction with skin (6 weeks) was compared in terms of their effects on skin hydration and sebum content.   Vesicular size obtained was in the range 167.3 ± 3.0 to 262.4 ± 2.4 nm with low polydispersity index (0.2-0.3) and high entrapment efficiency. The efficacy was in the order C. longa extract loaded transfersomal creams > C. longa extract loaded ethosomal creams > C. longa extract loaded liposomal creams > C. longa extract loaded creams > Empty transfersome loaded cream > Empty ethosome loaded cream > Empty liposome loaded cream > Base cream.   The photoprotective properties of the constituents of C. longa extract and hydrant, moisturizing lipid components of nano vesicles with better skin penetration resulted in improvement in skin properties like skin hydration and sebum content. The herbal extract loaded nano vesicles incorporated in cream could be used as photoprotective formulations. © 2011 Wiley Periodicals, Inc.

  12. Urea and lipid extraction treatment effects on δ(15)N and δ(13)C values in pelagic sharks.

    PubMed

    Li, Yunkai; Zhang, Yuying; Hussey, Nigel E; Dai, Xiaojie

    2016-01-15

    Stable isotope analysis (SIA) provides a powerful tool to investigate diverse ecological questions for marine species, but standardized values are required for comparative assessments. For elasmobranchs, their unique osmoregulatory strategy involves retention of (15)N-depleted urea in body tissues and this may bias δ(15)N values. This may be a particular problem for large predatory species, where δ(15)N discrimination between predator and consumed prey can be small. We evaluated three treatments (deionized water rinsing [DW], chloroform/methanol [LE] and combined chloroform/methanol and deionized water rinsing [LE+DW]) applied to white muscle tissue of 125 individuals from seven pelagic shark species to (i) assess urea and lipid effects on stable isotope values determined by IRMS and (ii) investigate mathematical normalization of these values. For all species examined, the δ(15)N values and C:N ratios increased significantly following all three treatments, identifying that urea removal is required prior to SIA of pelagic sharks. The more marked change in δ(15)N values following DW (1.3 ± 0.4‰) and LE+DW (1.2 ± 0.6‰) than following LE alone (0.7 ± 0.4‰) indicated that water rinsing was more effective at removing urea. The DW and LE+DW treatments lowered the %N values, resulting in an increase in C:N ratios from the unexpected low values of <2.6 in bulk samples to ~3.1 ± 0.1, the expected value of protein. The δ(13)C values of all species also increased significantly following LE and LE+DW treatments. Given the mean change in δ(15)N(1.2 ± 0.6‰) and δ(13)C values (0.7 ± 0.4‰) across pelagic shark species, it is recommended that muscle tissue samples be treated with LE+DW to efficiently extract both urea and lipids to standardize isotopic values. Mathematical normalization of urea and lipid-extracted δ(15)N(LE+DW) and δ(13)C(LE+DW) values using the lipid-extracted δ(15)N(LE) and δ(13)C(LE) data were established for all pelagic shark species. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Ecklonia cava Extract and Dieckol Attenuate Cellular Lipid Peroxidation in Keratinocytes Exposed to PM10.

    PubMed

    Lee, Jeong-Won; Seok, Jin Kyung; Boo, Yong Chool

    2018-01-01

    Airborne particulate matter can cause oxidative stress, inflammation, and premature skin aging. Marine plants such as Ecklonia cava Kjellman contain high amounts of polyphenolic antioxidants. The purpose of this study was to examine the antioxidative effects of E. cava extract in cultured keratinocytes exposed to airborne particulate matter with a diameter of <10  μ m (PM10). After the exposure of cultured HaCaT keratinocytes to PM10 in the absence and presence of E. cava extract and its constituents, cell viability and cellular lipid peroxidation were assessed. The effects of eckol and dieckol on cellular lipid peroxidation and cytokine expression were examined in human epidermal keratinocytes exposed to PM10. The total phenolic content of E. cava extract was the highest among the 50 marine plant extracts examined. The exposure of HaCaT cells to PM10 decreased cell viability and increased lipid peroxidation. The PM10-induced cellular lipid peroxidation was attenuated by E. cava extract and its ethyl acetate fraction. Dieckol more effectively attenuated cellular lipid peroxidation than eckol in both HaCaT cells and human epidermal keratinocytes. Dieckol and eckol attenuated the expression of inflammatory cytokines such as tumor necrosis factor- (TNF-) α , interleukin- (IL-) 1 β , IL-6, and IL-8 in human epidermal keratinocytes stimulated with PM10. This study suggested that the polyphenolic constituents of E. cava , such as dieckol, attenuated the oxidative and inflammatory reactions in skin cells exposed to airborne particulate matter.

  14. Bacillus subtilis Lipid Extract, A Branched-Chain Fatty Acid Model Membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nickels, Jonathan D.; Chatterjee, Sneha; Mostofian, Barmak

    Lipid extracts are an excellent choice of model biomembrane; however at present, there are no commercially available lipid extracts or computational models that mimic microbial membranes containing the branched-chain fatty acids found in many pathogenic and industrially relevant bacteria. Here, we advance the extract of Bacillus subtilis as a standard model for these diverse systems, providing a detailed experimental description and equilibrated atomistic bilayer model included as Supporting Information to this Letter and at (http://cmb.ornl.gov/members/cheng). The development and validation of this model represents an advance that enables more realistic simulations and experiments on bacterial membranes and reconstituted bacterial membrane proteins.

  15. Ultrasonication aided in-situ transesterification of microbial lipids to biodiesel.

    PubMed

    Zhang, Xiaolei; Yan, Song; Tyagi, Rajeshwar Dayal; Surampalli, Rao Y; Valéro, Jose R

    2014-10-01

    In-situ transesterification of microbial lipid to biodiesel has been paid substantial attention due to the fact that the lipid extraction and transesterification can be conducted in one-stage process. To improve the feasibility of in-situ transesterification, ultrasonication was employed to reduce methanol requirement and reaction time. The results showed that the use of ultrasonication could achieve high conversion of lipid to FAMEs (92.1% w lipid conversion/w total lipids) with methanol to lipid molar ratio 60:1 and NaOH addition 1% w/w lipid in 20 min, while methanol to lipid molar ratio 360:1, NaOH addition 1% w/w lipid, and reaction time 12h was required to obtain similar yield in in-situ transesterification without ultrasonication. The compositions of FAMEs obtained in case of ultrasonication aided in-situ transesterification were similar as that of two-stage extraction followed by transesterification processes. Copyright © 2014. Published by Elsevier Ltd.

  16. Organization of fluorescent cholesterol analogs in lipid bilayers - lessons from cyclodextrin extraction.

    PubMed

    Milles, Sigrid; Meyer, Thomas; Scheidt, Holger A; Schwarzer, Roland; Thomas, Lars; Marek, Magdalena; Szente, Lajos; Bittman, Robert; Herrmann, Andreas; Günther Pomorski, Thomas; Huster, Daniel; Müller, Peter

    2013-08-01

    To characterize the structure and dynamics of cholesterol in membranes, fluorescent analogs of the native molecule have widely been employed. The cholesterol content in membranes is in general manipulated by using water-soluble cyclodextrins. Since the interactions between cyclodextrins and fluorescent-labeled cholesterol have not been investigated in detail so far, we have compared the cyclodextrin-mediated membrane extraction of three different fluorescent cholesterol analogs (one bearing a NBD and two bearing BODIPY moieties). Extraction of these analogs was followed by measuring the Förster resonance energy transfer between a rhodamine moiety linked to phosphatidylethanolamine and the labeled cholesterol. The extraction kinetics revealed that the analogs are differently extracted from membranes. We examined the orientation of the analogs within the membrane and their influence on lipid condensation using NMR and EPR spectroscopies. Our data indicate that the extraction of fluorescent sterols from membranes is determined by several parameters, including their impact on lipid order, their hydrophobicity, their intermolecular interactions with surrounding lipids, their orientation within the bilayer, and their affinity with the exogenous acceptor. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Dimethyl carbonate-mediated lipid extraction and lipase-catalyzed in situ transesterification for simultaneous preparation of fatty acid methyl esters and glycerol carbonate from Chlorella sp. KR-1 biomass.

    PubMed

    Jo, Yoon Ju; Lee, Ok Kyung; Lee, Eun Yeol

    2014-04-01

    Fatty acid methyl esters (FAMEs) and glycerol carbonate were simultaneously prepared from Chlorella sp. KR-1 containing 40.9% (w/w) lipid using a reactive extraction method with dimethyl carbonate (DMC). DMC was used as lipid extraction agent, acyl acceptor for transesterification of the extracted triglycerides, substrate for glycerol carbonate synthesis from glycerol, and reaction medium for the solvent-free reaction system. For 1g of biomass, 367.31 mg of FAMEs and 16.73 mg of glycerol carbonate were obtained under the optimized conditions: DMC to biomass ratio of 10:1 (v/w), water content of 0.5% (v/v), and Novozyme 435 to biomass ratio of 20% (w/w) at 70°C for 24h. The amount of residual glycerol was only in the range of 1-2.5mg. Compared to conventional method, the cost of FAME production with the proposed technique could be reduced by combining lipid extraction with transesterification and omitting the extraction solvent recovery process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Supercritical Fluid Extraction of Bacterial and Archaeal Lipid Biomarkers from Anaerobically Digested Sludge

    PubMed Central

    Hanif, Muhammad; Atsuta, Yoichi; Fujie, Koichi; Daimon, Hiroyuki

    2012-01-01

    Supercritical fluid extraction (SFE) was used in the analysis of bacterial respiratory quinone (RQ), bacterial phospholipid fatty acid (PLFA), and archaeal phospholipid ether lipid (PLEL) from anaerobically digested sludge. Bacterial RQ were determined using ultra performance liquid chromatography (UPLC). Determination of bacterial PLFA and archaeal PLEL was simultaneously performed using gas chromatography-mass spectrometry (GC-MS). The effects of pressure, temperature, and modifier concentration on the total amounts of RQ, PLFA, and PLEL were investigated by 23 experiments with five settings chosen for each variable. The optimal extraction conditions that were obtained through a multiple-response optimization included a pressure of 23.6 MPa, temperature of 77.6 °C, and 10.6% (v/v) of methanol as the modifier. Thirty nine components of microbial lipid biomarkers were identified in the anaerobically digested sludge. Overall, the SFE method proved to be more effective, rapid, and quantitative for simultaneously extracting bacterial and archaeal lipid biomarkers, compared to conventional organic solvent extraction. This work shows the potential application of SFE as a routine method for the comprehensive analysis of microbial community structures in environmental assessments using the lipid biomarkers profile. PMID:22489140

  19. A Comparison of Tissue Spray and Lipid Extract Direct Injection Electrospray Ionization Mass Spectrometry for the Differentiation of Eutopic and Ectopic Endometrial Tissues

    NASA Astrophysics Data System (ADS)

    Chagovets, Vitaliy; Wang, Zhihao; Kononikhin, Alexey; Starodubtseva, Natalia; Borisova, Anna; Salimova, Dinara; Popov, Igor; Kozachenko, Andrey; Chingin, Konstantin; Chen, Huanwen; Frankevich, Vladimir; Adamyan, Leila; Sukhikh, Gennady

    2018-02-01

    Recent research revealed that tissue spray mass spectrometry enables rapid molecular profiling of biological tissues, which is of great importance for the search of disease biomarkers as well as for online surgery control. However, the payback for the high speed of analysis in tissue spray analysis is the generally lower chemical sensitivity compared with the traditional approach based on the offline chemical extraction and electrospray ionization mass spectrometry detection. In this study, high resolution mass spectrometry analysis of endometrium tissues of different localizations obtained using direct tissue spray mass spectrometry in positive ion mode is compared with the results of electrospray ionization analysis of lipid extracts. Identified features in both cases belong to three lipid classes: phosphatidylcholines, phosphoethanolamines, and sphingomyelins. Lipids coverage is validated by hydrophilic interaction liquid chromatography with mass spectrometry of lipid extracts. Multivariate analysis of data from both methods reveals satisfactory differentiation of eutopic and ectopic endometrium tissues. Overall, our results indicate that the chemical information provided by tissue spray ionization is sufficient to allow differentiation of endometrial tissues by localization with similar reliability but higher speed than in the traditional approach relying on offline extraction.

  20. Inhibition of residual n-hexane in anaerobic digestion of lipid-extracted microalgal wastes and microbial community shift.

    PubMed

    Yun, Yeo-Myeong; Shin, Hang-Sik; Lee, Chang-Kyu; Oh, You-Kwan; Kim, Hyun-Woo

    2016-04-01

    Converting lipid-extracted microalgal wastes to methane (CH4) via anaerobic digestion (AD) has the potential to make microalgae-based biodiesel platform more sustainable. However, it is apparent that remaining n-hexane (C6H14) from lipid extraction could inhibit metabolic pathway of methanogens. To test an inhibitory influence of residual n-hexane, this study conducted a series of batch AD by mixing lipid-extracted Chlorella vulgaris with a wide range of n-hexane concentration (∼10 g chemical oxygen demand (COD)/L). Experimental results show that the inhibition of n-hexane on CH4 yield was negligible up to 2 g COD/L and inhibition to methanogenesis became significant when it was higher than 4 g COD/L based on quantitative mass balance. Inhibition threshold was about 4 g COD/L of n-hexane. Analytical result of microbial community profile revealed that dominance of alkane-degrading sulfate-reducing bacteria (SRB) and syntrophic bacteria increased, while that of methanogens sharply dropped as n-hexane concentration increased. These findings offer a useful guideline of threshold n-hexane concentration and microbial community shift for the AD of lipid-extracted microalgal wastes.

  1. The influence of hair lipids in ethnic hair properties.

    PubMed

    Martí, M; Barba, C; Manich, A M; Rubio, L; Alonso, C; Coderch, L

    2016-02-01

    Biochemical studies have mainly focused on the composition of hair. African hair exhibited lower moisturization and less radial swelling when flushing with water compared with Asian or Caucasian hair, and they assumed a possible lipid differentiation among human populations. This study consists in the lipid characterization of different ethnic hairs (Caucasian, Asian and African hairs) and the influence of these lipids in different hair properties such as humidity and mechanical properties. Evaluation of water sorption and desorption of the different ethnic hairs and with and without lipids is also studied mainly to determine permeation changes of the keratin fibres. Extractions of exogenous and endogenous lipids with different organic solvents were performed; lipid analysis and its quantification using thin-layer chromatography coupled to an automated flame ionization detector (TLC/FID) were performed. Absorption and desorption curves were obtained in a thermogravimetric balance equipped with a controlled humidity chamber, the Q5000SA Sorption Analyzer (TA Instruments, New Castle, IL, U.S.A.). Also, mechanical properties (breaking stress and breaking elongation) were analysed using a computer programmable dynamometer (Instron 5500R). Lipid extraction showed the highest amount of total lipids for the African hair which may come from external sebaceous lipids compared with Asian or Caucasian hair. Caucasian fibres were found to be the most hydrated fibre, and a decrease in moisture was found in the extracted fibres, again, which is more important for the Caucasian hair. A superior lineal mass was found for the Asian fibres which supported their higher strength. The results obtained from the analysis of the mechanical properties of delipidized fibres indicate a surprising increase in the strength of African and Caucasian fibres. Perhaps this increase in strength could be related to the humidity decrease in lipid-extracted hair fibres. Results of water uptake and desorption indicate that Asian and Caucasian hairs present the lower diffusion coefficients compared with the African ones. At least for the African fibre, an extraction of its lipids that mainly account for apolar lipids ameliorates the fibre structure, decreasing its permeability to water and increasing its tensile strength. The ethnic hairs were assessed related to their lipid composition, and some differences between them were found in terms of water uptake and mechanical properties. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  2. Novel bio-active lipid nanocarriers for the stabilization and sustained release of sitosterol

    NASA Astrophysics Data System (ADS)

    Lacatusu, I.; Badea, N.; Stan, R.; Meghea, A.

    2012-11-01

    In this work, new stable and efficiently bio-active lipid nanocarriers (NLCs) with antioxidant properties have been developed for the transport of active ingredients in food. The novel NLCs loaded with β-sitosterol/β-sitosterol and green tea extract (GTE) and prepared by a combination of natural oils (grape seed oil, fish oil and squalene) and biological lipids with food grade surfactants, were physico-chemically examined by DLS, TEM, electrokinetic potential, DSC and HPLC and found to have main diameters less than 200 nm, a spherical morphology, excellent physical stability, an imperfect crystalline lattice and high entrapment efficiency. The novel loaded-NLCs have demonstrated the potential to develop a high blocking action of chain reactions, trapping up to 92% of the free-oxygen radicals, as compared to the native β-sitosterol (AA%=36.5). Another advantage of this study is associated with the quality of bio-active NLCs based on grape seed oil and squalene to manifest a better sitosterol—sustained release behaviour as compared to their related nanoemulsions. By coupling both in vitro results, i.e. the enhanced antioxidant activity and superior release properties, this study emphasizes the sustainability of novel bio-active nanocarriers to gain specific bio-food features for development of functional foods with a high applicability spectrum.

  3. Effects of poly(lactic-co-glycolic acid) on preparation and characteristics of plasmid DNA-loaded solid lipid nanoparticles.

    PubMed

    Zhu, L; Xie, S; Dong, Z; Wang, X; Wang, Y; Zhou, W

    2011-09-01

    Poly(lactic-co-glycolic acid) (PLGA) was used as a polymeric emulsifier to encapsulate plasmid DNA into hydrogenated castor oil (HCO)-solid lipid nanoparticles (SLN) by w/o/w double emulsion and solvent evaporation techniques. The effects of PLGA on the preparation, characteristics and transfection efficiency of DNA-loaded SLN were studied. The results showed that PLGA was essential to form the primary w/o emulsion and the stability of the emulsion was enhanced with the increase of PLGA content. DNA-loaded SLN were spherical with smooth surfaces. The SLN had a negative charge in weak acid and alkaline environment but acquired a positive charge in acidic pH and the cationisation capacity of the SLN increased with the increase of PLGA/HCO ratio. Agarose gel electrophoresis demonstrated that the majority of the DNA maintained its structural integrity after preparation and being extracted or released from DNA-loaded SLN. When PLGA/HCO ratio increased from 5 to 15%, the encapsulation efficiency, loading capacity and transfection efficiency of the nanoparticles increased significantly, whereas the changes of particle size and polydispersity index were insignificant. Cytotoxicity study in cell culture demonstrated that the SLN was not toxic.

  4. [Effects of low doses of essential oil on the antioxidant state of the erythrocytes, liver, and the brains of mice].

    PubMed

    Misharina, T A; Fatkullina, L D; Alinkina, E S; Kozachenko, A I; Nagler, L G; Medvedeva, I B; Goloshchapov, A N; Burlakova, E B

    2014-01-01

    We studied the effects of essential oil from oregano and clove and a mixture of lemon essential oil and a ginger extract on the antioxidant state of organs in intact and three experimental groups of Bulb mice. We found that the essential oil was an efficient in vivo bioantioxidant when mice were treated with it for 6 months even at very low doses, such as 300 ng/day. All essential oil studied inhibited lipid peroxidation (LPO) in the membranes of erythrocytes that resulted in increased membrane resistance to spontaneous hemolysis, decreased membrane microviscosity, maintenance of their structural integrity, and functional activity. The essential oil substantially decreased the LPO intensity in the liver and the brains of mice and increased the resistance of liver and brain lipids to oxidation and the activity of antioxidant enzymes in the liver. The most expressed bioantioxidant effect on erythrocytes was observed after clove oil treatment, whereas on the liver and brain, after treatment with a mixture of lemon essential oil and a ginger extract.

  5. Impact of thermal processing on the activity of gallotannins and condensed tannins from Hamamelis virginiana used as functional ingredients in seafood.

    PubMed

    González, María Jesús; Torres, Josep Lluís; Medina, Isabel

    2010-04-14

    Phenolic extracts from witch hazel, Hamamelis virginiana, are efficient antioxidants against fish lipid peroxidation. The impact of fish thermal processes on the hydrolyzable polyphenols from this source was studied. H. virginiana polyphenols included 80% of hydrolyzable tannins, characterized by a mixture of glucose gallates containing from 5 to 10 units of gallic acid, hamamelitannin, and 20% of proanthocyanidins. Structural modifications of the polyphenols during thermal processes were determined by HPLC-MS. Changes in their reducing and free radical scavenging capacities as a result of high temperatures were also determined. Thermal processes triggered a significant breakdown of hydrolyzable tannins with 6-10 galloyl units to give pentagalloyl glucose (PGG). The release of high concentrations of free gallic acid especially in long-term thermally processed samples leads to an increase of the antioxidant ability of heated H. virginiana extracts. Such an increase was evidenced by an increment in the reducing and radical scavenging capacities as well as an improvement in the antioxidant effectiveness for inhibiting lipid oxidation of processed fatty fish muscle.

  6. Co-immobilization of cellulase and lysozyme on amino-functionalized magnetic nanoparticles: An activity-tunable biocatalyst for extraction of lipids from microalgae.

    PubMed

    Chen, Qingtai; Liu, Dong; Wu, Chongchong; Yao, Kaisheng; Li, Zhiheng; Shi, Nan; Wen, Fushan; Gates, Ian D

    2018-05-03

    An activity-tunable biocatalyst for Nannochloropsis sp. cell-walls degradation was prepared by co-immobilization of cellulase and lysozyme on the surface of amino-functionalized magnetic nanoparticles (MNPs) employing glutaraldehyde. The competition between cellulase and lysozyme during immobilization was caused by the limited active sites of the MNPs. The maximum recovery of activities (cellulase: 78.9% and lysozyme: 69.6%) were achieved due to synergistic effects during dual-enzyme co-immobilization. The thermal stability in terms of half-life of the co-immobilized enzymes was three times higher than that in free form and had higher catalytic efficiency for hydrolysis of cell walls. Moreover, the co-immobilized enzymes showed greater thermal stability and wider pH tolerance than free enzymes under harsh conditions. Furthermore, the co-immobilized enzymes retained up to 60% of the residual activity after being recycled 6 times. This study provides a feasible approach for the industrialization of enzyme during cell-walls disruption and lipids extraction from Nannochloropsis sp. Copyright © 2018. Published by Elsevier Ltd.

  7. Protection against free radicals (UVB irradiation) of a water-soluble enzymatic extract from rice bran. Study using human keratinocyte monolayer and reconstructed human epidermis.

    PubMed

    Santa-María, C; Revilla, E; Miramontes, E; Bautista, J; García-Martínez, A; Romero, E; Carballo, M; Parrado, J

    2010-01-01

    The antioxidant capacity of a water-soluble enzymatic extract from rice bran (EERB) has been tested in two cell models: keratinocyte monolayers and human reconstructed epidermis. Cells were incubated in culture medium in presence of different amounts of EERB and were UVB irradiated. Cell population assessment (MTT assay) and MDA (malonaldehyde) production were evaluated. The EERB did not induce cytotoxic effect for concentrations inferior or equal to 100 microg/mL. Human keratinocyte monolayers were protected of irradiation preventing 33% the lipid peroxidation process at concentration of 10 microg/ml of EEBR. In reconstructed human epidermis, 100 microg/mL decreased lipid peroxidation process by 44% (p<0.01) with regards to irradiated negative control. This effect was comparable to that of vitamin E at 600 microg/mL. Our data indicate that EERB is potentially able to efficiently counteract UVB-induced response. The EERB, diluted at 10% with water has very good skin compatibility. This product showed a sun protection factor of 4.8+/-0.3. Thus we can propose EERB as a useful natural standardized extract in skin photoprotection with promising applications in the field of dermatology. Copyright 2009 Elsevier Ltd. All rights reserved.

  8. Microwave-Assisted Extraction for Microalgae: From Biofuels to Biorefinery

    PubMed Central

    Pandhal, Jagroop

    2018-01-01

    The commercial reality of bioactive compounds and oil production from microalgal species is constrained by the high cost of production. Downstream processing, which includes harvesting and extraction, can account for 70–80% of the total cost of production. Consequently, from an economic perspective extraction technologies need to be improved. Microalgal cells are difficult to disrupt due to polymers within their cell wall such as algaenan and sporopollenin. Consequently, solvents and disruption devices are required to obtain products of interest from within the cells. Conventional techniques used for cell disruption and extraction are expensive and are often hindered by low efficiencies. Microwave-assisted extraction offers a possibility for extraction of biochemical components including lipids, pigments, carbohydrates, vitamins and proteins, individually and as part of a biorefinery. Microwave technology has advanced since its use in the 1970s. It can cut down working times and result in higher yields and purity of products. In this review, the ability and challenges in using microwave technology are discussed for the extraction of bioactive products individually and as part of a biorefinery approach. PMID:29462888

  9. Anti-Obesity Property of Lichen Thamnolia vermicularis Extract in 3T3-L1 Cells and Diet-Induced Obese Mice

    PubMed Central

    Choi, Ra-Yeong; Ham, Ju Ri; Yeo, Jiyoung; Hur, Jae-Seoun; Park, Seok-Kyu; Kim, Myung-Joo; Lee, Mi-Kyung

    2017-01-01

    Thamnolia vermicularis (TV) is an edible lichen that is prevalent in the alpine zone of East Asia. This study evaluated the feasibility of using TV acetone extracts as a functional food based on experiments using cell line and obese mice. The cellular triglyceride levels and Oil red O staining of 3T3-L1 cells indicated that TV extracts (5 and 10 μg/mL) dose-dependently suppressed adipocyte differentiation and lipid accumulation compared with the control. The TV extract (0.4%, w/w) in a high-fat diet (HFD) was supplemented to C57BL/6N mice for 12 weeks, and TV extract supplement significantly reduced visceral fat mass and body weight compared with HFD feeding alone. The TV extract also induced significant decreases in serum and hepatic lipids, whereas it increased the serum high-density lipoproteins-cholesterol/total cholesterol ratio and fecal lipids levels. Moreover, the TV extract led to significantly lower homeostasis model assessment of insulin resistance in diet-induced obese mice. Taken together, these results suggest that the TV extract may have anti-obesity effects, including lipid-lowering, and it is a natural resource with the potential for use in obesity management. PMID:29333380

  10. Extraction of oil from microalgae for biodiesel production: A review.

    PubMed

    Halim, Ronald; Danquah, Michael K; Webley, Paul A

    2012-01-01

    The rapid increase of CO(2) concentration in the atmosphere combined with depleted supplies of fossil fuels has led to an increased commercial interest in renewable fuels. Due to their high biomass productivity, rapid lipid accumulation, and ability to survive in saline water, microalgae have been identified as promising feedstocks for industrial-scale production of carbon-neutral biodiesel. This study examines the principles involved in lipid extraction from microalgal cells, a crucial downstream processing step in the production of microalgal biodiesel. We analyze the different technological options currently available for laboratory-scale microalgal lipid extraction, with a primary focus on the prospect of organic solvent and supercritical fluid extraction. The study also provides an assessment of recent breakthroughs in this rapidly developing field and reports on the suitability of microalgal lipid compositions for biodiesel conversion. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Oxidation-Induced Increase In Photoreactivity of Bovine Retinal Lipid Extract.

    PubMed

    Koscielniak, A; Serafin, M; Duda, M; Oles, T; Zadlo, A; Broniec, A; Berdeaux, O; Gregoire, S; Bretillon, L; Sarna, T; Pawlak, A

    2017-12-01

    The mammalian retina contains a high level of polyunsaturated fatty acids, including docosahexaenoic acid (22:6) (DHA), which are highly susceptible to oxidation. It has been shown that one of the products of DHA oxidation-carboxyethylpyrrole (CEP), generated in situ, causes modifications of retinal proteins and induces inflammation response in the outer retina. These contributing factors may play a role in the development of age-related macular degeneration (AMD). It is also possible that some of the lipid oxidation products are photoreactive, and upon irradiation with blue light may generate reactive oxygen species. Therefore, in this work we analysed oxidation-induced changes in photoreactivity of lipids extracted from bovine neural retinas. Lipid composition of bovine neural retinas closely resembles that of human retinas making the bovine tissue a convenient model for studying the photoreactivity and potential phototoxicity of oxidized human retinal lipids. Lipid composition of bovine neural retinas Folch' extracts (BRex) was determined by gas chromatography (GC) and liquid chromatography coupled to an electrospray ionization source-mass spectrometer (LC-ESI-MS) analysis. Liposomes prepared from BRex, equilibrated with air, were oxidized in the dark at 37 °C for up to 400 h. The photoreactivity of BRex at different stages of oxidation was studied by EPR-oximetry and EPR-spin trapping. Photogeneration of singlet oxygen ( 1 O 2 , 1 Δ g ) by BRex was measured using time-resolved detection of the characteristic phosphorescence at 1270 nm. To establish contribution of lipid components to the analysed photoreactivity of Folch' extract of bovine retinas, a mixture of selected synthetic lipids in percent by weight (w/w %) ratio resembling that of the BRex has been also studied. Folch's extraction of bovine neural retinas was very susceptible to oxidation despite the presence of powerful endogenous antioxidants such as α-tocopherol and zeaxanthin. Non-oxidized and oxidized BRex photogenerated singlet oxygen with moderate quantum yield. Blue-light induced generation of superoxide anion by Folch' extract of bovine neural retinas strongly depended on the oxidation time. The observed photoreactivity of the studied extract gradually increased during its in vitro oxidation.

  12. Glucocorticoid receptor-PPARα axis in fetal mouse liver prepares neonates for milk lipid catabolism

    PubMed Central

    Rando, Gianpaolo; Tan, Chek Kun; Khaled, Nourhène; Montagner, Alexandra; Leuenberger, Nicolas; Bertrand-Michel, Justine; Paramalingam, Eeswari; Guillou, Hervé; Wahli, Walter

    2016-01-01

    In mammals, hepatic lipid catabolism is essential for the newborns to efficiently use milk fat as an energy source. However, it is unclear how this critical trait is acquired and regulated. We demonstrate that under the control of PPARα, the genes required for lipid catabolism are transcribed before birth so that the neonatal liver has a prompt capacity to extract energy from milk upon suckling. The mechanism involves a fetal glucocorticoid receptor (GR)-PPARα axis in which GR directly regulates the transcriptional activation of PPARα by binding to its promoter. Certain PPARα target genes such as Fgf21 remain repressed in the fetal liver and become PPARα responsive after birth following an epigenetic switch triggered by β-hydroxybutyrate-mediated inhibition of HDAC3. This study identifies an endocrine developmental axis in which fetal GR primes the activity of PPARα in anticipation of the sudden shifts in postnatal nutrient source and metabolic demands. DOI: http://dx.doi.org/10.7554/eLife.11853.001 PMID:27367842

  13. Determination of component volumes of lipid bilayers from simulations.

    PubMed Central

    Petrache, H I; Feller, S E; Nagle, J F

    1997-01-01

    An efficient method for extracting volumetric data from simulations is developed. The method is illustrated using a recent atomic-level molecular dynamics simulation of L alpha phase 1,2-dipalmitoyl-sn-glycero-3-phosphocholine bilayer. Results from this simulation are obtained for the volumes of water (VW), lipid (V1), chain methylenes (V2), chain terminal methyls (V3), and lipid headgroups (VH), including separate volumes for carboxyl (Vcoo), glyceryl (Vgl), phosphoryl (VPO4), and choline (Vchol) groups. The method assumes only that each group has the same average volume regardless of its location in the bilayer, and this assumption is then tested with the current simulation. The volumes obtained agree well with the values VW and VL that have been obtained directly from experiment, as well as with the volumes VH, V2, and V3 that require certain assumptions in addition to the experimental data. This method should help to support and refine some assumptions that are necessary when interpreting experimental data. Images FIGURE 4 PMID:9129826

  14. Protective effects of Opuntia ficus-indica extract on ram sperm quality, lipid peroxidation and DNA fragmentation during liquid storage.

    PubMed

    Allai, Larbi; Druart, Xavier; Öztürk, Mehmet; BenMoula, Anass; Nasser, Boubker; El Amiri, Bouchra

    2016-12-01

    The present study aimed to assess the phenolic composition of the acetone extract from Opuntia ficus indica cladodes (ACTEX) and its effects on ram semen variables, lipid peroxidation and DNA fragmentation during liquid storage at 5°C for up to 72h in skim milk and Tris egg yolk extenders. Semen samples from five rams were pooled extended with Tris-egg yolk (TEY) or skim milk (SM) extenders containing ACTEX (0%, 1%, 2%, 4% and 8%) at a final concentration of 0.8×10 9 sperm/ml and stored for up to 72h at 5°C. The sperm variables were evaluated at different time periods (8, 24, 48 and 72h). Sperm total motility and viability were superior in TEY than in SM whereas the progressive motility, membrane integrity, abnormality and spontaneous lipid peroxidation were greater in SM compared to TEY (P<0.05). The results also indicated that the inclusion of 1% ACTEX in the SM or TEY extender increased the sperm motility, viability, membrane integrity, and decreased the abnormality, lipids peroxidation up to 72h in storage compared to control group. Similarly, even at 72h of storage, 1% ACTEX can efficiently decrease the negative effects of liquid storage on sperm DNA fragmentation (P<0.05). In conclusion, SM and TEY supplemented with 1% of ACTEX can improve the quality of ram semen. Further studies are required to identify the active components in ACTEX involved in its effect on ram sperm preservation. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Selective fermentation of carbohydrate and protein fractions of Scenedesmus, and biohydrogenation of its lipid fraction for enhanced recovery of saturated fatty acids.

    PubMed

    Lai, YenJung Sean; Parameswaran, Prathap; Li, Ang; Aguinaga, Alyssa; Rittmann, Bruce E

    2016-02-01

    Biofuels derived from microalgae have promise as carbon-neutral replacements for petroleum. However, difficulty extracting microalgae-derived lipids and the co-extraction of non-lipid components add major costs that detract from the benefits of microalgae-based biofuel. Selective fermentation could alleviate these problems by managing microbial degradation so that carbohydrates and proteins are hydrolyzed and fermented, but lipids remain intact. We evaluated selective fermentation of Scenedesmus biomass in batch experiments buffered at pH 5.5, 7, or 9. Carbohydrates were fermented up to 45% within the first 6 days, protein fermentation followed after about 20 days, and lipids (measured as fatty acid methyl esters, FAME) were conserved. Fermentation of the non-lipid components generated volatile fatty acids, with acetate, butyrate, and propionate being the dominant products. Selective fermentation of Scenedesmus biomass increased the amount of extractable FAME and the ratio of FAME to crude lipids. It also led to biohydrogenation of unsaturated FAME to more desirable saturated FAME (especially to C16:0 and C18:0), and the degree of saturation was inversely related to the accumulation of hydrogen gas after fermentation. Moreover, the microbial communities after selective fermentation were enriched in bacteria from families known to perform biohydrogenation, i.e., Porphyromonadaceae and Ruminococcaceae. Thus, this study provides proof-of-concept that selective fermentation can improve the quantity and quality of lipids that can be extracted from Scenedesmus. © 2015 Wiley Periodicals, Inc.

  16. Rejuvenation of antioxidant system in central nervous system of aged rats by grape seed extract.

    PubMed

    Balu, Muthaiya; Sangeetha, Purushotham; Haripriya, Dayalan; Panneerselvam, Chinnakannu

    2005-08-05

    Oxidative stress is considered as a major risk factor that contributes to age-related increase in lipid peroxidation and declined antioxidants in the central nervous system during aging. Grape seed extract, one of the bioflavonoid, is widely used for its medicinal properties. In the present study, we evaluated the role of grape seed extract on lipid peroxidation and antioxidant status in discrete regions of the central nervous system of young and aged rats. Male albino rats of Wistar strain were divided into four groups: Group I-control young rats, Group II-young rats treated with grape seed extract (100 mg/kg body weight) for 30 days, Group III-aged control rats and Group IV-aged rats supplemented with grape seed extract (100 mg/kg body weight) for 30 days. Age-associated increase in lipid peroxidation was observed in the spinal cord, cerebral cortex, striatum and the hippocampus regions of aged rats (Group III). Activities of antioxidant enzymes like superoxide dismutase, catalase, glutathione peroxidase and levels of non-enzymic antioxidants like reduced glutathione, Vitamin C and Vitamin E were found to be significantly decreased in all the brain regions studied in aged rats when compared to young rats. However, normalized lipid peroxidation and antioxidant defenses were reported in the grape seed extract-supplemented aged rats. These findings demonstrated that grape seed extract enhanced the antioxidant status and decreased the incidence of free radical-induced lipid peroxidation in the central nervous system of aged rats.

  17. Biodiesel production and Environmental CO2 cleanup using Oleaginous Microorganisms from Al-Hassa area in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    El-Sinawi, Abdulaziz; Shathele, Mohammad

    2014-12-01

    Biodiesel production is rapidly moving towards the mainstream as an alternative source of energy. Algae oil is one of the viable feed stocks among others to produce Biodiesel. However the difficulties in efficient biodiesel production from algae lie not in the extraction of the oil, but in finding an algal strain with a high lipid content and fast growth rate. This paper presents an experimental work performed to study the production of biodiesel from local algae strains in Al-Hassa territory of the eastern province in Saudi Arabia which was found to contain high lipid contents and show rapid growth. The collected results predict that those types of desert algae are promising and are considered to be a potential feedstock for biofuels.

  18. Nocardia brasiliensis Cell Wall Lipids Modulate Macrophage and Dendritic Responses That Favor Development of Experimental Actinomycetoma in BALB/c Mice

    PubMed Central

    Trevino-Villarreal, J. Humberto; Vera-Cabrera, Lucio; Valero-Guillén, Pedro L.

    2012-01-01

    Nocardia brasiliensis is a Gram-positive facultative intracellular bacterium frequently isolated from human actinomycetoma. However, the pathogenesis of this infection remains unknown. Here, we used a model of bacterial delipidation with benzine to investigate the role of N. brasiliensis cell wall-associated lipids in experimental actinomycetoma. Delipidation of N. brasiliensis with benzine resulted in complete abolition of actinomycetoma without affecting bacterial viability. Chemical analyses revealed that trehalose dimycolate and an unidentified hydrophobic compound were the principal compounds extracted from N. brasiliensis with benzine. By electron microscopy, the extracted lipids were found to be located in the outermost membrane layer of the N. brasiliensis cell wall. They also appeared to confer acid-fastness. In vitro, the extractable lipids from the N. brasiliensis cell wall induced the production of the proinflammatory cytokines interleukin-1β (IL-1β), IL-6, and CCL-2 in macrophages. The N. brasiliensis cell wall extractable lipids inhibited important macrophage microbicidal effects, such as tumor necrosis factor alpha (TNF-α) and nitric oxide (NO) production, phagocytosis, bacterial killing, and major histocompatibility complex class II (MHC-II) expression in response to gamma interferon (IFN-γ). In dendritic cells (DCs), N. brasiliensis cell wall-associated extractable lipids suppressed MHC-II, CD80, and CD40 expression while inducing tumor growth factor β (TGF-β) production. Immunization with delipidated N. brasiliensis induced partial protection preventing actinomycetoma. These findings suggest that N. brasiliensis cell wall-associated lipids are important for actinomycetoma development by inducing inflammation and modulating the responses of macrophages and DCs to N. brasiliensis. PMID:22851755

  19. Biotechnological potential of the seaweed Cladophora rupestris (Chlorophyta, Cladophorales) lipidic extract.

    PubMed

    Stabili, L; Acquaviva, M I; Biandolino, F; Cavallo, R A; De Pascali, S A; Fanizzi, F P; Narracci, M; Cecere, E; Petrocelli, A

    2014-09-25

    Recently, with the advent of modern technologies, various marine organisms including algae are being studied as sources of natural substances effective on classical microorganisms and able to also combat the new trend of acquired resistance in microbes. In the present study the antimicrobial activity of the lipidic extract of the green seaweed Cladophora rupestris collected in a Mediterranean area, in two sampling periods (January and April), was assayed. The chemical characterization of the lipidic fractions was performed by gas-chromatography and multinuclear and multidimensional NMR spectroscopy. In the lipidic extract of C. rupestris collected in January an antibacterial activity against Enterococcus sp., Streptococcus agalactiae and Vibrio cholerae non-O1 was recorded; by contrast, bacterial inhibition was measured on several Vibrio species only in April. The fatty acid profile of C. rupestris lipidic extract, analyzed by gas chromatography, resulted mainly composed of palmitic, myristic, oleic, α linolenic, palmitoleic and linoleic acids. Moreover, since α-linolenic acid was the predominant ω3 fatty acid in April, we suggest its involvement in the antibacterial activity observed in this month, taking also into account that pure α-linolenic acid resulted effective towards some vibrios strains. C. rupestris fatty acid profile revealed also an interesting composition in polyunsaturated fatty acids in both the considered periods with the ω6/ω3 ratio lower than 1, leading to conclude that this macroalga may be employed as a natural source of ω3. Finally, the (1)H NMR spectrum in CDCl3 of algal lipid fractions showed the characteristic signals of saturated (SAFAs) and unsaturated fatty acids (UFAs) as well as other metabolites and a marked difference in free fatty acids (FFAs) content for the two examined algal lipid fractions. It is noteworthy that C. rupestris lipidic extracts show, by NMR spectroscopy, the signal pattern of polyhydroxybutyrate, a natural biocompatible and biodegradable polymer. In conclusion, on account of its antimicrobial activity, nutritional value and bioplastic content, C. rupestris lipidic extract can be considered a promising source for future biotechnological applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. A Lipid Extraction and Analysis Method for Characterizing Soil Microbes in Experiments with Many Samples

    PubMed Central

    Oates, Lawrence G.; Read, Harry W.; Gutknecht, Jessica L. M.; Duncan, David S.; Balser, Teri B.; Jackson, Randall D.

    2017-01-01

    Microbial communities are important drivers and regulators of ecosystem processes. To understand how management of ecosystems may affect microbial communities, a relatively precise but effort-intensive technique to assay microbial community composition is phospholipid fatty acid (PLFA) analysis. PLFA was developed to analyze phospholipid biomarkers, which can be used as indicators of microbial biomass and the composition of broad functional groups of fungi and bacteria. It has commonly been used to compare soils under alternative plant communities, ecology, and management regimes. The PLFA method has been shown to be sensitive to detecting shifts in microbial community composition. An alternative method, fatty acid methyl ester extraction and analysis (MIDI-FA) was developed for rapid extraction of total lipids, without separation of the phospholipid fraction, from pure cultures as a microbial identification technique. This method is rapid but is less suited for soil samples because it lacks an initial step separating soil particles and begins instead with a saponification reaction that likely produces artifacts from the background organic matter in the soil. This article describes a method that increases throughput while balancing effort and accuracy for extraction of lipids from the cell membranes of microorganisms for use in characterizing both total lipids and the relative abundance of indicator lipids to determine soil microbial community structure in studies with many samples. The method combines the accuracy achieved through PLFA profiling by extracting and concentrating soil lipids as a first step, and a reduction in effort by saponifying the organic material extracted and processing with the MIDI-FA method as a second step. PMID:28745639

  1. Lipidomics of tobacco leaf and cigarette smoke.

    PubMed

    Dunkle, Melissa N; Yoshimura, Yuta; T Kindt, Ruben; Ortiz, Alexia; Masugi, Eri; Mitsui, Kazuhisa; David, Frank; Sandra, Pat; Sandra, Koen

    2016-03-25

    Detailed lipidomics experiments were performed on the extracts of cured tobacco leaf and of cigarette smoke condensate (CSC) using high-resolution liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-Q-TOF MS). Following automated solid-phase extraction (SPE) fractionation of the lipid extracts, over 350 lipids could be annotated. From a large-scale study on 22 different leaf samples, it was determined that differentiation based on curing type was possible for both the tobacco leaf and the CSC extracts. Lipids responsible for the classification were identified and the findings were correlated to proteomics data acquired from the same tobacco leaf samples. Prediction models were constructed based on the lipid profiles observed in the 22 leaf samples and successfully allowed for curing type classification of new tobacco leaves. A comparison of the leaf and CSC data provided insight into the lipidome changes that occur during the smoking process. It was determined that lipids which survive the smoking process retain the same curing type trends in both the tobacco leaf and CSC data. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Microalgae fractionation using steam explosion, dynamic and tangential cross-flow membrane filtration.

    PubMed

    Lorente, E; Hapońska, M; Clavero, E; Torras, C; Salvadó, J

    2017-08-01

    In this study, the microalga Nannochloropsis gaditana was subjected to acid catalysed steam explosion treatment and the resulting exploded material was subsequently fractionated to separate the different fractions (lipids, sugars and solids). Conventional and vibrational membrane setups were used with several polymeric commercial membranes. Two different routes were followed: 1) filtration+lipid solvent extraction and 2) lipid solvent extraction+filtration. Route 1 revealed to be much better since the used membrane for filtration was able to permeate the sugar aqueous phase and retained the fraction containing lipids; after this, an extraction required a much lower amount of solvent and a better recovering yield. Filtration allowed complete lipid rejection. Dynamic filtration improved permeability compared to the tangential cross-flow filtration. Best membrane performance was achieved using a 5000Da membrane with the dynamic system, obtaining a permeability of 6L/h/m 2 /bar. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Assessment of the protective potential of Premna tomentosa (L. Verbenaceae) extract on lipid profile and lipid-metabolizing enzymes in acetaminophen-intoxicated rats.

    PubMed

    Devi, Kasi Pandima; Sreepriya, Meenakshi; Balakrishna, Kedike; Veluchamy, Gopalasamy; Devaki, Thiruvegadam

    2004-06-01

    The liver is often damaged by environmental toxins, poor eating habits, alcohol and over-the-counter drug use that damage and weaken the liver, leading to important public health problems such as hepatitis, cirrhosis, and alcoholic liver diseases. It is cardinal to treat liver disorders, because it affects the biochemistry of the cell directly. Damage to the liver can be prevented by including a balanced diet that includes nutrients and herbs that support a healthy liver. Premna tomentosa (PT) is one such herbal drug used widely in India for the treatment of liver disorders, and we have already reported the hepatoprotective potential and antioxidant property of methanolic extract of PT leaves. Because injury to the liver can promote a variety of reactions with consequent effect on lipids, the present study was designed to elucidate the hypolipidemic effect of PT extract in acetaminophen (AA)-induced hepatotoxicity in rats. Animals were pretreated with PT extract (750 mg/kg, orally) for 15 days and then induced with hepatotoxicity by AA (640 mg/kg, intraperitoneally). PT extract pretreatment significantly inhibited induced alterations in the levels of cholesterol, triglycerides, free fatty acids, phospholipids, serum lipoproteins, and lipid-metabolizing enzymes. The results indicate that PT extract improves lipid metabolism and has the potential for use in hepatic disorders. Copyright Mary Ann Liebert, Inc.

  4. Optimization and development of antidiabetic phytosomes by the Box-Behnken design.

    PubMed

    Rathee, Sushila; Kamboj, Anjoo

    2018-06-01

    Researchers have extensively reviewed on herbs and natural products for their marked clinical efficacy in some recent years, however, maximum of the newly discovered bioactive constituents offer poor bioavailability due to their large size molecules or to their poor miscibility with oils and lipids, thereby limiting their ability to pass across the lipid-rich outer membranes of the enterocytes of the small intestine. Phytosomes are more bioavailable as compared to herbal extracts owing to their enhanced capacity to cross the bio-membranes and thus reaching the systemic circulation. This study was aimed to investigate the development and optimization of antidiabetic phytosomes using a three-factor, three-level the Box-Behnken design (17 batches). The fruits of Citrullus colocynthis (L.) Momordica balsamina and Momordica dioica were extracted using Soxhlet's apparatus. The phytochemical fingerprint profile of the combined methanolic extracts was done by using high-performance thin layer chromatography (HPTLC). The polynomial quadratic equation analysis was designed to study the response (entrapment efficiency (EE), % yield) of independent significant factors at different levels. Phytosomes were characterized in terms of drug content, particle size, EE, zeta potential and in vitro dissolution. TEM analysis revealed good stability and a spherical, self-closed structure of phytosomes in complex formulations. Average particle size was found to 450 nm. Total flavonoid content was found to be 10.0 ± 0.002 μg/g. Optimized formulation was selected and was prepared using A (1:3), B (60 °C) and C (2.5 h) to give maximum yield and entrapment efficiencies (72% and 92.1 ± 5.1%). Phytosomes were found to have antidiabetic activity comparable to metformin in low dose. HPTLC showed the presence of the phyto-constituent quercetin.

