Sample records for extraction solvent contacted

  1. Process for solvent refining of coal using a denitrogenated and dephenolated solvent

    DOEpatents

    Garg, Diwakar; Givens, Edwin N.; Schweighardt, Frank K.

    1984-01-01

    A process is disclosed for the solvent refining of non-anthracitic coal at elevated temperatures and pressure in a hydrogen atmosphere using a hydrocarbon solvent which before being recycled in the solvent refining process is subjected to chemical treatment to extract substantially all nitrogenous and phenolic constituents from the solvent so as to improve the conversion of coal and the production of oil in the solvent refining process. The solvent refining process can be either thermal or catalytic. The extraction of nitrogenous compounds can be performed by acid contact such as hydrogen chloride or fluoride treatment, while phenolic extraction can be performed by caustic contact or contact with a mixture of silica and alumina.

  2. SOLVENT EXTRACTION PROCESS

    DOEpatents

    Jonke, A.A.

    1957-10-01

    In improved solvent extraction process is described for the extraction of metal values from highly dilute aqueous solutions. The process comprises contacting an aqueous solution with an organic substantially water-immiscible solvent, whereby metal values are taken up by a solvent extract phase; scrubbing the solvent extract phase with an aqueous scrubbing solution; separating an aqueous solution from the scrubbed solvent extract phase; and contacting the scrubbed solvent phase with an aqueous medium whereby the extracted metal values are removed from the solvent phase and taken up by said medium to form a strip solution containing said metal values, the aqueous scrubbing solution being a mixture of strip solution and an aqueous solution which contains mineral acids anions and is free of the metal values. The process is particularly effective for purifying uranium, where one starts with impure aqueous uranyl nitrate, extracts with tributyl phosphate dissolved in carbon tetrachloride, scrubs with aqueous nitric acid and employs water to strip the uranium from the scrubbed organic phase.

  3. NEPTUNIUM SOLVENT EXTRACTION PROCESS

    DOEpatents

    Dawson, L.R.; Fields, P.R.

    1959-10-01

    The separation of neptunium from an aqueous solution by solvent extraction and the extraction of neptunium from the solvent solution are described. Neptunium is separated from an aqueous solution containing tetravalent or hexavalent neptunium nitrate, nitric acid, and a nitrate salting out agent, such as sodium nitrate, by contacting the solution with an organic solvent such as diethyl ether. Subsequently, the neptunium nitrate is extracted from the organic solvent extract phase with water.

  4. Process for removing halogenated aliphatic and aromatic compounds from petroleum products

    DOEpatents

    Googin, J.M.; Napier, J.M.; Travaglini, M.A.

    1983-09-20

    A process is described for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contacting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible compound, such as, water or a polyhydroxy compound, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of water or polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the water or polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds and the low polar or nonpolar solvent are separated by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered from recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced. 1 fig.

  5. Process for removing halogenated aliphatic and aromatic compounds from petroleum products

    DOEpatents

    Googin, John M.; Napier, John M.; Travaglini, Michael A.

    1983-01-01

    A process for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contacting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible compound, such as, water or a polyhydroxy compound, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of water or polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the water or polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds and the low polar or nonpolar solvent are separated by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered from recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced.

  6. Solvent Extraction of Furfural From Biomass

    NASA Technical Reports Server (NTRS)

    Humphrey, M. F.

    1984-01-01

    Solvent-extraction method reduces energy required to remove furfural produced during acid hydrolysis of biomass. Acid hydrolysis performed in vessel containing both solvents and reacting ingredients. With intimate contact between solvents and aqueous hydrolyis liqour, furfural removed form liquor almost as fast as it forms.

  7. Process and apparatus for solvent extraction of oil from oil-containing diatomite ore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karnofsky, G. B.

    1980-12-16

    A process for solvent extraction of oil from oil bearing diatomite ore and an apparatus for use therewith, wherein the ore is extracted by countercurrent decantation with a hydrocarbon solvent, solvent is recovered from the extract by multiple effect evaporation followed by stripping, and the spent diatomite is contacted with water to displace a major portion of the solvent therefrom, and solvent is recovered from the aqueous slurry of the spent diatomite by stripping with steam at superatmospheric pressure.

  8. SOLVENT EXTRACTION PROCESS FOR THE SEPARATION OF URANIUM AND THORIUM FROM PROTACTINIUM AND FISSION PRODUCTS

    DOEpatents

    Rainey, R.H.; Moore, J.G.

    1962-08-14

    A liquid-liquid extraction process was developed for recovering thorium and uranium values from a neutron irradiated thorium composition. They are separated from a solvent extraction system comprising a first end extraction stage for introducing an aqueous feed containing thorium and uranium into the system consisting of a plurality of intermediate extractiorr stages and a second end extractron stage for introducing an aqueous immiscible selective organic solvent for thorium and uranium in countercurrent contact therein with the aqueous feed. A nitrate iondeficient aqueous feed solution containing thorium and uranium was introduced into the first end extraction stage in countercurrent contact with the organic solvent entering the system from the second end extraction stage while intro ducing an aqueous solution of salting nitric acid into any one of the intermediate extraction stages of the system. The resultant thorium and uranium-laden organic solvent was removed at a point preceding the first end extraction stage of the system. (AEC)

  9. SOLVENT EXTRACTION OF URANIUM VALUES

    DOEpatents

    Feder, H.M.; Ader, M.; Ross, L.E.

    1959-02-01

    A process is presented for extracting uranium salt from aqueous acidic solutions by organic solvent extraction. It consists in contacting the uranium bearing solution with a water immiscible dialkylacetamide having at least 8 carbon atoms in the molecule. Mentioned as a preferred extractant is dibutylacetamide. The organic solvent is usually used with a diluent such as kerosene or CCl/sub 4/.

  10. Process and apparatus for solvent extraction of oil from oil-containing diatomite ore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karnofsky, G.B.

    1979-09-11

    A process is described for solvent extraction of oil-bearing diatomite ore. An apparatus is provided for use therewith, wherein the ore is extracted by countercurrent decantation with a hydrocarbon solvent. The solvent is recovered from the extract by multiple effect evaporation followed by stripping, and the spent diatomite is contacted with water to displace a major portion of the solvent therefrom. The solvent is recovered from the aqueous slurry of the spent diatomite by stripping with steam at superatmospheric pressure. 17 claims.

  11. PROCESS OF SEPARATING URANIUM FROM AQUEOUS SOLUTION BY SOLVENT EXTRACTION

    DOEpatents

    Warf, J.C.

    1958-08-19

    A process is described for separating uranium values from aqueous uranyl nitrate solutions. The process consists in contacting the uramium bearing solution with an organic solvent, tributyl phosphate, preferably diluted with a less viscous organic liquida whereby the uranyl nitrate is extracted into the organic solvent phase. The uranvl nitrate may be recovered from the solvent phase bv back extracting with an aqueous mediuin.

  12. Low solvent, low temperature method for extracting biodiesel lipids from concentrated microalgal biomass.

    PubMed

    Olmstead, Ian L D; Kentish, Sandra E; Scales, Peter J; Martin, Gregory J O

    2013-11-01

    An industrially relevant method for disrupting microalgal cells and preferentially extracting neutral lipids for large-scale biodiesel production was demonstrated on pastes (20-25% solids) of Nannochloropsis sp. The highly resistant Nannochloropsis sp. cells. were disrupted by incubation for 15 h at 37°C followed by high pressure homogenization at 1200 ± 100 bar. Lipid extraction was performed by twice contacting concentrated algal paste with minimal hexane (solvent:biomass ratios (w/w) of <2:1 and <1.3:1) in a stirred vessel at 35°C. Cell disruption prior to extraction increased lipid recovery 100-fold, with yields of 30-50% w/w obtained in the first hexane contact, and a further 6.5-20% in the second contact. The hexane preferentially extracted neutral lipids over glyco- and phospholipids, with up to 86% w/w of the neutral lipids recovered. The process was effective on wet concentrated paste, required minimal solvent and moderate temperature, and did not require difficult to recover polar solvents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Batch extracting process using magneticparticle held solvents

    DOEpatents

    Nunez, Luis; Vandergrift, George F.

    1995-01-01

    A process for selectively removing metal values which may include catalytic values from a mixture containing same, wherein a magnetic particle is contacted with a liquid solvent which selectively dissolves the metal values to absorb the liquid solvent onto the magnetic particle. Thereafter the solvent-containing magnetic particles are contacted with a mixture containing the heavy metal values to transfer metal values into the solvent carried by the magnetic particles, and then magnetically separating the magnetic particles. Ion exchange resins may be used for selective solvents.

  14. Batch extracting process using magnetic particle held solvents

    DOEpatents

    Nunez, L.; Vandergrift, G.F.

    1995-11-21

    A process is described for selectively removing metal values which may include catalytic values from a mixture containing same, wherein a magnetic particle is contacted with a liquid solvent which selectively dissolves the metal values to absorb the liquid solvent onto the magnetic particle. Thereafter the solvent-containing magnetic particles are contacted with a mixture containing the heavy metal values to transfer metal values into the solvent carried by the magnetic particles, and then magnetically separating the magnetic particles. Ion exchange resins may be used for selective solvents. 5 figs.

  15. Process for removing halogenated aliphatic and aromatic compounds from petroleum products. [Polychlorinated biphenyls; methylene chloride; perchloroethylene; trichlorofluoroethane; trichloroethylene; chlorobenzene

    DOEpatents

    Googin, J.M.; Napier, J.M.; Travaglini, M.A.

    1982-03-31

    A process for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contracting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible polyhydroxy compound, such as, water, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds in the low polar or nonpolar solvent by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered for recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced. 2 tables.

  16. Thermal degradation of the solvent employed in the next-generation caustic-side solvent extraction process and its effect on the extraction, scrubbing, and stripping of cesium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roach, Benjamin D.; Williams, Neil J.; Moyer, Bruce A.

