Damm, Irina; Enger, Eileen; Chrubasik-Hausmann, Sigrun; Schieber, Andreas; Zimmermann, Benno F
2016-08-01
Fast methods for the extraction and analysis of various secondary metabolites from cocoa products were developed and optimized regarding speed and separation efficiency. Extraction by pressurized liquid extraction is automated and the extracts are analyzed by rapid reversed-phase ultra high-performance liquid chromatography and normal-phase high-performance liquid chromatography methods. After extraction, no further sample treatment is required before chromatographic analysis. The analytes comprise monomeric and oligomeric flavanols, flavonols, methylxanthins, N-phenylpropenoyl amino acids, and phenolic acids. Polyphenols and N-phenylpropenoyl amino acids are separated in a single run of 33 min, procyanidins are analyzed by normal-phase high-performance liquid chromatography within 16 min, and methylxanthins require only 6 min total run time. A fourth method is suitable for phenolic acids, but only protocatechuic acid was found in relevant quantities. The optimized methods were validated and applied to 27 dark chocolates, one milk chocolate, two cocoa powders and two food supplements based on cocoa extract. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Herrero, Miguel; Ibáñez, Elena; Cifuentes, Alejandro; Señoráns, Javier
2004-08-27
In this work, different extracts from the microalga Spirulina platensis are obtained using pressurized liquid extraction (PLE) and four different solvents (hexane, light petroleum, ethanol and water). Different extraction temperatures (115 and 170 degrees C) were tested using extraction times ranging from 9 to 15 min. The antioxidant activity of the different extracts is determined by means of an in vitro assay using a free radical method. Moreover, a new and fast method is developed using micellar electrokinetic chromatography with diode array detection (MEKC-DAD) to provide a preliminary analysis on the composition of the extracts. This combined application (i.e., in vitro assays plus MEKC-DAD) allowed the fast characterization of the extracts based on their antioxidant activity and the UV-vis spectra of the different compounds found in the extracts. To our knowledge, this work shows for the first time the great possibilities of the combined use of PLE-in vitro assay-MEKC-DAD to investigate natural sources of antioxidants.
Baranowska, Irena; Wojciechowska, Iwona; Solarz, Natalia; Krutysza, Ewa
2014-01-01
This paper reports the development of a method for simultaneously determining five preservatives in cosmetics, cleaning agents and pharmaceuticals by fast liquid chromatography. Methylisothiazolinone, methylchloroisothiazolinone, benzyl alcohol, sodium benzoate and methylparaben were separated on a Chromolith Fast Gradient reversed-phase 18e column using gradient elution with acetonitrile and a 0.1% aqueous solution of formic acid, with a run time of 3 min. The preparation of solid and liquid samples included ultrasonic extraction with methanol with recoveries ranging from 69 to 119%. The developed method was used to analyze samples of cosmetics (66 samples), cleaning agents (five samples) and pharmaceutical industry products (17 samples).
Guo, Liang; Tan, Shufang; Li, Xiao; Lee, Hian Kee
2016-03-18
An automated procedure, combining low density solvent based solvent demulsification dispersive liquid-liquid microextraction (DLLME) with gas chromatography-mass spectrometry analysis, was developed for the determination of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. Capitalizing on a two-rail commercial autosampler, fast solvent transfer using a large volume syringe dedicated to the DLLME process, and convenient extract collection using a small volume microsyringe for better GC performance were enabled. Extraction parameters including the type and volume of extraction solvent, the type and volume of dispersive solvent and demulsification solvent, extraction and demulsification time, and the speed of solvent injection were investigated and optimized. Under the optimized conditions, the linearity ranged from 0.1 to 50 μg/L, 0.2 to 50 μg/L, and 0.5 to 50 μg/L, depending on the analytes. Limits of detection were determined to be between 0.023 and 0.058 μg/L. The method was applied to determine PAHs in environmental water samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Hrouzková, Svetlana; Brišová, Mária; Szarka, Agneša
2017-07-14
A fast, ecological, and efficient method employing vortex-assisted dispersive liquid-liquid microextraction (DLLME) method for isolation and preconcentration of selected endocrine disrupting pesticides from beverages containing some degree of alcohol was developed. The effect of several extraction parameters, such as selection of extractive solvent, its volume and extraction time, the salt addition was investigated. Four different extractive solvents (chloroform, tetrachloroethane, tetrachloromethane and toluene) and their combinations were evaluated for DLLME. Under the following conditions: 1mL of fortified sample, 80μL of tetrachloroethane, 1.5mL of water, vortex assistance for 3min at the speed of 1800rpm, and no salt addition, the method was validated. Linearity was studied in the concentration range of 0.01-250μg/L with coefficient of correlation ranging between 0.9940 and 1.0000, limits of detection and quantification ranging between 0.02-1.4μg/L and 0.07-4.7μg/L, respectively. Recoveries were satisfactory in the range of 70-120%, with the exception of diphenyl, alachlor and fenarimol at the lowest concentration level and p,p-DDE at concentration level of 100 and 250μg/L. The applicability of the developed and validated method was proved by the analysis of real samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Sun, Guangying; Liu, Yanfang; Ahat, Hasanjan; Shen, Aijin; Liang, Xinmiao; Xue, Xingya; Luo, Yuqin; Yang, Jian; Liu, Zhao-Sheng; Aisa, Haji Akber
2017-07-07
In this study, "two dimensional" molecularly imprinted solid-phase extraction (2D-MIP-SPE) of semi-preparative grade was constructed to fast purify ellagitannins in pomegranate husk extract with the help of crystallization and reverse-phase liquid chromatgoraphy (RPLC). Ellagic acid and punicalagin imprinted polymers were synthesized in batch mode and two semi-preparative MIP-SPE columns were individually packed. After investigaing "functional complementation", 2D-MIP-SPE was constructed using ellagic acid MIP and punicalagin MIP-SPE as the first and second dimension, respectively. Then, pomegranate husk extract was fast divided into four fractions individually enriching in ellagic acid, granatin A, punicalagin and ellagic acid glucoside by 2D-MIP-SPE. With the aid of crystallization and RPLC, ellagic acid (13.5mg) and punicalagin (53.4mg) were fast obtained in 30min. Ellagic acid glucoside was purified to the purity near 100% with a recovery of 86.1%. Granatin A (92%) was directly obtained by 2D-MIP-SPE with the recovery of 81.8%. All above indicated that 2D-MIP-SPE was highly efficient in natural product purification. The concept of "functional complementation" was expected to be a useful tool in the construction of 2D-MIP-SPE. Copyright © 2017 Elsevier B.V. All rights reserved.
Hydrophobic ionic liquids for quantitative bacterial cell lysis with subsequent DNA quantification.
Fuchs-Telka, Sabine; Fister, Susanne; Mester, Patrick-Julian; Wagner, Martin; Rossmanith, Peter
2017-02-01
DNA is one of the most frequently analyzed molecules in the life sciences. In this article we describe a simple and fast protocol for quantitative DNA isolation from bacteria based on hydrophobic ionic liquid supported cell lysis at elevated temperatures (120-150 °C) for subsequent PCR-based analysis. From a set of five hydrophobic ionic liquids, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide was identified as the most suitable for quantitative cell lysis and DNA extraction because of limited quantitative PCR inhibition by the aqueous eluate as well as no detectable DNA uptake. The newly developed method was able to efficiently lyse Gram-negative bacterial cells, whereas Gram-positive cells were protected by their thick cell wall. The performance of the final protocol resulted in quantitative DNA extraction efficiencies for Gram-negative bacteria similar to those obtained with a commercial kit, whereas the number of handling steps, and especially the time required, was dramatically reduced. Graphical Abstract After careful evaluation of five hydrophobic ionic liquids, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([BMPyr + ][Ntf 2 - ]) was identified as the most suitable ionic liquid for quantitative cell lysis and DNA extraction. When used for Gram-negative bacteria, the protocol presented is simple and very fast and achieves DNA extraction efficiencies similar to those obtained with a commercial kit. ddH 2 O double-distilled water, qPCR quantitative PCR.
Quan, Ji; Hu, Zeshu
2018-01-01
Food safety issues closely related to human health have always received widespread attention from the world society. As a basic food source, wheat is the fundamental support of human survival; therefore, the detection of pesticide residues in wheat is very necessary. In this work, the ultrasonic-assisted ionic liquid-dispersive liquid-liquid microextraction (DLLME) method was firstly proposed, and the extraction and analysis of three organophosphorus pesticides were carried out by combining high-performance liquid chromatography (HPLC). The extraction efficiencies of three ionic liquids with bis(trifluoromethylsulfonyl)imide (Tf2N) anion were compared by extracting organophosphorus in wheat samples. It was found that the use of 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([OMIM][Tf2N]) had both high enrichment efficiency and appropriate extraction recovery. Finally, the method was used for the determination of three wheat samples, and the recoveries of them were 74.8–112.5%, 71.8–104.5%, and 83.8–115.5%, respectively. The results show that the method proposed is simple, fast, and efficient, which can be applied to the extraction of organic matters in wheat samples. PMID:29854562
Pierson, Stephen A; Trujillo-Rodríguez, María J; Anderson, Jared L
2018-05-29
An ionic-liquid-based in situ dispersive liquid-liquid microextraction method coupled to headspace gas chromatography and mass spectrometry was developed for the rapid analysis of ultraviolet filters. The chemical structures of five ionic liquids were specifically designed to incorporate various functional groups for the favorable extraction of the target analytes. Extraction parameters including ionic liquid mass, molar ratio of ionic liquid to metathesis reagent, vortex time, ionic strength, pH, and total sample volume were studied and optimized. The effect of the headspace temperature and volume during the headspace sampling step was also evaluated to increase the sensitivity of the method. The optimized procedure is fast as it only required ∼7-10 min per extraction and allowed for multiple extractions to be performed simultaneously. In addition, the method exhibited high precision, good linearity, and low limits of detection for six ultraviolet filters in aqueous samples. The developed method was applied to both pool and lake water samples attaining acceptable relative recovery values. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Estimated content percentages of volatile liquids and fat extractables in ready-to-eat foods.
Daft, J L; Cline, J K; Palmer, R E; Sisk, R L; Griffitt, K R
1996-01-01
Content percentages of volatile liquids and fat extractables in 340 samples of ready-to-eat foods were determined gravimetrically. Volatile liquids were determined by drying samples in a microwave oven with a self-contained balance; results were printed out automatically. Fat extractables were extracted from the samples with mixed ethers; extracts were dried and weighed manually. The samples, 191 nonfat and 149 fatty (containing ca 2% or more fat) foods, represent about 5000 different food items and include infant and toddler, ethnic, fast, and imported items. Samples were initially prepared for screening of essential and toxic elements and chemical contamination by chopping and mixing into homogenous composites. Content determinations were then made on separate portions from each composite. Content results were put into a database for evaluation. Overall, mean results from both determinations agree with published data for moisture and fat contents of similar food items. Coefficients of variation, however, were lower for determination of volatile liquids than for that of fat extractables.
Zhao, Jiao; Zhu, Yan; Jiao, Yang; Ning, Jinyan; Yang, Yaling
2016-10-01
A novel two-step extraction technique combining ionic-liquid-based dispersive liquid-liquid microextraction with magnetic solid-phase extraction was developed for the preconcentration and separation of aflatoxins in animal feedstuffs before high-performance liquid chromatography coupled with fluorescence detection. In this work, ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate was used as the extractant in dispersive liquid-liquid microextraction, and hydrophobic pelargonic acid modified Fe 3 O 4 magnetic nanoparticles as an efficient adsorbent were applied to retrieve the aflatoxins-containing ionic liquid. Notably, the target of magnetic nanoparticles was the ionic liquid rather than the aflatoxins. Because of the rapid mass transfer associated with the dispersive liquid-liquid microextraction and magnetic solid phase steps, fast extraction could be achieved. The main parameters affecting the extraction recoveries of aflatoxins were investigated and optimized. Under the optimum conditions, vortexing at 2500 rpm for 1 min in the dispersive liquid-liquid microextraction and magnetic solid-phase extraction and then desorption by sonication for 2 min with acetonitrile as eluent. The recoveries were 90.3-103.7% with relative standard deviations of 3.2-6.4%. Good linearity was observed with correlation coefficients ranged from 0.9986 to 0.9995. The detection limits were 0.632, 0.087, 0.422 and 0.146 ng/mL for aflatoxins B 1 , B2, G1, and G2, respectively. The results were also compared with the pretreatment method carried out by conventional immunoaffinity columns. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Hsin-Yi; Chen, Chien-Yuan; Cheng, Hui-Ting; Chu, Yen-Ho
2016-10-13
Based on a common structural core of 4,5,6,7-tetrahydro[1,2,3]triazolo[1,5- a ]pyridine, a number of bicyclic triazolium ionic liquids 1 - 3 were designed and successfully prepared. In our hands, this optimized synthesis of ionic liquids 1 and 2 requires no chromatographic separation. Also in this work, ionic liquids 1 , 2 were shown to be efficient ionic solvents for fast synthesis of tryptanthrin natural product. Furthermore, a new affinity ionic liquid 3 was tailor-synthesized and displayed its effectiveness in chemoselective extraction of both Cu(II) ions and, for the first time, histidine-containing peptides.
Alves, Andreia; Vanermen, Guido; Covaci, Adrian; Voorspoels, Stefan
2016-09-01
A new, fast, and environmentally friendly method based on ultrasound assisted extraction combined with dispersive liquid-liquid microextraction (US-DLLME) was developed and optimized for assessing the levels of seven phthalate metabolites (including the mono(ethyl hexyl) phthalate (MEHP), mono(2-ethyl-5-hydroxyhexyl) phthalate (5-OH-MEHP), mono(2-ethyl-5-oxohexyl) phthalate (5-oxo-MEHP), mono-n-butyl phthalate (MnBP), mono-isobutyl phthalate (MiBP), monoethyl phthalate (MEP), and mono-benzyl phthalate (MBzP)) in human nails by UPLC-MS/MS. The optimization of the US-DLLME method was performed using a Taguchi combinatorial design (L9 array). Several parameters such as extraction solvent, solvent volume, extraction time, acid, acid concentration, and vortex time were studied. The optimal extraction conditions achieved were 180 μL of trichloroethylene (extraction solvent), 2 mL trifluoroacetic acid in methanol (2 M), 2 h extraction and 3 min vortex time. The optimized method had a good precision (6-17 %). The accuracy ranged from 79 to 108 % and the limit of method quantification (LOQm) was below 14 ng/g for all compounds. The developed US-DLLME method was applied to determine the target metabolites in 10 Belgian individuals. Levels of the analytes measured in nails ranged between <12 and 7982 ng/g. The MEHP, MBP isomers, and MEP were the major metabolites and detected in every sample. Miniaturization (low volumes of organic solvents used), low costs, speed, and simplicity are the main advantages of this US-DLLME based method. Graphical Abstract Extraction and phase separation of the US-DLLME procedure.
Tu, Xijuan; Sun, Fanyi; Wu, Siyuan; Liu, Weiyi; Gao, Zhaosheng; Huang, Shaokang; Chen, Wenbin
2018-01-15
Homogeneous liquid-liquid extraction (h-LLE) has been receiving considerable attention as a sample preparation method due to its simple and fast partition of compounds with a wide range of polarities. To better understand the differences between the two h-LLE extraction approaches, salting-out assisted liquid-liquid extraction (SALLE) and sugaring-out assisted liquid-liquid extraction (SULLE), have been compared for the partition of 10-hydroxy-2-decenoic acid (10-HDA) from royal jelly, and for the co-extraction of proteins. Effects of the amount of phase partition agents and the concentration of acetonitrile (ACN) on the h-LLE were discussed. Results showed that partition efficiency of 10-HDA depends on the phase ratio in both SALLE and SULLE. Though the partition triggered by NaCl and glucose is less efficient than MgSO 4 in the 50% (v/v) ACN-water mixture, their extraction yields can be improved to be similar with that in MgSO 4 SALLE by increasing the initial concentration of ACN in the ACN-water mixture. The content of co-extracted protein was correlated with water concentration in the obtained upper phase. MgSO 4 showed the largest protein co-extraction at the low concentration of salt. Glucose exhibited a large protein co-extraction in the high phase ratio condition. Furthermore, NaCl with high initial ACN concentration is recommended because it produced high extraction yield for 10-HDA and the lowest amount of co-extracted protein. These observations would be valuable for the sample preparation of royal jelly. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Lingling; Zhang, Danfeng; Xu, Xu; Zhang, Lei
2016-04-15
Ionic liquid (IL) dispersive liquid-liquid microextraction (DLLME) method was successfully developed for extracting three endocrine disrupting compounds (EDCs) (bisphenol A, bisphenol AF and bisphenol AP) from the food packaging. 1-Octyl-3-methylimidazoliumhexafluorophosphate ([C8MIM][PF6]) was selected as extraction solution. The extraction procedure did not require a dispersive solvent. Three EDCs extraction kinetics were found to be very fast and the equilibrium was attained within 3.0 min following the pseudo-first-order model. The H-bonding and hydrophobic interactions play an important role in the partitioning of EDCs into IL from aqueous solution. The recovered IL could be reused for three runs without significant loss of extraction efficiencies. The spiked recoveries of three targets in food packaging were in the range of 97.8-103.1%. The limits of detection ranged from 0.50 to 1.50 ng mL(-1) (S/N=3). As a result, this method has been successfully applied for the sensitive detection of three EDCs in real samples. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bazregar, Mohammad; Rajabi, Maryam; Yamini, Yadollah; Arghavani-Beydokhti, Somayeh; Asghari, Alireza
2018-04-01
In this work, a novel method, namely centrifugeless dispersive liquid-liquid microextraction, is introduced for the efficient extraction of banned Sudan dyes from foodstuff and water samples. In this method, which is based upon the salting-out phenomenon, in order to accelerate the extraction process, the extraction solvent (1-undecanol, 75 μL) is dispersed into the sample solution. Then the mixture is passed through a small column filled with 5 g sodium chloride, used as a separating reagent. In this condition, fine droplets of the extraction solvent are floated on the mixture, and the phase separation is simply achieved. This method is environmentally friendly, simple, and very fast, so that the overall extraction time is only 7 min. Under the optimal experimental conditions, the preconcentration factors in the range of 90-121 were obtained for the analytes. Also good linearities were obtained in the range of 2.5-1200 ng mL -1 (r 2 ≥ 0.993). Copyright © 2017 Elsevier Ltd. All rights reserved.
Magiera, Sylwia; Kwietniowska, Ewelina
2016-11-15
In this study, an easy, simple and efficient method for the determination of naringenin enantiomers in fruit juices after salting-out-assisted liquid-liquid extraction (SALLE) and high-performance liquid chromatography (HPLC) with diode-array detection (DAD) was developed. The sample treatment is based on the use of water-miscible acetonitrile as the extractant and acetonitrile phase separation under high-salt conditions. After extraction, juice samples were incubated with hydrochloric acid in order to achieve hydrolysis of naringin to naringenin. The hydrolysis parameters were optimized by using a half-fraction factorial central composite design (CCD). After sample preparation, chromatographic separation was obtained on a Chiralcel® OJ-RH column using the mobile phase consisting of 10mM aqueous ammonium acetate:methanol:acetonitrile (50:30:20; v/v/v) with detection at 288nm. The average recovery of the analyzed compounds ranged from 85.6 to 97.1%. The proposed method was satisfactorily used for the determination of naringenin enantiomers in various fruit juices samples. Copyright © 2016 Elsevier Ltd. All rights reserved.
Meyer, Golo M J; Weber, Armin A; Maurer, Hans H
2014-05-01
Diagnosis and prognosis of poisonings should be confirmed by comprehensive screening and reliable quantification of xenobiotics, for example by gas chromatography-mass spectrometry (GC-MS) or liquid chromatography-mass spectrometry (LC-MS). The turnaround time should be short enough to have an impact on clinical decisions. In emergency toxicology, quantification using full-scan acquisition is preferable because this allows screening and quantification of expected and unexpected drugs in one run. Therefore, a multi-analyte full-scan GC-MS approach was developed and validated with liquid-liquid extraction and one-point calibration for quantification of 40 drugs relevant to emergency toxicology. Validation showed that 36 drugs could be determined quickly, accurately, and reliably in the range of upper therapeutic to toxic concentrations. Daily one-point calibration with calibrators stored for up to four weeks reduced workload and turn-around time to less than 1 h. In summary, the multi-analyte approach with simple liquid-liquid extraction, GC-MS identification, and quantification over fast one-point calibration could successfully be applied to proficiency tests and real case samples. Copyright © 2013 John Wiley & Sons, Ltd.
Zeng, Mingfei; Cao, Huachuan
2018-04-15
Short chain fatty acids (SCFA) and ketone bodies recently emerged as important physiological relevant metabolites because of their association with microbiota, immunology, obesity and other metabolic states. They were commonly analyzed by GC-MS with long run time and laborious sample preparation. In this study we developed a novel LC-MS/MS method using fast derivatization coupled with liquid-liquid extraction to detect SCFA and ketone bodies in plasma and feces. Several different derivatization reagents were evaluated to compare the efficiency, the sensitivity and chromatographic separation of structural isomers. O‑benzylhydroxylamine was selected for its superior overall performance in reaction time and isomeric separation that allowed the measurement of each SCFAs and ketone bodies free from interferences. The derivatization procedure is facile and reproducible in aqueous-organic medium, which abolished the evaporation procedure hampering the analysis of volatile short chain acids. Enhancement in sensitivity remarkably improved the detection limit of SCFA and ketone bodies to sub-fmol level. This novel method was applied to quantify these metabolites in fecal and plasma samples from lean and DIO mouse. Copyright © 2018 Elsevier B.V. All rights reserved.
Muktiono, B; Schulten, C; Heemken, O; Gandrass, J; Prange, A; Schnabl, H; Cerboncini, C
2008-02-01
Protein extracts of photosystem II were prepared from leaf chloroplasts of different plant species by fast and nondenaturing methods. Sodium dodecyl sulfate polyacrylamide gel electrophoresis and western blot analysis of the proteins obtained showed that the extracts were enriched by D1 proteins, which appeared putatively in association with the 33-kDa oxygen-evolving-complex subunits. In further isolation steps D1 proteins were purified using salt-gradient chromatography (fast protein liquid chromatography) and characterized by western blot and mass spectrometry.
Gerace, E; Salomone, A; Abbadessa, G; Racca, S; Vincenti, M
2012-02-01
A fast screening protocol was developed for the simultaneous determination of nine anti-estrogenic agents (aminoglutethimide, anastrozole, clomiphene, drostanolone, formestane, letrozole, mesterolone, tamoxifen, testolactone) plus five of their metabolites in human urine. After an enzymatic hydrolysis, these compounds can be extracted simultaneously from urine with a simple liquid-liquid extraction at alkaline conditions. The analytes were subsequently analyzed by fast-gas chromatography/mass spectrometry (fast-GC/MS) after derivatization. The use of a short column, high-flow carrier gas velocity and fast temperature ramping produced an efficient separation of all analytes in about 4 min, allowing a processing rate of 10 samples/h. The present analytical method was validated according to UNI EN ISO/IEC 17025 guidelines for qualitative methods. The range of investigated parameters included the limit of detection, selectivity, linearity, repeatability, robustness and extraction efficiency. High MS-sampling rate, using a benchtop quadrupole mass analyzer, resulted in accurate peak shape definition under both scan and selected ion monitoring modes, and high sensitivity in the latter mode. Therefore, the performances of the method are comparable to the ones obtainable from traditional GC/MS analysis. The method was successfully tested on real samples arising from clinical treatments of hospitalized patients and could profitably be used for clinical studies on anti-estrogenic drug administration.
Tomková, Jana; Ondra, Peter; Kocianová, Eva; Václavík, Jan
2017-07-01
This paper presents a method for the determination of acebutolol, betaxolol, bisoprolol, metoprolol, nebivolol and sotalol in human serum by liquid-liquid extraction and ultra-high-performance liquid chromatography coupled with ultra-high-resolution TOF mass spectrometry. After liquid-liquid extraction, beta blockers were separated on a reverse-phase analytical column (Acclaim RS 120; 100 × 2.1 mm, 2.2 μm). The total run time was 6 min for each sample. Linearity, limit of detection, limit of quantification, matrix effects, specificity, precision, accuracy, recovery and sample stability were evaluated. The method was successfully applied to the therapeutic drug monitoring of 108 patients with hypertension. This method was also used for determination of beta blockers in 33 intoxicated patients. Copyright © 2016 John Wiley & Sons, Ltd.
Quantitative Insights into the Fast Pyrolysis of Extracted Cellulose, Hemicelluloses, and Lignin.
Carrier, Marion; Windt, Michael; Ziegler, Bernhard; Appelt, Jörn; Saake, Bodo; Meier, Dietrich; Bridgwater, Anthony
2017-08-24
The transformation of lignocellulosic biomass into bio-based commodity chemicals is technically possible. Among thermochemical processes, fast pyrolysis, a relatively mature technology that has now reached a commercial level, produces a high yield of an organic-rich liquid stream. Despite recent efforts to elucidate the degradation paths of biomass during pyrolysis, the selectivity and recovery rates of bio-compounds remain low. In an attempt to clarify the general degradation scheme of biomass fast pyrolysis and provide a quantitative insight, the use of fast pyrolysis microreactors is combined with spectroscopic techniques (i.e., mass spectrometry and NMR spectroscopy) and mixtures of unlabeled and 13 C-enriched materials. The first stage of the work aimed to select the type of reactor to use to ensure control of the pyrolysis regime. A comparison of the chemical fragmentation patterns of "primary" fast pyrolysis volatiles detected by using GC-MS between two small-scale microreactors showed the inevitable occurrence of secondary reactions. In the second stage, liquid fractions that are also made of primary fast pyrolysis condensates were analyzed by using quantitative liquid-state 13 C NMR spectroscopy to provide a quantitative distribution of functional groups. The compilation of these results into a map that displays the distribution of functional groups according to the individual and main constituents of biomass (i.e., hemicelluloses, cellulose and lignin) confirmed the origin of individual chemicals within the fast pyrolysis liquids. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Rocha, Bruno Alves; da Costa, Bruno Ruiz Brandão; de Albuquerque, Nayara Cristina Perez; de Oliveira, Anderson Rodrigo Moraes; Souza, Juliana Maria Oliveira; Al-Tameemi, Maha; Campiglia, Andres Dobal; Barbosa, Fernando
2016-07-01
In this study, a novel method combining dispersive liquid-liquid microextraction (DLLME) and fast liquid chromatography coupled to mass spectrometry (LC-MS/MS) was developed and validated for the extraction and determination of bisphenol A (BPA) and six bisphenol analogues, namely bisphenol S (BPS), bisphenol F (BPF), bisphenol P (BPP), bisphenol Z (BPZ), bisphenol AP (BPAP) and bisphenol AF (BPAF) in human urine samples. Type and volume of extraction and disperser solvents, pH sample, ionic strength, and agitation were evaluated. The matrix-matched calibration curves of all analytes were linear with correlation coefficients higher than 0.99 in the range level of 0.5-20.0ngmL(-1). The relative standard deviation (RSD), precision, at three concentrations (1.0, 8.0 and 15.0ngmL(-1)) was lower than 15% with accuracy ranging from 90 to 112%. The biomonitoring capability of the new method was confirmed with the analysis of 50 human urine samples randomly collected from Brazilians. BPA was detected in 92% of the analyzed samples at concentrations ranging
Barfi, Behruz; Asghari, Alireza; Rajabi, Maryam; Sabzalian, Sedigheh
2015-08-15
Air-assisted liquid-liquid microextraction (AALLME) has unique capabilities to develop as an organic solvent-free and one-step microextraction method, applying ionic-liquids as extraction solvent and avoiding centrifugation step. Herein, a novel and simple eco-friendly method, termed one-step air-assisted liquid-liquid microextraction (OS-AALLME), was developed to extract some illegal azo-based dyes (including Sudan I to IV, and Orange G) from food and cosmetic products. A series of experiments were investigated to achieve the most favorable conditions (including extraction solvent: 77μL of 1-Hexyl-3-methylimidazolium hexafluorophosphate; sample pH 6.3, without salt addition; and extraction cycles: 25 during 100s of sonication) using a central composite design strategy. Under these conditions, limits of detection, linear dynamic ranges, enrichment factors and consumptive indices were in the range of 3.9-84.8ngmL(-1), 0.013-3.1μgmL(-1), 33-39, and 0.13-0.15, respectively. The results showed that -as well as its simplicity, fastness, and use of no hazardous disperser and extraction solvents- OS-AALLME is an enough sensitive and efficient method for the extraction of these dyes from complex matrices. After optimization and validation, OS-AALLME was applied to estimate the concentration of 1-amino-2-naphthol in human bio-fluids as a main reductive metabolite of selected dyes. Levels of 1-amino-2-naphthol in plasma and urinary excretion suggested that this compound may be used as a new potential biomarker of these dyes in human body. Copyright © 2015 Elsevier B.V. All rights reserved.
Pebdani, Arezou Amiri; Shabani, Ali Mohammad Haji; Dadfarnia, Shayesteh; Talebianpoor, Mohammad Sharif; Khodadoust, Saeid
2016-05-01
In this work, a fast, easy, and efficient dispersive liquid-liquid microextraction method based on solidification of floating organic drop followed by high-performance liquid chromatography with UV detection was developed for the separation/preconcentration and determination of the drug valsartan. Experimental design was applied for the optimization of the effective variables (such as volume of extracting and dispersing solvents, ionic strength, and pH) on the extraction efficiency of valsartan from urine samples. The optimized values were 250.0 μL ethanol, 65.0 μL 1-dodecanol, 4.0% w/v NaCl, pH 3.8, 1.0 min extraction time, and 4.0 min centrifugation at 4000 rpm min(-1) . The linear response (r(2) = 0.997) was obtained in the range of 0.013-10.0 μg mL(-1) with a limit of detection of 4.0 ng mL(-1) and relative standard deviations of less than 5.0 % (n = 6). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yang, Xiao; Diao, Chun-Peng; Sun, Ai-Ling; Liu, Ren-Min
2014-10-01
A method for the rapid pretreatment and determination of bisphenol A in water samples based on vortex-assisted liquid-liquid microextraction followed by high-performance liquid chromatography with fluorescence detection was proposed in this paper. A simple apparatus consisting of a test tube and a cut-glass dropper was designed and applied to collect the floating extraction drop in liquid-liquid microextraction when low-density organic solvent was used as the extraction solvent. Solidification and melting steps that were tedious but necessary once the low-density organic solvent used as extraction solvent could be avoided by using this apparatus. Bisphenol A was selected as model pollutant and vortex-assisted liquid-liquid microextraction was employed to investigate the usefulness of the apparatus. High-performance liquid chromatography with fluorescence detection was selected as the analytical tool for the detection of bisphenol A. The linear dynamic range was from 0.10 to 100 μg/L for bisphenol A, with good squared regression coefficient (r(2) = 0.9990). The relative standard deviation (n = 7) was 4.7% and the limit of detection was 0.02 μg/L. The proposed method had been applied to the determination of bisphenol A in natural water samples and was shown to be economical, fast, and convenient. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bodai, Zsolt; Szabó, Bálint Sámuel; Novák, Márton; Hámori, Susanne; Nyiri, Zoltán; Rikker, Tamás; Eke, Zsuzsanna
2014-10-15
A simple and fast analytical method was developed for the determination of six UV stabilizers (Cyasorb UV-1164, Tinuvin P, Tinuvin 234, Tinuvin 326, Tinuvin 327, and Tinuvin 1577) and five antioxidants (Irgafos 168, Irganox 1010, Irganox 3114, Irganox 3790, and Irganox 565) in milk. For sample preparation liquid-liquid extraction with low-temperature purification combined with centrifugation was used to remove fats, proteins, and sugars. After the cleanup step, the sample was analyzed with high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). External standard and matrix calibrations were tested. External calibration proved to be acceptable for Tinuvin P, Tinuvin 234, Tinuvin 326, Tinuvin 327, Irganox 3114, and Irganox 3790. The method was successfully validated with matrix calibration for all compounds. Method detection limits were between 0.25 and 10 μg/kg. Accuracies ranged from 93 to 109%, and intraday precisions were <13%.
Analysis of Perfluorinated Chemicals in Sludge: Method Development and Initial Results
A fast, rigorous method was developed to maximize the extraction efficacy for ten perfluorocarboxylic acids and perfluorooctanesulfonate from wastewater-treatment sludge and to quantitate using liquid chromatography, tandem-mass spectrometry (LC/MS/MS). First, organic solvents w...
NASA Astrophysics Data System (ADS)
Fan, Li; Lin, Changhu; Duan, Wenjuan; Wang, Xiao; Liu, Jianhua; Liu, Feng
2015-01-01
An ultrahigh pressure extraction (UPE)-high performance liquid chromatography (HPLC)/diode array detector (DAD) method was established to evaluate the quality of Lonicera japonica Thunb. Ten active components, including neochlorogenic acid, chlorogenic acid, 4-dicaffeoylquinic acid, caffeic acid, rutin, luteoloside, isochlorogenic acid B, isochlorogenic acid A, isochlorogenic acid C, and quercetin, were qualitatively evaluated and quantitatively determined. Scanning electron microscope images elucidated the bud surface microstructure and extraction mechanism. The optimal extraction conditions of the UPE were 60% methanol solution, 400 MPa of extraction pressure, 3 min of extraction time, and 1:30 (g/mL) solid:liquid ratio. Under the optimized conditions, the total extraction yield of 10 active components was 57.62 mg/g. All the components showed good linearity (r2 ≥ 0.9994) and recoveries. This method was successfully applied to quantify 10 components in 22 batches of L. japonica samples from different areas. Compared with heat reflux extraction and ultrasonic-assisted extraction, UPE can be considered as an alternative extraction technique for fast extraction of active ingredient from L. japonica.
Ullah, Habib; Wilfred, Cecilia Devi; Shaharun, Maizatul Shima
2018-06-06
The present work reports the extraction of phenolic compounds from Polygonum minus using ionic liquid as extracting solvent. In this work, 1-Butyl-3-methylimidazolium hydrogen sulfate [BMIM][HSO 4 ] was used for the extraction of bioactive compounds. Accordingly, ionic liquids based microwave-assisted extraction treatment for separating of bioactive compounds from polygonum minus was first performed in the present study. The results obtained in this work have high extraction yield in comparison with conventional solvent. UV/Vis results showed that microwave synthesis was fast, well dispersed and nanosized copper nanoparticle (CuNPs) in comparison with conventional synthesis. CuNPs was characterized by X-Rays diffractometer (XRD), Fourier transform infrared (FTIR), dynamic light scattering (DLS), field emission scanning electron microscopy combined with energy dispersive x-rays (FESEM-EDX), and thermogravimetric analysis (TGA). All the instrumental analyses confirmed the particles were nanosized. Furthermore, the antibacterial activity of as-synthesized CuNPs showed effective inhibitory zone against three different bacteria. The photocatalytic degradation of copper nanoparticles was studied using methylene blue (MB) and methyl orange (MO) dyes under UV light and degraded 99.9% within short time 8 and 7 minutes.
Wei, Zuofu; Pan, Youzhi; Li, Lu; Huang, Yuyang; Qi, Xiaolin; Luo, Meng; Zu, Yuangang; Fu, Yujie
2014-11-01
A method based on matrix solid-phase dispersion extraction followed by ultra high performance liquid chromatography with tandem mass spectrometry is presented for the extraction and determination of phenolic compounds in Equisetum palustre. This method combines the high efficiency of matrix solid-phase dispersion extraction and the rapidity, sensitivity, and accuracy of ultra high performance liquid chromatography with tandem mass spectrometry. The influential parameters of the matrix solid-phase dispersion extraction were investigated and optimized. The optimized conditions were as follows: silica gel was selected as dispersing sorbent, the ratio of silica gel to sample was selected to be 2:1 (400/200 mg), and 8 mL of 80% methanol was used as elution solvent. Furthermore, a fast and sensitive ultra high performance liquid chromatography with tandem mass spectrometry method was developed for the determination of nine phenolic compounds in E. palustre. This method was carried out within <6 min, and exhibited satisfactory linearity, precision, and recovery. Compared with ultrasound-assisted extraction, the proposed matrix solid-phase dispersion procedure possessed higher extraction efficiency, and was more convenient and time saving with reduced requirements on sample and solvent amounts. All these results suggest that the developed method represents an excellent alternative for the extraction and determination of active components in plant matrices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Farajzadeh, Mir Ali; Afshar Mogaddam, Mohammad Reza; Alizadeh Nabil, Ali Akbar
2015-12-01
In present study, a simultaneous derivatization and air-assisted liquid-liquid microextraction method combined with gas chromatography-nitrogen phosphorous detection has been developed for the determination of some phenolic compounds in biological samples. The analytes are derivatized and extracted simultaneously by a fast reaction with 1-flouro-2,4-dinitrobenzene under mild conditions. Under optimal conditions low limits of detection in the range of 0.05-0.34 ng mL(-1) are achievable. The obtained extraction recoveries are between 84 and 97% and the relative standard deviations are less than 7.2% for intraday (n = 6) and interday (n = 4) precisions. The proposed method was demonstrated to be a simple and efficient method for the analysis of phenols in biological samples. Copyright © 2015 John Wiley & Sons, Ltd.
Koçoğlu, Elif Seda; Bakırdere, Sezgin; Keyf, Seyfullah
2017-09-01
A simple, green and fast analytical method was developed for the determination of sertraline in tap and waste water samples at trace levels by using supportive liquid-liquid extraction with gas chromatography-mass spectrometry. Different parameters affecting extraction efficiency such as types and volumes of extraction and supporter solvents, extraction period, salt type and amount were optimized to get lower detection limits. Ethyl acetate was selected as optimum extraction solvent. In order to improve the precision, anthracene-D10 was used as an internal standard. The calibration plot of sertraline was linear from 1.0 to 1000 ng/mL with a correlation coefficient of 0.999. The limit of detection value under the optimum conditions was found to be 0.43 ng/mL. In real sample measurements, spiking experiments were performed to check the reliability of the method for these matrices. The spiking experiments yielded satisfactory recoveries of 91.19 ± 2.48%, 90.48 ± 5.19% and 95.46 ± 6.56% for 100, 250 and 500 ng/mL sertraline for tap water, and 85.80 ± 2.15% and 92.43 ± 4.02% for 250 and 500 ng/mL sertraline for waste water.
Yuan, Su-Fen; Liu, Ze-Hua; Lian, Hai-Xian; Yang, Chuang-Tao; Lin, Qing; Yin, Hua; Lin, Zhang; Dang, Zhi
2018-02-01
A fast and reliable method was developed for simultaneous trace determination of nine odorous and estrogenic chloro- and bromo-phenolic compounds (CPs and BPs) in water samples using solid-phase extraction (SPE) coupled with liquid chromatography tandem mass spectrometry (LC-MS/MS). For sample preparation, the extraction efficiencies of two widely applied cartridges Oasis HLB and Sep-Pak C18 were compared, and the Oasis HLB cartridge showed much better extraction performance; pH of water sample also plays important role on extraction, and pH = 2-3 was found to be most appropriate. For separation of the target compounds, small addition of ammonium hydroxide can obviously improve the detection sensitivity, and the optimized addition concentration was determined as 0.2%. The developed efficient method was validated and showed excellent linearity (R 2 > 0.995), low limit of detection (LOD, 1.9-6.2 ng/L), and good recovery efficiencies of 57-95% in surface and tap water with low relative standard deviation (RSD, 1.3-17.4%). The developed method was finally applied to one tap and one surface water samples and most of these nine targets were detected, but all of them were below their odor thresholds, and their estrogen equivalent (EEQ) were also very low.
Su, Rui; Li, Dan; Wu, Lijie; Han, Jing; Lian, Wenhui; Wang, Keren; Yang, Hongmei
2017-07-01
A novel microextraction method, termed microwave-assisted ionic liquid/ionic liquid dispersive liquid-liquid microextraction, has been developed for the rapid enrichment and analysis of triazine herbicides in fruit juice samples by high-performance liquid chromatography. Instead of using hazardous organic solvents, two kinds of ionic liquids, a hydrophobic ionic liquid (1-hexyl-3-methylimidazolium hexafluorophosphate) and a hydrophilic ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate), were used as the extraction solvent and dispersion agent, respectively, in this method. The extraction procedure was induced by the formation of cloudy solution, which was composed of fine drops of 1-hexyl-3-methylimidazolium hexafluorophosphate dispersed entirely into sample solution with the help of 1-butyl-3-methylimidazolium tetrafluoroborate. In addition, an ion-pairing agent (NH 4 PF 6 ) was introduced to improve recoveries of the ionic liquid phase. Several experimental parameters that might affect the extraction efficiency were investigated. Under the optimum experimental conditions, the linearity for determining the analytes was in the range of 5.00-250.00 μg/L, with the correlation coefficients of 0.9982-0.9997. The practical application of this effective and green method is demonstrated by the successful analysis of triazine herbicides in four juice samples, with satisfactory recoveries (76.7-105.7%) and relative standard deviations (lower than 6.6%). In general, this method is fast, effective, and robust to determine triazine herbicides in juice samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Padilla-Sánchez, Juan Antonio; Haug, Line Småstuen
2016-05-06
A fast and sensitive method for simultaneous determination of 18 traditional and 6 alternative per- and polyfluoroalkyl substances (PFASs) using solid-liquid extraction (SLE), off-line clean-up using activated carbon and on-line solid phase extraction-ultrahigh performance liquid chromatography-time-of-flight-mass spectrometry (on-line SPE-UHPLC-TOF-MS) was developed. The extraction efficiency was studied and recoveries in range the 58-114% were obtained. Extraction and injection volumes were also optimized to 2mL and 400μL, respectively. The method was validated by spiking dust from a vacuum cleaner bag that had been found to contain low levels of the PFASs in focus. Low method detection limits (MDLs) and method quantification limits (MQLs) in the range 0.008-0.846ngg(-1) and 0.027-2.820ngg(-1) were obtained, respectively. For most of the PFASs, the accuracies were between 70 and 125% in the range from 2 to100ngg(-1) dust. Intra-day and inter-day precisions were in general well below 30%. Analysis of a Standard Reference Material (SRM 2585) showed high accordance with results obtained by other laboratories. Finally, the method was applied to seven indoor dust samples, and PFAS concentrations in the range 0.02-132ngg(-1) were found. The highest median concentrations were observed for some of the alternative PFASs, such as 6:2-diPAP (25ngg(-1)), 8:2-diPAP (49ngg(-1)), and PFOPA (23ngg(-1)), illustrating the importance of inclusion of new PFASs in the analytical methods. Copyright © 2016 Elsevier B.V. All rights reserved.
Maciel, Juliana V; Soares, Bruno M; Mandlate, Jaime S; Picoloto, Rochele S; Bizzi, Cezar A; Flores, Erico M M; Duarte, Fabio A
2014-08-20
This work reports the development of a method for Fe extraction in white and red wines using dispersive liquid-liquid microextraction (DLLME) and determination by ultraviolet-visible spectrophotometry. For optimization of the DLLME method, the following parameters were evaluated: type and volume of dispersive (1300 μL of acetonitrile) and extraction (80 μL of C(2)Cl(4)) solvents, pH (3.0), concentration of ammonium pyrrolidinedithiocarbamate (APDC, 500 μL of 1% m/v APDC solution), NaCl concentration (not added), and extraction time. The calibration curve was performed using the analyte addition method, and the limit of detection and relative standard deviation were 0.2 mg L(-1) and below 7%, respectively. The accuracy was evaluated by comparison of results obtained after Fe determination by graphite furnace atomic absorption spectrometry, with agreement ranging from 94 to 105%. The proposed method was applied for Fe determination in white and red wines with concentrations ranging from 1.3 to 4.7 mg L(-1).
Hou, Xiaohong; Zheng, Xin; Zhang, Conglu; Ma, Xiaowei; Ling, Qiyuan; Zhao, Longshan
2014-10-15
A novel ultrasound-assisted dispersive liquid-liquid microextraction based on solidification of floating organic droplet method (UA-DLLME-SFO) combined with gas chromatography (GC) was developed for the determination of eight pyrethroid pesticides in tea for the first time. After ultrasound and centrifugation, 1-dodecanol and ethanol was used as the extraction and dispersive solvent, respectively. A series of parameters, including extraction solvent and volume, dispersive solvent and volume, extraction time, pH, and ultrasonic time influencing the microextraction efficiency were systematically investigated. Under the optimal conditions, the enrichment factors (EFs) were from 292 to 883 for the eight analytes. The linear ranges for the analytes were from 5 to 100μg/kg. The method recoveries ranged from 92.1% to 99.6%, with the corresponding RSDs less than 6.0%. The developed method was considered to be simple, fast, and precise to satisfy the requirements of the residual analysis of pyrethroid pesticides. Copyright © 2014 Elsevier B.V. All rights reserved.
García-Sarrió, María Jesús; Sanz, María Luz; Sanz, Jesús; González-Coloma, Azucena; Cristina Soria, Ana
2018-04-14
A new microwave-assisted extraction (MAE) method using ethanol as solvent has been optimized by means of a Box-Behnken experimental design for the enhanced extraction of bioactive terpenoids from Mentha rotundifolia leaves; 100°C, 5 min, 1.125 g dry sample: 10 mL solvent and a single extraction cycle were selected as optimal conditions. Improved performance of MAE method in terms of extraction yield and/or reproducibility over conventional solid-liquid extraction and ultrasound assisted extraction was also previously assessed. A comprehensive characterization of MAE extracts was carried out by GC-MS. A total of 46 compounds, mostly terpenoids, were identified; piperitenone oxide and piperitenone were the major compounds determined. Several neophytadiene isomers were also detected for the first time in MAE extracts. Different procedures (solid-phase extraction and activated charcoal (AC) treatment) were also evaluated for clean-up of MAE extracts, with AC providing the highest enrichment in bioactive terpenoids. Finally, the MAE method here developed is shown as a green, fast, efficient and reproducible liquid extraction methodology to obtain M. rotundifolia bioactive extracts for further application, among others, as food preservatives. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Martinez-Sena, María Teresa; de la Guardia, Miguel; Esteve-Turrillas, Francesc A; Armenta, Sergio
2017-12-15
A new analytical procedure, based on liquid chromatography with diode array and fluorescence detection, has been proposed for the determination of bioactive compounds in vegetables and spices after hard cap espresso extraction. This novel extraction system has been tested for the determination of capsaicin and dihydrocapsaicin from fresh chilli and sweet pepper, piperine from ground pepper, curcumin from turmeric and curry, and myristicin from nutmeg. Extraction efficiency was evaluated by using acetonitrile:water and ethanol:water mixtures. The proposed method allows the extraction of samples with 100mL of 60% (v/v) ethanol in water. The obtained limits of quantification for the proposed procedure ranged from 0.07 to 0.30mgg -1 and results were statistically comparable with those obtained by ultrasound assisted extraction. Hard cap espresso machines offer a fast, effective and quantitative tool for the extraction of bioactive compounds from food samples with an extraction time lower than 30s, using a global available and low cost equipment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Direct detection of saponins in crude extracts of soapnuts by FTIR.
Almutairi, Meshari Saad; Ali, Muhammad
2015-01-01
Direct detection of saponins in soapnuts (Sapindus mukorossi) using Fourier transform infrared (FTIR) spectroscopy is investigated in this project. Potassium bromide powder was mixed with extracted powder of soapnuts and compressed to a thin pellet for examination process. The outcome of the FTIR spectra of saponin demonstrated characteristic triterpenoid saponin absorptions of OH, C = O, C-H, and C = C, while the glycoside linkages to the sapogenins were indicated by the absorptions of C-O. The significance of this study is that saponin absorption peaks are directly detectable in crude aqueous and 95% ethanol extracts of soapnuts powder using FTIR spectroscopy, thereby eliminating the need of further expensive and exhaustive purification steps. The extracts of soapnuts were screened for saponins along with controls by phytochemical tests, and advanced spectroscopic techniques such as ultra fast liquid chromatography and ultra performance liquid chromatography quadrupole-time of flight-mass spectrometry were also implemented to validate the saponins.
Quantitative Insights into the Fast Pyrolysis of Extracted Cellulose, Hemicelluloses, and Lignin
Windt, Michael; Ziegler, Bernhard; Appelt, Jörn; Saake, Bodo; Meier, Dietrich; Bridgwater, Anthony
2017-01-01
Abstract The transformation of lignocellulosic biomass into bio‐based commodity chemicals is technically possible. Among thermochemical processes, fast pyrolysis, a relatively mature technology that has now reached a commercial level, produces a high yield of an organic‐rich liquid stream. Despite recent efforts to elucidate the degradation paths of biomass during pyrolysis, the selectivity and recovery rates of bio‐compounds remain low. In an attempt to clarify the general degradation scheme of biomass fast pyrolysis and provide a quantitative insight, the use of fast pyrolysis microreactors is combined with spectroscopic techniques (i.e., mass spectrometry and NMR spectroscopy) and mixtures of unlabeled and 13C‐enriched materials. The first stage of the work aimed to select the type of reactor to use to ensure control of the pyrolysis regime. A comparison of the chemical fragmentation patterns of “primary” fast pyrolysis volatiles detected by using GC‐MS between two small‐scale microreactors showed the inevitable occurrence of secondary reactions. In the second stage, liquid fractions that are also made of primary fast pyrolysis condensates were analyzed by using quantitative liquid‐state 13C NMR spectroscopy to provide a quantitative distribution of functional groups. The compilation of these results into a map that displays the distribution of functional groups according to the individual and main constituents of biomass (i.e., hemicelluloses, cellulose and lignin) confirmed the origin of individual chemicals within the fast pyrolysis liquids. PMID:28644517
Kim, Daejin; Powell, Lawrence; Delmau, Lætitia H.; ...
2016-04-04
We present that the rare earth elements (REEs) play a vital role in the development of green energy and high-tech industries. In order to meet the fast-growing demand and to ensure sufficient supply of the REEs, it is essential to develop an efficient REE recovery process from post-consumer REE-containing products. In this research effort, we have developed a supported liquid membrane system utilizing polymeric hollow fiber modules to extract REEs from neodymium-based magnets with neutral extractants such as tetraoctyl digylcol amide (TODGA). The effect of process variables such as REE concentration, molar concentration of acid, and membrane area on REEmore » recovery was investigated. We have demonstrated the selective extraction and recovery of REEs such as Nd, Pr, and Dy without co-extraction of non-REEs from permanent NdFeB magnets through the supported liquid membrane system. The extracted REEs were then recovered by precipitation followed by the annealing step to obtain crystalline REE powders in nearly pure form. Finally, the recovered REE oxides were characterized by X-ray diffraction, scanning electron microscope coupled with energy-dispersive X-ray spectroscopy, and inductively coupled plasma–optical emission spectroscopy.« less
Measuring charge nonuniformity in MOS devices
NASA Technical Reports Server (NTRS)
Maserjian, J.; Zamani, N.
1980-01-01
Convenient method of determining inherent lateral charge non-uniformities along silicon dioxide/silicon interface of metal-oxide-semiconductor (MOS) employs rapid measurement of capacitance of interface as function of voltage at liquid nitrogen temperature. Charge distribution is extracted by fast-Fourier-transform analysis of capacitance voltage (C-V) measurement.
Montesdeoca-Esponda, Sarah; Sosa-Ferrera, Zoraida; Kabir, Abuzar; Furton, Kenneth G; Santana-Rodríguez, José Juan
2015-10-01
A fast and sensitive sample preparation strategy using fabric phase sorptive extraction followed by ultra-high-performance liquid chromatography and tandem mass spectrometry detection has been developed to analyse benzotriazole UV stabilizer compounds in aqueous samples. Benzotriazole UV stabilizer compounds are a group of compounds added to sunscreens and other personal care products which may present detrimental effects to aquatic ecosystems. Fabric phase sorptive extraction is a novel solvent minimized sample preparation approach that integrates the advantages of sol-gel derived hybrid inorganic-organic nanocomposite sorbents and the flexible, permeable and hydrophobic surface chemistry of polyester fabric. It is a highly sensitive, fast, efficient and inexpensive device that can be reused and does not suffer from coating damage, unlike SPME fibres or stir bars. In this paper, we optimized the extraction of seven benzotriazole UV filters evaluating the majority of the parameters involved in the extraction process, such as sorbent chemistry selection, extraction time, back-extraction solvent, back-extraction time and the impact of ionic strength. Under the optimized conditions, fabric phase sorptive extraction allows enrichment factors of 10 times with detection limits ranging from 6.01 to 60.7 ng L(-1) and intra- and inter-day % RSDs lower than 11 and 30 % for all compounds, respectively. The optimized sample preparation technique followed by ultra-high-performance liquid chromatography and tandem mass spectrometry detection was applied to determine the target analytes in sewage samples from wastewater treatment plants with different purification processes of Gran Canaria Island (Spain). Two UV stabilizer compounds were measured in ranges 17.0-60.5 ng mL(-1) (UV 328) and 69.3-99.2 ng mL(-1) (UV 360) in the three sewage water samples analysed.
Aflatoxin B1 in eggs and chicken livers by dispersive liquid-liquid microextraction and HPLC.
Amirkhizi, Behzad; Arefhosseini, Seyed Rafie; Ansarin, Masoud; Nemati, Mahboob
2015-01-01
A rapid, low-cost and simple technique has been developed for the determination of aflatoxin B1 (AFB1) in eggs and livers using high-performance liquid chromatography (HPLC) with UV detection. In this study, the presence of AFB1 was investigated in 150 eggs and 50 chicken livers from the local market of Tabriz, Iran. AFB1 was extracted with a mixture of acetonitrile:water (80:20) and cleaned up by dispersive liquid-liquid microextraction which is a very economical, fast and sensitive method. AFB1 was quantified by HPLC-UV without need for any complex derivatisation in samples to enhance the detection. The results showed that 72% of the liver and 58% of the egg samples were contaminated with AFB1 ranging from 0.30 to 16.36 µg kg (̶1). limit of detection and limit of quantification for AFB1 were 0.08 and 0.28 µg kg (̶ 1), respectively. The proposed method is suitable for fast analysing of AFB1 in egg and liver samples.
Ahmadi-Jouibari, Toraj; Fattahi, Nazir; Shamsipur, Mojtaba; Pirsaheb, Meghdad
2013-11-01
A novel, simple, rapid and sensitive dispersive liquid-liquid microextraction method based on the solidification of floating organic drop (DLLME-SFO) combined with high-performance liquid chromatography-ultraviolet detection (HPLC-UV) was used to determine opium alkaloids in human plasma. During the extraction procedure, plasma protein was precipitated by using a mixture of zinc sulfate solution and acetonitrile. Some effective parameters on extraction were studied and optimized. Under the optimum conditions (extraction solvent: 30.0 μl 1-undecanol; disperser solvent: 470 μl acetone; pH: 9; salt addition: 1%(w/v) NaCl and extraction time: 0.5 min), calibration curves are linear in the range of 1.5-1000 μgl(-1) and limit of detections (LODs) are in the range of 0.5-5 μgl(-1). The relative standard deviations (RSDs) for 100 μgl(-1) of morphine and codeine, 10.0 μgl(-1) of papaverine and 20.0 μgl(-1) of noscapine in diluted human plasma are in the range of 4.3-7.4% (n=5). Finally, the method was successfully applied in the determination of opium alkaloids in the actual human plasma samples. The relative recoveries of plasma samples spiked with alkaloids are 88-110.5%. The obtained results show that DLLME-SFO combined with HPLC-UV is a fast and simple method for the determination of opium alkaloids in human plasma. Copyright © 2013 Elsevier B.V. All rights reserved.
Sereshti, Hassan; Izadmanesh, Yahya; Samadi, Soheila
2011-07-22
Ultrasonic assisted extraction-dispersive liquid-liquid microextraction (UAE-DLLME) coupled with gas chromatography (GC) was applied for extraction and determination of essential oil constituents of the plant Oliveria decumbens Vent. Scanning electron microscopy (SEM) was used to see the effect of ultrasonic radiation on the extraction efficiency. By comparison with hydrodistillation, UAE-DLLME is fast, low cost, simple, efficient and consuming small amount of plant materials (∼1.0 g). The effects of various parameters such as temperature, ultrasonication time, volume of disperser and extraction solvents were investigated by a full factorial design to identify significant variables and their interactions. The results demonstrated that temperature and ultrasonication time had no considerable effect on the results. In the next step, a central composite design (CCD) was performed to obtain the optimum levels of significant parameters. The obtained optimal conditions were: 0.45 mL for disperser solvent (acetonitrile) and 94.84 μL for extraction solvent (chlorobenzene). The limits of detection (LODs), linear dynamic range and determination coefficients (R(2)) were 0.2-29 ng mL(-1), 1-2100 ng mL(-1) and 0.995-0.998, respectively. The main components of the essential oil were: thymol (47.06%), carvacrol (23.31%), gamma-terpinene (18.94%), p-cymene (8.71%), limonene (0.76%) and myristicin (0.63%). Copyright © 2011 Elsevier B.V. All rights reserved.
Castejón, Natalia; Luna, Pilar; Señoráns, Francisco J
2017-03-29
Chia (Salvia hispanica L.) seeds contain an important amount of edible oil rich in omega-3 fatty acids. Fast and alternative extraction techniques based on polar solvents, such as ethanol or water, have become relevant for oil extraction in recent years. However, chia seeds also contain a large amount of soluble fiber or mucilage, which makes difficult an oil extraction process with polar solvents. For that reason, the aim of this study was to develop a gentle extraction method for mucilage in order to extract chia oil with polar solvents using pressurized liquids and compare with organic solvent extraction. The proposed mucilage extraction method, using an ultrasonic probe and only water, was optimized at mild conditions (50 °C and sonication 3 min) to guarantee the omega-3 oil quality. Chia oil extraction was performed using pressurized liquid extraction (PLE) with different solvents and their mixtures at five different extraction temperatures (60, 90, 120, 150, and 200 °C). Optimal PLE conditions were achieved with ethyl acetate or hexane at 90 °C in only 10 min of static extraction time (chia oil yield up to 30.93%). In addition, chia oils extracted with nonpolar and polar solvents by PLE were analyzed by gas chromatography-mass spectrometry (GC-MS) to evaluate fatty acid composition at different extraction conditions. Chia oil contained ∼65% of α-linolenic acid regardless of mucilage extraction method, solvent, or temperature used. Furthermore, tocopherols and tocotrienols were also analyzed by HPLC in the extracted chia oils. The mucilage removal allowed the subsequent extraction of the chia oil with polar or nonpolar solvents by PLE producing chia oil with the same fatty acid and tocopherol composition as traditional extraction.
Mofidi, Zahra; Norouzi, Parviz; Sajadian, Masumeh; Ganjali, Mohammad Reza
2018-04-01
A novel, simple, and inexpensive analytical technique based on flat sheet supported liquid membrane microextraction coupled with fast Fourier transform stripping cyclic voltammetry on a reduced graphene oxide carbon paste electrode was used for the extraction and online determination of diclofenac in whole blood. First, diclofenac was extracted from blood samples using a polytetrafluoroethylene membrane impregnated with 1-octanol and then into an acceptor solution, subsequently it was oxidized on a carbon paste electrode modified with reduced graphene oxide nanosheets. The optimal values of the key parameters influencing the method were as follows: scan rate, 6 V/s; stripping potential, 200 mV; stripping time, 5 s; pH of the sample solution, 5; pH of the acceptor solution,7; and extraction time, 240 min. The calibration curves were plotted for the whole blood samples and the method was found to have a good linearity within the range of 1-25 μg/mL with a determination coefficient of 0.99. The limits of detection and quantification were 0.1 and 1.0 μg/mL, respectively. Using this coupled method, the extraction and determination were merged into one step. Accordingly, the speed of detection for sensitive determination of diclofenac in complex samples, such as blood, increased considerably. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ionic liquids gels: Soft materials for environmental remediation.
Marullo, Salvatore; Rizzo, Carla; Dintcheva, Nadka T; Giannici, Francesco; D'Anna, Francesca
2018-05-01
Nanostructured sorbents and, in particular, supramolecular gels are emerging as efficient materials for the removal of toxic contaminants from water, like industrial dyes. It is also known that ionic liquids can dissolve significant amounts of dyes. Consequently, supramolecular ionic liquids gels could be highly efficient sorbents for dyes removal. This would also contribute to overcome the drawbacks associated with dye removal by liquid-liquid extraction with neat ionic liquids which would require large volumes of extractant and a more difficult separation of the phases. Herein we employed novel supramolecular ionic liquid gels based on diimidazolium salts bearing naturally occurring or biomass derived anions, to adsorb cationic and anionic dyes from wastewaters. We also carried out a detailed investigation of thermal, structural, morphological and rheological features of our gels to identify which of them are key in designing better sorbents for environmental remediation. The most effective gels showed fast and thorough removal of cationic dyes like Rhodamine B. These gels could also be reused up to 20 times without any loss in removal efficiency. Overall, our ionic gels outperform most of gel-based sorbents systems so far reported in literature. Copyright © 2018 Elsevier Inc. All rights reserved.
Roussel, Anne-Marie; Hininger, Isabelle; Benaraba, Rachida; Ziegenfuss, Tim N; Anderson, Richard A
2009-02-01
To determine the effects of a dried aqueous extract of cinnamon on antioxidant status of people with impaired fasting glucose that are overweight or obese. Twenty-two subjects, with impaired fasting blood glucose with BMI ranging from 25 to 45, were enrolled in a double-blind placebo-controlled trial. Subjects were given capsules containing either a placebo or 250 mg of an aqueous extract of cinnamon (Cinnulin PF) two times per day for 12 weeks. Plasma malondialdehyde (MDA) concentrations were assessed using high performance liquid chromatography and plasma antioxidant status was evaluated using ferric reducing antioxidant power (FRAP) assay. Erythrocyte Cu-Zn superoxide (Cu-Zn SOD) activity was measured after hemoglobin precipitation by monitoring the auto-oxidation of pyrogallol and erythrocyte glutathione peroxidase (GPx) activity by established methods. FRAP and plasma thiol (SH) groups increased, while plasma MDA levels decreased in subjects receiving the cinnamon extract. Effects were larger after 12 than 6 weeks. There was also a positive correlation (r = 0.74; p = 0.014) between MDA and plasma glucose. This study supports the hypothesis that the inclusion of water soluble cinnamon compounds in the diet could reduce risk factors associated with diabetes and cardiovascular disease.
NASA Astrophysics Data System (ADS)
Farahmand, Farnaz; Ghasemzadeh, Bahar; Naseri, Abdolhossein
2018-01-01
An air assisted liquid-liquid microextraction by applying the solidification of a floating organic droplet method (AALLME-SFOD) coupled with a multivariate calibration method, namely partial least squares (PLS), was introduced for the fast and easy determination of Atenolol (ATE), Propanolol (PRO) and Carvedilol (CAR) in biological samples via a spectrophotometric approach. The analytes would be extracted from neutral aqueous solution into 1-dodecanol as an organic solvent, using AALLME. In this approach a low-density solvent with a melting point close to room temperature was applied as the extraction solvent. The emulsion was immediately formed by repeatedly pulling in and pushing out the aqueous sample solution and extraction solvent mixture via a 10-mL glass syringe for ten times. After centrifugation, the extractant droplet could be simply collected from the aqueous samples by solidifying the emulsion at a lower than the melting point temperature. In the next step, analytes were back extracted simultaneously into the acidic aqueous solution. Derringer and Suich multi-response optimization were utilized for simultaneous optimizing the parameters of three analytes. This method incorporates the benefits of AALLME and dispersive liquid-liquid microextraction considering the solidification of floating organic droplets (DLLME-SFOD). Calibration graphs under optimized conditions were linear in the range of 0.30-6.00, 0.32-2.00 and 0.30-1.40 μg mL- 1 for ATE, CAR and PRO, respectively. Other analytical parameters were obtained as follows: enrichment factors (EFs) were found to be 11.24, 16.55 and 14.90, and limits of detection (LODs) were determined to be 0.09, 0.10 and 0.08 μg mL- 1 for ATE, CAR and PRO, respectively. The proposed method will require neither a highly toxic chlorinated solvent for extraction nor an organic dispersive solvent in the application process; hence, it is more environmentally friendly.
Farahmand, Farnaz; Ghasemzadeh, Bahar; Naseri, Abdolhossein
2018-01-05
An air assisted liquid-liquid microextraction by applying the solidification of a floating organic droplet method (AALLME-SFOD) coupled with a multivariate calibration method, namely partial least squares (PLS), was introduced for the fast and easy determination of Atenolol (ATE), Propanolol (PRO) and Carvedilol (CAR) in biological samples via a spectrophotometric approach. The analytes would be extracted from neutral aqueous solution into 1-dodecanol as an organic solvent, using AALLME. In this approach a low-density solvent with a melting point close to room temperature was applied as the extraction solvent. The emulsion was immediately formed by repeatedly pulling in and pushing out the aqueous sample solution and extraction solvent mixture via a 10-mL glass syringe for ten times. After centrifugation, the extractant droplet could be simply collected from the aqueous samples by solidifying the emulsion at a lower than the melting point temperature. In the next step, analytes were back extracted simultaneously into the acidic aqueous solution. Derringer and Suich multi-response optimization were utilized for simultaneous optimizing the parameters of three analytes. This method incorporates the benefits of AALLME and dispersive liquid-liquid microextraction considering the solidification of floating organic droplets (DLLME-SFOD). Calibration graphs under optimized conditions were linear in the range of 0.30-6.00, 0.32-2.00 and 0.30-1.40μg mL -1 for ATE, CAR and PRO, respectively. Other analytical parameters were obtained as follows: enrichment factors (EFs) were found to be 11.24, 16.55 and 14.90, and limits of detection (LODs) were determined to be 0.09, 0.10 and 0.08μg mL -1 for ATE, CAR and PRO, respectively. The proposed method will require neither a highly toxic chlorinated solvent for extraction nor an organic dispersive solvent in the application process; hence, it is more environmentally friendly. Copyright © 2017 Elsevier B.V. All rights reserved.
Manca, Alessandra; Alladio, Eugenio; Massarenti, Paola; Puccinelli, M Paola; De Francesco, Antonella; Del Grosso, Erika; Mengozzi, Giulio; Pazzi, Marco; Vincenti, Marco
2017-12-01
A simple "one-pot" derivatization and liquid-liquid extraction (LLE) procedure was developed for GC-MS analysis of reduced glutathione (GSH) analysis in erythrocytes. The metabolite was extracted by 5% (w/v) TCA, the supernatant treated with ECF and ethanol-pyridine media, the derivative separated and detected by gas chromatography-mass spectrometry using a short non-polar capillary GC column at a high column-head pressure. Total analysis time was 11min. The process was optimized by a Design of Experiment. The method was validated showing a good linearity over the 25.4-813.4μM concentration range, providing satisfactory results in terms of intra-day and inter-day precision as well as an optimal accuracy. The new method was evaluated in a pilot study involving patients with severe protein malnutrition. Comparison of this group with a group of healthy subjects revealed significantly lower GSH concentrations in erythrocytes in the former, thus proving that the described GC-MS method could be employed for fast and simple GSH analysis in clinical studies. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhang, Yingzhi; Zhang, Aihua; Zhang, Ying; Sun, Hui; Meng, Xiangcai; Yan, Guangli; Wang, Xijun
2016-01-01
Acanthopanax senticosus (Rupr and Maxim) Harms (AS), a member of Araliaceae family, is a typical folk medicinal herb, which is widely distributed in the Northeastern part of China. Due to lack of this resource caused by the extensive use of its root, this work studied the chemical constituents of leaves of this plant with the purpose of looking for an alternative resource. In this work, a fast and optimized ultra-performance liquid chromatography method with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) has been developed for the analysis of constituents in leaves extracts. A total of 131 compounds were identified or tentatively characterized including triterpenoid saponins, phenols, flavonoids, lignans, coumarins, polysaccharides, and other compounds based on their fragmentation behaviors. Besides, a total of 21 metabolites were identified in serum in rats after oral administration, among which 12 prototypes and 9 metabolites through the metabolic pathways of reduction, methylation, sulfate conjugation, sulfoxide to thioether and deglycosylation. The coupling of UPLC-QTOF-MS led to the in-depth characterization of the leaves extracts of AS both in vitro and in vivo on the basis of retention time, mass accuracy, and tandem MS/MS spectra. It concluded that this analytical tool was very valuable in the study of complex compounds in medicinal herb. HIGHLIGHT OF PAPER A fast UPLC-QTOF-MS has been developed for analysis of constituents in leaves extractsA total of 131 compounds were identified in leaves extractsA total of 21 metabolites including 12 prototypes and 9 metabolites were identified in vivo. SUMMARY Constituent’s analysis of Acanthopanax senticosus Harms leaf by ultra-performance liquid chromatography method with quadrupole time-of-flight mass spectrometry. Abbreviations used: AS: Acanthopanax senticosus (Rupr and Maxim) Harms, TCHM: Traditional Chinese herbal medicine, UPLC-QTOF-MS: Ultra-performance liquid chromatography method with time-of-flight mass spectrometry, MS/MS: Tandem mass spectrometry, PCA: Principal component analysis, PLS-DA: Partial least squared discriminant analysis, OPLS-DA: Orthogonal projection to latent structure-discriminant analysis. PMID:27076752
Tejada-Casado, Carmen; Lara, Francisco J; García-Campaña, Ana M; Del Olmo-Iruela, Monsalud
2018-03-30
Ultra-high performance liquid chromatography (UHPLC) coupled with fluorescence detection (FL) has been proposed for the first time to determine thirteen benzimidazoles (BZs) in farmed fish samples. In order to optimize the chromatographic separation, parameters such as mobile phase composition and flow rate were carefully studied, establishing a gradient mode with a mobile phase consisted of water (solvent A) and acetonitrile (solvent B) at a flow rate of 0.4 mL/min. The separation was performed on a Zorbax Eclipse Plus RRHD C 18 column (50 × 2.1 mm, 1.8 μm), involving a total analysis time lower than 12 min. Salting-out assisted liquid-liquid extraction (SALLE) was applied as sample treatment to different types of farmed fish (trout, sea bream and sea bass). To obtain satisfactory extraction efficiencies for the studied analytes, several parameters affecting the SALLE procedure were optimized including the amount of sample, type and volume of the extraction solvent, and the nature and amount of the salt used. Characterization of the method in terms of performance characteristics was carried out, obtaining satisfactory results for the linearity (R 2 ≥ 0.997), repeatability (RSD ≤ 6.1%), reproducibility (RSD ≤ 10.8%) and recoveries (R ≥ 79%; RSD ≤ 7.8%). Detection limits between 0.04-29.9 μg kg -1 were obtained, demonstrating the applicability of this fast, simple and environmentally friendly method. Copyright © 2018 Elsevier B.V. All rights reserved.
Wang, Xiaotong; Zhang, Yue; Niu, Huibin; Geng, Yajing; Wang, Bing; Yang, Xiaomei; Yan, Pengyu; Li, Qing; Bi, Kaishun
2017-05-01
A method of ultra-fast liquid chromatography with tandem mass spectrometry was developed and validated for the simultaneous quantitation of eight bioactive components, including polygalaxanthone III, sibiricaxanthone B, tenuifolin, sibiricose A5, sibiricose A6, tenuifoliside A, ginsenoside Re and ginsenoside Rb1 in rat plasma after oral administration of Kai-Xin-San. The plasma samples were extracted by liquid-liquid extraction using digoxin as an internal standard. Chromatographic separation was performed on a Venusil MP C 18 column (100 mm × 2.1 mm, 3 μm) with methanol and 0.05% acetic acid in water as mobile phase. The tandem mass spectrometric detection was performed in the multiple reaction monitoring with turbo ion spray source in the negative ionization. Validation parameters were within acceptable ranges. The established method has been successfully applied to compare the pharmacokinetic profiles of the analytes between normal and Alzheimer's disease rats. The results indicated that there were significant differences in pharmacokinetic parameters of some components between two groups, which may be due to the mechanisms of Alzheimer's disease and pharmacological effects of the analytes. The pharmacokinetic research in the pathological state might provide more useful information to guide the clinical usage of herbal medicine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Yinan; Han, Fei; Song, Aihua; Wang, Miao; Zhao, Min; Zhao, Chunjie
2016-11-01
Cortex Fraxini is an important traditional Chinese medicine. In this work, a rapid and reliable homogenate extraction method was applied for the fast extraction for Cortex Fraxini, and the method was optimized by response surface methodology. Ultra high performance liquid chromatography combined with Fourier transform ion cyclotron resonance mass spectrometry and gas chromatography with mass spectrometry were established for the separation and characterization of the constituents of Cortex Fraxini. Liquid chromatography separation was conducted on a C 18 column (150 mm × 2.1 mm, 1.8 μm), and gas chromatography separation was performed on a capillary with a 5% phenyl-methylpolysiloxane stationary phase (30 m × 0.25 mm × 0.25 mm) by injection of silylated samples. According to the results, 33 chemical compounds were characterized by liquid chromatography with mass spectrometry, and 11 chemical compounds were characterized by gas chromatography with mass spectrometry, and coumarins were the major components characterized by both gas chromatography with mass spectrometry and liquid chromatography with mass spectrometry. The proposed homogenate extraction was an efficient and rapid method, and coumarins, phenylethanoid glycosides, iridoid glycosides, phenylpropanoids, and lignans were the main constituents of Cortex Fraxini. This work laid the foundation for further study of Cortex Fraxini and will be helpful for the rapid extraction and characterization of ingredients in other traditional Chinese medicines. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Campone, Luca; Piccinelli, Anna Lisa; Celano, Rita; Russo, Mariateresa; Valdés, Alberto; Ibáñez, Clara; Rastrelli, Luca
2015-04-01
According to current demands and future perspectives in food safety, this study reports a fast and fully automated analytical method for the simultaneous analysis of the mycotoxins with high toxicity and wide spread, aflatoxins (AFs) and ochratoxin A (OTA) in dried fruits, a high-risk foodstuff. The method is based on pressurized liquid extraction (PLE), with aqueous methanol (30%) at 110 °C, of the slurried dried fruit and online solid-phase extraction (online SPE) cleanup of the PLE extracts with a C18 cartridge. The purified sample was directly analysed by ultra-high-pressure liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) for sensitive and selective determination of AFs and OTA. The proposed analytical procedure was validated for different dried fruits (vine fruit, fig and apricot), providing method detection and quantification limits much lower than the AFs and OTA maximum levels imposed by EU regulation in dried fruit for direct human consumption. Also, recoveries (83-103%) and repeatability (RSD < 8, n = 3) meet the performance criteria required by EU regulation for the determination of the levels of mycotoxins in foodstuffs. The main advantage of the proposed method is full automation of the whole analytical procedure that reduces the time and cost of the analysis, sample manipulation and solvent consumption, enabling high-throughput analysis and highly accurate and precise results.
Farajzadeh, Mir Ali; Sattari Dabbagh, Masoumeh; Yadeghari, Adeleh
2017-05-01
In this study, a gas-assisted dispersive liquid-phase microextraction method using a deep eutectic solvent as the extraction solvent combined with gas chromatography and flame ionization detection was developed for the extraction and determination of some pesticide residues in vegetable and fruit juice samples. In this method, choline chloride and 4-chlorophenol at a molar ratio of 1:2 were mixed. By heating and vortexing, a clear, water-immiscible, and homogeneous liquid was formed. The obtained deep eutectic solvent was added to an aqueous solution of the analytes in a conical test tube. Air was bubbled into the aqueous solution and a cloudy solution was obtained. During this step, the analytes were extracted into the fine droplets of the extraction solvent. After centrifugation, an aliquot of the settled phase was injected into the separation system. Under the optimum extraction conditions, enrichment factors, and extraction recoveries were obtained in the ranges of 247-355 and 49-71%, respectively. The obtained values for the limits of detection and quantification were in the ranges of 0.24-1.4 and 0.71-4.2 μg/L, respectively. The proposed method is simple, fast, efficient, and inexpensive. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nemitz, Marina C; Yatsu, Francini K J; Bidone, Juliana; Koester, Letícia S; Bassani, Valquiria L; Garcia, Cássia V; Mendez, Andreas S L; von Poser, Gilsane L; Teixeira, Helder F
2015-03-01
There is a growing interest in the pharmaceutical field concerning isoflavones topical delivery systems, especially with regard to their skin care properties and antiherpetic activity. In this context, the present work describes an ultra-fast liquid chromatography method (UFLC) for determining daidzein, glycitein, and genistein in different matrices during the development of topical systems containing isoflavone aglycones (IA) obtained from soybeans. The method showed to be specific, precise, accurate, and linear (0.1 to 5 µg mL(-1)) for IA determination in soybean acid extract, IA-rich fraction obtained after the purification process, IA loaded-nanoemulsions, and topical hydrogel, as well as for permeation/retention assays in porcine skin and porcine esophageal mucosa. The matrix effect was determined for all complex matrices, demonstrating low effect during the analysis. The stability indicating UFLC method was verified by submitting IA to acidic, alkaline, oxidative, and thermal stress conditions, and no interference of degradation products was detected during analysis. Mass spectrometry was performed to show the main compounds produced after acid hydrolysis of soybeans, as well as suggest the main degradation products formed after stress conditions. Besides the IA, hydroxymethylfurfural and ethoxymethylfurfural were produced and identified after acid hydrolysis of the soybean extract and well separated by the UFLC method. The method's robustness was confirmed using the Plackett-Burman experimental design. Therefore, the new method affords fast IA analysis during routine processes, extract purification, products development, and bioanalytical assays. Copyright © 2014 Elsevier B.V. All rights reserved.