  5. Membrane Interaction of Antimicrobial Peptides Using E. coli Lipid Extract as Model Bacterial Cell Membranes and SFG Spectroscopy

    PubMed Central

    Soblosky, Lauren; Ramamoorthy, Ayyalusamy; Chen, Zhan

    2015-01-01

    Supported lipid bilayers are used as a convenient model cell membrane system to study biologically important molecule-lipid interactions in situ. However, the lipid bilayer models are often simple and the acquired results with these models may not provide all pertinent information related to a real cell membrane. In this work, we use sum frequency generation (SFG) vibrational spectroscopy to study molecular-level interactions between the antimicrobial peptides (AMPs) MSI-594, ovispirin-1 G18, magainin 2 and a simple 1,2-dipalmitoyl-d62-sn-glycero-3-phosphoglycerol (dDPPG)-1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) bilayer. We compared such interactions to those between the AMPs and a more complex dDPPG/E. coli polar lipid extract bilayer. We show that to fully understand more complex aspects of peptide-bilayer interaction, such as interaction kinetics, a heterogeneous lipid composition is required, such as the E. coli polar lipid extract. The discrepancy in peptide-bilayer interaction is likely due in part to the difference in bilayer charge between the two systems since highly negative charged lipids can promote more favorable electrostatic interactions between the peptide and lipid bilayer. Results presented in this paper indicate that more complex model bilayers are needed to accurately analyze peptide-cell membrane interactions and demonstrates the importance of using an appropriate lipid composition to study AMP interaction properties. PMID:25707312

  6. Racial variations in interfacial behavior of lipids extracted from worn soft contact lenses.

    PubMed

    Svitova, Tatyana F; Lin, Meng C

    2013-12-01

    To explore interfacial behaviors and effects of temperature and dilatation on dynamic properties of multilayered human tear lipids extracted from silicone hydrogel (SiH) lenses worn by asymptomatic Asian and white subjects. Interfacial properties of lipids extracted from Focus N&D lenses worn by 14 subjects continuously for 1 month were studied. The lipids were deposited on an air bubble immersed in a model tear electrolyte (MTE) solution to form 100 ± 20-nm-thick films. Surface pressure was recorded during slow expansion/contraction cycles to evaluate compressibility and hysteresis of lipid films. Films were also subjected to fast step-strain dilatations at temperatures of 22 to 45°C for their viscoelastic property assessment. Isocycles for Asian and white lipids were similar at low surface pressures but had distinctly different compressibility and hysteresis at dynamic pressures exceeding 30 mN/m. Rheological parameters of reconstituted lipids were also dissimilar between Asian and white. The elastic modulus E∞ for white lipids was 1.5 times higher than that for Asian lipids, whereas relaxation time (t) was on average 1.3 times higher for Asian. No significant changes were observed in rheological properties of both Asian and white lipids when temperature increased from 22.0 to 36.5°C. However, for white lipids, E∞ reduced considerably at temperatures higher than 42.0°C, whereas t remained unchanged. For Asian lipids, both E∞ and t started to decline as temperature increased to 38°C and higher. Higher elastic modulus of white lipids and elasticity threshold at certain deformations indicate stronger structure and intermolecular interactions as compared with more viscous Asian lipids. The differences in interfacial behaviors between Asian and white lipids may be associated with the differences in their chemical compositions.

  7. Application of solid/liquid extraction for the gravimetric determination of lipids in royal jelly.

    PubMed

    Antinelli, Jean-François; Davico, Renée; Rognone, Catherine; Faucon, Jean-Paul; Lizzani-Cuvelier, Louisette

    2002-04-10

    Gravimetric lipid determination is a major parameter for the characterization and the authentication of royal jelly quality. A solid/liquid extraction was compared to the reference method, which is based on liquid/liquid extraction. The amount of royal jelly and the time of the extraction were optimized in comparison to the reference method. Boiling/rinsing ratio and spread of royal jelly onto the extraction thimble were identified as critical parameters, resulting in good accuracy and precision for the alternative method. Comparison of reproducibility and repeatability of both methods associated with gas chromatographic analysis of the composition of the extracted lipids showed no differences between the two methods. As the intra-laboratory validation tests were comparable to the reference method, while offering rapidity and a decrease in amount of solvent used, it was concluded that the proposed method should be used with no modification of quality criteria and norms established for royal jelly characterization.

  8. Lipid Nanocarriers for Oral Delivery of Serenoa repens CO2 Extract: A Study of Microemulsion and Self-Microemulsifying Drug Delivery Systems.

    PubMed

    Guccione, Clizia; Bergonzi, Maria Camilla; Awada, Khaled M; Piazzini, Vieri; Bilia, Anna Rita

    2018-07-01

    The aim of this study was the development and characterization of lipid nanocarriers using food grade components for oral delivery of Serenoa repens CO 2 extract, namely microemulsions (MEs) and self-microemulsifying drug delivery systems (SMEDDSs) to improve the oral absorption. A commercial blend (CB) containing 320 of S. repens CO 2 extract plus the aqueous soluble extracts of nettle root and pineapple stem was formulated in two MEs and two SMEDDSs. The optimized ME loaded with the CB (CBM2) had a very low content of water (only 17.3%). The drug delivery systems were characterized by dynamic light scattering, transmission electron microscopy, and high-performance liquid chromatography (HPLC) with a diode-array detector analyses in order to evaluate the size, the homogeneity, the morphology, and the encapsulation efficiency. β -carotene was selected as marker for the quantitative HPLC analysis. Additionally, physical and chemical stabilities were acceptable during 3 wk at 4 °C. Stability of these nanocarriers in simulated stomach and intestinal conditions was proved. Finally, the improvement of oral absorption of S. repens was studied in vitro using parallel artificial membrane permeability assay. An enhancement of oral permeation was found in both CBM2 and CBS2 nanoformulations comparing with the CB and S. repens CO 2 extract. The best performance was obtained by the CBM2 nanoformulation (~ 17%) predicting a 30 - 70% passive oral human absorption in vivo . Georg Thieme Verlag KG Stuttgart · New York.

  9. Using precursor ion scan of 184 with liquid chromatography-electrospray ionization-tandem mass spectrometry for concentration normalization in cellular lipidomic studies.

    PubMed

    Chao, Hsi-Chun; Chen, Guan-Yuan; Hsu, Lih-Ching; Liao, Hsiao-Wei; Yang, Sin-Yu; Wang, San-Yuan; Li, Yu-Liang; Tang, Sung-Chun; Tseng, Yufeng Jane; Kuo, Ching-Hua

    2017-06-08

    Cellular lipidomic studies have been favored approaches in many biomedical research areas. To provide fair comparisons of the studied cells, it is essential to perform normalization of the determined concentration before lipidomic analysis. This study proposed a cellular lipidomic normalization method by measuring the phosphatidylcholine (PC) and sphingomyelin (SM) contents in cell extracts. To provide efficient analysis of PC and SM in cell extracts, flow injection analysis-electrospray ionization-tandem mass spectrometry (FIA-ESI-MS/MS) with a precursor ion scan (PIS) of m/z 184 was used, and the parameters affecting the performance of the method were optimized. Good linearity could be observed between the cell extract dilution factor and the reciprocal of the total ion chromatogram (TIC) area in the PIS of m/z 184 within the dilution range of 1- to 16-fold (R 2  = 0.998). The calibration curve could be used for concentration adjustment of the unknown concentration of a cell extract. The intraday and intermediate precisions were below 10%. The accuracy ranged from 93.0% to 105.6%. The performance of the new normalization method was evaluated using different numbers of HCT-116 cells. Sphingosine, ceramide (d18:1/18:0), SM (d18:1/18:0) and PC (16:1/18:0) were selected as the representative test lipid species, and the results showed that the peak areas of each lipid species obtained from different cell numbers were within a 20% variation after normalization. Finally, the PIS of 184 normalization method was applied to study ischemia-induced neuron injury using oxygen and glucose deprivation (OGD) on primary neuronal cultured cells. Our results showed that the PIS of 184 normalization method is an efficient and effective approach for concentration normalization in cellular lipidomic studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Use of light emitting diodes (LEDs) for enhanced lipid production in micro-algae based biofuels.

    PubMed

    Severes, Alifha; Hegde, Shashank; D'Souza, L; Hegde, Smitha

    2017-05-01

    Microalgae are an alternative source for renewable energy to overcome the energy crises caused by exhaustion of fuel reserves. Algal biofuel technology demands a cost effective strategy for net profitable productivity. Inconsistent illumination intensities hinder microalgal growth. The light-utilizing efficiency of the cells is critical. Light scarcity leads to low production and high intensities cause photo-inhibition. We report effective usage of LEDs of different band wavelengths on the growth of microalgae in a closed, controlled environment to generate biomass and lipid yields. Among the different intensity and wavelengths tested. The light intensities of 500lx of blue-red combination gave maximum biomass in terms of cell density. LED of red light 220lx wavelength doubled the lipid dry weight from 30% (w/w) in white light to 60% (w/w). Thin layer lipid chromatogram demonstrated a dense and prominent spot of triacylglycerols in the red light, 220lx grown cultures. The FTIR profile indicates that different wavelength exposure did not alter the functional groups or change the chemical composition of the extracted lipids ensuring the quality of the product. We reiterate the fact that combination of red and blue LEDs is favoured over white light illumination for generation of biomass. In addition, we report an exciting finding of exposure to LEDs of red wavelength post-biomass generation lead to enhanced lipid production. This simple process doubled the lipid content harvested in 20days culture period. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Automation of a Nile red staining assay enables high throughput quantification of microalgal lipid production.

    PubMed

    Morschett, Holger; Wiechert, Wolfgang; Oldiges, Marco

    2016-02-09

    Within the context of microalgal lipid production for biofuels and bulk chemical applications, specialized higher throughput devices for small scale parallelized cultivation are expected to boost the time efficiency of phototrophic bioprocess development. However, the increasing number of possible experiments is directly coupled to the demand for lipid quantification protocols that enable reliably measuring large sets of samples within short time and that can deal with the reduced sample volume typically generated at screening scale. To meet these demands, a dye based assay was established using a liquid handling robot to provide reproducible high throughput quantification of lipids with minimized hands-on-time. Lipid production was monitored using the fluorescent dye Nile red with dimethyl sulfoxide as solvent facilitating dye permeation. The staining kinetics of cells at different concentrations and physiological states were investigated to successfully down-scale the assay to 96 well microtiter plates. Gravimetric calibration against a well-established extractive protocol enabled absolute quantification of intracellular lipids improving precision from ±8 to ±2 % on average. Implementation into an automated liquid handling platform allows for measuring up to 48 samples within 6.5 h, reducing hands-on-time to a third compared to manual operation. Moreover, it was shown that automation enhances accuracy and precision compared to manual preparation. It was revealed that established protocols relying on optical density or cell number for biomass adjustion prior to staining may suffer from errors due to significant changes of the cells' optical and physiological properties during cultivation. Alternatively, the biovolume was used as a measure for biomass concentration so that errors from morphological changes can be excluded. The newly established assay proved to be applicable for absolute quantification of algal lipids avoiding limitations of currently established protocols, namely biomass adjustment and limited throughput. Automation was shown to improve data reliability, as well as experimental throughput simultaneously minimizing the needed hands-on-time to a third. Thereby, the presented protocol meets the demands for the analysis of samples generated by the upcoming generation of devices for higher throughput phototrophic cultivation and thereby contributes to boosting the time efficiency for setting up algae lipid production processes.

  12. Mechanism, Kinetics and Microbiology of Inhibition Caused by Long-Chain Fatty Acids in Anaerobic Digestion of Algal Biomass

    DOE PAGES

    Ma, Jingwei; Zhao, Quan-Bao; Laurens, Lieve L.; ...

    2015-09-15

    Oleaginous microalgae contain a high level of lipids, which can be extracted and converted to biofuel. The lipid-extracted residue can then be further utilized through anaerobic digestion to produce biogas. However, long-chain fatty acids (LCFAs) have been identified as the main inhibitory factor on microbial activity of anaerobic consortium. In this study, the mechanism of LCFA inhibition on anaerobic digestion of whole and lipid-extracted algal biomass was investigated with a range of calcium concentrations against various inoculum to substrate ratios as a means to alleviate the LCFA inhibition.

  13. Mechanism, Kinetics and Microbiology of Inhibition Caused by Long-Chain Fatty Acids in Anaerobic Digestion of Algal Biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Jingwei; Zhao, Quan-Bao; Laurens, Lieve L.

    Oleaginous microalgae contain a high level of lipids, which can be extracted and converted to biofuel. The lipid-extracted residue can then be further utilized through anaerobic digestion to produce biogas. However, long-chain fatty acids (LCFAs) have been identified as the main inhibitory factor on microbial activity of anaerobic consortium. In this study, the mechanism of LCFA inhibition on anaerobic digestion of whole and lipid-extracted algal biomass was investigated with a range of calcium concentrations against various inoculum to substrate ratios as a means to alleviate the LCFA inhibition.

  14. Modulation of ionizing radiation induced oxidative imbalance by semi-fractionated extract of Piper betle

    PubMed Central

    Verma, Savita; Dutta, Ajaswrata; Sankhwar, Sanghmitra; Shukla, Sandeep Kumar

    2010-01-01

    The study was planned to evaluate modulatory effect of aqueous extract of Piper betle leaf (PBL) on ionizing radiation mediated oxidative stress leading to normal tissues damage during radiotherapy and other radiation exposures. The total polyphenols and flavonoids known as free radical scavenger (chelators) were measured in the extract. To ascertain antioxidant potential of PBL extract, we studied free radical scavenging, metal chelation, reducing power, lipid peroxidation inhibition and ferric reducing antioxidant properties (FRAP ) using in vitro assays. Mice were exposed to varied radiation doses administered with the same extract prior to irradiation to confirm its oxidative stress minimizing efficacy by evaluating ferric reducing ability of plasma, reduced glutathione, lipid peroxidation and micro-nuclei frequency. PBL extract was effective in scavenging DPPH (up to 92% at 100 µg/ml) and superoxide radicals (up to 95% at 80 µg/ml), chelated metal ions (up to 83% at 50 µg/ml) and inhibited lipid peroxidation (up to 45.65% at 500 µg/ml) in a dose dependant manner using in vitro model. Oral administration of PBL extract (225 mg/kg body weight) 1 hr before irradiation in mice significantly enhanced (p < 0.01) radiation abated antioxidant potential of plasma and GSH level in all the observed organs. The treatment with extract effectively lowered the radiation induced lipid peroxidation at 24 hrs in all the selected organs with maximum inhibition in thymus (p < 0.01). After 48 hrs, lipid peroxidation was maximally inhibited in the group treated with the extract. Frequency of radiation induced micronucleated cells declined significantly (34.78%, p < 0.01) at 24 hrs post-irradiation interval by PBL extract administration. The results suggest that PBL extract has high antioxidant potential and relatively non-toxic and thus could be assertively used to mitigate radiotherapy inflicted normal tissues damage and also injuries caused by moderate doses of radiation during unplanned exposures. PMID:20716927

  15. Modulation of ionizing radiation induced oxidative imbalance by semi-fractionated extract of Piper betle: an in vitro and in vivo assessment.

    PubMed

    Verma, Savita; Gupta, Manju Lata; Dutta, Ajaswrata; Sankhwar, Sanghmitra; Shukla, Sandeep Kumar; Flora, Swaran J S

    2010-01-01

    The study was planned to evaluate modulatory effect of aqueous extract of Piper betle leaf (PBL) on ionizing radiation mediated oxidative stress leading to normal tissues damage during radiotherapy and other radiation exposures. The total polyphenols and flavonoids known as free radical scavenger (chelators) were measured in the extract. To ascertain antioxidant potential of PBL extract we studied free radical scavenging, metal chelation, reducing power, lipid peroxidation inhibition and ferric reducing antioxidant properties (FRAP) using in vitro assays. Mice were exposed to varied radiation doses administered with the same extract prior to irradiation to confirm its oxidative stress minimizing efficacy by evaluating ferric reducing ability of plasma, reduced glutathione, lipid peroxidation and micro-nuclei frequency. PBL extract was effective in scavenging DPPH (up to 92% at 100 microg/ml) and superoxide radicals (up to 95% at 80 microg/ml), chelated metal ions (up to 83% at 50 microg/ml) and inhibited lipid peroxidation (up to 55.65% at 500 microg/ml) in a dose dependant manner using in vitro model. Oral administration of PBL extract (225 mg/kg body weight) 1 hr before irradiation in mice significantly enhanced (p < 0.01) radiation abated antioxidant potential of plasma and GSH level in all the observed organs. The treatment with extract effectively lowered the radiation induced lipid peroxidation at 24 hrs in all the selected organs with maximum inhibition in thymus (p < 0.01). After 48 hrs, lipid peroxidation was maximally inhibited in the group treated with the extract. Frequency of radiation induced micronucleated cells declined significantly (34.78%, p < 0.01) at 24 hrs post-irradiation interval by PBL extract administration. The results suggest that PBL extract has high antioxidant potential and relatively non-toxic and thus could be assertively used to mitigate radiotherapy inflicted normal tissues damage and also injuries caused by moderate doses of radiation during unplanned exposures.

  16. Effect of dietary ethanol extracts of mango (Mangifera indica L.) on lipid oxidation and the color of chicken meat during frozen storage.

    PubMed

    Freitas, Ednardo Rodrigues; da Silva Borges, Ângela; Pereira, Ana Lúcia Fernandes; Abreu, Virgínia Kelly Gonçalves; Trevisan, Maria Teresa Salles; Watanabe, Pedro Henrique

    2015-12-01

    The aim of this study was to evaluate the dietary effect of mango extracts on lipid stability and the coloring of broiler chicken breast meat during frozen storage. The treatments consisted of broiler chicken diet without antioxidants (control) and diets containing antioxidants: 200 ppm of butylated hydroxytoluene (BHT), 200 ppm of mango peel extract (MPE), 400 ppm of MPE, 200 ppm of mango seed extract (MSE), and 400 ppm of MSE. The broiler breasts were stored for 90 days and analysis of lipid oxidation and color was performed every 30 days. The thiobarbituric acid reactive substances values increased during storage and at 90 days, but the 400 ppm MSE treatment yielded lower values, indicating greater antioxidant activity. During storage, the lightness values decreased and the redness increased. Additions of 200 ppm BHT and 400 ppm MPE increased yellowness at 60 days of storage. Thus, mango peel and seed extracts added to broiler chicken diets reduce lipid oxidation and maintain color in breast meat during frozen storage, with mango seed extract at 400 ppm being the most effective. © 2015 Poultry Science Association Inc.

  17. Effect of high pressure homogenization on aqueous phase solvent extraction of lipids from Nannochloris Oculata microalgae

    DOE PAGES

    Samarasinghe, Nalin; Fernando, Sandun; Faulkner, William B.

    2012-12-01

    The ability to extract lipids from high-moisture Nannochloris Oculata algal biomass disrupted with high pressure homogenization was investigated. During the first phase, the effect of high pressure homogenization (system pressure and number of passes) on disrupting aqueous algae (of different concentrations and degree of stress) was investigated. Secondly, the effect of degree of cell wall disruption on the amount of lipids extracted with three solvents, namely: hexane, dichloromethane and chloroform, were compared. Studies reveled that high pressure homogenization is effective on cell disruption while the amount of system pressure being the most significant factor affecting the degree of cell breakage.more » Although the number of passes had some impact, the level of disruption seemed to level-off after a certain number of passes. The study revealed that slightly polar solvents (such as chloroform and dichloromethane) performed better in aqueous-phase lipid extractions as compared to hexane. Also, it was revealed that it was not necessary to disrupt the algal cells completely to achieve appreciable levels of lipid yields. In fact, conditions that exerted only 20% of the cells to completely disrupt, allowed sufficient damage to liberate most of the lipids contained in the remainder of the cells.« less

  18. Effect of high pressure homogenization on aqueous phase solvent extraction of lipids from Nannochloris Oculata microalgae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samarasinghe, Nalin; Fernando, Sandun; Faulkner, William B.

    The ability to extract lipids from high-moisture Nannochloris Oculata algal biomass disrupted with high pressure homogenization was investigated. During the first phase, the effect of high pressure homogenization (system pressure and number of passes) on disrupting aqueous algae (of different concentrations and degree of stress) was investigated. Secondly, the effect of degree of cell wall disruption on the amount of lipids extracted with three solvents, namely: hexane, dichloromethane and chloroform, were compared. Studies reveled that high pressure homogenization is effective on cell disruption while the amount of system pressure being the most significant factor affecting the degree of cell breakage.more » Although the number of passes had some impact, the level of disruption seemed to level-off after a certain number of passes. The study revealed that slightly polar solvents (such as chloroform and dichloromethane) performed better in aqueous-phase lipid extractions as compared to hexane. Also, it was revealed that it was not necessary to disrupt the algal cells completely to achieve appreciable levels of lipid yields. In fact, conditions that exerted only 20% of the cells to completely disrupt, allowed sufficient damage to liberate most of the lipids contained in the remainder of the cells.« less

  19. Ocimum basilicum ethanolic extract decreases cholesterol synthesis and lipid accumulation in human macrophages.

    PubMed

    Bravo, Elena; Amrani, Souliman; Aziz, Mohammed; Harnafi, Hicham; Napolitano, Mariarosaria

    2008-12-01

    Macrophage lipid accumulation induced by low density lipoproteins (LDL) plays a pivotal role in atherosclerotic plaque development. Previous work showed that Ocimum basilicum extract, used as hypocholesterolemic agent by traditional medicine in Morocco, has hypolipidemic activity in rat acute hyperlipimidemia. This study investigated the effects of ethanolic extract of O. basilicum on lipid accumulation in human macrophages. As modification of LDL increase atherogenicity of the particles we evaluated the effects of the extract on LDL oxidation. The extract caused a dose-related increase of LDL-resistance to Cu(2+)-induced oxidation. Furthermore, at the dose of 60 microg/ml, significantly decreases the accumulation of macrophage lipid droplets induced by modified LDL evaluated as by red-oil staining. Cholesterol esterification and triacylglycerol synthesis in the cells were not affected. Macrophage treatment with 60 microg/ml, but not 20 microg/ml, of the extract reduced newly synthesized unesterified cholesterol by about 60% and decreased scavenger receptors activity by about 20-30%, evaluated by the internalization of cholesterol carried by [(3)H]CE-aggregated-LDL. The results suggest that O. basilicum ethanolic extract has the capability to reduce foam cell formation through the reduction of cholesterol synthesis and the modulation of the activity of surface scavenger receptors.

  20. Influence of Sorghum Kafirin on Serum Lipid Profile and Antioxidant Activity in Hyperlipidemic Rats (In Vitro and In Vivo Studies)

    PubMed Central

    Ortíz Cruz, Raquel A.; Cárdenas López, José L.; González Aguilar, Gustavo A.; Astiazarán García, Humberto; Gorinstein, Shela; Canett Romero, Rafael; Robles Sánchez, Maribel

    2015-01-01

    The aim of this study was to compare in vitro the antioxidant potential of sorghum kafirin and sorghum flour and their influence on lipids and antioxidant capacity in rats. The antioxidant activity in sorghum kafirin extract measured by the DPPH and TEAC methods was increased 30 and 65 times, respectively, compared to that of its counterpart, sorghum flour. According to electrophoresis assay, the kafirins tert-butanol extract showed a high proportion of α-kafirin monomers, and its amino acid composition revealed higher hydrophobic amino acid content such as alanine, isoleucine, leucine, tyrosine and phenylalanine than sorghum flour extract. Diets supplemented with sorghum kafirin extract have improved lipid metabolism and increased the serum antioxidant potential (67%) especially in rats fed with added cholesterol. The bioactive peptides generated from kafirin in vivo hydrolysis appear to be associated with the positive effect on serum lipids and antioxidant activity. According to these results, sorghum kafirin extract at the levels used in this study apparently could be used for prevention of atherosclerosis and other chronic diseases. PMID:26634202

  1. Phyto-mediated nanostructured carriers based on dual vegetable actives involved in the prevention of cellular damage.

    PubMed

    Istrati, D; Lacatusu, I; Bordei, N; Badea, G; Oprea, O; Stefan, L M; Stan, R; Badea, N; Meghea, A

    2016-07-01

    The growing scientific interest in exploitation of vegetable bioactives has raised a number of questions regarding their imminent presence in pharmaceutical formulations. This study intends to demonstrate that a dual combination between vegetable oil (e.g. thistle oil, safflower oil, sea buckthorn oil) and a carrot extract represents an optimal approach to formulate safe carrier systems that manifest cell regeneration effect and promising antioxidant and anti-inflammatory activity. Inclusion of both natural actives into lipid carriers imparted a strong negative charge on the nanocarrier surface (up to -45mV) and displayed average sizes of 70nm to 140nm. The entrapment efficiency of carrot extract into nanostructured carriers ranged between 78.3 and 88.3%. The in vitro release study has demonstrated that the entrapment of the extract represents a viable way for an equilibrated release of carotenoids. Besides the excellent antioxidant properties (e.g. scavenging up to 98% of the free oxygen radicals), the results of cellular integrity (e.g. cell viability of 133%) recommend these nanocarriers based on dual carrot extract-bioactive oil as a promising trend for the treatment of certain disorders in which oxidative stress plays a prominent role. In addition, the lipid nanocarriers based on safflower oil and sea buckthorn oil demonstrated an anti-inflammatory effect on LPS induced THP-1 macrophages, by inhibiting the secretion of two pro-inflammatory cytokines, IL-6 and TNF-α. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Headspace solid-phase microextraction coupled to gas chromatography for the analysis of aldehydes in edible oils.

    PubMed

    Ma, Chunhua; Ji, Jiaojiao; Tan, Connieal; Chen, Dongmei; Luo, Feng; Wang, Yiru; Chen, Xi

    2014-03-01

    Oxidation has important effects on the quality of edible oils. In particular, the generation of aldehydes produced by the oxidation of oils is one of the deteriorative factors to their quality. The aim of this study was to develop a method to determine the aldehydes as lipid oxidation markers in edible oils. Seven aldehydes generated from lipid oxidation were studied using headspace solid-phase microextraction coupled to gas chromatography with a flame ionization detector. The extraction efficiency of five commercial fibers was investigated and the influence of extraction temperature, extraction time, desorption temperature, and desorption time were optimized. The best result was obtained with 85 μm carboxen/polydimethylsiloxane, extraction at 50 °C for 15 min and desorption in the gas chromatography injector at 250 °C for 2 min. Under the optimized conditions, the content of hexanal was the highest of the seven aldehydes in all edible oils. The limits of detection for hexanal in the three oils were found to range from 4.6 to 10.2 ng L(-1). The reproducibility of the method was evaluated and the relative standard deviations were less than 8.9%. This developed approach was successfully applied to analyze hexanal in peanut oil, soy oil, and olive oil samples, and these results were compared with those obtained using the thiobarbituric acid-reactive substances (TBARs) method. © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Identification of Plants That Inhibit Lipid Droplet Formation in Liver Cells: Rubus suavissimus Leaf Extract Protects Mice from High-Fat Diet-Induced Fatty Liver by Directly Affecting Liver Cells

    PubMed Central

    Takahashi, Tomohiro; Sugawara, Wataru; Takiguchi, Yuya; Takizawa, Kento; Nakabayashi, Ami; Nakamura, Mitsuo; Nagano-Ito, Michiyo; Ichikawa, Shinichi

    2016-01-01

    Fatty liver disease is a condition in which abnormally large numbers of lipid droplets accumulate in liver cells. Fatty liver disease induces inflammation under conditions of oxidative stress and may result in cancer. To identify plants that protect against fatty liver disease, we examined the inhibitory effects of plant extracts on lipid droplet formation in mouse hepatoma cells. A screen of 98 water extracts of plants revealed 4 extracts with inhibitory effects. One of these extracts, Rubus suavissimus S. Lee (Tien-cha or Chinese sweet tea) leaf extract, which showed strong inhibitory effects, was tested in a mouse fatty liver model. In these mouse experiments, intake of the plant extract significantly protected mice against fatty liver disease without affecting body weight gain. Our results suggest that RSE directly affects liver cells and protects them from fatty liver disease. PMID:27429636

  4. The effects of Momordica charantia on obesity and lipid profiles of mice fed a high-fat diet.

    PubMed

    Wang, Jun; Ryu, Ho Kyung

    2015-10-01

    The present study was conducted to investigate the effects of dried Momordica charantia aqueous extracts (MCA) and ethanol extracts (MCE) on obesity and lipid profiles in mice fed a high-fat diet. Forty two ICR mice were randomly divided into six groups. The normal group was fed a basal diet, and other groups were fed a 45% high-fat diet (HFD) for 7 weeks. The normal and HFD groups were also orally administered distilled water each day for 7 weeks. The remaining groups received Momordica charantia extract (0.5 or 1.0 g/kg/day MCA, and 0.5 or 1.0 g/kg/day MCE). In order to measure the anti-obesity and lipid profile improvement effects, body and visceral tissue weight, lipid profiles, plasma insulin levels, hepatic malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity were measured. Both MCA and MCE significantly decreased body and visceral tissue weight relative to those of the HFD group (P < 0.05). Additionally high doses of MCE and MCA significantly reduced the plasmatic insulin levels compared to the HFD groups (P < 0.05) to concentrations comparable to those found in the normal group. MCA and MCE supplementation also significantly modulated the lipid profiles in plasma, liver, and feces compared to mice fed the HFD (P < 0.05). Furthermore MCA and MCE significantly increased hepatic SOD activity, and reduced MDA generation in the liver of the HFD mice (P < 0.05). Results from the present study suggest that Momordica charantia extracts have anti-obesity effects and the ability to modulate lipid prolife of mice fed a HFD by suppressing body weight gain, visceral tissue weight, plasma and hepatic lipid concentrations, and lipid peroxidation along with increasing lipid metabolism.

  5. The effects of Momordica charantia on obesity and lipid profiles of mice fed a high-fat diet

    PubMed Central

    Wang, Jun

    2015-01-01

    BACKGROUND/OBJECTIVES The present study was conducted to investigate the effects of dried Momordica charantia aqueous extracts (MCA) and ethanol extracts (MCE) on obesity and lipid profiles in mice fed a high-fat diet. MATERIALS/METHODS Forty two ICR mice were randomly divided into six groups. The normal group was fed a basal diet, and other groups were fed a 45% high-fat diet (HFD) for 7 weeks. The normal and HFD groups were also orally administered distilled water each day for 7 weeks. The remaining groups received Momordica charantia extract (0.5 or 1.0 g/kg/day MCA, and 0.5 or 1.0 g/kg/day MCE). In order to measure the anti-obesity and lipid profile improvement effects, body and visceral tissue weight, lipid profiles, plasma insulin levels, hepatic malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity were measured. RESULTS Both MCA and MCE significantly decreased body and visceral tissue weight relative to those of the HFD group (P < 0.05). Additionally high doses of MCE and MCA significantly reduced the plasmatic insulin levels compared to the HFD groups (P < 0.05) to concentrations comparable to those found in the normal group. MCA and MCE supplementation also significantly modulated the lipid profiles in plasma, liver, and feces compared to mice fed the HFD (P < 0.05). Furthermore MCA and MCE significantly increased hepatic SOD activity, and reduced MDA generation in the liver of the HFD mice (P < 0.05). CONCLUSIONS Results from the present study suggest that Momordica charantia extracts have anti-obesity effects and the ability to modulate lipid prolife of mice fed a HFD by suppressing body weight gain, visceral tissue weight, plasma and hepatic lipid concentrations, and lipid peroxidation along with increasing lipid metabolism. PMID:26425278

  6. Antioxidative and prooxidative effects in food lipids and synergism with α-tocopherol of açaí seed extracts and grape rachis extracts.

    PubMed

    Melo, Priscilla Siqueira; Arrivetti, Leandro de Oliveira Rodrigues; Alencar, Severino Matias de; Skibsted, Leif H

    2016-12-15

    Extracts of açaí seed and of grape rachis alone or in combination with α-tocopherol were evaluated as antioxidants in (i) bulk soybean oil, (ii) soybean oil liposomes and (iii) soybean-oil/water emulsions. The extracts made with 57% aqueous ethanol showed an antioxidant activity not dependent on concentration for grape rachis extracts and a concentration-dependent prooxidative activity for açaí seed extracts in bulk soybean oil. Both the extracts, however, protected liposome suspensions and oil/water emulsions against lipid oxidation. Synergism was demonstrated when extracts were combined with α-tocopherol, effects explained by the solubility of extract components in the water-phase and of α-tocopherol in the lipid-phase. Phenolic profiling of the extracts by U-HPLC-ESI-LTQ-MS was used to identify active antioxidants. Açaí seed and grape rachis extracts served as good sources of procyanidins and flavan-3-ols, imparted high antioxidant activity especially when combined with α-tocopherol and are suggested for protection of food oil/water emulsions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Pressurized solvent extraction of pure food grade starch

    USDA-ARS?s Scientific Manuscript database

    A commercial pressurized solvent extractor was used to remove lipid and non-lipid material from cornstarch using n-propanol/water and ethanol/water mixtures. Yields and chemical composition of the extract fractions were determined. Cornstarch samples were characterized using pasting properties and...

  8. Structure-activity correlation in transfection promoted by pyridinium cationic lipids.

    PubMed

    Parvizi-Bahktar, P; Mendez-Campos, J; Raju, L; Khalique, N A; Jubeli, E; Larsen, H; Nicholson, D; Pungente, M D; Fyles, T M

    2016-03-21

    The efficiency of the transfection of a plasmid DNA encoding a galactosidase promoted by a series of pyridinium lipids in mixtures with other cationic lipids and neutral lipids was assessed in CHO-K1 cells. We identify key molecular parameters of the lipids in the mixture - clog P, lipid length, partial molar volume - to predict the morphology of the lipid-DNA lipoplex and then correlate these same parameters with transfection efficiency in an in vitro assay. We define a Transfection Index that provides a linear correlation with normalized transfection efficiency over a series of 90 different lipoplex compositions. We also explore the influence of the same set of molecular parameters on the cytotoxicity of the formulations.

  9. Wet and dry extraction of coconut oil: impact on lipid metabolic and antioxidant status in cholesterol coadministered rats.

    PubMed

    Nevin, K Govindan; Rajamohan, Thankappan

    2009-08-01

    Because coconut oil extracted by wet process (virgin coconut oil, VCO) is gaining popularity among consumers, this study was conducted to evaluate VCO compared with coconut oil extracted by dry process (copra oil, CO) for their influence on lipid parameters, lipid peroxidation, and antioxidant status in rats coadministered with cholesterol. VCO, CO, and cholesterol were fed in a semi-synthetic diet to 24 male Sprague-Dawley rats for 45 days. After the experimental period, lipid and lipid peroxide levels and antioxidant enzyme activities were observed. Chemical composition and antioxidant properties of the polyphenolic fraction from VCO and CO were also analyzed. The results showed that lipid and lipid peroxide levels were lower in VCO-fed animals than in animals fed either CO or cholesterol alone. Antioxidant enzyme activities in VCO-fed animals were comparable with those in control animals. Although the fatty acid profiles of both oils were similar, a significantly higher level of unsaponifiable components was observed in VCO. Polyphenols from VCO also showed significant radical-scavenging activity compared with those from CO. This study clearly indicates the potential benefits of VCO over CO in maintaining lipid metabolism and antioxidant status. These effects may be attributed in part to the presence of biologically active minor unsaponifiable components.

  10. Antioxidant and Antiradical Activities of Manihot esculenta Crantz (Euphorbiaceae) Leaves and Other Selected Tropical Green Vegetables Investigated on Lipoperoxidation and Phorbol-12-myristate-13-acetate (PMA) Activated Monocytes

    PubMed Central

    Tsumbu, Cesar N.; Deby-Dupont, Ginette; Tits, Monique; Angenot, Luc; Franck, Thierry; Serteyn, Didier; Mouithys-Mickalad, Ange

    2011-01-01

    Abelmoschus esculentus (Malvaceae), Hibiscus acetosella (Malvaceae), Manihot esculenta Crantz (Euphorbiaceae) and Pteridium aquilinum (Dennstaedtiaceae) leaves are currently consumed as vegetables by migrants from sub-Saharan Africa living in Western Europe and by the people in the origin countries, where these plants are also used in the folk medicine. Manihot leaves are also eaten in Latin America and some Asian countries. This work investigated the capacity of aqueous extracts prepared from those vegetables to inhibit the peroxidation of a linoleic acid emulsion. Short chain, volatile C-compounds as markers of advanced lipid peroxidation were measured by gas chromatography by following the ethylene production. The generation of lipid hydroperoxides, was monitored by spectroscopy using N-N′-dimethyl-p-phenylene-diamine (DMPD). The formation of intermediate peroxyl, and other free radicals, at the initiation of the lipid peroxidation was investigated by electron spin resonance, using α-(4-pyridyl-1-oxide)-N-tert-butylnitrone as spin trap agent. The ability of the extracts to decrease the cellular production of reactive oxygen species (ROS) in “inflammation like” conditions was studied by fluorescence technique using 2′,7′-dichlorofluorescine-diacetate as fluorogenic probe, in a cell model of human monocytes (HL-60 cells) activated with phorbol ester. Overall the extracts displayed efficient concentration-dependent inhibitory effects. Their total polyphenol and flavonoid content was determined by classic colorimetric methods. An HPLC-UV/DAD analysis has clearly identified the presence of some polyphenolic compounds, which explains at least partially the inhibitions observed in our models. The role of these plants in the folk medicine by sub-Saharan peoples as well as in the prevention of oxidative stress and ROS related diseases requires further consideration. PMID:22254126

  11. Nanostructured lipid system as a strategy to improve the anti-Candida albicans activity of Astronium sp.

    PubMed Central

    Bonifácio, Bruna Vidal; Ramos, Matheus Aparecido dos Santos; da Silva, Patrícia Bento; Negri, Kamila Maria Silveira; de Oliveira Lopes, Érica; de Souza, Leonardo Perez; Vilegas, Wagner; Pavan, Fernando Rogério; Chorilli, Marlus; Bauab, Taís Maria

    2015-01-01

    The genus Astronium (Anacardiaceae) includes species, such as Astronium fraxinifolium, Astronium graveolens, and Astronium urundeuva, which possess anti-inflammatory, anti-ulcerogenic, healing, and antimicrobial properties. Nanostructured lipid systems are able to potentiate the action of plant extracts, reducing the required dose and side effects and improving antimicrobial activity. This work aims to evaluate a nanostructured lipid system that was developed as a strategy to improve the anti-Candida albicans activity of hydroethanolic extracts of stems and leaves from Astronium sp. The antifungal activity against C. albicans (ATCC 18804) was evaluated in vitro by a microdilution technique. In addition to the in vitro assays, the Astronium sp. that showed the best antifungal activity and selectivity index was submitted to an in vivo assay using a model of vulvovaginal candidiasis infection. In these assays, the extracts were either used alone or were incorporated into the nanostructured lipid system (comprising 10% oil phase, 10% surfactant, and 80% aqueous phase). The results indicated a minimal inhibitory concentration of 125.00 µg/mL before incorporation into the nanostructured system; this activity was even more enhanced when this extract presented a minimal inhibitory concentration of 15.62 µg/mL after its incorporation. In vivo assay dates showed that the nanostructure-incorporated extract of A. urundeuva leaves was more effective than both the unincorporated extract and the antifungal positive control (amphotericin B). These results suggest that this nanostructured lipid system can be used in a strategy to improve the in vitro and in vivo anti-C. albicans activity of hydroethanolic extracts of Astronium sp. PMID:26300640

  12. Fish tissue lipid-C:N relationships for correcting δ(13) C values and estimating lipid content in aquatic food-web studies.

    PubMed

    Hoffman, Joel C; Sierszen, Michael E; Cotter, Anne M

    2015-11-15

    Normalizing δ(13) C values of animal tissue for lipid content is necessary to accurately interpret food-web relationships from stable isotope analysis. To reduce the effort and expense associated with chemical extraction of lipids, various studies have tested arithmetic mass balance to mathematically normalize δ(13) C values for lipid content; however, the approach assumes that lipid content is related to the tissue C:N ratio. We evaluated two commonly used models for estimating tissue lipid content based on C:N ratio (a mass balance model and a stoichiometric model) by comparing model predictions to measure the lipid content of white muscle tissue. We then determined the effect of lipid model choice on δ(13) C values normalized using arithmetic mass balance. To do so, we used a collection of fish from Lake Superior spanning a wide range in lipid content (5% to 73% lipid). We found that the lipid content was positively related to the bulk muscle tissue C:N ratio. The two different lipid models produced similar estimates of lipid content based on tissue C:N, within 6% for tissue C:N values <7. Normalizing δ(13) C values using an arithmetic mass-balance equation based on either model yielded similar results, with a small bias (<1‰) compared with results based on chemical extraction. Among-species consistency in the relationship between fish muscle tissue C:N ratio and lipid content supports the application of arithmetic mass balance to normalize δ(13) C values for lipid content. The uncertainty associated with both lipid extraction quality and choice of model parameters constrains the achievable precision of normalized δ(13) C values to about ±1.0‰. Published in 2015. This article is a U.S. Government work and is in the public domain in the U.S.A.

  13. A green analytical chemistry approach for lipid extraction: computation methods in the selection of green solvents as alternative to hexane.

    PubMed

    Cascant, Mari Merce; Breil, Cassandra; Garrigues, Salvador; de la Guardia, Miguel; Fabiano-Tixier, Anne Silvie; Chemat, Farid

    2017-05-01

    There is a great interest in finding alternatives and green solvents in extraction processes to replace petroleum based solvents. In order to investigate these possibilities, computational methods, as Hansen solubility parameters (HSP) and conductor-like screening model for real solvent (COSMO-RS), were used in this work to predict the solvation power of a series of solvents in salmon fish lipids. Additionally, experimental studies were used to evaluate the performance in lipids extraction using 2-methyltetrahydrofurane, cyclopentyl methyl ether, dimethyl carbonate, isopropanol, ethanol, ethyl acetate, p-cymene and d-limonene compared with hexane. Lipid classes of extracts were obtained by using high performance thin-layer chromatography (HPTLC), whereas gas chromatography with a flame ionization detector (GC/FID) technique was employed to obtain fatty acid profiles. Some differences between theoretical and experimental results were observed, especially regarding the behavior of p-cymene and d-limonene, which separate from the predicted capability. Results obtained from HPTLC indicated that p-cymene and d-limonene extract triglycerides (TAGs) and diglycerides (DAGs) at levels of 73 and 19%, respectively, whereas the other studied extracts contain between 75 and 76% of TAGs and between 16 and 17% of DAGs. Fatty acid profiles, obtained by using GC-FID, indicated that saturated fatty acids (SFAs) between 19.5 and 19.9% of extracted oil, monounsaturated fatty acids (MUFAs) in the range between 43.5 and 44.9%, and PUFAs between 31.2 and 34.6% were extracted. p-Cymene and limonene extracts contained lower percentages than the other studied solvents of some PUFAs due probably to the fact that these unsaturated fatty acids are more susceptible to oxidative degradation than MUFAs. Ethyl acetate has been found to be the best alternative solvent to hexane for the extraction of salmon oil lipids. Graphical Abstract ᅟ.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holser, Ronald A.; King, J. W.; Bost, G.

    The genus Hibiscus exhibits great diversity in the production of natural materials with edible and industrial applications. The seeds of twelve varieties of Hibiscus were investigated as a source for triglycerides and phospholipids that could be used in functional foods. Lipid components were extracted from seed samples ground to a nominal particle diameter of 0.1 mm. Extractions were performed with an ISCO model 3560 supercritical fluid extractor using carbon dioxide and a mixture of carbon dioxide modified with ethanol. The neutral lipids were extracted with carbon dioxide at 80 C and 5370 MPa for 45 min. Polar lipids were subsequentlymore » extracted with a mixture of carbon dioxide and 15% ethanol at the same temperature and pressure. High performance liquid chromatography (HPLC) was used to analyze extracts for major neutral and polar lipid classes. A silica column was used with a solvent gradient of hexane/isopropanol/ water and ultraviolet (UV) and evaporative light scattering detectors (ELSD). An aliquot of each triglyceride fraction was trans-methylated with sodium methoxide and analyzed by gas chromatography to obtain the corresponding fatty acid methyl esters. The total lipids extracted ranged from 8.5% for a variety indigenous to Madagascar (H. calyphyllus) to 20% for a hybrid species (Georgia Rose). The average oil yield was 11.4% for the other varieties tested. The fatty acid methyl ester analysis displayed a high degree of unsaturation for all varieties tested, e. g., 75 ' 83%. Oleic, linoleic, and linolenic fatty acids were the predominate unsaturated fatty acids with only minor amounts of C14, C18, and C20 saturated fatty acids measured. Palmitic acid was identified as the predominate saturated fatty acid. The distribution of the major phospholipids, i. e., phosphatidylethanolamine, phosphatidic acid, phosphatidylserine, phosphatidylcholine, and lysophosphatidylcholine, was found to vary significantly among the hibiscus species examined. Phosphatidylcholine and lysophosphatidylcholine were the predominate phospholipids comprising between 50 and 95% of the total phospholipids present. Pressurized extraction techniques provide a rapid method to separate both polar and nonpolar lipids from Hibiscus seeds using carbon dioxide and ethanol mixtures. The seeds require a minimum of processing prior to extraction and the extracts obtained are solvent free and suitable for edible products.« less

  15. Membrane interaction of antimicrobial peptides using E. coli lipid extract as model bacterial cell membranes and SFG spectroscopy.

    PubMed

    Soblosky, Lauren; Ramamoorthy, Ayyalusamy; Chen, Zhan

    2015-04-01

    Supported lipid bilayers are used as a convenient model cell membrane system to study biologically important molecule-lipid interactions in situ. However, the lipid bilayer models are often simple and the acquired results with these models may not provide all pertinent information related to a real cell membrane. In this work, we use sum frequency generation (SFG) vibrational spectroscopy to study molecular-level interactions between the antimicrobial peptides (AMPs) MSI-594, ovispirin-1 G18, magainin 2 and a simple 1,2-dipalmitoyl-d62-sn-glycero-3-phosphoglycerol (dDPPG)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) bilayer. We compared such interactions to those between the AMPs and a more complex dDPPG/Escherichia coli (E. coli) polar lipid extract bilayer. We show that to fully understand more complex aspects of peptide-bilayer interaction, such as interaction kinetics, a heterogeneous lipid composition is required, such as the E. coli polar lipid extract. The discrepancy in peptide-bilayer interaction is likely due in part to the difference in bilayer charge between the two systems since highly negative charged lipids can promote more favorable electrostatic interactions between the peptide and lipid bilayer. Results presented in this paper indicate that more complex model bilayers are needed to accurately analyze peptide-cell membrane interactions and demonstrates the importance of using an appropriate lipid composition to study AMP interaction properties. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. [Laser magnetotherapy after cataract extraction with implantation of intraocular lens].

    PubMed

    Maksimov, V Iu; Zakharova, N V; Maksimova, I S; Golushkov, G A; Evseev, S Iu

    2002-01-01

    Effects of low-intensive laser and alternating magnetic field on the course of the postoperative period were studied in patients with exudative reaction after extracapsular cataract extraction with implantation of intraocular lens (IOL). The results are analyzed for 148 eyes with early exudative reaction after IOL implantation (136 patients aged 42-75 years). The patients were observed for up to 6 months. The treatment efficiency was evaluated by the clinical picture of inflammatory reaction, visual acuity, and results of biochemical analysis of the lacrimal fluid (the ratio of lipid peroxidation products to antioxidants in cell membrane). The course of the postoperative period was more benign and recovery sooner in patients of the main group in comparison with the control.

  17. Characterization of myrtle seed (Myrtus communis var. baetica) as a source of lipids, phenolics, and antioxidant activities.

    PubMed

    Wannes, Wissem Aidi; Marzouk, Brahim

    2016-04-01

    This study aimed to characterize the chemical composition and antioxidant activity of the oil and the methanolic extract of Myrtus communis var. baetica seed. The oil yield of myrtle seed was 8.90%, with the amount of neutral lipid, especially triacylglycerol, being the highest, followed by phospholipids and glycolipids. Total lipids and all lipid classes were rich in linoleic acid. The content of total phenols, flavonoids, tannins, and proanthocyanidins of the methanolic extract and the oil from myrtle seed was determined using spectrophotometric methods. Antioxidant activities of the oil and the methanolic extract from myrtle seed were evaluated using 1,1-diphenyl-2-picrylhydrazyl radical scavenging, β-carotene-linoleic acid bleaching, and reducing power and metal chelating activity assays. In all tests, the methanolic extract of myrtle seed showed better antioxidant activity than oil. This investigation could suggest the use of myrtle seed in food, industrial, and biomedical applications for its potential metabolites and antioxidant abilities. Copyright © 2015. Published by Elsevier B.V.

  18. Investigation of flavonoid influence on peroxidation processes intensity in the blood

    NASA Astrophysics Data System (ADS)

    Navolokin, N. A.; Mudrak, D. A.; Plastun, I. L.; Bucharskaya, A. B.; Agandeeva, K. E.; Ivlichev, A. V.; Tychina, S. A.; Afanasyeva, G. A.; Polukonova, N. V.; Maslyakova, G. N.

    2017-03-01

    Influence of flavonoids on the intensity of peroxidation processes in the blood is investigated by numerical modeling and by experiment in vivo. As an example we consider the effects of flavonoid-containing extract of Helichrysum arenarium L. with antitumor activity on serum of rats with transplanted liver cancer PC-1. It was found that the content of malondialdehyde, lipid hydroperoxides and average mass molecules were decreased in animals with transplanted liver cancer after intramuscular and oral administration of Helichrysum arenarium L extract in a dose of 1000 mg/mL. The extract reduces the intensity of lipid peroxidation processes in animals. The compound formation possibility of flavonoids and products of lipid peroxidation is investigated by numerical simulations. Using the density functional theory method of molecular modeling, we analyze hydrogen bonds formation and their influence on IR - spectra and structure of molecular complex which is formed due to interaction between flavonoids and products of lipid peroxidation processes on example of naringine and malondialdehyde. We have found that naringine can form a steady molecular complex with malondialdehyde by hydrogen bonds formation. Thus, the application of Helichrysum arenarium L. extract for suppression processes of lipid peroxidation and activation of enzymatic and non-enzymatic antioxidant systems is promising.