    As part of the ongoing development of the Next-Generation Caustic-Side Solvent Extraction (NGS) process, the thermal stability of the process solvent was investigated and shown to be adequate for industrial application. The solvent was thermally treated at 35 C over a period of 13 months whilst in dynamic contact with each of the aqueous phases of the current NGS process, namely SRS 15 (a highly caustic waste simulant), sodium hydroxide scrub solution (0.025 M), and boric acid strip solution (0.01 M). The effect of thermal treatment was evaluated by assessing batch extract/scrub/strip performance as a function of time, by monitoringmore » the sodium extraction capacity of the solvent, and by analysis of the solvent using electrospray mass spectrometry. Current studies indicate that the NGS solvent should be thermally robust for a period of XXX months at the Modular Caustic-Side Solvent Extraction Unit (MCU) pilot plant located at Savannah River Site. Furthermore, the guanidine suppressor appears to be the solvent component most significantly impacted by thermal treatment of the solvent, showing significant degradation over time.« less

  17. Thermal degradation of the solvent employed in the next-generation caustic-side solvent extraction process and its effect on the extraction, scrubbing, and stripping of cesium

    DOE PAGES

    Roach, Benjamin D.; Williams, Neil J.; Moyer, Bruce A.

    2015-09-02

    As part of the ongoing development of the Next-Generation Caustic-Side Solvent Extraction (NGS) process, the thermal stability of the process solvent was investigated and shown to be adequate for industrial application. The solvent was thermally treated at 35 C over a period of 13 months whilst in dynamic contact with each of the aqueous phases of the current NGS process, namely SRS 15 (a highly caustic waste simulant), sodium hydroxide scrub solution (0.025 M), and boric acid strip solution (0.01 M). The effect of thermal treatment was evaluated by assessing batch extract/scrub/strip performance as a function of time, by monitoringmore » the sodium extraction capacity of the solvent, and by analysis of the solvent using electrospray mass spectrometry. Current studies indicate that the NGS solvent should be thermally robust for a period of XXX months at the Modular Caustic-Side Solvent Extraction Unit (MCU) pilot plant located at Savannah River Site. Furthermore, the guanidine suppressor appears to be the solvent component most significantly impacted by thermal treatment of the solvent, showing significant degradation over time.« less

  18. Method for improving dissolution efficiency in gas-absorption and liquid extraction processes. [Patent application

    DOEpatents

    Kanak, B.E.; Stephenson, M.J.

    1980-01-11

    A method is described for improving dissolution efficiency in processes in which a feed fluid is introduced to a zone where it is contacted with a liquid solvent for preferentially removing a component of the feed and where part of the solvent so contacted undergoes transfer into the feed fluid to saturate the same. It has been found that such transfer significantly impairs dissolution efficiency. In accordance with the invention, an amount of the above-mentioned solvent is added to the feed fluid being introduced to the contact zone, the solvent being added in an amount sufficient to effect reduction or elimination of the above-mentioned transfer. Preferably, the solvent is added to the feed fluid in an amount saturating or supersaturating the feed fluid under the conditions prevailing in the contact zone.

  19. Method for improving dissolution efficiency in gas-absorption and liquid extraction processes

    DOEpatents

    Kanak, Brant E.; Stephenson, Michael J.

    1981-01-01

    This invention is a method for improving dissolution efficiency in processes in which a feed fluid is introduced to a zone where it is contacted with a liquid solvent for preferentially removing a component of the feed and where part of the solvent so contacted undergoes transfer into the feed fluid to saturate the same. It has been found that such transfer significantly impairs dissolution efficiency. In accordance with the invention, an amount of the above-mentioned solvent is added to the feed fluid being introduced to the contact zone, the solvent being added in an amount sufficient to effect reduction or elimination of the above-mentioned transfer. Preferably, the solvent is added to the feed fluid in an amount saturating or supersaturating the feed fluid under the conditions prevailing in the contact zone.

  20. Nickel solvent extraction from cold purification filter cakes of Angouran mine concentrate using LIX984N

    NASA Astrophysics Data System (ADS)

    Balesini, A. A.; Zakeri, A.; Razavizadeh, H.; Khani, A.

    2013-11-01

    Cold purification filter cakes generated in the hydrometallurgical processing of Angouran mine zinc concentrate commonly contain significant amounts of Zn, Cd, and Ni ions and thus are valuable resources for metal recovery. In this research, a nickel containing solution that was obtained from sulfuric acid leaching of the filter cake following cadmium and zinc removal was subjected to solvent extraction experiments using 10vol% LIX984N diluted in kerosene. Under optimum experimental conditions (pH 5.3, volume ratio of organic/aqueous (O:A) = 2:1, and contact time = 5 min), more than 97.1% of nickel was extracted. Nickel was stripped from the loaded organic by contacting with a 200 g/L sulfuric acid solution, from which 77.7% of nickel was recovered in a single contact at the optimum conditions (pH 1-1.5, O:A = 5:1, and contact time = 15 min).

  1. SOLVENT EXTRACTION PROCESS FOR THE RECOVERY OF METALS FROM PHOSPHORIC ACID

    DOEpatents

    Bailes, R.H.; Long, R.S.

    1958-11-01

    > A solvent extraction process is presented for recovering metal values including uranium, thorium, and other lanthanide and actinide elements from crude industrial phosphoric acid solutions. The process conslsts of contacting said solution with an immisclble organic solvent extractant containing a diluent and a material selected from the group consisting of mono and di alkyl phosphates, alkyl phosphonates and alkyl phosphites. The uranlum enters the extractant phase and is subsequently recovered by any of the methods known to the art. Recovery is improved if the phosphate solution is treated with a reducing agent such as iron or aluminum powder prior to the extraction step.

  2. Calixarene crown ether solvent composition and use thereof for extraction of cesium from alkaline waste solutions

    DOEpatents

    Moyer, Bruce A.; Sachleben, Richard A.; Bonnesen, Peter V.; Presley, Derek J.

    2001-01-01

    A solvent composition and corresponding method for extracting cesium (Cs) from aqueous neutral and alkaline solutions containing Cs and perhaps other competing metal ions is described. The method entails contacting an aqueous Cs-containing solution with a solvent consisting of a specific class of lipophilic calix[4]arene-crown ether extractants dissolved in a hydrocarbon-based diluent containing a specific class of alkyl-aromatic ether alcohols as modifiers. The cesium values are subsequently recovered from the extractant, and the solvent subsequently recycled, by contacting the Cs-containing organic solution with an aqueous stripping solution. This combined extraction and stripping method is especially useful as a process for removal of the radionuclide cesium-137 from highly alkaline waste solutions which are also very concentrated in sodium and potassium. No pre-treatment of the waste solution is necessary, and the cesium can be recovered using a safe and inexpensive stripping process using water, dilute (millimolar) acid solutions, or dilute (millimolar) salt solutions. An important application for this invention would be treatment of alkaline nuclear tank wastes. Alternatively, the invention could be applied to decontamination of acidic reprocessing wastes containing cesium-137.

  3. URANIUM RECOVERY PROCESS

    DOEpatents

    Yeager, J.H.

    1958-08-12

    In the prior art processing of uranium ores, the ore is flrst digested with nitric acid and filtered, and the uranium values are then extracted tom the filtrate by contacting with an organic solvent. The insoluble residue has been processed separately in order to recover any uranium which it might contain. The improvement consists in contacting a slurry, composed of both solution and residue, with the organic solvent prior to filtration. Tbe result is that uranium values contained in the residue are extracted along with the uranium values contained th the solution in one step.

  4. Dialysis Extraction for Chromatography

    NASA Technical Reports Server (NTRS)

    Jahnsen, V. J.

    1985-01-01

    Chromatographic-sample pretreatment by dialysis detects traces of organic contaminants in water samples analyzed in field with minimal analysis equipment and minimal quantities of solvent. Technique also of value wherever aqueous sample and solvent must not make direct contact.

  5. METHOD FOR DISSOLVING ZIRCONIUM-URANIUM COMPOSITIONS

    DOEpatents

    Gens, T.A.

    1961-07-18

    A method is descrioed for treating a zirconium-- uranium composition to form a stable solution from which uranium and other values may be extracted by contacting the composition with at least a 4 molar aqueous solution of ammonium fluoride at a temperature of about 100 deg C, adding a peroxide, in incremental amounts, to the heated solution throughout the period of dissolution until all of the uranium is converted to soluble uranyl salt, adding nitric acid to the resultant solution to form a solvent extraction feed solution to convert the uranyl salt to a solvent extractable state, and thereafter recovering the uranium and other desired values from the feed solution by solvent extraction.

  6. METHOD FOR SEPARATION OF PLUTONIUM FROM URANIUM AND FISSION PRODUCTS BY SOLVENT EXTRACTION

    DOEpatents

    Seaborg, G.T.; Blaedel, W.J.; Walling, M.T. Jr.

    1960-08-23

    A process is given for separating from each other uranium, plutonium, and fission products in an aqueous nitric acid solution by the so-called Redox process. The plutonium is first oxidized to the hexavalent state, e.g., with a water-soluble dichromate or sodium bismuthate, preferably together with a holding oxidant such as potassium bromate. potassium permanganate, or an excess of the oxidizing agent. The solution is then contacted with a water-immiscible organic solvent, preferably hexone. whereby uranium and plutonium are extracted while the fission products remain in the aqueous solution. The separated organic phase is then contacted with an aqueous solution of a reducing agent, with or without a holding reductant (e.g., with a ferrous salt plus hydrazine or with ferrous sulfamate), whereby plutonium is reduced to the trivalent state and back- extracted into the aqueous solution. The uranium may finally be back-extracted from the organic solvent (e.g., with a 0.1 N nitric acid).

  7. SOLVENT EXTRACTION PROCESS FOR PLUTONIUM

    DOEpatents

    Seaborg, G.T.

    1959-04-14

    The separation of plutonium from aqueous inorganic acid solutions by the use of a water immiscible organic extractant liquid is described. The plutonium must be in the oxidized state, and the solvents covered by the patent include nitromethane, nitroethane, nitropropane, and nitrobenzene. The use of a salting out agents such as ammonium nitrate in the case of an aqueous nitric acid solution is advantageous. After contacting the aqueous solution with the organic extractant, the resulting extract and raffinate phases are separated. The plutonium may be recovered by any suitable method.

  8. Process for extracting technetium from alkaline solutions

    DOEpatents

    Moyer, Bruce A.; Sachleben, Richard A.; Bonnesen, Peter V.

