Sample records for extraction rope process

  1. Magnetic Flux Leakage Sensing and Artificial Neural Network Pattern Recognition-Based Automated Damage Detection and Quantification for Wire Rope Non-Destructive Evaluation.

    PubMed

    Kim, Ju-Won; Park, Seunghee

    2018-01-02

    In this study, a magnetic flux leakage (MFL) method, known to be a suitable non-destructive evaluation (NDE) method for continuum ferromagnetic structures, was used to detect local damage when inspecting steel wire ropes. To demonstrate the proposed damage detection method through experiments, a multi-channel MFL sensor head was fabricated using a Hall sensor array and magnetic yokes to adapt to the wire rope. To prepare the damaged wire-rope specimens, several different amounts of artificial damages were inflicted on wire ropes. The MFL sensor head was used to scan the damaged specimens to measure the magnetic flux signals. After obtaining the signals, a series of signal processing steps, including the enveloping process based on the Hilbert transform (HT), was performed to better recognize the MFL signals by reducing the unexpected noise. The enveloped signals were then analyzed for objective damage detection by comparing them with a threshold that was established based on the generalized extreme value (GEV) distribution. The detected MFL signals that exceed the threshold were analyzed quantitatively by extracting the magnetic features from the MFL signals. To improve the quantitative analysis, damage indexes based on the relationship between the enveloped MFL signal and the threshold value were also utilized, along with a general damage index for the MFL method. The detected MFL signals for each damage type were quantified by using the proposed damage indexes and the general damage indexes for the MFL method. Finally, an artificial neural network (ANN) based multi-stage pattern recognition method using extracted multi-scale damage indexes was implemented to automatically estimate the severity of the damage. To analyze the reliability of the MFL-based automated wire rope NDE method, the accuracy and reliability were evaluated by comparing the repeatedly estimated damage size and the actual damage size.

  2. Non-Destructive Detection of Wire Rope Discontinuities from Residual Magnetic Field Images Using the Hilbert-Huang Transform and Compressed Sensing

    PubMed Central

    Zhang, Juwei; Tan, Xiaojiang; Zheng, Pengbo

    2017-01-01

    Electromagnetic methods are commonly employed to detect wire rope discontinuities. However, determining the residual strength of wire rope based on the quantitative recognition of discontinuities remains problematic. We have designed a prototype device based on the residual magnetic field (RMF) of ferromagnetic materials, which overcomes the disadvantages associated with in-service inspections, such as large volume, inconvenient operation, low precision, and poor portability by providing a relatively small and lightweight device with improved detection precision. A novel filtering system consisting of the Hilbert-Huang transform and compressed sensing wavelet filtering is presented. Digital image processing was applied to achieve the localization and segmentation of defect RMF images. The statistical texture and invariant moment characteristics of the defect images were extracted as the input of a radial basis function neural network. Experimental results show that the RMF device can detect defects in various types of wire rope and prolong the service life of test equipment by reducing the friction between the detection device and the wire rope by accommodating a high lift-off distance. PMID:28300790

  3. A novel method for harmless disposal and resource reutilization of steel wire rope sludges.

    PubMed

    Zhang, Li; Liu, Yang-Sheng

    2016-10-01

    Rapid development of steel wire rope industry has led to the generation of large quantities of pickling sludge, which causes significant ecological problems and considerable negative environmental effects. In this study, a novel method was proposed for harmless disposal and resource reutilization of the steel wire rope sludge. Based on the method, two steel wire rope sludges (the Pb sludge and the Zn sludge) were firstly extracted by hydrochloric or sulfuric acid and then mixed with the hydrochloride acid extracting solution of aluminum skimmings to produce composite polyaluminum ferric flocculants. The optimum conditions (acid concentration, w/v ratio, reaction time, and reaction temperature) for acid extraction of the sludges were studied. Results showed that 97.03 % of Pb sludge and 96.20 % of Zn sludge were extracted. Leaching potential of the residues after acid extraction was evaluated, and a proposed treatment for the residues had been instructed. The obtained flocculant products were used to purify the real domestic wastewater and showed an equivalent or better performance than the commercial ones. This method is environmental-friendly and cost-effective when compared with the conventional sludge treatments.

  4. Testing a new flux rope model using the HELCATS CME catalogue

    NASA Astrophysics Data System (ADS)

    Rouillard, Alexis Paul; Lavarra, Michael

    2017-04-01

    We present a magnetically-driven flux rope model that computes the forces acting on a twisted magnetic flux rope from the Sun to 1AU. This model assumes a more realistic flux rope geometry than assumed before by these types of models. The balance of force is computed in an analogous manner to the well-known Chen flux-rope model. The 3-D vector components of the magnetic field measured by a probe flying through the flux rope can be extracted for any flux rope orientation imposed near the Sun. We test this model through a parametric study and a systematic comparison of the model with the HELCATS catalogues (imagery and in situ). We also report on our investigations of other physical mechanisms such as the shift of flux-surfaces associated with the magnetic forces acting to accelerate the flux rope from the lower to upper corona. Finally, we present an evaluation of this model for space-weather predictions. This work was partly funded by the HELCATS project under the FP7 EU contract number 606692.

  5. A Kinetic-MHD Theory for the Self-Consistent Energy Exchange Between Energetic Particles and Active Small-scale Flux Ropes

    NASA Astrophysics Data System (ADS)

    le Roux, J. A.

    2017-12-01

    We developed previously a focused transport kinetic theory formalism with Fokker-plank coefficients (and its Parker transport limit) to model large-scale energetic particle transport and acceleration in solar wind regions with multiple contracting and merging small-scale flux ropes on MHD (inertial) scales (Zank et al. 2014; le Roux et al. 2015). The theory unifies the main acceleration mechanisms identified in particle simulations for particles temporarily trapped in such active flux rope structures, such as acceleration by the parallel electric field in reconnection regions between merging flux ropes, curvature drift acceleration in incompressible/compressible contracting and merging flux ropes, and betatron acceleration (e.g., Dahlin et al 2016). Initial analytical solutions of the Parker transport equation in the test particle limit showed that the energetic particle pressure from efficient flux-rope energization can potentially be high in turbulent solar wind regions containing active flux-rope structures. This requires taking into account the back reaction of energetic particles on flux ropes to more accurately determine the efficiency of energetic particles acceleration by small-scale flux ropes. To accomplish this goal we developed recently an extension of the kinetic theory to a kinetic-MHD level. We will present the extended theory showing the focused transport equation to be coupled to a solar wind MHD transport equation for small-scale flux-rope energy density extracted from a recently published nearly incompressible theory for solar wind MHD turbulence with a plasma beta of 1 (Zank et al. 2017). In the flux-rope transport equation appears new expressions for the damping/growth rates of flux-rope energy derived from assuming energy conservation in the interaction between energetic particles and small-scale flux ropes for all the main flux-rope acceleration mechanisms, whereas previous expressions for average particle acceleration rates have been explored in more detail. Future applications will involve exploring the relative role of diffusive shock and flux-ropes acceleration in the vicinity of traveling shocks in the supersonic solar wind near Earth where many flux-rope structures were detected recently (Hu et al 2017, this session).

  6. Predicting the effect of seine rope layout pattern and haul-in procedure on the effectiveness of demersal seine fishing: A Computer simulation-based approach.

    PubMed

    Madsen, Nina A H; Aarsæther, Karl G; Herrmann, Bent

    2017-01-01

    Demersal Seining is an active fishing method applying two long seine ropes and a seine net. Demersal seining relies on fish responding to the seine rope as it moves during the fishing process. The seine ropes and net are deployed in a specific pattern encircling an area on the seabed. In some variants of demersal seining the haul-in procedure includes a towing phase where the fishing vessel moves forward before starting to winch in the seine ropes. The initial seine rope encircled area, the gradual change in it during the haul-in process and the fish's reaction to the moving seine ropes play an important role in the catch performance of demersal seine fishing. The current study investigates this subject by applying computer simulation models for demersal seine fishing. The demersal seine fishing is dynamic in nature and therefore a dynamic model, SeineSolver is applied for simulating the physical behaviour of the seine ropes during the fishing process. Information about the seine rope behaviour is used as input to another simulation tool, SeineFish that predicts the catch performance of the demersal seine fishing process. SeineFish implements a simple model for how fish at the seabed reacts to an approaching seine rope. Here, the SeineSolver and SeineFish tools are applied to investigate catching performance for a Norwegian demersal seine fishery targeting cod (Gadus morhua) in the coastal zone. The effect of seine rope layout pattern and the duration of the towing phase are investigated. Among the four different layout patterns investigated, the square layout pattern was predicted to perform best; catching 69%-86% more fish than would be obtained with the rectangular layout pattern. Inclusion of a towing phase in the fishing process was found to increase the catch performance for all layout patterns. For the square layout pattern, inclusion of a towing phase of 15 or 35 minutes increased the catch performance by respectively 37% and 48% compared to fishing without a towing phase. These results highlights the importance of the selected seine rope layout pattern and the duration of the towing phase when fishermen try to maximize the catch performance of their fishery. To our knowledge this is the first time the combination of models for the physical behaviour of seine ropes and for fish behaviour in response to seine rope movements have been applied to predict catch performance for demersal seining.

  7. Predicting the effect of seine rope layout pattern and haul-in procedure on the effectiveness of demersal seine fishing: A Computer simulation-based approach

    PubMed Central

    Madsen, Nina A. H.; Aarsæther, Karl G.; Herrmann, Bent

    2017-01-01

    Demersal Seining is an active fishing method applying two long seine ropes and a seine net. Demersal seining relies on fish responding to the seine rope as it moves during the fishing process. The seine ropes and net are deployed in a specific pattern encircling an area on the seabed. In some variants of demersal seining the haul-in procedure includes a towing phase where the fishing vessel moves forward before starting to winch in the seine ropes. The initial seine rope encircled area, the gradual change in it during the haul-in process and the fish's reaction to the moving seine ropes play an important role in the catch performance of demersal seine fishing. The current study investigates this subject by applying computer simulation models for demersal seine fishing. The demersal seine fishing is dynamic in nature and therefore a dynamic model, SeineSolver is applied for simulating the physical behaviour of the seine ropes during the fishing process. Information about the seine rope behaviour is used as input to another simulation tool, SeineFish that predicts the catch performance of the demersal seine fishing process. SeineFish implements a simple model for how fish at the seabed reacts to an approaching seine rope. Here, the SeineSolver and SeineFish tools are applied to investigate catching performance for a Norwegian demersal seine fishery targeting cod (Gadus morhua) in the coastal zone. The effect of seine rope layout pattern and the duration of the towing phase are investigated. Among the four different layout patterns investigated, the square layout pattern was predicted to perform best; catching 69%-86% more fish than would be obtained with the rectangular layout pattern. Inclusion of a towing phase in the fishing process was found to increase the catch performance for all layout patterns. For the square layout pattern, inclusion of a towing phase of 15 or 35 minutes increased the catch performance by respectively 37% and 48% compared to fishing without a towing phase. These results highlights the importance of the selected seine rope layout pattern and the duration of the towing phase when fishermen try to maximize the catch performance of their fishery. To our knowledge this is the first time the combination of models for the physical behaviour of seine ropes and for fish behaviour in response to seine rope movements have been applied to predict catch performance for demersal seining. PMID:28771583

  8. Laboratory simulation studies of steady-state and potential catalytic effects in the ROPE{trademark} process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guffey, F.D.; Holper, P.A.

    The Western Research Institute is currently developing a process for the recovery of distillable liquid products from alternate fossil fuel sources such as tar sand and oil shale. The processing concept is based on recycling a fraction of the produced oil back into the reactor with the raw resource. This concept is termed the recycle oil pyrolysis and extraction (ROPE{sup TM}) process. The conversion of the alternate resource to a liquid fuel is performed in two stages. The first recovery stage is performed at moderate temperatures (325--420{degrees}C [617--788{degrees}F]) in the presence of product oil recycle. The second stage is performedmore » at higher temperatures (450--540{degrees}C [842--1004{degrees}F]) in the absence of product oil. The experiments reported here were performed Asphalt Ridge tar sand in the all-glass laboratory simulation reactor to simulate (1) the recycling of SAE 50 weight oil in the recycle oil pyrolysis zone and (2) to evaluate the potential catalytic effects of the sand matrix.« less

  9. Laboratory simulation studies of steady-state and potential catalytic effects in the ROPE trademark process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guffey, F.D.; Holper, P.A.

    The Western Research Institute is currently developing a process for the recovery of distillable liquid products from alternate fossil fuel sources such as tar sand and oil shale. The processing concept is based on recycling a fraction of the produced oil back into the reactor with the raw resource. This concept is termed the recycle oil pyrolysis and extraction (ROPE{sup TM}) process. The conversion of the alternate resource to a liquid fuel is performed in two stages. The first recovery stage is performed at moderate temperatures (325--420{degrees}C (617--788{degrees}F)) in the presence of product oil recycle. The second stage is performedmore » at higher temperatures (450--540{degrees}C (842--1004{degrees}F)) in the absence of product oil. The experiments reported here were performed Asphalt Ridge tar sand in the all-glass laboratory simulation reactor to simulate (1) the recycling of SAE 50 weight oil in the recycle oil pyrolysis zone and (2) to evaluate the potential catalytic effects of the sand matrix.« less

  10. A Sun-to-Earth Analysis of Magnetic Helicity of the 2013 March 17–18 Interplanetary Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Pal, Sanchita; Gopalswamy, Nat; Nandy, Dibyendu; Akiyama, Sachiko; Yashiro, Seiji; Makela, Pertti; Xie, Hong

    2017-12-01

    We compare the magnetic helicity in the 2013 March 17–18 interplanetary coronal mass ejection (ICME) flux rope at 1 au and in its solar counterpart. The progenitor coronal mass ejection (CME) erupted on 2013 March 15 from NOAA active region 11692 and is associated with an M1.1 flare. We derive the source region reconnection flux using the post-eruption arcade (PEA) method that uses the photospheric magnetogram and the area under the PEA. The geometrical properties of the near-Sun flux rope is obtained by forward-modeling of white-light CME observations. Combining the geometrical properties and the reconnection flux, we extract the magnetic properties of the CME flux rope. We derive the magnetic helicity of the flux rope using its magnetic and geometric properties obtained near the Sun and at 1 au. We use a constant-α force-free cylindrical flux rope model fit to the in situ observations in order to derive the magnetic and geometric information of the 1 au ICME. We find a good correspondence in both amplitude and sign of the helicity between the ICME and the CME, assuming a semi-circular (half torus) ICME flux rope with a length of π au. We find that about 83% of the total flux rope helicity at 1 au is injected by the magnetic reconnection in the low corona. We discuss the effect of assuming flux rope length in the derived value of the magnetic helicity. This study connecting the helicity of magnetic flux ropes through the Sun–Earth system has important implications for the origin of helicity in the interplanetary medium and the topology of ICME flux ropes at 1 au and hence their space weather consequences.

  11. Studying the Formation and Evolution of Eruptive Solar Magnetic Flux Ropes

    NASA Astrophysics Data System (ADS)

    Linton, M.

    2017-12-01

    Solar magnetic eruptions are dramatic sources of solar activity, and dangerous sources of space weather hazards. Many of these eruptions take the form of magnetic flux ropes, i.e., magnetic fieldlines wrapping around a core magnetic flux tube. Investigating the processes which form these flux ropes both prior to and during eruption, and investigating their evolution after eruption, can give us a critical window into understanding the sources of and processes involved in these eruptions. This presentation will discuss modeling and observational investigations into these various phases of flux rope formation, eruption, and evolution, and will discuss how these different explorations can be used to develop a more complete picture of erupting flux rope dynamics. This work is funded by the NASA Living with a Star program.

  12. Pull-pull position control of dual motor wire rope transmission.

    PubMed

    Guo, Quan; Jiao, Zongxia; Yan, Liang; Yu, Qian; Shang, Yaoxing

    2016-08-01

    Wire rope transmission is very efficient because of the small total moving object mass. The wire rope could only transmit pulling force. Therefore it has to be kept in a tightened state during transmission; in high speed applications the dynamic performance depends on the rope's stiffness, which can be adjusted by the wire rope tension. To improve the system dynamic performance output, this paper proposes a novel pull-pull method based on dual motors connected by wire ropes, for precise, high speed position control applications. The method can regulate target position and wire rope tension simultaneously. Wire ropes remain in a pre-tightening state at all times, which prevents the influence of elasticity and reduces the position tracking error in the changing direction process. Simulations and experiments were conducted; the results indicate that both position precision and superior dynamic performance can be synchronously achieved. The research is relevant to space craft precision pointing instruments.

  13. Dynamic topology and flux rope evolution during non-linear tearing of 3D null point current sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wyper, P. F., E-mail: peterw@maths.dundee.ac.uk; Pontin, D. I., E-mail: dpontin@maths.dundee.ac.uk

    2014-10-15

    In this work, the dynamic magnetic field within a tearing-unstable three-dimensional current sheet about a magnetic null point is described in detail. We focus on the evolution of the magnetic null points and flux ropes that are formed during the tearing process. Generally, we find that both magnetic structures are created prolifically within the layer and are non-trivially related. We examine how nulls are created and annihilated during bifurcation processes, and describe how they evolve within the current layer. The type of null bifurcation first observed is associated with the formation of pairs of flux ropes within the current layer.more » We also find that new nulls form within these flux ropes, both following internal reconnection and as adjacent flux ropes interact. The flux ropes exhibit a complex evolution, driven by a combination of ideal kinking and their interaction with the outflow jets from the main layer. The finite size of the unstable layer also allows us to consider the wider effects of flux rope generation. We find that the unstable current layer acts as a source of torsional magnetohydrodynamic waves and dynamic braiding of magnetic fields. The implications of these results to several areas of heliophysics are discussed.« less

  14. PROMINENCE FORMATION ASSOCIATED WITH AN EMERGING HELICAL FLUX ROPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okamoto, Takenori J.; Tsuneta, Saku; Katsukawa, Yukio

    2009-05-20

    The formation and evolution process and magnetic configuration of solar prominences remain unclear. In order to study the formation process of prominences, we examine continuous observations of a prominence in NOAA AR 10953 with the Solar Optical Telescope on the Hinode satellite. As reported in our previous Letter, we find a signature suggesting that a helical flux rope emerges from below the photosphere under a pre-existing prominence. Here we investigate more detailed properties and photospheric indications of the emerging helical flux rope, and discuss their relationship to the formation of the prominence. Our main conclusions are: (1) a dark regionmore » with absence of strong vertical magnetic fields broadens and then narrows in Ca II H-line filtergrams. This phenomenon is consistent with the emergence of the helical flux rope as photospheric counterparts. The size of the flux rope is roughly 30,000 km long and 10,000 km wide. The width is larger than that of the prominence. (2) No shear motion or converging flows are detected, but we find diverging flows such as mesogranules along the polarity inversion line. The presence of mesogranules may be related to the emergence of the helical flux rope. (3) The emerging helical flux rope reconnects with magnetic fields of the pre-existing prominence to stabilize the prominence for the next several days. We thus conjecture that prominence coronal magnetic fields emerge in the form of helical flux ropes that contribute to the formation and maintenance of the prominence.« less

  15. Kinetic Simulations of Plasma Energization and Particle Acceleration in Interacting Magnetic Flux Ropes

    NASA Astrophysics Data System (ADS)

    Du, S.; Guo, F.; Zank, G. P.; Li, X.; Stanier, A.

    2017-12-01

    The interaction between magnetic flux ropes has been suggested as a process that leads to efficient plasma energization and particle acceleration (e.g., Drake et al. 2013; Zank et al. 2014). However, the underlying plasma dynamics and acceleration mechanisms are subject to examination of numerical simulations. As a first step of this effort, we carry out 2D fully kinetic simulations using the VPIC code to study the plasma energization and particle acceleration during coalescence of two magnetic flux ropes. Our analysis shows that the reconnection electric field and compression effect are important in plasma energization. The results may help understand the energization process associated with magnetic flux ropes frequently observed in the solar wind near the heliospheric current sheet.

  16. Thermal Evolution of a Failed Flux Rope Eruption Revealed by Temperature Maps

    NASA Astrophysics Data System (ADS)

    Song, H.; Zhang, J.; CHEN, Y.

    2013-12-01

    Flux rope is generally considered to be the fundamental magnetic configuration of a coronal mass ejection (CME). Recent observations suggest that hot channel or blob structures during the eruptions be the direct observational manifestation of flux ropes. In this study, we report our analysis of thermal evolution of a failed solar eruption with an apparent flux rope embedded. The thermal structure of the eruption is revealed through differential emission measure (DEM) analysis technique, which shows detailed temperature maps in both high spatial resolution and high temperature resolution based on SDO/AIA observations. Our results show that the flux rope exists in the corona before the eruption, and its temperature can quickly rise to over 10 MK within one minute of the eruption. The correlation study between the flux rope temperature and the soft x-ray flux suggests that the flux rope should be heated through the direct thermal energy release of magnetic reconnection. Further, we study the kinematic evolution process of the flux rope, in an effort to find the physical mechanism that prevents the magnetic rope eruption to become a full coronal mass ejection. This kind of study using temperature maps might reveal where and when magnetic reconnection takes place during solar eruptions.

  17. Numerical study of vortex rope during load rejection of a prototype pump-turbine

    NASA Astrophysics Data System (ADS)

    Liu, J. T.; Liu, S. H.; Sun, Y. K.; Wu, Y. L.; Wang, L. Q.

    2012-11-01

    A transient process of load rejection of a prototype pump-turbine was studied by three dimensional, unsteady simulations, as well as steady calculations.Dynamic mesh (DM) method and remeshing method were used to simulate the rotation of guide vanes and runner. The rotational speed of the runner was predicted by fluid couplingmethod. Both the transient calculation and steady calculation were performed based on turbulence model. Results show that steady calculation results have large error in the prediction of the external characteristics of the transient process. The runaway speed can reach 1.15 times the initial rotational speed during the transient process. The vortex rope occurs before the pump-turbine runs at zero moment point. Vortex rope has the same rotating direction with the runner. The vortex rope is separated into two parts as the flow rate decreases to 0. Pressure level decreases during the whole transient process.The transient simulation result were also compared and verified by experimental results. This computational method could be used in the fault diagnosis of transient operation, as well as the optimization of a transient process.

  18. Fitting Flux Ropes to a Global MHD Solution: A Comparison of Techniques. Appendix 1

    NASA Technical Reports Server (NTRS)

    Riley, Pete; Linker, J. A.; Lionello, R.; Mikic, Z.; Odstrcil, D.; Hidalgo, M. A.; Cid, C.; Hu, Q.; Lepping, R. P.; Lynch, B. J.

    2004-01-01

    Flux rope fitting (FRF) techniques are an invaluable tool for extracting information about the properties of a subclass of CMEs in the solar wind. However, it has proven difficult to assess their accuracy since the underlying global structure of the CME cannot be independently determined from the data. In contrast, large-scale MHD simulations of CME evolution can provide both a global view as well as localized time series at specific points in space. In this study we apply 5 different fitting techniques to 2 hypothetical time series derived from MHD simulation results. Independent teams performed the analysis of the events in "blind tests", for which no information, other than the time series, was provided. F rom the results, we infer the following: (1) Accuracy decreases markedly with increasingly glancing encounters; (2) Correct identification of the boundaries of the flux rope can be a significant limiter; and (3) Results from techniques that infer global morphology must be viewed with caution. In spite of these limitations, FRF techniques remain a useful tool for describing in situ observations of flux rope CMEs.

  19. Magnetic flux ropes at the high-latitude magnetopause

    NASA Technical Reports Server (NTRS)

    Berchem, Jean; Raeder, Joachim; Ashour-Abdalla, Maha

    1995-01-01

    We examine the consequences of magnetic reconnection at the high-latitude magnetopause using a three-dimensional global magnetohydrodynamic simulation of the solar wind interaction with the Earth's magnetosphere. Magnetic field lines from the simulation reveal the formation of magnetic flux ropes during periods with northward interplanetary magnetic field. These flux ropes result from multiple reconnection processes between the lobes field lines and draped magnetosheath field lines that are convected around the flank of the magnetosphere. The flux ropes identified in the simulation are consistent with features observed in the magnetic field measured by Hawkeye-1 during some high-latitude magnetopause crossings.

  20. Nautical Education for Offshore Extractive Industries. Support Operations & Seamanship.

    ERIC Educational Resources Information Center

    Hoffmann, G. L.

    This training manual is intended for persons who will be employed on supply vessels or towboats which support ocean-based oil extraction operations. The text deals with the basic skills of marine towing procedures, boat handling, deck maintenance, cargo operations, and rope and wire handling. Additional sections treat the proper attitude of a…

  1. Study on nondestructive detection system based on x-ray for wire ropes conveyer belt

    NASA Astrophysics Data System (ADS)

    Miao, Changyun; Shi, Boya; Wan, Peng; Li, Jie

    2008-03-01

    A nondestructive detection system based on X-ray for wire ropes conveyer belt is designed by X-ray detection technology. In this paper X-ray detection principle is analyzed, a design scheme of the system is presented; image processing of conveyer belt is researched and image processing algorithms are given; X-ray acquisition receiving board is designed with the use of FPGA and DSP; the software of the system is programmed by C#.NET on WINXP/WIN2000 platform. The experiment indicates the system can implement remote real-time detection of wire ropes conveyer belt images, find faults and give an alarm in time. The system is direct perceived, strong real-time and high accurate. It can be used for fault detection of wire ropes conveyer belts in mines, ports, terminals and other fields.

  2. Analytical solution of the problem of acceleration of cargo by a bridge crane with constant acceleration at elimination of swings of a cargo rope

    NASA Astrophysics Data System (ADS)

    Korytov, M. S.; Shcherbakov, V. S.; Titenko, V. V.

    2018-01-01

    Limitation of the swing of the bridge crane cargo rope is a matter of urgency, as it can significantly improve the efficiency and safety of the work performed. In order to completely dampen the pendulum swing after the break-up of a bridge or a bridge-crane freight cart to maximum speed, it is necessary, in the normal repulsion control of the electric motor, to split the process of dispersion into a minimum of three gaps. For a dynamic system of swinging of a bridge crane on a flexible cable hanger in a separate vertical plane, an analytical solution was obtained to determine the temporal dependence of the cargo rope angle relative to the gravitational vertical when the cargo suspension point moves with constant acceleration. The resulting analytical dependence of the cargo rope angle and its first derivative can break the process of dispersing the cargo suspension point into three stages of dispersal and braking with various accelerations and enter maximum speed of movement of the cargo suspension point. In doing so, the condition of eliminating the swings of the cargo rope relative to the gravitational vertical is fulfilled. Provides examples of the maximum speed output constraints-to-time when removing the rope swing.

  3. NEW VACUUM SOLAR TELESCOPE OBSERVATIONS OF A FLUX ROPE TRACKED BY A FILAMENT ACTIVATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Shuhong; Zhang, Jun; Liu, Zhong

    2014-04-01

    One main goal of the New Vacuum Solar Telescope (NVST) which is located at the Fuxian Solar Observatory is to image the Sun at high resolution. Based on the high spatial and temporal resolution NVST Hα data and combined with the simultaneous observations from the Solar Dynamics Observatory for the first time, we investigate a flux rope tracked by filament activation. The filament material is initially located at one end of the flux rope and fills in a section of the rope; the filament is then activated by magnetic field cancellation. The activated filament rises and flows along helical threads,more » tracking the twisted flux rope structure. The length of the flux rope is about 75 Mm, the average width of its individual threads is 1.11 Mm, and the estimated twist is 1π. The flux rope appears as a dark structure in Hα images, a partial dark and partial bright structure in 304 Å, and as a bright structure in 171 Å and 131 Å images. During this process, the overlying coronal loops are quite steady since the filament is confined within the flux rope and does not erupt successfully. It seems that, for the event in this study, the filament is located and confined within the flux rope threads, instead of being suspended in the dips of twisted magnetic flux.« less

  4. Dynamical Evolution of a Coronal Streamer-Flux Rope System: 2. A Self-Consistent Non-Planar Magnetohydrodynamic Simulation

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Guo, W. P.; Dryer, Murray

    1996-01-01

    The dynamical response of a helmet streamer to a flux rope escape from the sub-photosphere is examined in a physically self-consistent manner within the approximation of axisymmetric three-dimensional magnetohydrodynamics (i.e., so-called '2 1/2 D'). In contrast to the previous planar analyses of Paper 1 (Wu, Guo, and Wang), the present study shows, with the inclusion of out-of-plane components of magnetic and velocity fields, that the magnetic configuration represents a helical flux rope instead of a planar bubble as shown in Paper 1. Because of this more physically-realistic configuration, we are able to examine the dynamical evolution of the helical flux rope's interaction with the helmet streamer. This process leads to the formation of two parts of the solar mass ejection: (i) the expulsion of the helmet dome due to eruption of this flux rope, and (ii) the flux rope's eruption itself. When this two-part feature propagates out to the interplanetary space, it exhibits all the physical characteristics of observed interplanetary magnetic clouds. These numerical simulations also show that the dynamical behavior of the streamer-flux rope system has three distinct states: (i) quasi-equilibrium, (ii) non-equilibrium, and (iii) eruptive state depending on the energy level of the flux rope.

  5. Quantitative Inspection of Remanence of Broken Wire Rope Based on Compressed Sensing.

    PubMed

    Zhang, Juwei; Tan, Xiaojiang

    2016-08-25

    Most traditional strong magnetic inspection equipment has disadvantages such as big excitation devices, high weight, low detection precision, and inconvenient operation. This paper presents the design of a giant magneto-resistance (GMR) sensor array collection system. The remanence signal is collected to acquire two-dimensional magnetic flux leakage (MFL) data on the surface of wire ropes. Through the use of compressed sensing wavelet filtering (CSWF), the image expression of wire ropes MFL on the surface was obtained. Then this was taken as the input of the designed back propagation (BP) neural network to extract three kinds of MFL image geometry features and seven invariant moments of defect images. Good results were obtained. The experimental results show that nondestructive inspection through the use of remanence has higher accuracy and reliability compared with traditional inspection devices, along with smaller volume, lighter weight and higher precision.

  6. Quantitative Inspection of Remanence of Broken Wire Rope Based on Compressed Sensing

    PubMed Central

    Zhang, Juwei; Tan, Xiaojiang

    2016-01-01

    Most traditional strong magnetic inspection equipment has disadvantages such as big excitation devices, high weight, low detection precision, and inconvenient operation. This paper presents the design of a giant magneto-resistance (GMR) sensor array collection system. The remanence signal is collected to acquire two-dimensional magnetic flux leakage (MFL) data on the surface of wire ropes. Through the use of compressed sensing wavelet filtering (CSWF), the image expression of wire ropes MFL on the surface was obtained. Then this was taken as the input of the designed back propagation (BP) neural network to extract three kinds of MFL image geometry features and seven invariant moments of defect images. Good results were obtained. The experimental results show that nondestructive inspection through the use of remanence has higher accuracy and reliability compared with traditional inspection devices, along with smaller volume, lighter weight and higher precision. PMID:27571077

  7. Topology of magnetic flux ropes and formation of fossil flux transfer events and boundary layer plasmas

    NASA Technical Reports Server (NTRS)

    Lee, L. C.; Ma, Z. W.; Fu, Z. F.; Otto, A.

    1993-01-01

    A mechanism for the formation of fossil flux transfer events and the low-level boundary layer within the framework of multiple X-line reconnection is proposed. Attention is given to conditions for which the bulk of magnetic flux in a flux rope of finite extent has a simple magnetic topology, where the four possible connections of magnetic field lines are: IMF to MSP, MSP to IMF, IMF to IMF, and MSP to MSP. For a sufficient relative shift of the X lines, magnetic flux may enter a flux rope from the magnetosphere and exit into the magnetosphere. This process leads to the formation of magnetic flux ropes which contain a considerable amount of magnetosheath plasma on closed magnetospheric field lines. This process is discussed as a possible explanation for the formation of fossil flux transfer events in the magnetosphere and the formation of the low-latitude boundary layer.

  8. Continuous micron-scaled rope engineering using a rotating multi-nozzle electrospinning emitter

    NASA Astrophysics Data System (ADS)

    Zhang, Chunchen; Gao, Chengcheng; Chang, Ming-Wei; Ahmad, Zeeshan; Li, Jing-Song

    2016-10-01

    Electrospinning (ES) enables simple production of fibers for broad applications (e.g., biomedical engineering, energy storage, and electronics). However, resulting structures are predominantly random; displaying significant disordered fiber entanglement, which inevitably gives rise to structural variations and reproducibility on the micron scale. Surface and structural features on this scale are critical for biomaterials, tissue engineering, and pharmaceutical sciences. In this letter, a modified ES technique using a rotating multi-nozzle emitter is developed and utilized to fabricate continuous micron-scaled polycaprolactone (PCL) ropes, providing control on fiber intercalation (twist) and structural order. Micron-scaled ropes comprising 312 twists per millimeter are generated, and rope diameter and pitch length are regulated using polymer concentration and process parameters. Electric field simulations confirm vector and distribution mechanisms, which influence fiber orientation and deposition during the process. The modified fabrication system provides much needed control on reproducibility and fiber entanglement which is crucial for electrospun biomedical materials.

  9. THE ROLE OF A FLUX ROPE EJECTION IN A THREE-DIMENSIONAL MAGNETOHYDRODYNAMIC SIMULATION OF A SOLAR FLARE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishida, Keisuke; Shibata, Kazunari; Nishizuka, Naoto, E-mail: nishida@kwasan.kyoto-u.ac.jp

    2013-10-01

    We investigated the dynamic evolution of a three-dimensional (3D) flux rope eruption and magnetic reconnection process in a solar flare by simply extending the two-dimensional (2D) resistive magnetohydrodynamic simulation model of solar flares with low β plasma to a 3D model. We succeeded in reproducing a current sheet and bi-directional reconnection outflows just below the flux rope during the eruption in our 3D simulations. We calculated four cases of a strongly twisted flux rope and a weakly twisted flux rope in 2D and 3D simulations. The time evolution of a weakly twisted flux rope in the 3D simulation shows behaviorsmore » similar to those of the 2D simulation, while a strongly twisted flux rope in the 3D simulation clearly shows a different time evolution from the 2D simulation except for the initial phase evolution. The ejection speeds of both strongly and weakly twisted flux ropes in 3D simulations are larger than in the 2D simulations, and the reconnection rates in 3D cases are also larger than in the 2D cases. This indicates positive feedback between the ejection speed of a flux rope and the reconnection rate even in the 3D simulation, and we conclude that the plasmoid-induced reconnection model can be applied to 3D. We also found that small-scale plasmoids are formed inside a current sheet and make it turbulent. These small-scale plasmoid ejections have a role in locally increasing the reconnection rate intermittently as observed in solar flares, coupled with a global eruption of a flux rope.« less

  10. MHD Forces in Quasi-Static Evolution, Catastrophe, and ``Failed'' Eruption of Solar Flux Ropes

    NASA Astrophysics Data System (ADS)

    Chen, James

    2017-08-01

    This paper presents the first unified theoretical model of flux rope dynamics---a single set of flux-rope equations in ideal MHD---to describe as one dynamical process the quasi-static evolution, catastrophic transition to eruption, cessation (``failure'') of eruption, and the post-eruption quasi-equilibria. The model is defined by the major radial {\\it and} minor radial equations of motion including pressure. The initial equilibrium is a flux rope in a background plasma with pressure $p_c(Z)$ and an overlying magnetic field $B_c(Z)$. The flux rope is initially force-free, but theevolution is not required to be force- free. A single quasi-static control parameter, the rate of increase in poloidal flux, is used for the entire process. As this parameter is slowly increased, the flux rope rises, following a sequence of quasi-static equilibria. As the apex of the flux rope rises past a critical height $Z_{crt}$, it expands on a dynamical (Alfvénic) timescale. The eruption rapidly ceases, as the stored magnetic energy of eruption is exhausted, and a new equilibrium is established at height $Z_1 > Z_{crt}$. The calculated velocity profile resembles the observed velocity profiles in ``failed'' eruptions including a damped oscillation. In the post-eruption equilibria, the outward hoop force is balanced by the tension of the toroidal self magnetic field and pressure gradient force. Thus, the flux rope does not evolve in a force-free manner. The flux rope may also expand without reaching a new equilibrium, provided a sufficient amount of poloidal flux is injected on the timescale of eruption. This scenario results in a full CME eruption. It is shown that the minor radial expansion critically couples the evolution of the toroidal self-field and pressure gradient force. No parameter regime is found in which the commonly used simplifications---near-equilibrium minor radial expansion, force-free expansion, and constant aspect ratio $R/a$ (e.g., the torus instability equation)---are valid.Work supported by the Naval Research Laboratory Base Research Program

  11. MMS observations of magnetic reconnection signatures of dissipating ion inertial-scale flux ropes associated with dipolarization events

    NASA Astrophysics Data System (ADS)

    Poh, G.; Slavin, J. A.; Lu, S.; Le, G.; Cassak, P.; Eastwood, J. P.; Ozturk, D. S.; Zou, S.; Nakamura, R.; Baumjohann, W.; Russell, C. T.; Gershman, D. J.; Giles, B. L.; Pollock, C.; Moore, T. E.; Torbert, R. B.; Burch, J. L.

    2017-12-01

    The formation of flux ropes is thought to be an integral part of the process that may have important consequences for the onset and subsequent rate of reconnection in the tail. Earthward flows, i.e. bursty bulk flows (BBFs), generate dipolarization fronts (DFs) as they interact with the closed magnetic flux in their path. Global hybrid simulations and THEMIS observations have shown that earthward-moving flux ropes can undergo magnetic reconnection with the near-Earth dipole field in the downtail region between the Near Earth Neutral Line and the near-Earth dipole field to create DFs-like signatures. In this study, we analyzed sequential "chains" of earthward-moving, ion-scale flux ropes embedded within DFs observed during MMS first tail season. MMS high-resolution plasma measurements indicate that these earthward flux ropes embedded in DFs have a mean bulk flow velocity and diameter of 250 km/s and 1000 km ( 2‒3 ion inertial length λi), respectively. Magnetic reconnection signatures preceding the flux rope/DF encounter were also observed. As the southward-pointing magnetic field in the leading edge of the flux rope reconnects with the northward-pointing geomagnetic field, the characteristic quadrupolar Hall magnetic field in the ion diffusion region and electron outflow jets in the north-south direction are observed. Our results strongly suggest that the earthward moving flux ropes brake and gradually dissipate due to magnetic reconnection with the near Earth magnetic field. We have also examined the occurrence rate of these dissipating flux ropes/DF events as a function of downtail distances.

  12. MICROWAVE IMAGING OF A HOT FLUX ROPE STRUCTURE DURING THE PRE-IMPULSIVE STAGE OF AN ERUPTIVE M7.7 SOLAR FLARE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Zhao; Chen, Yao; Song, Hongqiang

    Corona structures and processes during the pre-impulsive stage of solar eruption are crucial to understanding the physics leading to the subsequent explosive energy release. Here we present the first microwave imaging study of a hot flux rope structure during the pre-impulsive stage of an eruptive M7.7 solar flare, with the Nobeyama Radioheliograph at 17 GHz. The flux rope is also observed by the SDO/AIA in its hot passbands of 94 and 131 Å. In the microwave data, it is revealed as an overall arcade-like structure consisting of several intensity enhancements bridged by generally weak emissions, with brightness temperatures (T{sub B})more » varying from ∼10,000 K to ∼20,000 K. Locations of microwave intensity enhancements along the structure remain relatively fixed at certain specific parts of the flux rope, indicating that the distribution of emitting electrons is affected by the large-scale magnetic configuration of the twisted flux rope. Wavelet analysis shows a pronounced 2 minute period of the microwave T{sub B} variation during the pre-impulsive stage of interest. The period agrees well with that reported for AIA sunward-contracting loops and upward ejective plasmoids (suggested to be reconnection outflows). This suggests that both periodicities are controlled by the same reconnection process that takes place intermittently at a 2 minute timescale. We infer that at least a part of the emission is excited by non-thermal energetic electrons via the gyro-synchrotron mechanism. The study demonstrates the potential of microwave imaging in exploring the flux rope magnetic geometry and relevant reconnection process during the onset of solar eruption.« less

  13. Researching on Control Device of Prestressing Wire Reinforcement

    NASA Astrophysics Data System (ADS)

    Si, Jianhui; Guo, Yangbo; Liu, Maoshe

    2017-06-01

    This paper mainly introduces a device for controlling prestress and its related research methods, the advantage of this method is that the reinforcement process is easy to operate and control the prestress of wire rope accurately. The relationship between the stress and strain of the steel wire rope is monitored during the experiment, and the one - to - one relationship between the controllable position and the pretightening force of the steel wire rope is confirmed by the 5mm steel wire rope, and the results are analyzed theoretically by the measured elastic modulus. The results show that the method can effectively control the prestressing force, and the result provides a reference method for strengthening the concrete column with prestressed steel strand.

  14. Three-dimensional prominence-hosting magnetic configurations: Creating a helical magnetic flux rope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, C.; Keppens, R.; Guo, Y.

    2014-01-10

    The magnetic configuration hosting prominences and their surrounding coronal structure is a key research topic in solar physics. Recent theoretical and observational studies strongly suggest that a helical magnetic flux rope is an essential ingredient to fulfill most of the theoretical and observational requirements for hosting prominences. To understand flux rope formation details and obtain magnetic configurations suitable for future prominence formation studies, we here report on three-dimensional isothermal magnetohydrodynamic simulations including finite gas pressure and gravity. Starting from a magnetohydrostatic corona with a linear force-free bipolar magnetic field, we follow its evolution when introducing vortex flows around the mainmore » polarities and converging flows toward the polarity inversion line near the bottom of the corona. The converging flows bring the feet of different loops together at the polarity inversion line, where magnetic reconnection and flux cancellation happen. Inflow and outflow signatures of the magnetic reconnection process are identified, and thereby the newly formed helical loops wind around preexisting ones so that a complete flux rope grows and ascends. When a macroscopic flux rope is formed, we switch off the driving flows and find that the system relaxes to a stable state containing a helical magnetic flux rope embedded in an overlying arcade structure. A major part of the formed flux rope is threaded by dipped field lines that can stably support prominence matter, while the total mass of the flux rope is in the order of 4-5× 10{sup 14} g.« less

  15. 30 CFR 75.1719-1 - Illumination in working places.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... machine by cables, ropes, or chains. (c) The lighting prescribed in this section shall be in addition to... between the gob-side of the travelway and the side of the block of coal from which coal is being extracted...

  16. 30 CFR 75.1719-1 - Illumination in working places.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... machine by cables, ropes, or chains. (c) The lighting prescribed in this section shall be in addition to... between the gob-side of the travelway and the side of the block of coal from which coal is being extracted...

  17. 30 CFR 75.1719-1 - Illumination in working places.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... machine by cables, ropes, or chains. (c) The lighting prescribed in this section shall be in addition to... between the gob-side of the travelway and the side of the block of coal from which coal is being extracted...

  18. Relaxation of flux ropes and magnetic reconnection in the Reconnection Scaling Experiment at LANL

    NASA Astrophysics Data System (ADS)

    Furno, I.; Intrator, T.; Hemsing, E.; Hsu, S.; Lapenta, G.; Abbate, S.

    2004-12-01

    Magnetic reconnection and plasma relaxation are studied in the Reconnection Scaling Experiment (RSX) with current carrying plasma columns (magnetic flux ropes). Using plasma guns, multiple flux ropes (Bθ ≤ 100 Gauss, L=90 cm, r≤3 cm) are generated in a three-dimensional (3D) cylindrical geometry and are observed to evolve dynamically during the injection of magnetic helicity. Detailed evolution of electron density, temperature, plasma potential and magnetic field structures is reconstructed experimentally and visible light emission is captured with a fast-gated, intensified CCD camera to provide insight into the global flux rope dynamics. Experiments with two flux ropes in collisional plasmas and in a strong axial guide field (Bz / Bθ > 10) suggest that magnetic reconnection plays an important role in the initial stages of flux rope evolution. During the early stages of the applied current drive (t≤ 20 τ Alfv´ {e}n), the flux ropes are observed to twist, partially coalesce and form a thin current sheet with a scale size comparable to that of the ion sound gyro-radius. Here, non-ideal terms in a generalized Ohm's Law appear to play a significant role in the 3D reconnection process as shown by the presence of a strong axial pressure gradient in the current sheet. In addition, a density perturbation with a structure characteristic of a kinetic Alfvén wave is observed to propagate axially in the current layer, anti-parallel to the induced sheet current. Later in the evolution, when a sufficient amount of helicity is injected into the system, a critical threshold for the kink instability is exceeded and the helical twisting of each individual flux rope can dominate the dynamics of the system. This may prevent the complete coalescence of the flux ropes.

  19. Relaxation of flux ropes and magnetic reconnection in the Reconnection Scaling Experiment at LANL

    NASA Astrophysics Data System (ADS)

    Furno, Ivo

    2004-11-01

    Magnetic reconnection and plasma relaxation are studied in the Reconnection Scaling Experiment (RSX) with current carrying plasma columns (magnetic flux ropes). Using plasma guns, multiple flux ropes (B_pol < 100 Gauss, L=90 cm, r < 3 cm) are generated in a three-dimensional (3D) cylindrical geometry and are observed to evolve dynamically during the injection of magnetic helicity. Detailed evolution of electron density, temperature, plasma potential and magnetic field structures is reconstructed experimentally and visible light emission is captured with a fast-gated, intensified CCD camera to provide insight into the global flux rope dynamics. Experiments with two flux ropes in collisional plasmas and in a strong axial guide field (Bz / B_pol > 10) suggest that magnetic reconnection plays an important role in the initial stages of flux rope evolution. During the early stages of the applied current drive (t < 20τ_Alfven), the flux ropes are observed to twist, partially coalesce and form a thin current sheet with a scale size comparable to that of the ion sound gyro-radius. Here, non-ideal terms in a generalized Ohm's Law appear to play a significant role in the 3D reconnection process as shown by the presence of a strong axial pressure gradient in the current sheet. In addition, a density perturbation with a structure characteristic of a kinetic Alfvén wave is observed to propagate axially in the current layer, anti-parallel to the induced sheet current. Later in the evolution, when a sufficient amount of helicity is injected into the system, a critical threshold for the kink instability is exceeded and the helical twisting of each individual flux rope can dominate the dynamics of the system. This may prevent the complete coalescence of the flux ropes.

  20. Experiential Therapy with Troubled Youth: The Ropes Course for Adolescent Inpatients.

    ERIC Educational Resources Information Center

    Blanchard, Charles W.

    This paper provides information about conducting adventure-based counseling using a ropes course with adolescent psychiatric inpatients. Active learning in the process of therapy is widely accepted, but it is not clear how the complex nature of that relationship works and how programs should be structured to facilitate change. Theoretical…

  1. Three-Dimensional Simulations of Tearing and Intermittency in Coronal Jets

    NASA Technical Reports Server (NTRS)

    Wyper, P. F.; DeVore, C. R.; Karpen, J. T.; Lynch, B. J.

    2016-01-01

    Observations of coronal jets increasingly suggest that local fragmentation and intermittency play an important role in the dynamics of these events. In this work we investigate this fragmentation in high-resolution simulations of jets in the closed-field corona. We study two realizations of the embedded-bipole model, whereby impulsive helical out flows are driven by reconnection between twisted and untwisted field across the domed fan plane of a magnetic null. We find that the reconnection region fragments following the onset of a tearing-like instability, producing multiple magnetic null points and flux-rope structures within the current layer. The flux ropes formed within the weak- field region in the center of the current layer are associated with \\blobs" of density enhancement that become filamentary threads as the flux ropes are ejected from the layer, whereupon new flux ropes form behind them. This repeated formation and ejection of flux ropes provides a natural explanation for the intermittent out flows, bright blobs of emission, and filamentary structure observed in some jets. Additional observational signatures of this process are discussed. Essentially all jet models invoke reconnection between regions of locally closed and locally open field as the jet-generation mechanism. Therefore, we suggest that this repeated tearing process should occur at the separatrix surface between the two flux systems in all jets. A schematic picture of tearing-mediated jet reconnection in three dimensions is outlined.

  2. THREE-DIMENSIONAL SIMULATIONS OF TEARING AND INTERMITTENCY IN CORONAL JETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wyper, P. F.; DeVore, C. R.; Karpen, J. T.

    Observations of coronal jets increasingly suggest that local fragmentation and intermittency play an important role in the dynamics of these events. In this work, we investigate this fragmentation in high-resolution simulations of jets in the closed-field corona. We study two realizations of the embedded-bipole model, whereby impulsive helical outflows are driven by reconnection between twisted and untwisted field across the domed fan plane of a magnetic null. We find that the reconnection region fragments following the onset of a tearing-like instability, producing multiple magnetic null points and flux-rope structures within the current layer. The flux ropes formed within the weak-fieldmore » region in the center of the current layer are associated with “blobs” of density enhancement that become filamentary threads as the flux ropes are ejected from the layer, whereupon new flux ropes form behind them. This repeated formation and ejection of flux ropes provides a natural explanation for the intermittent outflows, bright blobs of emission, and filamentary structure observed in some jets. Additional observational signatures of this process are discussed. Essentially all jet models invoke reconnection between regions of locally closed and locally open field as the jet-generation mechanism. Therefore, we suggest that this repeated tearing process should occur at the separatrix surface between the two flux systems in all jets. A schematic picture of tearing-mediated jet reconnection in three dimensions is outlined.« less

  3. The Eruption of a Small-scale Emerging Flux Rope as the Driver of an M-class Flare and of a Coronal Mass Ejection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, X. L.; Xue, Z. K.; Wang, J. C.

    Solar flares and coronal mass ejections are the most powerful explosions in the Sun. They are major sources of potentially destructive space weather conditions. However, the possible causes of their initiation remain controversial. Using high-resolution data observed by the New Solar Telescope of Big Bear Solar Observatory, supplemented by Solar Dynamics Observatory observations, we present unusual observations of a small-scale emerging flux rope near a large sunspot, whose eruption produced an M-class flare and a coronal mass ejection. The presence of the small-scale flux rope was indicated by static nonlinear force-free field extrapolation as well as data-driven magnetohydrodynamics modeling ofmore » the dynamic evolution of the coronal three-dimensional magnetic field. During the emergence of the flux rope, rotation of satellite sunspots at the footpoints of the flux rope was observed. Meanwhile, the Lorentz force, magnetic energy, vertical current, and transverse fields were increasing during this phase. The free energy from the magnetic flux emergence and twisting magnetic fields is sufficient to power the M-class flare. These observations present, for the first time, the complete process, from the emergence of the small-scale flux rope, to the production of solar eruptions.« less

  4. Design of dual energy x-ray detector for conveyor belt with steel wire ropes

    NASA Astrophysics Data System (ADS)

    Dai, Yue; Miao, Changyun; Rong, Feng

    2009-07-01

    A dual energy X-ray detector for conveyor belt with steel wire ropes is researched in the paper. Conveyor belt with steel wire ropes is one of primary transfer equipments in modern production. The traditional test methods like electromagnetic induction principle could not display inner image of steel wire ropes directly. So X-ray detection technology has used to detect the conveyor belt. However the image was not so clear by the interference of the rubber belt. Therefore, the dualenergy X-ray detection technology with subtraction method is developed to numerically remove the rubber belt from radiograph, thus improving the definition of the ropes image. The purpose of this research is to design a dual energy Xray detector that could make the operator easier to found the faulty of the belt. This detection system is composed of Xray source, detector controlled by FPGA chip, PC for running image processing system and so on. With the result of the simulating, this design really improved the capability of the staff to test the conveyor belt.

  5. On the upper part load vortex rope in Francis turbine: Experimental investigation

    NASA Astrophysics Data System (ADS)

    Nicolet, C.; Zobeiri, A.; Maruzewski, P.; Avellan, F.

    2010-08-01

    The swirling flow developing in Francis turbine draft tube under part load operation leads to pressure fluctuations usually in the range of 0.2 to 0.4 times the runner rotational frequency resulting from the so-called vortex breakdown. For low cavitation number, the flow features a cavitation vortex rope animated with precession motion. Under given conditions, these pressure fluctuations may lead to undesirable pressure fluctuations in the entire hydraulic system and also produce active power oscillations. For the upper part load range, between 0.7 and 0.85 times the best efficiency discharge, pressure fluctuations may appear in a higher frequency range of 2 to 4 times the runner rotational speed and feature modulations with vortex rope precession. It has been pointed out that for this particular operating point, the vortex rope features elliptical cross section and is animated of a self-rotation. This paper presents an experimental investigation focusing on this peculiar phenomenon, defined as the upper part load vortex rope. The experimental investigation is carried out on a high specific speed Francis turbine scale model installed on a test rig of the EPFL Laboratory for Hydraulic Machines. The selected operating point corresponds to a discharge of 0.83 times the best efficiency discharge. Observations of the cavitation vortex carried out with high speed camera have been recorded and synchronized with pressure fluctuations measurements at the draft tube cone. First, the vortex rope self rotation frequency is evidenced and the related frequency is deduced. Then, the influence of the sigma cavitation number on vortex rope shape and pressure fluctuations is presented. The waterfall diagram of the pressure fluctuations evidences resonance effects with the hydraulic circuit. The time evolution of the vortex rope volume is compared with pressure fluctuations time evolution using image processing. Finally, the influence of the Froude number on the vortex rope shape and the associated pressure fluctuations is analyzed by varying the rotational speed.

  6. Quasi-Static Evolution, Catastrophe, and "Failed" Eruption of Solar Flux Ropes

    NASA Astrophysics Data System (ADS)

    Chen, James

    2017-04-01

    This paper presents the first unified theoretical model of solar flux rope dynamics—a single set of flux-rope equations in ideal MHD—to describe as one integrated process the quasi-static evolution, catastrophic transition to eruption, cessation ("failure") of eruption, and the post-eruption quasi-equilibria. The model is defined by the major radial and minor radial equations of motion including pressure. The initial equilibrium is a flux rope in a background plasma with pressure pc(Z) and an overlying magnetic field Bc(Z). The flux rope may be initially force-free, but the evolution is not required to be force-free. As the poloidal flux is slowly increased, the flux rope rises through a sequence of quasi-static equilibria. As the apex of the flux rope expands past a critical height Zcrt, it erupts on a dynamical (Alfvénic) timescale. Mathematically, the onset of eruption is shown to be explosive, not exponential. The acceleration is rapidly quenched due to the geometrical effects of the stationary footpoints, and a new equilibrium is established at height Z1 > Zcrt. The calculated velocity profile resembles the observed velocity profiles in "failed" eruptions including a damped oscillation. In the post-eruption equilibria, the outward hoop force is balanced by the tension of the toroidal self magnetic field and pressure gradient force. Thus, the flux rope does not evolve in a force-free manner. The flux rope may also expand without reaching a new equilibrium, provided a sufficient amount of poloidal flux is injected on the timescale of eruption. This scenario results in a full CME eruption. It is shown that the minor radial expansion critically couples the evolution of the toroidal self-field and pressure gradient force. No parameter regime is found in which the commonly used simplifications—near-equilibrium minor radial expansion, force-free expansion, and constant aspect ratio R/a (e.g., the torus instability equation)—are valid. Work supported by the Naval Research Laboratory Base Research Program

  7. Advanced signal processing methods applied to guided waves for wire rope defect detection

    NASA Astrophysics Data System (ADS)

    Tse, Peter W.; Rostami, Javad

    2016-02-01

    Steel wire ropes, which are usually composed of a polymer core and enclosed by twisted wires, are used to hoist heavy loads. These loads are different structures that can be clamshells, draglines, elevators, etc. Since the loading of these structures is dynamic, the ropes are working under fluctuating forces in a corrosive environment. This consequently leads to progressive loss of the metallic cross-section due to abrasion and corrosion. These defects can be seen in the forms of roughened and pitted surface of the ropes, reduction in diameter, and broken wires. Therefore, their deterioration must be monitored so that any unexpected damage or corrosion can be detected before it causes fatal accident. This is of vital importance in the case of passenger transportation, particularly in elevators in which any failure may cause a catastrophic disaster. At present, the widely used methods for thorough inspection of wire ropes include visual inspection and magnetic flux leakage (MFL). Reliability of the first method is questionable since it only depends on the operators' eyes that fails to determine the integrity of internal wires. The later method has the drawback of being a point by point and time-consuming inspection method. Ultrasonic guided wave (UGW) based inspection, which has proved its capability in inspecting plate like structures such as tubes and pipes, can monitor the cross-section of wire ropes in their entire length from a single point. However, UGW have drawn less attention for defect detection in wire ropes. This paper reports the condition monitoring of a steel wire rope from a hoisting elevator with broken wires as a result of corrosive environment and fatigue. Experiments were conducted to investigate the efficiency of using magnetostrictive based UGW for rope defect detection. The obtained signals were analyzed by two time-frequency representation (TFR) methods, namely the Short Time Fourier Transform (STFT) and the Wavelet analysis. The location of the defect and its severity were successfully identified and characterized.