Liu, E-Hu; Liu, Qun; Chu, Chu; Li, Ping
2011-10-01
A fast high-performance liquid chromatography (HPLC) method with diode-array detection (DAD) and time-of-flight mass spectrometry (TOF/MS) has been developed for the analysis of multi-constituent in Yinhuang granules, a well-known combined herbal remedy prepared from the extract mixtures of Flos Lonicerae and Radix Scutellariae. The fast HPLC analysis was performed on an Agilent ZorBax SB-C(18) column (4.6×50 mm, 1.8 μm) and 0.2% aqueous formic acid and acetonitrile was the optimum mobile phase for gradient elution in 17 min, which is five times faster than the performance of conventional columns packed with 5.0 μm particles. With various fragmentor voltages in TOF/MS, accurate mass measurements (<5 ppm error) for molecular ions and characteristic fragment ions represented reliable identification criteria for different constituents. A total of 28 compounds, including nine phenolic acids, three iridoid glycosides and nine saponins from Flos Lonicerae and seven flavonoids from Radix Scutellariae, were identified or tentatively characterized in the extract of Yinhuang granules. The established fast HPLC-DAD-TOF/MS method turns out to be useful and efficient for quality control of this commonly used Chinese herbal preparation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Schmidt, Holger; Böttcher, Christoph; Trampczynska, Aleksandra; Clemens, Stephan
2011-01-01
Nicotianamine (NA) is an important metal chelator, implicated in the intra- and intercellular trafficking of several transition metal ions in plants. To decipher its roles in physiological processes such as micronutrient acquisition, distribution or storage, fast and sensitive analytical techniques for quantification of this non-proteinogenic amino acid will be required. The use of a recombinant Schizosaccharomyces pombe strain expressing a nicotianamine synthase (NAS) gene allowed for the production of [(15)N(3)]-NA, which was enriched from cell extracts through cation exchange and used for stable isotope dilution analysis of NA. Such an approach should be widely applicable to important bioanalytes that are difficult to synthesize. The analytical procedure comprises mild aqueous extraction and rapid Fmoc derivatization, followed by fast separation using ultra-performance liquid chromatography (UPLC) and sensitive detection by positive ion electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS) with a chromatographic cycle time of only 8 min. Derivatization was optimized with respect to incubation time and species suitable for quantification. The limit of detection was 0.14 to 0.23 pmol in biological matrices with the response being linear up to 42 pmol. Recovery rates were between 83% and 104% in various biological matrices including fission yeast cells, fungal mycelium, plant leaves and roots.
Analysis of fentanyl in urine by DLLME-GC-MS.
Gardner, Michael A; Sampsel, Sheena; Jenkins, Werner W; Owens, Janel E
2015-03-01
Fentanyl is a synthetic narcotic anesthetic ∼80-100 times more potent than morphine. Owing to the potential for its abuse, the drug may be included in a forensic toxicology work-up, which requires fast, precise and accurate measurements. Here, the stability of fentanyl was assessed when stored at three different temperatures (-20, 4 and 25°C) in synthetic urine. Stability at those three temperatures was demonstrated over 12 weeks upon analysis by gas chromatography-mass spectrometry with a deuterated internal standard (fentanyl-D5) utilizing three different extraction techniques: liquid-liquid extraction (LLE), solid-phase extraction and dispersed liquid-liquid microextraction (DLLME). The DLLME method was then optimized before use in the analysis of fentanyl in urine samples obtained from autopsy cases at the El Paso County Coroner's Office. Accuracy of the DLLME method was assessed by completing spike and recovery studies at three different fortification levels (10, 100 and 250 ng/mL) with excellent recovery (89.9-102.6%). The excellent comparability between DLLME and LLE is demonstrated (Bland-Altman difference plot with a mean difference of 4.9 ng/mL) and the use of this methodology in the analysis of forensically relevant samples is discussed. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Troncoso, N; Sierra, H; Carvajal, L; Delpiano, P; Günther, G
2005-12-23
An improved HPLC method is reported for the determination of rosemary's principal phenolic antioxidants, rosmarinic and carnosic acids, providing a fast and simultaneous determination for both of them by using a solid phase column. The analysis was performed with fresh methanolic extractions of Rosmarinus officinalis. To quantify the amount of antioxidants in a fast and reproducible way by means of UV-vis absorption measurements, a spectrophotometric multi-wavelength calibration curve was constructed based on the antioxidant contents obtained with the recently developed HPLC method. This UV-vis methodology can be extended to the determination of other compounds and herbs if the restrictions mentioned in the text are respected.
Amarasinghe, Kande; Chu, Pak-Sin; Evans, Eric; Reimschuessel, Renate; Hasbrouck, Nicholas; Jayasuriya, Hiranthi
2012-05-23
This paper describes the development of a fast method to screen and confirm methyltestosterone 17-O-glucuronide (MT-glu) in tilapia bile. The method consists of solid-phase extraction (SPE) followed by high-performance liquid chromatography-mass spectrometry. The system used was an Agilent 6530 Q-TOF with an Agilent Jet stream electrospray ionization interface. The glucuronide detected in the bile was characterized as MT-glu by comparison with a chemically synthesized standard. MT-glu was detected in bile for up to 7 days after dosing. Semiquantification was done with matrix-matched calibration curves, because MT-glu showed signal suppression due to matrix effects. This method provides a suitable tool to monitor the illegal use of methyltestosterone in tilapia culture.
Li, J; Cheong, K L; Zhao, J; Hu, D J; Chen, X Q; Qiao, C F; Zhang, Q W; Chen, Y W; Li, S P
2013-09-20
A fast protein liquid chromatography coupled with refractive index detection (FPLC-RID) method was firstly developed for preparation and purification of fructooligosaccharides with different degree of polymerization from burdock, Arctium lappa. After extraction with 60% ethanol and decolorization with MCI gel CHP20P, total fructooligosaccharides were purified on Bio-Gel P-2 column eluted with water at the flow rate of 0.3 ml/min, which was the optimized conditions. The obtained fructooligosaccharides with degree of polymerization of 3-9 were identified based on their methylation analysis, MS and NMR data. This method has the advantages of high automation, good recovery and easy performance, which could be used for preparation of FOS from other sources, as well as other targeted compounds without UV absorbance. Copyright © 2013 Elsevier B.V. All rights reserved.
Larki, Arash; Nasrabadi, Mehdi Rahimi; Pourreza, Nahid
2015-06-01
In the present study, a simple, fast and inexpensive method based on dispersive liquid-liquid microextraction (DLLME) prior to microvolume UV-vis spectrophotometry was developed for the preconcentration and determination of trinitrotoluene (TNT). The procedure is based on the color reaction of TNT in alkaline medium and extraction into CCl4 as an ion pair assisted by trioctylmethylammonium chloride, which also acts as a disperser agent. Experimental parameters affecting the DLLME method such as pH, concentration of sodium hydroxide, amount of trioctylmethylammonium chloride, type and volume of extraction solvent were investigated and optimized. Under the optimum conditions, the limit of detection (LOD) was 0.9ng/mL and the calibration curve was linear in the range of 3-200ng/mL. The relative standard deviation for 25 and 100ng/mL of TNT were 3.7% and 1.5% (n=6), respectively. The developed DLLME method was applied for the determination of TNT in different water and soil samples. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Zokaei, Maryam; Abedi, Abdol-Samad; Kamankesh, Marzieh; Shojaee-Aliababadi, Saeedeh; Mohammadi, Abdorreza
2017-11-01
In this research, for the first time, we successfully developed ultrasonic-assisted extraction and dispersive liquid-liquid microextraction combined with gas chromatography-mass spectrometry as a new, fast and highly sensitive method for determining of acrylamide in potato chips samples. Xanthydrol was used as a derivatization reagent and parameters affecting in the derivatization and microextraction steps were studied and optimized. Under optimum conditions, the calibration curves showed high levels of linearity (R 2 >0.9993) for acrylamide in the range of 2-500ngmL -1 . The relative standard deviation (RSD) for the seven analyses was 6.8%. The limit of detection (LOD) and limit of quantification (LOQ) were 0.6ngg -1 and 2ngg -1 , respectively. The UAE-DLLME-GC-MS method demonstrated high sensitivity, good linearity, recovery, and enrichment factor. The performance of the new proposed method was evaluated for the determination of acrylamide in various types of chips samples and satisfactory results were obtained. Copyright © 2017 Elsevier Ltd. All rights reserved.
A simple and fast method for extraction and quantification of cryptophyte phycoerythrin.
Thoisen, Christina; Hansen, Benni Winding; Nielsen, Søren Laurentius
2017-01-01
The microalgal pigment phycoerythrin (PE) is of commercial interest as natural colorant in food and cosmetics, as well as fluoroprobes for laboratory analysis. Several methods for extraction and quantification of PE are available but they comprise typically various extraction buffers, repetitive freeze-thaw cycles and liquid nitrogen, making extraction procedures more complicated. A simple method for extraction of PE from cryptophytes is described using standard laboratory materials and equipment. The cryptophyte cells on the filters were disrupted at -80 °C and added phosphate buffer for extraction at 4 °C followed by absorbance measurement. The cryptophyte Rhodomonas salina was used as a model organism. •Simple method for extraction and quantification of phycoerythrin from cryptophytes.•Minimal usage of equipment and chemicals, and low labor costs.•Applicable for industrial and biological purposes.
Mahmoudi, Nagissa; Slater, Greg F; Fulthorpe, Roberta R
2011-08-01
Molecular characterization of the microbial populations of soils and sediments contaminated with polycyclic aromatic hydrocarbons (PAHs) is often a first step in assessing intrinsic biodegradation potential. However, soils are problematic for molecular analysis owing to the presence of organic matter, such as humic acids. Furthermore, the presence of contaminants, such as PAHs, can cause further challenges to DNA extraction, quantification, and amplification. The goal of our study was to compare the effectiveness of four commercial soil DNA extraction kits (UltraClean Soil DNA Isolation kit, PowerSoil DNA Isolation kit, PowerMax Soil DNA Isolation kit, and FastDNA SPIN kit) to extract pure, high-quality bacterial and eukaryotic DNA from PAH-contaminated soils. Six different contaminated soils were used to determine if there were any biases among the kits due to soil properties or level of contamination. Extracted DNA was used as a template for bacterial 16S rDNA and eukaryotic 18S rDNA amplifications, and PCR products were subsequently analyzed using denaturing gel gradient electrophoresis (DGGE). We found that the FastDNA SPIN kit provided significantly higher DNA yields for all soils; however, it also resulted in the highest levels of humic acid contamination. Soil texture and organic carbon content of the soil did not affect the DNA yield of any kit. Moreover, a liquid-liquid extraction of the DNA extracts found no residual PAHs, indicating that all kits were effective at removing contaminants in the extraction process. Although the PowerSoil DNA Isolation kit gave relatively low DNA yields, it provided the highest quality DNA based on successful amplification of both bacterial and eukaryotic DNA for all six soils. DGGE fingerprints among the kits were dramatically different for both bacterial and eukaryotic DNA. The PowerSoil DNA Isolation kit revealed multiple bands for each soil and provided the most consistent DGGE profiles among replicates for both bacterial and eukaryotic DNA.
Kim, Junghyun; Suh, Joon Hyuk; Cho, Hyun-Deok; Kang, Wonjae; Choi, Yong Seok; Han, Sang Beom
2016-01-01
A multi-class, multi-residue analytical method based on LC-MS/MS detection was developed for the screening and confirmation of 28 veterinary drug and metabolite residues in flatfish, shrimp and eel. The chosen veterinary drugs are prohibited or unauthorised compounds in Korea, which were categorised into various chemical classes including nitroimidazoles, benzimidazoles, sulfones, quinolones, macrolides, phenothiazines, pyrethroids and others. To achieve fast and simultaneous extraction of various analytes, a simple and generic liquid extraction procedure using EDTA-ammonium acetate buffer and acetonitrile, without further clean-up steps, was applied to sample preparation. The final extracts were analysed by ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS). The method was validated for each compound in each matrix at three different concentrations (5, 10 and 20 ng g(-1)) in accordance with Codex guidelines (CAC/GL 71-2009). For most compounds, the recoveries were in the range of 60-110%, and precision, expressed as the relative standard deviation (RSD), was in the range of 5-15%. The detection capabilities (CCβs) were below or equal to 5 ng g(-1), which indicates that the developed method is sufficient to detect illegal fishery products containing the target compounds above the residue limit (10 ng g(-1)) of the new regulatory system (Positive List System - PLS).
Zhang, Wei
2005-01-01
The purification of reaction mixtures is a slow process in organic synthesis, especially during the production of large numbers of analogs and compound libraries. Phase-tag methods such as solid-phase synthesis and fluorous synthesis, provide efficient ways of addressing the separation issue. Fluorous synthesis employs functionalized perfluoroalkyl groups attached to substrates or reagents. The separation of the resulting fluorous molecules can be achieved using strong and selective fluorous liquid-liquid extraction, fluorous silica gel-based solid-phase extraction or high-performance liquid chromatography. Fluorous technology is a novel solution-phase method, which has the advantages of fast reaction times in homogeneous environments, being readily adaptable to literature conditions, having easy intermediate analysis, and having flexibility in reaction scale and scope. In principle, any synthetic methods that use a solid-support could be conducted in solution-phase by replacing the polymer linker with a corresponding fluorous tag. This review summarizes the progress of fluorous tags in solution-phase synthesis of small molecules, peptides and oligosaccharides. PMID:15595439
Jank, Louise; Martins, Magda Targa; Arsand, Juliana Bazzan; Campos Motta, Tanara Magalhães; Hoff, Rodrigo Barcellos; Barreto, Fabiano; Pizzolato, Tânia Mara
2015-11-01
A fast and simple method for residue analysis of the antibiotics classes of macrolides (erythromycin, azithromycin, tylosin, tilmicosin and spiramycin) and lincosamides (lincomycin and clindamycin) was developed and validated for cattle, swine and chicken muscle and for bovine milk. Sample preparation consists in a liquid-liquid extraction (LLE) with acetonitrile, followed by liquid chromatography-electrospray-tandem mass spectrometry analysis (LC-ESI-MS/MS), without the need of any additional clean-up steps. Chromatographic separation was achieved using a C18 column and a mobile phase composed by acidified acetonitrile and water. The method was fully validated according the criteria of the Commission Decision 2002/657/EC. Validation parameters such as limit of detection, limit of quantification, linearity, accuracy, repeatability, specificity, reproducibility, decision limit (CCα) and detection capability (CCβ) were evaluated. All calculated values met the established criteria. Reproducibility values, expressed as coefficient of variation, were all lower than 19.1%. Recoveries range from 60% to 107%. Limits of detection were from 5 to 25 µg kg(-1).The present method is able to be applied in routine analysis, with adequate time of analysis, low cost and a simple sample preparation protocol. Copyright © 2015. Published by Elsevier B.V.
Validated method for the analysis of goji berry, a rich source of zeaxanthin dipalmitate.
Karioti, Anastasia; Bergonzi, Maria Camilla; Vincieri, Franco F; Bilia, Anna Rita
2014-12-31
In the present study an HPLC-DAD method was developed for the determination of the main carotenoid, zeaxanthin dipalmitate, in the fruits of Lycium barbarum. The aim was to develop and optimize an extraction protocol to allow fast, exhaustive, and repeatable extraction, suitable for labile carotenoid content. Use of liquid N2 allowed the grinding of the fruit. A step of ultrasonication with water removed efficiently the polysaccharides and enabled the exhaustive extraction of carotenoids by hexane/acetone 50:50. The assay was fast and simple and permitted the quality control of a large number of commercial samples including fruits, juices, and a jam. The HPLC method was validated according to ICH guidelines and satisfied the requirements. Finally, the overall method was validated for precision (% RSD ranging between 3.81 and 4.13) and accuracy at three concentration levels. The recovery was between 94 and 107% with RSD values <2%, within the acceptable limits, especially if the difficulty of the matrix is taken into consideration.
Intermittent cryogen spray cooling for optimal heat extraction during dermatologic laser treatment
NASA Astrophysics Data System (ADS)
Majaron, Boris; Svaasand, Lars O.; Aguilar, Guillermo; Nelson, J. Stuart
2002-09-01
Fast heat extraction is critically important to obtain the maximal benefit of cryogen spray cooling (CSC) during laser therapy of shallow skin lesions, such as port wine stain birthmarks. However, a film of liquid cryogen can build up on the skin surface, impairing heat transfer due to the relatively low thermal conductivity and higher temperature of the film as compared to the impinging spray droplets. In an attempt to optimize the cryogen mass flux, while minimally affecting other spray characteristics, we apply a series of 10 ms spurts with variable duty cycles. Heat extraction dynamics during such intermittent cryogen sprays were measured using a custom-made metal-disc detector. The highest cooling rates were observed at moderate duty cycle levels. This confirms the presence, and offers a practical way to eliminate the adverse effect of liquid cryogen build-up on the sprayed surface. On the other hand, lower duty cycles allow a substantial reduction in the average rate of heat extraction, enabling less aggressive and more efficient CSC for treatment of deeper targets, such as hair follicles.
Intermittent cryogen spray cooling for optimal heat extraction during dermatologic laser treatment.
Majaron, Boris; Svaasand, Lars O; Aguilar, Guillermo; Nelson, J Stuart
2002-09-21
Fast heat extraction is critically important to obtain the maximal benefit of cryogen spray cooling (CSC) during laser therapy of shallow skin lesions, such as port wine stain birthmarks. However, a film of liquid cryogen can build up on the skin surface, impairing heat transfer due to the relatively low thermal conductivity and higher temperature of the film as compared to the impinging spray droplets. In an attempt to optimize the cryogen mass flux, while minimally affecting other spray characteristics, we apply a series of 10 ms spurts with variable duty cycles. Heat extraction dynamics during such intermittent cryogen sprays were measured using a custom-made metal-disc detector. The highest cooling rates were observed at moderate duty cycle levels. This confirms the presence, and offers a practical way to eliminate the adverse effect of liquid cryogen build-up on the sprayed surface. On the other hand, lower duty cycles allow a substantial reduction in the average rate of heat extraction, enabling less aggressive and more efficient CSC for treatment of deeper targets, such as hair follicles.
Gerace, E.; Salomone, A.; Abbadessa, G.; Racca, S.; Vincenti, M.
2011-01-01
A fast screening protocol was developed for the simultaneous determination of nine anti-estrogenic agents (aminoglutethimide, anastrozole, clomiphene, drostanolone, formestane, letrozole, mesterolone, tamoxifen, testolactone) plus five of their metabolites in human urine. After an enzymatic hydrolysis, these compounds can be extracted simultaneously from urine with a simple liquid–liquid extraction at alkaline conditions. The analytes were subsequently analyzed by fast-gas chromatography/mass spectrometry (fast-GC/MS) after derivatization. The use of a short column, high-flow carrier gas velocity and fast temperature ramping produced an efficient separation of all analytes in about 4 min, allowing a processing rate of 10 samples/h. The present analytical method was validated according to UNI EN ISO/IEC 17025 guidelines for qualitative methods. The range of investigated parameters included the limit of detection, selectivity, linearity, repeatability, robustness and extraction efficiency. High MS-sampling rate, using a benchtop quadrupole mass analyzer, resulted in accurate peak shape definition under both scan and selected ion monitoring modes, and high sensitivity in the latter mode. Therefore, the performances of the method are comparable to the ones obtainable from traditional GC/MS analysis. The method was successfully tested on real samples arising from clinical treatments of hospitalized patients and could profitably be used for clinical studies on anti-estrogenic drug administration. PMID:29403714
Golovko, Oksana; Koba, Olga; Kodesova, Radka; Fedorova, Ganna; Kumar, Vimal; Grabic, Roman
2016-07-01
The aim of this study was to develop a simple extraction procedure and a multiresidual liquid chromatography-tandem mass spectrometry method for determination of a wide range of pharmaceuticals from various soil types. An extraction procedure for 91 pharmaceuticals from 13 soil types, followed by liquid chromatography-tandem mass spectrometry analysis, was optimized. The extraction efficiencies of three solvent mixtures for ultrasonic extraction were evaluated for 91 pharmaceuticals. The best results were obtained using acetonitrile/water (1/1 v/v with 0.1 % formic acid) followed by acetonitrile/2-propanol/water (3/3/4 v/v/v with 0.1 % formic acid) for extracting 63 pharmaceuticals. The method was validated at three fortification levels (10, 100, and 1000 ng/g) in all types of representative soils; recovery of 44 pharmaceuticals ranged between 55 and 135 % across all tested soils. The method was applied to analyze actual environmental samples of sediments, soils, and sludge, and 24 pharmaceuticals were found above limit of quantification with concentrations ranging between 0.83 ng/g (fexofenadine) and 223 ng/g (citalopram).
Biniarz, Piotr; Łukaszewicz, Marcin
2017-06-01
The rapid and accurate quantification of biosurfactants in biological samples is challenging. In contrast to the orcinol method for rhamnolipids, no simple biochemical method is available for the rapid quantification of lipopeptides. Various liquid chromatography (LC) methods are promising tools for relatively fast and exact quantification of lipopeptides. Here, we report strategies for the quantification of the lipopeptides pseudofactin and surfactin in bacterial cultures using different high- (HPLC) and ultra-performance liquid chromatography (UPLC) systems. We tested three strategies for sample pretreatment prior to LC analysis. In direct analysis (DA), bacterial cultures were injected directly and analyzed via LC. As a modification, we diluted the samples with methanol and detected an increase in lipopeptide recovery in the presence of methanol. Therefore, we suggest this simple modification as a tool for increasing the accuracy of LC methods. We also tested freeze-drying followed by solvent extraction (FDSE) as an alternative for the analysis of "heavy" samples. In FDSE, the bacterial cultures were freeze-dried, and the resulting powder was extracted with different solvents. Then, the organic extracts were analyzed via LC. Here, we determined the influence of the extracting solvent on lipopeptide recovery. HPLC methods allowed us to quantify pseudofactin and surfactin with run times of 15 and 20 min per sample, respectively, whereas UPLC quantification was as fast as 4 and 5.5 min per sample, respectively. Our methods provide highly accurate measurements and high recovery levels for lipopeptides. At the same time, UPLC-MS provides the possibility to identify lipopeptides and their structural isoforms.
Yang, Miyi; Xi, Xuefei; Wu, Xiaoling; Lu, Runhua; Zhou, Wenfeng; Zhang, Sanbing; Gao, Haixiang
2015-02-13
A novel microextraction technique combining magnetic solid-phase microextraction (MSPME) with ionic liquid dispersive liquid-liquid microextraction (IL-DLLME) to determine four fungicides is presented in this work for the first time. The main factors affecting the extraction efficiency were optimized by the one-factor-at-a-time approach and the impacts of these factors were studied by an orthogonal design. Without tedious clean-up procedure, analytes were extracted from the sample to the adsorbent and organic solvent and then desorbed in acetonitrile prior to chromatographic analysis. Under the optimum conditions, good linearity and high enrichment factors were obtained for all analytes, with correlation coefficients ranging from 0.9998 to 1.0000 and enrichment factors ranging 135 and 159 folds. The recoveries for proposed approach were between 98% and 115%, the limits of detection were between 0.02 and 0.04 μg L(-1) and the RSDs changed from 2.96 to 4.16. The method was successfully applied in the analysis of four fungicides (azoxystrobin, chlorothalonil, cyprodinil and trifloxystrobin) in environmental water samples. The recoveries for the real water samples ranged between 81% and 109%. The procedure proved to be a time-saving, environmentally friendly, and efficient analytical technique. Copyright © 2015 Elsevier B.V. All rights reserved.
Fang, Xinsheng; Wang, Jianhua; Zhou, Hongying; Jiang, Xingkai; Zhu, Lixiang; Gao, Xin
2009-07-01
An optimized microwave-assisted extraction method using water (MAE-W) as the extractant and an efficient HPLC analysis method were first developed for the fast extraction and simultaneous determination of D(+)-(3,4-dihydroxyphenyl) lactic acid (Dla), salvianolic acid B (SaB), and lithospermic acid (La) in radix Salviae Miltiorrhizae. The key parameters of MAE-W were optimized. It was found that the degradation of SaB was inhibited when using the optimized MAE-W and the stable content of Dla, La, and SaB in danshen was obtained. Furthermore, compared to the conventional extraction methods, the proposed MAE-W is a more rapid method with higher yield and lower solvent consumption with a reproducibility (RSD <6%). In addition, using water as extractant is safe and helpful for environment protection, which could be referred to as green extraction. The separation and quantitative determination of the three compounds was carried out by a developed reverse-phase high-performance liquid chromatographic (RP-HPLC) method with UV detection. Highly efficient separation was obtained using gradient solvent system. The optimized HPLC analysis method was validated to have specificity, linearity, precision, and accuracy. The results indicated that MAE-W followed by HPLC-UV determination is an appropriate alternative to previously proposed method for quality control of radix Salviae Miltiorrhizae.
Caldas, Sergiane Souza; Soares, Bruno Meira; Abreu, Fiamma; Castro, Ítalo Braga; Fillmann, Gilberto; Primel, Ednei Gilberto
2018-03-01
This paper reports the development of an analytical method employing vortex-assisted matrix solid-phase dispersion (MSPD) for the extraction of diuron, Irgarol 1051, TCMTB (2-thiocyanomethylthiobenzothiazole), DCOIT (4,5-dichloro-2-n-octyl-3-(2H)-isothiazolin-3-one), and dichlofluanid from sediment samples. Separation and determination were performed by liquid chromatography tandem-mass spectrometry. Important MSPD parameters, such as sample mass, mass of C18, and type and volume of extraction solvent, were investigated by response surface methodology. Quantitative recoveries were obtained with 2.0 g of sediment sample, 0.25 g of C18 as the solid support, and 10 mL of methanol as the extraction solvent. The MSPD method was suitable for the extraction and determination of antifouling biocides in sediment samples, with recoveries between 61 and 103% and a relative standard deviation lower than 19%. Limits of quantification between 0.5 and 5 ng g -1 were obtained. Vortex-assisted MPSD was shown to be fast and easy to use, with the advantages of low cost and reduced solvent consumption compared to the commonly employed techniques for the extraction of booster biocides from sediment samples. Finally, the developed method was applied to real samples. Results revealed that the developed extraction method is effective and simple, thus allowing the determination of biocides in sediment samples.
Development and Applications of Liquid Sample Desorption Electrospray Ionization Mass Spectrometry
NASA Astrophysics Data System (ADS)
Zheng, Qiuling; Chen, Hao
2016-06-01
Desorption electrospray ionization mass spectrometry (DESI-MS) is a recent advance in the field of analytical chemistry. This review surveys the development of liquid sample DESI-MS (LS-DESI-MS), a variant form of DESI-MS that focuses on fast analysis of liquid samples, and its novel analy-tical applications in bioanalysis, proteomics, and reaction kinetics. Due to the capability of directly ionizing liquid samples, liquid sample DESI (LS-DESI) has been successfully used to couple MS with various analytical techniques, such as microfluidics, microextraction, electrochemistry, and chromatography. This review also covers these hyphenated techniques. In addition, several closely related ionization methods, including transmission mode DESI, thermally assisted DESI, and continuous flow-extractive DESI, are briefly discussed. The capabilities of LS-DESI extend and/or complement the utilities of traditional DESI and electrospray ionization and will find extensive and valuable analytical application in the future.
Badoud, F; Grata, E; Perrenoud, L; Saugy, M; Rudaz, S; Veuthey, J-L
2010-06-18
For doping control, analyses of samples are generally achieved in two steps: a rapid screening and, in the case of a positive result, a confirmatory analysis. A two-step methodology based on ultra-high-pressure liquid chromatography coupled to a quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) was developed to screen and confirm 103 doping agents from various classes (e.g., beta-blockers, stimulants, diuretics, and narcotics). The screening method was presented in a previous article as part I (i.e., Fast analysis of doping agents in urine by ultra-high-pressure liquid chromatography-quadrupole time-of-flight mass spectrometry. Part I: screening analysis). For the confirmatory method, basic, neutral and acidic compounds were extracted by a dedicated solid-phase extraction (SPE) in a 96-well plate format and detected by MS in the tandem mode to obtain precursor and characteristic product ions. The mass accuracy and the elemental composition of precursor and product ions were used for compound identification. After validation including matrix effect determination, the method was considered reliable to confirm suspect results without ambiguity according to the positivity criteria established by the World Anti-Doping Agency (WADA). Moreover, an isocratic method was developed to separate ephedrine from its isomer pseudoephedrine and cathine from phenylpropanolamine in a single run, what allowed their direct quantification in urine. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Chen, Jue; Liu, Mengjun; Wang, Qi; Du, Huizhi; Zhang, Liwei
2016-10-17
Deep eutectic solvents (DESs) have attracted significant attention as a promising green media. In this work, twenty-five kinds of benign choline chloride-based DESs with microwave-assisted methods were applied to quickly extract active components from Radix Salviae miltiorrhizae . The extraction factors, including temperature, time, power of microwave, and solid/liquid ratio, were investigated systematically by response surface methodology. The hydrophilic and hydrophobic ingredients were extracted simultaneously under the optimized conditions: 20 vol% of water in choline chloride/1,2-propanediol (1:1, molar ratio) as solvent, microwave power of 800 W, temperature at 70 °C, time at 11.11 min, and solid/liquid ratio of 0.007 g·mL -1 . The extraction yield was comparable to, or even better than, conventional methods with organic solvents. The microstructure alteration of samples before and after extraction was also investigated. The method validation was tested as the linearity of analytes ( r ² > 0.9997 over two orders of magnitude), precision (intra-day relative standard deviation (RSD) < 2.49 and inter-day RSD < 2.96), and accuracy (recoveries ranging from 95.04% to 99.93%). The proposed DESs combined with the microwave-assisted method provided a prominent advantage for fast and efficient extraction of active components, and DESs could be extended as solvents to extract and analyze complex environmental and pharmaceutical samples.
Amoli-Diva, Mitra; Taherimaslak, Zohreh; Allahyari, Mehdi; Pourghazi, Kamyar; Manafi, Mohammad Hanif
2015-03-01
An efficient, simple and fast low-density solvent based dispersive liquid-liquid microextraction (LDS-DLLME) followed by vortex-assisted dispersive solid phase extraction (VA-D-SPE) has been developed as a new approach for extraction and preconcentration of aflatoxin M1 in milk samples prior to its micelle enhanced spectrofluorimetic determination. In this LDS-DLLME coupled VA-D-SPE method, milk samples were first treated with methanol/water (80:20, v/v) after removing the fat layer. This solvent was directly used as the dispersing solvent in DLLME along with using 1-heptanol (as a low-density solvent with respect to water) as the extracting solvent. In VA-D-SPE approach, hydrophobic oleic acid modified Fe3O4 nanoparticles were used to retrieve the analyte from the DLLME step. It is considerably that the target of VA-D-SPE was 1-heptanol rather than the aflatoxin M1 directly. The main parameters affecting the efficiency of LDS-DLLME and VA-D-SPE procedures and signal enhancement of aflatoxin M1 were investigated and optimized. Under the optimum conditions, the method was linear in the range from 0.02 to 200 µg L(-1) with the correlation coefficient (R(2)) of 0.9989 and detection limit of 13 ng L(-1). The intra-day precision was 2.9 and 4.3% and the inter-day precision was 2.1 and 3.3% for concentration of 2 and 50 µg L(-1) respectively. The developed method was applied for extraction and preconcentration of AFM1 in three commercially available milk samples and the results were compared with the official AOAC method. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhang, Ya-Fei; Zuo, Xiang-Yun; Bi, Yu-An; Wu, Jian-Xiong; Wang, Zhen-Zhong; L, Ping; Xiao, Wei
2014-08-01
To establish a rapid quantitative analysis method for the content of chlorogenic acid and solid content in the extraction liquid concentration process during the production of Reduning injection by using the near-infrared (NIR) spectroscopy, in order to reflect the concentration state in a real-time manner and really realize the quality control of concentrating process of the extraction and concentration process. The samples during the Jinqing extraction liquid concentration process were collected. After the removal of abnormal samples, the spectra pretreatment and the wave band selection, the quantitative calibration model between NIR spectra and chlorogenic acid HPLC analytical value and solid content was established by using PLS algorithm, and unknown samples were predicted. The correlation coefficients between the chlorogenic acid content and the solid content were respectively 0.992 1 and 0.994 0, and the correlation coefficients of the verification model were respectively 0.994 4 and 0.998 4, with the root mean square error of calibration (RMSEC) of 0.814 6 and 2.656 1 and the root mean square error of prediction (RMSEP) of 0.704 6 and 1.876 7 respectively, and the relative standard errors of predictions (RSEP) were 6.01% and 2.93% respectively. The method is simple, rapid, nondestructive, accurate and reliable, thus could be adopted for the fast monitoring of the chlorogenic acid content and the solid content during the concentration process of Reduning injection extraction liquid.
Wang, Ya-Qi; Wu, Zhen-Feng; Ke, Gang; Yang, Ming
2014-12-31
An effective vacuum assisted extraction (VAE) technique was proposed for the first time and applied to extract bioactive components from Andrographis paniculata. The process was carefully optimized by response surface methodology (RSM). Under the optimized experimental conditions, the best results were obtained using a boiling temperature of 65 °C, 50% ethanol concentration, 16 min of extraction time, one extraction cycles and a 12:1 liquid-solid ratio. Compared with conventional ultrasonic assisted extraction and heat reflux extraction, the VAE technique gave shorter extraction times and remarkable higher extraction efficiency, which indicated that a certain degree of vacuum gave the solvent a better penetration of the solvent into the pores and between the matrix particles, and enhanced the process of mass transfer. The present results demonstrated that VAE is an efficient, simple and fast method for extracting bioactive components from A. paniculata, which shows great potential for becoming an alternative technique for industrial scale-up applications.
Blomqvist, Maria; Borén, Jan; Zetterberg, Henrik; Blennow, Kaj; Månsson, Jan-Eric; Ståhlman, Marcus
2017-07-01
Sulfatides (STs) are a group of glycosphingolipids that are highly expressed in brain. Due to their importance for normal brain function and their potential involvement in neurological diseases, development of accurate and sensitive methods for their determination is needed. Here we describe a high-throughput oriented and quantitative method for the determination of STs in cerebrospinal fluid (CSF). The STs were extracted using a fully automated liquid/liquid extraction method and quantified using ultra-performance liquid chromatography coupled to tandem mass spectrometry. With the high sensitivity of the developed method, quantification of 20 ST species from only 100 μl of CSF was performed. Validation of the method showed that the STs were extracted with high recovery (90%) and could be determined with low inter- and intra-day variation. Our method was applied to a patient cohort of subjects with an Alzheimer's disease biomarker profile. Although the total ST levels were unaltered compared with an age-matched control group, we show that the ratio of hydroxylated/nonhydroxylated STs was increased in the patient cohort. In conclusion, we believe that the fast, sensitive, and accurate method described in this study is a powerful new tool for the determination of STs in clinical as well as preclinical settings. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.
Hu, Ting; Guo, Yan-Yun; Zhou, Qin-Fan; Zhong, Xian-Ke; Zhu, Liang; Piao, Jin-Hua; Chen, Jian; Jiang, Jian-Guo
2012-09-01
Eclipta prostrasta L. is a traditional Chinese medicine herb, which is rich in saponins and has strong antiviral and antitumor activities. An ultrasonic-assisted extraction (UAE) technique was developed for the fast extraction of saponins from E. prostrasta. The content of total saponins in E. prostrasta was determined using UV/vis spectrophotometric methods. Several influential parameters like ethanol concentration, extraction time, temperature, and liquid/solid ratio were investigated for the optimization of the extraction using single factor and Box-Behnken experimental designs. Extraction conditions were optimized for maximum yield of total saponins in E. prostrasta using response surface methodology (RSM) with 4 independent variables at 3 levels of each variable. Results showed that the optimization conditions for saponins extraction were: ethanol concentration 70%, extraction time 3 h, temperature 70 °C, and liquid/solid ratio 14:1. Corresponding saponins content was 2.096%. The mathematical model developed was found to fit well with the experimental data. Practical Application: Although there are wider applications of Eclipta prostrasta L. as a functional food or traditional medicine due to its various bioactivities, these properties are limited by its crude extracts. Total saponins are the main active ingredient of E. prostrasta. This research has optimized the extraction conditions of total saponins from E. prostrasta, which will provide useful reference information for further studies, and offer related industries with helpful guidance in practice. © 2012 Institute of Food Technologists®
Wahlen, Raimund
2004-04-01
A high-performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) method has been developed for the fast and accurate analysis of arsenobetaine (AsB) in fish samples extracted by accelerated solvent extraction. The combined extraction and analysis approach is validated using certified reference materials for AsB in fish and during a European intercomparison exercise with a blind sample. Up to six species of arsenic (As) can be separated and quantitated in the extracts within a 10-min isocratic elution. The method is optimized so as to minimize time-consuming sample preparation steps and allow for automated extraction and analysis of large sample batches. A comparison of standard addition and external calibration show no significant difference in the results obtained, which indicates that the LC-ICP-MS method is not influenced by severe matrix effects. The extraction procedure can process up to 24 samples in an automated manner, yet the robustness of the developed HPLC-ICP-MS approach is highlighted by the capability to run more than 50 injections per sequence, which equates to a total run-time of more than 12 h. The method can therefore be used to rapidly and accurately assess the proportion of nontoxic AsB in fish samples with high total As content during toxicological screening studies.
Martins, Magda Targa; Melo, Jéssica; Barreto, Fabiano; Hoff, Rodrigo Barcellos; Jank, Louise; Bittencourt, Michele Soares; Arsand, Juliana Bazzan; Schapoval, Elfrides Eva Scherman
2014-11-01
In routine laboratory work, screening methods for multiclass analysis can process a large number of samples in a short time. The main challenge is to develop a methodology to detect as many different classes of residues as possible, combined with speed and low cost. An efficient technique for the analysis of multiclass antibacterial residues (fluoroquinolones, tetracyclines, sulfonamides and trimethoprim) was developed based on simple, environment-friendly extraction for bovine milk, cattle and poultry liver. Acidified ethanol was used as an extracting solvent for milk samples. Liver samples were treated using EDTA-washed sand for cell disruption, methanol:water and acidified acetonitrile as extracting solvent. A total of 24 antibacterial residues were detected and confirmed using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), at levels between 10, 25 and 50% of the maximum residue limit (MRL). For liver samples a metabolite (sulfaquinoxaline-OH) was also monitored. A validation procedure was conducted for screening purposes in accordance with European Union requirements (2002/657/EC). The detection capability (CCβ) false compliant rate was less than 5% at the lowest level for each residue. Specificity and ruggedness were also discussed. Incurred and routine samples were analyzed and the method was successfully applied. The results proved that this method can be an important tool in routine analysis, since it is very fast and reliable. Copyright © 2014. Published by Elsevier B.V.
Non-porous membrane-assisted liquid-liquid extraction of UV filter compounds from water samples.
Rodil, Rosario; Schrader, Steffi; Moeder, Monika
2009-06-12
A method for the determination of nine UV filter compounds [benzophenone-3 (BP-3), isoamyl methoxycinnamate, 4-methylbenzylidene camphor, octocrylene (OC), butyl methoxydibenzoylmethane, ethylhexyl dimethyl p-aminobenzoate (OD-PABA), ethylhexyl methoxycinnamate (EHMC), ethylhexyl salicylate and homosalate] in water samples was developed and evaluated. The procedure includes non-porous membrane-assisted liquid-liquid extraction (MALLE) and LC-atmospheric pressure photoionization (APPI)-MS/MS. Membrane bags made of different polymeric materials were examined to enable a fast and simple extraction of the target analytes. Among the polymeric materials tested, low- and high-density polyethylene membranes proved to be well suited to adsorb the analytes from water samples. Finally, 2 cm length tailor-made membrane bags were prepared from low-density polyethylene in order to accommodate 100 microL of propanol. The fully optimised protocol provides recoveries from 76% to 101% and limits of detection (LOD) between 0.4 ng L(-1) (OD-PABA) and 16 ng L(-1) (EHMC). The interday repeatability of the whole protocol was below 18%. The effective separation of matrix molecules was proved by only marginal matrix influence during the APPI-MS analysis since no ion suppression effects were observed. During the extraction step, the influence of the matrix was only significant when non-treated wastewater was analysed. The analysis of lake water indicated the presence of seven UV filter compounds included in this study at concentrations between 40 ng L(-1) (BP-3) and 4381 ng L(-1) (OC). In non-treated wastewater several UV filters were also detected at concentration levels as high as 5322 ng L(-1) (OC).
Brockmeyer, Berit; Kraus, Uta R; Theobald, Norbert
2015-12-01
Silicone passive samplers have gained an increasing attention as single-phased, practical and robust samplers for monitoring of organic contaminants in the aquatic environment in recent years. However, analytical challenges arise in routine application during the extraction of analytes as silicone oligomers are co-extracted and interfere severely during chemical analyses (e.g. gas chromatographic techniques). In this study, we present a fast, practical pre-cleaning method for silicone passive samplers applying accelerated solvent extraction (ASE) for the removal of silicone oligomers prior to the water deployment (hexane/dichloromethane, 100 °C, 70 min). ASE was also shown to be a very fast (10 min) and efficient extraction method for non-polar contaminants (non-exposed PRC recoveries 66-101 %) sampled by the silicone membrane. For both applications, temperature, extraction time and the solvent used for ASE have been optimized. Purification of the ASE extract was carried out by silica gel and high-pressure liquid size exclusion chromatography (HPLC-SEC). The silicone oligomer content was checked by total reflection X-ray fluorescence spectroscopy (TXRF) in order to confirm the absence of the silicone oligomers prior to analysis of passive sampler extracts. The established method was applied on real silicone samplers from the North- and Baltic Sea and showed no matrix effects during analysis of organic pollutants. Internal laboratory standard recoveries were in the same range for laboratory, transport and exposed samplers (85-126 %).
Latifeh, Farzad; Yamini, Yadollah; Seidi, Shahram
2016-03-01
In the present study, ionic liquid-modified silica-coated magnetic nanoparticles (Fe3O4@SiO2@IL) were synthesized and applied as adsorbents for extraction and determination of paraquat (PQ) followed by high-performance liquid chromatography. For assurance of the extraction efficiency, the obtained results were compared with those obtained by bared magnetic nanoparticles (MNPs). Experimental design and response surface methodology were used for optimization of different parameters which affect extraction efficiency of paraquat using both adsorbents. Under the optimized conditions, extraction recoveries in the range of 20-25 and 35-40 % with satisfactory repeatability values (RSDs%, n = 4) less than 5.0 % were obtained for bared MNPs and Fe3O4@SiO2@IL, respectively. The limits of detection were 0.1 and 0.25 μg/L using Fe3O4@SiO2@IL and bared MNPs, respectively. The linearity was obtained in the range of 0.25 to 25 μg/L and 0.5 to 25 μg/L for Fe3O4@SiO2@IL and bared MNPs, respectively, with the coefficients of determination better than 0.9950. Finally, Fe3O4@SiO2@IL was chosen as superior adsorbent due to more dispersion ability, higher extraction recovery, lower detection limit, as well as better linearity and repeatability. Calculated errors (%) were in the range of 3 to 10 % depicting acceptable accuracy for the analysis of PQ by the proposed method. Finally, the method was successfully applied for extraction and determination of PQ in some water and countryside soil samples.
Chen, Xiao-Hong; Zhao, Yong-Gang; Shen, Hao-Yu; Jin, Mi-Cong
2012-11-09
A novel and effective dispersive solid-phase extraction (dSPE) procedure with rapid magnetic separation using ethylenediamine-functionalized magnetic polymer as an adsorbent was developed. The new procedure had excellent clean-up ability for the selective removal of the matrix in red wine. An accurate, simple, and rapid analytical method using ultra-fast liquid chromatography-tandem quadrupole mass spectrometry (UFLC-MS/MS) for the simultaneous determination of nine food additives (i.e., acesulfame, saccharin, sodium cyclamate, aspartame, benzoic acid, sorbic acid, stevioside, dehydroacetic acid, and neotame) in red wine was also used and validated. Recoveries ranging from 78.5% to 99.2% with relative standard deviations ranging from 0.46% to 6.3% were obtained using the new method. All target compounds showed good linearities in the tested range with correlation coefficients (r) higher than 0.9993. The limits of quantification for the nine food additives were between 0.10 μg/L and 50.0 μg/L. The proposed dSPE-UFLC-MS/MS method was successfully applied in the food-safety risk monitoring of real red wine in Zhejiang Province, China. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.
Tejada-Casado, Carmen; Del Olmo-Iruela, Monsalud; García-Campaña, Ana M; Lara, Francisco J
2018-08-01
A green and simple multiresidue method using capillary liquid chromatography (CLC) with UV-diode array detection (DAD) has been developed for the determination of sixteen benzimidazoles (BZs) and its metabolites in milk samples. The separation was achieved in <32 min, using a Zorbax XDB-C18 column (150 mm × 0.5 mm I.D, 5 μm), with a mobile phase consisting of 50 mM ammonium acetate (solvent A) and a mixture of acetonitrile/methanol (1:1 v/v) (solvent B), at a flow rate of 9 μL min -1 . The temperature of the column was 20 °C and 6 μL of sample were injected. In spite of the complexity of milk samples, an effective, simple and fast sample preparation method called salting out-assisted liquid-liquid extraction (SALLE) was developed for the analysis of these compounds in cow milk samples. To obtain satisfactory extraction efficiencies for the studied analytes, several parameters affecting the SALLE procedure were optimized including the amount of sample, type and volume of the extraction solvent, and the nature and amount of the salt. Good linearity was obtained (R 2 > 0.9985 for all BZs) with limits of detection (LOD) between 1.0 and 2.8 μg kg -1 . Relative standard deviations of repeatability and intermediate precision were below 1.6 and 14.2%, respectively. Satisfactory recoveries between 79.1 and 99.6% were also obtained for three types of milk samples (cow, sheep and goat). The advantages of a miniaturized technique such as CLC in terms of better efficiencies and reduced solvent consumption, combined with the simplicity of the SALLE procedure, make this method a useful alternative for the monitoring of these residues at trace level. Copyright © 2018 Elsevier B.V. All rights reserved.
Chen, Xiao-Hong; Zhao, Yong-Gang; Shen, Hao-Yu; Zhou, Li-Xin; Pan, Sheng-Dong; Jin, Mi-Cong
2014-06-13
A novel, simple and sensitive method based on the use of magnetic dispersive solid-phase extraction (M-dSPE) procedure combined with ultra-fast liquid chromatography-tandem quadrupole mass spectrometry (UFLC-MS/MS) was developed to determine seven synthetic pigments (tartrazine, amaranth, carmine, sunset yellow, allura red, brilliant blue and erythrosine) in wines and soft drinks. An amino-functionalized low degrees of cross-linking magnetic polymer (NH2-LDC-MP) was synthesized via suspension polymerization, and characterized by transmission electron microscopy (TEM). The NH2-LDC-MP was used as the M-dSPE sorbent to remove the matrix from the solution, and the main factors affecting the extraction were investigated in detail. The obtained results demonstrated the higher extraction capacity of NH2-LDC-MP with recoveries between 84.0 and 116.2%. The limits of quantification (LOQs) for the seven synthetic pigments were between 1.51 and 5.0μg/L in wines and soft drinks. The developed M-dSPE UFLC-MS/MS method had been successfully applied to the real wines and soft drinks for food-safety risk monitoring in Zhejiang Province, China. The results showed that sunset yellow was in three out of thirty soft drink samples (2.95-42.6μg/L), and erythrosine in one out of fifteen dry red wine samples (3.22μg/L), respectively. It was confirmed that the NH2-LDC-MP was a kind of highly effective M-dSPE materials for the pigments analyses. Copyright © 2014 Elsevier B.V. All rights reserved.
Li, Jia-Fu; Fang, Hua; Yan, Xia; Chang, Fang-Rong; Wu, Zhen; Wu, Yun-Long; Qiu, Ying-Kun
2016-07-22
An on-line comprehensive preparative two-dimensional normal-phase liquid chromatography×reversed-phase liquid chromatography (2D NPLC×RPLC) system was constructed with a newly developed vacuum evaporation assisted adsorption (VEAA) interface, allowing fast removal of NPLC solvent in the vacuum condition and successfully solving the solvent incompatibility problem between NPLC and RPLC. The system achieved on-line solvent exchange within the two dimensions and its performance was illustrated by gram-scale isolation of crude extract from the venom of Bufo bufo gargarizans. Within separation time of ∼20h, 19 compounds were obtained with high purity in a single run. With the VEAA interface, the 2D system exhibited apparent advantages in separation efficiency and automation compared with conventional methods, indicating its promising application in the routine separation process for complicated natural products. Copyright © 2016 Elsevier B.V. All rights reserved.
He, Kang-Hao; Zou, Xiao-Li; Liu, Xiang; Zeng, Hong-Yan
2012-01-01
A method using reversed phase high performance liquid chromatography (RP-HPLC) coupled with diode array detector (DAD) was developed for the simultaneous determination of canthaxanthin and astaxanthin in egg yolks. Samples were extracted with acetonitrile in ultrasonic bath for 20 minutes and then purified by freezing-lipid filtration and solid phase extraction (SPE). After being vaporized to dryness by nitrogen blowing and made up to volume with methanol, the extract solution was chromatographically separated in C18 column with a unitary mobile phase consisting of acetonitrile. The proposed method was validated in terms of linearity, precision, accuracy, and limit of detection (LOD). Regression analysis revealed a good linearity between peak area of each analyte and its concentration (r > or = 0.998). The intra- and inter-day relative standard deviations (RSDs) were less than 3.6% and 5.2%, respectively. LODs of canthaxanthin and astaxanthin were 0.035 and 0.027 microg/mL (S/N = 3). The average recoveries of canthaxanthin and astaxanthin were 91.5% and 88.7%. The proposed method is simple, fast and easy to apply.
Tang, Hubert Po-On; Ho, Clare; Lai, Shirley Sau-Ling
2006-01-01
A rapid qualitative method using on-line column-switching liquid chromatography/tandem mass spectrometry (LC/MS/MS) was developed and validated for screening 13 target veterinary drugs: four macrolides - erythromycin A, josamycin (leucomycin A3), kitasamycin (leucomycin A5), and tylosin A; six (fluoro)quinolones - ciprofloxacin, danofloxacin, enrofloxacin, flumequine, oxolinic acid, and sarafloxacin; and lincomycin, virginiamycin M1, and trimethoprim in different animal muscles. Clindamycin, norfloxacin, nalidixic acid, oleandomycin, ormetoprim, and roxithromycin were used as the internal standards. After simple deproteination and analyte extraction of muscle samples using acetonitrile, the supernatant was subjected to on-line cleanup and direct analysis by LC/MS/MS. On-line cleanup with an extraction cartridge packed with hydrophilic-hydrophobic polymer sorbent followed by fast LC using a short C18 column resulted in a total analysis cycle of 6 min for 19 drugs. This screening method considerably reduced the time and the cost for the quantitative and confirmatory analyses. The application of a control point approach was also introduced and explained. Copyright (c) 2006 John Wiley & Sons, Ltd.
Salgueiro-González, N; Turnes-Carou, I; Muniategui-Lorenzo, S; López-Mahía, P; Prada-Rodríguez, D
2014-12-10
A less time-, solvent- and sorbent-consuming analytical methodology for the determination of bisphenol A and alkylphenols (4-tert-octylphenol, 4-octylphenol, 4-n-nonylphenol, nonylphenol) in marine sediment was developed and validated. The method was based on selective pressurized liquid extraction (SPLE) with a simultaneous in cell clean up combined with liquid chromatography-electrospray ionization tandem mass spectrometry in negative mode (LC-ESI-MS/MS). The SPLE extraction conditions were optimized by a Plackett-Burman design followed by a central composite design. Quantitation was performed by standard addition curves in order to correct matrix effects. The analytical features of the method were satisfactory: relative recoveries varied between 94 and 100% and repeatability and intermediate precision were <6% for all compounds. Uncertainty assessment of measurement was estimated on the basis of an in-house validation according to EURACHEM/CITAC guide. Quantitation limits of the method (MQL) ranged between 0.17 (4-n-nonylphenol) and 4.01 ng g(-1) dry weight (nonylphenol). Sensitivity, selectivity, automaticity and fastness are the main advantages of this green methodology. As an application, marine sediment samples from Galicia coast (NW of Spain) were analysed. Nonylphenol and 4-tert-octylphenol were measured in all samples at concentrations between 20.1 and 1409 ng g(-1) dry weight, respectively. Sediment toxicity was estimated and no risk to aquatic biota was found. Copyright © 2014 Elsevier B.V. All rights reserved.
Tarifa, Anamary; Almirall, José R
2015-05-01
A rapid method for the characterization of both organic and inorganic components of gunshot residues (GSR) is proposed as an alternative tool to facilitate the identification of a suspected shooter. In this study, two fast screening methods were developed and optimized for the detection of organic compounds and inorganic components indicative of GSR presence on the hands of shooters and non-shooters. The proposed methods consist of headspace extraction of volatile organic compounds using a capillary microextraction of volatiles (CMV) device previously reported as a high-efficiency sampler followed by detection by GC-MS. This novel sampling technique has the potential to yield fast results (<2min sampling) and high sensitivity capable of detecting 3ng of diphenylamine (DPA) and 8ng of nitroglycerine (NG). Direct analysis of the headspace of over 50 swabs collected from the hands of suspected shooters (and non-shooters) provides information regarding VOCs present on their hands. In addition, a fast laser induced breakdown spectroscopy (LIBS) screening method for the detection of the inorganic components indicative of the presence of GSR (Sb, Pb and Ba) is described. The sampling method for the inorganics consists of liquid extraction of the target elements from the same cotton swabs (previously analyzed for VOCs) and an additional 30 swab samples followed by spiking 1μL of the extract solution onto a Teflon disk and then analyzed by LIBS. Advantages of LIBS include fast analysis (~12s per sample) and high selectivity and sensitivity, with expected LODs 0.1-18ng for each of the target elements after sampling. The analytical performance of the LIBS method is also compared to previously reported methods (inductively coupled plasma-optical emission spectroscopy). The combination of fast CMV sampling, unambiguous organic compound identification with GC-MS and fast LIBS analysis provides the basis for a new comprehensive screening method for GSR. Copyright © 2015 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.
Bio-Oil Separation and Stabilization by Near-Critical Propane Fractionation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ginosar, Daniel M.; Petkovic, Lucia M.; Agblevor, Foster A.
Bio-oils produced by thermal process are promising sources of sustainable, low greenhouse gas alternative fuels. These thermal processes are also well suited to decentralized energy production due to low capital and operating costs. Algae feedstocks for bio-oil production are of particular interest, due in part to their high-energy growth yields. Further, algae can be grown in non-arable areas in fresh, brackish, salt water, or even waste water. Unfortunately, bio-oils produced by thermal processes present significant stability challenges. These oils have complex chemical compositions, are viscous, reactive, and thermally unstable. Further, the components within the oils are difficult to separate bymore » fractional distillation. By far, the most effective separation and stabilization method has been solvent extraction. However, liquid phase extraction processes pose two main obstacles to commercialization; they require a significant amount of energy to remove and recover the solvent from the product, and they have a propensity for the solvent to become contaminated with minerals from the char and ash present in the original bio-oil. Separation and fractionation of thermally produced bio-oils using supercritical fluids (SCF) offers the advantages of liquid solvent extraction while drastically reducing energy demands and the predisposition to carry over solids into the extracted phase. SCFs are dense fluids with liquid-like solvent properties and gas-like transport properties. Further, SCF density and solvent strength can be tuned with minor adjustments in pressure, co-solvent addition, or gas anti-solvent addition. Catalytic pyrolysis oils were produced from Scenedesmus dimorphus algae using a fluid catalytic cracking catalyst. Bio-oil produced from catalytic fast pyrolysis (CFP) was separated using critical fluids. Propane extraction was performed at 65 °C at a fluid reduced pressure of 2.0 (85 bar) using an eight to one solvent to feed ratio by weight. Extraction of catalytic fast pyrolysis oil with near critical propane produced an oil extract that was physically and chemically different from and more stable than the original oil. The propane extract displayed lower viscosity and lower average molecular weight. The species present in the propane extract were likely the less polar that would be expected from using a non-polar solvent (propane). Carbonyl containing species in the extract were likely ketones and esters. The raffinate contained a higher amnount of OH bonded species along with the more polar more polar acids, amides, and alcohols. The higher concentration of nitrogen in the raffinate may confirm the presence of amides. Viscosity of the propane extract increased only half as much as that of the CFP bio-oil. Further, In situ NMR aging studies showed that the propane extract was more stable than the raw oil. In conclusion, propane extraction is a promising method to decrease the nitrogen content of bio-oils and to improve the stability of bio-oils obtained by the catalytic pyrolysis of algae based biomass.« less
Chen, Fangfang; Gong, Zhiyuan; Kelly, Barry C
2015-02-27
A sensitive analytical method based on liquid-liquid extraction (LLE) and liquid chromatography tandem mass spectrometry (LC-MS/MS) was developed for rapid analysis of 11 pharmaceuticals and personal care products (PPCPs) in fish plasma micro-aliquots (∼20μL). Target PPCPs included, bisphenol A, carbamazepine, diclofenac, fluoxetine, gemfibrozil, ibuprofen, naproxen, risperidone, sertraline, simvastatin and triclosan. A relatively quicker and cheaper LLE procedure exhibited comparable analyte recoveries with solid-phase extraction. Rapid separation and analysis of target compounds in fish plasma extracts was achieved by employing a high efficiency C-18 HPLC column (Agilent Poroshell 120 SB-C18, 2.1mm×50mm, 2.7μm) and fast polarity switching, enabling effective monitoring of positive and negative ions in a single 9min run. With the exception of bisphenol A, which exhibited relatively high background contamination, method detection limits of individual PPCPs ranged between 0.15 and 0.69pg/μL, while method quantification limits were between 0.05 and 2.3pg/μL. Mean matrix effect (ME) values ranged between 65 and 156% for the various target analytes. Isotope dilution quantification using isotopically labelled internal surrogates was utilized to correct for signal suppression or enhancement and analyte losses during sample preparation. The method was evaluated by analysis of 20μL plasma micro-aliquots collected from zebrafish (Danio rerio) from a laboratory bioaccumulation study, which included control group fish (no exposure), as well as fish exposed to environmentally relevant concentrations of PPCPs. Using the developed LC-MS/MS based method, concentrations of the studied PPCPs were consistently detected in the low pg/μL (ppb) range. The method may be useful for investigations requiring fast, reliable concentration measurements of PPCPs in fish plasma. In particular, the method may be applicable for in situ contaminant biomonitoring, as well as bioaccumulation and toxicology studies employing small fishes with low blood compartment volumes. Copyright © 2015 Elsevier B.V. All rights reserved.
Liu, Sheng-Zi; Deng, Yuan-Xiong; Chen, Bo; Zhang, Xiao-Jie; Shi, Qun-Zhi; Qiu, Xi-Min
2013-01-30
Scutellaria-coptis herb couple (SC) is the main herb couple in many traditional Chinese compound formulas used for the treatment of diabetes mellitus, which has been used to treat diabetes mellitus for thousands of years in China. In this study we provide experimental evidence for the clinical use of SC in the treatment of diabetes mellitus. To confirm the anti-diabetic effect of SC extract and its main components, and to explore its mechanism from the effect on intestinal disaccharidases by in vivo and in vitro experiment. SC extract was prepared and the main components (namely berberine and baicalin) contained in the extract were assayed with high performance liquid chromatography (HPLC). And diabetic model rats were induced by intraperitoneal injection of streptozotocin (STZ). After grouped randomly, diabetic rats were administered SC extract, berberine, baicalin, berberine+baicalin, acarbose and vehicle for 33d, respectively. Body weight, food intake, urine volume, urine sugars, fasting plasma glucose and fasting plasma insulin were monitored to evaluate the antidiabetic effects on diabetic rats. Intestinal mucosa homogenate was prepared and the activities of intestinal disaccharidases were assayed. Moreover, oral sucrose tolerance test (OSTT) was performed and the inhibitory effects of SC extract and its main components (berberine and baicalin) on the maltase and sucrase in vitro was evaluated. After the treatment of SC extract and its main components, the body weight and the fasting plasma insulin level were found to be increased while food intake, urine volume, urine sugars and fasting plasma were decreased. OSTT showed that SC extract and its main components could lower the postprandial plasma glucose level of diabetic rats. Furthermore, SC extract and its main components could inhibit the activities of intestinal disaccharidases in diabetic rats, whereas only SC extract and berberine could inhibit the activity of maltase in vitro. According to our present findings, scutellaria-coptis herb couple (SC) possessed potent anti-hyperglycemic effect on STZ-induced diabetic rats. And SC extract and its main components exerted anti-hyperglycemic effect partly via inhibiting the increased activities of intestinal disaccharidases and elevating the level of plasma insulin in diabetic rats induced by STZ. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Kai, Marco; González, Ignacio; Genilloud, Olga; Singh, Sheo B; Svatoš, Aleš
2012-10-30
There is a need to find new antibiotic agents to fight resistant pathogenic bacteria. To search successfully for novel antibiotics from bacteria cultivated under diverse conditions, we need a fast and cost-effective screening method. A combination of Liquid Extraction Surface Analysis (LESA), automated chip-based nanoelectrospray ionization, and high-resolution mass or tandem mass spectrometry using an Orbitrap XL was tested as the screening platform. Actinobacteria, known to produce well-recognized thiazolyl peptide antibiotics, were cultivated on a plate of solid medium and the antibiotics were extracted by organic solvent mixtures from the surface of colonies grown on the plate and analyzed using mass spectrometry (MS). LESA combined with high-resolution MS is a powerful tool with which to extract and detect thiazolyl peptide antibiotics from different Actinobacteria. Known antibiotics were correctly detected with high mass accuracy (<4 ppm) and structurally characterized using tandem mass spectra. Our method is the first step toward the development of a novel high-throughput extraction and identification tool for antibiotics in particular and natural products in general. The method described in this paper is suitable for (1) screening the natural products produced by bacterial colonies on cultivation plates within the first 2 min following extraction and (2) detecting antibiotics at high mass accuracy; the cost is around 2 Euro per sample. Copyright © 2012 John Wiley & Sons, Ltd.
USDA-ARS?s Scientific Manuscript database
The way to maximize scope of analysis, sample throughput, and laboratory efficiency in the monitoring of veterinary drug residues in food animals is to determine as many analytes as possible as fast as possible in as few methods as possible. Capital and overhead expenses are also reduced by using f...
Zhou, Shujun; Cao, Jiliang; Qiu, Feng; Kong, Weijun; Yang, Shihai; Yang, Meihua
2013-01-01
Glycyrrhizae species are popular ingredients of herbal medicine in most traditional Chinese medicine prescriptions, and they mainly contain flavonoids and triterpene saponins. The contents of these bioactive compounds may vary in different batches and affect the therapeutic effects. Thus comprehensive quality control and monitoring of their herbal formulation are of paramount concern. To establish a rapid, effective pressurised liquid extraction (PLE) and ultra-performance liquid chromatography coupled with photodiode array (UPLC-PDA) method to evaluate the quality of Glycyrrhizae species. Radix Glycyrrhizae was extracted by PLE using 70% ethanol at 100°C for 15 min during three static extraction cycles. Separation was performed using an UPLC system to quantify five bioactive compounds, namely liquiritin apioside, liquiritin, liquiritigenin, glycyrrhizic acid and glycyrrhetinic acid, in 12 batches of samples of different origins in China. Furthermore, the samples were analysed using an ultra-performance liquid chromatography coupled with electrospray ionisation and time-of-flight mass spectrometry (UPLC/ESI-QTOF-MS) system to confirm the results. The calibration curves of all five analytes showed good linearity (R(2) > 0.9997). Accuracy, precision and repeatability were all within required limits. The mean recoveries measured at the three concentrations were higher than 93.7% with RSDs lower than < 3.33% for the targets. The established PLE and UPLC-PDA method could serve as a rapid and effective method for quality evaluation of Radix Glycyrrhizae. The UPLC technique can be considered as an attractive alternative to HPLC in routine quality control of Chinese medicine, especially in situations where high sample throughput and fast analytical speed are required. Copyright © 2013 John Wiley & Sons, Ltd.
Luo, Shusheng; Fang, Ling; Wang, Xiaowei; Liu, Hongtao; Ouyang, Gangfeng; Lan, Chongyu; Luan, Tiangang
2010-10-22
A simple and fast sample preparation method for the determination of nonylphenol (NP) and octylphenol (OP) in aqueous samples by simultaneous derivatization and dispersive liquid-liquid microextraction (DLLME) was investigated using gas chromatography-mass spectrometry (GC/MS). In this method, a combined dispersant/derivatization catalyst (methanol/pyridine mixture) was firstly added to an aqueous sample, following which a derivatization reagent/extraction solvent (methyl chloroformate/chloroform) was rapidly injected to combine in situ derivatization and extraction in a single step. After centrifuging, the sedimented phase containing the analytes was injected into the GC port by autosampler for analysis. Several parameters, such as extraction solvent, dispersant solvent, amount of derivatization reagent, derivatization and extraction time, pH, and ionic strength were optimized to obtain higher sensitivity for the detection of NP and OP. Under the optimized conditions, good linearity was observed in the range of 0.1-1000 μg L⁻¹ and 0.01-100 μg L⁻¹ with the limits of detection (LOD) of 0.03 μg L⁻¹ and 0.002 μg L⁻¹ for NP and OP, respectively. Water samples collected from the Pearl River were analyzed with the proposed method, the concentrations of NP and OP were found to be 2.40 ± 0.16 μg L⁻¹ and 0.037 ± 0.001 μg L⁻¹, respectively. The relative recoveries of the water samples spiked with different concentrations of NP and OP were in the range of 88.3-106.7%. Compared with SPME and SPE, the proposed method can be successfully applied to the rapid and convenient determination of NP and OP in aqueous samples. Copyright © 2010 Elsevier B.V. All rights reserved.
Li, Austin C; Li, Yinghe; Guirguis, Micheal S; Caldwell, Robert G; Shou, Wilson Z
2007-01-04
A new analytical method is described here for the quantitation of anti-inflammatory drug cyclosporin A (CyA) in monkey and rat plasma. The method used tetrahydrofuran (THF)-water mobile phases to elute the analyte and internal standard, cyclosporin C (CyC). The gradient mobile phase program successfully eluted CyA into a sharp peak and therefore improved resolution between the analyte and possible interfering materials compared with previously reported analytical approaches, where CyA was eluted as a broad peak due to the rapid conversion between different conformers. The sharp peak resulted from this method facilitated the quantitative calculation as multiple smoothing and large number of bunching factors were not necessary. The chromatography in the new method was performed at 30 degrees C instead of 65-70 degrees C as reported previously. Other advantages of the method included simple and fast sample extraction-protein precipitation, direct injection of the extraction supernatant to column for analysis, and elimination of evaporation and reconstitution steps, which were needed in solid phase extraction or liquid-liquid extraction reported before. This method is amenable to high-throughput analysis with a total chromatographic run time of 3 min. This approach has been verified as sensitive, linear (0.977-4000 ng/mL), accurate and precise for the quantitation of CyA in monkey and rat plasma. However, compared with the usage of conventional mobile phases, the only drawback of this approach was the reduced detection response from the mass spectrometer that was possibly caused by poor desolvation in the ionization source. This is the first report to demonstrate the advantages of using THF-water mobile phases to elute CyA in liquid chromatography.
AFM fluid delivery/liquid extraction surface sampling/electrostatic spray cantilever probe
Van Berkel, Gary J.
2015-06-23
An electrospray system comprises a liquid extraction surface sampling probe. The probe comprises a probe body having a liquid inlet and a liquid outlet, and having a liquid extraction tip. A solvent delivery conduit is provided for receiving solvent liquid from the liquid inlet and delivering the solvent liquid to the liquid extraction tip. An open liquid extraction channel extends across an exterior surface of the probe body from the liquid extraction tip to the liquid outlet. An electrospray emitter tip is in liquid communication with the liquid outlet of the liquid extraction surface sampling probe. A system for analyzing samples, a liquid junction surface sampling system, and a method of analyzing samples are also disclosed.
Castejón, Natalia; Luna, Pilar; Señoráns, Francisco J
2018-04-01
The edible oil processing industry involves large losses of organic solvent into the atmosphere and long extraction times. In this work, fast and environmentally friendly alternatives for the production of echium oil using green solvents are proposed. Advanced extraction techniques such as Pressurized Liquid Extraction (PLE), Microwave Assisted Extraction (MAE) and Ultrasound Assisted Extraction (UAE) were evaluated to efficiently extract omega-3 rich oil from Echium plantagineum seeds. Extractions were performed with ethyl acetate, ethanol, water and ethanol:water to develop a hexane-free processing method. Optimal PLE conditions with ethanol at 150 °C during 10 min produced a very similar oil yield (31.2%) to Soxhlet using hexane for 8 h (31.3%). UAE optimized method with ethanol at mild conditions (55 °C) produced a high oil yield (29.1%). Consequently, advanced extraction techniques showed good lipid yields and furthermore, the produced echium oil had the same omega-3 fatty acid composition than traditionally extracted oil. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pacheco-Fernández, Idaira; Herrera-Fuentes, Ariadna; Delgado, Bárbara; Pino, Verónica; Ayala, Juan H; Afonso, Ana M
2017-03-01
The environmental monitoring of trihalomethanes (THMs) has been performed by setting up a dispersive liquid-liquid microextraction method in combination with gas chromatography (GC)-mass spectrometry (MS). The optimized method only requires ∼26 µL of decanol as extractant solvent, dissolved in ∼1 mL of acetone (dispersive solvent) for 5 mL of the environmental water containing THMs. The mixture is then subjected to vortex for 1 min and then centrifuged for 2 min at 3500 rpm. The microdroplet containing the extracted THMs is then sampled with a micro-syringe, and injected (1 µL) in the GC-MS. The method is characterized for being fast (3 min for the entire sample preparation step) and environmentally friendly (low amounts of solvents required, being all non-chlorinated), and also for getting average relative recoveries of 90.2-106% in tap waters; relative standard deviation values always lower than 11%; average enrichment factors of 48-49; and detection limits down to 0.7 µg·L-1. Several waters: tap waters, pool waters, and wastewaters were successfully analyzed with the method proposed. Furthermore, the method was used to monitor the formation of THMs in wastewaters when different chlorination parameters, namely temperature and pH, were varied.
Mirnaghi, Fatemeh S; Pawliszyn, Janusz
2012-10-26
This work presents the development and evaluation of biocompatible polyacrylonitrile-polystyrene-divinylbenzene (PAN-PS-DVB) and polyacrylonitrile-phenylboronic acid (PAN-PBA) coatings for automated 96-blades (thin-film) solid phase microextraction (SPME) system, using high performance liquid chromatography (HPLC) coupled with tandem mass spectrometry (MS/MS). The SPME condition was optimized for 60 min equilibrium extraction and 40 min desorption for PAN-PS-DVB, and 120 min equilibrium extraction and 60 min desorption for PAN-PBA for parallel sample preparation of up to 96 samples. The thin film geometry of the SPME blades provided good extraction efficiency due to the larger surface area of the coating, and simultaneous sample preparation provided fast and accurate analysis. The PAN-PS-DVB and PAN-PBA 96-blade SPME coatings were evaluated for extraction of analytes in a wide range of polarity (log P=2.8 to -3.7), and they demonstrated efficient extraction recovery (3.5-98.9% for PAN-PS-DVB and 4.0-74.1% for PAN-PBA) for both polar and non-polar groups of compounds. Reusability, reproducibility, and reliability of the system were evaluated. The results demonstrated that both coatings presented chemical and mechanical stability and long-lasting extraction efficiency for more than 100 usages in phosphate-buffered saline (PBS) and human plasma. Copyright © 2012 Elsevier B.V. All rights reserved.
Vichapong, Jitlada; Burakham, Rodjana; Srijaranai, Supalax
2015-07-01
A simple and fast method namely in-coupled syringe assisted octanol-water partition microextraction combined with high performance liquid chromatography (HPLC) has been developed for the extraction, preconcentration and determination of neonicotinoid insecticide residues (e.g. imidacloprid, acetamiprid, clothianidin, thiacloprid, thiamethoxam, dinotefuran, and nitenpyram) in honey. The experimental parameters affected the extraction efficiency, including kind and concentration of salt, kind of disperser solvent and its volume, kind of extraction solvent and its volume, shooting times and extraction time were investigated. The extraction process was carried out by rapid shooting of two syringes. Therefore, rapid dispersion and mass transfer processes was created between phases, and thus affects the extraction efficiency of the proposed method. The optimum extraction conditions were 10.00 mL of aqueous sample, 10% (w/v) Na2SO4, 1-octanol (100µL) as an extraction solvent, shooting 4 times and extraction time 2min. No disperser solvent and centrifugation step was necessary. Linearity was obtained within the range of 0.1-3000 ngmL(-1), with the correlation coefficients greater than 0.99. The high enrichment factor of the target analytes was 100 fold and low limit of detection (0.25-0.50 ngmL(-1)) could be obtained. This proposed method has been successfully applied in the analysis of neonicotinoid residues in honey, and good recoveries in the range of 96.93-107.70% were obtained. Copyright © 2015 Elsevier B.V. All rights reserved.
Gartzke, J; Jäger, H; Vins, I
1991-01-01
A simple, fast and reliable liquid chromatographic method for the determination of theophylline in serum and capillary blood after a solid phase extraction is described for therapeutic drug monitoring. The employment of capillary blood permits the determination of an individual drug profile and other pharmacokinetic studies in neonates and infants. There were no differences in venous- and capillary-blood levels but these values compared poorly with those in serum. An adjustment of the results by correction of the different volumes of serum and blood by haematocrit was unsuccessful. Differences in the binding of theophylline to erythrocytes could be an explanation for the differences in serum at blood levels of theophylline.
Grünbein, Marie Luise; Shoeman, Robert L; Doak, R Bruce
2018-03-19
To conduct X-ray Free-Electron Laser (XFEL) measurements at megahertz (MHz) repetition rates, sample solution must be delivered in a micron-sized liquid free-jet moving at up to 100 m/s. This exceeds by over a factor of two the jet speeds measurable with current high-speed camera techniques. Accordingly we have developed and describe herein an alternative jet velocimetry based on dual-pulse nanosecond laser illumination. Three separate implementations are described, including a small laser-diode system that is inexpensive and highly portable. We have also developed and describe analysis techniques to automatically and rapidly extract jet speed from dual-pulse images.
Sarafraz-Yazdi, A; Mofazzeli, F; Es'haghi, Z
2009-07-15
A new and fast hollow fiber based liquid phase microextraction (HF-LPME) method using volatile organic solvents coupled with high-performance liquid chromatography (HPLC) was developed for determination of aromatic amines in the environmental water samples. Analytes including 3-nitroaniline, 3-chloroaniline and 4-bromoaniline were extracted from 6 mL basic aqueous sample solution (donor phase, NaOH 1 mol L(-1)) into the thin film of organic solvent that surrounded and impregnated the pores of the polypropylene hollow fiber wall (toluene, 20 microL), then back-extracted into the 6 mL acidified aqueous solution (acceptor phase, HCl 0.5 mol L(-1)) in the lumen of the two-end sealed hollow fiber. After the extraction, 5 microL of the acceptor phase was withdrawn into the syringe and injected directly into the HPLC system for the analysis. The parameters influencing the extraction efficiency including the kind of organic solvent and its volume, composition of donor and acceptor phases and the volume ratio between them, extraction time, stirring rate, salt addition and the effect of the analyte complexation with 18-crown-6 ether were investigated and optimized. Under the optimal conditions (donor phase: 6 mL of 1 mol L(-1) NaOH with 10% NaCl; organic phase: 20 microL of toluene; acceptor phase: 6 microL of 0.5 mol L(-1) HCl and 600 mmol L(-1) 18-crown-6 ether; pre-extraction and back-extraction times: 75 s and 10 min, respectively; stirring rate: 800 rpm), the obtained EFs were between 259 and 674, dynamic linear ranges were 0.1-1000 microg L(-1) (R>0.9991), and also the limits of detection were in the range of 0.01-0.1 micro gL(-1). The proposed procedure worked very well for real environmental water samples with microgram per liter level of the analytes, and good relative recoveries (91-102%) were obtained for the spiked sample solutions.
Wu, Jia; Xu, Zilin; Pan, Yixuan; Shi, Yi; Bao, Xiujie; Li, Jun; Tong, Yu; Tang, Han; Ma, Shuyan; Wang, Xuedong; Lyu, Jianxin
2018-05-01
Herein, a novel magnetic effervescence tablet-assisted microextraction coupled to in situ metathesis reaction of ionic liquid (IS-META-ILDM) is presented for the determination of four endogenous steroids in human urine, pregnant women's blood, and fetal umbilical cord blood. The magnetic effervescent tablets, which were composed of Fe 3 O 4 nanoparticles, sodium carbonate (alkaline source), and tartaric acid (acidic source), were used to disperse the extractant and for convenient magnetic separation. After the effervescent reaction, in situ reaction between NH 4 PF 6 and [C 6 MIM]BF 4 was adopted to change hydrophilic ionic liquid to hydrophobic liquid, which could be separated from the aqueous phase. The newly developed method has three obvious advantages: (1) combination of effervescent dispersion and magnetic nanoparticles' retrieval is cost-effective and the dispersion and collection of the extractant can be completed almost simultaneously; (2) as compared to temperature-controlled ionic liquid dispersive microextraction and cold-induced solidified microextraction, this method avoids a heating and cooling process which significantly reduces the extraction time and energy cost; and (3) the combination of adsorption by magnetic nanoparticles with extraction by in situ metathesis reaction easily produces high recoveries for target analytes. The optimized composition of effervescent tablet and experimental parameters are as follows: 0.64 g mixture of sodium carbonate and tartaric acid, 7 mg of Fe 3 O 4 (20 nm) as magnetic sorbents, 40 μL of [C 6 MIM]BF 4 as the extraction solvent, 0.15 g NH 4 PF 6 , and 300 μL of elution solvent. Under the optimized conditions, the newly developed method provided high extraction recoveries (90.0-118.5%) and low LODs (0.14-0.17 μg L -1 ) in urine and blood samples. In total, this IS-META-ILDM method provided high extraction efficiency, fast and convenient separation, and underutilization of any organic solvent, and thus it has great potential for the determination of trace endogenous steroids in complex human fluids. Graphical abstract The newly developed method has three obvious advantages: combination of effervescent dispersion and magnetic nanoparticles' retrieval is cost-effective and the dispersion and collection of the extractant can be completed almost simultaneously. It avoids a heating and cooling process which significantly reduces the extraction time and energy cost and easily produces high recoveries for target analytes.