    1995-01-01

    A process for extracting technetium values from an aqueous alkaline solution containing at least one alkali metal hydroxide and at least one alkali metal nitrate, the at least one alkali metal nitrate having a concentration of from about 0.1 to 6 molar. The solution is contacted with a solvent consisting of a crown ether in a diluent for a period of time sufficient to selectively extract the technetium values from the aqueous alkaline solution. The solvent containing the technetium values is separated from the aqueous alkaline solution and the technetium values are stripped from the solvent.

  9. METAL EXTRACTION PROCESS

    DOEpatents

    Lewis, G.W. Jr.; Rhodes, D.E.

    1957-11-01

    An improved method for extracting uranium from aqueous solutions by solvent extraction is presented. A difficulty encountered in solvent extraction operations using an organic extractant (e.g., tributyl phosphate dissolved in kerosene or carbon tetrachloride) is that emulsions sometimes form, and phase separation is difficult or impossible. This difficulty is overcome by dissolving the organic extractant in a molten wax which is a solid at operating temperatures. After cooling, the wax which now contains the extractant, is broken into small particles (preferably flakes) and this wax complex'' is used to contact the uranium bearing solutions and extract the metal therefrom. Microcrystalline petroleum wax and certain ethylene polymers have been found suitable for this purpose.

  10. Bidentate organophosphorus solvent extraction process for actinide recovery and partition

    DOEpatents

    Schulz, Wallace W.

    1976-01-01

    A liquid-liquid extraction process for the recovery and partitioning of actinide values from acidic nuclear waste aqueous solutions, the actinide values including trivalent, tetravalent and hexavalent oxidation states is provided and includes the steps of contacting the aqueous solution with a bidentate organophosphorous extractant to extract essentially all of the actinide values into the organic phase. Thereafter the respective actinide fractions are selectively partitioned into separate aqueous solutions by contact with dilute nitric or nitric-hydrofluoric acid solutions. The hexavalent uranium is finally removed from the organic phase by contact with a dilute sodium carbonate solution.

  11. Re-refining of waste petroleum by competing solubility characteristics

    NASA Astrophysics Data System (ADS)

    Byars, Michael Steven

    1998-11-01

    The United States produces over 1.3 billion gallons of used oil per year. Of the 1.3 billion gallons about 60% is used as fuel, nearly 20% is dumped into the environment, 13% is placed in landfills, 2% is re-refined into lube oil, and the remaining is either used for other purposes or incinerated. This is a great potential source of lubricating oil. The work presented here is a solvent extraction process using a solvent (highly miscible with the oil) and a co-solvent (slightly miscible with the oil). Extractions using isopropanol, ethanol, methyl tert-butylether and methanol are presented. The criteria used for evaluation of the extraction processes are yield, product viscosity index, and ash percent. The solvent/co-solvent combinations of MTBE and ethanol performed best and had the advantage of a common solvent/co-solvent in all extraction steps. The extraction process that provided the best results was a two step process using a combination solvent of MTBE and ethanol. The used oil was first extracted using MTBE/ethanol. The extracted oil was then contacted with a solvent combination composed of 80% ethanol. This solvent combination extracted the remaining additives from the oil. The recovered oil was nearly 60% by weight with a high viscosity index and no ash content. A preliminary battery limits design and economic analysis of the process was performed. A 500 bbl/day plant would have a capital cost of 1.9 million and an annual operation cost of 310,000. The plant as designed would produce 300 bbl/day of lube feedstock and have an ROI of 19%.

  12. Process for enhancing the value of hydrocabonaceous natural recources

    DOEpatents

    Bunger, James W.; Cogswell, Donald E.

    2005-04-05

    A process for upgrading hydrocarbonaceous oil containing heteroatom-containing compounds where the hydrocarbonaceous oil is contacted with a solvent system that is a mixture of a major portion of a polar solvent having a dipole moment greater than about 1 debye and a minor portion of water to selectively separate the constituents of the carbonaceous oil into a heteroatom-depleted raffinate fraction and heteroatom-enriched extract fraction. The polar solvent and the water-in-solvent system are formulated at a ratio where the water is an antisolvent in an amount to inhibit solubility of heteroatom-containing compounds and the polar solvent in the raffinate, and to inhibit solubility of non-heteroatom-containing compounds in the extract. The ratio of the hydrocarbonaceous oil to the solvent system is such that a coefficient of separation is at least 50%. The coefficient of separation is the mole percent of heteroatom-containing compounds from the carbonaceous oil that are recovered in the extract fraction minus the mole percent of non-heteroatom-containing compounds from the carbonaceous oil that are recovered in the extract fraction. The solvent-free extract and the raffinate concentrates may be used directly or processed to make valuable petroleum, chemical or industrial products.

  13. SLURRY SOLVENT EXTRACTION PROCESS FOR THE RECOVERY OF METALS FROM SOLID MATERIALS

    DOEpatents

    Grinstead, R.R.

    1959-01-20

    A solvent extraction process is described for recovering uranium from low grade uranium bearing minerals such as carnotit or shale. The finely communited ore is made up as an aqueous slurry containing the necessary amount of acid to solubilize the uranium and simultaneously or subsequently contacted with an organic solvent extractant such as the alkyl ortho-, or pyro phosphoric acids, alkyl phosphites or alkyl phosphonates in combination with a diluent such as kerosene or carbon tetrachlorids. The extractant phase is separated from the slurry and treated by any suitable process to recover the uranium therefrom. One method for recovering the uranium comprises treating the extract with aqueous HF containing a reducing agent such as ferrous sulfate, which reduces the uranium and causes it to be precipitated as uranium tetrafluoride.

  14. SEPARATION PROCESS FOR ZIRCONIUM AND COMPOUNDS THEREOF

    DOEpatents

    Crandall, H.W.; Thomas, J.R.

    1959-06-30

    The separation of zirconium from columbium, rare earths, yttrium and the alkaline earth metals, such mixtures of elements occurring in zirconium ores or neutron irradiated uranium is described. According to the invention a suitable separation of zirconium from a one normal acidic aqueous solution containing salts, nitrates for example, of tetravalent zirconium, pentavalent columbium, yttrium, rare earths in the trivalent state and alkaline earths can be obtained by contacting the aqueous solution with a fluorinated beta diketonc alone or in an organic solvent solution, such as benzene, to form a zirconium chelate compound. When the organic solvent is present the zirconium chelate compound is directly extracted; otherwise it is separated by filtration. The zirconium may be recovered from contacting the organic solvent solution containing the chelated compound by back extraction with either an aqueous hydrofluoric acid or an oxalic acid solution.

  15. A novel procedure for the extraction of protein deposits from soft hydrophilic contact lenses for analysis.

    PubMed

    Keith, D; Hong, B; Christensen, M

    1997-05-01

    A quick, simple, and efficient extraction technique was developed for the removal of protein from soft hydrophilic contact lenses. An extraction solvent consisting of a 50:50 mix of 0.2% trifluoroacetic acid and acetonitrile was used to remove protein from in vitro laboratory-deposited and human-worn contact lenses. The protein removed was analyzed using HPLC, bicinchoninic acid (BCA) analysis, and SDS-PAGE gel electreophoresis. Extraction efficiency for lysozyme from laboratory-deposited Group IV lenses was determined to be approximately 100%. Group IV human-worn contact lenses were extracted and analyzed for lysozyme by HPLC and total protein by bicinchoninic acid (BCA) analysis. Groups I, II, III, and IV contact lenses deposited with an artificial tear protein solution and human-worn lenses were extracted and analyzed by SDS-PAGE gel electreophoresis and micro-BCA. The ACN/TFA procedure offers a simple, quick, and efficient extraction technique for removal of protein from contact lenses for subsequent analysis.

  16. RECOVERY OF URANIUM BY AROMATIC DITHIOCARBAMATE COMPLEXING

    DOEpatents

    Neville, O.K.

    1959-08-11

    A selective complexing organic solvent extraction process is presented for the separation of uranium values from an aqueous nitric acid solution of neutron irradiated thorium. The process comprises contacting the solution with an organic aromatic dithiccarbamaie and recovering the resulting urancdithiccarbamate complex with an organic solvent such as ethyl acetate.

  17. 21 CFR 177.1620 - Polyethylene, oxidized.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... temperature vapor pressure osmometry, contains a maximum of 5 percent by weight of total oxygen, and has an acid value of 9 to 19. (b) The finished food-contact article, when extracted with the solvent or solvents characterizing the type of food and under the conditions of time and temperature characterizing...

  18. Solvent extraction system for plutonium colloids and other oxide nano-particles

    DOEpatents

    Soderholm, Lynda; Wilson, Richard E; Chiarizia, Renato; Skanthakumar, Suntharalingam

    2014-06-03

    The invention provides a method for extracting plutonium from spent nuclear fuel, the method comprising supplying plutonium in a first aqueous phase; contacting the plutonium aqueous phase with a mixture of a dielectric and a moiety having a first acidity so as to allow the plutonium to substantially extract into the mixture; and contacting the extracted plutonium with second a aqueous phase, wherein the second aqueous phase has a second acidity higher than the first acidity, so as to allow the extracted plutonium to extract into the second aqueous phase. The invented method facilitates isolation of plutonium polymer without the formation of crud or unwanted emulsions.

  19. Separation of Molybdenum from Acidic High-Phosphorus Tungsten Solution by Solvent Extraction

    NASA Astrophysics Data System (ADS)

    Li, Yongli; Zhao, Zhongwei

    2017-10-01

    A solvent-extraction process for deep separation of molybdenum from an acidic high-phosphate tungsten solution was developed using tributyl phosphate (TBP) as the extractant and hydrogen peroxide (H2O2) as a complexing agent. The common aqueous complexes of tungsten and molybdenum (PMoxW12-xO40 3-, x = 0-12) are depolymerized to {PO4[Mo(O)2(O-O)]4}3- and {PO4[W(O)2(O-O)]4}3- by H2O2. The former can be preferentially extracted by TBP. The extractant concentration, phase contact time, H2O2 dosage, and H2SO4 concentration were optimized. By employing 80% by volume TBP, O:A = 1:1, 1.0 mol/L H2SO4, 1.0 mol/L H3PO4, a contact time of 2 min, and a molar ratio of H2O2/(W + Mo) equal to 1.5, 60.2% molybdenum was extracted in a single stage, while limiting tungsten co-extraction to 3.2%. An extraction isotherm indicated that the raffinate could be reduced to <0.1 g/L Mo in six stages of continuous counter-current extraction.