  19. Genetic improvement of feed conversion ratio via indirect selection against lipid deposition in farmed rainbow trout (Oncorhynchus mykiss Walbaum).

    PubMed

    Kause, Antti; Kiessling, Anders; Martin, Samuel A M; Houlihan, Dominic; Ruohonen, Kari

    2016-11-01

    In farmed fish, selective breeding for feed conversion ratio (FCR) may be possible via indirectly selecting for easily-measured indicator traits correlated with FCR. We tested the hypothesis that rainbow trout with low lipid% have genetically better FCR, and that lipid% may be genetically related to retention efficiency of macronutrients, making lipid% a useful indicator trait. A quantitative genetic analysis was used to quantify the benefit of replacing feed intake in a selection index with one of three lipid traits: body lipid%, muscle lipid% or viscera% weight of total body weight (reflecting visceral lipid). The index theory calculations showed that simultaneous selection for weight gain and against feed intake (direct selection to improve FCR) increased the expected genetic response in FCR by 1·50-fold compared with the sole selection for growth. Replacing feed intake in the selection index with body lipid%, muscle lipid% or viscera% increased genetic response in FCR by 1·29-, 1·49- and 1·02-fold, respectively, compared with the sole selection for growth. Consequently, indirect selection for weight gain and against muscle lipid% was almost as effective as direct selection for FCR. Fish with genetically low body and muscle lipid% were more efficient in turning ingested protein into protein weight gain. Both physiological and genetic mechanisms promote the hypothesis that low-lipid% fish are more efficient. These results highlight that in breeding programmes of rainbow trout, control of lipid deposition improves not only FCR but also protein-retention efficiency. This improves resource efficiency of aquaculture and reduces nutrient load to the environment.

  20. Phosphatidylinositol 3-Kinase and Protein Kinase C as Molecular Determinants of Chemoresistance in Breast Cancer

    DTIC Science & Technology

    2004-07-01

    medium (Cambrex, San Diego, CA) supplemented with bovine pituitary extract . cancer contained approximately one-half the level of cer- 3-[4,5...rill et al., 1988) as modified by Yoon et al. (1999) was used. Lipid Cytochrome c Release. Cells (4 X 106) were harvested with 0.5% extract aliquots... extracted in chloroform, and the organic phase was dried under a nitrogen z 80- stream. The lipids contained in the organic phase extract were re- 70

  1. A novel process for enhancing oil production in algae biorefineries through bioconversion of solid by-products.

    PubMed

    Trzcinski, Antoine P; Hernandez, Ernesto; Webb, Colin

    2012-07-01

    This paper focuses on a novel process for adding value to algae residue. In current processes oleaginous microalgae are grown and harvested for lipid production leaving a lipid-free algae residue. The process described here includes conversion of the carbohydrate fraction into glucose prior to lipid extraction. This can be fermented to produce up to 15% additional lipids using another oleaginous microorganism. It was found that in situ enzymes can hydrolyze storage carbohydrates in the algae into glucose and that a temperature of 55 °C for about 20 h gave the best glucose yield. Up to 75% of available carbohydrates were converted to a generic fermentation feedstock containing 73 g/L glucose. The bioconversion step was found to increase the free water content by 60% and it was found that when the bioconversion was carried out prior to the extraction step, it improved the solvent extractability of lipids from the algae. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Multi-contaminant analysis of organophosphate and halogenated flame retardants in food matrices using ultrasonication and vacuum assisted extraction, multi-stage cleanup and gas chromatography-mass spectrometry.

    PubMed

    Xu, Fuchao; García-Bermejo, Ángel; Malarvannan, Govindan; Gómara, Belén; Neels, Hugo; Covaci, Adrian

    2015-07-03

    A multi-residue analytical method was developed for the determination of a range of flame retardants (FRs), including polybrominated diphenyl ethers (PBDEs), emerging halogenated FRs (EFRs) and organophosphate FRs (PFRs), in food matrices. An ultrasonication and vacuum assisted extraction (UVAE), followed by a multi-stage clean-up procedure, enabled the removal of up to 1g of lipid from 2.5 g of freeze-dried food samples and significantly reduce matrix effects. UVAE achieves a waste factor (WF) of about 10%, while the WFs of classical QuEChERS methods range usually between 50 and 90%. The low WF of UVAE leads to a dramatic improvement in the sensitivity along with saving up to 90% of spiking (internal) standards. Moreover, a two-stage clean-up on Florisil and aminopropyl silica was introduced after UVAE, for an efficient removal of pigments and residual lipids, which led to cleaner extracts than normally achieved by dispersive solid phase extraction (d-SPE). In this way, the extracts could be concentrated to low volumes, e.g. <100 μL and the equivalent matrix concentrations were up to 100g ww/mL. The final analysis of PFRs was performed on GC-EI-MS, while PBDEs and EFRs were measured by GC-ECNI-MS. Validation tests were performed with three food matrices (lean beef, whole chicken egg and salmon filet), obtaining acceptable recoveries (66-135%) with good repeatability (RSD 1-24%, mean 7%). Method LOQs ranged between 0.008 and 0.04 ng/g dw for PBDEs, between 0.08 and 0.20 ng/g dw for EFRs, and between 1.4 and 3.6 ng/g dw for PFRs. The method was further applied to eight types of food samples (including meat, eggs, fish, and seafood) with lipid contents ranging from 0.1 to 22%. Various FRs were detected above MLOQ levels, demonstrating the wide-range applicability of our method. To the best of our knowledge, this is the first method reported for simultaneous analysis of brominated and organophosphate FRs in food matrices. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Membrane solubilisation and reconstitution by octylglucoside: comparison of synthetic lipid and natural lipid extract by isothermal titration calorimetry.

    PubMed

    Krylova, Oxana O; Jahnke, Nadin; Keller, Sandro

    2010-08-01

    We have studied the solubilisation and reconstitution of lipid membranes composed of either synthetic phosphatidylcholine or Escherichia. coli polar lipid extract by the non-ionic detergent octylglucoside. For both lipid systems, composition-dependent transformations of unilamellar vesicles into micelles or vice versa were followed by high-sensitivity isothermal titration calorimetry. Data obtained over a range of detergent and lipid concentrations could be rationalised in terms of a three-stage phase separation model involving bilayer, bilayer/micelle coexistence, and micellar ranges, yielding the detergent/lipid phase diagrams and the bilayer-to-micelle partition coefficients of both detergent and lipid. The most notable difference between the lipids investigated was a substantial widening of the bilayer/micelle coexistence range for E. coli lipid, which was due to an increased preference of the detergent and a decreased affinity of the lipid for the micellar phase as compared with the bilayer phase. These effects on the bilayer-to-micelle partition coefficients could be explained by the high proportion in E. coli membranes of lipids possessing negative spontaneous curvature, which hampers both their transfer into strongly curved micellar structures as well as the insertion of detergent into condensed bilayers.

  4. Antimutagenic activity of extracts of leaves of four common edible vegetable plants in Nigeria (west Africa).

    PubMed

    Obaseiki-Ebor, E E; Odukoya, K; Telikepalli, H; Mitscher, L A; Shankel, D M

    1993-06-01

    Organic solvent extracts of leaves of 4 common edible vegetable plants--Bryophyllum pinnatum, Dialium guincense, Ocimum gratissimum and Vernonia amygdalina--had inhibitory activity for His- to His+ reverse-mutations induced by ethyl methanesulfonate acting on Salmonella typhimurium TA100. The concentrated ethyl acetate, methanol and petroleum ether extracts were heat-stable when dissolved in dimethyl sulfoxide. The Bryophyllum ethyl acetate extract was fractionated into alkaloidal/water-soluble, acids, polar lipid and non-polar lipid fractions. The polar and non-polar lipid fractions inhibited reversion mutations induced by ethyl methanesulfonate acting on TA100 or TA102, and were also active against reversions induced by 4-nitro-O-phenylenediamine and 2-aminofluorene in TA98. The alkaloidal/water-soluble and the acid fractions had no appreciable antimutagenic activities.

  5. An analysis of partial efficiencies of energy utilisation of different macronutrients by barramundi (Lates calcarifer) shows that starch restricts protein utilisation in carnivorous fish.

    PubMed

    Glencross, Brett D; Blyth, David; Bourne, Nicholas; Cheers, Susan; Irvin, Simon; Wade, Nicholas M

    2017-02-01

    This study examined the effect of including different dietary proportions of starch, protein and lipid, in diets balanced for digestible energy, on the utilisation efficiencies of dietary energy by barramundi (Lates calcarifer). Each diet was fed at one of three ration levels (satiety, 80 % of initial satiety and 60 % of initial satiety) for a 42-d period. Fish performance measures (weight gain, feed intake and feed conversion ratio) were all affected by dietary energy source. The efficiency of energy utilisation was significantly reduced in fish fed the starch diet relative to the other diets, but there were no significant effects between the other macronutrients. This reduction in efficiency of utilisation was derived from a multifactorial change in both protein and lipid utilisation. The rate of protein utilisation deteriorated as the amount of starch included in the diet increased. Lipid utilisation was most dramatically affected by inclusion levels of lipid in the diet, with diets low in lipid producing component lipid utilisation rates well above 1·3, which indicates substantial lipid synthesis from other energy sources. However, the energetic cost of lipid gain was as low as 0·65 kJ per kJ of lipid deposited, indicating that barramundi very efficiently store energy in the form of lipid, particularly from dietary starch energy. This study defines how the utilisation efficiency of dietary digestible energy by barramundi is influenced by the macronutrient source providing that energy, and that the inclusion of starch causes problems with protein utilisation in this species.

  6. Antidiabetic Evaluation of Momordica charantia L Fruit Extracts

    PubMed Central

    Tahira, S; Hussain, F

    2014-01-01

    To investigate hypoglycaemic, hypolipidaemic and pancreatic beta cell regeneration activities of Momordica charantia L fruits (MC). Alloxan-induced diabetic rabbits were treated with methanolic and ethanolic MC extract. Effects of plant extracts and the drug glibenclamide on serum glucose, lipid profile and pancreatic beta cell were determined after two weeks of treatment. Serum glucose and lipid profiles were assayed by kit methods. Pancreatic tissue histopathology was performed to study pancreatic beta cell regeneration. Momordica charantia extracts produced significant hypoglycaemic effects (p < 0.05). Hypolipidaemic activity of MC was negligible. Momordica charantia supplementations were unable to normalize glucose and lipid profiles. Glibenclamide, a standard drug, not only lowered hyperglycaemia and hyperlipidaemia but also restored the normal levels. Regeneration of pancreatic beta cells by MC extracts was minimal, with fractional improvement produced by glibenclamide. The most significant finding of the present study was a 28% reduction in hyperglycaemia by MC ethanol extracts. To determine reliable antidiabetic potentials of MC, identification of the relevant antidiabetic components and underlying mechanisms is warranted. PMID:25429471

  7. Turmeric extract and its active compound, curcumin, protect against chronic CCl4-induced liver damage by enhancing antioxidation.

    PubMed

    Lee, Hwa-Young; Kim, Seung-Wook; Lee, Geum-Hwa; Choi, Min-Kyung; Jung, Han-Wool; Kim, Young-Jun; Kwon, Ho-Jeong; Chae, Han-Jung

    2016-08-26

    Curcumin, a major active component of turmeric, has previously been reported to alleviate liver damage. Here, we investigated the mechanism by which turmeric and curcumin protect the liver against carbon tetrachloride (CCl4)-induced injury in rats. We hypothesized that turmeric extract and curcumin protect the liver from CCl4-induced liver injury by reducing oxidative stress, inhibiting lipid peroxidation, and increasing glutathione peroxidase activation. Chronic hepatic stress was induced by a single intraperitoneal injection of CCl4 (0.1 ml/kg body weight) into rats. Turmeric extracts and curcumin were administered once a day for 4 weeks at three dose levels (100, 200, and 300 mg/kg/day). We performed ALT and AST also measured of total lipid, triglyceride, cholesterol levels, and lipid peroxidation. We found that turmeric extract and curcumin significantly protect against liver injury by decreasing the activities of serum aspartate aminotransferase and alanine aminotransferase and by improving the hepatic glutathione content, leading to a reduced level of lipid peroxidase. Our data suggest that turmeric extract and curcumin protect the liver from chronic CCl4-induced injury in rats by suppressing hepatic oxidative stress. Therefore, turmeric extract and curcumin are potential therapeutic antioxidant agents for the treatment of hepatic disease.

  8. Reduction of hydrogen peroxide-induced erythrocyte damage by Carica papaya leaf extract

    PubMed Central

    Okoko, Tebekeme; Ere, Diepreye

    2012-01-01

    Objective To investigate the in vitro antioxidant potential of Carica papaya (C. papaya) leaf extract and its effect on hydrogen peroxide-induced erythrocyte damage assessed by haemolysis and lipid peroxidation. Methods Hydroxyl radical scavenging activities, hydrogen ion scavenging activity, metal chelating activity, and the ferrous ion reducing ability were assessed as antioxidant indices. In the other experiment, human erythrocytes were treated with hydrogen peroxide to induce erythrocyte damage. The extract (at various concentrations) was subsequently incubated with the erythrocytes and later analysed for haemolysis and lipid peroxidation as indices for erythrocyte damage. Results Preliminary investigation of the extract showed that the leaf possessed significant antioxidant and free radical scavenging abilities using in vitro models in a concentration dependent manner (P<0.05). The extract also reduced hydrogen peroxide induced erythrocyte haemolysis and lipid peroxidation significantly when compared with ascorbic acid (P<0.05). The IC50 values were 7.33 mg/mL and 1.58 mg/mL for inhibition of haemolysis and lipid peroxidation, respectively. In all cases, ascorbic acid (the reference antioxidant) possessed higher activity than the extract. Conclusions The findings show that C. papaya leaves possess significant bioactive potential which is attributed to the phytochemicals which act in synergy. Thus, the leaves can be exploited for pharmaceutical and nutritional purposes. PMID:23569948

  9. Reduction of hydrogen peroxide-induced erythrocyte damage by Carica papaya leaf extract.

    PubMed

    Okoko, Tebekeme; Ere, Diepreye

    2012-06-01

    To investigate the in vitro antioxidant potential of Carica papaya (C. papaya) leaf extract and its effect on hydrogen peroxide-induced erythrocyte damage assessed by haemolysis and lipid peroxidation. Hydroxyl radical scavenging activities, hydrogen ion scavenging activity, metal chelating activity, and the ferrous ion reducing ability were assessed as antioxidant indices. In the other experiment, human erythrocytes were treated with hydrogen peroxide to induce erythrocyte damage. The extract (at various concentrations) was subsequently incubated with the erythrocytes and later analysed for haemolysis and lipid peroxidation as indices for erythrocyte damage. Preliminary investigation of the extract showed that the leaf possessed significant antioxidant and free radical scavenging abilities using in vitro models in a concentration dependent manner (P<0.05). The extract also reduced hydrogen peroxide induced erythrocyte haemolysis and lipid peroxidation significantly when compared with ascorbic acid (P<0.05). The IC50 values were 7.33 mg/mL and 1.58 mg/mL for inhibition of haemolysis and lipid peroxidation, respectively. In all cases, ascorbic acid (the reference antioxidant) possessed higher activity than the extract. The findings show that C. papaya leaves possess significant bioactive potential which is attributed to the phytochemicals which act in synergy. Thus, the leaves can be exploited for pharmaceutical and nutritional purposes.

  10. Racial Variations in Interfacial Behavior of Lipids Extracted from Worn Soft Contact Lenses

    PubMed Central

    Svitova, Tatyana F.; Lin, Meng C.

    2014-01-01

    Purpose To explore interfacial behaviors and effect of temperature and dilatation on dynamic properties of multilayered human tear lipids extracted from silicone hydrogel (SiH) lenses worn by asymptomatic Asian and Caucasian subjects. Methods Interfacial properties of lipids extracted from Focus® N&D lenses worn by 14 subjects continuously for 1 month were studied. The lipids were deposited on an air bubble immersed in a model tear electrolytes (MTE) solution to form 100 ± 20 nm-thick films. Surface pressure was recorded during slow expansion/contraction cycles to evaluate compressibility and hysteresis of lipid films. Films were also subjected to fast step-strain dilatations at temperatures 22°–45° C for their visco-elastic properties assessment. Results Iso-cycles for Asian and Caucasian lipids were similar at low surface pressures, but had distinctly different compressibility and hysteresis at dynamic pressures exceeding 30 mN/m. Rheological parameters of reconstituted lipids were also dissimilar between Asian and Caucasian. The elastic modulusE∞ for Caucasian lipids was 1.5 times higher than that for Asian lipids, whereas relaxation time (t) was on average 1.3 times higher for Asian. No significant changes were observed in rheological properties of both Asian and Caucasian lipids when temperature increased from 22.0° to 36.5° C. However, for Caucasian lipids, E∞ reduced considerably at temperatures above 42.0° C, while t remained unchanged. For Asian lipids, both E∞ and t started to decline as temperature increased to 38° C and higher. Conclusions Higher elastic modulus of Caucasian lipids and elasticity threshold at certain deformations indicate stronger structure and intermolecular interactions as compared with more viscous Asian lipids. The differences in interfacial behaviors between Asian and Caucasian lipids may be associated with the differences in their chemical compositions. PMID:24270592

  11. Effect of Solvent System on Extractability of Lipidic Components of Scenedesmus obliquus (M2-1) and Gloeothece sp. on Antioxidant Scavenging Capacity Thereof

    PubMed Central

    Amaro, Helena M.; Fernandes, Fátima; Valentão, Patrícia; Andrade, Paula B.; Sousa-Pinto, I.; Malcata, F. Xavier; Guedes, A. Catarina

    2015-01-01

    Microalgae are well known for their biotechnological potential, namely with regard to bioactive lipidic components—especially carotenoids and polyunsaturated fatty acids (PUFA), well-known for therapeutic applications based on their antioxidant capacity. The aim of this work was to evaluate the influence of four distinct food-grade solvents upon extractability of specific lipidic components, and on the antioxidant capacity exhibited against both synthetic (2,2-diphenyl-1-picrylhydrazyl (DPPH•) and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS+•)) and biological reactive species (O2•− and •NO−). A eukaryotic microalga (Scenedesmus obliquus (M2-1)) and a prokaryotic one (Gloeothece sp.) were used as case studies. Concerning total antioxidant capacity, the hexane:isopropanol (3:2) and acetone extracts of Sc. obliquus (M2-1) were the most effective against DPPH• and ABTS+•, respectively. Gloeothece sp. ethanol extracts were the most interesting scavengers of O2•−, probably due the high content of linolenic acid. On the other hand, acetone and hexane:isopropanol (3:2) extracts were the most interesting ones in •NO− assay. Acetone extract exhibited the best results for the ABTS assay, likely associated to its content of carotenoids, in both microalgae. Otherwise, ethanol stood out in PUFA extraction. Therefore, profiles of lipidic components extracted are critical for evaluating the antioxidant performance—which appears to hinge, in particular, on the balance between carotenoids and PUFAs. PMID:26492257

  12. The solubilisation of boar sperm membranes by different detergents - a microscopic, MALDI-TOF MS, 31P NMR and PAGE study on membrane lysis, extraction efficiency, lipid and protein composition

    PubMed Central

    2009-01-01

    Background Detergents are often used to isolate proteins, lipids as well as "detergent-resistant membrane domains" (DRMs) from cells. Different detergents affect different membrane structures according to their physico-chemical properties. However, the effects of different detergents on membrane lysis of boar spermatozoa and the lipid composition of DRMs prepared from the affected sperm membranes have not been investigated so far. Results Spermatozoa were treated with the selected detergents Pluronic F-127, sodium cholate, CHAPS, Tween 20, Triton X-100 and Brij 96V. Different patterns of membrane disintegration were observed by light and electron microscopy. In accordance with microscopic data, different amounts of lipids and proteins were released from the cells by the different detergents. The biochemical methods to assay the phosphorus and cholesterol contents as well as 31P NMR to determine the phospholipids were not influenced by the presence of detergents since comparable amounts of lipids were detected in the organic extracts from whole cell suspensions after exposure to each detergent. However, matrix-assisted laser desorption and ionization time-of-flight mass spectrometry applied to identify phospholipids was essentially disturbed by the presence of detergents which exerted particular suppression effects on signal intensities. After separation of the membrane fractions released by detergents on a sucrose gradient only Triton X-100 and sodium cholate produced sharp turbid DRM bands. Only membrane solubilisation by Triton X-100 leads to an enrichment of cholesterol, sphingomyelin, phosphatidylinositol and phosphatidylethanolamine in a visible DRM band accompanied by a selective accumulation of proteins. Conclusion The boar sperm membranes are solubilised to a different extent by the used detergents. Particularly, the very unique DRMs isolated after Triton X-100 exposure are interesting candidates for further studies regarding the architecture of sperm. PMID:19906304

  13. Lipid Residue Analysis of Archaeological Pottery: An Introductory Laboratory Experiment in Archaeological Chemistry

    ERIC Educational Resources Information Center

    Harper, Clare S.; Macdonald, Faith V.; Braun, Kevin L.

    2017-01-01

    In this research-based experiment, students are introduced to the interdisciplinary field of archaeological chemistry by extracting and analyzing lipid residues absorbed in pottery. Reproduction archaeological pottery sherds are prepared by soaking ceramic fragments in individual or combinations of vegetable oils. Students crush and extract the…

  14. Extract from Edible Red Seaweed (Gelidium amansii) Inhibits Lipid Accumulation and ROS Production during Differentiation in 3T3-L1 Cells.

    PubMed

    Seo, Min-Jung; Lee, Ok-Hwan; Choi, Hyeon-Son; Lee, Boo-Yong

    2012-06-01

    Gelidium (G.) amansii is a red alga widely distributed in the shallow waters around East Asian countries. We investigated the effect of G. amansii on lipid accumulation and ROS (Reactive Oxygen Species) production in 3T3-L1 cells. G. amansii extracts dose-dependently inhibited lipid formation and ROS generation in cultured cells. Our results showed that anti-adipogenic effect of G. amansii was due to the reduction in mRNA expressions of PPARγ peroxisome proliferator-activated receptor-γ and aP2 (adipocyte protein 2). G. amansii extracts significantly decreased mRNA levels of a ROS-generator, NOX4 (nicotinamide adenine dinucleotide phosphate hydrogen oxidase 4), and increased the protein levels of antioxidant enzymes including SOD1/2 (superoxide dis-mutases), Gpx (glutathione peroxidase), and GR (glutathione reductase), which can lead to the reduction of ROS in the cell. In addition, the G. amansii extract enhanced mRNA levels of adiponectin, one of the adipokines secreted from adipocytes, and GLUT4, glucose uptake protein. Taken together, our study shows that G. amansii extract inhibited lipid accumulation and ROS production by controlling adipogenic signals and ROS regulating genes.

  15. Extract from Edible Red Seaweed (Gelidium amansii) Inhibits Lipid Accumulation and ROS Production during Differentiation in 3T3-L1 Cells

    PubMed Central

    Seo, Min-Jung; Lee, Ok-Hwan; Choi, Hyeon-Son; Lee, Boo-Yong

    2012-01-01

    Gelidium (G.) amansii is a red alga widely distributed in the shallow waters around East Asian countries. We investigated the effect of G. amansii on lipid accumulation and ROS (Reactive Oxygen Species) production in 3T3-L1 cells. G. amansii extracts dose-dependently inhibited lipid formation and ROS generation in cultured cells. Our results showed that anti-adipogenic effect of G. amansii was due to the reduction in mRNA expressions of PPARγ peroxisome proliferator-activated receptor-γ and aP2 (adipocyte protein 2). G. amansii extracts significantly decreased mRNA levels of a ROS-generator, NOX4 (nicotinamide adenine dinucleotide phosphate hydrogen oxidase 4), and increased the protein levels of antioxidant enzymes including SOD1/2 (superoxide dis-mutases), Gpx (glutathione peroxidase), and GR (glutathione reductase), which can lead to the reduction of ROS in the cell. In addition, the G. amansii extract enhanced mRNA levels of adiponectin, one of the adipokines secreted from adipocytes, and GLUT4, glucose uptake protein. Taken together, our study shows that G. amansii extract inhibited lipid accumulation and ROS production by controlling adipogenic signals and ROS regulating genes. PMID:24471074

  16. Compositional similarities of non-solvent extractable fatty acids from recent marine sediments deposited in differing environments

    NASA Astrophysics Data System (ADS)

    Nishimura, Mitsugu; Baker, Earl W.

    1987-06-01

    Five recent sediment samples from a variety of North American continental shelves were analyzed for fatty acids (FAs) in the solvent-extractable (SOLEX) lipids as well as four types of non-solvent extractable (NONEX) lipids. The NONEX lipids were operationally defined by the succession of extraction procedure required to recover them. The complete procedure included (i) very mild acid treatment, (ii) HF digestion and (iii) saponification of the sediment residue following exhaustive solvent extraction. The distribution pattern and various compositional parameters of SOLEX FAs in the five sediments were divided into three different groups, indicating the difference of biological sources and also diagenetic factors and processes among the three groups of samples. Nevertheless, the compositions of the corresponding NONEX FAs after acid treatment were surprisingly very similar. This was also true for the remaining NONEX FA groups in the five sediment samples. The findings implied that most of the NONEX FAs reported here are derived directly from living organisms. It is also concluded that a large part of NONEX FAs are much more resistant to biodegradation than we have thought, so that they can form the large percentage of total lipids with increasing depth of water and sediments.

  17. Lipid and fatty acid composition microalgae Chlorella vulgaris using photobioreactor and open pond

    NASA Astrophysics Data System (ADS)

    Jay, M. I.; Kawaroe, M.; Effendi, H.

    2018-03-01

    Microalgae contain lipids and fatty acids that can be the raw materials of biofuel. Previous studies have been known of using cultivation systems to obtain biomass of C. vulgaris which can be extracted to obtain lipid and fatty acid content. The observational step was observed ten days in photobioreactor and open pond for harvesting biomass using NaOH, lipid extraction using hexane and methanol, and fatty acid analysis using Gas Chromatography. Lipid content of microalgae biomass in photobioreactor and open pond was 2.26 ± 0.51% and 3.18 ± 0.80%, respectively. Fatty acid content ranged between 0.7-22.8% and 0.9-22.6% and the dominant fatty acids in both cultivating system was palmitic acid.

  18. Integral lipids of mammalian hair.

    PubMed

    Wertz, P W; Downing, D T

    1989-01-01

    1. It has been demonstrated that hair contains lipids which cannot be removed by extensive extraction with chloroform-methanol mixtures. These integral lipids can be extracted only after the hair has been subjected to alkaline hydrolysis. 2. Integral hair lipids include cholesterol sulfate (0.7-2.9 mg/g hair), ceramides (0.6-1.4 mg/g), cholesterol (0.3-1.4 mg/g), fatty alcohols (trace-0.2 mg/g) and fatty acids (2.3-4.0 mg/g). 3. One of the major integral hair lipids, representing 38.4-47.6% of the total fatty acids, is the anteisobranched 18-methyleicosanoic acid. 4. The species examined included human (Homo sapiens), pig (Sus scrofa), dog (Canis familiaris), sheep (Ovis ammon aries) and cow (Bos taurus).

  19. Levels of bioactive lipids in cooking oils: olive oil is the richest source of oleoyl serine.

    PubMed

    Bradshaw, Heather B; Leishman, Emma

    2016-05-01

    Rates of osteoporosis are significantly lower in regions of the world where olive oil consumption is a dietary cornerstone. Olive oil may represent a source of oleoyl serine (OS), which showed efficacy in animal models of osteoporosis. Here, we tested the hypothesis that OS as well as structurally analogous N-acyl amide and 2-acyl glycerol lipids are present in the following cooking oils: olive, walnut, canola, high heat canola, peanut, safflower, sesame, toasted sesame, grape seed, and smart balance omega. Methanolic lipid extracts from each of the cooking oils were partially purified on C-18 solid-phase extraction columns. Extracts were analyzed with high-performance liquid chromatography-tandem mass spectrometry, and 33 lipids were measured in each sample, including OS and bioactive analogs. Of the oils screened here, walnut oil had the highest number of lipids detected (22/33). Olive oil had the second highest number of lipids detected (20/33), whereas grape-seed and high-heat canola oil were tied for lowest number of detected lipids (6/33). OS was detected in 8 of the 10 oils tested and the levels were highest in olive oil, suggesting that there is something about the olive plant that enriches this lipid. Cooking oils contain varying levels of bioactive lipids from the N-acyl amide and 2-acyl glycerol families. Olive oil is a dietary source of OS, which may contribute to lowered prevalence of osteoporosis in countries with high consumption of this oil.

  20. Optimization of lipids production by Cryptococcus laurentii 11 using cheese whey with molasses.

    PubMed

    Castanha, Rodrigo Fernandes; Mariano, Adriano Pinto; de Morais, Lilia Aparecida Salgado; Scramin, Shirlei; Monteiro, Regina Teresa Rosim

    2014-01-01

    This study aimed the optimization of culture condition and composition for production of Cryptococcus laurentii 11 biomass and lipids in cheese whey medium supplemented with sugarcane molasses. The optimization of pH, fermentation time, and molasses concentration according to a full factorial statistical experimental design was followed by a Plackett-Burman experimental design, which was used to determine whether the supplementation of the culture medium by yeast extract and inorganic salts could provide a further enhancement of lipids production. The following conditions and composition of the culture medium were found to optimize biomass and lipids production: 360 h fermentation, 6.5 pH and supplementation of (g L(-1)): 50 molasses, 0.5 yeast extract, 4 KH2PO4, 1 Na2HPO4, 0.75 MgSO4 · 7H2O and 0.002 ZnSO4 · H2O. Additional supplementation with inorganic salts and yeast extract was essential to optimize the production, in terms of product concentration and productivity, of neutral lipids by C. laurentii 11. Under this optimized condition, the production of total lipids increased by 133% in relation to control experiment (from 1.27 to 2.96 g L(-1)). The total lipids indicated a predominant (86%) presence of neutral lipids with high content of 16- and 18-carbon-chain saturated and monosaturated fatty acids. This class of lipids is considered especially suitable for the production of biodiesel.

  1. Lipid-Lowering and Antioxidative Activities of Aqueous Extracts of Ocimum sanctum L. Leaves in Rats Fed with a High-Cholesterol Diet

    PubMed Central

    Suanarunsawat, Thamolwan; Devakul Na Ayutthaya, Watcharaporn; Songsak, Thanapat; Thirawarapan, Suwan; Poungshompoo, Somlak

    2011-01-01

    The present study was conducted to investigate the lipid-lowering and antioxidative activities of Ocimum sanctum L. (OS) leaf extracts in liver and heart of rats fed with high-cholesterol (HC) diet for seven weeks. The results shows that OS suppressed the high levels of serum lipid profile and hepatic lipid content without significant effects on fecal lipid excretion. Fecal bile acids excretion was increased in HC rats treated with OS. The high serum levels of TBARS as well as AST, ALT, AP, LDH, CK-MB significantly decreased in HC rats treated with OS. OS suppressed the high level of TABARS and raised the low activities of GPx and CAT without any impact on SOD in the liver. As for the cardiac tissues, OS lowered the high level of TABARS, and raised the activities of GPx, CAT, and SOD. Histopathological results show that OS preserved the liver and myocardial tissues. It can be concluded that OS leaf extracts decreased hepatic and serum lipid profile, and provided the liver and cardiac tissues with protection from hypercholesterolemia. The lipid-lowering effect is probably due to the rise of bile acids synthesis using cholesterol as precursor, and antioxidative activity to protect liver from hypercholesterolemia. PMID:21949899

  2. Traditional Uighur Medicine Karapxa decoction, inhibits liver xanthine oxidase and reduces serum uric acid concentrations in hyperuricemic mice and scavenges free radicals in vitro.

    PubMed

    Amat, Nurmuhammat; Umar, Anwar; Hoxur, Parida; Anaydulla, Mihrigul; Imam, Guzalnur; Aziz, Ranagul; Upur, Halmurat; Kijjoa, Anake; Moore, Nicholas

    2015-04-25

    Karapxa decoction (KD) is a Traditional Uighur Medicine used for hepatitis, cholecystitis, gastralgia, oedema, gout and arthralgia. Because of its purported effect in gout, its effects were tested in hyperuricemic mice models induced by yeast extract paste or potassium oxonate, as well as its capacity to scavenge free radicals in vitro. Hyperuricemia was induced in mice by yeast extract paste or potassium oxonate. KD was given orally for 14 days at 200, 400 and 800 mg/kg/day, with Allopurinol 10 mg/kg/day as positive control. Serum uric acid (UA), and liver xanthine oxidase activity (XO) were measured. Scavenging activity of KD on 1, 1-diphenyl-2-picrylhydrazyl radicals (DPP•), nitric oxide (•NO), superoxide (O2•-), efficiency against lipid peroxidation, and XO inhibition were determined in vitro. KD inhibited liver XO activity and reduced serum uric acid in hyperuricemic mice. KD also showed noticeable antioxidant activity, scavenging free radicals (DPP•, •NO and O2•-). It was effective against lipid peroxidation and inhibited XO in vitro. This study supports the traditional use of Karapxa decoction to treat hyperuricemia and gout.

  3. Optimization of Banana Juice Fermentation for the Production of Microbial Oil †

    PubMed Central

    Vega, Esther Z.; Glatz, Bonita A.; Hammond, Earl G.

    1988-01-01

    Apiotrichum curvatum ATCC 20509 (formerly Candida curvata D), a lipid-accumulating yeast, was grown in banana juice. The optimum conditions for biomass production in shake flasks were 30°C growth temperature, efficient aeration, a juice concentration of 25%, and preliminary heat treatment at less than sterilization conditions. Under controlled conditions in a fermentor, 20% banana juice was optimum. High concentrations of yeast extract (0.3%) increased biomass production by 40% but decreased oil production by 30%. A lower yeast extract concentration (0.05%) increased biomass production by 2% and oil production by 25%. The best growth and oil production were observed when asparagine (1.4 g/liter) and mineral salts were added to the banana juice. The addition of minerals seemed to improve the utilization of carbon. Growth inhibition was observed when the fermentor was aerated with pure oxygen, even when additional nutrients were present. A fed-batch process permitted the juice concentration to be increased from 15 to 82%; biomass accumulation was three times higher than in batch fermentations. However, the cellular lipid content was only 30% of dry weight, and chemical oxygen demand reduction was slow and inefficient. PMID:16347584

  4. Time‐of‐flight secondary ion mass spectrometry imaging of biological samples with delayed extraction for high mass and high spatial resolutions

    PubMed Central

    Vanbellingen, Quentin P.; Elie, Nicolas; Eller, Michael J.; Della‐Negra, Serge; Touboul, David

    2015-01-01

    Rationale In Time‐of‐Flight Secondary Ion Mass Spectrometry (TOF‐SIMS), pulsed and focused primary ion beams enable mass spectrometry imaging, a method which is particularly useful to map various small molecules such as lipids at the surface of biological samples. When using TOF‐SIMS instruments, the focusing modes of the primary ion beam delivered by liquid metal ion guns can provide either a mass resolution of several thousand or a sub‐µm lateral resolution, but the combination of both is generally not possible. Methods With a TOF‐SIMS setup, a delayed extraction applied to secondary ions has been studied extensively on rat cerebellum sections in order to compensate for the effect of long primary ion bunches. Results The use of a delayed extraction has been proven to be an efficient solution leading to unique features, i.e. a mass resolution up to 10000 at m/z 385.4 combined with a lateral resolution of about 400 nm. Simulations of ion trajectories confirm the experimental determination of optimal delayed extraction and allow understanding of the behavior of ions as a function of their mass‐to‐charge ratio. Conclusions Although the use of a delayed extraction has been well known for many years and is very popular in MALDI, it is much less used in TOF‐SIMS. Its full characterization now enables secondary ion images to be recorded in a single run with a submicron spatial resolution and with a mass resolution of several thousand. This improvement is very useful when analyzing lipids on tissue sections, or rare, precious, or very small size samples. © 2015 The Authors. Rapid Communications in Mass Spectrometry published by John Wiley & Sons Ltd. PMID:26395603

  5. Effects of feeding a diet containing Gymnema sylvestre extract: Attenuating progression of obesity in C57BL/6J mice.

    PubMed

    Kim, Hyeon-Jeong; Hong, Seong-Ho; Chang, Seung-Hee; Kim, Sanghwa; Lee, Ah Young; Jang, Yoonjeong; Davaadamdin, Orkhonselenge; Yu, Kyeong-Nam; Kim, Ji-Eun; Cho, Myung-Haing

    2016-05-01

    To investigate the effect of Gymnema sylvestre extract (GS) on initial anti-obesity, liver injury, and glucose homeostasis induced by a high-fat diet (HFD). The dry powder of GS was extracted with methanol, and gymnemic acid was identified by high performance liquid chromatography as deacyl gymnemic acid. Male C57BL/6J mice that fed on either a normal diet, normal diet containing 1 g/kg GS (CON+GS), HFD, or HFD containing 1.0 g/kg GS (HFD + GS) for 4 weeks were used to test the initial anti-obesity effect of GS. Body weight gain and food intake, and serum levels about lipid and liver injury markers were measured. Histopathology of adipose tissue and liver stained with hematoxylin and eosin (H&E) and oil-red O were analyzed. After 4 weeks of GS extract feeding, intraperitoneal glucose tolerance test (IPGTT) was performed. The methanol extracts of GS exerted significant anti-obesity effects in HFD + GS group. They decreased body weight gain, a lower food and energy efficiency ratio, and showed lower serum levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL)-cholesterol, very-low density lipoprotein (VLDL)-cholesterol and leptin compared with the HFD group. The decreases of abdominal as well as epididymal fat weight and adipocyte hypertrophy, lipid droplets in liver, and serum levels of aspartate aminotransferase (AST) and alanine transaminase (ALT) were also observed. The CON + GS group showed an effect of glucose homeostasis compared to the CON group. This study shows that GS provide the possibility as a key role in an initial anti-obesity effects feeding with a HFD. Copyright © 2016 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  6. Characterization of selected wild Mediterranean fruits and comparative efficacy as inhibitors of oxidative reactions in emulsified raw pork burger patties.

    PubMed

    Ganhão, Rui; Estévez, Mario; Kylli, Petri; Heinonen, Marina; Morcuende, David

    2010-08-11

    In the present study, water, ethanolic, and methanolic extracts from seven selected wild fruits originally from the Mediterranean area, namely, strawberry tree ( Arbutus unedo L., AU), azarole ( Crataegus azarolus L., CA), common hawthorn ( Crataegus monogyna L., CM), blackthorn ( Prunus spinosa L., PS), dog rose ( Rosa canina L., RC), elm-leaf blackberry ( Rubus ulmifolius Schott, RU), and rowan ( Sorbus aucuparia L., SA), were analyzed for the total amount and profile of phenolic compounds and for the in vitro antioxidant activity against the DPPH and ABTS radicals (study 1). The seven fruits showed different chemical compositions, which consequently led to different antioxidant potentials. Among the seven fruits initially analyzed, AU, CM, RC, and RU had the highest amount of phenolic compounds and displayed the greatest antioxidant activity in vitro. Extracts from these four fruits were tested as inhibitors of lipid oxidation in raw pork burger patties subjected to refrigerated storage at 2 degrees C for 12 days (study 2). The quantitative measurements of thiobarbituric acid reactive substances (TBA-RS), hexanal content, and color stability were used as indicators of oxidative reactions. The four selected fruits displayed intense antioxidant activity against lipid oxidation, which highlights the potential usage of these fruits as ingredients for the manufacture of healthy meat products. Among them, RC and AU were particularly efficient as their protective effect against lipid oxidation was more intense than that displayed by quercetin (230 mg/kg of burger patty).

  7. Production of solid lipid submicron particles for protein delivery using a novel supercritical gas-assisted melting atomization process.

    PubMed

    Salmaso, Stefano; Elvassore, Nicola; Bertucco, Alberto; Caliceti, Paolo

    2009-02-01

    A supercritical carbon dioxide micronization technique based on gas-assisted melting atomization has been designed to prepare protein-loaded solid lipid submicron particles. The supercritical process was applied to homogeneous dispersions of insulin in lipid mixtures: (1) tristearin, Tween-80, phosphatidylcholine and 5 kDa PEG (1:0.1:0.9:1 and 1:0.1:0.9:2 weight ratio); and (2) tristearin, dioctyl sulfosuccinate and phosphatidylcholine (1:1:0.5 weight ratio). Optimized process conditions yielded dry nonagglomerated powders with high product recovery (70%, w/w). Dynamic light scattering and transmission electron microscopy showed that two size fractions of particles, with 80-120 and 200-400 nm diameters, were produced. In all final products, dimethylsulfoxide used to prepare the insulin/lipid mixture was below 20 ppm. Protein encapsulation efficiency increased up to 80% as the DMSO content in the insulin/lipid mixture increased. Compared to the particles without PEG, the polymer-containing particles dispersed rapidly in water, and the dispersions were more stable under centrifugation as less than 20% of suspended particles precipitated after extensive centrifugation. In vitro, the protein was slowly released from the formulation without PEG, while a burst and faster release were obtained from the formulations containing PEG. Subcutaneous injection to diabetic mice of insulin extracted from the particles showed that the supercritical process did not impair the protein hypoglycemic activity.

  8. Comparison of lipids in organs of the starfish Asterias amurensis associated with different treatments

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Ikegame, Keita; Takahashi, Koretaro; Xue, Changhu; Zhang, Weinong; Wang, Hongxun; Hou, Wenfu; Wang, Yuming

    2013-09-01

    Lipids were extracted from organs of the starfish Asterias amurensis associated with different treatments (raw-control, boiling and heating), and then analyzed for lipid content, lipid oxidation index, lipid classes and fatty acid composition. Results showed that boiling softened the hard starfish shells, thus facilitating the collection of starfish organs. As compared with raw organs, the boiled organs had lower water content and higher lipid content, possibly due to the loss of water-holding capacity caused by protein denaturation. Both boiling and heating increased the peroxide value (PV), thiobarbituric acid (TBA) value and carbon value (CV) of lipids. Despite slight increases in the content of complex lipids, associated lipid composition had no substantial variations upon boiling and heating. For simple lipids, the content of 1, 2-diglyceride decreased in boiled and heated organs, with free fatty acids observed on thin layer chromatography (TLC). However, neither boiling nor heating significantly changed the fatty acid compositions of simple or complex lipids in starfish organs, suggesting that these two treatments had no significant effects on complex lipids in starfish organs. Together, our results indicated that boiling of starfish soon after capture facilitated the handling and extraction of useful complex lipids consisting of abundant glucosylceramide and eicosapentaenoic acid (EPA)-bounded phospholipids.

  9. Ethanol Production and Maximum Cell Growth Are Highly Correlated with Membrane Lipid Composition during Fermentation as Determined by Lipidomic Analysis of 22 Saccharomyces cerevisiae Strains

    PubMed Central

    Henderson, Clark M.; Lozada-Contreras, Michelle; Jiranek, Vladimir; Longo, Marjorie L.

    2013-01-01

    Optimizing ethanol yield during fermentation is important for efficient production of fuel alcohol, as well as wine and other alcoholic beverages. However, increasing ethanol concentrations during fermentation can create problems that result in arrested or sluggish sugar-to-ethanol conversion. The fundamental cellular basis for these problem fermentations, however, is not well understood. Small-scale fermentations were performed in a synthetic grape must using 22 industrial Saccharomyces cerevisiae strains (primarily wine strains) with various degrees of ethanol tolerance to assess the correlation between lipid composition and fermentation kinetic parameters. Lipids were extracted at several fermentation time points representing different growth phases of the yeast to quantitatively analyze phospholipids and ergosterol utilizing atmospheric pressure ionization-mass spectrometry methods. Lipid profiling of individual fermentations indicated that yeast lipid class profiles do not shift dramatically in composition over the course of fermentation. Multivariate statistical analysis of the data was performed using partial least-squares linear regression modeling to correlate lipid composition data with fermentation kinetic data. The results indicate a strong correlation (R2 = 0.91) between the overall lipid composition and the final ethanol concentration (wt/wt), an indicator of strain ethanol tolerance. One potential component of ethanol tolerance, the maximum yeast cell concentration, was also found to be a strong function of lipid composition (R2 = 0.97). Specifically, strains unable to complete fermentation were associated with high phosphatidylinositol levels early in fermentation. Yeast strains that achieved the highest cell densities and ethanol concentrations were positively correlated with phosphatidylcholine species similar to those known to decrease the perturbing effects of ethanol in model membrane systems. PMID:23064336

  10. Ethanol production and maximum cell growth are highly correlated with membrane lipid composition during fermentation as determined by lipidomic analysis of 22 Saccharomyces cerevisiae strains.

    PubMed

    Henderson, Clark M; Lozada-Contreras, Michelle; Jiranek, Vladimir; Longo, Marjorie L; Block, David E

    2013-01-01

    Optimizing ethanol yield during fermentation is important for efficient production of fuel alcohol, as well as wine and other alcoholic beverages. However, increasing ethanol concentrations during fermentation can create problems that result in arrested or sluggish sugar-to-ethanol conversion. The fundamental cellular basis for these problem fermentations, however, is not well understood. Small-scale fermentations were performed in a synthetic grape must using 22 industrial Saccharomyces cerevisiae strains (primarily wine strains) with various degrees of ethanol tolerance to assess the correlation between lipid composition and fermentation kinetic parameters. Lipids were extracted at several fermentation time points representing different growth phases of the yeast to quantitatively analyze phospholipids and ergosterol utilizing atmospheric pressure ionization-mass spectrometry methods. Lipid profiling of individual fermentations indicated that yeast lipid class profiles do not shift dramatically in composition over the course of fermentation. Multivariate statistical analysis of the data was performed using partial least-squares linear regression modeling to correlate lipid composition data with fermentation kinetic data. The results indicate a strong correlation (R(2) = 0.91) between the overall lipid composition and the final ethanol concentration (wt/wt), an indicator of strain ethanol tolerance. One potential component of ethanol tolerance, the maximum yeast cell concentration, was also found to be a strong function of lipid composition (R(2) = 0.97). Specifically, strains unable to complete fermentation were associated with high phosphatidylinositol levels early in fermentation. Yeast strains that achieved the highest cell densities and ethanol concentrations were positively correlated with phosphatidylcholine species similar to those known to decrease the perturbing effects of ethanol in model membrane systems.

  11. Water insoluble and soluble lipids for gene delivery.

    PubMed

    Mahato, Ram I

    2005-04-05

    Among various synthetic gene carriers currently in use, liposomes composed of cationic lipids and co-lipids remain the most efficient transfection reagents. Physicochemical properties of lipid/plasmid complexes, such as cationic lipid structure, cationic lipid to co-lipid ratio, charge ratio, particle size and zeta potential have significant influence on gene expression and biodistribution. However, most cationic lipids are toxic and cationic liposomes/plasmid complexes do not disperse well inside the target tissues because of their large particle size. To overcome the problems associated with cationic lipids, we designed water soluble lipopolymers for gene delivery to various cells and tissues. This review provides a critical discussion on how the components of water insoluble and soluble lipids affect their transfection efficiency and biodistribution of lipid/plasmid complexes.

  12. Optimal control of nutrition restricted dynamics model of Microalgae biomass growth model

    NASA Astrophysics Data System (ADS)

    Ratianingsih, R.; Azim; Nacong, N.; Resnawati; Mardlijah; Widodo, B.

    2017-12-01

    The biomass of the microalgae is very potential to be proposed as an alternative renewable energy resources because it could be extracted into lipid. Afterward, the lipid could be processed to get the biodiesel or bioethanol. The extraction of the biomass on lipid synthesis process is very important to be studied because the process just gives some amount of lipid. A mathematical model of restricted microalgae biomass growth just gives 1/3 proportion of lipid with respect to the biomass in the synthesis process. An optimal control is designed to raise the ratio between the number of lipid formation and the microalgae biomass to be used in synthesis process. The minimum/ Pontryagin maximum principle is used to get the optimal lipid production. The simulation shows that the optimal lipid formation could be reach by simultaneously controlling the carbon dioxide, in the respiration and photosynthesis the process, and intake nutrition rates of liquid waste and urea substrate. The production of controlled microalgae lipid could be increase 6.5 times comparing to the uncontrolled one.

  13. Effect of solvents and oil content on direct transesterification of wet oil-bearing microalgal biomass of Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized lipase as the biocatalyst.

    PubMed

    Tran, Dang-Thuan; Chen, Ching-Lung; Chang, Jo-Shu

    2013-05-01

    In this work, a one-step extraction/transesterification process was developed to directly convert wet oil-bearing microalgal biomass of Chlorella vulgaris ESP-31 into biodiesel using immobilized Burkholderia lipase as the catalyst. The microalgal biomass (water content of 86-91%; oil content 14-63%) was pre-treated by sonication to disrupt the cell walls and then directly mixed with methanol and solvent to carry out the enzymatic transesterification. Addition of a sufficient amount of solvent (hexane is most preferable) is required for the direct transesterification of wet microalgal biomass, as a hexane-to-methanol mass ratio of 1.65 was found optimal for the biodiesel conversion. The amount of methanol and hexane required for the direct transesterification process was also found to correlate with the lipid content of the microalga. The biodiesel synthesis process was more efficient and economic when the lipid content of the microalgal biomass was higher. Therefore, using high-lipid-content microalgae as feedstock appears to be desirable. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Bioactive compounds in lipid fractions of pumpkin (Cucurbita sp) seeds for use in food.