  8. 29 CFR 1926.1413 - Wire rope-inspection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Apparent deficiencies in this category are: (A) Visible broken wires, as follows: (1) In running wire ropes: Six randomly distributed broken wires in one rope lay or three broken wires in one strand in one rope... around the rope. (2) In rotation resistant ropes: Two randomly distributed broken wires in six rope...

  9. 29 CFR 1926.1413 - Wire rope-inspection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Apparent deficiencies in this category are: (A) Visible broken wires, as follows: (1) In running wire ropes: Six randomly distributed broken wires in one rope lay or three broken wires in one strand in one rope... around the rope. (2) In rotation resistant ropes: Two randomly distributed broken wires in six rope...

  10. 29 CFR 1926.1413 - Wire rope-inspection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Apparent deficiencies in this category are: (A) Visible broken wires, as follows: (1) In running wire ropes: Six randomly distributed broken wires in one rope lay or three broken wires in one strand in one rope... around the rope. (2) In rotation resistant ropes: Two randomly distributed broken wires in six rope...

  11. 29 CFR 1915.118 - Tables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Improved Plow Steel, Independent Wire Rope Core, Wire Rope and Wire Rope Slings [In tons of 2,000 pounds... for Improved Plow Steel, Independent Wire Rope Core, Wire Rope Slings [in tons of 2,000 pounds] Two...-4—Rated Capacities for Improved Plow Steel, Fiber Core, Wire Rope and Wire Rope Slings [in tons of 2...

  12. 29 CFR 1915.118 - Tables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Improved Plow Steel, Independent Wire Rope Core, Wire Rope and Wire Rope Slings [In tons of 2,000 pounds... for Improved Plow Steel, Independent Wire Rope Core, Wire Rope Slings [in tons of 2,000 pounds] Two...-4—Rated Capacities for Improved Plow Steel, Fiber Core, Wire Rope and Wire Rope Slings [in tons of 2...

  13. In-Situ TEM-STM Observations of SWCNT Ropes/Tubular Transformations

    NASA Technical Reports Server (NTRS)

    Sola, F.; Lebron-Colon, M.; Ferreira, P. J.; Fonseca, L. F.; Meador, M. A.; Marin, C.

    2010-01-01

    Single-walled carbon nanotubes (SWCNTs) prepared by the HiPco process were purified using a modified gas phase purification technique. A TEM-STM holder was used to study the morphological changes of SWCNT ropes as a function of applied voltage. Kink formation, buckling behavior, tubular transformation and eventual breakdown of the system were observed. The tubular formation was attributed to a transformation from SWCNT ropes to multi-walled carbon nanotube (MWCNT) structures. It is likely mediated by the patching and tearing mechanism which is promoted primarily by the mobile vacancies generated due to current-induced heating and, to some extent, by electron irradiation.

  14. Temperature evolution of a magnetic flux rope in a failed solar eruption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, H. Q.; Chen, Y.; Li, B.

    2014-03-20

    In this paper, we report for the first time the detailed temperature evolution process of the magnetic flux rope in a failed solar eruption. Occurring on 2013 January 05, the flux rope was impulsively accelerated to a speed of ∼400 km s{sup –1} in the first minute, then decelerated and came to a complete stop in two minutes. The failed eruption resulted in a large-size high-lying (∼100 Mm above the surface), high-temperature 'fire ball' sitting in the corona for more than two hours. The time evolution of the thermal structure of the flux rope was revealed through the differential emissionmore » measure analysis technique, which produced temperature maps using observations of the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory. The average temperature of the flux rope steadily increased from ∼5 MK to ∼10 MK during the first nine minutes of the evolution, which was much longer than the rise time (about three minutes) of the associated soft X-ray flare. We suggest that the flux rope is heated by the energy release of the continuing magnetic reconnection, different from the heating of the low-lying flare loops, which is mainly produced by the chromospheric plasma evaporation. The loop arcade overlying the flux rope was pushed up by ∼10 Mm during the attempted eruption. The pattern of the velocity variation of the loop arcade strongly suggests that the failure of the eruption was caused by the strapping effect of the overlying loop arcade.« less

  15. Simulation of Magnetic Cloud Erosion and Deformation During Propagation

    NASA Astrophysics Data System (ADS)

    Manchester, W.; Kozyra, J. U.; Lepri, S. T.; Lavraud, B.; Jackson, B. V.

    2013-12-01

    We examine a three-dimensional (3-D) numerical magnetohydrodynamic (MHD) simulation describing a very fast interplanetary coronal mass ejection (ICME) propagating from the solar corona to 1 AU. In conjunction with it's high speed, the ICME evolves in ways that give it a unique appearance at 1AU that does not resemble a typical ICME. First, as the ICME decelerates in the solar wind, filament material at the back of the flux rope pushes its way forward through the flux rope. Second, diverging nonradial flows in front of the filament transport azimuthal flux of the rope to the sides of the ICME. Third, the magnetic flux rope reconnects with the interplanetary magnetic field (IMF). As a consequence of these processes, the flux rope partially unravels and appears to evolve to an entirely open configuration near its nose. At the same time, filament material at the base of the flux rope moves forward and comes in direct contact with the shocked plasma in the CME sheath. We find evidence such remarkable behavior has occurred when we examine a very fast CME that erupted from the Sun on 2005 January 20. In situ observations of this event near 1 AU show very dense cold material impacting the Earth following immediately behind the CME sheath. Charge state analysis shows this dense plasma is filament material, and the analysis of SMEI data provides the trajectory of this dense plasma from the Sun. Consistent with the simulation, we find the azimuthal flux (Bz) to be entirely unbalanced giving the appearance that the flux rope has completely eroded on the anti-sunward side.

  16. An Observationally Constrained Model of a Flux Rope that Formed in the Solar Corona

    NASA Astrophysics Data System (ADS)

    James, Alexander W.; Valori, Gherardo; Green, Lucie M.; Liu, Yang; Cheung, Mark C. M.; Guo, Yang; van Driel-Gesztelyi, Lidia

    2018-03-01

    Coronal mass ejections (CMEs) are large-scale eruptions of plasma from the coronae of stars. Understanding the plasma processes involved in CME initiation has applications for space weather forecasting and laboratory plasma experiments. James et al. used extreme-ultraviolet (EUV) observations to conclude that a magnetic flux rope formed in the solar corona above NOAA Active Region 11504 before it erupted on 2012 June 14 (SOL2012-06-14). In this work, we use data from the Solar Dynamics Observatory (SDO) to model the coronal magnetic field of the active region one hour prior to eruption using a nonlinear force-free field extrapolation, and find a flux rope reaching a maximum height of 150 Mm above the photosphere. Estimations of the average twist of the strongly asymmetric extrapolated flux rope are between 1.35 and 1.88 turns, depending on the choice of axis, although the erupting structure was not observed to kink. The decay index near the apex of the axis of the extrapolated flux rope is comparable to typical critical values required for the onset of the torus instability, so we suggest that the torus instability drove the eruption.

  17. 30 CFR 77.1430 - Wire ropes; scope.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Wire ropes; scope. 77.1430 Section 77.1430... Hoisting Wire Ropes § 77.1430 Wire ropes; scope. (a) Sections 77.1431 through 77.1438 apply to wire ropes.... (b) These standards do not apply to wire ropes used for elevators. ...

  18. 30 CFR 77.1430 - Wire ropes; scope.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Wire ropes; scope. 77.1430 Section 77.1430... Hoisting Wire Ropes § 77.1430 Wire ropes; scope. (a) Sections 77.1431 through 77.1438 apply to wire ropes.... (b) These standards do not apply to wire ropes used for elevators. ...

  19. 29 CFR 1917.42 - Miscellaneous auxiliary gear.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and Spacing of U-Bolt Wire Rope Clips Improved plow steel, rope diameter (inches/(cm)) Minimum number.... (b) Wire rope and wire rope slings. (1) The employer shall ascertain and adhere to the manufacturer's recommended ratings for wire rope and wire rope slings and shall have such ratings available for inspection...

  20. Stream Management

    DTIC Science & Technology

    2000-03-01

    from coconut husks bound within a woven mesh rope either made from polyethylene or coir rope. The CGR incorporates wetland plants (usually as rooted...Process 6-1 Nonrestoration Alternative Considerations 6-3 Stormwater ponds 6-4 Infiltration (exfiltration) devices 6-6 Oil and grease trap devices 6-8... Oil and Grease Trap Pollutant Removal 6-9 Table 6.4. Sand Filter Pollutant Removal 6-11 Table 6.5. Selection of Appropriate Structural Solutions

  1. Realizing one-dimensional quantum and high-frequency transport features in aligned single-walled carbon nanotube ropes

    NASA Astrophysics Data System (ADS)

    Ncube, Siphephile; Chimowa, George; Chiguvare, Zivayi; Bhattacharyya, Somnath

    2014-07-01

    The superiority of the electronic transport properties of single-walled carbon nanotube (SWNT) ropes over SWNT mats is verified from low temperature and frequency-dependent transport. The overall change of resistance versus in nanotube mats shows that 3D variable range hopping is the dominant conduction mechanism within the 2-300 K range. The magneto-resistance (MR) is found to be predominantly negative with a parabolic nature, which can also be described by the hopping model. Although the positive upturn of the MR at low temperatures establishes the contribution from quantum interference, the inherent quantum transport in individual tubes is suppressed at elevated temperatures. Therefore, to minimize multi-channel effects from inter-tube interactions and other defects, two-terminal devices were fabricated from aligned SWNT (extracted from a mat) for low temperature transport as well as high-frequency measurements. In contrast to the mat, the aligned ropes exhibit step-like features in the differential conductance within the 80-300 K temperature range. The effects of plasmon propagation, unique to one dimension, were identified in electronic transport as a non-universal power-law dependence of the differential conductance on temperature and source-drain voltage. The complex impedance showed high power transmission capabilities up to 65 GHz as well as oscillations in the frequency range up to 30 GHz. The measurements suggest that aligned SWNT ropes have a realistic potential for high-speed device applications.

  2. A retrospective report (2003-2013) of the complications associated with the use of a one-man (head and tail) rope recovery system in horses following general anaesthesia.

    PubMed

    Niimura Del Barrio, Maria Chie; David, Florent; Hughes, J M Lynne; Clifford, David; Wilderjans, Hans; Bennett, Rachel

    2018-01-01

    The mortality rate of horses undergoing general anaesthesia is high when compared to humans or small animal patients. One of the most critical periods during equine anaesthesia is recovery, as the horse attempts to regain a standing position. This study was performed in a private equine practice in Belgium that uses a purpose-designed one-man (head and tail) rope recovery system to assist the horse during the standing process.The main purpose of the retrospective study was to report and analyse complications and the mortality rate in horses during recovery from anaesthesia using the described recovery system. Information retrieved from the medical records included patient signalment, anaesthetic protocol, duration of anaesthesia, ASA grade, type of surgery, recovery time and complications during recovery. Sedation was administered to all horses prior to recovery with the rope system. Complications were divided into major complications in which the horse was euthanized and minor complications where the horse survived. Major complications were further subdivided into those where the rope system did not contribute to the recovery complication (Group 1) and those where it was not possible to determine if the rope system was of any benefit (Group 2). Five thousand eight hundred fifty two horses recovered from general anaesthesia with rope assistance. Complications were identified in 30 (0.51%). Major complications occurred in 12 horses (0.20%) of which three (0.05%) were assigned to Group 1 and nine (0.15%) to Group 2. Three horses in Group 2 suffered musculoskeletal injuries (0.05%). Eighteen horses (0.31%) suffered minor complications, of which five (0.08%) were categorised as failures of the recovery system. This study reports the major and minor complication and mortality rate during recovery from anaesthesia using a specific type of rope recovery system. Mortality associated with the rope recovery system was low. During recovery from anaesthesia this rope system may reduce the risk of lethal complications, particularly major orthopaedic injuries.

  3. Dynamic Processes of the Solar Wind: Small Scale Magnetic Flux Ropes and Energetic Particles

    NASA Astrophysics Data System (ADS)

    Thompson, S. W.; le Roux, J. A.; Hu, Q.

    2017-12-01

    Magnetic flux ropes are twisted magnetic field lines that have two defining components known as the axial and azimuthal components representing its magnetic field. Flux ropes come in two distinct sizes of large scale and small scale with the flux ropes of interest being the small scale type. Small scale flux ropes can last from a few minutes to hours with a size of .001 AU to .01 AU. To identify and study these small scale flux ropes, the ARTEMIS satellite which is composed of the probes THEMIS B and C was utilized along with the ACE satellite. Based off the IP shock database, three major events recorded by the ACE satellite were selected and used as a reference point to identify the same shocks within the ARTEMIS data. The three events were selected when the sun was in solar maximum and the location of the probes THEMIS B and C were outside of the bow shock and magnetotail of the Earth. The three events were on May 17,2013, May 31,2013, and June 30,2013 during solar cycle 24. The in-situ measurements gathered from the ARTEMIS mission using the SST, ESA, and FGM instrumentations looked at the particle energy flux, density, temperature, velocity, and magnetic field parameters. These parameters will be used to identify downstream flux-rope activity and to look for associated enhanced energetic particle fluxes as an indication for particle acceleration by these structures. As a way for comparison, in-situ measurements of the energy flux from the ACE satellite EPAM instrumentation using the LEMS120 telescope were taken to help identify high-energy ions in MeV for each of the three events. Preliminary results suggest that energetic particle fluxes peak behind the shocks in the vicinity of small-scale flux ropes, and that these results can potentially be explained by a theory combining diffusive shock acceleration with flux-rope acceleration. More investigation and data analysis will be done to see if this theory does in fact hold true for the data gathered.

  4. Influences on lifetime of wire ropes in traction lifts

    NASA Astrophysics Data System (ADS)

    Vogel, W.

    2016-05-01

    Traction lifts are complex systems with rotating and translating moving masses, springs and dampers and several system inputs from the lifts and the users. The wire ropes are essential mechanical elements. The mechanical properties of the ropes in use depend on the rope construction, the load situation, nonlinearities and the lift dimensions. The mechanical properties are important for the proper use in lifts and the ride quality. But first of all the wire ropes (for all other suspension means as well) have to satisfy the safety relevant requirements sufficient lifetime, reliable determination of discard and sufficient and limited traction capacity. The lifetime of the wire ropes better the number of trips until rope discard depends on a lot of parameters of the rope and the rope application eg use of plastic deflection sheaves and reverse bending layouts. New challenges for rope lifetime are resulting from the more or less open D/d-ratio limits possible by certificates concerning the examination of conformity by notified bodies. This paper will highlight the basics of wire rope technology, the endurance and lifetime of wire ropes running over sheaves, and the different influences from the ropes and more and more important from the lift application parameters. Very often underestimated are the influences of transport, storage, installation and maintenance. With this background we will lead over to the calculation methods of wire rope lifetime considering the actual findings of wire rope endurance research. We'll show in this paper new and innovative facts as the influence of rope length and size factor in the lifetime formular, the reduction of lifetime caused by traction grooves, the new model for the calculation in reverse bending operations and the statistically firmed possibilities for machine roomless lifts (MRL) under very small bending conditions.

  5. MAGNETAR GIANT FLARES-FLUX ROPE ERUPTIONS IN MULTIPOLAR MAGNETOSPHERIC MAGNETIC FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu Cong, E-mail: cyu@ynao.ac.cn

    2012-09-20

    We address a primary question regarding the physical mechanism that triggers the energy release and initiates the onset of eruptions in the magnetar magnetosphere. Self-consistent stationary, axisymmetric models of the magnetosphere are constructed based on force-free magnetic field configurations that contain a helically twisted force-free flux rope. Depending on the surface magnetic field polarity, there exist two kinds of magnetic field configurations, inverse and normal. For these two kinds of configurations, variations of the flux rope equilibrium height in response to gradual surface physical processes, such as flux injections and crust motions, are carefully examined. We find that equilibrium curvesmore » contain two branches: one represents a stable equilibrium branch, and the other an unstable equilibrium branch. As a result, the evolution of the system shows a catastrophic behavior: when the magnetar surface magnetic field evolves slowly, the height of the flux rope would gradually reach a critical value beyond which stable equilibriums can no longer be maintained. Subsequently, the flux rope would lose equilibrium and the gradual quasi-static evolution of the magnetosphere will be replaced by a fast dynamical evolution. In addition to flux injections, the relative motion of active regions would give rise to the catastrophic behavior and lead to magnetic eruptions as well. We propose that a gradual process could lead to a sudden release of magnetosphere energy on a very short dynamical timescale, without being initiated by a sudden fracture in the crust of the magnetar. Some implications of our model are also discussed.« less

  6. Comparison of CME radial velocities from a flux rope model and an ice cream cone model

    NASA Astrophysics Data System (ADS)

    Kim, T.; Moon, Y.; Na, H.

    2011-12-01

    Coronal Mass Ejections (CMEs) on the Sun are the largest energy release process in the solar system and act as the primary driver of geomagnetic storms and other space weather phenomena on the Earth. So it is very important to infer their directions, velocities and three-dimensional structures. In this study, we choose two different models to infer radial velocities of halo CMEs since 2008 : (1) an ice cream cone model by Xue et al (2005) using SOHO/LASCO data, (2) a flux rope model by Thernisien et al. (2009) using the STEREO/SECCHI data. In addition, we use another flux rope model in which the separation angle of flux rope is zero, which is morphologically similar to the ice cream cone model. The comparison shows that the CME radial velocities from among each model have very good correlations (R>0.9). We will extending this comparison to other partial CMEs observed by STEREO and SOHO.

  7. 29 CFR 1915.112 - Ropes, chains and slings.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... plow steel wire rope and wire rope slings with various types of terminals. For sizes, classifications... than five (5) is maintained. (b) Wire rope and wire rope slings. (1) Tables G-2 through G-5 in § 1915... blunted. (3) Where U-bolt wire rope clips are used to form eyes, Table G-6 in § 1915.118 shall be used to...

  8. 29 CFR 1915.112 - Ropes, chains and slings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... plow steel wire rope and wire rope slings with various types of terminals. For sizes, classifications... than five (5) is maintained. (b) Wire rope and wire rope slings. (1) Tables G-2 through G-5 in § 1915... blunted. (3) Where U-bolt wire rope clips are used to form eyes, Table G-6 in § 1915.118 shall be used to...

  9. Orion MPCV Service Module Avionics Ring Pallet Testing, Correlation, and Analysis

    NASA Technical Reports Server (NTRS)

    Staab, Lucas; Akers, James; Suarez, Vicente; Jones, Trevor

    2012-01-01

    The NASA Orion Multi-Purpose Crew Vehicle (MPCV) is being designed to replace the Space Shuttle as the main manned spacecraft for the agency. Based on the predicted environments in the Service Module avionics ring, an isolation system was deemed necessary to protect the avionics packages carried by the spacecraft. Impact, sinusoidal, and random vibration testing were conducted on a prototype Orion Service Module avionics pallet in March 2010 at the NASA Glenn Research Center Structural Dynamics Laboratory (SDL). The pallet design utilized wire rope isolators to reduce the vibration levels seen by the avionics packages. The current pallet design utilizes the same wire rope isolators (M6-120-10) that were tested in March 2010. In an effort to save cost and schedule, the Finite Element Models of the prototype pallet tested in March 2010 were correlated. Frequency Response Function (FRF) comparisons, mode shape and frequency were all part of the correlation process. The non-linear behavior and the modeling the wire rope isolators proved to be the most difficult part of the correlation process. The correlated models of the wire rope isolators were taken from the prototype design and integrated into the current design for future frequency response analysis and component environment specification.

  10. 29 CFR 1919.79 - Wire rope.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Wire rope. 1919.79 Section 1919.79 Labor Regulations...) GEAR CERTIFICATION Certification of Shore-Based Material Handling Devices § 1919.79 Wire rope. (a) Wire rope and replacement wire rope shall be of the same size, same or better grade, and same construction...

  11. 29 CFR 1919.79 - Wire rope.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Wire rope. 1919.79 Section 1919.79 Labor Regulations...) GEAR CERTIFICATION Certification of Shore-Based Material Handling Devices § 1919.79 Wire rope. (a) Wire rope and replacement wire rope shall be of the same size, same or better grade, and same construction...

  12. 29 CFR 1910.184 - Slings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... alloy steel chain, wire rope, metal mesh, natural or synthetic fiber rope (conventional three strand... steel chain sling or wire rope sling. (See Fig. N-184-3.) Mechanical coupling link is a nonwelded... Slings 6×19 and 6×37 Classification Improved Plow Steel Grade Rope With Independent Wire Rope Core (IWRC...

  13. 29 CFR 1910.184 - Slings.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... alloy steel chain, wire rope, metal mesh, natural or synthetic fiber rope (conventional three strand... steel chain sling or wire rope sling. (See Fig. N-184-3.) Mechanical coupling link is a nonwelded... Slings 6×19 and 6×37 Classification Improved Plow Steel Grade Rope With Independent Wire Rope Core (IWRC...

  14. University Engineering Design Challenge

    DTIC Science & Technology

    2015-01-29

    solution was to design a sort of friction winch which would use friction to grip the rope sufficiently to wind itself up the rope without slipping ...provide enough friction to wind itself up the rope. It was determined through analysis that the friction pulley method would be the better solution...squeezed the rope becomes in the groove. This provides the friction which allows the rope not to slip in the pulley as it climbs the rope. The Metric

  15. U.S. Navy Wire-Rope Handbook. Volume 1. Design and Engineering of Wire-Rope Systems

    DTIC Science & Technology

    1976-01-01

    by " braiding " or "weaving" one rope end into another. Splices may be made at the end of a single rope after forming a loop (an eye splice) or between...rags, large pieces of old hemp rope and fire hose are other popular types of chafing gear for semi-fixed position ropes (see Figure 7-3(b)). 7.4. LINKS...Figure 7-3. Chafing Gear 7-6 Links 7.4. SWOOD PLANK FIRE HOSE ., ’ _APPLY GREASE CANJVAS, LEATHER, COPPER (b) For Semi-Fixed Position Ropes lo- Figcre

  16. Energetic particle characteristics of magnetotail flux ropes

    NASA Technical Reports Server (NTRS)

    Scholer, M.; Klecker, B.; Hovestadt, D.; Gloeckler, G.; Ipavich, F. M.; Galvin, A. B.

    1985-01-01

    During the recent ISEE-3 Geotail Mission three events have been identified from the magnetometer data which are consistent with a spacecraft crossing of a magnetotail flux rope. Energetic electron and proton observations obtained by the Max-Planck-Institut/University of Maryland sensor system during two of the possible flux rope events are presented. During one event remote sensing of the flux rope with energetic protons reveals that the flux rope is crossed by the spacecraft from south to north. This allows determination of the bandedness of the magnetic field twist and of the flux rope velocity relative to the spacecraft. A minimal flux rope radius of 3 earth radii is derived. Energetic proton intensity is highest just inside of the flux rope and decreases towards the core. Energetic electrons are streaming tailward near the outer boundary, indicating openness of the field lines, and are isotropic through the inner part of the flux rope.

  17. Evolution of magnetic flux ropes associated with flux transfer events and interplanetary magnetic clouds

    NASA Technical Reports Server (NTRS)

    Wei, C. Q.; Lee, L. C.; Wang, S.; Akasofu, S.-I.

    1991-01-01

    Spacecraft observations suggest that flux transfer events and interplanetary magnetic clouds may be associated with magnetic flux ropes which are magnetic flux tubes containing helical magnetic field lines. In the magnetic flux ropes, the azimuthal magnetic field is superposed on the axial field. The time evolution of a localized magnetic flux rope is studied. A two-dimensional compressible MHD simulation code with a cylindrical symmetry is developed to study the wave modes associated with the evolution of flux ropes. It is found that in the initial phase both the fast magnetosonic wave and the Alfven wave are developed in the flux rope. After this initial phase, the Alfven wave becomes the dominant wave mode for the evolution of the magnetic flux rope and the radial expansion velocity of the flux rope is found to be negligible. Numerical results further show that even for a large initial azimuthal component of the magnetic field, the propagation velocity along the axial direction of the flux rope remains the Alfven velocity. It is also found that the localized magnetic flux rope tends to evolve into two separate magnetic ropes propagating in opposite directions. The simulation results are used to study the evolution of magnetic flux ropes associated with flux transfer events observed at the earth's dayside magnetopause and magnetic clouds in the interplanetary space.

  18. 30 CFR 75.1430 - Wire ropes; scope.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Wire ropes; scope. 75.1430 Section 75.1430... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Hoisting and Mantrips Wire Ropes § 75.1430 Wire ropes; scope. (a) Sections 75.1430 through 75.1438 apply to wire ropes in service used to hoist— (1) Persons in...

  19. 30 CFR 75.1430 - Wire ropes; scope.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Wire ropes; scope. 75.1430 Section 75.1430... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Hoisting and Mantrips Wire Ropes § 75.1430 Wire ropes; scope. (a) Sections 75.1430 through 75.1438 apply to wire ropes in service used to hoist— (1) Persons in...

  20. Dynamic modeling and experiments on the coupled vibrations of building and elevator ropes

    NASA Astrophysics Data System (ADS)

    Yang, Dong-Ho; Kim, Ki-Young; Kwak, Moon K.; Lee, Seungjun

    2017-03-01

    This study is concerned with the theoretical modelling and experimental verification of the coupled vibrations of building and elevator ropes. The elevator ropes consist of a main rope which supports the cage and the compensation rope which is connected to the compensation sheave. The elevator rope is a flexible wire with a low damping, so it is prone to vibrations. In the case of a high-rise building, the rope length also increases significantly, so that the fundamental frequency of the elevator rope approaches the fundamental frequency of the building thus increasing the possibility of resonance. In this study, the dynamic model for the analysis of coupled vibrations of building and elevator ropes was derived by using Hamilton's principle, where the cage motion was also considered. An experimental testbed was built to validate the proposed dynamic model. It was found that the experimental results are in good agreement with the theoretical predictions thus validating the proposed dynamic model. The proposed model was then used to predict the vibrations of real building and elevator ropes.

  1. Performance Enhancement of the Space Shuttle RSRM Nozzle-to-Case Joint Using a Carbon Rope Barrier

    NASA Technical Reports Server (NTRS)

    Ewing, M. E.; McGuire, J. R.; McWhorter, B. B.; Frost, D. L.

    1999-01-01

    A carbon rope "thermal barrier" is being considered as a component to enhance performance of the Reusable Solid Rocket Motor (RSRM) nozzle-to-case joint. Fundamental performance characteristics of the rope have been considered in this paper. In particular, resistance to erosion, ability to filter particulate matter, thermal capacitance, and flow resistance have been considered. Testing results have shown the rope to be resistant to the corrosive internal environment of the RSRM. The rope has also been shown to be an effective "slag barrier." A desirable feature of the rope would be the ability to act as a heat sink. However, analyses have indicated that the thermal capacitance of the rope is not large enough to reduce the temperature of an impinging gas stream below the ablation temperature of the 0-ring for significant time periods, The real value of the rope is its ability to act as a flow diffuser. Flow resistance test, were performed on the rope In the course of testing the rope between parallel plates, an undesirable "blow-by" phenomenon was observed when the compressive stress in the rope was smaller than the upstream gas pressure. It was found, however, that in the converging passage of the actual design, the rope would consistently "Self-seat" and thereby prevent blow-by, even in the absence of any precompression. Flow resistance values have been quantified for use in future analyses. The work presented here provides an initial thermal-fluid assessment of the rope for this application, and lays the groundwork for future development.

  2. Are There Different Populations of Flux Ropes in the Solar Wind?

    NASA Astrophysics Data System (ADS)

    Janvier, M.; Démoulin, P.; Dasso, S.

    2014-07-01

    Flux ropes are twisted magnetic structures that can be detected by in-situ measurements in the solar wind. However, different properties of detected flux ropes suggest different types of flux-rope populations. As such, are there different populations of flux ropes? The answer is positive and is the result of the analysis of four lists of flux ropes, including magnetic clouds (MCs), observed at 1 AU. The in-situ data for the four lists were fitted with the same cylindrical force-free field model, which provides an estimate of the local flux-rope parameters such as its radius and orientation. Since the flux-rope distributions have a broad dynamic range, we went beyond a simple histogram analysis by developing a partition technique that uniformly distributes the statistical fluctuations across the radius range. By doing so, we found that small flux ropes with radius R<0.1 AU have a steep power-law distribution in contrast to the larger flux ropes (identified as MCs), which have a Gaussian-like distribution. Next, from four CME catalogs, we estimated the expected flux-rope frequency per year at 1 AU. We found that the predicted numbers are similar to the frequencies of MCs observed in-situ. However, we also found that small flux ropes are at least ten times too abundant to correspond to CMEs, even to narrow ones. Investigating the different possible scenarios for the origin of these small flux ropes, we conclude that these twisted structures can be formed by blowout jets in the low corona or in coronal streamers.

  3. 30 CFR 56.19021 - Minimum rope strength.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...=Static Load×4.0 (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load×(7.0-0.0005L) For rope lengths 4,000 feet or greater: Minimum Value=Static Load×5.0 (c) Tail ropes....19021 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL...

  4. 30 CFR 56.19021 - Minimum rope strength.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...=Static Load×4.0 (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load×(7.0-0.0005L) For rope lengths 4,000 feet or greater: Minimum Value=Static Load×5.0 (c) Tail ropes....19021 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL...

  5. 30 CFR 75.1431 - Minimum rope strength.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) For rope lengths 3,000 feet or greater: Minimum Value=Static Load×4.0 (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load×(7.0−0.0005L) For rope lengths 4,000 feet... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH...

  6. 30 CFR 75.1431 - Minimum rope strength.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) For rope lengths 3,000 feet or greater: Minimum Value=Static Load×4.0 (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load×(7.0−0.0005L) For rope lengths 4,000 feet... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH...

  7. On the dynamo generation of flux ropes in the Venus ionosphere

    NASA Technical Reports Server (NTRS)

    Luhmann, J. G.; Elphic, R. C.

    1985-01-01

    Small scale magnetic field structures or 'flux ropes' observed in the ionosphere of Venus can be interpreted as the result of a kinematic dynamo process acting on weak seed fields. The seed fields result from the prevailing downward convection of magnetic flux from the vicinity of the ionopause, while small scale fluctuations in the velocity of the ionospheric plasma, which can be caused by collisional coupling to gravity waves in the neutral atmosphere, provide the mechanism by which the field is twisted and redistributed into features of similar scale. This mechanism naturally explains some of the average properties of flux ropes such as the variation of their characteristics with altitude and solar zenith angle. It also elucidates the relationship between the large scale and small scale ionospheric magnetic fields.

  8. Evidence for helical kink instability in the Venus magnetic flux ropes

    NASA Technical Reports Server (NTRS)

    Elphic, R. C.; Russell, C. T.

    1983-01-01

    Empirical models of the magnetic field structure of flux ropes found in the Venus ionosphere are seen as suggesting that the ropes are unstable to long-wavelength (more than 100 km) helical-kink perturbations. The onset of such an instability can explain the apparent volume distribution of flux ropes with altitude, as well as their orientation as a function of altitude. In the subsolar region, the fraction of volume occupied by flux ropes increases from approximately 20 percent at high altitudes to more than 50 percent at low altitudes; this is a greater increase than would be expected if ropes convect downward as simple straight horizontal cylinders. The helical kink instability raises the fractional volume occupied by ropes by turning the originally straight, horizontal flux tubes into corkscrew-shaped structures as they convect to lower altitudes. It is noted that this instability also explains why high altitude ropes tend to be horizontal and low altitude ropes appear to have almost any orientation.

  9. Method of Manufacturing Carbon Fiber Reinforced Carbon Composite Valves

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor)

    1998-01-01

    A method for forming a carbon composite valve for internal combustion engines is discussed. The process includes the steps of braiding carbon fiber into a rope thereby forming a cylindrically shaped valve stem portion and continuing to braid said fiber while introducing into the braiding carbon fiber rope a carbon matrix plug having an outer surface in a net shape of a valve head thereby forming a valve head portion. The said carbon matrix plug acting as a mandrel over which said carbon fiber rope is braided, said carbon fiber rope and carbon matrix plug forming a valve head portion suitable for mating with a valve seat; cutting said braided carbon valve stem portion at one end to form a valve tip and cutting said braided carbon fiber after said valve head portion to form a valve face and thus provide a composite valve preform; and densifying said preform by embedding the braided carbon in a matrix of carbon to convert said valve stem portion to a valve stem and said valve head portion to a valve head thereby providing said composite valve.

  10. 30 CFR 77.1431 - Minimum rope strength.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...=Static Load×4.0 (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load×(7.0−0.0005L) For rope lengths 4,000 feet or greater: Minimum Value=Static Load×5.0 (c) Tail ropes... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH...

  11. 30 CFR 77.1431 - Minimum rope strength.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...=Static Load×4.0 (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load×(7.0−0.0005L) For rope lengths 4,000 feet or greater: Minimum Value=Static Load×5.0 (c) Tail ropes... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH...

  12. On the formation of tilted flux ropes in the Earth's magnetotail observed with ARTEMIS

    NASA Astrophysics Data System (ADS)

    Kiehas, S. A.; Angelopoulos, V.; Runov, A.; Moldwin, M. B.; Möstl, C.

    2012-05-01

    On 21 October 2010, ARTEMIS spacecraft P2, located at about -57 REGSM in the Earth's magnetotail, observed a series of flux ropes during the course of a moderate substorm. Subsequently, ARTEMIS spacecraft P1, located about 20 RE farther downtail and farther into the lobe than P2, observed a series of TCRs, consistent with the flux ropes observed by P2. The dual-spacecraft configuration allows simultaneous examination of these phenomena, which are interpreted as an O-line, followed by a series of flux ropes/TCRs. An inter-spacecraft time of flight analysis, assuming tailward propagation of cross-tail aligned ropes, suggests propagation speeds of up to ˜2000 km/s. A principal axis investigation, however, indicates that the flux ropes were tilted between 41° and 45° in the GSM x-y-plane with respect to the noon-midnight meridional plane. Taking this into account, the tailward propagation speed of the different flux ropes is determined to be between 900 and 1400 km/s. The same timing analysis also reveals that the flux rope velocity increased progressively from one flux rope to the next. A clear correlation between the magnetic field and plasma flow components inside the flux ropes was observed. As possible mechanisms leading to the formation of tilted flux ropes we suggest (a) a progressive spreading of the reconnection line along the east-west direction, leading to a boomerang-like shape and (b) a tilting of flux ropes during their formation by non-uniform reconnection with open field lines at the ends of the flux ropes. The progressive increase in the propagation velocity from the first to the last flux rope may be evidence of impulsive reconnection: initially deep inside the plasma sheet the reconnection rate is slow but as reconnection proceeds at the plasma sheet boundary and possibly lobes, the reconnection rate increases.

  13. 29 CFR 1919.24 - Limitations on use of wire rope.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Limitations on use of wire rope. 1919.24 Section 1919.24... on use of wire rope. (a) An eye splice made in any wire rope shall have at least three tucks with a... in the ends of wire rope cargo falls shall not be formed by knots and, in single part falls, shall...

  14. 29 CFR 1919.24 - Limitations on use of wire rope.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Limitations on use of wire rope. 1919.24 Section 1919.24... on use of wire rope. (a) An eye splice made in any wire rope shall have at least three tucks with a... in the ends of wire rope cargo falls shall not be formed by knots and, in single part falls, shall...

  15. 29 CFR 1919.24 - Limitations on use of wire rope.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... number of visible broken wires exceeds 10 percent of the total number of wires, or if the rope shows... 29 Labor 7 2012-07-01 2012-07-01 false Limitations on use of wire rope. 1919.24 Section 1919.24... on use of wire rope. (a) An eye splice made in any wire rope shall have at least three tucks with a...

  16. 29 CFR 1919.24 - Limitations on use of wire rope.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... number of visible broken wires exceeds 10 percent of the total number of wires, or if the rope shows... 29 Labor 7 2013-07-01 2013-07-01 false Limitations on use of wire rope. 1919.24 Section 1919.24... on use of wire rope. (a) An eye splice made in any wire rope shall have at least three tucks with a...

  17. 29 CFR 1919.24 - Limitations on use of wire rope.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... number of visible broken wires exceeds 10 percent of the total number of wires, or if the rope shows... 29 Labor 7 2014-07-01 2014-07-01 false Limitations on use of wire rope. 1919.24 Section 1919.24... on use of wire rope. (a) An eye splice made in any wire rope shall have at least three tucks with a...

  18. Twisting solar coronal jet launched at the boundary of an active region

    NASA Astrophysics Data System (ADS)

    Schmieder, B.; Guo, Y.; Moreno-Insertis, F.; Aulanier, G.; Yelles Chaouche, L.; Nishizuka, N.; Harra, L. K.; Thalmann, J. K.; Vargas Dominguez, S.; Liu, Y.

    2013-11-01

    Aims: A broad jet was observed in a weak magnetic field area at the edge of active region NOAA 11106 that also produced other nearby recurring and narrow jets. The peculiar shape and magnetic environment of the broad jet raised the question of whether it was created by the same physical processes of previously studied jets with reconnection occurring high in the corona. Methods: We carried out a multi-wavelength analysis using the EUV images from the Atmospheric Imaging Assembly (AIA) and magnetic fields from the Helioseismic and Magnetic Imager (HMI) both on-board the Solar Dynamics Observatory, which we coupled to a high-resolution, nonlinear force-free field extrapolation. Local correlation tracking was used to identify the photospheric motions that triggered the jet, and time-slices were extracted along and across the jet to unveil its complex nature. A topological analysis of the extrapolated field was performed and was related to the observed features. Results: The jet consisted of many different threads that expanded in around 10 minutes to about 100 Mm in length, with the bright features in later threads moving faster than in the early ones, reaching a maximum speed of about 200 km s-1. Time-slice analysis revealed a striped pattern of dark and bright strands propagating along the jet, along with apparent damped oscillations across the jet. This is suggestive of a (un)twisting motion in the jet, possibly an Alfvén wave. Bald patches in field lines, low-altitude flux ropes, diverging flow patterns, and a null point were identified at the basis of the jet. Conclusions: Unlike classical λ or Eiffel-tower-shaped jets that appear to be caused by reconnection in current sheets containing null points, reconnection in regions containing bald patches seems to be crucial in triggering the present jet. There is no observational evidence that the flux ropes detected in the topological analysis were actually being ejected themselves, as occurs in the violent phase of blowout jets; instead, the jet itself may have gained the twist of the flux rope(s) through reconnection. This event may represent a class of jets different from the classical quiescent or blowout jets, but to reach that conclusion, more observational and theoretical work is necessary.

  19. Measurements of the Canonical Helicity Evolution of a Gyrating Kinked Flux Rope

    NASA Astrophysics Data System (ADS)

    von der Linden, J.; Sears, J.; Intrator, T.; You, S.

    2017-12-01

    Magnetic structures in the solar corona and planetary magnetospheres are often modelled as magnetic flux ropes governed by magnetohydrodynamics (MHD); however, inside these structures, as exhibited in reconnection, conversions between magnetic and kinetic energies occur over a wide range of scales. Flux ropes based on the flux of canonical momentum circulation extend the flux rope concept to include effects of finite particle momentum and present the distinct advantage of reconciling all plasma regimes - e.g. kinetic, two-fluid, and MHD - with the topological concept of helicity: twists, writhes, and linkages. This presentation shows the first visualization and analysis of the 3D dynamics of canonical flux ropes and their relative helicity evolution from laboratory measurements. Ion and electron canonical flux ropes are visualized from a dataset of Mach, triple, and Ḃ probe measurements at over 10,000 spatial locations of a gyrating kinked flux rope. The flux ropes co-gyrate with the peak density and electron temperature in and out of a measurement volume. The electron and ion canonical flux ropes twist with opposite handedness and the ion flux ropes writhe around the electron flux ropes. The relative cross helicity between the magnetic and ion flow vorticity flux ropes dominates the relative ion canonical helicity and is anti-correlated with the relative magnetic helicity. The 3D nature of the kink and a reverse eddy current affect the helicity evolution. This work is supported by DOE Grant DE-SC0010340 and the DOE Office of Science Graduate Student Research Program and prepared in part by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-735426

  20. Genesis of Interplanetary Intermittent Turbulence: a Case Study of Rope-Rope Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Chian, Abraham C.- L.; Feng, Heng Q.; Hu, Qiang; Loew, Murray H.; Miranda, Rodrigo A.; Munoz, Pablo R.; Sibeck, David G.; Wu, De J.

    2016-01-01

    In a recent paper, the relation between current sheet, magnetic reconnection, and turbulence at the leading edge of an interplanetary coronal mass ejection was studied. We report here the observation of magnetic reconnection at the interface region of two interplanetary magnetic flux ropes. The front and rear boundary layers of three interplanetary magnetic flux ropes are identified, and the structures of magnetic flux ropes are reconstructed by the Grad Shafranov method. A quantitative analysis of the reconnection condition and the degree of intermittency reveals that rope-rope magnetic reconnection is the most likely site for genesis of interplanetary intermittency turbulence in this event. The dynamic pressure pulse resulting from this reconnection triggers the onset of a geomagnetic storm.

  1. Numerical Experiments Based on the Catastrophe Model of Solar Eruptions

    NASA Astrophysics Data System (ADS)

    Xie, X. Y.; Ziegler, U.; Mei, Z. X.; Wu, N.; Lin, J.

    2017-11-01

    On the basis of the catastrophe model developed by Isenberg et al., we use the NIRVANA code to perform the magnetohydrodynamics (MHD) numerical experiments to look into various behaviors of the coronal magnetic configuration that includes a current-carrying flux rope used to model the prominence levitating in the corona. These behaviors include the evolution in equilibrium heights of the flux rope versus the change in the background magnetic field, the corresponding internal equilibrium of the flux rope, dynamic properties of the flux rope after the system loses equilibrium, as well as the impact of the referential radius on the equilibrium heights of the flux rope. In our calculations, an empirical model of the coronal density distribution given by Sittler & Guhathakurta is used, and the physical diffusion is included. Our experiments show that the deviation of simulations in the equilibrium heights from the theoretical results exists, but is not apparent, and the evolutionary features of the two results are similar. If the flux rope is initially locate at the stable branch of the theoretical equilibrium curve, the flux rope will quickly reach the equilibrium position in the simulation after several rounds of oscillations as a result of the self-adjustment of the system; and the flux rope lose the equilibrium if the initial location of the flux rope is set at the critical point on the theoretical equilibrium curve. Correspondingly, the internal equilibrium of the flux rope can be reached as well, and the deviation from the theoretical results is somewhat apparent since the approximation of the small radius of the flux rope is lifted in our experiments, but such deviation does not affect the global equilibrium in the system. The impact of the referential radius on the equilibrium heights of the flux rope is consistent with the prediction of the theory. Our calculations indicate that the motion of the flux rope after the loss of equilibrium is consistent with which is predicted by the Lin-Forbes model and observations. Formation of the fast mode shock ahead of the flux rope is observed in our experiments. Outward motions of the flux rope are smooth, and magnetic energy is continuously converted into the other types of energy because both the diffusions are considered in calculations, and magnetic reconnection is allowed to occur successively in the current sheet behind the flux rope.

  2. Self-organization in magnetic flux ropes

    NASA Astrophysics Data System (ADS)

    Lukin, Vyacheslav S.

    2014-06-01

    This cross-disciplinary special issue on 'Self-organization in magnetic flux ropes' follows in the footsteps of another collection of manuscripts dedicated to the subject of magnetic flux ropes, a volume on 'Physics of magnetic flux ropes' published in the American Geophysical Union's Geophysical Monograph Series in 1990 [1]. Twenty-four years later, this special issue, composed of invited original contributions highlighting ongoing research on the physics of magnetic flux ropes in astrophysical, space and laboratory plasmas, can be considered an update on our state of understanding of this fundamental constituent of any magnetized plasma. Furthermore, by inviting contributions from research groups focused on the study of the origins and properties of magnetic flux ropes in a variety of different environments, we have attempted to underline both the diversity of and the commonalities among magnetic flux ropes throughout the solar system and, indeed, the universe. So, what is a magnetic flux rope? The answer will undoubtedly depend on whom you ask. A flux rope can be as narrow as a few Larmor radii and as wide as the Sun (see, e.g., the contributions by Heli Hietala et al and by Angelous Vourlidas). As described below by Ward Manchester IV et al , they can stretch from the Sun to the Earth in the form of interplanetary coronal mass ejections. Or, as in the Swarthmore Spheromak Experiment described by David Schaffner et al , they can fit into a meter-long laboratory device tended by college students. They can be helical and line-tied (see, e.g., Walter Gekelman et al or J Sears et al ), or toroidal and periodic (see, e.g., John O'Bryan et al or Philippa Browning et al ). They can form in the low plasma beta environment of the solar corona (Tibor Török et al ), the order unity beta plasmas of the solar wind (Stefan Eriksson et al ) and the plasma pressure dominated stellar convection zones (Nicholas Nelson and Mark Miesch). In this special issue, Setthivoine You describes how canonical helicity can determine the result of reconnection and merging of multiple magnetic flux ropes, John Finn et al focus on diagnosing flux rope reconnection using quasi-separatrix layers, and Stefano Markidis et al investigate how a single flux rope can become unstable and begin to fall apart. With these many examples of different magnetized plasma structures, which can all be called magnetic flux ropes, the question still stands: just what is it that makes a volume of magnetized plasma a magnetic flux rope? There may not be a strict definition of a magnetic flux rope that everyone can agree on. Nonetheless, the ingredient common to all magnetic flux ropes is that the magnetic field lines that thread nearby plasma elements at one location along the flux rope must wind around and not diverge away from each other over a sufficiently long distance to look like a piece of an ordinary rope. In a way, it is similar to turbulence—you know it when you see it. The figures and illustrations included in this special issue provide plenty of examples of observed, measured, modeled and imagined magnetic flux ropes for you, the reader, to develop an appreciation of what different members of our research community mean by a magnetic flux rope. If you have never studied magnetic flux ropes, we hope that this special issue inspires you to look into their many mysteries. If magnetic flux ropes are already an integral part of your research, we hope the diversity of perspectives presented herein refresh your interest in the underlying plasma physics of whichever kind of magnetic flux rope you happen to be working with. References [1] Russell C T, Priest E R and Lee L-C 1990 Physics of Magnetic Flux Ropes AGU Geophysical Monograph Series vol 58 (Washington, DC: American Geophysical Union)

  3. Mechanical Rope and Cable

    DTIC Science & Technology

    1975-04-01

    seawater. The principal effect of crevices on the corrosion of zinc- or aluminum - coated or uncoated steel rope is to entrap corrosive liquids and...visual inspection of the rope surface. j 5. The effect of stresses, such as tensile, bending, torsion , and comn- pression, upon rope in service is not...questionable A value. d. The effect of stresses, such as tensile, bending, torsion , and compressive contact, on rope is not understood well. 2

  4. The magnetic topology of the plasmoid flux rope in a MHD-simulation of magnetotail reconnection

    NASA Technical Reports Server (NTRS)

    Birn, J.; Hesse, M.

    1990-01-01

    On the basis of a 3D MHD simulation, the magnetic topology of a plasmoid that forms by a localized reconnection process in a magnetotail configuration (including a net dawn-dusk magnetic field component B sub y N is discussed. As a consequence of B sub y N not equalling 0, the plasmoid assumes a helical flux rope structure rather than an isolated island or bubble structure. Initially all field lines of the plasmoid flux rope remain connected with the earth, while at later times a gradually increasing amount of flux tubes becomes separated, connecting to either the distant boundary or to the flank boundaries. In this stage, topologically different flux tubes become tangled and wrapped around each other, consistent with predictions on the basis of an ad hoc plasmoid model.

  5. Twisted versus braided magnetic flux ropes in coronal geometry. II. Comparative behaviour

    NASA Astrophysics Data System (ADS)

    Prior, C.; Yeates, A. R.

    2016-06-01

    Aims: Sigmoidal structures in the solar corona are commonly associated with magnetic flux ropes whose magnetic field lines are twisted about a mutual axis. Their dynamical evolution is well studied, with sufficient twisting leading to large-scale rotation (writhing) and vertical expansion, possibly leading to ejection. Here, we investigate the behaviour of flux ropes whose field lines have more complex entangled/braided configurations. Our hypothesis is that this internal structure will inhibit the large-scale morphological changes. Additionally, we investigate the influence of the background field within which the rope is embedded. Methods: A technique for generating tubular magnetic fields with arbitrary axial geometry and internal structure, introduced in part I of this study, provides the initial conditions for resistive-MHD simulations. The tubular fields are embedded in a linear force-free background, and we consider various internal structures for the tubular field, including both twisted and braided topologies. These embedded flux ropes are then evolved using a 3D MHD code. Results: Firstly, in a background where twisted flux ropes evolve through the expected non-linear writhing and vertical expansion, we find that flux ropes with sufficiently braided/entangled interiors show no such large-scale changes. Secondly, embedding a twisted flux rope in a background field with a sigmoidal inversion line leads to eventual reversal of the large-scale rotation. Thirdly, in some cases a braided flux rope splits due to reconnection into two twisted flux ropes of opposing chirality - a phenomenon previously observed in cylindrical configurations. Conclusions: Sufficiently complex entanglement of the magnetic field lines within a flux rope can suppress large-scale morphological changes of its axis, with magnetic energy reduced instead through reconnection and expansion. The structure of the background magnetic field can significantly affect the changing morphology of a flux rope.

  6. Cluster electric current density measurements within a magnetic flux rope in the plasma sheet

    NASA Technical Reports Server (NTRS)

    Slavin, J. A.; Lepping, R. P.; Gjerloev, J.; Goldstein, M. L.; Fairfield, D. H.; Acuna, M. H.; Balogh, A.; Dunlop, M.; Kivelson, M. G.; Khurana, K.

    2003-01-01

    On August 22, 2001 all 4 Cluster spacecraft nearly simultaneously penetrated a magnetic flux rope in the tail. The flux rope encounter took place in the central plasma sheet, Beta(sub i) approx. 1-2, near the leading edge of a bursty bulk flow. The "time-of-flight" of the flux rope across the 4 spacecraft yielded V(sub x) approx. 700 km/s and a diameter of approx.1 R(sub e). The speed at which the flux rope moved over the spacecraft is in close agreement with the Cluster plasma measurements. The magnetic field profiles measured at each spacecraft were first modeled separately using the Lepping-Burlaga force-free flux rope model. The results indicated that the center of the flux rope passed northward (above) s/c 3, but southward (below) of s/c 1, 2 and 4. The peak electric currents along the central axis of the flux rope predicted by these single-s/c models were approx.15-19 nA/sq m. The 4-spacecraft Cluster magnetic field measurements provide a second means to determine the electric current density without any assumption regarding flux rope structure. The current profile determined using the curlometer technique was qualitatively similar to those determined by modeling the individual spacecraft magnetic field observations and yielded a peak current density of 17 nA/m2 near the central axis of the rope. However, the curlometer results also showed that the flux rope was not force-free with the component of the current density perpendicular to the magnetic field exceeding the parallel component over the forward half of the rope, perhaps due to the pressure gradients generated by the collision of the BBF with the inner magnetosphere. Hence, while the single-spacecraft models are very successful in fitting flux rope magnetic field and current variations, they do not provide a stringent test of the force-free condition.

  7. Experimental study of a linear/non-linear flux rope

    NASA Astrophysics Data System (ADS)

    DeHaas, Timothy; Gekelman, Walter; Van Compernolle, Bart

    2015-08-01

    Flux ropes are magnetic structures of helical field lines, accompanied by spiraling currents. Commonly observed on the solar surface extending into the solar atmosphere, flux ropes are naturally occurring and have been observed by satellites in the near earth and in laboratory environments. In this experiment, a single flux rope (r = 2.5 cm, L = 1100 cm) was formed in the cylindrical, magnetized plasma of the Large Plasma Device (LaPD, L = 2200 cm, rplasma = 30 cm, no = 1012 cm-3, Te = 4 eV, He). The flux rope was generated by a DC discharge between an electron emitting cathode and anode. This fixes the rope at its source while allowing it to freely move about the anode. At large currents (I > πr2B0c/2 L), the flux rope becomes helical in structure and oscillates about a central axis. Under varying Alfven speeds and injection current, the transition of the flux rope from stable to kink-unstable was examined. As it becomes non-linear, oscillations in the magnetic signals shift from sinusoidal to Sawtooth-like, associated with elliptical motion of the flux rope; or the signal becomes intermittent as its current density increases.

  8. DO THE LEGS OF MAGNETIC CLOUDS CONTAIN TWISTED FLUX-ROPE MAGNETIC FIELDS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owens, M. J.

    2016-02-20

    Magnetic clouds (MCs) are a subset of interplanetary coronal mass ejections (ICMEs) characterized primarily by a smooth rotation in the magnetic field direction indicative of the presence of a magnetic flux rope. Energetic particle signatures suggest MC flux ropes remain magnetically connected to the Sun at both ends, leading to widely used model of global MC structure as an extended flux rope, with a loop-like axis stretching out from the Sun into the heliosphere and back to the Sun. The time of flight of energetic particles, however, suggests shorter magnetic field line lengths than such a continuous twisted flux ropemore » would produce. In this study, two simple models are compared with observed flux rope axis orientations of 196 MCs to show that the flux rope structure is confined to the MC leading edge. The MC “legs,” which magnetically connect the flux rope to the Sun, are not recognizable as MCs and thus are unlikely to contain twisted flux rope fields. Spacecraft encounters with these non-flux rope legs may provide an explanation for the frequent observation of non-MC ICMEs.« less

  9. Location and size of flux ropes in Titan's ionosphere

    NASA Astrophysics Data System (ADS)

    Martin, C.; Arridge, C. S.; Badman, S. V.; Dieval, C.

    2017-12-01

    Cassini magnetometer data was surveyed during Titan flybys to find 73 instances of flux rope signatures. A force free flux rope model was utilised to obtain the radii, maximum magnetic field and flux content of flux ropes that adhere to the force-free assumptions. We find that flux ropes at Titan are similar in size in km and flux content to the giant flux ropes identified at Venus, with a median radii of 280 km and an inter-quartile range of 270 km, a median maximum magnetic field of 8 nT with an inter-quartile range of 7 nT and a median flux content of 76 Wb with a large inter-quartile range of 250 Wb. We additionally investigate the occurrence of flux ropes with respect to the Sun-lit facing hemisphere (zenith angle) and the ram-side of Titan within Saturn's corotating magnetosphere (angle of attack of the incoming plasma flow). We find that flux ropes are more commonly detected in Sun-lit areas of Titan's ionosphere, as well as the ram-side of Titan. We see a statistically-significant absence of flux ropes in all SLT sectors in the night side of Titan and the anti-ram side of Titan. We also comment on the physical mechanisms associated with the production of these flux ropes, with particular attention on the variability of Titan's environment in Saturn's magnetosphere.

  10. Two-fluid and magnetohydrodynamic modelling of magnetic reconnection in the MAST spherical tokamak and the solar corona

    NASA Astrophysics Data System (ADS)

    Browning, P. K.; Cardnell, S.; Evans, M.; Arese Lucini, F.; Lukin, V. S.; McClements, K. G.; Stanier, A.

    2016-01-01

    Twisted magnetic flux ropes are ubiquitous in laboratory and astrophysical plasmas, and the merging of such flux ropes through magnetic reconnection is an important mechanism for restructuring magnetic fields and releasing free magnetic energy. The merging-compression scenario is one possible start-up scheme for spherical tokamaks, which has been used on the Mega Amp Spherical Tokamak (MAST). Two current-carrying plasma rings or flux ropes approach each due to mutual attraction, forming a current sheet and subsequently merge through magnetic reconnection into a single plasma torus, with substantial plasma heating. Two-dimensional resistive and Hall-magnetohydrodynamic simulations of this process are reported, including a strong guide field. A model of the merging based on helicity-conserving relaxation to a minimum energy state is also presented, extending previous work to tight-aspect-ratio toroidal geometry. This model leads to a prediction of the final state of the merging, in good agreement with simulations and experiment, as well as the average temperature rise. A relaxation model of reconnection between two or more flux ropes in the solar corona is also described, allowing for different senses of twist, and the implications for heating of the solar corona are discussed.

  11. Initiation of Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Sterling, Alphonse C.

    2005-01-01

    This paper is a synopsis of the initiation of the strong-field magnetic explosions that produce large, fast coronal mass ejections. Cartoons based on observations are used to describe the inferred basic physical processes and sequences that trigger and drive the explosion. The magnetic field that explodes is a sheared-core bipole that may or may not be embedded in surrounding strong magnetic field, and may or may not contain a flux rope before it starts to explode. We describe three different mechanisms that singly or in combination trigger the explosion: (1) runaway internal tether-cutting reconnection, (2) runaway external tether-cutting reconnection, and (3) ideal MHD instability or loss or equilibrium. For most eruptions, high-resolution, high-cadence magnetograms and chromospheric and coronal movies (such as from TRACE and/or Solar-B) of the pre-eruption region and of the onset of the eruption and flare are needed to tell which one or which combination of these mechanisms is the trigger. Whatever the trigger, it leads to the production of an erupting flux rope. Using a simple model flux rope, we demonstrate that the explosion can be driven by the magnetic pressure of the expanding flux rope, provided the shape of the expansion is "fat" enough.