Anilanmert, Beril; Aydin, Muhammet; Apak, Resat; Avci, Gülfidan Yenel; Cengiz, Salih
2016-01-01
Direct analyses of explosives in soil using liquid chromatography tandem mass spectrometry (LC-MS/MS) methods are very limited in the literature and require complex procedures or relatively high amount of solvent. A simple and rapid method was developed for the determination of pentaerythritol tetranitrate (PETN), 3,5-trinitro-1,3,5-triazacyclohexane (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), which are among the explosives used in terrorist attacks. A one-step extraction method for 1.00 g soil with 2.00 mL acetonitrile, and a 8-min LC-MS/MS method was developed. The detection limits for PETN, RDX and HMX were 5.2, 8.5 and 3.4 ng/g and quantitation limits were 10.0, 24.5, 6.0 ng/g. The intermediate precisions and Horwitz Ratio's were between 4.10 - 13.26% and 0.24 - 0.98, in order. This method was applied to a model post-blast debris collected from an artificial explosion and real samples collected after a terrorist attack in Istanbul. The method is easy and fast and requires less solvent use than other methods.
Salomone, Alberto; Gerace, Enrico; Brizio, Paola; Gennaro, M Carla; Vincenti, Marco
2011-11-01
A fast liquid chromatographic/tandem mass spectrometric method was developed for the simultaneous determination in human urine of seventeen benzodiazepines, four relevant metabolites together plus zolpidem and zopiclone. The sample preparation, optimized to take into account the matrix effect, was based on enzymatic hydrolysis and liquid-liquid extraction. The separation of the twenty-three analytes was achieved in less than eight minutes. The whole methodology was fully validated according to UNI EN ISO/IEC 17025:2005 rules and 2006 SOFT/AAFS guidelines. Selectivity, linearity range, identification (LOD) and quantitation (LOQ) limits, precision, accuracy and recovery were evaluated. For all the species the signal/concentration linearity was satisfactory in the 50-1000 ng/mL concentration range. The limits of detection ranged from 0.5 to 30 ng/mL and LOQs from 1.7 to 100.0 ng/mL. Precisions were in the ranges 5.0-11.8%, 1.5-11.0% and 1.1-4.4% for low (100 ng/mL), medium (300 ng/mL) and high (1000 ng/mL) concentration, respectively. The accuracy, expressed as bias% was within ± 25 % for all the analytes. The recovery values, evaluated at 300 ng/mL concentration, ranged from 56.2% to 98.8%. The present method for the determination of several benzodiazepines, zolpidem and zopiclone in human urine proved to be simple, fast, specific and sensitive. The quantification by LC-MS/MS was successfully applied to 329 forensic cases among driving re-licensing, car accidents and alleged sexual violence cases. Copyright © 2011 Elsevier B.V. All rights reserved.
Lotufo, Guilherme R; Belden, Jason B; Fisher, Jonathon C; Chen, Shou-Feng; Mowery, Richard A; Chambliss, C Kevin; Rosen, Gunther
2016-03-01
To determine if trinitrotoluene (TNT) forms nonextractable residues in mussels (Mytilus galloprovincialis) and fish (Cyprinodon variegatus) and to measure the relative degree of accumulation as compared to extractable TNT and its major metabolites, organisms were exposed to water fortified with (14)C-TNT. After 24 h, nonextractable residues made up 75% (mussel) and 83% (fish) while TNT accounted for 2% of total radioactivity. Depuration half-lives for extractable TNT, aminodinitrotoluenes (ADNTs) and diaminonitrotoluenes (DANTs) were fast initially (<0.5 h), but slower for nonextractable residues. Nonextractable residues from organisms were identified as ADNTs and DANTs using 0.1 M HCL for solubilization followed by liquid chromatography-tandem mass spectrometry. Recovered metabolites only accounted for a small fraction of the bound residue quantified using a radiotracer likely because of low extraction or hydrolysis efficiency or alternative pathways of incorporation of radiolabel into tissue. Published by Elsevier Ltd.
Hu, Chaofan; Jia, Li; Liu, Qingqing; Zhang, Sheng
2010-07-01
A sensitive, fast and simple method based on magnetic octadecylsilane particles was developed for the extraction of three fat-soluble vitamins followed by capillary LC (CLC) analysis with UV detection. Magnetic octadecylsilane particles were prepared based on three-step reactions including co-precipitation, sol-gel polymerization and alkylation. The characterization of the prepared product was studied by scanning electron microscope and Fourier-transform infrared spectrometry. The particles were used as magnetic SPE adsorbent for the extraction of fat-soluble vitamins in fruit juice-milk beverage. The extraction condition and efficiency of the particles for fat-soluble vitamins were investigated. By coupling magnetic SPE with capillary LC with UV detection, low concentrations of fat-soluble vitamins in fruit juice-milk beverage can be detected without the interference from other substances in the sample matrix.
Cornejo, Alberto; Salgado, Francisco; Caballero, Julio; Vargas, Reinaldo; Simirgiotis, Mario; Areche, Carlos
2016-08-18
Liquid chromatography coupled with mass spectrometry is an outstanding methodology for fast analysis of phenolic compounds in biological samples. Twenty two compounds were quickly and accurately identified in the methanolic extract of the Antarctic lichen Ramalina terebrata for the first time using ultra high pressure liquid chromatography coupled with photodiode array detector and high resolution mass spectrometry (UHPLC-PDA-Q/Orbitrap/MS/MS). In addition, the extract and the four compounds isolated from this species were tested for the inhibitory activity of tau protein aggregation, which is a protein involved in Alzheimer's disease (AD). All compounds showed null activity with the exception of parietin, which it was able to inhibit aggregation process of tau in a concentration range between 3 µg/mL (10 µM) to 28 µg/mL (100 µM). In addition, we show how parietin interact with tau (306)VQIVYK(311) hexapeptide inside of the microtubule binding domain (4R) with the help of molecular docking experiments. Finally, the constituents present in the methanolic extract could possibly contribute to the established anti-aggregation activity for this extract and this in-depth analysis of the chemical composition of R. terebrata could guide further research into its medicinal properties and potential uses.
Sun, Shi-Hao; Xie, Jian-Ping; Xie, Fu-Wei; Zong, Yong-Li
2008-02-01
A method coupling needle-based derivatization headspace liquid-phase microextraction with gas chromatography-mass spectrometry (HS-LPME/GC-MS) was developed to determine volatile organic acids in tobacco. The mixture of N,O-bis(trimethylsilyl)trifluoroacetamide and decane was utilized as the solvent for HS-LPME, resulting that extraction and derivatization were simultaneously completed in one step. The solvent served two purposes. First, it pre-concentrated volatile organic acids in the headspace of tobacco sample. Second, the volatile organic acids extracted were derivatized to form silyl derivatives in the drop. The main parameters affecting needle-based derivatization HS-LPME procedure such as extraction and derivatization reagent, microdrop volume, extraction and derivatization time, and preheating temperature and preheating time were optimized. The standard addition approach was essential to obtain accurate measurements by minimizing matrix effects. Good linearity (R(2)> or =0.9804) and good repeatability (RSDs< or =15.3%, n=5) for 16 analytes in spiked standard analytes sample were achieved. The method has the additional advantages that at the same time it is simple, fast, effective, sensitive, selective, and provides an overall profile of volatile organic acids in the oriental tobacco. This paper does offer an alternative approach to determine volatile organic acids in tobacco.
Cornejo, Alberto; Salgado, Francisco; Caballero, Julio; Vargas, Reinaldo; Simirgiotis, Mario; Areche, Carlos
2016-01-01
Liquid chromatography coupled with mass spectrometry is an outstanding methodology for fast analysis of phenolic compounds in biological samples. Twenty two compounds were quickly and accurately identified in the methanolic extract of the Antarctic lichen Ramalina terebrata for the first time using ultra high pressure liquid chromatography coupled with photodiode array detector and high resolution mass spectrometry (UHPLC-PDA-Q/Orbitrap/MS/MS). In addition, the extract and the four compounds isolated from this species were tested for the inhibitory activity of tau protein aggregation, which is a protein involved in Alzheimer’s disease (AD). All compounds showed null activity with the exception of parietin, which it was able to inhibit aggregation process of tau in a concentration range between 3 µg/mL (10 µM) to 28 µg/mL (100 µM). In addition, we show how parietin interact with tau 306VQIVYK311 hexapeptide inside of the microtubule binding domain (4R) with the help of molecular docking experiments. Finally, the constituents present in the methanolic extract could possibly contribute to the established anti-aggregation activity for this extract and this in-depth analysis of the chemical composition of R. terebrata could guide further research into its medicinal properties and potential uses. PMID:27548142
Lepom, P
1988-09-01
A method for the determination of zearalenone in maize and maize silage was developed which distinguishes itself by the effective and fast cleaning of the extracts with the help of a silica gel minicolumn. The samples were extracted with chloroform/methanol (9 + 1) and cleaned on a silica gel minicolumn after acid-base partition. The zearalenone was quantitatively determined optionally by means of high-performance liquid chromatography (HPLC) with fluorescence detection (excitation wavelength 236 nm, emission filter 418 nm) or thin-layer chromatography (TLC), p-methoxybenzene diazonium fluoroborate and aluminium chloride were used as detection chemicals. The limits of detection are 0.01 mg/kg (HPLC) and 0.1 mg/kg resp. (TLC), the average recovery is 81%. The method was used for the determination of zearalenone in grain maize, CCM silage and silage from whole maize plants.
Du, Wei; Sun, Min; Guo, Pengqi; Chang, Chun; Fu, Qiang
2018-09-01
Nowadays, the abuse of antibiotics in aquaculture has generated considerable problems for food safety. Therefore, it is imperative to develop a simple and selective method for monitoring illegal use of antibiotics in aquatic products. In this study, a method combined molecularly imprinted membranes (MIMs) extraction and liquid chromatography was developed for the selective analysis of cloxacillin from shrimp samples. The MIMs was synthesized by UV photopolymerization, and characterized by scanning electron microscope, Fourier transform infrared spectra, thermo-gravimetric analysis and swelling test. The results showed that the MIMs exhibited excellent permselectivity, high adsorption capacity and fast adsorption rate for cloxacillin. Finally, the method was utilized to determine cloxacillin from shrimp samples, with good accuracies and acceptable relative standard deviation values for precision. The proposed method was a promising alternative for selective analysis of cloxacillin in shrimp samples, due to the easy-operation and excellent selectivity. Copyright © 2018. Published by Elsevier Ltd.
Driving it home: choosing the right path for fueling North America's transportation future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ann Bordetsky; Susan Casey-Lefkowitz; Deron Lovaas
2007-06-15
North America faces an energy crossroads. With the world fast approaching the end of cheap, plentiful conventional oil, we must choose between developing ever-dirtier sources of fossil fuels -- at great cost to our health and environment -- or setting a course for a more sustainable energy future of clean, renewable fuels. This report explores the full scale of the damage done by attempts to extract oil from liquid coal, oil shale, and tar sands; examines the risks for investors of gambling on these dirty fuel sources; and lays out solutions for guiding us toward a cleaner fuel future. Tablemore » of contents: Executive Summary; Chapter 1: Transportation Fuel at a Crossroads; Chapter 2: Canadian Tar Sands: Scraping the Bottom of the Barrel in Endangered Forests; Chapter 3: Oil Shale Extraction: Drilling Through the American West; Chapter 4: Liquid Coal: A 'Clean Fuel' Mirage; Chapter 5: The Investment Landscape: Dirty Fuels Are Risky Business; Chapter 6: The Clean Path for Transportation and Conclusion.« less
A rapid and simple determination of caffeine in teas, coffees and eight beverages.
Sereshti, Hassan; Samadi, Soheila
2014-09-01
Caffeine was extracted and preconcentrated by the simple, fast and green method of dispersive liquid-liquid microextraction (DLLME) and analysed by gas chromatography-nitrogen phosphorus detection (GC-NPD). The influence of main parameters affecting the extraction efficiency investigated and optimised. Under the optimal conditions, the method was successfully applied to determination of caffeine in different real samples including five types of tea (green, black, white, oolong teas and tea bag), two kinds of coffee (Nescafe coffee and coffee), and eight beverages (regular Coca Cola, Coca Cola zero, regular Pepsi, Pepsi max, Sprite, 7up, Red Bull and Hype).The limit of detection (LOD) and limit of quantification (LOQ) were 0.02 and 0.05 μg mL(-1), respectively. Linear dynamic range (LDR) was 0.05-500 μg mL(-1) and determination coefficient (R(2)) was 0.9990. The relative standard deviation (RSD) was 3.2% (n=5, C=1 μg mL(-1)). Copyright © 2014 Elsevier Ltd. All rights reserved.
Armstrong, Nicholas; Richez, Magali; Raoult, Didier; Chabriere, Eric
2017-08-15
A fast UHPLC-UV method was developed for the simultaneous analysis of Hydroxychloroquine, Minocycline and Doxycycline drugs from 100μL of human serum samples. Serum samples were extracted by liquid-liquid extraction and injected into a phenyl hexyl reverse phase column. Compounds were separated using a mobile phase linear gradient and monitored by UV detection at 343nm. Chloroquine and Oxytetracycline were used as internal standards. Lower and upper limits of quantifications, as well as the other levels of calibration, were validated with acceptable accuracy (<15% deviation) and precision (<15% coefficient of variation) according to the European Medicines Agency guidelines. This new method enables cost and time reduction and was considered suitable for the clinical laboratory. It is the first published assay for the therapeutic drug monitoring of patients diagnosed with Q fever or Whipple's disease. Copyright © 2017 Elsevier B.V. All rights reserved.
Di Filippo, Patrizia; Riccardi, Carmela; Pomata, Donatella; Marsiglia, Riccardo; Console, Carla; Puri, Daniele
2018-01-01
Fosetyl-aluminum is a synthetic fungicide administered to plants especially to prevent diseases caused by the members of the Peronosporales and several Phytophthora species. Herein, we present a selective liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to analyze residues of fosetyl-A1 in air particulate matter. This study was performed in perspective of an exposure assessment of this substance of health concern in environments where high levels of fosetly-Al, relatively to airborne particulate matter, can be found after spraying it. The cleanup procedure of the analyte, from sampled filters of atmospheric particulate matter, was optimized using a Strata X solid-phase extraction cartridge, after accelerated extraction by using water. The chromatographic separation was achieved using a polymeric column based on hydrophilic interaction in step elution with water/acetonitrile, whereas the mass spectrometric detection was performed in negative electrospray ionization. The proposed method resulted to be a simple, fast, and suitable method for confirmation purposes. PMID:29686933
Trujillo-Rodríguez, María J; Nacham, Omprakash; Clark, Kevin D; Pino, Verónica; Anderson, Jared L; Ayala, Juan H; Afonso, Ana M
2016-08-31
This work describes the applicability of magnetic ionic liquids (MILs) in the analytical determination of a group of heavy polycyclic aromatic hydrocarbons. Three different MILs, namely, benzyltrioctylammonium bromotrichloroferrate (III) (MIL A), methoxybenzyltrioctylammonium bromotrichloroferrate (III) (MIL B), and 1,12-di(3-benzylbenzimidazolium) dodecane bis[(trifluoromethyl)sulfonyl)]imide bromotrichloroferrate (III) (MIL C), were designed to exhibit hydrophobic properties, and their performance examined in a microextraction method for hydrophobic analytes. The magnet-assisted approach with these MILs was performed in combination with high performance liquid chromatography and fluorescence detection. The study of the extraction performance showed that MIL A was the most suitable solvent for the extraction of polycyclic aromatic hydrocarbons and under optimum conditions the fast extraction step required ∼20 μL of MIL A for 10 mL of aqueous sample, 24 mmol L(-1) NaOH, high ionic strength content of NaCl (25% (w/v)), 500 μL of acetone as dispersive solvent, and 5 min of vortex. The desorption step required the aid of an external magnetic field with a strong NdFeB magnet (the separation requires few seconds), two back-extraction steps for polycyclic aromatic hydrocarbons retained in the MIL droplet with n-hexane, evaporation and reconstitution with acetonitrile. The overall method presented limits of detection down to 5 ng L(-1), relative recoveries ranging from 91.5 to 119%, and inter-day reproducibility values (expressed as relative standard derivation) lower than 16.4% for a spiked level of 0.4 μg L(-1) (n = 9). The method was also applied for the analysis of real samples, including tap water, wastewater, and tea infusion. Copyright © 2016 Elsevier B.V. All rights reserved.
Tölgyesi, Ádám; Barta, Enikő; Simon, Andrea; McDonald, Thomas J; Sharma, Virender K
2017-10-25
Veterinary drugs containing synthetic anabolic steroid and nitroimidazole active agents are not allowed for their applications in livestock of the European Union (EU). This paper presents analyses of twelve selected steroids and six nitroimidazole antibiotics at low levels (1.56μg/L-4.95μg/L and 0.17μg/kg-2.14μg/kg, respectively) in body fluids and egg incurred samples. Analyses involved clean-up procedures, high performance liquid chromatography (HPLC) separation, and tandem mass spectrometric screening and confirmatory methods. Target steroids and nitroimidazoles in samples were cleaned by two independent supported liquid extraction and solid phase extraction procedures. Separation of the selected compounds was conducted on Kinetex XB C-18 HPLC column using gradient elution. The screening methods utilised supported liquid extraction that enabled fast and cost effective clean-up. The confirmatory methods were improved by extending the number of matrices and compounds, and by introducing an isotope dilution mass spectrometry for nitroimidazoles. The new methods were validated according to the recommendation of the European Union Reference Laboratories and the performance characteristics evaluated met fully the criteria. The methods were applied to incurred samples in the proficiency tests. The obtained results of Z-scores demonstrated the applicability of developed protocols of the methods to real samples. The confirmatory methods were applied to the national monitoring program and natural contamination of prednisolone could be detected in urine at low concentration in few samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Avula, Bharathi; Sagi, Satyanarayanaraju; Gafner, Stefan; Upton, Roy; Wang, Yan-Hong; Wang, Mei; Khan, Ikhlas A
2015-10-01
Ginkgo biloba is one of the most widely sold herbal supplements and medicines in the world. Its popularity stems from having a positive effect on memory and the circulatory system in clinical studies. As ginkgo popularity increased, non-proprietary extracts were introduced claiming to have a similar phytochemical profile as the clinically tested extracts. The standardized commercial extracts of G. biloba leaf used in ginkgo supplements contain not less than 6% sesquiterpene lactones and 24% flavonol glycosides. While sesquiterpene lactones are unique constituents of ginkgo leaf, the flavonol glycosides are found in many other botanical extracts. Being a high value botanical, low quality ginkgo extracts may be subjected to adulteration with flavonoids to meet the requirement of 24% flavonol glycosides. Chemical analysis by ultra high performance liquid chromatography-mass spectrometry revealed that adulteration of ginkgo leaf extracts in many of these products is common, the naturally flavonol glycoside-rich extract being spiked with pure flavonoids or extracts made from another flavonoid-rich material, such as the fruit/flower of Japanese sophora (Styphnolobium japonicum), which also contains the isoflavone genistein. Recently, genistein has been proposed as an analytical marker for the detection of adulteration of ginkgo extracts with S. japonicum. This study confirms that botanically authenticated G. biloba leaf and extracts made therefrom do not contain genistein, and the presence of which even in trace amounts is suggestive of adulteration. In addition to the mass spectrometric approach, a high performance thin layer chromatography method was developed as a fast and economic method for chemical fingerprint analysis of ginkgo samples.
Hild, J; Gertz, C
1980-02-01
For the quantitative determination of preservatives in food, analyses were carried out by means of GLC, HPLC, and TLC according to the TAS-method. Using the alkaline extract (sample preparation see part I) the preservatives can be analysed as free acid or appropriate ester out the same GLC-column without any interference from coextractives. A fast and accurate HPLC determination can be achieved by direct injection of the alkaline extract. All preservatives were well separated and detected at a wavelength of 225 resp. 232 nm. As a quick test for the qualitative estimation the TLC (TAS) method is suggested and a suitable solvent system is proposed.
HPLC-electrospray mass spectrometric assay for the determination of (R,R)-fenoterol in rat plasma.
Siluk, Danuta; Kim, Hee Seung; Cole, Tyler; Wainer, Irving W
2008-11-04
A fast and specific liquid chromatography-mass spectrometry method for the determination of (R,R)-fenoterol ((R,R)-Fen) in rat plasma has been developed and validated. (R,R)-Fen was extracted from 125 microl of plasma using solid phase extraction and analyzed on Atlantis HILIC Silica 3 microm column. The mobile phase was composed of acetonitrile:ammonium acetate (pH 4.1; 20mM) (85:15, v/v), at a flow rate of 0.2 ml/min. The lower limit of detection (LLOD) was 2 ng/ml . The procedure was validated and applied to the analysis of plasma samples from rats previously administered (R,R)-Fen in an intravenous bolus.
Wang, Ming-Chih; Lai, Yih-Cherng; Chang, Chia-Lin
2008-05-01
Dibenzo[a,c]cyclooctadiene lignans of Schisandra chinensis Baill are well known because of their hepatoprotective activity, antioxidant activity, and anticancer effect. For the isolation of the dibenzo[a,c]cyclooctadiene lignans of Schisandra chinensis Baill two extraction methods were used: modified-ultrasonic extraction and supercritical fluid extraction. A specific and fast analytical method for structure identification is established for quality control because structure elucidation could be accomplished by means of liquid chromatography-mass spectrometry (LC-MS) technologies. The separation and identification of the compounds were completed by: (i) a water-acetonitrile gradient system using a C18 reversed-phase column; (ii) UV detection at 225 nm; (iii) MS/MS experiments with electrospray ionization interface (ESI) ion trap mass spectrometry in the positive mode. Normalized collision energy was used to obtain fragment ions of structural relevance in the LC-MS/MS. These results provided a reliable LC-MS/MS method for the determination of the dibenzo[a,c]cyclooctadiene lignans from Schisandra chinensis Baill. Finally, we also detected 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging effects (%) of the modified-ultrasonic and supercritical fluid extracts of Schisandra chinensis Baill compared with 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox). The antioxidant activities of the modified-ultrasonic and supercritical fluid extracts were lower than that of trolox.
Ma, Wen; Peng, Yan; Wang, Weihui; Bian, Qiaoxia; Wang, Nannan; Lee, David Y-W; Dai, Ronghua
2016-10-01
A fast, sensitive and reliable ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method has been developed and validated for simultaneous quantitation and pharmacokinetic study of five tanshinones (tanshinone I, tanshinone IIA, tanshinone IIB, dihydrotanshinone I, cryptotanshinone), the bio-active ingredients of Huo Luo Xiao Ling Dan (HLXLD) in rat plasma. After liquid-liquid extraction, chromatographic separation was accomplished on a Shim-pack XR-ODS column (75 × 3.0 mm, 2.2 µm particles) and eluted with a mobile phase consisting of acetonitrile-0.05% formic acid aqueous solution (80:20, v/v) at a flow rate of 0.4 mL/min, and the total run time was 7.0 min. The detection was performed on a triple quadrupole tandem mass spectrometry equipped with an electrospray ionization source in positive ionization and multiple reaction monitoring mode. The lower limits of quantification were 0.050-0.400 ng/mL for all the analytes. Linearity, precision and accuracy, the mean extraction recoveries and matrix effects all satisfied criteria for acceptance. This validated method was successfully applied to a comparative pharmacokinetic study of five bio-active components in rat plasma after oral administration of HLXLD or Salvia miltiorrhiza extract in normal and arthritic rats. The results showed that there were different pharmacokinetic characteristics among different groups. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Abe, Y; Hosoda, H; Arikawa, Y; Nagai, T; Kojima, S; Sakata, S; Inoue, H; Iwasa, Y; Iwano, K; Yamanoi, K; Fujioka, S; Nakai, M; Sarukura, N; Shiraga, H; Norimatsu, T; Azechi, H
2014-11-01
The characteristics of oxygen-enriched liquid scintillators with very low afterglow are investigated and optimized for application to a single-hit neutron spectrometer for fast ignition experiments. It is found that 1,2,4-trimethylbenzene has better characteristics as a liquid scintillator solvent than the conventional solvent, p-xylene. In addition, a benzophenon-doped BBQ liquid scintillator is shown to demonstrate very rapid time response, and therefore has potential for further use in neutron diagnostics with fast time resolution.
Tankiewicz, Maciej; Biziuk, Marek
2018-02-01
A simple and efficient dispersive liquid-liquid microextraction technique (DLLME) was developed by using a mixture of two solvents: 40 μL of tetrachlorethylene (extraction solvent) and 1.0 mL of methanol (disperser solvent), which was rapidly injected with a syringe into 10 mL of water sample. Some important parameters affecting the extraction efficiency, such as type and volume of solvents, water sample volume, extraction time, temperature, pH adjustment and salt addition effect were investigated. Simultaneous determination of 34 commonly used pesticides was performed by using gas chromatography coupled with mass spectrometry (GC-MS). The procedure has been validated in order to obtain the highest efficiency at the lowest concentration levels of analytes to fulfill the requirements of regulations on maximum residue limits. Under the optimum conditions, the linearity range was within 0.0096-100 μg L -1 . The limits of detection (LODs) of the developed DLLME-GC-MS methodology for all investigated pesticides were in the range of 0.0032 (endrin)-0.0174 (diazinon) μg L -1 and limits of quantification (LOQs) from 0.0096 to 0.052 μg L -1 . At lower concentration of 1 μg L -1 for each pesticide, recoveries ranged between 84% (tebufenpyrad) and 108% (deltamethrin) with relative standard deviations (RSDs) (n = 7) from 1.1% (metconazole) to 11% (parathion-mehtyl). This methodology was successfully applied to check contamination of environmental samples. The procedure has proved to be selective, sensitive and precise for the simultaneous determination of various pesticides. The optimized analytical method is very simple and rapid (less than 5 min). Graphical abstract Analytical procedure for testing water samples consists of dispersive liquid-liquid microextraction (DLLME) and gas chromatography coupled with mass spectrometry (GC-MS).
Campone, Luca; Piccinelli, Anna Lisa; Celano, Rita; Pagano, Imma; Russo, Mariateresa; Rastrelli, Luca
2016-01-08
This study reports a fast and automated analytical procedure for the analysis of aflatoxin M1 (AFM1) in milk and dairy products. The method is based on the simultaneous protein precipitation and AFM1 extraction, by salt-induced liquid-liquid extraction (SI-LLE), followed by an online solid-phase extraction (online SPE) coupled to ultra-high-pressure-liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis to the automatic pre-concentration, clean up and sensitive and selective determination of AFM1. The main parameters affecting the extraction efficiency and accuracy of the analytical method were studied in detail. In the optimal conditions, acetonitrile and NaCl were used as extraction/denaturant solvent and salting-out agent in SI-LLE, respectively. After centrifugation, the organic phase (acetonitrile) was diluted with water (1:9 v/v) and purified (1mL) by online C18 cartridge coupled with an UHPLC column. Finally, selected reaction monitoring (SRM) acquisition mode was applied to the detection of AFM1. Validation studies were carried out on different dairy products (whole and skimmed cow milk, yogurt, goat milk, and powder infant formula), providing method quantification limits about 25 times lower than AFM1 maximum levels permitted by EU regulation 1881/2006 in milk and dairy products for direct human consumption. Recoveries (86-102%) and repeatability (RSD<3, n=6) meet the performance criteria required by EU regulation N. 401/2006 for the determination of the levels of mycotoxins in foodstuffs. Moreover, no matrix effects were observed in the different milk and dairy products studied. The proposed method improves the performance of AFM1 analysis in milk samples as AFM1 determination is performed with a degree of accuracy higher than the conventional methods. Other advantages are the reduction of sample preparation procedure, time and cost of the analysis, enabling high sample throughput that meet the current concerns of food safety and the public health protection. Copyright © 2015 Elsevier B.V. All rights reserved.
Jouyban, Abolghasem; Sorouraddin, Mohammad Hossein; Farajzadeh, Mir Ali; Somi, Mohammad Hossein; Fazeli-Bakhtiyari, Rana
2015-03-01
A fast and sensitive high-performance liquid chromatography (HPLC) method with ultraviolet (UV) detection was developed and validated for the simultaneous quantitation of five antiarrhythmic drugs (metoprolol, propranolol, carvedilol, diltiazem, and verapamil) in human plasma samples. It involves dispersive liquid-liquid microextraction (DLLME) of the desired drugs from 660 µL plasma and separation using isocratic elution with UV detection at 200 nm. The complete separation of all analytes was achieved within 7 min. Acetonitrile (as disperser solvent) resulting from the protein precipitation procedure was mixed with 100 µL dichloromethane (as an extraction solvent) and rapidly injected into 5 mL aqueous solution (pH 11.5) containing 1% (w/v), NaCl. After centrifugation, the sedimented phase containing enriched analytes was collected and evaporated to dryness. The residue was re-dissolved in 50 µL de-ionized water (acidified to pH 3) and injected into the HPLC system for analysis. Under the optimal conditions, the enrichment factors and extraction recoveries ranged between 4.4-10.8 and 33-82%, respectively. The suggested method was linear (r(2) ≥0.997) over a dynamic range of 0.02-0.80 µg mL(-1) in plasma. The intra- and inter-days relative standard deviation (RSD%) and relative error (RE%) values of the method were below 20%, which shows good precision and accuracy. Finally, this method was applied to the analysis of real plasma samples obtained from the patients treated with these drugs. Copyright © 2014 Elsevier B.V. All rights reserved.
Ding, Xueqin; Li, Li; Wang, Yuzhi; Chen, Jing; Huang, Yanhua; Xu, Kaijia
2014-12-01
A series of novel tetramethylguanidinium ionic liquids and hexaalkylguanidinium ionic liquids have been synthesized based on 1,1,3,3-tetramethylguanidine. The structures of the ionic liquids were confirmed by (1)H NMR spectroscopy and mass spectrometry. A green guanidinium ionic liquid based microwave-assisted extraction method has been developed with these guanidinium ionic liquids for the effective extraction of Praeruptorin A from Radix peucedani. After extraction, reversed-phase high-performance liquid chromatography with UV detection was employed for the analysis of Praeruptorin A. Several significant operating parameters were systematically optimized by single-factor and L9 (3(4)) orthogonal array experiments. The amount of Praeruptorin A extracted by [1,1,3,3-tetramethylguanidine]CH2CH(OH)COOH is the highest, reaching 11.05 ± 0.13 mg/g. Guanidinium ionic liquid based microwave-assisted extraction presents unique advantages in Praeruptorin A extraction compared with guanidinium ionic liquid based maceration extraction, guanidinium ionic liquid based heat reflux extraction and guanidinium ionic liquid based ultrasound-assisted extraction. The precision, stability, and repeatability of the process were investigated. The mechanisms of guanidinium ionic liquid based microwave-assisted extraction were researched by scanning electron microscopy and IR spectroscopy. All the results show that guanidinium ionic liquid based microwave-assisted extraction has a huge potential in the extraction of bioactive compounds from complex samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
González-Curbelo, Miguel Ángel; Lehotay, Steven J; Hernández-Borges, Javier; Rodríguez-Delgado, Miguel Ángel
2014-09-05
The "quick, easy, cheap, effective, rugged, and safe" (QuEChERS) approach to sample preparation is widely applied in pesticide residue analysis, but the use of magnesium sulfate and other nonvolatile compounds for salting out in the method is not ideal for mass spectrometry. In this study, we developed and evaluated three new different versions of the QuEChERS method using more volatile salts (ammonium chloride and ammonium formate and acetate buffers) to induce phase separation and extraction of 43 representative pesticide analytes of different classes. Fast low-pressure gas chromatography tandem mass spectrometry (LPGC-MS/MS) and liquid chromatography (LC)-MS/MS were used for analysis. The QuEChERS AOAC Official Method 2007.01 was also tested for comparison purposes. Of the studied methods, formate buffering using 7.5g of ammonium formate and 15mL of 5% (v/v) formic acid in acetonitrile for the extraction of 15g of sample (5g for wheat grain) provided the best performance and practical considerations. Method validation was carried out with and without the use of dispersive solid-phase extraction for cleanup, and no significant differences were observed for the majority of pesticides. The method was demonstrated in quantitative analysis for GC- and LC-amenable pesticides in 4 representative food matrices (apple, lemon, lettuce, and wheat grain). With the typical exceptions of certain pH-dependent and labile pesticides, 90-110% recoveries and <10% RSD were obtained. Detection limits were mostly <5ng/g, which met the general need to determine pesticide concentrations as low as 10ng/g for monitoring purposes in food applications. Published by Elsevier B.V.
Compact touchless fingerprint reader based on digital variable-focus liquid lens
NASA Astrophysics Data System (ADS)
Tsai, C. W.; Wang, P. J.; Yeh, J. A.
2014-09-01
Identity certification in the cyberworld has always been troublesome if critical information and financial transaction must be processed. Biometric identification is the most effective measure to circumvent the identity issues in mobile devices. Due to bulky and pricy optical design, conventional optical fingerprint readers have been discarded for mobile applications. In this paper, a digital variable-focus liquid lens was adopted for capture of a floating finger via fast focusplane scanning. Only putting a finger in front of a camera could fulfill the fingerprint ID process. This prototyped fingerprint reader scans multiple focal planes from 30 mm to 15 mm in 0.2 second. Through multiple images at various focuses, one of the images is chosen for extraction of fingerprint minutiae used for identity certification. In the optical design, a digital liquid lens atop a webcam with a fixed-focus lens module is to fast-scan a floating finger at preset focus planes. The distance, rolling angle and pitching angle of the finger are stored for crucial parameters during the match process of fingerprint minutiae. This innovative compact touchless fingerprint reader could be packed into a minute size of 9.8*9.8*5 (mm) after the optical design and multiple focus-plane scan function are optimized.
Morado Piñeiro, Andrés; Moreda-Piñeiro, Jorge; Alonso-Rodríguez, Elia; López-Mahía, Purificación; Muniategui-Lorenzo, Soledad; Prada-Rodríguez, Darío
2013-02-15
Analytical methods for the determination of total arsenic and arsenic species (mainly As(III) and As(V)) in human scalp hair have been developed. Inductively coupled plasma-mass spectrometry (ICP-MS) and high performance liquid chromatography (HPLC) coupled to ICP-MS have been used for total arsenic and arsenic species determination, respectively. The proposed methods include a "green", fast, high efficient and automated species leaching procedure by pressurized hot water extraction (PHWE). The operating parameters for PHWE including modifier concentration, extraction temperature, static time, extraction steps, pressure, mean particle size, diatomaceous earth (DE) mass/sample mass ratio and flush volume were studied using design of experiments (Plackett-Burman design PBD). Optimum condition implies a modifier concentration (acetic acid) of 150 mM and powdered hair samples fully mixed with diatomaceous earth (DE) as a dispersing agent at a DE mass/sample mass ratio of 5. The extraction has been carried out at 100°C and at an extraction pressure of 1500 psi for 5 min in four extraction step. Under optimised conditions, limits of quantification of 7.0, 6.3 and 50.3 ng g(-1) for total As, As(III) and As(V), respectively were achieved. Repeatability of the overall procedure (4.4, 7.2 and 2.1% for total As, As(III) and As(V), respectively) was achieved. The analysis of GBW-07601 (human hair) certified reference material was used for validation. The optimised method has been finally applied to several human scalp hair samples. Copyright © 2012 Elsevier B.V. All rights reserved.
Wang, Liping; Duan, Haotian; Jiang, Jiebing; Long, Jiakun; Yu, Yingjia; Chen, Guiliang; Duan, Gengli
2017-09-01
A new, simple, and fast infrared-assisted self enzymolysis extraction (IRASEE) approach for the extraction of total flavonoid aglycones (TFA) mainly including baicalein, wogonin, and oroxylin A from Scutellariae Radix is presented to enhance extraction yield. Extraction enzymolysis temperature, enzymolysis liquid-to-solid ratio, enzymolysis pH, enzymolysis time and infrared power, the factors affecting IRASEE procedure, were investigated in a newly designed, temperature-controlled infrared-assisted extraction (TC-IRAE) system to acquire the optimum analysis conditions. The results illustrated that IRASEE possessed great advantages in terms of efficiency and time compared with other conventional extraction techniques. Furthermore, the mechanism of IRASEE was preliminarily explored by observing the microscopic change of the samples surface structures, studying the main chemical compositions change of the samples before and after extraction and investigating the kinetics and thermodynamics at three temperature levels during the IRASEE process. These findings revealed that IRASEE can destroy the surface microstructures to accelerate the mass transfer and reduce the activation energy to intensify the chemical process. This integrative study presents a simple, rapid, efficient, and environmental IRASEE method for TFA extraction which has promising prospects for other similar herbal medicines. Graphical Abstract ᅟ.
Anderson, M A; Wachs, T; Henion, J D
1997-02-01
A method based on ionspray liquid chromatography/tandem mass spectrometry (LC/MS/MS) was developed for the determination of reserpine in equine plasma. A comparison was made of the isolation of reserpine from plasma by liquid-liquid extraction and by solid-phase extraction. A structural analog, rescinnamine, was used as the internal standard. The reconstituted extracts were analyzed by ionspray LC/MS/MS in the selected reaction monitoring (SRM) mode. The calibration graph for reserpine extracted from equine plasma obtained using liquid-liquid extraction was linear from 10 to 5000 pg ml-1 and that using solid-phase extraction from 100 to 5000 pg ml-1. The lower level of quantitation (LLQ) using liquid-liquid and solid-phase extraction was 50 and 200 pg ml-1, respectively. The lower level of detection for reserpine by LC/MS/MS was 10 pg ml-1. The intra-assay accuracy did not exceed 13% for liquid-liquid and 12% for solid-phase extraction. The recoveries for the LLQ were 68% for liquid-liquid and 58% for solid-phase extraction.
Determination of antibiotic residues in manure, soil, and surface waters
Christian, T.; Schneider, R.J.; Farber, H.A.; Skutlarek, D.; Meyer, M.T.; Goldbach, H.E.
2003-01-01
In the last years more and more often detections of antimicrobially active compounds ("antibiotics") in surface waters have been reported. As a possible input pathway in most cases municipal sewage has been discussed. But as an input from the realm of agriculture is conceivable as well, in this study it should be investigated if an input can occur via the pathway application of liquid manure on fields with the subsequent mechanisms surface run-off/interflow, leaching, and drift. For this purpose a series of surface waters, soils, and liquid manures from North Rhine-Westphalia (Northwestern Germany) were sampled and analyzed for up to 29 compounds by HPLC-MS/MS. In each of the surface waters antibiotics could be detected. The highest concentrations were found in samples from spring (300 ng/L of erythromycin). Some of the substances detected (e.g., tylosin), as well as characteristics in the landscape suggest an input from agriculture in some particular cases. In the investigation of different liquid manure samples by a fast immunoassay method sulfadimidine could be detected in the range of 1...2 mg/kg. Soil that had been fertilized with this liquid manure showed a content of sulfadimidine extractable by accelerated solvent extraction (ASE) of 15 ??g/kg dry weight even 7 months after the application. This indicates the high stability of some antibiotics in manure and soil.
Frizzarin, Rejane M; Maya, Fernando; Estela, José M; Cerdà, Víctor
2016-12-01
A novel fully-automated magnetic stirring-assisted lab-in-syringe analytical procedure has been developed for the fast and efficient dispersive liquid-liquid microextraction (DLLME) of caffeine in coffee beverages. The procedure is based on the microextraction of caffeine with a minute amount of dichloromethane, isolating caffeine from the sample matrix with no further sample pretreatment. Selection of the relevant extraction parameters such as the dispersive solvent, proportion of aqueous/organic phase, pH and flow rates have been carefully evaluated. Caffeine quantification was linear from 2 to 75mgL(-1), with detection and quantification limits of 0.46mgL(-1) and 1.54mgL(-1), respectively. A coefficient of variation (n=8; 5mgL(-1)) of a 2.1% and a sampling rate of 16h(-1), were obtained. The procedure was satisfactorily applied to the determination of caffeine in brewed, instant and decaf coffee samples, being the results for the sample analysis validated using high-performance liquid chromatography. Copyright © 2016 Elsevier Ltd. All rights reserved.
Li, Jia-Fu; Yan, Xia; Wu, Yun-Long; Fang, Mei-Juan; Wu, Zhen; Qiu, Ying-Kun
2017-04-15
An analytical two-dimensional normal-phase liquid chromatography × reversed-phase liquid chromatography (2D NPLC × RPLC) system was constructed with a newly developed thermal evaporation assisted adsorption (TEAA) interface. This novel TEAA interface with heating temperature above solvent boiling point allowed fast removal of organic NPLC solvent and successfully solved the solvent incompatibility problem between NPLC and RPLC. The system achieved rapid on-line solvent exchange between the two dimensions within a short modulation time of 190 s and was applied in the analysis of an extract from the skin of Bufo bufo gargarizans. This is the first time to realize the on-line comprehensive analysis of a moderate polar natural product by coupling NPLC with reversed phase ultra-high performance liquid chromatography (UHPLC). To be highlighted, with the TEAA interface, the 2D NPLC × RPLC system provided excellent resolution and orthogonality (75.2%), when compared with that of 2D RPLC × RPLC. Copyright © 2017 Elsevier B.V. All rights reserved.
Wu, Lijie; Song, Ying; Hu, Mingzhu; Xu, Xu; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming
2015-01-01
A novel, simple, and environmentally friendly pretreatment method, ionic liquid magnetic bar liquid-phase microextraction, was developed for the determination of sulfonamides in butter samples by high-performance liquid chromatography. The ionic liquid magnetic bar was prepared by inserting a stainless steel wire into the hollow of a hollow fiber and immobilizing ionic liquid in the micropores of the hollow fiber. In the extraction process, the ionic liquid magnetic bars were used to stir the mixture of sample and extraction solvent and enrich the sulfonamides in the mixture. After extraction, the analyte-adsorbed ionic liquid magnetic bars were readily isolated with a magnet from the extraction system. It is notable that the present method was environmentally friendly since water and only several microliters of ionic liquid were used in the whole extraction process. Several parameters affecting the extraction efficiency were investigated and optimized, including the type of ionic liquid, sample-to-extraction solvent ratio, the number of ionic liquid magnetic bars, extraction temperature, extraction time, salt concentration, stirring speed, pH of the extraction solvent, and desorption conditions. The recoveries were in the range of 73.25-103.85 % and the relative standard deviations were lower than 6.84 %. The experiment results indicated that the present method was effective for the extraction of sulfonamides in high-fat content samples.
Research News: Emulsion Liquid Membrane Extraction in a Hollow-Fiber Contactor
NASA Technical Reports Server (NTRS)
Wiencek, John M.; Hu, Shih-Yao
2000-01-01
This article describes how ELMs (emulsion liquid membranes) can be used for extraction. The article addresses the disadvantages of ELM extraction in a stirred contactor, and the advantages of SELMs (supported emulsion liquid membranes). The introduction of the article provides background information on liquid-liquid solvent extraction and dispersion-free solvent extraction.
Wang, Kun; Lin, Kunde; Huang, Xinwen; Chen, Meng
2017-06-21
The purpose of this study was to develop and validate a simple, fast, and specific extraction method for the analysis of 64 antibiotics from nine classes (including sulfonamides, quinolones, tetracyclines, macrolides, lincosamide, nitrofurans, β-lactams, nitromidazoles, and cloramphenicols) in chicken eggs. Briefly, egg samples were simply extracted with a mixture of acetonitrile-water (90:10, v/v) and 0.1 mol·L -1 Na 2 EDTA solution assisted with ultrasonic. The extract was centrifuged, condensed, and directly analyzed on a liquid chromatography coupled to tandem mass spectrometry. Compared with conventional cleanup methods (passing through solid phase extract cartridges), the established method demonstrated comparable efficiencies in eliminating matrix effects and higher or equivalent recoveries for most of the target compounds. Typical validation parameters including specificity, linearity, matrix effect, limits of detection (LODs) and quantification (LOQs), the decision limit, detection capability, trueness, and precision were evaluated. The recoveries of target compounds ranged from 70.8% to 116.1% at three spiking levels (5, 20, and 50 μg·kg -1 ), with relative standard deviations less than 14%. LODs and LOQs were in the ranges of 0.005-2.00 μg·kg -1 and 0.015-6.00 μg·kg -1 for all of the antibiotics, respectively. A total of five antibiotics were successfully detected in 22 commercial eggs from local markets. This work suggests that the method is suitable for the analysis of multiclass antibiotics in eggs.
Du, Wei; Zhang, Bilin; Guo, Pengqi; Chen, Guoning; Chang, Chun; Fu, Qiang
2018-03-15
Dexamethasone-imprinted polymers were fabricated by reversible addition-fragmentation chain transfer polymerization on the surface of magnetic nanoparticles under mild polymerization conditions, which exhibited a narrow polydispersity and high selectivity for dexamethasone extraction. The dexamethasone-imprinted polymers were characterized by scanning electron microscopy, transmission electron microscope, Fourier transform infrared spectroscopy, X-ray diffraction, energy dispersive spectrometry, and vibrating sample magnetometry. The adsorption performance was evaluated by static adsorption, kinetic adsorption and selectivity tests. The results confirmed the successful construction of an imprinted polymer layer on the surface of the magnetic nanoparticles, which benefits the characteristics of high adsorption capacity, fast mass transfer, specific molecular recognition, and simple magnetic separation. Combined with high-performance liquid chromatography, molecularly imprinted polymers as magnetic extraction sorbents were used for the rapid and selective extraction and determination of dexamethasone in skincare cosmetic samples, with the accuracies of the spiked samples ranging from 93.8 to 97.6%. The relative standard deviations were less than 2.7%. The limit of detection and limit of quantification were 0.05 and 0.20 μg/mL, respectively. The developed method was simple, fast and highly selective and could be a promising method for dexamethasone monitoring in cosmetic products. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mesquita, Tayane C R; Santos, Rizia R; Cacique, Ane P; De Sá, Ludimara J; Silvério, Flaviano O; Pinho, Gevany P
2018-03-04
Organochlorine pesticides present in sewage sludge can contaminate soil and water when they are used as either fertilizer or agricultural soil conditioner. In this study, the technique solid-liquid extraction with low temperature purification was optimized and validated for determination of ten organochlorine pesticides in sewage sludge and soil samples. Liquid-liquid extraction with low temperature purification was also validated for the same compounds in water. Analyses were performed by gas chromatography-mass spectrometry operating in the selective ion monitoring mode. After optimization, the methods showed recoveries between 70% and 115% with relative standard deviation lower than 13% for all target analytes in the three matrices. The linearity was demonstrated in the range of 20 to 70 µg L -1 , 0.5 to 60 µg L -1 , and 3 to 13 µg L -1 , for sludge, soil, and acetonitrile, respectively. The limit of quantification ranged between 2 and 40 µg kg -1 , 1 and 6 µg kg -1 , and 0.5 µg L -1 for sludge, soil, and water, respectively. The methods were used in the study of pesticide lixiviation carried out in a poly vinyl chlorine column filled with soil, which had its surface layer mixed with sludge. The results showed that pesticides are not leached into soil, part of them is adsorbed by the sewage sludge (4-40%), and most pesticides are lost by volatilization.
Ma, Wen; Wang, Weihui; Peng, Yan; Bian, Qiaoxia; Wang, Nannan; Lee, David Y-W; Dai, Ronghua
2016-06-01
A fast, sensitive, and reliable ultra-high performance liquid chromatography with tandem mass spectrometry method has been developed and validated for the simultaneous quantitation and pharmacokinetic study of five phthalides (senkyunolide A, ligustilide, butylidenephthalide, 3-butylphthalide, and levistilide A) in rat plasma after oral administration of Huo Luo Xiao Ling Dan (HLXLD) or Angelica sinensis--Ligusticum chuanxiong herb pair (DG-CX) between normal and arthritis rats. After extraction from blood, the analytes and internal standard were subjected to ultra-high performance liquid chromatography with a Shim-pack XR-ODS column (75 × 3.0 mm(2) , 2.2 μm particles) and mobile phase was composed of methanol and water (containing 0.05% formic acid) under gradient elution conditions, with an electrospray ionization source in the positive ionization and multiple reaction monitoring mode. The lower limits of quantification were 0.192-0.800 ng/mL for all the analytes. Satisfactory linearity, precision, accuracy, mean extraction recovery, and acceptable matrix effect have been achieved. The validated method was successfully applied to a comparative pharmacokinetic study of five bioactive components in rat plasma after oral administration of HLXLD or DG-CX alone, respectively, between normal and arthritic rats. The results showed that there were unlike characters of pharmacokinetics among different groups. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Plianwong, Samarwadee; Sripattanaporn, Areerut; Waewsa-nga, Kwanrutai; Buacheen, Parin; Opanasopit, Praneet; Ngawhirunpat, Tanasait; Rojanarata, Theerasak
2012-08-30
A fast, facile, and economical assay for basic nitrogenous drugs has been developed based on the mini-scale extraction of the drug-dye ion pair complex combined with the use of safe-for-analyst and eco-friendlier organic extractant and drop-based micro-spectrophotometry. Instead of using large volume devices, the extraction was simply carried out in typical 1.5 mL microcentrifuge tubes along with the use of micropipettes for accurate transfer of liquids, vortex mixer for efficient partitioning of solutes and benchtop centrifuge for rapid phase separation. In the last step, back-extraction was performed by using the microvolume of acidic solution in order to concentrate the colored species into a confined aqueous microdrop and to keep the analyst away from unwanted contact and inhalation of organic solvents during the quantitation step which was achieved by using cuvetteless UV-vis micro-spectrophotometry without any prior dilutions. Using chlorpheniramine maleate as a representative analyte and n-butyl acetate as a less toxic and non-ozone depleting extractant, the miniaturized method was less laborious and much faster. It was accurate, precise and insensitive to the interferences from common excipients. Notably, it gave the assay results of drug in tablets and oral solution comparable to the large-scale pharmacopeial method while the consumption of organic solvents and the release of wastes were lowered by 200-400 folds. Copyright © 2012 Elsevier B.V. All rights reserved.
Ma, Run-Tian; Shi, Yan-Ping
2015-03-01
A new magnetic molecularly imprinted polymers (MMIPs) for quercetagetin was prepared by surface molecular imprinting method using super paramagnetic core-shell nanoparticle as the supporter. Acrylamide as the functional monomer, ethyleneglycol dimethacrylate as the crosslinker and acetonitrile as the porogen were applied in the preparation process. Fourier transform infrared spectrometer (FT-IR), X-ray diffraction (XRD) and Vibrating sample magnetometer (VSM) were applied to characterize the MMIPs, and High performance liquid chromatography (HPLC) was utilized to analyze the target analytes. The selectivity of quercetagetin MMIPs was evaluated according to their recognition to template and its analogues. Excellent binding for quercetagetin was observed in MMIPs adsorption experiment, and the adsorption isotherm models analysis showed that the homogeneous binding sites were distributed on the surface of the MMIPs. The MMIPs were employed as adsorbents in solid phase extraction for the determination of quercetagetin in Calendula officinalis extracts. Furthermore, this method is fast, simple and could fulfill the determination and extraction of quercetagetin from herbal extract. Copyright © 2014 Elsevier B.V. All rights reserved.
Ren, Yan; Zhao, Weiwei; Zhao, Juanjuan; Chen, Xiangming; Yu, Chen; Liu, Mengan
2017-11-01
A simple, fast and reliable high-performance liquid chromatography-tandem mass spectrometry method was developed and validated for the simultaneous quantification and pharmacokinetic study of three flavonoids (liquiritigenin, isoliquiritigenin and formononetin) and three anthraquinones (emodin, rhein and aloe-emodin), which are the bioactive ingredients of Wei-Chang-Shu tablet found in rat plasma. After extraction by liquid-liquid extraction with ethyl acetate, chromatographic separation was achieved on an Agilent Zorbax SB-C 18 column (4.6 × 150 mm, 5 μm) at a flow rate of 1 mL/min by gradient elution using 0.1% aqueous acetic acid and acetonitrile. The detection was performed using a triple quadrupole mass spectrometer equipped with electrospray ionization source in the negative ionization and selected reaction monitoring mode. Method validation was performed in terms of specificity, carryover, linearity (r > 0.99), intra-/inter-day precision (1.0-10.1%), accuracy (relative error, <7.6%), stability (0.6-13.2%), extract recovery (74.9-91.9%) and matrix effect (89.1-109%). The lower limits of quantification of the six analytes varied from 0.92 to 10.4 ng/mL. The validated method was successfully applied to compare the pharmacokinetic properties of Wei-Chang-Shu tablet in normal rats and in rats with gastrointestinal motility disorders. The results indicated that there were obvious differences in the pharmacokinetic behavior between normal and model rats. This study will be helpful in the clinical application of Wei-Chang-Shu tablet. Copyright © 2017 John Wiley & Sons, Ltd.
Carmo, Ana Paula Barbosa do; Borborema, Manoella; Ribeiro, Stephan; De-Oliveira, Ana Cecilia Xavier; Paumgartten, Francisco Jose Roma; Moreira, Davyson de Lima
2017-01-01
Primaquine (PQ) diphosphate is an 8-aminoquinoline antimalarial drug with unique therapeutic properties. It is the only drug that prevents relapses of Plasmodium vivax or Plasmodium ovale infections. In this study, a fast, sensitive, cost-effective, and robust method for the extraction and high-performance liquid chromatography with diode array ultraviolet detection (HPLC-DAD-UV ) analysis of PQ in the blood plasma was developed and validated. After plasma protein precipitation, PQ was obtained by liquid-liquid extraction and analyzed by HPLC-DAD-UV with a modified-silica cyanopropyl column (250mm × 4.6mm i.d. × 5μm) as the stationary phase and a mixture of acetonitrile and 10mM ammonium acetate buffer (pH = 3.80) (45:55) as the mobile phase. The flow rate was 1.0mL·min-1, the oven temperature was 50OC, and absorbance was measured at 264nm. The method was validated for linearity, intra-day and inter-day precision, accuracy, recovery, and robustness. The detection (LOD) and quantification (LOQ) limits were 1.0 and 3.5ng·mL-1, respectively. The method was used to analyze the plasma of female DBA-2 mice treated with 20mg.kg-1 (oral) PQ diphosphate. By combining a simple, low-cost extraction procedure with a sensitive, precise, accurate, and robust method, it was possible to analyze PQ in small volumes of plasma. The new method presents lower LOD and LOQ limits and requires a shorter analysis time and smaller plasma volumes than those of previously reported HPLC methods with DAD-UV detection. The new validated method is suitable for kinetic studies of PQ in small rodents, including mouse models for the study of malaria.
Peng, Xiaojun; Pang, Jinshan; Deng, Aihua
2011-12-01
A novel method for the simultaneous determination of seven phenoxyacid herbicides such as dicamba, fluroxypyr, 4-chlorophenoxyacetic acid (4-CPA), 2-methyl-4-chlorophenoxyacetic acid (MCPA), 2, 4-dichlorophenoxyacetic acid (2,4-D), 2,4-dichlorophenoxybutyric acid (2,4-DB) and 4-(2-methyl-4-chlorophenoxy) butyric acid (MCPB) in environmental water by three phase hollow fiber liquid phase microextraction (HF-LPME) coupled with high performance liquid chromatography (HPLC) was developed. In order to optimize the experimental conditions, the orthogonal test has been used. The effects of extraction solvent, pH of the donor phase and acceptor phase, extraction time, stirring speed and salt concentration on the detection were investigated. The optimal experimental conditions were as follows: octanol as organic solvent, pH 3 of donor phase, pH 12 of acceptor phase, extraction time of 30 min, stirring speed of 400 r/min. The results showed that the proposed method provided a wide linear range for 7 phenoxyacid herbicides with correlation coefficients of 0.995 3 - 0.998 8. The detection limits ranged from 0.2 to 1.0 microg/L. The enrichment factors were in the range of 76.7 - 121. The recoveries were in the range of 68% - 104% and the relative standard deviations (RSDs) were less than 8.1% for the environmental water samples. The method has the advantages of sensitivity, simplicity, fastness and the use of very small amounts of organic solvent. The method can meet the requirements of the determination of trace phenoxyacid herbicides in the environmental water samples, and the study provided a useful method for the analysis of trace substances in water samples.
Liu, Yingxia; Ma, Yaqian; Wan, Yiqun; Guo, Lan; Wan, Xiaofen
2016-06-01
Most organotin compounds that have been widely used in food packaging materials and production process show serious toxicity effects to human health. In this study, a simple and low-cost method based on high-performance liquid chromatography with inductively coupled plasma mass spectrometry for the simultaneous determination of four organotins in edible vegetable oil samples was developed. Four organotins including dibutyltin dichloride, tributyltin chloride, diphenyltin dichloride, and triphenyltin chloride were simultaneously extracted with methanol using the low-temperature precipitation process. After being concentrated, the extracts were purified by matrix solid-phase dispersion using graphitized carbon black. The experimental parameters such as extraction solvent and clean-up material were optimized. To evaluate the accuracy of the new method, the recoveries were investigated. In addition, a liquid chromatography with tandem mass spectrometry method was also proposed for comparison. The procedures of extracting and purifying samples for the analysis were simple and easy to perform batch operations, also showed good efficiency with lower relative standard deviation. The limits of detection of the four organotins were 0.28-0.59 μg/L, and the limits of quantification of the four organotins were 0.93-1.8 μg/L, respectively. The proposed method was successfully applied to the simultaneous analysis of the four organotins in edible vegetable oil. Some analytes were detected at the level of 2.5-28.8 μg/kg. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mashhadizadeh, Mohammad Hossein; Amoli-Diva, Mitra; Pourghazi, Kamyar
2013-12-13
A new, simple, fast, and environmental friendly sample preconcentration technique based on the modified Fe3O4 nanoparticles has been developed for extraction, and determination of ochratoxin A (OTA). Magnetic nanoparticles were coated with 3-(trimethoxysilyl)-1-propanethiol and modified by ethylene glycol bis-mercaptoacetate. Transmission electron microscopy, X-ray diffraction, and Fourier transform infrared spectrometry were used to characterize the adsorbents and the main parameters affecting the extraction and desorption efficiencies, such as pH of sample solution, sample volume, desorption conditions, extraction and desorption times, salt addition, and co-existing interferences have been investigated and established. Under optimal conditions, OTA was extracted and analyzed using high performance liquid chromatography with fluorescence detection. The mobile phase consists of acetonitrile:water:acetic acid (99:99:2, v/v/v) and fluorescence detection was performed with excitation and emission wavelengths at 333 and 477nm, respectively. An enrichment factor of 24 was achieved for OTA with relative standard deviation of <7%. The proposed method was applied to twenty samples of cereals (rice, wheat, and corn). The limits of detection of 0.06, 0.03, and 0.05ngmL(-1) and limits of quantitation of 0.19, 0.11, and 0.15ngmL(-1), were found for rice, wheat, and corn samples, respectively. The recoveries of OTA for spiked samples were ranged from 87 to 93%. Copyright © 2013 Elsevier B.V. All rights reserved.
Wojnicz, Aneta; Cabaleiro-Ocampo, Teresa; Román-Martínez, Manuel; Ochoa-Mazarro, Dolores; Abad-Santos, Francisco; Ruiz-Nuño, Ana
2013-11-15
A simple, reproducible and fast (4 min chromatogram) method of liquid chromatography in tandem with mass spectrometry (LC/MS-MS) was developed to determine simultaneously the plasma levels of albendazole (ABZ) and its metabolite albendazole sulfoxide (ABZOX) for pharmacokinetic and clinical analysis. Each plasma sample was extracted by solid phase extraction (SPE) using phenacetin as internal standard (IS). The extracted sample was eluted with a Zorbax XDB-CN column using an isocratic method. The mobile phase consisting of water with 1% acetic acid (40%, A) and MeOH (60%, B), was used at a flow rate of 1 mL/min. ABZ and ABZOX were detected and identified by mass spectrometry with electrospray ionization (ESI) in the positive ion and multiple-reaction monitoring (MRM) mode. The method was linear in the range of 5-1000 ng/mL for ABZ and 10-1500 ng/mL (full validation) or 10-5000 ng/mL (partial validation) for ABZOX, with 5 and 10 ng/mL lower limit of quantification (LLOQ) for ABZ and ABZOX, respectively. The tests of accuracy and precision, matrix effect, extraction recovery and stability of the samples for both ABZ and ABZOX did not deviate more than 20% for the LLOQ and no more than 15% for other quality controls (QCs), according to regulatory agencies. © 2013.
Method and apparatus for continuous flow injection extraction analysis
Hartenstein, Steven D.; Siemer, Darryl D.
1992-01-01
A method and apparatus for a continuous flow injection batch extraction aysis system is disclosed employing extraction of a component of a first liquid into a second liquid which is a solvent for a component of the first liquid, and is immiscible with the first liquid, and for separating the first liquid from the second liquid subsequent to extraction of the component of the first liquid.
HPLC–electrospray mass spectrometric assay for the determination of (R,R)-fenoterol in rat plasma
Siluk, Danuta; Kim, Hee Seung; Cole, Tyler; Wainer, Irving W.
2008-01-01
A fast and specific liquid chromatography–mass spectrometry method for the determination of (R,R)-fenoterol ((R,R)-Fen) in rat plasma has been developed and validated. (R,R)-Fen was extracted from 125 µl of plasma using solid phase extraction and analyzed on Atlantis HILIC Silica 3 µm column. The mobile phase was composed of acetonitrile:ammonium acetate (pH 4.1; 20 mM) (85:15, v/v), at a flow rate of 0.2 ml/min. The lower limit of detection (LLOD) was 2 ng/ml . The procedure was validated and applied to the analysis of plasma samples from rats previously administered (R,R)-Fen in an intravenous bolus. PMID:18617349
Effect of flash release treatment on phenolic extraction and wine composition.
Morel-Salmi, Cécile; Souquet, Jean-Marc; Bes, Magali; Cheynier, Véronique
2006-06-14
The flash release (FR) process, consisting of rapidly heating the grapes and then applying strong vacuum, has been proposed to increase the polyphenol content of red wines. Its impact on polyphenol extraction kinetics and on the polyphenol composition of red juice and wines was studied over two seasons on different grape varieties (Grenache, Mourvedre, Carignan). The FR process allows fast extraction of all phenolic compounds (hydroxycinnamic acids, flavonols, anthocyanins, catechins, proanthocyanidins) and can be used to produce polyphenol-enriched grape juices. However, the concentration of all polyphenols dramatically decreased throughout fermentation when pressing was achieved immediately after FR. The FR wines made with pomace maceration were also enriched in polyphenols compared to the corresponding control wines. Increasing the duration of high-temperature exposure in the FR treatment further increased extraction of phenolic compounds but also accelerated their conversion to derived species. The tannin-to-anthocyanin ratio was particularly low in the wine fermented in the liquid phase, higher after FR than in the control, and even higher after longer heating. FR resulted in an increased tannin-to-anthocyanin ratio and an increased conversion of anthocyanins to tannin-anthocyanin adducts showing the same color properties as anthocyanins. The tannin-to-anthocyanin ratio was particularly low in the wine fermented in the liquid phase that also contained larger amounts of orange sulfite bleaching-resistant pigments.
Saraji, Mohammad; Ghambari, Hoda
2018-06-21
In this work we seek clues to select the appropriate dispersive liquid-liquid microextraction mode for extracting three categories of compounds. For this purpose, three common dispersive liquid-liquid microextraction modes were compared under optimized conditions. Traditional dispersive liquid-liquid microextraction, in situ ionic liquid dispersive liquid-liquid microextraction and conventional ionic liquid dispersive liquid-liquid microextraction using chloroform, 1-butyl-3-methylimidazolium tetrafluoroborate, and 1-hexyl-3-methylimidazolium hexafluorophosphate as the extraction solvent, respectively, were considered in this work. Phenolic, neutral aromatic and amino compounds (each category included six members) were studied as analytes. The analytes in the extracts were determined by high-performance liquid chromatography with UV detection. For the analytes with polar functionalities, the in situ ionic liquid dispersive liquid-liquid microextraction mode mostly led to better results. In contrast, for neutral hydrocarbons without polar functionalities, traditional dispersive liquid-liquid microextraction using chloroform produced better results. In this case, where dispersion forces were the dominant interactions in the extraction, the refractive index of solvent and analyte predicted the extraction performance better than the octanol-water partition coefficient. It was also revealed that none of the methods were successful in extracting very hydrophilic analytes (compounds with the log octanol-water partition coefficient < 2). The results of this study could be helpful in selecting a dispersive liquid-liquid microextraction mode for the extraction of various groups of compounds. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Atomizing, continuous, water monitoring module
Thompson, C.V.; Wise, M.B.
1997-07-08
A system for continuously analyzing volatile constituents of a liquid is described. The system contains a pump for continuously pumping the liquid to be tested at a predetermined flow rate into an extracting container through a liquid directing tube having an orifice at one end and positioned to direct the liquid into the extracting container at a flow rate sufficient to atomize the liquid within the extracting container. A continuous supply of helium carrier gas at a predetermined flow rate is directed through a tube into the extracting container and co-mingled with the atomized liquid to extract the volatile constituents contained within the atomized liquid. The helium containing the extracted volatile constituents flows out of the extracting container into a mass spectrometer for an analysis of the volatile constituents of the liquid. 3 figs.
Atomizing, continuous, water monitoring module
Thompson, Cyril V.; Wise, Marcus B.
1997-01-01
A system for continuously analyzing volatile constituents of a liquid is described. The system contains a pump for continuously pumping the liquid to be tested at a predetermined flow rate into an extracting container through a liquid directing tube having an orifice at one end and positioned to direct the liquid into the extracting container at a flow rate sufficient to atomize the liquid within the extracting container. A continuous supply of helium carrier gas at a predetermined flow rate is directed through a tube into the extracting container and co-mingled with the atomized liquid to extract the volatile constituents contained within the atomized liquid. The helium containing the extracted volatile constituents flows out of the extracting container into a mass spectrometer for an analysis of the volatile constituents of the liquid.
Wang, Tianyang; Xiao, Jie; Hou, Huiping; Li, Pei; Yuan, Ziyue; Xu, Huarong; Liu, Ran; Li, Qing; Bi, Kaishun
2017-08-15
For deeper pharmacokinetic investigation and further curative application of ginkgo flavonoids, a delicate, efficient and precise UFLC-MS/MS technique for synchronous quantitation of seven flavonoids, apigenin, luteolin, naringenin, quercetin, diosmetin, kaempferol and isorhamnetin in rat plasma has been established. After mixing with the internal standard (IS) linarin, bio-samples were pretreated via ethyl acetate for liquid-liquid extraction, then isolated at 0.2ml/min flow rate on a Venusil MP C 18 chromatographic column (100mm×2.1mm, 3μm) by means of gradient elution. 0.1% formic acid-water and methanol system was used as the mobile phase. Mass spectrometric inspection was conducted on a 4000Q UFLC-MS/MS system with turbo ion spray source in patterns of negative ion and multiple reaction-monitoring (MRM). All calibration curves proved favorable linearity (R 2 ≥0.9918) in linear ranges. Intra-day and inter-day precisions didn't exceed 14.0% for all the analytes, and the accuracy was within 6.9%. Extraction recoveries of analytes and IS were less than ±15.0% of nominal concentrations. This method has been under thorough and firm verification for a comparative pharmacokinetic research after gavage between Ginkgo biloba extract and single pure ginkgo flavonoids. The results demonstrated that there're evident pharmacokinetic discrepancies, and possible structural influences were innovatively proposed. Generally, substitution with 3-hydroxylation, a double bond in ring C, ring B methoxylation often confer longer onset period. The existence of ring B catechol group gives rise to faster clearance. Copyright © 2017. Published by Elsevier B.V.
Avagyan, Rozanna; Nyström, Robin; Boman, Christoffer; Westerholm, Roger
2015-06-01
A simple and fast method for analysis of hydroxylated polycyclic aromatic hydrocarbons using pressurized liquid extraction and high performance liquid chromatography utilizing photoionization tandem mass spectrometry was developed. Simultaneous separation and determination of nine hydroxylated polycyclic aromatic hydrocarbons and two hydroxy biphenyls could be performed in negative mode with a run time of 12 min, including equilibration in 5 min. The calibration curves were in two concentration ranges; 1-50 ng/mL and 0.01-50 μg/mL, with coefficients of correlation R (2) > 0.997. The limits of detection and method quantification limits were in the range of 9-56 pg and 5-38 ng/g, respectively. A two-level full factorial experimental design was used for screening of conditions with the highest impact on the extraction. The extraction procedure was automated and suitable for a large number of samples. The extraction recoveries ranged from 70 to 102 % and the matrix effects were between 92 and 104 %. The overall method was demonstrated on wood smoke particles and soil samples with good analytical performance, and five OH-PAHs were determined in the concentration range of 0.19-210 μg/g. As far as we know, hydroxylated polycyclic aromatic hydrocarbons were determined in wood smoke and soil samples using photoionization mass spectrometry for the first time in this present study. Accordingly, this study shows that high performance liquid chromatography photoionization tandem mass spectrometry can be a good option for the determination of hydroxylated polycyclic aromatic hydrocarbons in complex environmental samples. Graphical Abstract The method developed in this study was used to determine hydroxylated polycyclic aromatic hydrocarbons in wood smoke and soil.
Mei, Meng; Huang, Xiaojia
2017-11-24
Due to the endocrine disrupting properties, organic UV filters have been a great risk for humans and other organisms. Therefore, development of accurate and effective analytical methods is needed for the determination of UV filters in environmental waters. In this work, a fast, sensitive and environmentally friendly method combining magnetism-enhanced monolith-based in-tube solid phase microextraction with high-performance liquid chromatography with diode array detection (DAD) (ME-MB-IT/SPME-HPLC-DAD) for the online analysis of five organic UV filters in environmental water samples was developed. To extract UV filters effectively, an ionic liquid-based monolithic capillary column doped with magnetic nanoparticles was prepared by in-situ polymerization and used as extraction medium of online ME-MB-IT/SPME-HPLC-DAD system. Several extraction conditions including the intensity of magnetic field, sampling and desorption flow rate, volume of sample and desorption solvent, pH value and ionic strength of sample matrix were optimized thoroughly. Under the optimized conditions, the extraction efficiencies for five organic UV filters were in the range of 44.0-100%. The limits of detection (S/N=3) and limits of quantification (S/N=10) were 0.04-0.26μg/L and 0.12-0.87μg/L, respectively. The precisions indicated by relative standard deviations (RSDs) were less than 10% for both intra- and inter-day variabilities. Finally, the developed method was successfully applied to the determination of UV filters in three environmental water samples and satisfactory results were obtained. Copyright © 2017 Elsevier B.V. All rights reserved.
Huanca-Mamani, W; Rivera-Cabello, D; Maita-Maita, J
2015-07-17
In this study, we report a modified CTAB-PVP method combined with silicon dioxide (silica) treatment for the extraction of high quality genomic DNA from a single larva or pupa. This method efficiently obtains DNA from small specimens, which is difficult and challenging because of the small amount of starting tissue. Maceration with liquid nitrogen, phenol treatment, and the ethanol precipitation step are eliminated using this methodology. The A260/A280 absorbance ratios of the isolated DNA were approximately 1.8, suggesting that the DNA is pure and can be used for further molecular analysis. The quality of the isolated DNA permits molecular applications and represents a fast, cheap, and effective alternative method for laboratories with low budgets.
Provazi, Kellie; Campos, Beatriz Amaral; Espinosa, Denise Crocce Romano; Tenório, Jorge Alberto Soares
2011-01-01
The purpose of this paper is to study metal separation from a sample composed of a mixture of the main types of spent household batteries, using a hydrometallurgical route, comparing selective precipitation and liquid-liquid extraction separation techniques. The preparation of the solution consisted of: grinding the waste of mixed batteries, reduction and volatile metals elimination using electric furnace and acid leaching. From this solution two different routes were studied: selective precipitation with sodium hydroxide and liquid-liquid extraction using Cyanex 272 [bis(2,4,4-trimethylpentyl) phosphoric acid] as extracting agent. The best results were obtained from liquid-liquid extraction in which Zn had a 99% extraction rate at pH 2.5. More than 95% Fe was extracted at pH 7.0, the same pH at which more than 90% Ce was extracted. About 88% Mn, Cr and Co was extracted at this pH. At pH 3.0, more than 85% Ni was extracted, and at pH 3.5 more than 80% of Cd and La was extracted. Copyright © 2010 Elsevier Ltd. All rights reserved.
Fernández, Elena; Vidal, Lorena; Iniesta, Jesús; Metters, Jonathan P; Banks, Craig E; Canals, Antonio
2014-03-01
A novel method is reported, whereby screen-printed electrodes (SPELs) are combined with dispersive liquid-liquid microextraction. In-situ ionic liquid (IL) formation was used as an extractant phase in the microextraction technique and proved to be a simple, fast and inexpensive analytical method. This approach uses miniaturized systems both in sample preparation and in the detection stage, helping to develop environmentally friendly analytical methods and portable devices to enable rapid and onsite measurement. The microextraction method is based on a simple metathesis reaction, in which a water-immiscible IL (1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, [Hmim][NTf2]) is formed from a water-miscible IL (1-hexyl-3-methylimidazolium chloride, [Hmim][Cl]) and an ion-exchange reagent (lithium bis[(trifluoromethyl)sulfonyl]imide, LiNTf2) in sample solutions. The explosive 2,4,6-trinitrotoluene (TNT) was used as a model analyte to develop the method. The electrochemical behavior of TNT in [Hmim][NTf2] has been studied in SPELs. The extraction method was first optimized by use of a two-step multivariate optimization strategy, using Plackett-Burman and central composite designs. The method was then evaluated under optimum conditions and a good level of linearity was obtained, with a correlation coefficient of 0.9990. Limits of detection and quantification were 7 μg L(-1) and 9 μg L(-1), respectively. The repeatability of the proposed method was evaluated at two different spiking levels (20 and 50 μg L(-1)), and coefficients of variation of 7 % and 5 % (n = 5) were obtained. Tap water and industrial wastewater were selected as real-world water samples to assess the applicability of the method.
Doctor, Erika L; McCord, Bruce
2015-11-01
Benzodiazepines are among the most frequently prescribed medicines for anxiety disorders and are present in many toxicological screens. These drugs are often administered in the commission of drug facilitated sexual assaults due their effects on the central nervous system. Due to the potency of the drugs, only small amounts are usually given to victims; therefore, the target detection limit for these compounds in biological samples has been set at 50 ng/mL. Currently the standard screening method for detection of this class of drug is the immunoassay; however, screening methods that are more sensitive and selective than immunoassays are needed to encompass the wide range of structural variants of this class of compounds. Surface enhanced Raman spectroscopy (SERS) can be highly sensitive and has been shown to permit analysis of various benzodiazepines with limits of detection as low as 6 ng/mL. This technique permits analytical results in less than 2 min when used on pure drug samples. For biological samples, a key issue for analysis by SERS is removal of exogenous salts and matrix components. In this paper we examine supported liquid extraction as a useful preparation technique for SERS detection. Supported liquid extraction has many of the benefits of liquid-liquid extraction along with the ability to be automated. This technique provides a fast and clean extraction for benzodiazepines from urine at a pH of 5.0, and does not produce large quantities of solvent waste. To validate this procedure we have determined figures of merit and examined simulated urine samples prepared with commonly appearing interferences. It was shown that at a pH 5.0 many drugs that are prevalent in urine samples can be removed, permitting a selective detection of the benzodiazepine of interest. This technique has been shown to provide rapid (less than 20 min), sensitive, and specific detection of benzodiazepines with limits of detection between 32 and 600 ng/mL and dynamic range of 32-25,000 ng/mL. It provides the forensic community with a sensitive and specific screening technique for the detection of benzodiazepines in drug facilitated assault cases. Copyright © 2015 Elsevier B.V. All rights reserved.
Ionic Liquids as Extraction Media for Metal Ions
NASA Astrophysics Data System (ADS)
Hirayama, Naoki
In solvent extraction separation of metal ions, recently, many researchers have investigated possible use of hydrophobic ionic liquids as extraction media instead of organic solvents. Ionic liquids are salts of liquid state around room temperature and can act not only as solvents but also as ion-exchangers. Therefore, the extraction mechanism of metal ions into ionic liquids is complicated. This review presents current overview and perspective on evaluation of nature of hydrophobic ionic liquids as extraction media for metal ions.