    PubMed

    Veronezi, Carolina Médici; Jorge, Neuza

    2012-06-01

    Seeds are considered to be agro-industrial residues, which can be used as source of macronutrients and/or raw material for extraction of vegetable oils, since they present great quantities of bioactive compounds. This study aimed to characterize the lipid fractions and the seeds of pumpkin (Cucurbita sp) varieties Nova Caravela, Mini Paulista, Menina Brasileira, and Moranga de Mesa aiming at using them in food. The chemical composition of the seeds was performed according to the official methods of American Oil Chemists' Society and Association of Official Analytical Chemists. Total carotenoids and phenolic compounds were determined by spectrophotometry, while the levels of tocopherols were analyzed by high efficiency liquid chromatography. It was noted that the seeds contain high amounts of macronutrients that are essential for the functioning of the human organism. As to total carotenoids, Mini Paulista and Menina Brasileira pumpkin varieties presented significant amounts, 26.80 and 26.03 μg/g, respectively. Mini Paulista and Nova Caravela pumpkin varieties showed high amounts of total phenolic compounds in the lipid fractions and in the seeds. It was also found that γ-tocopherol is the isomer that stood out in the lipid fractions and in the seeds, mainly in Menina Brasileira. Finally, the consumption of these seeds and use of lipid fractions provide the supply of large quantities of compounds that are beneficial for health and that may be potentially used in food, besides representing an alternative to better use of agro-industrial residues. Bioactive compounds, besides presenting basic nutritional functions, provide metabolic and physiological health benefits when consumed as part of the usual diet. Therefore, there is a growing interest in vegetable oils of special composition, such as the ones extracted from fruit seeds. The seeds of Cucurbita sp are shown to be promising sources of oils, and especially the Cucurbita moschata and maxima species have not yet been fully elucidated. For this reason, it becomes important to investigate the chemical composition and lipid fractions of these seeds, aiming to use them in food. Journal of Food Science © 2012 Institute of Food Technologists® No claim to original US government works.

  15. Effect of scoparia dulcis (Sweet Broomweed) plant extract on plasma antioxidants in streptozotocin-induced experimental diabetes in male albino Wistar rats.

    PubMed

    Pari, L; Latha, M

    2004-07-01

    Clinical research has confirmed the efficacy of several plants in the modulation of oxidative stress associated with diabetes mellitus. Scoparia dulcis plant extract is tried for prevention and treatment of diabetes mellitus induced experimentally by streptozotocin injection. A single dose of streptozotocin (45 mg/kg body weight) produced decrease in insulin, hyperglycemia, increased lipid peroxidation (Thiobarbituric reactive substances and lipid hydroperoxides) and decreased antioxidant levels (vitamin C, vitamin E, reduced glutathione, ceruloplasmin). Oral administration of an aqueous extract of Scoparia dulcis plant (200 mg/kg body weight) for 6 weeks to diabetic rats significantly increased the plasma insulin and plasma antioxidants and significantly decreased lipid peroxidation. The effect of Scoparia dulcis plant extract at 200 mg/kg body weight was better than that of glibenclamide, a reference drug.

  16. Equilibrium and rate data for the extraction of lipids using compressed carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, M.B.; Bott, T.R.; Barr, M.J.

    1987-01-01

    Equilibrium data are given for the solubilities in compressed CO2 of the lipid components in freshly ground rape seed and of glycerol trioleate (a typical constituent of rape oil) at pressures up to 200 bar and temperatures 25 to 75C. Continuous flow tests in which a bed of ground rape seed was contacted with a stream of liquid CO2 at 25C and varied flow conditions are also reported. The results are collated in terms of an empirical mass transfer coefficient. A sharp change took place in the lipid concentration in the extractant stream leaving the bed when about 65% ofmore » the available oil had been extracted. This, and changes in the composition of the extract, are discussed, together with the use of this type of data for design purposes.« less

  17. Repressive effects of oat extracts on intracellular lipid-droplet formation in adipocytes and a three-dimensional subcutaneous adipose tissue model.

    PubMed

    Kato, Shinya; Kato, Yuko; Shibata, Hiroki; Saitoh, Yasukazu; Miwa, Nobuhiko

    2015-04-01

    We assessed the repression of lipid-droplet formation in mouse mesenchymal stromal preadipocytes OP9 by specified oat extracts (Hatomugi, Coix lacryma-jobi var. ma-yuen) named "SPH" which were proteolytically and glucosyl-transferredly prepared from finely-milled oat whole-grain. Stimulation of OP9 preadipocytes with insulin-containing serum-replacement promoted differentiation to adipocytes, concurrently with an increase in the intracellular lipid droplets by 51.5%, which were repressed by SPH-bulk or SPH-water-extract at 840ppm, to 33.5% or 46.9%, respectively, but not by SPH-ethanol-extract at the same dose, showing the hydrophilic property of the anti-adipogenetic ingredients. The intracellular lipid droplets were scanty for intact preadipocytes, small-sized but abundant for the SPH-unadministered adipocytes, and large-sized but few for SPH-bulk-administered adipocytes being coexistent with many lipid-droplet-lacking viable cells, suggesting "the all-or-none rule" for lipid-droplet generation in cell-to-cell. Hydrogen-peroxide-induced cell death in human epidermal keratinocytes HaCaT was prevented by SPH-bulk at 100 or 150ppm by 5.6-8.1%, being consistent with higher viabilities of SPH-bulk-administered OP9 cells, together with repressions of both cell shrinkage and cell detachment from the culture substratum. In three-dimensional subcutaneous adipose tissue models reconstructed with HaCaT-keratinocytes and OP9-preadipocytes, lipid droplets were accumulated in dermal OP9-cell-parts, and repressed to 43.5% by SPH-bulk at 840ppm concurrently with marked diminishment of huge aggregates of lipid droplets. Thus SPH-bulk suppresses adipogenesis-associated lipid-droplet accumulation during differentiation of OP9 preadipocytes together with lowered cytotoxicity to either HaCaT keratinocytes or the preadipocytes. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Evaluation of micro-colorimetric lipid determination method with samples prepared using sonication and accelerated solvent extraction methods

    EPA Science Inventory

    Two common laboratory extraction techniques were evaluated for routine use with the micro-colorimetric lipid determination method developed by Van Handel (1985) [E. Van Handel, J. Am. Mosq. Control Assoc. 1(1985) 302] and recently validated for small samples by Inouye and Lotufo ...

  19. Atomic force microscopy and Langmuir-Blodgett monolayer technique to assess contact lens deposits and human meibum extracts.

    PubMed

    Hagedorn, Sarah; Drolle, Elizabeth; Lorentz, Holly; Srinivasan, Sruthi; Leonenko, Zoya; Jones, Lyndon

    2015-01-01

    The purpose of this exploratory study was to investigate the differences in meibomian gland secretions, contact lens (CL) lipid extracts, and CL surface topography between participants with and without meibomian gland dysfunction (MGD). Meibum study: Meibum was collected from all participants and studied via Langmuir-Blodgett (LB) deposition with subsequent Atomic Force Microscopy (AFM) visualization and surface roughness analysis. CL Study: Participants with and without MGD wore both etafilcon A and balafilcon A CLs in two different phases. CL lipid deposits were extracted and analyzed using pressure-area isotherms with the LB trough and CL surface topographies and roughness values were visualized using AFM. Meibum study: Non-MGD participant meibum samples showed larger, circular aggregates with lower surface roughness, whereas meibum samples from participants with MGD showed more lipid aggregates, greater size variability and higher surface roughness. CL Study: Worn CLs from participants with MGD had a few large tear film deposits with lower surface roughness, whereas non-MGD participant-worn lenses had many small lens deposits with higher surface roughness. Balafilcon A pore depths were shallower in MGD participant worn lenses when compared to non-MGD participant lenses. Isotherms of CL lipid extracts from MGD and non-MGD participants showed a seamless rise in surface pressure as area decreased; however, extracts from the two different lens materials produced different isotherms. MGD and non-MGD participant-worn CL deposition were found to differ in type, amount, and pattern of lens deposits. Lipids from MGD participants deposited irregularly whereas lipids from non-MGD participants showed more uniformity. Copyright © 2014 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  20. Hyphenating size‐exclusion chromatography with electrospray mass spectrometry; using on‐line liquid‐liquid extraction to study the lipid composition of lipoprotein particles

    PubMed Central

    Osei, Michael; Griffin, Julian L.

    2015-01-01

    Rationale Lipoproteins belong to the most commonly measured clinical biochemical parameters. Lipidomics is an orthogonal approach and aims to profile the individual lipid molecules that jointly form the lipoprotein particles. However, in the first step of the extraction of lipid molecules from serum, an organic solvent is used leading to dissociation of the lipoproteins. Thus far it has been impossible to combine lipidomics and lipoprotein analysis in one analytical system. Methods Human plasma was diluted in phosphate‐buffered saline (PBS) and injected onto a Superose 6 PC 3.2 column with PBS as a mobile phase to separate lipoproteins. The eluent was led to a Syrris FLLEX module, which also received CHCl3/MeOH (3:1). The two phases were mixed and subsequently separated using a Teflon membrane in an especially designed pressurized flow chamber. The organic phase was led to a standard electrospray source of an Orbitrap mass spectrometer. Results Size‐exclusion chromatography (SEC) has been commonly applied to separate lipoproteins and is considered a practical alternative to ultracentrifugation. Through the on‐line liquid‐liquid extraction method it becomes possible to obtained detailed mass spectra of lipids across different lipoprotein fractions. The extracted ion chromatograms of specific lipid signals showed their distribution against the size of lipoprotein particles. Conclusions The application of on‐line liquid‐liquid extraction allows for the continuous electrospray‐based mass spectral analysis of SEC eluent, providing the detailed lipid composition of lipoprotein particles separated by size. This approach provides new possibilities for the study of the biochemistry of lipoproteins. © 2015 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd. PMID:26443395

  1. Inhibition of key enzymes linked to type 2 diabetes and sodium nitroprusside-induced lipid peroxidation in rat pancreas by water extractable phytochemicals from some tropical spices.

    PubMed

    Adefegha, Stephen Adeniyi; Oboh, Ganiyu

    2012-07-01

    Spices have been used as food adjuncts and in folklore for ages. Inhibition of key enzymes (α-amylase and α-glucosidase) involved in the digestion of starch and protection against free radicals and lipid peroxidation in pancreas could be part of the therapeutic approach towards the management of hyperglycemia and dietary phenolics have shown promising potentials. This study investigated and compared the inhibitory properties of aqueous extracts of some tropical spices: Xylopia aethiopica [Dun.] A. Rich (Annonaceae), Monodora myristica (Gaertn.) Dunal (Annonaceae), Syzygium aromaticum [L.] Merr. et Perry (Myrtaceae), Piper guineense Schumach. et Thonn (Piperaceae), Aframomum danielli K. Schum (Zingiberaceae) and Aframomum melegueta (Rosc.) K. Schum (Zingiberaceae) against α-amylase, α-glucosidase, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and sodium nitroprusside (SNP)-induced lipid peroxidation in rat pancreas--in vitro using different spectrophotometric method. Aqueous extract of the spices was prepared and the ability of the spice extracts to inhibit α-amylase, α-glucosidase, DPPH radicals and SNP-induced lipid peroxidation in rat pancreas--in vitro was investigated using various spectrophotometric methods. All the spice extracts inhibited α-amylase (IC(50) = 2.81-4.83 mg/mL), α-glucosidase (IC(50) = 2.02-3.52 mg/mL), DPPH radicals (EC(50) = 15.47-17.38 mg/mL) and SNP-induced lipid peroxidation (14.17-94.38%), with the highest α-amylase & α-glucosidase inhibitory actions and DPPH radical scavenging ability exhibited by X. aethiopica, A. danielli and S. aromaticum, respectively. Also, the spices possess high total phenol (0.88-1.3 mg/mL) and flavonoid (0.24-0.52 mg/mL) contents with A. melegueta having the highest total phenolic and flavonoid contents. The inhibitory effects of the spice extracts on α-amylase, α-glucosidase, DPPH radicals and SNP-induced lipid peroxidation in pancreas (in vitro) could be attributed to the presence of biologically active phytochemicals such as phenolics and some non-phenolic constituents of the spices. Furthermore, these spices may exert their anti-diabetic properties through the mechanism of enzyme inhibition, free radicals scavenging ability and prevention of lipid peroxidation.

  2. Antihyperglycemic and antihyperlipidemic action of Cinnamomi Cassiae (Cinnamon bark) extract in C57BL/Ks db/db mice.

    PubMed

    Kim, Sung Hee; Choung, Se Young

    2010-02-01

    In previous study, the anti-diabetic effect of Cinnamomi Cassiae extract (Cinnamon bark: Lauraceae) in a type II diabetic animal model (C57BIKsj db/db) has been reported. To explore their mechanism of action, in present study, the effect of cinnamon extract on anti-hyperglycemia and anti-hyperlipidemia was evaluated by measuring the blood glucose levels, serum insulin, and adiponectin levels, serum and hepatic lipids, PPARalpha mRNA expression in liver and PPARgamma mRNA expression in adipose tissue, respectively. Male C57BIKs db/db mice were divided into a diabetic group and cinnamon extract treated group and examined for a period of 12 weeks (200 mg/kg, p.o). The fasting blood glucose and postprandial 2 h blood glucose levels in the cinnamon treated group were significantly lower than those in the control group (p < 0.01), whereas the serum insulin and adiponectin levels were significantly higher in the cinnamon treated group than in the control group (p < 0.05). The serum lipids and hepatic lipids were improved in the cinnamon administered group. Also the PPARalpha mRNA (liver) and PPARgamma mRNA (adipose tissue) expression levels were increased significantly in the cinnamon treated group (p < 0.05). Our results suggest that cinnamon extract significantly increases insulin sensitivity, reduces serum, and hepatic lipids, and improves hyperglycemia and hyperlipidemia possibly by regulating the PPAR-medicated glucose and lipid metabolism.

  3. Clovamide-rich extract from Trifolium pallidum reduces oxidative stress-induced damage to blood platelets and plasma.

    PubMed

    Kolodziejczyk, Joanna; Olas, Beata; Wachowicz, Barbara; Szajwaj, Barbara; Stochmal, Anna; Oleszek, Wieslaw

    2011-09-01

    Numerous plants (including clovers) have been widely used in folk medicine for the treatment of different disorders. This in vitro study was designed to examine the antioxidative effects of the clovamide-rich fraction, obtained from aerial parts of Trifolium pallidum, in the protection of blood platelets and plasma against the nitrative and oxidative damage, caused by peroxynitrite (ONOO(-)). Carbonyl groups and 3-nitrotyrosine in blood platelet and plasma proteins were determined by ELISA tests. Thiol groups level was estimated by using 5,5'-dithio-bis(2-nitro-benzoic acid, DTNB). Plasma lipid peroxidation was measured spectrophotometrically as the production of thiobarbituric acid reactive substances. The results from our work indicate that clovamide-rich T. pallidum extract may reveal the protective properties in the prevention against oxidative stress. The presence of clovamide-rich T. pallidum extract (12.5-100 μg/ml) partly inhibited ONOO(-)-mediated protein carbonylation and nitration. All the used concentrations of T. pallidum extract reduced lipid peroxidation in plasma. The antioxidative action of the tested extract in the protection of blood platelet lipids was less effective; the extract at the lowest final concentration (12.5 μg/ml) had no protective effect against lipid peroxidation. The present results indicate that the extract from T. pallidum is likely to be a source of compounds with the antioxidative properties, useful in the prevention against the oxidative stress-related diseases.

  4. Assessment of phytochemicals, antioxidant, anti-lipid peroxidation and anti-hemolytic activity of extract and various fractions of Maytenus royleanus leaves.

    PubMed

    Shabbir, Maria; Khan, Muhammad Rashid; Saeed, Naima

    2013-06-22

    Maytenus royleanus is traditionally used in gastro-intestinal disorders. The aim of this study was to evaluate the methanol extract of leaves and its derived fractions for various antioxidant assays and for its potential against lipid peroxidation and hemolytic activity. Various parameters including scavenging of free-radicals (DPPH, ABTS, hydroxyl and superoxide radical), hydrogen peroxide scavenging, Fe3+ to Fe2+ reducing capacity, total antioxidant capacity, anti-lipid peroxidation and anti-hemolytic activity were investigated. Methanol extract and its derived fractions were also subjected for chemical constituents. LC-MS was also performed on the methanol extract. Qualitative analysis of methanol extract exhibited the presence of alkaloids, anthraquinones, cardiac glycosides, coumarins, flavonoids, saponins, phlobatannins, tannins and terpenoids. LC-MS chromatogram indicated the composition of diverse compounds including flavonoids, phenolics and phytoestrogens. Methanol extract, its ethyl acetate and n-butanol fractions constituted the highest amount of total phenolic and flavonoid contents and showed a strong correlation coefficient with the IC50 values for the scavenging of DPPH, hydrogen peroxide radicals, superoxide radicals, anti-lipid peroxidation and anti-hemolytic efficacy. Moreover, n-butanol fraction showed the highest scavenging activity for ABTS radicals and for reduction of Fe3+ to Fe2+. Present results suggested the therapeutic potential of Maytenus royleanus leaves, in particular, methanol extract, ethyl acetate and n-butanol fraction as therapeutic agent against free-radical associated damages. The protective potential of the extract and or fraction may be attributed due to the high concentration of phenolic, flavonoid, tannins and terpenoids.

  5. Enzymatic production of biodiesel from Nannochloropsis gaditana lipids: Influence of operational variables and polar lipid content.

    PubMed

    Navarro López, Elvira; Robles Medina, Alfonso; González Moreno, Pedro A; Jiménez Callejón, María J; Esteban Cerdán, Luis; Martín Valverde, Lorena; Castillo López, Beatriz; Molina Grima, Emilio

    2015-01-01

    Fatty acid methyl esters (FAMEs, biodiesel) were produced from Nannochloropsis gaditana wet biomass (12% saponifiable lipids, SLs) by extraction of SLs and lipase catalyzed transesterification. Lipids were extracted by ethanol (96%)-hexane, and 31% pure SLs were obtained with 85% yield. When the lipids were degummed, SL purity increased to 95%. Novozym 435 was selected from four lipases tested. Both the lipidic composition and the use of t-butanol instead of hexane increased the reaction velocity and the conversion, since both decreased due to the adsorption of polar lipids on the lipase immobilization support. The best FAME yield (94.7%) was attained at a reaction time of 48h and using 10mL of t-butanol/g SL, 0.225gN435/g SL, 11:1 methanol/SL molar ratio and adding the methanol in three steps. In these conditions the FAME conversion decreased by 9.8% after three reaction cycles catalyzed by the same lipase batch. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. IMMUNO-MODULATORY PROPERTIES OF PREBIOTICS EXTRACTED FROM vernonia amygdalina.

    PubMed

    Im, Ezeonu; Ae, Asuquo; Bn, Ukwah; Po, Ukoha

    2016-01-01

    Vernonia amygdalina , commonly called bitter-leaf, is widely consumed in many parts of Africa, and Nigeria, in particular. The leaf extract has been reported to have antimicrobial, anti-plasmodial, anti-helminthic, as well as prebiotic properties, but its immuno-modulatory effects have not been well-studied, neither have the prebiotics been identified. This study evaluated the immuno-modulatory properties of the aqueous leaf extract and identified the prebiotic components. The immuno-modulatory potential was evaluated by monitoring the effects of oral administration of the extract on immunological, haematological and lipid profiles of Rattus norvegicus , while the prebiotic components were identified by thin layer chromatography (TLC), following liquid-liquid fractionation of the extract. Consumption of the extract caused significant increases in CD4+-, white blood cell-, total lymphocyte- and high density lipid (HDL) counts; decreases in low density lipid (LDL) and triglycerides and no significant effect on haemoglobin (Hb) and packed cell volume (PCV) in the blood of test animals. The water-soluble fraction of the extract contained most of the phyto-constituents of the extract and Thin Layer Chromatographic analysis of the fraction revealed the presence of fructo-oligosaccharide and galacto-oligosaccharide prebiotics. The results from this study have shown that the aqueous leaf extract of V. amygdalina has positive immune-modulatory and haematologic effects and contains some important prebiotic compounds.

  7. Reduction of adipogenesis and lipid accumulation by Taraxacum officinale (Dandelion) extracts in 3T3L1 adipocytes: an in vitro study.

    PubMed

    González-Castejón, Marta; García-Carrasco, Belén; Fernández-Dacosta, Raquel; Dávalos, Alberto; Rodriguez-Casado, Arantxa

    2014-05-01

    In this in vitro study, we have investigated the ability of Taraxacum officinale (dandelion) to inhibit adipocyte differentiation and lipogenesis in 3T3-L1 preadipocytes. HPLC analysis of the three plant extracts used in this study-leaf and root extracts and a commercial root powder-identified caffeic and chlorogenic acids as the main phenolic constituents. Oil Red O staining and triglyceride levels analysis showed decreased lipid and triglyceride accumulation, respectively. Cytotoxicity was assessed with the MTT assay showing non-toxic effect among the concentrations tested. DNA microarray analysis showed that the extracts regulated the expression of a number of genes and long non-coding RNAs that play a major role in the control of adipogenesis. Taken together, our results indicate that the dandelion extracts used in this study may play a significant role during adipogenesis and lipid metabolism, and thus, supporting their therapeutic interest as potential candidates for the treatment of obesity. Copyright © 2013 John Wiley & Sons, Ltd.

  8. The lipid fraction of human milk initiates adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Fujisawa, Yasuko; Yamaguchi, Rie; Nagata, Eiko; Satake, Eiichiro; Sano, Shinichiro; Matsushita, Rie; Kitsuta, Kazunobu; Nakashima, Shinichi; Nakanishi, Toshiki; Nakagawa, Yuichi; Ogata, Tsutomu

    2013-09-01

    The prevalence of childhood obesity has increased worldwide over the past decade. Despite evidence that human milk lowers the risk of childhood obesity, the mechanism is not fully understood. We investigated the direct effect of human milk on differentiation of 3T3-L1 preadipocytes. 3T3-L1 preadipocytes were treated with donated human milk only or the combination of the standard hormone mixture; insulin, dexamethasone (DEX), and 3-isobututyl-1-methylxanthine (IBMX). Furthermore, the induction of preadipocyte differentiation by extracted lipids from human milk was tested in comparison to the cells treated with lipid extracts from infant formula. Adipocyte differentiation, specific genes as well as formation of lipid droplets were examined. We clearly show that lipids present in human milk initiate 3T3-L1 preadipocyte differentiation. In contrast, this effect was not observed in response to lipids present in infant formula. The initiation of preadipocyte differentiation by human milk was enhanced by adding the adipogenic hormone, DEX or insulin. The expression of late adipocyte markers in Day 7 adipocytes that have been induced into differentiation with human milk lipid extracts was comparable to those in control cells initiated by a standard adipogenic hormone cocktail. These results demonstrate that human milk contains bioactive lipids that can initiate preadipocyte differentiation in the absence of the standard adipogenic compounds via a unique pathway. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Discovery of plant extracts that greatly delay yeast chronological aging and have different effects on longevity-defining cellular processes

    PubMed Central

    Samson, Eugenie; Arlia-Ciommo, Anthony; Dakik, Pamela; Cortes, Berly; Feldman, Rachel; Mohtashami, Sadaf; McAuley, Mélissa; Chancharoen, Marisa; Rukundo, Belise; Simard, Éric; Titorenko, Vladimir I.

    2016-01-01

    We discovered six plant extracts that increase yeast chronological lifespan to a significantly greater extent than any of the presently known longevity-extending chemical compounds. One of these extracts is the most potent longevity-extending pharmacological intervention yet described. We show that each of the six plant extracts is a geroprotector which delays the onset and decreases the rate of yeast chronological aging by eliciting a hormetic stress response. We also show that each of these extracts has different effects on cellular processes that define longevity in organisms across phyla. These effects include the following: 1) increased mitochondrial respiration and membrane potential; 2) augmented or reduced concentrations of reactive oxygen species; 3) decreased oxidative damage to cellular proteins, membrane lipids, and mitochondrial and nuclear genomes; 4) enhanced cell resistance to oxidative and thermal stresses; and 5) accelerated degradation of neutral lipids deposited in lipid droplets. Our findings provide new insights into mechanisms through which chemicals extracted from certain plants can slow biological aging. PMID:26918729

  10. Evaluation of the antioxidant activity of Betula pendula leaves extract and its effects on model foods.

    PubMed

    Azman, Nurul Aini Mohd; Skowyra, Monika; Muhammad, Kwestan; Gallego, María Gabriela; Almajano, Maria Pilar

    2017-12-01

    Betula pendula Roth (Betulaceae) exhibits many pharmacological activities in humans including anticancer, antibacterial, and antiviral effects. However, the antioxidant activity of BP towards lipid degradation has not been fully determined. The BP ethanol and methanol extracts were evaluated to determine antioxidant activity by an in vitro method and lyophilized extract of BP was added to beef patties to study oxidative stability. Antioxidant activities of extracts of BP were determined by measuring scavenging radical activity against methoxy radical generated by Fenton reaction 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (TEAC) radical cation, the oxygen radical absorbance capacity (ORAC) and the ferric reducing antioxidant power (FRAP) assays. The lipid deterioration in beef patties containing 0.1% and 0.3% (w/w) of lyophilized extract of BP stored in 80:20 (v/v) O 2 :CO 2 modified atmosphere (MAP) at 4 °C for 10 days was determined using thiobarbituric acid reacting substances (TBARS), % metmyoglobin and colour value. The BP methanol extract revealed the presence of catechin, myricetin, quercetin, naringenin, and p-coumaric acid. The BP ethanol (50% w/w) extract showed scavenging activity in TEAC, ORAC and FRAP assays with values of 1.45, 2.81, 1.52 mmol Trolox equivalents (TE)/g DW, respectively. Reductions in lipid oxidation were found in samples treated with lyophilized BP extract (0.1% and 0.3% w/w) as manifested by the changes of colour and metmyoglobin concentration. A preliminary study film with BP showed retard degradation of lipid in muscle food. The present results indicated that the BP extracts can be used as natural food antioxidants.

  11. Antioxidant potential of the methanol-methylene chloride extract of Terminalia glaucescens leaves on mice liver in streptozotocin-induced stress.

    PubMed

    Njomen, Guy Bertrand Sabas Nya; Kamgang, René; Oyono, Jean Louis Essame; Njikam, Njifutie

    2008-11-01

    The antioxidant effect of the methanol-methylene chloride extract of Terminalia glaucescens (Combretaceae) leaves was investigated in streptozotocin (STZ)-induced oxidative stress. Oxidative stress was induced in mice by a daily dose of STZ (45 mg/kg body weight i.p.) for five days. From day one, before STZ injection, normal and diabetic-test mice received an oral dose of the extract (100 or 300 mg/kg b.w.) daily. Plasma metabolites, lipid peroxidation, and antioxidant enzymes in the liver were assessed and gain in body weight recorded. In normal mice the plant extract reduced food and water intake, blood glucose and LDL-C level and body weight gain, did not affect the lipid peroxidation in the liver, while the antioxidant enzyme activities seemed increased. Blood glucose was decreased (P < 0.05) in normal mice treated with 300 mg/kg extract. Diabetic mice pretreated with 100 mg/kg extract as diabetic control mice (DC) showed significant (P < 0.001) body weight loss, polyphagia and polydipsia, high plasma glucose level, decrease in the liver catalase, peroxidase, and superoxide dismutase activities, and increase in lipid peroxidation. The HDL-C level was lowered (P < 0.05) whereas LDL-C increased. In 300 mg/kg extract-pretreated diabetic mice the extract prevented body weight loss, increase of blood glucose level, lipid peroxidation in liver, food and water intake, and lowering of plasma HDL-C level and liver antioxidants; this extract prevented LDL-C level increase. These results indicate that T. glaucescens protects against STZ-induced oxidative stress and could thus explain its traditional use for diabetes and obesity treatment or management.

  12. Water extract of gromwell (Lithospermum erythrorhizon) enhances migration of human keratinocytes and dermal fibroblasts with increased lipid synthesis in an in vitro wound scratch model.

    PubMed

    Kim, H; Kim, J; Park, J; Kim, S H; Uchida, Y; Holleran, W M; Cho, Y

    2012-01-01

    Although organic extracts of gromwell (Lithospermum erythrorhizon) have been shown to promote wound healing, the wound healing effects of water extracts of gromwell (WG) that are commonly used in traditional remedies have not been elucidated. We investigated whether WG promotes the migration and/or proliferation of cultured human keratinocytes (CHK) or dermal fibroblasts in parallel with increases in lipid synthesis during in vitro wound healing. CHK or fibroblasts were treated with 1-1,000 μg/ml WG for up to 48 h following scratch wound formation. Cell migration was assessed by measuring coverage (in percent) from the wound margin, while cell proliferation and lipid synthesis were determined by [(3)H]thymidine incorporation into DNA fractions, and [(3)H]palmitate or [(3)H]serine incorporation into lipid fractions, respectively. Low-dose WG (1 μg/ml) enhanced the wound coverage for both CHK and fibroblasts at 24 h, while cell proliferation was not altered in either cell types. Synthesis of both total lipids and individual lipid classes, including phospholipids, sphingolipids and neutral lipids, were found to be increased at 24 h in CHK treated with 1 μg/ml WG; in similarly treated fibroblasts, only the syntheses of sphingolipids (such as ceramides and glucosylceramides), but not other lipid species, were significantly increased. In contrast, a higher dose of WG (10-1,000 μg/ml) did not enhance wound coverage, and 100 μg/ml WG neither altered cell proliferation nor lipid synthesis in both CHK and fibroblasts. Low-dose WG (1 μg/ml) enhances the migration of both CHK and fibroblasts with increased lipid synthesis in an in vitro wound scratch model. Copyright © 2011 S. Karger AG, Basel.

  13. Coupling of headspace solid phase microextraction with ultrasonic extraction for the determination of chlorinated pesticides in bird livers using gas chromatography.

    PubMed

    Lambropoulou, Dimitra A; Konstantinou, Ioannis K; Albanis, Triantafyllos A

    2006-07-28

    In the present study a combined analytical method involving ultrasonic extraction (USE), sulfuric acid clean-up and headspace solid-phase microextraction (HS-SPME) was developed for the determination of chlorinated pesticides (CPs) in bird livers. Extraction of CPs from 1g of liver was performed by ultrasonication for 30 min using 20 mL of solvent mixture (n-hexane:acetone (4:1, v/v)). The extract was subsequently subjected to a clean-up step for lipid removal. A comparative study on several clean-up procedures prior to the HS-SPME enrichment step was performed in order to achieve maximum recovery and optimal clean-up efficiency, which would provide suitable limits of detection in the gas chromatographic analysis. For this purpose, destructive (sulfuric acid or sodium hydroxide treatment) and non-destructive (alumina column) clean-up procedures has been assayed. The treatment of the extract with 40% (v/v) H2SO4 prior to HS-SPME process showed the best performance since lower detection limits and higher extraction efficiencies were obtained. The method detection limit ranged from 0.5 to 1.0 ng g(-1) wet weight and peak areas were proportional to analyte concentrations (r2>0.990) in the range of 5-500 ng g(-1) wet wt. The method was found to be reproducible (R.S.D.<10%) and effective under the operational conditions proposed and was applied successfully to the analysis of CPs in liver tissues of various bird species from Greece.

  14. Optimized adipose tissue engineering strategy based on a neo-mechanical processing method.

    PubMed

    He, Yunfan; Lin, Maohui; Wang, Xuecen; Guan, Jingyan; Dong, Ziqing; Feng, Lu; Xing, Malcolm; Feng, Chuanbo; Li, Xiaojian

    2018-05-26

    Decellularized adipose tissue (DAT) represents a promising scaffold for adipose tissue engineering. However, the unique and prolonged lipid removal process required for adipose tissue can damage extracellular matrix (ECM) constituents. Moreover, inadequate vascularization limits the recellularization of DAT in vivo. We proposed a neo-mechanical protocol for rapidly breaking adipocytes and removing lipid content from adipose tissue. The lipid-depleted adipose tissue was then subjected to a fast and mild decellularization to fabricate high-quality DAT (M-DAT). Adipose liquid extract (ALE) derived from this mechanical process was collected and incorporated into M-DAT to further optimize in vivo recellularization. Ordinary DAT was fabricated and served as a control. This developed strategy was evaluated based on decellularization efficiency, ECM quality, and recellularization efficiency. Angiogenic factor components and angiogenic potential of ALE were evaluated in vivo and in vitro. M-DAT achieved the same decellularization efficiency, but exhibited better retention of ECM components and recellularization, compared to those with ordinary DAT. Protein quantification revealed considerable levels of angiogenic factors (basic fibroblast growth factor, epidermal growth factor, transforming growth factor-β1, and vascular endothelial growth factor) in ALE. ALE promoted tube formation in vitro and induced intense angiogenesis in M-DAT in vivo; furthermore, higher expression of the adipogenic factor PPARγ and greater numbers of adipocytes were evident following ALE treatment, compared to those in the M-DAT group. Mechanical processing of adipose tissue led to the production of high-quality M-DAT and angiogenic factor-enriched ALE. The combination of ALE and M-DAT could be a promising strategy for engineered adipose tissue construction. This article is protected by copyright. All rights reserved. © 2018 by the Wound Healing Society.

  15. Poractant alfa versus bovine lipid extract surfactant for infants 24+0 to 31+6 weeks gestational age: A randomized controlled trial.

    PubMed

    Lemyre, Brigitte; Fusch, Christoph; Schmölzer, Georg M; Rouvinez Bouali, Nicole; Reddy, Deepti; Barrowman, Nicholas; Huneault-Purney, Nicole; Lacaze-Masmonteil, Thierry

    2017-01-01

    To compare the efficacy and safety of poractant alfa and bovine lipid extract surfactant in preterm infants. Randomized, partially-blinded, multicenter trial. Infants <32 weeks needing surfactant before 48 hours were randomly assigned to receive poractant alfa or bovine lipid extract surfactant. The primary outcome was being alive and extubated at 48 hours post-randomization. Secondary outcomes included need for re-dosing, duration of respiratory support and oxygen, bronchopulmonary dysplasia, mortality and complications during administration. Three centers recruited 87 infants (mean 26.7 weeks and 906 grams) at a mean age of 5.9 hours, between March 2013 and December 2015. 21/42 (50%) were alive and extubated at 48 hours in the poractant alfa group vs 26/45 (57.8%) in the bovine lipid extract surfactant group; adjusted OR 0.76 (95% CI 0.30-1.93) (p = 0.56). No differences were observed in the need to re-dose. Duration of oxygen support (41.5 vs 62 days; adjusted OR 1.69 95% CI 1.02-2.80; p = 0.04) was reduced in infants who received poractant alfa. We observed a trend in bronchopulmonary dysplasia among survivors (51.5% vs 72.1%; adjusted OR 0.35 95%CI 0.12-1.04; p = 0.06) favoring poractant alfa. Twelve infants died before discharge, 9 in the poractant alfa group and 3 in the bovine lung extract group. Severe airway obstruction following administration was observed in 0 (poractant alfa) and 5 (bovine lipid extract surfactant) infants (adjusted OR 0.09 95%CI <0.01-1.27; p = 0.07). No statistically significant difference was observed in the proportion of infants alive and extubated within 48h between the two study groups. Poractant alfa may be more beneficial and associated with fewer complications than bovine lipid extract surfactant. However, we observed a trend towards higher mortality in the poractant alfa group. Larger studies are needed to determine whether observed possible benefits translate in shorter hospital admissions, or other long term benefits and determine whether there is a difference in mortality.

  16. Promotive effect of Bofutsushosan (Fangfengtongshengsan) on lipid and cholesterol excretion in feces in mice treated with a high-fat diet.

    PubMed

    Akaki, Junji; Tachi, Shiori; Nakamura, Naoki; Arai, Tetsuya; Yamasaki, Hiroo; Inoue, Makoto; Makino, Toshiaki

    2018-06-28

    Bofutsushosan (fangfengtongshengsan in Chinese, BTS) is a formula in traditional Japanese Kampo medicine and Chinese medicine comprising 18 crude drugs that is used for treating obesity and metabolic syndrome. We evaluated the promotive effects of BTS on lipid and cholesterol elimination in mice. Mice were reared with a high-fat diet containing boiled water extract of BTS for 30 days, and their biochemical parameters as well as the weight and lipid content of feces were measured. We also measured cholesterol uptake into Caco-2 cells cultured with or without BTS extract. The body weight and amounts of visceral fat and subcutaneous fat on day 28; the weights of epididymal, perirenal, and mesenteric fat; and the serum concentrations of triglyceride, glucose, and hemoglobin A1c on day 30 were significantly lower in the BTS extract-treated groups than in the control in a dose-dependent manner. The amounts of lipid and cholesterol in the feces collected from day 6-23 were significantly greater than in the control. When Caco-2 cells were incubated with BTS extract, the uptake of cholesterol into cells was significantly reduced in a concentration-dependent manner. Among the components of BTS, the methanol extracts of Platycodi Radix and Zingiberis Rhizoma contribute but the extracts of Ephedrae Herba and Rhei Rhizoma counteract the suppressive effect of BTS on cholesterol uptake into Caco-2 cells. BTS has beneficial effects on obesity and metabolic syndrome, and its mechanisms of action include the promotion of lipid elimination and the inhibition of cholesterol absorption in the intestine. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Potential Angiogenic Role of Platelet-Activating Factor in Human Breast Cancer

    PubMed Central

    Montrucchio, Giuseppe; Sapino, Anna; Bussolati, Benedetta; Ghisolfi, Gianpiero; Rizea-Savu, Simona; Silvestro, Luigi; Lupia, Enrico; Camussi, Giovanni

    1998-01-01

    This study investigated the presence of platelet-activating factor (PAF) in the lipid extracts of 18 primary breast carcinomas and 20 control breast tissues. The amount of PAF detected in breast carcinomas was significantly higher than in controls. The mass spectrometric analysis of PAF-bioactive lipid extract from breast carcinomas showed the presence of several molecular species of PAF, including C16-alkylPAF, C18-lysophosphatidylcholine (LPC), C16-LPC, lyso-PAF, and C16-acylPAF. The amount of bioactive PAF extracted from breast specimens significantly correlated with tumor vascularization revealed by the number of CD34- and CD31-positive cells. As C16-alkylPAF was previously shown to induce angiogenesis in vivo, we evaluated whether the thin layer chromatography-purified lipid extracts of breast specimens elicited neoangiogenesis in a murine model of subcutaneous Matrigel injection. The lipid extracts from specimens of breast carcinoma containing high levels of PAF bioactivity, but not from breast carcinomas containing low levels of PAF bioactivity or from normal breast tissue, induced a significant angiogenic response. This angiogenic response was significantly inhibited by the PAF receptor antagonist WEB 2170. T47D and MCF7 breast cancer cell lines, but not an immortalized nontumor breast cell line (MCF10), released PAF in the culture medium. A significant in vivo neoangiogenic response, inhibited by WEB 2170, was elicited by T47D and MCF7 but not by MCF10 culture medium. These results indicate that an increased concentration of PAF is present in tumors with high microvessel density and that PAF may account for the neoangiogenic activity induced in mice by the lipid extracts obtained from breast cancer. A contribution of PAF in the neovascularization of human breast cancer is suggested. PMID:9811351

  18. Factors Controlling the Stable Nitrogen Isotopic Composition (δ15N) of Lipids in Marine Animals

    PubMed Central

    Svensson, Elisabeth; Schouten, Stefan; Hopmans, Ellen C.; Middelburg, Jack J.; Sinninghe Damsté, Jaap S.

    2016-01-01

    Lipid extraction of biomass prior to stable isotope analysis is known to cause variable changes in the stable nitrogen isotopic composition (δ15N) of residual biomass. However, the underlying factors causing these changes are not yet clear. Here we address this issue by comparing the δ15N of bulk and residual biomass of several marine animal tissues (fish, crab, cockle, oyster, and polychaete), as well as the δ15N of the extracted lipids. As observed previously, lipid extraction led to a variable offset in δ15N of biomass (differences ranging from -2.3 to +1.8 ‰). Importantly, the total lipid extract (TLE) was highly depleted in 15N compared to bulk biomass, and also highly variable (differences ranging from -14 to +0.7 ‰). The TLE consisted mainly of phosphatidylcholines, a group of lipids with one nitrogen atom in the headgroup. To elucidate the cause for the 15N-depletion in the TLE, the δ15N of amino acids was determined, including serine because it is one of the main sources of nitrogen to N-containing lipids. Serine δ15N values differed by -7 to +2 ‰ from bulk biomass δ15N, and correlated well with the 15N depletion in TLEs. On average, serine was less depleted (-3‰) than the TLE (-7 ‰), possibly due to fractionation during biosynthesis of N-containing headgroups, or that other nitrogen-containing compounds, such as urea and choline, or recycled nitrogen contribute to the nitrogen isotopic composition of the TLE. The depletion in 15N of the TLE relative to biomass increased with the trophic level of the organisms. PMID:26731720

  19. Hypoglycemic and hypolipidemic activity of ethanolic extract of Salvadora oleoides in normal and alloxan-induced diabetic rats

    PubMed Central

    Yadav, J.P.; Saini, Sushila; Kalia, A.N.; Dangi, A.S.

    2008-01-01

    Objective: To find out the hypoglycemic and hypolipidemic activity of an ethanolic extract of the aerial part of Salvadora oleoides Decne in euglycemic and alloxan-induced diabetic albino rats. Materials and Methods: Diabetes was induced in albino rats by administration of alloxan monohydrate (120 mg/kg, i.p.). Normal as well as diabetic albino rats were divided into groups (n = 6) receiving different treatments: vehicle (control), ethanolic extract (1 g and 2 g/kg b.w), and standard antidiabetic drug tolbutamide (0.5 g/kg b.w.). Blood samples were collected by cardiac puncture and were analyzed for blood glucose and lipid profile on days 0, 7, 14, and 21. Results: The ethanolic extract of S oleoides produced significant reduction (P < 0.001) in blood glucose and also had beneficial effects (P < 0.001) on the lipid profile in euglycemic as well as alloxan-induced diabetic rats at the end of the treatment period (21st day). However, the reduction in the blood glucose and improvement in lipid profile was less than that achieved with the standard drug tolbutamide. Conclusion: We concluded that an ethanolic extract of S oleoides is effective in controlling blood glucose levels and improves lipid profile in euglycemic as well as diabetic rats. PMID:21264157

  20. pH and reduction dual-responsive dipeptide cationic lipids with α-tocopherol hydrophobic tail for efficient gene delivery.

    PubMed

    Liu, Qiang; Su, Rong-Chuan; Yi, Wen-Jing; Zheng, Li-Ting; Lu, Shan-Shan; Zhao, Zhi-Gang

    2017-03-31

    A series of tocopherol-based cationic lipid 3a-3f bearing a pH-sensitive imidazole moiety in the dipeptide headgroup and a reduction-responsive disulfide linkage were designed and synthesized. Acid-base titration of these lipids showed good buffering capacities. The liposomes formed from 3 and co-lipid 1, 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) could efficiently bind and condense DNA into nanoparticles. Gel binding and HPLC assays confirmed the encapsulated DNA could release from lipoplexes 3 upon addition of 10 mM glutathione (GSH). MTT assays in HEK 293 cells demonstrated that lipoplexes 3 had low cytotoxicity. The in vitro gene transfection studies showed cationic dipeptide headgroups clearly affected the transfection efficiency (TE), and arginine-histidine based dipeptide lipid 3f give the best TE, which was 30.4 times higher than Lipofectamine 3000 in the presence of 10% serum. Cell-uptake assays indicated that basic amino acid containing dipeptide cationic lipids exhibited more efficient cell uptake than serine and aromatic amino acids based dipeptide lipids. Confocal laser scanning microscopy (CLSM) studies corroborated that 3 could efficiently deliver and release DNA into the nuclei of HeLa cells. These results suggest that tocopherol-based dipeptide cationic lipids with pH and reduction dual-sensitive characteristics might be promising non-viral gene delivery vectors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Rigid aromatic linking moiety in cationic lipids for enhanced gene transfection efficiency.

    PubMed

    Wang, Bing; Zhao, Rui-Mo; Zhang, Ji; Liu, Yan-Hong; Huang, Zheng; Yu, Qing-Ying; Yu, Xiao-Qi

    2017-08-18

    Although numerous cationic lipids have been developed as non-viral gene vectors, the structure-activity relationship (SAR) of these materials remains unclear and needs further investigation. In this work, a series of lysine-derived cationic lipids containing linkages with different rigidity were designed and synthesized. SAR studies showed that lipids with rigid aromatic linkage could promote the formation of tight liposomes and enhance DNA condensation, which is essential for the gene delivery process. These lipids could give much higher transfection efficiency than those containing more flexible aliphatic linkage in various cell lines. Moreover, the rigid aromatic linkage also affords the material higher serum tolerance ability. Flow cytometry assay revealed that the target lipids have good cellular uptake, while confocal microscopy observation showed weaker endosome escape than Lipofectamine 2000. To solve such problem and further increase the transfection efficiency, some lysosomotropic reagents were used to improve the endosome escape of lipoplex. As expected, higher transfection efficiency than Lipofectamine 2000 could be obtained via this strategy. Cytotoxicity assay showed that these lipids have lower toxicity in various cell lines than Lipofectamine 2000, suggesting their potential for further application. This work demonstrates that a rigid aromatic linkage might distinctly improve the gene transfection abilities of cationic lipids and affords information to construct safe and efficient gene vector towards practical application. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Development of droplet microfluidic platforms for the synthesis of monodisperse lipid vesicles and polymer particles

    NASA Astrophysics Data System (ADS)

    Teh, Shia-Yen

    This body of work presents my approaches to the design and development of microfluidic platforms for synthesizing monodisperse polymer particles and phospholipid vesicles. There is interest in both of these particles for use in a variety of biomedical applications. Poly(D,L-lactide-co-glycolic acid) (PLGA) particles in particular have been sought out as vehicles for drug delivery due to their biocompatibility and because the rate of degradation -- hence cargo release - can be controlled. On the other hand, liposomes possess membrane structures resembling that of cells, an ability to adopt both hydrophilic and hydrophobic molecules, and are easily functionalized, which make lipid vesicles the ideal candidate for applications ranging from targeted therapeutic delivery to formation of artificial cells. However, current methods of production for both of these particles result in a wide range of sizes and poor cargo uptake efficiency. We address these challenges by utilizing a flow focusing droplet generation design, which allows for fine control over droplet size and improves encapsulation efficiencies. The size of these droplets can be determined by channel geometry and the ratio of fluid flow rates. I will discuss the work I have done to improve upon current technologies to form nano- to micrometer sized PLGA particles and cell-sized lipid vesicles. Solvent evaporation and solvent extraction methods were implemented and tested in several device designs to optimize the formation process. The particles produced were characterized for their stability, size variation, and ability to encapsulate a model drug. The release profiles of PLGA particles were also measured to determine the length of delivery. In addition, I worked on the generation of monodisperse lipid vesicles to investigate the application of liposomes as an artificial cell. As a proof of principle, expression of green fluorescent protein (GFP) was successfully carried out in the lipid vesicles. This demonstrates the versatility of the microfluidic device for generating a range of particles of controlled size for therapeutic agent delivery and artificial cell applications.

  3. Effect of Organic Solvents on Microalgae Growth, Metabolism and Industrial Bioproduct Extraction: A Review.

    PubMed

    Miazek, Krystian; Kratky, Lukas; Sulc, Radek; Jirout, Tomas; Aguedo, Mario; Richel, Aurore; Goffin, Dorothee

    2017-07-04

    In this review, the effect of organic solvents on microalgae cultures from molecular to industrial scale is presented. Traditional organic solvents and solvents of new generation-ionic liquids (ILs), are considered. Alterations in microalgal cell metabolism and synthesis of target products (pigments, proteins, lipids), as a result of exposure to organic solvents, are summarized. Applications of organic solvents as a carbon source for microalgal growth and production of target molecules are discussed. Possible implementation of various industrial effluents containing organic solvents into microalgal cultivation media, is evaluated. The effect of organic solvents on extraction of target compounds from microalgae is also considered. Techniques for lipid and carotenoid extraction from viable microalgal biomass (milking methods) and dead microalgal biomass (classical methods) are depicted. Moreover, the economic survey of lipid and carotenoid extraction from microalgae biomass, by means of different techniques and solvents, is conducted.