  12. 29 CFR 1926.1414 - Wire rope-selection and installation criteria.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Wire rope-selection and installation criteria. 1926.1414... Derricks in Construction § 1926.1414 Wire rope—selection and installation criteria. (a) Original equipment wire rope and replacement wire rope must be selected and installed in accordance with the requirements...

  13. 30 CFR 57.19024 - Retirement criteria.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... broken wires within a rope lay length, excluding filler wires, exceeds either— (1) Five percent of the... regular lay rope, more than one broken wire in the valley between strands in one rope lay length. (c) A... Wire Ropes § 57.19024 Retirement criteria. Unless damage or deterioration is removed by cutoff, wire...

  14. 30 CFR 57.19024 - Retirement criteria.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... broken wires within a rope lay length, excluding filler wires, exceeds either— (1) Five percent of the... regular lay rope, more than one broken wire in the valley between strands in one rope lay length. (c) A... Wire Ropes § 57.19024 Retirement criteria. Unless damage or deterioration is removed by cutoff, wire...

  15. 30 CFR 56.19024 - Retirement criteria.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... lay rope, more than one broken wire in the valley between strands in one rope lay length. (c) A loss... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Personnel Hoisting Wire Ropes § 56.19024 Retirement criteria. Unless damage or deterioration is removed by cutoff, wire ropes...

  16. 30 CFR 56.19024 - Retirement criteria.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... lay rope, more than one broken wire in the valley between strands in one rope lay length. (c) A loss... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Personnel Hoisting Wire Ropes § 56.19024 Retirement criteria. Unless damage or deterioration is removed by cutoff, wire ropes...

  17. 30 CFR 77.1434 - Retirement criteria.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... broken wires within a rope lay length, excluding filler wires, exceeds either— (1) Five percent of the... regular lay rope, more than one broken wire in the valley between strands in one rope lay length; (c) A... Hoisting Wire Ropes § 77.1434 Retirement criteria. Unless damage or deterioration is removed by cutoff...

  18. 30 CFR 57.19024 - Retirement criteria.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... broken wires within a rope lay length, excluding filler wires, exceeds either— (1) Five percent of the... regular lay rope, more than one broken wire in the valley between strands in one rope lay length. (c) A... Wire Ropes § 57.19024 Retirement criteria. Unless damage or deterioration is removed by cutoff, wire...

  19. 30 CFR 77.1434 - Retirement criteria.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... broken wires within a rope lay length, excluding filler wires, exceeds either— (1) Five percent of the... regular lay rope, more than one broken wire in the valley between strands in one rope lay length; (c) A... Hoisting Wire Ropes § 77.1434 Retirement criteria. Unless damage or deterioration is removed by cutoff...

  20. 30 CFR 77.1434 - Retirement criteria.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... broken wires within a rope lay length, excluding filler wires, exceeds either— (1) Five percent of the... regular lay rope, more than one broken wire in the valley between strands in one rope lay length; (c) A... Hoisting Wire Ropes § 77.1434 Retirement criteria. Unless damage or deterioration is removed by cutoff...

  1. 30 CFR 57.19024 - Retirement criteria.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... broken wires within a rope lay length, excluding filler wires, exceeds either— (1) Five percent of the... regular lay rope, more than one broken wire in the valley between strands in one rope lay length. (c) A... Wire Ropes § 57.19024 Retirement criteria. Unless damage or deterioration is removed by cutoff, wire...

  2. 30 CFR 56.19024 - Retirement criteria.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... lay rope, more than one broken wire in the valley between strands in one rope lay length. (c) A loss... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Personnel Hoisting Wire Ropes § 56.19024 Retirement criteria. Unless damage or deterioration is removed by cutoff, wire ropes...

  3. 30 CFR 56.19024 - Retirement criteria.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... lay rope, more than one broken wire in the valley between strands in one rope lay length. (c) A loss... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Personnel Hoisting Wire Ropes § 56.19024 Retirement criteria. Unless damage or deterioration is removed by cutoff, wire ropes...

  4. 30 CFR 77.1434 - Retirement criteria.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... broken wires within a rope lay length, excluding filler wires, exceeds either— (1) Five percent of the... regular lay rope, more than one broken wire in the valley between strands in one rope lay length; (c) A... Hoisting Wire Ropes § 77.1434 Retirement criteria. Unless damage or deterioration is removed by cutoff...

  5. Characteristics of the spatial structure of Martian magnetic flux ropes recovered by the Grad-Shafranov reconstruction technique

    NASA Astrophysics Data System (ADS)

    Hara, T.; Seki, K.; Hasegawa, H.; Brain, D. A.; Matsunaga, K.; Saito, M. H.

    2013-12-01

    Mars is a unique planet because it locally possesses strong crustal magnetic fields mainly located in the southern hemisphere [e.g., Acuna et al., 1999]. The Martian electromagnetic environment can thus become highly complicated and variable, since the interplanetary magnetic field embedded in the solar wind interacts with the Martian crustal magnetic fields. Whereas it is known that the Martian upper atmosphere is escaping to interplanetary space due to the interaction with the solar wind [e.g., Lundin et al., 1989; Barabash et al., 2007], the contribution of crustal magnetic fields to atmospheric escape from Mars has not yet been well understood. Flux ropes are characteristic magnetic field structures seen throughout the solar system, e.g., at the Sun, in the interplanetary space, and at the terrestrial magnetosphere. Flux ropes are also observed at planets such as at Venus and Mars [e.g., Russell and Elphic, 1979; Vignes et al., 2004], which do not possess a global intrinsic magnetic field. Brain et al. [2010] found a large-scale isolated magnetic flux rope filled with Martian atmospheric plasma located downstream from the crustal magnetic fields with respect to the solar wind flow based on the Mars Global Surveyor (MGS) measurements. They suggested that the magnetic flux rope could be intermittently detached from Mars, and remove significant amounts of atmosphere away from Mars. They proposed that this process might occur frequently and account for as much as 10% of the total present-day ion escape from Mars. However, this estimation of the ion escape rate is somewhat ambiguous, because it is difficult to infer the spatial structure of them from the single spacecraft data. We here investigated characteristics of the Martian magnetic flux ropes based on the Grad-Shafranov (GS) reconstruction technique using the MGS magnetic field data. This technique is capable of recovering the two-dimensional spatial structure of the magnetic flux ropes from single spacecraft data [e.g., Hu and Sunnerup, 2002]. The resultant structure allows us to provide a reliable observational restriction on the spatial scales of magnetic flux ropes. We applied the GS reconstruction technique to 135 obvious magnetic flux rope events observed by MGS. As a result, their spatial structures were successfully recovered for 70 events. The reconstruction results indicated that magnetic flux rope axes are mostly oriented horizontally with respect to the Martian surface. We demonstrated that the events, which have solar zenith angle larger than 75 deg and duration longer than 240 sec, are mostly in the region where the upstream crustal magnetic field strength is larger than the other events. Using the shape and size of the flux ropes obtained from the GS reconstruction technique, we are able to calculate lower limits on their volume and the potential ion escape rates. The volumes can vary by factors of 2--3 orders of magnitude. Ion escape rates via the flux ropes based on the GS reconstruction technique turn out to attain to the order of 10^22 -- 10^23 ion/sec. This result could be comparable to the global ion escape rate obtained from the ion mass analyzer onboard the Mars Express orbiter at solar minimum [e.g., Barabash et al., 2007].

  6. Helicity Transformation under the Collision and Merging of Magnetic Flux Ropes

    NASA Astrophysics Data System (ADS)

    Dehaas, Timothy

    2016-10-01

    A magnetic flux rope is a tube-like, current carrying plasma embedded in an external magnetic field. The magnetic field lines resemble threads in a rope, which vary in pitch according to radius. Flux ropes are ubiquitous in astrophysical plasmas, and bundles of these structures play an important role in the dynamics of the space environment. They are observed in the solar atmosphere and near-earth environment where they are seen to twist, merge, tear, and writhe. In this MHD context, their global dynamics are bound by rules of magnetic helicity conservation, unless, under a non-ideal process, helicity is transformed through magnetic reconnection, turbulence, or localized instabilities. These processes are tested under experimental conditions in the Large Plasma Device (LAPD). The device is a twenty-meter long, one-meter diameter, cylindrical vacuum vessel designed to generate a highly reproducible, magnetized plasma. Reliable shot-to-shot repetition of plasma parameters and over four hundred diagnostic ports enable the collection of volumetric datasets (measurements of ne, Te, Vp, B, J, E, uflow) as two kink-unstable flux ropes form, move, collide, and merge. Similar experiments on the LAPD have utilized these volumetric datasets, visualizing magnetic reconnection through a topological quasi-separatrix layer, or QSL. This QSL is shown to be spatially coincident with the reconnection rate, ∫ E . dl , and oscillates (although out of phase) with global helicity. Magnetic helicity is observed to have a negative sign and its counterpart, cross helicity, a positive one. These quantities oscillate 8% peak-to-peak, and the changes in helicity are visualized as 1) the transport of helicity (ϕB + E × A) and 2) the dissipation of the helicity - 2 E . B . This work is supported by LANL-UC research Grant and done at the Basic Plasma Science Facility, which is funded by DOE and NSF.

  7. Are independent probes truly independent?

    PubMed

    Camp, Gino; Pecher, Diane; Schmidt, Henk G; Zeelenberg, René

    2009-07-01

    The independent cue technique has been developed to test traditional interference theories against inhibition theories of forgetting. In the present study, the authors tested the critical criterion for the independence of independent cues: Studied cues not presented during test (and unrelated to test cues) should not contribute to the retrieval process. Participants first studied a subset of cues (e.g., rope) that were subsequently studied together with a target in a 2nd study phase (e.g., rope-sailing, sunflower-yellow). In the test phase, an extralist category cue (e.g., sports, color) was presented, and participants were instructed to recall an item from the study list that was a member of the category (e.g., sailing, yellow). The experiments showed that previous study of the paired-associate word (e.g., rope) enhanced category cued recall even though this word was not presented at test. This experimental demonstration of covert cuing has important implications for the effectiveness of the independent cue technique.

  8. Two-step solar filament eruptions

    NASA Astrophysics Data System (ADS)

    Filippov, B.

    2018-04-01

    Coronal mass ejections (CMEs) are closely related to eruptive filaments and usually are the continuation of the same eruptive process into the upper corona. There are failed filament eruptions when a filament decelerates and stops at some greater height in the corona. Sometimes the filament after several hours starts to rise again and develops into the successful eruption with a CME formation. We propose a simple model for the interpretation of such two-step eruptions in terms of equilibrium of a flux rope in a two-scale ambient magnetic field. The eruption is caused by a slow decrease of the holding magnetic field. The presence of two critical heights for the initiation of the flux-rope vertical instability allows the flux rope to stay after the first jump some time in a metastable equilibrium near the second critical height. If the decrease of the ambient field continues, the next eruption step follows.

  9. Double the Fun with Two-Person, One-Rope Jump Rope

    ERIC Educational Resources Information Center

    Heumann, Kristin J.; Murray, Steven Ross

    2018-01-01

    One popular activity within physical education curricula today is jump rope. Jump rope is recognized as an excellent activity for developing motor skills and the affective domain, and it aligns with several recommended outcomes for physical education listed by the SHAPE America--Society of Health and Physical Educators. This article describes…

  10. 29 CFR 1919.33 - Proof tests-wire rope.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Proof tests-wire rope. 1919.33 Section 1919.33 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Persons § 1919.33 Proof tests—wire rope. Wire rope, except as provided in § 1919.14(b), shall be tested by...

  11. 46 CFR 108.705 - Anchors, chains, wire rope, and hawsers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Anchors, chains, wire rope, and hawsers. 108.705 Section... UNITS DESIGN AND EQUIPMENT Miscellaneous Equipment § 108.705 Anchors, chains, wire rope, and hawsers. (a) Each unit must be fitted with anchors, chains, wire rope, and hawsers in agreement with the standards...

  12. 46 CFR 108.705 - Anchors, chains, wire rope, and hawsers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Anchors, chains, wire rope, and hawsers. 108.705 Section... UNITS DESIGN AND EQUIPMENT Miscellaneous Equipment § 108.705 Anchors, chains, wire rope, and hawsers. (a) Each unit must be fitted with anchors, chains, wire rope, and hawsers in agreement with the standards...

  13. 29 CFR 1919.33 - Proof tests-wire rope.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Proof tests-wire rope. 1919.33 Section 1919.33 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Persons § 1919.33 Proof tests—wire rope. Wire rope, except as provided in § 1919.14(b), shall be tested by...

  14. Teaching Jump Rope to Children with Visual Impairments

    ERIC Educational Resources Information Center

    Lieberman, Lauren J.; Schedlin, Haley; Pierce, Tristan

    2009-01-01

    This article presents strategies for jumping rope for children with visual impairments. Giving choices related to the types of rope and the use of mats is important. In addition, using appropriate instructional strategies and modifications will make jumping rope a skill that the children will enjoy and will lead to their involvement in other…

  15. 29 CFR 1919.71 - Unit proof test and examination of cranes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., including wire rope and wire rope terminals and connections, shall be checked with particular attention to sections of wire rope exposed to abnormal wear and to sections not normally exposed for examination. The provisions of § 1919.24 shall apply in wire rope examinations. Cracked or deformed hooks shall be discarded...

  16. 29 CFR 1919.71 - Unit proof test and examination of cranes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., including wire rope and wire rope terminals and connections, shall be checked with particular attention to sections of wire rope exposed to abnormal wear and to sections not normally exposed for examination. The provisions of § 1919.24 shall apply in wire rope examinations. Cracked or deformed hooks shall be discarded...

  17. 29 CFR 1919.71 - Unit proof test and examination of cranes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., including wire rope and wire rope terminals and connections, shall be checked with particular attention to sections of wire rope exposed to abnormal wear and to sections not normally exposed for examination. The provisions of § 1919.24 shall apply in wire rope examinations. Cracked or deformed hooks shall be discarded...

  18. SLIPPING MAGNETIC RECONNECTION TRIGGERING A SOLAR ERUPTION OF A TRIANGLE-SHAPED FLAG FLUX ROPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ting; Zhang, Jun, E-mail: liting@nao.cas.cn, E-mail: zjun@nao.cas.cn

    2014-08-10

    We report the first simultaneous activities of the slipping motion of flare loops and a slipping eruption of a flux rope in 131 Å and 94 Å channels on 2014 February 2. The east hook-like flare ribbon propagated with a slipping motion at a speed of about 50 km s{sup –1}, which lasted about 40 minutes and extended by more than 100 Mm, but the west flare ribbon moved in the opposite direction with a speed of 30 km s{sup –1}. At the later phase of flare activity, there was a well developed ''bi-fan'' system of flare loops. The east footpoints ofmore » the flux rope showed an apparent slipping motion along the hook of the ribbon. Simultaneously, the fine structures of the flux rope rose up rapidly at a speed of 130 km s{sup –1}, much faster than that of the whole flux rope. We infer that the east footpoints of the flux rope are successively heated by a slipping magnetic reconnection during the flare, which results in the apparent slippage of the flux rope. The slipping motion delineates a ''triangle-shaped flag surface'' of the flux rope, implying that the topology of a flux rope is more complex than anticipated.« less

  19. Solar Scientist Confirm Existence of Flux Ropes on the Sun

    NASA Image and Video Library

    2013-02-14

    Caption: This is an image of magnetic loops on the sun, captured by NASA's Solar Dynamics Observatory (SDO). It has been processed to highlight the edges of each loop to make the structure more clear. A series of loops such as this is known as a flux rope, and these lie at the heart of eruptions on the sun known as coronal mass ejections (CMEs.) This is the first time scientists were able to discern the timing of a flux rope's formation. (SDO AIA 131 and 171 difference blended image of flux ropes during CME.) Credit: NASA/Goddard Space Flight Center/SDO ---- On July 18, 2012, a fairly small explosion of light burst off the lower right limb of the sun. Such flares often come with an associated eruption of solar material, known as a coronal mass ejection or CME – but this one did not. Something interesting did happen, however. Magnetic field lines in this area of the sun's atmosphere, the corona, began to twist and kink, generating the hottest solar material – a charged gas called plasma – to trace out the newly-formed slinky shape. The plasma glowed brightly in extreme ultraviolet images from the Atmospheric Imaging Assembly (AIA) aboard NASA’s Solar Dynamics Observatory (SDO) and scientists were able to watch for the first time the very formation of something they had long theorized was at the heart of many eruptive events on the sun: a flux rope. Eight hours later, on July 19, the same region flared again. This time the flux rope's connection to the sun was severed, and the magnetic fields escaped into space, dragging billions of tons of solar material along for the ride -- a classic CME. "Seeing this structure was amazing," says Angelos Vourlidas, a solar scientist at the Naval Research Laboratory in Washington, D.C. "It looks exactly like the cartoon sketches theorists have been drawing of flux ropes since the 1970s. It was a series of figure eights lined up to look like a giant slinky on the sun." To read more about this new discovery go to: 1.usa.gov/14UHsTt

  20. Solar Scientist Confirm Existence of Flux Ropes on the Sun

    NASA Image and Video Library

    2017-12-08

    Caption: This is an image of magnetic loops on the sun, captured by NASA's Solar Dynamics Observatory (SDO). It has been processed to highlight the edges of each loop to make the structure more clear. A series of loops such as this is known as a flux rope, and these lie at the heart of eruptions on the sun known as coronal mass ejections (CMEs.) This is the first time scientists were able to discern the timing of a flux rope's formation. (SDO AIA 131 and 171 difference blended image of flux ropes during CME.) Credit: NASA/Goddard Space Flight Center/SDO ---- On July 18, 2012, a fairly small explosion of light burst off the lower right limb of the sun. Such flares often come with an associated eruption of solar material, known as a coronal mass ejection or CME – but this one did not. Something interesting did happen, however. Magnetic field lines in this area of the sun's atmosphere, the corona, began to twist and kink, generating the hottest solar material – a charged gas called plasma – to trace out the newly-formed slinky shape. The plasma glowed brightly in extreme ultraviolet images from the Atmospheric Imaging Assembly (AIA) aboard NASA’s Solar Dynamics Observatory (SDO) and scientists were able to watch for the first time the very formation of something they had long theorized was at the heart of many eruptive events on the sun: a flux rope. Eight hours later, on July 19, the same region flared again. This time the flux rope's connection to the sun was severed, and the magnetic fields escaped into space, dragging billions of tons of solar material along for the ride -- a classic CME. "Seeing this structure was amazing," says Angelos Vourlidas, a solar scientist at the Naval Research Laboratory in Washington, D.C. "It looks exactly like the cartoon sketches theorists have been drawing of flux ropes since the 1970s. It was a series of figure eights lined up to look like a giant slinky on the sun." To read more about this new discovery go to: 1.usa.gov/14UHsTt

  1. Magnetic Flux Rope Identification and Characterization from Observationally Driven Solar Coronal Models

    NASA Astrophysics Data System (ADS)

    Lowder, Chris; Yeates, Anthony

    2017-09-01

    Formed through magnetic field shearing and reconnection in the solar corona, magnetic flux ropes are structures of twisted magnetic field, threaded along an axis. Their evolution and potential eruption are of great importance for space weather. Here we describe a new methodology for the automated detection of flux ropes in simulated magnetic fields, utilizing field-line helicity. Our Flux Rope Detection and Organization (FRoDO) code, which measures the magnetic flux and helicity content of pre-erupting flux ropes over time, as well as detecting eruptions, is publicly available. As a first demonstration, the code is applied to the output from a time-dependent magnetofrictional model, spanning 1996 June 15-2014 February 10. Over this period, 1561 erupting and 2099 non-erupting magnetic flux ropes are detected, tracked, and characterized. For this particular model data, erupting flux ropes have a mean net helicity magnitude of 2.66× {10}43 Mx2, while non-erupting flux ropes have a significantly lower mean of 4.04× {10}42 Mx2, although there is overlap between the two distributions. Similarly, the mean unsigned magnetic flux for erupting flux ropes is 4.04× {10}21 Mx, significantly higher than the mean value of 7.05× {10}20 Mx for non-erupting ropes. These values for erupting flux ropes are within the broad range expected from observational and theoretical estimates, although the eruption rate in this particular model is lower than that of observed coronal mass ejections. In the future, the FRoDO code will prove to be a valuable tool for assessing the performance of different non-potential coronal simulations and comparing them with observations.

  2. Scented guide ropes as a method to enhance brown treesnake (Boiga irregularis) trap capture success on Guam

    USGS Publications Warehouse

    Mason, L.C.; Savidge, J.A.; Rodda, G.H.; Yackel Adams, A.A.

    2011-01-01

    Current methods for controlling the invasive Brown Treesnake (Boiga irregularis) on Guam include a modified minnow trap with a live mouse lure. We investigated the effects on capture success of augmenting these traps with scented guide ropes leading to trap entrances. Initial screening of scent preferences was based on time spent in scented and unscented arms of a Y-maze. Preferences of large and small snakes were scored for six different prey scents (live and carrion gecko, skink, and mouse). Large snakes spent more time in the maze arm scented with live gecko and carrion gecko, whereas small snakes spent more time in the arm scented with carrion mouse and carrion gecko. After the laboratory study, a pilot trapping session was conducted in the field using three treatments (live mouse-scented ropes, carrion gecko-scented ropes, and carrion mouse-scented ropes) and two controls (traps with unscented guide ropes and those with no ropes attached). Contrary to laboratory results, live mouse-scented ropes were most effective. We conducted a second trapping session using live mouse-scented ropes as well as the two controls used in the pilot study. For snakes of below-average to average condition, the number of captures for traps with live mouse-scented ropes was higher than for traps with no ropes. However, for snakes of above-average condition, there were no differences in capture rates between trap treatments. Overall, treatment effects were weaker than latent individual heterogeneity and the influence of snake body size, with large snakes trapped more readily. ?? 2011 Society for the Study of Amphibians and Reptiles.

  3. Interstitial lung disease due to fumes from heat-cutting polymer rope.

    PubMed

    Sharman, P; Wood-Baker, R

    2013-09-01

    Interstitial lung disease (ILD) due to inhalation of fume/smoke from heating or burning of synthetic polymers has not been reported previously. A fish farm worker developed ILD after cutting rope (polypropylene and nylon) for about 2 hours per day over an extended period using an electrically heated 'knife'. This process produced fume/smoke that entered the workers breathing zone. No other likely cause was identified. This case suggests that exposure to airborne contaminants generated by the heating or burning of synthetic polymers has the potential to cause serious lung disease.

  4. Magnetohydrodynamic simulations of the ejection of a magnetic flux rope

    NASA Astrophysics Data System (ADS)

    Pagano, P.; Mackay, D. H.; Poedts, S.

    2013-06-01

    Context. Coronal mass ejections (CME's) are one of the most violent phenomena found on the Sun. One model to explain their occurrence is the flux rope ejection model. In this model, magnetic flux ropes form slowly over time periods of days to weeks. They then lose equilibrium and are ejected from the solar corona over a few hours. The contrasting time scales of formation and ejection pose a serious problem for numerical simulations. Aims: We simulate the whole life span of a flux rope from slow formation to rapid ejection and investigate whether magnetic flux ropes formed from a continuous magnetic field distribution, during a quasi-static evolution, can erupt to produce a CME. Methods: To model the full life span of magnetic flux ropes we couple two models. The global non-linear force-free field (GNLFFF) evolution model is used to follow the quasi-static formation of a flux rope. The MHD code ARMVAC is used to simulate the production of a CME through the loss of equilibrium and ejection of this flux rope. Results: We show that the two distinct models may be successfully coupled and that the flux rope is ejected out of our simulation box, where the outer boundary is placed at 2.5 R⊙. The plasma expelled during the flux rope ejection travels outward at a speed of 100 km s-1, which is consistent with the observed speed of CMEs in the low corona. Conclusions: Our work shows that flux ropes formed in the GNLFFF can lead to the ejection of a mass loaded magnetic flux rope in full MHD simulations. Coupling the two distinct models opens up a new avenue of research to investigate phenomena where different phases of their evolution occur on drastically different time scales. Movies are available in electronic form at http://www.aanda.org

  5. 46 CFR 108.497 - Fireman's outfits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... belt or a suitable harness; (2) Is made of bronze wire rope, inherently corrosion resistant steel wire rope, or galvanized or tinned steel wire rope; (3) Is made up of enough 15.2 meters (50 foot) or greater lengths of wire rope to permit use of the outfit in any location on the unit; (4) Has each end...

  6. 46 CFR 108.497 - Fireman's outfits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... belt or a suitable harness; (2) Is made of bronze wire rope, inherently corrosion resistant steel wire rope, or galvanized or tinned steel wire rope; (3) Is made up of enough 15.2 meters (50 foot) or greater lengths of wire rope to permit use of the outfit in any location on the unit; (4) Has each end...

  7. Synthetic rope applications in Appalachian logging

    Treesearch

    Ben D. Spong; Jingxin Wang

    2008-01-01

    New ultra-high molecular weight polyethylene rope has shown good results as a replacement for wire rope in logging applications in the western United States. A single case study trial was performed in Appalachian forest conditions to assess the appropriateness of this technology for hardwood logging applications. The study focused on use of the rope in West Virginia...

  8. 33 CFR 165.803 - Mississippi River-regulated navigation area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... breaking strength of three parts of 7/8 inch diameter wire rope; or (3) Fixed rigging that is at least... end of the tier is secured to at least one mooring device. (3) Each wire rope used between the... inch diameter wire rope. (4) Each wire rope used between the downstream end of a barge and a mooring...

  9. 33 CFR 165.803 - Mississippi River-regulated navigation area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... breaking strength of three parts of 7/8 inch diameter wire rope; or (3) Fixed rigging that is at least... end of the tier is secured to at least one mooring device. (3) Each wire rope used between the... inch diameter wire rope. (4) Each wire rope used between the downstream end of a barge and a mooring...

  10. 33 CFR 165.803 - Mississippi River-regulated navigation area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... breaking strength of three parts of 7/8 inch diameter wire rope; or (3) Fixed rigging that is at least... end of the tier is secured to at least one mooring device. (3) Each wire rope used between the... inch diameter wire rope. (4) Each wire rope used between the downstream end of a barge and a mooring...

  11. 33 CFR 165.803 - Mississippi River-regulated navigation area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... breaking strength of three parts of 7/8 inch diameter wire rope; or (3) Fixed rigging that is at least... end of the tier is secured to at least one mooring device. (3) Each wire rope used between the... inch diameter wire rope. (4) Each wire rope used between the downstream end of a barge and a mooring...

  12. 46 CFR 108.497 - Fireman's outfits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... belt or a suitable harness; (2) Is made of bronze wire rope, inherently corrosion resistant steel wire rope, or galvanized or tinned steel wire rope; (3) Is made up of enough 15.2 meters (50 foot) or greater lengths of wire rope to permit use of the outfit in any location on the unit; (4) Has each end...

  13. 46 CFR 108.497 - Fireman's outfits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... belt or a suitable harness; (2) Is made of bronze wire rope, inherently corrosion resistant steel wire rope, or galvanized or tinned steel wire rope; (3) Is made up of enough 15.2 meters (50 foot) or greater lengths of wire rope to permit use of the outfit in any location on the unit; (4) Has each end...

  14. 46 CFR 108.497 - Fireman's outfits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... belt or a suitable harness; (2) Is made of bronze wire rope, inherently corrosion resistant steel wire rope, or galvanized or tinned steel wire rope; (3) Is made up of enough 15.2 meters (50 foot) or greater lengths of wire rope to permit use of the outfit in any location on the unit; (4) Has each end...

  15. 30 CFR 57.19021 - Minimum rope strength.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...=Static Load×4.0. (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load×(7.0−0.0005L) For rope lengths 4,000 feet or greater: Minimum Value=Static Load×5.0. (c) Tail....19021 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL...

  16. 30 CFR 57.19021 - Minimum rope strength.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...=Static Load×4.0. (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load×(7.0−0.0005L) For rope lengths 4,000 feet or greater: Minimum Value=Static Load×5.0. (c) Tail....19021 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL...

  17. Strawberry Shortcake and Other Jumping Rope Ideas.

    ERIC Educational Resources Information Center

    Adams, Polly K.; Taylor, Michaell K.

    Information, guidelines, and activities for jumping rope are given. A short history of jumping rope explains how it evolved from a spring ritual for men to a play activity involving mostly young girls. Physical and cultural reasons are given as to why jumping rope has been more a sport for girls than for boys. Research studies are noted which show…

  18. U.S. Navy Wire-Rope Handbook. Volume 2. Wire-Rope Analysis and Design Data

    DTIC Science & Technology

    1976-01-01

    beneficial from the standpoint of wire - bending stress. How- ever, there is a design trade-off here in that the smaller L/d becomes, the lower are the...wires of a rope, it is first necessary to determine the radii of curvature of the wires prior to and after bending the rope. The wire - bending stress can... wire bending stress. 4.3. CONTACT STRESSES Contact stresses in a wire rope are one of the most important determinants of its fatigue life and are, by far

  19. Modeling Magnetic Flux-Ropes Structures

    NASA Astrophysics Data System (ADS)

    Nieves-Chinchilla, T.; Linton, M.; Hidalgo, M. A. U.; Vourlidas, A.; Savani, N.; Szabo, A.; Farrugia, C. J.; Yu, W.

    2015-12-01

    Flux-ropes are usually associated with magnetic structures embedded in the interplanetary Coronal Mass Ejections (ICMEs) with a depressed proton temperature (called Magnetic Clouds, MCs). However, small-scale flux-ropes in the solar wind are also identified with different formation, evolution, and dynamic involved. We present an analytical model to describe magnetic flux-rope topologies. The model is generalized to different grades of complexity. It extends the circular-cylindrical concept of Hidalgo et al. (2002) by introducing a general form for the radial dependence of the current density. This generalization provides information on the force distribution inside the flux rope in addition to the usual parameters of flux-rope geometrical information and orientation. The generalized model provides flexibility for implementation in 3-D MHD simulations.

  20. The ancient art of laying rope

    NASA Astrophysics Data System (ADS)

    Bohr, J.; Olsen, K.

    2011-03-01

    We describe a geometrical property of helical structures and show how it accounts for the early art of rope-making. Helices have a maximum number of rotations that can be added to them — and it is shown that this is a geometrical feature, not a material property. This geometrical insight explains why nearly identically appearing ropes can be made from very different materials and it is also the reason behind the unyielding nature of ropes. Maximally rotated strands behave as zero-twist structures. Hence, under strain they neither rotate in one direction nor in the other. The necessity for the rope to be stretched while being laid, known from Egyptian tomb scenes, follows straightforwardly, as does the function of the top, an old tool for laying ropes.

  1. SLIPPING MAGNETIC RECONNECTION OF FLUX-ROPE STRUCTURES AS A PRECURSOR TO AN ERUPTIVE X-CLASS SOLAR FLARE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ting; Hou, Yijun; Zhang, Jun

    We present the quasi-periodic slipping motion of flux-rope structures prior to the onset of an eruptive X-class flare on 2015 March 11, obtained by the Interface Region Imaging Spectrograph and the Solar Dynamics Observatory . The slipping motion occurred at the north part of the flux rope and seemed to successively peel off the flux rope. The speed of the slippage was 30−40 km s{sup −1}, with an average period of 130 ± 30 s. The Si iv λ 1402.77 line showed a redshift of 10−30 km s{sup −1} and a line width of 50−120 km s{sup −1} at themore » west legs of slipping structures, indicative of reconnection downflow. The slipping motion lasted about 40 minutes, and the flux rope started to rise up slowly at the late stage of the slippage. Then an X2.1 flare was initiated, and the flux rope was impulsively accelerated. One of the flare ribbons swept across a negative-polarity sunspot, and the penumbral segments of the sunspot decayed rapidly after the flare. We studied the magnetic topology at the flaring region, and the results showed the existence of a twisted flux rope, together with quasi-separatrix layer (QSL) structures binding the flux rope. Our observations imply that quasi-periodic slipping magnetic reconnection occurs along the flux-rope-related QSLs in the preflare stage, which drives the later eruption of the flux rope and the associated flare.« less

  2. MHD Simulations of the Eruption of Coronal Flux Ropes under Coronal Streamers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Yuhong, E-mail: yfan@ucar.edu

    Using three-dimensional magnetohydrodynamic (MHD) simulations, we investigate the eruption of coronal flux ropes underlying coronal streamers and the development of a prominence eruption. We initialize a quasi-steady solution of a coronal helmet streamer, into which we impose at the lower boundary the slow emergence of a part of a twisted magnetic torus. As a result, a quasi-equilibrium flux rope is built up under the streamer. With varying streamer sizes and different lengths and total twists of the flux rope that emerges, we found different scenarios for the evolution from quasi-equilibrium to eruption. In the cases with a broad streamer, themore » flux rope remains well confined until there is sufficient twist such that it first develops the kink instability and evolves through a sequence of kinked, confined states with increasing height until it eventually develops a “hernia-like” ejective eruption. For significantly twisted flux ropes, prominence condensations form in the dips of the twisted field lines due to runaway radiative cooling. Once formed, the prominence-carrying field becomes significantly non-force-free due to the weight of the prominence, despite having low plasma β . As the flux rope erupts, the prominence erupts, showing substantial draining along the legs of the erupting flux rope. The prominence may not show a kinked morphology even though the flux rope becomes kinked. On the other hand, in the case with a narrow streamer, the flux rope with less than one wind of twist can erupt via the onset of the torus instability.« less

  3. Slow rise and partial eruption of a double-decker filament. II. A double flux rope model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kliem, Bernhard; Török, Tibor; Titov, Viacheslav S.

    2014-09-10

    Force-free equilibria containing two vertically arranged magnetic flux ropes of like chirality and current direction are considered as a model for split filaments/prominences and filament-sigmoid systems. Such equilibria are constructed analytically through an extension of the methods developed in Titov and Démoulin and numerically through an evolutionary sequence including shear flows, flux emergence, and flux cancellation in the photospheric boundary. It is demonstrated that the analytical equilibria are stable if an external toroidal (shear) field component exceeding a threshold value is included. If this component decreases sufficiently, then both flux ropes turn unstable for conditions typical of solar active regions,more » with the lower rope typically becoming unstable first. Either both flux ropes erupt upward, or only the upper rope erupts while the lower rope reconnects with the ambient flux low in the corona and is destroyed. However, for shear field strengths staying somewhat above the threshold value, the configuration also admits evolutions which lead to partial eruptions with only the upper flux rope becoming unstable and the lower one remaining in place. This can be triggered by a transfer of flux and current from the lower to the upper rope, as suggested by the observations of a split filament in Paper I. It can also result from tether-cutting reconnection with the ambient flux at the X-type structure between the flux ropes, which similarly influences their stability properties in opposite ways. This is demonstrated for the numerically constructed equilibrium.« less

  4. Experimental study of a linear/non-linear flux rope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeHaas, Timothy; Gekelman, Walter; Van Compernolle, Bart

    2015-08-15

    Flux ropes are magnetic structures of helical field lines, accompanied by spiraling currents. Commonly observed on the solar surface extending into the solar atmosphere, flux ropes are naturally occurring and have been observed by satellites in the near earth and in laboratory environments. In this experiment, a single flux rope (r = 2.5 cm, L = 1100 cm) was formed in the cylindrical, magnetized plasma of the Large Plasma Device (LaPD, L = 2200 cm, r{sub plasma} = 30 cm, n{sub o} = 10{sup 12 }cm{sup −3}, T{sub e} = 4 eV, He). The flux rope was generated by a DC discharge between an electron emitting cathode and anode. This fixes the rope at its source while allowingmore » it to freely move about the anode. At large currents (I > πr{sup 2}B{sub 0}c/2 L), the flux rope becomes helical in structure and oscillates about a central axis. Under varying Alfven speeds and injection current, the transition of the flux rope from stable to kink-unstable was examined. As it becomes non-linear, oscillations in the magnetic signals shift from sinusoidal to Sawtooth-like, associated with elliptical motion of the flux rope; or the signal becomes intermittent as its current density increases.« less

  5. 29 CFR 1919.33 - Proof tests-wire rope.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Proof tests-wire rope. 1919.33 Section 1919.33 Labor... Persons § 1919.33 Proof tests—wire rope. Wire rope, except as provided in § 1919.14(b), shall be tested by... acceptable to the Administration on the basis of design, shall not exceed one-fifth of the breaking load of...

  6. 29 CFR 1919.33 - Proof tests-wire rope.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Proof tests-wire rope. 1919.33 Section 1919.33 Labor... Persons § 1919.33 Proof tests—wire rope. Wire rope, except as provided in § 1919.14(b), shall be tested by... acceptable to the Administration on the basis of design, shall not exceed one-fifth of the breaking load of...

  7. 29 CFR 1919.33 - Proof tests-wire rope.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Proof tests-wire rope. 1919.33 Section 1919.33 Labor... Persons § 1919.33 Proof tests—wire rope. Wire rope, except as provided in § 1919.14(b), shall be tested by... acceptable to the Administration on the basis of design, shall not exceed one-fifth of the breaking load of...

  8. Rope culture of the kelp Laminaria groenlandica in Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, R.J.; Calvin, N.I.

    1981-02-01

    This paper is an account of rope culture of the brown seaweed or kelp, Laminaria groenlandica, in Alaska. It describes the placement of the ropes, time of first appearance of young L. groenlandica, size of the plants at various ages, and other life history features applicable to the use of rope for the culture of seaweeds in Alaska. (Refs. 3).

  9. A comparison of problem-solving and spatial orientation in the wolf (Canis lupus) and dog (Canis familiaris).

    PubMed

    Hiestand, Laurie

    2011-11-01

    In this study I tested Benson Ginsburg's theory that dogs should show diminished ability, compared to wolves, in orienting in three-dimensional space and manipulating objects sequentially. Dogs of all ages and juvenile wolves should do poorly on these measures, but at some time before sexual maturity, the juvenile wolves should begin improving to the level of adult wolves. Two adult and seven juvenile wolves were compared with 40 adult German shepherds. The initial task was to pull a single rope suspended from the ceiling; complexity was increased by the addition of ropes and by changing spatial configurations. Adult wolf performance was consistently successful across all tests and requirements. Juvenile wolves had little difficulty with one and two rope tests, but did more poorly in the three rope tests. The behavior of the dogs grouped into four profiles (# of dogs): non-responders (6), one rope (15), two rope (14), and three rope responders (5).

  10. The Role of Kinetic Alfven Waves in Plasma Transport in an Ion-scale Flux Rope

    NASA Astrophysics Data System (ADS)

    Tang, B.; Li, W.; Wang, C.; Dai, L.

    2017-12-01

    Magnetic flux ropes, if generated by multiply X-line reconnections, would be born as a crater type one, meaning the plasma density within is relatively high. They will then evolve into typical flux ropes as plasma are transported away along the magnetic field lines [Zhang et al., 2010]. In this study, we report an ion-scale flux rope observed by MMS on November 28, 2016, which is accompanied by strong kinetic Alfven waves (KAW). The related wave parallel electric field can effectively accelerate electrons inside the flux rope by Landau resonance, resulting into a significant decrease of the electron at 90° pitch angle. The change of electron pitch angle distribution would cause the rapid plasma transport along the magnetic field lines, and help the flux rope evolve into a strong magnetic core in a short time. This wave-particle interaction would be a candidate mechanism to explain the rareness of crater flux ropes in reality.

  11. Dual-spacecraft reconstruction of a three-dimensional magnetic flux rope at the Earth's magnetopause

    DOE PAGES

    Hasegawa, H.; Sonnerup, B. U. Ö.; Eriksson, S.; ...

    2015-02-03

    We present the first results of a data analysis method, developed by Sonnerup and Hasegawa (2011), for reconstructing three-dimensional (3-D), magnetohydrostatic structures from data taken as two closely spaced satellites traverse the structures. The method is applied to a magnetic flux transfer event (FTE), which was encountered on 27 June 2007 by at least three (TH-C, TH-D, and TH-E) of the five THEMIS probes near the subsolar magnetopause. The FTE was sandwiched between two oppositely directed reconnection jets under a southward interplanetary magnetic field condition, consistent with its generation by multiple X-line reconnection. The recovered 3-D field indicates that amore » magnetic flux rope with a diameter of ~ 3000 km was embedded in the magnetopause. The FTE flux rope had a significant 3-D structure, because the 3-D field reconstructed from the data from TH-C and TH-D (separated by ~ 390 km) better predicts magnetic field variations actually measured along the TH-E path than does the 2-D Grad–Shafranov reconstruction using the data from TH-C (which was closer to TH-E than TH-D and was at ~ 1250 km from TH-E). Such a 3-D nature suggests that the field lines reconnected at the two X-lines on both sides of the flux rope are entangled in a complicated way through their interaction with each other. The generation process of the observed 3-D flux rope is discussed on the basis of the reconstruction results and the pitch-angle distribution of electrons observed in and around the FTE.« less

  12. AMMPHS Trial Report CFB Valcartier, 28 September to 9 October 2009 (Compte Rendu D’Essais pour le AMMPHS BFC Valcartier du 28 Septembre au 9 Octobre 2009)

    DTIC Science & Technology

    2010-03-01

    14 FIGURE 18: TUNNEL AND ROPE CLIMB...15 Tunnel and Rope Climb: Participants were required to run through a tunnel and ascend a rope ladder at the end; Figure 18: Tunnel and Rope...de la massagerie tels que PDA, telephones intelligents, Blackberry , etc. Note

  13. Evolution of flux ropes in the magnetotail: A three-dimensional global hybrid simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, S.; State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing; Lin, Y.

    2015-05-15

    Flux ropes in the Earth's magnetotail are widely believed to play a crucial role in energy transport during substorms and the generation of energetic particles. Previous kinetic simulations are limited to the local-scale regime, and thus cannot be used to study the structure associated with the geomagnetic field and the global-scale evolution of the flux ropes. Here, the evolution of flux ropes in the magnetotail under a steady southward interplanetary magnetic field are studied with a newly developed three-dimensional global hybrid simulation model for dynamics ranging from the ion Larmor radius to the global convection time scales. Magnetic reconnection withmore » multiple X-lines is found to take place in the near-tail current sheet at geocentric solar magnetospheric distances x=−30R{sub E}∼−15R{sub E} around the equatorial plane (z=0). The magnetotail reconnection layer is turbulent, with a nonuniform structure and unsteady evolution, and exhibits properties of typical collisionless fast reconnection with the Hall effect. A number of small-scale flux ropes are generated through the multiple X-line reconnection. The diameter of the flux ropes is several R{sub E}, and the spatial scale of the flux ropes in the dawn-dusk direction is on the order of several R{sub E} and does not extend across the entire section of the magnetotail, contrary to previous models and MHD simulation results and showing the importance of the three-dimensional effects. The nonuniform and unsteady multiple X-line reconnection with particle kinetic effects leads to various kinds of flux rope evolution: The small-scale flux ropes propagate earthward or tailward after formation, and eventually merge into the near-Earth region or the mid-/distant-tail plasmoid, respectively. During the propagation, some of the flux ropes can be tilted in the geocentric solar magnetospheric (x,y) plane with respect to the y (dawn-dusk) axis. Coalescence between flux ropes is also observed. At the same time, the evolution of the flux ropes in the multiple X-line reconnection layer can also lead to the acceleration and heating of ions.« less

  14. ROPES reveals past land cover and pollen productivity estimates from single pollen records

    NASA Astrophysics Data System (ADS)

    Theuerkauf, Martin; Couwenberg, John

    2018-04-01

    Quantitative reconstructions of past vegetation cover commonly require pollen productivity estimates (PPEs). PPEs are calibrated in extensive and rather cumbersome surface-sample studies, and are so far only available for selected regions. Moreover, it may be questioned whether present-day pollen-landcover relationships are valid for palaeo-situations. We here introduce the ROPES approach that simultaneously derives PPEs and mean plant abundances from single pollen records. ROPES requires pollen counts and pollen accumulation rates (PARs, grains cm-2 year-1). Pollen counts are used to reconstruct plant abundances following the REVEALS approach. The principle of ROPES is that changes in plant abundance are linearly represented in observed PAR values. For example, if the PAR of pine doubles, so should the REVEALS reconstructed abundance of pine. Consequently, if a REVEALS reconstruction is ‘correct’ (i.e. ‘correct’ PPEs are used) the ratio ‘PAR over REVEALS’ is constant for each taxon along all samples of a record. With incorrect PPEs, the ratio will instead vary. ROPES starts from random (likely incorrect) PPEs, but then adjusts them using an optimization algorithm with the aim to minimize variation in the ‘PAR over REVEALS’ ratio across the record. ROPES thus simultaneously calculates mean plant abundances and PPEs. We illustrate the approach with test applications on nine synthetic pollen records. The results show that good performance of ROPES requires data sets with high underlying variation, many samples and low noise in the PAR data. ROPES can deliver first landcover reconstructions in regions for which PPEs are not yet available. The PPEs provided by ROPES may then allow for further REVEALS-based reconstructions. Similarly, ROPES can provide insight in pollen productivity during distinct periods of the past such as the Lateglacial. We see a potential to study spatial and temporal variation in pollen productivity for example in relation to site parameters, climate and land use. It may even be possible to detect expansion of non-pollen producing areas in a landscape. Overall, ROPES will help produce more accurate landcover reconstructions and expand reconstructions into new study regions and non-analogue situations of the past. ROPES will be available within the R package DISQOVER.

  15. Three-Dimensional Evolution of Flux-Rope CMEs and Its Relation to the Local Orientation of the Heliospheric Current Sheet

    NASA Astrophysics Data System (ADS)

    Isavnin, A.; Vourlidas, A.; Kilpua, E. K. J.

    2014-06-01

    Flux ropes ejected from the Sun may change their geometrical orientation during their evolution, which directly affects their geoeffectiveness. Therefore, it is crucial to understand how solar flux ropes evolve in the heliosphere to improve our space-weather forecasting tools. We present a follow-up study of the concepts described by Isavnin, Vourlidas, and Kilpua ( Solar Phys. 284, 203, 2013). We analyze 14 coronal mass ejections (CMEs), with clear flux-rope signatures, observed during the decay of Solar Cycle 23 and rise of Solar Cycle 24. First, we estimate initial orientations of the flux ropes at the origin using extreme-ultraviolet observations of post-eruption arcades and/or eruptive prominences. Then we reconstruct multi-viewpoint coronagraph observations of the CMEs from ≈ 2 to 30 R⊙ with a three-dimensional geometric representation of a flux rope to determine their geometrical parameters. Finally, we propagate the flux ropes from ≈ 30 R⊙ to 1 AU through MHD-simulated background solar wind while using in-situ measurements at 1 AU of the associated magnetic cloud as a constraint for the propagation technique. This methodology allows us to estimate the flux-rope orientation all the way from the Sun to 1 AU. We find that while the flux-ropes' deflection occurs predominantly below 30 R⊙, a significant amount of deflection and rotation happens between 30 R⊙ and 1 AU. We compare the flux-rope orientation to the local orientation of the heliospheric current sheet (HCS). We find that slow flux ropes tend to align with the streams of slow solar wind in the inner heliosphere. During the solar-cycle minimum the slow solar-wind channel as well as the HCS usually occupy the area in the vicinity of the solar equatorial plane, which in the past led researchers to the hypothesis that flux ropes align with the HCS. Our results show that exceptions from this rule are explained by interaction with the Parker-spiraled background magnetic field, which dominates over the magnetic interaction with the HCS in the inner heliosphere at least during solar-minimum conditions.

  16. Multiple Flux Rope Events at the High-Latitude Magnetopause: Cluster/Rapid Observation on January 26, 2001

    NASA Astrophysics Data System (ADS)

    Huang, Zong-Ying; Pu, Zu-Yin; Xiao, Chi-Jie; Xong, Qui-Gang; Fu, Sui-Yan; Xie, Lun; Shi, Quan-Qi; Cao, Jin-Bin; Liu, Zhen-Xing; Shen, Cao; Shi, Jian-Kui; Lu, Li; Wang, Nai-Quan; Chen, Tao; Fritz, T.; Glasmeier, K.-H.; Daly, P.; Reme, H.

    2004-04-01

    From 11:10 to 11:40UT on January 26, 2001 the four Cluster II spacecraft were located in the duskside high latitude regions of the magnetosheath and magnetosheath boundary layer (MSBL). During this time Interval the interplanetary magnetic field (IMF) had a negative Bz component. A detailed study on the multiple flux ropes (MFRs) observed in this period is conducted in this paper. It is found that: (1) The multiple flux ropes in the high latitude MSBL appeared quasi-periodically with a repeated time period of about 78s, which is much shorter than the averaged occurring period (about 8-11min) of the flux transfer events (FTEs) at the dayside magnetopause (MP). (2) All the flux ropes observed in this event had a strong core magnetic field. The axial orientation of the most flux ropes is found to lie in the direction of the minimum magnetic field variance; a few flux ropes had their axes lying in the direction of the middle magnetic field variance; while for the remainders their principle axes could not be determined by the method of Principal Axis Analysis (PAA). The reason that causes this complexity relys on the different trajectories of the spacecraft passing through the flux ropes. (3) Each flux rope had a good corresponding HT frame of reference in which it was in a quasi-steady state. All flux ropes moved along the surface of the MP in a similar direction indicating that these flux ropes all came from the dawnside low latitude. Their radial scale is 1-2RE, comparable to the normal diameter of FTEs observed atthe dayside MP. (4) The energetic ions originated from the magnetosphere flowed out to the magnetosheath on the whole, while the solar wind plasma flowed into the magnetosphere along the axis of the flux ropes. The flux ropes offered channels for the transport of the solar wind plasma into the magnetosphere and the escaping of the magnetospheric plasma into the interplanetary space. (5) Each event was accompanied by an enhanced reversal of the dusk-dawn electric field, which could be identified to be the convective electric field in nature.

  17. Experiments and simulations of flux rope dynamics in a plasma

    NASA Astrophysics Data System (ADS)

    Intrator, Thomas; Abbate, Sara; Ryutov, Dmitri

    2005-10-01

    The behavior of flux ropes is a key issue in solar, space and astrophysics. For instance, magnetic fields and currents on the Sun are sheared and twisted as they store energy, experience an as yet unidentified instability, open into interplanetary space, eject the plasma trapped in them, and cause a flare. The Reconnection Scaling Experiment (RSX) provides a simple means to systematically characterize the linear and non-linear evolution of driven, dissipative, unstable plasma-current filaments. Topology evolves in three dimensions, supports multiple modes, and can bifurcate to quasi-helical equilibria. The ultimate saturation to a nonlinear force and energy balance is the link to a spectrum of relaxation processes. RSX has adjustable energy density β1 to β 1, non-negligible equilibrium plasma flows, driven steady-state scenarios, and adjustable line tying at boundaries. We will show magnetic structure of a kinking, rotating single line tied column, magnetic reconnection between two flux ropes, and pictures of three braided flux ropes. We use computed simulation movies to bridge the gap between the solar physics scales and experimental data with computational modeling. In collaboration with Ivo Furno, Tsitsi Madziwa-Nussinovm Giovanni Lapenta, Adam Light, Los Alamos National Laboratory; Sara Abbate, Torino Polytecnico; and Dmitri Ryutov, Lawrence Livermore National Laboratory.

  18. Theoretical mechanisms for solar eruptions

    NASA Astrophysics Data System (ADS)

    Lin, Jun

    This thesis presents new theoretical models of solar eruptions which are derived from older models that involve a loss of equilibrium of the Sun's coronal magnetic field. These models consist of a magnetic flux rope nested within an arcade of magnetic loop. Prior to an eruption, the flux rope floats in the corona under a balance between magnetic compression and tension forces. When an eruption occurs, the magnetic compression exceeds the magnetic tension and causes the flux rope to be thrown outwards, away from the Sun. Three important factors which impact the occurrence and evolution of the eruptive processes are investigated. These factors are magnetic reconnection, new emerging flux, and the large scale curvature of the flux rope. First, our new results confirm that in the absence of reconnection, magnetic tension in two-dimensional configuration is always strong enough to prevent escape of the flux rope to infinity after it erupts. However, only a relatively small reconnection rate is needed to allow the flux rope to escape to infinity. Specifically, for a coronal density model that decreases exponentially with height we find that average Alfvén Mach number MA for the inflow into the reconnection site can be as small as M A = 0.005 and still be fast enough to give a plausible eruption. The best fit to observations is obtained by assuming an inflow rate on the order of MA ~ 0.1. Second, we have found that the emergence of new flux system in the vicinity of a preexisting flux rope can cause a loss of ideal-MHD equilibrium under certain circumstances. But the circumstances which lead to eruption are much richer and more complicated than commonly described in the existing literatures. Our model results suggest that the actual circumstances leading to an eruption are sensitive, not only to the polarity of the emerging region, but to several other parameters, such as its strength, distance, and area as well. The results also indicate that in general there is no simple, universal relation between the orientation of the emerging flux and the likelihood of an eruption. Finally, our research shows that the large-scale curvature of a flux rope increases the magnetic compression and helps propel it outwards. We also find that the maximum total magnetic energy which can be stored in our model before equilibrium is lost is 1.53 times the energy of the potential field, which is consistent with the theoretical limit, 1.662, for the fully opened field predicted by Aly [1991] and Sturrock [1991].

  19. Geometrical Relationship Between Interplanetary Flux Ropes and Their Solar Sources

    NASA Astrophysics Data System (ADS)

    Marubashi, K.; Akiyama, S.; Yashiro, S.; Gopalswamy, N.; Cho, K.-S.; Park, Y.-D.

    2015-05-01

    We investigated the physical connection between interplanetary flux ropes (IFRs) near Earth and coronal mass ejections (CMEs) by comparing the magnetic field structures of IFRs and CME source regions. The analysis is based on the list of 54 pairs of ICMEs (interplanetary coronal mass ejections) and CMEs that are taken to be the most probable solar source events. We first attempted to identify the flux rope structure in each of the 54 ICMEs by fitting models with a cylinder and torus magnetic field geometry, both with a force-free field structure. This analysis determined the possible geometries of the identified flux ropes. Then we compared the flux rope geometries with the magnetic field structure of the solar source regions. We obtained the following results: (1) Flux rope structures are seen in 51 ICMEs out of the 54. The result implies that all ICMEs have an intrinsic flux rope structure, if the three exceptional cases are attributed to unfavorable observation conditions. (2) It is possible to find flux rope geometries with the main axis orientation close to the orientation of the magnetic polarity inversion line (PIL) in the solar source regions, the differences being less than 25°. (3) The helicity sign of an IFR is strongly controlled by the location of the solar source: flux ropes with positive (negative) helicity are associated with sources in the southern (northern) hemisphere (six exceptions were found). (4) Over two-thirds of the sources in the northern hemisphere are concentrated along PILs with orientations of 45° ± 30° (measured clockwise from the east), and over two-thirds in the southern hemisphere along PILs with orientations of 135° ± 30°, both corresponding to the Hale boundaries. These results strongly support the idea that a flux rope with the main axis parallel to the PIL erupts in a CME and that the erupted flux rope propagates through the interplanetary space with its orientation maintained and is observed as an IFR.

  20. A Study of the Initiation Process of Coronal Mass Ejections and the Tool for Their Auto-Detection

    NASA Astrophysics Data System (ADS)

    Olmedo, Oscar

    Coronal mass ejections (CMEs) are the most energetic and important solar activity. They are often associated with other solar phenomena such as flares and filament/prominence eruptions. Despite the significant improvement of CME study in the past decade, our understanding of the initiation process of CMEs remains elusive. In order to solve this issue, an approach that combines theoretical modelling and empirical analysis is needed. This thesis is a combination of three studies, two of which investigate the initiation process of CMEs, and the other is the development of a tool to automatically detect CMEs. First, I investigate the stability of the well-known eruptive flux rope model in the context of the torus instability. In the flux rope model, the pre-eruptive CME structure is a helical flux rope with two footpoints anchored to the solar surface. The torus instability is dependent on the balance between two opposing magnetic forces, the outward Lorentz self-force (also called curvature hoop force) and the restoring Lorentz force of the ambient magnetic fields. Previously, the condition of stability derived for the torus instability assumed that the pre-eruptive structure was a semicircular loop above the photosphere without anchored footpoints. I extend these results to partial torus flux ropes of any circularity with anchored footpoints and discovered that there is a dependence of the critical index on the fractional number of the partial torus, defined by the ratio between the arc length of the partial torus above the photosphere and the circumference of a circular torus of equal radius. I coin this result the partial torus instability (PTI). The result is more general than has been previously derived and extends to loops of any arc above the photosphere. It will be demonstrated that these results can help us understand the confinement, growth, and eventual eruption of a flux rope CME. Second, I use observations of eruptive prominences associated with CMEs to examine the behaviour of their initiation and compare these observations to theoretical models. Since theoretical models specify the pre-existence of a flux rope, the observational challenge is the interpretation of the flux rope in solar images. A good proxy for flux ropes is prominences, because of its obvious elongated helical structure above the magnetic polarity line. I compare the prominence kinematics and the associated extrapolated magnetic fields. This observational study yields two key conclusions. The first is that there is a dependence of the ejecta's kinematics on how the ambient magnetic field decay's. The second is that the critical decay index, theorized to be where the flux rope transitions from a stable to unstable configuration, is dependent on the geometry of the loop. This second result is in qualitative agreement with the theorized PTI. Finally, I develop a tool to automatically detect CME events in coronagraph images. Because of the large amount of data collected over the years, searching for candidate events to study can be daunting. In order to facilitate the search of CME event candidates, an algorithm was developed to automatically detect and characterize CMEs seen in coronagraph images. With this tool, one need not scroll through the large number of images, and only focus on particular subsets. The auto-detection reduces human bias of CME characterization. Such automated detection algorithms can have other applications, such as space weather alerts in near-real time. In summary, this thesis has improved our understanding of the initiation process of CMEs by taking both theoretical and observational studies. Future work includes investigating a larger number of events to give a better statistical characterization of the results found in the observational study. Furthermore, modification to the theoretical model of the PTI, for example by ncluding a repulsive force due to induced photospheric currents, can improve the quantitative agreement with observations. The complete knowledge of the initiation of CMEs is important because it can help us to predict when such an event may occur. Such a prediction can aid in mitigating severe space weather effects at the Earth.