Marina, Michela; Ceda, Gian Paolo; Aloe, Rosalia; Gnocchi, Cecilia; Ceresini, Graziano
2017-01-16
Liquid levothyroxine (LT4) given at breakfast normalizes TSH in hypothyroid patients. However, a few studies are available on circulating free thyroxine (FT4) concentrations after liquid vs solid LT4 preparations. During an "ad interim" analysis on serum FT4 after 200 mcg liquid LT4 consumption while fasting in thyroidectomized thyroid cancer patients, we found that seven subjects fortuitously took liquid LT4 at breakfast. As established in the original protocol, serum FT4 was measured both at baseline as well as at 3 and 4 hours after solid or liquid LT4 consumption. We compared serum profile of FT4 in these subjects with those obtained in other subjects participating in the same study who took liquid LT4 (n. 7 subjects) or solid LT4 (n. 7 subjects) while fasting. The percentage increase of circulating FT4 was calculated at the above reported peak-times over the baseline values. Circulating FT4 increased of about 40% in each group of subjects at both the 3rd and the 4th hour with no difference between these two time points in either group. The maximum FT4 % increase, irrespective of the time point, was 44.62 ± 3.05 (Mean ± SE), 44.84 ± 5.43, and 43.83 ± 1.30 after fasting solid, fasting liquid, and breakfast liquid LT4 consumption, respectively, with no differences among the three groups. Circulating FT4 obtained after 3 and 4 hours from the ingestion of 200 mcg liquid LT4 is not influenced by meal and is comparable with that observed after solid LT4 preparations ingested while fasting.
Rizzetti, Tiele M; de Souza, Maiara P; Prestes, Osmar D; Adaime, Martha B; Zanella, Renato
2018-04-25
In this study a simple and fast multi-class method for the determination of veterinary drugs in bovine liver, kidney and muscle was developed. The method employed acetonitrile for extraction followed by clean-up with EMR-Lipid® sorbent and trichloracetic acid. Tests indicated that the use of TCA was most effective when added in the final step of the clean-up procedure instead of during extraction. Different sorbents were tested and optimized using central composite design and the analytes determined by ultra-high-performance liquid chromatographic-tandem mass spectrometry (UHPLC-MS/MS). The method was validated according the European Commission Decision 2002/657 presenting satisfactory results for 69 veterinary drugs in bovine liver and 68 compounds in bovine muscle and kidney. The method was applied in real samples and in proficiency tests and proved to be adequate for routine analysis. Residues of abamectin, doramectin, eprinomectin and ivermectin were found in samples of bovine muscle and only ivermectin in bovine liver. Copyright © 2017 Elsevier Ltd. All rights reserved.
Melo, Lucio F C; Collins, Carol H; Jardim, Isabel C S F
2004-04-02
Sample preparation procedures which included the use of new aminopropyl (NH2) and octadecyl (C18) solid-phase extraction (SPE) sorbents are proposed for the simultaneous multiclass determination of the fungicide benomyl and of the herbicides tebuthiuron, diuron, simazine, atrazine, and ametryn in grapes, using single wavelength high-performance liquid chromatography. Sorbent preparation uses a fast, easy, and effective procedure to obtain silica-based materials, made by depositing polysiloxanes on a silica support followed by thermal immobilization. Recovery results of the compounds, after elution from the SPE cartridges, indicate that the most efficient system employed silica loaded with 40% of an aminofunctional polydimethylsiloxane as sorbent, using dichloromethane:methanol (95:5, v/v) as eluent. Method validation, carried out in agreement with International Conference on Harmonization directives, was performed at three fortification levels (100, 200, and 1000 microg kg(-1)). Limits of detection and quantification show that the method developed can be used to detect the pesticides at concentrations below the maximum residue levels established by Codex Alimentarius, the US Environmental Protection Agency, the European Union, and Brazilian legislation.
Chericoni, Silvio; Stefanelli, Fabio; Da Valle, Ylenia; Giusiani, Mario
2015-09-01
A sensitive and reliable method for extraction and quantification of benzoylecgonine (BZE) and cocaine (COC) in urine is presented. Propyl-chloroformate was used as derivatizing agent, and it was directly added to the urine sample: the propyl derivative and COC were then recovered by liquid-liquid extraction procedure. Gas chromatography-mass spectrometry was used to detect the analytes in selected ion monitoring mode. The method proved to be precise for BZE and COC both in term of intraday and interday analysis, with a coefficient of variation (CV)<6%. Limits of detection (LOD) were 2.7 ng/mL for BZE and 1.4 ng/mL for COC. The calibration curve showed a linear relationship for BZE and COC (r2>0.999 and >0.997, respectively) within the range investigated. The method, applied to thirty authentic samples, showed to be very simple, fast, and reliable, so it can be easily applied in routine analysis for the quantification of BZE and COC in urine samples. © 2015 American Academy of Forensic Sciences.
Myers, Jeremy N.; Rekhadevi, Perumalla V.; Ramesh, Aramandla
2011-01-01
Lysis and extraction of cells are essential sample processing steps for investigations pertaining to metabolism of xenobiotics in cell culture studies. Of particular importance to these procedures are maintaining high lysis efficiency and analyte integrity as they influence the qualitative and quantitative distribution of drug and toxicant metabolites in the intra- and extracellular milieus. In this study we have compared the efficiency of different procedures viz. homogenization, sonication, bead beating, and molecular grinding resin treatment for disruption of HT-29 colon cells exposed to benzo(a)pyrene (BaP), a polycyclic aromatic hydrocarbon (PAH) compound and a suspected colon carcinogen. Also, we have evaluated the efficiency of various procedures for extracting BaP parent compound/metabolites from colon cells and culture media prior to High Performance Liquid Chromatography (HPLC) analyses. The extraction procedures include solid phase extraction, solid-supported liquid- liquid extraction, liquid-liquid extraction, and homogeneous liquid- liquid extraction. Our findings showed that bead-beating in combination with detergent treatment of cell pellet coupled with liquid-liquid extraction yielded greater concentrations of BaP metabolites compared to the other methods employed. Our method optimization strategy revealed that disruption of HT-29 colon cells by a combination of mechanical and chemical lysis followed by liquid-liquid extraction is efficient and robust enough for analyzing BaP metabolites from cell culture studies. PMID:21865728
Yang, Xing-Jian; Dang, Zhi; Zhang, Fang-Li; Lin, Zhao-Ying; Zou, Meng-Yao; Tao, Xue-Qin; Lu, Gui-Ning
2013-01-01
This study described the development of a method based on soxhlet extraction combining high performance liquid chromatography (soxhlet-HPLC) for the accurate detection of BDE-209 in soils. The solvent effect of working standard solutions in HPLC was discussed. Results showed that 1 : 1 of methanol and acetone was the optimal condition which could totally dissolve the BDE-209 in environmental samples and avoid the decrease of the peak area and the peak deformation difference of BDE-209 in HPLC. The preliminary experiment was conducted on the configured grassland (1 μg/g) to validate the method feasibility. The method produced reliable reproducibility, simulated soils (n = 4) RSD 1.0%, and was further verified by the analysis e-waste contaminated soils, RSD range 5.9–11.4%. The contamination level of BDE-209 in burning site was consistent with the previous study of Longtang town but lower than Guiyu town, and higher concentration of BDE-209 in paddy field mainly resulted from the long-standing disassembling area nearby. This accurate and fast method was successfully developed to extract and analyze BDE-209 in soil samples, showing its potential use for replacing GC to determinate BDE-209 in soil samples. PMID:24302876
Hu, Yanxue; Yang, Xiumin; Wang, Zhi; Wang, Chun; Zhao, Jin
2005-11-01
A novel method for the determination of carbendazim (MBC) and thiabendazole (TBZ) in tomatoes by solid-phase microextraction (SPME) coupled with high performance liquid chromatography (HPLC) and fluorescence detection was developed. The experimental conditions of SPME, including extraction fiber, extraction time, extraction temperature, desorption time, desorption solvent, desorption mode, pH value, organic solvent and ionic strength, and HPLC conditions were optimized. The SPME for MBC and TBZ was performed on a 65 microm polydimethylsiloxane/divinylbenzene (PDMS/DVB) fibre for 50 min at room temperature with the solution being stirred at 1 100 r/min. The florescence detection was made at 315 nm with excitation wavelength at 280 nm. The method is linear for MBC and TBZ over the range assayed from 0.01 to 1.0 mg/kg tomatoes with the detection limits of 0.003 mg/kg and 0. 001 mg/kg and the correlation coefficients of 0.995 8 and 0.996 7, respectively. The average recoveries for MBC and TBZ were 83.5% and 85.6% with the relative standard deviations (RSDs) of 6.5% and 3.8%, respectively. The method is fast, simple, sensitive, solvent-free and suitable for the determination of MBC and TBZ in tomatoes.
Domingos Alves, Renata; Romero-González, Roberto; López-Ruiz, Rosalía; Jiménez-Medina, M L; Garrido Frenich, Antonia
2016-11-01
An analytical method based on a modified QuPPe (quick polar pesticide) extraction procedure coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) was evaluated for the determination of four polar compounds (chlorate, fosetyl-Al, maleic hydrazide, and perchlorate) in nutraceutical products obtained from soy. Experimental conditions including extraction such as solvent, acidification, time, and clean-up sorbents were varied. Acidified acetonitrile (1 % formic acid, v/v) was used as extraction solvent instead of methanol (conventional QuPPe), which provides a doughy mixture which cannot be injected into the LC. Clean-up or derivatization steps were avoided. For analysis, several stationary phases were evaluated and Hypercarb (porous graphitic carbon) provided the best results. The optimized method was validated and recoveries ranged between 46 and 119 %, and correction factors can be used for quantification purposes bearing in mind that inter-day precision was equal to or lower than 17 %. Limits of quantification (LOQs) ranged from 4 to 100 μg kg -1 . Soy-based nutraceutical products were analyzed and chlorate was detected in five samples at concentrations between 63 and 1642 μg kg -1 . Graphical Abstract Analysis of polar compounds in soy-based nutraceutical products.
Charehsaz, Mohammad; Gürbay, Aylin; Aydin, Ahmet; Sahin, Gönül
2014-01-01
In this study, a high-performance liquid chromatographic method (HPLC) and UV spectrophotometric method were developed, validated and applied for the determination of theophylline in biological fluids. Liquid- liquid extraction is performed for isolation of the drug and elimination of plasma and saliva interferences. Urine samples were applied without any extraction. The chromatographic separation was achieved on a C18 column by using 60:40 methanol:water as mobile phase under isocratic conditions at a flow rate of 0.75 mL/min with UV detection at 280 nm in HPLC method. UV spectrophotometric analysis was performed at 275 nm. the limit of quantification: 1.1 µg/mL for urine, 1.9 µg/mL for saliva, 3.1 µg/mL for plasma; recovery: 94.85% for plasma, 100.45% for saliva, 101.39% for urine; intra-day precision: 0.22-2.33%, inter-day precision: 3.17-13.12%. Spectrophotometric analysis results were as follows: the limit of quantitation: 5.23 µg/mL for plasma, 8.7 µg/mL for urine; recovery: 98.27% for plasma, 95.25% for urine; intra-day precision: 2.37 - 3.00%, inter-day precision: 5.43-7.91%. It can be concluded that this validated HPLC method is easy, precise, accurate, sensitive and selective for determination of theophylline in biological samples. Also spectrophotometric analysis can be used where it can be applicable.
Suárez, Ruth; Clavijo, Sabrina; González, Alba; Cerdà, Víctor
2018-03-01
An on-line, fast, simple, selective, and sensitive method has been developed for the determination of three herbicides belonging to the following families: triazines (atrazine), chloroacetamide (alachlor), and phenoxy (2,4-dichlorophenoxyacetic acid) in water samples. The method involves an in-syringe magnetic stirring-assisted dispersive liquid-liquid microextraction along with simultaneous silylation prior to their determination by gas chromatography with mass spectrometry. Extraction, derivatization, and preconcentration have been simultaneously performed using acetone as dispersive solvent, N-methyl-N-tert-butyldimethylsilyltrifluoroacetamide as derivatization agent and trichloroethylene as extraction solvent. After stirring for 180 s, the sedimented phase was transferred to a rotary micro-volume injection valve (3 μL) and introduced by an air stream into gas chromatograph with mass spectrometry detector. Recovery and enrichment factors were 87.2-111.2% and 7.4-10.4, respectively. Relative standard deviations were in the ranges of 6.6-7.4 for intraday and 9.2-9.6 for interday precision. The detection limits were in the range of 0.045-0.03 μg/L, and good linearity was observed up to 200 μg/L, with R 2 ranging between 0.9905 and 0.9964. The developed method was satisfactorily applied to assess the occurrence of the studied herbicides in groundwater samples. The recovery test was also performed with values between 77 and 117%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Removal of sudan dyes from water with C18-functional ultrafine magnetic silica nanoparticles.
Jiang, Chunzhu; Sun, Ying; Yu, Xi; Zhang, Lei; Sun, Xiumin; Gao, Yan; Zhang, Hanqi; Song, Daqian
2012-01-30
In this study, the new C(18)-functionalized ultrafine magnetic silica nanoparticles (C(18)-UMS NPs) were successfully synthesized and applied for extraction of sudan dyes in water samples based on the magnetic solid-phase extraction (MSPE). The extraction and concentration were carried out in one step by blending C(18)-UMS NPs and water samples. The sudan dyes adsorbed C(18)-UMS NPs were isolated from the matrix easily with an external magnetic field. After desorption the quantitation of sudan dyes was done by ultra fast liquid chromatography (UFLC). Satisfactory extraction recovery can be obtained with only 50 mg C(18)-UMS NPs. The effects of experimental parameters, including the amount of the nanoparticles, extraction time, pH value, desorption solvent, volume of desorption solvent and desorption time were investigated. The limits of detection for sudan I, II, III and IV were 0.066, 0.070, 0.12 and 0.12 ng mL(-1), respectively. Recoveries obtained by analyzing the six spiked water samples were between 68% and 103%. Copyright © 2011 Elsevier B.V. All rights reserved.
He, Jinxing; Wang, Shuo; Fang, Guozhen; Zhu, Huaping; Zhang, Yan
2008-05-14
A selective imprinted amino-functionalized silica gel sorbent was prepared by combining a surface molecular imprinting technique with a sol-gel process for online solid-phase extraction-HPLC determination of three trace sulfonamides in pork and chicken muscle. The imprinted functionalized silica gel sorbent exhibited selectivity and fast kinetics for the adsorption and desorption of sulfonamides. With a sample loading flow rate of 4 mL min (-1) for 12.5 min, enhancement factors and detection limits for three sulfonamides ( S/ N = 3) were achieved. The precision (RSD) for nine replicate online sorbent extractions of 5 microg L (-1) sulfonamides was less than 4.5%. The sorbent also offered good linearity ( r (2) > 0.99) for online solid-phase extraction of trace levels of sulfonamides. The method was applied to the determination of sulfonamides in pork and chicken muscle samples. The prepared polymer sorbent shows promise for online solid-phase extraction for HPLC determination of trace levels of sulfonamides in pork and chicken samples.
Rout, Alok; Kotlarska, Justyna; Dehaen, Wim; Binnemans, Koen
2013-10-21
The ionic liquids 1-hexyl-3-methylimidazolium bis(2-ethylhexyl)phosphate, [C6mim][DEHP], 1-hexyl-1-methylpyrrolidinium bis(2-ethylhexyl)phosphate, [C6mpyr][DEHP], and tetrabutylammonium bis(2-ethylhexyl)phosphate, [N4444][DEHP], were prepared and characterized using (1)H and (13)C NMR spectroscopy. The extraction behavior of neodymium(iii) from nitrate medium by these ionic liquids, diluted with the room temperature ionic liquids 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C6mim][NTf2], 1-hexyl-3-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, [C6mpyr][NTf2], and tributylmethylammonium bis(trifluoromethylsulfonyl)imide, [N1444][NTf2], was studied. The distribution ratio of neodymium(iii) was measured as a function of various parameters, such as pH, concentration of the ionic liquid extractant, nature of diluents, concentration of ionic liquid cations and nitrate anions in the aqueous phase. The extraction behavior was compared with that obtained for a solution of the molecular extractant bis(2-ethylhexyl)phosphoric acid (DEHPA) in an ionic liquid diluent. The extraction of neodymium(iii) in the ionic liquids [C6mim][DEHP] and [C6mpyr][DEHP] showed markedly different extraction properties in comparison with that of the quaternary ammonium analogue [N4444][DEHP], especially concerning the pH dependence of the extraction process. These results show that the extraction process can be tuned by the selection of the ionic liquid cation. The extraction experiments also included the trivalent rare-earth ions lanthanum(iii), cerium(iii), praseodymium(iii), ytterbium(iii) and yttrium(iii). Studies of the stripping behavior and the reusability of the ionic liquids were carried out, which indicate that the ionic liquids can be reused with no loss in activity.
ERIC Educational Resources Information Center
Usher, Karyn M.; Simmons, Carolyn R.; Keating, Daniel W.; Rossi, Henry F., III
2015-01-01
Chemical separations are an important part of an undergraduate chemistry curriculum. Sophomore students often get experience with liquid-liquid extraction in organic chemistry classes, but liquid-liquid extraction is not as often introduced as a quantitative sample preparation method in honors general chemistry or quantitative analysis classes.…
Liu, Zhongling; Yu, Wei; Zhang, Hanqi; Gu, Fanbin; Jin, Xiangqun
2016-12-01
Salting-out homogenous extraction followed by ionic liquid/ionic liquid dispersive liquid-liquid micro-extraction system was developed and applied to the extraction of sulfonamides in blood. High-performance liquid chromatography was applied to the determination of the analytes. The blood sample was centrifuged to obtain the serum. After the proteins in the serum were removed in the presence of acetonitrile, ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate, dipotassium hydrogen phosphate, ionic liquid 1-Hexyl-3-methylimidazolium hexafluorophosphate were added into the resulting solution. After the resulting mixture was ultrasonically shaken and centrifuged, the precipitate was separated. The acetonitrile was added in the precipitate and the analytes were extracted into the acetonitrile phase. The parameters affecting the extraction efficiency, such as volume of ionic liquid, amount of dipotassium hydrogen phosphate, volume of dispersant, extraction time and temperature were investigated. The limits of detection of sulfamethizole (STZ), sulfachlorpyridazine (SCP), sulfamethoxazole (SMX) and Sulfisoxazole (SSZ) were 4.78, 3.99, 5.21 and 3.77μgL -1 , respectively. When the present method was applied to the analysis of real blood samples, the recoveries of analytes ranged from 90.0% to 113.0% and relative standard deviations were lower than 7.2%. Copyright © 2016 Elsevier B.V. All rights reserved.
A microfluidic study of liquid-liquid extraction mediated by carbon dioxide.
Lestari, Gabriella; Salari, Alinaghi; Abolhasani, Milad; Kumacheva, Eugenia
2016-07-05
Liquid-liquid extraction is an important separation and purification method; however, it faces a challenge in reducing the energy consumption and the environmental impact of solvent (extractant) recovery. The reversible chemical reactions of switchable solvents (nitrogenous bases) with carbon dioxide (CO2) can be implemented in reactive liquid-liquid extraction to significantly reduce the cost and energy requirements of solvent recovery. The development of new effective switchable solvents reacting with CO2 and the optimization of extraction conditions rely on the ability to evaluate and screen the performance of switchable solvents in extraction processes. We report a microfluidic strategy for time- and labour-efficient studies of CO2-mediated solvent extraction. The platform utilizes a liquid segment containing an aqueous extractant droplet and a droplet of a solution of a switchable solvent in a non-polar liquid, with gaseous CO2 supplied to the segment from both sides. Following the reaction of the switchable solvent with CO2, the solvent becomes hydrophilic and transfers from the non-polar solvent to the aqueous droplet. By monitoring the time-dependent variation in droplet volumes, we determined the efficiency and extraction time for the CO2-mediated extraction of different nitrogenous bases in a broad experimental parameter space. The platform enables a significant reduction in the amount of switchable solvents used in these studies, provides accurate temporal characterization of the liquid-liquid extraction process, and offers the capability of high-throughput screening of switchable solvents.
Transient Effects in Turbulence Modelling.
1979-12-01
plenum region of a liquid-metal- cooled fast breeder reactor (LMFBR). The efficient heat transfer characteristics of liquid metal coolant, combined...Transients in Generalized Liquid-Metal Fast Breeder Reactor Outlet Plenums," Nuclear Technology, Vol. 44, July 1979, p. 210. 135 15. Lorenz, J. J., "MIX... Sodium Coolant in the Outlet Plenum of a Fast Nuclear Reactor ," Int. J. Heat Mass Transfer, Vol. 21, 1978, pp. 1565-1579. 19. Chen, Y. B., Golay, M. W
The limit of the film extraction technique for annular two-phase flow in a small tube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helm, D.E.; Lopez de Bertodano, M.; Beus, S.G.
1999-07-01
The limit of the liquid film extraction technique was identified in air-water and Freon-113 annular two-phase flow loops. The purpose of this research is to find the limit of the entrainment rate correlation obtained by Lopez de Bertodano et. al. (1998). The film extraction technique involves the suction of the liquid film through a porous tube and has been widely used to obtain annular flow entrainment and entrainment rate data. In these experiments there are two extraction probes. After the first extraction the entrained droplets in the gas core deposit on the tube wall. A new liquid film develops entirelymore » from liquid deposition and a second liquid film extraction is performed. While it is assumed that the entire liquid film is removed after the first extraction unit, this is not true for high liquid flow. At high liquid film flows the interfacial structure of the film becomes frothy. Then the entire liquid film cannot be removed at the first extraction unit, but continues on and is extracted at the second extraction unit. A simple model to characterize the limit of the extraction technique was obtained based on the hypothesis that the transition occurs due to a change in the wave structure. The resulting dimensionless correlation agrees with the data.« less
The limit of the film extraction technique for annular two-phase flow in a small tube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helm, D.E.; Lopez de Bertodano, M.; Beus, S.G.
1999-07-01
The limit of the liquid film extraction technique was identified in air-water and Freon-113 annular two-phase flow loops. The purpose of this research is to find the limit of the entrainment rate correlation obtained by Lopez de Bertodano et al. (1998). The film extraction technique involves the suction of the liquid film through a porous tube and has been widely used to obtain annular flow entrainment and entrainment rate data. In the experiments there are two extraction probes. After the first extraction the entrained droplets in the gas core deposit on the tube wall. A new liquid film develops entirelymore » from liquid deposition and a second liquid film extraction is performed. While it is assumed that the entire liquid film is removed after the first extraction unit, this is not true for high liquid flow. At high liquid film flows the interfacial structure of the film becomes frothy. Then the entire liquid film cannot be removed at the first extraction unit, but continues on and is extracted at the second extraction unit. A simple model to characterize the limit of the extraction technique was obtained based on the hypothesis that the transition occurs due to a change in the wave structure. The resulting dimensionless correlation agrees with the data.« less
Ricárdez, O F Mijangos; Ruiz-Jiménez, J; Lagunez-Rivera, L; de Castro, M D Luque
2011-01-01
Heterotheca inuloides Cass., also known as "arnica", is used in traditional medicine in Mexico. Development of fast methods for the extraction of lipidic and phenolic fractions from arnica plants and their subsequent characterization. Ultrasound was applied to accelerate extraction of the target compounds from this plant and reduce the use of organic solvents as compared with conventional methods. Gas chromatography-ion trap mass spectrometry and liquid chromatography with diode-array detection were used for the characterization of the lipidic and phenolic fractions, respectively. Under optimal extraction conditions, 9 and 55 min were necessary to complete extraction of the lipidic and phenolic fractions, respectively. The fatty acids present at the highest concentrations in H. inuloides were eicosatetraenoic n3 (24.6 μg/g), cis-9-hexadecenoic n7 (23.1 μg/g), exacosanoic (22.7 μg/g) and cis-9-octadecenoic acid (21.3 μg/g), while the rest were in the range 7.6-1.3 μg/g. The most concentrated phenols were guaiacol (41.5 μg/g), catechin (38.7 μg/g), ellagic acid (35.9 μg/g), carbolic acid (24.2 μg/g) and p-coumaric acid (19.5 μg/g), while the rest were in the range 5.1-0.4 μg/g. Ultrasound reduces the time necessary to complete the extraction 160 and 26 times, the extraction volume 2.5 and 4 times, and increases the extraction efficiency 5 and 3 times for lipidic and phenolic fractions, respectively, in comparison with conventional extraction methods. In addition, the characterization of the lipidic and phenolic fractions constitutes a first approach to the H. inuloides metabolome. Copyright © 2011 John Wiley & Sons, Ltd.
Measurement of dielectric constant of organic solvents by indigenously developed dielectric probe
NASA Astrophysics Data System (ADS)
Keshari, Ajay Kumar; Rao, J. Prabhakar; Rao, C. V. S. Brahmmananda; Ramakrishnan, R.; Ramanarayanan, R. R.
2018-04-01
The extraction, separation and purification of actinides (uranium and plutonium) from various matrices are an important step in nuclear fuel cycle. One of the separation process adopted in an industrial scale is the liquid-liquid extraction or solvent extraction. Liquid-liquid extraction uses a specific ligand/extractant in conjunction with suitable diluent. Solvent extraction or liquid-liquid extraction, involves the partitioning of the solute between two immiscible phases. In most cases, one of the phases is aqueous, and the other one is an organic solvent. The solvent used in solvent extraction should be selective for the metal of interest, it should have optimum distribution ratio, and the loaded metal from the organic phase should be easily stripped under suitable experimental conditions. Some of the important physical properties which are important for the solvent are density, viscosity, phase separation time, interfacial surface tension and the polarity of the extractant.
Gao, Xue; Guo, Hao; Wang, Junwei; Zhao, Qingbiao
2018-01-19
In this study, a sensitive and fast procedure of ultrasonic-assisted dispersive liquid-liquid microextraction (UADLLME) coupled with gas chromatography-tandem mass spectrometry (GC-MS/MS) for the determination of major pyrethroid pesticides (permethrin, tetramethrin, bifenthrin, fenvalerate, flucythrinate, fluvalinate, fenpropathrin, deltamethrin, and cyhalothrin) in blood samples was developed. Response surface methodology (RSM) combined with Box-Behnken design (BBD) and ANOVA function was used to optimize key factors affecting the extraction efficiency of UADLLME procedure. Target compounds were analyzed by GC-MS/MS. Under the optimal conditions, good linearity (R 2 >0.99) was achieved for all the analytes in the concentration range of 0.5 to 100 μg L -1 . The recoveries for spiked samples at 3 concentration levels were between 70.2 and 91.8%, with relative standard deviations (RSD) lower than 10%. Very low limits of detection (LODs) and limits of quantification (LOQs) ranging from 0.01 to 0.1 μg L -1 and from 0.03 to 0.3 μg L -1 were achieved. This method was successfully applied to the determination of low concentration of pyrethroids in blood samples from real forensic cases. High sensitivity, fast determination, simplicity in operation, small sample volume, and low usage of organic solvents are the advantages of this method. This methodology is of important value for sensitive and quick determination of residue pesticides and metabolites, study of residue pesticides behavior in human body, as well as application in real forensic cases. Copyright © 2018 John Wiley & Sons, Ltd.
Bertolín, J R; Joy, M; Rufino-Moya, P J; Lobón, S; Blanco, M
2018-08-15
An accurate, fast, economic and simple method to determine carotenoids, tocopherols, retinol and cholesterol in lyophilised samples of ovine milk, muscle and liver and raw samples of fat, which are difficult to lyophilise, is sought. Those analytes have been studied in animal tissues to trace forage feeding and unhealthy contents. The sample treatment consisted of mild overnight saponification, liquid-liquid extraction, evaporation with vacuum evaporator and redissolution. The quantification of the different analytes was performed by the use of ultra-high performance liquid chromatography with diode-array detector for carotenoids, retinol and cholesterol and fluorescence detector for tocopherols. The retention times of the analytes were short and the resolution between analytes was very high. The limits of detection and quantification were very low. This method is suitable for all the matrices and analytes and could be adapted to other animal species with minor changes. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sanchez-Prado, Lucia; Lamas, J Pablo; Lores, Marta; Garcia-Jares, Carmen; Llompart, Maria
2010-11-15
An effective one-step sample preparation methodology for the determination of multiclass preservatives in cosmetics has been developed, applying, for the first time to this kind of matrix, pressurized liquid extraction (PLE) and a very simple, cheap, and fast derivatization procedure: acetylation with acetic anhydride and pyridine. A multifactorial experimental design has been used to evaluate and optimize the main experimental parameters potentially affecting the extraction process. In the final conditions the sample was mixed with Florisil as the dispersing sorbent and extracted with ethyl acetate for 15 min at 120 °C. One of the main goals of this work was to demonstrate the possibility of carrying out direct cosmetic preservative acetylation by simply adding the derivatization reagents into the PLE cell. The extract was then analyzed by GC/MS without any further cleanup or concentration step. The accuracy, precision, linearity, and detection limits (LODs) were evaluated to assess the performance of the proposed method. Quantitative recoveries were obtained, and relative standard deviation values were lower than 10% in all cases. The obtained LODs ranged from 0.000004% to 0.0001% (w/w), values far below the established restrictions in the European Cosmetics Regulation, making this multicomponent analytical method suitable for routine control. Finally, several cosmetic products such as moisturizing and antiwrinkle creams and lotions, hand creams, sunscreen and after-sun creams, baby lotions, and hair care products were analyzed. All the samples contained several of the target cosmetic ingredients, in some cases at quite high concentrations, although the actual European Cosmetics Regulation was fulfilled in all cases.
Transformation optics with windows
NASA Astrophysics Data System (ADS)
Oxburgh, Stephen; White, Chris D.; Antoniou, Georgios; Orife, Ejovbokoghene; Courtial, Johannes
2014-09-01
Identity certification in the cyberworld has always been troublesome if critical information and financial transaction must be processed. Biometric identification is the most effective measure to circumvent the identity issues in mobile devices. Due to bulky and pricy optical design, conventional optical fingerprint readers have been discarded for mobile applications. In this paper, a digital variable-focus liquid lens was adopted for capture of a floating finger via fast focusplane scanning. Only putting a finger in front of a camera could fulfill the fingerprint ID process. This prototyped fingerprint reader scans multiple focal planes from 30 mm to 15 mm in 0.2 second. Through multiple images at various focuses, one of the images is chosen for extraction of fingerprint minutiae used for identity certification. In the optical design, a digital liquid lens atop a webcam with a fixed-focus lens module is to fast-scan a floating finger at preset focus planes. The distance, rolling angle and pitching angle of the finger are stored for crucial parameters during the match process of fingerprint minutiae. This innovative compact touchless fingerprint reader could be packed into a minute size of 9.8*9.8*5 (mm) after the optical design and multiple focus-plane scan function are optimized.
Fast and sensitive method for detecting volatile species in liquids
NASA Astrophysics Data System (ADS)
Trimarco, Daniel B.; Pedersen, Thomas; Hansen, Ole; Chorkendorff, Ib; Vesborg, Peter C. K.
2015-07-01
This paper presents a novel apparatus for extracting volatile species from liquids using a "sniffer-chip." By ultrafast transfer of the volatile species through a perforated and hydrophobic membrane into an inert carrier gas stream, the sniffer-chip is able to transport the species directly to a mass spectrometer through a narrow capillary without the use of differential pumping. This method inherits features from differential electrochemical mass spectrometry (DEMS) and membrane inlet mass spectrometry (MIMS), but brings the best of both worlds, i.e., the fast time-response of a DEMS system and the high sensitivity of a MIMS system. In this paper, the concept of the sniffer-chip is thoroughly explained and it is shown how it can be used to quantify hydrogen and oxygen evolution on a polycrystalline platinum thin film in situ at absolute faradaic currents down to ˜30 nA. To benchmark the capabilities of this method, a CO-stripping experiment is performed on a polycrystalline platinum thin film, illustrating how the sniffer-chip system is capable of making a quantitative in situ measurement of <1 % of a monolayer of surface adsorbed CO being electrochemically stripped off an electrode at a potential scan-rate of 50 mV s-1.
Zhang, Min; Deng, Yang; Cai, Hua-Lin; Fang, Ping-Fei; Yan, Miao; Zhang, Bi-Kui; Wu, Yan-Qin
2017-04-01
To develop a sensitive, two-dimensional liquid chromatography (2D-LC) method for determination of valsartan, applied to investigate bioequivalence of two valsartan tablets in Chinese volunteers under fasting condition. A full automatic 2D-HPLC system was used to quantify valsartan in human plasma. The analytes were extracted by protein precipitation, using telmisartan as internal standard. The analytical method was applied in a randomized, crossover bioequivalence study of valsartan tablets; the study enrolled 18 Chinese volunteers (12 were men and 6 were women). The subjects received a single 160-mg dose of test or reference preparation with 7-days of washout under fasting state. Plasma samples were collected, pharmacokinetic parameters were obtained and the bioequivalence was evaluated. The calibration range was 9.2 - 4213.8 ng×mL-1. Inter- and intraprecision was less than 7.0%, and accuracies ranged from 99.5 to 103.8%. The extraction recovery for valsartan varied between 89.3 and 97.8%, and the stability in all conditions was excellent. The 90% CI of AUC0→36h and Cmax were 96.5 - 109.4% and 94.2 - 108.6%, respectively. The relative bioavailability was 103.9 ± 15.7%. No gender difference was observed in pharmacokinetic parameters. A sensitive 2D-HPLC method was established for the estimation of valsartan in human plasma and successfully applied in a bioequivalence study of valsartan, which suggests that these two formulations can be assumed to be bioequivalent. .
Lorenz, Matthew A.; Burant, Charles F.; Kennedy, Robert T.
2011-01-01
A simple, fast, and reproducible sample preparation procedure was developed for relative quantification of metabolites in adherent mammalian cells using the clonal β-cell line INS-1 as a model sample. The method was developed by evaluating the effect of different sample preparation procedures on high performance liquid chromatography- mass spectrometry quantification of 27 metabolites involved in glycolysis and the tricarboxylic acid cycle on a directed basis as well as for all detectable chromatographic features on an undirected basis. We demonstrate that a rapid water rinse step prior to quenching of metabolism reduces components that suppress electrospray ionization thereby increasing signal for 26 of 27 targeted metabolites and increasing total number of detected features from 237 to 452 with no detectable change of metabolite content. A novel quenching technique is employed which involves addition of liquid nitrogen directly to the culture dish and allows for samples to be stored at −80 °C for at least 7 d before extraction. Separation of quenching and extraction steps provides the benefit of increased experimental convenience and sample stability while maintaining metabolite content similar to techniques that employ simultaneous quenching and extraction with cold organic solvent. The extraction solvent 9:1 methanol: chloroform was found to provide superior performance over acetonitrile, ethanol, and methanol with respect to metabolite recovery and extract stability. Maximal recovery was achieved using a single rapid (~1 min) extraction step. The utility of this rapid preparation method (~5 min) was demonstrated through precise metabolite measurements (11% average relative standard deviation without internal standards) associated with step changes in glucose concentration that evoke insulin secretion in the clonal β-cell line INS-1. PMID:21456517
Zhang, Caixiang; Eganhouse, Robert P; Pontolillo, James; Cozzarelli, Isabelle M; Wang, Yanxin
2012-03-23
4-Nonylphenols (4-NPs) are known endocrine disruptors and by-products of the microbial degradation of nonylphenol polyethoxylate surfactants. One of the challenges to understanding the toxic effects of nonylphenols is the large number of isomers that may exist in environmental samples. In order to attribute toxic effects to specific compounds, a method is needed for the separation and quantitation of individual nonylphenol isomers. The pre-concentration methods of solvent sublimation, solid-phase extraction or liquid-liquid extraction prior to chromatographic analysis can be problematic because of co-extraction of thousands of compounds typically found in complex matrices such as municipal wastewater or landfill leachate. In the present study, steam distillation extraction (SDE) was found to be an effective pre-concentration method for extraction of 4-NPs from leachate and wastewater, and comprehensive two-dimensional gas chromatography (GC×GC) coupled with fast mass spectral data acquisition by time-of-flight mass spectrometry (ToFMS) enhanced the resolution and identification of 4-NP isomers. Concentrations of eight 4-NP isomers were determined in leachate from landfill cells of different age and wastewater influent and effluent samples. 4-NP isomers were about 3 times more abundant in leachate from the younger cell than the older one, whereas concentrations in wastewater effluent were either below detection limits or <1% of influent concentrations. 4-NP isomer distribution patterns were found to have been altered following release to the environment. This is believed to reflect isomer-specific degradation and accumulation of 4-NPs in the aquatic environment. Copyright © 2012 Elsevier B.V. All rights reserved.
Liquid-Liquid Extraction of Insecticides from Juice: An Analytical Chemistry Laboratory Experiment
ERIC Educational Resources Information Center
Radford, Samantha A.; Hunter, Ronald E., Jr.; Barr, Dana Boyd; Ryan, P. Barry
2013-01-01
A laboratory experiment was developed to target analytical chemistry students and to teach them about insecticides in food, sample extraction, and cleanup. Micro concentrations (sub-microgram/mL levels) of 12 insecticides spiked into apple juice samples are extracted using liquid-liquid extraction and cleaned up using either a primary-secondary…
Costa Dos Reis, Luciana; Vidal, Lorena; Canals, Antonio
2017-04-01
A fast, simple, economical, and environmentally friendly magnetic solid-phase extraction (MSPE) procedure has been developed to preconcentrate 2,4,6-trinitrotoluene (TNT) from water samples prior to determination by liquid chromatography-UV-Vis employing graphene oxide/Fe 3 O 4 nanocomposite as sorbent. The nanocomposite synthesis was investigated, and the MSPE was optimized by a multivariate approach. The optimum MSPE conditions were 40 mg of nanocomposite, 10 min of vortex extraction, 1 mL of acetonitrile as eluent, and 6 min of desorption in an ultrasonic bath. Under the optimized experimental conditions, the method was evaluated to obtain a preconcentration factor of 153. The linearity of the method was studied from 1 to 100 μg L -1 (N = 5), obtaining a correlation coefficient of 0.994. The relative standard deviation and limit of detection were found to be 12% (n = 6, 10 μg L -1 ) and 0.3 μg L -1 , respectively. The applicability of the method was investigated, analyzing three types of water samples (i.e., reservoir and drinking water and effluent wastewater) and recovery values ranged between 87 and 120% (50 μg L -1 spiking level), showing that the matrix had a negligible effect upon extraction. Finally, the semiquantitative Eco-Scale metrics confirmed the greenness of the developed method.
Wu, Lijie; Song, Ying; Hu, Mingzhu; Yu, Cui; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming
2015-09-01
Microwave-assisted ionic-liquid-impregnated resin solid-liquid extraction was developed for the extraction of triazine herbicides, including cyanazine, metribuzin, desmetryn, secbumeton, terbumeton, terbuthylazine, dimethametryn, and dipropetryn in honey samples. The ionic-liquid-impregnated resin was prepared by immobilizing 1-hexyl-3-methylimidazolium hexafluorophosphate in the microspores of resin. The resin was used as the extraction adsorbent. The extraction and enrichment of analytes were performed in a single step. The extraction time can be shortened greatly with the help of microwave. The effects of experimental parameters including type of resin, type of ionic liquid, mass ratio of resin to ionic liquid, extraction time, amount of the impregnated resin, extraction temperature, salt concentration, and desorption conditions on the extraction efficiency, were investigated. A Box-Behnken design was applied to the selection of the experimental parameters. The recoveries were in the range of 80.1 to 103.4% and the relative standard deviations were lower than 6.8%. The present method was applied to the analysis of honey samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Schroyer, B.R.; Capel, P.D.
1996-01-01
A high-performance liquid Chromatography (HPLC) method is presented for the for the fast, quantitative analysis of the target analytes in water and in low organic-carbon, sandy soils that are known to be contaminated with the parent herbicides. Speed and ease of sample preparation was prioritized above minimizing detection limits. Soil samples were extracted using 80:20 methanol:water (volume:volume). Water samples (50 ??L) were injected directly into the HPLC without prior preparation. Method quantification limits for soil samples (10 g dry weight) and water samples ranged from 20 to 110 ng/g and from 20 to 110 ??g/L for atrazine and its transformation products and from 80 to 320 ng/g and from 80 to 320 ??g/L for alachlor and its transformation products, respectively.
Lee, Hangyeore; Mun, Dong-Gi; Bae, Jingi; Kim, Hokeun; Oh, Se Yeon; Park, Young Soo; Lee, Jae-Hyuk; Lee, Sang-Won
2015-08-21
We report a new and simple design of a fully automated dual-online ultra-high pressure liquid chromatography system. The system employs only two nano-volume switching valves (a two-position four port valve and a two-position ten port valve) that direct solvent flows from two binary nano-pumps for parallel operation of two analytical columns and two solid phase extraction (SPE) columns. Despite the simple design, the sDO-UHPLC offers many advantageous features that include high duty cycle, back flushing sample injection for fast and narrow zone sample injection, online desalting, high separation resolution and high intra/inter-column reproducibility. This system was applied to analyze proteome samples not only in high throughput deep proteome profiling experiments but also in high throughput MRM experiments.
Yang, Cui; Zhao, Jinhua; Wang, Juan; Yu, Hongling; Piao, Xiangfan; Li, Donghao
2013-07-26
A novel organic solvent-free mode of gas purge microsyringe extraction, termed water-based gas purge microsyringe extraction, was developed. This technique can directly extract target compounds in wet samples without any drying process. Parameters affecting the extraction efficiency were investigated. Under optimal extraction conditions, the recoveries of alkylphenols were between 87.6 and 105.8%, and reproducibility was between 5.2 and 12.1%. The technique was also used to determine six kinds of alkylphenols (APs) from samples of Laminaria japonica Aresh. The OP and NP were detected in all the samples, and concentrations ranged from 26.0 to 54.5ngg(-1) and 45.0-180.4ngg(-1), respectively. The 4-n-butylphenol was detected in only one sample and its concentration was very low. Other APs were not detected in L. japonica Aresh samples. The experimental results demonstrated that the technique is fast, simple, non-polluting, allows for quantitative extraction, and a drying process was not required for wet samples. Since only aqueous solution and a conventional microsyringe were used, this technique proved affordable, efficient, and convenient for the extraction of volatile and semivolatile ionizable compounds. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fardhyanti, Dewi Selvia; Prasetiawan, Haniif; Hermawan, Sari, Lelita Sakina
2017-03-01
Liquid waste in textile industry contains large amounts of dyes and chemicals which are capable of harming the environment and human health. It is due to liquid waste characteristics which have high BOD, COD, temperature, dissolved and suspended solid. One of chemical compound which might be harmful for environment when disposed in high concentration is phenol. Currently, Phenol compound in textile industrial waste has reached 10 ppm meanwhile maximum allowable phenol concentration is not more than 0.2 ppm. Otherwise, Phenol also has economic value as feedstock of plastic, pharmaceutical and cosmetic industry. Furthermore, suitable method to separate phenol from waste water is needed. In this research, liquid - liquid extraction method was used with extraction time for 70 minutes. Waste water sample was then separated into two layers which are extract and raffinate. Thereafter, extract and raffinate were then tested by using UV-Vis Spectrophotometer to obtained liquid - liquid equilibrium data. Aim of this research is to study the effect of temperature, stirring speed and type of solvent to obtain distribution coefficient (Kd), phenol yield and correlation of Three-Suffix Margules model for the liquid - liquid extraction data equilibrium. The highest extraction yield at 80.43 % was found by using 70% methanol as solvent at extraction temperature 50 °C with stirring speed 300 rpm, coefficient distribution was found 216.334. From this research it can be concluded that Three-Suffix Margules Model is suitable to predict liquid - liquid equilibrium data for phenol system.
Corrosion-resistant fuel cladding allow for liquid metal fast breeder reactors
Brehm, Jr., William F.; Colburn, Richard P.
1982-01-01
An aluminide coating for a fuel cladding tube for LMFBRs (liquid metal fast breeder reactors) such as those using liquid sodium as a heat transfer agent. The coating comprises a mixture of nickel-aluminum intermetallic phases and presents good corrosion resistance to liquid sodium at temperatures up to 700.degree. C. while additionally presenting a barrier to outward diffusion of .sup.54 Mn.
Tejada-Casado, Carmen; Moreno-González, David; Lara, Francisco J; García-Campaña, Ana M; Del Olmo-Iruela, Monsalud
2017-03-24
A novel method based on capillary zone electrophoresis-tandem mass spectrometry has been proposed and validated for the identification and simultaneous quantification of twelve benzimidazoles in meat samples. Electrophoretic separation was carried out using 500mM formic acid (pH 2.2) as background electrolyte and applying a voltage of 25kV at 25°C. In order to improve the sensitivity, stacking mode injection was applied, using as injection solvent a mixture of 30:70 acetonitrile/water at 50mbar for 75s. Sensitivity enhancement factors from 74 to 317 were obtained under these conditions. Detection using an ion trap as analyzer, operating in multiple reactions monitoring mode was employed. The main MS/MS parameters as well as the composition of the sheath liquid and other electrospray variables were optimized in order to obtain the highest sensitivity and precision in conjunction with an unequivocal identification. The method was applied to poultry and pork muscle samples. The deproteinization of samples and extraction of benzimidazoles was carried out with acetonitrile. MgSO 4 and NaCl were added as salting-out agents. Subsequently, dispersive liquid-liquid microextraction was applied as clean up procedure. The organic layer (acetonitrile, used as dispersant) containing the benzimidazoles was mixed with the extractant (chloroform) and both were injected in water, producing a cloudy solution. Recoveries for fortified samples were higher than 70%, with relative standard deviations lower than 16% were obtained in all cases. The limits of detection were below 3μgkg -1 , demonstrating the applicability of this fast, simple, and environmentally friendly method. Copyright © 2017 Elsevier B.V. All rights reserved.
Automated High-Throughput Permethylation for Glycosylation Analysis of Biologics Using MALDI-TOF-MS.
Shubhakar, Archana; Kozak, Radoslaw P; Reiding, Karli R; Royle, Louise; Spencer, Daniel I R; Fernandes, Daryl L; Wuhrer, Manfred
2016-09-06
Monitoring glycoprotein therapeutics for changes in glycosylation throughout the drug's life cycle is vital, as glycans significantly modulate the stability, biological activity, serum half-life, safety, and immunogenicity. Biopharma companies are increasingly adopting Quality by Design (QbD) frameworks for measuring, optimizing, and controlling drug glycosylation. Permethylation of glycans prior to analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) is a valuable tool for glycan characterization and for screening of large numbers of samples in QbD drug realization. However, the existing protocols for manual permethylation and liquid-liquid extraction (LLE) steps are labor intensive and are thus not practical for high-throughput (HT) studies. Here we present a glycan permethylation protocol, based on 96-well microplates, that has been developed into a kit suitable for HT work. The workflow is largely automated using a liquid handling robot and includes N-glycan release, enrichment of N-glycans, permethylation, and LLE. The kit has been validated according to industry analytical performance guidelines and applied to characterize biopharmaceutical samples, including IgG4 monoclonal antibodies (mAbs) and recombinant human erythropoietin (rhEPO). The HT permethylation enabled glycan characterization and relative quantitation with minimal side reactions: the MALDI-TOF-MS profiles obtained were in good agreement with hydrophilic liquid interaction chromatography (HILIC) and ultrahigh performance liquid chromatography (UHPLC) data. Automated permethylation and extraction of 96 glycan samples was achieved in less than 5 h and automated data acquisition on MALDI-TOF-MS took on average less than 1 min per sample. This automated and HT glycan preparation and permethylation showed to be convenient, fast, and reliable and can be applied for drug glycan profiling and clinical glycan biomarker studies.
Determination of Acid Herbicides Using Modified QuEChERS with Fast Switching ESI(+)/ESI(-) LC-MS/MS.
Sack, Chris; Vonderbrink, John; Smoker, Michael; Smith, Robert E
2015-11-04
A method for the determination of 35 acid herbicides in food matrices was developed, validated, and implemented. It utilizes a modified QuEChERS extraction procedure coupled with quantitation by liquid chromatography tandem mass spectrometry (LC-MS/MS). The acid herbicides analyzed are all organic carboxylic acids, including the older chlorophenoxy acid herbicides such as 2,4-dichlorophenoxyacetic acid (2,4-D), dicamba, 4-chlorophenoxyacetic acid (4-CPA), quinclorac, and many of the newer imidazolinone herbicides such as imazethapyr and imazaquin. In the procedure, 10 mL of water is added to 5 g of sample and then extracted with 1% formic acid in acetonitrile for 1 min. The acetonitrile phase is salted out of the extract by adding sodium chloride and magnesium sulfate, followed by centrifugation. The acetonitrile is diluted 1:1 with water to enable quantitation by LC-MS/MS using fast switching between positive and negative electrospray ionization modes. The average recoveries for all the compounds except aminocyclopyrachlor were 95% with a precision of 8%. The method detection limits for all residues were less than 10 ng/g, and the correlation coefficients for the calibration curves was greater than 0.99 for all but two compounds tested. The method was used successfully for the quantitation of acid herbicides in the FDA's total diet study. The procedure proved to be accurate, precise, linear, sensitive, and rugged.
Ding, Xueqin; Wang, Yuzhi; Wang, Ying; Pan, Qi; Chen, Jing; Huang, Yanhua; Xu, Kaijia
2015-02-25
A series of novel cationic functional hexaalkylguanidinium ionic liquids and anionic functional tetraalkylguanidinium ionic liquids have been synthesized, and then magnetic chitosan graphene oxide (MCGO) composite has been prepared and coated with these functional guanidinium ionic liquids to extract protein by magnetic solid-phase extraction. MCGO-functional guanidinium ionic liquid has been characterized by vibrating sample magnetometer, field emission scanning electron microscopy, X-ray diffraction spectrometer and Fourier transform infrared spectrometer. After extraction, the concentrations of protein were determined by measuring the absorbance at 278 nm using an ultra violet visible spectrophotometer. The advantages of MCGO-functional guanidinium ionic liquid in protein extraction were compared with magnetic chitosan, graphene oxide, MCGO and MCGO-ordinary imidazolium ionic liquid. The proposed method has been applied to extract trypsin, lysozyme, ovalbumin and bovine serum albumin. A comprehensive study of the adsorption conditions such as the concentration of protein, the amount of MCGO-functional guanidinium ionic liquid, the pH, the temperature and the extraction time were also presented. Moreover, the MCGO-functional guanidinium ionic liquid can be easily regenerated, and the extraction capacity was about 94% of the initial one after being used three times. Copyright © 2015 Elsevier B.V. All rights reserved.
Yang, Guang; Sun, Qiushi; Hu, Zhiyan; Liu, Hua; Zhou, Tingting; Fan, Guorong
2015-10-01
In this study, an accelerated solvent extraction dispersive liquid-liquid microextraction coupled with gas chromatography and mass spectrometry was established and employed for the extraction, concentration and analysis of essential oil constituents from Ligusticum chuanxiong Hort. Response surface methodology was performed to optimize the key parameters in accelerated solvent extraction on the extraction efficiency, and key parameters in dispersive liquid-liquid microextraction were discussed as well. Two representative constituents in Ligusticum chuanxiong Hort, (Z)-ligustilide and n-butylphthalide, were quantitatively analyzed. It was shown that the qualitative result of the accelerated solvent extraction dispersive liquid-liquid microextraction approach was in good agreement with that of hydro-distillation, whereas the proposed approach took far less extraction time (30 min), consumed less plant material (usually <1 g, 0.01 g for this study) and solvent (<20 mL) than the conventional system. To sum up, the proposed method could be recommended as a new approach in the extraction and analysis of essential oil. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Superbase-derived protic ionic liquid extractants for metal ion separation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, Jason R.; Dai, Sheng; Luo, Huimin
2014-04-19
Solvent extraction of La 3+ and Ba 2+ by an ionic liquid extractant in an imidazolium-based ionic liquid diluent was investigated. Seven protic ionic liquid extractants were examined and these protic ILs are based on five organic superbases and either 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octadione (Hfod) or 1,1,1,5,5,5-hexafluoroacetylacetone (Hhfac) -diketones as anion. For fod-based extractants, the extraction efficiencies and separation factors were found to be concentration dependent. The effects of aqueous phase acidity, extractant structure, and extractant concentration on separation properties of La 3+ and Ba 2+ are discussed in this paper.
On-line MSPD-SPE-HPLC/FLD analysis of polycyclic aromatic hydrocarbons in bovine tissues.
Gutiérrez-Valencia, Tania M; García de Llasera, Martha P
2017-05-15
A fast method was optimized and validated for simultaneous trace determination of four polycyclic aromatic hydrocarbons: benzo[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene and benzo[a]pyrene in bovine tissues. The determination was performed by matrix solid-phase dispersion (MSPD) coupled on-line to solid phase extraction (SPE) and high performance liquid chromatography (HPLC) with fluorescence detection (FLD). The sample was dispersed on C 18 silica sorbent and then the on-line MSPD-SPE-HPLC/FLD method was applied. Several parameters were optimized: cleaning and elution sequences applied to the MSPD cartridge, the flow rate and dilution of extract used for SPE loading. The on-line method was validated over a concentration range of 0.1-0.6ngg -1 obtaining good linearity (r⩾0.998) and precision (RSD)⩽10%. Recovery ranged from 96 to 99% and the limits of detection were 0.012ngg -1 . This methodology was applied to liver samples from unhealthy animals. The results demonstrate that MSDP-SPE-HPLC/FLD method provides reliable, sensitive, accurate and fast data to the food control. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wu, Datong; Cai, Pengfei; Zhao, Xiaoyong; Kong, Yong; Pan, Yuanjiang
2018-01-01
Ionic liquids have been functionalized for modern applications. The functional ionic liquids are also called task-specific ionic liquids. Various task-specific ionic liquids with certain groups have been constructed and exploited widely in the field of separation. To take advantage of their properties in separation science, task-specific ionic liquids are generally used in techniques such as liquid-liquid extraction, solid-phase extraction, gas chromatography, high-performance liquid chromatography, and capillary electrophoresis. This review mainly covers original research papers published in the last five years, and we will focus on task-specific ionic liquids as the chiral selectors in chiral resolution and as extractant or sensor for biological samples and metal ion purification. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ghanbarian, Maryam; Afzali, Daryoush; Mostafavi, Ali; Fathirad, Fariba
2013-01-01
A new displacement-dispersive liquid-liquid microextraction method based on the solidification of floating organic drop was developed for separation and preconcentration of Pd(ll) in road dust and aqueous samples. This method involves two steps of dispersive liquid-liquid microextraction based on solidification. In Step 1, Cu ions react with diethyldithiocarbamate (DDTC) to form Cu-DDTC complex, which is extracted by dispersive liquid-liquid microextraction based on a solidification procedure using 1-undecanol (extraction solvent) and ethanol (dispersive solvent). In Step 2, the extracted complex is first dispersed using ethanol in a sample solution containing Pd ions, then a dispersive liquid-liquid microextraction based on a solidification procedure is performed creating an organic drop. In this step, Pd(ll) replaces Cu(ll) from the pre-extracted Cu-DDTC complex and goes into the extraction solvent phase. Finally, the Pd(ll)-containing drop is introduced into a graphite furnace using a microsyringe, and Pd(ll) is determined using atomic absorption spectrometry. Several factors that influence the extraction efficiency of Pd and its subsequent determination, such as extraction and dispersive solvent type and volume, pH of sample solution, centrifugation time, and concentration of DDTC, are optimized.
Liu, E-Hu; Qi, Lian-Wen; Li, Bin; Peng, Yong-Bo; Li, Ping; Li, Chang-Yin; Cao, Jun
2009-01-01
A fast high-performance liquid chromatography (HPLC) method coupled with diode-array detection (DAD) and electrospray ionization time-of-flight mass spectrometry (ESI-TOFMS) has been developed for rapid separation and sensitive identification of major constituents in Radix Paeoniae Rubra (RPR). The total analysis time on a short column packed with 1.8-microm porous particles was about 20 min without a loss in resolution, six times faster than the performance of a conventional column analysis (115 min). The MS fragmentation behavior and structural characterization of major compounds in RPR were investigated here for the first time. The targets were rapidly screened from RPR matrix using a narrow mass window of 0.01 Da to restructure extracted ion chromatograms. Accurate mass measurements (less than 5 ppm error) for both the deprotonated molecule and characteristic fragment ions represent reliable identification criteria for these compounds in complex matrices with similar if not even better performance compared with tandem mass spectrometry. A total of 26 components were screened and identified in RPR including 11 monoterpene glycosides, 11 galloyl glucoses and 4 other phenolic compounds. From the point of time savings, resolving power, accurate mass measurement capability and full spectral sensitivity, the established fast HPLC/DAD/TOFMS method turns out to be a highly useful technique to identify constituents in complex herbal medicines. (c) 2008 John Wiley & Sons, Ltd.
Homogeneous fast-flux isotope-production reactor
Cawley, W.E.; Omberg, R.P.
1982-08-19
A method is described for producing tritium in a liquid metal fast breeder reactor. Lithium target material is dissolved in the liquid metal coolant in order to facilitate the production and removal of tritium.
Zu, Ge; Zhang, Rongrui; Yang, Lei; Ma, Chunhui; Zu, Yuangang; Wang, Wenjie; Zhao, Chunjian
2012-01-01
Ionic liquid based, ultrasound-assisted extraction was successfully applied to the extraction of phenolcarboxylic acids, carnosic acid and rosmarinic acid, from Rosmarinus officinalis. Eight ionic liquids, with different cations and anions, were investigated in this work and [C8mim]Br was selected as the optimal solvent. Ultrasound extraction parameters, including soaking time, solid–liquid ratio, ultrasound power and time, and the number of extraction cycles, were discussed by single factor experiments and the main influence factors were optimized by response surface methodology. The proposed approach was demonstrated as having higher efficiency, shorter extraction time and as a new alternative for the extraction of carnosic acid and rosmarinic acid from R. officinalis compared with traditional reference extraction methods. Ionic liquids are considered to be green solvents, in the ultrasound-assisted extraction of key chemicals from medicinal plants, and show great potential. PMID:23109836
Pallapothu, Leela Mohan Kumar; Batta, Neelima; Pigili, Ravi Kumar; Yejella, Rajendra Prasad
2015-02-01
A simple, rapid and sensitive analytical method using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) detection with positive ion electrospray ionization was developed for the determination of dienogest in human K2 EDTA plasma using levonorgestrel d6 as an internal standard (IS). Dienogest and IS were extracted from human plasma using simple liquid-liquid extraction. Chromatographic separation was achieved on a Zorbax XDB-Phenyl column (4.6 × 75 mm, 3.5 µm) under isocratic conditions using acetonitrile-5 mm ammonium acetate (70:30, v/v) at a flow rate of 0.60 mL/min. The protonated precursor to product ion transitions monitored for dienogest and IS were at m/z 312.30 → 135.30 and 319.00 → 251.30, respectively. The method was validated with a linearity range of 1.003-200.896 ng/mL having a total analysis time for each chromatograph of 3.0 min. The method has shown tremendous reproducibility with intra- and inter-day precision (coefficient of variation) <3.97 and 6.10%, respectively, and accuracy within ±4.0% of nominal values. The validated method was applied to a pharmacokinetic study in human plasma samples generated after administration of a single oral dose of 2.0 mg dienogest tablets to healthy female volunteers and was proved to be highly reliable for the analysis of clinical samples. Copyright © 2014 John Wiley & Sons, Ltd.
Herbrink, M; de Vries, N; Rosing, H; Huitema, A D R; Nuijen, B; Schellens, J H M; Beijnen, J H
2018-04-01
To support therapeutic drug monitoring of patients with cancer, a fast and accurate method for simultaneous quantification of the registered anticancer drugs afatinib, axitinib, ceritinib, crizotinib, dabrafenib, enzalutamide, regorafenib and trametinib in human plasma using liquid chromatography tandem mass spectrometry was developed and validated. Human plasma samples were collected from treated patients and stored at -20°C. Analytes and internal standards (stable isotopically labeled analytes) were extracted with acetonitrile. An equal amount of 10 mm NH 4 CO 3 was added to the supernatant to yield the final extract. A 2 μL aliquot of this extract was injected onto a C 18 -column, gradient elution was applied and triple-quadrupole mass spectrometry in positive-ion mode was used for detection. All results were within the acceptance criteria of the latest US Food and Drug Administration guidance and European Medicines Agency guidelines on method validation, except for the carry-over of ceritinib and crizotinib. These were corrected for by the injection order of samples. Additional stability tests were carried out for axitinib and dabrafenib in relation to their reported photostability. In conclusion, the described method to simultaneously quantify the eight selected anticancer drugs in human plasma was successfully validated and applied for therapeutic drug monitoring in cancer patients treated with these drugs. Copyright © 2017 John Wiley & Sons, Ltd.
Hu, Lu; Wang, Huazi; Qian, Heng; Liu, Chaoran; Lu, Runhua; Zhang, Sanbing; Zhou, Wenfeng; Gao, Haixiang; Xu, Donghui
2016-11-11
An on-site dispersive liquid liquid microextraction base on the solidification of switchable solvent has been developed as a simple, rapid and eco-friendly sample extraction method for the fast determination of pyrethroid insecticides in aqueous samples using high-performance liquid chromatography with ultraviolet detection. In this extraction method, medium-chain saturated fatty acids (n≥10), which can rapidly solidify at low temperatures (<20°C), were investigated as switchable hydrophilic solvents. The fatty acids were converted into the hydrophilic form by adding sodium hydroxide. Microdroplets of the fatty acids were generated when injected into an acidic sample that had been pretreated by the addition of sulfuric acid. The formed cloudy solution was cooled to a low temperature to turn the fatty acids into a solid, which was then separated by filtration, thus avoiding the time-consuming step of centrifugation. The microextraction process was performed in a 10mL syringe and the pretreatment process could thus be finished in 5min. No external energy resources were required in this method, which makes it a potential method for on-site extraction. The optimal experimental parameters were as follows: 350μL of decanoic acid (1mol/L) was used as the extraction solvent, 150μL of sulfuric acid (2mol/L) was used to decrease the pH of the samples, no salt was added, and the temperature of the samples was in the range of 20-40°C. Finally, the sample was cooled in an ice bath for three minutes. Under these optimal conditions, good responses for four pyrethroid insecticides were obtained in the concentration ranges of 1-500μg/L, with coefficients of determination greater than 0.9993. The recoveries of the four pyrethroid insecticides ranged from 84.7 to 95.3%, with relative standard deviations ranging from 1.6 to 4.6%. The limits of detection based on a signal-to-noise ratio of 3 were in the range of 0.24-0.68μg/L, and the enrichment factors were in the range of 121-136. The results demonstrate that this method was successfully applied to determine pyrethroid insecticides in real water samples. No centrifugation or any special apparatus are required, make this a promising method for rapid field-sampling procedures. Copyright © 2016 Elsevier B.V. All rights reserved.
Recovery of steroidal alkaloids from potato peels using pressurized liquid extraction.
Hossain, Mohammad B; Rawson, Ashish; Aguiló-Aguayo, Ingrid; Brunton, Nigel P; Rai, Dilip K
2015-05-13
A higher yield of glycoalkaloids was recovered from potato peels using pressurized liquid extraction (1.92 mg/g dried potato peels) compared to conventional solid-liquid extraction (0.981 mg/g dried potato peels). Response surface methodology deduced the optimal temperature and extracting solvent (methanol) for the pressurized liquid extraction (PLE) of glycoalkaloids as 80 °C in 89% methanol. Using these two optimum PLE conditions, levels of individual steroidal alkaloids obtained were of 597, 873, 374 and 75 µg/g dried potato peel for α-solanine, α-chaconine, solanidine and demissidine respectively. Corresponding values for solid liquid extraction were 59%, 46%, 40% and 52% lower for α-solanine, α-chaconine, solanidine and demissidine respectively.
METHOD OF LIQUID-LIQUID EXTRACTION OF BLOOD SURROGATES FOR ASSESSING HUMAN EXPOSURE TO JET FUEL
A baseline method of liquid?liquid extraction for assessing human exposure to JP-8 jet fuel was established by extracting several representative compounds ranging from very volatile to semi-volatile organic compounds, including benzene, toluene, nonane, decane, undecane, tridec...
Design criteria for extraction with chemical reaction and liquid membrane permeation
NASA Technical Reports Server (NTRS)
Bart, H. J.; Bauer, A.; Lorbach, D.; Marr, R.
1988-01-01
The design criteria for heterogeneous chemical reactions in liquid/liquid systems formally correspond to those of classical physical extraction. More complex models are presented which describe the material exchange at the individual droplets in an extraction with chemical reaction and in liquid membrane permeation.
Membrane contactor assisted extraction/reaction process employing ionic liquids
Lin, Yupo J [Naperville, IL; Snyder, Seth W [Lincolnwood, IL
2012-02-07
The present invention relates to a functionalized membrane contactor extraction/reaction system and method for extracting target species from multi-phase solutions utilizing ionic liquids. One preferred embodiment of the invented method and system relates to an extraction/reaction system wherein the ionic liquid extraction solutions act as both extraction solutions and reaction mediums, and allow simultaneous separation/reactions not possible with prior art technology.
Inorganic Surface Coating with Fast Wetting-Dewetting Transitions for Liquid Manipulations.
Yang, Yajie; Zhang, Liaoliao; Wang, Jue; Wang, Xinwei; Duan, Libing; Wang, Nan; Xiao, Fajun; Xie, Yanbo; Zhao, Jianlin
2018-06-06
Liquid manipulation is a fundamental issue for microfluidics and miniaturized sensors. Fast wetting-state transitions by optical methods have proven being efficient for liquid manipulations by organic surface coatings, however rarely been achieved by using inorganic coatings. Here, we report a fast optical-induced wetting-state transition surface achieved by inorganic coating, enabling tens of second transitions for a wetting-dewetting cycle, shortened from an hour, as typically reported. Here, we demonstrate a gravity-driven microfluidic reactor and switch it to a mixer after a second-step exposure in a minimum of within 80 s of UV exposure. The fast wetting-dewetting transition surfaces enable the fast switchable or erasable smart surfaces for water collection, miniature chemical reaction, or sensing systems by using inorganic surface coatings.
Liu, Tingting; Sui, Xiaoyu; Li, Li; Zhang, Jie; Liang, Xin; Li, Wenjing; Zhang, Honglian; Fu, Shuang
2016-01-15
A new approach for ionic liquid based enzyme-assisted extraction (ILEAE) of chlorogenic acid (CGA) from Eucommia ulmoides is presented in which enzyme pretreatment was used in ionic liquids aqueous media to enhance extraction yield. For this purpose, the solubility of CGA and the activity of cellulase were investigated in eight 1-alkyl-3-methylimidazolium ionic liquids. Cellulase in 0.5 M [C6mim]Br aqueous solution was found to provide better performance in extraction. The factors of ILEAE procedures including extraction time, extraction phase pH, extraction temperatures and enzyme concentrations were investigated. Moreover, the novel developed approach offered advantages in term of yield and efficiency compared with other conventional extraction techniques. Scanning electronic microscopy of plant samples indicated that cellulase treated cell wall in ionic liquid solution was subjected to extract, which led to more efficient extraction by reducing mass transfer barrier. The proposed ILEAE method would develope a continuous process for enzyme-assisted extraction including enzyme incubation and solvent extraction process. In this research, we propose a novel view for enzyme-assisted extraction of plant active component, besides concentrating on enzyme facilitated cell wall degradation, focusing on improvement of bad permeability of ionic liquids solutions. Copyright © 2015 Elsevier B.V. All rights reserved.
Kokotkiewicz, Adam; Luczkiewicz, Maria; Pawlowska, Justyna; Luczkiewicz, Piotr; Sowinski, Pawel; Witkowski, Jacek; Bryl, Ewa; Bucinski, Adam
2013-10-01
A fast and efficient method for the isolation of the C-glucosidated xanthones mangiferin and isomangiferin from the South-African plant Cyclopia genistoides was developed for the first time. The procedure involved extraction, liquid-liquid partitioning with ethyl acetate and subsequent precipitation of mangiferin and isomangiferin from methanol and acetonitrile-water fractions, respectively. Additionally, two benzophenone derivatives: 3-C-β-glucosides of maclurin and iriflophenone, were isolated from C. genistoides extracts using semi-preparative HPLC. Apart from the above, the isolation procedure also yielded hesperidin and small amounts of luteolin. The structures of the compounds were determined by 1D and 2D NMR experiments and/or LC-DAD-ESI-MS. The selected Cyclopia constituents were screened for pro-apoptotic activity on TNF-α-stimulated synovial cells isolated from rheumatoid arthritis patients. The strongest effect, measured as percent of apoptotic cells, was recorded for isomangiferin (75%), followed by iriflophenone 3-C-β-glucoside (71%), hesperidin (67%) and mangiferin (65%). The results are encouraging for further studies on the use of the above compounds in the treatment of rheumatoid arthritis. © 2013.
High liquid fuel yielding biofuel processes and a roadmap for the future transportation
NASA Astrophysics Data System (ADS)
Singh, Navneet R.
In a fossil-fuel deprived world when crude oil will be scarce and transportation need cannot be met with electricity and transportation liquid fuel must be produced, biomass derived liquid fuels can be a natural replacement. However, the carbon efficiency of the currently known biomass to liquid fuel conversion processes ranges from 35-40%, yielding 90 ethanol gallon equivalents (ege) per ton of biomass. This coupled with the fact that the efficiency at which solar energy is captured by biomass (<1%) is significantly lower than H 2 (10-27%) and electricity (20-42%), implies that sufficient land area is not available to meet the need for the entire transportation sector. To counter this dilemma, a number of processes have been proposed in this work: a hybrid hydrogen-carbon (H2CAR) process based on biomass gasification followed by the Fischer-Tropsch process such that 100% carbon efficiency is achieved yielding 330 ege/ton biomass using hydrogen derived from a carbon-free energy. The hydrogen requirement for the H2CAR process is 0.33 kg/liter of diesel. To decrease the hydrogen requirement associated with the H2CAR process, a hydrogen bio-oil (H2Bioil) process based on biomass fast-hydropyrolysis/hydrodeoxygenation is proposed which can achieve liquid fuel yield of 215 ege/ton consuming 0.11 kg hydrogen per liter of oil. Due to the lower hydrogen consumption of the H2Bioil process, synergistically integrated transition pathways are feasible where hot syngas derived from coal gasification (H2Bioil-C) or a natural gas reformer (H 2Bioil-NG) is used to supply the hydrogen and process heat for the biomass fast-hydropyrolysis/hydrodeoxygenation. Another off-shoot of the H2Bioil process is the H2Bioil-B process, where hydrogen required for the hydropyrolysis is obtained from gasification of a fraction of the biomass. H2Bioil-B achieves the highest liquid fuel yield (126-146 ege/ton of biomass) reported in the literature for any self-contained conversion of biomass to biofuel. Finally, an integration of the H2Bioil process with the H2CAR process is suggested which can achieve 100% carbon efficiency (330 ege/ton of biomass) at the expense of 0.24 kg hydrogen/liter of oil. A sun-to-fuel efficiency analysis shows that extracting CO2 from air and converting it to liquid fuel is at least two times more efficient than growing dedicated fuel crops and converting them to liquid fuel even for the highest biomass growth rates feasible by algae. This implies that liquid fuel should preferably be produced from sustainably available waste (SAW) biomass first and if the SAW biomass is unable to meet the demand for liquid fuel, then, CO2 should be extracted from air and converted to liquid fuel, rather than growing biomass. Furthermore, based on the Sun-to-Wheels recovery for different transportation pathways, synergistic and complementary use of electricity, hydrogen and biomass, all derived from solar energy, is presented in an energy efficient roadmap to successfully propel the entire future transportation sector.
Zitomer, Nicholas C; Riley, Ronald T
2011-01-01
Fumonisin mycotoxins are common contaminants in many grains, often at very low levels. Maize is -particularly problematic as one of the organisms that commonly produce fumonisins, the fungus Fusarium verticillioides, often exists as an endophyte of maize. Fumonisin is a potent inhibitor of the enzyme ceramide synthase, and this inhibition results in the accumulation of a variety of upstream compounds, most notably, the sphingoid bases sphingosine, sphinganine, 1-deoxysphinganine and, in plants, phytosphingosine. Fumonisin exposure results in a wide variety of species, sex, and strain-specific responses. This method provides a relatively fast means of extracting fumonisins, sphingoid bases, and sphingoid base 1-phosphates from tissues and cells, as well as the subsequent analyses and quantification of these compounds using liquid chromatography/tandem mass spectrometry.
Hertzog, Gabriel I; Soares, Karina L; Caldas, Sergiane S; Primel, Ednei G
2015-06-01
A procedure based on vortex-assisted matrix solid-phase dispersion (MSPD) for the extraction of 15 pharmaceuticals from fish samples with determination by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was validated. Florisil, C18, diatomaceous earth, chitin, and chitosan were evaluated as solid supports. Best results were obtained with 0.5 g of diatomaceous earth, 0.5 g of sodium sulfate, and 5 mL of methanol. Analytical recoveries ranged from 58 to 128 % with relative standard deviation (RSD) lower than 15 %. Limit of quantification (LOQ) values for the 15 compounds ranged from 5 to 1000 ng g(-1). The method under investigation has shown to be a simple and fast extraction tool with minimum instrumentation and low amount of reagent, resulting in method low cost. Besides, alternative materials, such as chitin and chitosan, which were applied to the dispersion step for the first time, were found to be interesting alternatives.
Direct analysis of organic priority pollutants by IMS
NASA Technical Reports Server (NTRS)
Giam, C. S.; Reed, G. E.; Holliday, T. L.; Chang, L.; Rhodes, B. J.
1995-01-01
Many routine methods for monitoring of trace amounts of atmospheric organic pollutants consist of several steps. Typical steps are: (1) collection of the air sample; (2) trapping of organics from the sample; (3) extraction of the trapped organics; and (4) identification of the organics in the extract by GC (gas chromatography), HPLC (High Performance Liquid Chromatography), or MS (Mass Spectrometry). These methods are often cumbersome and time consuming. A simple and fast method for monitoring atmospheric organics using an IMS (Ion Mobility Spectrometer) is proposed. This method has a short sampling time and does not require extraction of the organics since the sample is placed directly in the IMS. The purpose of this study was to determine the responses in the IMS to organic 'priority pollutants'. Priority pollutants including representative polycyclic aromatic hydrocarbons (PAHs), phthalates, phenols, chlorinated pesticides, and polychlorinated biphenyls (PCB's) were analyzed in both the positive and negative detection mode at ambient atmospheric pressure. Detection mode and amount detected are presented.
Heneedak, Hala M; Salama, Ismail; Mostafa, Samia; El-Kady, Ehab; El-Sadek, Mohamed
2015-07-01
The prerequisites for forensic confirmatory analysis by LC/MS/MS with respect to European Union guidelines are chromatographic separation, a minimum number of two MS/MS transitions to obtain the required identification points and predefined thresholds for the variability of the relative intensities of the MS/MS transitions (MRM transitions) in samples and reference standards. In the present study, a fast, sensitive and robust method to quantify tramadol, chlorpheniramine, dextromethorphan and their major metabolites, O-desmethyltramadol, dsmethyl-chlorpheniramine and dextrophan, respectively, in human plasma using ibuprofen as internal standard (IS) is described. The analytes and the IS were extracted from plasma by a liquid-liquid extraction method using ethyl acetate-diethyl-ether (1:1). Extracted samples were analyzed by ultra-high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (UHPLC-ESI-MS/MS). Chromatographic separation was performed by pumping the mobile phase containing acetonitrile, water and formic acid (89.2:11.7:0.1) for 2.0 min at a flow rate of 0.25 μL/min into a Hypersil-Gold C18 column, 20 × 2.0 mm (1.9 µm) from Thermoscientific, New York, USA. The calibration curve was linear for the six analytes. The intraday precision (RSD) and accuracy (RE) of the method were 3-9.8 and -1.7-4.5%, respectively. The analytical procedure herein described was used to assess the pharmacokinetics of the analytes in 24 healthy volunteers after a single oral dose containing 50 mg of tramadol hydrochloride, 3 mg chlorpheniramine maleate and 15 mg of dextromethorphan hydrobromide. Copyright © 2014 John Wiley & Sons, Ltd.
Donato, J L; Koizumi, F; Pereira, A S; Mendes, G D; De Nucci, G
2012-06-15
In the present study, a fast, sensitive and robust method to quantify dextromethorphan, dextrorphan and doxylamine in human plasma using deuterated internal standards (IS) is described. The analytes and the IS were extracted from plasma by a liquid-liquid extraction (LLE) using diethyl-ether/hexane (80/20, v/v). Extracted samples were analyzed by high performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Chromatographic separation was performed by pumping the mobile phase (acetonitrile/water/formic acid (90/9/1, v/v/v) during 4.0min at a flow-rate of 1.5 mL min⁻¹ into a Phenomenex Gemini® C18, 5 μm analytical column (150 × 4.6 mm i.d.). The calibration curve was linear over the range from 0.2 to 200 ng mL⁻¹ for dextromethorphan and doxylamine and 0.05 to 10 ng mL⁻¹ for dextrorphan. The intra-batch precision and accuracy (%CV) of the method ranged from 2.5 to 9.5%, and 88.9 to 105.1%, respectively. Method inter-batch precision (%CV) and accuracy ranged from 6.7 to 10.3%, and 92.2 to 107.1%, respectively. The run-time was for 4 min. The analytical procedure herein described was used to assess the pharmacokinetics of dextromethorphan, dextrorphan and doxylamine in healthy volunteers after a single oral dose of a formulation containing 30 mg of dextromethorphan hydrobromide and 12.5mg of doxylamine succinate. The method has high sensitivity, specificity and allows high throughput analysis required for a pharmacokinetic study. Copyright © 2012 Elsevier B.V. All rights reserved.
Free energy functionals for polarization fluctuations: Pekar factor revisited
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dinpajooh, Mohammadhasan; Newton, Marshall D.; Matyushov, Dmitry V.