  20. Feasibility of Surfactant-Free Supported Emulsion Liquid Membrane Extraction

    NASA Technical Reports Server (NTRS)

    Hu, Shih-Yao B.; Li, Jin; Wiencek, John M.

    2001-01-01

    Supported emulsion liquid membrane (SELM) is an effective means to conduct liquid-liquid extraction. SELM extraction is particularly attractive for separation tasks in the microgravity environment where density difference between the solvent and the internal phase of the emulsion is inconsequential and a stable dispersion can be maintained without surfactant. In this research, dispersed two-phase flow in SELM extraction is modeled using the Lagrangian method. The results show that SELM extraction process in the microgravity environment can be simulated on earth by matching the density of the solvent and the stripping phase. Feasibility of surfactant-free SELM (SFSELM) extraction is assessed by studying the coalescence behavior of the internal phase in the absence of the surfactant. Although the contacting area between the solvent and the internal phase in SFSELM extraction is significantly less than the area provided by regular emulsion due to drop coalescence, it is comparable to the area provided by a typical hollow-fiber membrane. Thus, the stripping process is highly unlikely to become the rate-limiting step in SFSELM extraction. SFSELM remains an effective way to achieve simultaneous extraction and stripping and is able to eliminate the equilibrium limitation in the typical solvent extraction processes. The SFSELM design is similar to the supported liquid membrane design in some aspects.

  1. Matrix solid-phase dispersion extraction of organophosphorus pesticide using SiO2-poly(N-vinylimidazole)

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Solís, M. C.; Muñoz-Rodríguez, D.; Medina-Peralta, S.; Carrera-Figueiras, C.; Ávila-Ortega, A.

    2013-06-01

    A sorbent material based on silica particles modified with poly(N-vinylimidazole) (SiO2-PVI) has been evaluated for the treatment of samples by matrix solid-phase dispersion (MSPD). The extraction of four organophosphorus pesticides was done from a spiked tomato and the extracts were analyzed by gas chromatography coupled to mass spectrometry. Six elution solvents were evaluated and acetone was selected due to better recovery of the four pesticides and low background signal in the chromatograms. A factorial design 24 was used for selection of extraction conditions. The factors were contact time, acetone volume, treatment (with or without freeze-drying) and adsorbent (SiO2 or SiO2-PVI). The best recoveries were obtained using 15 minutes of contact, 2 mL of solvent and sorbent without freeze-drying. The recoveries were between 60 and 83% for SiO2-PVI in spiked tomato with 0.2 and 0.8μg/g.

  2. URANIUM DECONTAMINATION WITH RESPECT TO ZIRCONIUM

    DOEpatents

    Vogler, S.; Beederman, M.

    1961-05-01

    A process is given for separating uranium values from a nitric acid aqueous solution containing uranyl values, zirconium values and tetravalent plutonium values. The process comprises contacting said solution with a substantially water-immiscible liquid organic solvent containing alkyl phosphate, separating an organic extract phase containing the uranium, zirconium, and tetravalent plutonium values from an aqueous raffinate, contacting said organic extract phase with an aqueous solution 2M to 7M in nitric acid and also containing an oxalate ion-containing substance, and separating a uranium- containing organic raffinate from aqueous zirconium- and plutonium-containing extract phase.

  3. CONTINUOUS DISSOLVER EXTRACTOR FOR PROCESSING METAL

    DOEpatents

    Lemon, R.B.; Buckham, J.A.

    1959-02-01

    An apparatus is presented for the continuous dissolution of metal slugs in an aqueous acid and sequential continuous extraction of selected metal values from the acid solution by counter-current contact with an organic solvent. The apparatus comprises a cylindrical tank divided into upper and lower sections. Dissolution of the metal slug takes place in the lower section and the solution so produced is continuously fed to the topmost plate of the upper extraction section. An immiscible organic extractant is continuously passed by a pulsing pump into the lowermost unit of the extraction section. Suitable piping and valving permits of removing the aqueous raffinate solution from the lowermost portion of the extraction section, and simultaneous removal of organic solvent extractant containing the desired product from the uppermost portion of the extraction section.

  4. Radiolytic Treatment of the Next-Generation Caustic-Side Solvent Extraction (NGS) Solvent and its Effect on the NGS Process

    DOE PAGES

    Roach, Benjamin D.; Williams, Neil J.; Duncan, Nathan C.; ...

    2014-12-01

    We show in this work that the solvent used in the Next Generation Caustic-Side Solvent Extraction (NGS) process can withstand a radiation dose well in excess of the dose it would receive in multiple years of treating legacy salt waste at the US Department of Energy Savannah River Site. The solvent was subjected to a maximum of 50 kGy of gamma radiation while in dynamic contact with each of the aqueous phases of the current NGS process, namely SRS-15 (a highly caustic waste simulant), sodium hydroxide scrub solution (0.025 M), and boric acid strip solution (0.01 M). Bench-top testing ofmore » irradiated solvent confirmed that irradiation has inconsequential impact on the extraction, scrubbing, and stripping performance of the solvent up to 13 times the estimated 0.73 kGy/y annual absorbed dose. Lastly, stripping performance is the most sensitive step to radiation, deteriorating more due to buildup of p-sec-butylphenol (SBP) and possibly other proton-ionizable products than to degradation of the guanidine suppressor, as shown by chemical analyses.« less

  5. Radiolytic Treatment of the Next-Generation Caustic-Side Solvent Extraction (NGS) Solvent and its Effect on the NGS Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roach, Benjamin D.; Williams, Neil J.; Duncan, Nathan C.

    We show in this work that the solvent used in the Next Generation Caustic-Side Solvent Extraction (NGS) process can withstand a radiation dose well in excess of the dose it would receive in multiple years of treating legacy salt waste at the US Department of Energy Savannah River Site. The solvent was subjected to a maximum of 50 kGy of gamma radiation while in dynamic contact with each of the aqueous phases of the current NGS process, namely SRS-15 (a highly caustic waste simulant), sodium hydroxide scrub solution (0.025 M), and boric acid strip solution (0.01 M). Bench-top testing ofmore » irradiated solvent confirmed that irradiation has inconsequential impact on the extraction, scrubbing, and stripping performance of the solvent up to 13 times the estimated 0.73 kGy/y annual absorbed dose. Lastly, stripping performance is the most sensitive step to radiation, deteriorating more due to buildup of p-sec-butylphenol (SBP) and possibly other proton-ionizable products than to degradation of the guanidine suppressor, as shown by chemical analyses.« less

  6. Membrane assisted solvent extraction for rare earth element recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhave, Ramesh R.; Kim, Daejin; Peterson, Eric S.

    Systems and methods for the recovery of rare earth elements are provided. The systems and methods generally include membrane assisted solvent extraction using permeable hollow fibers having an immobilized organic phase within the pores of the hollow fibers. The permeable hollow fibers are generally in contact with an acidic aqueous feed on one side thereof and a strip solution on another side thereof. The systems and methods generally include the simultaneous extraction and stripping of rare earth elements as a continuous recovery process that is well suited for post-consumer products, end-of-life products, and other recovery sources of rare earth elements.

  7. Microporous plastic member such as a battery separator and process for making same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundberg, E.G.; Campbell, G.A.; Doucette, E.I.

    A process for producing a microporous plastic member useful as a battery separator comprises the following operations: forming a coherent dough by mixing a vinyl chloride resin with a plasticizing amount of a first solvent and with finely divided particles of a filler which contains volatilizable releasable constituent by heating and which shrinks substantially and irreversibly upon release of the volatilizable constituent, an example of which is hydrated silica; forming the solvent-containing dough into a shaped member; extracting the first solvent from the member before any substantial evaporation of solvent occurs by contacting it with a second solvent in amore » liquid bath at a temperature substantially below the boiling point of any liquid present, the second solvent being one which is capable of dissolving the first solvent without dissolving the resin and the filler, thereby deplasticizing the member by extractively removing the first solvent from the member; and thereafter heating the member at an elevated temperature but below the softening point of the resin until the filler is shrunk within the member by release of its volatilizable content. 10 claims.« less

  8. PREPARATION OF HIGH PURITY UF$sub 4$

    DOEpatents

    Magner, J.E.; Long, R.S.; Ellis, D.A.; Grinstead, R.R.

    1962-04-17

    S>A process for preparing very highly pure uranous tetrafluoride from impure uranium laden solvent extraction strip solutions, ion exchange process and resin-inpulp process eluate solutions which are at least 8M in hydrochloric acid is described. The process first comprises treating any of the above-mentioned solutions with a reducing agent to reduce the uranium to the + 4 oxidation state, and then contacting the reduced solution with an extractant phase comprising about 10 to 70% of tri-butyl phosphate in an organic solvent-diluent selected from benzene, ethyl-benzene, chlorobenzene, xylene, kerosene, or the like. The uranium is extracted into the extractant phase and is subsequently precipitated by treating the extractant with an aqueous fluoride solution. The highly pure uranous tetrafluoride precipitate is separated from the phases and recovered for subsequent utilization. (AEC)

  9. A Novel Selective Deep Eutectic Solvent Extraction Method for Versatile Determination of Copper in Sediment Samples by ICP-OES.

    PubMed

    Bağda, Esra; Altundağ, Huseyin; Tüzen, Mustafa; Soylak, Mustafa

    2017-08-01

    In the present study, a simple, mono step deep eutectic solvent (DES) extraction was developed for selective extraction of copper from sediment samples. The optimization of all experimental parameters, e.g. DES type, sample/DES ratio, contact time and temperature were performed with using BCR-280 R (lake sediment certified reference material). The limit of detection (LOD) and the limit of quantification (LOQ) were found as 1.2 and 3.97 µg L -1 , respectively. The RSD of the procedure was 7.5%. The proposed extraction method was applied to river and lake sediments sampled from Serpincik, Çeltek, Kızılırmak (Fadl and Tecer region of the river), Sivas-Turkey.

  10. URANIUM SEPARATION PROCESS

    DOEpatents

    Hyde, E.K.; Katzin, L.I.; Wolf, M.J.