  1. Formation of a compound flux rope by the merging of two filament channels, the associated dynamics, and its stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Navin Chandra; Inoue, Satoshi; Magara, Tetsuya, E-mail: navin@khu.ac.kr, E-mail: njoshi98@gmail.com

    2014-11-01

    We present observations of compound flux rope formation, which occurred on 2014 January 1, via merging of two nearby filament channels, the associated dynamics, and its stability using multiwavelength data. We also discuss the dynamics of cool and hot plasma moving along the newly formed compound flux rope. The merging started after the interaction between the southern leg of the northward filament and the northern leg of the southward filament at ≈01:21 UT and continued until a compound flux rope formed at ≈01:33 UT. During the merging, the cool filament plasma heated up and started to move along both sidesmore » of the compound flux rope, i.e., toward the north (≈265 km s{sup –1}) and south (≈118 km s{sup –1}) from the point of merging. After traveling a distance of ≈150 Mm toward the north, the plasma cooled down and started to return back to the south (≈14 km s{sup –1}) after ≈02:00 UT. The observations provide a clear example of compound flux rope formation via merging of two different flux ropes and the occurrence of a flare through tether cutting reconnection. However, the compound flux rope remained stable in the corona and had a confined eruption. The coronal magnetic field decay index measurements revealed that both the filaments and the compound flux rope axis lie within the stability domain (decay index <1.5), which may be the possible cause for their stability. The present study also deals with the relationship between the filament's chirality (sinistral) and the helicity (positive) of the surrounding flux rope.« less

  2. 30 CFR 77.1437 - End attachment retermination.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... MINES Personnel Hoisting Wire Ropes § 77.1437 End attachment retermination. Damaged or deteriorated wire rope shall be removed by cutoff and the rope reterminated where there is— (a) More than one broken wire...

  3. 30 CFR 77.1437 - End attachment retermination.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... MINES Personnel Hoisting Wire Ropes § 77.1437 End attachment retermination. Damaged or deteriorated wire rope shall be removed by cutoff and the rope reterminated where there is— (a) More than one broken wire...

  4. 30 CFR 77.1437 - End attachment retermination.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... MINES Personnel Hoisting Wire Ropes § 77.1437 End attachment retermination. Damaged or deteriorated wire rope shall be removed by cutoff and the rope reterminated where there is— (a) More than one broken wire...

  5. 30 CFR 77.1437 - End attachment retermination.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... MINES Personnel Hoisting Wire Ropes § 77.1437 End attachment retermination. Damaged or deteriorated wire rope shall be removed by cutoff and the rope reterminated where there is— (a) More than one broken wire...

  6. Measurement of large strains in ropes using plastic optical fibers

    DOEpatents

    Williams, Jerry Gene; Smith, David Barton; Muhs, Jeffrey David

    2006-02-14

    A method for the direct measurement of large strains in ropes in situ using a plastic optical fiber, for example, perfluorocarbon or polymethyl methacrylate and Optical Time-Domain Reflectometer or other light time-of-flight measurement instrumentation. Protective sheaths and guides are incorporated to protect the plastic optical fiber. In one embodiment, a small rope is braided around the plastic optical fiber to impose lateral compressive forces to restrain the plastic optical fiber from slipping and thus experience the same strain as the rope. Methods are described for making reflective interfaces along the length of the plastic optical fiber and to provide the capability to measure strain within discrete segments of the rope. Interpretation of the data allows one to calculate the accumulated strain at any point in time and to determine if the rope has experienced local damage.

  7. Physics of magnetic flux ropes

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Priest, E. R.; Lee, L. C.

    The present work encompasses papers on the structure, waves, and instabilities of magnetic flux ropes (MFRs), photospheric flux tubes (PFTs), the structure and heating of coronal loops, solar prominences, coronal mass ejections and magnetic clouds, flux ropes in planetary ionospheres, the magnetopause, magnetospheric field-aligned currents and flux tubes, and the magnetotail. Attention is given to the equilibrium of MFRs, resistive instability, magnetic reconnection and turbulence in current sheets, dynamical effects and energy transport in intense flux tubes, waves in solar PFTs, twisted flux ropes in the solar corona, an electrodynamical model of solar flares, filament cooling and condensation in a sheared magnetic field, the magnetopause, the generation of twisted MFRs during magnetic reconnection, ionospheric flux ropes above the South Pole, substorms and MFR structures, evidence for flux ropes in the earth magnetotail, and MFRs in 3D MHD simulations.

  8. Observing Flux Rope Formation During the Impulsive Phase of a Solar Eruption

    NASA Astrophysics Data System (ADS)

    Cheng, Xin; Zhang, J.; Yang, L.; Ding, M.

    2011-05-01

    Magnetic flux rope is believed to be an important structural component of coronal mass ejections (CMEs). While there exist much observational evidence of the flux rope post the eruption, e.g., as seen in remote-sensing coronagraph images or in-situ solar wind data, the direct observation of flux ropes during CME impulsive phase has been rare or non-exist. In this Letter, we present an unambiguous observation of a flux rope still in the formation phase in the low corona. The CME of interest occurred above the east limb on 2010 November 03 with footpoints partially blocked. The flux rope was seen as a blob of hot plasma in AIA 131 A passband (peak temperature 11 MK) rising from the core of the source active region, rapidly moving outward and stretching upward the surrounding background magnetic field. The stretched magnetic field seemed to curve-in, similar to the classical magnetic reconnection scenario in eruptive flares. The flux rope was also seen as a dark cavity in AIA 211 A passpand (2.0 MK) and 171 A passband (0.6 MK); in these relatively cool temperature bands, a bright rim clearly enclosed the dark cavity. The bright rim likely represents the pile-up of the surrounding coronal plasma compressed by the expanding flux rope. The composite structure seen in AIA multiple temperature bands is very similar to that in the corresponding coronagraph images, which consists of a bright leading edge and a dark cavity, commonly believed to be a flux rope.

  9. How Well Can the Observed Flux Ropes in the Solar Wind be Fitted by a Uniform-twist Flux Rope Model?

    NASA Astrophysics Data System (ADS)

    Wang, Y.

    2015-12-01

    In the solar wind, flux ropes, e.g., magnetic clouds (MCs), are a frequently observational phenomenon. Their magnetic field configuration or the way that the field lines wind around the flux rope axis is one of the most important information to understand the formation and evolution of the observed flux ropes. Most MCs are believed to be in the force-free state, and widely modeled by the Lundquist force-free solution, in which the twist of the field line increases from zero at the axis to infinity at the boundary. However, Lundquist solution is not the only form of a force-free magnetic field. Some studies based on suprathermal electron observations and models have shown that MCs may carry magnetic field lines more likely to be uniformly twisted. The nonlinear force-free field extrapolation of solar magnetic field also suggests that the field lines of a flux rope twist limitedly. In this study, we have developed a velocity-modified uniform-twist force-free flux rope model, and fit observed MCs with this model. By using this approach, we test how well the observed MCs can be fitted into a uniform-twist flux rope. Some interesting results will be given in this presentation.

  10. 40 CFR 61.144 - Standard for manufacturing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., twine, rope, thread, yarn, roving, lap, or other textile materials. (2) The manufacture of cement... manufacturing facility, including air cleaning devices, process equipment, and buildings housing material...

  11. 40 CFR 61.144 - Standard for manufacturing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., twine, rope, thread, yarn, roving, lap, or other textile materials. (2) The manufacture of cement... manufacturing facility, including air cleaning devices, process equipment, and buildings housing material...

  12. 40 CFR 61.144 - Standard for manufacturing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., twine, rope, thread, yarn, roving, lap, or other textile materials. (2) The manufacture of cement... manufacturing facility, including air cleaning devices, process equipment, and buildings housing material...

  13. 40 CFR 61.144 - Standard for manufacturing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., twine, rope, thread, yarn, roving, lap, or other textile materials. (2) The manufacture of cement... manufacturing facility, including air cleaning devices, process equipment, and buildings housing material...

  14. 40 CFR 61.144 - Standard for manufacturing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., twine, rope, thread, yarn, roving, lap, or other textile materials. (2) The manufacture of cement... manufacturing facility, including air cleaning devices, process equipment, and buildings housing material...

  15. 30 CFR 56.19024 - Retirement criteria.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... wires within a rope lay length, excluding filler wires, exceeds either— (1) Five percent of the total... lay rope, more than one broken wire in the valley between strands in one rope lay length. (c) A loss...

  16. 30 CFR 57.19024 - Retirement criteria.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... broken wires within a rope lay length, excluding filler wires, exceeds either— (1) Five percent of the... regular lay rope, more than one broken wire in the valley between strands in one rope lay length. (c) A...

  17. 30 CFR 57.19027 - End attachment retermination.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Hoisting Wire Ropes § 57.19027 End attachment retermination. Damaged or deteriorated wire rope shall be removed by cutoff and the rope reterminated where there is— (a) More than one broken wire at an attachment...

  18. 30 CFR 57.19027 - End attachment retermination.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Hoisting Wire Ropes § 57.19027 End attachment retermination. Damaged or deteriorated wire rope shall be removed by cutoff and the rope reterminated where there is— (a) More than one broken wire at an attachment...

  19. 30 CFR 57.19027 - End attachment retermination.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Hoisting Wire Ropes § 57.19027 End attachment retermination. Damaged or deteriorated wire rope shall be removed by cutoff and the rope reterminated where there is— (a) More than one broken wire at an attachment...

  20. 30 CFR 56.19027 - End attachment retermination.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Hoisting Wire Ropes § 56.19027 End attachment retermination. Damaged or deteriorated wire rope shall be removed by cutoff and the rope reterminated where there is— (a) More than one broken wire at an attachment...

  1. 30 CFR 56.19027 - End attachment retermination.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Hoisting Wire Ropes § 56.19027 End attachment retermination. Damaged or deteriorated wire rope shall be removed by cutoff and the rope reterminated where there is— (a) More than one broken wire at an attachment...

  2. 30 CFR 57.19027 - End attachment retermination.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Hoisting Wire Ropes § 57.19027 End attachment retermination. Damaged or deteriorated wire rope shall be removed by cutoff and the rope reterminated where there is— (a) More than one broken wire at an attachment...

  3. 30 CFR 56.19027 - End attachment retermination.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Hoisting Wire Ropes § 56.19027 End attachment retermination. Damaged or deteriorated wire rope shall be removed by cutoff and the rope reterminated where there is— (a) More than one broken wire at an attachment...

  4. 30 CFR 56.19027 - End attachment retermination.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Hoisting Wire Ropes § 56.19027 End attachment retermination. Damaged or deteriorated wire rope shall be removed by cutoff and the rope reterminated where there is— (a) More than one broken wire at an attachment...

  5. 30 CFR 57.19027 - End attachment retermination.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Hoisting Wire Ropes § 57.19027 End attachment retermination. Damaged or deteriorated wire rope shall be removed by cutoff and the rope reterminated where there is— (a) More than one broken wire at an attachment...

  6. 30 CFR 56.19027 - End attachment retermination.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Hoisting Wire Ropes § 56.19027 End attachment retermination. Damaged or deteriorated wire rope shall be removed by cutoff and the rope reterminated where there is— (a) More than one broken wire at an attachment...

  7. The effects of dance music jump rope exercise on pulmonary function and body mass index after music jump rope exercise in overweight adults in 20's.

    PubMed

    Seo, KyoChul

    2017-08-01

    [Purpose] The purpose of this study was to examine the effect of a dance music jump rope exercise on changes Pulmonary Function and body mass index in female overweight subjects in their 20's. [Subjects and Methods] The subjects were randomly assigned to the dance music jump rope exercise group and the stationary cycle exercise group. All subjects have conducted the exercises three times a week for four weeks. Pulmonary function was evaluated using a spirometer, and body mass index was evaluated using an InBody 3.0. [Results] The findings of this study showed significant improvements in the voluntary capacity and body mass index of the experimental groups. Vital capacity was higher in the music jump rope exercise group than the stationary cycle exercise group, and body mass index was lower in the music jump rope exercise group than the stationary cycle exercise group. [Conclusion] This study showed that the dance music jump rope exercise can be used to improve vital capacity and body mass index.

  8. Magnetospheric Multiscale Mission Observations of Magnetic Flux Ropes in the Earth's Plasma Sheet

    NASA Astrophysics Data System (ADS)

    Slavin, J. A.; Akhavan-Tafti, M.; Poh, G.; Le, G.; Russell, C. T.; Nakamura, R.; Baumjohann, W.; Torbert, R. B.; Gershman, D. J.; Pollock, C. J.; Giles, B. L.; Moore, T. E.; Burch, J. L.

    2017-12-01

    A major discovery by the Cluster mission and the previous generation of science missions is the presence of earthward and tailward moving magnetic flux ropes in the Earth's plasma sheet. However, the lack of high-time resolution plasma measurements severely limited progress concerning the formation and evolution of these reconnection generated structures. We use high-time resolution magnetic and electric field and plasma measurements from the Magnetospheric Multiscale mission's first tail season to investigate: 1) the distribution of flux rope diameters relative to the local ion and electron inertial lengths; 2) the internal force balance sustaining these structures; and 3) the magnetic connectivity of the flux ropes to the Earth and/or the interplanetary medium; 4) the specific entropy of earthward moving flux ropes and the possible effect of "buoyancy" on how deep they penetrate into the inner magnetosphere; and 5) evidence for coalescence of adjacent flux ropes and/or the division of existing flux ropes through the formation of secondary X-lines. The results of these initial analyses will be discussed in terms of their implications for reconnection-driven magnetospheric dynamics and substorms.

  9. Pre-eruptive Magnetic Reconnection within a Multi-flux-rope System in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Awasthi, Arun Kumar; Liu, Rui; Wang, Haimin; Wang, Yuming; Shen, Chenglong

    2018-04-01

    The solar corona is frequently disrupted by coronal mass ejections (CMEs), whose core structure is believed to be a flux rope made of helical magnetic field. This has become a “standard” picture; though, it remains elusive how the flux rope forms and evolves toward eruption. While one-third of the ejecta passing through spacecraft demonstrate a flux-rope structure, the rest have complex magnetic fields. Are they originating from a coherent flux rope, too? Here we investigate the source region of a complex ejecta, focusing on a flare precursor with definitive signatures of magnetic reconnection, i.e., nonthermal electrons, flaring plasma, and bidirectional outflowing blobs. Aided by nonlinear force-free field modeling, we conclude that the reconnection occurs within a system of multiple braided flux ropes with different degrees of coherency. The observation signifies the importance of internal structure and dynamics in understanding CMEs and in predicting their impacts on Earth.

  10. Analogy motor learning by young children: a study of rope skipping.

    PubMed

    Tse, Andy C Y; Fong, Shirley S M; Wong, Thomson W L; Masters, Rich

    2017-03-01

    Research in psychology suggests that provision of an instruction by analogy can enhance acquisition and understanding of knowledge. Limited research has been conducted to test this proposition in motor learning by children. The purpose of the present study was to examine the feasibility of analogy instructions in motor skill acquisition by children. Thirty-two children were randomly assigned to one of the two instruction protocols: analogy and explicit instruction protocols for a two-week rope skipping training. Each participant completed a pretest (Lesson 1), three practice sessions (Lesson 2-4), a posttest and a secondary task test (Lesson 5). Children in the analogy protocol displayed better rope skip performance than those in the explicit instruction protocol (p < .001). Moreover, a cognitive secondary task test indicated that children in the analogy protocol performed more effectively, whereas children in the explicit protocol displayed decrements in performance. Analogy learning may aid children to acquire complex motor skills, and have potential benefits related to reduced cognitive processing requirements.

  11. Dynamics of Single Flux Rope in the Reconnection Scaling Experiment

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Sears, J.; Intrator, T.; Weber, T.; Swan, H.; Dunn, J. P.; Gao, K.; Chapdelaine, L.

    2013-12-01

    A magnetic flux tube threaded by current is a flux rope with helically twisted field lines. In the Reconnection Scaling Experiment (RSX) we use a plasma gun to generate a single flux rope with a choice of axial boundary conditions. If this flux rope is driven hard enough, i.e., when J●B /B2 is larger than the kink instability threshold, we measure a helically distorted kinked structure. Rather than exploding in an Alfvén time, this kink appears to saturate to a steady amplitude, helical, gyrating flux rope, which persists as long as the plasma gun sources the current. To understand it, we have experimentally measured three-dimensional (3D) profiles of various quantities of this flux rope. These quantities include magnetic field B, plasma density n and potential φ, ion flow velocity vi, so that current density J, electron flow velocity ve and electron pressure Pe can also be derived. Consequently we can analyze the single flux rope dynamics systematically in 3D. Besides gyrating (writhe), we also find the flux rope has a spin (twist) center, around which the J×B - ▽Pe ≠ 0 suggesting that there should be other forces for the radial balance. We also find that there is a reverse current moving around with the flux rope at some locations, i.e. there are local induced currents that are not at all apparent from measurements outside the 3D volume. Work supported by LANL-DOE, DOE Fusion Energy Sciences DE-AC52-06NA25396, NASA Geospace NNHIOA044I Basic, CMSO, SULI, NUF.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, T. A.; DeForest, C. E., E-mail: howard@boulder.swri.edu

    We present a data-driven narrative of the launch and early evolution of the magnetic structure that gave rise to the coronal mass ejection (CME) on 2008 December 12. The structure formed on December 7 and launched early on December 12. We interpret this structure as a flux rope based on prelaunch morphology, postlaunch magnetic measurements, and the lack of large-scale magnetic reconnection signatures at launch. We ascribe three separate onset mechanisms to the complete disconnection of the flux rope from the Sun. It took 19 hr for the flux rope to be fully removed from the Sun, by which timemore » the segment that first disconnected was around 40 R {sub ☉} away. This implies that the original flux rope was stretched or broken; we provide evidence for a possible bisection. A transient dark arcade was observed on the Sun that was later obscured by a bright arcade, which we interpret as the strapping field stretching and magnetically reconnecting as it disconnected from the coronal field. We identify three separate structures in coronagraph images to be manifestations of the same original flux rope, and we describe the implications for CME interpretation. We cite the rotation in the central flux rope vector of the magnetic clouds observed in situ by ACE/Wind and STEREO-B as evidence of the kink instability of the eastern segment of the flux rope. Finally, we discuss possible alternative narratives, including multiple prelaunch magnetic structures and the nonflux rope scenario. Our results support the view that, in at least some CMEs, flux rope formation occurs before launch.« less

  13. Observing Flux Rope Formation During the Impulsive Phase of a Solar Eruption

    NASA Astrophysics Data System (ADS)

    Cheng, X.; Zhang, J.; Liu, Y.; Ding, M. D.

    2011-05-01

    Magnetic flux ropes are believed to be an important structural component of coronal mass ejections (CMEs). While there exists much observational evidence of flux ropes after the eruption, e.g., as seen in remote-sensing coronagraph images or in situ solar wind data, the direct observation of flux ropes during CME impulsive phase has been rare. In this Letter, we present an unambiguous observation of a flux rope still in the formation phase in the low corona. The CME of interest occurred above the east limb on 2010 November 3 with footpoints partially blocked. The flux rope was seen as a bright blob of hot plasma in the Atmospheric Imaging Assembly (AIA) 131 Å passband (peak temperature ~11 MK) rising from the core of the source active region, rapidly moving outward and stretching the surrounding background magnetic field upward. The stretched magnetic field seemed to curve-in behind the core, similar to the classical magnetic reconnection scenario in eruptive flares. On the other hand, the flux rope appeared as a dark cavity in the AIA 211 Å passband (2.0 MK) and 171 Å passband (0.6 MK) in these relatively cool temperature bands, a bright rim clearly enclosed the dark cavity. The bright rim likely represents the pileup of the surrounding coronal plasma compressed by the expanding flux rope. The composite structure seen in AIA multiple temperature bands is very similar to that in the corresponding coronagraph images, which consists of a bright leading edge and a dark cavity, commonly believed to be a flux rope.

  14. Navigating the Grad School Application Process: A Training Schedule

    ERIC Educational Resources Information Center

    Swindlehurst, Garrett R.; Bullard, Lisa G.

    2014-01-01

    Through a simple step-by-step guide for navigating the graduate school application process, a graduate student who's been through the ringer and a faculty advisor who knows the ropes offer advice to walk prospective grad students through the process of successfully entering graduate school. A repeat printing.

  15. Magnetar giant flares in multipolar magnetic fields. I. Fully and partially open eruptions of flux ropes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lei; Yu, Cong, E-mail: muduri@shao.ac.cn, E-mail: cyu@ynao.ac.cn

    2014-04-01

    We propose a catastrophic eruption model for the enormous energy release of magnetars during giant flares, in which a toroidal and helically twisted flux rope is embedded within a force-free magnetosphere. The flux rope stays in stable equilibrium states initially and evolves quasi-statically. Upon the loss of equilibrium, the flux rope cannot sustain the stable equilibrium states and erupts catastrophically. During the process, the magnetic energy stored in the magnetosphere is rapidly released as the result of destabilization of global magnetic topology. The magnetospheric energy that could be accumulated is of vital importance for the outbursts of magnetars. We carefullymore » establish the fully open fields and partially open fields for various boundary conditions at the magnetar surface and study the relevant energy thresholds. By investigating the magnetic energy accumulated at the critical catastrophic point, we find that it is possible to drive fully open eruptions for dipole-dominated background fields. Nevertheless, it is hard to generate fully open magnetic eruptions for multipolar background fields. Given the observational importance of the multipolar magnetic fields in the vicinity of the magnetar surface, it would be worthwhile to explore the possibility of the alternative eruption approach in multipolar background fields. Fortunately, we find that flux ropes may give rise to partially open eruptions in the multipolar fields, which involve only partial opening of background fields. The energy release fractions are greater for cases with central-arcaded multipoles than those with central-caved multipoles that emerged in background fields. Eruptions would fail only when the centrally caved multipoles become extremely strong.« less

  16. Chaos in Magnetic Flux Ropes

    NASA Astrophysics Data System (ADS)

    Gekelman, W. N.; DeHaas, T.; Van Compernolle, B.

    2013-12-01

    Magnetic Flux Ropes Immersed in a uniform magnetoplasma are observed to twist about themselves, writhe about each other and rotate about a central axis. They are kink unstable and smash into one another as they move. Full three dimensional magnetic field and flows are measured at thousands of time steps. Each collision results in magnetic field line generation and the generation of a quasi-seperatrix layer and induced electric fields. Three dimensional magnetic field lines are computed by conditionally averaging the data using correlation techniques. The permutation entropy1 ,which is related to the Lyapunov exponent, can be calculated from the the time series of the magnetic field data (this is also done with flows) and used to calculate the positions of the data on a Jensen Shannon complexity map2. The location of data on this map indicates if the magnetic fields are stochastic, or fall into regions of minimal or maximal complexity. The complexity is a function of space and time. The complexity map, and analysis will be explained in the course of the talk. Other types of chaotic dynamical models such as the Lorentz, Gissinger and Henon process also fall on the map and can give a clue to the nature of the flux rope turbulence. The ropes fall in the region of the C-H plane where chaotic systems lie. The entropy and complexity change in space and time which reflects the change and possibly type of chaos associated with the ropes. The maps give insight as to the type of chaos (deterministic chaos, fractional diffusion , Levi flights..) and underlying dynamical process. The power spectra of much of the magnetic and flow data is exponential and Lorentzian structures in the time domain are embedded in them. Other quantities such as the Hurst exponent are evaluated for both magnetic fields and plasma flow. Work Supported by a UC-LANL Lab fund and the Basic Plasma Science Facility which is funded by DOE and NSF. 1) C. Bandt, B. Pompe, Phys. Rev. Lett., 88,174102 (2007) 2) O. Russo et al., Phys. Rev. Lett., 99, 154102 (2007), J. Maggs, G.Morales, 55, 085015 (2013)

  17. The Effects of the Rope Jump Training Program in Physical Education Lessons on Strength, Speed and VO[subscript 2] Max in Children

    ERIC Educational Resources Information Center

    Eler, Nebahat; Acar, Hakan

    2018-01-01

    The aim of this study is to examine the effects of rope-jump training program in physical education lessons on strength, speed and VO[subscript 2] max in 10-12 year old boys. 240 male students; rope-jump group (n = 120) and control group (n = 120) participated in the study. Rope-Jump group continued 10 weeks of regular physical education and sport…

  18. A Model of Coronal Streamers with Underlying Flux Ropes

    NASA Astrophysics Data System (ADS)

    Cottaar, M.; Fan, Y.

    2009-10-01

    We present global two-dimensional axisymmetric isothermal MHD simulations of the dynamic evolution of a coronal helmet streamer, driven at the lower boundary by the emergence of a twisted flux rope. By varying both the detached toroidal and poloidal fluxes emerged into the corona, but fixing the normal flux distribution at the surface at the end of the emergence, we obtain solutions that either settle to a new steady state of a stable helmet streamer containing a flux rope, or result in a disruption of the helmet with the underlying flux rope being expelled in a coronal mass ejection (CME)-like eruption. In all of the cases studied, we find that the transition from a stable to an eruptive state takes place at a magnetic energy that is very close to the Aly open field energy. Furthermore, we find that the transition from a stable to an eruptive end state does not occur at a single critical value of the total relative magnetic helicity, but depends on the profile of the underlying flux rope. Cases where the detached flux rope contains a higher amount of self-helicity, i.e., higher internal twist or detached poloidal flux, are found to become eruptive at a significantly lower total helicity. For the eruptive cases, the detached flux rope after emergence first rises quasi-statically due to a gradual opening of the field lines at the edge of the streamer and a slow reconnection below the flux rope, which continues to slowly increase the amount of the detached flux. This decreases the downward magnetic tension on the flux rope. The dynamic eruption is initiated when the magnetic pressure gradient no longer decreases fast enough to balance the decrease in the magnetic tension. Later rapid reconnections below the flux rope are important for accelerating the flux rope. For the stable helmets, we find that no cavities are formed due to the simplifying assumption of isothermal energetics and the uniform density lower boundary condition. However during the eruption we see the development of the 3-part structure of a CME.

  19. 29 CFR 1926.1414 - Wire rope-selection and installation criteria.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sockets must be attached to the unloaded dead end of the rope only, except that the use of devices specifically designed for dead-ending rope in a wedge socket is permitted. (g) Socketing must be done in the...

  20. 29 CFR 1926.1414 - Wire rope-selection and installation criteria.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sockets must be attached to the unloaded dead end of the rope only, except that the use of devices specifically designed for dead-ending rope in a wedge socket is permitted. (g) Socketing must be done in the...

  1. 29 CFR 1926.1414 - Wire rope-selection and installation criteria.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sockets must be attached to the unloaded dead end of the rope only, except that the use of devices specifically designed for dead-ending rope in a wedge socket is permitted. (g) Socketing must be done in the...

  2. Analysis of Magnetic Flux Rope Chains Embedded in Martian Current Sheets Using MAVEN Data

    NASA Astrophysics Data System (ADS)

    Bowers, C. F.; DiBraccio, G. A.; Brain, D.; Hara, T.; Gruesbeck, J.; Espley, J. R.; Connerney, J. E. P.; Halekas, J. S.

    2017-12-01

    The magnetotail of Mars is formed as the interplanetary magnetic field (IMF) drapes around the planet's conducting ionosphere and localized crustal magnetic fields. In this scenario, a cross-tail current sheet separates the sunward and anti-sunward tail lobes. This tail current sheet is a highly dynamic region where magnetic reconnection is able to occur between the oppositely oriented fields. Magnetic flux ropes, a by-product of magnetic reconnection in the tail or in the ionosphere characterized by their helical outer wraps and strong axial core field, are commonly observed in the Martian magnetotail. An initial study using Mars Global Surveyor measurements reported a chain of flux ropes in the tail. During this event, 3 flux ropes were observed during a single traversal of the tail current sheet with a duration of 4 minutes. Here, we perform a statistical survey of these chain-of-flux-rope events to characterize their occurrence in the tail current sheet using Mars Atmosphere and Volatile EvolutioN (MAVEN) data. We implement the well-established technique of Minimum Variance Analysis to confirm the helical structure of the flux ropes and also determine local current sheet orientation. Thorough visual examination of more than 1600 orbits has resulted in the identification of 784 tail current sheet traversals. We determine the current sheet thickness to be on the order of 100-1000 km. From these current sheet observations, a subset of 30 events include embedded chain of flux ropes within the current sheet structure. We find that 87% of these flux rope chain events are identified in the southern latitude regions of Mars, associated with crustal fields. Their location suggests that magnetic reconnection occurring near crustal fields may be the source of these flux ropes. These statistical measurements of both current sheets and associated flux rope chains provide information about the complex magnetospheric dynamics at Mars, and how these dynamics affect atmospheric loss to space.

  3. Global simulation of formation and evolution of plasmoid and flux-rope in the Earth's Magnetotail

    NASA Astrophysics Data System (ADS)

    Ge, Y.; Raeder, J.; Du, A.

    2014-12-01

    The observation of plasmoids and flux-ropes in the Earth's magnetotail was crucial to establish the simultaneous presence of multiple x-lines in the tail, and has become the basis for the Near Earth Neutral Line (NENL) model of substorms. While the "classical" NENL model envisions x-lines that extend across the entire tail, recent observations have shown that neither do the x-lines and resulting plasmoids encompass the entire tail, nor do the x-lines have to lie along the y-axis. The fragmentation of the tail by spatially and temporally limited x-lines has important consequences for the mass and energy budget of the tail. Recent ARTEMIS observations have shown that the plasmoids in the distant tail are limited in the Y direction and some flux ropes are tilted during their tailward propagation. Understanding their formation and evolution during their propagation through the magnetotail shall shred more light on the general energy and flux transport of the Earth's magnetosphere. In this study we simulate plasmoids and flux-ropes in the Earth's magnetotail using the Open Global Geospace Circulation Model (OpenGGCM). We investigate the generation mechanisms for tail plasmoids and flux-ropes and their evolution as they propagate in the magnetotail. The simulation results show that the limited extend of NENL controls the length or the Y scale of tail plasmoid and flux rope. In addition, by studying their 3D magnetic topology we find that the tilted flux rope forms due to a progressive spreading of reconnection line along the east-west direction, which produces and releases two ends of the flux rope at different times and in different speeds. By constructing a catalogue of observational signatures of plasmoid and flux rope we compare the differences of their signatures and find that large-scale plasmoids have much weaker core fields than that inside the small-scale flux ropes.

  4. RADIO DIAGNOSTICS OF ELECTRON ACCELERATION SITES DURING THE ERUPTION OF A FLUX ROPE IN THE SOLAR CORONA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carley, Eoin P.; Gallagher, Peter T.; Vilmer, Nicole, E-mail: eoin.carley@obspm.fr

    Electron acceleration in the solar corona is often associated with flares and the eruption of twisted magnetic structures known as flux ropes. However, the locations and mechanisms of such particle acceleration during the flare and eruption are still subject to much investigation. Observing the exact sites of particle acceleration can help confirm how the flare and eruption are initiated and how they evolve. Here we use the Atmospheric Imaging Assembly to analyze a flare and erupting flux rope on 2014 April 18, while observations from the Nançay Radio Astronomy Facility allow us to diagnose the sites of electron acceleration duringmore » the eruption. Our analysis shows evidence of a pre-formed flux rope that slowly rises and becomes destabilized at the time of a C-class flare, plasma jet, and the escape of ≳75 keV electrons from the rope center into the corona. As the eruption proceeds, continued acceleration of electrons with energies of ∼5 keV occurs above the flux rope for a period over 5 minutes. At the flare peak, one site of electron acceleration is located close to the flare site, while another is driven by the erupting flux rope into the corona at speeds of up to 400 km s{sup −1}. Energetic electrons then fill the erupting volume, eventually allowing the flux rope legs to be clearly imaged from radio sources at 150–445 MHz. Following the analysis of Joshi et al. (2015), we conclude that the sites of energetic electrons are consistent with flux rope eruption via a tether cutting or flux cancellation scenario inside a magnetic fan-spine structure. In total, our radio observations allow us to better understand the evolution of a flux rope eruption and its associated electron acceleration sites, from eruption initiation to propagation into the corona.« less

  5. Non-Gaussianity and cross-scale coupling in interplanetary magnetic field turbulence during a rope-rope magnetic reconnection event

    NASA Astrophysics Data System (ADS)

    Miranda, Rodrigo A.; Schelin, Adriane B.; Chian, Abraham C.-L.; Ferreira, José L.

    2018-03-01

    In a recent paper (Chian et al., 2016) it was shown that magnetic reconnection at the interface region between two magnetic flux ropes is responsible for the genesis of interplanetary intermittent turbulence. The normalized third-order moment (skewness) and the normalized fourth-order moment (kurtosis) display a quadratic relation with a parabolic shape that is commonly observed in observational data from turbulence in fluids and plasmas, and is linked to non-Gaussian fluctuations due to coherent structures. In this paper we perform a detailed study of the relation between the skewness and the kurtosis of the modulus of the magnetic field |B| during a triple interplanetary magnetic flux rope event. In addition, we investigate the skewness-kurtosis relation of two-point differences of |B| for the same event. The parabolic relation displays scale dependence and is found to be enhanced during magnetic reconnection, rendering support for the generation of non-Gaussian coherent structures via rope-rope magnetic reconnection. Our results also indicate that a direct coupling between the scales of magnetic flux ropes and the scales within the inertial subrange occurs in the solar wind.

  6. Rope Hadronization and Strange Particle Production

    NASA Astrophysics Data System (ADS)

    Bierlich, Christian

    2018-02-01

    Rope Hadronization is a model extending the Lund string hadronization model to describe environments with many overlapping strings, such as high multiplicity pp collisions or AA collisions. Including effects of Rope Hadronization drastically improves description of strange/non-strange hadron ratios as function of event multiplicity in all systems from e+e- to AA. Implementation of Rope Hadronization in the MC event generators Dipsy and PYTHIA8 is discussed, as well as future prospects for jet studies and studies of small systems.

  7. Sericin removal from raw Bombyx mori silk scaffolds of high hierarchical order.

    PubMed

    Teuschl, Andreas Herbert; van Griensven, Martijn; Redl, Heinz

    2014-05-01

    Silk fibroin has previously been described as a promising candidate for ligament tissue engineering (TE) approaches. For biocompatibility reasons, silkworm silk requires removal of sericin, which can elicit adverse immune responses in the human body. One disadvantage of the required degumming process is the alteration of the silk fiber structural properties, which can hinder textile engineering of high order hierarchical structures. Therefore, the aim of this study was to find a way to remove sericin from a compact and highly ordered raw silk fiber matrix. The wire rope design of the test model scaffold comprises several levels of geometric hierarchy. Commonly used degumming solutions fail in removing sericin in this wire rope design. Weight loss measurements, picric acid and carmine staining as well as scanning electron microscopy demonstrated that the removal of sericin from the model scaffold of a wire rope design can be achieved through a borate buffer-based system. Furthermore, the borate buffer degummed silks were shown to be nontoxic and did not alter cell proliferation behavior. The possibility to remove sericin after the textile engineering process has taken place eases the production of highly ordered scaffold structures and may expand the use of silk as scaffold material in further TE and regenerative medicine applications.

  8. Mechanical discrete simulator of the electro-mechanical lift with n:1 roping

    NASA Astrophysics Data System (ADS)

    Alonso, F. J.; Herrera, I.

    2016-05-01

    The design process of new products in lift engineering is a difficult task due to, mainly, the complexity and slenderness of the lift system, demanding a predictive tool for the lift mechanics. A mechanical ad-hoc discrete simulator, as an alternative to ‘general purpose’ mechanical simulators is proposed. Firstly, the synthesis and experimentation process that has led to establish a suitable model capable of simulating accurately the response of the electromechanical lift is discussed. Then, the equations of motion are derived. The model comprises a discrete system of 5 vertically displaceable masses (car, counterweight, car frame, passengers/loads and lift drive), an inertial mass of the assembly tension pulley-rotor shaft which can rotate about the machine axis and 6 mechanical connectors with 1:1 suspension layout. The model is extended to any n:1 roping lift by setting 6 equivalent mechanical components (suspension systems for car and counterweight, lift drive silent blocks, tension pulley-lift drive stator and passengers/load equivalent spring-damper) by inductive inference from 1:1 and generalized 2:1 roping system. The application to simulate real elevator systems is proposed by numeric time integration of the governing equations using the Kutta-Meden algorithm and implemented in a computer program for ad-hoc elevator simulation called ElevaCAD.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, K. A. P.; Nishida, K.; Shibata, K.

    The Solar Optical Telescope (SOT) on board Hinode allows observations with high spatiotemporal resolution and stable image quality. A {lambda}-shaped chromospheric anemone jet was observed in high resolution with SOT/Hinode. We found that several fine-scale jets were launched from one end of the footpoint to the other. These fine-scale jets ({approx}1.5-2.5 Mm) gradually move from one end of the footpoint to the other and finally merge into a single jet. This process occurs recurrently, and as time progresses the jet activity becomes more and more violent. The time evolution of the region below the jet in Ca II H filtergrammore » images taken with SOT shows that various parts (or knots) appear at different positions. These bright knots gradually merge into each other during the maximum phase. The systematic motion of the fine-scale jets is observed when different knots merge into each other. Such morphology would arise due to the emergence of a three-dimensional twisted flux rope in which the axial component (or the guide field) appears in the later stages of the flux rope emergence. The partial appearance of the knots could be due to the azimuthal magnetic field that appears during the early stage of the flux rope emergence. If the guide field is strong and reconnection occurs between the emerging flux rope and an ambient magnetic field, this could explain the typical feature of systematic motion in chromospheric anemone jets.« less

  10. Regularized Biot-Savart Laws for Modeling Magnetic Flux Ropes

    NASA Astrophysics Data System (ADS)

    Titov, Viacheslav; Downs, Cooper; Mikic, Zoran; Torok, Tibor; Linker, Jon A.

    2017-08-01

    Many existing models assume that magnetic flux ropes play a key role in solar flares and coronal mass ejections (CMEs). It is therefore important to develop efficient methods for constructing flux-rope configurations constrained by observed magnetic data and the initial morphology of CMEs. As our new step in this direction, we have derived and implemented a compact analytical form that represents the magnetic field of a thin flux rope with an axis of arbitrary shape and a circular cross-section. This form implies that the flux rope carries axial current I and axial flux F, so that the respective magnetic field is a curl of the sum of toroidal and poloidal vector potentials proportional to I and F, respectively. The vector potentials are expressed in terms of Biot-Savart laws whose kernels are regularized at the rope axis. We regularized them in such a way that for a straight-line axis the form provides a cylindrical force-free flux rope with a parabolic profile of the axial current density. So far, we set the shape of the rope axis by tracking the polarity inversion lines of observed magnetograms and estimating its height and other parameters of the rope from a calculated potential field above these lines. In spite of this heuristic approach, we were able to successfully construct pre-eruption configurations for the 2009 February13 and 2011 October 1 CME events. These applications demonstrate that our regularized Biot-Savart laws are indeed a very flexible and efficient method for energizing initial configurations in MHD simulations of CMEs. We discuss possible ways of optimizing the axis paths and other extensions of the method in order to make it more useful and robust.Research supported by NSF, NASA's HSR and LWS Programs, and AFOSR.

  11. Detection of total and PRRSV-specific antibodies in oral fluids collected with different rope types from PRRSV-vaccinated and experimentally infected pigs.

    PubMed

    Decorte, Inge; Van Breedam, Wander; Van der Stede, Yves; Nauwynck, Hans J; De Regge, Nick; Cay, Ann Brigitte

    2014-06-17

    Oral fluid collected by means of ropes has the potential to replace serum for monitoring and surveillance of important swine pathogens. Until now, the most commonly used method to collect oral fluid is by hanging a cotton rope in a pen. However, concerns about the influence of rope material on subsequent immunological assays have been raised. In this study, we evaluated six different rope materials for the collection of oral fluid and the subsequent detection of total and PRRSV-specific antibodies of different isotypes in oral fluid collected from PRRSV-vaccinated and infected pigs. An initial experiment showed that IgA is the predominant antibody isotype in porcine saliva. Moreover, it was found that synthetic ropes may yield higher amounts of IgA, whereas all rope types seemed to be equally suitable for IgG collection. Although IgA is the predominant antibody isotype in porcine oral fluid, the PRRSV-specific IgA-based IPMA and ELISA tests were clearly not ideal for sensitive detection of PRRSV-specific IgA antibodies. In contrast, PRRSV-specific IgG in oral fluids was readily detected in PRRSV-specific IgG-based IPMA and ELISA tests, indicating that IgG is a more reliable isotype for monitoring PRRSV-specific antibody immunity in vaccinated/infected animals via oral fluids with the currently available tests. Since PRRSV-specific IgG detection seems more reliable than PRRSV-specific IgA detection for monitoring PRRSV-specific antibody immunity via oral fluids, and since all rope types yield equal amounts of IgG, it seems that the currently used cotton ropes are an appropriate choice for sample collection in PRRSV monitoring.

  12. Plasmoids as magnetic flux ropes. [in geomagnetic tail

    NASA Technical Reports Server (NTRS)

    Moldwin, Mark B.; Hughes, W. J.

    1991-01-01

    A magnetic flux rope model is developed and used to determine whether the principal axis analysis (PAA) of magnetometer signatures from a single satellite pass is sufficient to obtain the magnetic topology of plasmoids. The model is also used to determine if plasmoid observations are best explained by the flux rope, closed loop, or large-amplitude wave picture. It was found that the principal axis directions is highly dependent on the satellite trajectory through the structure and, therefore, the PAA of magnetometer data from a single satellite pass is insufficient to differentiate between magnetic closed loop and flux rope models. Results also indicate that the flux rope model of plasmoid formation is well suited to unify the observations of various magnetic structures observed by ISEE 3.

  13. Evidence for Secondary Flux Rope Generated by the Electron Kelvin-Helmholtz Instability in a Magnetic Reconnection Diffusion Region

    NASA Astrophysics Data System (ADS)

    Zhong, Z. H.; Tang, R. X.; Zhou, M.; Deng, X. H.; Pang, Y.; Paterson, W. R.; Giles, B. L.; Burch, J. L.; Tobert, R. B.; Ergun, R. E.; Khotyaintsev, Y. V.; Lindquist, P.-A.

    2018-02-01

    Secondary flux ropes are suggested to play important roles in energy dissipation and particle acceleration during magnetic reconnection. However, their generation mechanism is not fully understood. In this Letter, we present the first direct evidence that a secondary flux rope was generated due to the evolution of an electron vortex, which was driven by the electron Kelvin-Helmholtz instability in an ion diffusion region as observed by the Magnetospheric Multiscale mission. The subion scale (less than the ion inertial length) flux rope was embedded within the electron vortex, which contained a secondary electron diffusion region at the trailing edge of the flux rope. We propose that intense electron shear flow produced by reconnection generated the electron Kelvin-Helmholtz vortex, which induced a secondary reconnection in the exhaust of the primary X line and then led to the formation of the flux rope. This result strongly suggests that secondary electron Kelvin-Helmholtz instability is important for reconnection dynamics.

  14. Evidence for Secondary Flux Rope Generated by the Electron Kelvin-Helmholtz Instability in a Magnetic Reconnection Diffusion Region.

    PubMed

    Zhong, Z H; Tang, R X; Zhou, M; Deng, X H; Pang, Y; Paterson, W R; Giles, B L; Burch, J L; Tobert, R B; Ergun, R E; Khotyaintsev, Y V; Lindquist, P-A

    2018-02-16

    Secondary flux ropes are suggested to play important roles in energy dissipation and particle acceleration during magnetic reconnection. However, their generation mechanism is not fully understood. In this Letter, we present the first direct evidence that a secondary flux rope was generated due to the evolution of an electron vortex, which was driven by the electron Kelvin-Helmholtz instability in an ion diffusion region as observed by the Magnetospheric Multiscale mission. The subion scale (less than the ion inertial length) flux rope was embedded within the electron vortex, which contained a secondary electron diffusion region at the trailing edge of the flux rope. We propose that intense electron shear flow produced by reconnection generated the electron Kelvin-Helmholtz vortex, which induced a secondary reconnection in the exhaust of the primary X line and then led to the formation of the flux rope. This result strongly suggests that secondary electron Kelvin-Helmholtz instability is important for reconnection dynamics.

  15. Experimental Verification of the Kruskal-Shafranov Stability Limit in Line-Tied Partial Toroidal Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oz, E.; Myers, C. E.; Yamada, M.

    2011-07-19

    The stability properties of partial toroidal flux ropes are studied in detail in the laboratory, motivated by ubiquitous arched magnetic structures found on the solar surface. The flux ropes studied here are magnetized arc discharges formed between two electrodes in the Magnetic Reconnection Experiment (MRX) [Yamada et al., Phys. Plasmas, 4, 1936 (1997)]. The three dimensional evolution of these flux ropes is monitored by a fast visible light framing camera, while their magnetic structure is measured by a variety of internal magnetic probes. The flux ropes are consistently observed to undergo large-scale oscillations as a result of an external kinkmore » instability. Using detailed scans of the plasma current, the guide field strength, and the length of the flux rope, we show that the threshold for kink stability is governed by the Kruskal-Shafranov limit for a flux rope that is held fixed at both ends (i.e., qa = 1).« less

  16. Experimental verification of the Kruskal-Shafranov stability limit in line-tied partial-toroidal plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oz, E.; Myers, C. E.; Yamada, M.

    2011-10-15

    The stability properties of partial-toroidal flux ropes are studied in detail in the laboratory, motivated by ubiquitous arched magnetic structures found on the solar surface. The flux ropes studied here are magnetized arc discharges formed between two electrodes in the Magnetic Reconnection Experiment (MRX) [Yamada et al., Phys. Plasmas 4, 1936 (1997)]. The three dimensional evolution of these flux ropes is monitored by a fast visible light framing camera, while their magnetic structure is measured by a variety of internal magnetic probes. The flux ropes are consistently observed to undergo large-scale oscillations as a result of an external kink instability.more » Using detailed scans of the plasma current, the guide field strength, and the length of the flux rope, we show that the threshold for kink stability is governed by the Kruskal-Shafranov limit for a flux rope that is held fixed at both ends (i.e., q{sub a} = 1).« less

  17. Combining Diffusive Shock Acceleration with Acceleration by Contracting and Reconnecting Small-scale Flux Ropes at Heliospheric Shocks

    NASA Astrophysics Data System (ADS)

    le Roux, J. A.; Zank, G. P.; Webb, G. M.; Khabarova, O. V.

    2016-08-01

    Computational and observational evidence is accruing that heliospheric shocks, as emitters of vorticity, can produce downstream magnetic flux ropes and filaments. This led Zank et al. to investigate a new paradigm whereby energetic particle acceleration near shocks is a combination of diffusive shock acceleration (DSA) with downstream acceleration by many small-scale contracting and reconnecting (merging) flux ropes. Using a model where flux-rope acceleration involves a first-order Fermi mechanism due to the mean compression of numerous contracting flux ropes, Zank et al. provide theoretical support for observations that power-law spectra of energetic particles downstream of heliospheric shocks can be harder than predicted by DSA theory and that energetic particle intensities should peak behind shocks instead of at shocks as predicted by DSA theory. In this paper, a more extended formalism of kinetic transport theory developed by le Roux et al. is used to further explore this paradigm. We describe how second-order Fermi acceleration, related to the variance in the electromagnetic fields produced by downstream small-scale flux-rope dynamics, modifies the standard DSA model. The results show that (I) this approach can qualitatively reproduce observations of particle intensities peaking behind the shock, thus providing further support for the new paradigm, and (II) stochastic acceleration by compressible flux ropes tends to be more efficient than incompressible flux ropes behind shocks in modifying the DSA spectrum of energetic particles.

  18. COMBINING DIFFUSIVE SHOCK ACCELERATION WITH ACCELERATION BY CONTRACTING AND RECONNECTING SMALL-SCALE FLUX ROPES AT HELIOSPHERIC SHOCKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Roux, J. A.; Zank, G. P.; Webb, G. M.

    2016-08-10

    Computational and observational evidence is accruing that heliospheric shocks, as emitters of vorticity, can produce downstream magnetic flux ropes and filaments. This led Zank et al. to investigate a new paradigm whereby energetic particle acceleration near shocks is a combination of diffusive shock acceleration (DSA) with downstream acceleration by many small-scale contracting and reconnecting (merging) flux ropes. Using a model where flux-rope acceleration involves a first-order Fermi mechanism due to the mean compression of numerous contracting flux ropes, Zank et al. provide theoretical support for observations that power-law spectra of energetic particles downstream of heliospheric shocks can be harder thanmore » predicted by DSA theory and that energetic particle intensities should peak behind shocks instead of at shocks as predicted by DSA theory. In this paper, a more extended formalism of kinetic transport theory developed by le Roux et al. is used to further explore this paradigm. We describe how second-order Fermi acceleration, related to the variance in the electromagnetic fields produced by downstream small-scale flux-rope dynamics, modifies the standard DSA model. The results show that (i) this approach can qualitatively reproduce observations of particle intensities peaking behind the shock, thus providing further support for the new paradigm, and (ii) stochastic acceleration by compressible flux ropes tends to be more efficient than incompressible flux ropes behind shocks in modifying the DSA spectrum of energetic particles.« less

  19. Wire rope tension control of hoisting systems using a robust nonlinear adaptive backstepping control scheme.

    PubMed

    Zhu, Zhen-Cai; Li, Xiang; Shen, Gang; Zhu, Wei-Dong

    2018-01-01

    This paper concerns wire rope tension control of a double-rope winding hoisting system (DRWHS), which consists of a hoisting system employed to realize a transportation function and an electro-hydraulic servo system utilized to adjust wire rope tensions. A dynamic model of the DRWHS is developed in which parameter uncertainties and external disturbances are considered. A comparison between simulation results using the dynamic model and experimental results using a double-rope winding hoisting experimental system is given in order to demonstrate accuracy of the dynamic model. In order to improve the wire rope tension coordination control performance of the DRWHS, a robust nonlinear adaptive backstepping controller (RNABC) combined with a nonlinear disturbance observer (NDO) is proposed. Main features of the proposed combined controller are: (1) using the RNABC to adjust wire rope tensions with consideration of parameter uncertainties, whose parameters are designed online by adaptive laws derived from Lyapunov stability theory to guarantee the control performance and stability of the closed-loop system; and (2) introducing the NDO to deal with uncertain external disturbances. In order to demonstrate feasibility and effectiveness of the proposed controller, experimental studies have been conducted on the DRWHS controlled by an xPC rapid prototyping system. Experimental results verify that the proposed controller exhibits excellent performance on wire rope tension coordination control compared with a conventional proportional-integral (PI) controller and adaptive backstepping controller. Copyright © 2017 ISA. All rights reserved.

  20. 30 CFR 75.1437 - End attachment retermination.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Hoisting and Mantrips Wire Ropes § 75.1437 End attachment retermination. Damaged or deteriorated wire rope shall be removed by cutoff and the rope reterminated where there is— (a) More than one broken wire at an attachment; (b) Improper...

  1. 30 CFR 75.1437 - End attachment retermination.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Hoisting and Mantrips Wire Ropes § 75.1437 End attachment retermination. Damaged or deteriorated wire rope shall be removed by cutoff and the rope reterminated where there is— (a) More than one broken wire at an attachment; (b) Improper...

  2. 30 CFR 75.1437 - End attachment retermination.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Hoisting and Mantrips Wire Ropes § 75.1437 End attachment retermination. Damaged or deteriorated wire rope shall be removed by cutoff and the rope reterminated where there is— (a) More than one broken wire at an attachment; (b) Improper...

  3. 30 CFR 75.1437 - End attachment retermination.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Hoisting and Mantrips Wire Ropes § 75.1437 End attachment retermination. Damaged or deteriorated wire rope shall be removed by cutoff and the rope reterminated where there is— (a) More than one broken wire at an attachment; (b) Improper...

  4. 30 CFR 75.1437 - End attachment retermination.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Hoisting and Mantrips Wire Ropes § 75.1437 End attachment retermination. Damaged or deteriorated wire rope shall be removed by cutoff and the rope reterminated where there is— (a) More than one broken wire at an attachment; (b) Improper...

  5. 30 CFR 57.19019 - Guide ropes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Guide ropes. 57.19019 Section 57.19019 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... rope at installation shall meet the minimum value calculated as follows: Minimum value=Static Load×5.0. ...

  6. 30 CFR 75.1434 - Retirement criteria.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... when any of the following conditions occurs: (a) The number of broken wires within a rope lay length... percent of the total number of wires within any strand; (b) On a regular lay rope, more than one broken... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Hoisting and Mantrips Wire Ropes § 75.1434 Retirement...

  7. 30 CFR 75.1434 - Retirement criteria.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... when any of the following conditions occurs: (a) The number of broken wires within a rope lay length... percent of the total number of wires within any strand; (b) On a regular lay rope, more than one broken... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Hoisting and Mantrips Wire Ropes § 75.1434 Retirement...

  8. 30 CFR 77.1433 - Examinations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., and improper lubrication or dressing. In addition, visual examination for wear and broken wires shall... Wire Ropes § 77.1433 Examinations. (a) At least once every fourteen calendar days, each wire rope in... examined on a daily basis. (b) Before any person is hoisted with a newly installed wire rope or any wire...

  9. 30 CFR 77.1433 - Examinations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., and improper lubrication or dressing. In addition, visual examination for wear and broken wires shall... Wire Ropes § 77.1433 Examinations. (a) At least once every fourteen calendar days, each wire rope in... examined on a daily basis. (b) Before any person is hoisted with a newly installed wire rope or any wire...

  10. 30 CFR 77.1433 - Examinations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., and improper lubrication or dressing. In addition, visual examination for wear and broken wires shall... Wire Ropes § 77.1433 Examinations. (a) At least once every fourteen calendar days, each wire rope in... examined on a daily basis. (b) Before any person is hoisted with a newly installed wire rope or any wire...

  11. 30 CFR 75.1434 - Retirement criteria.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... when any of the following conditions occurs: (a) The number of broken wires within a rope lay length... percent of the total number of wires within any strand; (b) On a regular lay rope, more than one broken... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Hoisting and Mantrips Wire Ropes § 75.1434 Retirement...

  12. 30 CFR 75.1434 - Retirement criteria.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... when any of the following conditions occurs: (a) The number of broken wires within a rope lay length... percent of the total number of wires within any strand; (b) On a regular lay rope, more than one broken... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Hoisting and Mantrips Wire Ropes § 75.1434 Retirement...

  13. Study on Construction Technology Standardization of Primary Guide Rope Laying by Multi-rotor Aircraft in Stringing Construction of Transmission Line

    NASA Astrophysics Data System (ADS)

    Liu, Chen; Tang, Guang-Rui; Jiang, Ming; Dong, Yu-Ming

    2017-09-01

    According to the practical situation of stringing construction for Ultra High Voltage (UHV) overhead transmission line, construction technology standardization of primary guide rope laying by multi-rotor aircraft is studied. This paper mainly focuses on the construction preparation, test flight and technology of laying primary guide rope. The summary of the construction technology standardization of primary guide rope laying by multi-rotor aircraft in stringing construction are useful in further guiding practical construction of transmission line.

  14. Vortex rope instabilities in a model of conical draft tube

    NASA Astrophysics Data System (ADS)

    Skripkin, Sergey; Tsoy, Mikhail; Kuibin, Pavel; Shtork, Sergey

    2017-10-01

    We report on experimental studies of the formation of vortex ropes in a laboratory simplified model of hydroturbine draft tube. Work is focused on the observation of various flow patterns at the different rotational speed of turbine runner at fixed flow rate. The measurements involve high-speed visualization and pressure pulsations recordings. Draft tube wall pressure pulsations are registered by pressure transducer for different flow regimes. Vortex rope precession frequency were calculated using FFT transform. The experiments showed interesting features of precessing vortex rope like twin spiral and formation of vortex ring.

  15. GENESIS OF INTERPLANETARY INTERMITTENT TURBULENCE: A CASE STUDY OF ROPE–ROPE MAGNETIC RECONNECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chian, Abraham C.-L.; Loew, Murray H.; Feng, Heng Q.