The separation of slow nuclear and fast electronic polarization in problems related to electron mobility in polarizable media was considered by Pekar 70 years ago. Within dielectric continuum models, this separation leads to the Pekar factor in the free energy of solvation by the nuclear degrees of freedom. The main qualitative prediction of Pekar’s perspective is a significant, by about a factor of two, drop of the nuclear solvation free energy compared to the total (electronic plus nuclear) free energy of solvation. The Pekar factor enters the solvent reorganization energy of electron transfer reactions and is a significant mechanistic parametermore » accounting for the solvent effect on electron transfer. Here, we study the separation of the fast and slow polarization modes in polar molecular liquids (polarizable dipolar liquids and polarizable water force fields) without relying on the continuum approximation. We derive the nonlocal free energy functional and use atomistic numerical simulations to obtain nonlocal, reciprocal space electronic and nuclear susceptibilities. A consistent transition to the continuum limit is introduced by extrapolating the results of finite-size numerical simulation to zero wavevector. The continuum nuclear susceptibility extracted from simulations is numerically close to the Pekar factor. However, we derive a new functionality involving the static and high-frequency dielectric constants. The main distinction of our approach from the traditional theories is found for the solvation free energy due to the nuclear polarization: the anticipated significant drop of its magnitude with increasing liquid polarizability does not occur. The reorganization energy of electron transfer is either nearly constant with increasing the solvent polarizability and the corresponding high-frequency dielectric constant (polarizable dipolar liquids) or actually noticeably increases (polarizable force fields of water).« less
Free energy functionals for polarization fluctuations: Pekar factor revisited
Dinpajooh, Mohammadhasan; Newton, Marshall D.; Matyushov, Dmitry V.
2017-02-13
The separation of slow nuclear and fast electronic polarization in problems related to electron mobility in polarizable media was considered by Pekar 70 years ago. Within dielectric continuum models, this separation leads to the Pekar factor in the free energy of solvation by the nuclear degrees of freedom. The main qualitative prediction of Pekar’s perspective is a significant, by about a factor of two, drop of the nuclear solvation free energy compared to the total (electronic plus nuclear) free energy of solvation. The Pekar factor enters the solvent reorganization energy of electron transfer reactions and is a significant mechanistic parametermore » accounting for the solvent effect on electron transfer. Here, we study the separation of the fast and slow polarization modes in polar molecular liquids (polarizable dipolar liquids and polarizable water force fields) without relying on the continuum approximation. We derive the nonlocal free energy functional and use atomistic numerical simulations to obtain nonlocal, reciprocal space electronic and nuclear susceptibilities. A consistent transition to the continuum limit is introduced by extrapolating the results of finite-size numerical simulation to zero wavevector. The continuum nuclear susceptibility extracted from simulations is numerically close to the Pekar factor. However, we derive a new functionality involving the static and high-frequency dielectric constants. The main distinction of our approach from the traditional theories is found for the solvation free energy due to the nuclear polarization: the anticipated significant drop of its magnitude with increasing liquid polarizability does not occur. The reorganization energy of electron transfer is either nearly constant with increasing the solvent polarizability and the corresponding high-frequency dielectric constant (polarizable dipolar liquids) or actually noticeably increases (polarizable force fields of water).« less
Free energy functionals for polarization fluctuations: Pekar factor revisited.
Dinpajooh, Mohammadhasan; Newton, Marshall D; Matyushov, Dmitry V
2017-02-14
The separation of slow nuclear and fast electronic polarization in problems related to electron mobility in polarizable media was considered by Pekar 70 years ago. Within dielectric continuum models, this separation leads to the Pekar factor in the free energy of solvation by the nuclear degrees of freedom. The main qualitative prediction of Pekar's perspective is a significant, by about a factor of two, drop of the nuclear solvation free energy compared to the total (electronic plus nuclear) free energy of solvation. The Pekar factor enters the solvent reorganization energy of electron transfer reactions and is a significant mechanistic parameter accounting for the solvent effect on electron transfer. Here, we study the separation of the fast and slow polarization modes in polar molecular liquids (polarizable dipolar liquids and polarizable water force fields) without relying on the continuum approximation. We derive the nonlocal free energy functional and use atomistic numerical simulations to obtain nonlocal, reciprocal space electronic and nuclear susceptibilities. A consistent transition to the continuum limit is introduced by extrapolating the results of finite-size numerical simulation to zero wavevector. The continuum nuclear susceptibility extracted from the simulations is numerically close to the Pekar factor. However, we derive a new functionality involving the static and high-frequency dielectric constants. The main distinction of our approach from the traditional theories is found in the solvation free energy due to the nuclear polarization: the anticipated significant drop of its magnitude with increasing liquid polarizability does not occur. The reorganization energy of electron transfer is either nearly constant with increasing the solvent polarizability and the corresponding high-frequency dielectric constant (polarizable dipolar liquids) or actually noticeably increases (polarizable force fields of water).
2017-01-01
Steam distillation is used to isolate scent of rose flowers. Rose aromatic water is commonly used in European cuisine and aromatherapy besides its use in cosmetic industry for its lovely scent. In this study, three different sampling techniques, liquid-liquid extraction (LLE), headspace technique (HS), and solid phase extraction (SPE), were compared for the analysis of volatile water-soluble compounds in commercial rose aromatic water. Some volatile water-soluble compounds of rose aromatic water were also analyzed by gas chromatography mass spectrometry (GCMS). In any case, it was concluded that one of the solid phase extraction methods led to higher recoveries for 2-phenylethyl alcohol (PEA) in the rose aromatic water than the liquid-liquid extraction and headspace technique. Liquid-liquid extraction method provided higher recovery ratios for citronellol, nerol, and geraniol than others. Ideal linear correlation coefficient values were observed by GCMS for quantitative analysis of volatile compounds (r2 ≥ 0.999). Optimized methods showed acceptable repeatability (RSDs < 5%) and excellent recovery (>95%). For compounds such as α-pinene, linalool, β-caryophyllene, α-humulene, methyl eugenol, and eugenol, the best recovery values were obtained with LLE and SPE. PMID:28791049
Lei, Yun; Chen, Beibei; You, Linna; He, Man; Hu, Bin
2017-12-01
Polydimethylsiloxane (PDMS)/MIL-100(Fe) coated stir bar was prepared by sol gel technique, and good preparation reproducibility was achieved with relative standard deviations (RSDs) ranging from 2.6% to 7.5% (n=7) and 3.6% to 10.8% (n=7) for bar-to-bar and batch-to-batch, respectively. Compared with commercial PDMS coated stir bar (Gerstel) and PEG coated stir bar (Gerstel), the prepared PDMS/MIL-100(Fe) stir bar showed better extraction efficiency for target triazines compounds. It also exhibited relatively fast extraction/desorption kinetics and long lifespan. Based on it, a method of PDMS/MIL-100(Fe) coated stir bar sorptive extraction (SBSE)-high performance liquid chromatography-ultraviolet detector (HPLC-UV) was developed for the determination of six triazines (simazine, atrazine, prometon, ametryn, prometryne and prebane) in environmental water samples. Several parameters affecting SBSE of six target triazines including extraction time, stirring rate, sample pH, ionic strength, desorption solvent and desorption time were investigated. Under the optimal experimental conditions, the limits of detection (LODs, S/N=3) were found to be in the range of 0.021-0.079μgL -1 . The repeatability RSDs were in the range of 2.3-6.3% (n=7, c=0.5μgL -1 ) and the enrichment factors (EFs) ranged from 51.1 to 102-fold (theoretical EF was 200-fold). The proposed method was applied to the analysis of target triazines in environmental water samples, with recoveries of 98.0-118% and 94.0-107% for spiked East Lake water and local pond water samples, respectively. Copyright © 2017. Published by Elsevier B.V.
Kiszkiel, Ilona; Starczewska, Barbara; Leśniewska, Barbara; Późniak, Patrycja
2015-03-15
A new extraction medium was proposed for liquid-liquid extraction of the histamine H2 receptor antagonists ranitidine (RNT) and nizatidine (NZT). The ionic liquids with low vapor pressure and favorable solvating properties for a range of compounds such as 1-butyl-3-methylimidazolium hexafluorophosphate [C4mim][PF6] and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C4mim][Tf2N] were tested for isolation of analytes. The extraction parameters of RNT and NZT, namely, amount of ionic liquid, pH of sample solution, shaking and centrifugation time were optimized. The isolation processes were performed with 1 mL of the ionic liquids. The extracted samples (pH values near 4) were shaken at 1750 rpm. The influence of interfering substances on the efficiency of extraction process was also studied. Methods for the histamine H2 receptor antagonists (ranitidine and nizatidine) determination after their separation using imidazolium ionic liquids by high performance liquid chromatography (HPLC) combined with UV spectrophotometry were developed. The application of ionic liquids in extraction step allows for selective isolation of analytes from aqueous matrices and their preconcentration. The above methods were applied to the determination of RNT and NZT in environmental samples (river water and wastewater after treatment). Copyright © 2014 Elsevier B.V. All rights reserved.
Kolocouri, Filomila; Dotsikas, Yannis; Apostolou, Constantinos; Kousoulos, Constantinos; Soumelas, Georgios-Stefanos; Loukas, Yannis L
2011-01-01
An HPLC/MS/MS method characterized by complete automation and high throughput was developed for the determination of cilazapril and its active metabolite cilazaprilat in human plasma. All sample preparation and analysis steps were performed by using 2.2 mL 96 deep-well plates, while robotic liquid handling workstations were utilized for all liquid transfer steps, including liquid-liquid extraction. The whole procedure was very fast compared to a manual procedure with vials and no automation. The method also had a very short chromatographic run time of 1.5 min. Sample analysis was performed by RP-HPLC/MS/MS with positive electrospray ionization using multiple reaction monitoring. The calibration curve was linear in the range of 0.500-300 and 0.250-150 ng/mL for cilazapril and cilazaprilat, respectively. The proposed method was fully validated and proved to be selective, accurate, precise, reproducible, and suitable for the determination of cilazapril and cilazaprilat in human plasma. Therefore, it was applied to a bioequivalence study after per os administration of 2.5 mg tablet formulations of cilazapril.
Zheng, Rong; Wu, Yi-Hong; Jiang, De-Xi; Zhang, Dan
2012-02-01
A fast, simple and sensitive high performance liquid chromatographic (HPLC) method has been developed for determination of 10 α -methoxy-6-methyl ergoline-8 β -methanol (MDL, a main metabolite of nicergoline) in human plasma. One-step liquid-liquid extraction (LLE) with diethyl ether was employed as the sample preparation method. Tizanidine hydrochloride was selected as the internal standard (IS). Analysis was carried out on a Diamonsil ODS column (150 mm×4.6 mm, 5 μm) using acetonitrile-ammonium acetate (0.1 mol/L) (15/85, v/v) as mobile phase at detection wavelength of 224 nm. The calibration curves were linear over the range of 2.288-73.2 ng/mL with a lower limit of quantitation (LLOQ) of 2.288 ng/mL. The intra- and inter-day precision values were below 13% and the recoveries were from 74.47% to 83.20% at three quality control levels. The method herein described was successfully applied in a randomized crossover bioequivalence study of two different nicergoline preparations after administration of 30 mg in 20 healthy volunteers.
Optimization of squalene produced from crude palm oil waste
NASA Astrophysics Data System (ADS)
Wandira, Irda; Legowo, Evita H.; Widiputri, Diah I.
2017-01-01
Squalene is a hydrocarbon originally and still mostly extracted from shark liver oil. Due to environmental issues over shark hunting, there have been efforts to extract squalene from alternative sources, such as Palm Fatty Acid Distillate (PFAD), one of crude palm oil (CPO) wastes. Previous researches have shown that squalene can be extracted from PFAD using saponification process followed with liquid-liquid extraction process although the method had yet to be optimized in order to optimize the amount of squalene extracted from PFAD. The optimization was done by optimizing both processes of squalene extraction method: saponification and liquid-liquid extraction. The factors utilized in the saponification process optimization were KOH concentration and saponification duration while during the liquid-liquid extraction (LLE) process optimization, the factors used were the volumes of distilled water and dichloromethane. The optimum percentage of squalene content in the extract (24.08%) was achieved by saponifying the PFAD with 50%w/v KOH for 60 minutes and subjecting the saponified PFAD to LLE, utilizing 100 ml of distilled water along with 3 times addition of fresh dichloromethane, 75 ml each; those factors would be utilized in the optimum squalene extraction method.
Xing, Han-Zhu; Wang, Xia; Chen, Xiang-Feng; Wang, Ming-Lin; Zhao, Ru-Song
2015-05-01
A method combining accelerated solvent extraction with dispersive liquid-liquid microextraction was developed for the first time as a sample pretreatment for the rapid analysis of phenols (including phenol, m-cresol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol) in soil samples. In the accelerated solvent extraction procedure, water was used as an extraction solvent, and phenols were extracted from soil samples into water. The dispersive liquid-liquid microextraction technique was then performed on the obtained aqueous solution. Important accelerated solvent extraction and dispersive liquid-liquid microextraction parameters were investigated and optimized. Under optimized conditions, the new method provided wide linearity (6.1-3080 ng/g), low limits of detection (0.06-1.83 ng/g), and excellent reproducibility (<10%) for phenols. Four real soil samples were analyzed by the proposed method to assess its applicability. Experimental results showed that the soil samples were free of our target compounds, and average recoveries were in the range of 87.9-110%. These findings indicate that accelerated solvent extraction with dispersive liquid-liquid microextraction as a sample pretreatment procedure coupled with gas chromatography and mass spectrometry is an excellent method for the rapid analysis of trace levels of phenols in environmental soil samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lechowicz, Wojciech
2009-01-01
Toxicological analyses performed in individuals who died in unclear circumstances constitute a key element of research aiming at providing a complete explanation of cause of death. The entire panel of examinations of the corpse of general Sikorski also included toxicological analyses for drugs and organic poisons of synthetic and natural origin. Attention was focused on fast-acting and potent poisons known and used in the forties of the century. The internal organs (stomach, liver, lung, brain) and hair, as well as other materials collected from the body and found in the coffin were analyzed. The classic method of sample preparation, i.e. homogenization, deproteinization, headspace and liquid-liquid extraction were applied. Hyphenated methods, mainly chromatographic with mass spectrometry were used for identification of the analytes. Organic poisons were not identified in the material as a result of the research.
Zhang, Li; Luo, Xin; Niu, Zengyuan; Ye, Xiwen; Tang, Zhixu; Yao, Peng
2015-03-20
A new analytical method was established and validated for the analysis of 19 substances of very high concern (SVHCs) in textiles, including phthalic acid esters (PAEs), organotins (OTs), perfluorochemicals (PFCs) and flame retardants (FRs). After ultrasonic extraction in methanol, the textile samples were analyzed by high performance liquid chromatography-hybrid linear ion trap Orbitrap high resolution mass spectrometry (HPLC-LTQ/Orbitrap). The values of LOQ were in the range of 2-200mg/kg. Recoveries at two levels (at the LOQ and at half the limit of regulation) ranged from 68% to 120%, and the repeatability was lower than 13%. This method was successfully applied to the screening of SVHCs in commercial textile samples and is useful for the fast screening of various SVHCs. Copyright © 2015 Elsevier B.V. All rights reserved.
Perrone, Daniel; Donangelo, Carmen Marino; Farah, Adriana
2008-10-15
A rapid liquid chromatography-mass spectrometry method for the simultaneous quantification of caffeine, trigonelline, nicotinic acid and sucrose in coffee was developed and validated. The method involved extraction with hot water, clarification with basic lead acetate and membrane filtration, followed by chromatographic separation using a Spherisorb(®) S5 ODS2, 5μm chromatographic column and gradient elution with 0.3% aqueous formic acid/methanol at a flow rate of 0.2mL/min. The electrospray ionization source was operated in the negative mode to generate sucrose ions and in the positive mode to generate caffeine, trigonelline and nicotinic acid ions. Ionization suppression of all analytes was found due to matrix effect. Calibrations curves prepared in green and roasted coffee extracts were linear with r(2)>0.999. Roasted coffee was spiked and recoveries ranged from 93.0% to 105.1% for caffeine, from 85.2% to 116.2% for trigonelline, from 89.6% to 113.5% for nicotinic acid and from 94.1% to 109.7% for sucrose. Good repeatibilities (RSD<5%) were found for all analytes in the matrix. The limit of detection (LOD), calculated on the basis of signal-to-noise ratios of 3:1, was 11.9, 36.4, 18.5 and 5.0ng/mL for caffeine, trigonelline, nicotinic acid and sucrose, respectively. Analysis of 11 coffee samples (regular or decaffeinated green, ground roasted and instant) gave results in agreement with the literature. The method showed to be suitable for different types of coffee available in the market thus appearing as a fast and reliable alternative method to be used for routine coffee analysis. Copyright © 2008 Elsevier Ltd. All rights reserved.
Yang, Xuemei; Li, Guoliang; Chen, Lingyun; Zhang, Cong; Wan, Xinxiang; Xu, Jiangping
2011-07-01
A rapid, sensitive and selective method was developed for the quantitative determination of hederagenin in rat plasma and cerebrospinal fluid (CSF) by ultra fast liquid chromatography-tandem mass spectrometry (UFLC-MS/MS). It has been successfully applied in a pharmacokinetic study of hederagenin in the central nervous system (CNS). Sample pretreatment involved a simple protein precipitation with methanol and a one-step extraction with ethyl acetate. Separation was carried out in a Shim-pack XR-ODS II (75 mm × 2.0 mm, i.d., 2.1 μm) column with gradient elution at a flow rate of 0.35 mL/min. The mobile phase was 5mM ammonium acetate and acetonitrile. Detection was performed in a triple-quadruple tandem mass spectrometer by multiple-reaction-monitoring mode via electrospray ionization. A linear calibration curve for hederagenin was obtained over a concentration range of 0.406 (lower limit of quantification, LLOQ) to 203 ng/mL (r² > 0.99) for both plasma and CSF. The intra-day and inter-day precision (relative standard deviation, RSD) values were less than 15%. At all quality control (QC) levels, the accuracy (relative error, RE) was within -9.0% and 11.1% for plasma and CSF, respectively. The pharmacokinetics results indicated that hederagenin could pass through the blood-brain barrier. This UFLC-MS/MS method demonstrates higher sensitivity and sample throughput than previous methods. It was also successfully applied to the pharmacokinetic study of hederagenin following oral administration of Fructus akebiae extract in rats. Copyright © 2011 Elsevier B.V. All rights reserved.
Gabrić, Beata; Sander, Aleksandra; Cvjetko Bubalo, Marina; Macut, Dejan
2013-01-01
Liquid-liquid extraction is an alternative method that can be used for desulfurization and denitrification of gasoline and diesel fuels. Recent approaches employ different ionic liquids as selective solvents, due to their general immiscibility with gasoline and diesel, negligible vapor pressure, and high selectivity to sulfur- and nitrogen-containing compounds. For that reason, five imidazolium-based ionic liquids and one pyridinium-based ionic liquid were selected for extraction of thiophene, dibenzothiophene, and pyridine from two model solutions. The influences of hydrodynamic conditions, mass ratio, and number of stages were investigated. Increasing the mass ratio of ionic liquid/model fuel and multistage extraction promotes the desulfurization and denitrification abilities of the examined ionic liquids. All selected ionic liquids can be reused and regenerated by means of vacuum evaporation.
Gabrić, Beata; Sander, Aleksandra; Cvjetko Bubalo, Marina; Macut, Dejan
2013-01-01
Liquid-liquid extraction is an alternative method that can be used for desulfurization and denitrification of gasoline and diesel fuels. Recent approaches employ different ionic liquids as selective solvents, due to their general immiscibility with gasoline and diesel, negligible vapor pressure, and high selectivity to sulfur- and nitrogen-containing compounds. For that reason, five imidazolium-based ionic liquids and one pyridinium-based ionic liquid were selected for extraction of thiophene, dibenzothiophene, and pyridine from two model solutions. The influences of hydrodynamic conditions, mass ratio, and number of stages were investigated. Increasing the mass ratio of ionic liquid/model fuel and multistage extraction promotes the desulfurization and denitrification abilities of the examined ionic liquids. All selected ionic liquids can be reused and regenerated by means of vacuum evaporation. PMID:23843736
Ferrone, Vincenzo; Genovese, Salvatore; Carlucci, Maura; Tiecco, Matteo; Germani, Raimondo; Preziuso, Francesca; Epifano, Francesco; Carlucci, Giuseppe; Taddeo, Vito Alessandro
2018-04-15
A green dispersive liquid-liquid microextraction (DLLME) using deep eutectic solvent (DES) as the extracting solvent has been developed and applied for the simultaneous quantification of ferulic acid, umbelliferone, boropinic acid, 7-isopentenyloxycoumarin, 4'-geranyloxyferulic acid (GOFA), and auraptene in some vegetable oils using ultra high performance liquid chromatography (UHPLC) with photodiode array detection (PDA). All parameters in the extraction step, including selection and loading of both extracting and dispersing solvents, amount of both extractant and disperser solvent were investigated and optimized. PhAA/TMG DES achieved higher recovery and enrichment factor compared to other DESs. The validated method showed good linearity with correlation coefficients, r 2 >0.9990 for all the analytes. Furthermore, this is the first time that eco-friendly solvents are used for the extraction of oxyprenylated phenylpropanoids and the corresponding extract analyzed with ultra high performance liquid chromatography with photodiode array detection. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, FuKai; Gong, AiJun; Qiu, LiNa; Zhang, WeiWei; Li, JingRui; Liu, Yu; Liu, YuNing; Yuan, HuiTing
2017-01-01
The determination of trace rare-earth elements (REEs) can be used for the assessment of environmental pollution, and is of great significance to the study of toxicity and toxicology in animals and plants. N, N, N', N'-tetraoctyl diglycolamide (TODGA) is an environmental friendly extractant that is highly selective to REEs. In this study, an analytical method was developed for the simultaneous determination of 16 trace REEs in simulated water samples by inductively coupled plasma optical emission spectroscopy (ICP-OES). With this method, TODGA was used as the extractant to perform the liquid-liquid extraction (LLE) sample pretreatment procedure. All 16 REEs were extracted from a 3 M nitric acid medium into an organic phase by a 0.025 M TODGA petroleum ether solution. A 0.03 M ethylenediaminetetraacetic acid disodium salt (EDTA) solution was used for back-extraction to strip the REEs from the organic phase into the aqueous phase. The aqueous phase was concentrated using a vacuum rotary evaporator and the concentration of the 16 REEs was detected by ICP-OES. Under the optimum experimental conditions, the limits of detection (3σ, n = 7) for the REEs ranged from 0.0405 ng mL-1 (Nd) to 0.5038 ng mL-1 (Ho). The relative standard deviations (c = 100 ng mL-1, n = 7) were from 0.5% (Eu) to 4.0% (Tm) with a linear range of 4-1000 ng mL-1 (R2 > 0.999). The recoveries of 16 REEs ranged from 95% to 106%. The LLE-ICP-OES method established in this study has the advantages of simple operation, low detection limits, fast analysis speed and the ability to simultaneously determine 16 REEs, thereby acting as a viable alternative for the simultaneous detection of trace amounts of REEs in water samples.
Li, FuKai; Qiu, LiNa; Zhang, WeiWei; Li, JingRui; Liu, Yu; Liu, YuNing; Yuan, HuiTing
2017-01-01
The determination of trace rare-earth elements (REEs) can be used for the assessment of environmental pollution, and is of great significance to the study of toxicity and toxicology in animals and plants. N, N, N′, N′-tetraoctyl diglycolamide (TODGA) is an environmental friendly extractant that is highly selective to REEs. In this study, an analytical method was developed for the simultaneous determination of 16 trace REEs in simulated water samples by inductively coupled plasma optical emission spectroscopy (ICP-OES). With this method, TODGA was used as the extractant to perform the liquid-liquid extraction (LLE) sample pretreatment procedure. All 16 REEs were extracted from a 3 M nitric acid medium into an organic phase by a 0.025 M TODGA petroleum ether solution. A 0.03 M ethylenediaminetetraacetic acid disodium salt (EDTA) solution was used for back-extraction to strip the REEs from the organic phase into the aqueous phase. The aqueous phase was concentrated using a vacuum rotary evaporator and the concentration of the 16 REEs was detected by ICP-OES. Under the optimum experimental conditions, the limits of detection (3σ, n = 7) for the REEs ranged from 0.0405 ng mL-1 (Nd) to 0.5038 ng mL-1 (Ho). The relative standard deviations (c = 100 ng mL-1, n = 7) were from 0.5% (Eu) to 4.0% (Tm) with a linear range of 4–1000 ng mL-1 (R2 > 0.999). The recoveries of 16 REEs ranged from 95% to 106%. The LLE-ICP-OES method established in this study has the advantages of simple operation, low detection limits, fast analysis speed and the ability to simultaneously determine 16 REEs, thereby acting as a viable alternative for the simultaneous detection of trace amounts of REEs in water samples. PMID:28945788
Billard, Isabelle; Ouadi, Ali; Gaillard, Clotilde
2011-06-01
Liquid-liquid extraction of actinides and lanthanides by use of ionic liquids is reviewed, considering, first, phenomenological aspects, then looking more deeply at the various mechanisms. Future trends in this developing field are presented.
Sobhi, Hamid Reza; Azadikhah, Efat; Behbahani, Mohammad; Esrafili, Ali; Ghambarian, Mahnaz
2018-05-09
A fast, simple, low cost surfactant-assisted dispersive liquid-liquid microextraction method along with central composite design for the determination of low level of Cr(VI) ions in several aquatic samples has been developed. Initially, Cr(VI) ions present in the aqueous sample were readily reacted with 1,5‑diphenylcarbazide (DPC) in acidic medium through complexation. Sodium dodecyl sulfate (SDS), as an anionic surfactant, was then employed as an ion-pair agent to convert the cationic complex into the neutral one. Following on, the whole aqueous phase underwent a dispersive liquid-liquid microextraction (DLLME) leading to the transfer of the neutral complex into the fine droplet of organic extraction phase. A micro-volume spectrophotometer was used to determine Cr(VI) concentrations. Under the optimized conditions predicted by the statistical design, the limit of quantification (LOQ) obtained was reported to be 5.0 μg/L, and the calibration curve was linear over the concentration range of 5-100 μg/L. Finally, the method was successfully implemented for the determination of low levels of Cr(VI) ions in various real aquatic samples and the accuracies fell within the range of 83-102%, while the precision varied in the span of 1.7-5.2%. Copyright © 2018. Published by Elsevier B.V.
Petrarca, Mateus Henrique; Ccanccapa-Cartagena, Alexander; Masiá, Ana; Godoy, Helena Teixeira; Picó, Yolanda
2017-05-12
A new selective and sensitive liquid chromatography triple quadrupole mass spectrometry method was developed for simultaneous analysis of natural pyrethrins and synthetic pyrethroids residues in baby food. In this study, two sample preparation methods based on ultrasound-assisted dispersive liquid-liquid microextraction (UA-DLLME) and salting-out assisted liquid-liquid extraction (SALLE) were optimized, and then, compared regarding the performance criteria. Appropriate linearity in solvent and matrix-based calibrations, and suitable recoveries (75-120%) and precision (RSD values≤16%) were achieved for selected analytes by any of the sample preparation procedures. Both methods provided the analytical selectivity required for the monitoring of the insecticides in fruit-, cereal- and milk-based baby foods. SALLE, recognized by cost-effectiveness, and simple and fast execution, provided a lower enrichment factor, consequently, higher limits of quantification (LOQs) were obtained. Some of them too high to meet the strict legislation regarding baby food. Nonetheless, the combination of ultrasound and DLLME also resulted in a high sample throughput and environmental-friendly method, whose LOQs were lower than the default maximum residue limit (MRL) of 10μgkg -1 set by European Community for baby foods. In the commercial baby foods analyzed, cyhalothrin and etofenprox were detected in different samples, demonstrating the suitability of proposed method for baby food control. Copyright © 2017 Elsevier B.V. All rights reserved.
Sun, Shuo; Wang, Ying; Yu, Wenzhi; Zhao, Tianqi; Gao, Shiqian; Kang, Mingqin; Zhang, Yupu; Zhang, Hanqi; Yu, Yong
2011-07-01
The liquid-liquid microextraction (LLME) was developed for extracting sudan dyes from red wine and fruit juice. Room temperature ionic liquid was used as the extraction solvent. The target analytes were determined by high-performance liquid chromatography. The extraction parameters were optimized. The optimal conditions are as follows: volume of [C(6)MIM][PF(6)] 50 μL; the extraction time 10 min; pH value of the sample solution 7.0; NaCl concentration in sample solution 5%. The extraction recoveries for the analytes in red wine and fruit samples are 86.79-108.28 and 68.54-85.66%, whereas RSDs are 1.42-5.12 and 1.43-6.19%, respectively. The limits of detection and quantification were 0.428 and 1.426 ng/mL for sudan I, 0.938 and 3.127 ng/mL for sudan II, 1.334 and 4.445 ng/mL for sudan III, 1.454 and 4.846 ng/mL for sudan IV, respectively. Compared with conventional liquid-liquid extraction (CLLE) and ultrasonic extraction (UE), when LLME was applied, the sample amount was less (LLME: 4 mL; CLLE: 10 mL; UE: 10 mL), the extraction time was shorter (LLME: 15 min; CLLE: 110 min; UE: 50 min) and the extraction solvent amount was less (LLME: 0.05 mL IL; CLLE: 15 mL hexane; UE: 20 mL hexane). The proposed method offers a simple, rapid and efficient sample preparation for determining sudan dyes in red wine and fruit juice samples. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ma, Jiping; Wu, Gege; Li, Shuang; Tan, Weiqiang; Wang, Xiaoyan; Li, Jinhua; Chen, Lingxin
2018-06-08
A simple method of magnetic solid-phase extraction (MSPE) coupled to high performance liquid chromatography (HPLC) was developed for the simultaneous extraction and determination of four kinds of heterocyclic pesticides (carbendazim, triadimefon, chlorfenapyr and fenpyroximate) in environmental water samples. Magnetic metal-organic frameworks (MOFs) of type MOF-5 were prepared and used as adsorbents of MSPE. Several main parameters influencing MSPE efficiency were investigated, including amount of magnetic MOF-5, sample solution pH, extraction time, salt concentration, type and volume of desorption solvents and desorption time. Under optimal conditions, the MSPE-HPLC method presented fast simple separation and analysis, and excellent linearity in the range of 0.3-500.0 μg/L for carbendazim and triadimefon, and 0.1-500.0 μg/L for chlorfenapyr and fenpyroximate, with correlation coefficients (r) higher than 0.9992. High sensitivity with limits of detection and quantification ranging from 0.04-0.11 μg/L and 0.13-0.35 μg/L, respectively, were achieved, as well as good precision with relative standard deviations of 2.98-7.11% (intra-day) and 3.31-7.12% (inter-day). Furthermore, the method was successfully applied to reservoir and Yellow River water samples, and satisfactory recoveries at three spiked concentration levels were between 80.20% and 108.33%.The magnetic MOF-5 composites based MSPE followed by HPLC proved promising for convenient and efficient determination of heterocyclic pesticides in environmental water samples. Copyright © 2018 Elsevier B.V. All rights reserved.
Research on liquid sloshing performance in vane type tank under microgravity
NASA Astrophysics Data System (ADS)
Hu, Q.; Li, Y.; Liu, J. T.; Liang, J. Q.
2016-05-01
Propellant management device (PMD) in vane type tank mainly comprises of vane type structure parts, whose performance of restraining liquid sloshing should satisfy spacecraft requirements of high stabilization and fast orbital maneuver. Aiming at liquid sloshing performance in vane type tank under microgravity environment, gas-liquid flow model based on the volume of fluid (VOF) method was put forward, and via numerical simulation liquid sloshing performances of vane type PMD with anti-sloshing baffles and without anti-sloshing baffles in microgravity were analyzed and compared. Simulation results reveal that liquid sloshing performance of vane type PMD with anti-sloshing baffles is markedly superior vane type PMD without anti-sloshing baffles and the baffles make liquid surface become stable fast. Then by comparing between results of microgravity experiments and results of numerical simulations, they are very similar. According to present research, vane type PMD with antisloshing baffles has better effects on restraining liquid sloshing and is able to restrain observably propellant sloshing in tanks in order to satisfy spacecraft requirements of high stabilization and fast orbital maneuver.
Iron dissolution kinetics of mineral dust at low pH during simulated atmospheric processing
NASA Astrophysics Data System (ADS)
Shi, Z.; Bonneville, S.; Krom, M. D.; Carslaw, K. S.; Jickells, T. D.; Baker, A. R.; Benning, L. G.
2010-11-01
We investigated the iron (Fe) dissolution kinetics of African (Tibesti) and Asian (Beijing) dust samples at acidic pH with the aim of reproducing the low pH conditions in atmospheric aerosols. The Beijing dust and three size fractions of the Tibesti dust (<20 μm: PM20; <10 μm: PM10; and <2.5 μm: PM2.5) were dissolved at pH 1, 2 and/or 3 for up to 1000 h. In the first 10 min, all dust samples underwent an extremely fast Fe solubilisation. Subsequently, the Fe dissolution proceeded at a much slower rate before reaching a stable dissolution plateau. The time-dependant Fe dissolution datasets were best described by a model comprising three acid-extractable Fe pools each dissolving according to first-order kinetics. The dissolution rate constant k of each pool was independent of the source (Saharan or Asian) and the size (PM20, PM10 or PM2.5) of the dust but highly dependent on pH. The "fast" Fe pool had a k (25 h-1 at pH=1) of a similar magnitude to "dry" ferrihydrite nanoparticles and/or poorly crystalline Fe(III) oxyhydroxide, while the "intermediate" and "slow" Fe pools had k values respectively 50-60 times and 3000-4000 times smaller than the "fast" pool. The "slow" Fe pool was likely to consist of both crystalline Fe oxide phases (i.e., goethite and/or hematite) and Fe contained in the clay minerals. The initial mass of the "fast", "intermediate" and "slow" Fe pools represented respectively about 0.5-2%, 1-3% and 15-40% of the total Fe in the dust samples. Furthermore, we showed that in systems with low dust/liquid ratios, Fe can be dissolved from all three phases, whereas at high dust/liquid ratios (e.g., in aerosols), sufficient Fe is solubilised from the "fast" phase to dominate the Fe dissolved and to suppress the dissolution of Fe from the other Fe pools. These data demonstrated that dust/liquid ratio and pH are fundamental parameters controlling Fe dissolution kinetics in the dust. In order to reduce errors in atmospheric and climate models, these fundamental controlling factors need to be included.
Iron dissolution kinetics of mineral dust at low pH during simulated atmospheric processing
NASA Astrophysics Data System (ADS)
Shi, Z.; Bonneville, S.; Krom, M. D.; Carslaw, K. S.; Jickells, T. D.; Baker, A. R.; Benning, L. G.
2011-02-01
We investigated the iron (Fe) dissolution kinetics of African (Tibesti) and Asian (Beijing) dust samples at acidic pH with the aim of reproducing the low pH conditions in atmospheric aerosols. The Beijing dust and three size fractions of the Tibesti dust (<20 μm: PM20; <10 μm: PM10; and <2.5 μm: PM2.5) were dissolved at pH 1, 2 and/or 3 for up to 1000 h. In the first 10 min, all dust samples underwent an extremely fast Fe solubilisation. Subsequently, the Fe dissolution proceeded at a much slower rate before reaching a stable dissolution plateau. The time-dependant Fe dissolution datasets were best described by a model comprising three acid-extractable Fe pools each dissolving according to first-order kinetics. The dissolution rate constant k (h-1) of each pool was independent of the source (Saharan or Asian) and the size (PM20, PM10 or PM2.5) of the dust but highly dependent on pH. The "fast" Fe pool had a k (25 h-1 at pH = 1) of a similar magnitude to "dry" ferrihydrite nanoparticles and/or poorly crystalline Fe(III) oxyhydroxide, while the "intermediate" and "slow" Fe pools had k values respectively 50-60 times and 3000-4000 times smaller than the "fast" pool. The "slow" Fe pool was likely to consist of both crystalline Fe oxide phases (i.e., goethite and/or hematite) and Fe contained in the clay minerals. The initial mass of the "fast", "intermediate" and "slow" Fe pools represented respectively about 0.5-2%, 1-3% and 15-40% of the total Fe in the dust samples. Furthermore, we showed that in systems with low dust/liquid ratios, Fe can be dissolved from all three pools, whereas at high dust/liquid ratios (e.g., in aerosols), sufficient Fe may be solubilised from the "fast" phase to dominate the Fe dissolved and to suppress the dissolution of Fe from the other Fe pools. These data demonstrated that dust/liquid ratio and pH are fundamental parameters controlling Fe dissolution kinetics in the dust. In order to reduce errors in atmospheric and climate models, these fundamental controlling factors need to be included.
Ruan, Chunqiang; Zhao, Xiang; Liu, Chenglan
2015-09-01
In this study, a simple and low-organic-solvent-consuming method combining an acetonitrile-partitioning extraction procedure followed by "quick, easy, cheap, effective, rugged and safe" cleanup with ionic-liquid-based dispersive liquid-liquid microextraction and high-performance liquid chromatography with diode array detection was developed for the determination of diflubenzuron and chlorbenzuron in grapes and pears. Ionic-liquid-based dispersive liquid-liquid microextraction was performed using the ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate as the extractive solvent and acetonitrile extract as the dispersive solvent. The main factors influencing the efficiency of the dispersive liquid-liquid microextraction were evaluated, including the extractive solvent type and volume and the dispersive solvent volume. The validation parameters indicated the suitability of the method for routine analyses of benzoylurea insecticides in a large number of samples. The relative recoveries at three spiked levels ranged between 98.6 and 109.3% with relative standard deviations of less than 5.2%. The limit of detection was 0.005 mg/kg for the two insecticides. The proposed method was successfully used for the rapid determination of diflubenzuron and chlorbenzuron residues in real fruit samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhu, Bangjie; Liu, Feng; Li, Xituo; Wang, Yan; Gu, Xue; Dai, Jieyu; Wang, Guiming; Cheng, Yu; Yan, Chao
2015-01-01
Endogenous carbohydrates in biosamples are frequently highlighted as the most differential metabolites in many metabolomics studies. A simple, fast, simultaneous quantitative method for 16 endogenous carbohydrates in plasma has been developed using hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry. In order to quantify 16 endogenous carbohydrates in plasma, various conditions, including columns, chromatographic conditions, mass spectrometry conditions, and plasma preparation methods, were investigated. Different conditions in this quantified analysis were performed and optimized. The reproducibility, precision, recovery, matrix effect, and stability of the method were verified. The results indicated that a methanol/acetonitrile (50:50, v/v) mixture could effectively and reproducibly precipitate rat plasma proteins. Cold organic solvents coupled with vortex for 1 min and incubated at -20°C for 20 min were the most optimal conditions for protein precipitation and extraction. The results, according to the linearity, recovery, precision, matrix effect, and stability, showed that the method was satisfactory in the quantification of endogenous carbohydrates in rat plasma. The quantified analysis of endogenous carbohydrates in rat plasma performed excellently in terms of sensitivity, high throughput, and simple sample preparation, which met the requirement of quantification in specific expanded metabolomic studies after the global metabolic profiling research. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fast and sensitive method for detecting volatile species in liquids.
Trimarco, Daniel B; Pedersen, Thomas; Hansen, Ole; Chorkendorff, Ib; Vesborg, Peter C K
2015-07-01
This paper presents a novel apparatus for extracting volatile species from liquids using a "sniffer-chip." By ultrafast transfer of the volatile species through a perforated and hydrophobic membrane into an inert carrier gas stream, the sniffer-chip is able to transport the species directly to a mass spectrometer through a narrow capillary without the use of differential pumping. This method inherits features from differential electrochemical mass spectrometry (DEMS) and membrane inlet mass spectrometry (MIMS), but brings the best of both worlds, i.e., the fast time-response of a DEMS system and the high sensitivity of a MIMS system. In this paper, the concept of the sniffer-chip is thoroughly explained and it is shown how it can be used to quantify hydrogen and oxygen evolution on a polycrystalline platinum thin film in situ at absolute faradaic currents down to ∼30 nA. To benchmark the capabilities of this method, a CO-stripping experiment is performed on a polycrystalline platinum thin film, illustrating how the sniffer-chip system is capable of making a quantitative in situ measurement of <1% of a monolayer of surface adsorbed CO being electrochemically stripped off an electrode at a potential scan-rate of 50 mV s(-1).
Li, Yan; Zhang, Ji; Jin, Hang; Liu, Honggao; Wang, Yuanzhong
2016-08-05
A quality assessment system comprised of a tandem technique of ultraviolet (UV) spectroscopy and ultra-fast liquid chromatography (UFLC) aided by multivariate analysis was presented for the determination of geographic origin of Wolfiporia extensa collected from five regions in Yunnan Province of China. Characteristic UV spectroscopic fingerprints of samples were determined based on its methanol extract. UFLC was applied for the determination of pachymic acid (a biomarker) presented in individual test samples. The spectrum data matrix and the content of pachymic acid were integrated and analyzed by partial least squares discriminant analysis (PLS-DA) and hierarchical cluster analysis (HCA). The results showed that chemical properties of samples were clearly dominated by the epidermis and inner part as well as geographical origins. The relationships among samples obtained from these five regions have been also presented. Moreover, an interesting finding implied that geographical origins had much greater influence on the chemical properties of epidermis compared with that of the inner part. This study demonstrated that a rapid tool for accurate discrimination of W. extensa by UV spectroscopy and UFLC could be available for quality control of complicated medicinal mushrooms. Copyright © 2016 Elsevier B.V. All rights reserved.
Green synthesis of silver nanoparticles from aqueous Aegle marmelos leaf extract
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jagajjanani Rao, K.; Paria, Santanu, E-mail: santanuparia@yahoo.com
Graphical abstract: Silver nanoparticles capped with polyphenols present in Aegle marmelos leaf extract. Display Omitted Highlights: ► Silver nanoparticles are synthesized using Aegle marmelos leaf extract in aqueous media. ► Reduction reaction is fast and occurs at room temperature. ► The presence of polyphenols acts as in situ capping agent. -- Abstract: Synthesis of nanoparticles by green route is an emerging technique drawing more attention recently because of several advantages over the convention chemical routes. The present study reports one-pot synthesis and in situ stabilization of silver nanoparticles using Aegle marmelos leaf extract. Nanoparticles of almost uniform spherical size (∼60more » nm) were synthesized within ∼25 min reaction time at room temperature. The size of particles depends on the ratio of AgNO{sub 3} and leaf extract. The crystallinity, size, and shape of the nanoparticles were characterized by X-ray diffraction, dynamic light scattering, and scanning electron microscopy respectively. The size stability was attained by the capping effect of polyphenolic tannin compound, procatacheuate in the extract. The capped polyphenols can be removed from the particle surface by simple NaOH/methanol wash. The involvement of phenolic compounds in metal ion reduction and capping were supported by UV–visible spectroscopy, infrared spectroscopy, high performance liquid chromatography, and zeta potential measurements.« less
Yin, Yuli; Yan, Liang; Zhang, Zhaohui; Wang, Jing; Luo, Ningjing
2016-04-01
We describe novel cinnamic acid polydopamine-coated magnetic imprinted polymers for the simultaneous selective extraction of cinnamic acid, ferulic acid and caffeic acid from radix scrophulariae sample. The novel magnetic imprinted polymers were synthesized by surface imprinting polymerization using magnetic multi-walled carbon nanotubes as the support material, cinnamic acid as the template and dopamine as the functional monomer. The magnetic imprinted polymers were characterized by transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and vibrating sample magnetometry. The results revealed that the magnetic imprinted polymers had outstanding magnetic properties, high adsorption capacity, selectivity and fast kinetic binding toward cinnamic acid, ferulic acid and caffeic acid. Coupled with high-performance liquid chromatography, the extraction conditions of the magnetic imprinted polymers as a magnetic solid-phase extraction sorbent were investigated in detail. The proposed imprinted magnetic solid phase extraction procedure has been used for the purification and enrichment of cinnamic acid, ferulic acid and caffeic acid successfully from radix scrophulariae extraction sample with recoveries of 92.4-115.0% for cinnamic acid, 89.4-103.0% for ferulic acid and 86.6-96.0% for caffeic acid. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wu, Yongjiang; Jin, Ye; Ding, Haiying; Luan, Lianjun; Chen, Yong; Liu, Xuesong
2011-09-01
The application of near-infrared (NIR) spectroscopy for in-line monitoring of extraction process of scutellarein from Erigeron breviscapus (vant.) Hand-Mazz was investigated. For NIR measurements, two fiber optic probes designed to transmit NIR radiation through a 2 mm pathlength flow cell were utilized to collect spectra in real-time. High performance liquid chromatography (HPLC) was used as a reference method to determine scutellarein in extract solution. Partial least squares regression (PLSR) calibration model of Savitzky-Golay smoothing NIR spectra in the 5450-10,000 cm(-1) region gave satisfactory predictive results for scutellarein. The results showed that the correlation coefficients of calibration and cross validation were 0.9967 and 0.9811, respectively, and the root mean square error of calibration and cross validation were 0.044 and 0.105, respectively. Furthermore, both the moving block standard deviation (MBSD) method and conformity test were used to identify the end point of extraction process, providing real-time data and instant feedback about the extraction course. The results obtained in this study indicated that the NIR spectroscopy technique provides an efficient and environmentally friendly approach for fast determination of scutellarein and end point control of extraction process. Copyright © 2011 Elsevier B.V. All rights reserved.
Huertas-Pérez, José Fernando; Arroyo-Manzanares, Natalia; Hitzler, Dominik; Castro-Guerrero, Francisco Germán; Gámiz-Gracia, Laura; García-Campaña, Ana M
2018-04-15
A fast and simple analytical method was developed and characterized for the determination of aflatoxins (B 1 , B 2 , G 1 and G 2 ) in rice. The procedure is based on a simple solid-liquid extraction without further clean-up, and analysis by ultra-high performance liquid chromatography coupled with fluorescence detection. Fluorescence emission of aflatoxins B 1 and G 1 was enhanced by post-column chemical derivatization using pyridinium bromide perbromide. The analytical method was satisfactorily characterized in white and brown rice. Under optimum conditions, external calibration in solvent could be used for quantification purposes and limits of quantification were below the maximum contents established by the European Union regulation for these contaminants/commodity group combination (0.07-0.14 µg/kg for white rice and 0.20-0.28 µg/kg for brown rice). Recovery studies carried out at three different concentration levels (0.5, 2 and 5 µg/kg) showed values in the range of 84.5-105.3%, and RSDs ≤ 5%. Copyright © 2017 Elsevier Ltd. All rights reserved.
Luiz Oenning, Anderson; Lopes, Daniela; Neves Dias, Adriana; Merib, Josias; Carasek, Eduardo
2017-11-01
In this study, the viability of two membrane-based microextraction techniques for the determination of endocrine disruptors by high-performance liquid chromatography with diode array detection was evaluated: hollow fiber microporous membrane liquid-liquid extraction and hollow-fiber-supported dispersive liquid-liquid microextraction. The extraction efficiencies obtained for methylparaben, ethylparaben, bisphenol A, benzophenone, and 2-ethylhexyl-4-methoxycinnamate from aqueous matrices obtained using both approaches were compared and showed that hollow fiber microporous membrane liquid-liquid extraction exhibited higher extraction efficiency for most of the compounds studied. Therefore, a detailed optimization of the extraction procedure was carried out with this technique. The optimization of the extraction conditions and liquid desorption were performed by univariate analysis. The optimal conditions for the method were supported liquid membrane with 1-octanol for 10 s, sample pH 7, addition of 15% w/v of NaCl, extraction time of 30 min, and liquid desorption in 150 μL of acetonitrile/methanol (50:50 v/v) for 5 min. The linear correlation coefficients were higher than 0.9936. The limits of detection were 0.5-4.6 μg/L and the limits of quantification were 2-16 μg/L. The analyte relative recoveries were 67-116%, and the relative standard deviations were less than 15.5%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lu, Chunxia; Wang, Hongxin; Lv, Wenping; Ma, Chaoyang; Lou, Zaixiang; Xie, Jun; Liu, Bo
2012-01-01
Ionic liquid was used as extraction solvents and applied to the extraction of tannins from Galla chinensis in the simultaneous ultrasonic- and microwave-assisted extraction (UMAE) technique. Several parameters of UMAE were optimised, and the results were compared with of the conventional extraction techniques. Under optimal conditions, the content of tannins was 630.2 ± 12.1 mg g⁻¹. Compared with the conventional heat-reflux extraction, maceration extraction, regular ultrasound- and microwave-assisted extraction, the proposed approach exhibited higher efficiency (11.7-22.0% enhanced) and shorter extraction time (from 6 h to 1 min). The tannins were then identified by ultraperformance liquid chromatography tandem mass spectrometry. This study suggests that ionic liquid-based UMAE is an efficient, rapid, simple and green sample preparation technique.
Bi, Wentao; Tian, Minglei; Row, Kyung Ho
2012-01-01
This study highlighted the application of a two-stepped extraction method for extraction and separation of oxymatrine from Sophora flavescens Ait. extract by utilizing silica-confined ionic liquids as sorbent. The optimized silica-confined ionic liquid was firstly mixed with plant extract to adsorb oxymatrine. Simultaneously, some interference, such as matrine, was removed. The obtained suspension was then added to a cartridge for solid phase extraction. Through these two steps, target compound was adequately separated from interferences with 93.4% recovery. In comparison with traditional solid phase extraction, this method accelerates loading and reduces the use of organic solvents during washing. Moreover, the optimization of loading volume was simplified as optimization of solid/liquid ratio. Copyright © 2011 Elsevier B.V. All rights reserved.
Solvent extraction separation of Th-227 and Ac-225 in room temperature ionic liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, Jason R; Boll, Rose Ann; Dai, Sheng
2012-01-01
The solvent extractions of Th-227 and Ac-225 from the aqueous phase into ionic liquids (ILs) were investigated by using N,N,N ,N - tetraoctyldiglycolamide (TODGA) or di(2-ethylhexyl)phosphoric acid (HDEHP) as an extractant. Four ionic liquids, 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4mim][NTf2]), 1-butyl-3-methylimidazolium bis(perfluoroethanesulfonyl)imide ([C4mim][BETI]), 1-butyl-2,3-trimethyleneimidazolium (trifluoromethanesulfonyl)imide [BuI5][NTf2], and 1-benzyl pyridinium bis(trifluoromethanesulfonyl)imide ([PhCH2Py][NTf2]) were used as extraction solvents for separation of Th-227 and Ac-225 in this study. Excellent extraction efficiencies and selectivities were found for Th-227/Ac-225 when HDEHP was used as an extractant in these ionic liquids. The effects of different extractant concentrations in ionic liquids and acidities of the aqueous phase on extraction efficienciesmore » and selectivities of Th-227/Ac-225 are also presented in this article.« less
Peng, Li-Qing; Yu, Wen-Yan; Xu, Jing-Jing; Cao, Jun
2018-01-15
A simple, green and effective extraction method, namely, pyridinium ionic liquid- (IL) based liquid-solid extraction (LSE), was first designed to extract the main inorganic and organic iodine compounds (I - , monoiodo-tyrosine (MIT) and diiodo-tyrosine (DIT)). The optimal extraction conditions were as follows: ultrasonic intensity 100W, IL ([EPy]Br) concentration 200mM, extraction time 30min, liquid/solid ratio 10mL/g, and pH value 6.5. The morphologies of Laminaria were studied by scanning electron microscopy and transmission electron microscopy. The recovery values of I - , MIT and DIT from Laminaria were in the range of 88% to 94%, and limits of detection were in the range of 59.40 to 283.6ng/g. The proposed method was applied to the extraction and determination of iodine compounds in three Laminaria. The results showed that IL-based LSE could be a promising method for rapid extraction of bioactive iodine from complex food matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.
Salgueiro-González, N; Turnes-Carou, I; Muniategui-Lorenzoa, S; López-Mahía, P; Prada-Rodríguez, D
2012-12-28
A novel and green analytical methodology for the determination of alkylphenols (4-tert-octylphenol, 4-n-octylphenol, 4-n-nonylphenol, nonylphenol technical mixture) and bisphenol A in bivalve mollusc samples was developed and validated. The method was based on selective pressurized liquid extraction (SPLE) with a simultaneous in cell clean up combined with liquid chromatography–electrospray ionization tandem mass spectrometry in negative mode (LC–ESI-MS/MS). Quantitation was performed by standard addition curves in order to correct matrix effects. The analytical features of the method were satisfactory: relative recoveries varied between 80 and 107% and repeatability and intermediate precision were <20% for all compounds. Uncertainty assessment of measurement was estimated on the basis of an in-house validation according to EURACHEM/CITAC guide. Quantitation limits of the method (MQL) ranged between 0.34 (4-n-octylphenol) and 3.6 ng g(−1) dry weight (nonylphenol). The main advantages of the method are sensitivity, selectivity, automaticity, low volumes of solvents required and low sample analysis time (according with the principles of Green Chemistry). The method was applied to the analysis of mussel samples of Galicia coast (NW of Spain). Nonylphenol and 4-tert-octylphenol were measured in all samples at concentrations between 9.3 and 372 ng g(−1) dw. As an approach, the human daily intake of these compounds was estimated and no risk for human health was found.
A practical and sensitive method to assess volatile organic compounds (VOCs) from JP-8 jet fuel in human whole blood was developed by modifying previously established liquid-liquid extraction procedures, optimizing extraction times, solvent volume, specific sample processing te...
Erro, Javier; Zamarreño, Angel M; Yvin, Jean-Claude; Garcia-Mina, Jose M
2009-05-27
This article describes a fast and simple methodology for the extraction and determination of organic acids in tissues and root exudates of maize, lupin, and chickpea by LC/MS/MS. Its main advantage is that it does not require sample prepurification before HPLC analysis or sample derivatization to improve sensibility. The results obtained showed good precision and accuracy, a recovery close to 100%, and no significant matrix effect. Moreover, the sensibility of the method is in general better than that of previously described methodologies, with detection limits between 15 and 900 pg injected.
Morelli, Lidia; Andreasen, Sune Zoëga; Jendresen, Christian Bille; Nielsen, Alex Toftgaard; Emnéus, Jenny; Zór, Kinga; Boisen, Anja
2017-11-20
During the last few decades, great advances have been reached in high-throughput design and building of genetically engineered microbial strains, leading to a need for fast and reliable screening methods. We developed and optimized a microfluidic supported liquid membrane (SLM) extraction device and combined it with surface enhanced Raman scattering (SERS) sensing for the screening of a biological process, namely for the quantification of a bacterial secondary metabolite, p-coumaric acid (pHCA), produced by Escherichia coli. The microfluidic device proved to be robust and reusable, enabling efficient removal of interfering compounds from the real samples, reaching more than 13-fold up-concentration of the donor at 10 μL min -1 flow rate. With this method, we quantified pHCA directly from the bacterial supernatant, distinguishing between various culture conditions based on the pHCA production yield. The obtained data showed good correlation with HPLC analysis.
Feng, Zufei; Lu, Yan; Zhao, Yingjuan; Ye, Helin
2017-11-02
On the basis of magnetic molecularly imprinted polymer (MMIP) solid-phase extraction coupled with high performance liquid chromatography, we established a new method for the determination of the 4-methylimidazole (4-MEI) in soy sauce. Scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM) were used to characterize the synthesized MMIPs. To evaluate the polymers, batch rebinding experiments were carried out. The binding strength and capacity were determined from the derived Freundlich isotherm (FI) equation. The selective recognition capability of MMIPs was investigated with a reference compound and a structurally similar compound. As a selective pre-concentration sorbents for 4-methylimidazole in soy sauce, the MMIPs showed a satisfied recoveries rate of spiked samples, ranged from 97% to 105%. As a result, the prepared MMIPs could be applied to selectively pre-concentrate and determine 4-methylimidazole in soy sauce samples.
Ventura, Sónia P M; E Silva, Francisca A; Quental, Maria V; Mondal, Dibyendu; Freire, Mara G; Coutinho, João A P
2017-05-24
Ionic liquids (ILs) have been proposed as promising media for the extraction and separation of bioactive compounds from the most diverse origins. This critical review offers a compilation on the main results achieved by the use of ionic-liquid-based processes in the extraction and separation/purification of a large range of bioactive compounds (including small organic extractable compounds from biomass, lipids, and other hydrophobic compounds, proteins, amino acids, nucleic acids, and pharmaceuticals). ILs have been studied as solvents, cosolvents, cosurfactants, electrolytes, and adjuvants, as well as used in the creation of IL-supported materials for separation purposes. The IL-based processes hitherto reported, such as IL-based solid-liquid extractions, IL-based liquid-liquid extractions, IL-modified materials, and IL-based crystallization approaches, are here reviewed and compared in terms of extraction and separation performance. The key accomplishments and future challenges to the field are discussed, with particular emphasis on the major lacunas found within the IL community dedicated to separation processes and by suggesting some steps to overcome the current limitations.
He, Qing; Williams, Neil J.; Oh, Ju; ...
2018-05-25
LiCl is a classic "hard" ion salt that is present in lithium-rich brines and a key component in end-of-life materials (i.e., used lithium-ion batteries). Its isolation and purification from like salts is a recognized challenge with potential strategic and economic implications. Here in this paper, we describe two ditopic calix[4]pyrrole-based ion pair receptors (2 and 3), that are capable of selectively capturing LiCl. Under solid-liquid extraction conditions, using 2 as the extractant, LiCl could be separated from a NaCl-KCl salt mixture containing as little as 1% LiCl with ~100% selectivity, while receptor 3 achieved similar separations when the LiCl levelmore » was as low as 200 ppm. Under liquid-liquid extraction conditions using nitrobenzene as the non-aqueous phase, the extraction preference displayed by 2 is KCl > NaCl > LiCl. Lastly, in contrast, 3 exhibits high selectivity towards LiCl over NaCl and KCl, with no appreciable extraction being observed for the latter two salts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Qing; Williams, Neil J.; Oh, Ju
LiCl is a classic "hard" ion salt that is present in lithium-rich brines and a key component in end-of-life materials (i.e., used lithium-ion batteries). Its isolation and purification from like salts is a recognized challenge with potential strategic and economic implications. Here in this paper, we describe two ditopic calix[4]pyrrole-based ion pair receptors (2 and 3), that are capable of selectively capturing LiCl. Under solid-liquid extraction conditions, using 2 as the extractant, LiCl could be separated from a NaCl-KCl salt mixture containing as little as 1% LiCl with ~100% selectivity, while receptor 3 achieved similar separations when the LiCl levelmore » was as low as 200 ppm. Under liquid-liquid extraction conditions using nitrobenzene as the non-aqueous phase, the extraction preference displayed by 2 is KCl > NaCl > LiCl. Lastly, in contrast, 3 exhibits high selectivity towards LiCl over NaCl and KCl, with no appreciable extraction being observed for the latter two salts.« less
Code of Federal Regulations, 2010 CFR
2010-01-01
... reactors, flame tower reactors, liquid centrifuges, distillation columns and liquid-liquid extraction... to UF6 is performed by exothermic reaction with fluorine in a tower reactor. UF6 is condensed from..., flame tower reactors, liquid centrifuges, distillation columns and liquid-liquid extraction columns. Hot...
Medina, Giselle S; Reta, Mario
2016-11-01
A dispersive liquid-liquid microextraction method using a lighter-than-water phosphonium-based ionic liquid for the extraction of 16 polycyclic aromatic hydrocarbons from water samples has been developed. The extracted compounds were analyzed by liquid chromatography coupled to fluorescence/diode array detectors. The effects of several experimental parameters on the extraction efficiency, such as type and volume of ionic liquid and disperser solvent, type and concentration of salt in the aqueous phase and extraction time, were investigated and optimized. Three phosphonium-based ionic liquids were assayed, obtaining larger extraction efficiencies when trihexyl-(tetradecyl)phosphonium bromide was used. The optimized methodology requires a few microliters of a lighter-than-water phosphonium-based ionic liquid, which allows an easy separation of the extraction solvent phase. The obtained limits of detection were between 0.02 and 0.56 μg/L, enrichment factors between 109 and 228, recoveries between 60 and 108%, trueness between 0.4 and 9.9% and reproducibility values between 3 and 12% were obtained. These figures of merit combined with the simplicity, rapidity and low cost of the analytical methodology indicate that this is a viable and convenient alternative to the methods reported in the literature. The developed method was used to analyze polycyclic aromatic hydrocarbons in river water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Senlin; Li, Sainan; Huang, Yu; Liu, Chunming; Chen, Lina; Zhang, Yuchi
2017-06-01
The separation of a compound of interest from its structurally similar homologues to produce high-purity natural products is a challenging problem. This work proposes a novel method for the separation of iristectorigenin A from its structurally similar homologues by ionic-liquid-based ultrasound-assisted extraction and the subsequent screening and isolation of potential α-glucosidase inhibitors via ultrafiltration and semipreparative high-performance liquid chromatography. Ionic-liquid-based ultrasound-assisted extraction was successfully applied to the extraction of tectorigenin, iristectorigenin A, irigenin, and irisflorentin from Belamcanda chinensis. The optimum conditions for the efficient extraction of isoflavones were determined as 1.0 M 1-ethyl-3-methylimidazolium tetrafluoroborate with extraction time of 30 min and a solvent to solid ratio of 30 mL/g. Ultrafiltration with liquid chromatography and mass spectrometry was applied to screen and identify α-glucosidase inhibitors from B. chinensis, followed by the application of semipreparative high-performance liquid chromatography to separate and isolate the active constituents. Four major compounds including tectorigenin, iristectorigenin A, irigenin, and irisflorentin were screened and identified as α-glucosidase inhibitors, and then the four active compounds abovementioned were subsequently isolated by semipreparative high-performance liquid chromatography (99.89, 88.97, 99.79, and 99.97% purity, respectively). The results demonstrate that ionic liquid extraction can be successfully applied to the extraction of isoflavones from B. chinensis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lenselink, Charlotte H.; de Bie, Roosmarie P.; van Hamont, Dennis; Bakkers, Judith M. J. E.; Quint, Wim G. V.; Massuger, Leon F. A. G.; Bekkers, Ruud L. M.; Melchers, Willem J. G.
2009-01-01
This study assesses human papillomavirus (HPV) detection and genotyping in self-sampled genital smears applied to an indicating FTA elute cartridge (FTA cartridge). The study group consisted of 96 women, divided into two sample sets. All samples were analyzed by the HPV SPF10-Line Blot 25. Set 1 consisted of 45 women attending the gynecologist; all obtained a self-sampled cervicovaginal smear, which was applied to an FTA cartridge. HPV results were compared to a cervical smear (liquid based) taken by a trained physician. Set 2 consisted of 51 women who obtained a self-sampled cervicovaginal smear at home, which was applied to an FTA cartridge and to a liquid-based medium. DNA was obtained from the FTA cartridges by simple elution as well as extraction. Of all self-obtained samples of set 1, 62.2% tested HPV positive. The overall agreement between self- and physician-obtained samples was 93.3%, in favor of the self-obtained samples. In sample set 2, 25.5% tested HPV positive. The overall agreement for high-risk HPV presence between the FTA cartridge and liquid-based medium and between DNA elution and extraction was 100%. This study shows that HPV detection and genotyping in self-obtained cervicovaginal samples applied to an FTA cartridge is highly reliable. It shows a high level of overall agreement with HPV detection and genotyping in physician-obtained cervical smears and liquid-based self-samples. DNA can be obtained by simple elution and is therefore easy, cheap, and fast. Furthermore, the FTA cartridge is a convenient medium for collection and safe transport at ambient temperatures. Therefore, this method may contribute to a new way of cervical cancer screening. PMID:19553570
Lenselink, Charlotte H; de Bie, Roosmarie P; van Hamont, Dennis; Bakkers, Judith M J E; Quint, Wim G V; Massuger, Leon F A G; Bekkers, Ruud L M; Melchers, Willem J G
2009-08-01
This study assesses human papillomavirus (HPV) detection and genotyping in self-sampled genital smears applied to an indicating FTA elute cartridge (FTA cartridge). The study group consisted of 96 women, divided into two sample sets. All samples were analyzed by the HPV SPF(10)-Line Blot 25. Set 1 consisted of 45 women attending the gynecologist; all obtained a self-sampled cervicovaginal smear, which was applied to an FTA cartridge. HPV results were compared to a cervical smear (liquid based) taken by a trained physician. Set 2 consisted of 51 women who obtained a self-sampled cervicovaginal smear at home, which was applied to an FTA cartridge and to a liquid-based medium. DNA was obtained from the FTA cartridges by simple elution as well as extraction. Of all self-obtained samples of set 1, 62.2% tested HPV positive. The overall agreement between self- and physician-obtained samples was 93.3%, in favor of the self-obtained samples. In sample set 2, 25.5% tested HPV positive. The overall agreement for high-risk HPV presence between the FTA cartridge and liquid-based medium and between DNA elution and extraction was 100%. This study shows that HPV detection and genotyping in self-obtained cervicovaginal samples applied to an FTA cartridge is highly reliable. It shows a high level of overall agreement with HPV detection and genotyping in physician-obtained cervical smears and liquid-based self-samples. DNA can be obtained by simple elution and is therefore easy, cheap, and fast. Furthermore, the FTA cartridge is a convenient medium for collection and safe transport at ambient temperatures. Therefore, this method may contribute to a new way of cervical cancer screening.
Thermo-mechanical simulation of liquid-supported stretch blow molding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimmer, J.; Stommel, M.
2015-05-22
Stretch blow molding is the well-established plastics forming method to produce Polyehtylene therephtalate (PET) bottles. An injection molded preform is heated up above the PET glass transition temperature (Tg∼85°C) and subsequently inflated by pressurized air into a closed cavity. In the follow-up filling process, the resulting bottle is filled with the final product. A recently developed modification of the process combines the blowing and filling stages by directly using the final liquid product to inflate the preform. In a previously published paper, a mechanical simulation and successful evaluation of this liquid-driven stretch blow molding process was presented. In this way,more » a realistic process parameter dependent simulation of the preform deformation throughout the forming process was enabled, whereas the preform temperature evolution during forming was neglected. However, the formability of the preform is highly reduced when the temperature sinks below Tg during forming. Experimental investigations show temperature-induced failure cases due to the fast heat transfer between hot preform and cold liquid. Therefore, in this paper, a process dependent simulation of the temperature evolution during processing to avoid preform failure is presented. For this purpose, the previously developed mechanical model is used to extract the time dependent thickness evolution. This information serves as input for the heat transfer simulation. The required material parameters are calibrated from preform cooling experiments recorded with an infrared-camera. Furthermore, the high deformation ratios during processing lead to strain induced crystallization. This exothermal reaction is included into the simulation by extracting data from preform measurements at different stages of deformation via Differential Scanning Calorimetry (DSC). Finally, the thermal simulation model is evaluated by free forming experiments, recorded by a high-speed infrared camera.« less
Giebułtowicz, Joanna; Piotrowski, Roman; Baran, Jakub; Kułakowski, Piotr; Wroczyński, Piotr
2016-05-10
Antazoline is a first-generation antihistaminic agent with antiarrhythmic quinidine-like properties. In some countries, it is widely used for termination of cardiac arrhythmias, especially atrial fibrillation (AF). However, no human pharmacokinetic studies have been conducted with intravenous antazoline. The aim of our study was to develop and validate a novel liquid chromatography/tandem mass spectrometry (LC-MS/MS) method for the determination of antazoline in human plasma: the ELEPHANT-I [ELEctrophysiological, pharmacokinetic and hemodynamic effects of PHenazolinum (ANTazoline mesylate)] human pharmacokinetic study. Antazoline was extracted from plasma using liquid-liquid extraction. The concentration of the analyte was measured by LC-MS/MS with xylometazoline as an internal standard. The method was validated for linearity, precision, accuracy, stability (freeze/thaw stability, stability in autosampler, short and long term stability), dilution integrity and matrix effect. The analyzed validation criteria were fulfilled. The method was applied to a pharmacokinetic study involving 10 healthy volunteers. Following a single intravenous dose of antazoline mesylate (100 mg), the plasma concentration profile showed a relative fast elimination with a terminal elimination half-life of 2.29 h. A relatively high volume of distribution was observed (Vss=315 L). The values of mean residence time (MRT∞), area under the curve (AUC∞) and clearance were 3.45 h, 0.91 mg h L(-1) and 80.5 L h(-1), respectively. One volunteer showed significant differences in pharmacokinetic parameters. In conclusion, the proposed new LC-MS/MS method was successfully used for the first time for the determination of antazoline in human plasma. Copyright © 2016 Elsevier B.V. All rights reserved.
Kwok, Wai Him; Choi, Timmy L S; Kwok, Karen Y; Chan, George H M; Wong, Jenny K Y; Wan, Terence S M
2016-06-17
The high sensitivity of ultra high performance liquid chromatography coupled with high resolution mass spectrometry (UHPLC-HRMS) allows the identification of many prohibited substances without pre-concentration, leading to the development of simple and fast 'dilute-and-shoot' methods for doping control for human and equine sports. While the detection of polar drugs in plasma and urine is difficult using liquid-liquid or solid-phase extraction as these substances are poorly extracted, the 'dilute-and-shoot' approach is plausible. This paper describes a 'dilute-and-shoot' UHPLC-HRMS screening method to detect 46 polar drugs in equine urine and plasma, including some angiotensin-converting enzyme (ACE) inhibitors, sympathomimetics, anti-epileptics, hemostatics, the new doping agent 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR), as well as two threshold substances, namely dimethyl sulfoxide and theobromine. For plasma, the sample (200μL) was protein precipitated using trichloroacetic acid, and the resulting supernatant was diluted using Buffer A with an overall dilution factor of 3. For urine, the sample (20μL) was simply diluted 50-fold with Buffer A. The diluted plasma or urine sample was then analysed using a UHPLC-HRMS system in full-scan ESI mode. The assay was validated for qualitative identification purpose. This straightforward and reliable approach carried out in combination with other screening procedures has increased the efficiency of doping control analysis in the laboratory. Moreover, since the UHPLC-HRMS data were acquired in full-scan mode, the method could theoretically accommodate an unlimited number of existing and new doping agents, and would allow a retrospectively search for drugs that have not been targeted at the time of analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Dai, Xingping; Wang, Dongsheng; Li, Hui; Chen, Yanyi; Gong, Zhicheng; Xiang, Haiyan; Shi, Shuyun; Chen, Xiaoqing
2017-02-10
Polar and hydrophilic properties of hydroxybenzoic acids usually made them coelute with interferences in high performance liquid chromatography (HPLC) analysis. Then selective analysis of them was necessary. Herein, hollow porous ionic liquids composite polymers (PILs) based solid phase extraction (SPE) was firstly fabricated and coupled online with HPLC for selective analysis of hydroxybenzoic acids from complex matrices. Hollow porous PILs were firstly synthesized using Mobil Composition of Matter No. 48 (MCM-48) spheres as sacrificial support, 1-vinyl-3-methylimidazolium chloride (VMIM + Cl - ) as monomer, and ethylene glycol dimethacrylate (EGDMA) as cross-linker. Various parameters affecting synthesis, adsorption and desorption behaviors were investigated and optimized. Steady-state adsorption studies showed the resulting hollow porous PILs exhibited high adsorption capacity, fast adsorption kinetics, and excellent specific adsorption. Subsequently, the application of online SPE system was studied by selective analysis of protocatechuic acid (PCA), 4-hydroxybenzoic acid (4-HBA), and vanillic acid (VA) from Pollen Typha angustifolia. The obtained limit of detection (LOD) varied from 0.002 to 0.01μg/mL, the linear range (0.05-5.0μg/mL) was wide with correlation coefficient (R) from 0.9982 to 0.9994, and the average recoveries at three spiking levels ranged from 82.7 to 102.4%, with column-to-column relative standard deviation (RSD) below 8.1%. The proposed online method showed good accuracy, precision, specificity and convenience, which opened up a universal and efficient route for selective analysis of hydroxybenzoic acids from complex samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Extract of Salacia oblonga lowers acute glycemia in patients with type 2 diabetes.
Williams, Jennifer A; Choe, Yong S; Noss, Michael J; Baumgartner, Carl J; Mustad, Vikkie A
2007-07-01
Two previous studies tested the efficacy of Salacia oblonga extract in healthy adults. This study evaluated the effect of an herbal extract of Salacia oblonga on postprandial glycemia and insulinemia in patients with type 2 diabetes after ingestion of a high-carbohydrate meal. Sixty-six patients with diabetes were studied in this randomized, double-blinded crossover study. In a fasted state, subjects consumed 1 of the following 3 meals: a standard liquid control meal, a control meal + 240 mg Salacia oblonga extract, and a control meal + 480 mg Salacia oblonga extract. Serum glucose and insulin samples were measured at baseline and at postprandial intervals up to 180 min. Both doses of the Salacia extract significantly lowered the postprandial positive area under the glucose curve (14% for the 240 mg extract and 22% for the 480 mg extract) and the adjusted peak glucose response (19% for the lower dose and 27% for the higher dose of extract) to the control meal. In addition, both doses of the herbal extract significantly decreased the postprandial insulin response, lowering both the positive area under the insulin curve and the adjusted peak insulin response (14% and 9%, respectively, for the 240 mg extract; 19% and 12%, respectively, for the 480 mg extract) in comparison with the control meal. The extract of Salacia oblonga lowers acute glycemia and insulinemia in persons with type 2 diabetes after a high-carbohydrate meal. The results from this study suggest that Salacia may be beneficial to this population for postprandial glucose control.
Guo, Jianming; Shang, Er-Xin; Duan, Jin-Ao; Tang, Yuping; Qian, Dawei; Su, Shulan
2010-02-01
In drug metabolism research, the setting up of a complex series of mass spectrometry experiments and the subsequent analysis of the large amounts of data produced are often time-consuming. In this paper, we describe a strategy using ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC/QTOFMS) with automated data analysis software (MetaboLynx) for fast analysis of the metabolic profile of flavonoids in Abelmoschus manihot. Rat plasma and urine samples collected 1 h and 0-12 h after oral administration of Abelmoschus manihot were analyzed by UPLC/QTOFMS within 15 min. The post-acquisition data were processed using MetaboLynx. With key parameters carefully set, MetaboLynx is able to show the presence of a wide range of metabolites with only a limited requirement for manual intervention and data interpretation time. A total of 16 and 38 metabolites were identified in plasma and urine compared with blank samples. The results indicated that methylation and glucuronidation after deglycosylation were the major metabolic pathways of flavonoid glycosides in Abelmoschus manihot. The present study provided important information about the metabolism of flavonoid glycosides in Abelmoschus manihot which will be helpful for fully understanding the mechanism of action of this herb. Furthermore, this work demonstrated the potential of the UPLC/QTOFMS approach using MetaboLynx for fast and automated identification of metabolites from Chinese herbal medicines. Copyright (c) 2010 John Wiley & Sons, Ltd.
Kertesz, Vilmos; Van Berkel, Gary J
2010-07-15
In this work, a commercially available autosampler was adapted to perform direct liquid microjunction (LMJ) surface sampling followed by a high-pressure liquid chromatography (HPLC) separation of the extract components and detection with electrospray ionization mass spectrometry (ESI-MS). To illustrate the utility of coupling a separation with this direct liquid extraction based surface sampling approach, four different organs (brain, lung, kidney, and liver) from whole-body thin tissue sections of propranolol dosed and control mice were examined. The parent drug was observed in the chromatograms of the surface sampling extracts from all the organs of the dosed mouse examined. In addition, two isomeric phase II metabolites of propranolol (an aliphatic and an aromatic hydroxypropranolol glucuronide) were observed in the chromatograms of the extracts from lung, kidney, and liver. Confirming the presence of one or the other or both of these glucuronides in the extract from the various organs was not possible without the separation. These drug and metabolite data obtained using the LMJ surface sampling/HPLC-MS method and the results achieved by analyzing similar samples by conventional extraction of the tissues and subsequent HPLC-MS analysis were consistent. The ability to directly and efficiently sample from thin tissue sections via a liquid extraction and then perform a subsequent liquid phase separation increases the utility of this liquid extraction surface sampling approach.
Hoff, Rodrigo Barcellos; Pizzolato, Tânia Mara; Peralba, Maria do Carmo Ruaro; Díaz-Cruz, M Silvia; Barceló, Damià
2015-03-01
Sulfonamides are widely used in human and veterinary medicine. The presence of sulfonamides residues in food is an issue of great concern. Throughout the present work, a method for the targeted analysis of 16 sulfonamides and metabolites residue in liver of several species has been developed and validated. Extraction and clean-up has been statistically optimized using central composite design experiments. Two extraction methods have been developed, validated and compared: i) pressurized liquid extraction, in which samples were defatted with hexane and subsequently extracted with acetonitrile and ii) ultrasound-assisted extraction with acetonitrile and further liquid-liquid extraction with hexane. Extracts have been analyzed by liquid chromatography-quadrupole linear ion trap-tandem mass spectrometry. Validation procedure has been based on the Commission Decision 2002/657/EC and included the assessment of parameters such as decision limit (CCα), detection capability (CCβ), sensitivity, selectivity, accuracy and precision. Method׳s performance has been satisfactory, with CCα values within the range of 111.2-161.4 µg kg(-1), limits of detection of 10 µg kg(-1) and accuracy values around 100% for all compounds. Copyright © 2014 Elsevier B.V. All rights reserved.