  4. Extraction and analysis of carotenoids from the New Zealand sea urchin Evechinus chloroticus gonads.

    PubMed

    Garama, Daniel; Bremer, Phil; Carne, Alan

    2012-01-01

    Sea urchin gonad (roe) is a highly valued food in Japan and North America. Gonad price is strongly influenced by quality, with appearance, especially colour being a major determinant. Previous attempts to extract a carotenoid profile from the New Zealand sea urchin species Evechinus chloroticus have been challenging due to the large amount of lipid present in the gonad. A carotenoid extraction and high performance liquid chromatography (HPLC) analysis method was developed to reduce lipid contamination by incorporating a saponification and lipid cold precipitation in the extraction procedure. This method enabled greater carotenoid purity and enhanced analysis by HPLC. Echinenone was found to be the main carotenoid present in all E. chloroticus gonads. Dark coloured gonads contained higher levels of fucoxanthin/fucoxanthinol, β-carotene and xanthophylls such as astaxanthin and canthaxanthin. This information on the modification and deposition of carotenoids will help in the development of diets to enhance gonad colour.

  5. Scale-up and economic analysis of biodiesel production from municipal primary sewage sludge.

    PubMed

    Olkiewicz, Magdalena; Torres, Carmen M; Jiménez, Laureano; Font, Josep; Bengoa, Christophe

    2016-08-01

    Municipal wastewater sludge is a promising lipid feedstock for biodiesel production, but the need to eliminate the high water content before lipid extraction is the main limitation for scaling up. This study evaluates the economic feasibility of biodiesel production directly from liquid primary sludge based on experimental data at laboratory scale. Computational tools were used for the modelling of the process scale-up and the different configurations of lipid extraction to optimise this step, as it is the most expensive. The operational variables with a major influence in the cost were the extraction time and the amount of solvent. The optimised extraction process had a break-even price of biodiesel of 1232 $/t, being economically competitive with the current cost of fossil diesel. The proposed biodiesel production process from waste sludge eliminates the expensive step of sludge drying, lowering the biodiesel price. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Effect of Organic Solvents on Microalgae Growth, Metabolism and Industrial Bioproduct Extraction: A Review

    PubMed Central

    Miazek, Krystian; Sulc, Radek; Jirout, Tomas; Aguedo, Mario; Goffin, Dorothee

    2017-01-01

    In this review, the effect of organic solvents on microalgae cultures from molecular to industrial scale is presented. Traditional organic solvents and solvents of new generation-ionic liquids (ILs), are considered. Alterations in microalgal cell metabolism and synthesis of target products (pigments, proteins, lipids), as a result of exposure to organic solvents, are summarized. Applications of organic solvents as a carbon source for microalgal growth and production of target molecules are discussed. Possible implementation of various industrial effluents containing organic solvents into microalgal cultivation media, is evaluated. The effect of organic solvents on extraction of target compounds from microalgae is also considered. Techniques for lipid and carotenoid extraction from viable microalgal biomass (milking methods) and dead microalgal biomass (classical methods) are depicted. Moreover, the economic survey of lipid and carotenoid extraction from microalgae biomass, by means of different techniques and solvents, is conducted. PMID:28677659

  7. Lipid determination in bone marrow and mineralized bone tissue: From sample preparation to improved high-performance thin-layer and liquid chromatographic approaches.

    PubMed

    During, Alexandrine

    2017-09-15

    In view of their key roles in the bone physiology (e.g., in the biomineralization process) and their potential implication in bone pathologies, an approach to study lipids in situ is needed. The aim of the present paper is to propose an original procedure to characterize lipids in both bone marrow (BM) and mineralized tissue (MT) compartments, taking into consideration sample preparation, lipid extraction and analytical issues, when using small sample size (≤ 0.5g of rat femurs). The potential contamination of the MT by marrow lipids and the poor accessibility of certain lipids from the MT - two major issues in bone handling - were taking care, respectively by performing two cleaning steps after BM removal and by adding a demineralization step to the overall lipid extraction protocol. For lipid analyses, a multi-one-dimensional HP-TLC method was developed to analyze the major neutral and polar lipids at once and showed an excellent resolution (for 15 standards) and a good precision (inter-day RSD<13%). When subjected to the entire "lipid extraction-HP-TLC" protocol, spike recoveries of the standards ranged between 76 and 122%. This HP-TLC method was suitable for lipid determination in both BM and MT [e.g., the MT had 5-times lesser lipids and a lower TG/phospholipid ratio than the BM (P <0.05)], and was quite reliable in term of lipid quantification. The demineralization step allowed to extract additional phosphatidylserine and esterified cholesterol from the MT, suggesting that these two species were associated to the mineralized matrix possibly in relation to their physiological role in the bone. Moreover, a reverse phase HPLC method for fatty acid determination as naphthacyl esters was set up to study fatty acids in bone samples and was used to validate the HP-TLC data. The fatty acid profile of the MT exhibited lower linoleic acid (18:2 n-6) and linolenic acid (18:3 n-3+n-6) levels and higher arachidonic acid (20:4 n-6) and docosahexaenoic acid (22:6 n-3) levels (P<0.05, compared to BM), suggesting that the MT is more metabolically active than the BM in term of long chain fatty acid production. In sum, the present work should contribute to facilitate future studies in the bone lipid field in view to understand better their implication in the marrow fat expansion-associated bone pathologies, such as osteoporosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Inhibition of Oxidative Stress and Lipid Peroxidation by Anthocyanins from Defatted Canarium odontophyllum Pericarp and Peel Using In Vitro Bioassays

    PubMed Central

    Khoo, Hock Eng; Azlan, Azrina; Ismail, Amin; Abas, Faridah; Hamid, Muhajir

    2014-01-01

    Canarium odontophyllum, also known as CO, is a highly nutritious fruit. Defatted parts of CO fruit are potent sources of nutraceutical. This study aimed to determine oxidative stress and lipid peroxidation effects of defatted CO pericarp and peel extracts using in vitro bioassays. Cell cytotoxic effect of the CO pericarp and peel extracts were also evaluated using HUVEC and Chang liver cell lines. The crude extracts of defatted CO peel and pericarp showed cytoprotective effects in t-BHP and 40% methanol-induced cell death. The crude extracts also showed no toxic effect to Chang liver cell line. Using CD36 ELISA, NAD+ and LDL inhibition assays, inhibition of oxidative stress were found higher in the crude extract of defatted CO peel compared to the pericarp extract. Hemoglobin and LDL oxidation assays revealed both crude extracts had significantly reduced lipid peroxidation as compared to control. TBARS values among defatted CO pericarp, peel, and cyanidin-3-glucoside showed no significant differences for hemoglobin and LDL oxidation assays. The protective effects of defatted CO parts, especially its peel is related to the presence of high anthocyanin that potentially offers as a pharmaceutical ingredient for cardioprotection. PMID:24416130

  9. Oil extraction from algae: A comparative approach.

    PubMed

    Valizadeh Derakhshan, Mehrab; Nasernejad, Bahram; Abbaspour-Aghdam, Farzin; Hamidi, Mohammad

    2015-01-01

    In this article, various methods including soxhlet, Bligh & Dyer (B&D), and ultrasonic-assisted B&D were investigated for the extraction of lipid from algal species Chlorella vulgaris. Relative polarity/water content and impolar per polar ratios of solvents were considered to optimize the relative proportions of each triplicate agent by applying the response surface method (RSM). It was found that for soxhlet, hexane-methanol (54-46%, respectively) with total lipid extraction of 14.65% and chloroform-methanol (54-46%, respectively) with the extraction of 19.87% lipid were the best set of triplicate where further addition of acetone to the first group and ethanol to the second group did not contributed to further extraction. In B&D, however, chloroform-methanol-water (50%-35%-15%, respectively) reached the all-time maximum of 24%. Osmotic shock as well as ultrasonication contributed to 3.52% of further extraction, which is considered to promote the total yield up to almost 15%. From the growth data and fatty acid analysis, the applied method was assessed to be appropriate for biodiesel production with regard to selectivity and extraction yield. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  10. Antidiabetic, Lipid Normalizing, and Nephroprotective Actions of the Strawberry: A Potent Supplementary Fruit

    PubMed Central

    Mandave, Pallavi; Khadke, Suresh; Karandikar, Manjiri; Pandit, Vijaya; Ranjekar, Prabhakar; Kuvalekar, Aniket; Mantri, Nitin

    2017-01-01

    The study was designed to assess the effect of different strawberry extracts on glucose levels, lipid profiles, and oxidative stress in nicotinamide-streptozotocin (NIC-STZ) induced diabetic rats. The associated changes were evaluated through biochemical, molecular, and histological assays. Diabetes was induced by intraperitoneal injection of STZ to albino Wistar rats after treatment with nicotinamide. Aqueous, hydroalcoholic, and alcoholic strawberry extracts were administrated orally to diabetic rats. Treatment of strawberry extracts improved lipid profile, liver function, and serum creatinine and led to a significant increase in antioxidant status in diabetic rats. Real-time PCR expression analysis of genes from the liver of animals treated with strawberry extracts exhibited downregulation of several fatty acid synthesis genes, transcription factors, such as Sterol regulatory Element Binding Transcription factor (SREBP) and Nuclear Factor-κβ (NF-κβ), and inflammatory markers, like Interleukin 6 (IL6) and Tumor Necrosis Factor-α (TNF-α). Strawberry extracts also upregulated liver Peroxisome Proliferator Activated Receptor-γ (PPAR-γ). Histological examination confirmed the nephroprotective and β-cell regeneration/protection effects of strawberry extracts. The present study demonstrates several beneficial effects of strawberry extracts along with its probable mechanism of action. PMID:28085064

  11. Cardioprotective effect of Sida rhomboidea. Roxb extract against isoproterenol induced myocardial necrosis in rats.

    PubMed

    Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Ansarullah; Karn, Sanjay S; Shah, Jigar D; Patel, Dipak K; Salunke, Sunita P; Padate, Geeta S; Devkar, Ranjitsinh V; Ramachandran, A V

    2011-05-01

    The present study investigates cardioprotective effect of Sida rhomboidea. Roxb (SR) extract on heart weight, plasma lipid profile, plasma marker enzymes, lipid peroxidation, endogenous enzymatic and non-enzymatic antioxidants and membrane bound ATPases against isoproterenol (IP) induced myocardial necrosis (MN) in rats. Rats treated with IP (85 mg/kg, s.c.) recorded significant (p<0.05) increment in heart weight, plasma lipid profile, plasma marker enzymes of cardiac damage, cardiac lipid peroxidation (LPO) and activity levels of Ca(+2) ATPase whereas there was significant (p<0.05) decrease in plasma HDL, cardiac endogenous enzymatic and non-enzymatic antioxidants, Na(+)-K(+) ATPase and Mg(+2) ATPase. Pre-treatment with SR extract (400 mg/kg per day, p.o.) for 30 consecutive days followed by IP injections on days 29th and 30th, showed significant (p<0.05) decrease in heart weight, plasma lipid profile, plasma marker enzymes of cardiac damage, cardiac lipid peroxidation, Ca(+2) ATPase and significant increase in plasma HDL, cardiac endogenous enzymatic and non-enzymatic antioxidants, Na(+)-K(+) ATPase and Mg(+2) ATPase compared to IP treated group. Hence, this study is the first scientific report on cardioprotective effect of SR against IP induced MN in rats. Copyright © 2010 Elsevier GmbH. All rights reserved.

  12. A method for detergent-free isolation of membrane proteins in their local lipid environment.

    PubMed

    Lee, Sarah C; Knowles, Tim J; Postis, Vincent L G; Jamshad, Mohammed; Parslow, Rosemary A; Lin, Yu-Pin; Goldman, Adrian; Sridhar, Pooja; Overduin, Michael; Muench, Stephen P; Dafforn, Timothy R

    2016-07-01

    Despite the great importance of membrane proteins, structural and functional studies of these proteins present major challenges. A significant hurdle is the extraction of the functional protein from its natural lipid membrane. Traditionally achieved with detergents, purification procedures can be costly and time consuming. A critical flaw with detergent approaches is the removal of the protein from the native lipid environment required to maintain functionally stable protein. This protocol describes the preparation of styrene maleic acid (SMA) co-polymer to extract membrane proteins from prokaryotic and eukaryotic expression systems. Successful isolation of membrane proteins into SMA lipid particles (SMALPs) allows the proteins to remain with native lipid, surrounded by SMA. We detail procedures for obtaining 25 g of SMA (4 d); explain the preparation of protein-containing SMALPs using membranes isolated from Escherichia coli (2 d) and control protein-free SMALPS using E. coli polar lipid extract (1-2 h); investigate SMALP protein purity by SDS-PAGE analysis and estimate protein concentration (4 h); and detail biophysical methods such as circular dichroism (CD) spectroscopy and sedimentation velocity analytical ultracentrifugation (svAUC) to undertake initial structural studies to characterize SMALPs (∼2 d). Together, these methods provide a practical tool kit for those wanting to use SMALPs to study membrane proteins.

  13. Comparative assessment of various lipid extraction protocols and optimization of transesterification process for microalgal biodiesel production.

    PubMed

    Mandal, Shovon; Patnaik, Reeza; Singh, Amit Kumar; Mallick, Nirupama

    2013-01-01

    Biodiesel, using microalgae as feedstocks, is being explored as the most potent form of alternative diesel fuel for sustainable economic development. A comparative assessment of various protocols for microalgal lipid extraction was carried out using five green algae, six blue-green algae and two diatom species treated with different single and binary solvents both at room temperature and using a soxhlet. Lipid recovery was maximum with chloroform-methanol in the soxhlet extractor. Pretreatments ofbiomass, such as sonication, homogenization, bead-beating, lyophilization, autoclaving, microwave treatment and osmotic shock did not register any significant rise in lipid recovery. As lipid recovery using chloroform-methanol at room temperature demonstrated a marginally lower value than that obtained under the soxhlet extractor, on economical point of view, the former is recommended for microalgal total lipid extraction. Transesterification process enhances the quality of biodiesel. Experiments were designed to determine the effects of catalyst type and quantity, methanol to oil ratio, reaction temperature and time on the transesterification process using response surface methodology. Fatty acid methyl ester yield reached up to 91% with methanol:HCl:oil molar ratio of 82:4:1 at 65 degrees C for 6.4h reaction time. The biodiesel yield relative to the weight of the oil was found to be 69%.

  14. Validation of ethnopharmacology of ayurvedic sarasvata ghrita and comparative evaluation of its neuroprotective effect with modern alcoholic and lipid based extracts in β-amyloid induced memory impairment.

    PubMed

    Shelar, Madhuri; Nanaware, Sadhana; Arulmozhi, S; Lohidasan, Sathiyanarayanan; Mahadik, Kakasaheb

    2018-06-12

    Sarasvata ghrita (SG), a polyherbal formulation from ayurveda, an ancient medicinal system of India, has been used to improve intelligence and memory, treat speech delay, speaking difficulties and low digestion power in children. Study aimed to validate the ethno use of SG in memory enhancement through systematic scientific protocol. The effect of SG and modern extracts of ingredients of SG was compared on cognitive function and neuroprotection in amyloid-β peptide 25-35(Aβ25-35) induced memory impairment in wistar rats. Further the underlying mechanism for neuroprotective activity was investigated. SG was prepared as per traditional method, ethanolic extract (EE) was prepared by conventional method and lipid based extract was prepared by modern extraction method. All extracts were standardised by newly developed HPLC method with respect to marker compounds. SG, EE and LE were administered orally to male Wistar rats at doses of 100,200 and 400 mg/kg Body Weight by feeding needle for a period of 21 days after the intracerebroventricular administration of Aβ25-35 bilaterally. Spatial memory of rats was tested using Morris water maze (MWM) and Radial arm maze (RAM) test. The possible underlying mechanisms for the cognitive improvement exhibited by SG, EE and LE was investigated through ex-vivo brain antioxidant effect, monoamine level estimation, acetylcholine esterase (AchE) inhibitory effect and Brain-derived neurotropic factor (BDNF) levels estimation. SG, EE and LE were analyzed by HPLC method, results showed that EE extract has high percent of selected phytoconstituents as compared with SG and LE. SG and LE decrease escape latency and searching distance in a dose dependant manner during MWM test. In case of RAM significant decrease in number of errors and increase in number of correct choices indicate an elevation in retention and recall aspects of learning and memory after administration of SG an LE. SG and LE extract can efficiently prevent accumulation of β-amyloid plaque in hippocampus region. There was increase in SOD, GSH, CAT and NO level and decrease in MDA levels in SG and LE administered animals. SG and LE have found to exhibit AchE inhibitiory activity and significant dose-dependant increase in BDNF level in the plasma. SG and LE significantly increased the levels of noradrenaline, dopamine and 5-hydroxytryptamine in the brain. The study validated the neuroprotective activity of SG. The study concludes the extraction efficiency of SG for selected phytoconstituents is less than modern methods. However the neuroprotective activity of SG and LE was found to be greater than EE. Copyright © 2018. Published by Elsevier B.V.

  15. Creosote Bush (Larrea tridentata) Improves Insulin Sensitivity and Reduces Plasma and Hepatic Lipids in Hamsters Fed a High Fat and Cholesterol Diet

    PubMed Central

    Del Vecchyo-Tenorio, Georgina; Rodríguez-Cruz, Maricela; Andrade-Cetto, Adolfo; Cárdenas-Vázquez, René

    2016-01-01

    Creosote bush, Larrea tridentata (Sesse y Moc. Ex DC, Zygophyllaceae) is a shrub found in the deserts of Northern Mexico and Southwestern United States. In traditional medicine, it is used to treat a variety of illnesses including type 2 diabetes. The present study aims to investigate the effects of creosote bush ethanolic extract on plasma and liver parameters associated with the metabolic syndrome in hamsters fed a high fat and cholesterol diet (HFD), comparing them with those induced by ezetimibe (EZ). Seven groups of six hamsters each were formed. Six groups were fed HFD for 2 weeks. The following 2 weeks, the HFD groups received: (1) only HFD, (2) HFD + 3 mg% EZ, (3) HFD + 0.2% creosote bush ethanolic extract, (4) only standard diet (Std Diet), (5) Std Diet + 3 mg% EZ, (6) Std Diet + 0.2% creosote bush ethanolic extract. The beneficial effects of creosote bush ethanolic extract in the HFD hamster model were a reduction of insulin resistance, associated with lower serum insulin and leptin, lower hepatic lipid peroxidation and higher liver antioxidant capacity. Plasma and liver lipids tended or were reduced to values closer to those of animals fed standard diet. A similar effect on lipids was induced by EZ, although with even lower hepatic cholesterol and total lipids concentrations. In general, the change from HFD to standard diet plus ethanolic extract induced the same but deeper changes, including a reduction in plasma glucose and an increase in the percentage of HDL cholesterol. Unlike creosote bush extract, EZ increased food consumption and neutral fecal steroids, with no significant effect on body weight, epididymal fat pads, liver peroxidation or antioxidant capacity. Also EZ did not modify serum insulin and leptin. However, insulin sensitivity improved to values similar to those induced by the extract. This suggests that the mechanism of action of creosote bush ethanolic extract is different to inhibition of cholesterol absorption or increase excretion. The ethanolic extract of L. tridentata could be useful in the treatment of the metabolic syndrome. PMID:27445827

  16. Quantitative Analysis of the Lamellarity of Giant Liposomes Prepared by the Inverted Emulsion Method

    PubMed Central

    Chiba, Masataka; Miyazaki, Makito; Ishiwata, Shin’ichi

    2014-01-01

    The inverted emulsion method is used to prepare giant liposomes by pushing water-in-oil droplets through the oil/water interface into an aqueous medium. Due to the high encapsulation efficiency of proteins under physiological conditions and the simplicity of the protocol, it has been widely used to prepare various cell models. However, the lamellarity of liposomes prepared by this method has not been evaluated quantitatively. Here, we prepared liposomes that were partially stained with a fluorescent dye, and analyzed their fluorescence intensity under an epifluorescence microscope. The fluorescence intensities of the membranes of individual liposomes were plotted against their diameter. The plots showed discrete distributions, which were classified into several groups. The group with the lowest fluorescence intensity was determined to be unilamellar by monitoring the exchangeability of the inner and the outer solutions of the liposomes in the presence of the pore-forming toxin α-hemolysin. Increasing the lipid concentration dissolved in oil increased the number of liposomes ∼100 times. However, almost all the liposomes were unilamellar even at saturating lipid concentrations. We also investigated the effects of lipid composition and liposome content, such as highly concentrated actin filaments and Xenopus egg extracts, on the lamellarity of the liposomes. Remarkably, over 90% of the liposomes were unilamellar under all conditions examined. We conclude that the inverted emulsion method can be used to efficiently prepare giant unilamellar liposomes and is useful for designing cell models. PMID:25028876

  17. Epicuticular lipids induce aggregation in Chagas disease vectors

    PubMed Central

    Figueiras, Alicia N Lorenzo; Girotti, Juan R; Mijailovsky, Sergio J; Juárez, M Patricia

    2009-01-01

    Background The triatomine bugs are vectors of the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease. Aggregation behavior plays an important role in their survival by facilitating the location of refuges and cohesion of aggregates, helping to keep them safely assembled into shelters during daylight time, when they are vulnerable to predators. There are evidences that aggregation is mediated by thigmotaxis, by volatile cues from their faeces, and by hexane-extractable contact chemoreceptive signals from their cuticle surface. The epicuticular lipids of Triatoma infestans include a complex mixture of hydrocarbons, free and esterified fatty acids, alcohols, and sterols. Results We analyzed the response of T. infestans fifth instar nymphs after exposure to different amounts either of total epicuticular lipid extracts or individual lipid fractions. Assays were performed in a circular arena, employing a binary choice test with filter papers acting as aggregation attractive sites; papers were either impregnated with a hexane-extract of the total lipids, or lipid fraction; or with the solvent. Insects were significantly aggregated around papers impregnated with the epicuticular lipid extracts. Among the lipid fractions separately tested, only the free fatty acid fraction promoted significant bug aggregation. We also investigated the response to different amounts of selected fatty acid components of this fraction; receptiveness varied with the fatty acid chain length. No response was elicited by hexadecanoic acid (C16:0), the major fatty acid component. Octadecanoic acid (C18:0) showed a significant assembling effect in the concentration range tested (0.1 to 2 insect equivalents). The very long chain hexacosanoic acid (C26:0) was significantly attractant at low doses (≤ 1 equivalent), although a repellent effect was observed at higher doses. Conclusion The detection of contact aggregation pheromones has practical application in Chagas disease vector control. These data may be used to help design new tools against triatomine bugs. PMID:19173716

  18. Epicuticular lipids induce aggregation in Chagas disease vectors.

    PubMed

    Figueiras, Alicia N Lorenzo; Girotti, Juan R; Mijailovsky, Sergio J; Juárez, M Patricia

    2009-01-27

    The triatomine bugs are vectors of the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease. Aggregation behavior plays an important role in their survival by facilitating the location of refuges and cohesion of aggregates, helping to keep them safely assembled into shelters during daylight time, when they are vulnerable to predators. There are evidences that aggregation is mediated by thigmotaxis, by volatile cues from their faeces, and by hexane-extractable contact chemoreceptive signals from their cuticle surface. The epicuticular lipids of Triatoma infestans include a complex mixture of hydrocarbons, free and esterified fatty acids, alcohols, and sterols. We analyzed the response of T. infestans fifth instar nymphs after exposure to different amounts either of total epicuticular lipid extracts or individual lipid fractions. Assays were performed in a circular arena, employing a binary choice test with filter papers acting as aggregation attractive sites; papers were either impregnated with a hexane-extract of the total lipids, or lipid fraction; or with the solvent. Insects were significantly aggregated around papers impregnated with the epicuticular lipid extracts. Among the lipid fractions separately tested, only the free fatty acid fraction promoted significant bug aggregation. We also investigated the response to different amounts of selected fatty acid components of this fraction; receptiveness varied with the fatty acid chain length. No response was elicited by hexadecanoic acid (C16:0), the major fatty acid component. Octadecanoic acid (C18:0) showed a significant assembling effect in the concentration range tested (0.1 to 2 insect equivalents). The very long chain hexacosanoic acid (C26:0) was significantly attractant at low doses (

  19. Effect of aqueous and lipophilic mullet (Mugil cephalus) Bottarga extracts on the growth and lipid profile of intestinal Caco-2 cells.

    PubMed

    Rosa, Antonella; Atzeri, Angela; Deiana, Monica; Melis, M Paola; Loru, Debora; Incani, Alessandra; Cabboi, Barbara; Dessì, M Assunta

    2011-03-09

    The importance of n-3 polyunsaturated fatty acid (n-3 PUFA) intake has long been recognized in human nutrition. Although health benefits, n-3 PUFA are subject to rapid and/or extensive oxidation during processing and storage, resulting in potential alteration in nutritional composition and quality of food. Bottarga, a salted and semi-dried mullet ( Mugil cephalus ) ovary product, is proposed as an important source of n-3 PUFA, having high levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). In this work, we investigated the extent of lipid oxidation of grated bottarga samples during 7 months of storage at -20 °C and room temperature under light exposure. Cell viability, lipid composition, and lipid peroxidation were measured in intestinal differentiated Caco-2 cell monolayers after 6-48 h of incubation with lipid and hydrophilic extracts obtained from bottarga samples at different storage conditions. The storage of bottarga did not affect the n-3 PUFA level, but differences were observed in hydroperoxide levels in samples from different storage conditions. All tested bottarga extracts did not show a toxic effect on cell viability of differentiated Caco-2 cells. Epithelial cells incubated with bottarga oil had significant changes in fatty acid composition but not in cholesterol levels with an accumulation of EPA, DHA, and 22:5. Cell hydroperoxides were higher in treated cells, in relation to the oxidative status of bottarga oil. Moreover, the bottarga lipid extract showed an in vitro inhibitory effect on the growth of a colon cancer cell line (undifferentiated Caco-2 cells).

  20. Atomic force microscopy and Langmuir–Blodgett monolayer technique to assess contact lens deposits and human meibum extracts☆

    PubMed Central

    Hagedorn, Sarah; Drolle, Elizabeth; Lorentz, Holly; Srinivasan, Sruthi; Leonenko, Zoya; Jones, Lyndon

    2015-01-01

    Purpose The purpose of this exploratory study was to investigate the differences in meibomian gland secretions, contact lens (CL) lipid extracts, and CL surface topography between participants with and without meibomian gland dysfunction (MGD). Methods Meibum study: Meibum was collected from all participants and studied via Langmuir–Blodgett (LB) deposition with subsequent Atomic Force Microscopy (AFM) visualization and surface roughness analysis. CL Study: Participants with and without MGD wore both etafilcon A and balafilcon A CLs in two different phases. CL lipid deposits were extracted and analyzed using pressure-area isotherms with the LB trough and CL surface topographies and roughness values were visualized using AFM. Results Meibum study: Non-MGD participant meibum samples showed larger, circular aggregates with lower surface roughness, whereas meibum samples from participants with MGD showed more lipid aggregates, greater size variability and higher surface roughness. CL Study: Worn CLs from participants with MGD had a few large tear film deposits with lower surface roughness, whereas non-MGD participant-worn lenses had many small lens deposits with higher surface roughness. Balafilcon A pore depths were shallower in MGD participant worn lenses when compared to non-MGD participant lenses. Isotherms of CL lipid extracts from MGD and non-MGD participants showed a seamless rise in surface pressure as area decreased; however, extracts from the two different lens materials produced different isotherms. Conclusions MGD and non-MGD participant-worn CL deposition were found to differ in type, amount, and pattern of lens deposits. Lipids from MGD participants deposited irregularly whereas lipids from non-MGD participants showed more uniformity. PMID:25620317

  1. Effect of Piper betle leaf extract on alcoholic toxicity in the rat brain.

    PubMed

    Saravanan, R; Rajendra Prasad, N; Pugalendi, K V

    2003-01-01

    The protective effect of Piper betle, a commonly used masticatory, has been examined in the brain of ethanol-administered Wistar rats. Brain of ethanol-treated rats exhibited increased levels of lipids, lipid peroxidation, and disturbances in antioxidant defense. Subsequent to the experimental induction of toxicity (i.e., the initial period of 30 days), aqueous P. betle extract was simultaneously administered in three different doses (100, 200, and 300 mg kg(-1)) for 30 days along with the daily dose of alcohol. P. betle coadministration resulted in significant reduction of lipid levels (free fatty acids, cholesterol, and phospholipids) and lipid peroxidation markers such as thiobarbituric acid reactive substances and hydroperoxides. Further, antioxidants, like reduced glutathione, vitamin C, vitamin E, superoxide dismutase, catalase, and glutathione peroxidase, were increased in P. betle-coadministered rats. The higher dose of extract (300 mg kg(-1)) was more effective, and these results indicate the neuroprotective effect of P. betle in ethanol-treated rats.

  2. Effect of pomegranate peel extract on lipid and protein oxidation in beef meatballs during refrigerated storage.

    PubMed

    Turgut, Sebahattin Serhat; Soyer, Ayla; Işıkçı, Fatma

    2016-06-01

    Antioxidant effect of pomegranate peel extract (PE) to retard lipid and protein oxidation was investigated in meatballs during refrigerated storage at 4±1°C. Concentrated lyophilised water extract of pomegranate peel was incorporated into freshly minced beef meat at 0.5% and 1% concentrations and compared with 0.01% butylated hydroxytoluene (BHT) as a reference and control (without any antioxidant). PE showed high phenolic content and antioxidant activity. In PE added samples, thiobarbituric acid reactive substances (TBARS) value, peroxide formation, loss of sulfhydryl groups and formation of protein carbonyls were lower than control (P<0.01) after 8 days of storage. Sensory evaluation with respect to colour and rancid odour revealed that PE incorporation in meatballs prolonged the refrigerated storage up to 8 days. Addition of both 0.5 and 1% PE in meatballs reduced lipid and protein oxidation and improved sensory scores. These results indicated that PE was effective on retarding lipid and protein oxidation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Biodiesel synthesis by direct transesterification of microalga Botryococcus braunii with continuous methanol reflux.

    PubMed

    Hidalgo, Pamela; Ciudad, Gustavo; Schober, Sigurd; Mittelbach, Martin; Navia, Rodrigo

    2015-04-01

    Direct transesterification of Botryococcus braunii with continuous acyl acceptor reflux was evaluated. This method combines in one step lipid extraction and esterification/transesterification. Fatty acid methyl esters (FAME) synthesis by direct conversion of microalgal biomass was carried out using sulfuric acid as catalyst and methanol as acyl acceptor. In this system, once lipids are extracted, they are contacted with the catalyst and methanol reaching 82%wt of FAME yield. To optimize the reaction conditions, a factorial design using surface response methodology was applied. The effects of catalyst concentration and co-solvent concentration were studied. Hexane was used as co-solvent for increasing lipid extraction performance. The incorporation of hexane in the reaction provoked an increase in FAME yield from 82% (pure methanol) to 95% when a 47%v/v of hexane was incorporated in the reaction. However, the selectivity towards non-saponifiable lipids such as sterols was increased, negatively affecting biodiesel quality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Biodiesel production from Nannochloropsis gaditana lipids through transesterification catalyzed by Rhizopus oryzae lipase.

    PubMed

    Navarro López, Elvira; Robles Medina, Alfonso; González Moreno, Pedro Antonio; Esteban Cerdán, Luis; Martín Valverde, Lorena; Molina Grima, Emilio

    2016-03-01

    Biodiesel (fatty acid methyl esters, FAMEs) was produced from saponifiable lipids (SLs) extracted from wet Nannochloropsis gaditana biomass using methanolysis catalyzed by Rhizopus oryzae intracellular lipase. SLs were firstly extracted with ethanol to obtain 31 wt% pure SLs. But this low SL purity also gave a low biodiesel conversion (58%). This conversion increased up to 80% using SLs purified by crystallization in acetone (95 wt% purity). Polar lipids play an important role in decreasing the reaction velocity - using SLs extracted with hexane, which have lower polar lipid content (37.4% versus 49.0% using ethanol), we obtained higher reaction velocities and less FAME conversion decrease when the same lipase batch was reused. 83% of SLs were transformed to biodiesel using a 70 wt% lipase/SL ratio, 11:1 methanol/SL molar ratio, 10 mL t-butanol/g SLs after 72 h. The FAME conversion decreased to 71% after catalyzing three reactions with the same lipase batch. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Anatomical Distribution of Lipids in Human Brain Cortex by Imaging Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Veloso, Antonio; Astigarraga, Egoitz; Barreda-Gómez, Gabriel; Manuel, Iván; Ferrer, Isidro; Teresa Giralt, María; Ochoa, Begoña; Fresnedo, Olatz; Rodríguez-Puertas, Rafael; Fernández, José A.

    2011-02-01

    Molecular mass images of tissues will be biased if differences in the physicochemical properties of the microenvironment affect the intensity of the spectra. To address this issue, we have performed—by means of MALDI-TOF mass spectrometry—imaging on slices and lipidomic analysis in extracts of frontal cortex, both from the same postmortem tissue samples of human brain. An external calibration was used to achieve a mass accuracy of 10 ppm (1 σ) in the spectra of the extracts, although the final assignment was based on a comparison with previously reported species. The spectra recorded directly from tissue slices (imaging) show excellent s/n ratios, almost comparable to those obtained from the extracts. In addition, they retain the information about the anatomical distribution of the molecular species present in autopsied frozen tissue. Further comparison between the spectra from lipid extracts devoid of proteins and those recorded directly from the tissue unambiguously show that the differences in lipid composition between gray and white matter observed in the mass images are not an artifact due to microenvironmental influences of each anatomical area on the signal intensity, but real variations in the lipid composition.

  6. Micrometer-Scale Membrane Transition of Supported Lipid Bilayer Membrane Reconstituted with Cytosol of Dictyostelium discoideum.

    PubMed

    Takahashi, Kei; Toyota, Taro

    2017-03-07

    The transformation of the supported lipid bilayer (SLB) membrane by extracted cytosol from living resources, has recently drawn much attention. It enables us to address the question of whether the purified phospholipid SLB membrane, including lipids related to amoeba locomotion, which was discussed in many previous studies, exhibits membrane deformation in the presence of cytosol extracted from amoeba; Methods: In this report, a method for reconstituting a supported lipid bilayer (SLB) membrane, composed of purified phospholipids and cytosol extracted from Dictyostelium discoideum , is described. This technique is a new reconstitution method combining the artificial constitution of membranes with the reconstitution using animate cytosol (without precise purification at a molecular level), contributing to membrane deformation analysis; Results: The morphology transition of a SLB membrane composed of phosphatidylcholines, after the addition of cytosolic extract, was traced using a confocal laser scanning fluorescence microscope. As a result, pore formation in the SLB membrane was observed and phosphatidylinositides incorporated into the SLB membrane tended to suppress pore formation and expansion; Conclusions: The current findings imply that phosphatidylinositides have the potential to control cytoplasm activity and bind to a phosphoinositide-containing SLB membrane.

  7. Liquid by-products from fish canning industry as sustainable sources of ω3 lipids.

    PubMed

    Monteiro, Ana; Paquincha, Diogo; Martins, Florinda; Queirós, Rui P; Saraiva, Jorge A; Švarc-Gajić, Jaroslava; Nastić, Nataša; Delerue-Matos, Cristina; Carvalho, Ana P

    2018-08-01

    Fish canning industry generates large amounts of liquid wastes, which are discarded, after proper treatment to remove the organic load. However, alternative treatment processes may also be designed in order to target the recovery of valuable compounds; with this procedure, these wastewaters are converted into liquid by-products, becoming an additional source of revenue for the company. This study evaluated green and economically sustainable methodologies for the extraction of ω3 lipids from fish canning liquid by-products. Lipids were extracted by processes combining physical and chemical parameters (conventional and pressurized extraction processes), as well as chemical and biological parameters. Furthermore, LCA was applied to evaluate the environmental performance and costs indicators for each process. Results indicated that extraction with high hydrostatic pressure provides the highest amounts of ω3 polyunsaturated fatty acids (3331,5 mg L -1 effluent), apart from presenting the lowest environmental impact and costs. The studied procedures allow to obtain alternative, sustainable and traceable sources of ω3 lipids for further applications in food, pharmaceutical and cosmetic industries. Additionally, such approach contributes towards the organic depuration of canning liquid effluents, therefore reducing the overall waste treatment costs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Decrease of blood lipids induced by Shan-Zha (fruit of Crataegus pinnatifida) is mainly related to an increase of PPARα in liver of mice fed high-fat diet.

    PubMed

    Niu, C- S; Chen, C- T; Chen, L- J; Cheng, K- C; Yeh, C- H; Cheng, J- T

    2011-08-01

    Hyperlipidemia is an important risk factor for cardiovascular diseases. Agents for the treatment of hyperlipidemia are well-developed in the clinic while PPARα is a target for lipid-lowering agents. Shan-Zha (Crataegus pinnatifida) is a traditional Chinese medicine used to increase digestion. Also, Shan-Zha fruit extract showed merit to improve obesity and hyperlipidemia in hamsters; however, the mechanism remained obscure. In the present study, hypertriglycemia and hypercholesterolemia were induced by high fat diet in C57BL/6 J male mice. Then, they were orally administered with Shan-Zha fruit extract at an effective dose of 250 mg/kg for 7 days. The liver was removed to estimate the expressions of PPARα and β-oxidation-related enzyme. Oral intake of Shan-Zha extract significantly improved hyperlipidemia in high fat diet-fed mice with an increase of PPARα expression in liver. Also, expression of PPARα-regulated β-oxidation-related enzymes was raised in liver by Shan-Zha extract. However, adipose tissue and others were not modified by this treatment of Shan-Zha fruit extract. Thus, Shan-Zha can increase the expression of PPARα to facilitate β-oxidation-related enzymes in liver for lipid degradation and blood lipid decrement. Also, this is the first report showing Shan-Zha fruit extract can influence liver to lower hyperlipidemia prior to the action in adipose tissue. Georg Thieme Verlag KG Stuttgart · New York.

  9. Protective effects of Arctium lappa L. root extracts (AREs) on high fat diet induced quail atherosclerosis.

    PubMed

    Wang, Zhi; Li, Ping; Wang, Chenjing; Jiang, Qixiao; Zhang, Lei; Cao, Yu; Zhong, Weizhen; Wang, Chunbo

    2016-01-08

    This study was designed to evaluate the protective effects of Arctium lappa L. root extracts (AREs) from different extraction methods (aqueous, ethanol, chloroform and flavone) on atherosclerosis. Quails (Coturnix coturnix) were subjected to high fat diet, with or without one of the four different AREs or positive control simvastatin. Blood samples were collected before treatment, after 4.5 weeks or ten weeks to assess lipid profile (Levels of total cholesterol (TC), Triacylglycerol (TG), low-density lipoprotein (LDL) and high-density lipoprotein (HDL)). After ten weeks, the serum levels of nitric oxide (NO) as well as antioxidant and pro-oxidative status (Levels of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione peroxidase (GSH-Px)) were measured. Furthermore, aortas were collected after ten weeks treatment, aorta lipid contents (TC, TG and LDL) were assessed, and histology was used to confirm atherosclerotic changes. The results indicated that high fat diet significantly deteriorated lipid profile and antioxidant status in quail serum, while all the extracts significantly reverted the changes similar to simvastatin. Aorta lipid profile assessment revealed similar results. Histology on aortas from quails treated for ten weeks confirmed atherosclerotic changes in high fat diet group, while the extracts significantly alleviated the atherosclerotic changes similar to simvastatin. Among the different extracts, flavones fraction exerted best protective effects. Our data suggest that the protective effects of AREs were medicated via hypolipidemic and anti-oxidant effects. Underlying molecular mechanisms are under investigation.

  10. Part I: In-situ fluorometric quantification of microalgal neutral lipids. Part II: Thermal degradation behavior of investment casting polymer patterns

    NASA Astrophysics Data System (ADS)

    Zhao, Hongfang

    Research described in this dissertation covers two topics. Part-I is focused on in-situ determination of neutral lipid content of microalgae using a lipophilic fluorescent dye. The traditional Nile red stain-based method for detecting microalgal intracellular lipids is limited due to varying composition and thickness of rigid cell walls. In this study, the addition of dilute acid and heating of solution, were found to greatly enhance staining efficiency of Nile red for microalgal species evaluated. Oil-in-water (O/W) microemulsion stabilized by a non-ionic surfactant was employed as a pseudo-standard that mimics lipid-bearing microalgal cells suspended in water. The average neutral lipid contents determined were very close to the results obtained by traditional gravimetric method and solid phase extraction. Part II of the dissertation explores thermo-physico-chemical properties of polymeric pattern materials, including expanded polystyrene (EPS) foam, polyurethane foam, and epoxy stereolithography (SLA) patterns, that are used in investment casting. Density, elastic modulus, expansion coefficient, thermal degradation behavior, etc. were experimentally investigated for their effects on metal casting quality. The reduction in toxic hydrogen cyanide (HCN) generated during thermal decomposition of polyurethane pattern was achieved by increasing either oxidant level or residence time in heated zone. Thermal degradation kinetics of the pattern materials were examined with a thermogravimetric analysis and activation energies were determined by Kissinger and Flynn-Wall-Ozawa methods.

  11. Cationic niosomes an effective gene carrier composed of novel spermine-derivative cationic lipids: effect of central core structures.

    PubMed

    Opanasopit, Praneet; Leksantikul, Lalita; Niyomtham, Nattisa; Rojanarata, Theerasak; Ngawhirunpat, Tanasait; Yingyongnarongkul, Boon-Ek

    2017-05-01

    Cationic niosomes formulated from Span 20, cholesterol (Chol) and novel spermine-based cationic lipids of multiple central core structures (di(oxyethyl)amino, di(oxyethyl)amino carboxy, 3-amino-1,2-dioxypropyl and 2-amino-1,3-dioxypropyl) were successfully prepared for improving transfection efficiency in vitro. The niosomes composed of spermine cationic lipid with central core structure of di(oxyethyl)amino revealed the highest gene transfection efficiency. To investigate the factors affecting gene transfection and cell viability including differences in the central core structures of cationic lipids, the composition of vesicles, molar ratio of cationic lipids in formulations and the weight ratio of niosomes to DNA. Cationic niosomes composed of nonionic surfactants (Span20), cholesterol and spermine-based cationic lipids of multiple central core structures were formulated. Gene transfection and cell viability were evaluated on a human cervical carcinoma cell line (HeLa cells) using pDNA encoding green fluorescent protein (pEGFP-C2). The morphology, size and charge were also characterized. High transfection efficiency was obtained from cationic niosomes composed of Span20:Chol:cationic lipid at the molar ratio of 2.5:2.5:0.5 mM. Cationic lipids with di(oxyethyl)amino as a central core structure exhibited highest transfection efficiency. In addition, there was also no serum effect on transfection efficiency. These novel cationic niosomes may constitute a good alternative carrier for gene transfection.

  12. Effects of Urtica dioica extract on lipid profile in hypercholesterolemic rats.

    PubMed

    Nassiri-Asl, Marjan; Zamansoltani, Farzaneh; Abbasi, Esmail; Daneshi, Mohammad-Mehdi; Zangivand, Amir-Abdollah

    2009-05-01

    To investigate the effects of extract of Urtica dioica, a perennial herb in Iran, on lipid profile in hypercholesterolemic rats. The effects of Urtica dioica extract were tested by using it as a supplement in a high-cholesterol diet. Male rats were fed a high cholesterol diet (10 mL/kg) for 4 weeks with Urtica dioica extract (100 or 300 mg/kg) or 10 mg/kg lovastatin supplementation to study the hypocholesterolemic effects of Urtica dioica on plasma lipid levels, hepatic enzymes activities, and liver histopathological changes. Urtica dioica extract at 100 and 300 mg/kg significantly reduced the levels of total cholesterol (TC), and low-density lipoprotein-cholesterol (LDL-C) and also markedly decreased liver enzymes and weight in animals with a high cholesterol diet. Hematoxylin and eosin staining showed that in the 100 mg/kg extract of Urtica dioica group, the appearance of the liver cells was similar to the control group, and steatosis and inflammation were not found. In the 300 mg/kg extract of Urtica dioica group, mild steatosis was observed but mononuclear inflammatory infiltration was not found. The hepatic histopathological results reflect the correlation of Urtica dioica extract with both liver weight and the levels of plasma TC and LDL-C. These results indicate that Urtica dioica extract has hypocholesterolemic effects in the animal model.

  13. LIPIDS OF SARCINA LUTEA II.

    PubMed Central

    Albro, Phillip W.; Huston, Charles K.

    1964-01-01

    Albro, Phillip W. (Ft. Detrick, Frederick, Md.), and Charles K. Huston. Lipids of Sarcina lutea. II. Hydrocarbon content of the lipid extracts. J. Bacteriol. 88:981–986. 1964.—The hydrocarbon fraction from Sarcina lutea lipid extracts was characterized by a combination of thin-layer and gas-liquid chromatography and infrared spectroscopy. A total of 37 components were observed by gas-liquid chromatography of this material. A breakdown of the components into classes indicated a composition consisting of 88.9% n-saturates, 1.2% monoenes, 2.1% dienes, 5.0% trienes, and 0.6% branched-saturates. Less than 0.1% of the hydrocarbon material was aromatic. No attempt was made in this study to relate the composition to either origin or function in the cell. PMID:14222808

  14. Inhibition of LDL oxidation and oxidized LDL-induced foam cell formation in RAW 264.7 cells show anti-atherogenic properties of a foliar methanol extract of Scoparia dulcis.

    PubMed

    Nambiar, Sinjitha S; Shetty, Nandini Prasad; Bhatt, Praveena; Neelwarne, Bhagyalakshmi

    2014-04-01

    Oxidation of low density lipoproteins and their further uptake by macrophages is known to result in the formation of foam cells, which are critical in the initiation of atherosclerosis through activation of inflammatory signalling cascades. Thus, powerful dietary antioxidants are receiving attention for the reversal of such pathological states. Extracts of Scoparia dulcis have been used as tea and health drinks with various health promoting effects. In the present study, we examined the reactive oxygen scavenging potential as well as anti-inflammatory and anti-atherogenic efficacies, using leaf extracts obtained after successive extraction with various solvents. A methanol extract showed potent antioxidant activity with an IC50 value of 570 μg/ml, caused hydrogen peroxide scavenging (28.9 µg/ml) and anti-inflammatory effects by improving human erythrocyte membrane stabilisation (about 86%). The methanol extract also efficiently inhibited lipid peroxidation and oxidation of low density lipoproteins, thus preventing foam cell formation in cultured RAW 264.7 cells. Furthermore, phytochemical screening of the extracts showed high accumulation of flavonoids. The foliar methanol extract of Scoparia dulcis has a strong anti-atherogenic potential and this property could be attributed maybe due to presence of flavonoids since HPLC analysis showed high concentrations of myricetin and rutin in the methanol extract.

  15. Inhibition of LDL oxidation and oxidized LDL-induced foam cell formation in RAW 264.7 cells show anti-atherogenic properties of a foliar methanol extract of Scoparia dulcis

    PubMed Central

    Nambiar, Sinjitha S.; Shetty, Nandini Prasad; Bhatt, Praveena; Neelwarne, Bhagyalakshmi

    2014-01-01

    Background: Oxidation of low density lipoproteins and their further uptake by macrophages is known to result in the formation of foam cells, which are critical in the initiation of atherosclerosis through activation of inflammatory signalling cascades. Thus, powerful dietary antioxidants are receiving attention for the reversal of such pathological states. Materials and Methods: Extracts of Scoparia dulcis have been used as tea and health drinks with various health promoting effects. In the present study, we examined the reactive oxygen scavenging potential as well as anti-inflammatory and anti-atherogenic efficacies, using leaf extracts obtained after successive extraction with various solvents. Results: A methanol extract showed potent antioxidant activity with an IC50 value of 570 μg/ml, caused hydrogen peroxide scavenging (28.9 µg/ml) and anti-inflammatory effects by improving human erythrocyte membrane stabilisation (about 86%). The methanol extract also efficiently inhibited lipid peroxidation and oxidation of low density lipoproteins, thus preventing foam cell formation in cultured RAW 264.7 cells. Furthermore, phytochemical screening of the extracts showed high accumulation of flavonoids. Conclusions: The foliar methanol extract of Scoparia dulcis has a strong anti-atherogenic potential and this property could be attributed maybe due to presence of flavonoids since HPLC analysis showed high concentrations of myricetin and rutin in the methanol extract. PMID:24991098

  16. Effect of olive leaf (Olea europea L.) extracts on protein and lipid oxidation of long-term frozen n-3 fatty acids-enriched pork patties.

    PubMed

    Botsoglou, Evropi; Govaris, Alexander; Ambrosiadis, Ioannis; Fletouris, Dimitrios; Botsoglou, Nikolas

    2014-10-01

    Our previous study has demonstrated the protective effects of olive leaf extracts on the oxidation of pork patties from n-3 fatty acid-enriched meat during refrigerated storage. The target of the present study was to examine these effects during frozen storage. Results showed that frozen storage accelerated (P=0.05) both lipid and protein oxidation in pork patties, but an addition of olive leaf extract at 200mg gallic acid equivalent/kg improved sensory attributes by delaying oxidation of lipids (reduction (P=0.05) of conjugated dienes, hydroperoxides and malondialdehyde), and of proteins (reduction (P=0.05) of protein carbonyls and inhibition (P=0.05) of the decrease of protein sulfhydryls). Copyright © 2014. Published by Elsevier Ltd.