    1959-07-14

    The separation of uranium from a mixture of uranium and thorium by organic solvent extraction from an aqueous solution is described. The uranium is separrted from an aqueous mixture of uranium and thorium nitrates 3 N in nitric acid and containing salting out agents such as ammonium nitrate, so as to bring ihe total nitrate ion concentration to a maximum of about 8 N by contacting the mixture with an immiscible aliphatic oxygen containing organic solvent such as diethyl carbinol, hexone, n-amyl acetate and the like. The uranium values may be recovered from the organic phase by back extraction with water.

  11. SEPARATION OF URANIUM FROM ZIRCONIUM AND NIOBIUM BY SOLVENT EXTRACTION

    DOEpatents

    Voiland, E.E.

    1958-05-01

    A process for separation of the uranium from zirconium and/or niobium values contained in 3 to 7M aqueous nitric acid solutions is described. This is accomplished by adding phosphoric acid anions to the nitric acid solution containing the uranium, zirconium, and/or niobium in an amount sufficient to make the solution 0.05 to 0.2M in phosphate ion and contacting the solution with an organic water-immiscible solvent such as MEK, whereby the uranyl values are taken up by the extract phase while the zirconium and niobium preferentially remain in the aqueous raffinate.

  12. Impact of solvent extraction organics on bioleaching by Acidithiobacillus ferrooxidans

    NASA Astrophysics Data System (ADS)

    Yu, Hualong; Liu, Xiaorong; Shen, Junhui; Chi, Daojie

    2017-03-01

    Solvent extraction organics (SX organics) entrained and dissoluted in the raffinate during copper SX operation, can impact bioleaching in case of raffinate recycling. The influence of SX organics on bioleaching process by Acidithiobacillus ferrooxidans (At. ferrooxidans) has been investigated. The results showed that, cells of At. ferrooxidans grew slower with contaminated low-grade chalcopyrite ores in shaken flasks bioleaching, the copper bioleaching efficiency reached 15%, lower than that of 24% for uncontaminated minerals. Obviously, the SX organics could adsorb on mineral surface and hinder its contact with bacterials, finanlly lead to the low bioleaching efficiency.

  13. COORDINATION COMPOUND-SOLVENT EXTRACTION PROCESS FOR URANIUM RECOVERY

    DOEpatents

    Reas, W.H.

    1959-03-10

    A method is presented for the separation of uranium from aqueous solutions containing a uranyl salt and thorium. Thc separation is effected by adding to such solutions an organic complexing agent, and then contacting the solution with an organic solvent in which the organic complexing agent is soluble. By use of the proper complexing agent in the proper concentrations uranium will be complexed and subsequently removed in the organic solvent phase, while the thorium remains in the aqueous phase. Mentioned as suitable organic complexing agents are antipyrine, bromoantipyrine, and pyramidon.

  14. PRODUCTION OF FLUOROCARBONS

    DOEpatents

    Sarsfield, N.F.

    1949-06-21

    This patent pertains to a process for recovering fluorocarbons from a liquid mixture of hydrocarbons with partially and completely fluorinated products thereof. It consists of contacting the mxture in the cold with a liquid which is a solvent for the hydrocarbons and which is a nonsolvent for the fluorocarbons, extracting the hydrocarbons, separating the fluorocarbon-containing layer from the solvent-containing layer, and submitting the fluorocarbon layer to fractlonal distillation, to isolate the desired fluorocarbon fraction. Suitable solvents wnich may be used in the process include the lower aliphatic alcohols, and the lower aliphatic ketones.

  15. 21 CFR 177.1312 - Ethylene-carbon monoxide copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from the American Society for...-soluble extractives in each extracting solvent not to exceed 0.5 milligram per square inch of food-contact... copolymer identified in paragraph (a) of this section shall be limited to a thickness of not more than 0.01...

  16. Reaction of N,N-Dimethyltryptamine with Dichloromethane Under Common Experimental Conditions.

    PubMed

    Dunlap, Lee E; Olson, David E

    2018-05-31

    A large number of clinically used drugs and experimental pharmaceuticals possess the N , N -dimethyltryptamine (DMT) structural core. Previous reports have described the reaction of this motif with dichloromethane (DCM), a common laboratory solvent used during extraction and purification, leading to the formation of an undesired quaternary ammonium salt byproduct. However, the kinetics of this reaction under various conditions have not been thoroughly described. Here, we report a series of experiments designed to simulate the exposure of DMT to DCM that would take place during extraction from plant material, biphasic aqueous work-up, or column chromatography purification. We find that the quaternary ammonium salt byproduct forms at an exceedingly slow rate, only accumulates to a significant extent upon prolonged exposure of DMT to DCM, and is readily extracted into water. Our results suggest that DMT can be exposed to DCM under conditions where contact times are limited (<30 min) with minimal risk of degradation and that this byproduct is not observed following aqueous extraction. However, alternative solvents should be considered when the experimental conditions require longer contact times. Our work has important implications for preparing a wide-range of pharmaceuticals bearing the DMT structural motif in high yields and purities.

  17. SEPARATION PROCESS FOR PROTACTINIUM AND COMPOUNDS THEREOF

    DOEpatents

    Van Winkle, A.

    1959-07-21

    The separation of protactinium from aqueous solutions from its mixtures with thorium, uranium and fission products is described. The process for the separation comprises preparing an ion nitric acid solution containing protactinium in the pentavalent state and contacting the solution with a fluorinated beta diketone, such as trifluoroacetylacetone, either alone or as an organic solvent solution to form a pentavalent protactinium chelate compound. When the organic solvent is present the chelate compound is extracted; otherwise it is separated by filtration.

  18. SALICYLATE PROCESS FOR THORIUM SEPARATION FROM RARE EARTHS

    DOEpatents

    Cowan, G.A.

    1959-08-25

    The separation of thorium from rare earths is accomplished by forming an aqueous solution of salts of thorium and rare earths and sufficient acetate buffer to provide a pH of between 2 and 5, adding an ammonium salicylate to the aqueous buffered solution, contacting the resultant solution with a substantially water-immiscible organic solvent mixture of an ether and an ester, and separating the solvent extract phase containing thorium salicylate from the aqueous phase containing the rare earths.

  19. Process for removing polychlorinated biphenyls from soil

    DOEpatents

    Hancher, C.W.; Saunders, M.B.; Googin, J.M.

    1984-11-16

    The present invention relates to a method of removing polychlorinated biphenyls from soil. The polychlorinated biphenyls are extracted from the soil by employing a liquid organic solvent dispersed in water in the ratio of about 1:3 to 3:1. The organic solvent includes such materials as short-chain hydrocarbons including kerosene or gasoline which are immiscible with water and are nonpolar. The organic solvent has a greater affinity for the PCB's than the soil so as to extract the PCB's from the soil upon contact. The organic solvent phase is separated from the suspended soil and water phase and distilled for permitting the recycle of the organic solvent phase and the concentration of the PCB's in the remaining organic phase. The present process can be satisfactorily practiced with soil containing 10 to 20% petroleum-based oils and organic fluids such as used in transformers and cutting fluids, coolants and the like which contain PCB's. The subject method provides for the removal of a sufficient concentration of PCB's from the soil to provide the soil with a level of PCB's within the guidelines of the Environmental Protection Agency.

  20. SOLVENT EXTRACTION PROCESS FOR SEPARATING ACTINIDE AND LANTHANIDE METAL VALUES

    DOEpatents

    Hildebrandt, R.A.; Hyman, H.H.; Vogler, S.

    1962-08-14

    A process of countercurrently extracting an aqueous mineral acid feed solution for the separation of actinides from lanthanides dissolved therern is described. The feed solution is made acid-defrcient with alkali metal hydroxide prior to.contact with acid extractant; during extraction, however, acid is transferred from organic to aqueous solution and the aqueous solution gradually becomes acid. The acid-deficient phase ' of the process promotes the extraction of the actinides, while the latter acid phase'' of the process improves retention of the lanthanides in the aqueous solution. This provides for an improved separation. (AEC)

  1. Detection of Nanosilver Agents in Antibacterial Textiles

    NASA Astrophysics Data System (ADS)

    Xu, Chengtao; Zhao, Jie; Wu, Jianjian; Nie, Jinmei; Cui, Chengmin; Xie, Weibin; Zhang, Yan

    2018-01-01

    The analytical techniques are needed to detect the nanosilver in textiles in direct contact with skin. In this paper, in order to discuss the extraction of nanosilver on the surface of textiles by human skin, we demonstrate the capability of constant temperature oscillation extraction method followed by Inductively Coupled Plasma Spectroscopy (ICP). The sweat and deionized water were selected as extraction solvent simulating the contact process of human skin with textiles. The SEM and TEM analysis shows the existence of nanosilver in the fabric and aqueous extract. ICP analysis shows accurately when analysing silver amounts in the range of 0.05∼1.2 mg/L with r2 values of 0.9997. The percent recoveries of all fabrics were all lower than 44 %.The results shows that the developed method of simulating of human sweat extraction was not very effective. So the nanosilver might not be transferred to human body effectively from the fabric.

  2. Determination of bisphenol-type endocrine disrupting compounds in food-contact recycled-paper materials by focused ultrasonic solid-liquid extraction and ultra performance liquid chromatography-high resolution mass spectrometry.

    PubMed

    Pérez-Palacios, David; Fernández-Recio, Miguel Ángel; Moreta, Cristina; Tena, María Teresa

    2012-09-15

    Focused ultrasonic solid-liquid extraction (FUSLE) and reverse-phase ultra performance liquid chromatography (UPLC) coupled to a quadrupole-time of flight mass spectrometer (Q-TOF-MS) was applied to the determination of bisphenol-type endocrine disrupting compounds (EDCs) in food-contact recycled-paper materials. Recycled paper is a potential source of EDCs. Bisphenol A (BPA), bisphenol F (BPF) and their derivatives bisphenol A diglycidyl ether (BADGE) and bisphenol F diglycidyl ether (BFDGE) are used for the production of epoxy resins employed in the formulation of printing inks. The FUSLE of bisphenol-type EDCs from packaging is reported for the first time. First, different extraction solvents were studied and methanol was selected. Then, the main FUSLE factors affecting the extraction efficiency (solvent volume, extraction time and ultrasonic irradiation power) were studied by means of a central composite design. The FUSLE conditions selected for further experiments were 20 ml of methanol at ultrasonic amplitude of 100% for 5s. Finally, the number of extraction cycles necessary for complete extraction was established in two. The analysis of the FUSLE extracts was carried out by UPLC-Q-TOF-MS with electrospray ionization and the determination of the four analytes took place in only 4 min. The FUSLE and UPLC-ESI-QTOF-MS method was validated and applied to the analysis of different food-contact recycled-paper-based materials and packaging. The proposed method provided recoveries from 72% to 97%, repeatability and intermediate precision under 9% and 14%, respectively, and detection limits of 0.33, 0.16, 0.65 and 0.40 μg/g for BPA, BPF, BADGE and BFDGE, respectively. The analysis of paper and cardboard samples confirmed the presence of EDCs in these packaging. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. A flowsheet concept for an Am/Ln separation based on Am{sup VI} solvent extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mincher, B.J.; Law, J.D.