Wang, Zhibing; Hu, Jianxue; Du, Hongxia; He, Shuang; Li, Qing; Zhang, Hanqi
2016-06-05
The microwave-assisted ionic liquid homogeneous liquid-liquid microextraction (MA-IL-HLLME) coupled with high performance liquid chromatography with diode array detection (HPLC-DAD) was developed for the determination of anthraquinones, including aloe-emodin, emodin, chrysophanol and physcion in root of Rheum palmatum L. Several experimental parameters influencing the extraction efficiency, including amount of sample, type and volume of ionic liquid, volume and pH value of extraction medium, microwave power and extraction time, concentration of NH4PF6 as well as centrifugal condition were optimized. When 140μL of ionic liquid ([C8MIM][BF4]) was used as an extraction solvent, target analytes can be extracted from sample matrix in one minute with the help of microwave irradiation. The MA-IL-HLLME is simple and quick. The calibration curves exhibited good linear relationship (r>0.9984). The limits of detection and quantification were in the range of 0.015-0.026 and 0.051-0.088μgmL(-1), respectively. The spiked recovery for each analyte was in the range of 81.13-93.07% with relative standard deviations lower than 6.89%. The present method is free of volatile organic solvents, and represents lower expenditures of sample, extraction time and solvent, compared with ultrasonic and heat reflux extraction. The results indicated that the present method can be successfully applied to the determination of anthraquinones in medicinal plant. Copyright © 2016 Elsevier B.V. All rights reserved.
Caballero-Díaz, Encarnación; Simonet, Bartolomé; Valcárcel, Miguel
2013-10-21
A novel method for the determination of atrazine, using liquid-liquid extraction assisted by a nanoparticles film formed in situ and composed of organic solvent stabilized-carbon nanoparticles, is described. The presence of nanoparticles located at the liquid-liquid interface reinforced the extraction of analyte from matrix prior to capillary electrophoresis (CE) analysis. Some influential experimental variables were optimized in order to enhance the extraction efficiency. The developed procedure confirmed that carbon nanoparticles, especially multi-walled carbon nanotubes, are suitable to be used in sample treatment processes introducing new mechanisms of interaction with the analyte. The application of the proposed preconcentration method followed by CE detection enabled the determination of atrazine in spiked river water providing acceptable RSD values (11.6%) and good recoveries (about 87.0-92.0%). Additionally, a similar extraction scheme was tested in soil matrices with a view to further applications in real soil samples.
Zounr, Rizwan Ali; Tuzen, Mustafa; Deligonul, Nihal; Khuhawar, Muhammad Yar
2018-07-01
A simple, fast, green, sensitive and selective ultrasonic assisted deep eutectic solvent liquid-phase microextraction technique was used for preconcentration and extraction of cadmium (Cd) in water and food samples by electrothermal atomic absorption spectrometry (ETAAS). In this technique, a synthesized reagent (Z)-N-(3,5-diphenyl-1H-pyrrol-2-yl)-3,5-diphenyl-2H-pyrrol-2-imine (Azo) was used as a complexing agent for Cd. The main factors effecting the pre-concentration and extraction of Cd such as effect of pH, type and composition of deep eutectic solvent (DES), volume of DES, volume of complexing agent, volume of tetrahydrofuran (THF) and ultrasonication time have been examined in detail. At optimum conditions the value of pH and molar ratio of DES were found to be 6.0 and 1:4 (ChCl:Ph), respectively. The detection limit (LOD), limit of quantification (LOQ), relative standard deviation (RSD) and preconcentration factor (PF) were observed as 0.023 ng L -1 , 0.161 ng L -1 , 3.1% and 100, correspondingly. Validation of the developed technique was observed by extraction of Cd in certified reference materials (CRMs) and observed results were successfully compared with certified values. The developed procedure was practiced to various food, beverage and water samples. Copyright © 2018 Elsevier Ltd. All rights reserved.
Pappula, Nagaraju; Kodali, Balaji; Datla, Peda Varma
2018-04-15
Highly selective and fast liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed and validated for simultaneous determination of tadalafil (TDL) and finasteride (FNS) in human plasma. The method was successfully applied for analysis of TDL and FNS samples in clinical study. The method was validated as per USFDA (United States Food and Drug Administration), EMA (European Medicines Agency), and ANVISA (Agência Nacional de Vigilância Sanitária-Brazil) bio analytical method validation guidelines. Glyburide (GLB) was used as common internal standard (ISTD) for both analytes. The selected multiple reaction monitoring (MRM) transitions for mass spectrometric analysis were m/z 390.2/268.2, m/z 373.3/305.4 and m/z 494.2/369.1 for TDL, FNS and ISTD respectively. The extraction of analytes and ISTD was accomplished by a simple solid phase extraction (SPE) procedure. Rapid analysis time was achieved on Zorbax Eclipse C18 column (50 × 4.6 mm, 5 μm). The calibration ranges for TDL and FNS were 5-800 ng/ml and 0.2-30 ng/ml respectively. The results of precision and accuracy, linearity, recovery and matrix effect of the method are acceptable. The accuracy was in the range of 92.9%-106.4% and method precision was also good; %CV was less than 8.1%. Copyright © 2018 Elsevier B.V. All rights reserved.
Gao, Xin; Yang, Bofeng; Tang, Zhixu; Luo, Xin; Wang, Fengmei; Xu, Hui; Cai, Xue
2014-01-01
A solid phase extraction (SPE) high-performance liquid chromatography (HPLC) method was developed for the simultaneous determination of 10 phthalic acid esters (dimethyl phthalate, diethyl phthalate, dipropyl phthalate, benzylbutyl phthalate, diisobutyl phthalate, dicyclohexyl phthalate, diamyl phthalate, di-n-hexyl phthalate, di-n-octyl phthalate and di-2-ethylhexyl phthalate) released from food paper packaging materials. The use of distilled water, 3% acetic acid (w/v), 10% ethanol (v/v) and 95% ethanol (v/v) instead of the different types of food simulated the migration of 10 phthalic acid esters from food paper packaging materials; the phthalic acid esters in four food simulants were enriched and purified by a C18 SPE column and nitrogen blowing, and quantified by HPLC with a diode array detector. The chromatographic conditions and extraction conditions were optimized and all 10 of the phthalate acid esters had a maximum absorbance at 224 nm. The method showed limitations of detection in the range of 6.0-23.8 ng/mL the correlation coefficients were greater than 0.9999 in all cases, recovery values ranged between 71.27 and 106.97% at spiking levels of 30, 60 and 90 ng/mL and relative standard deviation values ranged from 0.86 to 8.00%. The method was considered to be simple, fast and reliable for a study on the migration of these 10 phthalic acid esters from food paper packaging materials into food.
Zhou, Xi; Cui, Kunyan; Zeng, Feng; Li, Shoucong; Zeng, Zunxiang
2016-06-01
In the present study, solid-phase extraction cartridges including silica reversed-phase Isolute C18, polymeric reversed-phase Oasis HLB and mixed-mode anion-exchange Oasis MAX, and liquid-liquid extractions with ethyl acetate, n-hexane, dichloromethane and its mixtures were compared for clean-up of phthalate monoesters from vegetable samples. Best recoveries and minimised matrix effects were achieved using ethyl acetate/n-hexane liquid-liquid extraction for these target compounds. A simple and selective method, based on sample preparation by ultrasonic extraction and liquid-liquid extraction clean-up, for the determination of phthalate monoesters in vegetable samples by liquid chromatography/electrospray ionisation-tandem mass spectrometry was developed. The method detection limits for phthalate monoesters ranged from 0.013 to 0.120 ng g(-1). Good linearity (r(2)>0.991) between MQLs and 1000× MQLs was achieved. The intra- and inter-day relative standard deviation values were less than 11.8%. The method was successfully used to determine phthalate monoester metabolites in the vegetable samples. Copyright © 2016 Elsevier Ltd. All rights reserved.
Oellig, Claudia
2017-07-21
Ergot alkaloids are generally determined by high-performance liquid chromatography (HPLC) coupled to fluorescence detection (FLD) or mass selective detection, analyzing the individual compounds. However, fast and easy screening methods for the determination of the total ergot alkaloid content are more suitable, since for monitoring only the sum of the alkaloids is relevant. The herein presented screening uses lysergic acid amide (LSA) as chemical marker, formed from ergopeptine alkaloids, and ergometrine for the determination of the total ergot alkaloids in rye with high-performance thin-layer chromatography-fluorescence detection (HPTLC-FLD). An ammonium acetate buffered extraction step was followed by liquid-liquid partition for clean-up before the ergopeptine alkaloids were selectively transformed to LSA and analyzed by HPTLC-FLD on silica gel with isopropyl acetate/methanol/water/25% ammonium hydroxide solution (80:10:3.8:1.1, v/v/v/v) as the mobile phase. The enhanced native fluorescence of LSA and unaffected ergometrine was used for quantitation without any interfering matrix. Limits of detection and quantitation were 8 and 26μg LSA/kg rye, which enables the determination of the total ergot alkaloids far below the applied quality criterion limit for rye. Close to 100% recoveries for different rye flours at relevant spiking levels were obtained. Thus, reliable results were guaranteed, and the fast and efficient screening for the total ergot alkaloids in rye offers a rapid alternative to the HPLC analysis of the individual compounds. Copyright © 2017 Elsevier B.V. All rights reserved.
Yang, Ying; Wen, Jing; Kong, Weijun; Liu, Qiutao; Luo, Hongli; Wang, Jian; Yang, Meihua
2016-09-01
Aflatoxins (AFs) and ochratoxin A (OTA) have been detected frequently in food, agricultural products and traditional Chinese medicines, and their presence poses serious health and economic problems worldwide. Ginger can easily be polluted with mycotoxins. In this study, ginger samples were cultivated for 15 days after inoculation with fungi and were prepared based on ultrasound-assisted solid-liquid extraction using methanol/water followed by immunoaffinity column clean-up and analysed by ultra-fast liquid chromatography-tandem mass spectrometry (UFLC-MS/MS) for AFs and OTA. The limits of detection and quantification of AFs and OTA were 0.04-0.30 µg mL(-1) and 0.125-1.0 µg mL(-1) , respectively. The recoveries were 82.0-100.2%. After 15 days' cultivation, no macroscopic mildew was found in ginger. But, the content of AFB1 expressed an increasing trend in ginger, peel [less than the limit of quantification (LOQ)] to the innermost layer (51.86 µ mL(-1) ), AFB2 was only detected in the innermost layer at the level of 0.87 µ mL(-1) . A small amount (
Design of extraction system in BRing at HIAF
NASA Astrophysics Data System (ADS)
Ruan, Shuang; Yang, Jiancheng; Zhang, Jinquan; Shen, Guodong; Ren, Hang; Liu, Jie; Shangguan, Jingbing; Zhang, Xiaoying; Zhang, Jingjing; Mao, Lijun; Sheng, Lina; Yin, Dayu; Wang, Geng; Wu, Bo; Yao, Liping; Tang, Meitang; Cai, Fucheng; Chen, Xiaoqiang
2018-06-01
The Booster Ring (BRing), which is the key part of HIAF (High Intensity heavy ion Accelerator Facility) complex at IMP (Institute of Modern Physics, Chinese Academy of Sciences), can provide uranium (A / q = 7) beam with a wide extraction energy range of 200-800 MeV/u. To fulfill a flexible beam extraction for multi-purpose experiments, both fast and slow extraction systems will be accommodated in the BRing. The fast extraction system is used for extracting short bunched beam horizontally in single-turn. The slow extraction system is used to provide quasi-continuous beam by the third order resonance and RF-knockout scheme. To achieve a compact structure, the two extraction systems are designed to share the same extraction channel. The general design of the fast and slow extraction systems and simulation results are discussed in this paper.
Ramírez Fernández, María del Mar; Van Durme, Filip; Wille, Sarah M R; di Fazio, Vincent; Kummer, Natalie; Samyn, Nele
2014-06-01
The aim of this work was to automate a sample preparation procedure extracting morphine, hydromorphone, oxymorphone, norcodeine, codeine, dihydrocodeine, oxycodone, 6-monoacetyl-morphine, hydrocodone, ethylmorphine, benzoylecgonine, cocaine, cocaethylene, tramadol, meperidine, pentazocine, fentanyl, norfentanyl, buprenorphine, norbuprenorphine, propoxyphene, methadone and 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine from urine samples. Samples were extracted by solid-phase extraction (SPE) with cation exchange cartridges using a TECAN Freedom Evo 100 base robotic system, including a hydrolysis step previous extraction when required. Block modules were carefully selected in order to use the same consumable material as in manual procedures to reduce cost and/or manual sample transfers. Moreover, the present configuration included pressure monitoring pipetting increasing pipetting accuracy and detecting sampling errors. The compounds were then separated in a chromatographic run of 9 min using a BEH Phenyl analytical column on a ultra-performance liquid chromatography-tandem mass spectrometry system. Optimization of the SPE was performed with different wash conditions and elution solvents. Intra- and inter-day relative standard deviations (RSDs) were within ±15% and bias was within ±15% for most of the compounds. Recovery was >69% (RSD < 11%) and matrix effects ranged from 1 to 26% when compensated with the internal standard. The limits of quantification ranged from 3 to 25 ng/mL depending on the compound. No cross-contamination in the automated SPE system was observed. The extracted samples were stable for 72 h in the autosampler (4°C). This method was applied to authentic samples (from forensic and toxicology cases) and to proficiency testing schemes containing cocaine, heroin, buprenorphine and methadone, offering fast and reliable results. Automation resulted in improved precision and accuracy, and a minimum operator intervention, leading to safer sample handling and less time-consuming procedures.
Ndlovu, Thando; Rautenbach, Marina; Vosloo, Johann Arnold; Khan, Sehaam; Khan, Wesaal
2017-12-01
Biosurfactants are unique secondary metabolites, synthesised non-ribosomally by certain bacteria, fungi and yeast, with their most promising applications as antimicrobial agents and surfactants in the medical and food industries. Naturally produced glycolipids and lipopeptides are found as a mixture of congeners, which increases their antimicrobial potency. Sensitive analysis techniques, such as liquid chromatography coupled to mass spectrometry, enable the fingerprinting of different biosurfactant congeners within a naturally produced crude extract. Bacillus amyloliquefaciens ST34 and Pseudomonas aeruginosa ST5, isolated from wastewater, were screened for biosurfactant production. Biosurfactant compounds were solvent extracted and characterised using ultra-performance liquid chromatography (UPLC) coupled to electrospray ionisation mass spectrometry (ESI-MS). Results indicated that B. amyloliquefaciens ST34 produced C 13-16 surfactin analogues and their identity were confirmed by high resolution ESI-MS and UPLC-MS. In the crude extract obtained from P. aeruginosa ST5, high resolution ESI-MS linked to UPLC-MS confirmed the presence of di- and monorhamnolipid congeners, specifically Rha-Rha-C 10 -C 10 and Rha-C 10 -C 10 , Rha-Rha-C 8 -C 10 /Rha-Rha-C 10 -C 8 and Rha-C 8 -C 10 /Rha-C 10 -C 8 , as well as Rha-Rha-C 12 -C 10 /Rha-Rha-C 10 -C 12 and Rha-C 12 -C 10 /Rha-C 10 -C 12 . The crude surfactin and rhamnolipid extracts also retained pronounced antimicrobial activity against a broad spectrum of opportunistic and pathogenic microorganisms, including antibiotic resistant Staphylococcus aureus and Escherichia coli strains and the pathogenic yeast Candida albicans. In addition, the rapid solvent extraction combined with UPLC-MS of the crude samples is a simple and powerful technique to provide fast, sensitive and highly specific data on the characterisation of biosurfactant compounds.
Kubáň, Pavel; Boček, Petr
2014-04-11
This contribution describes properties and utilization of free liquid membranes (FLMs) in micro-electromembrane extraction (μ-EME) of analytes from samples with complex matrices. An FLM was formed as a plug of a selected organic solvent, 1-ethyl-2-nitrobenezene (ENB) or 2-nitrophenyloctyl ether, in a narrow bore polymeric tubing and was sandwiched between a plug of aqueous donor and aqueous acceptor solution. The FLM acted as a phase interface that enabled selective transfer of analytes from donor into acceptor solution. Acceptor solution after μ-EME was analysed by capillary electrophoresis (CE). Fundamental characteristics of FLMs were depicted and discussed by presenting experimental data on their performance for various basic operational parameters, such as composition and volume of donor/acceptor solution, applied extraction voltage, thickness of FLM and extraction time. Positively charged basic drugs (nortriptyline, haloperidol and loperamide) and their solutions in water, urine and blood serum served as model samples. It was shown that FLMs may offer fast, efficient and selective pretreatment of crude biological samples providing that basic operational parameters of μ-EME are set properly. At optimised conditions, basic drugs in 1.5μL of a biological sample were transferred across 1.5μL of FLM (ENB) into 1.5μL of acceptor solution in about 5min at an extraction voltage of 100V. Repeatability values of μ-EMEs and CE-UV analyses of the three basic drugs were better than 7.7% for peak areas, recoveries ranged between 19 and 52% and linear relationship was obtained for analytical signal vs. concentration in 1-50mgL(-1) range (r(2) better than 0.996). Limits of detection, defined as 3×S/N, were below 1mgL(-1) for all examined matrices. Copyright © 2014 Elsevier B.V. All rights reserved.
Kaufmann, Anton; Maden, Kathryn
2018-03-01
A quantitative method for the determination of biogenic amines was developed. The method is characterized by the virtual absence of sample cleanup and does not require a derivatization reaction. Diluted extracts are centrifuged, filtrated, and directly injected into an ultra-HPLC column, which is coupled to a single-stage high-resolution mass spectrometer (Orbitrap). The chromatography is based on a reversed-phase column and an eluent containing an ion-pairing agent (heptafluorobutyric acid). The high sensitivity of the instrument permits the injection of very diluted extracts, which ensures stable retention times and the virtual absence of signal suppression effects. In addition, the quantification of histamine (a regulated compound) is further aided by the use of an isotopically labeled internal standard. The method was validated for three fish-based matrixes. Both the sample processing and the analytical measurement are very fast; hence, the methodology is ideal for high-throughput work. In addition, the method is significantly more selective than conventional methods (i.e., derivatization followed by LC with UV/fluorescence (FL) detection) for biogenic amines. A comparison showed that LC-UV/FL methods can produce false-positive findings due to coeluting matrix compounds.
Code of Federal Regulations, 2011 CFR
2011-01-01
... reactors, flame tower reactors, liquid centrifuges, distillation columns and liquid-liquid extraction... UF4 to UF6 is performed by exothermic reaction with fluorine in a tower reactor. UF6 is condensed from..., flame tower reactors, liquid centrifuges, distillation columns and liquid-liquid extraction columns. Hot...
ERIC Educational Resources Information Center
Naviglio, Daniele; Montesano, Domenico; Gallo, Monica
2015-01-01
Two experimental techniques of solid-liquid extraction are compared relating to the lab-scale production of lemon liqueur, most commonly named "limoncello"; the first is the official method of maceration for the solid-liquid extraction of analytes and is widely used to extract active ingredients from a great variety of natural products;…
Liquid CO2 extraction of Jasminum grandiflorum and comparison with conventional processes.
Prakash, Om; Sahoo, Deeptanjali; Rout, Prasant Kumar
2012-01-01
The concrete (0.35%) of Jasminum grandiflorum L. flowers was prepared by extraction in n-pentane, and the absolute (0.27%) by fractionation of the n-pentane extract (concrete) with cold methanol. Direct extraction of flowers with liquid CO2 gave a relatively fat-free product in 0.26% yield. The liquid CO2 extract was enriched with terpenoids and benzenoids, thus providing the organoleptically accepted product. The major compounds, such as benzyl acetate, (E,E)-alpha-farnesene and (Z)-3-hexenyl benzoate, along with compounds like indole, methyl anthranilate, (Z)-jasmone, (Z)-methyl jasmonoate and (Z)-methyl epi-jasmonoate, are responsible for the high diffusivity of the jasmine fragrance. These compounds have been obtained with improved recoveries in the liquid CO2 extract. On the other hand, the yield of the essential oil was poor (0.05%), and some polar compounds (oxygenated terpenoids) were recovered in less amounts in comparison with either the n-pentane or liquid CO2 extract.
Use of liquid/supercritical CO2 extraction process for butanol recovery from fermentation broth
USDA-ARS?s Scientific Manuscript database
In order for butanol fermentation to be a viable option, it is essential to recover it from fermentation broth using economical alternate in-situ product recovery techniques such as liquid/supercritical CO2 extraction as compared to distillation. This technique (liquid CO2 extraction & supercritical...
Van Loo, Ellen J; Babu, D; Crandall, Philip G; Ricke, Steven C
2012-06-01
Liquid smoke extracts have traditionally been used as flavoring agents, are known to possess antioxidant properties, and serve as natural alternatives to conventional antimicrobials. The antimicrobial efficacies of commercial liquid smoke samples may vary depending on their source and composition and the methods used to extract and concentrate the smoke. We investigated the MICs of eight commercial liquid smoke samples against Salmonella Enteritidis, Staphylococcus aureus, and Escherichia coli . The commercial liquid smoke samples purchased were supplied by the manufacturer as water-based or concentrated extracts of smoke from different wood sources. The MICs of the commercial smokes to inhibit the growth of foodborne pathogens ranged from 0.5 to 6.0% for E. coli, 0.5 to 8.0% for Salmonella, and 0.38 to 6% for S. aureus. The MIC for each liquid smoke sample was similar in its effect on both E. coli and Salmonella. Solvent-extracted antimicrobials prepared using pecan shells displayed significant differences between their inhibitory concentrations depending on the type of solvent used for extraction. The results indicated that the liquid smoke samples tested in this study could serve as effective natural antimicrobials and that their inhibitory effects depended more on the solvents used for extraction than the wood source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delegard, Calvin H.; Casella, Amanda J.
2016-09-30
This report summarizes the literature reviewed on crud formation at the liquid:liquid interface of solvent extraction processes. The review is focused both on classic PUREX extraction for industrial reprocessing, especially as practiced at the Hanford Site, and for those steps specific to plutonium purification that were used at the Plutonium Reclamation Facility (PRF) within the Plutonium Finishing Plant (PFP) at the Hanford Site.
An inkjet-printed microfluidic device for liquid-liquid extraction.
Watanabe, Masashi
2011-04-07
A microfluidic device for liquid-liquid extraction was quickly produced using an office inkjet printer. An advantage of this method is that normal end users, who are not familiar with microfabrication, can produce their original microfluidic devices by themselves. In this method, the printer draws a line on a hydrophobic and oil repellent surface using hydrophilic ink. This line directs a fluid, such as water or xylene, to form a microchannel along the printed line. Using such channels, liquid-liquid extraction was successfully performed under concurrent and countercurrent flow conditions. © The Royal Society of Chemistry 2011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foltz, K.; Landsberger, S.; Srinivasan, B.
1994-12-31
A method for the separation of radionuclides with Z greater than 88, from lower-level radioactive wastes (liquid scintillation cocktail or LSC wastes), is described. The method is liquid-liquid extraction (LLX) and demulsification. The actinide elements are removed from the LSC wastes by extraction into an aqueous phase after the cocktail has been demulsified. The aqueous and organic phases are separated, then the wastes type remaining may be incinerated. Future experiments will be performed to study the effects of pH and temperature and to extend the study to wastes containing americium.
Sermkaew, Namfa; Ketjinda, Wichan; Boonme, Prapaporn; Phadoongsombut, Narubodee; Wiwattanapatapee, Ruedeekorn
2013-11-20
The purpose of this study was to develop self-microemulsifying formulations of an Andrographis paniculata extract in liquid and pellet forms for an improved oral delivery of andrographolide. The optimized liquid self-microemulsifying drug delivery system (SMEDDS) was composed of A. paniculata extract (11.1%), Capryol 90 (40%), Cremophor RH 40 (40%) and Labrasol (8.9%). This liquid SMEDDS was further adsorbed onto colloidal silicon dioxide and microcrystalline cellulose, and converted to SMEDDS pellets by the extrusion/spheronization technique. The microemulsion droplet sizes of the liquid and pellet formulations after dilution with water were in the range of 23.4 and 30.3 nm. The in vitro release of andrographolide from the liquid SMEDDS and SMEDDS pellets was 97.64% (SD 1.97%) and 97.74% (SD 3.36%) within 15 min, respectively while the release from the initial extract was only 10%. The oral absorption of andrographolide was determined in rabbits. The C(max) value of andrographolide from the A. paniculata extract liquid SMEDDS and SMEDDS pellet formulations (equivalent to 17.5mg/kg of andrographolide) was 6-fold and 5-fold greater than the value from the initial extract in aqueous suspension (equivalent to 35 mg/kg of andrographolide), respectively. In addition, the AUC(0-12h) was increased 15-fold by the liquid SMEDDS and 13-fold by the SMEDDS pellets compared to the extract in aqueous suspension, respectively. The results clearly indicated that the liquid and solid SMEDDS could be effectively used to improve the dissolution and oral bioavailability that would also enable a reduction in the dose of the poorly water soluble A. paniculata extract. Copyright © 2013 Elsevier B.V. All rights reserved.
Task-specific ionic liquid-assisted extraction and separation of astaxanthin from shrimp waste.
Bi, Wentao; Tian, Minglei; Zhou, Jun; Row, Kyung Ho
2010-08-15
Astaxanthin, as an outstanding antioxidant reagent, was successfully extracted from shrimp waste by the ionic liquids based ultrasonic-assisted extraction. Seven kinds of imidazolium ionic liquids with different cations and anions were investigated in this work and one task-specific ionic liquid in ethanol with 0.50molL(-1) was selected as the solvent. At the optimized ultrasonic extraction conditions, the extraction amount of astaxanthin increased 98% (92.7microg g(-1)) compared to the conventional method (46.7microg g(-1)). Furthermore, the extracted solution was isolated through the solid-phase extraction with a molecularly imprinted polymer sorbent. After loading the samples on molecularly imprinted polymer cartridge, the different washing and elution solvents, such as water, methanol, n-hexane, acetone and dichloromethane, were evaluated, and finally, astaxanthin was separated from the shrimp waste extract. Copyright 2010 Elsevier B.V. All rights reserved.
Waseem, Rabia; Low, Kah Hin
2015-02-01
In recent years, essential oils have received a growing interest because of the positive health effects of their novel characteristics such as antibacterial, antifungal, and antioxidant activities. For the extraction of plant-derived essential oils, there is the need of advanced analytical techniques and innovative methodologies. An exhaustive study of hydrodistillation, supercritical fluid extraction, ultrasound- and microwave-assisted extraction, solid-phase microextraction, pressurized liquid extraction, pressurized hot water extraction, liquid-liquid extraction, liquid-phase microextraction, matrix solid-phase dispersion, and gas chromatography (one- and two-dimensional) hyphenated with mass spectrometry for the extraction through various plant species and analysis of essential oils has been provided in this review. Essential oils are composed of mainly terpenes and terpenoids with low-molecular-weight aromatic and aliphatic constituents that are particularly important for public health. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
[Determination of 25 quinolones in cosmetics by liquid chromatography-tandem mass spectrometry].
Lin, Li; Zhang, Yi; Tu, Xiaoke; Xie, Liqi; Yue, Zhenfeng; Kang, Haining; Wu, Weidong; Luo, Yao
2015-03-01
An analytical method was developed for the simultaneous determination of 25 quinolones, including danofloxacin mesylate, enrofloxacin, flumequine, oxloinic acid, ciprofloxacin, sarafloxacin, nalidixic acid, norfloxacin, and ofloxacin etc in cosmetics using direct extraction and liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Cosmetic sample was extracted by acidified acetonitrile, defatted by n-hexane and separated on Poroshell EC-C18 column with gradient elution program using acetonitrile and water (both containing 0. 1% formic acid) as the mobile phases and analyzed by LC-ESI-MS/MS under the positive mode using multiple reaction monitoring (MRM). The interference of matrix was reduced by the matrix-matched calibration standard curve. The method showed good linearities over the range of 1-200 mg/kg for the 25 quinolones with good linear correlation coefficients (r ≥ 0.999). The method detection limit of the 25 quinolones was 1.0 mg/kg, and the recoveries of all analytes in lotion, milky and cream cosmetics matrices ranged from 87.4% to 105% at the spiked levels of 1, 5 and 10 mg/kg with the relative standard deviations (RSD) of 4.54%-19.7% (n = 6). The results indicated that this method is simple, fast and credible, and suitable for the simultaneous determination of the quinolones in the above three types of cosmetics.
Wang, Rui; Chu, Yanle; Li, Xiaotian; Wan, Baoluo; Yu, Tong; Wang, Linxi; Hao, Lianqi; Guo, Maowen
2013-12-01
A reversed-phase ion pair chromatography method with liquid-liquid extraction analytical method was developed and validated for the determination of antazoline hydrochloride in plasma and excreta of rat. The aim of our study was to characterize the preclinical pharmacokinetics and excretion profiles of antazoline hydrochloride in rats after intravenous injection at the dose of 10 mg/kg. Plasma and excreta samples were extracted with ethyl acetate, and phenacetin was used as the internal standard. The result showed that the method is suitable for the quantification of antazoline hydrochloride in plasma and excreta samples. Analysis of accuracy (90.89-112.33%), imprecision (<7.1%) and recovery (>82.5%) showed adequate values. After a single intravenous administration at 10 mg/kg to rats, plasma concentration profile showed a relative fast elimination proceeding with a terminal elimination half-life of 3.53 h. Approximately 61.8 and 14.2% of the administered dose were recovered in urine and bile after 72 and 24 h post-dosing respectively; 5.9% of the administered dose was recovered in feces after 72 h post-dosing. The above results show that the major elimination route is urinary excretion. Copyright © 2013 John Wiley & Sons, Ltd.
Magnetic Resonance Imaging Quantification of Fasted State Colonic Liquid Pockets in Healthy Humans.
Murray, Kathryn; Hoad, Caroline L; Mudie, Deanna M; Wright, Jeff; Heissam, Khaled; Abrehart, Nichola; Pritchard, Susan E; Al Atwah, Salem; Gowland, Penny A; Garnett, Martin C; Amidon, Gregory E; Spiller, Robin C; Amidon, Gordon L; Marciani, Luca
2017-08-07
The rate and extent of drug dissolution and absorption from solid oral dosage forms is highly dependent on the volume of liquid in the gastrointestinal tract (GIT). However, little is known about the time course of GIT liquid volumes after drinking a glass of water (8 oz), particularly in the colon, which is a targeted site for both locally and systemically acting drug products. Previous magnetic resonance imaging (MRI) studies offered novel insights on GIT liquid distribution in fasted humans in the stomach and small intestine, and showed that freely mobile liquid in the intestine collects in fairly distinct regions or "pockets". Based on this previous pilot data, we hypothesized that (1) it is possible to quantify the time course of the volume and number of liquid pockets in the undisturbed colon of fasted healthy humans following ingestion of 240 mL, using noninvasive MRI methods; (2) the amount of freely mobile water in the fasted human colon is of the order of only a few milliliters. Twelve healthy volunteers fasted overnight and underwent fasted abdominal MRI scans before drinking 240 mL (∼8 fluid ounces) of water. After ingesting the water they were scanned at frequent intervals for 2 h. The images were processed to quantify freely mobile water in the total and regional colon: ascending, transverse, and descending. The fasted colon contained (mean ± SEM) 11 ± 5 pockets of resting liquid with a total volume of 2 ± 1 mL (average). The colonic fluid peaked at 7 ± 4 mL 30 min after the water drink. This peak fluid was distributed in 17 ± 7 separate liquid pockets in the colon. The regional analysis showed that pockets of free fluid were found primarily in the ascending colon. The interindividual variability was very high; the subjects showed a range of number of colonic fluid pockets from 0 to 89 and total colonic freely mobile fluid volume from 0 to 49 mL. This is the first study measuring the time course of the number, regional location, and volume of pockets of freely mobile liquid in the undisturbed colon of fasted humans after ingestion of a glass of water. Novel insights into the colonic fluid environment will be particularly relevant to improve our understanding and design of the in vivo performance of controlled release formulations targeted to the colon. The in vivo quantitative information presented here can be input into physiologically based mechanistic models of dissolution and absorption, and can be used in the design and set up of novel in vitro performance tools predictive of the in vivo environment.
Chembio extraction on a chip by nanoliter droplet ejection.
Yu, Hongyu; Kwon, Jae Wan; Kim, Eun Sok
2005-03-01
This paper describes a novel liquid separation technique for chembio extraction by an ultrasonic nanoliter-liquid-droplet ejector built on a PZT sheet. This technique extracts material from an aqueous two-phase system (ATPS) in a precise amount through digital control of the number of nanoliter droplets, without any mixing between the two liquids in the ATPS. The ultrasonic droplet ejector uses an acoustic streaming effect produced by an acoustic beam focused on the liquid surface, and ejects liquid droplets only from the liquid surface without disturbing most of the liquid below the surface. This unique characteristic of the focused acoustic beam is perfect (1) for separating a top-layer liquid (from the bulk of liquid) that contains particles of interest or (2) for recovering a top-layer liquid that has different phase from a bottom-layer liquid. Three kinds of liquid extraction are demonstrated with the ultrasonic droplet ejector: (1) 16 microl of top layer in Dextran-polyethylene glycol-water ATPS (aqueous two-phase system) is recovered within 20 s; (2) micron sized particles that float on water surface are ejected out with water droplets; and (3) oil layer on top of water is separated out.
Sun, Jian-Nan; Chen, Juan; Shi, Yan-Ping
2014-07-01
A new mode of ionic liquid based dispersive liquid-liquid microextraction (IL-DLLME) is developed. In this work, [C6MIm][PF6] was chosen as the extraction solvent, and two kinds of hydrophilic ionic liquids, [EMIm][BF4] and [BSO3HMIm][OTf], functioned as the dispersive solvent. So in the whole extraction procedure, no organic solvent was used. With the aid of SO3H group, the acidic compound was extracted from the sample solution without pH adjustment. Two phenolic compounds, namely, 2-naphthol and 4-nitrophenol were chosen as the target analytes. Important parameters affecting the extraction efficiency, such as the type of hydrophilic ionic liquids, the volume ratio of [EMIm][BF4] to [BSO3HMIm][OTf], type and volume of extraction solvent, pH value of sample solution, sonication time, extraction time and centrifugation time were investigated and optimized. Under the optimized extraction conditions, the method exhibited good sensitivity with the limits of detection (LODs) at 5.5 μg L(-1)and 10.0 μg L(-1) for 4-nitrophenol and 2-naphthol, respectively. Good linearity over the concentration ranges of 24-384 μg L(-1) for 4-nitrophenol and 28-336 μg L(-1) for 2-naphthol was obtained with correlation coefficients of 0.9998 and 0.9961, respectively. The proposed method can directly extract acidic compound from environmental sample or even more complex sample matrix without any pH adjustment procedure. Copyright © 2014 Elsevier B.V. All rights reserved.
Li, Chunying; Lu, Zhicheng; Zhao, Chunjian; Yang, Lei; Fu, Yujie; Shi, Kunming; He, Xin; Li, Zhao; Zu, Yuangang
2015-01-01
We evaluated an ionic-liquid-based ultrasound/microwave-assisted extraction method for the extraction of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one and 6-methoxy-benzoxazolin-2-one from etiolated maize seedlings. We performed single-factor and central composite rotatable design experiments to optimize the most important parameters influencing this technique. The best results were obtained using 1.00 M 1-octyl-3-methylimidazolium bromide as the extraction solvent, a 50°C extraction temperature, a 20:1 liquid/solid ratio (mL/g), a 21 min treatment time, 590 W microwave power, and 50 W fixed ultrasonic power. We performed a comparison between ionic-liquid-based ultrasound/microwave-assisted extraction and conventional homogenized extraction. Extraction yields of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one and 6-methoxy-benzoxazolin-2-one by the ionic-liquid-based ultrasound/microwave-assisted extraction method were 1.392 ± 0.051 and 0.205 ± 0.008 mg/g, respectively, which were correspondingly 1.46- and 1.32-fold higher than those obtained by conventional homogenized extraction. All the results show that the ionic-liquid-based ultrasound/microwave-assisted extraction method is therefore an efficient and credible method for the extraction of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one and 6-methoxy-benzoxazolin-2-one from maize seedlings. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wei, Shih-Chun; Fan, Shen; Lien, Chia-Wen; Unnikrishnan, Binesh; Wang, Yi-Sheng; Chu, Han-Wei; Huang, Chih-Ching; Hsu, Pang-Hung; Chang, Huan-Tsung
2018-03-20
A graphene oxide (GO) nanosheet-modified N + -nylon membrane (GOM) has been prepared and used as an extraction and spray-ionization substrate for robust mass spectrometric detection of malachite green (MG), a highly toxic disinfectant in liquid samples and fish meat. The GOM is prepared by self-deposition of GO thin film onto an N + -nylon membrane, which has been used for efficient extraction of MG in aquaculture water samples or homogenized fish meat samples. Having a dissociation constant of 2.17 × 10 -9 M -1 , the GOM allows extraction of approximately 98% of 100 nM MG. Coupling of the GOM-spray with an ion-trap mass spectrometer allows quantitation of MG in aquaculture freshwater and seawater samples down to nanomolar levels. Furthermore, the system possesses high selectivity and sensitivity for the quantitation of MG and its metabolite (leucomalachite green) in fish meat samples. With easy extraction and efficient spray ionization properties of GOM, this membrane spray-mass spectrometry technique is relatively simple and fast in comparison to the traditional LC-MS/MS methods for the quantitation of MG and its metabolite in aquaculture products. Copyright © 2017 Elsevier B.V. All rights reserved.
Application of PLE for the determination of essential oil components from Thymus vulgaris L.
Dawidowicz, Andrzej L; Rado, Ewelina; Wianowska, Dorota; Mardarowicz, Marek; Gawdzik, Jan
2008-08-15
Essential plants, due to their long presence in human history, their status in culinary arts, their use in medicine and perfume manufacture, belong to frequently examined stock materials in scientific and industrial laboratories. Because of a large number of freshly cut, dried or frozen plant samples requiring the determination of essential oil amount and composition, a fast, safe, simple, efficient and highly automatic sample preparation method is needed. Five sample preparation methods (steam distillation, extraction in the Soxhlet apparatus, supercritical fluid extraction, solid phase microextraction and pressurized liquid extraction) used for the isolation of aroma-active components from Thymus vulgaris L. are compared in the paper. The methods are mainly discussed with regard to the recovery of components which typically exist in essential oil isolated by steam distillation. According to the obtained data, PLE is the most efficient sample preparation method in determining the essential oil from the thyme herb. Although co-extraction of non-volatile ingredients is the main drawback of this method, it is characterized by the highest yield of essential oil components and the shortest extraction time required. Moreover, the relative peak amounts of essential components revealed by PLE are comparable with those obtained by steam distillation, which is recognized as standard sample preparation method for the analysis of essential oils in aromatic plants.
An HPLC/UV method for the determination of RGH-1756 in dog and rat plasma.
Terjéki, E; Kapás, M
2001-03-01
RGH-1756 (1-(2-methoxy-phenyl)-4-(4-[4-(6-imidazo[2,1-b]-thiazolyl)-phenoxy]-butyl)-piperazine dimethansulphonate) is a novel atypical antipsychotic candidate of Gedeon Richter Ltd. A new HPLC method has been developed and validated for the quantitative determination of RGH-1756 in dog and rat plasma. The compound and the internal standard are extracted from the biological samples by a simple and fast liquid--liquid extraction method, using 1-chlorobutane. The recovery for RGH-1756 is about 90%. The extracts are analyzed by reversed phase HPLC (column: Supelcosil-LC-18-DB 250*4.6 mm, 5 microm, eluent:acetonitrile:methanol:0.2 molar ammonium-acetate 40:25:35, lambda=254 nm). The assay is specific for RGH-1756. The standard curves are linear in the range between 10 and 2000 ng ml(-1). The overall precision (expressed as CV%) and accuracy (expressed as bias%) of quality controls and calibration standards are within 15%. The validated lower limit of quantification is 10 ng/ml. No indications have been found for possible instabilities of RGH-1756 in plasma, in the extraction solvent, or after repeated thawing-freezing cycles. The method has been succesfully applied for the bioavailability studies of RGH-1756 in the two animal species. In these studies results of the inprocess method validation have shown the reliability of the method, too. CV% of quality controls in the rat study has been found between 7.4 and 10.0%, in the dog study between 4.1 and 12.5%. The bias has ranged from 0.4 to 3.8% and from -4.5 to 1.2% in the rat and dog study, respectively.
Lashgari, Maryam; Lee, Hian Kee
2014-11-21
In the current study, a simple, fast and efficient combination of protein precipitation and micro-solid phase extraction (μ-SPE) followed by liquid chromatography-triple quadrupole tandem mass spectrometry (LC-MS/MS) was developed for the determination of perfluorinated carboxylic acids (PFCAs) in fish fillet. Ten PFCAs with different hydrocarbon chain lengths (C5-C14) were analysed simultaneously using this method. Protein precipitation by acetonitrile and μ-SPE by surfactant-incorporated ordered mesoporous silica were applied to the extraction and concentration of the PFCAs as well as for removal of interferences. Determination of the PFCAs was carried out by LC-MS/MS in negative electrospray ionization mode. MS/MS parameters were optimized for multiple reaction monitoring of the analytes. (13)C mass labelled PFOA as a stable-isotopic internal standard, was used for calibration. The detection limits of the method ranged from 0.97 ng/g to 2.7 ng/g, with a relative standard deviation of between 5.4 and 13.5. The recoveries were evaluated for each analyte and were ranged from 77% to 120%. The t-test at 95% confidence level showed that for all the analytes, the relative recoveries did not depend on their concentrations in the explored concentration range. The effect of the matrix on MS signals (suppression or enhancement) was also evaluated. Contamination at low levels was detected for some analytes in the fish samples. The protective role of the polypropylene membrane used in μ-SPE in the elimination of matrix effects was evaluated by parallel experiments in classical dispersive solid phase extraction. The results evidently showed that the polypropylene membrane was significantly effective in reducing matrix effects. Copyright © 2014 Elsevier B.V. All rights reserved.
Cazorla-Reyes, Rocío; Fernández-Moreno, José Luis; Romero-González, Roberto; Frenich, Antonia Garrido; Vidal, José Luis Martínez
2011-07-15
A new multiresidue method has been developed and validated for the simultaneous extraction of more than two hundred pesticides, including non-polar and polar pesticides (carbamates, organochlorine, organophosphorous, pyrethroids, herbicides and insecticides) in urine at trace levels by gas and ultra high pressure liquid chromatography coupled to ion trap and triple quadrupole mass spectrometry, respectively (GC-IT-MS/MS, UHPLC-QqQ-MS/MS). Non-polar and polar pesticides were simultaneously extracted from urine samples by a simple and fast solid phase extraction (SPE) procedure using C(18) cartridges as sorbent, and dichloromethane as elution solvent. Recovery was in the range of 60-120%. Precision values expressed as relative standard deviation (RSD) were lower than 25%. Identification and confirmation of the compounds were performed by the use of retention time windows, comparison of spectra (GC-amenable compounds) or the estimation of the ion ratio (LC-amenable compounds). For GC-amenable pesticides, limits of detection (LODs) ranged from 0.001 to 0.436 μg L(-1) and limits of quantification (LOQs) from 0.003 to 1.452 μg L(-1). For LC-amenable pesticides, LODs ranged from 0.003 to 1.048 μg L(-1) and LOQs ranged from 0.011 to 3.494 μg L(-1). Finally, the optimized method was applied to the analysis of fourteen real samples of infants from agricultural population. Some pesticides such as methoxyfenozide, tebufenozide, piperonyl butoxide and propoxur were found at concentrations ranged from 1.61 to 24.4 μg L(-1), whereas methiocarb sulfoxide was detected at trace levels in two samples. Copyright © 2011 Elsevier B.V. All rights reserved.
Castro Grijalba, Alexander; Martinis, Estefanía M; Wuilloud, Rodolfo G
2017-03-15
A highly sensitive vortex assisted liquid-liquid microextraction (VA-LLME) method was developed for inorganic Se [Se(IV) and Se(VI)] speciation analysis in Allium and Brassica vegetables. Trihexyl(tetradecyl)phosphonium decanoate phosphonium ionic liquid (IL) was applied for the extraction of Se(IV)-ammonium pyrrolidine dithiocarbamate (APDC) complex followed by Se determination with electrothermal atomic absorption spectrometry. A complete optimization of the graphite furnace temperature program was developed for accurate determination of Se in the IL-enriched extracts and multivariate statistical optimization was performed to define the conditions for the highest extraction efficiency. Significant factors of IL-VA-LLME method were sample volume, extraction pH, extraction time and APDC concentration. High extraction efficiency (90%), a 100-fold preconcentration factor and a detection limit of 5.0ng/L were achieved. The high sensitivity obtained with preconcentration and the non-chromatographic separation of inorganic Se species in complex matrix samples such as garlic, onion, leek, broccoli and cauliflower, are the main advantages of IL-VA-LLME. Copyright © 2016 Elsevier Ltd. All rights reserved.
Arbeláez, Paula; Granados, Judith; Borrull, Francesc; Marcé, Rosa Maria; Pocurull, Eva
2014-12-01
This paper describes a method for the determination of eight sedative hypnotics (benzodiazepines and barbiturates) in sewage sludge using pressurized liquid extraction and liquid chromatography with tandem mass spectrometry. Pressurized liquid extraction operating conditions were optimized and maximum recoveries were reached using methanol under the following operational conditions: 100ºC, 1500 psi, extraction time of 5 min, one extraction cycle, flush volume of 60% and purge time of 120 s. Pressurized liquid extraction recoveries were higher than 88% for all the compounds except for carbamazepine (55%). The repeatability and reproducibility between days, expressed as relative standard deviation (n = 5), were lower than 6 and 10%, respectively. The detection limits for all compounds were lower than 12.5 μg/kg of dry weight. The method was applied to determine benzodiazepines and barbiturates in sewage sludge from urban sewage treatment plants, and carbamazepine showed the highest concentration (7.9-18.9 μg/kg dry weight). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Yaohai; Jiao, Bining
2013-09-01
A fast and simple technique composed of dispersive liquid-liquid microextraction (DLLME) and online preconcentration MEKC with diode array detection was developed for the determination of four phenoxyacetic acids, 2,4,5-trichlorophenoxyacetic acid, 2,4-dichlorophenoxyacetic acid, 2,6-dichlorophenoxyacetic acid, and 4-chlorophenoxyacetic acid, in drinking water. The four phenoxyacetic acids were separated in reversed-migration MEKC to the baseline. About 145-fold increases in detection sensitivity were observed with online concentration strategy, compared with standard hydrodynamic injection (5 s at 25 mbar pressure). LODs ranged from 0.002 to 0.005 mg/L using only the online preconcentration procedures without any offline concentration of the extract. A DLLME procedure was used in combination with the proposed online preconcentration strategies, which achieved the determination of analytes at limits of quantification ranging from 0.2 to 0.5 μg/kg, which is far lower than the maximum residue limits established by China. The satisfactory recoveries obtained by DLMME spiked at two levels ranged from 67.2 to 99.4% with RSD <15%, making this proposed method suitable for the determination of phenoxyacetic acids in water samples. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liang, Taigang; Yue, Wenyan; Du, Xue; Ren, Luhui; Li, Qingshan
2012-01-01
Praeruptorin D (PD), a major pyranocoumarin isolated from Radix Peucedani, exhibited antitumor and anti-inflammatory activities. The aim of this study was to investigate the pharmacokinetics and tissue distribution of PD in rats following intravenous (i.v.) administration. The levels of PD in plasma and tissues were measured by a simple and sensitive reversed-phase high-performance liquid chromatography (HPLC) method. The biosamples were treated by liquid-liquid extraction (LLE) with methyl tert-butyl ether (MTBE) and osthole was used as the internal standard (IS). The chromatographic separation was accomplished on a reversed-phase C(18) column using methanol-water (75:25, v/v) as mobile phase at a flow rate of 0.8 mL/min and ultraviolet detection wave length was set at 323 nm. The results demonstrate that this method has excellent specificity, linearity, precision, accuracy and recovery. The pharmacokinetic study found that PD fitted well into a two-compartment model with a fast distribution phase and a relative slow elimination phase. Tissue distribution showed that the highest concentration was observed in the lung, followed by heart, liver and kidney. Furthermore, PD can also be detected in the brain, which indicated that PD could cross the blood-brain barrier after i.v. administration.
Boka, Vasiliki-Ioanna; Argyropoulou, Aikaterini; Gikas, Evangelos; Angelis, Apostolis; Aligiannis, Nektarios; Skaltsounis, Alexios-Leandros
2015-11-01
A high-performance thin-layer chromatographic methodology was developed and validated for the isolation and quantitative determination of oleuropein in two extracts of Olea europaea leaves. OLE_A was a crude acetone extract, while OLE_AA was its defatted residue. Initially, high-performance thin-layer chromatography was employed for the purification process of oleuropein with fast centrifugal partition chromatography, replacing high-performance liquid-chromatography, in the stage of the determination of the distribution coefficient and the retention volume. A densitometric method was developed for the determination of the distribution coefficients, KC = CS/CM. The total concentrations of the target compound in the stationary phase (CS) and in the mobile phase (CM) were calculated by the area measured in the high-performance thin-layer chromatogram. The estimated Kc was also used for the calculation of the retention volume, VR, with a chromatographic retention equation. The obtained data were successfully applied for the purification of oleuropein and the experimental results confirmed the theoretical predictions, indicating that high-performance thin-layer chromatography could be an important counterpart in the phytochemical study of natural products. The isolated oleuropein (purity > 95%) was subsequently used for the estimation of its content in each extract with a simple, sensitive and accurate high-performance thin-layer chromatography method. The best fit calibration curve from 1.0 µg/track to 6.0 µg/track of oleuropein was polynomial and the quantification was achieved by UV detection at λ 240 nm. The method was validated giving rise to an efficient and high-throughput procedure, with the relative standard deviation % of repeatability and intermediate precision not exceeding 4.9% and accuracy between 92% and 98% (recovery rates). Moreover, the method was validated for robustness, limit of quantitation, and limit of detection. The amount of oleuropein for OLE_A, OLE_AA, and an aqueous extract of olive leaves was estimated to be 35.5% ± 2.7, 51.5% ± 1.4, and 12.5% ± 0.12, respectively. Statistical analysis proved that the method is repeatable and selective, and can be effectively applied for the estimation of oleuropein in olive leaves' extracts, and could potentially replace high-performance liquid chromatography methodologies developed so far. Thus, the phytochemical investigation of oleuropein could be based on high-performance thin-layer chromatography coupled with separation processes, such as fast centrifugal partition chromatography, showing efficacy and credibility. Georg Thieme Verlag KG Stuttgart · New York.
Beni, Áron; Lajtha, Kate; Kozma, János; Fekete, István
2017-05-01
Ergosterol is a sterol found ubiquitously in cell membranes of filamentous fungi. Although concentrations in different fungal species span the range of 2.6 to 42μg/mL of dry mass, many studies have shown a strong correlation between soil ergosterol content and fungal biomass. The analysis of ergosterol in soil therefore could be an effective tool for monitoring changes in fungal biomass under different environmental conditions. Stir Bar Sorptive Extraction (SBSE) is a new sample preparation method to extract and concentrate organic analytes from liquid samples. SBSE was here demonstrated to be a simple, fast, and cost effective method for the quantitative analysis of ergosterol from field-collected soils. Using this method we observed that soil ergosterol as a measure of fungal biomass proved to be a sensitive indicator of soil microbial dynamics that were altered by changes in plant detrital inputs to soils in a long-term field experiment. Copyright © 2017 Elsevier B.V. All rights reserved.
Extractions of a polycyclic aromatic hydrocarbon (PAH)-contaminated soil from a former manufactured gas plant site were performed with a Soxhlet apparatus (18 h), by pressurized liquid extraction (PLE) (50 min at 100°C), supercritical fluid extraction (SFE) (1 h at 150°...
Extraction of organic compounds with room temperature ionic liquids.
Poole, Colin F; Poole, Salwa K
2010-04-16
Room temperature ionic liquids are novel solvents with a rather specific blend of physical and solution properties that makes them of interest for applications in separation science. They are good solvents for a wide range of compounds in which they behave as polar solvents. Their physical properties of note that distinguish them from conventional organic solvents are a negligible vapor pressure, high thermal stability, and relatively high viscosity. They can form biphasic systems with water or low polarity organic solvents and gases suitable for use in liquid-liquid and gas-liquid partition systems. An analysis of partition coefficients for varied compounds in these systems allows characterization of solvent selectivity using the solvation parameter model, which together with spectroscopic studies of solvent effects on probe substances, results in a detailed picture of solvent behavior. These studies indicate that the solution properties of ionic liquids are similar to those of polar organic solvents. Practical applications of ionic liquids in sample preparation include extractive distillation, aqueous biphasic systems, liquid-liquid extraction, liquid-phase microextraction, supported liquid membrane extraction, matrix solvents for headspace analysis, and micellar extraction. The specific advantages and limitations of ionic liquids in these studies is discussed with a view to defining future uses and the need not to neglect the identification of new room temperature ionic liquids with physical and solution properties tailored to the needs of specific sample preparation techniques. The defining feature of the special nature of ionic liquids is not their solution or physical properties viewed separately but their unique combinations when taken together compared with traditional organic solvents. Copyright 2009 Elsevier B.V. All rights reserved.
Yang, Lei; Sun, Xiaowei; Yang, Fengjian; Zhao, Chunjian; Zhang, Lin; Zu, Yuangang
2012-01-01
Ionic liquid based, microwave-assisted extraction (ILMAE) was successfully applied to the extraction of proanthocyanidins from Larix gmelini bark. In this work, in order to evaluate the performance of ionic liquids in the microwave-assisted extraction process, a series of 1-alkyl-3-methylimidazolium ionic liquids with different cations and anions were evaluated for extraction yield, and 1-butyl-3-methylimidazolium bromide was selected as the optimal solvent. In addition, the ILMAE procedure for the proanthocyanidins was optimized and compared with other conventional extraction techniques. Under the optimized conditions, satisfactory extraction yield of the proanthocyanidins was obtained. Relative to other methods, the proposed approach provided higher extraction yield and lower energy consumption. The Larix gmelini bark samples before and after extraction were analyzed by Thermal gravimetric analysis, Fourier-transform infrared spectroscopy and characterized by scanning electron microscopy. The results showed that the ILMAE method is a simple and efficient technique for sample preparation. PMID:22606036
Tian, He; Wang, Jiaqi; Zhang, Yangdong; Li, Songli; Jiang, Jindou; Tao, Dali; Zheng, Nan
2016-10-15
A simple and fast multiresidue extraction and purification method was developed for the determination of 61 veterinary drugs, belonging to seven classes, in milk and milk powder. The extraction depends on the acetonitrile solvent, followed by a single step to remove lipids with fatty acid chains using a new reversed phase SPE without traditional pre-equilibration and washing steps before eluting SPE. The purifying lipid effect of the present preparation method was evaluated by comparing the response changes of ion peak areas of the milk endogenous metabolites before and after SPE treatment using ultra-fast LC coupled to tandem quadrupole and TOF MS. Subsequently, UPLC coupled to tandem quadrupole MS was performed for the quantitative analysis of milk and milk powder samples spiked with 61 veterinary drugs, including β-lactam, macrolide, amide alcohol, forest amine, sulfanilamide, tetracyclines, and quinolones antibiotics. This method is very simple, fast, sensitive, and selective, and allows the good recoveries of all compounds, with a recovery range of 61.5-118.6%, and coefficients of variation of less than 11.6%. The 61 compounds behave in the dynamic range 0.01-200μgkg(-1), with correlation coefficient >0.99. The limits of quantification for the analytes are in the range 0.01-5.18μgkg(-1). Finally, this method has been successfully applied to the screening of veterinary drugs in 50 commercial bovine milk and milk powder samples, and ceftiofur and ciprofloxacin were detected in some brand samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Wu, Lijie; Hu, Mingzhu; Li, Zhanchao; Song, Ying; Yu, Cui; Zhang, Yupu; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming
2015-02-01
A novel extraction method, dynamic microwave-assisted extraction coupled with homogeneous ionic liquid microextraction, was developed for the determination of triazine herbicides, including desmetryn, terbumeton, propazine, terbuthylazine, dimethametryn, and dipropetryn in fresh vegetable samples by high performance liquid chromatography (HPLC). In the developed method, 120 μL of 1-butyl-3-methylimidazolium tetrafluoroborate ([C4MIM][BF4]) was added to 10 mL of aqueous solution containing 0.3 g of NaCl to obtained the extraction solvent. Six triazines could be extracted completely within 4 min by the present method. Then, [NH4][PF6] was added into the extract to form a water-insoluble ionic liquid [C4MIM][PF6] via a simple metathesis reaction, and the analytes were enriched into the ionic liquid phase. After centrifugation and dilution with acetonitrile, the resulting solution was analyzed directly by HPLC. The effects of some experimental parameters, including type and volume of ionic liquid, volume of extraction solvent, amount of ion-pairing agent [NH4][PF6], salt concentration, microwave power, and flow rate of extraction solvent on the extraction efficiency were investigated and optimized. Under the optimum experimental conditions, the linearity for determining the analytes was in the range of 2.50-250.00 μg kg(-1), with the correlation coefficients ranging from 0.9989 to 0.9999. When the present method was applied to the analysis of vegetable samples, satisfactory recoveries were obtained in the range of 76.8%-106.9%, and relative standard deviations were lower than 9.8%.
Separations by supported liquid membrane cascades
Danesi, P.R.
1983-09-01
The invention describes a new separation technique which leads to multi-stage operations by the use of a series (a cascade) of alternated carrier-containing supported-liquid cation exchanger extractant and a liquid anion exchanger extractant (or a neutral extractant) as carrier. The membranes are spaced between alternated aqueous electrolytic solutions of different composition which alternatively provide positively charged extractable species and negatively charged (or zero charged) extractable species, of the chemical species to be separated. The alternated aqueous electrolytic solutions in addition to providing the driving force to the process, simultaneously function as a stripping solution from one type of membrane and as an extraction-promoting solution for the other type of membrane. The aqueous electrolytic solution and the supported liquid membranes are arranged to provide a continuous process.
NASA Astrophysics Data System (ADS)
Husen, Saikhu Akhmad; Winarni, Dwi; Khaleyla, Firas; Kalqutny, Septian Hary; Ansori, Arif Nur Muhammad
2017-09-01
This study aimed to explore the activity of pericarp extract of mangosteen (Garcinia mangostana L.). Mangosteen pericarp contains various active compounds which are beneficial for human health. In-vivo antioxidant assay of pericarp extract was carried out using 3-4 month male mice of strain BALB/c weighed 30-40 g. The mice were divided into two groups: normal control (KN) group and STZ-induced diabetic group. STZ induction was performed using multiple low-dose method 30 mg/kg body weight treated daily for five consecutive days. Diabetic group was separated into two subgroups: diabetic control (KD), metformin control (KM), and crude extract treatment subgroups. The fasting blood glucose and the cholesterol level were measured before and after lard treatment, we also did it on the first, seventh, and fourteenth day of mangosteen pericarp crude extract treatment. The mice were treated with mangosteen pericarp crude extract for 14 days. The MDA level of the fasting blood serum was measured. The body weight and fasting blood cholesterol level before and after lard treatment were analyzed by t-test, whereas, the fasting blood cholesterol and the MDA level were analyzed using one-way variant analysis continued with Duncan test. The correlation between the increasing body weight and the fasting blood cholesterol level was determined by Pearson correlation test. The results of the study showed that the administration of mangosteen pericarp crude extract was able to reduce the fasting blood cholesterol and the malondialdehide level significantly.
Predictive model for ionic liquid extraction solvents for rare earth elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grabda, Mariusz; Oleszek, Sylwia; Institute of Environmental Engineering of the Polish Academy of Sciences, ul. M. Sklodowskiej-Curie 34, 41-819, Zabrze
2015-12-31
The purpose of our study was to select the most effective ionic liquid extraction solvents for dysprosium (III) fluoride using a theoretical approach. Conductor-like Screening Model for Real Solvents (COSMO-RS), based on quantum chemistry and the statistical thermodynamics of predefined DyF{sub 3}-ionic liquid systems, was applied to reach the target. Chemical potentials of the salt were predicted in 4,400 different ionic liquids. On the base of these predictions set of ionic liquids’ ions, manifesting significant decrease of the chemical potentials, were selected. Considering the calculated physicochemical properties (hydrophobicity, viscosity) of the ionic liquids containing these specific ions, the most effectivemore » extraction solvents for liquid-liquid extraction of DyF{sub 3} were proposed. The obtained results indicate that the COSMO-RS approach can be applied to quickly screen the affinity of any rare earth element for a large number of ionic liquid systems, before extensive experimental tests.« less
Pastor-Belda, Marta; Garrido, Isabel; Campillo, Natalia; Viñas, Pilar; Hellín, Pilar; Flores, Pilar; Fenoll, José
2017-10-15
A multiresidue method was developed to determine twenty-five fungicides belonging to three different chemical families, oxazoles, strobilurins and triazoles, in water and fruit samples, using dispersive liquid-liquid microextraction (DLLME) and liquid chromatography/tandem mass spectrometry (LC-MS 2 ). Solid-liquid extraction with acetonitrile was used for the analysis in fruits, the extract being used as dispersant solvent in DLLME. Since some of the analytes showed high affinity for chloroform and the others were more efficiently extracted with undecanol, a mixture of both solvents was used as extractant in DLLME. After evaporation of CHCl 3 , the enriched phase was analyzed. Enrichment factors in the 23-119 and 12-60 ranges were obtained for waters and fruits, respectively. The approach was most sensitive for metominostrobin with limits of quantification of 1ngL -1 and 5ngkg -1 in waters and fruits, respectively, while a similar sensitivity was attained for tebuconazole in fruits. Recoveries of the fungicides varied between 86 and 116%. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wu, Hongwei; Chen, Meilan; Fan, Yunchang; Elsebaei, Fawzi; Zhu, Yan
2012-01-15
A novel ionic liquid-based pressurized liquid extraction (IL-PLE) procedure coupled with high performance liquid chromatography (HPLC) tandem chemiluminescence (CL) detection capable of quantifying trace amounts of rutin and quercetin in four Chinese medicine plants including Flos sophorae Immaturus, Crateagus pinnatifida Bunge, Hypericum japonicum Thunb and Folium Mori was described in this paper. To avoid environmental pollution and toxicity to the operators, ionic liquids (ILs), 1-alkyl-3-methylimidazolium chloride ([C(n)mim][Cl]) aqueous solutions were used in the PLE procedure as extractants replacing traditional organic solvents. In addition, chemiluminescence detection was utilized for its minimal interference from endogenous components of complex matrix. Parameters affecting extraction and analysis were carefully optimized. Compared with the conventional ultrasonic-assisted extraction (UAE) and heat-reflux extraction (HRE), the optimized method achieved the highest extraction efficiency in the shortest extraction time with the least solvent consumption. The applicability of the proposed method to real sample was confirmed. Under the optimized conditions, good reproducibility of extraction performance was obtained and good linearity was observed with correlation coefficients (r) between 0.9997 and 0.9999. The detection limits of rutin and quercetin (LOD, S/N=3) were 1.1×10(-2)mg/L and 3.8×10(-3)mg/L, respectively. The average recoveries of rutin and quercetin for real samples were 93.7-105% with relative standard deviation (RSD) lower than 5.7%. To the best of our knowledge, this paper is the first contribution to utilize a combination of IL-PLE with chemiluminescence detection. And the experimental results indicated that the proposed method shows a promising prospect in extraction and determination of rutin and quercetin in medicinal plants. Copyright © 2011 Elsevier B.V. All rights reserved.
Hoogerstraete, Tom Vander; Onghena, Bieke; Binnemans, Koen
2013-01-01
Several fundamental extraction parameters such as the kinetics and loading were studied for a new type of metal solvent extraction system with ionic liquids. The binary mixture of the ionic liquid betainium bis(trifluoromethylsulfonyl)imide and water shows thermomorphic behavior with an upper critical solution temperature (UCST), which can be used to avoid the slower mass transfer due to the generally higher viscosity of ionic liquids. A less viscous homogeneous phase and mixing on a molecular scale are obtained when the mixture is heated up above 55 °C. The influence of the temperature, the heating and cooling times, were studied for the extraction of neodymium(III) with betaine. A plausible and equal extraction mechanism is proposed in bis(trifluoromethylsulfonyl)imide, nitrate, and chloride media. After stripping of the metals from the ionic liquid phase, a higher recovery of the ionic liquid was obtained by salting-out of the ionic liquid fraction lost by dissolution in the aqueous phase. The change of the upper critical solution temperature by the addition of HCl or betaine was investigated. In addition, the viscosity was measured below and above the UCST as a function of the temperature. PMID:24169434
Feasibility of Surfactant-Free Supported Emulsion Liquid Membrane Extraction
NASA Technical Reports Server (NTRS)
Hu, Shih-Yao B.; Li, Jin; Wiencek, John M.
2001-01-01
Supported emulsion liquid membrane (SELM) is an effective means to conduct liquid-liquid extraction. SELM extraction is particularly attractive for separation tasks in the microgravity environment where density difference between the solvent and the internal phase of the emulsion is inconsequential and a stable dispersion can be maintained without surfactant. In this research, dispersed two-phase flow in SELM extraction is modeled using the Lagrangian method. The results show that SELM extraction process in the microgravity environment can be simulated on earth by matching the density of the solvent and the stripping phase. Feasibility of surfactant-free SELM (SFSELM) extraction is assessed by studying the coalescence behavior of the internal phase in the absence of the surfactant. Although the contacting area between the solvent and the internal phase in SFSELM extraction is significantly less than the area provided by regular emulsion due to drop coalescence, it is comparable to the area provided by a typical hollow-fiber membrane. Thus, the stripping process is highly unlikely to become the rate-limiting step in SFSELM extraction. SFSELM remains an effective way to achieve simultaneous extraction and stripping and is able to eliminate the equilibrium limitation in the typical solvent extraction processes. The SFSELM design is similar to the supported liquid membrane design in some aspects.
Hasanpour, Foroozan; Hadadzadeh, Hassan; Taei, Masoumeh; Nekouei, Mohsen; Mozafari, Elmira
2016-05-01
Analytical performance of conventional spectrophotometer was developed by coupling of effective dispersive liquid-liquid micro-extraction method with spectrophotometric determination for ultra-trace determination of cobalt. The method was based on the formation of Co(II)-alpha-benzoin oxime complex and its extraction using a dispersive liquid-liquid micro-extraction technique. During the present work, several important variables such as pH, ligand concentration, amount and type of dispersive, and extracting solvent were optimized. It was found that the crucial factor for the Co(II)-alpha benzoin oxime complex formation is the pH of the alkaline alcoholic medium. Under the optimized condition, the calibration graph was linear in the ranges of 1.0-110 μg L(-1) with the detection limit (S/N = 3) of 0.5 μg L(-1). The preconcentration operation of 25 mL of sample gave enhancement factor of 75. The proposed method was applied for determination of Co(II) in soil samples.
Wang, Shalong; Dou, Kang; Zou, Yousheng; Dong, Yuhang; Li, Jubin; Ju, Dan; Zeng, Haibo
2017-03-01
High-performance electrochromic films based on tungsten oxide hydrate ([WO 2 (O 2 )H 2 O]·1.66H 2 O) colloidal nanocrystals with fast switching speed were fabricated by laser ablation in a mixture of water and hydrogen peroxide followed by electrophoretic methods. Through electrophoretic deposition, the nanoparticles in the colloids synthesized by laser ablation aggregated onto the FTO coated glass substrate forming a lager cell with a uniform size of around 200nm, which subsequently self-assembled into a porous tungsten oxide hydrate film. By optimizing the electrophoretic time (800s) and voltage (-0.5V), the mesh-like porous tungsten oxide hydrate film achieved a wide optical modulation of 32% at 632nm, fast coloration and bleaching response speed of 7.8 s and 1.7s respectively due to the synergetic effect of the unique atomic structure of [WO 2 (O 2 )H 2 O]·1.66H 2 O and porous structure with large surface area that facilitates the ion insertion/extraction. Thus the tungsten oxide hydrate can be a promising electrochromic material for practical applications. Copyright © 2016 Elsevier Inc. All rights reserved.
Amid, Mehrnoush; Manap, Yazid; Azmira, Farhana; Hussin, Muhaini; Sarker, Zaidul Islam
2015-07-01
Polygalacturonase is one of the important enzymes used in various industries such as food, detergent, pharmaceutical, textile, pulp and paper. A novel liquid/liquid extraction process composed of surfactant and acetonitrile was employed for the first time to purify polygalacturonase from Durio zibethinus. The influences of different parameters such as type and concentration of surfactants, concentrations of acetonitrile and composition of surfactant/acetonitrile on partitioning behavior and recovery of polygalacturonase was investigated. Moreover, the effect of pH of system and crude load on purification fold and yield of purified polygalacturonase were studied. The results of the experiment indicated the polygalacturonase was partitioned into surfactant top rich phase with impurities being partitioned into acetonitrile bottom rich phase in the novel method of liquid/liquid process composed of 23% (w/w) Triton X-100 and 19% (w/w) acetonitrile, at 55.6% of TLL (tie line length) crude load of 25% (w/w) at pH 6.0. Recovery and recycling of components also was measured in each successive step of liquid/liquid extraction process. The enzyme was successfully recovered by the method with a high purification factor of 14.3 and yield of 97.3% while phase components were also recovered and recycled above 95%. This study demonstrated that the novel method of liquid/liquid extraction process can be used as an efficient and economical extraction method rather than the traditional methods of extraction for the purification and recovery of the valuable enzyme. Copyright © 2015 Elsevier B.V. All rights reserved.
Chen, Hsiu-Liang; Chang, Shuo-Kai; Lee, Chia-Ying; Chuang, Li-Lin; Wei, Guor-Tzo
2012-09-12
In this study, we employed the room-temperature ionic liquid [bmim][PF(6)] as both ion-pair agent and an extractant in the phase-transfer liquid-phase microextraction (PTLPME) of aqueous dyes. In the PTLPME method, a dye solution was added to the extraction solution, comprising a small amount of [bmim][PF(6)] in a relatively large amount of CH(2)Cl(2), which serves as the disperser solvent to an extraction solution. Following extraction, CH(2)Cl(2) was evaporated from the extractant, resulting in the extracted dyes being concentrated in a small volume of the ionic liquid phase to increase the enrichment factor. The enrichment factors of for the dye Methylene Blue, Neutral Red, and Methyl Red were approximately 500, 550 and 400, respectively; their detection limits were 0.014, 0.43, and 0.02 μg L(-1), respectively, with relative standard deviations of 4.72%, 4.20%, and 6.10%, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.
2017-01-01
Ionic liquids (ILs) have been proposed as promising media for the extraction and separation of bioactive compounds from the most diverse origins. This critical review offers a compilation on the main results achieved by the use of ionic-liquid-based processes in the extraction and separation/purification of a large range of bioactive compounds (including small organic extractable compounds from biomass, lipids, and other hydrophobic compounds, proteins, amino acids, nucleic acids, and pharmaceuticals). ILs have been studied as solvents, cosolvents, cosurfactants, electrolytes, and adjuvants, as well as used in the creation of IL-supported materials for separation purposes. The IL-based processes hitherto reported, such as IL-based solid–liquid extractions, IL-based liquid–liquid extractions, IL-modified materials, and IL-based crystallization approaches, are here reviewed and compared in terms of extraction and separation performance. The key accomplishments and future challenges to the field are discussed, with particular emphasis on the major lacunas found within the IL community dedicated to separation processes and by suggesting some steps to overcome the current limitations. PMID:28151648
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharjee, Tanushyam; Kanti Dey, Malay; Dhara, Partha
2013-05-15
In an isochronous cyclotron, measurements of central phase of the ion beam with respect to rf and the phase width provide a way to tune the cyclotron for maximum energy gain per turn and efficient extraction. We report here the development of a phase measurement system and the measurements carried out at the Variable Energy Cyclotron Centre's (VECC's) K= 500 superconducting cyclotron. The technique comprises detecting prompt {gamma}-rays resulting from the interaction of cyclotron ion beam with an aluminium target mounted on a radial probe in coincidence with cyclotron rf. An assembly comprising a fast scintillator and a liquid light-guidemore » inserted inside the cyclotron was used to detect the {gamma}-rays and to transfer the light signal outside the cyclotron where a matching photo-multiplier tube was used for light to electrical signal conversion. The typical beam intensity for this measurement was a few times 10{sup 11} pps.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukarakate, C.; Robichaud, D.; Donohoe, B.
2012-01-01
We have constructed a captive sample reactor (CSR) to study fast pyrolysis of biomass. The reactor uses a stainless steel wire mesh to surround biomass materials with an isothermal environment by independent controlling of heating rates and pyrolysis temperatures. The vapors produced during pyrolysis are immediately entrained and transported in He carrier gas to a molecular beam mass spectrometer (MBMS). Formation of secondary products is minimized by rapidly quenching the sample support with liquid nitrogen. A range of alkali and alkaline earth metal (AAEM) and transition metal salts were tested to study their effect on composition of primary pyrolysis products.more » Multivariate curve resolution (MCR) analysis of the MBMS data shows that transition metal salts enhance pyrolysis of carbohydrates and AAEM salts enhances pyrolysis of lignin. This was supported by performing similar separate studies on cellulose, hemicellulose and extracted lignin. The effect of salts on char formation is also discussed.« less
Herrero, P; Borrull, F; Pocurull, E; Marcé, R M
2012-11-09
A fast chromatographic method has been developed that takes less than 5 min per run to determine five polyether ionophores with a novel amide polar-embedded reversed-phase column coupled to a triple quadrupole mass spectrometer. A comparison between Oasis HLB and Oasis MAX sorbents for the solid-phase extraction was done. Oasis HLB sorbent gave recoveries close to 90% and the repeatability (%RSD, 25-100 ng/L, n=3) of the method was less than 7% for all compounds in all matrices. The presence of polyether ionophores in environmental waters such as river water and sewage was investigated. Monensin and narasin were frequently determined in influent and effluent sewage at concentrations from 10 ng/L to 47 ng/L in influents and from 6 ng/L to 34 ng/L in effluents. In river waters, polyether ionophores were not detected in any sample. Copyright © 2012 Elsevier B.V. All rights reserved.
Ultra fast polymer network blue phase liquid crystals
NASA Astrophysics Data System (ADS)
Hussain, Zakir; Masutani, Akira; Danner, David; Pleis, Frank; Hollfelder, Nadine; Nelles, Gabriele; Kilickiran, Pinar
2011-06-01
Polymer-stabilization of blue phase liquid crystal systems within a host polymer network are reported, which enables ultrafast switching flexible displays. Our newly developed method to stabilize the blue phase in an existing polymer network (e.g., that of a polymer network liquid crystal; PNLC) has shown wide temperature stability and fast response speeds. Systems where the blue phase is stabilized in an already existing polymer network are attractive candidates for ultrafast LCDs. The technology also promises to be applied to flexible PNLC and/or polymer dispersed liquid crystal (PDLC) displays using plastic substrate such as polyethylene terephthalate (PET).
Chen, Xiaochu; Bian, Yanli; Liu, Fengmao; Teng, Peipei; Sun, Pan
2017-10-06
Two simple sample pretreatment for the determination of difenoconazole in cowpea was developed including micellar extraction combined with ionic liquid based vortex-assisted liquid-liquid microextraction (ME-IL-VALLME) prior to high performance liquid chromatography (HPLC), and modified quick, easy, cheap, effective, rugged, and safe method (QuEChERS) coupled with HPLC-MS/MS. In ME-IL-VALLME method, the target analyte was extracted by surfactant Tween 20 micellar solution, then the supernatant was diluted with 3mL water to decrease the solubility of micellar solution. Subsequently, the vortex-assisted liquid-liquid microextraction (VALLME) procedure was performed in the diluted extraction solution by using the ionic liquid of 1-hexyl-3-methylimidazolium hexafluorophosphate ([HMIM]PF 6 ) as the extraction solvent and Tween 20 as an emulsifier to enhance the dispersion of the water-immiscible ionic liquid into the aqueous phase. Parameters that affect the extraction have been investigated in both methods Under the optimum conditions, the limits of quantitation were 0.10 and 0.05mgkg -1 , respectively. And good linearity was achieved with the correlation coefficient higher than 0.9941. The relative recoveries ranged from 78.6 to 94.8% and 92.0 to 118.0% with the relative standard deviations (RSD) of 7.9-9.6% and 1.2-3.2%, respectively. Both methods were quick, simple and inexpensive. However, the ME-IL-VALLME method provides higher enrichment factor compared with conventional QuEChERS method. The ME-IL-VALLME method has a strong potential for the determination of difenoconazole in complex vegetable matrices with HPLC. Copyright © 2017 Elsevier B.V. All rights reserved.
Application of ionic liquid for extraction and separation of bioactive compounds from plants.
Tang, Baokun; Bi, Wentao; Tian, Minglei; Row, Kyung Ho
2012-09-01
In recent years, ionic liquids (ILs), as green and designer solvents, have accelerated research in analytical chemistry. This review highlights some of the unique properties of ILs and provides an overview of the preparation and application of IL or IL-based materials to extract bioactive compounds in plants. IL or IL-based materials in conjunction with liquid-liquid extraction (LLE), ultrasonic-assisted extraction (UAE), microwave-assisted extraction (MAE), high performance liquid chromatography (HPLC) and solid-phase extraction (SPE) analytical technologies etc., have been applied successfully to the extraction or separation of bioactive compounds from plants. This paper reviews the available data and references to examine the advantages of IL and IL-based materials in these applications. In addition, the main target compounds reviewed in this paper are bioactive compounds with multiple therapeutic effects and pharmacological activities. Based on the importance of the targets, this paper reviews the applications of ILs, IL-based materials or co-working with analytical technologies. The exploitation of new applications of ILs on the extraction of bioactive compounds from plant samples is expected to increase. Copyright © 2012 Elsevier B.V. All rights reserved.