  17. Fatty acid profile of 25 alternative lipid feedstocks

    USDA-ARS?s Scientific Manuscript database

    This study reports the fatty acid profiles of 25 alternative lipid feedstocks for the production of bio-based fuels and chemicals. Lipids were extracted using hexane from oil-bearing seeds using a standard Soxhlet apparatus. Fatty acid profiles were measured using gas chromatography-flame ionization...

  18. Structural and oxidative stabilization of spray dried fish oil microencapsulates with gum arabic and sage polyphenols: Characterization and release kinetics.

    PubMed

    Binsi, P K; Nayak, Natasha; Sarkar, P C; Jeyakumari, A; Muhamed Ashraf, P; Ninan, George; Ravishankar, C N

    2017-03-15

    The synergistic efficacy of gum arabic and sage polyphenols in stabilising capsule wall and protecting fish oil encapsulates from heat induced disruption and oxidative deterioration during spray drying was assessed. The emulsions prepared with sodium caseinate as wall polymer, gum arabic as wall co-polymer and sage extract as wall stabiliser was spray dried using a single fluid nozzle. Fish oil encapsulates stabilised with gum arabic and sage extract (SOE) exhibited significantly higher encapsulation efficiency compared to encapsulates containing gum arabic alone (FOE). Scanning electron microscopic and atomic force microscopic images revealed uniform encapsulates with good sphericity and smooth surface for SOE, compared to FOE powder. In vitro oil release of microencapsulates indicated negligible oil release in buffered saline whereas more than 80% of the oil loaded in encapsulates were released in simulated GI fluids. The encapsulates containing sage extract showed a lower rate of lipid oxidation during storage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Dog rose (Rosa canina L.) as a functional ingredient in porcine frankfurters without added sodium ascorbate and sodium nitrite.

    PubMed

    Vossen, Els; Utrera, Mariana; De Smet, Stefaan; Morcuende, David; Estévez, Mario

    2012-12-01

    The effect of dog rose (Rosa canina L.; RC), rich in polyphenols and ascorbic acid, on lipid and protein oxidation, colour stability and texture of frankfurters was investigated. Four treatments were prepared: with 5 or 30 g/kg RC extract and without sodium ascorbate and sodium nitrite (5RC and 30RC, respectively), a positive control (with sodium ascorbate and sodium nitrite; PC) and a negative control (without sodium ascorbate, sodium nitrite or RC extract; NC). Hexanal values were much higher throughout storage in NC compared to RC and PC frankfurters (P<0.001). The RC extracts protected against protein oxidation, but not as efficiently as PC (P<0.05). In the RC treated frankfurters, lower a* values were measured compared to PC due to the lack of sodium nitrite. In conclusion, dog rose can act as a natural antioxidant in frankfurters, but not as full replacer for sodium nitrite. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Interaction of Vimang (Mangifera indica L. extract) with Fe(III) improves its antioxidant and cytoprotecting activity.

    PubMed

    Pardo-Andreu, Gilberto L; Sánchez-Baldoquín, Carlos; Avila-González, Rizette; Yamamoto, Edgar T Suzuki; Revilla, Andrés; Uyemura, Sérgio Akira; Naal, Zeki; Delgado, René; Curti, Carlos

    2006-11-01

    A standard aqueous stem bark extract from selected species of Mangifera indica L. (Anacardiaceae)--Vimang, whose major polyphenolic component is mangiferin, displays potent in vitro and in vivo antioxidant activity. The present study provides evidence that the Vimang-Fe(III) mixture is more effective at scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide radicals, as well as in protecting against t-butyl hydroperoxide-induced mitochondrial lipid peroxidation and hypoxia/reoxygenation-induced hepatocytes injury, compared to Vimang alone. Voltammetric assays demonstrated that Vimang, in line with the high mangiferin content of the extract, behaves electrochemically like mangiferin, as well as interacts with Fe(III) in close similarity with mangiferin's interaction with the cation. These results justify the high efficiency of Vimang as an agent protecting from iron-induced oxidative damage. We propose Vimang as a potential therapy against the deleterious action of reactive oxygen species generated during iron-overload, such as that occurring in diseases like beta-thalassemia, Friedreich's ataxia and haemochromatosis.

  1. Antihyperlipidemic and antiperoxidative effect of Diasulin, a polyherbal formulation in alloxan induced hyperglycemic rats

    PubMed Central

    Saravanan, Ramalingam; Pari, Leelavinothan

    2005-01-01

    Background This study was undertaken to investigation the effect of Diasulin, a poly herbal drug composed of ethanolic extract of ten medicinal plants on blood glucose, plasma insulin, tissue lipid profile, and lipidperoxidation in alloxan induced diabetes. Methods Ethanolic extract of Diasulin a, poly herbal drug was administered orally (200 mg/kg body weight) for 30 days. The different doses of Diasulin on blood glucose and plasma insulin in diabetic rats were studied and the levels of lipid peroxides [TBARS, and Hydroperoxide] and tissue lipids [cholesterol, triglyceride, phospholipides and free fatty acids] were also estimated in alloxan induced diabetic rats. The effects were compared with glibenclamide. Result Treatment with Diasulin and glibenclamide resulted in a significant reduction of blood glucose and increase in plasma insulin. Diasulin also resulted in a significant decrease in tissue lipids and lipid peroxide formation. The effect produced by Diasulin was comparable with that of glibenclamide. Conclusion The decreased lipid peroxides and tissue lipids clearly showed the antihyperlipidemic and antiperoxidative effect of Diasulin apart from its antidiabetic effect. PMID:15969768

  2. Highly Selective and Considerable Subcritical Butane Extraction to Separate Abamectin in Green Tea.

    PubMed

    Zhang, Yating; Gu, Lingbiao; Wang, Fei; Kong, Lingjun; Pang, Huili; Qin, Guangyong

    2017-06-01

    We specially carried out the subcritical butane extraction to separate abamectin from tea leaves. Four parameters, such as extraction temperature, extraction time, number of extraction cycles, and solid-liquid ratio were studied and optimized through the response surface methodology with design matrix developed by Box-Behnken. Seventeen experiments with three various factors and three variable levels were employed to investigate the effect of these parameters on the extraction of abamectin. Besides, catechins, theanine, caffeine, and aroma components were determined by both high-performance liquid chromatography and gas chromatography-mass spectrometry to evaluate the tea quality before and after the extraction. The results showed that the extraction temperature was the uppermost parameter compared with others. The optimal extraction conditions selected as follows: extraction temperature, 42°C; number of extraction cycles and extraction time, 1 and 30 min, respectively; and solid-liquid ratio, 1:10. Based on the above study, the separation efficiency of abamectin was up to 93.95%. It is notable that there has a quite low loss rate, including the negligible damage of aroma components, the bits reduce of catechins within the range of 0.7%-13.1%, and a handful lessen of caffeine and theanine of 1.81% and 2.6%, respectively. The proposed method suggested subcritical butane possesses solubility for lipid-soluble pesticides, and since most of the pesticides are attached to the surfaces of tea, thus the as-applied method was successfully effective to separate abamectin because of the so practical and promising method.

  3. Phlorotannin Extracts from Fucales Characterized by HPLC-DAD-ESI-MSn: Approaches to Hyaluronidase Inhibitory Capacity and Antioxidant Properties

    PubMed Central

    Ferreres, Federico; Lopes, Graciliana; Gil-Izquierdo, Angel; Andrade, Paula B.; Sousa, Carla; Mouga, Teresa; Valentão, Patrícia

    2012-01-01

    Purified phlorotannin extracts from four brown seaweeds (Cystoseira nodicaulis (Withering) M. Roberts, Cystoseira tamariscifolia (Hudson) Papenfuss, Cystoseira usneoides (Linnaeus) M. Roberts and Fucus spiralis Linnaeus), were characterized by HPLC-DAD-ESI-MSn. Fucophloroethol, fucodiphloroethol, fucotriphloroethol, 7-phloroeckol, phlorofucofuroeckol and bieckol/dieckol were identified. The antioxidant activity and the hyaluronidase (HAase) inhibitory capacity exhibited by the extracts were also assessed. A correlation between the extracts activity and their chemical composition was established. F. spiralis, the species presenting higher molecular weight phlorotannins, generally displayed the strongest lipid peroxidation inhibitory activity (IC50 = 2.32 mg/mL dry weight) and the strongest HAase inhibitory capacity (IC50 = 0.73 mg/mL dry weight). As for superoxide radical scavenging, C. nodicaulis was the most efficient species (IC50 = 0.93 mg/mL dry weight), followed by F. spiralis (IC50 = 1.30 mg/mL dry weight). These results show that purified phlorotannin extracts have potent capabilities for preventing and slowing down the skin aging process, which is mainly associated with free radical damage and with the reduction of hyaluronic acid concentration, characteristic of the process. PMID:23222802

  4. Graphene/TiO2 nanocomposite based solid-phase extraction and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for lipidomic profiling of avocado (Persea americana Mill.).

    PubMed

    Shen, Qing; Yang, Mei; Li, Linqiu; Cheung, Hon-Yeung

    2014-12-10

    Phospholipids possess important physiological, structural and nutritional functions in biological systems. This study described a solid-phase extraction (SPE) method, employing graphene and titanium dioxide (G/TiO2) nanocomposite as sorbent, for the selective isolation and enrichment of phospholipids from avocado (Persea americana Mill.). Based on the principal that the phosphoryl group in the phospholipid can interact with TiO2 via a bridging bidentate mode, an optimum condition was established for SPE, and was successfully applied to prepare avocado samples. The extracts were monitored by matrix-assisted laser desorption ionization time-of-flight/tandem mass spectrometry (MALDI-TOF/MS) in both positive-ion and negative-ion modes. Results showed that phospholipids could be efficiently extracted in a clean manner by G/TiO2 based SPE. In addition, the signals of phospholipids were enhanced while the noise was reduced. Some minor peaks became more obvious. In conclusion, the nanocomposite material of G/TiO2 was proved to be a promising sorbent for selective separation of phospholipids from crude lipid extract. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Antioxidant activity of piper betel leaf extract and its constituents.

    PubMed

    Rathee, Jitesh S; Patro, Birija S; Mula, Soumyaditya; Gamre, Sunita; Chattopadhyay, Subrata

    2006-11-29

    The 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay of the ethanol extracts of three varieties (Bangla, sweet, and Mysore) of Piper betel (pan) revealed the Bangla variety to possess the best antioxidant activity that can be correlated with the total phenolic content and reducing powers of the respective extracts. Column chromatography of the extract of the Bangla variety led to the isolation of chevibetol (CHV), allylpyrocatechol (APC), and their respective glucosides. The HPTLC analyses of the extracts revealed similar chemical profiles in all three P. betel varieties, although the concentrations of CHV and APC were significantly less in the sweet and Mysore varieties. Among the isolated compounds, APC showed the best results in all the in vitro experiments. It could prevent Fe(II)-induced lipid peroxidation (LPO) of liposomes and rat brain homogenates as well as gamma-ray-induced damage of pBR322 plasmid DNA more efficiently than CHV. The superior anti-LPO and radioprotective activities of APC vis-à-vis those of CHV could not be explained by their respective Fe(II) chelation and .OH radical scavenging capacities. The better ability of APC to scavenge O2-. radicals and H2O2 might account for the results.

  6. Effect of lyophilized water extracts of Melissa officinalis on the stability of algae and linseed oil-in-water emulsion to be used as a functional ingredient in meat products.

    PubMed

    de Ciriano, Mikel García-Iñiguez; Rehecho, Sheyla; Calvo, Maria Isabel; Cavero, Rita Yolanda; Navarro, Iñigo; Astiasarán, Iciar; Ansorena, Diana

    2010-06-01

    Previous work pointed out the possibility to enhance the nutritional value of meat products using long chain omega-3 PUFA enriched emulsions. Oil-in-water emulsions elaborated with a mixture of algae and linseed oils (15:10) in order to be used as functional ingredient were stabilized with BHA (butylhydroxyanisol) or with a lyophilized water extract of Melissa officinalis L. (Lemon balm). The lipid profile of the oil mixture showed a high amount of DHA (31.7%), oleic (25.4%) and alpha-linolenic acid (12.7%) resulting in a very low omega-6/omega-3 ratio (0.12). The lyophilized extract of M. officinalis showed a high antioxidant activity (being 62ppm of the lyophilized water extract of Melissa equivalent to 200ppm of BHA, using the DPPH assay as reference), and high total phenolic content. Studying the oxidation process in the emulsions during 15days at room temperature, it could be concluded that this extract was as efficient as BHA in order to control the thiobarbituric acid reactive substances (TBARS) formation. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Lipid Extraction and the Fugacity of Stable Isotope Values

    NASA Astrophysics Data System (ADS)

    Padula, V.; Causey, D.; Wolf, N.; Welker, J. M.

    2013-12-01

    Stable isotope analysis of blood, feathers, and other tissues are often used to infer migration patterns, diet composition and trophic status of seabirds. Tissues contain variable amounts of lipids that are depleted in the heavy carbon isotope (13C) and may introduce a bias in these values. There is evidence that lipid extraction may affect other stable isotope ratios, such as δ15N. Consequently, correction factors need to be applied to appropriately interpret δ13C and δ15N values for individual species and tissue type. In this study, we collected seven species of seabirds from the Near Islands, the western most group of islands in the Aleutian Island archipelago. We sampled kidney, liver, heart and muscle samples from each bird and after freeze drying, individual tissue samples were divided into two subsamples. We left one subsample unaltered and extracted lipids from the other subsample using a 2:1 chloroform-methanol solution. We found that the change in δ13C values after lipid extraction (Δδ13C) varied widely among categories (eg., species, tissue type) from 0 - 4 ‰, while Δδ15N values ranged from 0 to 2‰. Notably, within category variation was nonsignificant and the Δδ values were linear against the covariant C:N ratio of the isotopic data, which allows us to use arithmetic corrections for categorical values. Our data strongly indicate that the effects of lipid extraction on stable isotopic values, while linear within category, vary widely by species, tissue, geographic area, year of collection, and isotope. Fugacity is usually employed as a thermodynamic quantity related to the chemical potential or activity that characterizes the escaping tendency from a phase (eg. Mackay & Paterson 1982). Here we use fugacity in the earlier, broader sense of fleeting, transitory, or instable states (eg., S. Johnson 1751), and its measure may be approximated by the higher order variance of Δδ13C and Δδ15N among data categories. Clearly, understanding the nature of variation and the physiological processes responsible for stable isotope values from biological tissues are critical for their interpretation. Change in carbon and nitrogen stable isotopes (ΔδC13, Δδ15N) after lipid extraction for Tufted Puffins (Fratercula cirrhata) collected July 2010 at Attu Island, Aleutians.

  8. Inhibitory effect of marine green algal extracts on germination of Lactuca sativa seeds.

    PubMed

    Choi, Jae-Suk; Choi, In Soon

    2016-03-01

    The allelopathic potential of nine green seaweed species was examined based on germination and seedling growth of lettuce (Lactuca sativa L.). Out of nine methanol extracts, Capsosiphon fulvescens and Monostroma nitidum extracts completely inhibited germination of L. sativa at 4 mg/filter paper after 24 hr of treatment. Water extracts of these seaweeds generally showed low anti-germination activities than methanol extracts. Of the nine water extracts, Enteromorpha linza extract completely inhibited L. sativa germination at 16 mg/filter paper after 24 hrs. To identify the primary active compounds, C. fulvescens. powder was successively fractionated according to polarity, and the main active agents against L. sativa were determined to be lipids (0.0% germination at 0.5 mg of lipids/paper disc). According to these results, extracts of C. fulvescens can be used to develop natural herbicidal agents and manage terrestrial weeds.

  9. Validation of a pressurized solvent extraction and GC-NCI-MS method for the low level determination of 40 polybrominated diphenyl ethers in mothers' milk.

    PubMed

    Lacorte, Silvia; Guillamon, Míriam

    2008-08-01

    This study reports an efficient method for the determination of 40 PBDEs from mono- to hepta-brominated in human milk. Pressurized liquid extraction (PLE) was optimized to recover PBDEs in a quantitative way using 1g of freeze dried milk. Due to the great amount of coextracted compounds, the clean-up step was optimized using alumina SPE disposable cartridges of 2 and 5 g. Whereas 2g alumina SPE failed in providing good extraction yields, all PBDEs were satisfactorily recovered using 5 g alumina SPE cartridges. Detection was performed with gas chromatography coupled to mass spectrometry with negative chemical ionization and method detection limits ranged from 0.01 to 0.05 microg kg(-1) wet weight (ww) with a good intra and inter-day variation (coefficient of variation lower than 13.4%). This method was validated by participating in an interlaboratory exercise from Quasimeme (United Kingdom), where a standard solution containing seven congeners and a certified unspiked mothers' milk were analyzed. In the standard mixture, levels between 96.915 and 570.172 microg l(-1) were quantified, whereas in certified mothers' milk, BDEs 47, 99, 100 and 154 were detected at levels from 0.010 and 0.061 microg kg(-1) ww, with an error <30%. The applicability of the method was tested experimentally in five mothers' milk samples, where only BDE 47 was detected at a maximum concentration of 10.45 microg kg(-1) lipid weight (lw). PLE succeeded in extracting all PBDEs from the sample with good reproducibility although the clean-up step had to be severely performed to eliminate sample interferences such as milk lipids and proteins.

  10. Beneficial Effects of Pentanema vestitum Linn. Whole Plant on the Glucose and Other Biochemical Parameters of Alloxan Induced Diabetic Rabbits

    PubMed Central

    Ilahi, Ikram; Asghar, Ali; Ali, Shujat; Khan, Murad; Khan, Nasrullah

    2012-01-01

    The residents of Lower Dir and Malakand agency, Khyber Pakhtunkhwa, Pakistan, use the dry powder of whole plant of Pentanema vestitum for the treatment of asthma and diabetes. No documented reports are available about the therapeutic action of Pentanema vestitum. The present study was aimed to explore the antihyperglycemic effect of 70% methanol extract of Pentanema vestitum whole plant in glucose-induced nondiabetic hyperglycemic and alloxan-induced diabetic rabbits. During this study, the effects of plant extract on the serum lipid profile, GPT, ALP, bilirubin and creatinine of diabetic rabbits were also studied. The extract of Pentanema vestitum whole plant exhibited significant (P < 0.05) antihyperglycemic activity in glucose-induced hyperglycemic rabbits. Treatment of alloxan-induced diabetic rabbits with extract significantly (P < 0.05) reduced the elevated levels of serum glucose, GPT, ALP, bilirubin and creatinine. During the study of lipid profile, the extract proved to be antihyperlipidemic and HDL boosting in diabetic rabbit models. From the finding of the present research, it was concluded that the 70% methanol extract of Pentanema vestitum whole plant has beneficial effects on serum levels of glucose, lipid profile, GPT, ALP, bilirubin, and creatinine of diabetic rabbits. PMID:23316385

  11. [Study on antioxidative activities of Psidium guajava Linn leaves extracts].

    PubMed

    Wang, Bo; Jiao, Shirong; Liu, Hengchuan; Hong, Junrong

    2007-05-01

    To study the antioxidative activities of the extracts from Psidium guajava Linn leaves (PGL). The PGL was submersed with distilled water, 65% ethanol and 95% ethanol respectively. The 3 extracts were obtained after the solutions were filtered, concentrated and dried. The scavenging rate to hydroxyl radicals and inhibiting rate to lipid peroxidation were analyzed for the 3 extracts. Their contents of total flavonoids were determined by ultraviolet spectrophotometry, and the components of total flavonoids were primarily identified by high performance liquid chromatography (HPLC) and ultraviolet-visible absorption spectrometry (UV). The extracts from distilled water, 65% ethanol and 95% ethanol respectively showed effects on scavenging hydroxyl radicals and inhibiting lipid peroxidation in the dose-dependent manner, had 50% effective concentration (EC50) on scavenging hydroxyl radicals of 0.63, 0.47 and 0.58g/L, had EC50 on inhibiting lipid peroxidation of 0.20, 0.035, 0.18g/L and had total flavonoids contents of 3.28, 30.71 and 55.98g/kg respectively. The aquatic and the ethanol extracts from PGL possess the potential antioxidative activities in the study. The flavonoids may be one of their antioxidative components.

  12. Synergistic effect of tincture of Crataegus and Mangifera indica L. extract on hyperlipidemic and antioxidant status in atherogenic rats.

    PubMed

    Akila, Manickam; Devaraj, Halagowder

    2008-01-01

    This study was designed to address the synergistic effect of tincture of Crataegus (TCR) and Mangifera indica L. (MNG) extracts on the lipid and antioxidant parameters in the development of aortic lesions in diet-induced atherosclerosis in rats. TCR, is an alcoholic extract made from the berries of Hawthorn, Crataegus oxyacantha with flavanoids as the main constituent. MNG, is an alcoholic extract made from the stem bark of Mangifera indica L. with polyphenols as the main constituent. Simultaneous oral administration of these two extracts (0.5 ml/100 g body weight) to rats fed with an atherogenic (4% cholesterol, 1% cholic acid, 0.5% thiouracil) diet prevented the elevation of lipids in the serum and heart and also caused a significant decrease in lipid accumulation in the liver and aorta reverting the hyperlipidaemic condition of these rats. These extracts significantly restored the activity of antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxidase, and glutathione, thereby restoring the antioxidant status of the organism to almost normal levels. This effect could be attributed to the synergistic activity of flavonoids in TCR and polyphenols of MNG.

  13. In vitro evaluation of free radical scavenging activity of Codariocalyx motorius root extract.

    PubMed

    Chidambaram, Uma; Pachamuthu, Vanitha; Natarajan, Suganya; Elango, Bhakkiyalakshmi; Suriyanarayanan; Ramkumar, Kunga Mohan

    2013-03-01

    To determine the phenolic content in Codariocalyx motorius root extract and to evaluate its antioxidant properties using various in vitro assay systems. The antioxidant activity was evaluated based on scavenging of 1,1-diphenyl-2-picrylhydrazyl, hydroxyl radicals, superoxide anions, nitric oxide, hydrogen peroxide, peroxynitrite, reducing power and by inhibition of lipid peroxidation which was estimated in terms of thiobarbituric acid reactive substances. The root extract of the Codariocalyx motorius (C. motorius) exhibited potent total antioxidant activity that increased with increasing amount of extract concentration, which was compared with standard drug such as quercetin, butylated hydroxytoluene, tocopherol at different concentrations. The different concentrations of the extracts showed inhibition on lipid peroxidation. In addition, the extracts had effective reducing power, free radical scavenging, super oxide anion scavenging, nitric oxide scavenging, lipid peroxidation, and total phenolic content depending on concentration. High correlation between total phenolic contents and scavenging potential of different reactive oxygen species (r(2)=0.831-0.978) indicated the polyphenols as the main antioxidants. Codariocalyx motorius (C. motorius) root possess the highly active antioxidant substance which can be used for the treatment of oxidative stress-related diseases. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  14. Amelioration of oxidative stress in bio-membranes and macromolecules by non-toxic dye from Morinda tinctoria (Roxb.) roots.

    PubMed

    Bhakta, Dipita; Siva, Ramamoorthy

    2012-06-01

    Plant dyes have been in use for coloring and varied purposes since prehistoric times. A red dye found in the roots of plants belonging to genus Morinda is a well recognized coloring ingredient. The dye fraction obtained from the methanolic extract of the roots of Morinda tinctoria was explored for its role in attenuating damages caused by H(2)O(2)-induced oxidative stress. The antioxidant potential of the dye fraction was assessed through DPPH radical scavenging, deoxyribose degradation and inhibition of lipid peroxidation in mice liver. It was subsequently screened for its efficiency in extenuating damage incurred to biomembrane (using erythrocytes and their ghost membranes) and macromolecules (pBR322 DNA, lipids and proteins) from exposure to hydrogen peroxide. In addition, the non-toxic nature of the dye was supported by the histological evaluation conducted on the tissue sections from the major organs of Swiss Albino mice as well as effect on Hep3B cell line (human hepatic carcinoma). The LC-MS confirms the dye fraction to be morindone. Our study strongly suggests that morindone present in the root extracts of M. tinctoria, in addition to being a colorant, definitely holds promise in the pharmaceutical industry. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Antioxidant properties of aqueous extracts of unripe Musa paradisiaca on sodium nitroprusside induced lipid peroxidation in rat pancreas in vitro.

    PubMed

    Shodehinde, Sidiqat Adamson; Oboh, Ganiyu

    2013-06-01

    To evaluate and compare antioxidant activities of the aqueous extracts of unripe plantain (Musa paradisiaca), assess their inhibitory action on sodium nitroprusside induced lipid peroxidation in rat pancreas in vitro and to characterize the main phenolic constituents of the plantain products using gas chromatography analysis. Aqueous extracts of plantain products (raw, elastic pastry, roasted and boiled) flour of 0.1 g/mL (each) were used to determine their total phenol, total flavonoid, 1,1 diphenyl-2 picrylhydrazyl (DPPH) and hydroxyl (OH) radical scavenging ability. The inhibitory effect of the extracts on sodium nitroprusside induced lipid peroxidation was also determined. The results revealed that all the aqueous extracts showed antioxidant activity. The boiled flour had highest DPPH and OH radical scavenging ability while raw flour had the highest Fe(2+) chelating ability, sodium nitroprusside inhibitory effect and vitamin C content. The antioxidant results showed that elastic pastry had the highest total phenol and total flavonoid content. Characterization of the unripe plantain products for polyphenol contents using gas chromatography showed varied quantity of apigenin, myricetin, luteolin, capsaicin, isorhaemnetin, caffeic acid, kampferol, quercetin, p-hydroxybenzoic acid, shogaol, glycitein and gingerol per product on the spectra. Considering the antioxidant activities and ability to inhibit lipid peroxidation of unripe plantain, this could justify their traditional use in the management/prevention of diseases related to stress.

  16. Fractional conversion of microalgae from water blooms.

    PubMed

    Zhou, Yingdong; Li, Linling; Zhang, Rui; Hu, Changwei

    2017-09-21

    Fractional conversion of natural algae cyanobacteria from Taihu Lake was conducted. The raw Taihu Lake algae (TLA) and pretreated samples were pyrolyzed at 290 °C and 450 °C according to the TGA results. Extraction of lipids or saccharides from the TLA was performed as a pretreatment to obtain lipid extracted algae (LEA) or saccharide extracted algae (SEA). The total yields of bio-oil from fractional pyrolysis were 40.9 wt% from TLA, 42.3 wt% from LEA, and 48.5 wt% from SEA. From TLA, the major components of the bio-oil were fatty acids, amides and hydrocarbons (heptadecane) at 290 °C whereas those at 450 °C were phenols and C 10 -C 15 hydrocarbons. Following the lipid extraction, acids, amides and indoles accounted for a large proportion at 290 °C, while the main products obtained at 450 °C were phenols, indoles and pyrroles. It is worth mentioning that the yield of bio-oil from the LEA had increased, and the composition of the bio-oil was simplified. Moreover, the average molecular weight of the bio-oil obtained from LEA had decreased. Interestingly, the extraction of saccharides inhibited pyrolysis of the lipids, so the distribution of the bio-oil from SEA changed only a little. Fractional pyrolysis of pretreated microalgae not only increased the bio-oil yield but also improved the quality of the bio-oil.

  17. Antioxidant properties of aqueous extracts of unripe Musa paradisiaca on sodium nitroprusside induced lipid peroxidation in rat pancreas in vitro

    PubMed Central

    Shodehinde, Sidiqat Adamson; Oboh, Ganiyu

    2013-01-01

    Objective To evaluate and compare antioxidant activities of the aqueous extracts of unripe plantain (Musa paradisiaca), assess their inhibitory action on sodium nitroprusside induced lipid peroxidation in rat pancreas in vitro and to characterize the main phenolic constituents of the plantain products using gas chromatography analysis. Methods Aqueous extracts of plantain products (raw, elastic pastry, roasted and boiled) flour of 0.1 g/mL (each) were used to determine their total phenol, total flavonoid, 1,1 diphenyl-2 picrylhydrazyl (DPPH) and hydroxyl (OH) radical scavenging ability. The inhibitory effect of the extracts on sodium nitroprusside induced lipid peroxidation was also determined. Results The results revealed that all the aqueous extracts showed antioxidant activity. The boiled flour had highest DPPH and OH radical scavenging ability while raw flour had the highest Fe2+ chelating ability, sodium nitroprusside inhibitory effect and vitamin C content. The antioxidant results showed that elastic pastry had the highest total phenol and total flavonoid content. Characterization of the unripe plantain products for polyphenol contents using gas chromatography showed varied quantity of apigenin, myricetin, luteolin, capsaicin, isorhaemnetin, caffeic acid, kampferol, quercetin, p-hydroxybenzoic acid, shogaol, glycitein and gingerol per product on the spectra. Conclusions Considering the antioxidant activities and ability to inhibit lipid peroxidation of unripe plantain, this could justify their traditional use in the management/prevention of diseases related to stress. PMID:23730557

  18. Natural extracts versus sodium ascorbate to extend the shelf life of meat-based ready-to-eat meals.

    PubMed

    Price, Alejandra; Díaz, Pedro; Bañón, Sancho; Garrido, Maria Dolores

    2013-10-01

    The effect of grape seed and green tea extracts was compared with effect of sodium ascorbate on bacterial spoilage, lipid stability and sensory quality in cooked pork meatballs during refrigerated storage. Meatballs were stored at 4  in aerobic packaging for 0, 4, 8, 12 and 16 days under retail display conditions. Lipid oxidation was evaluated as thiobarbituric acid reactive substances, volatile compounds and cholesterol oxidation products. Colour stability was assessed through CIELab parameters. Microbiological spoilage was determined through total viable, mould and yeast and coliform counts. The samples containing green tea and grape seed extracts showed lower levels of thiobarbituric acid reacting substances, major volatile compounds and microbiological counts than the samples with sodium ascorbate. Formation of cholesterol oxidation products was also inhibited to a greater extent. Colour of meatballs and pork meatballs was not affected by refrigerated storage; however, the addition of extracts provided brown shades. The addition of antioxidants did not modify the sensory attributes except for the colour. Green tea and grape seed extracts were more effective than sodium ascorbate at preventing lipid oxidation.

  19. Anti-obesity effects of Rapha diet® preparation in mice fed a high-fat diet

    PubMed Central

    Kim, Jihyun; Kyung, Jangbeen; Kim, Dajeong; Choi, Ehn-Kyoung; Bang, Paul

    2012-01-01

    The anti-obesity activities of Rapha diet® preparation containing silkworm pupa peptide, Garcinia cambogia, white bean extract, mango extract, raspberry extract, cocoa extract, and green tea extract were investigated in mice with dietary obesity. Male C57BL/6 mice were fed a high-fat diet (HFD) containing 3% Rapha diet® preparation for 8 weeks, and blood and tissue parameters of obesity were analyzed. The HFD markedly enhanced body weight gain by increasing the weights of epididymal, perirenal, and mesenteric adipose tissues. The increased body weight gain induced by HFD was significantly reduced by feeding Rapha diet® preparation, in which decreases in the weight of abdominal adipose tissue and the size of abdominal adipocytes were confirmed by microscopic examination. Long-term feeding of HFD increased blood triglycerides and cholesterol levels, leading to hepatic lipid accumulation. However, Rapha diet® preparation not only reversed the blood lipid levels, but also attenuated hepatic steatosis. The results indicate that Rapha diet® preparation could improve HFD-induced obesity by reducing both lipid accumulation and the size of adipocytes. PMID:23326287

  20. Effect of Vaccinium bracteatum Thunb. leaves extract on blood glucose and plasma lipid levels in streptozotocin-induced diabetic mice.

    PubMed

    Wang, Li; Zhang, Xue Tong; Zhang, Hai Yan; Yao, Hui Yuan; Zhang, Hui

    2010-08-09

    To investigate the hypoglycemic effects of Vaccinium bracteatum Thunb. leaves (VBTL) extract in streptozotocin-induced diabetic mice. After administration of VBTL extract for 4 weeks, the body weight, organ weight, blood glucose (BG), insulin and plasma lipid levels of streptozotocin-induced diabetic mice were measured. Body weights of diabetic mice treated with VBTL extract were partly recovered. The BG levels of AEG (diabetic mice treated with VBTL aqueous extract) were reduced to 91.52 and 85.82% at week 2 and week 4, respectively (P<0.05), while those of EEG (diabetic mice treated with VBTL ethanolic extract) were reduced slightly (P>0.05). The insulin levels of AEG and EEG were obviously higher (P<0.05) than those of MC (diabetic mice in model control group). Comparing with MC, AEG and EEG had significantly lower (P<0.05) TC or TG levels and similar HDL-cholesterol or LDL-cholesterol levels. In comparison with non-diabetic control mice, AEG had similar plasma lipid levels except higher LDL-cholesterol level, while EEG had higher TC, TG and LDL-cholesterol levels and lower HDL-cholesterol levels. Both aqueous and ethanolic extract of VBTL possess a potential hypoglycemic effect in streptozotocin-induced diabetic mice. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  1. Lipid analysis via HPLC with a charged aerosol detector

    USDA-ARS?s Scientific Manuscript database

    Most lipid extracts are a mixture of saturated and unsaturated molecules. Therefore, the most successful HPLC detectors for the quantitative analysis of lipids have involved the use of “universal” or “mass” detectors such as flame ionization detectors (FID) and evaporative light scattering detectors...

  2. Extracts of black and brown rice powders improve hepatic lipid accumulation via the activation of PPARα in obese and diabetic model mice.

    PubMed

    Felix, Angelina Dr; Takahashi, Nobuyuki; Takahashi, Mami; Katsumata-Tsuboi, Rie; Satoh, Ryo; Soon Hui, Teoh; Miyajima, Katsuhiro; Nakae, Dai; Inoue, Hirofumi; Uehara, Mariko

    2017-11-01

    Rice powder extract (RPE) from black and brown rice (Oryza sativa L. indica) improves hepatic lipid accumulation in obese and diabetic model mice via peroxisomal fatty acid oxidation. RPE showed PPARα agonistic activity which did not differ between black and brown RPE despite a higher anthocyanin content in black RPE.

  3. Green tea supplementation affects body weight, lipids, and lipid peroxidation in obese subjects with metabolic syndrome.

    PubMed

    Basu, Arpita; Sanchez, Karah; Leyva, Misti J; Wu, Mingyuan; Betts, Nancy M; Aston, Christopher E; Lyons, Timothy J

    2010-02-01

    To compare the effects of supplementation of green tea beverage or green tea extracts with controls on body weight, glucose and lipid profile, biomarkers of oxidative stress, and safety parameters in obese subjects with metabolic syndrome. Randomized, controlled prospective trial. General Clinical Research Center (GCRC) at University of Oklahoma Health Sciences Center (OUHSC). Thirty-five subjects with obesity and metabolic syndrome were recruited in age- and gender-matched trios and were randomly assigned to the control (4 cups water/d), green tea (4 cups/d), or green tea extract (2 capsules and 4 cups water/d) group for 8 weeks. The tea and extract groups had similar dosing of epiogallocatechin-3-gallate (EGCG), the active compound in green tea. Anthropometrics, blood pressure, fasting glucose and lipids, nuclear magnetic resonance (NMR)-based lipid particle size, safety parameters, biomarkers of oxidative stress (oxidized low-density lipoprotein [LDL], myeloperoxidase [MPO], malondialdehyde and hydroxynonenals [MDA and HNE]), and free catechins were analyzed at screen and at 4 and 8 weeks of the study. Pairwise comparisons showed green tea beverage and green tea extracts caused a significant decrease in body weight and body mass index (BMI) versus controls at 8 weeks (-2.5 +/- 0.7 kg, p < 0.01, and -1.9 +/- 0.6, p < 0.05, respectively). Green tea beverage showed a decreasing trend in LDL-cholesterol and LDL/high-density lipoprotein (HDL) versus controls (p < 0.1). Green tea beverage also significantly decreased MDA and HNE (-0.39 +/- 0.06 microM, p < 0.0001) versus controls. Plasma free catechins were detectable in both beverage and extract groups versus controls at screen and at 8 weeks, indicating compliance and bioavailability of green tea catechins. Green tea beverage consumption (4 cups/d) or extract supplementation (2 capsules/d) for 8 weeks significantly decreased body weight and BMI. Green tea beverage further lowered lipid peroxidation versus age- and gender-matched controls, suggesting the role of green tea flavonoids in improving features of metabolic syndrome in obese patients.

  4. Evaluation of Physarum polycephalum plasmodial growth and lipid production using rice bran as a carbon source.

    PubMed

    Tran, Hanh; Stephenson, Steven; Pollock, Erik

    2015-08-01

    The myxomycete Physarum polycephalum appears to have remarkable potential as a lipid source for biodiesel production. The present study evaluated the use of rice bran as a carbon source and determined the medium components for optimum growth and lipid production for this organism. Optimization of medium components by response surface methodology showed that rice bran and yeast extract had significant influences on lipid and biomass production. The optimum medium consisted of 37.5 g/L rice bran, 0.79 g/L yeast extract and 12.5 g/L agar, and this yielded 7.5 g/L dry biomass and 0.9 g/L lipid after 5 days. The biomass and lipid production profiles revealed that these parameters increased over time and reached their maximum values (10.5 and 1.26 g/L, respectively) after 7 days. Physarum polycephalum growth decreased on the spent medium but using the latter increased total biomass and lipid concentrations to 14.3 and 1.72 g/L, respectively. An effective method for inoculum preparation was developed for biomass and lipid production by P. polycephalum on a low-cost medium using rice bran as the main carbon source. These results also demonstrated the feasibility of scaling up and reusing the medium for additional biomass and lipid production.

  5. Interactions of the GM2 activator protein with phosphatidylcholine bilayers: a site-directed spin-labeling power saturation study.

    PubMed

    Mathias, Jordan D; Ran, Yong; Carter, Jeffery D; Fanucci, Gail E

    2009-09-02

    The GM2 activator protein (GM2AP) is an accessory protein that is an essential component in the catabolism of the ganglioside GM2. A function of GM2AP is to bind and extract GM2 from intralysosomal vesicles, forming a soluble protein-lipid complex, which interacts with the hydrolase Hexosaminidase A, the enzyme that cleaves the terminal sugar group of GM2. Here, we used site-directed spin labeling with power saturation electron paramagnetic resonance to determine the surface-bound orientation of GM2AP upon phosphatidylcholine vesicles. Because GM2AP extracts lipid ligands from the vesicle and is undergoing exchange on and off the vesicle surface, we utilized a nickel-chelating lipid to localize the paramagnetic metal collider to the lipid bilayer-aqueous interface. Spin-labeled sites that collide with the lipid-bound metal relaxing agent provide a means for mapping sites of the protein that interact with the lipid bilayer interface. Results show that GM2AP binds to lipid bilayers such that the residues lining the lipid-binding cavity lie on the vesicle surface. This orientation creates a favorable microenvironment that can allow for the lipid tails to flip out of the bilayer directly into the hydrophobic pocket of GM2AP.

  6. Isolation and Evaluation of Oil-Producing Microalgae from Subtropical Coastal and Brackish Waters

    PubMed Central

    Lim, David K. Y.; Garg, Sourabh; Timmins, Matthew; Zhang, Eugene S. B.; Thomas-Hall, Skye R.; Schuhmann, Holger; Li, Yan; Schenk, Peer M.

    2012-01-01

    Microalgae have been widely reported as a promising source of biofuels, mainly based on their high areal productivity of biomass and lipids as triacylglycerides and the possibility for cultivation on non-arable land. The isolation and selection of suitable strains that are robust and display high growth and lipid accumulation rates is an important prerequisite for their successful cultivation as a bioenergy source, a process that can be compared to the initial selection and domestication of agricultural crops. We developed standard protocols for the isolation and cultivation for a range of marine and brackish microalgae. By comparing growth rates and lipid productivity, we assessed the potential of subtropical coastal and brackish microalgae for the production of biodiesel and other oil-based bioproducts. This study identified Nannochloropsis sp., Dunaniella salina and new isolates of Chlorella sp. and Tetraselmis sp. as suitable candidates for a multiple-product algae crop. We conclude that subtropical coastal microalgae display a variety of fatty acid profiles that offer a wide scope for several oil-based bioproducts, including biodiesel and omega-3 fatty acids. A biorefinery approach for microalgae would make economical production more feasible but challenges remain for efficient harvesting and extraction processes for some species. PMID:22792403

  7. Fungal-assisted algal flocculation: application in wastewater treatment and biofuel production.

    PubMed

    Muradov, Nazim; Taha, Mohamed; Miranda, Ana F; Wrede, Digby; Kadali, Krishna; Gujar, Amit; Stevenson, Trevor; Ball, Andrew S; Mouradov, Aidyn

    2015-01-01

    The microalgal-based industries are facing a number of important challenges that in turn affect their economic viability. Arguably the most important of these are associated with the high costs of harvesting and dewatering of the microalgal cells, the costs and sustainability of nutrient supplies and costly methods for large scale oil extraction. Existing harvesting technologies, which can account for up to 50% of the total cost, are not economically feasible because of either requiring too much energy or the addition of chemicals. Fungal-assisted flocculation is currently receiving increased attention because of its high harvesting efficiency. Moreover, some of fungal and microalgal strains are well known for their ability to treat wastewater, generating biomass which represents a renewable and sustainable feedstock for bioenergy production. We screened 33 fungal strains, isolated from compost, straws and soil for their lipid content and flocculation efficiencies against representatives of microalgae commercially used for biodiesel production, namely the heterotrophic freshwater microalgae Chlorella protothecoides and the marine microalgae Tetraselmis suecica. Lipid levels and composition were analyzed in fungal-algal pellets grown on media containing alternative carbon, nitrogen and phosphorus sources from wheat straw and swine wastewater, respectively. The biomass of fungal-algal pellets grown on swine wastewater was used as feedstock for the production of value-added chemicals, biogas, bio-solids and liquid petrochemicals through pyrolysis. Co-cultivation of microalgae and filamentous fungus increased total biomass production, lipid yield and wastewater bioremediation efficiency. Fungal-assisted microalgal flocculation shows significant potential for solving the major challenges facing the commercialization of microalgal biotechnology, namely (i) the efficient and cost-effective harvesting of freshwater and seawater algal strains; (ii) enhancement of total oil production and optimization of its composition; (iii) nutrient supply through recovering of the primary nutrients, nitrogen and phosphates and microelements from wastewater. The biomass generated was thermochemically converted into biogas, bio-solids and a range of liquid petrochemicals including straight-chain C12 to C21 alkanes which can be directly used as a glycerine-free component of biodiesel. Pyrolysis represents an efficient alternative strategy for biofuel production from species with tough cell walls such as fungi and fungal-algal pellets.

  8. Hawthorn ethanolic extracts with triterpenoids and flavonoids exert hepatoprotective effects and suppress the hypercholesterolemia-induced oxidative stress in rats.

    PubMed

    Rezaei-Golmisheh, Ali; Malekinejad, Hassan; Asri-Rezaei, Siamak; Farshid, Amir Abbas; Akbari, Peyman

    2015-07-01

    The current study was aimed to determine the bioactive constituents and biological effects of the Crataegus monogyna ethanolic extracts from bark, leaves and berries on hypercholesterolemia. Oleanolic acid, ursolic acid, quercetin and lupeol concentrations were quantified by HPLC. Total phenol content and radical scavenging activity of extracts were also measured. The hypocholesterolemic, antioxidant, and hepatoprotective effects of the extracts were examined in hypercholesterolemic rats and compared with orlistat. The highest phenol content, oleanolic acid, quercetin and lupeol levels and free radical scavenging potency were found in the bark extract, and the highest ursolic acid level was found in the berries extract. Orlistat and extracts significantly (P<0.05) lowered the hypercholesterolemia-increased serum level of hepatic enzymes and lipid peroxidation level. Hawthorn's extracts protected from hepatic thiol depletion and improved the lipid profile and hepatic damages. Data suggested that hawthorn's extracts are able to protect from hypercholesterolemia-induced oxidative stress and hepatic injuries. Moreover, the hypocholesterolemic effect of extracts was found comparable to orlistat.

  9. Targeted isolation and identification of bioactive compounds lowering cholesterol in the crude extracts of crabapples using UPLC-DAD-MS-SPE/NMR based on pharmacology-guided PLS-DA.

    PubMed

    Wen, Chao; Wang, Dongshan; Li, Xing; Huang, Tao; Huang, Cheng; Hu, Kaifeng

    2018-02-20

    The anti-hyperlipidemic effects of crude crabapple extracts derived from Malus 'Red jade', Malus hupehensis (Pamp.) Rehd. and Malus prunifolia (Willd.) Borkh. were evaluated on high-fat diet induced obese (HF DIO) mice. The results revealed that some of these extracts could lower serum cholesterol levels in HF DIO mice. The same extracts were also parallelly analyzed by LC-MS in both positive and negative ionization modes. Based on the pharmacological results, 22 LC-MS variables were identified to be correlated with the anti-hyperlipidemic effects using partial least square discriminant analysis (PLS-DA) and independent samples t-test. Further, under the guidance of the bioactivity-correlated LC-MS signals, 10 compounds were targetedly isolated and enriched using UPLC-DAD-MS-SPE and identified/elucidated by NMR together with MS/MS as citric acid(1), p-coumaric acid(2), hyperoside(3), myricetin(4), naringenin(5), quercetin(6), kaempferol(7), gentiopicroside(8), ursolic acid(9) and 8-epiloganic acid(10). Among these 10 compounds, 6 compounds, hyperoside(3), myricetin(4), naringenin(5), quercetin(6), kaempferol(7) and ursolic acid(9), were individually studied and reported to indeed have effects on lowering the serum lipid levels. These results demonstrated the efficiency of this strategy for drug discovery. In contrast to traditional routes to discover bioactive compounds in the plant extracts, targeted isolation and identification of bioactive compounds in the crude plant extracts using UPLC-DAD-MS-SPE/NMR based on pharmacology-guided PLS-DA of LC-MS data brings forward a new efficient dereplicated approach to natural products research for drug discovery. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Wine industry residues extracts as natural antioxidants in raw and cooked chicken meat during frozen storage.

    PubMed

    Selani, M M; Contreras-Castillo, C J; Shirahigue, L D; Gallo, C R; Plata-Oviedo, M; Montes-Villanueva, N D

    2011-07-01

    The effect of Isabel (IGE) and Niagara (NGE) grape seed and peel extracts on lipid oxidation, instrumental colour, pH and sensory properties of raw and cooked processed chicken meat stored at -18°C for nine months was evaluated. The pH of raw and cooked samples was not affected by the addition of grape extracts. IGE and NGE were effective in inhibiting the lipid oxidation of raw and cooked chicken meat, with results comparable to synthetic antioxidants. The extracts caused alterations in colour, as evidenced by the instrumental (darkening and lower intensity of red and yellow colour) and sensory results of cooked samples. In the sensory evaluation of odour and flavour, IGE produced satisfactory results, which did not differ from synthetic antioxidants. These findings suggest that the IGE and NGE are effective in retarding lipid oxidation of raw and cooked chicken meat during frozen storage. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Effect of an active packaging with citrus extract on lipid oxidation and sensory quality of cooked turkey meat.

    PubMed

    Contini, Claudia; Álvarez, Rocío; O'Sullivan, Michael; Dowling, Denis P; Gargan, Sean Óg; Monahan, Frank J

    2014-03-01

    An antioxidant active packaging was prepared by coating a citrus extract, consisting of a mixture of carboxylic acids and flavanones, on polyethylene terephthalate trays. The effect of the packaging in reducing lipid oxidation in cooked turkey meat and on meat pH, colour characteristics and sensorial parameters was investigated. An untrained sensory panel evaluated the odour, taste, tenderness, juiciness and overall acceptability of the meat, using triangle, paired preference and quantitative response scale tests. A comparison between the antioxidant effects of the different components of the extract was also carried out. The packaging led to a significant reduction in lipid oxidation. After 2 days of refrigerated storage the sensory panel detected differences in odour and, after 4 days, rated the meat stored in the active packaging higher for tenderness and overall acceptability. Citric acid appeared to be the most important component of the extract with regard to its antioxidant potency. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Antioxidative activity and antidiscoloration efficacy of ergothioneine in mushroom (Flammulina velutipes) extract added to beef and fish meats.

    PubMed

    Bao, Huynh N D; Ushio, Hideki; Ohshima, Toshiaki

    2008-11-12

    The antioxidative property of a hydrophilic extract prepared from the fruiting body of edible mushroom ( Flammulina velutipes) was evaluated. The mushroom extract contained ergothioneine (ERT) at a level of 3.03 +/- 0.07 mg/mL, showed higher 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, and suppressed lipid oxidation of bigeye tuna meat more effectively than authentic L-ERT added at the same concentration. The authentic L-ERT had stronger total reducing power than the mushroom extract and inhibited the formation of metmyoglobin (metMb) more significantly in bigeye tuna meat. Lipid oxidation in beef and fish meats to which the mushroom extract had been added was "virtually" controlled during storage on ice. Ground beef and bigeye tuna meat with the extract added kept their natural colors unchanged for longer than 12 and 7 days of ice storage, respectively. Contrary to this, browning in meat color was observed in the control samples without the extract after 6 and 2 days of storage, respectively, when stored under similar conditions. There was significant correlation between meat color and chemical parameters, including total lipid hydroperoxides, thiobarbituric acid reactive substances, and metMb. However, there was no significant correlation between pH value and meat discoloration. These results suggest that ERT in the hydrophilic extract of F. velutipes plays an important role as a color stabilizer of meats.