    2013-07-01

    The separation of Am from the lanthanides and curium is a key step in proposed advanced fuel cycle scenarios. The partitioning and transmutation of Am is desirable to minimize the long-term radiotoxicity of material interred in a future high-level waste repository. However, a separation amenable to process scale-up remains elusive. Higher oxidation states of americium have recently been used to demonstrate solvent extraction-based separations using conventional fuel cycle ligands. Here, the successful partitioning of Am{sup VI} from the bulk of lanthanides and curium using diamyl-amyl-phosphonate (DAAP) extraction is reported. Due to the instability of Am{sup VI} in the organic phasemore » it was readily selectively stripped to a new acidic aqueous phase to provide separation from co-extracted Ce{sup IV}. The use of NaBiO{sub 3} as an oxidant to separate Am from the lanthanides and Cm by solvent extraction has been successfully demonstrated on the bench scale. Based on these results, flowsheet concepts can be designed that result in 96 % Am recovery in the presence of a few percent of the remaining Cm and the lanthanides in two extraction contacts. Preliminary results also indicate that the DAAP extractant is robust toward γ- irradiation under realistic conditions of acidity and dissolved oxygen concentration.« less

  4. Process for the solvent extraction for the radiolysis and dehalogenation of halogenated organic compounds in soils, sludges, sediments and slurries

    DOEpatents

    Golden, Jeffry

    2007-02-13

    A process of extracting halogenated organic compounds, and particularly PCBs, from soil, sediment, slurry, sludge and dehalogenating the compounds contacts a contaminated soil sample with an extraction medium of a mixture of an alkane and a water miscible alcohol. The organic compounds dissolve in the extraction medium which is separated from the soil by passing water upwardly through the soil. The extraction medium floats to the surface of the water and is separated. Thereafter, the extraction medium containing the halogenated organic contaminants is subjected to ionizing radiation to radiolytically dehalogenate the compounds.

  5. Process for the solvent extraction for the radiolysis and dehalogenation of halogenated organic compounds in soils, sludges, sediments and slurries

    DOEpatents

    Mincher, Bruce J.; Curry, Randy Dale; Clevenger, Thomas E.; Golden, Jeffry

    2003-05-27

    A process of extracting halogenated organic compounds, and particularly PCBs, from soil, sediment, slurry, sludge and dehalogenating the compounds contacts a contaminated soil sample with an extraction medium of a mixture of an alkane and a water miscible alcohol. The organic compounds dissolve in the extraction medium which is separated from the soil by passing water upwardly through the soil. The extraction medium floats to the surface of the water and is separated. Thereafter, the extraction medium containing the halogenated organic contaminants is subjected to ionizing radiation to radiolytically dehalogenate the compounds.

  6. Process for the solvent extraction for the radiolysis and dehalogenation of halogenated organic compounds in soils, sludges, sediments and slurries

    DOEpatents

    Mincher, Bruce J.; Curry, Randy Dale; Clevenger, Thomas E.; Golden, Jeffry

    2000-01-01

    A process of extracting halogenated organic compounds, and particularly PCBs, from soil, sediment, slurry, sludge and dehalogenating the compounds contacting a contaminated soil sample with an extraction medium of a mixture of an alkane and a water miscible alcohol. The organic compounds dissolve in the extraction medium which is separated from the soil by passing water upwardly through the soil. The extraction medium floats to the surface of the water and is separated. Thereafter, the extraction medium containing the halogenated organic contaminants is subjected to ionizing radiation to radiolytically dehalogenate the compounds.

  7. Regeneration strategies of polymers employed in ex-situ remediation of contaminated soil: Bioregeneration versus solvent extraction.

    PubMed

    Mosca Angelucci, Domenica; Tomei, M Concetta

    2015-08-15

    In this study we evaluated the feasibility of two regeneration strategies of contaminated polymers employed for ex-situ soil remediation in a two-step process. Soil decontamination is achieved by sorption of the pollutants on the polymer beads, which are regenerated in a subsequent step. Tested soil was contaminated with a mixture of 4-chlorophenol and pentachlorophenol, and a commercial polymer, Hytrel, has been employed for extraction. Removal efficiencies of the polymer-soil extraction are in the range of 51-97% for a contact time ≤ 24 h. Two polymer regeneration strategies, solvent extraction and biological regeneration (realized in a two-phase partitioning bioreactor), were tested and compared. Performance was assessed in terms of removal rates and efficiencies and an economic analysis based on the operating costs has been performed. Results demonstrated the feasibility of both regeneration strategies, but the bioregeneration was advantageous in that provided the biodegradation of the contaminants desorbed from the polymer. Practically complete removal for 4-chlorophenol and up to 85% biodegradation efficiency for pentachlorophenol were achieved. Instead, in the solvent extraction, a relevant production (184-831 L kg(pol)(-1)) of a highly polluted stream to be treated or disposed of is observed. The cost analysis of the two strategies showed that the bioregeneration is much more convenient with operating costs of ∼12 €/kg(pol) i.e. more than one order of magnitude lower in comparison to ∼233 €/kg(pol) of the solvent extraction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Alternative Solvents through Green Chemistry Project

    NASA Technical Reports Server (NTRS)

    Hintze, Paul E.; Quinn, Jacqueline

    2014-01-01

    Components in the aerospace industry must perform with accuracy and precision under extreme conditions, and surface contamination can be detrimental to the desired performance, especially in cases when the components come into contact with strong oxidizers such as liquid oxygen. Therefore, precision cleaning is an important part of a components preparation prior to utilization in aerospace applications. Current cleaning technologies employ a variety of cleaning agents, many of which are halogenated solvents that are either toxic or cause environmental damage. Thus, this project seeks to identify alternative precision cleaning solvents and technologies, including use of less harmful cleaning solvents, ultrasonic and megasonic agitation, low-pressure plasma cleaning techniques, and supercritical carbon dioxide extraction. Please review all data content found in the Public Data tab located at: https:techport.nasa.govview11697public

  9. SEPARATION PROCESS FOR TRANSURANIC ELEMENT AND COMPOUNDS THEREOF

    DOEpatents

    Magnusson, L.B.

    1958-04-01

    A process is described for the separation of neptunium, from aqueous solutions of neptunium, plutonium, uraniunn, and fission prcducts. This separation from an acidic aqueous solution of a tetravalent neptuniunn can be made by contacting the solution with a certain type of chelating,; agent, preferably dissolved in an organic solvent, to form a neptunium chelate compound. When the organic solvent is present, the neptunium chelate compound is extracted; otherwise, it precipitates from the aqueous solution and is separated by any suitable means. The chelating agent is a fluorinated BETA -diketone. such as trifluoroacetyl acetone.

  10. A magical biological insecticide extracted from seeds of Millettia pachyarpa to kill cabbage aphids

    NASA Astrophysics Data System (ADS)

    Lin, Tianxing; Gong, Mingfu; Guan, Qinlan

    2018-04-01

    Millettia pachycarpa Benth is a perennial climbing shrub belonging to the genus Millettia, as it is widely used in traditional practices like agricultural pesticides, blood tonics, fish poison, and treatments for cancer and infertility. The crude extract of the seeds of M. pachycarpa had insecticidal activity on cabbage aphids. The conventional extract approach with three kinds of organic solvents: methanol, ethanol, and acetone was used for extracting of crude extract of seeds of M. pachycarpa. The leaf immersion method in a petri dish was used to measure contact activity on cabbage aphids. The field measurement method in a cabbage field was used to measure the control effect. The result indicated that the average mortality rate of cabbage aphids reached 91.3 percent under the action of crude extract of the seeds of M. pachycarpa, indicating that contacting activity against cabbage aphid was strong. After the crude extract was sprayed for 2 days, the proofread control effect of 1000 μg / mL ethanol crude extract against cabbage aphid was 85.0 percent. After 7 days of spraying, this number increased to 92.2 percent. The study concluded that crude extract of the seeds of M. pachyarpa extracted with methanol, ethanol, acetone had demonstrable contact activity against cabbage aphid and 1000 μg / mL ethanol crude extract had significant control effect against the larvae of cabbage aphid.

  11. Using GC-FID to Quantify the Removal of 4-sec-Butylphenol from NGS Solvent by NaOH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sloop, Jr., Frederick V.; Moyer, Bruce A.

    2014-12-01

    A caustic wash of the solvent used in the Next-Generation Caustic-Side Solvent Extraction (NG-CSSX) process was found to remove the modifier breakdown product 4-sec-butylphenol (SBP) with varying efficiency depending on the aqueous NaOH concentration. Recent efforts at ORNL have aimed at characterizing the flowsheet chemistry and reducing the technical uncertainties of the NG-CSSX process. One technical uncertainty has been the efficacy of caustic washing of the solvent for the removal of lipophilic anions, in particular, the efficient removal of SBP, an important degradation product of the solvent modifier, Cs-7SB. In order to make this determination, it was necessary to developmore » a sensitive and reliable analytical technique for the detection and quantitation of SBP. This report recounts the development of a GC-FID-based (Gas Chromatography Flame Ionization Detection) technique for analyzing SBP and the utilization of the technique to subsequently confirm the ability of the caustic wash to efficiently remove SBP from the Next Generation Solvent (NGS) used in NG-CSSX. In particular, the developed technique was used to monitor the amount of SBP removed from a simple solvent and the full NGS by contact with sodium hydroxide wash solutions over a range of concentrations. The results show that caustic washing removes SBP with effectively the same efficiency as it did in the original Caustic-Side Solvent Extraction (CSSX) process.« less

  12. Separation by solvent extraction

    DOEpatents

    Holt, Jr., Charles H.