Wang, Xiu-Li; Zhu, Ying; Fang, Qun
2014-01-07
In this work, the combination of droplet-based microfluidics with liquid chromatography/mass spectrometry (LC/MS) was achieved, for providing a fast separation and high-information-content detection method for the analysis of nanoliter-scale droplets with complex compositions. A novel interface method was developed using an oil-covered droplet array chip to couple with an LC/MS system via a capillary sampling probe and a 4 nL injection valve without the need of a droplet extraction device. The present system can perform multistep operations including parallel enzyme inhibition reactions in nanoliter droplets, 4 nL sample injection, fast separation with capillary LC, and label-free detection with ESI-MS, and has significant flexibility in the accurate addressing and sampling of droplets of interest on demand. The system performance was evaluated using angiotensin I and angiotensin II as model samples, and the repeatabilities of peak area for angiotensin I and angiotensin II were 2.7% and 7.5% (RSD, n = 4), respectively. The present system was further applied to the screening for inhibitors of cytochrome P450 (CYP1A2) and measurement of the IC50 value of the inhibitor. The sample consumption for each droplet assay was 100 nL, which is reduced 10-100 times compared with conventional 384-multi-well plate systems usually used in high-throughput drug screening.
Terol, Amanda; Marcinkowska, Monika; Ardini, Francisco; Grotti, Marco
2016-01-01
A new method for the speciation analysis of arsenic in food using narrow-bore high-performance liquid-chromatography inductively coupled plasma mass spectrometry (HPLC-ICP-MS) has been developed. Fast separation of arsenite, arsenate, monomethylarsonic acid and dimethylarsinic acid was carried out in 7 min using an anion-exchange narrow-bore Nucleosil 100 SB column and 12 mM ammonium dihydrogen phosphate of pH 5.2 as the mobile phase, at a flow rate of 0.3 mL min(-1). A PFA-ST micronebulizer jointed to a cyclonic spray chamber was used for HPLC-ICP-MS coupling. Compared with standard-bore HPLC-ICP-MS, the new method has provided higher sensitivity, reduced mobile-phase consumption, a lower matrix plasma load and a shorter analysis time. The achieved instrumental limits of detection were in the 0.3 - 0.4 ng As mL(-1) range, and the precision was better than 3%. The arsenic compounds were efficiently (>80%) extracted from various food samples using a 1:5 methanol/water solution, with additional ultrasonic treatment for rice products. The applicability of this method was demonstrated by the analysis of several samples, such as seafood (fish, mussels, shrimps, edible algae) and rice-based products (Jasmine and Arborio rice, spaghetti, flour, crackers), including three certified reference materials.
A Guided Inquiry Liquid/Liquid Extractions Laboratory for Introductory Organic Chemistry
ERIC Educational Resources Information Center
Raydo, Margaret L.; Church, Megan S.; Taylor, Zane W.; Taylor, Christopher E.; Danowitz, Amy M.
2015-01-01
A guided inquiry laboratory experiment for teaching liquid/liquid extractions to first semester undergraduate organic chemistry students is described. This laboratory is particularly useful for introductory students as the analytes that are separated are highly colored dye molecules. This allows students to track into which phase each analyte…
Ali, Imran; Kulsum, Umma; Al-Othman, Zeid A; Alwarthan, Abdulrahman; Saleem, Kishwar
2016-07-01
Iron nanoparticles were prepared by a green method following functionalization using 1-butyl-3-methylimidazolium bromide. 1-Butyl-3-methylimidazole iron nanoparticles were characterized using FTIR spectroscopy, energy dispersive X-ray fluorescence, X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The nanoparticles were used in solid-phase membrane micro-tip extraction to separate vitamin B complex from plasma before high-performance liquid chromatography. The optimum conditions obtained were sorbent (15 mg), agitation time (30 min), pH (9.0), desorbing solvent [water (5 mL) + methanol (5 mL) + sodium hydroxide (0.1 N) + acetic acid (d = 1.05 kg/L, pH 5.5), desorbing volume (10 mL) and desorption time (30 min). The percentage recoveries of all the eight vitamin B complex were from 60 to 83%. A high-performance liquid chromatography method was developed using a PhE column (250 × 4.6 mm, 5.0 μm) and water/acetonitrile (95:5, v/v; pH 4.0 with 0.1% formic acid) mobile phase. The flow rate was 1.0 mL/min with detection at 270 and 210 nm. The values of the capacity, separation and resolution factor were 0.57-39.47, 1.12-6.00 and 1.84-26.26, respectively. The developed sample preparation and chromatographic methods were fast, selective, inexpensive, economic and reproducible. The developed method can be applied for analyzing these drugs in biological and environmental matrices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xu, Yuping; Huang, Kexin; Pan, Yu; Wang, Xianqin; Yan, Pengcheng; Ren, Yiping; Xiang, Zheng
2013-08-01
Bu Shen Huo Xue formula (BSHX) is a traditional Chinese medicine prescription used for clinical treatment of chronic kidney diseases. A rapid and selective Ultra fast liquid chromatography with tandem mass spectrometry (UFLC-MS/MS) method was developed for simultaneous determination of four bioactive components of BSHX including formononetin, cryptotanshinone, tanshinone IIA, and emodin in control and unilateral ureteral obstruction (UUO) model rat plasma for the first time. Atorvastatin was used as the internal standard (IS). Plasma samples were extracted by liquid-liquid extraction with ethyl acetate. The chromatographic separation was carried out on a Shim-pack XR-ODS III column with a gradient mobile phase consisting of acetonitrile and 0.1% formic acid. The detection was performed on a triple-quad tandem mass spectrometer by multiple reaction monitoring (MRM) via electrospray ionization (ESI) source with positive ionization mode for formononetin, cryptotanshinone, tanshinone IIA, and negative mode for emodin. The method was linear for four analytes over the range of investigated concentration with all coefficients of determination (R(2)) greater than 0.9938. The lower limits of quantification (LLOQ) for formononetin, cryptotanshinone, tanshinone IIA, and emodin were defined as 0.3, 0.5, 1.5, and 0.3ng/mL, respectively. The rapid and sensitive method was fully validated and successfully applied to the pharmacokinetic study of formononetin, cryptotanshinone, tanshinone IIA and emodin in rats following oral administration of Bu Shen Huo Xue formula. Copyright © 2013 Elsevier B.V. All rights reserved.
Yang, Fan; Kubota, Fukiko; Baba, Yuzo; Kamiya, Noriho; Goto, Masahiro
2013-06-15
The recycling of rare earth metals from phosphor powders in waste fluorescent lamps by solvent extraction using ionic liquids was studied. Acid leaching of rare earth metals from the waste phosphor powder was examined first. Yttrium (Y) and europium (Eu) dissolved readily in the acid solution; however, the leaching of other rare earth metals required substantial energy input. Ionization of target rare earth metals from the waste phosphor powders into the leach solution was critical for their successful recovery. As a high temperature was required for the complete leaching of all rare earth metals, ionic liquids, for which vapor pressure is negligible, were used as an alternative extracting phase to the conventional organic diluent. An extractant, N, N-dioctyldiglycol amic acid (DODGAA), which was recently developed, showed a high affinity for rare earth metal ions in liquid-liquid extraction although a conventional commercial phosphonic extractant did not. An effective recovery of the rare earth metals, Y, Eu, La and Ce, from the metal impurities, Fe, Al and Zn, was achieved from the acidic leach solution of phosphor powders using an ionic liquid containing DODGAA as novel extractant system. Copyright © 2013 Elsevier B.V. All rights reserved.
Wang, Xiaoqin; Li, Guizhen; Row, Kyung Ho
2017-08-01
Magnetic graphene oxide was modified by four imidazole-based ionic liquids to synthesize materials for the extraction of polysaccharides by magnetic solid-phase extraction. Fucoidan and laminarin were chosen as the representative polysaccharides owing to their excellent pharmaceutical value and availability. Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, and thermogravimetric analysis were applied to characterize the synthesized materials. Single-factor experiments showed that the extraction efficiency of polysaccharides was affected by the amount of ionic liquids for modification, solid-liquid ratio of brown alga and ethanol, the stirring time of brown alga and ionic liquid-modified magnetic graphene oxide materials, and amount of 1-(3-aminopropyl)imidazole chloride modified magnetic graphene oxide materials added to the brown alga sample solution. The results indicated that 1-(3-aminopropyl)imidazole chloride modified magnetic graphene oxide possessed better extraction ability than graphene oxide, magnetic graphene oxide, and other three ionic-liquid-modified magnetic graphene oxide materials. The highest extraction recoveries of fucoidan and laminarin extracted by 1-(3-aminopropyl)imidazole chloride modified magnetic graphene oxide were 93.3 and 87.2%, respectively. In addition, solid materials could be separated and reused easily owing to their magnetic properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
1980-08-01
metal fast breeder reactor (LMFBR) design. It also re-examines the impact of the accident at Three Mile Island on the design basis concept, and how...Water Reactors : ImpZications for Liquid MetaZ Fast Breeder Reactors , by W. E. Kastenberg and K. A. Solomon, July 1979. v SUNMARY The 1979 accident...the liquid metal fast breeder reactor (LMFBR). This Note assesses the impact of the TMI-2 accident on the LMFBR. Specifically, it: o Reviews the
Periquet, B; Lambert, W; Garcia, J; Lecomte, G; De Leenheer, A P; Mazieres, B; Thouvenot, J P; Arlet, J
1991-11-09
Endogenous 13-cis- and all-trans-retinoic acids have been quantitated in human serum using a solvent extraction procedure followed by isocratic reversed phase high performance liquid chromatography and UV detection. In healthy adults, after an overnight fasting period, the concentrations of 13-cis- and all-trans-retinoic acids yielded 5.3 +/- 2.43 nmol/l and 11.8 +/- 3.3 nmol/l, respectively (mean +/- SD). The method has been successfully applied to the analysis of both isomers in serum from patients with idiopathic skeletal hyperostosis in whom, the 13-cis- as well as all-trans-retinoic acid levels were raised as compared to the control group.
Characterization, Preparation, and Purification of Marine Bioactive Peptides
Wang, Xueqin; Yu, Huahua; Xing, Ronge
2017-01-01
Marine bioactive peptides, as a source of unique bioactive compounds, are the focus of current research. They exert various biological roles, some of the most crucial of which are antioxidant activity, antimicrobial activity, anticancer activity, antihypertensive activity, anti-inflammatory activity, and so forth, and specific characteristics of the bioactivities are described. This review also describes various manufacturing techniques for marine bioactive peptides using organic synthesis, microwave assisted extraction, chemical hydrolysis, and enzymes hydrolysis. Finally, purification of marine bioactive peptides is described, including gel or size exclusion chromatography, ion-exchange column chromatography, and reversed-phase high-performance liquid chromatography, which are aimed at finding a fast, simple, and effective method to obtain the target peptides. PMID:28761878
Liu, Zaizhi; Gu, Huiyan; Yang, Lei
2015-10-23
Ionic liquids/lithium salts solvent system was successfully introduced into the separation technique for the preparation of two coumarins (aesculin and aesculetin) from Cortex fraxini. Ionic liquids/lithium salts based microwave irradiation pretreatment followed by ultrasound-microwave synergy extraction (ILSMP-UMSE) procedure was developed and optimized for the sufficient extraction of these two analytes. Several variables which can potentially influence the extraction yields, including pretreatment time and temperature, [C4mim]Br concentration, LiAc content, ultrasound-microwave synergy extraction (UMSE) time, liquid-solid ratio, and UMSE power were optimized by Plackett-Burman design. Among seven variables, UMSE time, liquid-solid ratio, and UMSE power were the statistically significant variables and these three factors were further optimized by Box-Behnken design to predict optimal extraction conditions and find out operability ranges with maximum extraction yields. Under optimum operating conditions, ILSMP-UMSE showed higher extraction yields of two target compounds than those obtained by reference extraction solvents. Method validation studies also evidenced that ILSMP-UMSE is credible for the preparation of two coumarins from Cortex fraxini. This study is indicative of the proposed procedure that has huge application prospects for the preparation of natural products from plant materials. Copyright © 2015 Elsevier B.V. All rights reserved.
Li, Wei; Zhao, Li-Chun; Sun, Yin-Shi; Lei, Feng-Jie; Wang, Zi; Gui, Xiong-Bin; Wang, Hui
2012-01-01
In this work, pressurized liquid extraction (PLE) of three acetophenones (4-hydroxyacetophenone, baishouwubenzophenone, and 2,4-dihydroxyacetophenone) from Cynanchum bungei (ACB) were investigated. The optimal conditions for extraction of ACB were obtained using a Box-Behnken design, consisting of 17 experimental points, as follows: Ethanol (100%) as the extraction solvent at a temperature of 120 °C and an extraction pressure of 1500 psi, using one extraction cycle with a static extraction time of 17 min. The extracted samples were analyzed by high-performance liquid chromatography using an UV detector. Under this optimal condition, the experimental values agreed with the predicted values by analysis of variance. The ACB extraction yield with optimal PLE was higher than that obtained by soxhlet extraction and heat-reflux extraction methods. The results suggest that the PLE method provides a good alternative for acetophenone extraction. PMID:23203079
Ravelo-Pérez, Lidia M; Hernández-Borges, Javier; Asensio-Ramos, María; Rodríguez-Delgado, Miguel Angel
2009-10-23
This paper describes a dispersive liquid-liquid microextraction (DLLME) procedure using room temperature ionic liquids (RTILs) coupled to high-performance liquid chromatography with diode array detection capable of quantifying trace amounts of eight pesticides (i.e. thiophanate-methyl, carbofuran, carbaryl, tebuconazole, iprodione, oxyfluorfen, hexythiazox and fenazaquin) in bananas. Fruit samples were first homogenized and extracted (1g) with acetonitrile and after suitable evaporation and reconstitution of the extract in 10 mL of water, a DLLME procedure using 1-hexyl-3-methylimidazolium hexafluorophosphate ([C(6)MIM][PF(6)]) as extraction solvent was used. Experimental conditions affecting the DLLME procedure (sample pH, sodium chloride percentage, ionic liquid amount and volume of disperser solvent) were optimized by means of an experimental design. In order to determine the presence of a matrix effect, calibration curves for standards and fortified banana extracts (matrix matched calibration) were studied. Mean recovery values of the extraction of the pesticides from banana samples were in the range of 69-97% (except for thiophanate-methyl and carbofuran, which were 53-63%) with a relative standard deviation lower than 8.7% in all cases. Limits of detection achieved (0.320-4.66 microg/kg) were below the harmonized maximum residue limits established by the European Union (EU). The proposed method, was also applied to the analysis of this group of pesticides in nine banana samples taken from the local markets of the Canary Islands (Spain). To the best of our knowledge, this is the first application of RTILs as extraction solvents for DLLME of pesticides from samples different than water.
Zheng, Cao; Zhao, Jing; Bao, Peng; Gao, Jin; He, Jin
2011-06-24
A novel, simple and efficient dispersive liquid-liquid microextraction based on solidification of floating organic droplet (DLLME-SFO) technique coupled with high-performance liquid chromatography with ultraviolet detection (HPLC-UV) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for the determination of triclosan and its degradation product 2,4-dichlorophenol in real water samples. The extraction solvent used in this work is of low density, low volatility, low toxicity and proper melting point around room temperature. The extractant droplets can be collected easily by solidifying it at a lower temperature. Parameters that affect the extraction efficiency, including type and volume of extraction solvent and dispersive solvent, salt effect, pH and extraction time, were investigated and optimized in a 5 mL sample system by HPLC-UV. Under the optimum conditions (extraction solvent: 12 μL of 1-dodecanol; dispersive solvent: 300 of μL acetonitrile; sample pH: 6.0; extraction time: 1 min), the limits of detection (LODs) of the pretreatment method combined with LC-MS/MS were in the range of 0.002-0.02 μg L(-1) which are lower than or comparable with other reported approaches applied to the determination of the same compounds. Wide linearities, good precisions and satisfactory relative recoveries were also obtained. The proposed technique was successfully applied to determine triclosan and 2,4-dichlorophenol in real water samples. Copyright © 2011 Elsevier B.V. All rights reserved.
Hu, Dan; Xu, Xu; Cai, Tian; Wang, Wei-Ying; Wu, Chun-Jie; Ye, Li-Ming
2017-12-01
A rapid and sensitive analytical method based on high-performance liquid chromatography-tandem mass spectrometry was developed and validated for the determination of isopyrazam (IZM) and azoxystrobin (AZT) in cucumbers. A modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) method was used as the pretreatment procedure. The samples were extracted with acetonitrile and cleaned up with octadecylsilyl silica (C18) and graphite carbon black. The proposed method resulted in satisfactory recovery of IZM and AZT (91.48 to 114.62%), and relative standard deviations were less than 13.1% at fortification concentrations of 1, 20, and 500 μg kg -1 (n = 3). The limits of quantification for IZM and AZT were 0.498 and 0.499 μg kg -1 , respectively, which are far below the maximum residue level (0.5 mg kg -1 ) established for this type of sample. Matrix effects were also evaluated. This study established a sensitive and fast method for the detection of IZM and AZT in cucumber samples.
Sun, Ye; Xi, Hanmi; Ediger, M D; Richert, Ranko; Yu, Lian
2009-08-21
The liquid dynamics of 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile, named ROY for its red, orange, and yellow crystal polymorphs, was characterized by dielectric spectroscopy and differential scanning calorimetry. Four of these polymorphs show fast "diffusionless" crystal growth at low temperatures while three others do not. ROY was found to be a typical fragile organic liquid. Its alpha relaxation process has time-temperature superposition symmetry across the viscous range (tau(alpha)=100 s-100 ns) with the width of the relaxation peak characterized by a constant beta(KWW) of 0.73. No secondary relaxation peak was observed, even with glasses made by fast quenching. For the polymorphs not showing fast crystal growth in the glassy state, the growth rate has a power-law relation with tau(alpha), u proportional to tau(alpha)(-xi), where xi approximately = 0.7. For the polymorphs showing fast crystal growth in the glassy state, the growth is so fast near and below the glass transition temperature T(g) that thousands of molecular layers can be added to the crystalline phase during one structural relaxation time of the liquid. In the glassy state, this mode of growth slows slightly over time. This slowdown is not readily explained by the effect of physical aging on the thermodynamic driving force of crystallization, the glass vapor pressure, or the rate of structural relaxation. This study demonstrates that from the same liquid or glass, the growth of some polymorphs is accurately described as being limited by the rate of structural relaxation or bulk diffusion, whereas the growth of other polymorphs is too fast to be under such control.
Zhou, Lijun; Xing, Rong; Xie, Lin; Rao, Tai; Wang, Qian; Ye, Wei; Fu, Hanxu; Xiao, Jingcheng; Shao, Yuhao; Kang, Dian; Wang, Guangji; Liang, Yan
2015-07-15
Notoginsenosides, the main active gradients of Chinese traditional medicine Panax notoginseng, possesses a variety of biological activities including antioxidant property, anti-hyperglycemic, anti-obese, etc. However, pharmacokinetic evaluation for notoginsenosides is still a formidable task due to their low concentrations and complex components in vivo. The summation of this work generated a rapid and sensitive method for quantitative analysis of multi-notoginsenoside in rat plasma based on ultra fast liquid chromatographic-tandem mass spectrometric. After liquid-liquid extraction by n-butanol, notoginsenoside R1, Rg3, Rd, Rg2, Rb2, Rf, Rg1, Rb1 and Re were simultaneously monitored in negative ionization mode after separating on a Thermo ODS C18 column (5mm 50mm×2.1mm) by a binary gradient elution, and all compounds were analyzed within 9min. Multiple reaction monitoring (MRM) was performed as follows: R1 (m/z 967.7→637.4), Rg3 (m/z 819.6→621.4), Rd (m/z 981.6→783.5), Rg2 (m/z 819.6→475.4), Rb2 (m/z 1113.4→783.4), Rf (m/z 835.6→475.4), Rg1 (m/z 835.6→637.6), Rb1 (m/z 1143.7→945.6), Re (m/z 981.6→637.4), internal standard (digoxin, m/z 815.5→779.4). Validation parameters (linearity, sensitivity, intra-and inter-assay precision and accuracy, recovery and matrix effect) were within acceptable ranges and biological extracts were stable during the entire storing and preparing process. This UFLC-MS/MS approach was further validated by being applied to the pharmacokinetic study for P. Notoginseng extract in rats, and the pharmacokinetic parameters were calculated by Winolin software. Thus, the presently developed methodology was simple, robust, accurate, precise, and would be useful for the pharmacokinetic studies for all kinds of notoginsenosides and other herbal saponins. Copyright © 2015 Elsevier B.V. All rights reserved.
Osorio-Tobón, J Felipe; Carvalho, Pedro I N; Barbero, Gerardo Fernández; Nogueira, Gislaine Chrystina; Rostagno, Mauricio Ariel; Meireles, Maria Angela de Almeida
2016-06-01
The recent development of fused-core technology in HPLC columns is enabling faster and highly efficient separations. This technology was evaluated for the development of a fast method for the analysis of main curcuminoids (curcumin, demethoxycurcumin and bisdemethoxycurcumin) present in extracts of turmeric (Curcuma longa L.). A step-by-step strategy was used to optimize temperature (40-55 °C), flow rate (1.0-2.5 mL min(-1)), mobile phase composition and equilibration time (1-5 min). A gradient method was developed using acidified water and acetonitrile combined with high column temperature (55 °C) and flow rate (2.5 mL min(-1)). Optimized conditions provided a method for the separation of these three curcuminoids in approximately 1.3 min with a total analysis time (sample-to-sample) of 7 min, including the clean-up and the re-equilibration of the column. Evaluation of chromatographic performance revealed excellent intraday and interday reproducibility (>99%), resolution (>2.23), selectivity (>1.12), peak symmetry (1.24-1.42) while presenting low limits of detection (<0.40 mg L(-1)) and quantification (<1.34 mg L(-1)). The robustness of the method was calculated according to the concentration/dilution of the sample and the injection volume. Several combinations of methanol and ethanol with water as sample solvents were evaluated and the best chromatographic results and extraction rate were obtained using 100% methanol. Finally, the developed method was validated with different extracts of turmeric rhizome and products that use turmeric in their formulation. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Sauer, Richard; Rutz, Jeffrey; Schultz, John
2005-01-01
A solid-phase extraction (SPE) process has been developed for removing alcohols, carboxylic acids, aldehydes, ketones, amines, and other polar organic compounds from water. This process can be either a subprocess of a water-reclamation process or a means of extracting organic compounds from water samples for gas-chromatographic analysis. This SPE process is an attractive alternative to an Environmental Protection Administration liquid-liquid extraction process that generates some pollution and does not work in a microgravitational environment. In this SPE process, one forces a water sample through a resin bed by use of positive pressure on the upstream side and/or suction on the downstream side, thereby causing organic compounds from the water to be adsorbed onto the resin. If gas-chromatographic analysis is to be done, the resin is dried by use of a suitable gas, then the adsorbed compounds are extracted from the resin by use of a solvent. Unlike the liquid-liquid process, the SPE process works in both microgravity and Earth gravity. In comparison with the liquid-liquid process, the SPE process is more efficient, extracts a wider range of organic compounds, generates less pollution, and costs less.
Zou, Denglang; Zhu, Xuelin; Zhang, Fan; Du, Yurong; Ma, Jianbin; Jiang, Renwang
2018-01-31
This study presents an efficient strategy based on liquid-liquid extraction with three-phase solvent system and high speed counter-current chromatography for rapid enrichment and separation of epimers of minor bufadienolide from toad meat. The reflux extraction conditions were optimized by response surface methodology first, and a novel three-phase solvent system composed of n-hexane/methyl acetate/acetonitrile/water (3:6:5:5, v/v) was developed for liquid-liquid extraction of the crude extract. This integrative extraction process could enrich minor bufadienolide from complex matrix efficiently and minimize the loss of minor targets induced by repeated extraction with different kinds of organic solvents occurring in the classical liquid two-phase extraction. As a result, four epimers of minor bufadienolide were greatly enriched in the middle phase and total content of these epimers of minor bufadienolide was increased from 3.25% to 46.23%. Then, the enriched four epimers were separated by HSCCC with a two-phase solvent system composed of chloroform/methanol/water (4:2:2, v/v) successfully. Furthermore, we tested Na + ,K + -ATPase (NKA) inhibitory effect of the four epimers. 3β-Isomers of bufadienolide showed stronger (>8-fold) inhibitory activity than 3α-isomers. The characterization of minor bufadienolide in toad meat and their significant difference of inhibitory effect on NKA would promote the further quantitative analysis and safety evaluation of toad meat as a food source.
NASA Technical Reports Server (NTRS)
Jahnsen, Vilhelm J. (Inventor); Campen, Jr., Charles F. (Inventor)
1980-01-01
A sample processor and method for the automatic extraction of families of compounds, known as extracts, from liquid and/or homogenized solid samples are disclosed. The sample processor includes a tube support structure which supports a plurality of extraction tubes, each containing a sample from which families of compounds are to be extracted. The support structure is moveable automatically with respect to one or more extraction stations, so that as each tube is at each station a solvent system, consisting of a solvent and reagents, is introduced therein. As a result an extract is automatically extracted from the tube. The sample processor includes an arrangement for directing the different extracts from each tube to different containers, or to direct similar extracts from different tubes to the same utilization device.
Lv, Mengying; Chen, Jiaqing; Gao, Yiqiao; Sun, Jianbo; Zhang, Qianqian; Zhang, Mohan; Xu, Fengguo; Zhang, Zunjian
2015-10-01
To better understand different traditional uses of the stems (known as Mahuang) and roots (known as Mahuanggen) of Ephedra sinica, their chemical difference should be investigated. In this study, an ultra-fast liquid chromatography coupled with ion trap time-of-flight mass spectrometry untargeted metabolomics approach was established to reveal global chemical difference between Mahuang and Mahuanggen. Clear separation was observed in scores plots of principal component analysis and orthogonal partial least squares-discriminant analysis. Twenty two chemical markers responsible for such separation were screened out and unambiguously/tentatively characterized. Then chemical markers of pharmacologically important ephedrine and pseudoephedrine were absolutely quantified using liquid chromatography coupled with tandem mass spectrometry under multiple reaction monitoring mode. The results showed that Mahuang was rich in ephedrine-type alkaloids, while Mahuanggen was rich in macrocyclic spermine alkaloids. Additionally, different types of flavan-3-ols and flavones exist in Mahuang and Mahuanggen extracts. This research facilitates a better understanding of different traditional uses of Mahuang and Mahuanggen and provides references for chemical analysis of other medicinal plants. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zheng, Rong; Wu, Yi-Hong; Jiang, De-Xi; Zhang, Dan
2012-01-01
A fast, simple and sensitive high performance liquid chromatographic (HPLC) method has been developed for determination of 10α-methoxy-6-methyl ergoline-8β-methanol (MDL, a main metabolite of nicergoline) in human plasma. One-step liquid–liquid extraction (LLE) with diethyl ether was employed as the sample preparation method. Tizanidine hydrochloride was selected as the internal standard (IS). Analysis was carried out on a Diamonsil ODS column (150 mm×4.6 mm, 5 μm) using acetonitrile–ammonium acetate (0.1 mol/L) (15/85, v/v) as mobile phase at detection wavelength of 224 nm. The calibration curves were linear over the range of 2.288–73.2 ng/mL with a lower limit of quantitation (LLOQ) of 2.288 ng/mL. The intra- and inter-day precision values were below 13% and the recoveries were from 74.47% to 83.20% at three quality control levels. The method herein described was successfully applied in a randomized crossover bioequivalence study of two different nicergoline preparations after administration of 30 mg in 20 healthy volunteers. PMID:29403722
Chen, Tao; Liu, Yongling; Zou, Denglang; Chen, Chen; You, Jinmao; Zhou, Guoying; Sun, Jing; Li, Yulin
2014-01-01
This study presents an efficient strategy based on liquid-liquid extraction, high-speed counter-current chromatography, and preparative HPLC for the rapid enrichment, separation, and purification of four anthraquinones from Rheum tanguticum. A new solvent system composed of petroleum ether/ethyl acetate/water (4:2:1, v/v/v) was developed for the liquid-liquid extraction of the crude extract from R. tanguticum. As a result, emodin, aloe-emodin, physcion, and chrysophanol were greatly enriched in the organic layer. In addition, an efficient method was successfully established to separate and purify the above anthraquinones by high-speed counter-current chromatography and preparative HPLC. This study supplies a new alternative method for the rapid enrichment, separation, and purification of emodin, aloe-emodin, physcione, and chrysophanol. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dasgupta, Soma; Banerjee, Kaushik; Utture, Sagar; Kusari, Parijat; Wagh, Sameer; Dhumal, Kondiba; Kolekar, Sanjay; Adsule, Pandurang G
2011-09-23
Water based samples such as flavored drinks, juices and drinking water may contain contaminants at ultra trace level belonging to different chemical classes. A novel, simple, low-cost and fast method was developed and validated for trace residue extraction of pesticides, dioxin-like PCBs and PAHs from water and water based samples followed by analysis through gas chromatography (GC) coupled with time-of-flight mass spectrometry (ToFMS). The extraction solvent type, volume; sample volume and other extraction conditions were optimized. This was achieved by extracting 10 mL sample with 250 μL chloroform by vortexing (1 min, standing time of 2 min) followed by centrifugation (6000 rpm, 5 min). The bottom organic layer (200 μL) was pipetted out, evaporated to near dryness and reconstituted in 20 μL of ethyl acetate+cyclohexane (1:9) mixture resulting in an enrichment factor of 400. The recoveries of all compounds were within 76-120% (±10%) with the method detection limit (MDL) ranging from 1 to 250 ng/L depending on the analyte response. The MDLs were 400 times lower than the instrument quantification limits that ranged from 0.4 to 100 ng/mL. The method was further validated in water based drinks (e.g. apple, lemon, pineapple, orange, grape and pomegranate juice). For the juices with suspended pulp, the extraction was carried out with 400 μL chloroform. The extract was analyzed by GC-ToFMS at both 1D and GC×GC modes to chromatographically separate closely eluting interfering compounds the effect of which could not be minimized otherwise. The resulting peak table was filtered to identify a range of compounds belonging to specific classes viz. polycyclic aromatic hydrocarbons, chlorinated, brominated, and nitro compounds. User developed scripts were employed on the basis of identification of the molecular ion and isotope clusters or other spectral characteristics. The method performed satisfactorily in analyzing both incurred as well as market samples. Copyright © 2011 Elsevier B.V. All rights reserved.
Yu, Xi; Sun, Ying; Jiang, Chunzhu; Sun, Xiumin; Gao, Yan; Wang, Yuanpeng; Zhang, Hanqi; Song, Daqian
2012-08-30
In this study, the polystyrene-coated magnetic nanoparticles (MNPs/PSt) were successfully prepared and characterized by Fourier transform infrared spectroscopy, transmission electron microscopy and vibrating sample magnetometry. The as-prepared MNPs/PSt were used as the adsorbent in magnetic solid phase extraction of five pyrethroids, including lambda-cyhalothrin, deltamethrin, esfenvalerate, permethrin, bifenthrin, in environmental water samples. The five pyrethroids were determined by ultra fast liquid chromatography-ultraviolet spectrometry. The influencing factors, including amount of MNPs/Pst, extraction time, pH value, type and volume of desorption solvent and desorption time, were examined and optimized. The extraction recoveries obtained with merely 50mg of MNPs/Pst were very satisfactory. The whole extraction process could be completed within 0.5h. The MNPs/PSt can be reused after an easy washing process. Thus, a simple, green, economical, time saving and effective method for pyrethroids analysis in environmental water samples was established. A high enrichment factor of 500 was achieved and the limits of detection for lambda-cyhalothrin, deltamethrin, esfenvalerate, permethrin, bifenthrin were 0.015±0.001 ng mL(-1), 0.012±0.001 ng mL(-1), 0.026±0.001 ng mL(-1), 0.020±0.001 ng mL(-1), 0.013±0.001 ng mL(-1), respectively. Recoveries obtained by analyzing spiked water samples at three concentration levels (0.100±0.001 ng mL(-1), 1.000±0.001 ng mL(-1), 10.000±0.001 ng mL(-1)) were between 78.97±8.38% and 96.05±8.38%. The standard curves for the five pyrethroids showed good linearity with the correlation coefficients in the range of 0.9994-0.9999. The intra-day and inter-day precision were satisfactory with the RSDs in the range of 2.05-5.52% and 2.73-8.38%, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.
Caballo, C; Sicilia, M D; Rubio, S
2014-02-01
A simple, sensitive, rapid and economic method was developed for the quantification of enantiomers of chiral pesticides as mecoprop (MCPP) and dichlorprop (DCPP) in soil samples using supramolecular solvent-based microextraction (SUSME) combined with liquid chromatography coupled to mass spectrometry (LC-MS/MS). SUSME has been described for the extraction of chiral pesticides in water, but this is firstly applied to soil samples. MCPP and DCPP are herbicides widely used in agriculture that have two enantiomeric forms (R- and S-) differing in environmental fate and toxicity. Therefore, it is essential to have analytical methods for monitoring individual DCPP and MCPP enantiomers in environmental samples. MCPP and DCPP were extracted in a supramolecular solvent (SUPRAS) made up of dodecanoic acid aggregates, the extract was dried under a nitrogen stream, the two herbicides dissolved in acetate buffer and the aqueous extract directly injected in the LC-MS/MS system. The recoveries obtained were independent of soil composition and age of herbicide residues. The detection and quantitation limits of the developed method for the determination of R- and S-MCPP and R- and S-DCPP in soils were 0.03 and 0.1 ng g(-1), respectively, and the precision, expressed as relative standard deviation (n=6), for enantiomer concentrations of 5 and 100 ng g(-1) were in the ranges 4.1-6.1% and 2.9-4.1%. Recoveries for soil samples spiked with enantiomer concentrations within the interval 5-180 ng g(-1) and enantiomeric ratios (ERs) of 1, 3 and 9, ranged between 93 and 104% with standard deviations of the percent recovery varying between 0.3% and 6.0%. Because the SUPRAS can solubilize analytes through different type of interactions (dispersion, dipole-dipole and hydrogen bonds), it could be used to extract a great variety of pesticides (including both polar and non-polar) in soils. © 2013 Published by Elsevier B.V.
Wang, Jiajia; Gu, Dongyu; Wang, Miao; Guo, Xinfeng; Li, Haoquan; Dong, Yue; Guo, Hong; Wang, Yi; Fan, Mengqi; Yang, Yi
2017-05-15
A rational liquid-liquid extraction approach was established to pre-treat samples for high-speed counter-current chromatography (HSCCC). n-Hexane-ethyl acetate-methanol-water (4:5:4:5, v/v) and (1:5:1:5, v/v) were selected as solvent systems for liquid-liquid extraction by systematically screening K of target compounds to remove low- and high-polarity impurities in the sample, respectively. After liquid-liquid extraction was performed, 1.4g of crude sample II was obtained from 18.5g of crude sample I which was extracted from the flowers of Robinia pseudoacacia L., and then separated with HSCCC by using a solvent system composed of n-hexane-ethyl acetate-methanol-water (1:2:1:2, v/v). As a result, 31mg of robinin and 37mg of kaempferol 7-O-α-l-rhamnopyranoside were isolated from 200mg of crude sample II in a single run of HSCCC. A scale-up separation was also performed, and 160mg of robinin with 95% purity and 188mg of kaempferol 7-O-α-l-rhamnopyranoside with 97% purity were produced from 1.2g of crude sample II. Copyright © 2017 Elsevier B.V. All rights reserved.
Wianowska, Dorota
2014-01-01
The influence of different purge times on the yield of the main essential oil constituents of rosemary (Rosmarinus officinalis L.), thyme (Thymus vulgaris L.), and chamomile (Chamomilla recutita L.) was investigated. The pressurized liquid extraction process was performed by applying different extraction temperatures and solvents. The results presented in the paper show that the estimated yield of essential oil components extracted from the plants in the pressurized liquid extraction process is purge time-dependent. The differences in the estimated yields are mainly connected with the evaporation of individual essential oil components and the applied solvent during the purge; the more volatile an essential oil constituent is, the greater is its loss during purge time, and the faster the evaporation of the solvent during the purge process is, the higher the concentration of less volatile essential oil components in the pressurized liquid extraction receptacle. The effect of purge time on the estimated yield of individual essential oil constituents is additionally differentiated by the extraction temperature and the extraction ability of the applied solvent.
Zhou, Caihong; Tong, Shanshan; Chang, Yunxia; Jia, Qiong; Zhou, Weihong
2012-04-01
Ionic liquid (IL) based dispersive liquid-liquid microextraction (DLLME) with back-extraction coupled with capillary electrophoresis ultraviolet detection was developed to determine four phenolic compounds (bisphenol-A, β-naphthol, α-naphthol, 2, 4-dichlorophenol) in aqueous cosmetics. The developed method was used to preconcentrate and clean up the four phenolic compounds including two steps. The analytes were transferred into room temperature ionic liquid (1-octyl-3-methylimidazolium hexafluorophosphate, [C(8) MIM][PF(6) ]) rich-phase in the first step. In the second step, the analytes were back-extracted into the alkaline aqueous phase. The effects of extraction parameters, such as type and volume of extraction solvent, type and volume of disperser, extraction and centrifugal time, sample pH, salt addition, and concentration and volume of NaOH in back-extraction were investigated. Under the optimal experimental conditions, the preconcentration factors were 60.1 for bisphenol-A, 52.7 for β-naphthol, 49.2 for α-naphthol, and 18.0 for 2, 4-dichlorophenol. The limits of detection for bisphenol-A, β-naphthol, α-naphthol and 2, 4-dichlorophenol were 5, 5, 8, and 100 ng mL(-1), respectively. Four kinds of aqueous cosmetics including toner, soften lotion, make-up remover, and perfume were analyzed and yielded recoveries ranging from 81.6% to 119.4%. The main advantages of the proposed method are quick, easy, cheap, and effective. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ma, Shuping; Yuan, Xucan; Zhao, Pengfei; Sun, Hong; Ye, Xiu; Liang, Ning; Zhao, Longshan
2017-08-01
A novel and reliable method for determination of five triazole fungicide residues (triadimenol, tebuconazole, diniconazole, flutriafol, and hexaconazol) in traditional Chinese medicine samples was developed using dispersive solid-phase extraction combined with ultrasound-assisted dispersive liquid-liquid microextraction before ultra-high performance liquid chromatography with tandem mass spectrometry. The clean up of the extract was conducted using dispersive solid-phase extraction by directly adding sorbents into the extraction solution, followed by shaking and centrifugation. After that, a mixture of 400 μL trichloromethane (extraction solvent) and 0.5 mL of the above supernatant was injected rapidly into water for the dispersive liquid-liquid microextraction procedure. The factors affecting the extraction efficiency were optimized. Under the optimum conditions, the calibration curves showed good linearity in the range of 2.0-400 (tebuconazole, diniconazole, and hexaconazole) and 4.0-800 ng/g (triadimenol and flutriafol) with the regression coefficients higher than 0.9958. The limit of detection and limit of quantification for the present method were 0.5-1.1 and 1.8-4.0 ng/g, respectively. The recoveries of the target analytes ranged from 80.2 to 103.2%. The proposed method has been successfully applied to the analysis of five triazole fungicides in traditional Chinese medicine samples, and satisfactory results were obtained. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Peng, Guilong; He, Qiang; Mmereki, Daniel; Lu, Ying; Zhong, Zhihui; Liu, Hanyang; Pan, Weiliang; Zhou, Guangming; Chen, Junhua
2016-04-01
A novel dispersive solid-phase extraction combined with vortex-assisted dispersive liquid-liquid microextraction based on solidification of floating organic droplet was developed for the determination of eight benzoylurea insecticides in soil and sewage sludge samples before high-performance liquid chromatography with ultraviolet detection. The analytes were first extracted from the soil and sludge samples into acetone under optimized pretreatment conditions. Clean-up of the extract was conducted by dispersive solid-phase extraction using activated carbon as the sorbent. The vortex-assisted dispersive liquid-liquid microextraction based on solidification of floating organic droplet procedure was performed by using 1-undecanol with lower density than water as the extraction solvent, and the acetone contained in the solution also acted as dispersive solvent. Under the optimum conditions, the linearity of the method was in the range 2-500 ng/g with correlation coefficients (r) of 0.9993-0.9999. The limits of detection were in the range of 0.08-0.56 ng/g. The relative standard deviations varied from 2.16 to 6.26% (n = 5). The enrichment factors ranged from 104 to 118. The extraction recoveries ranged from 81.05 to 97.82% for all of the analytes. The good performance has demonstrated that the proposed methodology has a strong potential for application in the multiresidue analysis of complex matrices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tarkowská, Danuse; Dolezal, Karel; Tarkowski, Petr; Astot, Crister; Holub, Jan; Fuksová, Kvetoslava; Schmülling, Thomas; Sandberg, Göran; Strnad, Miroslav
2003-04-01
A search for naturally occurring aromatic cytokinins (ARCKs) in Arabidopsis thaliana plants and Populus x canadensis leaves led to the discovery of four new plant hormone substances: 6-(2-methoxybenzylamino)purine (ortho-methoxytopolin, MeoT), 6-(3-methoxybenzylamino)purine (meta-methoxytopolin, MemT) (Fig. 1) and their 9-beta-D-ribofuranosyl derivatives. These substances were identified by liquid chromatography electrospray ionization mass spectrometry [LC (+)ESI-MS] and capillary-liquid chromatography/frit-fast atom bombardment-mass spectrometry [CapLC/frit-FAB-MS] after pre-column derivatization. The chemical structures were subsequently confirmed by chemical synthesis. Because of lack of heavy labelled internal standards, the endogenous levels of methoxytopolins in A. thaliana plants, Populus x canadensis leaves and samples derived from cultures of Agrobacterium tumefaciens strain GV3101 were determined by enzyme-linked immunosorbent assay (ELISA) of HPLC-fractionated extracts. While the levels of MeoT, MemT and their ribosides in A. thaliana shoots and Populus x canadensis leaves were relatively low (approximately 0.25-10 pmol g-1 FW for MeoT and MemT, respectively), the A. tumefaciens strain produced up to 600 times more of the newly identified substances. Cytokinin activity of methoxytopolines was demonstrated in three bioassays testing their ability to stimulate tobacco callus growth, to delay chlorophyll degradation in excised wheat leaves, and to induce betacyanin synthesis in Amaranthus caudatus var. atropurpurea cotyledons. Notably, their anti-senescing activity in the wheat leaf assay exceeded that of BAP and Z by almost 200%. Methoxytopolins are proposed to be new members of the biologically active aromatic cytokinin family, which might have specific physiological functions.
Process to upgrade coal liquids by extraction prior to hydrodenitrogenation
Schneider, Abraham; Hollstein, Elmer J.; Janoski, Edward J.; Scheibel, Edward G.
1982-01-01
Oxygen compounds are removed, e.g., by extraction, from a coal liquid prior to its hydrogenation. As a result, compared to hydrogenation of such a non-treated coal liquid, the rate of nitrogen removal is increased.
Zhong, Cheng; Chen, Beibei; He, Man; Hu, Bin
2017-02-03
In this study, covalent triazine framework-1 (CTF-1) was adopted as solid phase extraction (SPE) sorbents, and a method of SPE inline coupled with high performance liquid chromatography-ultraviolet (HPLC-UV) detection was developed for trace analysis of three nitroimidazolaes (including metronidazole, ronidazole and dimetridazole) in porcine liver and environmental water samples. CTF-1 has rich π-electron and N containing triazine, thus can form π-π interaction and intermolecular hydrogen bond with three target polar nitroimidazoles, resulting in high extraction efficiency (87%-98%). Besides, CTF-1 has large specific area, which benefits rapid mass transfer and low column pressure, leading to fast adsorption/desorption dynamics. Several parameters affecting inline SPE including pH, sample flow rate, sample volume, desorption reagents, elution flow rate, elution volume, and ionic strength were investigated. Under the optimal experimental conditions, the limits of detection (S/N=3) were found to be in the range of 0.11-0.13μg/L. The enrichment factors (EFs) ranged from 52 to 59 fold (theoretical EF was 60-fold). The relative standard deviations were in the range of 4.3-9.4% (n=7, c=1μg/L), and the linear range was 0.5-500μg/L for three target analytes. The sample throughput is 7/h. The proposed method was successfully applied to the analysis of nitroimidazoles in porcine liver and environmental water samples with good recoveries for the spiked samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Xie, Hanbing; Zhou, Mingying; Zhao, Haifeng; Wang, Yigang; Jiang, Wanfeng; Zhao, Shan
2014-05-01
This study was aimed to the establishment of an analytical method for the determination of three exogenous plant hormone residues in bean sprout by high performance liquid chromatography-quadrupole-time of flight mass spectrometry (HPLC-Q-TOF-MS). The target compounds were gibberellins, 6-benzylaminopurine and parachlorophenoxyacetic acid. The QuEChERS (quick, easy, cheap, effective, rugged, and safe) method was used for sample preparation. The analytes were extracted with a solution containing 1% (v/v, if not specified) acetic, 50% ethanol, 49% acetonitrile, and cleaned-up by dispersive solid-phase extraction with diatomite dispersant, then degreased by hexane. The three target compounds were separated on an Eclipse Plus C18 column (100 mm x 3.0 mm, 1.8 microm) with mobile phases A (water containing 0.1% formic acid) and B (methanol) by gradient elution within 15 min, and detected under negative electrospray ionization (ESI) mode. The quantitative analysis was carried out by extracting the peak area with accurate mass. The confirmatory analysis of the target compounds was performed with the qualitative fragments. The results showed that the limits of quantification (LOQs, S/N = 10) for the three target compounds were from 5.0 microg/kg to 10 microg/kg. The respective mean recoveries were found to be in the range of 79.1%-96.1%, and the RSDs were 5.7%-10.4%. It was applicable to the analysis of the three exogenous plant hormones in bean sprout samples. This method is simple, fast and efficient.
Application of solid/liquid extraction for the gravimetric determination of lipids in royal jelly.
Antinelli, Jean-François; Davico, Renée; Rognone, Catherine; Faucon, Jean-Paul; Lizzani-Cuvelier, Louisette
2002-04-10
Gravimetric lipid determination is a major parameter for the characterization and the authentication of royal jelly quality. A solid/liquid extraction was compared to the reference method, which is based on liquid/liquid extraction. The amount of royal jelly and the time of the extraction were optimized in comparison to the reference method. Boiling/rinsing ratio and spread of royal jelly onto the extraction thimble were identified as critical parameters, resulting in good accuracy and precision for the alternative method. Comparison of reproducibility and repeatability of both methods associated with gas chromatographic analysis of the composition of the extracted lipids showed no differences between the two methods. As the intra-laboratory validation tests were comparable to the reference method, while offering rapidity and a decrease in amount of solvent used, it was concluded that the proposed method should be used with no modification of quality criteria and norms established for royal jelly characterization.
Sager, Maximilian; Jedamzik, Philipp; Merdivan, Simon; Grimm, Michael; Schneider, Felix; Kromrey, Marie-Luise; Hasan, Mahmoud; Oswald, Stefan; Kühn, Jens; Koziolek, Mirko; Weitschies, Werner
2018-06-01
Improving our knowledge about human gastrointestinal physiology and its impact on oral drug delivery is crucial for the development of new therapies and effective drug delivery systems. The aim of this study was to develop an in vivo tool to determine gastric emptying of water by administration of a caffeine as a tracer substance followed by subsequent saliva caffeine analysis. For this purpose, 35 mg of caffeine were given to six healthy volunteers after a 10 h overnight together with 240 mL of tap water either on a fasted stomach or 30 min after the high-caloric, high-fat breakfast recommended for bioavailability/bioequivalence (BA/BE) studies. Caffeine was administered in form of an ice capsule in order to omit the contamination of the oral cavity with caffeine. Parallel to saliva sampling, magnetic resonance imaging (MRI) was applied in order to validate this novel approach. After administration of the ice capsule, MRI measurements were performed every 2 min for the first 20 min followed by further measurements after 25, 30, 35, 40, 50 and 60 min. Saliva samples were collected always 1 min after the MRI measurement in supine position in the MRI scanner and continued for further 240 min. The caffeine concentration in saliva was quantified after liquid-liquid extraction by a validated HPLC/MS-MS method. The obtained MRI data revealed a fast emptying of the co-administered water within 10 to 50 min in the fasted state and likewise in the fed state. Salivary caffeine kinetics showed a C max from 150 to 400 ng/mL with a t max from 20 to 90 min. MRI data were normalized by setting the maximum emptied volume to 100% and the salivary caffeine kinetics were normalized by setting C max to 100%. In order to compare the results obtained by the MRI and the saliva method, the normalized data for each volunteer was correlated based on a linear regression. In the fasted state the mean slope for six comparisons was 0.9114 ± 0.1500 and the mean correlation coefficient was 0.912 ± 0.055. In the fed state, a mean slope of 0.8326 ± 0.1630 and a mean correlation coefficient of 0.887 ± 0.047 were obtained. Based on these results, we could show that salivary caffeine concentrations are suitable to describe the emptying of water as a non-caloric liquid from the fasted and the fed stomach. The presented technique provides a straight-forward, inexpensive and noninvasive method to assess gastric emptying of hydrophilic liquids, which can be broadly used in oral biopharmaceutics. Possible applications are the characterization of real-life conditions, specific populations (e.g. elderly people) and the better understanding of the contribution of gastric emptying to pharmacokinetic profiles of orally administered drugs. Copyright © 2018 Elsevier B.V. All rights reserved.
Microfluidic study of fast gas-liquid reactions.
Li, Wei; Liu, Kun; Simms, Ryan; Greener, Jesse; Jagadeesan, Dinesh; Pinto, Sascha; Günther, Axel; Kumacheva, Eugenia
2012-02-15
We present a new concept for studies of the kinetics of fast gas-liquid reactions. The strategy relies on the microfluidic generation of highly monodisperse gas bubbles in the liquid reaction medium and subsequent analysis of time-dependent changes in bubble dimensions. Using reactions of CO(2) with secondary amines as an exemplary system, we demonstrate that the method enables rapid determination of reaction rate constant and conversion, and comparison of various binding agents. The proposed approach addresses two challenges in studies of gas-liquid reactions: a mass-transfer limitation and a poorly defined gas-liquid interface. The proposed strategy offers new possibilities in studies of the fundamental aspects of rapid multiphase reactions, and can be combined with throughput optimization of reaction conditions.
Yang, Xiao; Zhang, Shaohua; Yu, Wei; Liu, Zhongling; Lei, Lei; Li, Na; Zhang, Hanqi; Yu, Yong
2014-06-01
An ionic liquid-anionic surfactant based aqueous two-phase extraction was developed and applied for the extraction of tetracycline, oxytetracycline and chloramphenicol in honey. The honey sample was mixed with Na2EDTA aqueous solution. The sodium dodecyl sulfate, ionic liquid 1-octyl-3-methylimidazolium bromide and sodium chloride were added in the mixture. After the resulting mixture was ultrasonically shaken and centrifuged, the aqueous two phase system was formed and analytes were extracted into the upper phase. The parameters affecting the extraction efficiency, such as the volume of ionic liquid, the category and amount of salts, sample pH value, extraction time and temperature were investigated. The limits of detection of tetracycline, oxytetracycline and chloramphenicol were 5.8, 8.2 and 4.2 μg kg(-1), respectively. When the present method was applied to the analysis of real honey samples, the recoveries of analytes ranged from 85.5 to 110.9% and relative standard deviations were lower than 6.9%. Copyright © 2014 Elsevier B.V. All rights reserved.
Alonso-Salces, Rosa M; Barranco, Alejandro; Corta, Edurne; Berrueta, Luis A; Gallo, Blanca; Vicente, Francisca
2005-02-15
A solid-liquid extraction procedure followed by reversed-phase high-performance liquid chromatography (RP-HPLC) coupled with a photodiode array detector (DAD) for the determination of polyphenols in freeze-dried apple peel and pulp is reported. The extraction step consists in sonicating 0.5g of freeze-dried apple tissue with 30mL of methanol-water-acetic acid (30:69:1, v/v/v) containing 2g of ascorbic acid/L, for 10min in an ultrasonic bath. The whole method was validated, concluding that it is a robust method that presents high extraction efficiencies (peel: >91%, pulp: >95%) and appropriate precisions (within day: R.S.D. (n = 5) <5%, and between days: R.S.D. (n = 5) <7%) at the different concentration levels of polyphenols that can be found in apple samples. The method was compared with one previously published, consisting in a pressurized liquid extraction (PLE) followed by RP-HPLC-DAD determination. The advantages and disadvantages of both methods are discussed.
Thermal stability of liquid antioxidative extracts from pomegranate peel.
Qu, Wenjuan; Li, Pingping; Hong, Jihua; Liu, Zhiling; Chen, Yufang; Breksa, Andrew P; Pan, Zhongli
2014-03-30
Liquid extracts from pomegranate peel have the potential for use as natural antioxidant products. This study investigates the quality changes of liquid extracts before and after thermal treatment during sterilization and storage. Liquid pomegranate peel extracts were prepared, sterilized under ultra-high temperature (UHT) at 121 °C for 10 s and then stored at three temperatures (4, 25 and 37 °C) for up to 180 days. The industrial, color, UV-visible spectrum profile and antioxidant (phenolics) characteristics were measured. Thermal sterilization treatment had no negative effects on the industrial, color, spectral and antioxidant characteristics of the extracts. After 180 days, the extracts stored at 4 °C retained 67% of the initial total soluble phenolic content and 58% of the original scavenging activity. The major antioxidant components in the extracts (stored at 4 °C for 180 days) were gallic acid, punicalagin A, punicalagin B and ellagic acid having concentrations of 19.3, 197.2, 221.1 and 92.4 mg L⁻¹, respectively. The results show that liquid pomegranate peel extracts had acceptable thermal stability after sterilization and storage. The recommended storage condition of this product was low temperature. © 2013 Society of Chemical Industry.
Aromatics extraction from pyrolytic sugars using ionic liquid to enhance sugar fermentability.
Li, Xiaohua; Luque-Moreno, Luis C; Oudenhoven, Stijn R G; Rehmann, Lars; Kersten, Sascha R A; Schuur, Boelo
2016-09-01
Fermentative bioethanol production from pyrolytic sugars was improved via aromatics removal by liquid-liquid extraction. As solvents, the ionic liquid (IL) trihexyltetradecylphosphonium dicyanamide (P666,14[N(CN)2]) and ethyl acetate (EA) were compared. Two pyrolytic sugar solutions were created from acid-leached and untreated pinewood, with levoglucosan contents (most abundant sugar) of 29.0% and 8.3% (w/w), respectively. In a single stage extraction, 70% of the aromatics were effectively removed by P666,14[N(CN)2] and 50% by EA, while no levoglucosan was extracted. The IL was regenerated by vacuum evaporation (100mbar) at 220°C, followed by extraction of aromatics from fresh pyrolytic sugar solutions. Regenerated IL extracted aromatics with similar extraction efficiency as the fresh IL, and the purified sugar fraction from pretreated pinewood was hydrolyzed to glucose and fermented to ethanol, yielding 0.46g ethanol/(g glucose), close to the theoretical maximum yield. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
REDISTRIBUTOR FOR LIQUID-LIQUID EXTRACTION COLUMNS
Bradley, J.G.
1957-10-29
An improved baffle plate construction to intimately mix immiscible liquid solvents for solvent extraction processes in a liquid-liquid pulse column is described. To prevent the light and heavy liquids from forming separate continuous homogeneous vertical channels through sections of the column, a baffle having radially placed rectangular louvers with deflection plates opening upon alternate sides of the baffle is placed in the column, normal to the axis. This improvement substantially completely reduces strippiig losses due to poor mixing.
Jiang, Zheng; Wang, Hong; Wu, Qi-nan
2015-06-01
To optimize the processing of polysaccharide extraction from Spirodela polyrrhiza. Five factors related to extraction rate of polysaccharide were optimized by the Plackett-Burman design. Based on this study, three factors, including alcohol volume fraction, extraction temperature and ratio of material to liquid, were regarded as investigation factors by Box-Behnken response surface methodology. The effect order of three factors on the extraction rate of polysaccharide from Spirodela polyrrhiza were as follows: extraction temperature, alcohol volume fraction,ratio of material to liquid. According to Box-Behnken response, the best extraction conditions were: alcohol volume fraction of 81%, ratio of material to liquid of 1:42, extraction temperature of 100 degrees C, extraction time of 60 min for four times. Plackett-Burman design and Box-Behnken response surface methodology used to optimize the extraction process for the polysaccharide in this study is effective and stable.
Berton, Paula; Lana, Nerina B; Ríos, Juan M; García-Reyes, Juan F; Altamirano, Jorgelina C
2016-01-28
Green chemistry principles for developing methodologies have gained attention in analytical chemistry in recent decades. A growing number of analytical techniques have been proposed for determination of organic persistent pollutants in environmental and biological samples. In this light, the current review aims to present state-of-the-art sample preparation approaches based on green analytical principles proposed for the determination of polybrominated diphenyl ethers (PBDEs) and metabolites (OH-PBDEs and MeO-PBDEs) in environmental and biological samples. Approaches to lower the solvent consumption and accelerate the extraction, such as pressurized liquid extraction, microwave-assisted extraction, and ultrasound-assisted extraction, are discussed in this review. Special attention is paid to miniaturized sample preparation methodologies and strategies proposed to reduce organic solvent consumption. Additionally, extraction techniques based on alternative solvents (surfactants, supercritical fluids, or ionic liquids) are also commented in this work, even though these are scarcely used for determination of PBDEs. In addition to liquid-based extraction techniques, solid-based analytical techniques are also addressed. The development of greener, faster and simpler sample preparation approaches has increased in recent years (2003-2013). Among green extraction techniques, those based on the liquid phase predominate over those based on the solid phase (71% vs. 29%, respectively). For solid samples, solvent assisted extraction techniques are preferred for leaching of PBDEs, and liquid phase microextraction techniques are mostly used for liquid samples. Likewise, green characteristics of the instrumental analysis used after the extraction and clean-up steps are briefly discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Recovery of Scandium from Leachate of Sulfation-Roasted Bayer Red Mud by Liquid-Liquid Extraction
NASA Astrophysics Data System (ADS)
Liu, Zhaobo; Li, Hongxu; Jing, Qiankun; Zhang, Mingming
2017-11-01
The leachate obtained from sulfation-roasted Bayer red mud is suitable for extraction of scandium by liquid-liquid solvent extraction because it contains trace amounts of Fe3+ and Si4+. In this study, a completely new metallurgical process for selective recovery of scandium from Bayer red mud was proposed. The extraction performances of Sc3+, Fe3+, Al3+, Si4+, Ca2+, and Na+ from synthetic leachate of sulfation-roasted red mud were first investigated using organophosphorus extractants (di-2-ethylhexyl phosphoric acid P204 and 2-ethylhexyl phosphoric acid mono-2-ethylhexyl ester P507) and carboxylic acid extractant (Versatic acid 10). It shows that P204 has an excellent extraction ability and that it can be applied to the scandium recovery. P507 and Versatic acid 10 are much poorer in performance for selective extraction of scandium. In the leachate of sulfation-roasted red mud, approximately 97% scandium can be recovered using a P204/sulfonated kerosene (1% v/v) extraction system under the condition of an organic-to-aqueous phase ratio of 10:1 and with an extraction temperature of 15°C.
Xu, Wei; Chu, Kedan; Li, Huang; Zhang, Yuqin; Zheng, Haiyin; Chen, Ruilan; Chen, Lidian
2012-12-03
An ionic liquids (IL)-based microwave-assisted approach for extraction and determination of flavonoids from Bauhinia championii (Benth.) Benth. was proposed for the first time. Several ILs with different cations and anions and the microwave-assisted extraction (MAE) conditions, including sample particle size, extraction time and liquid-solid ratio, were investigated. Two M 1-butyl-3-methylimidazolium bromide ([bmim] Br) solution with 0.80 M HCl was selected as the optimal solvent. Meanwhile the optimized conditions a ratio of liquid to material of 30:1, and the extraction for 10 min at 70 °C. Compared with conventional heat-reflux extraction (CHRE) and the regular MAE, IL-MAE exhibited a higher extraction yield and shorter extraction time (from 1.5 h to 10 min). The optimized extraction samples were analysed by LC-MS/MS. IL extracts of Bauhinia championii (Benth.)Benth consisted mainly of flavonoids, among which myricetin, quercetin and kaempferol, β-sitosterol, triacontane and hexacontane were identified. The study indicated that IL-MAE was an efficient and rapid method with simple sample preparation. LC-MS/MS was also used to determine the chemical composition of the ethyl acetate/MAE extract of Bauhinia championii (Benth.) Benth, and it maybe become a rapid method to determine the composition of new plant extracts.
Behrens, Beate; Engelen, Jeannine; Tiso, Till; Blank, Lars Mathias; Hayen, Heiko
2016-04-01
Rhamnolipids are surface-active agents with a broad application potential that are produced in complex mixtures by bacteria of the genus Pseudomonas. Analysis from fermentation broth is often characterized by laborious sample preparation and requires hyphenated analytical techniques like liquid chromatography coupled to mass spectrometry (LC-MS) to obtain detailed information about sample composition. In this study, an analytical procedure based on chromatographic method development and characterization of rhamnolipid sample material by LC-MS as well as a comparison of two sample preparation methods, i.e., liquid-liquid extraction and solid-phase extraction, is presented. Efficient separation was achieved under reversed-phase conditions using a mixed propylphenyl and octadecylsilyl-modified silica gel stationary phase. LC-MS/MS analysis of a supernatant from Pseudomonas putida strain KT2440 pVLT33_rhlABC grown on glucose as sole carbon source and purified by solid-phase extraction revealed a total of 20 congeners of di-rhamnolipids, mono-rhamnolipids, and their biosynthetic precursors 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) with different carbon chain lengths from C8 to C14, including three rhamnolipids with uncommon C9 and C11 fatty acid residues. LC-MS and the orcinol assay were used to evaluate the developed solid-phase extraction method in comparison with the established liquid-liquid extraction. Solid-phase extraction exhibited higher yields and reproducibility as well as lower experimental effort.
Moniruzzaman, M; Rodríguez, I; Rodríguez-Cabo, T; Cela, R; Sulaiman, S A; Gan, S H
2014-11-14
The suitability of the dispersive liquid-liquid microextraction (DLLME) technique for gas chromatography (GC) characterization of minor organic compounds in honey samples is evaluated. Under optimized conditions, samples were pre-treated by liquid-liquid extraction with acetonitrile followed by DLLME using carbon tetrachloride (CCl4, 0.075 mL) as extractant. The yielded settled phase was analyzed by GC using high resolution time-of-flight (TOF) mass spectrometry (MS). The whole sample preparation process is completed in approximately 10 min, with a total consumption of organic solvents below 4 mL, relative standard deviations lower than 12% and with more than 70 organic compounds, displaying linear retention index in the range from 990 to 2900, identified in the obtained extracts. In comparison with HS SPME extraction, higher peak intensities were attained for most volatile and semi-volatile compounds amenable to both extraction techniques. Furthermore, other species such as highly polar and water soluble benzene acids, long chain fatty acids, esters and flavonoids, which are difficult to concentrate by HS SPME, could be identified in DLLME extracts. Some of the compounds identified in DLLME extracts have been proposed as useful for samples classification and/or they are recognized as markers of honeys from certain geographic areas. Copyright © 2014 Elsevier B.V. All rights reserved.
Pietrogrande, Maria Chiara; Dondi, Francesco; Ciogli, Alessia; Gasparrini, Francesco; Piccin, Antonella; Serafini, Mauro
2010-06-25
In this study, a comparative investigation was performed of HPLC Ascentis (2.7 microm particles) columns based on fused-core particle technology and Acquity (1.7 microm particles) columns requiring UPLC instruments, in comparison with Chromolith RP-18e columns. The study was carried out on mother and vegetal tinctures of Passiflora incarnata L. on one single or two coupled columns. The fundamental attributions of the chromatographic profiles are evaluated using a chemometric procedure, based on the AutoCovariance Function (ACVF). Different chromatographic systems are compared in terms of their separation parameters, i.e., number of total chemical components (m(tot)), separation efficiency (sigma), peak capacity (n(c)), overlap degree of peaks and peak purity. The obtained results show the improvements achieved by HPLC columns with narrow size particles in terms of total analysis time and chromatographic efficiency: comparable performance are achieved by Ascentis (2.7 microm particle) column and Acquity (1.7 microm particle) column requiring UPLC instruments. The ACVF plot is proposed as a simplified tool describing the chromatographic fingerprint to be used for evaluating and comparing chemical composition of plant extracts by using the parameters D% - relative abundance of the deterministic component - and c(EACF) - similarity index computed on ACVF. Copyright 2010 Elsevier B.V. All rights reserved.
Fast and "green" method for the analytical monitoring of haloketones in treated water.
Serrano, María; Silva, Manuel; Gallego, Mercedes
2014-09-05
Several groups of organic compounds have emerged as being particularly relevant as environmental pollutants, including disinfection by-products (DBPs). Haloketones (HKs), which belong to the unregulated volatile fraction of DBPs, have become a priority because of their occurrence in drinking water at concentrations below 1μg/L. The absence of a comprehensive method for HKs has led to the development of the first method for determining fourteen of these species. In an effort to miniaturise, this study develops a micro liquid-liquid extraction (MLLE) method adapted from EPA Method 551.1. In this method practically, the whole extract (50μL) was injected into a programmed temperature vaporiser-gas chromatography-mass spectrometer in order to improve sensitivity. The method was validated by comparing it to EPA Method 551.1 and showed relevant advantages such as: lower sample pH (1.5), higher aqueous/organic volume ratio (60), lower solvent consumption (200μL) and fast and cost-saving operation. The MLLE method achieved detection limits ranging from 6 to 60ng/L (except for 1,1,3-tribromo-3-chloroacetone, 120ng/L) with satisfactory precision (RSD, ∼6%) and high recoveries (95-99%). An evaluation was carried out of the influence of various dechlorinating agents as well as of the sample pH on the stability of the fourteen HKs in treated water. To ensure the HKs integrity for at least 1 week during storage at 4°C, the samples were acidified at pH ∼1.5, which coincides with the sample pH required for MLLE. The green method was applied to the speciation of fourteen HKs in tap and swimming pool waters, where one and seven chlorinated species, respectively, were found. The concentration of 1.1-dichloroacetone in swimming pool water increased ∼25 times in relation to tap water. Copyright © 2014 Elsevier B.V. All rights reserved.
Steuer, Andrea E; Poetzsch, Michael; Stock, Lorena; Eisenbeiss, Lisa; Schmid, Yasmin; Liechti, Matthias E; Kraemer, Thomas
2017-05-01
Lysergic acid diethylamide (LSD) is a semi-synthetic hallucinogen that has gained popularity as a recreational drug and has been investigated as an adjunct to psychotherapy. Analysis of LSD represents a major challenge in forensic toxicology due to its instability, low drug concentrations, and short detection windows in biological samples. A new, fast, and sensitive microflow liquid chromatography (MFLC) tandem mass spectrometry method for the validated quantification of LSD, iso-LSD, 2-oxo 3-hydroxy-LSD (oxo-HO-LSD), and N-desmethyl-LSD (nor-LSD) was developed in plasma and applied to a controlled pharmacokinetic (PK) study in humans to test whether LSD metabolites would offer for longer detection windows. Five hundred microlitres of plasma were extracted by solid phase extraction. Analysis was performed on a Sciex Eksigent MFLC system coupled to a Sciex 5500 QTrap. The method was validated according to (inter)-national guidelines. MFLC allowed for separation of the mentioned analytes within 3 minutes and limits of quantification of 0.01 ng/mL. Validation criteria were fulfilled for all analytes. PK data could be calculated for LSD, iso-LSD, and oxo-HO-LSD in all participants. Additionally, hydroxy-LSD (HO-LSD) and HO-LSD glucuronide could be qualitatively detected and PK determined in 11 and 8 subjects, respectively. Nor-LSD was only sporadically detected. Elimination half-lives of iso-LSD (median 12 h) and LSD metabolites (median 9, 7.4, 12, and 11 h for oxo-HO-LSD, HO-LSD, HO-LSD-gluc, and nor-LSD, respectively) exceeded those of LSD (median 4.2 h). However, screening for metabolites to increase detection windows in plasma seems not to be constructive due to their very low concentrations. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Khan, Amjad; Iqbal, Zafar; Khadra, Ibrahim; Ahmad, Lateef; Khan, Abad; Khan, Muhammad Imran; Ullah, Zia; Ismail
2016-03-20
Domperidone and Itopride are pro-kinetic agents, regulating the gastric motility and are commonly prescribed as anti emetic drugs. In the present study a simple, rapid and sensitive RP-HPLC/UV method was developed for simultaneous determination of Domperidone and Itopride in pharmaceutical samples and human plasma, using Tenofavir as internal standard. Experimental conditions were optimized and method was validated according to the standard guidelines. Combination of water (pH 3.0) and acetonitrile (65:35 v/v) was used as mobile phase, pumped at the flow rate of 1.5 ml/min. Detector wavelength was set at 210 nm and column oven temperature was 40oC. Unlike conventional liquid-liquid extraction, simple precipitation technique was applied for drug extraction from human plasma using acetonitrile for deprotienation. The method showed adequate separation of both the analytes and best resolution was achieved using Hypersil BDS C8 column (150 mm × 4.6 mm, 5 μm). The method was quite linear in the range of 20-600 ng/ml. Recovery of the method was 92.31% and 89.82% for Domperidone and Itopride, respectively. Retention time of both the analytes and internal standard was below 15 min. The lower limit of detection (LLOD) and lower limit of quantification (LLOQ) for Domperidone were 5 and 10 ng/ml while for Itopride was 12 and 15 ng/ml, respectively. The developed method was successfully applied for in-vivo analysis of fast dispersible tablets of Domperidone in healthy human volunteer. The proposed method was a part of formulation development study and was efficiently applied for determination of the two drugs in various pharmaceutical products and human plasma. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhu, Shuqiang; Wang, Lijun; Su, Along; Zhang, Haixia
2017-08-01
A novel method was developed for the determination of two endocrine-disrupting chemicals, bisphenol A and 4-nonylphenol, in vegetable oil by dispersive liquid-liquid microextraction followed by ultra high performance liquid chromatography with tandem mass spectrometry. Using a magnetic liquid as the microextraction solvent, several key parameters were optimized, including the type and volume of the magnetic liquid, extraction time, amount of dispersant, and the type of reverse extractant. The detection limits for bisphenol A and 4-nonylphenol were 0.1 and 0.06 μg/kg, respectively. The recoveries were 70.4-112.3%, and the relative standard deviations were less than 4.2%. The method is simple for the extraction of bisphenol A and 4-nonylphenol from vegetable oil and suitable for routine analysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Waskitho, Dri; Lukitaningsih, Endang; Sudjadi; Rohman, Abdul
2016-01-01
Analysis of lard extracted from lipstick formulation containing castor oil has been performed using FTIR spectroscopic method combined with multivariate calibration. Three different extraction methods were compared, namely saponification method followed by liquid/liquid extraction with hexane/dichlorometane/ethanol/water, saponification method followed by liquid/liquid extraction with dichloromethane/ethanol/water, and Bligh & Dyer method using chloroform/methanol/water as extracting solvent. Qualitative and quantitative analysis of lard were performed using principle component (PCA) and partial least square (PLS) analysis, respectively. The results showed that, in all samples prepared by the three extraction methods, PCA was capable of identifying lard at wavelength region of 1200-800 cm -1 with the best result was obtained by Bligh & Dyer method. Furthermore, PLS analysis at the same wavelength region used for qualification showed that Bligh and Dyer was the most suitable extraction method with the highest determination coefficient (R 2 ) and the lowest root mean square error of calibration (RMSEC) as well as root mean square error of prediction (RMSEP) values.
Aspromonte, Juan; Wolfs, Kris; Kahsay, Getu; Van Schepdael, Ann; Adams, Erwin
2018-09-01
A multiple headspace extraction experiment coupled to gas chromatography (MHE-GC) is used for the classification and qualification of different mesoporous silica (MPSi) materials used for drug delivery. In this MHE experiment, a pure liquid solvent probe is fully evaporated in a sealed headspace vial in the presence of the MPSi sample, leading to a gas-solid partitioning that is theoretically described. The obtained results matched with the known characteristics of the studied samples, such as adsorption capacity due to differences in porosity and passivation treatments. Moreover, it proves the effectiveness of a poly dimethyl siloxane (PDMS) coating treatment over a thermal one in reducing the specific interactions of the MPSi. In addition, it evidences the important role of confinement effects when the pore diameter is close to the microporosity range. Finally, a simple experiment for fast screening is proposed by comparison of the results obtained for four different probes used as a mixture. Copyright © 2018 Elsevier B.V. All rights reserved.
Nuclear Engineering Computer Modules, Thermal-Hydraulics, TH-2: Liquid Metal Fast Breeder Reactors.
ERIC Educational Resources Information Center
Reihman, Thomas C.
This learning module is concerned with the temperature field, the heat transfer rates, and the coolant pressure drop in typical liquid metal fast breeder reactor (LMFBR) fuel assemblies. As in all of the modules of this series, emphasis is placed on developing the theory and demonstrating the use with a simplified model. The heart of the module is…
2011-03-31
2.1 Experimental Investigation of Coal and Biomass Gasification using In-situ Diagnostics ................ 31 2.2 References...need for fundamental scientific and synergistic research in catalytic biomass fast-hydropyrolysis, advanced coal gasification and liquid fuel...experimental findings will improve the scientific knowledge of catalytic biomass fast-hydropyrolysis, coal/ biomass gasification and liquid fuel combustion
Vega, Victor A; Young, Michelle; Todd, Sarah
2016-01-01
An extraction for aflatoxin M1 from bovine milk samples is described. The samples were extracted by adding 10 mL acetonitrile to 10 g of sample. The extract was salted out with sodium chloride and magnesium sulfate to separate the water and acetonitrile. The organic layer was dried down and reconstituted in water before being subjected to an immunoaffinity column for cleanup. Once the analyte was isolated, quantitation was obtained by LC with fluorescence detection. LC/fluorescence parameters were optimized with an Agilent Poroshell 120 C18 LC column resulting in a 4 min run time. To test the procedure's robustness, three different kinds of matrixes were fortified at three different levels each. Whole milk, reduced fat milk, and skim milk samples were fortified at approximately 0.25, 0.5, and 1.0 μg/kg. Recoveries from all samples ranged from 70 to 100%. Confirmation was accomplished by injecting the samples in an ion trap mass spectrometer. The method presented here entails an extraction step followed by an immunoaffinity column clean-up that leads to fast analysis time and consistent recoveries with an uncertainty measurement of 10.5% and method detection limit of less than 0.011 μg/kg.
Salgueiro-González, N; Turnes-Carou, I; Muniategui-Lorenzo, S; López-Mahía, P; Prada-Rodríguez, D
2015-02-27
A novel and Green analytical methodology for the determination of alkylphenols (4-tert-octylphenol, 4-n-octylphenol, 4-n-nonylphenol, nonylphenol) in sediments was developed and validated. The method was based on pressurized hot water extraction (PHWE) followed by miniaturized membrane assisted solvent extraction (MASE) and liquid chromatography-electrospray ionization tandem mass spectrometry detection (LC-ESI-MS/MS). The extraction conditions were optimized by a Plackett-Burman design in order to minimize the number of assays according to Green principles. Matrix effect was studied and compensated using deuterated labeled standards as surrogate standards for the quantitation of the target compounds. The analytical features of the method were satisfactory: relative recoveries varied between 92 and 103% and repeatability and intermediate precision were <9% for all compounds. Quantitation limits of the method (MQL) ranged from 0.061 (4-n-nonylphenol) to 1.7ngg(-1) dry weight (nonylphenol). Sensitivity, selectivity, automaticity and fastness are the main advantages of the exposed methodology. Reagent consumption, analysis time and waste generation were minimized. The "greenness" of the proposed method was evaluated using an analytical Eco-Scale approach and satisfactory results were obtained. The applicability of the proposed method was demonstrated analysing sediment samples of Galicia coast (NW of Spain) and the ubiquity of alkylphenols in the environment was demonstrated. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Xie, Yuliang; Chindam, Chandraprakash; Nama, Nitesh; Yang, Shikuan; Lu, Mengqian; Zhao, Yanhui; Mai, John D.; Costanzo, Francesco; Huang, Tony Jun
2015-07-01
We investigated bubble oscillation and its induced enhancement of mass transfer in a liquid-liquid extraction process with an acoustically-driven, bubble-based microfluidic device. The oscillation of individually trapped bubbles, of known sizes, in microchannels was studied at both a fixed frequency, and over a range of frequencies. Resonant frequencies were analytically identified and were found to be in agreement with the experimental observations. The acoustic streaming induced by the bubble oscillation was identified as the cause of this enhanced extraction. Experiments extracting Rhodanmine B from an aqueous phase (DI water) to an organic phase (1-octanol) were performed to determine the relationship between extraction efficiency and applied acoustic power. The enhanced efficiency in mass transport via these acoustic-energy-assisted processes was confirmed by comparisons against a pure diffusion-based process.