    In a recent paper, the relation between current sheet, magnetic reconnection, and turbulence at the leading edge of an interplanetary coronal mass ejection was studied. We report here the observation of magnetic reconnection at the interface region of two interplanetary magnetic flux ropes. The front and rear boundary layers of three interplanetary magnetic flux ropes are identified, and the structures of magnetic flux ropes are reconstructed by the Grad–Shafranov method. A quantitative analysis of the reconnection condition and the degree of intermittency reveals that rope–rope magnetic reconnection is the most likely site for genesis of interplanetary intermittency turbulence in this event.more » The dynamic pressure pulse resulting from this reconnection triggers the onset of a geomagnetic storm.« less

  16. Computational fluid dynamics modeling of rope-guided conveyances in two typical kinds of shaft layouts.

    PubMed

    Wu, Renyuan; Zhu, Zhencai; Cao, Guohua

    2015-01-01

    The behavior of rope-guided conveyances is so complicated that the rope-guided hoisting system hasn't been understood thoroughly so far. In this paper, with user-defined functions loaded, ANSYS FLUENT 14.5 was employed to simulate lateral motion of rope-guided conveyances in two typical kinds of shaft layouts. With rope-guided mine elevator and mine cages taken into account, results show that the lateral aerodynamic buffeting force is much larger than the Coriolis force, and the side aerodynamic force have the same order of magnitude as the Coriolis force. The lateral aerodynamic buffeting forces should also be considered especially when the conveyance moves along the ventilation air direction. The simulation shows that the closer size of the conveyances can weaken the transverse aerodynamic buffeting effect.

  17. Effects of fishing rope strength on the severity of large whale entanglements.

    PubMed

    Knowlton, Amy R; Robbins, Jooke; Landry, Scott; McKenna, Henry A; Kraus, Scott D; Werner, Timothy B

    2016-04-01

    Entanglement in fixed fishing gear affects whales worldwide. In the United States, deaths of North Atlantic right (Eubalaena glacialis) and humpback whales (Megaptera novaeangliae) have exceeded management limits for decades. We examined live and dead whales entangled in fishing gear along the U.S. East Coast and the Canadian Maritimes from 1994 to 2010. We recorded whale species, age, and injury severity and determined rope polymer type, breaking strength, and diameter of the fishing gear. For the 132 retrieved ropes from 70 cases, tested breaking strength range was 0.80-39.63 kN (kiloNewtons) and the mean was 11.64 kN (SD 8.29), which is 26% lower than strength at manufacture (range 2.89-53.38 kN, mean = 15.70 kN [9.89]). Median rope diameter was 9.5 mm. Right and humpback whales were found in ropes with significantly stronger breaking strengths at time of manufacture than minke whales (Balaenoptera acuturostrata) (19.30, 17.13, and 10.47 mean kN, respectively). Adult right whales were found in stronger ropes (mean 34.09 kN) than juvenile right whales (mean 15.33 kN) and than all humpback whale age classes (mean 17.37 kN). For right whales, severity of injuries increased since the mid 1980s, possibly due to changes in rope manufacturing in the mid 1990s that resulted in production of stronger ropes at the same diameter. Our results suggest that broad adoption of ropes with breaking strengths of ≤ 7.56 kN (≤ 1700 lbsf) could reduce the number of life-threatening entanglements for large whales by at least 72%, and yet could provide sufficient strength to withstand the routine forces involved in many fishing operations. A reduction of this magnitude would achieve nearly all the mitigation legally required for U.S. stocks of North Atlantic right and humpback whales. Ropes with reduced breaking strength should be developed and tested to determine the feasibility of their use in a variety of fisheries. © 2015 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  18. A model for heliospheric flux-ropes

    NASA Astrophysics Data System (ADS)

    Nieves-Chinchilla, T.; Linton, M.; Vourlidas, A.; Hidalgo, M. A. U.

    2017-12-01

    This work is presents an analytical flux-rope model, which explores different levels of complexity starting from a circular-cylindrical geometry. The framework of this series of models was established by Nieves-Chinchilla et al. 2016 with the circular-cylindrical analytical flux rope model. The model attempts to describe the magnetic flux rope topology with distorted cross-section as a possible consequence of the interaction with the solar wind. In this model, the flux rope is completely described in a non-orthogonal geometry. The Maxwell equations are solved using tensor calculus consistent with the geometry chosen, invariance along the axial direction, and with the assumption of no radial current density. The model is generalized in terms of the radial and azimuthal dependence of the poloidal current density component and axial current density component. The misalignment between current density and magnetic field is studied in detail for several example profiles of the axial and poloidal current density components. This theoretical analysis provides a map of the force distribution inside of the flux-rope. For reconstruction of the heliospheric flux-ropes, the circular-cylindrical reconstruction technique has been adapted to the new geometry and applied to in situ ICMEs with a flux-rope entrained and tested with cases with clear in situ signatures of distortion. The model adds a piece in the puzzle of the physical-analytical representation of these magnetic structures that should be evaluated with the ultimate goal of reconciling in-situ reconstructions with imaging 3D remote sensing CME reconstructions. Other effects such as axial curvature and/or expansion could be incorporated in the future to fully understand the magnetic structure.

  19. Regularized Biot–Savart Laws for Modeling Magnetic Flux Ropes

    NASA Astrophysics Data System (ADS)

    Titov, Viacheslav S.; Downs, Cooper; Mikić, Zoran; Török, Tibor; Linker, Jon A.; Caplan, Ronald M.

    2018-01-01

    Many existing models assume that magnetic flux ropes play a key role in solar flares and coronal mass ejections (CMEs). It is therefore important to develop efficient methods for constructing flux-rope configurations constrained by observed magnetic data and the morphology of the pre-eruptive source region. For this purpose, we have derived and implemented a compact analytical form that represents the magnetic field of a thin flux rope with an axis of arbitrary shape and circular cross-sections. This form implies that the flux rope carries axial current I and axial flux F, so that the respective magnetic field is the curl of the sum of axial and azimuthal vector potentials proportional to I and F, respectively. We expressed the vector potentials in terms of modified Biot–Savart laws, whose kernels are regularized at the axis in such a way that, when the axis is straight, these laws define a cylindrical force-free flux rope with a parabolic profile for the axial current density. For the cases we have studied so far, we determined the shape of the rope axis by following the polarity inversion line of the eruptions’ source region, using observed magnetograms. The height variation along the axis and other flux-rope parameters are estimated by means of potential-field extrapolations. Using this heuristic approach, we were able to construct pre-eruption configurations for the 2009 February 13 and 2011 October 1 CME events. These applications demonstrate the flexibility and efficiency of our new method for energizing pre-eruptive configurations in simulations of CMEs.

  20. Forward Modeling of Coronal Mass Ejection Flux Ropes in the Inner Heliosphere with 3DCORE.

    PubMed

    Möstl, C; Amerstorfer, T; Palmerio, E; Isavnin, A; Farrugia, C J; Lowder, C; Winslow, R M; Donnerer, J M; Kilpua, E K J; Boakes, P D

    2018-03-01

    Forecasting the geomagnetic effects of solar storms, known as coronal mass ejections (CMEs), is currently severely limited by our inability to predict the magnetic field configuration in the CME magnetic core and by observational effects of a single spacecraft trajectory through its 3-D structure. CME magnetic flux ropes can lead to continuous forcing of the energy input to the Earth's magnetosphere by strong and steady southward-pointing magnetic fields. Here we demonstrate in a proof-of-concept way a new approach to predict the southward field B z in a CME flux rope. It combines a novel semiempirical model of CME flux rope magnetic fields (Three-Dimensional Coronal ROpe Ejection) with solar observations and in situ magnetic field data from along the Sun-Earth line. These are provided here by the MESSENGER spacecraft for a CME event on 9-13 July 2013. Three-Dimensional Coronal ROpe Ejection is the first such model that contains the interplanetary propagation and evolution of a 3-D flux rope magnetic field, the observation by a synthetic spacecraft, and the prediction of an index of geomagnetic activity. A counterclockwise rotation of the left-handed erupting CME flux rope in the corona of 30° and a deflection angle of 20° is evident from comparison of solar and coronal observations. The calculated Dst matches reasonably the observed Dst minimum and its time evolution, but the results are highly sensitive to the CME axis orientation. We discuss assumptions and limitations of the method prototype and its potential for real time space weather forecasting and heliospheric data interpretation.

  1. Short-term outcomes of arthroscopic TightRope® fixation are better than hook plate fixation in acute unstable acromioclavicular joint dislocations.

    PubMed

    Bin Abd Razak, Hamid Rahmatullah; Yeo, Eng-Meng Nicholas; Yeo, William; Lie, Tijauw-Tjoen Denny

    2018-07-01

    The aim of this study was to compare the short-term outcomes of arthroscopic TightRope ® fixation with that of hook plate fixation in patients with acute unstable acromioclavicular joint dislocations. We conducted a prospective case-control study of twenty-six patients with an acute ACJ dislocation who underwent surgical repair with either an arthroscopic TightRope ® fixation or a hook plate from 2013 to 2016. Clinical and radiological data were collected prospectively. Clinical outcomes were evaluated using the Constant Score, the University of California at Los Angeles (UCLA) Shoulder Score, Oxford Shoulder Score as well as the visual analogue scale. Radiological outcomes were assessed with the coracoclavicular distance (CCD). Sixteen patients underwent arthroscopic TightRope ® fixation, while 10 patients underwent hook plate fixation. There were no significant differences in the preoperative variables except for the mean UCLA 4b infraspinatus score (TightRope ® 2.8 vs. hook plate 3.8; p = 0.030). Duration of surgery was significantly longer in the TightRope ® group. At 1 year post-operatively, the TightRope ® group had a significantly better Constant Score and CCD with no complications. All patients with hook plate fixation had to undergo a second procedure for removal of implant, and 3 patients had complications. Arthroscopic TightRope ® fixation is a good option for the treatment of acute unstable ACJ dislocations. It has better short-term clinical and radiological outcomes as well as lesser complications when compared to hook plate fixation. Therapeutic, Level III.

  2. Forward Modeling of Coronal Mass Ejection Flux Ropes in the Inner Heliosphere with 3DCORE

    NASA Astrophysics Data System (ADS)

    Möstl, C.; Amerstorfer, T.; Palmerio, E.; Isavnin, A.; Farrugia, C. J.; Lowder, C.; Winslow, R. M.; Donnerer, J. M.; Kilpua, E. K. J.; Boakes, P. D.

    2018-03-01

    Forecasting the geomagnetic effects of solar storms, known as coronal mass ejections (CMEs), is currently severely limited by our inability to predict the magnetic field configuration in the CME magnetic core and by observational effects of a single spacecraft trajectory through its 3-D structure. CME magnetic flux ropes can lead to continuous forcing of the energy input to the Earth's magnetosphere by strong and steady southward-pointing magnetic fields. Here we demonstrate in a proof-of-concept way a new approach to predict the southward field Bz in a CME flux rope. It combines a novel semiempirical model of CME flux rope magnetic fields (Three-Dimensional Coronal ROpe Ejection) with solar observations and in situ magnetic field data from along the Sun-Earth line. These are provided here by the MESSENGER spacecraft for a CME event on 9-13 July 2013. Three-Dimensional Coronal ROpe Ejection is the first such model that contains the interplanetary propagation and evolution of a 3-D flux rope magnetic field, the observation by a synthetic spacecraft, and the prediction of an index of geomagnetic activity. A counterclockwise rotation of the left-handed erupting CME flux rope in the corona of 30° and a deflection angle of 20° is evident from comparison of solar and coronal observations. The calculated Dst matches reasonably the observed Dst minimum and its time evolution, but the results are highly sensitive to the CME axis orientation. We discuss assumptions and limitations of the method prototype and its potential for real time space weather forecasting and heliospheric data interpretation.

  3. Biologically Inspired Purification and Dispersion of SWCNTs

    NASA Technical Reports Server (NTRS)

    Feeback, Daniel L.; Clarke, Mark S.; Nikolaev, Pavel

    2009-01-01

    A biologically inspired method has been developed for (1) separating single-wall carbon nanotubes (SWCNTs) from other materials (principally, amorphous carbon and metal catalysts) in raw production batches and (2) dispersing the SWCNTs as individual particles (in contradistinction to ropes and bundles) in suspension, as required for a number of applications. Prior methods of purification and dispersal of SWCNTs involve, variously, harsh physical processes (e.g., sonication) or harsh chemical processes (e.g., acid reflux). These processes do not completely remove the undesired materials and do not disperse bundles and ropes into individual suspended SWCNTs. Moreover, these processes cut long SWCNTs into shorter pieces, yielding typical nanotube lengths between 150 and 250 nm. In contrast, the present method does not involve harsh physical or chemical processes. The method involves the use of biologically derived dispersal agents (BDDAs) in an aqueous solution that is mechanically homogenized (but not sonicated) and centrifuged. The dense solid material remaining after centrifugation is resuspended by vortexing in distilled water, yielding an aqueous suspension of individual, separated SWCNTs having lengths from about 10 to about 15 microns.

  4. 29 CFR 1926.251 - Rigging equipment for material handling.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., shall consist of one continuous piece without knot or splice. (iii) Eyes in wire rope bridles, slings... splices shall contain at least three full tucks, and short splices shall contain at least six full tucks... tails shall project at least six rope diameters beyond the last full tuck. For fiber ropes 1-inch...

  5. 29 CFR 1926.1413 - Wire rope-inspection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Wire rope-inspection. 1926.1413 Section 1926.1413 Labor... Wire rope—inspection. (a) Shift inspection. (1) A competent person must begin a visual inspection prior... inspection must consist of observation of wire ropes (running and standing) that are likely to be in use...

  6. Multispacecraft study of shock-flux rope interaction

    NASA Astrophysics Data System (ADS)

    Blanco-Cano, X.; Burgess, D.; Sundberg, T.; Kajdic, P.

    2016-12-01

    Interplanetary (IP) shocks can be driven in the solar wind by fast coronal mass ejections. These shocks play an active role in particle acceleration near the Sun and through the heliosphere, being associated to solar energetic particle (SEP) and energetic storm particle (ESP) events. IP shocks can interact with structures in the solar wind, and with planetary magnetospheres. In this work we study how the properties of an IP shock change when it interacts with a medium scale flux rope (FR). We use measurements from CLUSTER, WIND and ACE. These three spacecraft observed the shock-FR interaction at different stages of its evolution. We find that the shock-FR interaction locally changes the shock geometry, affecting ion injection processes, and the upstream and downstream regions. While WIND and ACE observed a quasi-perpendicular shock, CLUSTER crossed a quasi-parallel shock and a foreshock with a variety of ion distributions. The complexity of the ion foreshock can be explained by the dynamics of the shock transitioning from quasi-perpendicular to quasi-parallel, and the geometry of the magnetic field around the flux rope.

  7. Evolution of a Coronal Mass Ejection from the Sun to Mercury, Venus, Earth and Beyond

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Shen, C.; Liu, J.; Mengjiao, X.; Guo, J.

    2017-12-01

    A clear magnetic cloud was observed by Messenger at Mercury. By using coronagraph images from SOHO/LASCO and STEREO/COR and the in-situ data from Wind near the Earth, we estimated its propgation velocity and identified the possible CME candidate in the corona and its counterpart recorded by Venus Express near Venus. By applying the CME's DIPS (Deflection in InterPlanetary Space) model, we show that the CME's arrivals at the three different heliocentric distance can be well reproduced. By extending the trajectory of the CME to the orbitor of Mars, we predict the arrival of the CME at Mars, which is in agreement with a significant Forbush decrease observed by MSL. We use uniformly-twisted force-free flux rope model to fit the in-situ measurements at Mercury, Venus and the Earth to study the evolution of the magnetic flux rope, and find that both axial magnetic flux and twist significantly decreased, suggesting that a significant erosion process was on-going and might change the averaged twist of the magnetic flux rope.

  8. Helicity transformation under the collision and merging of two magnetic flux ropes

    NASA Astrophysics Data System (ADS)

    DeHaas, Timothy; Gekelman, Walter

    2017-07-01

    Magnetic helicity has become a useful tool in the analysis of astrophysical plasmas. Its conservation in the magnetohydrodynamic limit (and other fluid approaches) constrains the global behavior of large plasma structures. One such astrophysical structure is a magnetic flux rope: a tube-like, current-carrying plasma embedded in an external magnetic field. Bundles of these ropes are commonly observed in the near-earth environment and solar atmosphere. In this well-diagnosed experiment (three-dimensional measurements of ne, Te, Vp, B, J, E, and uflow), two magnetic flux ropes are generated in the Large Plasma Device at UCLA. These ropes are driven kink-unstable to trigger complex motion. As they interact, helicity conservation is examined in regions of reconnection. We examine (1) the transport of helicity and (2) the dissipation of the helicity. As the ropes move and the topology of the field lines diverge, a quasi-separatrix layer (QSL) is formed. As the QSL forms, magnetic helicity is dissipated within this region. At the same time, there is an influx of canonical helicity into the region such that the temporal derivative of magnetic helicity is zero.

  9. Evolution of the magnetic helicity flux during the formation and eruption of flux ropes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romano, P.; Zuccarello, F. P.; Guglielmino, S. L.

    We describe the evolution and the magnetic helicity flux for two active regions (ARs) since their appearance on the solar disk: NOAA 11318 and NOAA 11675. Both ARs hosted the formation and destabilization of magnetic flux ropes. In the former AR, the formation of the flux rope culminated in a flare of C2.3 GOES class and a coronal mass ejection (CME) observed by Large Angle and Spectrometric Coronagraph Experiment. In the latter AR, the region hosting the flux rope was involved in several flares, but only a partial eruption with signatures of a minor plasma outflow was observed. We foundmore » a different behavior in the accumulation of the magnetic helicity flux in the corona, depending on the magnetic configuration and on the location of the flux ropes in the ARs. Our results suggest that the complexity and strength of the photospheric magnetic field is only a partial indicator of the real likelihood of an AR producing the eruption of a flux rope and a subsequent CME.« less

  10. Plasma Evolution within an Erupting Coronal Cavity

    NASA Astrophysics Data System (ADS)

    Long, David M.; Harra, Louise K.; Matthews, Sarah A.; Warren, Harry P.; Lee, Kyoung-Sun; Doschek, George A.; Hara, Hirohisa; Jenkins, Jack M.

    2018-03-01

    Coronal cavities have previously been observed to be associated with long-lived quiescent filaments and are thought to correspond to the associated magnetic flux rope. Although the standard flare model predicts a coronal cavity corresponding to the erupting flux rope, these have only been observed using broadband imaging data, restricting an analysis to the plane-of-sky. We present a unique set of spectroscopic observations of an active region filament seen erupting at the solar limb in the extreme ultraviolet. The cavity erupted and expanded rapidly, with the change in rise phase contemporaneous with an increase in nonthermal electron energy flux of the associated flare. Hot and cool filamentary material was observed to rise with the erupting flux rope, disappearing suddenly as the cavity appeared. Although strongly blueshifted plasma continued to be observed flowing from the apex of the erupting flux rope, this outflow soon ceased. These results indicate that the sudden injection of energy from the flare beneath forced the rapid eruption and expansion of the flux rope, driving strong plasma flows, which resulted in the eruption of an under-dense filamentary flux rope.

  11. Effects of prolonged entanglement in discarded fishing gear with substantive biofouling on the health and behavior of an adult shortfin mako shark, Isurus oxyrinchus.

    PubMed

    Wegner, Nicholas C; Cartamil, Daniel P

    2012-02-01

    A mature male shortfin mako, Isurus oxyrinchus, was captured with a three-strand twisted natural fiber rope wrapped around the body causing deep abrasions, scoliosis of the back, and undernourishment. Fifty-two pelagic peduculate barnacles from four species were found fouling on the rope. Assuming larval settlement occurred following entanglement, barnacle growth-rate data suggest the rope had been around the shark for at least 150 days. However, the onset of severe scoliosis (likely linked to the increased constriction of the rope with growth and the added drag induced by biofouling) indicates that this rope may have been in place much longer. Following removal of the rope, a pop-up satellite archival tag was attached to the shark to assess post-release health. The resulting 54 days of tag deployment data show that despite its injuries, the shark survived, and following an initial stress period, exhibited movement patterns characteristic of healthy makos. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Sea water rope batteries

    NASA Astrophysics Data System (ADS)

    Walsh, M.

    1984-05-01

    This research demonstrated the feasibility of supplying approximately 1 watt of electrical power for one year on the sea bed with a novel battery, the rope battery. The proposed battery would look very much like a small diameter wire rope, possibly hundreds of feet long. This unusual shape permits the rope battery to take full advantage of the vastness of the ocean floor and permits at great pressure the steady diffusion of reaction products away from the battery itself. A sea water battery is described consisting of an inner bundle of coated wires which slowly corrode and an outer layer of fine wires which simultaneously provides strength, armor and surface area for slow hydrogen evolution. Two variations are examined. The fuse utilizes magnesium wires and burns slowly from the end. The rope utilizes lithium-zinc alloys and is slowly consumed along its entire length.

  13. Computational Fluid Dynamics Modeling of Rope-Guided Conveyances in Two Typical Kinds of Shaft Layouts

    PubMed Central

    Wu, Renyuan; Zhu, Zhencai; Cao, Guohua

    2015-01-01

    The behavior of rope-guided conveyances is so complicated that the rope-guided hoisting system hasn’t been understood thoroughly so far. In this paper, with user-defined functions loaded, ANSYS FLUENT 14.5 was employed to simulate lateral motion of rope-guided conveyances in two typical kinds of shaft layouts. With rope-guided mine elevator and mine cages taken into account, results show that the lateral aerodynamic buffeting force is much larger than the Coriolis force, and the side aerodynamic force have the same order of magnitude as the Coriolis force. The lateral aerodynamic buffeting forces should also be considered especially when the conveyance moves along the ventilation air direction. The simulation shows that the closer size of the conveyances can weaken the transverse aerodynamic buffeting effect. PMID:25679522

  14. A study on MFL based wire rope damage detection

    NASA Astrophysics Data System (ADS)

    Park, J.; Kim, J.-W.; Kim, J.; Park, S.

    2017-04-01

    Non-destructive testing on wire rope is in great demand to prevent safety accidents at sites where many heavy equipment using ropes are installed. In this paper, a research on quantification of magnetic flux leakage (MFL) signals were carried out to detect damages on wire rope. First, a simulation study was performed with a steel rod model using a finite element analysis (FEA) program. The leakage signals from the simulation study were obtained and it was compared for parameter: depth of defect. Then, an experiment on same conditions was conducted to verify the results of the simulation. Throughout the results, the MFL signal was quantified and a wire rope damage detection was then confirmed to be feasible. In further study, it is expected that the damage characterization of an entire specimen will be visualized as well.

  15. Design of the NUSC (Naval Underwater System Center) Replacement TCP (transducer Calibration Platform) Mooring for Lake Seneca, Dresden, New York

    DTIC Science & Technology

    1983-05-01

    SMP has sinkers attached to wire rope within the water column. This location of sinkers was not duplicated on the TCP moor because of possible wear and...breaking (new chain) 1-3/4" wire rope breaking strength is approx. 224. kips; F.S. = 6.4 against breaking (new rope) Buoy, dia=9.5’,h=5’ buoy freeboard is...6.4 against breakingconnecting agis 1-3/4" wire rope with J b- chain tails 13 See Appendix B for details of the mooring buoy design and Appendix C

  16. Systematic Motion of Fine-scale Jets and Successive Reconnection in Solar Chromospheric Anemone Jet Observed with the Solar Optical Telescope/Hinode

    NASA Astrophysics Data System (ADS)

    Singh, K. A. P.; Isobe, H.; Nishida, K.; Shibata, K.

    2012-11-01

    The Solar Optical Telescope (SOT) on board Hinode allows observations with high spatiotemporal resolution and stable image quality. A λ-shaped chromospheric anemone jet was observed in high resolution with SOT/Hinode. We found that several fine-scale jets were launched from one end of the footpoint to the other. These fine-scale jets (~1.5-2.5 Mm) gradually move from one end of the footpoint to the other and finally merge into a single jet. This process occurs recurrently, and as time progresses the jet activity becomes more and more violent. The time evolution of the region below the jet in Ca II H filtergram images taken with SOT shows that various parts (or knots) appear at different positions. These bright knots gradually merge into each other during the maximum phase. The systematic motion of the fine-scale jets is observed when different knots merge into each other. Such morphology would arise due to the emergence of a three-dimensional twisted flux rope in which the axial component (or the guide field) appears in the later stages of the flux rope emergence. The partial appearance of the knots could be due to the azimuthal magnetic field that appears during the early stage of the flux rope emergence. If the guide field is strong and reconnection occurs between the emerging flux rope and an ambient magnetic field, this could explain the typical feature of systematic motion in chromospheric anemone jets.

  17. Observing Formation of Flux Rope by Tether-cutting Reconnection in the Sun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Zhike; Yan, Xiaoli; Yang, Liheng

    Tether-cutting reconnection is considered as one mechanism for the formation of a flux rope. It has been proposed for more than 30 years; however, so far, direct observations of it are very rare. In this Letter, we present observations of the formation of a flux rope via tether-cutting reconnection in NOAA AR 11967 on 2014 February 2 by combining observations with the New Vacuum Solar Telescope and the Solar Dynamic Observatory . The tether-cutting reconnection occurs between two sets of highly sheared magnetic arcades. Comprehensive observational evidence of the reconnection is as follows: changes of the connections between the arcades,more » brightenings at the reconnection site, hot outflows, formation of a flux rope, slow-rise motion of the flux rope, and flux cancelation. The outflows are along three directions from the reconnection site to the footpoints with the velocities from 24 ± 1 km s{sup −1} to 69 ± 5 km s{sup −1}. Additionally, it is found that the newly formed flux rope connects far footpoints and has a left-handed twisted structure with many fine threads and a concave-up-shape structure in the middle. All the observations are in agreement with the tether-cutting model and provide evidence that tether-cutting reconnection leads to the formation of the flux rope associated with flux shear flow and cancelation.« less

  18. A dynamic magnetic tension force as the cause of failed solar eruptions

    DOE Data Explorer

    Myers, Clayton E. [Princeton Univ., NJ (United States). Dept. of Astrophysical Sciences; Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); ] (ORCID:0000000345398406); Yamada, Maasaki [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000349961649); Ji, Hantao [Princeton Univ., NJ (United States). Dept. of Astrophysical Sciences; Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China] (ORCID:0000000196009963); Yoo, Jongsoo [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000338811995); Fox, William [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:000000016289858X); Jara-Almonte, Jonathan [Princeton Univ., NJ (United States). Dept. of Astrophysical Sciences; Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); ] (ORCID:0000000307606198); Savcheva, Antonia [Harvard†“ Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA] (ORCID:000000025598046X); DeLuca, Edward E. [Harvard†“ Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA] (ORCID:0000000174162895)

    2015-12-11

    Coronal mass ejections are solar eruptions driven by a sudden release of magnetic energy stored in the Sun’s corona. In many cases, this magnetic energy is stored in long-lived, arched structures called magnetic flux ropes. When a flux rope destabilizes, it can either erupt and produce a coronal mass ejection or fail and collapse back towards the Sun. The prevailing belief is that the outcome of a given event is determined by a magnetohydrodynamic force imbalance called the torus instability. This belief is challenged, however, by observations indicating that torus-unstable flux ropes sometimes fail to erupt. This contradiction has not yet been resolved because of a lack of coronal magnetic field measurements and the limitations of idealized numerical modelling. Here we report the results of a laboratory experiment that reveal a previously unknown eruption criterion below which torus-unstable flux ropes fail to erupt. We find that such ‘failed torus’ events occur when the guide magnetic field (that is, the ambient field that runs toroidally along the flux rope) is strong enough to prevent the flux rope from kinking. Under these conditions, the guide field interacts with electric currents in the flux rope to produce a dynamic toroidal field tension force that halts the eruption. This magnetic tension force is missing from existing eruption models, which is why such models cannot explain or predict failed torus events.

  19. Maple[R] Version of the "Indian Rope Trick". Classroom Notes

    ERIC Educational Resources Information Center

    Knight, D. G.

    2004-01-01

    If the point of suspension of a multiple pendulum is suitably oscillated then the pendulum can remain in motion in an upside-down position. Since such pendulums can model flexible materials, this inverted motion is sometimes referred to as an 'Indian rope trick'. Despite the complexity of the governing differential equations, this rope trick can…

  20. Equilibrium features and eruptive instabilities in laboratory magnetic flux rope plasmas

    NASA Astrophysics Data System (ADS)

    Myers, Clayton E; Yamada, Masaaki; Belova, Elena V; Ji, Hantao; Yoo, Jongsoo; Fox, William

    2014-06-01

    One avenue for connecting laboratory and solar plasma studies is to carry out laboratory plasma experiments that serve as a well-diagnosed model for specific solar phenomena. In this paper, we present the latest results from one such laboratory experiment that is designed to address ideal instabilities that drive flux rope eruptions in the solar corona. The experiment, which utilizes the existing Magnetic Reconnection Experiment (MRX) at Princeton Plasma Physics Laboratory, generates a quasi-statically driven line-tied magnetic flux rope in a solar-relevant potential field arcade. The parameters of the potential field arcade (e.g., its magnitude, orientation, and vertical profile) are systematically scanned in order to study their influence on the evolution and possible eruption of the line-tied flux rope. Each flux rope discharge is diagnosed using a combination of fast visible light cameras and an in situ 2D magnetic probe array that measures all three components of the magnetic field over a large cross-section of the plasma. In this paper, we present the first results obtained from this new 2D magnetic probe array. With regard to the flux rope equilibrium, non-potential features such as the formation of a characteristic sigmoid shape and the generation of core toroidal field within the flux rope are studied in detail. With regard to instabilities, the onset and evolution of two key eruptive instabilities—the kink and torus instabilities—are quantitatively assessed as a function of the potential field arcade parameters and the amount of magnetic energy stored in the flux rope.This research is supported by DoE Contract Number DE-AC02-09CH11466 and by the NSF/DoE Center for Magnetic Self-Organization (CMSO).

  1. Regularized Biot-Savart Laws for Modeling Magnetic Configurations with Flux Ropes

    NASA Astrophysics Data System (ADS)

    Titov, V. S.; Downs, C.; Mikic, Z.; Torok, T.; Linker, J.

    2017-12-01

    Many existing models assume that magnetic flux ropes play a key role in solar flares and coronal mass ejections (CMEs). It is therefore important to develop efficient methods for constructing flux-rope configurations constrained by observed magnetic data and the initial morphology of CMEs. For this purpose, we have derived and implemented a compact analytical form that represents the magnetic field of a thin flux rope with an axis of arbitrary shape and a circular cross-section. This form implies that the flux rope carries axial current I and axial flux F, so that the respective magnetic field is the curl of the sum of toroidal and poloidal vector potentials proportional to I and F, respectively. We expressed the vector potentials in terms of modified Biot-Savart laws whose kernels are regularized at the axis in such a way that these laws define a cylindrical force-free flux rope with a parabolic profile of the axial current density, when the axis is straight. For the cases we have studied so far, we determined the shape of the rope axis by following the polarity inversion line of the eruptions' source region, using observed magnetograms. The height variation along the axis and other flux-rope parameters are estimated by means of potential field extrapolations. Using this heuristic approach, we were able to construct pre-eruption configurations for the 2009 February13 and 2011 October 1 CME events. These applications demonstrate the flexibility and efficiency of our new method for energizing pre-eruptive configurations in MHD simulations of CMEs. We discuss possible ways of optimizing the axis paths and other extensions of the method in order to make it more useful and robust. Research supported by NSF, NASA's HSR and LWS Programs, and AFOSR.

  2. Skin-layer of the eruptive magnetic flux rope in large solar flares

    NASA Astrophysics Data System (ADS)

    Kichigin, G. N.; Miroshnichenko, L. I.; Sidorov, V. I.; Yazev, S. A.

    2016-07-01

    The analysis of observations of large solar flares made it possible to propose a hypothesis on existence of a skin-layer in magnetic flux ropes of coronal mass ejections. On the assumption that the Bohm coefficient determines the diffusion of magnetic field, an estimate of the skin-layer thickness of ~106 cm is obtained. According to the hypothesis, the electric field of ~0.01-0.1 V/cm, having the nonzero component along the magnetic field of flux rope, arises for ~5 min in the surface layer of the eruptive flux rope during its ejection into the upper corona. The particle acceleration by the electric field to the energies of ~100 MeV/nucleon in the skin-layer of the flux rope leads to their precipitation along field lines to footpoints of the flux rope. The skin-layer presence induces helical or oval chromospheric emission at the ends of flare ribbons. The emission may be accompanied by hard X-ray radiation and by the production of gamma-ray line at the energy of 2.223 MeV (neutron capture line in the photosphere). The magnetic reconnection in the corona leads to a shift of the skin-layer of flux rope across the magnetic field. The area of precipitation of accelerated particles at the flux-rope footpoints expands in this case from the inside outward. This effect is traced in the chromosphere and in the transient region as the expanding helical emission structures. If the emission extends to the spot, a certain fraction of accelerated particles may be reflected from the magnetic barrier (in the magnetic field of the spot). In the case of exit into the interplanetary space, these particles may be recorded in the Earth's orbit as solar proton events.

  3. On the azimuthal size of flux ropes near lunar orbit

    NASA Astrophysics Data System (ADS)

    Kiehas, S. A.; Angelopoulos, V.; Runov, A.; Li, S.-S.

    2013-07-01

    We present Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) dual-probe observations of flux ropes in the Earth's magnetotail near lunar orbit. On 15 July 2011 between 0400 and 0500 UT, the ARTEMIS probes (P1 and P2) are separated by ˜ (9/10/3) RE(XGSW/YGSW/ZGSW). GSW denotes the Geocentric Solar Wind coordinate system and differs from the GSM coordinate system in that its X axis is antiparallel to the solar wind. P1 is near midnight and P2 in the postmidnight sector at ˜ -13 RE YGSW. During a ˜ 50 min interval on 15 July 2011, P1 crossed the current sheet and encountered a flux rope thereafter. During the same interval, P2 observed only one flux rope near the time P1 crossed the current sheet but no flux rope or traveling compression region (TCR) for P1's subsequent flux rope observation. A Tsyganenko-Fairfield model and minimum variance analysis during the current sheet crossing are used to infer the current sheet location with respect to the probes. We find the distance between P2 and the plasma sheet boundary to be less than 3 RE. Under these circumstances, P2 would be expected to observe a TCR if the flux rope observed by P1 extended to the postmidnight location of P2. The lack of such observations indicates that, contrary to previous models and simulation results, flux ropes may be spatially confined in the dusk-dawn direction and do not extend across the entire cross section of the tail near lunar orbit.

  4. Forward Modeling of Coronal Mass Ejection Flux Ropes in the Inner Heliosphere with 3DCORE

    PubMed Central

    Amerstorfer, T.; Palmerio, E.; Isavnin, A.; Farrugia, C. J.; Lowder, C.; Winslow, R. M.; Donnerer, J. M.; Kilpua, E. K. J.; Boakes, P. D.

    2018-01-01

    Abstract Forecasting the geomagnetic effects of solar storms, known as coronal mass ejections (CMEs), is currently severely limited by our inability to predict the magnetic field configuration in the CME magnetic core and by observational effects of a single spacecraft trajectory through its 3‐D structure. CME magnetic flux ropes can lead to continuous forcing of the energy input to the Earth's magnetosphere by strong and steady southward‐pointing magnetic fields. Here we demonstrate in a proof‐of‐concept way a new approach to predict the southward field B z in a CME flux rope. It combines a novel semiempirical model of CME flux rope magnetic fields (Three‐Dimensional Coronal ROpe Ejection) with solar observations and in situ magnetic field data from along the Sun‐Earth line. These are provided here by the MESSENGER spacecraft for a CME event on 9–13 July 2013. Three‐Dimensional Coronal ROpe Ejection is the first such model that contains the interplanetary propagation and evolution of a 3‐D flux rope magnetic field, the observation by a synthetic spacecraft, and the prediction of an index of geomagnetic activity. A counterclockwise rotation of the left‐handed erupting CME flux rope in the corona of 30° and a deflection angle of 20° is evident from comparison of solar and coronal observations. The calculated Dst matches reasonably the observed Dst minimum and its time evolution, but the results are highly sensitive to the CME axis orientation. We discuss assumptions and limitations of the method prototype and its potential for real time space weather forecasting and heliospheric data interpretation. PMID:29780287

  5. How Well Can a Footpoint Tracking Method Estimate the Magnetic Helicity Influx during Flux Emergence?

    NASA Astrophysics Data System (ADS)

    Choe, Gwangson; Kim, Sunjung; Kim, Kap-Sung; No, Jincheol

    2015-08-01

    As shown by Démoulin and Berger (2003), the magnetic helicity flux through the solar surface into the solar atmosphere can be exactly calculated if we can trace the motion of footpoints with infinite temporal and spatial resolutions. When there is a magnetic flux transport across the solar surface, the horizontal velocity of footpoints becomes infinite at the polarity inversion line, although the surface integral yielding the helicity flux does not diverge. In practical application, a finite temporal and spatial resolution causes an underestimate of the magnetic helicity flux when a magnetic flux emerges from below the surface, because there is an observational blackout area near a polarity inversion line whether it is pre-existing or newly formed. In this paper, we consider emergence of simple magnetic flux ropes and calculate the supremum of the magnitude of the helicity influx that can be estimated from footpoint tracking. The results depend on the ratio of the resolvable length scale and the flux rope diameter. For a Gold-Hoyle flux rope, in which all field lines are uniformly twisted, the observationally estimated helicity influx would be about 90% of the real influx when the flux rope diameter is one hundred times the spatial resolution (for a large flux rope), and about 45% when it is ten times (for a small flux rope). For Lundquist flux ropes, the errors incurred by observational estimation are smaller than the case of the Gold-Hoyle flux rope, but could be as large as 30% of the real influx. Our calculation suggests that the error in the helicity influx estimate is at least half of the real influx or even larger when small scale magnetic structures (less than 10,000 km) emerge into the solar atmosphere.

  6. Quasi-static and dynamic magnetic tension forces in arched, line-tied magnetic flux ropes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, C. E.; Yamada, M.; Ji, H.

    Solar eruptions are often driven by magnetohydrodynamic instabilities such as the torus and kink instabilities that act on line-tied magnetic flux ropes. We designed our recent laboratory experiments to study these eruptive instabilities which have demonstrated the key role of both dynamic (Myers et al 2015 Nature 528 526) and quasi-static (Myers et al 2016 Phys. Plasmas 23 112102) magnetic tension forces in contributing to the equilibrium and stability of line-tied magnetic flux ropes. In our paper, we synthesize these laboratory results and explore the relationship between the dynamic and quasi-static tension forces. And while the quasi-static tension force ismore » found to contribute to the flux rope equilibrium in a number of regimes, the dynamic tension force is substantial mostly in the so-called failed torus regime where magnetic self-organization events prevent the flux rope from erupting.« less

  7. Quasi-static and dynamic magnetic tension forces in arched, line-tied magnetic flux ropes

    DOE PAGES

    Myers, C. E.; Yamada, M.; Ji, H.; ...

    2016-11-22

    Solar eruptions are often driven by magnetohydrodynamic instabilities such as the torus and kink instabilities that act on line-tied magnetic flux ropes. We designed our recent laboratory experiments to study these eruptive instabilities which have demonstrated the key role of both dynamic (Myers et al 2015 Nature 528 526) and quasi-static (Myers et al 2016 Phys. Plasmas 23 112102) magnetic tension forces in contributing to the equilibrium and stability of line-tied magnetic flux ropes. In our paper, we synthesize these laboratory results and explore the relationship between the dynamic and quasi-static tension forces. And while the quasi-static tension force ismore » found to contribute to the flux rope equilibrium in a number of regimes, the dynamic tension force is substantial mostly in the so-called failed torus regime where magnetic self-organization events prevent the flux rope from erupting.« less

  8. A NASA/Industry/University Partnership for Development of Dual-Use Vibration Isolation Technology

    NASA Technical Reports Server (NTRS)

    Tinker, Michael L.

    1994-01-01

    A partnership is described that was formed as a result of a NASA university grant for the study of wire rope vibration isolation systems. Vibration isolators of this type are currently used in the Space Shuttle Orbiter and engine test facility, and have potential application in the international space station and other space vehicles. Wire rope isolators were considered for use on the Hubble Space Telescope and the military has used wire rope technology extensively. The desire of the wire rope industry to expand sales in commercial markets coupled with results of the prior NASA funded study, led to the formation of a partnership including NASA, the university involved in the research grant, and a small company that designs wire rope systems. Goals include the development of improved mathematical models and a designers handbook to facilitate the use of the new modeling tools.

  9. Multi-scale structures of turbulent magnetic reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, T. K. M., E-mail: takuma.nakamura@oeaw.ac.at; Nakamura, R.; Narita, Y.

    2016-05-15

    We have analyzed data from a series of 3D fully kinetic simulations of turbulent magnetic reconnection with a guide field. A new concept of the guide filed reconnection process has recently been proposed, in which the secondary tearing instability and the resulting formation of oblique, small scale flux ropes largely disturb the structure of the primary reconnection layer and lead to 3D turbulent features [W. Daughton et al., Nat. Phys. 7, 539 (2011)]. In this paper, we further investigate the multi-scale physics in this turbulent, guide field reconnection process by introducing a wave number band-pass filter (k-BPF) technique in whichmore » modes for the small scale (less than ion scale) fluctuations and the background large scale (more than ion scale) variations are separately reconstructed from the wave number domain to the spatial domain in the inverse Fourier transform process. Combining with the Fourier based analyses in the wave number domain, we successfully identify spatial and temporal development of the multi-scale structures in the turbulent reconnection process. When considering a strong guide field, the small scale tearing mode and the resulting flux ropes develop over a specific range of oblique angles mainly along the edge of the primary ion scale flux ropes and reconnection separatrix. The rapid merging of these small scale modes leads to a smooth energy spectrum connecting ion and electron scales. When the guide field is sufficiently weak, the background current sheet is strongly kinked and oblique angles for the small scale modes are widely scattered at the kinked regions. Similar approaches handling both the wave number and spatial domains will be applicable to the data from multipoint, high-resolution spacecraft observations such as the NASA magnetospheric multiscale (MMS) mission.« less

  10. Multi-scale structures of turbulent magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Nakamura, T. K. M.; Nakamura, R.; Narita, Y.; Baumjohann, W.; Daughton, W.

    2016-05-01

    We have analyzed data from a series of 3D fully kinetic simulations of turbulent magnetic reconnection with a guide field. A new concept of the guide filed reconnection process has recently been proposed, in which the secondary tearing instability and the resulting formation of oblique, small scale flux ropes largely disturb the structure of the primary reconnection layer and lead to 3D turbulent features [W. Daughton et al., Nat. Phys. 7, 539 (2011)]. In this paper, we further investigate the multi-scale physics in this turbulent, guide field reconnection process by introducing a wave number band-pass filter (k-BPF) technique in which modes for the small scale (less than ion scale) fluctuations and the background large scale (more than ion scale) variations are separately reconstructed from the wave number domain to the spatial domain in the inverse Fourier transform process. Combining with the Fourier based analyses in the wave number domain, we successfully identify spatial and temporal development of the multi-scale structures in the turbulent reconnection process. When considering a strong guide field, the small scale tearing mode and the resulting flux ropes develop over a specific range of oblique angles mainly along the edge of the primary ion scale flux ropes and reconnection separatrix. The rapid merging of these small scale modes leads to a smooth energy spectrum connecting ion and electron scales. When the guide field is sufficiently weak, the background current sheet is strongly kinked and oblique angles for the small scale modes are widely scattered at the kinked regions. Similar approaches handling both the wave number and spatial domains will be applicable to the data from multipoint, high-resolution spacecraft observations such as the NASA magnetospheric multiscale (MMS) mission.

  11. Jump Rope Skills for Fun and Fitness in Grades K-12

    ERIC Educational Resources Information Center

    Michiels Hernandez, Barbara L.; Gober, Donna; Boatwright, Douglas; Strickland, George

    2009-01-01

    A jump rope is a remarkable piece of exercise equipment. It is inexpensive and easy to store, and it can be used by a wide variety of age groups to improve cardiovascular fitness, increase agility, and tone the body's muscles all at the same time. Consequently, the teaching of jump rope skills is highly suitable for physical education classes in…

  12. Resilient Braided Rope Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor); Kren, Lawrence A. (Inventor)

    1996-01-01

    A resilient braided rope seal for use in high temperature applications. The resilient braided rope seal includes a center core of fibers, a resilient 5 member overbraided by at least one layer of braided sheath fibers tightly packed together. The resilient member adds significant stiffness to the seal while maintaining resiliency. Furthermore, the seal permanent set and hysteresis are greatly reduced. Finally, improved load capabilities are provided.

  13. Initial investigations into the damping characteristics of wire rope vibration isolators

    NASA Technical Reports Server (NTRS)

    Cutchins, M. A.; Cochran, J. E., Jr.; Kumar, K.; Fitz-Coy, N. G.; Tinker, M. L.

    1987-01-01

    Passive dampers composed of coils of multi-strand wire rope are investigated. Analytical results range from those produced by complex NASTRAN models to those of a Coulomb damping model with variable friction force. The latter agrees well with experiment. The Coulomb model is also utilized to generate hysteresis loops. Various other models related to early experimental investigations are described. Significant closed-form static solutions for physical properties of single-and multi-strand wire ropes are developed for certain specific geometries and loading conditions. NASTRAN models concentrate on model generation and mode shapes of 2-strand and 7-strand straight wire ropes with interfacial forces.

  14. Embedding Circular Force-Free Flux Ropes in Potential Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Titov, V. S.; Torok, T.; Mikic, Z.; Linker, J.

    2013-12-01

    We propose a method for constructing approximate force-free equilibria in active regions that locally have a potential bipolar-type magnetic field with a thin force-free flux rope embedded inside it. The flux rope has a circular-arc axis and circular cross-section in which the interior magnetic field is predominantly toroidal (axial). Its magnetic pressure is balanced outside by that of the poloidal (azimuthal) field created at the boundary by the electric current sheathing the flux rope. To facilitate the implementation of the method in our numerical magnetohydrodynamic (MHD) code, the entire solution is described in terms of the vector potential of the magnetic field. The parameters of the flux rope can be chosen so that a subsequent MHD relaxation of the constructed configuration under line-tied conditions at the boundary provides a numerically exact equilibrium. Such equilibria are an approximation for the magnetic configuration preceding solar eruptions, which can be triggered in our model by imposing suitable photospheric flows beneath the flux rope. The proposed method is a useful tool for constructing pre-eruption magnetic fields in data-driven simulations of solar active events. Research supported by NASA's Heliophysics Theory and LWS Programs, and NSF/SHINE and NSF/FESD.

  15. Evidences on the Existence of Magnetic Flux Rope Before and During a Solar Eruption

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Cheng, Xin; Liu, Kai

    2013-03-01

    We report the observational evidences from the advanced SDO observations that magnetic flux ropes exist before and during solar eruptions. The solar eruption is defined as coronal mass ejection, whether or not associated with a solar flare. Magnetic flux ropes are directly observed as hot EUV channels as seen in the hot AIA 131 (10 MK) and/or AIA 94 (6.4 MK) passbands, but are absent in cool AIA passbands. The fact that flux ropes are only seen in hot temperatures explains their evasion of detection from previous EUV observations, such as SOHO/EIT, TRACE and STEREO/EUVI. The hot channel usually appears as a writhed sigmoidal shape and slowly rises prior to the onset of the impulsive acceleration as well as the onset of the flare. The hot channel transforms into a CME-like semi-circular shape in a continuous way, indicating its trapping or organization by a coherent magnetic structure. The dynamic and thermal properties of flux ropes will also be presented. We further discuss the critical role of flux ropes in CME initiation and subsequent acceleration, in light of contrasting the standard eruptive flare models.

  16. The coupled nonlinear dynamics of a lift system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crespo, Rafael Sánchez, E-mail: rafael.sanchezcrespo@northampton.ac.uk, E-mail: stefan.kaczmarczyk@northampton.ac.uk, E-mail: phil.picton@northampton.ac.uk, E-mail: huijuan.su@northampton.ac.uk; Kaczmarczyk, Stefan, E-mail: rafael.sanchezcrespo@northampton.ac.uk, E-mail: stefan.kaczmarczyk@northampton.ac.uk, E-mail: phil.picton@northampton.ac.uk, E-mail: huijuan.su@northampton.ac.uk; Picton, Phil, E-mail: rafael.sanchezcrespo@northampton.ac.uk, E-mail: stefan.kaczmarczyk@northampton.ac.uk, E-mail: phil.picton@northampton.ac.uk, E-mail: huijuan.su@northampton.ac.uk

    2014-12-10

    Coupled lateral and longitudinal vibrations of suspension and compensating ropes in a high-rise lift system are often induced by the building motions due to wind or seismic excitations. When the frequencies of the building become near the natural frequencies of the ropes, large resonance motions of the system may result. This leads to adverse coupled dynamic phenomena involving nonplanar motions of the ropes, impact loads between the ropes and the shaft walls, as well as vertical vibrations of the car, counterweight and compensating sheave. Such an adverse dynamic behaviour of the system endangers the safety of the installation. This papermore » presents two mathematical models describing the nonlinear responses of a suspension/ compensating rope system coupled with the elevator car / compensating sheave motions. The models accommodate the nonlinear couplings between the lateral and longitudinal modes, with and without longitudinal inertia of the ropes. The partial differential nonlinear equations of motion are derived using Hamilton Principle. Then, the Galerkin method is used to discretise the equations of motion and to develop a nonlinear ordinary differential equation model. Approximate numerical solutions are determined and the behaviour of the system is analysed.« less

  17. MAGNETAR GIANT FLARES AND THEIR PRECURSORS-FLUX ROPE ERUPTIONS WITH CURRENT SHEETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu Cong; Huang Lei, E-mail: cyu@ynao.ac.cn, E-mail: muduri@shao.ac.cn

    2013-07-10

    We propose a catastrophic magnetospheric model for magnetar precursors and their successive giant flares. Axisymmetric models of the magnetosphere, which contain both a helically twisted flux rope and a current sheet, are established based on force-free field configurations. In this model, the helically twisted flux rope would lose its equilibrium and erupt abruptly in response to the slow and quasi-static variations at the ultra-strongly magnetized neutron star's surface. In a previous model without current sheets, only one critical point exists in the flux rope equilibrium curve. New features show up in the equilibrium curves for the flux rope when currentmore » sheets appear in the magnetosphere. The causal connection between the precursor and the giant flare, as well as the temporary re-entry of the quiescent state between the precursor and the giant flare, can be naturally explained. Magnetic energy would be released during the catastrophic state transitions. The detailed energetics of the model are also discussed. The current sheet created by the catastrophic loss of equilibrium of the flux rope provides an ideal place for magnetic reconnection. We point out the importance of magnetic reconnection for further enhancement of the energy release during eruptions.« less

  18. Attraction of gravid anopheles Pseudopunctipennis females to oviposition substrates by Spirogyra majuscula (Zygnematales: Zygnmataceae) algae under laboratory conditions.

    PubMed

    Torres-Estrada, José L; Meza-Alvarez, Rosa A; Cruz-López, Leopoldo; Rodríguez, Mario H; Arredondo-Jiménez, Juan I

    2007-03-01

    The attraction of Anopheles pseudopunctipennis gravid females to oviposition substrates containing Spirogyra majuscula algae was investigated under laboratory conditions. Gravid females deposited significantly more eggs in cups containing natural algae in water from breeding sites than in cups containing artificial (nylon rope) life-like algae in water from the corresponding natural breeding site, or in cups containing natural algae in distilled water. Bioassays with Spirogyra majuscula organic extracts indicated that these extracts at concentrations of 0.1%, 0.01%, and 0.001% attracted more oviposition, but concentrations of 1%, 10%, and 100% were repellent. Gas chromatography and mass spectrometry analysis of algae organic extracts revealed a mixture of ethyl acetate and hydrocarbons compounds. These results suggest that the attraction of gravid An. pseudopunctipennis to natural breeding sites containing filamentous algae is probably mediated by organic compounds released by the algae.

  19. A dynamic magnetic tension force as the cause of failed solar eruptions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, Clayton E.; Yamada, Masaaki; Ji, Hantao

    Coronal mass ejections are solar eruptions driven by a sudden release of magnetic energy stored in the Sun's corona. In many cases, this magnetic energy is stored in long-lived, arched structures called magnetic flux ropes. When a flux rope destabilizes, it can either erupt and produce a coronal mass ejection or fail and collapse back towards the Sun. The prevailing belief is that the outcome of a given event is determined by a magnetohydrodynamic force imbalance called the torus instability. This belief is challenged, however, by observations indicating that torus-unstable flux ropes sometimes fail to erupt. This contradiction has notmore » yet been resolved because of a lack of coronal magnetic field measurements and the limitations of idealized numerical modelling. In this paper, we report the results of a laboratory experiment that reveal a previously unknown eruption criterion below which torus-unstable flux ropes fail to erupt. We find that such 'failed torus' events occur when the guide magnetic field (that is, the ambient field that runs toroidally along the flux rope) is strong enough to prevent the flux rope from kinking. Under these conditions, the guide field interacts with electric currents in the flux rope to produce a dynamic toroidal field tension force that halts the eruption. Lastly, this magnetic tension force is missing from existing eruption models, which is why such models cannot explain or predict failed torus events.« less

  20. A dynamic magnetic tension force as the cause of failed solar eruptions

    DOE PAGES

    Myers, Clayton E.; Yamada, Masaaki; Ji, Hantao; ...

    2015-12-23

    Coronal mass ejections are solar eruptions driven by a sudden release of magnetic energy stored in the Sun's corona. In many cases, this magnetic energy is stored in long-lived, arched structures called magnetic flux ropes. When a flux rope destabilizes, it can either erupt and produce a coronal mass ejection or fail and collapse back towards the Sun. The prevailing belief is that the outcome of a given event is determined by a magnetohydrodynamic force imbalance called the torus instability. This belief is challenged, however, by observations indicating that torus-unstable flux ropes sometimes fail to erupt. This contradiction has notmore » yet been resolved because of a lack of coronal magnetic field measurements and the limitations of idealized numerical modelling. In this paper, we report the results of a laboratory experiment that reveal a previously unknown eruption criterion below which torus-unstable flux ropes fail to erupt. We find that such 'failed torus' events occur when the guide magnetic field (that is, the ambient field that runs toroidally along the flux rope) is strong enough to prevent the flux rope from kinking. Under these conditions, the guide field interacts with electric currents in the flux rope to produce a dynamic toroidal field tension force that halts the eruption. Lastly, this magnetic tension force is missing from existing eruption models, which is why such models cannot explain or predict failed torus events.« less

  1. Sunward-propagating Solar Energetic Electrons inside Multiple Interplanetary Flux Ropes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gómez-Herrero, Raúl; Hidalgo, Miguel A.; Carcaboso, Fernando

    2017-05-10

    On 2013 December 2 and 3, the SEPT and STE instruments on board STEREO-A observed two solar energetic electron events with unusual sunward-directed fluxes. Both events occurred during a time interval showing typical signatures of interplanetary coronal mass ejections (ICMEs). The electron timing and anisotropies, combined with extreme-ultraviolet solar imaging and radio wave spectral observations, are used to confirm the solar origin and the injection times of the energetic electrons. The solar source of the ICME is investigated using remote-sensing observations and a three-dimensional reconstruction technique. In situ plasma and magnetic field data combined with energetic electron observations and amore » flux-rope model are used to determine the ICME magnetic topology and the interplanetary electron propagation path from the Sun to 1 au. Two consecutive flux ropes crossed the STEREO-A location and each electron event occurred inside a different flux rope. In both cases, the electrons traveled from the solar source to 1 au along the longest legs of the flux ropes still connected to the Sun. During the December 2 event, energetic electrons propagated along the magnetic field, while during the December 3 event they were propagating against the field. As found by previous studies, the energetic electron propagation times are consistent with a low number of field line rotations N < 5 of the flux rope between the Sun and 1 au. The flux rope model used in this work suggests an even lower number of rotations.« less

  2. Simulations of Emerging Magnetic Flux. II. The Formation of Unstable Coronal Flux Ropes and the Initiation of Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Leake, James E.; Linton, Mark G.; Antiochos, Spiro K.

    2014-01-01

    We present results from three-dimensional magnetohydrodynamic simulations of the emergence of a twisted convection zone flux tube into a pre-existing coronal dipole field. As in previous simulations, following the partial emergence of the sub-surface flux into the corona, a combination of vortical motions and internal magnetic reconnection forms a coronal flux rope. Then, in the simulations presented here, external reconnection between the emerging field and the pre-existing dipole coronal field allows further expansion of the coronal flux rope into the corona. After sufficient expansion, internal reconnection occurs beneath the coronal flux rope axis, and the flux rope erupts up to the top boundary of the simulation domain (approximately 36 Mm above the surface).We find that the presence of a pre-existing field, orientated in a direction to facilitate reconnection with the emerging field, is vital to the fast rise of the coronal flux rope. The simulations shown in this paper are able to self-consistently create many of the surface and coronal signatures used by coronal mass ejection (CME) models. These signatures include surface shearing and rotational motions, quadrupolar geometry above the surface, central sheared arcades reconnecting with oppositely orientated overlying dipole fields, the formation of coronal flux ropes underlying potential coronal field, and internal reconnection which resembles the classical flare reconnection scenario. This suggests that proposed mechanisms for the initiation of a CME, such as "magnetic breakout," are operating during the emergence of new active regions.