    1976-04-06

    17. A process for separating fission product values from uranium and plutonium values contained in an aqueous solution, comprising adding an oxidizing agent to said solution to secure uranium and plutonium in their hexavalent state; contacting said aqueous solution with a substantially water-immiscible organic solvent while agitating and maintaining the temperature at from -1.degree. to -2.degree. C. until the major part of the water present is frozen; continuously separating a solid ice phase as it is formed; separating a remaining aqueous liquid phase containing fission product values and a solvent phase containing plutonium and uranium values from each other; melting at least the last obtained part of said ice phase and adding it to said separated liquid phase; and treating the resulting liquid with a new supply of solvent whereby it is practically depleted of uranium and plutonium.

  13. Recovery of uranium values

    DOEpatents

    Brown, K. B.; Crouse, Jr., D. J.; Moore, J. G.

    1959-03-10

    A liquid-liquid extraction method is presented for recovering uranium values from an aqueous acidic solution by means of certain high molecular weight amine fn the amine classes of primary, secondary, heterocyclic secondary, tertiary, or heterocyclic tertiary. The uranium bearing aqueous acidic solution is contacted with the selected anine dissolved in a nonpolar waterimmiscible organfc solvent such as kerosene. The uranium which is substantially completely extracted by the organic phase may be stripped therefrom by water, and recovered from the aqueous phase by treatment into ammonia to precipitate ammonium diuranate.

  14. Method for extracting metals from aqueous waste streams for long term storage

    DOEpatents

    Chaiko, D.J.

    1995-03-07

    A liquid-liquid extraction method for removing metals and hydrous metal colloids from waste streams is provided wherein said waste streams are contacted with a solvent system containing a water-in-oil microemulsion wherein the inverted micelles contain the extracted metal. A silicon alkoxide, either alone or in combination with other metal alkoxide compounds is added to the water-in-oil microemulsion, thereby allowing encapsulation of the extracted metal within a silicon oxide network. Lastly, the now-encapsulated metal is precipitated from the water-in-oil microemulsion phase to yield aggregates of metal-silicate particles having average individual particle sizes of approximately 40 nanometers. 2 figs.

  15. Method for extracting metals from aqueous waste streams for long term storage

    DOEpatents

    Chaiko, D.J.

    1993-01-01

    A liquid-liquid extraction method for removing metals and hydrous metal colloids from waste streams is provided wherein said waste streams are contacted with a solvent system containing a water-in-oil microemulsion wherein the inverted micelles contain the extracted metal. A silicon alkoxide, either alone or in combination with other metal alkoxide compounds is added to the water-in-oil microemulsion, thereby allowing encapsulation of the extracted metal within a silicon oxide network. Lastly, the now-encapsulated metal is precipitated from the water-in-oil microemulsion phase to yield aggregates of metal-silicate particles having average. individual particle sizes of approximately 40 manometers.

  16. Method for extracting metals from aqueous waste streams for long term storage

    DOEpatents

    Chaiko, David J.

    1995-01-01

    A liquid--liquid extraction method for removing metals and hydrous metal colloids from waste streams is provided wherein said waste streams are contacted with a solvent system containing a water-in-oil microemulsion wherein the inverted micelles contain the extracted metal. A silicon alkoxide, either alone or in combination with other metal alkoxide compounds is added to the water-in-oil microemulsion, thereby allowing encapsulation of the extracted metal within a silicon oxide network. Lastly, the now-encapsulated metal is precipitated from the water-in-oil microemulsion phase to yield aggregates of metal-silicate particles having average individual particle sizes of approximately 40 nanometers.

  17. CHARACTERIZATION AND EVALUATION OF CAUSTIC WASH TANK AND SOLVENT HOLD TANK SAMPLES FROM MCU FROM AUGUST TO SEPTEMBER 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fondeur, F.; Fink, S.

    2012-08-01

    During processing of Salt Batches 3 and 4 in the Modular Caustic-Side Solvent Extraction Unit (MCU), the decontamination efficiency for cesium declined from historical values and from expectations based on laboratory testing. This report documents efforts to analyze samples of solvent and process solutions from MCU in an attempt to understand the cause of the reduced performance and to recommend mitigations. CWT Solutions from MCU from the time period of variable decontamination factor (DF) performance which covers from April 2011 to September 2011 (during processing of Salt Batch 4) were examined for impurities using chromatography and spectroscopy. The results indicatemore » that impurities were found to be of two types: aromatic containing impurities most likely from Modifier degradation and aliphatic type impurities most likely from Isopar{reg_sign} L and tri-n-octylamine (TOA) degradation. Caustic washing the Solvent Hold Tank (SHT) solution with 1M NaOH improved its extraction ability as determined from {sup 22}Na uptake tests. Evidence from this work showed that pH variance in the aqueous solutions within the range of 1M nitric acid to 1.91M NaOH that contacted the solvent samples does not influence the analytical determination of the TOA concentration by GC-MS.« less

  18. Principles of Stagewise Separation Process Calculations: A Simple Algebraic Approach Using Solvent Extraction.

    ERIC Educational Resources Information Center

    Crittenden, Barry D.

    1991-01-01

    A simple liquid-liquid equilibrium (LLE) system involving a constant partition coefficient based on solute ratios is used to develop an algebraic understanding of multistage contacting in a first-year separation processes course. This algebraic approach to the LLE system is shown to be operable for the introduction of graphical techniques…

  19. Exploring the sensitivity of the zone of inhibition test for leachable biocides from paper and board food contact materials, and improvements thereof.

    PubMed

    Castle, L; Kelly, J; Jickells, S M; Johns, S M; Mountfort, K A

    2012-01-01

    The zone of inhibition method to test the release of biocides from paper and board food contact materials was evaluated. The method tests the paper by placing a small specimen directly onto culture plates of Bacillus subtilis and Aspergillus niger. The principle is that any extractable biocide will diffuse from the paper into the surrounding nutrient medium and so inhibit growth of the microorganism in the vicinity. The test was found to have insufficient sensitivity for assuring food safety, where detection limits for migration at or below the mg l(-1) (parts per million) level are needed. Also, the test does not mimic the actual or foreseeable conditions of use since most paper/board materials are not intended for direct contact with an aqueous medium for up to 3 days at 30°C (B. subtilis) or 25°C (A. niger), which are the incubation conditions used. The sensitivity of the test was increased approximately 100-fold by preparing a concentrated extract of the paper to be tested and applying this extract to the assay via a blank paper carrier. This was done using methanol as a good solvent for most biocides, as a proof of principle. Other solvents or food simulants could be used to mimic the conditions of use intended for the particular paper/board samples under examination, e.g. contact with dry, fatty, aqueous or acidic foods, hot or cold. Twenty-four plain (unconverted) paper and board samples and 100 food packaging samples were evaluated using the modified procedure. The results revealed that the method has been developed to the stage where background cytotoxic action of normal paper constituents gives a weak response. Unlike the original method, therefore, the modified method with its improved sensitivity and the facility to link with the intended food contact conditions may be considered a suitable bioassay screening test to complement chemical analysis of paper/board for composition and migration.

  20. SEPARATION OF RUTHENIUM FROM AQUEOUS SOLUTIONS

    DOEpatents

    Callis, C.F.; Moore, R.L.

    1959-09-01

    >The separation of ruthenium from aqueous solutions containing uranium plutonium, ruthenium, and fission products is described. The separation is accomplished by providing a nitric acid solution of plutonium, uranium, ruthenium, and fission products, oxidizing plutonium to the hexavalent state with sodium dichromate, contacting the solution with a water-immiscible organic solvent, such as hexone, to extract plutonyl, uranyl, ruthenium, and fission products, reducing with sodium ferrite the plutonyl in the solvent phase to trivalent plutonium, reextracting from the solvent phase the trivalent plutonium, ruthenium, and some fission products with an aqueous solution containing a salting out agent, introducing ozone into the aqueous acid solution to oxidize plutonium to the hexavalent state and ruthenium to ruthenium tetraoxide, and volatizing off the ruthenium tetraoxide.

  1. Biodiesel synthesis by direct transesterification of microalga Botryococcus braunii with continuous methanol reflux.

    PubMed

    Hidalgo, Pamela; Ciudad, Gustavo; Schober, Sigurd; Mittelbach, Martin; Navia, Rodrigo

    2015-04-01

    Direct transesterification of Botryococcus braunii with continuous acyl acceptor reflux was evaluated. This method combines in one step lipid extraction and esterification/transesterification. Fatty acid methyl esters (FAME) synthesis by direct conversion of microalgal biomass was carried out using sulfuric acid as catalyst and methanol as acyl acceptor. In this system, once lipids are extracted, they are contacted with the catalyst and methanol reaching 82%wt of FAME yield. To optimize the reaction conditions, a factorial design using surface response methodology was applied. The effects of catalyst concentration and co-solvent concentration were studied. Hexane was used as co-solvent for increasing lipid extraction performance. The incorporation of hexane in the reaction provoked an increase in FAME yield from 82% (pure methanol) to 95% when a 47%v/v of hexane was incorporated in the reaction. However, the selectivity towards non-saponifiable lipids such as sterols was increased, negatively affecting biodiesel quality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Method for testing earth samples for contamination by organic contaminants

    DOEpatents

    Schabron, John F.

    1996-01-01

    Provided is a method for testing earth samples for contamination by organic contaminants, and particularly for aromatic compounds such as those found in diesel fuel and other heavy fuel oils, kerosene, creosote, coal oil, tars and asphalts. A drying step is provided in which a drying agent is contacted with either the earth sample or a liquid extract phase to reduce to possibility of false indications of contamination that could occur when humic material is present in the earth sample. This is particularly a problem when using relatively safe, non-toxic and inexpensive polar solvents such as isopropyl alcohol since the humic material tends to be very soluble in those solvents when water is present. Also provided is an ultraviolet spectroscopic measuring technique for obtaining an indication as to whether a liquid extract phase contains aromatic organic contaminants. In one embodiment, the liquid extract phase is subjected to a narrow and discrete band of radiation including a desired wave length and the ability of the liquid extract phase to absorb that wavelength of ultraviolet radiation is measured to provide an indication of the presence of aromatic organic contaminants.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moyer, Bruce A.