Lai, Xian-Wen; Sun, Dai-Li; Ruan, Chun-Qiang; Zhang, He; Liu, Cheng-Lan
2014-01-01
A novel, simple, and rapid method is presented for the analysis of aflatoxin B1, aflatoxin B2, and ochratoxin A in rice samples by dispersive liquid-liquid microextraction combined with LC and fluorescence detection. After extraction of the rice samples with a mixture of acetonitrile/water/acetic acid, mycotoxins were rapidly partitioned into a small volume of organic solvent (chloroform) by dispersive liquid-liquid microextraction. The three mycotoxins were simultaneously determined by LC with fluorescence detection after precolumn derivatization for aflatoxin B1 and B2. Parameters affecting both extraction and dispersive liquid-liquid microextraction procedures, including the extraction solvent, the type and volume of extractant, the volume of dispersive solvent, the addition of salt, the pH and the extraction time, were optimized. The optimized protocol provided an enrichment factor of approximately 1.25 and with detection of limits (0.06-0.5 μg/kg) below the maximum levels imposed by current regulations for aflatoxins and ochratoxin A. The mean recovery of three mycotoxins ranged from 82.9-112%, with a RSD less than 7.9% in all cases. The method was successfully applied to measure mycotoxins in commercial rice samples collected from local supermarkets in China. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Švarc-Gajić, Jaroslava; Clavijo, Sabrina; Suárez, Ruth; Cvetanović, Aleksandra; Cerdà, Víctor
2018-03-01
Cherry stems have been used in traditional medicine mostly for the treatment of urinary tract infections. Extraction with subcritical water, according to its selectivity, efficiency and other aspects, differs substantially from conventional extraction techniques. The complexity of plant subcritical water extracts is due to the ability of subcritical water to extract different chemical classes of different physico-chemical properties and polarities in a single run. In this paper, dispersive liquid-liquid microextraction (DLLME) with simultaneous derivatisation was optimised for the analysis of complex subcritical water extracts of cherry stems to allow simple and rapid preparation prior to gas chromatography-mass spectrometry (GC-MS). After defining optimal extracting and dispersive solvents, the optimised method was used for the identification of compounds belonging to different chemical classes in a single analytical run. The developed sample preparation protocol enabled simultaneous extraction and derivatisation, as well as convenient coupling with GC-MS analysis, reducing the analysis time and number of steps. The applied analytical protocol allowed simple and rapid chemical screening of subcritical water extracts and was used for the comparison of subcritical water extracts of sweet and sour cherry stems. Graphical abstract DLLME GC MS analysis of cherry stem extracts obtained by subcritical water.
Chen, Wen; Zhong, Guanping; Zhou, Zaide; Wu, Peng; Hou, Xiandeng
2005-10-01
A simple spectrophotometric system, based on a prolonged pseudo-liquid drop device as an optical cell and a handheld charge coupled device (CCD) as a detector, was constructed for automatic liquid-liquid extraction and spectrophotometric speciation of trace Cr(VI) and Cr(III) in water samples. A tungsten halogen lamp was used as the light source, and a laboratory-constructed T-tube with two open ends was used to form the prolonged pseudo-liquid drop inside the tube. In the medium of perchloric acid solution, Cr(VI) reacted with 1,5-diphenylcarbazide (DPC); the formed complex was automatically extracted into n-pentanol, with a preconcentration ratio of about 5. The organic phase with extracted chromium complex was then pumped through the optical cell for absorbance measurement at 548 nm. Under optimal conditions, the calibration curve was linear in the range of 7.5 - 350 microg L(-1), with a correlation coefficient of 0.9993. The limit of detection (3sigma) was 7.5 microg L(-1). That Cr(III) species cannot react with DPC, but can be oxidized to Cr(VI) prior to determination, is the basis of the speciation analysis. The proposed speciation analysis was sensitive, yet simple, labor-effective, and cost-effective. It has been preliminarily applied for the speciation of Cr(VI) and Cr(III) in spiked river and tap water samples. It can also be used for other automatic liquid-liquid extraction-spectrophotometric determinations.
Jiang, Yuehuang; Tang, Tingting; Cao, Zhen; Shi, Guoyue; Zhou, Tianshu
2015-06-01
A hydroxyl-functionalized ionic liquid, 1-hydroxyethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, was employed in an improved dispersive liquid-phase microextraction method coupled with ultra high performance liquid chromatography for the enrichment and determination of three estrogens and bisphenol A in environmental water samples. The introduced hydroxyl group acted as the H-bond acceptor that dispersed the ionic liquid effectively in the aqueous phase without dispersive solvent or external force. Fourier transform infrared spectroscopy indicated that the hydroxyl group of the cation of the ionic liquid enhanced the combination of extractant and analytes through the formation of hydrogen bonds. The improvement of the extraction efficiency compared with that with the use of alkyl ionic liquid was proved by a comparison study. The main parameters including volume of extractant, temperature, pH, and extraction time were investigated. The calibration curves were linear in the range of 5.0-1000 μg/L for estrone, estradiol, and bisphenol A, and 10.0-1000 μg/L for estriol. The detection limits were in the range of 1.7-3.4 μg/L. The extraction efficiency was evaluated by enrichment factor that were between 85 and 129. The proposed method was proved to be simple, low cost, and environmentally friendly for the determination of the four endocrine disruptors in environmental water samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Taheri, Salman; Jalali, Fahimeh; Fattahi, Nazir; Jalili, Ronak; Bahrami, Gholamreza
2015-10-01
Dispersive liquid-liquid microextraction based on solidification of floating organic droplet was developed for the extraction of methadone and determination by high-performance liquid chromatography with UV detection. In this method, no microsyringe or fiber is required to support the organic microdrop due to the usage of an organic solvent with a low density and appropriate melting point. Furthermore, the extractant droplet can be collected easily by solidifying it at low temperature. 1-Undecanol and methanol were chosen as extraction and disperser solvents, respectively. Parameters that influence extraction efficiency, i.e. volumes of extracting and dispersing solvents, pH, and salt effect, were optimized by using response surface methodology. Under optimal conditions, enrichment factor for methadone was 134 and 160 in serum and urine samples, respectively. The limit of detection was 3.34 ng/mmL in serum and 1.67 ng/mL in urine samples. Compared with the traditional dispersive liquid-liquid microextraction, the proposed method obtained lower limit of detection. Moreover, the solidification of floating organic solvent facilitated the phase transfer. And most importantly, it avoided using high-density and toxic solvents of traditional dispersive liquid-liquid microextraction method. The proposed method was successfully applied to the determination of methadone in serum and urine samples of an addicted individual under methadone therapy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
He, Li-xia; Zhao, Jian; Huang, Yuan-sheng; Li, Yong
2016-03-01
Increasing oats and beta-glucan extract intake has been associated with improved glycemic control, which is associated with the reduction in the development of diabetes. This study aims to assess the different effects between oat (whole and bran) and beta-glucan extract intake on glycemic control and insulin sensitivity. PubMed, Embase, Medline, The Cochrane Library, CINAHL and Web of Science were searched up to February 2014. We included randomized controlled trials with interventions that lasted at least four weeks that compared oats and beta-glucan (extracted from oats or other sources) intake with a control. A total of 1351 articles were screened for eligibility, and relevant data were extracted from 18 studies (n = 1024). Oat product dose ranged from 20 g d(-1) to 136 g d(-1), and beta-glucan extract dose ranged from 3 g d(-1) to 10 g d(-1). Compared with the control, oat intake resulted in a greater decrease in fasting glucose and insulin of subjects (P < 0.05), but beta-glucan extract intake did not. Furthermore, oat intake resulted in a greater decrease in glycosylated hemoglobin (HbA1c) (P < 0.001, I(2) = 0%) and fasting glucose (P < 0.001, I(2) = 68%) after removing one study using a concentrate and a different design and fasting insulin of type 2 diabetes (T2D) (P < 0.001, I(2) = 0%). The intake of oats and beta-glucan extracted from oats were effective in decreasing fasting glucose (P = 0.007, I(2) = 91%) and fasting insulin of T2D (P < 0.001, I(2) = 0%) and tented to lower HbA1c (P = 0.09, I(2) = 92%). Higher consumption of whole oats and oat bran, but not oat or barley beta-glucan extracts, are associated with lower HbA1c, fasting glucose and fasting insulin of T2D, hyperlipidaemic and overweight subjects, especially people with T2D, which supports the need for clinical trials to evaluate the potential role of oats in approaching to the management of glycemic control and insulin sensitivity of diabetes or metabolic syndrome subjects.
Li, Chunting; Seeram, Navindra P
2018-03-07
The red maple (Acer rubrum) species is economically important to North America because of its sap, which is used to produce maple syrup. In addition, various other red maple plant parts, including leaves, were used as a traditional medicine by the Native Americans. Currently, red maple leaves are being used for nutraceutical and cosmetic applications but there are no published analytical methods for comprehensive phytochemical characterization of this material. Herein, a rapid and sensitive method using liquid chromatography with electrospray ionization time-of-flight tandem mass spectrometry was developed to characterize the phenolics in a methanol extract of red maple leaves and a proprietary phenolic-enriched red maple leaves extract (Maplifa™). Time-of-flight mass spectrometry and tandem mass spectrometry experiments led to the identification of 106 phenolic compounds in red maples leaves with the vast majority of these compounds also detected in Maplifa™. The compounds included 68 gallotannins, 25 flavonoids, gallic acid, quinic acid, catechin, epicatechin, and nine other gallic acid derivatives among which 11 are potentially new and 75 are being reported from red maple for the first time. The developed method to characterize red maple leaves phenolics is rapid and highly sensitive and could aid in future standardization and quality control of this botanical ingredient. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Melo, Armindo; Ferreira, Isabel M P L V O; Mansilha, Catarina
2015-06-01
This work deals with the optimization of a rapid, cost-effective, and eco-friendly gas chromatography with mass spectrometry method for the simultaneous determination of four endocrine disruptor compounds in water matrices: estrone, 17β-estradiol, 17α-ethinylestradiol, and bisphenol A, that are currently considered to be of main concern in the field of water policy and that could became candidates for future regulations. The method involves simultaneous derivatization and extraction of compounds by dispersive liquid-liquid microextraction followed by gas chromatography with mass spectrometry analysis. Derivatization and extraction parameters were optimized with the aid of experimental design approach. An excellent linear response was achieved for all analytes (r(2) ≥ 0.999). Limits of detection and quantification are 0.003-0.005 and 0.0094-0.0164 μg/L, respectively. Intraday precision ranged between 1.1 and 12.6%, whereas interday precision ranged between 0.5 and 14.7%. For accuracy, bias values varied between -15.0 and 13.7%. Recoveries at three concentration levels ranged from 86.4 to 118.2%. The proposed method can be applied to the routine analysis of groundwater, river, sea, tap, and mineral water samples with excellent sensitivity, precision, and accuracy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Narula, Manmeet Singh
Innovative concepts using fast flowing thin films of liquid metals (like lithium) have been proposed for the protection of the divertor surface in magnetic fusion devices. However, concerns exist about the possibility of establishing the required flow of liquid metal thin films because of the presence of strong magnetic fields which can cause flow disrupting MHD effects. A plan is underway to design liquid lithium based divertor protection concepts for NSTX, a small spherical torus experiment at Princeton. Of these, a promising concept is the use of modularized fast flowing liquid lithium film zones, as the divertor (called the NSTX liquid surface module concept or NSTX LSM). The dynamic response of the liquid metal film flow in a spatially varying magnetic field configuration is still unknown and it is suspected that some unpredicted effects might be lurking. The primary goal of the research work being reported in this dissertation is to provide qualitative and quantitative information on the liquid metal film flow dynamics under spatially varying magnetic field conditions, typical of the divertor region of a magnetic fusion device. The liquid metal film flow dynamics have been studied through a synergic experimental and numerical modeling effort. The Magneto Thermofluid Omnibus Research (MTOR) facility at UCLA has been used to design several experiments to study the MHD interaction of liquid gallium films under a scaled NSTX outboard divertor magnetic field environment. A 3D multi-material, free surface MHD modeling capability is under development in collaboration with HyPerComp Inc., an SBIR vendor. This numerical code called HIMAG provides a unique capability to model the equations of incompressible MHD with a free surface. Some parts of this modeling capability have been developed in this research work, in the form of subroutines for HIMAG. Extensive code debugging and benchmarking exercise has also been carried out. Finally, HIMAG has been used to study the MHD interaction of fast flowing liquid metal films under various divertor relevant magnetic field configurations through numerical modeling exercises.
Extraction of mercury(II) with sulfurized jojoba oil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wisniak, J.; Schorr, G.; Zacovsky, D.
1990-09-01
Sulfurized jojoba oil containing 12% by weight S has been tested as an extractant for Hg(II) from aqueous solutions. This paper reports on experiments performed with the extractant dissolved in a solvent (liquid--liquid extraction) or adsorbed in an appropriate resin matrix (solid--liquid extraction). The extraction characteristics of both systems have been measured and show that sulfurized jojoba oil exhibits very good possibilities as an extractant. The performance of several resins treated with sulfurized jojoba oil for adsorbing mercury(II) was studied. The morphology of the different resins was examined by using scanning electron microscopy. The sulfurized oil is attached to themore » resin sites through the sulfur atoms; it is estimated that there are about 2 mol of S active sites per kilogram of resin.« less
Ravelo-Pérez, Lidia M; Hernández-Borges, Javier; Herrera-Herrera, Antonio V; Rodríguez-Delgado, Miguel Angel
2009-12-01
Room temperature ionic liquids (RTILs) have been used as extraction solvents in dispersive liquid-liquid microextraction (DLLME) for the determination of eight multi-class pesticides (i.e. thiophanate-methyl, carbofuran, carbaryl, tebuconazole, iprodione, oxyfluorfen, hexythiazox, and fenazaquin) in table grapes and plums. The developed method involves the combination of DLLME and high-performance liquid chromatography with diode array detection. Samples were first homogenized and extracted with acetonitrile. After evaporation and reconstitution of the extract in water containing sodium chloride, a quick DLLME procedure that used the ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate ([C(6)MIM][PF(6)]) and methanol was developed. The RTIL dissolved in a very small volume of acetonitrile was directed injected in the chromatographic system. The comparison between the calibration curves obtained from standards and from spiked sample extracts (matrix-matched calibration) showed the existence of a strong matrix effect for most of the analyzed pesticides. A recovery study was also developed with five consecutive extractions of the two types of fruits spiked at three concentration levels. Mean recovery values were in the range of 72-100% for table grapes and 66-105% for plum samples (except for thiophanate-methyl and carbofuran, which were 64-75% and 58-66%, respectively). Limits of detection (LODs) were in the range 0.651-5.44 microg/kg for table grapes and 0.902-6.33 microg/kg for plums, representing LODs below the maximum residue limits (MRLs) established by the European Union in these fruits. The potential of the method was demonstrated by analyzing 12 commercial fruit samples (six of each type).
da Silva, Meire Ribeiro; Mauro Lanças, Fernando
2018-03-10
Sulfonamides are antibiotics widely used in the treatment of diseases in dairy cattle. However, their indiscriminate use for disease control may lead to their presence in tissues and milk and their determination requires a sample preparation step as part of an analytical approach. Among the several sample preparation techniques available, those based upon the use of sorptive materials have been widely employed. Recently, the application of ionic liquids immobilized on silica surfaces or polymeric materials has been evaluated for such an application. This manuscript addresses the evaluation of silica-based ionic liquid obtained by a sol-gel synthesis process by basic catalysis as sorbent for online solid-phase extraction with liquid chromatography and electrospray ionization time-of-flight mass spectrometry for sulfonamides determination. Infrared vibrational spectroscopy confirmed the presence of the ionic liquid on the silica surface, suggesting that the ionic liquid was anchored on to the silica surface. Other sorbents varying the ionic liquid alkyl chain were also synthesized and evaluated by off-line solid-phase extraction in the sulfonamide extraction. As the length of the alkyl chain increased, the amount of extracted sulfonamides decreased, possibly due to a decrease in the electrostatic interaction caused by the reduction in the polarity, as well as the presence of a hexafluorophosphate anion that increases the hydrophobic character of the material. The use of 1-butyl-3-methylimidazolium hexafluorophosphate as a selective ionic liquid sorbent enabled the isolation and sulfonamide preconcentration in bovine milk by online solid-phase extraction with liquid chromatography and electrospray ionization time-of-flight mass spectrometry. The limit of quantification for the method developed was 5-7, 5 μg/mL, with extraction recoveries ranging between 74 and 93% and intra- and interassay between 1.5-12.5 and 2.3-13.1, respectively. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mohamed, Dalia; Hegazy, Maha A; Elshahed, Mona S; Toubar, Safaa S; Helmy, Marwa I
2018-07-01
A facile, fast and specific method based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the simultaneous quantitation of paracetamol, chlorzoxazone and aceclofenac in human plasma was developed and validated. Sample preparation was achieved by liquid-liquid extraction. The analysis was performed on a reversed-phase C 18 HPLC column (5 μm, 4.6 × 50 mm) using acetonitrile-10 mM ammonium formate pH 3.0 (65:35, v/v) as the mobile phase where atrovastatin was used as an internal standard. A very small injection volume (3 μL) was applied and the run time was 2.0 min. The detection was carried out by electrospray positive and negative ionization mass spectrometry in the multiple-reaction monitoring mode. The developed method was capable of determining the analytes over the concentration ranges of 0.03-30.0, 0.015-15.00 and 0.15-15.00 μg/mL for paracetamol, chlorzoxazone and aceclofenac, respectively. Intraday and interday precisions (as coefficient of variation) were found to be ≤12.3% with an accuracy (as relative error) of ±5.0%. The method was successfully applied to a pharmacokinetic study of the three analytes after being orally administered to six healthy volunteers. Copyright © 2018 John Wiley & Sons, Ltd.
Meyer, Markus R; Caspar, Achim; Brandt, Simon D; Maurer, Hans H
2014-01-01
The first synthetic tryptamines have entered the designer drug market in the late 1990s and were distributed as psychedelic recreational drugs. In the meantime, several analogs have been brought onto the market indicating a growing interest in this drug class. So far, only scarce analytical data were available on the detectability of tryptamines in human biosamples. Therefore, the aim of the presented study was the development and full validation of a method for their detection in human urine and plasma and their quantification in human plasma. The liquid chromatography-linear ion trap mass spectrometry method presented covered 37 tryptamines as well as five β-carbolines, ibogaine, and yohimbine. Compounds were analyzed after protein precipitation of urine or fast liquid-liquid extraction of plasma using an LXQ linear ion trap coupled to an Accela ultra ultra high-performance liquid chromatography system. Data mining was performed via information-dependent acquisition or targeted product ion scan mode with positive electrospray ionization. The assay was selective for all tested substances with limits of detection in urine between 10 and 100 ng/mL and in plasma between 1 and 100 ng/mL. A validated quantification in plasma according to international recommendation could be demonstrated for 33 out of 44 analytes.
Characterization of rice starch and protein obtained by a fast alkaline extraction method.
Souza, Daiana de; Sbardelotto, Arthur Francisco; Ziegler, Denize Righetto; Marczak, Ligia Damasceno Ferreira; Tessaro, Isabel Cristina
2016-01-15
This study evaluated the characteristics of rice starch and protein obtained by a fast alkaline extraction method on rice flour (RF) derived from broken rice. The extraction was conducted using 0.18% NaOH at 30°C for 30min followed by centrifugation to separate the starch rich and the protein rich fractions. This fast extraction method allowed to obtain an isoelectric precipitation protein concentrate (IPPC) with 79% protein and a starchy product with low protein content. The amino acid content of IPPC was practically unchanged compared to the protein in RF. The proteins of the IPPC underwent denaturation during extraction and some of the starch suffered the cold gelatinization phenomenon, due to the alkaline treatment. With some modifications, the fast method can be interesting in a technological point of view as it enables process cost reduction and useful ingredients obtention to the food and chemical industries. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhang, Zhong; Ren, Fei; Zhang, Pan
2012-11-01
A method was developed for the determination of capsaicinoids (capsaicin, dihydrocapsaicin and synthetic capsaicin) and eugenol in waste-edible-oil extracted by liquid-liquid extraction and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The capsaicinoids and eugenol in waste-edible-oil were extracted by methanol, and then separated by a SUPEL COSIL ABZ + Plus dC18 column (150 mm x4.6 mm, 5 microm). The analysis was performed by MS/MS with electrospray ionization in positive and negative ion modes with multiple reaction monitoring (MRM). The limits of detection for capsaicin, dihydrocapsaicin, synthetic capsaicin and eugenol were 0.02, 0.03, 0.03 and 0.6 microg/L, respectively. The good linear relationships were obtained in certain concentration ranges of capsaicinoids and eugenol. The relative standard deviations (RSDs, n=5) of same-worker and different-worker were less than 5%. The method is exclusive, sensitive and accurate, and can be used in waste-edible-oil determination.
Huang, Guiqi; Dong, Sheying; Zhang, Mengfei; Zhang, Haihan; Huang, Tinglin
2016-09-15
Sample pretreatment is the critical section for residue monitoring of hazardous pollutants. In this paper, using the cellulose fabric as host matrix, three extraction sorbents such as poly (tetrahydrofuran) (PTHF), poly (ethylene glycol) (PEG) and poly (dimethyldiphenylsiloxane) (PDMDPS), were prepared on the surface of the cellulose fabric. Two practical extraction techniques including stir bar fabric phase sorptive extraction (stir bar-FPSE) and magnetic stir fabric phase sorptive extraction (magnetic stir-FPSE) have been designed, which allow stirring of fabric phase sorbent during the whole extraction process. In the meantime, three brominated flame retardants (BFRs) [tetrabromobisphenol A (TBBPA), tetrabromobisphenol A bisallylether (TBBPA-BAE), tetrabromobisphenol A bis(2,3-dibromopropyl)ether (TBBPA-BDBPE)] in the water sample were selected as model analytes for the practical evaluation of the proposed two techniques using high-performance liquid chromatography (HPLC). Moreover, various experimental conditions affecting extraction process such as the type of fabric phase, extraction time, the amount of salt and elution conditions were also investigated. Due to the large sorbent loading capacity and unique stirring performance, both techniques possessed high extraction capability and fast extraction equilibrium. Under the optimized conditions, high recoveries (90-99%) and low limits of detection (LODs) (0.01-0.05 μg L(-1)) were achieved. In addition, the reproducibility was obtained by evaluating the intraday and interday precisions with relative standard deviations (RSDs) less than 5.1% and 6.8%, respectively. The results indicated that two pretreatment techniques were promising and practical for monitoring of hazardous pollutants in the water sample. Due to low solvent consumption and high repeated use performance, proposed techniques also could meet green analytical criteria. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hydrogen, lithium, and lithium hydride production
Brown, Sam W.; Spencer, Larry S.; Phillips, Michael R.; Powell, G. Louis; Campbell, Peggy J.
2017-06-20
A method is provided for extracting hydrogen from lithium hydride. The method includes (a) heating lithium hydride to form liquid-phase lithium hydride; (b) extracting hydrogen from the liquid-phase lithium hydride, leaving residual liquid-phase lithium metal; (c) hydriding the residual liquid-phase lithium metal to form refined lithium hydride; and repeating steps (a) and (b) on the refined lithium hydride.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owens, J; Hok, S; Alcaraz, A
Tetramethylenedisulfotetramine, commonly known as tetramine, is a highly neurotoxic rodenticide (human oral LD{sub 50} = 0.1 mg/kg) used in hundreds of deliberate food poisoning events in China. Here we describe a method for quantitation of tetramine spiked into beverages, including milk, juice, tea, cola, and water and cleaned up by C8 solid phase extraction and liquid-liquid extraction. Quantitation by high performance liquid chromatography tandem mass spectrometry (LC/MS/MS) was based upon fragmentation of m/z 347 to m/z 268. The method was validated by gas chromatography mass spectrometry (GC/MS) operated in SIM mode for ions m/z 212, 240, and 360. The limitmore » of quantitation was 0.10 {micro}g/mL by LC/MS/MS versus 0.15 {micro}g/mL for GC/MS. Fortifications of the beverages at 2.5 {micro}g/mL and 0.25 {micro}g/mL were recovered ranging from 73-128% by liquid-liquid extraction for GC/MS analysis, 13-96% by SPE and 10-101% by liquid-liquid extraction for LC/MS/MS analysis.« less
Razmi, Rasoul; Shahpari, Behrouz; Pourbasheer, Eslam; Boustanifar, Mohammad Hasan; Azari, Zhila; Ebadi, Amin
2016-11-01
A rapid and simple method for the extraction and preconcentration of ceftazidime in aqueous samples has been developed using dispersive liquid-liquid microextraction followed by high-performance liquid chromatography analysis. The extraction parameters, such as the volume of extraction solvent and disperser solvent, salt effect, sample volume, centrifuge rate, centrifuge time, extraction time, and temperature in the dispersive liquid-liquid microextraction process, were studied and optimized with the experimental design methods. Firstly, for the preliminary screening of the parameters the taguchi design was used and then, the fractional factorial design was used for significant factors optimization. At the optimum conditions, the calibration curves for ceftazidime indicated good linearity over the range of 0.001-10 μg/mL with correlation coefficients higher than the 0.98, and the limits of detection were 0.13 and 0.17 ng/mL, for water and urine samples, respectively. The proposed method successfully employed to determine ceftazidime in water and urine samples and good agreement between the experimental data and predictive values has been achieved. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chang, Chia-Yu; Chung, Wu-Hsun; Ding, Wang-Hsien
2016-01-01
The rapid screening of trace levels of short-chain chlorinated paraffins in various aqueous samples was performed by a simple and reliable procedure based on vortex-assisted liquid-liquid microextraction combined with gas chromatography and electron capture negative ionization mass spectrometry. The optimal vortex-assisted liquid-liquid microextraction conditions for 20 mL water sample were as follows: extractant 400 μL of dichloromethane; vortex extraction time of 1 min at 2500 × g; centrifugation of 3 min at 5000 × g; and no ionic strength adjustment. Under the optimum conditions, the limit of quantitation was 0.05 μg/L. Precision, as indicated by relative standard deviations, was less than 9% for both intra- and inter-day analysis. Accuracy, expressed as the mean extraction recovery, was above 91%. The vortex-assisted liquid-liquid microextraction with gas chromatography and electron capture negative ionization mass spectrometry method was successfully applied to quantitatively extract short-chain chlorinated paraffins from samples of river water and the effluent of a wastewater treatment plant, and the concentrations ranged from 0.8 to 1.6 μg/L. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xia, Zhaoyang; Li, Dongdong; Li, Qing; Zhang, Yan; Kang, Wenyi
2017-11-13
The conditions of heating, ionic liquid-based ultrasonic-assisted extraction combined with reverse-phase high performance liquid chromatography were optimized to simultaneously isolate and determinate brazilin and protosappanin B in Caesalpinia sappan. Ionic liquids, including [BMIM]Br, [BMIM]BF 4 , [BMIM]PF 6 and [HMIM]PF 6 , were selected as extraction solvents while methanol, acetone, acetonitrile, ethanol and water were selected as dispersants. The chromatographic column was Purospher star RP-C 18 (250 mm × 4.6 mm, 5 μm), a mixture of methanol and 0.2% phosphoric acid-water was used as mobile phase at a flow rate 0.65 mL/min. The result displayed that the extraction yields of brazilin and protosappanin B were highest when the concentration of [BMIM]Br methanol solution as extraction solvent was 0.5 mol/L and the solid-liquid ratio was 1:50 (g/mL). Under the optimal extraction conditions, the contents of brazilin showed a good linearity (r = 1.0000) within the range of 1.25-7.50 μg with the average recovery of 99.33%, the contents of protosappanin B also showed a good linearity (r = 0.9999) within the range of 0.50-3.00 μg with the average recovery of 98.31%. This experiment, which adopted environmentally friendly reagent as extraction solvent, not only improved the extraction efficiency, but also avoided the environmental pollution caused by organic solvent. Moreover, it was simple and reliable, and can be of important significance in the study of Traditional Chinese Medicine active ingredient extraction methods. The antibacterial activities of the ionic liquids and methanol extracts were determined using the paper disc diffusion method. The ionic liquid extract was found to possess antibacterial activity against Staphylococcus aureus and methicillin-resistant S. aureus (MIC value of 37.5 mg crude drug/mL), β-Lactamase producing S. aureus (MIC values of 18.8 mg crude drug/mL), but not against E. coli, Extended spectrum β-Lactamases E. coli and P. aeruginosa. Compared with the ionic liquid extract, the methanol extract was found to have antibacterial activity against S. aureus and methicillin-resistant S. aureus (MIC value of 75.0 mg crude drug/mL), β-Lactamase producing S. aureus (MIC values of 150.0 mg crude drug/mL). However, the same, the methanol extract did not have antibacterial activity against E. coli, Extended spectrum β-Lactamases E. coli and P. aeruginosa.
Fast gray-to-gray switching of a hybrid-aligned liquid crystal cell
NASA Astrophysics Data System (ADS)
Choi, Tae-Hoon; Kim, Jung-Wook; Yoon, Tae-Hoon
2015-03-01
We demonstrate fast gray-to-gray (GTG) switching of a hybrid-aligned liquid crystal cell by applying both vertical and inplane electric fields to liquid crystals (LCs) using a four-terminal electrode structure. The LCs are switched to the bright state through downward tilting and twist deformation initiated by applying an in-plane electric field, whereas they are switched back to the initial dark state through optically hidden relaxation initiated by applying a vertical electric field for a short duration. The top electrode in the proposed device is grounded, which requires a much higher voltage to be applied for in-plane rotation of LCs. Thus, ultrafast turn-on switching of the device is achieved, whereas the turn-off switching of the proposed device is independent of the elastic constants and the viscosity of the LCs so that fast turn-off switching can be achieved. We experimentally obtained a total response time of 0.75 ms. Furthermore, fast GTG response within 3 ms could be achieved.
An, Jiwoo; Rahn, Kira L; Anderson, Jared L
2017-05-15
A headspace single drop microextraction (HS-SDME) method and a dispersive liquid-liquid microextraction (DLLME) method were developed using two tetrachloromanganate ([MnCl 4 2- ])-based magnetic ionic liquids (MIL) as extraction solvents for the determination of twelve aromatic compounds, including four polyaromatic hydrocarbons, by reversed phase high-performance liquid chromatography (HPLC). The analytical performance of the developed HS-SDME method was compared to the DLLME approach employing the same MILs. In the HS-SDME approach, the magnetic field generated by the magnet was exploited to suspend the MIL solvent from the tip of a rod magnet. The utilization of MILs in HS-SDME resulted in a highly stable microdroplet under elevated temperatures and long extraction times, overcoming a common challenge encountered in traditional SDME approaches of droplet instability. The low UV absorbance of the [MnCl 4 2- ]-based MILs permitted direct analysis of the analyte enriched extraction solvent by HPLC. In HS-SDME, the effects of ionic strength of the sample solution, temperature of the extraction system, extraction time, stir rate, and headspace volume on extraction efficiencies were examined. Coefficients of determination (R 2 ) ranged from 0.994 to 0.999 and limits of detection (LODs) varied from 0.04 to 1.0μgL -1 with relative recoveries from lake water ranging from 70.2% to 109.6%. For the DLLME method, parameters including disperser solvent type and volume, ionic strength of the sample solution, mass of extraction solvent, and extraction time were studied and optimized. Coefficients of determination for the DLLME method varied from 0.997 to 0.999 with LODs ranging from 0.05 to 1.0μgL -1 . Relative recoveries from lake water samples ranged from 68.7% to 104.5%. Overall, the DLLME approach permitted faster extraction times and higher enrichment factors for analytes with low vapor pressure whereas the HS-SDME approach exhibited better extraction efficiencies for analytes with relatively higher vapor pressure. Copyright © 2017 Elsevier B.V. All rights reserved.
Mansour, Fotouh R; Danielson, Neil D
2017-08-01
Dispersive liquid-liquid microextraction (DLLME) is a special type of microextraction in which a mixture of two solvents (an extracting solvent and a disperser) is injected into the sample. The extraction solvent is then dispersed as fine droplets in the cloudy sample through manual or mechanical agitation. Hence, the sample is centrifuged to break the formed emulsion and the extracting solvent is manually separated. The organic solvents commonly used in DLLME are halogenated hydrocarbons that are highly toxic. These solvents are heavier than water, so they sink to the bottom of the centrifugation tube which makes the separation step difficult. By using solvents of low density, the organic extractant floats on the sample surface. If the selected solvent such as undecanol has a freezing point in the range 10-25°C, the floating droplet can be solidified using a simple ice-bath, and then transferred out of the sample matrix; this step is known as solidification of floating organic droplet (SFOD). Coupling DLLME to SFOD combines the advantages of both approaches together. The DLLME-SFOD process is controlled by the same variables of conventional liquid-liquid extraction. The organic solvents used as extractants in DLLME-SFOD must be immiscible with water, of lower density, low volatility, high partition coefficient and low melting and freezing points. The extraction efficiency of DLLME-SFOD is affected by types and volumes of organic extractant and disperser, salt addition, pH, temperature, stirring rate and extraction time. This review discusses the principle, optimization variables, advantages and disadvantages and some selected applications of DLLME-SFOD in water, food and biomedical analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Breil, Cassandra; Abert Vian, Maryline; Zemb, Thomas; Kunz, Werner; Chemat, Farid
2017-03-27
Bligh and Dyer (B & D) or Folch procedures for the extraction and separation of lipids from microorganisms and biological tissues using chloroform/methanol/water have been used tens of thousands of times and are "gold standards" for the analysis of extracted lipids. Based on the Conductor-like Screening MOdel for realistic Solvatation (COSMO-RS), we select ethanol and ethyl acetate as being potentially suitable for the substitution of methanol and chloroform. We confirm this by performing solid-liquid extraction of yeast ( Yarrowia lipolytica IFP29 ) and subsequent liquid-liquid partition-the two steps of routine extraction. For this purpose, we consider similar points in the ternary phase diagrams of water/methanol/chloroform and water/ethanol/ethyl acetate, both in the monophasic mixtures and in the liquid-liquid miscibility gap. Based on high performance thin-layer chromatography (HPTLC) to obtain the distribution of lipids classes, and gas chromatography coupled with a flame ionisation detector (GC/FID) to obtain fatty acid profiles, this greener solvents pair is found to be almost as effective as the classic methanol-chloroform couple in terms of efficiency and selectivity of lipids and non-lipid material. Moreover, using these bio-sourced solvents as an alternative system is shown to be as effective as the classical system in terms of the yield of lipids extracted from microorganism tissues, independently of their apparent hydrophilicity.
Jin, Yang-Hui; Shi, Shi-Yuan; Zheng, Qi; Shen, Jian; Ying, Xiao-Zhang; Wang, Yi-Fan
2017-09-25
To investigate the application value of Xpert MTB/RIF in diagnosis of spinal tuberculosis and detection of rifampin resistance. The 109 pus specimens were obtained from patients who were primaryly diagnosed as spinal tuberculosis. All of the pus specimens were detected by acid-fast stain, liquid fast culturing by BACTEC MGIT 960 and Xpert MTB/RIF assay to definite the differences in sensitivity and specificity of mycobacterium tuberculosis among detecting methods. Pus specimens obtained by different methods were deteceded by MTB/RIF test to analyze the self-influence on Xpert MTB/RIF test. The result of liquid fast culturing by BACTEC MGIT 960 was used as the gold standard; and the value of Xpert MTB/RIF assay in detecting rifampin resistance was analyzed. The sensitivity of acid-fast stain, liquid fast culturing by BACTEC MGIT 960 and Xpert MTB/RIF assay were 25.92%, 48.15%, 77.78%, respectively. The sensitivity of pus specimens obtained from open surgery, ultrasound positioning puncture and biopsy the sensitivity were 83.78%, 76.47%, 44.68% respectively deteceded by MTB/RIF test. According to the gold standard of the results of liquid fast culturing by BACTEC MGIT 960 assay, the sensitivity and specificity of Xpert MTB/RIF assay in detecting rifampin resistance were 80%(4/5) and 90.70%(39/43), respectively. Xpert MTB/RIF assay has higher value in diagnosis of spinal tuberculosi, and also can detect rifampin resistance. The number of mycobacterium tuberculosis in pus specimens has a great influence in the sensitivity of Xpert MTB/RIF assay.
Xu, Xu; Su, Rui; Zhao, Xin; Liu, Zhuang; Zhang, Yupu; Li, Dan; Li, Xueyuan; Zhang, Hanqi; Wang, Ziming
2011-11-30
The ionic liquid-based microwave-assisted dispersive liquid-liquid microextraction (IL-based MADLLME) and derivatization was applied for the pretreatment of six sulfonamides (SAs) prior to the determination by high-performance liquid chromatography (HPLC). By adding methanol (disperser), fluorescamine solution (derivatization reagent) and ionic liquid (extraction solvent) into sample, extraction, derivatization, and preconcentration were continuously performed. Several experimental parameters, such as the type and volume of extraction solvent, the type and volume of disperser, amount of derivatization reagent, microwave power, microwave irradiation time, pH of sample solution, and ionic strength were investigated and optimized. When the microwave power was 240 W, the analytes could be derivatized and extracted simultaneously within 90 s. The proposed method was applied to the analysis of river water, honey, milk, and pig plasma samples, and the recoveries of analytes obtained were in the range of 95.0-110.8, 95.4-106.3, 95.0-108.3, and 95.7-107.7, respectively. The relative standard deviations varied between 1.5% and 7.3% (n=5). The results showed that the proposed method was a rapid, convenient and feasible method for the determination of SAs in liquid samples. Copyright © 2011 Elsevier B.V. All rights reserved.
Sha, Ou; Zhu, Xiashi; Feng, Yanli; Ma, Weixing
2015-05-01
A rapid and effective method of aqueous two-phase systems based on ionic liquid microextraction for the simultaneous determination of five synthetic food colourants (tartrazine, sunset yellow, amaranth, ponceau 4R and brilliant blue) in food samples was established. High-performance liquid chromatography coupled with an ultraviolet detector of variable wavelength was used for the determinations. 1-alkyl-3-methylimidazolium bromide was selected as the extraction reagent. The extraction efficiency of the five colourants in the proposed system is influenced by the types of salts, concentrations of salt and [CnMIM]Br, as well as the extracting time. Under the optimal conditions, the extraction efficiencies for these five colourants were above 95%. The phase behaviours of aqueous two-phase system and extraction mechanism were investigated by UV-vis spectroscopy. This method was applied to the analysis of the five colourants in real food samples with the detection limit of 0.051-0.074 ng/mL. Good spiked recoveries from 93.2% to 98.9% were obtained. Copyright © 2014 Elsevier Ltd. All rights reserved.
Liquid-like cationic sub-lattice in copper selenide clusters
NASA Astrophysics Data System (ADS)
White, Sarah L.; Banerjee, Progna; Jain, Prashant K.
2017-02-01
Super-ionic solids, which exhibit ion mobilities as high as those in liquids or molten salts, have been employed as solid-state electrolytes in batteries, improved thermoelectrics and fast-ion conductors in super-capacitors and fuel cells. Fast-ion transport in many of these solids is supported by a disordered, `liquid-like' sub-lattice of cations mobile within a rigid anionic sub-lattice, often achieved at high temperatures or pressures via a phase transition. Here we show that ultrasmall clusters of copper selenide exhibit a disordered cationic sub-lattice under ambient conditions unlike larger nanocrystals, where Cu+ ions and vacancies form an ordered super-structure similar to the bulk solid. The clusters exhibit an unusual cationic sub-lattice arrangement wherein octahedral sites, which serve as bridges for cation migration, are stabilized by compressive strain. The room-temperature liquid-like nature of the Cu+ sub-lattice combined with the actively tunable plasmonic properties of the Cu2Se clusters make them suitable as fast electro-optic switches.
Wang, Huili; Gao, Ming; Wang, Mei; Zhang, Rongbo; Wang, Wenwei; Dahlgren, Randy A; Wang, Xuedong
2015-03-15
Herein, we developed a novel integrated device to perform phase separation based on ultrasound-assisted salt-induced liquid-liquid microextraction for determination of five fluoroquinones (FQs) in human body fluids. The integrated device consisted of three simple HDPE components used to separate the extraction solvent from the aqueous phase prior to retrieving the extractant. A series of extraction parameters were optimized using the response surface method based on central composite design. Optimal conditions consisted of 945μL acetone extraction solvent, pH 2.1, 4.1min stir time, 5.9g Na2SO4, and 4.0min centrifugation. Under optimized conditions, the limits of detection (at S/N=3) were 0.12-0.66μgL(-1), the linear range was 0.5-500μgL(-1) and recoveries were 92.6-110.9% for the five FQs extracted from plasma and urine. The proposed method has several advantages, such as easy construction from inexpensive materials, high extraction efficiency, short extraction time, and compatibility with HPLC analysis. Thus, this method shows excellent prospects for sample pretreatment and analysis of FQs in human body fluids. Copyright © 2015 Elsevier B.V. All rights reserved.
Gonzalez García, Eric; Ressmann, Anna K; Gaertner, Peter; Zirbs, Ronald; Mach, Robert L; Krska, Rudolf; Bica, Katharina; Brunner, Kurt
2014-12-01
To date, the extraction of genomic DNA is considered a bottleneck in the process of genetically modified organisms (GMOs) detection. Conventional DNA isolation methods are associated with long extraction times and multiple pipetting and centrifugation steps, which makes the entire procedure not only tedious and complicated but also prone to sample cross-contamination. In recent times, ionic liquids have emerged as innovative solvents for biomass processing, due to their outstanding properties for dissolution of biomass and biopolymers. In this study, a novel, easily applicable, and time-efficient method for the direct extraction of genomic DNA from biomass based on aqueous-ionic liquid solutions was developed. The straightforward protocol relies on extraction of maize in a 10 % solution of ionic liquids in aqueous phosphate buffer for 5 min at room temperature, followed by a denaturation step at 95 °C for 10 min and a simple filtration to remove residual biopolymers. A set of 22 ionic liquids was tested in a buffer system and 1-ethyl-3-methylimidazolium dimethylphosphate, as well as the environmentally benign choline formate, were identified as ideal candidates. With this strategy, the quality of the genomic DNA extracted was significantly improved and the extraction protocol was notably simplified compared with a well-established method.
Code of Federal Regulations, 2014 CFR
2014-07-01
... this subpart. Field gas means feedstock gas entering the natural gas processing plant. In light liquid... field gas before the extraction step in the process. Natural gas liquids means the hydrocarbons, such as... (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas...
Code of Federal Regulations, 2013 CFR
2013-07-01
... this subpart. Field gas means feedstock gas entering the natural gas processing plant. In light liquid... field gas before the extraction step in the process. Natural gas liquids means the hydrocarbons, such as... (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas...
Benedé, Juan L; Anderson, Jared L; Chisvert, Alberto
2018-01-01
In this work, a novel hybrid approach called stir bar dispersive liquid microextraction (SBDLME) that combines the advantages of stir bar sorptive extraction (SBSE) and dispersive liquid-liquid microextraction (DLLME) has been employed for the accurate and sensitive determination of ten polycyclic aromatic hydrocarbons (PAHs) in natural water samples. The extraction is carried out using a neodymium stir bar magnetically coated with a magnetic ionic liquid (MIL) as extraction device, in such a way that the MIL is dispersed into the solution at high stirring rates. Once the stirring is ceased, the MIL is magnetically retrieved onto the stir bar, and subsequently subjected to thermal desorption (TD) coupled to a gas chromatography-mass spectrometry (GC-MS) system. The main parameters involved in TD, as well as in the extraction step affecting the extraction efficiency (i.e., MIL amount, extraction time and ionic strength) were evaluated. Under the optimized conditions, the method was successfully validated showing good linearity, limits of detection and quantification in the low ng L -1 level, good intra- and inter-day repeatability (RSD < 13%) and good enrichment factors (18 - 717). This sensitive analytical method was applied to the determination of trace amounts of PAHs in three natural water samples (river, tap and rainwater) with satisfactory relative recovery values (84-115%), highlighting that the matrices under consideration do not affect the extraction process. Copyright © 2017 Elsevier B.V. All rights reserved.
Rigorous buoyancy driven bubble mixing for centrifugal microfluidics.
Burger, S; Schulz, M; von Stetten, F; Zengerle, R; Paust, N
2016-01-21
We present batch-mode mixing for centrifugal microfluidics operated at fixed rotational frequency. Gas is generated by the disk integrated decomposition of hydrogen peroxide (H2O2) to liquid water (H2O) and gaseous oxygen (O2) and inserted into a mixing chamber. There, bubbles are formed that ascent through the liquid in the artificial gravity field and lead to drag flow. Additionaly, strong buoyancy causes deformation and rupture of the gas bubbles and induces strong mixing flows in the liquids. Buoyancy driven bubble mixing is quantitatively compared to shake mode mixing, mixing by reciprocation and vortex mixing. To determine mixing efficiencies in a meaningful way, the different mixers are employed for mixing of a lysis reagent and human whole blood. Subsequently, DNA is extracted from the lysate and the amount of DNA recovered is taken as a measure for mixing efficiency. Relative to standard vortex mixing, DNA extraction based on buoyancy driven bubble mixing resulted in yields of 92 ± 8% (100 s mixing time) and 100 ± 8% (600 s) at 130g centrifugal acceleration. Shake mode mixing yields 96 ± 11% and is thus equal to buoyancy driven bubble mixing. An advantage of buoyancy driven bubble mixing is that it can be operated at fixed rotational frequency, however. The additional costs of implementing buoyancy driven bubble mixing are low since both the activation liquid and the catalyst are very low cost and no external means are required in the processing device. Furthermore, buoyancy driven bubble mixing can easily be integrated in a monolithic manner and is compatible to scalable manufacturing technologies such as injection moulding or thermoforming. We consider buoyancy driven bubble mixing an excellent alternative to shake mode mixing, in particular if the processing device is not capable of providing fast changes of rotational frequency or if the low average rotational frequency is challenging for the other integrated fluidic operations.
Mandrah, Kapil; Satyanarayana, G N V; Roy, Somendu Kumar
2017-12-15
In the present study, a method has been efficiently developed for the first time to determine nine bisphenol analogues [bisphenol A (BPA), bisphenol C (BPC), bisphenol AF (BPAF), bisphenol E (BPE), bisphenol F (BPF), bisphenol G (BPG), bisphenol M (BPM), bisphenol S (BPS), and bisphenol Z (BPZ)] together in bottled carbonated beverages (collected from the local market of Lucknow, India) using dispersive liquid-liquid microextraction process. This is based on solidification of floating organic droplet (DLLME-SFO) followed by injector port silylation coupled with gas chromatography-tandem mass spectrometry. The process investigated parameters of DLLME-SFO (including the type of extraction and disperser solvents with their volumes, effect of pH, ionic strength, and the sample volume), factors influencing to injection port derivatization like, collision energy, injector port temperature, derivatizing reagent with sample injection volume, and type of organic solvent. BPA, BPF, BPZ, and BPS were detected in each sample; whereas, other bisphenols were also detected in some carbonated beverage samples. After optimizing the required conditions, good linearity of analytes was achieved in the range of 0.097-100ngmL -1 with coefficients of determination (R 2 )≥0.995. Intra-day and inter day precision of the method was good, with relative standard deviation (% RSD)≤10.95%. The limits of detection (LOD) and limits of quantification (LOQ) values of all bisphenols were ranged from 0.021 to 0.104ngmL -1 and 0.070 to 0.343ngmL -1 , respectively. The recovery of extraction was good (73.15-95.08%) in carbonated beverage samples and good enrichment factors (96.36-117.33) were found. Thus, the developed method of microextraction was highly precise, fast, and reproducible to determine the level of contaminants in bottled carbonated beverages. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
de Carvalho Gomes, Rafael; Seruff, Luciana Amaral; Scal, Maira Labanca Waineraich; Vera, Ysrael Marrero
2018-02-01
The separation of rare earth elements (REEs) using solvent extraction adding complexing agents appears to be an alternative to saponification of the extractant. We evaluated the effect of lactic acid concentration on didymium (praseodymium and neodymium) and lanthanum extraction with 2-ethylhexyl phosphonic acid mono-2-ethyl hexyl ester [HEH(EHP)] as extractant. First, we investigated in batch experiments the separation of lanthanum (La) and didymium (Pr and Nd) using McCabe-Thiele diagrams to estimate the number of extraction stages when the feed solution was or was not conditioned with lactic acid. Additionally, we conducted continuous liquid-liquid extraction experiments and evaluated the influence of lactic acid concentration on the REE extraction and separation. The tests showed that the extraction percentage of REEs and the separation factor Pr/La increased when the lactic acid concentration increased, but the didymium purity decreased. Lanthanum, praseodymium, and neodymium extraction rate were 23.0, 89.7, and 99.2 pct, respectively, with 1:1 aqueous/organic volume flow rate and feed solution doped with 0.52 mol L-1 lactic acid. The highest didymium purity reached was 92.0 pct with 0.26 mol L-1 lactic acid concentration.
Sereshti, Hassan; Samadi, Soheila; Jalali-Heravi, Mehdi
2013-03-08
Ultrasound assisted extraction (UAE) followed by dispersive liquid-liquid microextraction (DLLME) was used for extraction and preconcentration of volatile constituents of six tea plants. The preconcentrated compounds were analyzed by gas chromatography-mass spectrometry (GC-MS). Totally, 42 compounds were identified and caffeine was quantitatively determined. The main parameters (factors) of the extraction process were optimized by using a central composite design (CCD). Methanol and chloroform were selected as the extraction solvent and preconcentration solvent, respectively .The optimal conditions were obtained as 21 in for sonication time; 32°C for temperature; 27 L for volume of extraction solvent and 7.4% for salt concentration (NaCl/H(2)O). The determination coefficient (R(2)) was 0.9988. The relative standard deviation (RSD %) was 4.8 (n=5), and the enhancement factors (EFs) were 4.0-42.6. Copyright © 2013 Elsevier B.V. All rights reserved.
Gu, Huiyan; Chen, Fengli; Zhang, Qiang; Zang, Jing
2016-03-01
Rutin, hyperoside and hesperidin were effectively extracted from Sorbus tianschanica leaves by an ionic liquid vacuum microwave-assisted method. A series of ionic liquids with various anions and alkyl chain length of the cations were studied and the extraction was performed in [C6mim][BF4] aqueous solution. After optimization by a factorial design and response surface methodology, total extraction yield of 2.37mg/g with an error of 0.12mg/g (0.71±0.04mg/g, 1.18±0.06mg/g and 0.48±0.02 for rutin, hyperoside and hesperidin, respectively) was achieved under -0.08MPa for vacuum, 19min and 420W for microwave irradiation time and power, and 15mL/g for liquid-solid ratio. The proposed method here is more efficient and needs a shorter extraction time for rutin, hyperoside and hesperidin from S. tianschanica leaves than reference extraction techniques. In stability studies performed with standard rutin, hyperoside and hesperidin, the target analytes were stable under the optimum conditions. The proposed method had a high reproducibility and precision. In addition, separation of rutin, hyperoside and hesperidin from [C6mim][BF4] extraction solution was completed effectively by AB-8 macroporous resin adsorption and desorption process. Ionic liquid vacuum microwave-assisted extraction is a simple, rapid and efficient sample extraction technique. Copyright © 2016 Elsevier B.V. All rights reserved.
Dharaskar, Swapnil A.; Varma, Mahesh N.; Shende, Diwakar Z.; Yoo, Chang Kyoo; Wasewar, Kailas L.
2013-01-01
The possible application of imidazolium ionic liquids as energy-efficient green material for extractive deep desulfurization of liquid fuel has been investigated. 1-Butyl-3-methylimidazolium chloride [BMIM]Cl was synthesized by nucleophilic substitution reaction of n-methylimidazolium and 1-chlorobutane. Molecular structures of the ILs were confirmed by FTIR, 1H-NMR, and 13C-NMR. The thermal properties, conductivity, solubility, water content and viscosity analysis of [BMIM]Cl were carried out. The effects of reaction time, reaction temperature, sulfur compounds, and recycling of IL without regeneration on dibenzothiophene removal of liquid fuel were presented. In the extractive desulfurization process, the removal of dibenzothiophene in n-dodecane using [BMIM]Cl was 81% with mass ratio of 1 : 1, in 30 min at 30°C under the mild reaction conditions. Also, desulfurization of real fuels with IL and multistage extraction were studied. The results of this work might offer significant insights in the perceptive use of imidazoled ILs as energy-efficient green material for extractive deep desulfurization of liquid fuels as it can be reused without regeneration with considerable extraction efficiency. PMID:24307868
Separations by supported liquid membrane cascades
Danesi, Pier R.
1986-01-01
The invention describes a new separation technique which leads to multi-stage operations by the use of a series (a cascade) of alternated carrier-containing supported-liquid membranes. The membranes contain alternatively a liquid cation exchanger extractant and a liquid anion exchanger extractant (or a neutral extractant) as carrier. The membranes are spaced between alternated aqueous electrolytic solutions of different composition which alternatively provide positively charged extractable species and negatively charged (or zero charged) extractable species, of the chemical species to be separated. The alternated aqueous electrolytic solutions in addition to providing the driving force to the process, simultaneously function as a stripping solution from one type of membrane and as an extraction-promoting solution for the other type of membrane. The aqueous electrolytic solutions and the supported liquid membranes are arranged in such a way to provide a continuous process which leads to the continuous enrichment of the species which show the highest permeability coefficients. By virtue of the very high number of stages which can be arranged, even chemical species having very similar chemical behavior (and consequently very similar permeability coefficients) can be completely separated. The invention also provide a way to concentrate the separated species.
Status of liquid metal fast breeder reactor fuel development in Japan
NASA Astrophysics Data System (ADS)
Katsuragawa, M.; Kashihara, H.; Akebi, M.
1993-09-01
The mixed-oxide fuel technology for a liquid metal fast breeder reactor (LMFBR) in Japan is progressing toward commercial deployment of LMFBR. Based on accumulated experience in Joyo and Monju fuel development, efforts for large scale LMFBR fuel development are devoted to improved irradiation performance, reliability and economy. This paper summarizes accomplishments, current activities and future plans for LMFBR fuel development in Japan.
Gao, He-Gang; Gong, Wen-Jie; Zhao, Yong-Gang
2015-01-01
Synthetic pigments are still used instead of natural pigments in many foods and their residues in food could be an important risk to human health. A simple and rapid analytical method combining the low-cost extraction protocol with ultra-fast liquid chromatography-tandem quadrupole mass spectrometry (UFLC-MS/MS) was developed for the simultaneous determination of seven synthetic pigments used in colored Chinese steamed buns. For the first time, ethanol/ammonia solution/water (7:2:1, v/v/v) was used as extraction solution for the synthetic pigments in colored Chinese steamed buns. The results showed that the property of the extraction solution used in this method was more effective than critic acid solution, which is used in the polyamide adsorption method. The limits of quantification for the seven synthetic pigments ranged from 0.15 to 0.50 μg/kg. The present method was successfully applied to samples of colored Chinese steamed buns for food-safety risk monitoring in Zhejiang Province, China. The results found sunset yellow pigment in six out of 300 colored Chinese steamed buns (from 0.50 to 32.6 μg/kg).
Song, Ying; Wu, Lijie; Lu, Chunmei; Li, Na; Hu, Mingzhu; Wang, Ziming
2014-12-01
An easy, quick, and green method, microwave-assisted liquid-liquid microextraction based on solidification of ionic liquid, was first developed and applied to the extraction of sulfonamides in environmental water samples. 1-Ethy-3-methylimidazolium hexafluorophosphate, which is a solid-state ionic liquid at room temperature, was used as extraction solvent in the present method. After microwave irradiation for 90 s, the solid-state ionic liquid was melted into liquid phase and used to finish the extraction of the analytes. The ionic liquid and sample matrix can be separated by freezing and centrifuging. Several experimental parameters, including amount of extraction solvent, microwave power and irradiation time, pH of sample solution, and ionic strength, were investigated and optimized. Under the optimum experimental conditions, good linearity was observed in the range of 2.00-400.00 μg/L with the correlation coefficients ranging from 0.9995 to 0.9999. The limits of detection for sulfathiazole, sulfachlorpyridazine, sulfamethoxazole, and sulfaphenazole were 0.39, 0.33, 0.62, and 0.85 μg/L, respectively. When the present method was applied to the analysis of environmental water samples, the recoveries of the analytes ranged from 75.09 to 115.78% and relative standard deviations were lower than 11.89%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Delong; Wang, Xiaodong; Lu, Ruili; Li, Kangle; Hu, Fenglin
2011-12-01
To determine the volatile components of mycelia of Isaria cateinannulata cultured under different culture conditions, and to analyze the relationships between the culture conditions and volatile metabolites. Mycelia were cultured in solid plates with SDAY medium and liquid shake flasks with SDY medium. The culture conditions were at 25 degrees C and 8 days. Volatile components in the mycelia of I. cateinannulata were extracted with simultaneous distillation extraction and analyzed by gas chromatography-mass spectrometry. Alkenes, alkanes, heterocyclic and polycyclic aromatic hydrocarbons (PAH) were existed abundantly both in the mycelia of liquid and solid cultures, but the kinds and relative concentrations of the volatile components in mycelia of liquid and solid cultures were very different. Forty-one compounds were identified from the mycelia of solid culture and 32 compounds were identified from the mycelia of liquid culture. Esters, quinones and oximes were only found in solid cultured mycelia whereas carboxylic acids were only discovered in the mycelia of liquid culture. At the same time, mycelia of liquid culture contained much more phenols. The most abundant compounds in mycelia of liquid and solid cultures were hydrocarbons. The volatile extracts of solid cultured mycelia contained 57.6% alkenes and 9.19% alkanes. The volatile extracts of liquid cultured mycelia contained 7.85% alkenes and 22.4% alkanes. Liquid or solid culture conditions influenced the volatile components of mycelia of I. cateinannulata.
Isolation and characterization of antimicrobial food components.
Papetti, Adele
2012-04-01
Nowadays there is an evident growing interest in natural antimicrobial compounds isolated from food matrices. According to the type of matrix, different isolation and purification steps are needed and as these active compounds belong to different chemical classes, also different chromatographic and electrophoretic methods coupled with various detectors (the most used diode array detector and mass spectrometer) have to be performed. This review covers recent steps made in the fundamental understanding of sample preparation methods as well as of analytical tools useful for the complete characterization of bioactive food compounds. The most commonly used methods for extraction of natural antimicrobial compounds are the conventional liquid-liquid or solid-liquid extraction and the modern techniques such as pressurized liquid extraction, microwave-assisted extraction, ultrasound-assisted extraction, solid-phase micro-extraction, supercritical fluid extraction, and matrix solid phase dispersion. The complete characterization of the compounds is achieved using both monodimensional chromatographic processes (LC, nano-LC, GC, and CE coupled with different type of detectors) and, recently, using comprehensive two-dimensional systems (LC×LC and GC×GC). Copyright © 2011 Elsevier Ltd. All rights reserved.
Xie, Yuliang; Chindam, Chandraprakash; Nama, Nitesh; Yang, Shikuan; Lu, Mengqian; Zhao, Yanhui; Mai, John D.; Costanzo, Francesco; Huang, Tony Jun
2015-01-01
We investigated bubble oscillation and its induced enhancement of mass transfer in a liquid-liquid extraction process with an acoustically-driven, bubble-based microfluidic device. The oscillation of individually trapped bubbles, of known sizes, in microchannels was studied at both a fixed frequency, and over a range of frequencies. Resonant frequencies were analytically identified and were found to be in agreement with the experimental observations. The acoustic streaming induced by the bubble oscillation was identified as the cause of this enhanced extraction. Experiments extracting Rhodanmine B from an aqueous phase (DI water) to an organic phase (1-octanol) were performed to determine the relationship between extraction efficiency and applied acoustic power. The enhanced efficiency in mass transport via these acoustic-energy-assisted processes was confirmed by comparisons against a pure diffusion-based process. PMID:26223474
NASA Astrophysics Data System (ADS)
Habibullah, Wilfred, Cecilia Devi
2016-11-01
This study compares the performance of ionic liquids to substitute conventional solvents (hexane, dichloromethane and methanol) to extract essential oil from Botryophora geniculate plant. Two different Ionic liquids ([C3MIM][Ac], [C4MIM][Ac]) with co-solvent diethyl ether were used in the ultrasonic-assisted extraction. The effect of various experimental conditions such as time, temperature and solvent were studied. Gas chromatography-mass spectroscopy (GC-MS) was used to analyze essential oils. The results showed that in ultrasonic-assisted extraction using ionic liquids as a solvent gave highest yield (9.5%) in 30 min at temperature 70°C. When using ultrasonic bath with hexane, dichloromethane and methanol, yields was (3.34%), (3.6%) and (3.81%) at 90 min, respectively were obtained. The ultrasonic-assisted extraction under optimal extraction conditions (time 30 min, temperature of 70°C) gave the best yield for the essential oil extraction.
Haller, Julia; Schwaiger, Stefan; Stuppner, Hermann; Gafner, Frank; Ganzera, Markus
2017-11-01
The genus Soldanella is one of the few endemic to Europe. Some of its species have relevance in local traditional medicine. Earlier work has indicated the possible presence of saponins in S. alpina. To investigate S. alpina and other related species for the occurrence of saponins. Following sequential extraction with n-hexane, dichloromethane and ethyl acetate the subsequent methanolic extract of S. alpina roots was fractionated after solvent precipitation using fast centrifugal partition chromatography and column chromatography. Structures were elucidated by LC-MS n , high-resolution MS, hydrolysis experiments and one-dimensional (1D)- and two-dimensional (2D)-NMR. A hydrophilic interaction liquid chromatography method was developed to quantitate saponins in the leaves and roots of four Soldanella species. Three triterpene saponins, two of them new natural products, were isolated from S. alpina. Based on an epoxyoleanal aglycone substituted with four sugar units, they were analytically quantitated using a Kinetex 2.6 μm hydrophilic interaction liquid chromatography (HILIC) column together with a mobile phase comprising of ammonium acetate, water and acetonitrile. Method validation confirmed that the assay meets all requirements in respect to linearity, accuracy, sensitivity and precision. All four Soldanella species investigated contained the three saponins. The lowest total level of the three saponins (1.09%) was observed in S. montana leaves while the highest saponin content (5.14%) was determined in S. alpina roots. The detection of saponins within the genus Soldanella is an indication that further phytochemical examination of this genus may reveal more secondary metabolites of interest. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Witt, Lukas; Suzuki, Yosuke; Hohmann, Nicolas; Mikus, Gerd; Haefeli, Walter E; Burhenne, Jürgen
2016-08-01
Chlorzoxazone is a probe drug to assess cytochrome P450 (CYP) 2E1 activity (phenotyping). If the pharmacokinetics of the probe drug is linear, pharmacologically ineffective doses are sufficient for the purpose of phenotyping and adverse effects can thus be avoided. For this reason, we developed and validated an assay for the ultrasensitive quantification of chlorzoxazone and 6-hydroxychlorzoxazone in human plasma. Plasma (0.5mL) and liquid/liquid partitioning were used for sample preparation. Extraction recoveries ranged between 76 and 93% for both analytes. Extracts were separated within 3min on a Waters BEH C18 Shield 1.7μm UPLC column with a fast gradient consisting of aqueous formic acid and acetonitrile. Quantification was achieved using internal standards labeled with deuterium or (13)C and tandem mass spectrometry in the multiple reaction monitoring mode using negative electrospray ionization, which yielded lower limits of quantification of 2.5pgmL(-1), while maintaining a precision always below 15%. The calibrated concentration ranges were linear for both analytes (2.5-1000pgmL(-1)) with correlation coefficients of >0.99. Within-batch and batch-to-batch precision in the calibrated ranges for both analytes were <15% and <11% and plasma matrix effects always were below 50%. The assay was successfully applied to assess the pharmacokinetics of chlorzoxazone in two human volunteers after administration of single oral doses (2.5-5000μg). This ultrasensitive assay allowed the determination of chlorzoxazone pharmacokinetics for 8h after microdosing of 25μg chlorzoxazone. Copyright © 2016 Elsevier B.V. All rights reserved.
Waterflooding injectate design systems and methods
Brady, Patrick V.; Krumhansl, James L.
2016-12-13
A method of recovering a liquid hydrocarbon using an injectate includes recovering the liquid hydrocarbon through primary extraction. Physico-chemical data representative of electrostatic interactions between the liquid hydrocarbon and the reservoir rock are measured. At least one additive of the injectate is selected based on the physico-chemical data. The method includes recovering the liquid hydrocarbon from the reservoir rock through secondary extraction using the injectate.
Method 8321B describes procedures for preparation and analysis of solid, aqueous liquid, drinking water and wipe samples using high performance liquid chromatography and mass spectrometry for extractable non-volatile compounds.
Composition of liquid rice hull smoke and anti-inflamatory effects in mice
USDA-ARS?s Scientific Manuscript database
Antioxidative, antiallergic, and antiinflammatory activities of a new liquid rice hull (husk) smoke extract prepared by pyrolysis of rice hulls followed by liquefaction of the resulting smoke were assessed in vitro and in vivo. At pH 5, the liquid smoke extract inhibited 1-diphenyl-2-picrylhydrazyl ...
Farsalinos, Konstantinos E.; Gillman, I. Gene; Melvin, Matt S.; Paolantonio, Amelia R.; Gardow, Wendy J.; Humphries, Kathy E.; Brown, Sherri E.; Poulas, Konstantinos; Voudris, Vassilis
2015-01-01
Background. Some electronic cigarette (EC) liquids of tobacco flavour contain extracts of cured tobacco leaves produced by a process of solvent extraction and steeping. These are commonly called Natural Extract of Tobacco (NET) liquids. The purpose of the study was to evaluate nicotine levels and the presence of tobacco-derived toxins in tobacco-flavoured conventional and NET liquids. Methods. Twenty-one samples (10 conventional and 11 NET liquids) were obtained from the US and Greek market. Nicotine levels were measured and compared with labelled values. The levels of tobacco-derived chemicals were compared with literature data on tobacco products. Results. Twelve samples had nicotine levels within 10% of the labelled value. Inconsistency ranged from −21% to 22.1%, with no difference observed between conventional and NET liquids. Tobacco-specific nitrosamines (TSNAs) were present in all samples at ng/mL levels. Nitrates were present almost exclusively in NET liquids. Acetaldehyde was present predominantly in conventional liquids while formaldehyde was detected in almost all EC liquids at trace levels. Phenols were present in trace amounts, mostly in NET liquids. Total TSNAs and nitrate, which are derived from the tobacco plant, were present at levels 200–300 times lower in 1 mL of NET liquids compared to 1 gram of tobacco products. Conclusions. NET liquids contained higher levels of phenols and nitrates, but lower levels of acetaldehyde compared to conventional EC liquids. The lower levels of tobacco-derived toxins found in NET liquids compared to tobacco products indicate that the extraction process used to make these products did not transfer a significant amount of toxins to the NET. Overall, all EC liquids contained far lower (by 2–3 orders of magnitude) levels of the tobacco-derived toxins compared to tobacco products. PMID:25811768
Farsalinos, Konstantinos E; Gillman, I Gene; Melvin, Matt S; Paolantonio, Amelia R; Gardow, Wendy J; Humphries, Kathy E; Brown, Sherri E; Poulas, Konstantinos; Voudris, Vassilis
2015-03-24
Some electronic cigarette (EC) liquids of tobacco flavour contain extracts of cured tobacco leaves produced by a process of solvent extraction and steeping. These are commonly called Natural Extract of Tobacco (NET) liquids. The purpose of the study was to evaluate nicotine levels and the presence of tobacco-derived toxins in tobacco-flavoured conventional and NET liquids. Twenty-one samples (10 conventional and 11 NET liquids) were obtained from the US and Greek market. Nicotine levels were measured and compared with labelled values. The levels of tobacco-derived chemicals were compared with literature data on tobacco products. Twelve samples had nicotine levels within 10% of the labelled value. Inconsistency ranged from -21% to 22.1%, with no difference observed between conventional and NET liquids. Tobacco-specific nitrosamines (TSNAs) were present in all samples at ng/mL levels. Nitrates were present almost exclusively in NET liquids. Acetaldehyde was present predominantly in conventional liquids while formaldehyde was detected in almost all EC liquids at trace levels. Phenols were present in trace amounts, mostly in NET liquids. Total TSNAs and nitrate, which are derived from the tobacco plant, were present at levels 200-300 times lower in 1 mL of NET liquids compared to 1 gram of tobacco products. NET liquids contained higher levels of phenols and nitrates, but lower levels of acetaldehyde compared to conventional EC liquids. The lower levels of tobacco-derived toxins found in NET liquids compared to tobacco products indicate that the extraction process used to make these products did not transfer a significant amount of toxins to the NET. Overall, all EC liquids contained far lower (by 2-3 orders of magnitude) levels of the tobacco-derived toxins compared to tobacco products.
Schramm, Sébastien; Vailhen, Dominique; Bridoux, Maxime Cyril
2016-02-12
A method for the sensitive quantification of trace amounts of organic explosives in water samples was developed by using stir bar sorptive extraction (SBSE) followed by liquid desorption and ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The proposed method was developed and optimized using a statistical design of experiment approach. Use of experimental designs allowed a complete study of 10 factors and 8 analytes including nitro-aromatics, amino-nitro-aromatics and nitric esters. The liquid desorption study was performed using a full factorial experimental design followed by a kinetic study. Four different variables were tested here: the liquid desorption mode (stirring or sonication), the chemical nature of the stir bar (PDMS or PDMS-PEG), the composition of the liquid desorption phase and finally, the volume of solvent used for the liquid desorption. On the other hand, the SBSE extraction study was performed using a Doehlert design. SBSE extraction conditions such as extraction time profiles, sample volume, modifier addition, and acetic acid addition were examined. After optimization of the experimental parameters, sensitivity was improved by a factor 5-30, depending on the compound studied, due to the enrichment factors reached using the SBSE method. Limits of detection were in the ng/L level for all analytes studied. Reproducibility of the extraction with different stir bars was close to the reproducibility of the analytical method (RSD between 4 and 16%). Extractions in various water sample matrices (spring, mineral and underground water) have shown similar enrichment compared to ultrapure water, revealing very low matrix effects. Copyright © 2016 Elsevier B.V. All rights reserved.
Tittlemier, Sheryl A; Pepper, Karen; Seymour, Carol; Moisey, John; Bronson, Roni; Cao, Xu-Liang; Dabeka, Robert W
2007-04-18
Human exposure to perfluorinated compounds is a worldwide phenomenon; however, routes of human exposure to these compounds have not been well-characterized. Fifty-four solid food composite samples collected as part of the Canadian Total Diet Study (TDS) were analyzed for perfluorocarboxylates and perfluorooctanesulfonate (PFOS) using a methanol extraction liquid chromatography tandem mass spectrometry method. Foods analyzed included fish and seafood, meat, poultry, frozen entrées, fast food, and microwave popcorn collected from 1992 to 2004 and prepared as for consumption. Nine composites contained detectable levels of perfluorinated compounds-four meat-containing, three fish and shellfish, one fast food, and one microwave popcorn. PFOS and perfluorooctanoate (PFOA) were detected the most frequently; concentrations ranged from 0.5 to 4.5 ng/g. The average dietary intake of total perfluorocarboxylates and PFOS for Canadians was estimated to be 250 ng/day, using results from the 2004 TDS composites. A comparison with intakes of perfluorocarboxylates and PFOS via other routes (air, water, dust, treated carpeting, and apparel) suggested that diet is an important source of these compounds. There was a substantial margin of exposure between the toxicological points of reference and the magnitude of dietary intake of perfluorinated compounds for Canadians >/= 12 years old.
Fast Ignition and Sustained Combustion of Ionic Liquids
NASA Technical Reports Server (NTRS)
Joshi, Prakash B. (Inventor); Piper, Lawrence G. (Inventor); Oakes, David B. (Inventor); Sabourin, Justin L. (Inventor); Hicks, Adam J. (Inventor); Green, B. David (Inventor); Tsinberg, Anait (Inventor); Dokhan, Allan (Inventor)
2016-01-01
A catalyst free method of igniting an ionic liquid is provided. The method can include mixing a liquid hypergol with a HAN (Hydroxylammonium nitrate)-based ionic liquid to ignite the HAN-based ionic liquid in the absence of a catalyst. The HAN-based ionic liquid and the liquid hypergol can be injected into a combustion chamber. The HAN-based ionic liquid and the liquid hypergol can impinge upon a stagnation plate positioned at top portion of the combustion chamber.
USDA-ARS?s Scientific Manuscript database
Oats (Avena sativa L.) were extracted with 80% aqueous ethanol and the extract was successively isolated by liquid-liquid partition to yield n-hexane, ethyl acetate, n-butanol and water layers. Among these extractions the ethyl acetate (EA) layer exhibited the highest total phenolic content (TPC), t...
Du, Yiyang; He, Bosai; Li, Qing; He, Jiao; Wang, Di; Bi, Kaishun
2017-05-01
Suan-Zao-Ren decoction has been used to treat insomnia for many years. In this work, a rapid and sensitive ultra-fast liquid chromatography with tandem mass spectrometry method was first developed and fully validated for the simultaneous quantification of seven main active components, spinosin, mangiferin, neomangiferin, ferulic acid, liquiritin, isoliquiritin, and liquiritin apioside in rat plasma. The method was also successfully applied to compare the pharmacokinetics of these active ingredients after oral administration of Suan-Zao-Ren decoction and Suan-Zao-Ren granule. The separation was achieved on a Venusil MP C 18 column and the detection was conducted by the multiple reaction monitoring mode using negative ion mode. Each calibration curve had good linearity over a wide concentration range. The precision of intra- and interday were all within 15%, and the extraction recoveries at different analyte concentrations were all above 82.0%. The established method was successfully applied to compare the pharmacokinetic profiles of the analytes between Suan-Zao-Ren decoction and Suan-Zao-Ren granule groups. The results indicated that all the analytes had similar mean concentration-time curves trend between two groups. No significant differences were observed in pharmacokinetic parameters of mangiferin, while the others had significant differences. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nardin, Tiziana; Barnaba, Chiara; Abballe, Franco; Trenti, Gianmaria; Malacarne, Mario; Larcher, Roberto
2017-10-01
A fast separation based on cation-exchange liquid chromatography coupled with high-resolution mass spectrometry is proposed for simultaneous determination of chlormequat, difenzoquat, diquat, mepiquat and paraquat in several food and beverage commodities. Solid samples were extracted using a mixture of water/methanol/formic acid (69.6:30:0.4, v/v/v), while liquid samples were ten times diluted with the same solution. Separation was carried out on an experimental length-modified IonPac CS17 column (2 × 15 mm 2 ) that allowed the use of formic acid and acetonitrile as mobile phase. Detection limits for food and beverage matrices were established at 1.5 μg/L for chlormequat, difenzoquat and mepiquat, and 3 μg/L for diquat and paraquat, while for drinking water a pre-analytical sample concentration allowed detection limits of 9 and 20 ng/L, respectively. Precision, as repeatability (RSD%), ranged from 0.2 to 24%, with a median value of 6%, and trueness, as recovery, ranged from 64 to 118%, with a median value of 96%. The method developed was successfully applied to investigate the presence of herbicide residues in commercial commodities (mineral water, orange juice, beer, tea, green coffee bean, toasted coffee powder, cocoa bean, white corn flour, rice and sugar samples). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Huang, Ke; Huang, Lingyi; van Breemen, Richard B
2015-04-07
Metabolic activation of drugs to electrophilic species is responsible for over 60% of black box warnings and drug withdrawals from the market place in the United States. Reactive metabolite trapping using glutathione (GSH) and analysis using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) or HPLC with high resolution mass spectrometry (mass defect filtering) have enabled screening for metabolic activation to become routine during drug development. However, current MS-based approaches cannot detect all GSH conjugates present in complex mixtures, especially those present in extracts of botanical dietary supplements. To overcome these limitations, a fast triple quadrupole mass spectrometer-based approach was developed that can detect positively and negatively charged GSH conjugates in a single analysis without the need for advanced knowledge of the elemental compositions of potential conjugates and while avoiding false positives. This approach utilized UHPLC instead of HPLC to shorten separation time and enhance sensitivity, incorporated stable-isotope labeled GSH to avoid false positives, and used fast polarity switching electrospray MS/MS to detect GSH conjugates that form positive and/or negative ions. The general new method was then used to test the licorice dietary supplement Glycyrrhiza glabra, which was found to form multiple GSH conjugates upon metabolic activation. Among the GSH conjugates found in the licorice assay were conjugates with isoliquiritigenin and glabridin, which is an irreversible inhibitor of cytochrome P450 enzymes.
Rout, Alok; Binnemans, Koen
2014-02-28
The solvent extraction of trivalent rare-earth ions and their separation from divalent transition metal ions using molten salt hydrates as the feed phase and an undiluted fluorine-free ionic liquid as the extracting phase were investigated in detail. The extractant was tricaprylmethylammonium nitrate, [A336][NO3], and the hydrated melt was calcium nitrate tetrahydrate, Ca(NO3)2·4H2O. The extraction behavior of rare-earth ions was studied for solutions of individual elements, as well as for mixtures of rare earths in the hydrated melt. The influence of different extraction parameters was investigated: the initial metal loading in the feed phase, percentage of water in the feed solution, equilibration time, and the type of hydrated melt. The extraction of rare earths from Ca(NO3)2·4H2O was compared with extraction from CaCl2·4H2O by [A336][Cl] (Aliquat 336). The nitrate system was found to be the better one. The extraction and separation of rare earths from the transition metals nickel, cobalt and zinc were also investigated. Remarkably high separation factors of rare-earth ions over transition metal ions were observed for extraction from Ca(NO3)2·4H2O by the [A336][NO3] extracting phase. Furthermore, rare-earth ions could be separated efficiently from transition metal ions, even in melts with very high concentrations of transition metal ions. Rare-earth oxides could be directly dissolved in the Ca(NO3)2·4H2O phase in the presence of small amounts of Al(NO3)3·9H2O or concentrated nitric acid. The efficiency of extraction after dissolving the rare-earth oxides in the hydrated nitrate melt was identical to extraction from solutions with rare-earth nitrates dissolved in the molten phase. The stripping of the rare-earth ions from the loaded ionic liquid phase and the reuse of the recycled ionic liquid were also investigated in detail.