  13. Influence of grape seed extract and zinc containing multivitamin-mineral nutritional food supplement on lipid profile in normal and diet-induced hypercholesterolemic rats.

    PubMed

    Satyam, Shakta Mani; Bairy, Laxminarayana Kurady; Pirasanthan, Rajadurai

    2014-12-01

    Zincovit tablet is combination of grape seed extract and zinc containing multivitamin-mineral nutritional food supplement. To investigate the influence of single combined formulation of grape seed extract and zinc containing multivitamin-mineral nutritional food supplement tablets (Zincovit) on lipid profile in normal and diet-induced hypercholesterolemic rats. Anti-hyperlipidemic activity of combined formulation of grape seed extract and Zincovit tablets doses ranged from 40 to 160 mg/kg, p.o. was evaluated in normal and diet-induced hypercholesterolemic rats. Hypercholesterolemic animals treated with combined formulation of grape seed extract and Zincovit tablets (nutritional food supplement) at 40, 80 and 160 mg/kg exhibited drastic decrease in serum triglycerides, total cholesterol, LDL-C, VLDL-C and rise of HDL-C in comparison to hypercholesterolemic control group animals. The anti-hyperlipidemic effect of single combined formulation of grape seed extract and Zincovit tablet was comparable with the standard drug atorvastatin treated animals and the variations were statistically non-significant. There was no significant impact of combined formulation of grape seed extract and Zincovit tablets on lipid profile among normal animals in comparison with normal control group. The present study demonstrated that the single combined formulation of grape seed extract and Zincovit tablet is the potential functional nutritional food supplements that could offer a novel therapeutic opportunity against diet-induced hypercholesterolemia in Wistar rats.

  14. High-throughput quantitative analysis by desorption electrospray ionization mass spectrometry.

    PubMed

    Manicke, Nicholas E; Kistler, Thomas; Ifa, Demian R; Cooks, R Graham; Ouyang, Zheng

    2009-02-01

    A newly developed high-throughput desorption electrospray ionization (DESI) source was characterized in terms of its performance in quantitative analysis. A 96-sample array, containing pharmaceuticals in various matrices, was analyzed in a single run with a total analysis time of 3 min. These solution-phase samples were examined from a hydrophobic PTFE ink printed on glass. The quantitative accuracy, precision, and limit of detection (LOD) were characterized. Chemical background-free samples of propranolol (PRN) with PRN-d(7) as internal standard (IS) and carbamazepine (CBZ) with CBZ-d(10) as IS were examined. So were two other sample sets consisting of PRN/PRN-d(7) at varying concentration in a biological milieu of 10% urine or porcine brain total lipid extract, total lipid concentration 250 ng/microL. The background-free samples, examined in a total analysis time of 1.5 s/sample, showed good quantitative accuracy and precision, with a relative error (RE) and relative standard deviation (RSD) generally less than 3% and 5%, respectively. The samples in urine and the lipid extract required a longer analysis time (2.5 s/sample) and showed RSD values of around 10% for the samples in urine and 4% for the lipid extract samples and RE values of less than 3% for both sets. The LOD for PRN and CBZ when analyzed without chemical background was 10 and 30 fmol, respectively. The LOD of PRN increased to 400 fmol analyzed in 10% urine, and 200 fmol when analyzed in the brain lipid extract.

  15. A novel integrated biorefinery process for diesel fuel blendstock production using lipids from the methanotroph, Methylomicrobium buryatense

    DOE PAGES

    Dong, Tao; Fei, Qiang; Genelot, Marie; ...

    2017-03-08

    In light of the availability of low-cost methane (CH 4) derived from natural gas and biogas along with increasing concerns of the greenhouse gas emissions, the production of alternative liquid biofuels directly from CH 4 is a promising approach to capturing wasted energy. A novel biorefinery concept integrating biological conversion of CH 4 to microbial lipids together with lipid extraction and generation of hydrocarbon fuels is demonstrated in this study for the first time. An aerobic methanotrophic bacterium, Methylomicrobium buryatense capable of using CH 4 as the sole carbon source was selected on the basis of genetic tractability, cultivation robustness,more » and ability to accumulate phospholipids in membranes. A maximum fatty acid content of 10% of dry cell weight was obtained in batch cultures grown in a continuous gas sparging fermentation system. Although phospholipids are not typically considered as a good feedstock for upgrading to hydrocarbon fuels, we set out to demonstrate that using a combination of novel lipid extraction methodology with advanced catalyst design, we could prove the feasibility of this approach. Up to 95% of the total fatty acids from membrane-bound phospholipids were recovered by a two-stage pretreatment method followed by hexane extraction of the aqueous hydrolysate. The upgrading of extracted lipids was then demonstrated in a hydrodeoxygeation process using palladium on silica as a catalyst. Lipid conversion in excess of 99% was achieved, with a full selectivity to hydrocarbons. Lastly, the final hydrocarbon mixture is dominated by 88% pentadecane (C 15H 32) based on decarbonylation/decarboxylation and hydrogenation of C16 fatty acids, indicating that a biological gas-to-liquid fuel (Bio-GTL) process is technically feasible.« less

  16. Combination pulsed electric field with ethanol solvent for Nannochloropsis sp. extraction

    NASA Astrophysics Data System (ADS)

    Nafis, Ghazy Ammar; Mumpuni, Perwitasari Yekti; Indarto, Budiman, Arief

    2015-12-01

    Nowadays, energy is one of human basic needs. As the human population increased, energy consumption also increased. This condition causes energy depletion. In case of the situation, alternative energy is needed to replace existing energy. Microalgae is chosen to become one of renewable energy resource, especially biodiesel, because it contains high amount of lipid instead of other feedstock which usually used. Fortunately, Indonesia has large area of water and high intensity of sunlight so microalgae cultivation becomes easier. Nannochloropsis sp., one of microalgae species, becomes the main focus because of its high lipid content. Many ways to break the cell wall of microalgae so the lipid content inside the microalgae will be released, for example conventional extraction, ultrasonic wave extraction, pressing, and electrical method. The most effective way for extraction is electrical method such as pulsed electric field method (PEF). The principal work of this method is by draining the electrical current into parallel plate. Parallel plate will generate the electrical field to break microalgae cell wall and the lipid will be released. The aim of this work is to evaluate two-stage procedure for extraction of useful components from microalgae Nannochloropsis sp. The first stage of this procedure includes pre-treatment of microalgae by ethanol solvent extraction and the second stage applies the PEF extraction using a binary mixture of water and ethanol solvent. Ethanol is chosen as solvent because it's safer to be used and easier to be handled than other solvent. Some variables that used to study the most effective operation conditions are frequency and duty cycle for microalgae. The optimum condition based on this research are at frequency 1 Hz and duty cycle 13%.

  17. LIPID CLASS DISTRIBUTION OF HIGHLY UNSATURATED LONG CHAIN FATTY ACIDS IN MARINE DINOFLAGELLATES.

    EPA Science Inventory

    The very long chain highly unsaturated C28 fatty acids, octacosaheptaenoic [28:7(n-6)] and octacosaoctaenoic acid [28:8(n-3)], were found to be associated with phospholipids, obtained by fractionation of total lipid extracts into distinct lipid classes, in 4 and 6, respectively, ...

  18. Lipid Correction for Carbon Stable Isotope Analysis of Deep-sea Fishes

    EPA Science Inventory

    Lipid extraction is used prior to stable isotope analysis of fish tissues to remove variability in the carbon stable isotope ratio (d13C) caused by varying lipid content among samples. Our objective was to evaluate an application of a mass balance correction for the effect of lip...

  19. Valeriana officinalis extract and its main component, valerenic acid, ameliorate D-galactose-induced reductions in memory, cell proliferation, and neuroblast differentiation by reducing corticosterone levels and lipid peroxidation.

    PubMed

    Nam, Sung Min; Choi, Jung Hoon; Yoo, Dae Young; Kim, Woosuk; Jung, Hyo Young; Kim, Jong Whi; Kang, Soo-Yong; Park, Jaeil; Kim, Dong-Woo; Kim, Wan Jae; Yoon, Yeo Sung; Hwang, In Koo

    2013-11-01

    Valeriana officinalis is used in herbal medicine of many cultures as mild sedatives and tranquilizers. In this study, we investigated the effects of extract from valerian root extracts and its major component, valerenic acid on memory function, cell proliferation, neuroblast differentiation, serum corticosterone, and lipid peroxidation in adult and aged mice. For the aging model, D-galactose (100 mg/kg) was administered subcutaneously to 6-week-old male mice for 10 weeks. At 13 weeks of age, valerian root extracts (100 mg/kg) or valerenic acid (340 μg/kg) was administered orally to control and D-galactose-treated mice for 3 weeks. The dosage of valerenic acid (340 μg/kg), which is the active ingredient of valerian root extract, was determined by the content of valerenic acid in valerian root extract (3.401±0.066 mg/g) measured by HPLC. The administration of valerian root extract and valerenic acid significantly improved the preferential exploration of new objects in novel object recognition test and the escape latency, swimming speeds, platform crossings, and spatial preference for the target quadrant in Morris water maze test compared to the D-galactose-treated mice. Cell proliferation and neuroblast differentiation were significantly decreased, while serum corticosterone level and lipid peroxidation in hippocampus were significantly increased in the D-galactose-treated group compared to that in the control group. The administration of valerian root extract significantly ameliorated these changes in the dentate gyrus of both control and D-galactose-treated groups. In addition, valerenic acid also mitigated the D-galactose-induced reduction of these changes. These results indicate that valerian root extract and valerenic acid enhance cognitive function, promote cell proliferation and neuroblast differentiation, and reduce serum corticosterone and lipid peroxidation in aged mice. © 2013.

  20. Response of Microcystis aeruginosa BCCUSP 232 to barley (Hordeum vulgare L.) straw degradation extract and fractions.

    PubMed

    Mecina, Gustavo Franciscatti; Dokkedal, Anne Lígia; Saldanha, Luiz Leonardo; Chia, Mathias Ahii; Cordeiro-Araújo, Micheline Kézia; do Carmo Bittencourt-Oliveira, Maria; da Silva, Regildo Márcio Gonçalves

    2017-12-01

    The eutrophication of aquatic ecosystems is a serious environmental problem that leads to increased frequency of cyanobacterial blooms and concentrations of cyanotoxins. These changes in aquatic chemistry can negatively affect animal and human health. Environment-friendly methods are needed to control bloom forming cyanobacteria. We investigated the effect of Hordeum vulgare L. (barley) straw degradation extract and its fractions on the growth, oxidative stress, antioxidant enzyme activities, and microcystins content of Microcystis aeruginosa (Kützing) Kützing BCCUSP232. Exposure to the extract significantly (p<0.05) inhibited the growth of M. aeruginosa throughout the study, whereas only the highest concentration of fractions 1 and 2 significantly (p<0.05) reduced the growth of the cyanobacterium on day 10 of the experiment. The production of reactive oxygen species (ROS), lipid peroxidation and antioxidant enzyme activities were significantly (p<0.05) altered by the extract and fractions 1 and 2. Phytochemical profiling of the extract and its fractions revealed that the barley straw degradation process yielded predominantly phenolic acids. These results demonstrate that barley straw extract and its fractions can efficiently interfere with the growth and development of M. aeruginosa under laboratory conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Ursolic acid rich Ocimum sanctum L leaf extract loaded nanostructured lipid carriers ameliorate adjuvant induced arthritis in rats by inhibition of COX-1, COX-2, TNF-α and IL-1: Pharmacological and docking studies

    PubMed Central

    Abuzinadah, Mohammed F.; Alkreathy, Huda M.; Banaganapalli, Babajan; Mujeeb, Mohd

    2018-01-01

    Background Ursolic acid (UA) is a promising molecule with anti-inflammatory, analgesic and potential anti-arthritic activity. Methods This study was undertaken to make formulation and evaluation of Ocimum sanctum L. leaf extract (OLE) loaded nano-structured lipid carriers (OLE-NLCs) for improved transdermal delivery of UA. Different surfactants, solid lipids and liquid lipids were used for the preparation of NLCs. The NLCs were developed using emulsion solvent diffusion and evaporation method. Different physicochemical properties, entrapment efficacy, in vitro release evaluation, and ex vivo permeation studies of the prepared NLCs were carried out. The in vivo anti-arthritic activity of OLE-loaded NLC gel and control gel formulation (OLE free NLC gel) against Complete Freund's Adjuvant (CFA) induced arthritis in wister albino rats was also carried out. Results OLE-NLCs were composed of spherical particles having a mean particle size of ~120 nm, polydispersity index of ~0.162 and zeta potential of ~ -27 mV. The high entrapment efficiency (EE) of UA ~89.56% was attained. The in vitro release study demonstrated a prolonged release of UA from the NLCs up to 12 h. The developed formulation was found to be significantly better with respect to the drug permeation amount with an enhancement ratio of 2.69 as compared with marketed formulation. The in vivo biological activity investigations, studies showed that the newly prepared NLCs formulation of OLE showed excellent anti-arthritic activity and the results were found at par with standard marketed diclofenac gel for its analgesic and anti-arthritic activities. These results were also supported by radiological analysis and molecular docking studies. Conclusion The overall results proved that the prepared OLE-NLCs were very effective for the treatment of arthritis and the results were found at par with standard marketed the standard formulation of diclofenac gel. PMID:29558494

  2. Contribution of galloylation and polymerization to the antioxidant activity of polyphenols in fish lipid systems.

    PubMed

    Iglesias, Jacobo; Pazos, Manuel; Lois, Salomé; Medina, Isabel

    2010-06-23

    Polyphenolic fractions extracted from pine (Pinus pinaster) bark, grape (Vitis vinifera) pomace, and witch hazel (Hamamelis virginiana) bark were selected for investigating the influence of the number of phenolic units, polymerization, and the content of esterified galloyl residues (galloylation) on their efficacy for inhibiting lipid oxidation in fish lipid enriched foodstuffs. Experiments carried out with nongalloylated pine bark fractions with different polymerization degrees demonstrated that the number of catechin residues per molecule modulates their reducing and chelating properties in solution. In real food systems such as bulk fish oil and fish oil-in-water emulsions, the efficacy against lipid oxidation was highly dependent on the physical location of the antioxidant at the oxidative sensitive sites. The lowest polymerized fractions were the most efficient in bulk fish oil samples, whereas proanthocyanidins with an intermediate polymerization degree showed the highest activity in fish oil-in-water emulsions. Galloylation did not influence the antioxidant effectiveness of proanthocyanidins in bulk fish oils. The presence of galloyl groups favored the antioxidant activity of the polyphenols in emulsions, although results indicated that a high degree of galloylation did not improve significantly the activity found with medium galloylated proanthocyanidins. The results obtained in this research provide useful information about the relationship between structure and antioxidant activity in order to design antioxidant additives with application in fish oil-enriched functional foods.

  3. Modulatory effect of Scoparia dulcis in oxidative stress-induced lipid peroxidation in streptozotocin diabetic rats.

    PubMed

    Latha, M; Pari, L

    2003-01-01

    In light of evidence that diabetes mellitus is associated with oxidative stress and altered antioxidant status, we investigated the effect of Scoparia dulcis plant extracts (SPEt) (aqueous, ethanolic, and chloroform) in streptozotocin diabetic rats. Significant increases in the activities of insulin, superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, reduced glutathione, vitamin C, and vitamin E were observed in liver, kidney, and brain on treatment with SPEt. In addition, the treated groups also showed significant decreases in blood glucose, thiobarbituric acid-reactive substances, and hydroperoxide formation in tissues, suggesting its role in protection against lipid peroxidation-induced membrane damage. Thus, the results of the present study indicate that extracts of S. dulcis, especially the aqueous extract, showed a modulatory effect by attenuating the above lipid peroxidation in streptozotocin diabetes.

  4. Methods of downstream processing for the production of biodiesel from microalgae.

    PubMed

    Kim, Jungmin; Yoo, Gursong; Lee, Hansol; Lim, Juntaek; Kim, Kyochan; Kim, Chul Woong; Park, Min S; Yang, Ji-Won

    2013-11-01

    Despite receiving increasing attention during the last few decades, the production of microalgal biofuels is not yet sufficiently cost-effective to compete with that of petroleum-based conventional fuels. Among the steps required for the production of microalgal biofuels, the harvest of the microalgal biomass and the extraction of lipids from microalgae are two of the most expensive. In this review article, we surveyed a substantial amount of previous work in microalgal harvesting and lipid extraction to highlight recent progress in these areas. We also discuss new developments in the biodiesel conversion technology due to the importance of the connectivity of this step with the lipid extraction process. Furthermore, we propose possible future directions for technological or process improvements that will directly affect the final production costs of microalgal biomass-based biofuels. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Thermal alteration experiments on organic matter from recent marine sediments in relation to petroleum genesis

    NASA Technical Reports Server (NTRS)

    Ishiwatari, R.; Ishiwatari, M.; Rohrback, B. G.; Kaplan, I. R.

    1977-01-01

    Three fractions of organic matter: lipid (benzene:methanol-extractable), humic acid (alkali-extractable) and kerogen (residue) were extracted from a young marine sediment (Tanner Basin, offshore southern California) and heated for different times (5-116 hr) and temperatures (150-410 C). The volatile (gases) and liquid products, as well as residual material, were then analyzed. On a weight basis, the lipid fraction produced 58% of the total identified n-alkanes, the kerogen fraction 41%, and the humic acid less than 1%. The volatiles produced by heating the lipid and humic acid fractions were largely CO2 and water, whereas those produced from heated kerogen also included methane, hydrogen gas and small amounts of C2-C4 hydrocarbons. A mechanism for hydrocarbon production due to the thermal alteration of organic constituents of marine sediment is discussed.

  6. Bovine binder-of-sperm protein BSP1 promotes protrusion and nanotube formation from liposomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lafleur, Michel, E-mail: michel.lafleur@umontreal.ca; Courtemanche, Lesley; Karlsson, Goeran

    Research highlights: {yields} Binder-of-sperm protein 1 (BSP1) modifies the morphology of lipidic vesicles inducing bead necklace-like and thread-like structures. {yields} In the presence of multilamellar liposomes, BSP1 leads to the formation of long nanotubes. {yields} The insertion of BSP1 in the external lipid leaflet of membranes induces local changes in bilayer curvature. -- Abstract: Binder-of-sperm (BSP) proteins interact with sperm membranes and are proposed to extract selectively phosphatidylcholine and cholesterol from these. This change in lipid composition is a key step in sperm capacitation. The present work demonstrates that the interactions between the protein BSP1 and model membranes composed withmore » phosphatidylcholine lead to drastic changes in the morphology of the lipidic self-assemblies. Using cryo-electron microscopy and fluorescence microscopy, we show that, in the presence of the protein, the lipid vesicles elongate, and form bead necklace-like structures that evolve toward small vesicles or thread-like structures. In the presence of multilamellar vesicles, where a large reservoir of lipid is available, the presence of BSP proteins lead to the formation of long nanotubes. Long spiral-like threads, associated with lipid/protein complexes, are also observed. The local curvature of lipid membranes induced by the BSP proteins may be involved in lipid domain formation and the extraction of some lipids during the sperm maturation process.« less

  7. Ameliorating reactive oxygen species-induced in vitro lipid peroxidation in brain, liver, mitochondria and DNA damage by Zingiber officinale Roscoe.

    PubMed

    Ajith, T A

    2010-01-01

    Iron is an essential nutrient for a number of cellular activities. However, excess cellular iron can be toxic by producing reactive oxygen species (ROS) such as superoxide anion (O(2) (-)) and hydroxyl radical (HO(·)) that damage proteins, lipids and DNA. Mutagenic and genotoxic end products of lipid peroxidation can induce the decline of mitochondrial respiration and are associated with various human ailments including aging, neurodegenerative disorders, cancer etc. Zingiber officinale Roscoe (ginger) is a widely used spice around the world. The protective effect of aqueous ethanol extract of Z. officinale against ROS-induced in vitro lipid peroxidation and DNA damage was evaluated in this study. The lipid peroxidation was induced by hydroxyl radical generated from Fenton's reaction in rat liver and brain homogenates and mitochondrial fraction (isolated from rat liver). The DNA protection was evaluated using H(2)O(2)-induced changes in pBR-322 plasmid and Fenton reaction-induced DNA fragmentation in rat liver. The results indicated that Z. officinale significantly (P<0.001) protected the lipid peroxidation in all the tissue homogenate/mitochondria. The extract at 2 and 0.5 mg/ml could protect 92 % of the lipid peroxidation in brain homogenate and liver mitochondria respectively. The percent inhibition of lipid peroxidation at 1mg/ml of Z. officinale in the liver homogenate was 94 %. However, the extract could partially alleviate the DNA damage. The protective mechanism can be correlated to the radical scavenging property of Z. officinale. The results of the study suggest the possible nutraceutical role of Z. officinale against the oxidative stress induced human ailments.

  8. Flavonoids and saponins extracted from black bean (Phaseolus vulgaris L.) seed coats modulate lipid metabolism and biliary cholesterol secretion in C57BL/6 mice.

    PubMed

    Chavez-Santoscoy, Rocio A; Gutierrez-Uribe, Janet A; Granados, Omar; Torre-Villalvazo, Ivan; Serna-Saldivar, Sergio O; Torres, Nimbe; Palacios-González, Berenice; Tovar, Armando R

    2014-09-28

    Black bean (Phaseolus vulgaris L.) seed coats are a rich source of natural compounds with potential beneficial effects on human health. Beans exert hypolipidaemic activity; however, this effect has not been attributed to any particular component, and the underlying mechanisms of action and protein targets remain unknown. The aim of the present study was to identify and quantify primary saponins and flavonoids extracted from black bean seed coats, and to study their effects on lipid metabolism in primary rat hepatocytes and C57BL/6 mice. The methanol extract of black bean seed coats, characterised by a HPLC system with a UV-visible detector and an evaporative light-scattering detector and HPLC-time-of-flight/MS, contained quercetin 3-O-glucoside and soyasaponin Af as the primary flavonoid and saponin, respectively. The extract significantly reduced the expression of SREBP1c, FAS and HMGCR, and stimulated the expression of the reverse cholesterol transporters ABCG5/ABCG8 and CYP7A1 in the liver. In addition, there was an increase in the expression of hepatic PPAR-α. Consequently, there was a decrease in hepatic lipid depots and a significant increase in bile acid secretion. Furthermore, the ingestion of this extract modulated the proportion of lipids that was used as a substrate for energy generation. Thus, the results suggest that the extract of black bean seed coats may decrease hepatic lipogenesis and stimulate cholesterol excretion, in part, via bile acid synthesis.

  9. Cultivation, characterization, and properties of Chlorella vulgaris microalgae with different lipid contents and effect on fast pyrolysis oil composition.

    PubMed

    Adamakis, Ioannis-Dimosthenis; Lazaridis, Polykarpos A; Terzopoulou, Evangelia; Torofias, Stylianos; Valari, Maria; Kalaitzi, Photeini; Rousonikolos, Vasilis; Gkoutzikostas, Dimitris; Zouboulis, Anastasios; Zalidis, Georgios; Triantafyllidis, Konstantinos S

    2018-06-01

    A systematic study of the effect of nitrogen levels in the cultivation medium of Chlorella vulgaris microalgae grown in photobioreactor (PBR) on biomass productivity, biochemical and elemental composition, fatty acid profile, heating value (HHV), and composition of the algae-derived fast pyrolysis (bio-oil) is presented in this work. A relatively high biomass productivity and cell concentration (1.5 g of dry biomass per liter of cultivation medium and 120 × 10 6 cells/ml, respectively) were achieved after 30 h of cultivation under N-rich medium. On the other hand, the highest lipid content (ca. 36 wt.% on dry biomass) was obtained under N-depletion cultivation conditions. The medium and low N levels favored also the increased concentration of the saturated and mono-unsaturated C16:0 and C18:1(n-9) fatty acids (FA) in the lipid/oil fraction, thus providing a raw lipid feedstock that can be more efficiently converted to high-quality biodiesel or green diesel (via hydrotreatment). In terms of overall lipid productivity, taking in consideration both the biomass concentration in the medium and the content of lipids on dry biomass, the most effective system was the N-rich one. The thermal (non-catalytic) pyrolysis of Chlorella vulgaris microalgae produced a highly complex bio-oil composition, including fatty acids, phenolics, ethers, ketones, etc., as well as aromatics, alkanes, and nitrogen compounds (pyrroles and amides), originating from the lipid, protein, and carbohydrate fractions of the microalgae. However, the catalytic fast pyrolysis using a highly acidic ZSM-5 zeolite, afforded a bio-oil enriched in mono-aromatics (BTX), reducing at the same time significantly oxygenated compounds such as phenolics, acids, ethers, and ketones. These effects were even more pronounced in the catalytic fast pyrolysis of Chlorella vulgaris residual biomass (after extraction of lipids), thus showing for the first time the potential of transforming this low value by-product towards high added value platform chemicals.

  10. [Effect of total hypothermia on the fatty acid composition of blood phospholipids of rats and sousliks and light irradiation on chemical processes in lipid extract].

    PubMed

    Zabelinskiĭ, S A; Chebotareva, M A; Kalandarov, A M; Feĭzulaev, B A; Klichkhanov, N K; Krivchenko, A I; Kazennov, A M

    2011-01-01

    Effect of hypothermia on the fatty acid composition of rat and souslik blood phospholipids is studied. Different reaction of these animals to cooling is revealed: in rats no changes were observed in the fatty acid composition of blood phospholipids, whereas in the hibernating there were significant changes in the content of individual fatty acids (FA). The content of monoenic acids in sousliks decreased almost by 50%, while the content of saturated acid (C18) and of polyenic acids C18 : 2omega6 and C20 : 4omega6 rose significantly. Such changes seem to be the mechanism that promotes maintenance of the organism viability under conditions of a decreased level of metabolism, heart rhythm, and body temperature and is evolutionarily acquired. At the same time, the observed changes in the content of individual FA do not lead to sharp changes in such integrative parameters as the total non-saturation of phospholipids, which determines liquid properties of chylomicrons and other lipolipoprotein transport particles of the souslik blood. There are studied absorption spectra of blood lipid extracts of rats and sousliks under effect of light as well as effect of light upon the FA composition of lipid extracts of these animals. The FA composition of lipid extracts has been established to remain practically constant, whereas the character of changes of spectra under action of light indicates the presence in the extracts of oxidation-reduction reactions. The obtained data allow suggesting that in the lipid extract there occurs cooperation both of the phospholipid molecules themselves and of them with other organic molecules, which makes it possible for fatty acids to participate in processes of transport both of electrons and of protons. This novel role of FA as a participant of the electron transfer might probably be extrapolated to chemical reactions (processes) occurring inside the membrane.

  11. Characterization and storage stability of astaxanthin esters, fatty acid profile and α-tocopherol of lipid extract from shrimp (L. vannamei) waste with potential applications as food ingredient.

    PubMed

    Gómez-Estaca, J; Calvo, M M; Álvarez-Acero, I; Montero, P; Gómez-Guillén, M C

    2017-02-01

    In this work a lipid extract from shrimp waste was obtained and characterized. The most abundant fatty acids found were C16:0, C18:2n6c, C18:1n9c, C22:6n3, and C20:5n3. The extract contained all-trans-astaxanthin, two cis-astaxanthin isomers, 5 astaxanthin monoesters, and 10 astaxanthin diesters (7±1mg astaxanthin/g). C22:6n3 and C20:5n3 were the most frequent fatty acids in the esterified forms. Appreciable amounts of α-tocopherol and cholesterol were also found (126±11mg/g and 65±1mg/g, respectively). Little lipid oxidation was observed after 120days of storage at room temperature, revealed by a slight reduction of ω-3 fatty acids, but neither accumulation of TBARS nor formation of oxidized cholesterol forms was found. This is attributed to the antioxidant effect of astaxanthin and α-tocopherol, as their concentrations decreased as storage continued. The lipid extract obtained has interesting applications as food ingredient, owing to the coloring capacity and the presence of healthy components. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Olive Leaf Extract Elevates Hepatic PPAR α mRNA Expression and Improves Serum Lipid Profiles in Ovariectomized Rats.

    PubMed

    Yoon, Leena; Liu, Ya-Nan; Park, Hyunjin; Kim, Hyun-Sook

    2015-07-01

    We hypothesized that olive leaf extract might alleviate dyslipidemia resulting from estrogen deficiency. Serum lipid profile and mRNA expression of the related genes in the liver and adipose tissue were analyzed after providing olive leaf extract (200 or 400 mg/kg body weight; n=7 for each group) to ovariectomized rats for 10 weeks. After 10 weeks' administration, the rats in the olive leaf extract-administered groups showed significantly lower levels of serum triglyceride and very-low-density lipoprotein (VLDL)-cholesterol compared with the rats in the control group, whereas the administration of olive leaf extract did not significantly change the elevated low-density lipoprotein cholesterol levels. In addition, administration of high dose of olive leaf extract significantly decreased the liver triglyceride and increased serum estradiol levels. mRNA expressions of peroxisome proliferator-activated receptor alpha (PPAR α) and acyl-CoA oxidase (ACO) were not affected by ovariectomy, however, administration of olive leaf extract significantly increased both PPAR α and ACO mRNA expression. Expression of adiponectin mRNA in adipose tissue was significantly decreased in the ovariectomized control group. Rats administered low-dose olive leaf extract showed significantly elevated adiponectin mRNA expression compared with rats in the ovariectomized control group. Even though dose-dependent effects were not observed in most of the measurements, these results suggest that genes involved in lipid metabolism may be regulated by olive leaf extract administration in ovariectomized rats.

  13. In vitro inhibition activity of polyphenol-rich extracts from Syzygium aromaticum (L.) Merr. & Perry (Clove) buds against carbohydrate hydrolyzing enzymes linked to type 2 diabetes and Fe(2+)-induced lipid peroxidation in rat pancreas.

    PubMed

    Adefegha, Stephen Adeniyi; Oboh, Ganiyu

    2012-10-01

    To investigate and compare the inhibitory properties of free and bound phenolic extracts of clove bud against carbohydrate hydrolyzing enzymes (alpha-amylase & alpha-glucosidase) and Fe(2+)-induced lipid peroxidation in rat pancreas in vitro. The free phenolics were extracted with 80% (v/v) acetone, while bound phenolics were extracted from the alkaline and acid hydrolyzed residue with ethyl acetate. Then, the interaction of the extracts with alpha-amylase and alpha-glucosidase was subsequently assessed. Thereafter, the total phenolic contents and antioxidant activities of the extracts were determined. The result revealed that both extracts inhibited alpha-amylase and alpha-glucosidase in a dose-dependent manner. However, the alpha-glucosidase inhibitory activity of the extracts were significantly (P<0.05) higher than their alpha-amylase inhibitory activity. The free phenolics (31.67 mg/g) and flavonoid (17.28 mg/g) contents were significantly (P<0.05) higher than bound phenolic (23.52 mg/g) and flavonoid (13.70 mg/g) contents. Both extracts also exhibited high antioxidant activities as typified by their high reducing power, 1,1 diphenyl-2- picrylhydrazyl (DPPH) and 2, 2-azinobis-3-ethylbenzo-thiazoline-6-sulfonate (ABTS) radical scavenging abilities, as well as inhibition of Fe(2+)-induced lipid peroxidation in rat pancreas in vitro. This study provides a biochemical rationale by which clove elicits therapeutic effect on type 2 diabetes.

  14. Activity of hawthorn leaf and bark extracts in relation to biological membrane.

    PubMed

    Włoch, Aleksandra; Kapusta, Ireneusz; Bielecki, Krzysztof; Oszmiański, Jan; Kleszczyńska, Halina

    2013-07-01

    The aim of the study was to identify and determine the percent content of polyphenols in extracts from leaves and hawthorn bark, to examine the effect of the extracts on the properties of the biological membrane as well as to determine their antioxidant activity toward membrane lipids. In particular, a biophysical investigation was conducted on the effect of hawthorn extracts on the osmotic resistance and morphology of erythrocyte cells and on the packing of the heads of membrane lipids. Analysis of the polyphenol content of extracts used the HPLC method. Analysis of the polyphenol composition has shown a dominant share of procyanidins and epicatechin in both extracts. The research showed that the polyphenolic compounds contained in hawthorn extracts are incorporated mainly into the hydrophilic part of the erythrocyte membrane, inducing echinocyte shapes. They also diminish the packing order of the lipid polar heads of the membrane, as evidenced by the lowered generalized polarization values of Laurdan. The substances used induced increased osmotic pressure of erythrocytes, making them less sensitive to changes in osmotic pressure. The presence of the extract compounds in the outer hydrophilic part of the erythrocyte membrane, evidenced by examination of the shapes and packing in the hydrophilic part of membrane, indicates that the substances constitute a kind of barrier that protects the erythrocyte membrane against free radicals, while the membrane-bound extracts do not disturb the membrane structure and, thus, do not cause any side effects.

  15. Solid-phase extraction clean-up of ciguatoxin-contaminated coral fish extracts for use in the mouse bioassay.

    PubMed

    Wong, Chun Kwan; Hung, Patricia; Lee, Kellie L H; Kam, Kai Man

    2009-02-01

    Florisil solid-phase extraction (SPE) cartridges were used for purifying ciguatoxin (CTX)-contaminated coral fish extracts, with the aim of removing extracted lipid but retaining optimal level of CTXs in the purified fractions. The CTX-containing fraction (target fraction) in fish ether extract was isolated and purified by eluting through a commercially available Florisil cartridge with hexane-acetone-methanol solvent mixtures of increasing polarity (hexane-acetone (4:1, v/v) < acetone-methanol (7:3, v/v) < 100% methanol). Application of Florisil SPE using acetone-methanol (7:3, v/v) condition facilitated the separation of 4.2 +/- 0.4 mg (mean +/- standard error of the mean (SEM)) of purified target fraction from 20 mg ether extract with good retention of CTXs. The mouse bioassay was used to demonstrate that the average CTX recovery of the target fraction from CTX-spiked samples was 75.8% +/- 3.3%, which was significantly increased by 96.7% +/- 15% when compared with CTX recovery from ether extracts (44.8% +/- 5.2%) without performing SPE purification. Over 70% of non-target lipids were removed in which no CTX toxicity was found. Moreover, the target fractions of both CTX-spiked and naturally CTX-contaminated samples gave more prominent toxic responses of hypothermia and/or induced more rapid death of the mice. The use of acetone-methanol (7:3, v/v) condition in the elution could significantly improve overall recovery of CTXs, while minimizing the possible interferences of lipid matrix from co-extractants on mice.

  16. LC-MS-Based Lipidomics and Automated Identification of Lipids Using the LipidBlast In-Silico MS/MS Library.

    PubMed

    Cajka, Tomas; Fiehn, Oliver

    2017-01-01

    This protocol describes the analysis, specifically the identification, of blood plasma lipids. Plasma lipids are extracted using methyl tert-butyl ether (MTBE), methanol, and water followed by separation and data acquisition of isolated lipids using reversed-phase liquid chromatography coupled to quadrupole/time-of-flight mass spectrometry (RPLC-QTOFMS) operated in MS/MS mode. For lipid identification, acquired MS/MS spectra are converted to the mascot generic format (MGF) followed by library search using the in-silico MS/MS library LipidBlast. Using this approach, lipid classes, carbon-chain lengths, and degree of unsaturation of fatty-acid components are annotated.

  17. Antioxidant and Antimicrobial Effects of Pistacia lentiscus L. Extracts in Pork Sausages

    PubMed Central

    Botsaris, George; Orphanides, Antia; Yiannakou, Evgenia; Gekas, Vassilis

    2015-01-01

    Summary Pistacia lentiscus fruits are ingredients of traditional Cypriot sausages. The objective of this study is to evaluate P. lentiscus extracts as natural additives to the sausages. First, the phenolic content and antioxidant activity of fruit and leaf extracts were determined. Results revealed that leaves are richer source of polyphenolic antioxidants than fruits, with methanol being the better extraction solvent. In the next step, the antioxidant and antimicrobial effects of methanolic extracts (300 mg/kg) in the pork sausage formulation were investigated. Peroxide, acid and thiobarbituric acid-reactive substance values demonstrated that both fruit and leaf extracts reduced the rate of lipid oxidation of sausages at 4 °C. Total viable count revealed significant differences on the fifth day of storage, with better microbial inhibition by leaf extract. No significant differences between the extracts were observed after the tenth day of storage. Overall, the extracts can be used to prevent lipid oxidation and reduce microbial spoilage during the first days of storage of fresh traditional pork sausages. PMID:27904382

  18. Antioxidant and Antimicrobial Effects of Pistacia lentiscus L. Extracts in Pork Sausages.

    PubMed

    Botsaris, George; Orphanides, Antia; Yiannakou, Evgenia; Gekas, Vassilis; Goulas, Vlasios

    2015-12-01

    Pistacia lentiscus fruits are ingredients of traditional Cypriot sausages. The objective of this study is to evaluate P. lentiscus extracts as natural additives to the sausages. First, the phenolic content and antioxidant activity of fruit and leaf extracts were determined. Results revealed that leaves are richer source of polyphenolic antioxidants than fruits, with methanol being the better extraction solvent. In the next step, the antioxidant and antimicrobial effects of methanolic extracts (300 mg/kg) in the pork sausage formulation were investigated. Peroxide, acid and thiobarbituric acid-reactive substance values demonstrated that both fruit and leaf extracts reduced the rate of lipid oxidation of sausages at 4 °C. Total viable count revealed significant differences on the fifth day of storage, with better microbial inhibition by leaf extract. No significant differences between the extracts were observed after the tenth day of storage. Overall, the extracts can be used to prevent lipid oxidation and reduce microbial spoilage during the first days of storage of fresh traditional pork sausages.

  19. Protective Effects of Ellagitannin-Rich Strawberry Extracts on Biochemical and Metabolic Disturbances in Rats Fed a Diet High in Fructose.

    PubMed

    Fotschki, Bartosz; Juśkiewicz, Jerzy; Kołodziejczyk, Krzysztof; Jurgoński, Adam; Kosmala, Monika; Milala, Joanna; Ognik, Katarzyna; Zduńczyk, Zenon

    2018-04-04

    The present study compares the effects of two dietary strawberry extracts rich in monomeric (ME) or dimeric (DE) ellagitannins (ETs) on gastrointestinal, blood and tissue biomarkers in Wistar rats fed high-fructose diets. Both strawberry extracts beneficially affect the antioxidant status and lipid profile of the liver and serum. The ME extract shows a greater ability to inhibit lipid peroxidation in kidneys, more effectively decreases serum and liver triglycerides, and exerts greater anti-inflammatory effects in blood serum than the DE extract. The DE extract significantly reduces the activity of microbial enzymes in the cecum. These effects might be associated with higher cecum and urine levels of ET metabolites in rats fed with ME than in rats fed with DE. In conclusion, the diet-induced fructose-related disturbances observed in biochemical parameters are regulated by both extracts; nevertheless, the beneficial effects of the ME extract are mostly associated with systemic parameters, while those of the DE extracts are associated with local microbial activity.

  20. Effect of ethanolic fruit extract of Cucumis trigonus Roxb. on antioxidants and lipid peroxidation in urolithiasis induced wistar albino rats

    PubMed Central

    Balakrishnan, A.; Kokilavani, R; Gurusamy, K.; Teepa, K. S. Ananta; Sathya, M.

    2011-01-01

    Urolithiasis was induced using ethylene glycol in wistar albino rats, the formation of calcium stones in the kidney results with the damage of antioxidant system. Ethanolic extract of Cucumis trigonus Roxb fruit of family Curcurbitaceae was used to treat urolithiasis. On this course, the extract also repairs the changes that happened in the enzymatic, non enzymatic antioxidants and lipid peroxidation in liver and kidney of urolithiasis induced rats. The results obtained from the analysis were compared at 5% level of significance using one way ANOVA. The results show that the ethanolic fruit extract has repaired the levels of antioxidants and malondialdehyde to their normal levels. PMID:22736884

  1. The role of helper lipids in the intracellular disposition and transfection efficiency of niosome formulations for gene delivery to retinal pigment epithelial cells.

    PubMed

    Ojeda, Edilberto; Puras, Gustavo; Agirre, Mireia; Zarate, Jon; Grijalvo, Santiago; Eritja, Ramon; DiGiacomo, Luca; Caracciolo, Giulio; Pedraz, Jose-Luis

    2016-04-30

    In this work, we carried out a comparative study of four different niosome formulations based on the same cationic lipid and non-ionic tensoactive. The niosomes prepared by oil-in-water emulsion technique (o/w) only differed in the helper lipid composition: squalene, cholesterol, squalane or no helper lipid. Niosomes and nioplexes elaborated upon the addition of pCMS-EGFP reporter plasmid were characterized in terms of size, zeta potential and polydispersity index. The capacity of the niosomes to condense, release and protect the DNA against enzymatic degradation was evaluated by agarose gel electrophoresis. In vitro experiments were carried out to evaluate transfection efficiency and cell viability in retinal pigment epithelial cells. Moreover, uptake and intracellular trafficking studies were performed to further understand the role of the helper lipids in the transfection process. Interestingly, among all tested formulations, niosomes elaborated with squalene as helper lipid were the most efficient transfecting cells. Such transfection efficiency could be attributed to their higher cellular uptake and the particular entry pathways used, where macropinocytosis pathway and lysosomal release played an important role. Therefore, these results suggest that helper lipid composition is a crucial step to be considered in the design of niosome formulation for retinal gene delivery applications since clearly modulates the cellular uptake, internalization mechanism and consequently, the final transfection efficiency. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Differential effects of lipid depletion on membrane sodium-plus-potassium ion-dependent adenosine triphosphatase and potassium ion-dependent phosphatase.

    PubMed Central

    Wheeler, K P; Walker, J A

    1975-01-01

    The phospholipid-dependence of the (Na-++K-+)-dependent ATPase (adenosine triphosphatase) (EC 3.6.1.3) and associated K-+-dependent phosphatase activity (EC 3.6.1.7) have been compared. Unlike the (Na-++K-+)-dependent ATPase activities, the K-+-dependent phosphatase activities of a number of different preparations were not closely correlated with their total phospholipid contents. After partial lipid depletion with a single extraction in Lubrol W the residual ATPase and phosphatase activities were correlated, but their magnitudes were quite different: on average only about 5% of the former remained compared with 50% of the latter. A similar differential effect on these activities was found after extraction with deoxycholate. In contrast with the ATPase, consistent restoration of the phosphatase activity of Lubrol-extracted enzymes by added exogenous phospholipids was not observed. We conclude that, although the K-+-dependent phosphatase may be lipid-dependent, the lipid requirement must be different from that of the complete ATPase system, and this difference should help investigations of their relationship. PMID:167727

  3. Sensitive assay, based on hydroxy fatty acids from lipopolysaccharide lipid A, for Gram-negative bacteria in sediments.

    PubMed Central

    Parker, J H; Smith, G A; Fredrickson, H L; Vestal, J R; White, D C

    1982-01-01

    Biochemical measures have provided insight into the biomass and community structure of sedimentary microbiota without the requirement of selection by growth or quantitative removal from the sediment grains. This study used the assay of the hydroxy fatty acids released from the lipid A of the lipopolysaccharide in sediments to provide an estimate of the gram-negative bacteria. The method was sensitive to picomolar amounts of hydroxy fatty acids. The recovery of lipopolysaccharide hydroxy fatty acids from organisms added to sediments was quantitative. The lipids were extracted from the sediments with single-phase chloroform-methanol extraction. The lipid-extraction residue was hydrolyzed in 1 N HCl, and the hydroxy fatty acids of the lipopolysaccharide were recovered in chloroform for analysis by gas-liquid chromatography. This method proved to be about fivefold more sensitive than the classical phenol-water or trichloroacetic acid methods when applied to marine sediments. By examination of the patterns of hydroxy fatty acids, it was also possible to help define the community structure of the sedimentary gram-negative bacteria. PMID:6817712

  4. Role of the Cationic C-Terminal Segment of Melittin on Membrane Fragmentation.

    PubMed

    Therrien, Alexandre; Fournier, Alain; Lafleur, Michel

    2016-05-05

    The widespread distribution of cationic antimicrobial peptides capable of membrane fragmentation in nature underlines their importance to living organisms. In the present work, we determined the impact of the electrostatic interactions associated with the cationic C-terminal segment of melittin, a 26-amino acid peptide from bee venom (net charge +6), on its binding to model membranes and on the resulting fragmentation. In order to detail the role played by the C-terminal charges, we prepared a melittin analogue for which the four cationic amino acids in positions 21-24 were substituted with the polar residue citrulline, providing a peptide with the same length and amphiphilicity but with a lower net charge (+2). We compared the peptide bilayer affinity and the membrane fragmentation for bilayers prepared from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)/1,2-dipalmitoyl-sn-glycero-3-phospho-l-serine (DPPS) mixtures. It is shown that neutralization of the C-terminal considerably increased melittin affinity for zwitterionic membranes. The unfavorable contribution associated with transferring the cationic C-terminal in a less polar environment was reduced, leaving the hydrophobic interactions, which drive the peptide insertion in bilayers, with limited counterbalancing interactions. The presence of negatively charged lipids (DPPS) in bilayers increased melittin binding by introducing attractive electrostatic interactions, the augmentation being, as expected, greater for native melittin than for its citrullinated analogue. The membrane fragmentation power of the peptide was shown to be controlled by electrostatic interactions and could be modulated by the charge carried by both the membrane and the lytic peptide. The analysis of the lipid composition of the extracted fragments from DPPC/DPPS bilayers revealed no lipid specificity. It is proposed that extended phase separations are more susceptible to lead to the extraction of a lipid species in a specific manner than a specific lipid-peptide affinity. The present work on the lipid extraction by melittin and citrullinated melittin with model membranes emphasizes the complex relation between the affinity, the lipid extraction/membrane fragmentation, and the lipid specificity.

  5. Ultrasonication followed by single-drop microextraction combined with GC/MS for rapid determination of organochlorine pesticides from fish.

    PubMed

    Shrivas, Kamlesh; Wu, Hui-Fen

    2008-02-01

    A novel, rapid and simple sample pretreatment technique termed ultrasonication followed by single-drop micro-extraction (U-SDME) has been developed and combined with GC/MS for the determination of organochlorine pesticides (OCPs) in fish. In the present work, the lengthy procedures generally used in the conventional methods like, Soxhlet extraction, supercritical fluid extraction, pressurized liquid extraction and microwave assisted solvent extraction for extraction of OCPs from fish tissues are minimized by the use of two simple extraction procedures. Firstly, OCPs from fish were extracted in organic solvent with ultrasonication and then subsequently preconcentrated by single-drop micro-extraction (SDME). Extraction parameters of ultrasonication and SDME were optimized in spiked sample solution in order to obtain efficient extraction of OCPs from fish tissues. The calibration curves for OCPs were found to be linear between 10-1000 ng/g with correlation of estimations in the range 0.990-0.994. The recoveries obtained in blank fish tissues were ranged from 82.1 to 95.3%. The LOD and RSD for determination of OCPs in fish were 0.5 ng/g and 9.4-10.0%, respectively. The proposed method was applied for the determination of bioconcentration factor in fish after exposure to different concentrations of OCPs in cultured water. The present method avoids the co-extraction of lipids, long extraction steps (>12 h) and large amount of organic solvent for the separation of OCPs. The main advantages of the present method are rapid, selective, sensitive and low cost for the determination of OCPs in fish.

  6. Molecular evidence of Late Archean archaea and the presence of a subsurface hydrothermal biosphere

    PubMed Central

    Ventura, Gregory T.; Kenig, Fabien; Reddy, Christopher M.; Schieber, Juergen; Frysinger, Glenn S.; Nelson, Robert K.; Dinel, Etienne; Gaines, Richard B.; Schaeffer, Philippe

    2007-01-01

    Highly cracked and isomerized archaeal lipids and bacterial lipids, structurally changed by thermal stress, are present in solvent extracts of 2,707- to 2,685-million-year-old (Ma) metasedimentary rocks from Timmins, ON, Canada. These lipids appear in conventional gas chromatograms as unresolved complex mixtures and include cyclic and acyclic biphytanes, C36–C39 derivatives of the biphytanes, and C31–C35 extended hopanes. Biphytane and extended hopanes are also found in high-pressure catalytic hydrogenation products released from solvent-extracted sediments, indicating that archaea and bacteria were present in Late Archean sedimentary environments. Postdepositional, hydrothermal gold mineralization and graphite precipitation occurred before metamorphism (≈2,665 Ma). Late Archean metamorphism significantly reduced the kerogen's adsorptive capacity and severely restricted sediment porosity, limiting the potential for post-Archean additions of organic matter to the samples. Argillites exposed to hydrothermal gold mineralization have disproportionately high concentrations of extractable archaeal and bacterial lipids relative to what is releasable from their respective high-pressure catalytic hydrogenation product and what is observed for argillites deposited away from these hydrothermal settings. The addition of these lipids to the sediments likely results from a Late Archean subsurface hydrothermal biosphere of archaea and bacteria. PMID:17726114

  7. Labeling viral envelope lipids with quantum dots by harnessing the biotinylated lipid-self-inserted cellular membrane.