  3. ROPE: Recoverable Order-Preserving Embedding of Natural Language

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widemann, David P.; Wang, Eric X.; Thiagarajan, Jayaraman J.

    We present a novel Recoverable Order-Preserving Embedding (ROPE) of natural language. ROPE maps natural language passages from sparse concatenated one-hot representations to distributed vector representations of predetermined fixed length. We use Euclidean distance to return search results that are both grammatically and semantically similar. ROPE is based on a series of random projections of distributed word embeddings. We show that our technique typically forms a dictionary with sufficient incoherence such that sparse recovery of the original text is possible. We then show how our embedding allows for efficient and meaningful natural search and retrieval on Microsoft’s COCO dataset and themore » IMDB Movie Review dataset.« less

  4. Coronal plane radiographic evaluation of the single TightRope technique in the treatment of acute acromioclavicular joint injury.

    PubMed

    Yi, Young; Kim, Jeong Woo

    2015-10-01

    This study aimed to demonstrate the technical aspects of the single TightRope (Arthrex, Naples, FL, USA) procedure for acute acromioclavicular-coracoclavicular joint dislocation, identify the predictive factors influencing its outcome, and assess and validate the significance of specific radiologic parameters. We reviewed true anteroposterior shoulder radiographs of 62 consecutive patients who had undergone surgical reconstruction using TightRope for an acute acromioclavicular-coracoclavicular injury. All patients were followed up for at least 12 months between October 2009 and March 2012 and were divided into dissociated or nondissociated groups according to their surgical outcome. We measured the clavicle tunnel anteroposterior angle, distal clavicular tunnel placement, and tunnel-to-medial coracoid ratio, and compared the parameters in each group after a satisfactory intraclass correlation coefficient reliability test result. The angles of patients in the dissociated group were more acute compared with the angles of those in the nondissociated group, which were perpendicular, as verified statistically using the paired t test. The difference in the distal clavicular tunnel placement and tunnel-to-medial coracoid ratio between the groups was not significant. Therefore, tunnel placement is not influenced by coracoclavicular dissociation. The clavicle tunnel anteroposterior angle can be used as a predictor of surgical outcome in coracoclavicular augmentation surgery. The surgeon should strive to place a perpendicular hole from the clavicle to the coracoid process for the TightRope fixation to enable a successful reconstruction of the acute acromioclavicular-coracoclavicular injury. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  5. Witnessing magnetic twist with high-resolution observation from the 1.6-m New Solar Telescope

    PubMed Central

    Wang, Haimin; Cao, Wenda; Liu, Chang; Xu, Yan; Liu, Rui; Zeng, Zhicheng; Chae, Jongchul; Ji, Haisheng

    2015-01-01

    Magnetic flux ropes are highly twisted, current-carrying magnetic fields. They are crucial for the instability of plasma involved in solar eruptions, which may lead to adverse space weather effects. Here we present observations of a flaring using the highest resolution chromospheric images from the 1.6-m New Solar Telescope at Big Bear Solar Observatory, supplemented by a magnetic field extrapolation model. A set of loops initially appear to peel off from an overall inverse S-shaped flux bundle, and then develop into a multi-stranded twisted flux rope, producing a two-ribbon flare. We show evidence that the flux rope is embedded in sheared arcades and becomes unstable following the enhancement of its twists. The subsequent motion of the flux rope is confined due to the strong strapping effect of the overlying field. These results provide a first opportunity to witness the detailed structure and evolution of flux ropes in the low solar atmosphere. PMID:25919706

  6. VERTICAL KINK OSCILLATION OF A MAGNETIC FLUX ROPE STRUCTURE IN THE SOLAR CORONA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, S.; Cho, K.-S.; Nakariakov, V. M., E-mail: sjkim@kasi.re.kr

    2014-12-20

    Vertical transverse oscillations of a coronal magnetic rope, observed simultaneously in the 171 Å and 304 Å bandpasses of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory (SDO), are detected. The oscillation period is about 700 s and the displacement amplitude is about 1 Mm. The oscillation amplitude remains constant during the observation. Simultaneous observation of the rope in the bandpasses corresponding to the coronal and chromospheric temperatures suggests that it has a multi-thermal structure. Oscillatory patterns in 171 Å and 304 Å are coherent, which indicates that the observed kink oscillation is collective, in which the ropemore » moves as a single entity. We interpret the oscillation as a fundamental standing vertically polarized kink mode of the rope, while the interpretation in terms of a perpendicular fast wave could not be entirely ruled out. In addition, the arcade situated above the rope and seen in the 171 Å bandpass shows an oscillatory motion with the period of about 1000 s.« less

  7. Reverse Current Shock Induced by Plasma-Neutral Collision

    NASA Astrophysics Data System (ADS)

    Wongwaitayakornkul, Pakorn; Haw, Magnus; Li, Hui; Li, Shengtai; Bellan, Paul

    2017-10-01

    The Caltech solar experiment creates an arched plasma-filled flux rope expanding into low density background plasma. A layer of electrical current flowing in the opposite direction with respect to the flux rope current is induced in the background plasma just ahead of the flux rope. Two dimensional spatial and temporal measurements by a 3-dimensional magnetic vector probe demonstrate the existence of this induced current layer forming ahead of the flux rope. The induced current magnitude is 20% of the magnitude of the current in the flux rope. The reverse current in the low density background plasma is thought to be a diamagnetic response that shields out the magnetic field ahead of the propagation. The spatial and magnetic characteristics of the reverse current layer are consistent with similar shock structures seen in 3-dimensional ideal MHD numerical simulations performed on the Turquoise supercomputer cluster using the Los Alamos COMPutational Astrophysics Simulation Suite. This discovery of the induced diamagnetic current provides useful insights for space and solar plasma.

  8. Kevlar Cable Development Program.

    DTIC Science & Technology

    1978-01-01

    1 *II. BRAID DEVELOPMENTS ........................................................... 1 A...57 B. Braided Rope ................................................................. 57 IX. HIGH STRENGTH ROPE...Electromechanical Kevlar 29 Cable- Braid vs. Serves........................... 72 C. Fairings

  9. Multispacecraft study of shock-flux rope interaction

    NASA Astrophysics Data System (ADS)

    Blanco-Cano, Xochitl; Burgess, David; Sundberg, Torbjorn; Kajdic, Primoz

    2017-04-01

    Interplanetary (IP) shocks can be driven in the solar wind by fast coronal mass ejections. These shocks can accelerate particles near the Sun and through the heliosphere, being associated to solar energetic particle (SEP) and energetic storm particle (ESP) events. IP shocks can interact with structures in the solar wind, and with planetary magnetospheres. In this study we show how the properties of an IP shock change when it interacts with a medium scale flux rope (FR) like structure. We use data measurements from CLUSTER, WIND and ACE. These three spacecraft observed the shock-FR interaction at different stages of its evolution. We find that the shock-FR interaction locally changes the shock geometry, affecting ion injection processes, and the upstream and downstream regions. While WIND and ACE observed a quasi-perpendicular shock, CLUSTER crossed a quasi-parallel shock and a foreshock with a variety of ion distributions. The complexity of the ion foreshock can be explained by the dynamics of the shock transitioning from quasi-perpendicular to quasi-parallel, and the geometry of the magnetic field around the flux rope. Interactions such as the one we discuss can occur often along the extended IP shock fronts, and hence their importance towards a better understanding of shock acceleration.

  10. Technical tip: tightrope fixation of neer type II distal clavicle fracture supported by a case series.

    PubMed

    Haque, Syed; Khan, Anwar; Sharma, A; Sundararajan, Sabapathy

    2014-03-27

    We present a case series of 3 patients who underwent a novel technique of tight rope fixation for Neer type II distal clavicle fracture. 2-3 cm incision was made lateral to the fracture site moving inferomedially. Part of the distal end of clavicle was exposed close to fracture site and further dissection was carried out to reveal the coracoid process. Tight rope fixation of the distal ends of clavicle and coracoid was performed to achieve satisfactory fracture reduction on x-ray. 4 weeks of sling with gentle pendulum movement were followed by active shoulder movement exercises. Radiographic union was reached at 6 weeks' time, while the patients achieved proper shoulder functionality 3 months following the operation. Neer type II distal clavicle fractures are characterized by disruption of the coracoclavicular ligament with wide proximal fragment displacement. Overall, type II distal clavicle fractures have a 20-30% nonunion rate if treated non-surgically. Various techniques have been described for the treatment of these fractures, including hook plate and nailing. Tight rope fixation provides proper apposition of the fracture fragments for union by maintaining a reduced coracoclavicular interval.

  11. DATA-CONSTRAINED CORONAL MASS EJECTIONS IN A GLOBAL MAGNETOHYDRODYNAMICS MODEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, M.; Manchester, W. B.; Van der Holst, B.

    We present a first-principles-based coronal mass ejection (CME) model suitable for both scientific and operational purposes by combining a global magnetohydrodynamics (MHD) solar wind model with a flux-rope-driven CME model. Realistic CME events are simulated self-consistently with high fidelity and forecasting capability by constraining initial flux rope parameters with observational data from GONG, SOHO /LASCO, and STEREO /COR. We automate this process so that minimum manual intervention is required in specifying the CME initial state. With the newly developed data-driven Eruptive Event Generator using Gibson–Low configuration, we present a method to derive Gibson–Low flux rope parameters through a handful ofmore » observational quantities so that the modeled CMEs can propagate with the desired CME speeds near the Sun. A test result with CMEs launched with different Carrington rotation magnetograms is shown. Our study shows a promising result for using the first-principles-based MHD global model as a forecasting tool, which is capable of predicting the CME direction of propagation, arrival time, and ICME magnetic field at 1 au (see the companion paper by Jin et al. 2016a).« less

  12. 49 CFR 393.108 - How is the working load limit of a tiedown, or the load restraining value of a friction mat...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... that for polypropylene fiber rope. (d) Welded steel chain which is not marked or labeled to enable... for grade 30 proof coil chain. (e)(1) Wire rope which is not marked by the manufacturer with a working... listed in the Wire Rope Users Manual. (2) Wire which is not marked or labeled to enable identification of...

  13. 49 CFR 393.108 - How is the working load limit of a tiedown, or the load restraining value of a friction mat...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... that for polypropylene fiber rope. (d) Welded steel chain which is not marked or labeled to enable... for grade 30 proof coil chain. (e)(1) Wire rope which is not marked by the manufacturer with a working... listed in the Wire Rope Users Manual. (2) Wire which is not marked or labeled to enable identification of...

  14. Measurements of Magnetic Helicity within Two Interacting Flux Ropes

    NASA Astrophysics Data System (ADS)

    Dehaas, Timothy; Gekelman, Walter

    2016-10-01

    Magnetic helicity (HM) has become a useful tool in the exploration of astrophysical plasmas. Its conservation in the MHD limit (and even some fluid approaches) constrains the global behavior of large plasma structures. One such astrophysical structure is a magnetic flux rope: a rope-like, current-carrying plasma embedded in an external magnetic field. Bundles of these ropes are commonly observed extending from the solar surface and can be found in the near-earth environment. In this well-diagnosed experiment (3D measurements of ne, Te, Vp, B, J, E, uflow) , two magnetic flux ropes were generated in the Large Plasma Device at UCLA. These ropes were driven kink-unstable, commencing complex motion. As they interact, helicity conservation is broken in regions of reconnection, turbulence, and instabilities. The changes in helicity can be visualized as 1) the transport of helicity (ϕB +E × A) and 2) the dissipation of the helicity (-2EB). Magnetic helicity is observed to have a negative sign and its counterpart, cross helicity, a positive one. These qualities oscillate 8% peak-to-peak. As the ropes move and the topology of the field lines change, a quasi-separatrix layer (QSL) is formed. The volume averaged HM and the largest value of Q both oscillate but not in phase. In addition to magnetic helicity, similar quantities such as self-helicity, mutual-helicity, vorticity, and canonical helicity are derived and will be presented. This work is supported by LANL-UC research Grant and done at the Basic Plasma Science Facility, which is funded by DOE and NSF.

  15. Magnetar giant flares in multipolar magnetic fields. II. Flux rope eruptions with current sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lei; Yu, Cong, E-mail: muduri@shao.ac.cn, E-mail: cyu@ynao.ac.cn

    2014-11-20

    We propose a physical mechanism to explain giant flares and radio afterglows in terms of a magnetospheric model containing both a helically twisted flux rope and a current sheet (CS). With the appearance of a CS, we solve a mixed boundary value problem to get the magnetospheric field based on a domain decomposition method. We investigate properties of the equilibrium curve of the flux rope when the CS is present in background multipolar fields. In response to the variations at the magnetar surface, it quasi-statically evolves in stable equilibrium states. The loss of equilibrium occurs at a critical point and,more » beyond that point, it erupts catastrophically. New features show up when the CS is considered. In particular, we find two kinds of physical behaviors, i.e., catastrophic state transition and catastrophic escape. Magnetic energy would be released during state transitions. This released magnetic energy is sufficient to drive giant flares, and the flux rope would, therefore, go away from the magnetar quasi-statically, which is inconsistent with the radio afterglow. Fortunately, in the latter case, i.e., the catastrophic escape, the flux rope could escape the magnetar and go to infinity in a dynamical way. This is more consistent with radio afterglow observations of giant flares. We find that the minor radius of the flux rope has important implications for its eruption. Flux ropes with larger minor radii are more prone to erupt. We stress that the CS provides an ideal place for magnetic reconnection, which would further enhance the energy release during eruptions.« less

  16. Sigmoidal equilibria and eruptive instabilities in laboratory magnetic flux ropes

    NASA Astrophysics Data System (ADS)

    Myers, C. E.; Yamada, M.; Belova, E.; Ji, H.; Yoo, J.

    2013-12-01

    The Magnetic Reconnection Experiment (MRX) has recently been modified to study quasi-statically driven line-tied magnetic flux ropes in the context of storage-and-release eruptions in the corona. Detailed in situ magnetic measurements and supporting MHD simulations permit quantitative analysis of the plasma behavior. We find that the behavior of these flux ropes depends strongly on the properties of the applied potential magnetic field arcade. For example, when the arcade is aligned parallel to the flux rope footpoints, force free currents induced in the expanding rope modify the pressure and tension in the arcade, resulting in a confined, quiescent discharge with a saturated kink instability. When the arcade is obliquely aligned to the footpoints, on the other hand, a highly sigmoidal equilibrium forms that can dynamically erupt (see Fig. 1 and Fig. 2). To our knowledge, these storage-and-release eruptions are the first of their kind to be produced in the laboratory. A new 2D magnetic probe array is used to map out the internal structure of the flux ropes during both the storage and the release phases of the discharge. The kink instability and the torus instability are studied as candidate eruptive mechanisms--the latter by varying the vertical gradient of the potential field arcade. We also investigate magnetic reconnection events that accompany the eruptions. The long-term objective of this work is to use internal magnetic measurements of the flux rope structure to better understand the evolution and eruption of comparable structures in the corona. This research is supported by DoE Contract Number DE-AC02-09CH11466 and by the Center for Magnetic Self-Organization (CMSO). Qualitative sketches of flux ropes formed in (1) a parallel potential field arcade; and (2) an oblique potential field arcade. One-dimensional magnetic measurements from (1) a parallel arcade discharge that is confined; and (2) an oblique arcade discharge that erupts.

  17. The theoretical background to BS7167: 1990 - specification for Bordeaux connections

    NASA Astrophysics Data System (ADS)

    Gorley, T. A. E.

    1992-03-01

    The theoretical background to the specification of Bordeaux connections (components of lifting gear used to join together wire rope and a chain, or two lengths of wire rope, where the joined lengths have to run over a sheave as in the case of grabbing cranes) is documented. Decisions taken in the drafting of earlier specifications are not documented. The design criteria for BS7167:1990 are addressed. The various parts of the Bordeaux connection specified in the standard are discussed in turn: the link portion, the rope portion, and the grab shackle. Some tests on the new design undertaken by the Health and Safety Executive confirm the new design criteria to be adequate for the strengths of rope to be used with this component.

  18. Vertical vibration analysis for elevator compensating sheave

    NASA Astrophysics Data System (ADS)

    Watanabe, Seiji; Okawa, Takeya; Nakazawa, Daisuke; Fukui, Daiki

    2013-07-01

    Most elevators applied to tall buildings include compensating ropes to satisfy the balanced rope tension between the car and the counter weight. The compensating ropes receive tension by the compensating sheave, which is installed at the bottom space of the elevator shaft. The compensating sheave is only suspended by the compensating ropes, therefore, the sheave can move vertically while the car is traveling. This paper shows the elevator dynamic model to evaluate the vertical motion of the compensating sheave. Especially, behavior in emergency cases, such as brake activation and buffer strike, was investigated to evaluate the maximum upward motion of the sheave. The simulation results were validated by experiments and the most influenced factor for the sheave vertical motion was clarified.

  19. Storage-and-release flux rope eruptions in the laboratory: initial results and experimental plans

    NASA Astrophysics Data System (ADS)

    Myers, C. E.; Yamada, M.; Ji, H.; Yoo, J.; Jara-Almonte, J.; Lawrence, E. E.

    2012-12-01

    Solar eruptive events such as coronal mass ejections (CMEs) are thought to be driven by a sudden release of magnetic energy stored in the corona. In many cases, the pre-eruptive configuration is a non-potential magnetic structure that can be modeled as a line-tied magnetic flux rope. In spite of ever-improving observational capabilities, directly studying the evolution of coronal flux ropes remains a significant challenge. Thus, in order to further explore the mechanisms that drive solar eruptions, we must find novel ways to simulate the relevant physical system. To this end, we have constructed a new laboratory experiment to study storage-and-release flux rope eruptions. This experiment contains a carefully designed set of ``sub-photospheric" coils that produces an active-region-like potential field configuration that remains static throughout the discharge. An arched magnetic flux rope plasma is formed within this potential field configuration by driving electric current through two line-tied footpoints (copper electrodes). Over the course of the discharge, the plasma current is quasi-statically increased (to tens of kiloamperes over many Alfvén times) in order to slowly build up magnetic energy in the system. As the flux rope gains energy, it will expand away from the electrodes to a point where it is expected to undergo a dynamic eruption due to the onset of a loss-of-equilibrium [Forbes & Isenberg, Astrophys. J. 373, 294 (1991)] or the torus instability [Kliem & Török, Phys. Rev. Lett. 96, 255002 (2006)]. In these experiments, the structure of the background potential field configuration (i.e., the field decay index) can be varied to study its effect on the observed flux rope eruptions. Initial results from these experiment are presented, including images from a fast visible light camera and direct measurements from internal magnetic diagnostics. This research is supported by DoE Contract Number DE-AC02-09CH11466 and by the Center for Magnetic Self-Organization (CMSO).; Specially designed magnetic field coils (orange and blue) are used to produce an active-region-like potential field configuration within the vacuum vessel (gray). An arched magnetic flux rope plasma is formed by driving electric current along low-lying potential field lines (blue/green). As magnetic energy builds up in the flux rope, it will expand outward and possibly undergo a storage-and-release eruption.

  20. Effect of gravitational stratification on the propagation of a CME

    NASA Astrophysics Data System (ADS)

    Pagano, P.; Mackay, D. H.; Poedts, S.

    2013-12-01

    Context. Coronal mass ejections (CMEs) are the most violent phenomenon found on the Sun. One model that explains their occurrence is the flux rope ejection model. A magnetic flux rope is ejected from the solar corona and reaches the interplanetary space where it interacts with the pre-existing magnetic fields and plasma. Both gravity and the stratification of the corona affect the early evolution of the flux rope. Aims: Our aim is to study the role of gravitational stratification on the propagation of CMEs. In particular, we assess how it influences the speed and shape of CMEs and under what conditions the flux rope ejection becomes a CME or when it is quenched. Methods: We ran a set of MHD simulations that adopt an eruptive initial magnetic configuration that has already been shown to be suitable for a flux rope ejection. We varied the temperature of the backgroud corona and the intensity of the initial magnetic field to tune the gravitational stratification and the amount of ejected magnetic flux. We used an automatic technique to track the expansion and the propagation of the magnetic flux rope in the MHD simulations. From the analysis of the parameter space, we evaluate the role of gravitational stratification on the CME speed and expansion. Results: Our study shows that gravitational stratification plays a significant role in determining whether the flux rope ejection will turn into a full CME or whether the magnetic flux rope will stop in the corona. The CME speed is affected by the background corona where it travels faster when the corona is colder and when the initial magnetic field is more intense. The fastest CME we reproduce in our parameter space travels at ~850 km s-1. Moreover, the background gravitational stratification plays a role in the side expansion of the CME, and we find that when the background temperature is higher, the resulting shape of the CME is flattened more. Conclusions: Our study shows that although the initiation mechanisms of the CME are purely magnetic, the background coronal plasma plays a key role in the CME propagation, and full MHD models should be applied when one focuses especially on the production of a CME from a flux rope ejection. Movies are available in electronic form at http://www.aanda.org

  1. Elliptic-cylindrical analytical flux-rope model for ICMEs

    NASA Astrophysics Data System (ADS)

    Nieves-Chinchilla, T.; Linton, M.; Hidalgo, M. A. U.; Vourlidas, A.

    2016-12-01

    We present an analytical flux-rope model for realistic magnetic structures embedded in Interplanetary Coronal Mass Ejections. The framework of this model was established by Nieves-Chinchilla et al. (2016) with the circular-cylindrical analytical flux rope model and under the concept developed by Hidalgo et al. (2002). Elliptic-cylindrical geometry establishes the first-grade of complexity of a series of models. The model attempts to describe the magnetic flux rope topology with distorted cross-section as a possible consequence of the interaction with the solar wind. In this model, the flux rope is completely described in the non-euclidean geometry. The Maxwell equations are solved using tensor calculus consistently with the geometry chosen, invariance along the axial component, and with the only assumption of no radial current density. The model is generalized in terms of the radial dependence of the poloidal current density component and axial current density component. The misalignment between current density and magnetic field is studied in detail for the individual cases of different pairs of indexes for the axial and poloidal current density components. This theoretical analysis provides a map of the force distribution inside of the flux-rope. The reconstruction technique has been adapted to the model and compared with in situ ICME set of events with different in situ signatures. The successful result is limited to some cases with clear in-situ signatures of distortion. However, the model adds a piece in the puzzle of the physical-analytical representation of these magnetic structures. Other effects such as axial curvature, expansion and/or interaction could be incorporated in the future to fully understand the magnetic structure. Finally, the mathematical formulation of this model opens the door to the next model: toroidal flux rope analytical model.

  2. The mechanics of trick roping

    NASA Astrophysics Data System (ADS)

    Brun, Pierre-Thomas

    2014-03-01

    Trick roping evolved from humble origins as a cattle-catching tool into a sport that delights audiences the world over with its complex patterns or ``tricks,'' such as the Merry-Go-Round , the Wedding-Ring, the Spoke-Jumping, the Texas Skip... Its implement is the lasso, a length of rope with a small loop (``honda'') at one end through which the other end is passed to form a large loop. Here, we study the physics of the simplest rope trick, the Flat Loop, in which the motion of the lasso is forced by a uniform circular motion of the cowboy's/cowgirl's hand in a horizontal plane. To avoid accumulating twist in the rope, the cowboy/cowgirl rolls it between his/her thumb and forefinger while spinning it. The configuration of the rope is stationary in a reference frame that rotates with the hand. Exploiting this fact we derive a dynamical ``string'' model in which line tension is balanced by the centrifugal force and the rope's weight. Using a numerical continuation method, we calculate the steady shapes of a lasso with a fixed honda, examine their stability, and determine a bifurcation diagram exhibiting coat-hanger shapes and whirling modes in addition to flat loops. We then extend the model to a honda with finite sliding friction by using matched asymptotic expansions to determine the structure of the boundary layer where bending forces are significant, thereby obtaining a macroscopic criterion for frictional sliding of the honda. We compare our theoretical results with high-speed videos of a professional trick roper and experiments performed using a laboratory ``robo-cowboy.'' Finally, we conclude with a practical guidance on how to spin a lasso in the air based on the results of our analysis. With the support of Univ. Paris Sud (Lab. FAST/CNRS) and UPMC (d'Alembert/CNRS).

  3. Evidence for the Magnetic Breakout Model in AN Equatorial Coronal-Hole Jet

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Karpen, J.; Antiochos, S. K.; Wyper, P. F.; DeVore, C. R.; DeForest, C. E.

    2017-12-01

    We analyzed an equatorial coronal-hole jet observed by Solar Dynamic Observatory (SDO)/AtmosphericImaging Assembly (AIA). The source-region magnetic field structure is consistent withthe embedded-bipole topology that we identified and modeled previously as a source of coronal jets. Theinitial brightening was observed below a sigmoid structure about 25 min before the onset of an untwisting jet.A circular magnetic flux rope with a mini-filament rose slowly at the speed of ˜15 km/s , then accelerated(˜126 km/s) during the onset of explosive breakout reconnection. Multiple plasmoids, propagating upward(˜135 km/s) and downward (˜55 km/s ), were detected behind the rising flux rope shortly before andduring explosive breakout reconnection. The jet was triggered when the rising flux rope interacted with theoverlying magnetic structures near the outer spine. This event shows a clear evidence of reconnection not onlybelow the flux rope but also a breakout reconnection above the flux rope. During the breakout reconnection,we observed heating of the flux rope, deflection of loops near the spine, and formation of multiple ribbons.The explosive breakout reconnection destroyed the flux rope that produced an untwisting jet with a speed of˜380 km/s . HMI magnetograms reveal the shear motion at theeruption site, but do not show any significant flux emergence or cancellation during or 2 hours before theeruption. Therefore, the free energy powering this jet most likely originated in magnetic shear concentratedat the polarity inversion line within the embedded bipole-a mini-filament channel-possibly created by helicitycondensation. The result of of a statistical study of multiple jets will also be discussed.

  4. Where to Settle—Settlement Preferences of Mytilus galloprovincialis and Choice of Habitat at a Micro Spatial Scale

    PubMed Central

    Carl, Christina; Poole, Andrew J.; Williams, Mike R.; de Nys, Rocky

    2012-01-01

    The global mussel aquaculture industry uses specialised spat catching and nursery culture ropes made of multi-filament synthetic and natural fibres to optimise settlement and retention of mussels for on-growing. However, the settlement ecology and preferences of mussels are poorly understood and only sparse information exists in a commercial context. This study quantified the settlement preferences of pediveligers and plantigrades of Mytilus galloprovincialis on increasingly complex surfaces and settlement locations at a micro spatial scale on and within ropes under commercial hatchery operating conditions using optical microscopy and X-ray micro-computed tomography (µCT). M. galloprovincialis has clear settlement preferences for more complex materials and high selectivity for settlement sites from the pediveliger through to the plantigrade stage. Pediveligers of M. galloprovincialis initially settle inside specialised culture ropes. Larger pediveligers were located close to the exterior of ropes as they increased in size over time. In contrast, smaller individuals were located deeper inside of the ropes over time. This study demonstrates that X-ray µCT is an excellent non-destructive technique for mapping settlement and attachment sites of individuals as early as one day post settlement, and quantifies the number and location of settled individuals on and within ropes as a tool to understand and optimise settlement in complex multi-dimensional materials and environments. PMID:23251710

  5. A Thin-Flux-Rope Approximation as a Basis for Modeling of Pre- and Post-Eruptive Magnetic Configurations

    NASA Astrophysics Data System (ADS)

    Titov, V. S.; Mikic, Z.; Torok, T.; Linker, J.

    2016-12-01

    Many existing models of solar flares and coronal mass ejections (CMEs) assume a key role of magnetic flux ropes in these phenomena. It is therefore important to have efficient methods for constructing flux-rope configurations consistent with the observed photospheric magnetic data and morphology of CMEs. As our new step in this direction, we propose an analytical formulation that succinctly represents the magnetic field of a thin flux rope, which has an axis of arbitrary shape and a circular cross-section with the diameter slowly varying along the axis. This representation implies also that the flux rope carries axial current I and axial flux F, so that the respective magnetic field is a curl of the sum of toroidal and poloidal vector potentials proportional to I and F, respectively. Each of the two potentials is individually expressed in terms of a modified Biot-Savart law with separate kernels, both regularized at the rope axis. We argue that the proposed representation is flexible enough to be used in MHD simulations for initializing pre-eruptive configurations in the low corona or post-eruptive configurations (interplanetary CMEs) in the heliosphere. We discuss the potential advantages of our approach, and the subsequent steps to be performed, to develop a fully operative and highly competitive method compared to existing methods. Research supported by NSF, NASA's HSR and LWS Programs, and AFOSR.

  6. RANS computations for identification of 1-D cavitation model parameters: application to full load cavitation vortex rope

    NASA Astrophysics Data System (ADS)

    Alligné, S.; Decaix, J.; Müller, A.; Nicolet, C.; Avellan, F.; Münch, C.

    2017-04-01

    Due to the massive penetration of alternative renewable energies, hydropower is a key energy conversion technology for stabilizing the electrical power network by using hydraulic machines at off design operating conditions. At full load, the axisymmetric cavitation vortex rope developing in Francis turbines acts as an internal source of energy, leading to an instability commonly referred to as self-excited surge. 1-D models are developed to predict this phenomenon and to define the range of safe operating points for a hydropower plant. These models require a calibration of several parameters. The present work aims at identifying these parameters by using CFD results as objective functions for an optimization process. A 2-D Venturi and 3-D Francis turbine are considered.

  7. Flux rope evolution in interplanetary coronal mass ejections: the 13 May 2005 event

    NASA Astrophysics Data System (ADS)

    Manchester, W. B., IV; van der Holst, B.; Lavraud, B.

    2014-06-01

    Coronal mass ejections (CMEs) are a dramatic manifestation of solar activity that release vast amounts of plasma into the heliosphere, and have many effects on the interplanetary medium and on planetary atmospheres, and are the major driver of space weather. CMEs occur with the formation and expulsion of large-scale magnetic flux ropes from the solar corona, which are routinely observed in interplanetary space. Simulating and predicting the structure and dynamics of these interplanetary CME magnetic fields are essential to the progress of heliospheric science and space weather prediction. We discuss the simulation of the 13 May 2005 CME event in which we follow the propagation of a flux rope from the solar corona to beyond Earth orbit. In simulating this event, we find that the magnetic flux rope reconnects with the interplanetary magnetic field, to evolve to an open configuration and later reconnects to reform a twisted structure sunward of the original rope. Observations of the 13 May 2005 CME magnetic field near Earth suggest that such a rearrangement of magnetic flux by reconnection may have occurred.

  8. Coronal Flux Rope Catastrophe Associated With Internal Energy Release

    NASA Astrophysics Data System (ADS)

    Zhuang, Bin; Hu, Youqiu; Wang, Yuming; Zhang, Quanhao; Liu, Rui; Gou, Tingyu; Shen, Chenglong

    2018-04-01

    Magnetic energy during the catastrophe was predominantly studied by the previous catastrophe works since it is believed to be the main energy supplier for the solar eruptions. However, the contribution of other types of energies during the catastrophe cannot be neglected. This paper studies the catastrophe of the coronal flux rope system in the solar wind background, with emphasis on the transformation of different types of energies during the catastrophe. The coronal flux rope is characterized by its axial and poloidal magnetic fluxes and total mass. It is shown that a catastrophe can be triggered by not only an increase but also a decrease of the axial magnetic flux. Moreover, the internal energy of the rope is found to be released during the catastrophe so as to provide energy for the upward eruption of the flux rope. As far as the magnetic energy is concerned, it provides only part of the energy release, or even increases during the catastrophe, so the internal energy may act as the dominant or even the unique energy supplier during the catastrophe.

  9. Laboratory Evidence That Line-Tied Toroidal Magnetic Fields Can Suppress Loss-of-Equilibrium Flux Rope Eruptions in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Myers, C. E.; Yamada, M.; Belova, E.; Ji, H.; Yoo, J.; Fox, W. R., II; Jara-Almonte, J.

    2014-12-01

    Loss-of-equilibrium mechanisms such as the ideal torus instability [Kliem & Török, Phys. Rev. Lett. 96, 255002 (2006)] are predicted to drive arched flux ropes in the solar corona to erupt. In recent line-tied flux rope experiments conducted in the Magnetic Reconnection Experiment (MRX), however, we find that quasi-statically driven flux ropes remain confined well beyond the predicted torus instability threshold. In order to understand this behavior, in situ measurements from a 300 channel 2D magnetic probe array are used to comprehensively analyze the force balance between the external (potential) and internal (plasma-generated) magnetic fields. We find that forces due to the line-tied toroidal magnetic field, which are not included in the basic torus instability theory, can play a major role in preventing eruptions. The dependence of these toroidal magnetic forces on various potential field and flux rope parameters will be discussed. This research is supported by DoE Contract Number DE-AC02-09CH11466 and by the NSF/DoE Center for Magnetic Self-Organization (CMSO).

  10. Laboratory evidence that line-tied tension forces can suppress loss-of-equilibrium flux rope eruptions in the solar corona

    NASA Astrophysics Data System (ADS)

    Myers, C. E.; Yamada, M.; Belova, E.; Ji, H.; Yoo, J.; Fox, W.; Jara-Almonte, J.; Gao, L.

    2014-10-01

    Loss-of-equilibrium mechanisms such as the ideal torus instability [Kliem & Török, Phys. Rev. Lett. 96, 255002 (2006)] are predicted to drive arched flux ropes in the solar corona to erupt. In recent line-tied flux rope experiments conducted in the Magnetic Reconnection Experiment (MRX), however, we find that quasi-statically driven flux ropes remain confined well beyond the predicted torus instability threshold. In order to understand this behavior, in situ measurements from a 300 channel 2D magnetic probe array are used to comprehensively analyze the force balance between the external (vacuum) and internal (plasma-generated) magnetic fields. We find that the line-tied tension force--a force that is not included in the basic torus instability theory--plays a major role in preventing eruptions. The dependence of this tension force on various vacuum field and flux rope parameters will be discussed. This research is supported by DoE Contract Number DE-AC02-09CH11466 and by the NSF/DoE Center for Magnetic Self-Organization (CMSO).

  11. Measures and Metrics of Information Processing in Complex Systems: A Rope of Sand

    ERIC Educational Resources Information Center

    James, Ryan Gregory

    2013-01-01

    How much information do natural systems store and process? In this work we attempt to answer this question in multiple ways. We first establish a mathematical framework where natural systems are represented by a canonical form of edge-labeled hidden fc models called e-machines. Then, utilizing this framework, a variety of measures are defined and…

  12. Asymmetry in the CME-CME interaction process for the events from 2011 February 14-15

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Temmer, M.; Veronig, A. M.; Peinhart, V.

    2014-04-20

    We present a detailed study of the interaction process of two coronal mass ejections (CMEs) successively launched on 2011 February 14 (CME1) and 2011 February 15 (CME2). Reconstructing the three-dimensional shape and evolution of the flux ropes, we verify that the two CMEs interact. The frontal structure of both CMEs, measured along different position angles (PAs) over the entire latitudinal extent, reveals differences in the kinematics for the interacting flanks and the apexes. The interaction process is strongly PA-dependent in terms of timing as well as kinematical evolution. The central interaction occurs along PA-100°, which shows the strongest changes inmore » kinematics. During interaction, CME1 accelerates from ∼400 km s{sup –1} to ∼700 km s{sup –1} and CME2 decelerates from ∼1300 km s{sup –1} to ∼600 km s{sup –1}. Our results indicate that a simplified scenario such as inelastic collision may not be sufficient to describe the CME-CME interaction. The magnetic field structures of the intertwining flux ropes and the momentum transfer due to shocks each play an important role in the interaction process.« less

  13. Research on Orbital Plasma Electrodynamics (ROPE)

    NASA Technical Reports Server (NTRS)

    Intriligator, Devrie S.

    1998-01-01

    This final report summarizes some of the important scientific contributions to the Research on Orbital Plasma Electrodynamics (ROPE) investigation, to the Tethered Satellite System (TSS) mission, and to NASA that resulted from the work carried out under this contract at Carmel Research Center. These include Dr. Intriligator's participation in the PIT for the TSS-1R simulations and flight, her participation in ROPE team meetings and IWG meetings, her scientific analyses, and her writing and submitting technical papers to scientific journals. The scientific analyses concentrated on the characterization of energetic ions and their possible relation to pickup ion effects, correlation of particle and other effects (e.g., magnetic field, satellite surface), and collaboration with theorists including with ROPE co-investigators. In addition, scientific analyses were carried out of the effects due to satellite gas releases.

  14. Precession and circularization of elliptical space-tether motion

    NASA Technical Reports Server (NTRS)

    Chapel, Jim D.; Grosserode, Patrick

    1993-01-01

    In this paper, we present a simplified analytic model for predicting motion of long space tethers. The perturbation model developed here addresses skip rope motion, where each end of the tether is held in place and the middle of the tether swings with a motion similar to that of a child's skip rope. If the motion of the tether midpoint is elliptical rather than circular, precession of the ellipse complicates the procedures required to damp this motion. The simplified analytic model developed in this paper parametrically predicts the precession of elliptical skip rope motion. Furthermore, the model shows that elliptic skip rope motion will circularize when damping is present in the longitudinal direction. Compared with high-fidelity simulation results, this simplified model provides excellent predictions of these phenomena.

  15. Solar Scientist Confirm Existence of Flux Ropes on the Sun

    NASA Image and Video Library

    2017-12-08

    Caption: This is an image of magnetic loops on the sun, captured by NASA's Solar Dynamics Observatory on July 18, 2012. It has been processed to highlight the edges of each loop to make the structure more clear. A series of loops such as this is known as a flux rope, and these lie at the heart of eruptions on the sun known as coronal mass ejections (CMEs.) This is the first time scientists were able to discern the timing of a flux rope's formation. Credit: NASA/Goddard Space Flight Center/SDO ---- On July 18, 2012, a fairly small explosion of light burst off the lower right limb of the sun. Such flares often come with an associated eruption of solar material, known as a coronal mass ejection or CME – but this one did not. Something interesting did happen, however. Magnetic field lines in this area of the sun's atmosphere, the corona, began to twist and kink, generating the hottest solar material – a charged gas called plasma – to trace out the newly-formed slinky shape. The plasma glowed brightly in extreme ultraviolet images from the Atmospheric Imaging Assembly (AIA) aboard NASA’s Solar Dynamics Observatory (SDO) and scientists were able to watch for the first time the very formation of something they had long theorized was at the heart of many eruptive events on the sun: a flux rope. Eight hours later, on July 19, the same region flared again. This time the flux rope's connection to the sun was severed, and the magnetic fields escaped into space, dragging billions of tons of solar material along for the ride -- a classic CME. "Seeing this structure was amazing," says Angelos Vourlidas, a solar scientist at the Naval Research Laboratory in Washington, D.C. "It looks exactly like the cartoon sketches theorists have been drawing of flux ropes since the 1970s. It was a series of figure eights lined up to look like a giant slinky on the sun." To read more about this new discovery go to: 1.usa.gov/14UHsTt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Solar Scientist Confirm Existence of Flux Ropes on the Sun

    NASA Image and Video Library

    2017-12-08

    Caption: This is an image of magnetic loops on the sun, captured by NASA's Solar Dynamics Observatory (SDO). It has been processed to highlight the edges of each loop to make the structure more clear. A series of loops such as this is known as a flux rope, and these lie at the heart of eruptions on the sun known as coronal mass ejections (CMEs.) This is the first time scientists were able to discern the timing of a flux rope's formation. (Blended 131 Angstrom and 171 Angstrom images of July 19, 2012 flare and CME.) Credit: NASA/Goddard Space Flight Center/SDO ---- On July 18, 2012, a fairly small explosion of light burst off the lower right limb of the sun. Such flares often come with an associated eruption of solar material, known as a coronal mass ejection or CME – but this one did not. Something interesting did happen, however. Magnetic field lines in this area of the sun's atmosphere, the corona, began to twist and kink, generating the hottest solar material – a charged gas called plasma – to trace out the newly-formed slinky shape. The plasma glowed brightly in extreme ultraviolet images from the Atmospheric Imaging Assembly (AIA) aboard NASA’s Solar Dynamics Observatory (SDO) and scientists were able to watch for the first time the very formation of something they had long theorized was at the heart of many eruptive events on the sun: a flux rope. Eight hours later, on July 19, the same region flared again. This time the flux rope's connection to the sun was severed, and the magnetic fields escaped into space, dragging billions of tons of solar material along for the ride -- a classic CME. "Seeing this structure was amazing," says Angelos Vourlidas, a solar scientist at the Naval Research Laboratory in Washington, D.C. "It looks exactly like the cartoon sketches theorists have been drawing of flux ropes since the 1970s. It was a series of figure eights lined up to look like a giant slinky on the sun." To read more about this new discovery go to: 1.usa.gov/14UHsTt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Flux-Rope Structure of Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Nieves-Chinchilla, T.; Hidalgo, M.; Zhang, J.; Riley, P.; van Driel-Gesztelyi, L.; Mandrini, C. H.

    2013-01-01

    This Topical Issue (TI) of Solar Physics, devoted to the study of flux-rope structure in coronal mass ejections (CMEs), is based on two Coordinated Data Analysis Workshops (CDAWs) held in 2010 (20-23 September in Dan Diego, California, USA) and 2011 (5-9 September in Alcala, Spain). The primary purpose of the CDAWs was to address the question whether all CMEs have a flux rope structure. Each CDAW was attended by about 50 scientists interested in the origin, propagation, and interplanetary manifestation of CME phenomena.

  18. Deterioration of Synthetic Fiber Rope during Marine Usage. Appendix A.

    DTIC Science & Technology

    1981-12-31

    Rigidity, Moisture and Fibre Structure, JTI 48(6), T163-%174 (1957). R394 Khosla, N.K., Shrinkage Properties of Continuous Filament Yarns with Different...8217D-Ai3i 685 DETERIORATION OF SYNTHETIC FIBER ROPE DURING MARINE i/i USAGE APPENDIX AU) MASSACHUSETTS INST OF TECH CAMBRIDGE S BACKER ET AL. 31 DEC...79 70A -. - - DETERIORATION OF SYNTHETIC FIBER ROPE DURING MARINE USAGE -- APPNDIX A PROGRESS REPORT PROJECT R/T-11 PERIOD JANUARY 1 - DECEMBER 31

  19. MMS observations of guide field reconnection at the interface between colliding reconnection jets inside flux rope-like structures at the magnetopause

    NASA Astrophysics Data System (ADS)

    Oieroset, M.; Phan, T.; Haggerty, C. C.; Shay, M.; Eastwood, J. P.; Gershman, D. J.; Drake, J. F.; Fujimoto, M.; Ergun, R.; Mozer, F.; Oka, M.; Torbert, R. B.; Burch, J. L.; Wang, S.; Chen, L. J.; Swisdak, M.; Pollock, C. J.; Dorelli, J.; Fuselier, S. A.; Lavraud, B.; Kacem, I.; Giles, B. L.; Moore, T. E.; Saito, Y.; Avanov, L. A.; Paterson, W. R.; Strangeway, R. J.; Schwartz, S. J.; Khotyaintsev, Y. V.; Lindqvist, P. A.; Malakit, K.

    2017-12-01

    The formation and evolution of magnetic flux ropes is of critical importance for a number of collisionless plasma phenomena. At the dayside magnetopause flux rope-like structures can form between two X-lines. The two X-lines produce converging plasma jets. At the interface between the colliding jets a compressed current sheet can form, which in turn can undergo reconnection. We present MMS observations of the exhaust and diffusion region of such reconnection.

  20. Microscopic model of superconductivity in carbon nanotubes.

    PubMed

    González, J

    2002-02-18

    We propose the model of a manifold of one-dimensional interacting electron systems to account for the superconductivity observed in ropes of nanotubes. We rely on the strong suppression of single-particle hopping between neighboring nanotubes in a disordered rope and conclude that the tunneling takes place in pairs of electrons, which are formed within each nanotube due to the existence of large superconducting correlations. Our estimate of the transition temperature is consistent with the values that have been measured experimentally in ropes with about 100 metallic nanotubes.

  1. 3DCORE: Forward modeling of solar storm magnetic flux ropes for space weather prediction

    NASA Astrophysics Data System (ADS)

    Möstl, C.; Amerstorfer, T.; Palmerio, E.; Isavnin, A.; Farrugia, C. J.; Lowder, C.; Winslow, R. M.; Donnerer, J. M.; Kilpua, E. K. J.; Boakes, P. D.

    2018-05-01

    3DCORE forward models solar storm magnetic flux ropes called 3-Dimensional Coronal Rope Ejection (3DCORE). The code is able to produce synthetic in situ observations of the magnetic cores of solar coronal mass ejections sweeping over planets and spacecraft. Near Earth, these data are taken currently by the Wind, ACE and DSCOVR spacecraft. Other suitable spacecraft making these kind of observations carrying magnetometers in the solar wind were MESSENGER, Venus Express, MAVEN, and even Helios.

  2. Theory of twisted trunks

    NASA Astrophysics Data System (ADS)

    Carlqvist, P.; Gahm, G. F.; Kristen, H.

    2003-05-01

    Using the 2.6 m Nordic Optical Telescope we have observed a large number of elephant trunks in several H II regions. Here, we present a small selection of this material consisting of a few large, well-developed trunks, and some smaller ones. We find that: (i) the well-developed trunks are made up of dark filaments and knots which show evidence of twisted structures, (ii) the trunks are connected with essentially two filamentary legs running in V-shape, and (iii) all trunks have the maximum extinction in their heads. We advance a theory of twisted elephant trunks which is based on the presence of magnetic flux ropes in molecular clouds where hot OB stars are formed. If the rope contains a local condensation it may adopt a V-shape as the H II region around the hot stars expands. If, in addition, the magnetic field in the rope is sufficiently twisted, the rope may form a double helix at the apex of the V. The double helix is identified with the twisted elephant trunks. In order to illustrate the mechanisms behind the double helix we have constructed a mechanical analogy model of the magnetic flux rope in which the rope has been replaced by a bundle of elastic strings loaded by a weight. Experiments with the model clearly show that part of the bundle will transform into a double helix when the twist of the bundle is sufficiently large. We have also worked out a simple theoretical model of a mass-loaded magnetic flux rope. Numerical calculations show that a double helix will indeed form when the twist of the rope exceeds a certain critical limit. Numerical model calculations are applied to both the analogy model experiments and one of the well-developed elephant trunks. On the basis of our model we also suggest a new interpretation of the so called EGGs. The double helix mechanism is quite general, and should be active also in other suitable environments. One such environment may be the shell of supernova remnants. Another example is the expanding bubble outlined by the North Celestial Pole Loop. Based on observations collected at the Nordic Optical Telescope, La Palma, Spain.

  3. LAD Dissertation Prize: Laboratory Identification of Magnetohydrodynamic Eruption Criteria in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Myers, Clayton E.; Yamada, Masaaki; Ji, Hantao

    2018-06-01

    Ideal magnetohydrodynamic instabilities such as the kink and torus instabilities are believed to play an important role in driving storage-and-release eruptions in the solar corona. These instabilities act on long-lived, arched magnetic flux ropes that are line-tied to the solar surface. In spite of numerous observational and computational studies, the conditions under which these instabilities produce an eruption remain a subject of intense debate. In this paper, we use a line-tied, arched flux rope experiment to systematically study storage-and-release eruption mechanisms in the laboratory [1]. Thin in situ magnetic probes facilitate the study of both the equilibrium and the stability of these laboratory flux ropes. In particular, they permit the direct measurement of magnetic (J×B) forces, both in equilibrium [2] and during dynamic events [3, 4]. Regarding stability and eruptions, two major results are reported: First, a new stability regime is identified where torus-unstable flux ropes fail to erupt. In this ‘failed torus’ regime, the flux rope is torus-unstable but kink-stable. Under these conditions, a dynamic toroidal field tension force surges in magnitude and prevents the flux rope from erupting [3, 4]. This dynamic tension force, which is missing from existing eruption models, is generated by magnetic self-organization events within the line-tied flux rope. Second, a clear torus instability threshold is observed in the kink-unstable regime. This latter result, which is consistent with existing theoretical [5] and numerical [6] results, verifies the key role of the torus instability in driving flux rope eruptions in the solar corona.[1] C. E. Myers, Ph.D. Thesis, Princeton University (2015)[2] C. E. Myers et al., Phys. Plasmas 23, 112102 (2016)[3] C. E. Myers et al., Nature 528, 526 (2015)[4] C. E. Myers et al., Plasma Phys. Control. Fusion 59, 014048 (2017)[5] O. Olmedo & J. Zhang, Astrophys. J. 718, 433 (2010)[6] T. Török & B. Kliem, Astrophys. J. 630, L97 (2005)This research is supported by DoE Contract DE-AC02-09CH11466 and by the NSF/DoE Center for Magnetic Self-Organization (CMSO).

  4. Colliding Magnetic Flux Ropes and Quasi-Separatrix Layers in a Laboratory Plasma

    NASA Astrophysics Data System (ADS)

    Lawrence, Eric Eugene

    An experimental study of the dynamics of colliding magnetic flux ropes and the magnetic reconnection that occurs during these collisions is presented. A magnetic flux rope is a bundle of twisted magnetic field lines that is ubiquitous in space and solar plasmas. The flux ropes are created in the Large Plasma Device (LAPD) using two heated lanthanum hexaboride (LaB6) cathodes that inject currents into the background plasma. The currents are initially parallel to the background magnetic field. The azimuthal field of each current together with the background axial field create helical twisted flux ropes. It is found that the flux ropes rotate in time (corkscrew) and collide with each other. During a collision, antiparallel magnetic fields can undergo magnetic reconnection. When these collisions occur, we observe current layers flowing in the opposite direction of the injected current, a signatuare of reconnection. Analysis of the three-dimensional magnetic field lines shows the existence of quasi-separatrix layers (QSLs). These are regions in the magnetic configuration where there are large spatial gradients in the connectivity of field line footpoints in the boundary surfaces. QSLs are thought to be favorable sites for magnetic reconnection. It is shown that the location and shape of the QSL is similar to what is seen in simulations of merging flux ropes. Furthermore, the field line structure of the QSL is similar to that of a twisted hyperbolic flux tube (HFT). An HFT is a type of QSL that has been shown to be a preferred site for current sheet formation in simulations of interacting coronal loops. The HFT in this experiment is found to be generally near the reverse current layers, although the agreement is not perfect. Looking at the time evolution of the QSL, we find that the QSL cross-sectional area grows and contracts at the same time that the flux ropes collide and that the reverse current layers appear. Analysis of the field line motion shows that, during reconnection, bundles of field lines rapidly flip across the QSLs. This is analagous to the way that field lines are pushed across a separatrix in 2D reconnection.

  5. 46 CFR 195.35-5 - General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 1014 (incorporated by reference, see § 195.01-3). (d) All lifelines shall be of steel or bronze wire rope. Steel wire rope shall be either inherently corrosion-resistant, or made so by galvanizing or...

  6. 46 CFR 195.35-5 - General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 1014 (incorporated by reference, see § 195.01-3). (d) All lifelines shall be of steel or bronze wire rope. Steel wire rope shall be either inherently corrosion-resistant, or made so by galvanizing or...

  7. 46 CFR 132.365 - Emergency outfits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... belt or a suitable harness. (3) One Type II or Type III flashlight constructed and marked in accordance...) Lifelines must be of steel or bronze wire rope. Steel wire rope must be either inherently corrosion...

  8. Numerical Simulation of Interacting Magnetic Flux Ropes

    NASA Astrophysics Data System (ADS)

    Odstrcil, Dusan; Vandas, Marek; Pizzo, Victor J.; MacNeice, Peter

    2003-09-01

    A 212-D MHD numerical model is used to investigate the dynamic interaction between two flux ropes (clouds) in a homogeneous magnetized plasma. One cloud is set into motion while the other is initially at rest. The moving cloud generates a shock which interacts with the second cloud. Two cases with different characteristic speeds within the second cloud are presented. The shock front is significantly distorted when it propagates faster (slower) in the cloud with larger (smaller) characteristic speed. Correspondingly, the density behind the shock front becomes smaller (larger). Later, the clouds approach each other and by a momentum exchange they come to a common speed. The oppositely directed magnetic fields are pushed together, a driven magnetic reconnection takes a place, and the two flux ropes gradually coalescence into a single flux rope.

  9. Reconnecting flux-rope dynamo.

    PubMed

    Baggaley, Andrew W; Barenghi, Carlo F; Shukurov, Anvar; Subramanian, Kandaswamy

    2009-11-01

    We develop a model of the fluctuation dynamo in which the magnetic field is confined to thin flux ropes advected by a multiscale model of turbulence. Magnetic dissipation occurs only via reconnection of the flux ropes. This model can be viewed as an implementation of the asymptotic limit R_{m}-->infinity for a continuous magnetic field, where magnetic dissipation is strongly localized to small regions of strong-field gradients. We investigate the kinetic-energy release into heat mediated by the dynamo action, both in our model and by solving the induction equation with the same flow. We find that a flux-rope dynamo is an order of magnitude more efficient at converting mechanical energy into heat. The probability density of the magnetic energy release in reconnections has a power-law form with the slope -3 , consistent with the solar corona heating by nanoflares.

  10. A Halter and a Lead Rope: Shifting Pedagogical Imaginaries of Becoming within a Human-Horse Relationship

    ERIC Educational Resources Information Center

    Hagström, Erica

    2016-01-01

    This paper explores the process of becoming within the relation between a human and a horse, and seeks to reimagine pedagogy as a relational process of "becoming-animal." In order to emphasise the relational space between a horse and a human, I begin with an experimental style of writing that traces specific moments between an actual…

  11. Adaptive Devices for Aquatic Activities.

    ERIC Educational Resources Information Center

    Bradtke, Jane Silverman

    1979-01-01

    The article describes commercial as well as improvised and homemade equipment for teaching physically handicapped persons to swim. Descriptions address equipment for entering the pool (such as pool lifts, a transfer board, and a ramp); aids in the instructional process (kick boards, arm floats); and assorted games and materials (such as ropes,…

  12. Homologous and cannibalistic coronal mass ejections from twisted magnetic flux rope simulations

    NASA Astrophysics Data System (ADS)

    Chatterjee, Piyali; Fan, Yuhong

    We present results from magnetohydrodynamic simulations of the development of homologous sequence of coronal mass ejections (CMEs) and demonstrate their so-called cannibalistic behavior. These CMEs originate from the repeated formations and partial eruptions of kink unstable flux ropes as a result of continued emergence of a twisted flux rope across the lower boundary into a pre-existing coronal potential arcade field. Our simulation shows that a CME erupting into the open magnetic field created by a preceding CME has a higher speed. The second of the three successive CMEs in one of the simulations is cannibalistic, catching up and merging with the first into a single fast CME before exiting the domain. All the CMEs including the leading merged CME, attained speeds of about 1000 km s-1 as they exit the domain. The reformation of a twisted flux rope after each CME eruption during the sustained flux emergence can naturally explain the X-ray observations of repeated reformations of sigmoids and "sigmoid-under-cusp" configurations at a low-coronal source of homologous CMEs. We also investigate the initiation mechanism and ejecta topology of these energetic CMEs as a function of the twist parameter of the flux rope.

  13. Counterstreaming electrons in small interplanetary magnetic flux ropes

    NASA Astrophysics Data System (ADS)

    Feng, H. Q.; Zhao, G. Q.; Wang, J. M.

    2015-12-01

    Small interplanetary magnetic flux ropes (SIMFRs) are commonly observed by spacecraft at 1 AU, and their origin still remains disputed. We investigated the counterstreaming suprathermal electron (CSE) signatures of 106 SIMFRs measured by Wind during 1995-2005. We found that 79 (75%) of the 106 flux ropes contain CSEs, and the percentages of counterstreaming vary from 8% to 98%, with a mean value of 51%. CSEs are often observed in magnetic clouds (MCs), and this indicates these MCs are still attached to the Sun at both ends. CSEs are also related to heliospheric current sheets (HCSs) and the Earth's bow shock. We divided the SIMFRs into two categories: The first category is far from HCSs, and the second category is in the vicinity of HCSs. The first category has 57 SIMFRs, and only 7 of 57 ropes have no CSEs. This ratio is similar to that of MCs. The second category has 49 SIMFRs; however, 20 of the 49 events have no CSEs. This ratio is larger than that of MCs. These two categories have different origins. One category originates from the solar corona, and most ropes are still connected to the Sun at both ends. The other category is formed near HCSs in the interplanetary space.