    PubMed

    Lv, Cheng; Lin, Yi; Liu, An-An; Hong, Zheng-Yuan; Wen, Li; Zhang, Zhenfeng; Zhang, Zhi-Ling; Wang, Hanzhong; Pang, Dai-Wen

    2016-11-01

    Highly efficient labeling of viruses with quantum dots (QDs) is the prerequisite for the long-term tracking of virus invasion at the single virus level to reveal mechanisms of virus infection. As one of the structural components of viruses, viral envelope lipids are hard to be labeled with QDs due to the lack of efficient methods to modify viral envelope lipids. Moreover, it is still a challenge to maintain the intactness and infectivity of labeled viruses. Herein, a mild method has been developed to label viral envelope lipids with QDs by harnessing the biotinylated lipid-self-inserted cellular membrane. Biotinylated lipids can spontaneously insert in cellular membranes of host cells during culture and then be naturally assembled on progeny Pseudorabies virus (PrV) via propagation. The biotinylated PrV can be labeled with streptavidin-conjugated QDs, with a labeling efficiency of ∼90%. Such a strategy to label lipids with QDs can retain the intactness and infectivity of labeled viruses to the largest extent, facilitating the study of mechanisms of virus infection at the single virus level. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Lipids of parasitic and saprophytic leptospires.

    PubMed

    Johnson, R C; Livermore, B P; Walby, J K; Jenkin, H M

    1970-09-01

    The lipid composition of five parasitic and six saprophytic leptospires was compared. Lipids comprise 18 to 26% of the dry weight of the cells after chloroform-methanol extraction. No residual (bound) lipid was found after acid or alkaline hydrolysis of the extracted residue. The total lipid was composed of 60 to 70% phospholipid, and the remaining lipid was free fatty acids. The phospholipid fraction contained phosphatidylethanolamine as the major component, and phosphatidylglycerol and diphosphatidylglycerol were minor components with traces of lysophatidylethanolamine sometimes found. The major fatty acids of leptospires were hexadecanoic, hexadecenoic, and octadecenoic acids. Both the unusual cis-11-hexadecenoic acid and the more common cis-9-hexadecenoic acid were synthesized by the leptospires. Neither the parasitic nor the saprophytic leptospires can chain elongate fatty acids. However, they were capable of beta-oxidation of fatty acids. Both groups of leptospires desaturate fatty acids by an aerobic pathway. When the parasite canicola was cultivated on octadecanoic acid, 87% of the hexadecenoic acid was the 11 isomer, whereas the saprophyte semeranga consisted of 10% of this isomer. In addition, the saprophytic leptospires contained more tetradecanoic acid than the parasites. No differences were observed in the lipid composition of virulent and avirulent strains of canicola.

  9. Lipids of Parasitic and Saprophytic Leptospires

    PubMed Central

    Johnson, R. C.; Livermore, B. P.; Walby, Judith K.; Jenkin, H. M.

    1970-01-01

    The lipid composition of five parasitic and six saprophytic leptospires was compared. Lipids comprise 18 to 26% of the dry weight of the cells after chloroform-methanol extraction. No residual (bound) lipid was found after acid or alkaline hydrolysis of the extracted residue. The total lipid was composed of 60 to 70% phospholipid, and the remaining lipid was free fatty acids. The phospholipid fraction contained phosphatidylethanolamine as the major component, and phosphatidylglycerol and diphosphatidylglycerol were minor components with traces of lysophatidylethanolamine sometimes found. The major fatty acids of leptospires were hexadecanoic, hexadecenoic, and octadecenoic acids. Both the unusual cis-11-hexadecenoic acid and the more common cis-9-hexadecenoic acid were synthesized by the leptospires. Neither the parasitic nor the saprophytic leptospires can chain elongate fatty acids. However, they were capable of β-oxidation of fatty acids. Both groups of leptospires desaturate fatty acids by an aerobic pathway. When the parasite canicola was cultivated on octadecanoic acid, 87% of the hexadecenoic acid was the 11 isomer, whereas the saprophyte semeranga consisted of 10% of this isomer. In addition, the saprophytic leptospires contained more tetradecanoic acid than the parasites. No differences were observed in the lipid composition of virulent and avirulent strains of canicola. PMID:16557833

  10. Lipid Composition of Oil Extracted from Wasted Norway Lobster (Nephrops norvegicus) Heads and Comparison with Oil Extracted from Antarctic Krill (Euphasia superba).

    PubMed

    Albalat, Amaya; Nadler, Lauren E; Foo, Nicholas; Dick, James R; Watts, Andrew J R; Philp, Heather; Neil, Douglas M; Monroig, Oscar

    2016-12-01

    In the UK, the Norway lobster ( Nephrops norvegicus ) supports its most important shellfish fishery. Nephrops are sold either whole, or as "tails-only" for the scampi trade. In the "tailing" process, the "head" (cephalothorax) is discarded as waste. A smaller crustacean species, the Antarctic krill Euphasia superba , represents an economically valuable industry, as its extractable oil is sold as a human dietary supplement. The aim of this study was to determine the amount and composition of the oil contained in discarded Nephrops heads and to compare its composition to the oil extracted from krill. Differences due to Geographical variation and seasonal patterns in the amount and composition of lipid were also noted. Results indicated that Nephrops head waste samples collected from more southern locations in Scotland (Clyde Sea area) contained higher levels of oil when compared to samples collected from northern locations in Iceland. Moreover, seasonal differences within the Clyde Sea area in Scotland were also observed, with oil extracted from Nephrops head waste peaking at around 11.5% during the summer months when larger and more mature females were caught by trawl. At this time of the year, the valuable fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) accounted for around 23% of the total fatty acid content in oil extracted from Nephrops head waste. A seasonal effect on EPA content was found, with higher levels obtained in the summer, while no trend was found in DHA percentages. Finally, oil from Nephrops head waste contained a higher proportion of EPA and DHA than krill oil but these fatty acids were more abundantly linked to the neutral lipids rather to than polar lipids. The characterization of lipid that could be extracted from Nephrops head waste should be seen as a first step for the commercial use of a valuable resource currently wasted. This approach is extremely relevant given the current limited supply of EPA and DHA and changes in the Common Fisheries Policy.

  11. Lipid Composition of Oil Extracted from Wasted Norway Lobster (Nephrops norvegicus) Heads and Comparison with Oil Extracted from Antarctic Krill (Euphasia superba)

    PubMed Central

    Albalat, Amaya; Nadler, Lauren E.; Foo, Nicholas; Dick, James R.; Watts, Andrew J. R.; Philp, Heather; Neil, Douglas M.; Monroig, Oscar

    2016-01-01

    In the UK, the Norway lobster (Nephrops norvegicus) supports its most important shellfish fishery. Nephrops are sold either whole, or as “tails-only” for the scampi trade. In the “tailing” process, the “head” (cephalothorax) is discarded as waste. A smaller crustacean species, the Antarctic krill Euphasia superba, represents an economically valuable industry, as its extractable oil is sold as a human dietary supplement. The aim of this study was to determine the amount and composition of the oil contained in discarded Nephrops heads and to compare its composition to the oil extracted from krill. Differences due to Geographical variation and seasonal patterns in the amount and composition of lipid were also noted. Results indicated that Nephrops head waste samples collected from more southern locations in Scotland (Clyde Sea area) contained higher levels of oil when compared to samples collected from northern locations in Iceland. Moreover, seasonal differences within the Clyde Sea area in Scotland were also observed, with oil extracted from Nephrops head waste peaking at around 11.5% during the summer months when larger and more mature females were caught by trawl. At this time of the year, the valuable fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) accounted for around 23% of the total fatty acid content in oil extracted from Nephrops head waste. A seasonal effect on EPA content was found, with higher levels obtained in the summer, while no trend was found in DHA percentages. Finally, oil from Nephrops head waste contained a higher proportion of EPA and DHA than krill oil but these fatty acids were more abundantly linked to the neutral lipids rather to than polar lipids. The characterization of lipid that could be extracted from Nephrops head waste should be seen as a first step for the commercial use of a valuable resource currently wasted. This approach is extremely relevant given the current limited supply of EPA and DHA and changes in the Common Fisheries Policy. PMID:27916863

  12. Molecular Dynamics Simulations of the Permeation of Bisphenol A and Pore Formation in a Lipid Membrane

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Chen, Junlang; Zhou, Guoquan; Wang, Yu; Xu, Can; Wang, Xiaogang

    2016-09-01

    Bisphenol A (BPA) is particularly considered as one of the most suspicious endocrine disruptors. Exposure to BPA may bring about possible human toxicities, such as cancerous tumors, birth defects and neoteny. One of the key issues to understand its toxicities is how BPA enters cells. In this paper, we perform molecular dynamics simulations to explore the interactions between BPA and a phospholipid membrane (dipalmitoylphosphatidylcholine, DPPC bilayer). The simulation results show that BPA can easily enter the membrane from the aqueous phase. With the increasing concentrations of BPA in the membrane, BPA tends to aggregate and form into cluster. Meanwhile, several DPPC lipids are pulled out from each leaflet and adsorbed on the cluster surface, leading to pore formation. Detailed observations indicate that the lipid extraction results mainly from the dispersion interactions between BPA cluster and lipid tails, as well as weak electrostatic attractions between lipid headgroups and the two hydroxyl groups on BPA. The lipid extraction and pore formation may cause cell membrane damage and are of great importance to uncover BPA’s cytotoxicity.

  13. Phytoremediation of agriculture runoff by filamentous algae poly-culture for biomethane production, and nutrient recovery for secondary cultivation of lipid generating microalgae.

    PubMed

    Bohutskyi, Pavlo; Chow, Steven; Ketter, Ben; Fung Shek, Coral; Yacar, Dean; Tang, Yuting; Zivojnovich, Mark; Betenbaugh, Michael J; Bouwer, Edward J

    2016-12-01

    An integrated system was implemented for water phytoremediation and biofuel production through sequential cultivation of filamentous algae followed by cultivation of lipid-producing microalgae Chlorella sorokiniana. Natural poly-culture of filamentous algae was grown in agricultural stormwater using the Algal Turf Scrubber®, harvested and subjected for lipid extraction and/or methane production using anaerobic digestion (AD). While filamentous algae lipid content was too low for feasible biodiesel production (<2%), both whole biomass and lipid-extracted algal residues (LEA) yielded ∼0.2LmethanepergVS at loading rates up to 5gVS/L-day. Importantly, essential macro-nutrients and trace elements captured from stormwater were released into the AD effluent as soluble nutrients and were successfully tested as fertilizer replacement for cultivation of lipid-accumulating C. sorokiniana in a subsequent stage. Accordingly, filamentous algae poly-culture was exploited for waste nutrient capturing and biofuel feedstock generation. These nutrients were recovered and reused as a concentrated supplement for potentially high-value microalgae. Published by Elsevier Ltd.

  14. [STUDY OF LIPIDS SEED'S OIL OF VITEX AGNUS CASTUS GROWING IN GEORGIA].

    PubMed

    Kikalishvili, B; Zurabashvili, D; Sulakvelidze, Ts; Malania, M; Turabelidze, D

    2016-07-01

    There was established the lipid composition of the seeds of Vitex agnus castus L. by the qualitative and quantitative methods of analyses. There were received neutral lipids from the seeds by extraction with hexane in the yield 10%, counted on dry material. For the divide of neutral lipids there was used silica gel plates LS 5/40 in the systems of solvents: 1. petroleum ether-diethylether-acidum aceticum (85:14:1), 2. hexane-diethylether (1:1). After obtaining neutral lipids from the residual plant shrot pollar lipids was extracted with the mixture of chloroform-methanol (2:1) and was divided on silica gel plates LS 5/40, mobile phase: 1. chloroform-methanol-25% ammonium hydrate 2. chloroform-methanol icy acetic acid-water (170:25:25:6). In the sum of polar lipids qualitatively were established phospholipids: lisophosphatidylcholine, phosphatidylinosit, phospatidylethanolamine and N-acylphosphatidylethanolamine, in neutral lipids, hydrocarbons, triglycerids, free fatty acids and sterines. By the method of high performance liquid chromatography analyses there were identified following free fatty acids: lauric, myristic, palmitic, stearic, linolic, linolenic, arachidic and begenic, unsaturated oleic and polyunsaturated linolic and linolenic acids. obtained oil with unique composition from the seeds of Vitex agnus-castus indicates to its high biological activity and importance for usage in medicine.

  15. Lipid profiling of parkin-mutant human skin fibroblasts.

    PubMed

    Lobasso, Simona; Tanzarella, Paola; Vergara, Daniele; Maffia, Michele; Cocco, Tiziana; Corcelli, Angela

    2017-12-01

    Parkin mutations are a major cause of early-onset Parkinson's disease (PD). The impairment of protein quality control system together with defects in mitochondria and autophagy process are consequences of the lack of parkin, which leads to neurodegeneration. Little is known about the role of lipids in these alterations of cell functions. In the present study, parkin-mutant human skin primary fibroblasts have been considered as cellular model of PD to investigate on possible lipid alterations associated with the lack of parkin protein. Dermal fibroblasts were obtained from two unrelated PD patients with different parkin mutations and their lipid compositions were compared with that of two control fibroblasts. The lipid extracts of fibroblasts have been analyzed by combined matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF/MS) and thin-layer chromatography (TLC). In parallel, we have performed direct MALDI-TOF/MS lipid analyses of intact fibroblasts by skipping lipid extraction steps. Results show that the proportions of some phospholipids and glycosphingolipids were altered in the lipid profiles of parkin-mutant fibroblasts. The detected higher level of gangliosides, phosphatidylinositol, and phosphatidylserine could be linked to dysfunction of autophagy and mitochondrial turnover; in addition, the lysophosphatidylcholine increase could represent the marker of neuroinflammatory state, a well-known component of PD. © 2017 Wiley Periodicals, Inc.

  16. A relative quantitative positive/negative ion switching method for untargeted lipidomics via high resolution LC-MS/MS from any biological source

    PubMed Central

    Breitkopf, Susanne B.; Ricoult, Stéphane J. H.; Yuan, Min; Xu, Ying; Peake, David A.; Manning, Brendan D.

    2017-01-01

    Introduction Advances in high-resolution mass spectrometry have created renewed interest for studying global lipid biochemistry in disease and biological systems. Objectives Here, we present an untargeted 30 min. LC-MS/MS platform that utilizes positive/negative polarity switching to perform unbiased data dependent acquisitions (DDA) via higher energy collisional dissociation (HCD) fragmentation to profile more than 1000–1500 lipid ions mainly from methyl-tert-butyl ether (MTBE) or chloroform:methanol extractions. Methods The platform uses C18 reversed-phase chromatography coupled to a hybrid QExactive Plus/HF Orbitrap mass spectrometer and the entire procedure takes ~10 h from lipid extraction to identification/quantification for a data set containing 12 samples (~4 h for a single sample). Lipids are identified by both accurate precursor ion mass and fragmentation features and quantified using Lipid-Search and Elements software. Results Using this approach, we are able to profile intact lipid ions from up to 18 different main lipid classes and 66 subclasses. We show several studies from different biological sources, including cultured cancer cells, resected tissues from mice such as lung and breast tumors and biological fluids such as plasma and urine. Conclusions Using mouse embryonic fibroblasts, we showed that TSC2−/− KD significantly abrogates lipid biosynthesis and that rapamycin can rescue triglyceride (TG) lipids and we show that SREBP−/− shuts down lipid biosynthesis significantly via mTORC1 signaling pathways. We show that in mouse EGFR driven lung tumors, a large number of TGs and phosphatidylmethanol (PMe) lipids are elevated while some phospholipids (PLs) show some of the largest decrease in lipid levels from ~ 2000 identified lipid ions. In addition, we identified more than 1500 unique lipid species from human blood plasma. PMID:28496395

  17. Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionizable aminolipids: formation of novel small multilamellar vesicle structures.

    PubMed

    Semple, S C; Klimuk, S K; Harasym, T O; Dos Santos, N; Ansell, S M; Wong, K F; Maurer, N; Stark, H; Cullis, P R; Hope, M J; Scherrer, P

    2001-02-09

    Typical methods used for encapsulating antisense oligodeoxynucleotides (ODN) and plasmid DNA in lipid vesicles result in very low encapsulation efficiencies or employ cationic lipids that exhibit unfavorable pharmacokinetic and toxicity characteristics when administered intravenously. In this study, we describe and characterize a novel formulation process that utilizes an ionizable aminolipid (1,2-dioleoyl-3-dimethylammonium propane, DODAP) and an ethanol-containing buffer system for encapsulating large quantities (0.15--0.25 g ODN/g lipid) of polyanionic ODN in lipid vesicles. This process requires the presence of up to 40% ethanol (v/v) and initial formulation at acidic pH values where the DODAP is positively charged. In addition, the presence of a poly(ethylene glycol)-lipid was required during the formulation process to prevent aggregation. The 'stabilized antisense-lipid particles' (SALP) formed are stable on adjustment of the external pH to neutral pH values and the formulation process allows encapsulation efficiencies of up to 70%. ODN encapsulation was confirmed by nuclease protection assays and (31)P NMR measurements. Cryo-electron microscopy indicated that the final particles consisted of a mixed population of unilamellar and small multilamellar vesicles (80--140 nm diameter), the relative proportion of which was dependent on the initial ODN to lipid ratio. Finally, SALP exhibited significantly enhanced circulation lifetimes in mice relative to free antisense ODN, cationic lipid/ODN complexes and SALP prepared with quaternary aminolipids. Given the small particle sizes and improved encapsulation efficiency, ODN to lipid ratios, and circulation times of this formulation compared to others, we believe SALP represent a viable candidate for systemic applications involving nucleic acid therapeutics.

  18. Anti-Obesity Effect of the Above-Ground Part of Valeriana dageletiana Nakai ex F. Maek Extract in High-Fat Diet-Induced Obese C57BL/6N Mice

    PubMed Central

    Wang, Zhiqiang; Hwang, Seung Hwan; Kim, Ju Hee; Lim, Soon Sung

    2017-01-01

    Valeriana dageletiana Nakai ex F. Maek (VD) has been used as traditional medicine for the treatment of restlessness and sleeping disorders. However, it is still unclear whether obesity in mice can be altered by diet supplementation with VD. In this study, we first investigated the influences of VD on the accumulation of lipid content in 3T3-L1 cells; and the results showed that the above-ground VD extracts (VDAE) suppressed the differentiation of 3T3-L1 preadipocytes in a concentration-dependent manner without cytotoxicity. Thus, the effects of VDAE on preventing obesity were then studied in the C57BL/6N mice for 10 weeks (n = 6): normal-fat diet, high-fat diet (HFD), HFD supplemented with 1% (10 g/kg) Garcinia combogia extract (positive control), and HFD supplemented with 1% (10 g/kg) VDAE. The results showed that VDAE reduced food efficiency ratio, body weight, epididymal adipose and hepatic tissue weight, hepatic lipid metabolites, and triacylglycerol and cholesterol serum levels compared to the high-fat diet group. Moreover, VD significantly inhibited the expression of adipogenic genes, such as PPAR-γ, C/EBP-α, and aP2, and lipogenic genes, such as SREBP-1c, FAS, SCD-1, and CD36, in epididymal adipose tissue and hepatic tissue. These findings indicate anti-adipogenic and anti-lipogenic effects of VDAE and suggest that it could be a potent functional food ingredient for the prevention of high-fat diet-induced obesity. PMID:28671595

  19. Design, synthesis, and in vitro transfection biology of novel tocopherol based monocationic lipids: a structure-activity investigation.

    PubMed

    Kedika, Bhavani; Patri, Srilakshmi V

    2011-01-27

    Herein, we report on the design, synthesis, and in vitro gene delivery efficacies of five novel tocopherol based cationic lipids (1-5) in transfecting CHO, B16F10, A-549, and HepG2 cells. The in vitro gene transfer efficiencies of lipids (1-5) were evaluated by both β-galactosidase reporter gene expression and inverted fluorescent microscopic experiments. The results of the present structure-activity investigation convincingly demonstrate that the tocopherol based lipid with three hydroxyl groups in its headgroup region showed 4-fold better transfection efficiency than the commercial formulation. The results also demonstrate that these tocopherol based lipids may be targeted to liver. Transfection efficiency of all the relevant lipids was maintained even when the serum was present during the transfection conditions. The results indicated that the designed systems are quite capable of transferring the DNA into all four types of cells studied with low or no toxicity.

  20. Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles.

    PubMed

    Wang, Ming; Zuris, John A; Meng, Fantao; Rees, Holly; Sun, Shuo; Deng, Pu; Han, Yong; Gao, Xue; Pouli, Dimitra; Wu, Qi; Georgakoudi, Irene; Liu, David R; Xu, Qiaobing

    2016-03-15

    A central challenge to the development of protein-based therapeutics is the inefficiency of delivery of protein cargo across the mammalian cell membrane, including escape from endosomes. Here we report that combining bioreducible lipid nanoparticles with negatively supercharged Cre recombinase or anionic Cas9:single-guide (sg)RNA complexes drives the electrostatic assembly of nanoparticles that mediate potent protein delivery and genome editing. These bioreducible lipids efficiently deliver protein cargo into cells, facilitate the escape of protein from endosomes in response to the reductive intracellular environment, and direct protein to its intracellular target sites. The delivery of supercharged Cre protein and Cas9:sgRNA complexed with bioreducible lipids into cultured human cells enables gene recombination and genome editing with efficiencies greater than 70%. In addition, we demonstrate that these lipids are effective for functional protein delivery into mouse brain for gene recombination in vivo. Therefore, the integration of this bioreducible lipid platform with protein engineering has the potential to advance the therapeutic relevance of protein-based genome editing.

  1. Skeleton-Controlled pDNA Delivery of Renewable Steroid-Based Cationic Lipids, the Endocytosis Pathway Analysis and Intracellular Localization

    PubMed Central

    Wang, Zhao; Luo, Ting; Cao, Amin; Sun, Jingjing

    2018-01-01

    Using renewable and biocompatible natural-based resources to construct functional biomaterials has attracted great attention in recent years. In this work, we successfully prepared a series of steroid-based cationic lipids by integrating various steroid skeletons/hydrophobes with (l-)-arginine headgroups via facile and efficient synthetic approach. The plasmid DNA (pDNA) binding affinity of the steroid-based cationic lipids, average particle sizes, surface potentials, morphologies and stability of the steroid-based cationic lipids/pDNA lipoplexes were disclosed to depend largely on the steroid skeletons. Cellular evaluation results revealed that cytotoxicity and gene transfection efficiency of the steroid-based cationic lipids in H1299 and HeLa cells strongly relied on the steroid hydrophobes. Interestingly, the steroid lipids/pDNA lipoplexes inclined to enter H1299 cells mainly through caveolae and lipid-raft mediated endocytosis pathways, and an intracellular trafficking route of “lipid-raft-mediated endocytosis→lysosome→cell nucleic localization” was accordingly proposed. The study provided possible approach for developing high-performance steroid-based lipid gene carriers, in which the cytotoxicity, gene transfection capability, endocytosis pathways, and intracellular trafficking/localization manners could be tuned/controlled by introducing proper steroid skeletons/hydrophobes. Noteworthy, among the lipids, Cho-Arg showed remarkably high gene transfection efficacy, even under high serum concentration (50% fetal bovine serum), making it an efficient gene transfection agent for practical application. PMID:29373505

  2. Evaluation of the antioxidant activity of root extract of pepper fruit (Dennetia tripetala), and it's potential for the inhibition of lipid peroxidation.

    PubMed

    Okolie, Ngozi Paulinus; Falodun, Abiodun; Davids, Oluseyi

    2014-01-01

    The antioxidant properties of ethanolic root extract of pepper fruit (Donnetia tripetala), and its effect on lipid peroxidation of some fresh beef tissues during frozen storage were investigated. The antioxidant parameters were assessed using standard methods, while malondialdehyde levels of different fresh beef tissue sections treated with the extract prior to freezing, were estimated in a colorimetric reaction with thiobarbituric acid. The H2O2-scavenging ability of the extract was similar to that of ascorbic acid, with a maximum scavenging power of 55.61 ±4.98%, and an IC50 value of 86µg/ml. The extract exhibited a concentration-dependent ferric ion-reducing power, although this was significantly lower relative to that of the ascorbic acid (p < 0.05). The total phenolic content was 212.5 ± 0.002 mg/g, while the nitric oxide-scavenging ability was 64.33 ± 0.2% after 150 min. The capacity of the extract to inhibit lipid peroxidation in frozen heart muscle slices was significantly higher than that of vitamin C (p < 0 .05), but comparable to vitamins C and E in frozen testes and kidney slices. These results suggest that the root extract of D. tripetala is rich in antioxidants which can be applied to meat preservation during refrigerated storage.

  3. Extractions of High Quality RNA from the Seeds of Jerusalem Artichoke and Other Plant Species with High Levels of Starch and Lipid.

    PubMed

    Mornkham, Tanupat; Wangsomnuk, Preeya Puangsomlee; Fu, Yong-Bi; Wangsomnuk, Pinich; Jogloy, Sanun; Patanothai, Aran

    2013-04-29

    Jerusalem artichoke (Helianthus tuberosus L.) is an important tuber crop. However, Jerusalem artichoke seeds contain high levels of starch and lipid, making the extraction of high-quality RNA extremely difficult and the gene expression analysis challenging. This study was aimed to improve existing methods for extracting total RNA from Jerusalem artichoke dry seeds and to assess the applicability of the improved method in other plant species. Five RNA extraction methods were evaluated on Jerusalem artichoke seeds and two were modified. One modified method with the significant improvement was applied to assay seeds of diverse Jerusalem artichoke accessions, sunflower, rice, maize, peanut and marigold. The effectiveness of the improved method to extract total RNA from seeds was assessed using qPCR analysis of four selected genes. The improved method of Ma and Yang (2011) yielded a maximum RNA solubility and removed most interfering substances. The improved protocol generated 29 to 41 µg RNA/30 mg fresh weight. An A260/A280 ratio of 1.79 to 2.22 showed their RNA purity. Extracted RNA was effective for downstream applications such as first-stranded cDNA synthesis, cDNA cloning and qPCR. The improved method was also effective to extract total RNA from seeds of sunflower, rice, maize and peanut that are rich in polyphenols, lipids and polysaccharides.

  4. Nanomanipulation-Coupled Matrix-Assisted Laser Desorption/ Ionization-Direct Organelle Mass Spectrometry: A Technique for the Detailed Analysis of Single Organelles

    NASA Astrophysics Data System (ADS)

    Phelps, Mandy S.; Sturtevant, Drew; Chapman, Kent D.; Verbeck, Guido F.

    2016-02-01

    We describe a novel technique combining precise organelle microextraction with deposition and matrix-assisted laser desorption/ionization (MALDI) for a rapid, minimally invasive mass spectrometry (MS) analysis of single organelles from living cells. A dual-positioner nanomanipulator workstation was utilized for both extraction of organelle content and precise co-deposition of analyte and matrix solution for MALDI-direct organelle mass spectrometry (DOMS) analysis. Here, the triacylglycerol (TAG) profiles of single lipid droplets from 3T3-L1 adipocytes were acquired and results validated with nanoelectrospray ionization (NSI) MS. The results demonstrate the utility of the MALDI-DOMS technique as it enabled longer mass analysis time, higher ionization efficiency, MS imaging of the co-deposited spot, and subsequent MS/MS capabilities of localized lipid content in comparison to NSI-DOMS. This method provides selective organellar resolution, which complements current biochemical analyses and prompts for subsequent subcellular studies to be performed where limited samples and analyte volume are of concern.

  5. Wet in situ transesterification of spent coffee grounds with supercritical methanol for the production of biodiesel.

    PubMed

    Son, Jeesung; Kim, Bora; Park, Jeongseok; Yang, Jeongwoo; Lee, Jae W

    2018-07-01

    This work introduces biodiesel production from wet spent coffee grounds (SCGs) with supercritical methanol without any pre-drying process. Supercritical methanol and subcritical water effectively produced biodiesel via in situ transesterification by inducing more porous SCG and enhancing the efficiency of lipid extraction and conversion. It was also found that space loading was one of the critical factors for biodiesel production. An optimal biodiesel yield of 10.17 wt% of dry SCG mass (86.33 w/w% of esterifiable lipids in SCG) was obtained at reaction conditions of 270 °C, 90 bars, methanol to wet SCG ratio 5:1, space loading 58.4 ml/g and reaction time 20 min. Direct use of wet SCG waste as feedstock for supercritical biodiesel production eliminates the conventional dying process and the need of catalyst and also reduces environmental problems caused by landfill accumulation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Sustainability and economic evaluation of microalgae grown in brewery wastewater.

    PubMed

    Mata, Teresa M; Mendes, Adélio M; Caetano, Nídia S; Martins, António A

    2014-09-01

    This article evaluates the sustainability and economic potential of microalgae grown in brewery wastewater for biodiesel and biomass production. Three sustainability and two economic indicators were considered in the evaluation within a life cycle perspective. For the production system the most efficient process units were selected. Results show that harvesting and oil separation are the main process bottlenecks. Microalgae with higher lipid content and productivity are desirable for biodiesel production, although comparable to other biofuel's feedstock concerning sustainability. However, improvements are still needed to reach the performance level of fossil diesel. Profitability reaches a limit for larger cultivation areas, being higher when extracted biomass is sold together with microalgae oil, in which case the influence of lipid content and areal productivity is smaller. The values of oil and/or biomass prices calculated to ensure that the process is economically sound are still very high compared with other fuel options, especially biodiesel. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Biodiesel production from Spirulina microalgae feedstock using direct transesterification near supercritical methanol condition.

    PubMed

    Mohamadzadeh Shirazi, Hamed; Karimi-Sabet, Javad; Ghotbi, Cyrus

    2017-09-01

    Microalgae as a candidate for production of biodiesel, possesses a hard cell wall that prevents intracellular lipids leaving out from the cells. Direct or in situ supercritical transesterification has the potential for destruction of microalgae hard cell wall and conversion of extracted lipids to biodiesel that consequently reduces the total energy consumption. Response surface methodology combined with central composite design was applied to investigate process parameters including: Temperature, Time, Methanol-to-dry algae, Hexane-to-dry algae, and Moisture content. Thirty-two experiments were designed and performed in a batch reactor, and biodiesel efficiency between 0.44% and 99.32% was obtained. According to fatty acid methyl ester yields, a quadratic experimental model was adjusted and the significance of parameters was evaluated using analysis of variance (ANOVA). Effects of single and interaction parameters were also interpreted. In addition, the effect of supercritical process on the ultrastructure of microalgae cell wall using scanning electron spectrometry (SEM) was surveyed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Development of lycopene-loaded lipid-core nanocapsules: physicochemical characterization and stability study

    NASA Astrophysics Data System (ADS)

    dos Santos, Priscilla Pereira; Paese, Karina; Guterres, Silvia Stanisçuaski; Pohlmann, Adriana Raffin; Costa, Tania Hass; Jablonski, André; Flôres, Simone Hickmann; Rios, Alessandro de Oliveira

    2015-02-01

    The objective of this study was to develop lycopene-loaded lipid-core nanocapsules (Lyc-LNCs) by the interfacial deposition of preformed poly(ɛ-caprolactone) (PCL). Lyc extract (93.9 %) was obtained from tomatoes, and the organic phase was prepared with polymer (PCL), caprylic/capric triglycerides, sorbitan monostearate, and Lyc in a mixture of acetone and ethanol under magnetic stirring at 40 °C. The organic phase was injected into an aqueous phase containing polysorbate 80, and the suspension was concentrated under reduced pressure. The formulation with a Lyc concentration of 85 µg/mL was characterized in terms of size distribution, zeta potential, encapsulation efficiency, pH, viscosity, and color. The Lyc-LNC formulation presented stable values for the z-average (193 ± 4.7 nm) and zeta potential (-11.5 ± 0.40 mV). Despite the lower pH, Lyc content, and color change of the suspension, the nanocapsules showed satisfactory stability, presenting around 50 % Lyc content after 14 days of storage at room temperature (25 °C).

  9. Retardation of quality changes in camel meat sausages by phenolic compounds and phenolic extracts.

    PubMed

    Maqsood, Sajid; Manheem, Kusaimah; Abushelaibi, Aisha; Kadim, Isam Tawfik

    2016-11-01

    Impact of tannic acid (TA), date seed extract (DSE), catechin (CT) and green tea extract (GTE) on lipid oxidation, microbial load and textural properties of camel meat sausages during 12 days of refrigerated storage was investigated. TA and CT showed higher activities in all antioxidative assays compared to DSE and GTE. Lipid oxidation and microbial growth was higher for control sausages when compared to other samples. TA and CT at a level of 200 mg/kg were more effective in retarding lipid oxidation and lowering microbial count (P < 0.05). Sausages treated with TA and DSE were found to have higher hardness, gumminess and chewiness values compared to other treatments (P < 0.05). Addition of different phenolic compounds or extract did not influence the sensory color of sausages. Furthermore, sensory quality was also found to be superior in TA and CT treated sausages. Therefore, pure phenolic compounds (TA and CT) proved to be more effective in retaining microbial and sensorial qualities of camel meat sausages compared to phenolic extracts (GTE and DSE) over 12 days of storage at 4°C. © 2016 Japanese Society of Animal Science.

  10. Autonomous buckling of micrometer-sized lipid-protein membrane patches constructed by Dictyostelium discoideum.

    PubMed

    Takahashi, Kei; Toyota, Taro

    2015-01-01

    The cytosol of amoeba cells controls the membrane deformation during their motion in vivo. To investigate such ability of the cytosol of amoeba cell, Dictyostelium discoideum (Dictyostelium), in vitro, we used lipids extracted from Dictyostelium and commercially available phospholipids, and prepared substrate-supported lipid membrane patches on the micrometer scale by spin coating. We found that the spin coater holder, which has pores (pore size = 3.1 mm) of negative pressure to hold the cover glass induced the concave surface of the cover glass. The membrane lipid patches were formed at each position in the vicinity of the holder pores and their sizes were in the range of 2.7 to 3.2 × 10(4) μm(2). After addition of the cytosol extracted from Dictyostelium to the lipid membrane patches, through time-lapse observation with a confocal laser scanning fluorescence microscope, we observed an autonomous buckling of the Dictyostelium lipid patches and localized behaviours of proteins found within. The current method serves as the novel technique for the preparation of film patches in which the positions of patches are controlled by the holder pores without fabricating, modifying, and arranging the chemical properties of the solution components of lipids. The findings imply that lipid-binding proteins in the cytosol were adsorbed and accumulated within the Dictyostelium lipid patches, inducing the transformation of the cell-sized patch.

  11. Surfactants have multi-fold effects on skin barrier function.

    PubMed

    Lemery, Emmanuelle; Briançon, Stéphanie; Chevalier, Yves; Oddos, Thierry; Gohier, Annie; Boyron, Olivier; Bolzinger, Marie-Alexandrine

    2015-01-01

    The stratum corneum (SC) is responsible for the barrier properties of the skin and the role of intercorneocyte skin lipids, particularly their structural organization, in controlling SC permeability is acknowledged. Upon contacting the skin, surfactants interact with the SC components leading to barrier damage. To improve knowledge of the effect of several classes of surfactant on skin barrier function at three different levels. The influence of treatments of human skin explants with six non-ionic and four ionic surfactant solutions on the physicochemical properties of skin was investigated. Skin surface wettability and polarity were assessed through contact angle measurements. Infrared spectroscopy allowed monitoring the SC lipid organization. The lipid extraction potency of surfactants was evaluated thanks to HPLC-ELSD assays. One anionic and one cationic surfactant increased the skin polarity by removing the sebaceous and epidermal lipids and by disturbing the organization of the lipid matrix. Another cationic surfactant displayed a detergency effect without disturbing the skin barrier. Several non-ionic surfactants disturbed the lipid matrix organization and modified the skin wettability without any extraction of the skin lipids. Finally two non-ionic surfactants did not show any effect on the investigated parameters or on the skin barrier. The polarity, the organization of the lipid matrix and the lipid composition of the skin allowed describing finely how surfactants can interact with the skin and disturb the skin barrier function.

  12. Carotenoid stability during production and storage of tomato juice made from tomatoes with diverse pigment profiles measured by infrared spectroscopy.

    PubMed

    Rubio-Diaz, Daniel E; Santos, Alejandra; Francis, David M; Rodriguez-Saona, Luis E

    2010-08-11

    Chemical changes in carotenoids and lipids were studied during production and storage of canned tomato juice using ATR infrared spectroscopy and HPLC. Samples from 10 groups of tomatoes with different carotenoid profiles were analyzed fresh, after hot-break and screening, after canning, and at five different time points during 1 year of storage. An apparent increase of carotenoids was observed after hot-break due to improved extraction efficiency. This increase was accompanied by some degree of lipid oxidation and carotenoid isomerization. Canning produced the most intense changes in the lipid profile with breakdown of triglycerides ( approximately 1743 cm(-1)), formation of fatty acids ( approximately 1712 cm(-1)), and degradation and isomerization of trans-carotenoids ( approximately 960 and approximately 3006 cm(-1)). Isomerization was corroborated by the relative increase of HPLC areas corresponding to carotenoid cis isomers. Canning reduced trans-lycopene, trans-delta-carotene, trans-beta-carotene, and trans-lutein by 30, 34, 43, and 67%, respectively. HPLC data indicate that canning causes a drastic reduction of tetra-cis-lycopene and promotes its isomerization to other geometric forms, including all-trans-lycopene. Infrared spectra of tomato juice lipid fractions correlated well with the number of days in storage (SECV < 11 days, r values > 0.99), demonstrating continuous degradation of lipids. Results demonstrated that individual carotenoids and their isomeric forms behave differently during production and storage of canned tomato juice. Information collected by infrared spectroscopy complemented well that of HPLC, providing marker bands to further the understanding of chemical changes taking place during processing and storage of tomato juice.

  13. Algal biofuels: challenges and opportunities.

    PubMed

    Leite, Gustavo B; Abdelaziz, Ahmed E M; Hallenbeck, Patrick C

    2013-10-01

    Biodiesel production using microalgae is attractive in a number of respects. Here a number of pros and cons to using microalgae for biofuels production are reviewed. Algal cultivation can be carried out using non-arable land and non-potable water with simple nutrient supply. In addition, algal biomass productivities are much higher than those of vascular plants and the extractable content of lipids that can be usefully converted to biodiesel, triacylglycerols (TAGs) can be much higher than that of the oil seeds now used for first generation biodiesel. On the other hand, practical, cost-effective production of biofuels from microalgae requires that a number of obstacles be overcome. These include the development of low-cost, effective growth systems, efficient and energy saving harvesting techniques, and methods for oil extraction and conversion that are environmentally benign and cost-effective. Promising recent advances in these areas are highlighted. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. The effects of black garlic (Allium satvium) extracts on lipid metabolism in rats fed a high fat diet

    PubMed Central

    Ha, Ae Wha; Ying, Tian

    2015-01-01

    BACKGROUD/OBEJECTIVES The mechanism of how black garlic effects lipid metabolism remains unsolved. Therefore, the objectives of this study were to determine the effects of black garlic on lipid profiles and the expression of related genes in rats fed a high fat diet. MATERIALS/METHODS Thirty-two male Sqrague-Dawley rats aged 4 weeks were randomly divided into four groups (n=8) and fed the following diets for 5 weeks: normal food diet, (NF); a high-fat diet (HF); and a high-fat diet + 0.5% or 1.5% black garlic extract (HFBG0.5 or HFBG1.5). Body weights and blood biochemical parameters, including lipid profiles, and expressions of genes related to lipid metabolism were determined. RESULTS Significant differences were observed in the final weights between the HFBG1.5 and HF groups. All blood biochemical parameters measured in the HFBG1.5 group showed significantly lower values than those in the HF group. Significant improvements of the plasama lipid profiles as well as fecal excretions of total lipids and triglyceride (TG) were also observed in the HFBG1.5 group, when compared to the HF diet group. There were significant differences in the levels of mRNA of sterol regulatory element binding protein-1c (SREBP-1c), acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), and glucose-6-phosphate dehydrogenase (G6PDH) in the HFBG1.5 group compared to the HF group. In addition, the hepatic expression of (HMG-CoA) reductase and Acyl-CoA cholesterol acyltransferase (ACAT) mRNA was also significantly lower than the HF group. CONCLUSIONS Consumption of black garlic extract lowers SREBP-1C mRNA expression, which causes downregulation of lipid and cholestrol metahbolism. As a result, the blood levels of total lipids, TG, and cholesterol were decreased. PMID:25671065

  15. Hydrothermal microwave processing of microalgae as a pre-treatment and extraction technique for bio-fuels and bio-products.

    PubMed

    Biller, Patrick; Friedman, Cerri; Ross, Andrew B

    2013-05-01

    Microalgae are regarded as a promising source of lipids for bio-diesel production and bio-products. The current paper investigates the processing of microalgal slurries under controlled microwave irradiation. Microwave power was applied to reach temperatures of 80, 100, 120 and 140 °C at a constant residence time of 12 min. Microwave irradiation led to disruption of the algal cell walls which facilitated lipid extraction. The influence of inorganic material on microwave heating was assessed for three strains including, Nannochloropsis occulata, Chlorogloeopsis fritschii and Pseudochoricystis ellipsoidea. Mass balances were calculated and showed that the amount of carbon, nitrogen and total mass recovered in the residue was highly dependent on process conditions and algae strain. Hydrothermal microwave processing (HMP) was found to be an effective pre-treatment for hydrothermal liquefaction and extraction of lipids and phytochemicals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Effect of hydroalcoholic fruit extract of Persea americana Mill. on high fat diet induced obesity: A dose response study in rats.

    PubMed

    Monika, Padmanabhan; Geetha, Arumugam

    2016-06-01

    The fruits of Persea Americana Mill., commonly known as Avocado, are traditionally consumed for various health benefits including weight reduction. Here, we studied the effect of hydroalcoholic fruit extract of Persea americana (HAEPA) on high fat diet (HFD) induced obesity in rats. Obesity was induced in male Sprague Dawley rats by feeding HFD for 14 wk. The hypolipidemic effect was evaluated by co-administering 25, 50, 100 and 200 mg/kg body wt. of HAEPA. There was a significant increase in weight gain, body mass index (BMI), blood lipids, low density lipoproteins (LDL), lipid peroxides (LPO) and serum transaminases in HFD fed rats. HFD+HAEPA fed rats showed a significant decrease in blood lipids, LPO, liver lipids and increase in antioxidant status when compared to HFD control rats. The activity of lipid metabolic key enzymes such as fatty acid synthase and HMG CoA reductase in liver were also found to be decreased significantly in HAEPA co-administered rats. Lipoprotein lipase activity was found increased in HFD+HAEPA rats. Among the 4 doses studied, 100 mg of HAEPA/kg body wt. exhibited optimum hypolipidemic activity. Histopathological observations in liver and visceral adipose tissue added more evidence for the lipid lowering effect of HAEPA. It can be concluded that avocado fruit extract can act as hypolipidemic agent probably by modulating the activities of HMG CoA reductase and fatty acid synthase in liver.

  17. Enhancing Oxidative Stability of Sunflower Oil during Convective and Microwave Heating Using Grape Seed Extract

    PubMed Central

    Poiana, Mariana-Atena

    2012-01-01

    This study was performed to investigate the effectiveness of grape seed extract (GSE) compared to butylated hydroxytoluene (BHT) on retarding lipid oxidation of sunflower oil subjected to convection and microwave heating up to 240 min under simulated frying conditions. The progress of lipid oxidation was assessed in terms of peroxide value (PV), p-anisidine value (p-AV), conjugated dienes and trienes (CD, CT), inhibition of oil oxidation (IO) and TOTOX value. In addition, total phenolic content (TP) was evaluated in samples before and after heating in order to assess the changes in these compounds relative to the extent of lipid oxidation. The results of this study highlight that GSE showed a significantly inhibitory effect on lipid oxidation during both treatments, although to a different extent. This ability was dose-dependent; therefore, the extent of lipid oxidation was inversely related to GSE level. Convective heating, respective microwave exposure for 240 min of samples supplemented by GSE to a level of 1000 ppm, resulted in significant decreases of investigated indices relative to the control values as follows: PV (48%; 30%), p-AV (29%; 40%), CD (45%; 30%), CT (41%; 36%), TOTOX (35%; 37%). GSE to a level of 600–800 ppm inhibited the lipid oxidation in a similar manner to BHT. These results suggested that GSE can be used as a potential natural extract for improving oxidative stability of sunflower oil during thermal applications. PMID:22942764

  18. EFFICIENCY OF BORAGE SEEDS OIL AGAINST GAMMA IRRADIATION-INDUCED HEPATOTOXICITY IN MALE RATS: POSSIBLE ANTIOXIDANT ACTIVITY.

    PubMed

    Khattab, Hala A H; Abdallah, Inas Z A; Yousef, Fatimah M; Huwait, Etimad A

    2017-01-01

    Borage ( Borago officinal L.) is an annual herbaceous plant of great interest because its oil contains a high percentage of γ-linolenic acid (GLA). The present work was carried out to detect fatty acids composition of the oil extracted from borage seeds (BO) and its potential effectiveness against γ-irradiation- induced hepatotoxicity in male rats. GC-MS analysis of fatty acids methyl esters of BO was performed to identify fatty acids composition. Sixty rats were divided into five groups (12 rats each): Control, irradiated; rats were exposed to (6.5 Gy) of whole body γ-radiation, BO (50 mg/kg b.wt), irradiated BO post-treated and irradiated BO prepost-treated. Six rats from each group were sacrificed at two time intervals 7 and 15 days post-irradiation. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma glutamyl transferase (GGT) levels, lipids profile, as well as serum and hepatic reduced glutathione (GSH) and lipid peroxide (malondialdehyde) (MDA) levels were assessed. Histopathological examination of liver sections were also carried out. The results showed that the high contents of BO extracted by cold pressing, were linoleic acid (34.23%) and GLA (24.79%). Also, oral administration of BO significantly improved serum levels of liver enzymes, lipids profile, as well as serum and hepatic GSH and MDA levels (p<0.001) as compared with irradiated rats after 15 days post irradiation. Moreover, it exerted marked amelioration against irradiation-induced histopathological changes in liver tissues. The improvement was more pronounced in irradiated BO prepost-treated group than irradiated BO post-treated. BO has a beneficial role in reducing hepatotoxicity and oxidative stress induced by radiation exposure. Therefore, BO may be used as a beneficial supplement for patients during radiotherapy treatment.

  19. An Efficient Glycoblotting-Based Analysis of Oxidized Lipids in Liposomes and a Lipoprotein.

    PubMed

    Furukawa, Takayuki; Hinou, Hiroshi; Takeda, Seiji; Chiba, Hitoshi; Nishimura, Shin-Ichiro; Hui, Shu-Ping

    2017-10-05

    Although widely occurring lipid oxidation, which is triggered by reactive oxygen species (ROS), produces a variety of oxidized lipids, practical methods to efficiently analyze oxidized lipids remain elusive. Herein, it is shown that the glycoblotting platform can be used to analyze oxidized lipids. Analysis is based on the principle that lipid aldehydes, one of the oxidized lipid species, can be captured selectively, enriched, and detected. Moreover, 3-methyl-1-p-tolyltriazene (MTT) methylates phosphoric and carboxylic acids, and this MTT-mediated methylation is, in combination with conventional tandem mass spectrometry (MS/MS) analysis, an effective method for the structural analysis of oxidized lipids. By using three classes of standards, liposomes, and a lipoprotein, it is demonstrated that glycoblotting represents a powerful approach for focused lipidomics, even in complex macromolecules. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Novel gemini cationic lipids with carbamate groups for gene delivery

    PubMed Central

    Zhao, Yi-Nan; Qureshi, Farooq; Zhang, Shu-Biao; Cui, Shao-Hui; Wang, Bing; Chen, Hui-Ying; Lv, Hong-Tao; Zhang, Shu-Fen; Huang, Leaf

    2014-01-01

    To obtain efficient non-viral vectors, a series of Gemini cationic lipids with carbamate linkers between headgroups and hydrophobic tails were synthesized. They have the hydrocarbon chains of 12, 14, 16 and 18 carbon atoms as tails, designated as G12, G14, G16 and G18, respectively. These Gemini cationic lipids were prepared into cationic liposomes for the study of the physicochemical properties and gene delivery. The DNA-bonding ability of these Gemini cationic liposomes was much better than their mono-head counterparts (designated as M12, M14, M16 and M18, respectively). In the same series of liposomes, bonding ability declined with an increase in tail length. They were tested for their gene-transferring capabilities in Hep-2 and A549 cells. They showed higher transfection efficiency than their mono-head counterparts and were comparable or superior in transfection efficiency and cytotoxicity to the commercial liposomes, DOTAP and Lipofectamine 2000. Our results convincingly demonstrate that the gene-transferring capabilities of these cationic lipids depended on hydrocarbon chain length. Gene transfection efficiency was maximal at a chain length of 14, as G14 can silence about 80 % of luciferase in A549 cells. Cell uptake results indicate that Gemini lipid delivery systems could be internalised by cells very efficiently. Thus, the Gemini cationic lipids could be used as synthetic non-viral gene delivery carriers for further study. PMID:25045521

Top