  14. IS FLUX ROPE A NECESSARY CONDITION FOR THE PROGENITOR OF CORONAL MASS EJECTIONS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouyang, Y.; Yang, K.; Chen, P. F., E-mail: chenpf@nju.edu.cn

    2015-12-10

    A magnetic flux rope structure is believed to exist in most coronal mass ejections (CMEs). However, it has been long debated whether the flux rope exists before eruption or if it is formed during eruption via magnetic reconnection. The controversy has continued because of our lack of routine measurements of the magnetic field in the pre-eruption structure, such as solar filaments. However, recently an indirect method was proposed to infer the magnetic field configuration based on the sign of helicity and the bearing direction of the filament barbs. In this paper, we apply this method to two erupting filament events, one onmore » 2014 September 2 and the other on 2011 March 7, and find that the first filament is supported by a magnetic flux rope and the second filament is supported by a sheared arcade, i.e., the first one is an inverse-polarity filament and the second one is a normal-polarity filament. With the identification of the magnetic configurations in these two filaments, we stress that a flux rope is not a necessary condition for the pre-CME structure.« less

  15. Kinematic analysis of rope skipper's stability

    NASA Astrophysics Data System (ADS)

    Ab Ghani, Nor Atikah; Rambely, Azmin Sham

    2014-06-01

    There are various kinds of jumping that can be done while performing rope skipping activity. This activity was always associated with injury. But, if the rope skipper can perform the activity in a right way, it is believed that the injury might be reduced. The main purpose of this paper is to observe the stability of rope skipper from a biomechanics perspective, which are the centre of mass, angle at the ankle, knee and hip joints and also the trajectory for the ipsilateral leg between the two types of skip which is one leg and two legs. Six healthy, physically active subject, two males and four females (age: 8.00±1.25 years, weight: 17.90±6.85 kg and height: 1.22±0.08 m) participated in this study. Kinematic data of repeated five cycles of rope skipping activity was captured by using Vicon Nexus system. Based on the data collected, skipping with two legs shows more stable behavior during preparation, flight and landing phases. It is concluded that landing on the balls of the feet, lowering the trajectory positions of the feet from the ground as well as flexion of each joint which would reduce the injury while landing.

  16. 46 CFR 163.002-11 - Materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... hoist must be made of machine cut steel or machine cut bronze, or must be of a design of equivalent... hoist must be a corrosion-resistant wire rope other than galvanized wire rope. (c) Corrosion-resistant...

  17. 46 CFR 163.002-11 - Materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... hoist must be made of machine cut steel or machine cut bronze, or must be of a design of equivalent... hoist must be a corrosion-resistant wire rope other than galvanized wire rope. (c) Corrosion-resistant...

  18. 30 CFR 75.1400-3 - Daily examination of hoisting equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... examination of the rope for wear, broken wires, and corrosion, especially at excessive strain points such as... of the head sheaves to check for broken flanges, defective bearings, rope alignment, and proper...

  19. 46 CFR 77.35-5 - General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-3). (d) All lifelines shall be of steel or bronze wire rope. Steel wire ropes shall be either... less than 50 feet in length. The assembled lifeline shall have a minimum breaking strength of 1,500...

  20. 30 CFR 75.1400-3 - Daily examination of hoisting equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... examination of the rope for wear, broken wires, and corrosion, especially at excessive strain points such as... of the head sheaves to check for broken flanges, defective bearings, rope alignment, and proper...

  1. 46 CFR 77.35-5 - General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-3). (d) All lifelines shall be of steel or bronze wire rope. Steel wire ropes shall be either... less than 50 feet in length. The assembled lifeline shall have a minimum breaking strength of 1,500...

  2. 30 CFR 75.1400-3 - Daily examination of hoisting equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... examination of the rope for wear, broken wires, and corrosion, especially at excessive strain points such as... of the head sheaves to check for broken flanges, defective bearings, rope alignment, and proper...

  3. 46 CFR 77.35-5 - General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-3). (d) All lifelines shall be of steel or bronze wire rope. Steel wire ropes shall be either... less than 50 feet in length. The assembled lifeline shall have a minimum breaking strength of 1,500...

  4. 46 CFR 77.35-5 - General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-3). (d) All lifelines shall be of steel or bronze wire rope. Steel wire ropes shall be either... less than 50 feet in length. The assembled lifeline shall have a minimum breaking strength of 1,500...

  5. 30 CFR 75.1400-3 - Daily examination of hoisting equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... examination of the rope for wear, broken wires, and corrosion, especially at excessive strain points such as... of the head sheaves to check for broken flanges, defective bearings, rope alignment, and proper...

  6. 30 CFR 75.1400-3 - Daily examination of hoisting equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... examination of the rope for wear, broken wires, and corrosion, especially at excessive strain points such as... of the head sheaves to check for broken flanges, defective bearings, rope alignment, and proper...

  7. 46 CFR 169.717 - Fireman's outfit.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Inspection; (2) One lifeline with a belt or a suitable harness; (3) One approved flame safety lamp; (4) One... accessible locations. (c) Lifelines must be of steel or bronze wire rope. Steel wire rope must be either...

  8. 46 CFR 169.717 - Fireman's outfit.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Inspection; (2) One lifeline with a belt or a suitable harness; (3) One approved flame safety lamp; (4) One... accessible locations. (c) Lifelines must be of steel or bronze wire rope. Steel wire rope must be either...

  9. 46 CFR 169.717 - Fireman's outfit.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Inspection; (2) One lifeline with a belt or a suitable harness; (3) One approved flame safety lamp; (4) One... accessible locations. (c) Lifelines must be of steel or bronze wire rope. Steel wire rope must be either...

  10. 46 CFR 169.717 - Fireman's outfit.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Inspection; (2) One lifeline with a belt or a suitable harness; (3) One approved flame safety lamp; (4) One... accessible locations. (c) Lifelines must be of steel or bronze wire rope. Steel wire rope must be either...

  11. 29 CFR 1926.550 - Cranes and derricks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... design or worksite conditions. (3) Cranes and derricks—(i) Operational criteria. (A) Hoisting of the... platform; and (D) The hoisting system shall be inspected if the load rope is slack to ensure all ropes are...

  12. CORLISS ENGINE WITH DYNAMO AND ROPE DRIVE. LOCATION UNIDENTIFIED. PHOTOCOPY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CORLISS ENGINE WITH DYNAMO AND ROPE DRIVE. LOCATION UNIDENTIFIED. PHOTOCOPY OF c. 1900 VIEW. From the collection of the Manchester Historic Association, Manchester, N. H. - Amoskeag Millyard, Canal Street, Manchester, Hillsborough County, NH

  13. Eruptive event generator based on the Gibson-Low magnetic configuration

    NASA Astrophysics Data System (ADS)

    Borovikov, D.; Sokolov, I. V.; Manchester, W. B.; Jin, M.; Gombosi, T. I.

    2017-08-01

    Coronal mass ejections (CMEs), a kind of energetic solar eruptions, are an integral subject of space weather research. Numerical magnetohydrodynamic (MHD) modeling, which requires powerful computational resources, is one of the primary means of studying the phenomenon. With increasing accessibility of such resources, grows the demand for user-friendly tools that would facilitate the process of simulating CMEs for scientific and operational purposes. The Eruptive Event Generator based on Gibson-Low flux rope (EEGGL), a new publicly available computational model presented in this paper, is an effort to meet this demand. EEGGL allows one to compute the parameters of a model flux rope driving a CME via an intuitive graphical user interface. We provide a brief overview of the physical principles behind EEGGL and its functionality. Ways toward future improvements of the tool are outlined.

  14. Nonlocal Ohms Law, Plasma Resistivity, and Reconnection During Collisions of Magnetic Flux Ropes

    NASA Astrophysics Data System (ADS)

    Gekelman, W.; DeHaas, T.; Pribyl, P.; Vincena, S.; Van Compernolle, B.; Sydora, R.; Tripathi, S. K. P.

    2018-01-01

    The plasma resistivity was evaluated in an experiment on the collision of two magnetic flux ropes. Whenever the ropes collide, some magnetic energy is lost as a result of reconnection. Volumetric data, in which all the relevant time-varying quantities were recorded in detail, are presented. Ohm’s law is shown to be nonlocal and cannot be used to evaluate the plasma resistivity. The resistivity was instead calculated using the AC Kubo resistivity and shown to be anomalously high in certain regions of space.

  15. A maximum power point tracking algorithm for buoy-rope-drum wave energy converters

    NASA Astrophysics Data System (ADS)

    Wang, J. Q.; Zhang, X. C.; Zhou, Y.; Cui, Z. C.; Zhu, L. S.

    2016-08-01

    The maximum power point tracking control is the key link to improve the energy conversion efficiency of wave energy converters (WEC). This paper presents a novel variable step size Perturb and Observe maximum power point tracking algorithm with a power classification standard for control of a buoy-rope-drum WEC. The algorithm and simulation model of the buoy-rope-drum WEC are presented in details, as well as simulation experiment results. The results show that the algorithm tracks the maximum power point of the WEC fast and accurately.

  16. Reconnection of a Kinking Flux Rope Triggering the Ejection of a Microwave and Hard X-Ray Source. 2. Numerical Modeling

    DTIC Science & Technology

    2010-07-14

    apex. The external field is thus mainly poloidal, with the ratio between toroidal and poloidal components at the flux rope apex being Bet/ Bep = 0.075...eruption involved a kink-unstable flux rope that had a high twist of Φ & 6π. This yields a coherent framework to understand the inverse gamma shape...leading to these results has received funding from the European Commission’s Seventh Framework Programme (FP7/2007-2013) under the grant agreement n 218816

  17. 46 CFR 35.30-20 - Emergency equipment-TB/ALL

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... belt or a suitable harness. (3) One, Type II or Type III, flashlight constructed and marked in... Charge, Marine Inspection. (e) Lifelines shall be of steel or bronze wire rope. Steel wire rope shall be...

  18. 46 CFR 35.30-20 - Emergency equipment-TB/ALL

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... belt or a suitable harness. (3) One, Type II or Type III, flashlight constructed and marked in... Charge, Marine Inspection. (e) Lifelines shall be of steel or bronze wire rope. Steel wire rope shall be...

  19. 46 CFR 35.30-20 - Emergency equipment-TB/ALL

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... belt or a suitable harness. (3) One, Type II or Type III, flashlight constructed and marked in... Charge, Marine Inspection. (e) Lifelines shall be of steel or bronze wire rope. Steel wire rope shall be...

  20. 46 CFR 35.30-20 - Emergency equipment-TB/ALL

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... belt or a suitable harness. (3) One, Type II or Type III, flashlight constructed and marked in... Charge, Marine Inspection. (e) Lifelines shall be of steel or bronze wire rope. Steel wire rope shall be...

  1. 46 CFR 35.30-20 - Emergency equipment-TB/ALL

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... belt or a suitable harness. (3) One, Type II or Type III, flashlight constructed and marked in... Charge, Marine Inspection. (e) Lifelines shall be of steel or bronze wire rope. Steel wire rope shall be...

  2. Apex Dips of Experimental Flux Ropes: Helix or Cusp?

    NASA Astrophysics Data System (ADS)

    Wongwaitayakornkul, Pakorn; Haw, Magnus A.; Li, Hui; Li, Shengtai; Bellan, Paul M.

    2017-10-01

    We present a new theory for the presence of apex dips in certain experimental flux ropes. Previously such dips were thought to be projections of a helical loop axis generated by the kink instability. However, new evidence from experiments and simulations suggest that the feature is a 2D cusp rather than a 3D helix. The proposed mechanism for cusp formation is a density pileup region generated by nonlinear interaction of neutral gas cones emitted from fast-gas nozzles. The results indicate that density perturbations can result in large distortions of an erupting flux rope, even in the absence of significant pressure or gravitational forces. The density pileup at the apex also suppresses the m = 1 kink mode by acting as a stationary node. Consequently, more accurate density profiles should be considered when attempting to model the stability and shape of solar and astrophysical flux ropes.

  3. Apex Dips of Experimental Flux Ropes: Helix or Cusp?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wongwaitayakornkul, Pakorn; Haw, Magnus A.; Bellan, Paul M.

    We present a new theory for the presence of apex dips in certain experimental flux ropes. Previously such dips were thought to be projections of a helical loop axis generated by the kink instability. However, new evidence from experiments and simulations suggest that the feature is a 2D cusp rather than a 3D helix. The proposed mechanism for cusp formation is a density pileup region generated by nonlinear interaction of neutral gas cones emitted from fast-gas nozzles. The results indicate that density perturbations can result in large distortions of an erupting flux rope, even in the absence of significant pressuremore » or gravitational forces. The density pileup at the apex also suppresses the m = 1 kink mode by acting as a stationary node. Consequently, more accurate density profiles should be considered when attempting to model the stability and shape of solar and astrophysical flux ropes.« less

  4. The Complex Dynamics of the Precessing Vortex Rope in a Straight Diffuser

    NASA Astrophysics Data System (ADS)

    Stuparu, Adrian; Susan-Resiga, Romeo

    2016-11-01

    The decelerated swirling flow in the discharge cone of Francis turbines operated at partial discharge develops a self-induced instability with a precessing helical vortex (vortex rope). In an axisymmetric geometry, this phenomenon is expected to generate asynchronous pressure fluctuations as a result of the precessing motion. However, numerical and experimental data indicate that synchronous (plunging) fluctuations, with a frequency lower than the precessing frequency, also develops as a result of helical vortex filament dynamics. This paper presents a quantitative approach to describe the precessing vortex rope by properly fitting a three-dimensional logarithmic spiral model with the vortex filament computed from the velocity gradient tensor. We show that the slope coefficient of either curvature or torsion radii of the helix is a good indicator for the vortex rope dynamics, and it supports the stretching - breaking up - bouncing back mechanism that may explain the plunging oscillations.

  5. Buildup of a highly twisted magnetic flux rope during a solar eruption.

    PubMed

    Wang, Wensi; Liu, Rui; Wang, Yuming; Hu, Qiang; Shen, Chenglong; Jiang, Chaowei; Zhu, Chunming

    2017-11-06

    The magnetic flux rope is among the most fundamental magnetic configurations in plasma. Although its presence after solar eruptions has been verified by spacecraft measurements near Earth, its formation on the Sun remains elusive, yet is critical to understanding a broad spectrum of phenomena. Here we study the dynamic formation of a magnetic flux rope during a classic two-ribbon flare. Its feet are identified unambiguously with conjugate coronal dimmings completely enclosed by irregular bright rings, which originate and expand outward from the far ends of flare ribbons. The expansion is associated with the rapid ribbon separation during the flare main phase. Counting magnetic flux through the feet and the ribbon-swept area reveals that the rope's core is more twisted than its average of four turns. It propagates to the Earth as a typical magnetic cloud possessing a similar twist profile obtained by the Grad-Shafranov reconstruction of its three dimensional structure.

  6. Buildup of a highly twisted magnetic flux rope during a solar eruption

    NASA Astrophysics Data System (ADS)

    Wang, Wensi; Liu, Rui; Wang, Yuming; Hu, Qiang; Shen, Chenglong; Jiang, Chaowei; Zhu, Chunming

    2017-11-01

    The magnetic flux rope is among the most fundamental magnetic configurations in plasma. Although its presence after solar eruptions has been verified by spacecraft measurements near Earth, its formation on the Sun remains elusive, yet is critical to understanding a broad spectrum of phenomena. Here we study the dynamic formation of a magnetic flux rope during a classic two-ribbon flare. Its feet are identified unambiguously with conjugate coronal dimmings completely enclosed by irregular bright rings, which originate and expand outward from the far ends of flare ribbons. The expansion is associated with the rapid ribbon separation during the flare main phase. Counting magnetic flux through the feet and the ribbon-swept area reveals that the rope's core is more twisted than its average of four turns. It propagates to the Earth as a typical magnetic cloud possessing a similar twist profile obtained by the Grad-Shafranov reconstruction of its three dimensional structure.

  7. Research of x-ray nondestructive detector for high-speed running conveyor belt with steel wire ropes

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng; Miao, Changyun; Wang, Wei; Lu, Xiaocui

    2008-03-01

    An X-ray nondestructive detector for high-speed running conveyor belt with steel wire ropes is researched in the paper. The principle of X-ray nondestructive testing (NDT) is analyzed, the general scheme of the X-ray nondestructive testing system is proposed, and the nondestructive detector for high-speed running conveyor belt with steel wire ropes is developed. The hardware of system is designed with Xilinx's VIRTEX-4 FPGA that embeds PowerPC and MAC IP core, and its network communication software based on TCP/IP protocol is programmed by loading LwIP to PowerPC. The nondestructive testing of high-speed conveyor belt with steel wire ropes and network transfer function are implemented. It is a strong real-time system with rapid scanning speed, high reliability and remotely nondestructive testing function. The nondestructive detector can be applied to the detection of product line in industry.

  8. ARTHROSCOPIC TREATMENT OF ACROMIOCLAVICULAR JOINT DISLOCATION BY TIGHT ROPE TECHNIQUE (ARTHREX®)

    PubMed Central

    GÓmez Vieira, Luis Alfredo; Visco, Adalberto; Daneu Fernandes, Luis Filipe; GÓmez Cordero, Nicolas Gerardo

    2015-01-01

    Presenting the arthroscopic treatment by Tight Rope - Arthrex® system for acute acromioclavicular dislocation and to evaluate results obtained with this procedure. Methods: Between August 2006 and May 2007, 10 shoulders of 10 patients with acute acromioclavicular dislocation were submitted to arthroscopic repair using the Tight Rope - Arthrex® system. Minimum follow-up was 12 months, with a mean of 15 months. Age ranged from 26 to 42, mean 34 years. All patients were male. Radiology evaluation was made by trauma series x-ray. The patients were assisted in the first month weekly and after three months after the procedure. Clinical evaluation was based on the University of California at Los Angeles (UCLA) criteria. Results: All patients were satisfied after the arthroscopic procedure and the mean UCLA score was 32,5. Conclusion: The arthroscopic treatment by Tight Rope – Arthrex® system for acute acromioclavicular dislocation showed to be an efficient technique. PMID:26998453

  9. A MODEL FOR MAGNETICALLY COUPLED SYMPATHETIC ERUPTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toeroek, T.; Titov, V. S.; Mikic, Z.

    2011-10-01

    Sympathetic eruptions on the Sun have been observed for several decades, but the mechanisms by which one eruption can trigger another remain poorly understood. We present a three-dimensional MHD simulation that suggests two possible magnetic trigger mechanisms for sympathetic eruptions. We consider a configuration that contains two coronal flux ropes located within a pseudo-streamer and one rope located next to it. A sequence of eruptions is initiated by triggering the eruption of the flux rope next to the streamer. The expansion of the rope leads to two consecutive reconnection events, each of which triggers the eruption of a flux ropemore » by removing a sufficient amount of overlying flux. The simulation qualitatively reproduces important aspects of the global sympathetic event on 2010 August 1 and provides a scenario for the so-called twin filament eruptions. The suggested mechanisms are also applicable for sympathetic eruptions occurring in other magnetic configurations.« less

  10. [Dynamics of decapitation after falling in a self-tightening rope noose].

    PubMed

    Wehner, Heinz-Dieter; Schulz, Martin Manfred; Wehner, Arno

    2006-01-01

    In decapitation by dropping into a slip noose, it is in principle justified to doubt that suicide is involved. It must hence always be checked whether the dynamics to be inferred from the concrete facts can result in decapitation. Essential characteristics of the dynamics are the deceleration forces (tractional force of the rope) that are determined by the height of the drop, the directional force of the rope and the body mass of the victim as well as the density of the lines of centripetal force acting on the neck. However, the appropriateness of the dynamics must at all events be corroborated by compatible autopsy and scientific criminological findings with regard to the characteristic wound morphology, the intravital signs, the trace analysis and the topography of the fiber ablation traces on the rope that are due to the effect of heat.

  11. Modeling Coronal Mass Ejections with EUHFORIA: A Parameter Study of the Gibson-Low Flux Rope Model using Multi-Viewpoint Observations

    NASA Astrophysics Data System (ADS)

    Verbeke, C.; Asvestari, E.; Scolini, C.; Pomoell, J.; Poedts, S.; Kilpua, E.

    2017-12-01

    Coronal Mass Ejections (CMEs) are one of the big influencers on the coronal and interplanetary dynamics. Understanding their origin and evolution from the Sun to the Earth is crucial in order to determine the impact on our Earth and society. One of the key parameters that determine the geo-effectiveness of the coronal mass ejection is its internal magnetic configuration. We present a detailed parameter study of the Gibson-Low flux rope model. We focus on changes in the input parameters and how these changes affect the characteristics of the CME at Earth. Recently, the Gibson-Low flux rope model has been implemented into the inner heliosphere model EUHFORIA, a magnetohydrodynamics forecasting model of large-scale dynamics from 0.1 AU up to 2 AU. Coronagraph observations can be used to constrain the kinematics and morphology of the flux rope. One of the key parameters, the magnetic field, is difficult to determine directly from observations. In this work, we approach the problem by conducting a parameter study in which flux ropes with varying magnetic configurations are simulated. We then use the obtained dataset to look for signatures in imaging observations and in-situ observations in order to find an empirical way of constraining the parameters related to the magnetic field of the flux rope. In particular, we focus on events observed by at least two spacecraft (STEREO + L1) in order to discuss the merits of using observations from multiple viewpoints in constraining the parameters.

  12. An evaluation of Brifen wire rope safety fence.

    DOT National Transportation Integrated Search

    2013-01-01

    Three : - : strand : cable barriers were first developed in the 1960s and found to have several desirable : characteristics as compared to other roadside barriers such as guard rail : . : Brifen Wire Rope Safety Fence is : a four strand woven wire...

  13. View of main hoist wire rope drum and brakes, open ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of main hoist wire rope drum and brakes, open contact boards are in view at the far right wall - Puget Sound Naval Shipyard, Portal Gantry Crane No. 42, Pier 5, Farragut Avenue, Bremerton, Kitsap County, WA

  14. Loads Acting on the Mine Conveyance Attachments and Tail Ropes during the Emergency Braking in the Event of an Overtravel

    NASA Astrophysics Data System (ADS)

    Wolny, Stanisław

    2016-09-01

    It has now become the common practice among the design engineers that in dimensioning of structural components of conveyances, particularly the load bearing elements, they mostly use methods that do not enable the predictions of their service life, instead they rely on determining the safety factor related to the static loads exclusively. In order to solve the problem, i.e. to derive and verify the key relationships needed to determine the fatigue endurance of structural elements of conveyances expressed in the function of time and taking into account the type of hoisting gear, it is required that the values of all loads acting upon the conveyance should be determined, including those experienced under the emergency conditions, for instance during the braking phase in the event of overtravel. This study relies on the results of dynamic analysis of a hoisting installation during the braking phase when the conveyance approaches the topmost or lowermost levels. For the assumed model of the system, the equations of motion are derived for the hoisting and tail rope elements and for the elastic strings. The section of the hoisting rope between the full conveyance approaching the top station and the Keope pulley is substituted by a spring with the constant elasticity coefficient, equal to that of the rope section at the instant the conveyance begins the underwind travel. Recalling the solution to the wave equation, analytical formulas are provided expressing the displacements of any cross-profiles of hoisting and tail ropes, including the conveyance attachments and tail ropes, in the function of braking forces applied to conveyances in the overtravel path and operational parameters of the hoisting gear. Besides, approximate formulas are provided yielding: loading of the hoisting rope segment between the conveyance braking in the headgear tower and the Keope pulley deceleration of the conveyance during the braking phase. The results will be utilised to derive the function governing the conveyance load variations during the emergency braking, depending on the parameters of the hoisting installations and the braking systems. These relationships are required for adequate design of the frictional contact between the ropes and the pulley and will become the basic criteria for dimensioning and design of load-bearing components of conveyances in the context of improving their reliability and safety features.

  15. Characterization via atomic force microscopy of discrete plasticity in collagen fibrils from mechanically overloaded tendons: Nano-scale structural changes mimic rope failure.

    PubMed

    Baldwin, Samuel J; Kreplak, Laurent; Lee, J Michael

    2016-07-01

    Tendons exposed to tensile overload show a structural alteration at the fibril scale termed discrete plasticity. Serial kinks appear along individual collagen fibrils that are susceptible to enzymatic digestion and are thermally unstable. Using atomic force microscopy we mapped the topography and mechanical properties in dehydrated and hydrated states of 25 control fibrils and 25 fibrils displaying periodic kinks, extracted from overloaded bovine tail tendons. Using the measured modulus of the hydrated fibrils as a probe of molecular density, we observed a non-linear negative correlation between molecular density and kink density of individual fibrils. This is accompanied by an increase in water uptake with kink density and a doubling of the coefficient of variation of the modulus between kinked, and control fibrils. The mechanical property maps of kinked collagen fibrils show radial heterogeneity that can be modeled as a high-density core surrounded by a low-density shell. The core of the fibril contains the kink structures characteristic of discrete plasticity; separated by inter-kink regions, which often retain the D-banding structure. We propose that the shell and kink structures mimic characteristic damage motifs observed in laid rope strands. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Calculation of parameters of technological equipment for deep-sea mining

    NASA Astrophysics Data System (ADS)

    Yungmeister, D. A.; Ivanov, S. E.; Isaev, A. I.

    2018-03-01

    The actual problem of extracting minerals from the bottom of the world ocean is considered. On the ocean floor, three types of minerals are of interest: iron-manganese concretions (IMC), cobalt-manganese crusts (CMC) and sulphides. The analysis of known designs of machines and complexes for the extraction of IMC is performed. These machines are based on the principle of excavating the bottom surface; however such methods do not always correspond to “gentle” methods of mining. The ecological purity of such mining methods does not meet the necessary requirements. Such machines require the transmission of high electric power through the water column, which in some cases is a significant challenge. The authors analyzed the options of transportation of the extracted mineral from the bottom. The paper describes the design of machines that collect IMC by the method of vacuum suction. In this method, the gripping plates or drums are provided with cavities in which a vacuum is created and individual IMC are attracted to the devices by a pressure drop. The work of such machines can be called “gentle” processing technology of the bottom areas. Their environmental impact is significantly lower than mechanical devices that carry out the raking of IMC. The parameters of the device for lifting the IMC collected on the bottom are calculated. With the use of Kevlar ropes of serial production up to 0.06 meters in diameter, with a cycle time of up to 2 hours and a lifting speed of up to 3 meters per second, a productivity of about 400,000 tons per year can be realized for IMC. The development of machines based on the calculated parameters and approbation of their designs will create a unique complex for the extraction of minerals at oceanic deposits.

  17. Efficiency of innovative technology in construction industry

    NASA Astrophysics Data System (ADS)

    Stverkova, H.; Vaclavik, V.

    2017-10-01

    The need for sustainability increasingly influences the development of new technologies, business processes and working practices. Innovations are an important part of all business processes. The aim of innovation is, in particular, to reduce the burden on the environment. The current trend in the construction industry is diamond rope cutting. The aim of the paper is to evaluate the most advanced technology for cutting and removing concrete structures in terms of efficiency.

  18. Appearances Aren't Everything: Shape Classifiers and Referential Processing in Cantonese

    ERIC Educational Resources Information Center

    Tsang, Cara; Chambers, Craig G.

    2011-01-01

    Cantonese shape classifiers encode perceptual information that is characteristic of their associated nouns, although certain nouns are exceptional. For example, the classifier "tiu" occurs primarily with nouns for long-narrow-flexible objects (e.g., scarves, snakes, and ropes) and also occurs with the noun for a (short, rigid) key. In 3…

  19. Simultaneous Expression from Both the Sense and Antisense Strand of the Erythropoietin Receptor Gene Mitigates Acute Lung Injury

    DTIC Science & Technology

    2017-09-01

    Toronto) which immunoprecipitates EpoR but works poorly in immunoblots and not at in immunohistochemistry (Hu et al., Kidney Int. 2013 Sep;84(3):468-81...DAPI EpoR/GFP/DAPIGFP/DAPI C.. Ba/F32EpoR2Flag2GFP.cells 9 Figure 4. Screening the new MAbs to human RopE. Human embryonic kidney -293 (HEK-293) cells...ontogeny of EpoR and RopE expression Figure 7. Concordant RopE and EpoR expression was observed in the lung (left) and the kidney (right) that increase

  20. Coronal Holes and Magnetic Flux Ropes Interweaving Solar Cycles

    NASA Astrophysics Data System (ADS)

    Lowder, Chris; Yeates, Anthony; Leamon, Robert; Qiu, Jiong

    2016-10-01

    Coronal holes, dark patches observed in solar observations in extreme ultraviolet and x-ray wavelengths, provide an excellent proxy for regions of open magnetic field rooted near the photosphere. Through a multi-instrument approach, including SDO data, we are able to stitch together high resolution maps of coronal hole boundaries spanning the past two solar activity cycles. These observational results are used in conjunction with models of open magnetic field to probe physical solar parameters. Magnetic flux ropes are commonly defined as bundles of solar magnetic field lines, twisting around a common axis. Photospheric surface flows and magnetic reconnection work in conjunction to form these ropes, storing magnetic stresses until eruption. With an automated methodology to identify flux ropes within observationally driven magnetofrictional simulations, we can study their properties in detail. Of particular interest is a solar-cycle length statistical description of eruption rates, spatial distribution, magnetic orientation, flux, and helicity. Coronal hole observations can provide useful data about the distribution of the fast solar wind, with magnetic flux ropes yielding clues as to ejected magnetic field and the resulting space weather geo-effectiveness. With both of these cycle-spanning datasets, we can begin to form a more detailed picture of the evolution and consequences of both sets of solar magnetic features.

  1. Stellar differential rotation and coronal time-scales

    NASA Astrophysics Data System (ADS)

    Gibb, G. P. S.; Jardine, M. M.; Mackay, D. H.

    2014-10-01

    We investigate the time-scales of evolution of stellar coronae in response to surface differential rotation and diffusion. To quantify this, we study both the formation time and lifetime of a magnetic flux rope in a decaying bipolar active region. We apply a magnetic flux transport model to prescribe the evolution of the stellar photospheric field, and use this to drive the evolution of the coronal magnetic field via a magnetofrictional technique. Increasing the differential rotation (i.e. decreasing the equator-pole lap time) decreases the flux rope formation time. We find that the formation time is dependent upon the lap time and the surface diffusion time-scale through the relation τ_Form ∝ √{τ_Lapτ_Diff}. In contrast, the lifetimes of flux ropes are proportional to the lap time (τLife∝τLap). With this, flux ropes on stars with a differential rotation of more than eight times the solar value have a lifetime of less than 2 d. As a consequence, we propose that features such as solar-like quiescent prominences may not be easily observable on such stars, as the lifetimes of the flux ropes which host the cool plasma are very short. We conclude that such high differential rotation stars may have very dynamical coronae.

  2. Magnetic reconnection during eruptive magnetic flux ropes

    NASA Astrophysics Data System (ADS)

    Mei, Z. X.; Keppens, R.; Roussev, I. I.; Lin, J.

    2017-08-01

    Aims: We perform a three-dimensional (3D) high resolution numerical simulation in isothermal magnetohydrodynamics to study the magnetic reconnection process in a current sheet (CS) formed during an eruption of a twisted magnetic flux rope (MFR). Because the twist distribution violates the Kruskal-Shafranov condition, the kink instability occurs, and the MFR is distorted. The centre part of the MFR loses its equilibrium and erupts upward, which leads to the formation of a 3D CS underneath it. Methods: In order to study the magnetic reconnection inside the CS in detail, mesh refinement has been used to reduce the numerical diffusion and we estimate a Lundquist number S = 104 in the vicinity of the CS. Results: The refined mesh allows us to resolve fine structures inside the 3D CS: a bifurcating sheet structure signaling the 3D generalization of Petschek slow shocks, some distorted-cylindrical substructures due to the tearing mode instabilities, and two turbulence regions near the upper and the lower tips of the CS. The topological characteristics of the MFR depend sensitively on the observer's viewing angle: it presents as a sigmoid structure, an outwardly expanding MFR with helical distortion, or a flare-CS-coronal mass ejection symbiosis as in 2D flux-rope models when observed from the top, the front, or the side. The movie associated to Fig. 2 is available at http://www.aanda.org

  3. Generation Mechanism for Interlinked Flux Tubes on the Magnetopause

    NASA Astrophysics Data System (ADS)

    Farinas Perez, G.; Cardoso, F. R.; Sibeck, D.; Gonzalez, W. D.; Facskó, G.; Coxon, J. C.; Pembroke, A. D.

    2018-02-01

    We use a global magnetohydrodynamics simulation to analyze transient magnetic reconnection processes at the magnetopause. The solar wind conditions have been kept constant, and an interplanetary magnetic field with large duskward BY and southward BZ components has been imposed. Five flux transfer events (FTEs) with clear bipolar magnetic field signatures have been observed. We observed a peculiar structure defined as interlinked flux tubes (IFTs) in the first and fourth FTE, which had very different generation mechanisms. The first FTE originates as an IFTs and remains with this configuration until its final moment. However, the fourth FTE develops as a classical flux rope but changes its 3-D magnetic configuration to that of IFTs. This work studies the mechanism for generating IFTs. The growth of the resistive tearing instability has been identified as the cause for the first IFTs formation. We believe that the instability has been triggered by the accumulation of interplanetary magnetic field at the subsolar point where the grid resolution is very high. The evidence shows that two new reconnection lines form northward and southward of the subsolar region. The IFTs have been generated with all the classical signatures of a single flux rope. The other IFTs detected in the fourth FTE developed as a result of magnetic reconnection inside its complex and twisted magnetic fields, which leads to a change in the magnetic configuration from a flux rope of twisted magnetic field lines to IFTs.

  4. The Physicochemical Hydrodynamics of Vascular Plants

    NASA Astrophysics Data System (ADS)

    Stroock, Abraham D.; Pagay, Vinay V.; Zwieniecki, Maciej A.; Michele Holbrook, N.

    2014-01-01

    Plants live dangerously, but gracefully. To remain hydrated, they exploit liquid water in the thermodynamically metastable state of negative pressure, similar to a rope under tension. This tension allows them to pull water out of the soil and up to their leaves. When this liquid rope breaks, owing to cavitation, they catch the ends to keep it from unraveling and then bind it back together. In parallel, they operate a second vascular system for the circulation of metabolites though their tissues, this time with positive pressures and flow that passes from leaf to root. In this article, we review the current state of understanding of water management in plants with an emphasis on the rich coupling of transport phenomena, thermodynamics, and active biological processes. We discuss efforts to replicate plant function in synthetic systems and point to opportunities for physical scientists and engineers to benefit from and contribute to the study of plants.

  5. Flux rope breaking and formation of a rotating blowout jet

    NASA Astrophysics Data System (ADS)

    Joshi, Navin Chandra; Nishizuka, Naoto; Filippov, Boris; Magara, Tetsuya; Tlatov, Andrey G.

    2018-05-01

    We analysed a small flux rope eruption converted into a helical blowout jet in a fan-spine configuration using multiwavelength observations taken by Solar Dynamics Observatory, which occurred near the limb on 2016 January 9. In our study, first, we estimated the fan-spine magnetic configuration with the potential-field calculation and found a sinistral small filament inside it. The filament along with the flux rope erupted upwards and interacted with the surrounding fan-spine magnetic configuration, where the flux rope breaks in the middle section. We observed compact brightening, flare ribbons, and post-flare loops underneath the erupting filament. The northern section of the flux rope reconnected with the surrounding positive polarity, while the southern section straightened. Next, we observed the untwisting motion of the southern leg, which was transformed into a rotating helical blowout jet. The sign of the helicity of the mini-filament matches the one of the rotating jets. This is consistent with recent jet models presented by Adams et al. and Sterling et al. We focused on the fine thread structure of the rotating jet and traced three blobs with the speed of 60-120 km s- 1, while the radial speed of the jet is ˜400 km s- 1. The untwisting motion of the jet accelerated plasma upwards along the collimated outer spine field lines, and it finally evolved into a narrow coronal mass ejection at the height of ˜9Rsun. On the basis of detailed analysis, we discussed clear evidence of the scenario of the breaking of the flux rope and the formation of the helical blowout jet in the fan-spine magnetic configuration.

  6. Detection and determinants of Escherichia coli O157:H7 in Alberta feedlot pens immediately prior to slaughter

    PubMed Central

    Renter, David G.; Smith, David R.; King, Robin; Stilborn, Robert; Berg, Janice; Berezowski, John; McFall, Margaret

    2008-01-01

    Food safety risks due to Escherichia coli O157:H7 may be affected by variability in prevalence in or on live cattle at slaughter. Our objectives were to assess the prevalence and risk factors associated with E. coli O157:H7 in feedlot pens immediately prior to slaughter, and assess relationships among methods of monitoring the E. coli O157:H7 status of pre-harvest pens. We studied 84 pens containing a total of nearly 27 000 head of cattle in commercial feedlots in Alberta during 2003 and 2004. Sampling devices (ROPES) prepared from manila ropes were used to detect high prevalence pens. Forty of 84 pens (48%) were classified ROPES-positive. Within pens, fecal prevalence ranged between 0% to 80% (median = 20%) and the hide prevalence ranged between 0% and 30% (median = 0%). Pens that were ROPES-positive had a higher median prevalence for feces (40%) and for hides (3.8%) than those that were ROPES-negative (13.3% and 0%, respectively). The prevalence of E. coli O157:H7 in pens immediately prior to slaughter was found to be quite high or very low even within feedlots and seasons. Factors such as sampling month, temperature, precipitation, pen floor conditions, and water tank cleanliness were associated with E. coli O157:H7 outcome measures, although associated factors were not completely consistent among years and outcome measures. Fecal and hide prevalence are considered primary pre-harvest indicators of potential carcass contamination, but other methods such as ROPES that are associated with these outcomes may provide logistic advantages to efficiently classify pens of cattle as high or low risk to food safety. PMID:18505184

  7. Characterization of Monkeypox virus infection in African rope squirrels (Funisciurus sp.)

    USGS Publications Warehouse

    Falendysz, Elizabeth; Lopera, Juan G.; Doty, Jeffrey B.; Nakazawa, Yoshinori J.; Crill, Colleen; Lorenzsonn, Faye; Kalemba, Lem's N.; Ronderos, Monica; Meija, Andres; Malekani, Jean M.; Karem, Kevin L.; Caroll, Darrin; Osorio, Jorge E.; Rocke, Tonie E.

    2017-01-01

    Monkeypox (MPX) is a zoonotic disease endemic in Central and West Africa and is caused by Monkeypox virus (MPXV), the most virulent Orthopoxvirus affecting humans since the eradication of Variola virus (VARV). Many aspects of the MPXV transmission cycle, including the natural host of the virus, remain unknown. African rope squirrels (Funisciurus spp.) are considered potential reservoirs of MPXV, as serosurveillance data in Central Africa has confirmed the circulation of the virus in these rodent species [1,2]. In order to understand the tissue tropism and clinical signs associated with infection with MPXV in these species, wild-caught rope squirrels were experimentally infected via intranasal and intradermal exposure with a recombinant MPXV strain from Central Africa engineered to express the luciferase gene. After infection, we monitored viral replication and shedding via in vivo bioluminescent imaging, viral culture and real time PCR. MPXV infection in African rope squirrels caused mortality and moderate to severe morbidity, with clinical signs including pox lesions in the skin, eyes, mouth and nose, dyspnea, and profuse nasal discharge. Both intranasal and intradermal exposures induced high levels of viremia, fast systemic spread, and long periods of viral shedding. Shedding and luminescence peaked at day 6 post infection and was still detectable after 15 days. Interestingly, one sentinel animal, housed in the same room but in a separate cage, also developed severe MPX disease and was euthanized. This study indicates that MPXV causes significant pathology in African rope squirrels and infected rope squirrels shed large quantities of virus, supporting their role as a potential source of MPXV transmission to humans and other animals in endemic MPX regions.

  8. PARTIAL ERUPTION OF A FILAMENT WITH TWISTING NON-UNIFORM FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bi, Yi; Jiang, Yunchun; Yang, Jiayan

    The eruption of a filament in a kinklike fashion is often regarded as a signature of kink instability. However, the kink instability threshold for the filament’s magnetic structure is not widely understood. Using Hα observations from the New Vacuum Solar Telescope, we present a partial eruptive filament. During the eruption, the filament thread appeared to split from its middle and to break out in a kinklike fashion. In this period, the remaining filament material stayed below and erupted without the kinking motion later on. The coronal magnetic field lines associated with the filament are obtained from nonlinear force-free field extrapolationsmore » using the twelve-minute-cadence vector magnetograms of the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamic Observatory. We studied the extrapolated field lines passing through the magnetic dips which are in good agreement with the observed filament. The field lines are non-uniformly twisted and appear to be composed of two twisted flux ropes winding around each other. One of them has a higher twist than the other, and the flux rope with the higher twist has its dips aligned with the kinking eruptive thread at the beginning of its eruption. Before the eruption, moreover, the flux rope with the higher twist was found to expand with an approximately constant field twist. In addition, the helicity flux maps deduced from the HMI magnetograms show that some helicity is injected into the overlying magnetic arcade, but no significant helicity is injected into the flux ropes. Accordingly, we suggest that the highly twisted flux rope became kink unstable when the instability threshold declined with the expansion of the flux rope.« less

  9. Characterization of Monkeypox virus infection in African rope squirrels (Funisciurus sp.).

    PubMed

    Falendysz, Elizabeth A; Lopera, Juan G; Doty, Jeffrey B; Nakazawa, Yoshinori; Crill, Colleen; Lorenzsonn, Faye; Kalemba, Lem's N; Ronderos, Monica D; Mejia, Andres; Malekani, Jean M; Karem, Kevin; Carroll, Darin S; Osorio, Jorge E; Rocke, Tonie E

    2017-08-01

    Monkeypox (MPX) is a zoonotic disease endemic in Central and West Africa and is caused by Monkeypox virus (MPXV), the most virulent Orthopoxvirus affecting humans since the eradication of Variola virus (VARV). Many aspects of the MPXV transmission cycle, including the natural host of the virus, remain unknown. African rope squirrels (Funisciurus spp.) are considered potential reservoirs of MPXV, as serosurveillance data in Central Africa has confirmed the circulation of the virus in these rodent species [1,2]. In order to understand the tissue tropism and clinical signs associated with infection with MPXV in these species, wild-caught rope squirrels were experimentally infected via intranasal and intradermal exposure with a recombinant MPXV strain from Central Africa engineered to express the luciferase gene. After infection, we monitored viral replication and shedding via in vivo bioluminescent imaging, viral culture and real time PCR. MPXV infection in African rope squirrels caused mortality and moderate to severe morbidity, with clinical signs including pox lesions in the skin, eyes, mouth and nose, dyspnea, and profuse nasal discharge. Both intranasal and intradermal exposures induced high levels of viremia, fast systemic spread, and long periods of viral shedding. Shedding and luminescence peaked at day 6 post infection and was still detectable after 15 days. Interestingly, one sentinel animal, housed in the same room but in a separate cage, also developed severe MPX disease and was euthanized. This study indicates that MPXV causes significant pathology in African rope squirrels and infected rope squirrels shed large quantities of virus, supporting their role as a potential source of MPXV transmission to humans and other animals in endemic MPX regions.

  10. 5. VIEW LOOKING DOWN ON TOP OF ELEVATOR CAR FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW LOOKING DOWN ON TOP OF ELEVATOR CAR FROM THIRD FLOOR, SHOWING CROSSHEAD AND BROKEN ROPE SAFETY STOP MECHANISM INSIDE; GUIDES AT LOWER LEFT AND UPPER RIGHT; OPERATING ROPE AT LEFT - 72 Marlborough Street, Residential Hydraulic Elevator, Boston, Suffolk County, MA

  11. 30 CFR 75.1429 - Guide ropes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Guide ropes. 75.1429 Section 75.1429 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY... minimum value calculated as follows: Minimum value=Static Load×5.0. ...

  12. 30 CFR 57.19023 - Examinations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... improper lubrication or dressing. In addition, visual examination for wear and broken wires shall be made... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Personnel Hoisting Wire Ropes § 57.19023 Examinations. (a) At least once every fourteen calendar days, each wire rope in service...

  13. 30 CFR 57.19023 - Examinations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... improper lubrication or dressing. In addition, visual examination for wear and broken wires shall be made... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Personnel Hoisting Wire Ropes § 57.19023 Examinations. (a) At least once every fourteen calendar days, each wire rope in service...

  14. 30 CFR 57.19023 - Examinations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... improper lubrication or dressing. In addition, visual examination for wear and broken wires shall be made... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Personnel Hoisting Wire Ropes § 57.19023 Examinations. (a) At least once every fourteen calendar days, each wire rope in service...

  15. 30 CFR 57.19023 - Examinations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... improper lubrication or dressing. In addition, visual examination for wear and broken wires shall be made... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Personnel Hoisting Wire Ropes § 57.19023 Examinations. (a) At least once every fourteen calendar days, each wire rope in service...

  16. Magnetic flux ropes in the Venus ionosphere - Observations and models

    NASA Technical Reports Server (NTRS)

    Elphic, R. C.; Russell, C. T.

    1983-01-01

    Pioneer Venus Orbiter data are used as evidence of naturally occurring magnetic field filamentary structures which can be described by a flux rope model. The solar wind is interpreted as piling up a magnetic field on the Venus ionosphere, with the incident ram pressure being expressed as magnetic field pressure. Currents flowing at the ionopause shield out the field, allowing magnetic excursions to be observed with magnitudes of tens of nT over an interval of a few seconds. A quantitative assessment is made of the signature expected from a flux rope. It is noted that each excursion of the magnetic field detected by the Orbiter magnetometer was correlated with variations in the three components of the field. A coordinate system is devised which shows that the Venus data is indicative of the presence of flux ropes whose parameters are the coordinates of the system and would yield the excursions observed in the spacecraft crossings of the fields.

  17. Physical Employment Standards for UK Firefighters

    PubMed Central

    Stevenson, Richard D.M.; Siddall, Andrew G.; Turner, Philip F.J.; Bilzon, James L.J.

    2017-01-01

    Objective: The aim of this study was to assess sensitivity and specificity of surrogate physical ability tests as predictors of criterion firefighting task performance and to identify corresponding minimum muscular strength and endurance standards. Methods: Fifty-one (26 male; 25 female) participants completed three criterion tasks (ladder lift, ladder lower, ladder extension) and three corresponding surrogate tests [one-repetition maximum (1RM) seated shoulder press; 1RM seated rope pull-down; repeated 28 kg seated rope pull-down]. Surrogate test standards were calculated that best identified individuals who passed (sensitivity; true positives) and failed (specificity; true negatives) criterion tasks. Results: Best sensitivity/specificity achieved were 1.00/1.00 for a 35 kg seated shoulder press, 0.79/0.92 for a 60 kg rope pull-down, and 0.83/0.93 for 23 repetitions of the 28 kg rope pull-down. Conclusions: These standards represent performance on surrogate tests commensurate with minimum acceptable performance of essential strength-based occupational tasks in UK firefighters. PMID:28045801

  18. Polycrystal-Plasticity Simulation of Roping in AA 6xxx Automotive Sheet Alloys

    NASA Astrophysics Data System (ADS)

    Engler, O.; Schäfer, C.; Brinkman, H.-J.

    The occurrence of roping in AA 6xxx series sheet for car body applications is caused by the collective deformation of band-like clusters of grains with similar crystallographic orientation. In this study large-scale orientation maps obtained by electron back-scattered diffraction (EBSD) are input into a visco-plastic self-consistent polycrystal-plasticity model to analyze the strain anisotropy caused by the topographic arrangement of the recrystallization texture orientations and, in turn, the occurrence of roping. At variance to earlier studies, the measurements were carried out in the short transverse section of the sheets so as to get information on distribution and morphology of orientation clusters through the sheet thickness. Then, narrow bands in the EBSD maps aligned parallel to the ridges on the sheet surface are considered, and the variation in macroscopic strain response from band to band is determined. For a given deformation of the sample these simulations yield quantitative information on the level of roping of Al-alloy sheet for car body applications.

  19. Simple models for rope substructure mechanics: application to electro-mechanical lifts

    NASA Astrophysics Data System (ADS)

    Herrera, I.; Kaczmarczyk, S.

    2016-05-01

    Mechanical systems modelled as rigid mass elements connected by tensioned slender structural members such as ropes and cables represent quite common substructures used in lift engineering and hoisting applications. Special interest is devoted by engineers and researchers to the vibratory response of such systems for optimum performance and durability. This paper presents simplified models that can be employed to determine the natural frequencies of systems having substructures of two rigid masses constrained by tensioned rope/cable elements. The exact solution for free un-damped longitudinal displacement response is discussed in the context of simple two-degree-of-freedom models. The results are compared and the influence of characteristics parameters such as the ratio of the average mass of the two rigid masses with respect to the rope mass and the deviation ratio of the two rigid masses with respect to the average mass is analyzed. This analysis gives criteria for the application of such simplified models in complex elevator and hoisting system configurations.

  20. A Theory for Self-consistent Acceleration of Energetic Charged Particles by Dynamic Small-scale Flux Ropes

    NASA Astrophysics Data System (ADS)

    le Roux, J. A.; Zank, G. P.; Khabarova, O.; Webb, G. M.

    2016-12-01

    Simulations of charged particle acceleration in turbulent plasma regions with numerous small-scale contracting and merging (reconnecting) magnetic islands/flux ropes emphasize the key role of temporary particle trapping in these structures for efficient acceleration that can result in power-law spectra. In response, a comprehensive kinetic transport theory framework was developed by Zank et al. and le Roux et al. to capture the essential physics of energetic particle acceleration in solar wind regions containing numerous dynamic small-scale flux ropes. Examples of test particle solutions exhibiting hard power-law spectra for energetic particles were presented in recent publications by both Zank et al. and le Roux et al.. However, the considerable pressure in the accelerated particles suggests the need for expanding the kinetic transport theory to enable a self-consistent description of energy exchange between energetic particles and small-scale flux ropes. We plan to present the equations of an expanded kinetic transport theory framework that will enable such a self-consistent description.

  1. Synthetic Fiber Capstan Drives for Highly Efficient, Torque Controlled, Robotic Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazumdar, Anirban; Spencer, Steven James; Hobart, Clinton

    Here this paper describes the design and performance of a synthetic rope on sheave drive system. This system uses synthetic ropes instead of steel cables to achieve low weight and a compact form factor. We demonstrate how this system is capable of 28-Hz torque control bandwidth, 95% efficiency, and quiet operation, making it ideal for use on legged robots and other dynamic physically interactive systems. Component geometry and tailored maintenance procedures are used to achieve high endurance. Endurance tests based on walking data predict that the ropes will survive roughly 247,000 cycles when used on large (90 kg), fully actuatedmore » bipedal robot systems. The drive systems have been incorporated into two novel bipedal robots capable of three-dimensional unsupported walking. Robot data illustrate effective torque tracking and nearly silent operation. Finally, comparisons with alternative transmission designs illustrate the size, weight, and endurance advantages of using this type of synthetic rope drive system.« less

  2. Synthetic Fiber Capstan Drives for Highly Efficient, Torque Controlled, Robotic Applications

    DOE PAGES

    Mazumdar, Anirban; Spencer, Steven James; Hobart, Clinton; ...

    2017-01-05

    Here this paper describes the design and performance of a synthetic rope on sheave drive system. This system uses synthetic ropes instead of steel cables to achieve low weight and a compact form factor. We demonstrate how this system is capable of 28-Hz torque control bandwidth, 95% efficiency, and quiet operation, making it ideal for use on legged robots and other dynamic physically interactive systems. Component geometry and tailored maintenance procedures are used to achieve high endurance. Endurance tests based on walking data predict that the ropes will survive roughly 247,000 cycles when used on large (90 kg), fully actuatedmore » bipedal robot systems. The drive systems have been incorporated into two novel bipedal robots capable of three-dimensional unsupported walking. Robot data illustrate effective torque tracking and nearly silent operation. Finally, comparisons with alternative transmission designs illustrate the size, weight, and endurance advantages of using this type of synthetic rope drive system.« less

  3. Nonlinear evolution of magnetic flux ropes. 2: Finite beta plasma

    NASA Technical Reports Server (NTRS)

    Osherovich, V. A.; Farrugia, C. J.; Burlaga, L. F.

    1995-01-01

    In this second paper on the evolution of magnetic flux ropes we study the effects of gas pressure. We assume that the energy transport is described by a polytropic relationship and reduce the set of ideal MHD equations to a single, second-order, nonlinear, ordinary differential equation for the evolution function. For this conservative system we obtain a first integral of motion. To analyze the possible motions, we use a mechanical analogue -- a one-dimensional, nonlinear oscillator. We find that the effective potential for such an oscillator depends on two parameters: the polytropic index gamma and a dimensionless quantity kappa the latter being a function of the plasma beta, the strength of the azimuthal magnetic field relative to the axial field of the flux rope, and gamma. Through a study of this effective potential we classify all possible modes of evolution of the system. In the main body of the paper, we focus on magnetic flux ropes whose field and gas pressure increase steadily towards the symmetry axis. In this case, for gamma greater than 1 and all values of kappa, only oscillations are possible. For gamma less than 1, however, both oscillations and expansion are allowed. For gamma less than 1 and kappa below a critical value, the energy of the nonlinear oscillator determines whether the flux rope will oscillate or expand to infinity. For gamma less than 1 and kappa above critical, however, only expansion occurs. Thus by increasing kappa while keeping gamma fixed (less than 1), a phase transition occurs at kappa = kappa(sub critical) and the oscillatory mode disappears. We illustrate the above theoretical considerations by the example of a flux rope of constant field line twist evolving self-similarly. For this example, we present the full numerical MHD solution. In an appendix to the paper we catalogue all possible evolutions when (1) either the magnetic field or (2) the gas pressure decreases monotonically toward the axis. We find that in these cases critical conditions can occur for gamma greater than 1. While in most cases the flux rope collapses, there are notable exceptions when, for certain ranges of kappa and gamma, collapse may be averted.

  4. Cross-tail magnetic flux ropes as observed by the GEOTAIL spacecraft

    NASA Technical Reports Server (NTRS)

    Lepping, R. P.; Fairfield, D. H.; Jones, J.; Frank, L. A.; Paterson, W. R.; Kokubun, S.; Yamamoto, T.

    1995-01-01

    Ten transient magnetic structures in Earth's magnetotail, as observed in GEOTAIL measurements, selected for early 1993 (at (-) X(sub GSM) = 90 - 130 Earth radii), are shown to have helical magnetic field configurations similar to those of interplanetary magnetic clouds at 1 AU but smaller in size by a factor of approximately = 700. Such structures are shown to be well approximated by a comprehensive magnetic force-free flux-rope model. For this limited set of 10 events the rope axes are seen to be typically aligned with the Y(sub GSM) axis and the average diameter of these structures is approximately = 15 Earth radii.

  5. 46 CFR 163.002-11 - Materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... hoist must be a corrosion-resistant wire rope other than galvanized wire rope. (c) Corrosion-resistant materials. Materials of a pilot hoist that are not in watertight enclosures must be— (1) Corrosion-resistant or must be treated to be corrosion-resistant; and (2) Galvanically compatible with each other...

  6. 46 CFR 163.002-11 - Materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... hoist must be a corrosion-resistant wire rope other than galvanized wire rope. (c) Corrosion-resistant materials. Materials of a pilot hoist that are not in watertight enclosures must be— (1) Corrosion-resistant or must be treated to be corrosion-resistant; and (2) Galvanically compatible with each other...

  7. 46 CFR 163.002-11 - Materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... hoist must be a corrosion-resistant wire rope other than galvanized wire rope. (c) Corrosion-resistant materials. Materials of a pilot hoist that are not in watertight enclosures must be— (1) Corrosion-resistant or must be treated to be corrosion-resistant; and (2) Galvanically compatible with each other...

  8. 30 CFR 56.19023 - Examinations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... lubrication or dressing. In addition, visual examination for wear and broken wires shall be made at stress... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Personnel Hoisting Wire Ropes § 56.19023 Examinations. (a) At least once every fourteen calendar days, each wire rope in service shall be...

  9. 30 CFR 75.1433 - Examinations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... addition, visual examination for wear and broken wires shall be made at stress points, including the area... SAFETY STANDARDS-UNDERGROUND COAL MINES Hoisting and Mantrips Wire Ropes § 75.1433 Examinations. (a) At least once every fourteen calendar days, each wire rope in service shall be visually examined along its...

  10. 30 CFR 75.1433 - Examinations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... addition, visual examination for wear and broken wires shall be made at stress points, including the area... SAFETY STANDARDS-UNDERGROUND COAL MINES Hoisting and Mantrips Wire Ropes § 75.1433 Examinations. (a) At least once every fourteen calendar days, each wire rope in service shall be visually examined along its...

  11. 30 CFR 75.1433 - Examinations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... addition, visual examination for wear and broken wires shall be made at stress points, including the area... SAFETY STANDARDS-UNDERGROUND COAL MINES Hoisting and Mantrips Wire Ropes § 75.1433 Examinations. (a) At least once every fourteen calendar days, each wire rope in service shall be visually examined along its...

  12. 30 CFR 75.1433 - Examinations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... addition, visual examination for wear and broken wires shall be made at stress points, including the area... SAFETY STANDARDS-UNDERGROUND COAL MINES Hoisting and Mantrips Wire Ropes § 75.1433 Examinations. (a) At least once every fourteen calendar days, each wire rope in service shall be visually examined along its...

  13. 30 CFR 56.19023 - Examinations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... lubrication or dressing. In addition, visual examination for wear and broken wires shall be made at stress... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Personnel Hoisting Wire Ropes § 56.19023 Examinations. (a) At least once every fourteen calendar days, each wire rope in service shall be...

  14. 30 CFR 56.19023 - Examinations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... lubrication or dressing. In addition, visual examination for wear and broken wires shall be made at stress... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Personnel Hoisting Wire Ropes § 56.19023 Examinations. (a) At least once every fourteen calendar days, each wire rope in service shall be...

  15. 30 CFR 56.19023 - Examinations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... lubrication or dressing. In addition, visual examination for wear and broken wires shall be made at stress... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Personnel Hoisting Wire Ropes § 56.19023 Examinations. (a) At least once every fourteen calendar days, each wire rope in service shall be...

  16. The Critical Role of Stewardship in Fund Raising: The Coaches vs. Cancer Campaign.

    ERIC Educational Resources Information Center

    Worley, Debra A.; Little, Jennifer K.

    2002-01-01

    Examines the critical role of stewardship in the process of fund raising. Uses the Coaches vs. Cancer campaign to illustrate the limitations of the public relations ROPE (research, objectives, planning, and evaluation) model in explaining fund raising success, and supports K.S. Kelly's contention that addition of a fifth step to the model, the…

  17. 3D Dynamics of Magnetic Flux Ropes Across Scales: Solar Eruptions and Sun-Earth Plasma Coupling

    NASA Astrophysics Data System (ADS)

    Chen, James

    2012-10-01

    Central to the understanding of the eruptive phenomena on the Sun and their impact on the terrestrial plasma environment is the dynamics of coronal mass ejections (CMEs)---a 3D magnetic flux rope configuration---and the evolution of their magnetic fields. I will discuss the basic physics of CME eruption and solar flare energy release in the context of the analytic erupting flux rope model of CMEs. In this ideal MHD model, a CME is treated as a 3D flux rope with its two stationary footpoints anchored in the Sun. The model structure is non-axisymmetric and embedded in a model corona/solar wind. The initial flux rope is driven out of equilibrium by ``injection'' of poloidal flux and propagates under the Lorentz hoop force from the Sun to 1 AU, across a wide range of spatial and temporal scales. Comparisons of the model results and recent STEREO observations show that the solutions that best fit the observed CME position-time data (to within 1-2% of data) also correctly replicate the temporal profiles of associated flare X-ray emissions (GOES data) and the in situ magnetic field and plasma data of the CME ejecta at 1 AU where such data are available (e.g., ACE and STEREO/IMPAXCT/PLASTIC data), providing a unified basis of understanding CME dynamics and flare energetics.

  18. Quasi-periodic Oscillations in Flares and Coronal Mass Ejections Associated with Magnetic Reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Takuya; Shibata, Kazunari; Qiu, Jiong, E-mail: takahasi@kusastro.kyoto-u.ac.jp

    We propose a mechanism for quasi-periodic oscillations of both coronal mass ejections (CMEs) and flare loops as related to magnetic reconnection in eruptive solar flares. We perform two-dimensional numerical MHD simulations of magnetic flux rope eruption, with three different values of the global Lundquist number. In the low Lundquist number run, no oscillatory behavior is found. In the moderate Lundquist number run, on the other hand, quasi-periodic oscillations are excited both at the bottom of the flux rope and at the flare loop top. In the high Lundquist number run, quasi-periodic oscillations are also excited; in the meanwhile, the dynamicsmore » become turbulent owing to the formation of multiple plasmoids in the reconnection current sheet. In high and moderate Lundquist number runs, thin reconnection jets collide with the flux rope bottom or flare loop top and dig them deeply. Steep oblique shocks are formed as termination shocks where reconnection jets are bent (rather than decelerated) in the horizontal direction, resulting in supersonic backflows. The structure becomes unstable, and quasi-periodic oscillations of supersonic backflows appear at locally confined high-beta regions at both the flux rope bottom and flare loop top. We compare the observational characteristics of quasi-periodic oscillations in erupting flux ropes, post-CME current sheets, flare ribbons, and light curves with corresponding dynamical structures found in our simulation.« less

  19. An Analytical Diffusion–Expansion Model for Forbush Decreases Caused by Flux Ropes

    NASA Astrophysics Data System (ADS)

    Dumbović, Mateja; Heber, Bernd; Vršnak, Bojan; Temmer, Manuela; Kirin, Anamarija

    2018-06-01

    We present an analytical diffusion–expansion Forbush decrease (FD) model ForbMod, which is based on the widely used approach of an initially empty, closed magnetic structure (i.e., flux rope) that fills up slowly with particles by perpendicular diffusion. The model is restricted to explaining only the depression caused by the magnetic structure of the interplanetary coronal mass ejection (ICME). We use remote CME observations and a 3D reconstruction method (the graduated cylindrical shell method) to constrain initial boundary conditions of the FD model and take into account CME evolutionary properties by incorporating flux rope expansion. Several flux rope expansion modes are considered, which can lead to different FD characteristics. In general, the model is qualitatively in agreement with observations, whereas quantitative agreement depends on the diffusion coefficient and the expansion properties (interplay of the diffusion and expansion). A case study was performed to explain the FD observed on 2014 May 30. The observed FD was fitted quite well by ForbMod for all expansion modes using only the diffusion coefficient as a free parameter, where the diffusion parameter was found to correspond to an expected range of values. Our study shows that, in general, the model is able to explain the global properties of an FD caused by a flux rope and can thus be used to help understand the underlying physics in case studies.

  20. Current Sheet Structures Observed by the TESIS EUV Telescope during a Flux Rope Eruption on the Sun

    NASA Astrophysics Data System (ADS)

    Reva, A. A.; Ulyanov, A. S.; Kuzin, S. V.

    2016-11-01

    We use the TESIS EUV telescope to study the current sheet signatures observed during flux rope eruption. The special feature of the TESIS telescope was its ability to image the solar corona up to a distance of 2 {R}⊙ from the Sun’s center in the Fe 171 Å line. The Fe 171 Å line emission illuminates the magnetic field lines, and the TESIS images reveal the coronal magnetic structure at high altitudes. The analyzed coronal mass ejection (CME) had a core with a spiral—flux rope—structure. The spiral shape indicates that the flux rope radius varied along its length. The flux rope had a complex temperature structure: cold legs (70,000 K, observed in He 304 Å line) and a hotter core (0.7 MK, observed in Fe 171 Å line). Such a structure contradicts the common assumption that the CME core is a cold prominence. When the CME impulsively accelerated, a dark double Y-structure appeared below the flux rope. The Y-structure timing, location, and morphology agree with the previously performed MHD simulations of the current sheet. We interpreted the Y-structure as a hot envelope of the current sheet and hot reconnection outflows. The Y-structure had a thickness of 6.0 Mm. Its length increased over time from 79 Mm to more than 411 Mm.

  1. Intermittent Reconnection Downflow Enhancements In A Simulated Flux Rope Eruption

    NASA Astrophysics Data System (ADS)

    Kliem, Bernhard; Linton, M. G.

    2009-05-01

    Supra-arcade downflows in X-ray and EUV flare emissions and post-eruption inflows in coronagraph data have been interpreted to be signatures of the downward reconnection outflow from a vertical (flare) current sheet. These downflows show an intermittent occurrence pattern, indicating that the reconnection is bursty in time or patchy in space, or both. We present MHD simulations of such reconnection in the realistic configuration of a vertical current sheet formed beneath and driven by an erupting flux rope. The reconnection is found to develop bursty outflows, both upward and downward, with the upward outflows generally showing the stronger variablity. While the reconnection starts early in the rise of the flux rope and its peak upward outflow velocity is closely correlated with the rope's rise velocity, the burstiness develops in a clear fashion only as the rope's height has increased from the initial position by about an order of magnitude, so that the current sheet has reached a sufficient vertical extent. The reconnection downflow shows a series of enhancements, each of them starting at a successively greater height from a newly developed magnetic X line. The plasma temporarily accelerated downward in such an enhancement soon turns into a gradual deceleration and then eventually comes to rest on top of previously accelerated plasma. These findings are consistent with the observations of intermittent downflows.

  2. Quasi-periodic Oscillations in Flares and Coronal Mass Ejections Associated with Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Takahashi, Takuya; Qiu, Jiong; Shibata, Kazunari

    2017-10-01

    We propose a mechanism for quasi-periodic oscillations of both coronal mass ejections (CMEs) and flare loops as related to magnetic reconnection in eruptive solar flares. We perform two-dimensional numerical MHD simulations of magnetic flux rope eruption, with three different values of the global Lundquist number. In the low Lundquist number run, no oscillatory behavior is found. In the moderate Lundquist number run, on the other hand, quasi-periodic oscillations are excited both at the bottom of the flux rope and at the flare loop top. In the high Lundquist number run, quasi-periodic oscillations are also excited; in the meanwhile, the dynamics become turbulent owing to the formation of multiple plasmoids in the reconnection current sheet. In high and moderate Lundquist number runs, thin reconnection jets collide with the flux rope bottom or flare loop top and dig them deeply. Steep oblique shocks are formed as termination shocks where reconnection jets are bent (rather than decelerated) in the horizontal direction, resulting in supersonic backflows. The structure becomes unstable, and quasi-periodic oscillations of supersonic backflows appear at locally confined high-beta regions at both the flux rope bottom and flare loop top. We compare the observational characteristics of quasi-periodic oscillations in erupting flux ropes, post-CME current sheets, flare ribbons, and light curves with corresponding dynamical structures found in our simulation.

  3. Practical Applications of Cables and Ropes in the ISS Countermeasures System

    NASA Technical Reports Server (NTRS)

    Svetlik, Randall G.; Moore, Cherice; Williams, Antony

    2017-01-01

    National Aeronautics and Space Administration (NASA) uses exercise countermeasures on the International Space Station (ISS) to maintain crew health and combat the negative effects of long-duration spaceflight on the human body. Most ISS exercise countermeasures system (CMS) equipment rely heavily on the use of textile and wire ropes to transmit resistive loads and provide stability in a microgravity environment. For a variety of reasons, including challenges in simulating microgravity environments for testing and limits on time available for life cycle testing, the textiles and wire ropes have contributed significantly to on-orbit planned and unplanned maintenance time. As a result, continued ground testing and on-orbit experience since the first expedition on the ISS in 2000 provide valuable data and lessons learned in materials selection, applications, and design techniques to increase service life of these ropes. This paper will present a review of the development and failure history of textile and wire ropes for four exercise countermeasure systems-the Treadmill with Vibration Isolation and Stabilization (TVIS) System, Cycle Ergometer with Vibration Isolation and Stabilization (CEVIS) System, Interim Resistive Exercise Device (IRED), and the Advanced Resistive Exercise Device (ARED)-to identify lessons learned in order to improve future systems. These lessons learned, paired with thorough testing on the ground, offer a forward path towards reduced maintenance time and up-mass for future space missions.

  4. A HOT FLUX ROPE OBSERVED BY SDO/AIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aparna, V.; Tripathi, Durgesh, E-mail: aparnav@iucaa.in

    2016-03-01

    A filament eruption was observed on 2010 October 31 in the images recorded by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO) in its Extreme Ultra-Violet (EUV) channels. The filament showed a slow-rise phase followed by a fast rise and was classified to be an asymmetric eruption. In addition, multiple localized brightenings which were spatially and temporally associated with the slow-rise phase were identified, leading us to believe that the tether-cutting mechanism initiated the eruption. An associated flux rope was detected in high-temperature channels of AIA, namely 94 and 131 Å, corresponding to 7 and 11more » MK plasma respectively. In addition, these channels are also sensitive to cooler plasma corresponding to 1–2 MK. In this study, we have applied the algorithm devised by Warren et al. to remove cooler emission from the 94 Å channel to deduce only the high-temperature structure of the flux rope and to study its temporal evolution. We found that the flux rope was very clearly seen in the clean 94 Å channel image corresponding to Fe xviii emission, which corresponds to a plasma at a temperature of 7 MK. This temperature matched well with that obtained using Differential Emission Measure analysis. This study provides important constrains in the modeling of the thermodynamic structure of the flux ropes in coronal mass ejections.« less

  5. Two-dimensional numerical simulation of flow around three-stranded rope

    NASA Astrophysics Data System (ADS)

    Wang, Xinxin; Wan, Rong; Huang, Liuyi; Zhao, Fenfang; Sun, Peng

    2016-08-01

    Three-stranded rope is widely used in fishing gear and mooring system. Results of numerical simulation are presented for flow around a three-stranded rope in uniform flow. The simulation was carried out to study the hydrodynamic characteristics of pressure and velocity fields of steady incompressible laminar and turbulent wakes behind a three-stranded rope. A three-cylinder configuration and single circular cylinder configuration are used to model the three-stranded rope in the two-dimensional simulation. The governing equations, Navier-Stokes equations, are solved by using two-dimensional finite volume method. The turbulence flow is simulated using Standard κ-ɛ model and Shear-Stress Transport κ-ω (SST) model. The drag of the three-cylinder model and single cylinder model is calculated for different Reynolds numbers by using control volume analysis method. The pressure coefficient is also calculated for the turbulent model and laminar model based on the control surface method. From the comparison of the drag coefficient and the pressure of the single cylinder and three-cylinder models, it is found that the drag coefficients of the three-cylinder model are generally 1.3-1.5 times those of the single circular cylinder for different Reynolds numbers. Comparing the numerical results with water tank test data, the results of the three-cylinder model are closer to the experiment results than the single cylinder model results.

  6. Comparison of MMS data and virtual simulation data relative to secondary reconnection within a flux rope in the magnetopause

    NASA Astrophysics Data System (ADS)

    Lapenta, Giovanni; Oieroset, Marit; Phan, Tai; Eastwood, Jonathan; Goldman, Martin; Newman, David L.; Russel, Christopher; Strangeway, Robert; Paterson, William; Giles, Barbara; Lavraud, Benoit; Khotyaintsev, Yuri; Ergun, Robert; Torbert, Roy; Burch, James

    2017-04-01

    Recently Øieroset et al. [2016] reported evidence for reconnection between colliding reconnection jets in a compressed current sheet at the center of a magnetic flux rope at Earth's magnetopause. Here, we set up a simulation with parameters similar to those observed: in particular we used the same guide field ratio to the in plane field. The initial state is a Harris sheet with mass ratio 256 and temperature ratio 10. The domain is 3D with box size 20x15x10 di. Reconnection is initiated at the two edges of the box by seeding an initial localized x-line. Reconnection starts at the two x-lines by design due to the strong perturbation. The subsequent evolution shows reconnection taking root in the initially seeded x-lines. Later an instability develops within the flux rope, likely similar to those reported in Lapenta et al. [2015], and secondary reconnection starts in a ring near the center of the flux rope. The analogy with the kink mode of laboratory and solar wind flux ropes[Lapenta et al., 2006] is striking and future work will be needed to investigate if the instability satisfies the Kruskal-Shafranov limit [Shafranov, 1957, Kruskal and Tuck, 1958]. At late times, the primary reconnection site becomes inactive and the secondary reconnection site becomes dominant. In this later stage, agyrotropy and J · E' are stronger in the center. But more strikingly, the ions are outflowing predominantly away from the secondary reconnection site in the central region of the flux rope and the ring near the center where reconnection signatures (agyrotropy and J · E') are strongest. The electron pressure presents several intense loci, identifying where strong electron energization by secondary reconnection takes place. The results of the simulation are studied producing synthetic virtual satellite diagnostics obtained from the simulation results but with a format similar to in situ spacecraft observations. With these data formats the results can be more readily be compared with the MMS data reported in Øieroset et al. [2016]. References M. Kruskal and J. Tuck. The instability of a pinched fluid with a longitudinal magnetic field. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 245(1241):222-237, 1958. G. Lapenta, I. Furno, and T. Intrator. Kink instability of flux ropes anchored at one end and free at the other. J. Geophys. Res., 111:A12S06, 2006. G. Lapenta, S. Markidis, M. V. Goldman, and D. L. Newman. Secondary reconnection sites in reconnection-generated flux ropes and reconnection fronts. Nature Physics, 11(8):690-695, 2015. M. Øieroset, T. Phan, C. Haggerty, M. Shay, J. Eastwood, et al. Mms observations of large guide field symmetric reconnection between colliding reconnection jets at the center of a magnetic flux rope at the magnetopause. Geophysical Research Letters, 2016.

  7. Haughton-Mars Project/NASA 2006 Lunar Medical Contingency Simulation: Equipment and Methods for Medical Evacuation of an Injured Crewmember

    NASA Technical Reports Server (NTRS)

    Chappell, S. P.; Scheuring, R. A.; Jones, J. A.; Lee, P.; Comtois, J. M.; Chase, T.; Gernhardt M.; Wilkinson, N.

    2007-01-01

    Introduction: Achieving NASA's Space Exploration Vision scientific objectives will require human access into cratered and uneven terrain for the purpose of sample acquisition to assess geological, and perhaps even biological features and experiments. Operational risk management is critical to safely conduct the anticipated tasks. This strategy, along with associated contingency plans, will be a driver of EVA system requirements. Therefore, a medical contingency EVA scenario was performed with the Haughton-Mars Project/NASA to develop belay and medical evacuation techniques for exploration and rescue respectively. Methods: A rescue system to allow two rescuer astronauts to evacuate one in incapacitated astronaut was evaluated. The systems main components were a hard-bottomed rescue litter, hand-operated winch, rope, ground picket anchors, and a rover-winch attachment adapter. Evaluation was performed on 15-25deg slopes of dirt with embedded rock. The winch was anchored either by adapter to the rover or by pickets hammered into the ground. The litter was pulled over the surface by rope attached to the winch. Results: The rescue system was utilized effectively to extract the injured astronaut up a slope and to a waiting rover for transport to a simulated habitat for advanced medical care, although several challenges to implementation were identified and overcome. Rotational stabilization of the winch was found to be important to get maximize mechanical advantage from the extraction system. Discussion: Further research and testing needs to be performed to be able to fully consider synergies with the other Exploration surface systems, in conducting contingency operations. Structural attachment points on the surface EVA suits may be critical to assist in incapacitated evacuation. Such attach points could be helpful in microgravity incapacitated crewmember transport as well. Wheeled utility carts or wheels that may be attachable to a litter may also aid in extraction and transport. Utilizing parts of the rover (e.g. seats) to deploy as a litter may be considered. Testing in simulated 1/6-g to determine feasibility of winch operation and anchor establishment will further reduce implementation uncertainties.

  8. 50 CFR 660.302 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... change seasonally according to the different conservation needs of the different overfished species... any rollers, bobbins, or other material encircling or tied along the length of the footrope. (C) Small... mesh. (J) Trawl fishing line. A length of chain, rope, or wire rope in the bottom front end of a trawl...

  9. Learning the Ropes with Electricity

    ERIC Educational Resources Information Center

    Carrier, Sarah; Rex, Ted

    2013-01-01

    This article presents a lesson plan that uses materials such as rope, drinking water, and straws in a classroom activity to teach elementary students about electrical circuits in a "hands on/minds on" fashion. Students first experiment with bulbs, wires, and switches, then they do an activity with simulating electricity through a circuit…

  10. Thoughts on Designing Things To NOT Break.

    ERIC Educational Resources Information Center

    Klajnscek, Rich

    1998-01-01

    Explains aspects of the design and loading of high-ropes courses and other challenge-course equipment. Discusses the engineer's factor of safety, determined by industry standards or the level of risk considered acceptable; definitions of terms for material strength; and the forces involved in loads sustained by belay ropes and cables. (SV)

  11. Does Challenge by Choice Increase Participation?

    ERIC Educational Resources Information Center

    Chase, Daniel L.

    2015-01-01

    Challenge by choice (CBC) has been regarded as a foundational principle for challenge ropes course programs. Although CBC is widely accepted as the primary mechanism for facilitating intended ropes course outcomes, especially a participant's involvement, until recently it had remained an untested assumption. This study explored the role of CBC as…

  12. ISD Model Building: From Tabula Rasa to Apple Peel

    ERIC Educational Resources Information Center

    Ruark, Benjamin E.

    2008-01-01

    An evidence-based practice (EBP) model is proposed to replace the more-art-than-science "rope bridge" currently spanning the defining space of a training need and the designing space of a training curriculum. The rope bridge analogy symbolizes a way to address perceived deficiencies and research gaps in the…

  13. Psychological Benefits of Outdoor Adventure Activities.

    ERIC Educational Resources Information Center

    Teaff, Joseph; Kablach, John

    1987-01-01

    Reports psychological benefits of participation in caving, rock climbing, ropes, and teams course of 30-day adventure program by 56 delinquent youth (ages 11-18). Concludes rope course satisfied independence, rewards, and variety more than caving; rock climbing satisfied independence and rewards more than caving; caving less beneficial than other…

  14. 49 CFR 393.102 - What are the minimum performance criteria for cargo securement devices and systems?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... chains, wire rope, steel strapping, synthetic webbing, and cordage) and other attachment or fastening... acceleration in a lateral direction. (2) Working Load limit. Tiedown assemblies (including chains, wire rope, steel strapping, synthetic webbing, and cordage) and other attachment or fastening devices used to...

  15. 49 CFR 393.102 - What are the minimum performance criteria for cargo securement devices and systems?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... chains, wire rope, steel strapping, synthetic webbing, and cordage) and other attachment or fastening... acceleration in a lateral direction. (2) Working Load limit. Tiedown assemblies (including chains, wire rope, steel strapping, synthetic webbing, and cordage) and other attachment or fastening devices used to...

  16. 46 CFR 195.35-5 - General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 1014 (incorporated by reference, see § 195.01-3). (d) All lifelines shall be of steel or bronze wire rope. Steel wire rope shall be either inherently corrosion-resistant, or made so by galvanizing or... breaking strength of 1,500 pounds. (e) All equipment shall be maintained in an operative condition, and it...

  17. 46 CFR 195.35-5 - General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 1014 (incorporated by reference, see § 195.01-3). (d) All lifelines shall be of steel or bronze wire rope. Steel wire rope shall be either inherently corrosion-resistant, or made so by galvanizing or... breaking strength of 1,500 pounds. (e) All equipment shall be maintained in an operative condition, and it...

  18. 30 CFR 77.1403 - Daily examination of hoisting equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...: (a) Elevators. (1) A visual examination of the ropes for wear, broken wires, and corrosion.... (1) An examination of the rope fastenings for defects; (2) An examination of sheaves for broken... automatic controls and brakes required under § 77.1401. (Sec. 101, Federal Mine Safety and Health Act of...

  19. 30 CFR 77.1403 - Daily examination of hoisting equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...: (a) Elevators. (1) A visual examination of the ropes for wear, broken wires, and corrosion.... (1) An examination of the rope fastenings for defects; (2) An examination of sheaves for broken... automatic controls and brakes required under § 77.1401. (Sec. 101, Federal Mine Safety and Health Act of...

  20. 46 CFR 195.35-5 - General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 1014 (incorporated by reference, see § 195.01-3). (d) All lifelines shall be of steel or bronze wire rope. Steel wire rope shall be either inherently corrosion-resistant, or made so by galvanizing or... breaking strength of 1,500 pounds. (e) All equipment shall be maintained in an operative condition, and it...

  1. 30 CFR 77.1403 - Daily examination of hoisting equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...: (a) Elevators. (1) A visual examination of the ropes for wear, broken wires, and corrosion.... (1) An examination of the rope fastenings for defects; (2) An examination of sheaves for broken... automatic controls and brakes required under § 77.1401. (Sec. 101, Federal Mine Safety and Health Act of...

  2. 30 CFR 77.1403 - Daily examination of hoisting equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: (a) Elevators. (1) A visual examination of the ropes for wear, broken wires, and corrosion.... (1) An examination of the rope fastenings for defects; (2) An examination of sheaves for broken... automatic controls and brakes required under § 77.1401. (Sec. 101, Federal Mine Safety and Health Act of...

  3. 30 CFR 77.1403 - Daily examination of hoisting equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...: (a) Elevators. (1) A visual examination of the ropes for wear, broken wires, and corrosion.... (1) An examination of the rope fastenings for defects; (2) An examination of sheaves for broken... automatic controls and brakes required under § 77.1401. (Sec. 101, Federal Mine Safety and Health Act of...

  4. Rescue Manual. Module 4.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Instructional Materials Lab.

    This learner manual for rescuers covers the current techniques or practices required in the rescue service. The fourth of 10 modules contains 8 chapters: (1) construction and characteristics of rescue rope; (2) knots, bends, and hitches; (3) critical angles; (4) raising systems; (5) rigging; (6) using the brake-bar rack for rope rescue; (7) rope…

  5. Couple Conflict and Rope-a-Dope.

    ERIC Educational Resources Information Center

    Downing, Jerry; Harrison, Tom

    1993-01-01

    Draws analogy between Muhammad Ali's boxing technique of "rope-a-dope" and behavioral patterns frequently occurring in couple conflicts. Presents basics of Ali's technique as similar to fighting patterns of many couples. Suggests that this behavior may lead to physical violence. Describes use of analogy in working with couples. Presents strategies…

  6. Be Active Your Way: A Guide for Adults

    MedlinePlus

    ... try): ❑ Aerobic dance ❑ Basketball ❑ Fast dancing ❑ Jumping rope ❑ Martial arts (such as karate) ❑ Race walking, jogging, or running ❑ ... Heavy gardening (digging,hoeing) • Hiking uphill • Jumping rope • Martial arts (such as karate) • Race walking,jogging,or running • ...

  7. 75 FR 22424 - Avalotis Corp.; Grant of a Permanent Variance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-28

    ... International, LLC, and Matrix Service Industrial Contractors, Inc.), and 71 FR 10557 (Commonwealth Dynamics... of damage or defects at all times. (b) Guide rope fastening and alignment tension. The employer must fasten one end of each guide rope securely to the overhead support, with appropriate tension applied at...

  8. 7 CFR 760.1103 - Eligible livestock and producers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... benefits under this subpart, livestock must meet all the following conditions: (1) Be adult or non-adult... roaming animals or animals used for recreational purposes, such as pleasure, roping, hunting, pets, or for...) Roping, (ii) Hunting, (iii) Show, (iv) Pleasure, (v) Use as pets, or (vi) Consumption by owner. ...

  9. 7 CFR 760.1103 - Eligible livestock and producers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... benefits under this subpart, livestock must meet all the following conditions: (1) Be adult or non-adult... roaming animals or animals used for recreational purposes, such as pleasure, roping, hunting, pets, or for...) Roping, (ii) Hunting, (iii) Show, (iv) Pleasure, (v) Use as pets, or (vi) Consumption by owner. ...

  10. 7 CFR 760.1103 - Eligible livestock and producers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... benefits under this subpart, livestock must meet all the following conditions: (1) Be adult or non-adult... roaming animals or animals used for recreational purposes, such as pleasure, roping, hunting, pets, or for...) Roping, (ii) Hunting, (iii) Show, (iv) Pleasure, (v) Use as pets, or (vi) Consumption by owner. ...

  11. 7 CFR 760.1103 - Eligible livestock and producers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... benefits under this subpart, livestock must meet all the following conditions: (1) Be adult or non-adult... roaming animals or animals used for recreational purposes, such as pleasure, roping, hunting, pets, or for...) Roping, (ii) Hunting, (iii) Show, (iv) Pleasure, (v) Use as pets, or (vi) Consumption by owner. ...

  12. Home-Grown Courses. Tech Talk.

    ERIC Educational Resources Information Center

    Klajnscek, Rich

    1999-01-01

    Home-built adventure-education courses exhibit refreshing creativity but almost always fall short of their potential due to inadequate construction techniques and materials. A ropes course inspector for the adventure education industry discusses the most common mistakes made in home-built ropes courses and how to prevent or fix them. (TD)

  13. Wavelet detection of coherent structures in interplanetary magnetic flux ropes and its role in the intermittent turbulence

    NASA Astrophysics Data System (ADS)

    Muñoz, P. R.; Chian, A. C.

    2013-12-01

    We implement a method to detect coherent magnetic structures using the Haar discrete wavelet transform (Salem et al., ApJ 702, 537, 2009), and apply it to an event detected by Cluster at the turbulent boundary layer of an interplanetary magnetic flux rope. The wavelet method is able to detect magnetic coherent structures and extract main features of solar wind intermittent turbulence, such as the power spectral density and the scaling exponent of structure functions. Chian and Muñoz (ApJL 733, L34, 2011) investigated the relation between current sheets, turbulence, and magnetic reconnections at the leading edge of an interplanetary coronal mass ejection measured by Cluster upstream of the Earth's bow shock on 2005 January 21. We found observational evidence of two magnetically reconnected current sheets in the vicinity of a front magnetic cloud boundary layer, where the scaling exponent of structure functions of magnetic fluctuations exhibits multifractal behavior. Using the wavelet technique, we show that the current sheets associated to magnetic reconnection are part of the set of magnetic coherent structures responsible for multifractality. By removing them using a filtering criteria, it is possible to recover a self-similar scaling exponent predicted for homogeneous turbulence. Finally, we discuss an extension of the wavelet technique to study coherent structures in two-dimensional solar magnetograms.

  14. Homologous Circular-ribbon Flares Driven by Twisted Flux Emergence

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Yang, K.; Guo, Y.; Zhao, J.; Zhao, Z. J.; Kashapova, L.

    2017-12-01

    In this paper, we report two homologous circular-ribbon flares associated with two filament eruptions. They were well observed by the New Vacuum Solar Telescope and the Solar Dynamics Observatory on 2014 March 5. Prior to the flare, two small-scale filaments enclosed by a circular pre-flare brightening lie along the circular polarity inversion line around the parasitic polarity, which has shown a continuous rotation since its first appearance. Two filaments eventually erupt in sequence associated with two homologous circular-ribbon flares and display an apparent writhing signature. Supplemented by the nonlinear force-free field extrapolation and the magnetic field squashing factor investigation, the following are revealed. (1) This event involves the emergence of magnetic flux ropes into a pre-existing polarity area, which yields the formation of a 3D null-point topology in the corona. (2) Continuous input of the free energy in the form of a flux rope from beneath the photosphere may drive a breakout-type reconnection occurring high in the corona, supported by the pre-flare brightening. (3) This initiation reconnection could release the constraint on the flux rope and trigger the MHD instability to first make filament F1 lose equilibrium. The subsequent more violent magnetic reconnection with the overlying flux is driven during the filament rising. In return, the eruption of filament F2 is further facilitated by the reduction of the magnetic tension force above. These two processes form a positive feedback to each other to cause the energetic mass eruption and flare.

  15. Amid the Tempest: An Observational View of Magnetic Reconnection in Explosions on the Sun

    NASA Astrophysics Data System (ADS)

    Qiu, Jiong

    2007-05-01

    Viewed through telescopes, the Sun is a restless star. Frequently, impulsive brightenings in the Sun's atmosphere, known as solar flares, are observed across a broad range of the electromagnetic spectrum. It is considered that solar flares are driven by magnetic reconnection, when anti-parallel magnetic field lines collide and reconnect with each other, efficiently converting free magnetic energy into heating plasmas and accelerating charged particles. Over the past decades, solar physicists have discovered observational signatures as indirect evidence for magnetic reconnection. Careful analyses of these observations lead to evaluation of key physical parameters of magnetic reconnection. Growing efforts have been extended to understand the process of magnetic reconnection in some of the most spectacular explosions on the Sun in the form of coronal mass ejections (CMEs). Often accompanied by flares, nearly once a day, a large bundle of plasma wrapped in magnetic field lines is violently hurled out of the Sun into interplanetary space. This is a CME. CMEs are driven magnetically, although the exact mechanisms remain in heated debate. Among many mysteries of CMEs, a fundamental question has been the origin of the specific magnetic structure of CMEs, some reaching the earth and being observed in-situ as a nested set of helical field lines, or a magnetic flux rope. Analyses of interplanetary magnetic flux ropes and their solar progenitors, including flares and CMEs, provide an observational insight into the role of magnetic reconnection at the early stage of flux rope eruption.

  16. Jumping Rope at Day of Play

    NASA Image and Video Library

    2005-10-05

    Sarah Dastugue, 11, leaps in the air as Libby Knox, 9, swings a jump rope. The children were participants in Nickelodeon's Worldwide Day of Play celebration at Stennis Space Center (SSC) on Oct. 1. On the day of the event, children all over the world participate in physical activities as part of the celebration.

  17. Harmonic and Anharmonic Behaviour of a Simple Oscillator

    ERIC Educational Resources Information Center

    O'Shea, Michael J.

    2009-01-01

    We consider a simple oscillator that exhibits harmonic and anharmonic regimes and analyse its behaviour over the complete range of possible amplitudes. The oscillator consists of a mass "m" fixed at the midpoint of a horizontal rope. For zero initial rope tension and small amplitude the period of oscillation, tau, varies as tau is approximately…

  18. Resilient Braided Rope Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor); Kren, Lawrence A. (Inventor)

    2000-01-01

    A resilient braided rope seal for use in high temperature applications includes a center core of fibers. a resilient canted spring member supporting the core and at least one layer of braided sheath fibers tightly packed together overlying the spring member. The seal provides both improved load bearing and resiliency. Permanent set and hysteresis are greatly reduced.

  19. Knowing the Ropes and Showing the Ropes. Facilitator's Guide.

    ERIC Educational Resources Information Center

    Storer, John H.

    This document consists of a facilitator's guide and related materials for implementing a program that teaches social, communication, and study skills to middle school and junior high school students. The goal of the program, which incorporates peer tutoring, is the prevention of drug and alcohol abuse. This program was developed in Iowa to address…

  20. The Role of Visual Form in Lexical Access: Evidence from Chinese Classifier Production

    ERIC Educational Resources Information Center

    Bi, Yanchao; Yu, Xi; Geng, Jingyi; Alario, F. -Xavier.

    2010-01-01

    The interface between the conceptual and lexical systems was investigated in a word production setting. We tested the effects of two conceptual dimensions--semantic category and visual shape--on the selection of Chinese nouns and classifiers. Participants named pictures with nouns ("rope") or classifier-noun phrases ("one-"classifier"-rope") in…

  1. Design Guide for Selection and Specification of Kevlar Rope for Ocean Engineering and Construction.

    DTIC Science & Technology

    1976-07-01

    public rtoieco cnd sol . It i Idim .buttm Is ul"rnimi.. OCEAN ENGINEERING AND CONSTRUCTION PROJECT OFFICE CHESAPEAKE DIVISION NAVAL FACILITIES ENGINEERING...be to have no more than one layer. This is impractical for oceano - graphic purposes. Assuming a need to spooi many layers of rope under tension

  2. Jumping Good Fun

    ERIC Educational Resources Information Center

    Nye, Susan B.

    2010-01-01

    Jumping rope is an activity that can be fun and enjoyable for all students. It requires minimal activity space, can be performed individually or in small groups, and is an inexpensive way to engage students in a lifelong physical activity. Jumping rope is commonly used by coaches and athletes for training purposes to improve aerobic endurance,…

  3. Arriba! Building Teamwork and a Ropes Course in Mexico.

    ERIC Educational Resources Information Center

    Fullerton, Jim; Davis, Scot G.

    A staff member of the Outdoor Adventures Program at the University of Nebraska-Lincoln relates his experience in supervising the construction of the first low ropes course in Yucatan, Mexico. During 1994, two staff members visited Yucatan to explore trip possibilities for the program and to inquire about a future conference location. While leading…

  4. Simulation of Homologous and Cannibalistic Coronal Mass Ejections produced by the Emergence of a Twisted Flux Rope into the Solar Corona

    NASA Astrophysics Data System (ADS)

    Chatterjee, Piyali; Fan, Yuhong

    2013-11-01

    We report the first results of a magnetohydrodynamic simulation of the development of a homologous sequence of three coronal mass ejections (CMEs) and demonstrate their so-called cannibalistic behavior. These CMEs originate from the repeated formations and partial eruptions of kink unstable flux ropes as a result of continued emergence of a twisted flux rope across the lower boundary into a pre-existing coronal potential arcade field. The simulation shows that a CME erupting into the open magnetic field created by a preceding CME has a higher speed. The second of the three successive CMEs is cannibalistic, catching up and merging with the first into a single fast CME before exiting the domain. All the CMEs including the leading merged CME, attained speeds of about 1000 km s-1 as they exit the domain. The reformation of a twisted flux rope after each CME eruption during the sustained flux emergence can naturally explain the X-ray observations of repeated reformations of sigmoids and "sigmoid-under-cusp" configurations at a low-coronal source of homologous CMEs.

  5. Determination of Flux rope axis for GS reconstruction

    NASA Astrophysics Data System (ADS)

    Tian, A.; Shi, Q.; Bai, S.; Zhang, S.

    2016-12-01

    It is important to give the axis direction and velocity of a magnetic flux ropes before employing Grad-Shafranov reconstruction. The ability of single-satellite based MVA (MVAB and CMVA) and multi-satellite based MDD methods in finding the invariant axis are tested by a model. The choice of principal axis given by MVA along the aimed direction is dependent on the distance of the path from the flux-rope axis. The MDD results are influenced by the ratio of Noise level/separation to the gradient of the structure. An accurate axial direction will be obtained when the ratio is less than 1. By a model, an example with failed HT method is displayed indicating the importance of the STD method in obtaining the velocity of such a structure. The applicability of trial and error method by Hu and Sonnerup(2012) was also used and discussed. Finally, all above methods were applied to a flux-rope observed by Cluster. It shows that the GS method can be easily carried out in the case of clearly known dimensionality and velocity.

  6. Reference measurements on a Francis model turbine with 2D Laser-Doppler-Anemometry

    NASA Astrophysics Data System (ADS)

    Frey, A.; Kirschner, O.; Riedelbauch, S.; Jester-Zuerker, R.; Jung, A.

    2016-11-01

    To validate the investigations of a high-resolution CFD simulation of a Francis turbine, measurements with 2D Laser-Doppler-Anemometry are carried out. The turbine is operated in part load, where a rotating vortex rope occurs. To validate both, mean velocities and velocity fluctuations, the measurements are classified relative to the vortex rope position. Several acrylic glass windows are installed in the turbine walls such as upstream of the spiral case inlet, in the vaneless space and in the draft tube. The current investigation is focused on a measurement plane below the runner. 2D velocity components are measured on this whole plane by measuring several narrow spaced radial lines. To avoid optical refraction of the laser beam a plan parallel window is inserted in the cone wall. The laser probe is positioned with a 2D traverse system consisting of a circumferential rail and a radial aligned linear traverse. The velocity data are synchronized with the rotational frequency of the rotating vortex rope. The results of one measurement line show the dependency of the axial and circumferential velocities on the vortex rope position.

  7. Pulsating Magnetic Reconnection Driven by Three-Dimensional Flux-Rope Interactions.

    PubMed

    Gekelman, W; De Haas, T; Daughton, W; Van Compernolle, B; Intrator, T; Vincena, S

    2016-06-10

    The dynamics of magnetic reconnection is investigated in a laboratory experiment consisting of two magnetic flux ropes, with currents slightly above the threshold for the kink instability. The evolution features periodic bursts of magnetic reconnection. To diagnose this complex evolution, volumetric three-dimensional data were acquired for both the magnetic and electric fields, allowing key field-line mapping quantities to be directly evaluated for the first time with experimental data. The ropes interact by rotating about each other and periodically bouncing at the kink frequency. During each reconnection event, the formation of a quasiseparatrix layer (QSL) is observed in the magnetic field between the flux ropes. Furthermore, a clear correlation is demonstrated between the quasiseparatrix layer and enhanced values of the quasipotential computed by integrating the parallel electric field along magnetic field lines. These results provide clear evidence that field lines passing through the quasiseparatrix layer are undergoing reconnection and give a direct measure of the nonlinear reconnection rate. The measurements suggest that the parallel electric field within the QSL is supported predominantly by electron pressure; however, resistivity may play a role.

  8. Impact of Magnetic Draping, Convection, and Field Line Tying on Magnetopause Reconnection Under Northward IMF

    NASA Technical Reports Server (NTRS)

    Wendel, Deirdre E.; Reiff, Patricia H.; Goldstein, Melvyn L.

    2010-01-01

    We simulate a northward IMF cusp reconnection event at the magnetopause using the OpenGGCM resistive MHD code. The ACE input data, solar wind parameters, and dipole tilt belong to a 2002 reconnection event observed by IMAGE and Cluster. Based on a fully three-dimensional skeleton separators, nulls, and parallel electric fields, we show magnetic draping, convection, ionospheric field line tying play a role in producing a series of locally reconnecting nulls with flux ropes. The flux ropes in the cusp along the global separator line of symmetry. In 2D projection, the flux ropes the appearance of a tearing mode with a series of 'x's' and 'o's' but bearing a kind of 'guide field' that exists only within the magnetopause. The reconnecting field lines in the string of ropes involve IMF and both open and closed Earth magnetic field lines. The observed magnetic geometry reproduces the findings of a superposed epoch impact parameter study derived from the Cluster magnetometer data for the same event. The observed geometry has repercussions for spacecraft observations of cusp reconnection and for the imposed boundary conditions reconnection simulations.

  9. Apex Dips of Experimental Flux Ropes: Helix or Cusp?

    NASA Astrophysics Data System (ADS)

    Haw, Magnus; Wongwaitayakornkul, Pakorn; Li, Hui; Li, Shengtai; Bellan, Paul M.

    2017-10-01

    We present a new theory for the presence of apex dips in certain experimental flux ropes. Previously such dips were thought to be projections of a helical loop axis generated by the kink instability. However, new evidence from experiments and simulations suggest that the feature is a 2D cusp rather than a 3D helix. The proposed mechanism for cusp formation is a density pileup region generated by nonlinear interaction of neutral gas cones emitted from fast-gas nozzles. The results indicate that small density perturbations can result in large distortions of an erupting flux rope, even in the absence of significant pressure or gravity forces. The density pileup at the apex also suppresses the m=1 kink mode by acting as a stationary node. Consequently, more accurate density profiles should be considered when attempting to precisely model the stability and eruption of solar flux ropes such as CME's. This work was supported by NSF under award 1348393, AFOSR under award FA9550-11-1-0184, and DOE under awards DE-FG02-04ER54755 and DE-SC0010471.

  10. MAVEN Observations of Magnetic Flux Ropes with a Strong Field Amplitude in the Martian Magnetosheath During the ICME Passage on 8 March 2015

    NASA Technical Reports Server (NTRS)

    Hara, Takuya; Luhmann, Janet G.; Halekas, Jasper S.; Espley, Jared R.; Seki, Kanako; Brain, David A.; Hasegawa, Hiroshi; McFadden, James P.; Mitchell, David L.; Mazelle, Christian; hide

    2016-01-01

    We present initial results of strong field amplitude flux ropes observed by Mars Atmosphere and Volatile EvolutioN (MAVEN) mission around Mars during the interplanetary coronal mass ejection (ICME) passage on 8 March 2015. The observed durations were shorter than 5 s and the magnetic field magnitudes peaked above 80 nT, which is a few times stronger than those usually seen in the magnetosheath barrier. These are the first unique observations that MAVEN detected such flux ropes with a strong field at high altitudes (greater than 5000 km). Across these structures, MAVEN coincidentally measured planetary heavy ions with energies higher than a few keV. The spatial properties inferred from the Grad-Shafranov equation suggest that the speed of the structure can be estimated at least an order of magnitude faster than those previously reported quiet-time counterparts. Hence, the space weather event like the ICME passage can be responsible for generating the observed strong field, fast-traveling flux ropes.

  11. The Whole Elephant: A Synoptic View of Liquid Rope Coiling

    NASA Astrophysics Data System (ADS)

    Ribe, Neil

    2016-11-01

    Liquid rope coiling is the instability that occurs when e.g. a thin stream of honey is poured onto toast. While we now have a fine-grained understanding of each of the four principal coiling modes (viscous, gravitational, inertio-gravitational and inertial), we still lack a global view of how the modes cohere to form a larger whole. Using a numerical continuation procedure, I determine how the dimensionless coiling frequency depends on the dimensionless fall height and flow rate, for several values of the dimensionless nozzle diameter. Starting with the onset of coiling, I propose a purely geometrical definition of the critical surface between coiling and no coiling as the locus of points where the radius a1 of the rope at the contact point is just equal to the coil radius R. Coiling with a1 > R is impossible because the rope would intersect itself. I characterize the asymptotic limits of the critical surface as well as the structure of the supercritical volume inside that surface. The procedure reveals a new mode of coiling onset that has not yet been identified.

  12. Hooked Flare Ribbons and Flux-rope-related QSL Footprints

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Gilchrist, Stuart A.; Aulanier, Guillaume; Schmieder, Brigitte; Pariat, Etienne; Li, Hui

    2016-05-01

    We studied the magnetic topology of active region 12158 on 2014 September 10 and compared it with the observations before and early in the flare that begins at 17:21 UT (SOL2014-09-10T17:45:00). Our results show that the sigmoidal structure and flare ribbons of this active region observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly can be well reproduced from a Grad-Rubin nonlinear force-free field extrapolation method. Various inverse-S- and inverse-J-shaped magnetic field lines, which surround a coronal flux rope, coincide with the sigmoid as observed in different extreme-ultraviolet wavelengths, including its multithreaded curved ends. Also, the observed distribution of surface currents in the magnetic polarity where it was not prescribed is well reproduced. This validates our numerical implementation and setup of the Grad-Rubin method. The modeled double inverse-J-shaped quasi-separatrix layer (QSL) footprints match the observed flare ribbons during the rising phase of the flare, including their hooked parts. The spiral-like shape of the latter may be related to a complex pre-eruptive flux rope with more than one turn of twist, as obtained in the model. These ribbon-associated flux-rope QSL footprints are consistent with the new standard flare model in 3D, with the presence of a hyperbolic flux tube located below an inverse-teardrop-shaped coronal QSL. This is a new step forward forecasting the locations of reconnection and ribbons in solar flares and the geometrical properties of eruptive flux ropes.

  13. NUMERICAL STUDY ON IN SITU PROMINENCE FORMATION BY RADIATIVE CONDENSATION IN THE SOLAR CORONA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaneko, T.; Yokoyama, T., E-mail: kaneko@eps.s.u-tokyo.ac.jp

    2015-06-10

    We propose an in situ formation model for inverse-polarity solar prominences and demonstrate it using self-consistent 2.5 dimensional MHD simulations, including thermal conduction along magnetic fields and optically thin radiative cooling. The model enables us to form cool dense plasma clouds inside a flux rope by radiative condensation, which is regarded as an inverse-polarity prominence. Radiative condensation is triggered by changes in the magnetic topology, i.e., formation of the flux rope from the sheared arcade field, and by thermal imbalance due to the dense plasma trapped inside the flux rope. The flux rope is created by imposing converging and shearingmore » motion on the arcade field. Either when the footpoint motion is in the anti-shearing direction or when heating is proportional to local density, the thermal state inside the flux rope becomes cooling-dominant, leading to radiative condensation. By controlling the temperature of condensation, we investigate the relationship between the temperature and density of prominences and derive a scaling formula for this relationship. This formula suggests that the proposed model reproduces the observed density of prominences, which is 10–100 times larger than the coronal density. Moreover, the time evolution of the extreme ultraviolet emission synthesized by combining our simulation results with the response function of the Solar Dynamics Observatory Atmospheric Imaging Assembly filters agrees with the observed temporal and spatial intensity shift among multi-wavelength extreme ultraviolet emission during in situ condensation.« less

  14. A thermogenic secondary sexual character in male sea lamprey

    USGS Publications Warehouse

    Chung-Davidson, Yu-Wen; Priess, M. Cody; Yeh, Chu-Yin; Brant, Cory O.; Johnson, Nicholas S.; Li, Ke; Nanlohy, Kaben G.; Bryan, Mara B.; Brown, C. Titus; Choi, Jongeun; Li, Weiming

    2013-01-01

    Secondary sexual characters in animals are exaggerated ornaments or weapons for intrasexual competition. Unexpectedly, we found that a male secondary sexual character in sea lamprey (Petromyzon marinus ) is a thermogenic adipose tissue that instantly increases its heat production during sexual encounters. This secondary sexual character, developed in front of the anterior dorsal fin of mature males, is a swollen dorsal ridge known as the ‘rope’ tissue. It contains nerve bundles, multivacuolar adipocytes and interstitial cells packed with small lipid droplets and mitochondria with dense and highly organized cristae. The fatty acid composition of the rope tissue is rich in unsaturated fatty acids. The cytochrome c oxidase activity is high but the ATP concentration is very low in the mitochondria of the rope tissue compared with those of the gill and muscle tissues. The rope tissue temperature immediately rose up to 0.3°C when the male encountered a conspecific. Mature males generated more heat in the rope and muscle tissues when presented with a mature female than when presented with a male (paired t-test, P-3 more heat than the muscle in 10 min. Transcriptome analyses revealed that genes involved in fat cell differentiation are upregulated whereas those involved in oxidative-phosphorylation-coupled ATP synthesis are downregulated in the rope tissue compared with the gill and muscle tissues. Sexually mature male sea lamprey possess the only known thermogenic secondary sexual character that shows differential heat generation toward individual conspecifics.

  15. Confined partial filament eruption and its reformation within a stable magnetic flux rope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Navin Chandra; Kayshap, Pradeep; Uddin, Wahab

    2014-05-20

    We present observations of a confined partial eruption of a filament on 2012 August 4, which restores its initial shape within ≈2 hr after eruption. From the Global Oscillation Network Group Hα observations, we find that the filament plasma turns into dynamic motion at around 11:20 UT from the middle part of the filament toward the northwest direction with an average speed of ≈105 km s{sup –1}. A little brightening underneath the filament possibly shows the signature of low-altitude reconnection below the filament eruptive part. In Solar Dynamics Observatory/Atmospheric Imaging Assembly 171 Å images, we observe an activation of right-handedmore » helically twisted magnetic flux rope that contains the filament material and confines it during its dynamical motion. The motion of cool filament plasma stops after traveling a distance of ≈215 Mm toward the northwest from the point of eruption. The plasma moves partly toward the right foot point of the flux rope, while most of the plasma returns after 12:20 UT toward the left foot point with an average speed of ≈60 km s{sup –1} to reform the filament within the same stable magnetic structure. On the basis of the filament internal fine structure and its position relative to the photospheric magnetic fields, we find filament chirality to be sinistral, while the activated enveloping flux rope shows a clear right-handed twist. Thus, this dynamic event is an apparent example of one-to-one correspondence between the filament chirality (sinistral) and the enveloping flux rope helicity (positive). From the coronal magnetic field decay index, n, calculation near the flux rope axis, it is evident that the whole filament axis lies within the domain of stability (i.e., n < 1), which provides the filament stability despite strong disturbances at its eastern foot point.« less

  16. The Writhe of Helical Structures in the Solar Corona

    NASA Technical Reports Server (NTRS)

    Toeroek, T.; Berger, M. A.; Kliem, B.

    2010-01-01

    Context. Helicity is a fundamental property of magnetic fields, conserved in ideal MHD. In flux rope topology, it consists of twist and writhe helicity. Despite the common occurrence of helical structures in the solar atmosphere, little is known about how their shape relates to the writhe, which fraction of helicity is contained in writhe, and how much helicity is exchanged between twist and writhe when they erupt. Aims. Here we perform a quantitative investigation of these questions relevant for coronal flux ropes. Methods. The decomposition of the writhe of a curve into local and nonlocal components greatly facilitates its computation. We use it to study the relation between writhe and projected S shape of helical curves and to measure writhe and twist in numerical simulations of flux rope instabilities. The results are discussed with regard to filament eruptions and coronal mass ejections (CMEs). Results. (1) We demonstrate that the relation between writhe and projected S shape is not unique in principle, but that the ambiguity does not affect low-lying structures, thus supporting the established empirical rule which associates stable forward (reverse) S shaped structures low in the corona with positive (negative) helicity. (2) Kink-unstable erupting flux ropes are found to transform a far smaller fraction of their twist helicity into writhe helicity than often assumed. (3) Confined flux rope eruptions tend to show stronger writhe at low heights than ejective eruptions (CMEs). This argues against suggestions that the writhing facilitates the rise of the rope through the overlying field. (4) Erupting filaments which are S shaped already before the eruption and keep the sign of their axis writhe (which is expected if field of one chirality dominates the source volume of the eruption), must reverse their S shape in the course of the rise. Implications for the occurrence of the helical kink instability in such events are discussed.

  17. FORMATION AND ERUPTION OF A SMALL FLUX ROPE IN THE CHROMOSPHERE OBSERVED BY NST, IRIS, AND SDO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Pankaj; Yurchyshyn, Vasyl; Cho, Kyung-Suk

    Using high-resolution images from the 1.6 m New Solar Telescope at Big Bear Solar Observatory, we report the direct evidence of chromospheric reconnection at the polarity inversion line between two small opposite polarity sunspots. Small jetlike structures (with velocities of ∼20–55 km s{sup −1}) were observed at the reconnection site before the onset of the first M1.0 flare. The slow rise of untwisting jets was followed by the onset of cool plasma inflow (∼10 km s{sup −1}) at the reconnection site, causing the onset of a two-ribbon flare. The reconnection between two sheared J-shaped cool Hα loops causes the formationmore » of a small twisted (S-shaped) flux rope in the chromosphere. In addition, Helioseismic and Magnetic Imager magnetograms show the flux cancellation (both positive and negative) during the first M1.0 flare. The emergence of negative flux and the cancellation of positive flux (with shear flows) continue until the successful eruption of the flux rope. The newly formed chromospheric flux rope becomes unstable and rises slowly with a speed of ∼108 km s{sup −1} during a second C8.5 flare that occurred after ∼3 hr of the first M1.0 flare. The flux rope was destroyed by repeated magnetic reconnection induced by its interaction with the ambient field (fan–spine topology) and looks like an untwisting surge (∼170 km s{sup −1}) in the coronal images recorded by the Solar Dynamics Observatory/Atmospheric Imaging Assembly. These observations suggest the formation of a chromospheric flux rope (by magnetic reconnection associated with flux cancellation) during the first M1.0 flare and its subsequent eruption/disruption during the second C8.5 flare.« less

  18. A Tiny Eruptive Filament as a Flux-Rope Progenitor and Driver of a Large-Scale CME and Wave

    NASA Astrophysics Data System (ADS)

    Grechnev, V. V.; Uralov, A. M.; Kochanov, A. A.; Kuzmenko, I. V.; Prosovetsky, D. V.; Egorov, Y. I.; Fainshtein, V. G.; Kashapova, L. K.

    2016-04-01

    A solar eruptive event SOL2010-06-13 observed with the Atmospheric Imaging Assembly (AIA) of the Solar Dynamics Observatory (SDO) has been extensively discussed in the contexts of the CME development and an associated extreme-ultraviolet (EUV) wave-like transient in terms of a shock driven by the apparent CME rim. Continuing the analysis of this event, we have revealed an erupting flux rope, studied its properties, and detected wave signatures inside the developing CME. These findings have allowed us to establish new features in the genesis of the CME and associated EUV wave and to reconcile all of the episodes into a single causally related sequence. i) A hot 11 MK flux rope developed from the structures initially associated with a compact filament system. The flux rope expanded with an acceleration of up to 3 km s-2 one minute before a hard X-ray burst and earlier than any other structures, reached a velocity of 420 km s-1, and then decelerated to about 50 km s-1. ii) The CME development was driven by the expanding flux rope. Closed coronal structures above the rope got sequentially involved in the expansion from below upwards, came closer together, and apparently disappeared to reveal their common envelope, the visible rim, which became the outer boundary of the cavity. The rim was probably associated with the separatrix surface of a magnetic domain, which contained the pre-eruptive filament. iii) The rim formation was associated with a successive compression of the upper active-region structures into the CME frontal structure (FS). When the rim was formed, it resembled a piston. iv) The disturbance responsible for the consecutive CME formation episodes was excited by the flux rope inside the rim, and then propagated outward. EUV structures arranged at different heights started to accelerate, when their trajectories in the distance-time diagram were crossed by that of the fast front of this disturbance. v) Outside the rim and FS, the disturbance propagated like a blast wave, manifesting in a type II radio burst and a leading part of the EUV transient. Its main, trailing part was the FS, which consisted of swept-up 2 MK coronal loops enveloping the expanding rim. The wave decelerated and decayed into a weak disturbance soon afterwards, being not driven by the trailing piston, which slowed down.

  19. The Impact of Rope Jumping Exercise on Physical Fitness of Visually Impaired Students

    ERIC Educational Resources Information Center

    Chen, Chao-Chien; Lin, Shih-Yen

    2011-01-01

    The main purpose of this study was to investigate the impact of rope jumping exercise on the health-related physical fitness of visually impaired students. The participants' physical fitness was examined before and after the training. The exercise intensity of the experimental group was controlled with Rating of Perceived Exertion (RPE) (values…

  20. Extending "the Rubber Rope": Convergent Series, Divergent Series and the Integrating Factor

    ERIC Educational Resources Information Center

    McCartney, Mark

    2013-01-01

    A well-known mathematical puzzle regarding a worm crawling along an elastic rope is considered. The resulting generalizations provide examples for use in a teaching context including applications of series summation, the use of the integrating factor for the solution of differential equations, and the evaluation of definite integrals. A number of…

Top