    The North American industry has employed major solvent-extraction processes to support a wide range of separations including but not limited to chemical, metallurgical, nuclear, biochemical, pharmaceutical, and petroleum applications. The knowledge enabling these separations has been obtained through fundamental studies in academe, government and industry. The International Solvent Extraction Conferences have been and continue to be a major gathering of scientists, engineers, operators, and vendors from around the world, who present new findings since the last meeting, exchange ideas, make business contacts, and conduct collegial discussions. The ISEC 2008 program emphasizes fundamentals to industrial applications of solvent extraction, particularly howmore » this broad spectrum of activities is interconnected and has led to the implementation of novel processes. The oral and poster sessions have been organized into seven topics: Fundamentals; Novel Reagents, Materials and Techniques; Nuclear Fuel Reprocessing; Hydrometallurgy and Metals Extraction; Analytical and Preparative Applications; Biotechnology, Pharmaceuticals, Life-Science Products, and Organic Products; and Process Chemistry and Engineering. Over 350 abstracts were received, resulting in more than 260 manuscripts published in these proceedings. Five outstanding plenary presentations have been identified, with five parallel sessions for oral presentations and posters. In recognition of the major role solvent extraction (SX) plays in the hydrometallurgical and nuclear industries, these proceedings begin with sections focusing on hydrometallurgy, process chemistry, and engineering. More fundamental topics follow, including sections on novel reagents, materials, and techniques, featuring novel applications in analytical and biotechnology areas. Despite the diversity of topics and ideas represented, however, the primary focus of the ISEC community continues to be metals extraction. Four papers from these proceedings have been entered already in INIS in the form of individual reports. Among the remaining papers, 60 have been selected from the following sessions: Plenary Lectures, Hydrometallurgy and Metals Extraction, Nuclear Fuel Reprocessing, Analytical and Preparative Applications, Fundamentals, and Novel Reagents, Materials, and Techniques.« less

  4. Solvent-stir bar microextraction system using pure tris-(2-ethylhexyl) phosphate as supported liquid membrane: A new and efficient design for the extraction of malondialdehyde from biological fluids.

    PubMed

    Fashi, Armin; Salarian, Amir Ahmad; Zamani, Abbasali

    2018-05-15

    A novel and efficient device of solvent stir-bar microextraction (SSBME) system coupled with GC-FID detection was introduced for the pre-concentration and determination of malondialdehyde (MDA) in different biological matrices. In the proposed device, a piece of porous hollow fiber was located on a magnetic rotor by using a stainless steel-wire (as a mechanical support) and the whole device could stir with the magnetic rotor in sample solution cell. The device provided higher pre-concentration factor and better precision in comparison with conventional SBME due to the reproducible, stable and high contact area between the stirred sample and the hollow fiber. Organic solvent type, donor and acceptor phase pH, temperature, electrolyte concentration, agitation speed, extraction time, and sample volume as the effective factors on the SSBME efficiency, were examined and optimized. Pure tris-(2-ethylhexyl) phosphate (TEHP) was examined for the first time as supported liquid membrane (SLM) for the determination of MDA by SSBME method. In contrast to the conventional SLMs of SBME in the literature, the SLM of TEHP was highly stable in contact with biological fluids and provided the highest extraction efficiency. Under optimized extraction conditions, the method provided satisfactory linearity in the range 1-500 ng mL -1 , low LODs (0.3-0.7 ng mL -1 ), good repeatability and reproducibility (RSD% (n = 5) < 4.5) with the pre-concentration factors higher than 130-fold. To verify the accuracy of the proposed method, the traditional spectrophotometric TBA (2-thiobarbituric acid) test was used as a reference method. Finally, the proposed method was successfully applied for the determination and quantification of MDA in biological fluids. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Enhanced spot preparation for liquid extractive sampling and analysis

    DOEpatents

    Van Berkel, Gary J.; King, Richard C.

    2015-09-22

    A method for performing surface sampling of an analyte, includes the step of placing the analyte on a stage with a material in molar excess to the analyte, such that analyte-analyte interactions are prevented and the analyte can be solubilized for further analysis. The material can be a matrix material that is mixed with the analyte. The material can be provided on a sample support. The analyte can then be contacted with a solvent to extract the analyte for further processing, such as by electrospray mass spectrometry.

  6. PLUTONIUM COMPOUNDS AND PROCESS FOR THEIR PREPARATION

    DOEpatents

    Wolter, F.J.; Diehl, H.C. Jr.

    1958-01-01

    This patent relates to certain new compounds of plutonium, and to the utilization of these compounds to effect purification or separation of the plutonium. The compounds are organic chelate compounds consisting of tetravalent plutonium together with a di(salicylal) alkylenediimine. These chelates are soluble in various organic solvents, but not in water. Use is made of this property in extracting the plutonium by contacting an aqueous solution thereof with an organic solution of the diimine. The plutonium is chelated, extracted and effectively separated from any impurities accompaying it in the aqueous phase.

  7. Operator care and eco-concerned development of a fast, facile and economical assay for basic nitrogenous drugs based on simplified ion-pair mini-scale extraction using safer solvent combined with drop-based spectrophotometry.

    PubMed

    Plianwong, Samarwadee; Sripattanaporn, Areerut; Waewsa-nga, Kwanrutai; Buacheen, Parin; Opanasopit, Praneet; Ngawhirunpat, Tanasait; Rojanarata, Theerasak

    2012-08-30

    A fast, facile, and economical assay for basic nitrogenous drugs has been developed based on the mini-scale extraction of the drug-dye ion pair complex combined with the use of safe-for-analyst and eco-friendlier organic extractant and drop-based micro-spectrophotometry. Instead of using large volume devices, the extraction was simply carried out in typical 1.5 mL microcentrifuge tubes along with the use of micropipettes for accurate transfer of liquids, vortex mixer for efficient partitioning of solutes and benchtop centrifuge for rapid phase separation. In the last step, back-extraction was performed by using the microvolume of acidic solution in order to concentrate the colored species into a confined aqueous microdrop and to keep the analyst away from unwanted contact and inhalation of organic solvents during the quantitation step which was achieved by using cuvetteless UV-vis micro-spectrophotometry without any prior dilutions. Using chlorpheniramine maleate as a representative analyte and n-butyl acetate as a less toxic and non-ozone depleting extractant, the miniaturized method was less laborious and much faster. It was accurate, precise and insensitive to the interferences from common excipients. Notably, it gave the assay results of drug in tablets and oral solution comparable to the large-scale pharmacopeial method while the consumption of organic solvents and the release of wastes were lowered by 200-400 folds. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Toxicity of ethyl acetate extract from Jatropha gossypifolia senescent leaves against Spodoptera exigua Hübner (Lepidoptera: Noctuidae) and Meteorus pulchricornis (Hymenoptera: Braconidae).

    PubMed

    Khumrungsee, N; Pluempanupat, W; Kainoh, Y; Saguanpong, U; Bullangpotin, V

    2010-01-01

    This study explored the insecticidal effects of Thai botanical, senescent leaf Jatropha gossypifolia extracts on second instar Spodoptera exigua larvae by the dipping method and topical sprayer method. The leaf crude extract was extracted using Soxhlet apparatus with ethyl acetate as solvent. The leaf crude extracts showed insecticidal activity with a LC50 of 6182 ppm at 24 hours after treatment. In addition, this research was observed its toxicity to worm parasitoid, Meteorus pulchricornis by contact method. The result shows 60 percent mortality of this parasitoid species at dose up to 40,000 ppm. Thus, Jatropha gossypifolia leaf crude extracts can be as alternative IPM control tool for Spodoptera exigua which friendly to benefit insect such as Meteorus pulchricornis.

  9. Formula for the Removal and Remediation of Polychlorinated Biphenyls in Painted Structures

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline; Loftin, Kathleen; Geiger, Cherie

    2010-01-01

    An activated metal treatment system (AMTS) removes and destroys polychlorinated biphenyls (PCBs) found in painted structures or within the binding or caulking material on structures. It may be applied using a "paint-on and wipe-off" process that leaves the structure PCB-free and virtually unaltered in physical form. AMTS is used in conjunction with a solvent solution capable of donating hydrogen atoms. AMTS as a treatment technology has two functions: first, to extract PCBs from the material, and second, to degrade the extracted PCBs. The process for removing PCBs from structures is accomplished as an independent step to the degradation process. The goal is to extract the PCBs out of the paint, without destroying the paint, and to partition the PCBs into an environmentally friendly solvent. The research to date indicates this can be accomplished within the first 24 hours of AMTS contact with the paint. PCBs are extremely hydrophobic and prefer to be in the AMTS over the hardened paint or binder material. The solvent selected must be used to open, but not to destroy, the paint s polymeric lattice structure, allowing pathways for PCB movement out of the paint and into the solvent. A number of solvent systems were tested and are available for use within the AMTS. The second process of the AMTS is the degradation or dehalogenation of the PCBs. The solvent selection for this process is limited to solvents that are capable of donating a hydrogen atom to the PCB structure. Additional AMTS formulation properties that must be addressed for each site-specific application include viscosity and stability. The AMTS must be thick enough to remain where it is applied. Several thickening agents have been tested. Adding a stabilizing agent ensures that the AMTS will not evaporate and leave unprotected, activated metal exposed. During AMTS formulation testing, a number of reagents were evaluated to ensure the rate of dehalogenation was not inhibited by its addition to the system.

  10. Comparison Pore Aggregate Levels After Extraction With Solvents Pertamax Plus And Gasoline

    NASA Astrophysics Data System (ADS)

    Anggraini, Muthia

    2017-12-01

    Loss of asphalt content extraction results become problems in Field Work For implementing parties. The use of solvents with high octane (pertamax plus) for the extraction, dissolving the asphalt more than gasoline. By comparing the levels of aggregate pores after using solvent extraction pertamax plus compared to gasoline could answer that pertamax plus more solvent dissolves the bitumen compared to gasoline. This study aims to obtain comparative levels of porous aggregate mix AC-WC after using solvent extraction pertamax plus compared to gasoline. This study uses the aggregate that has been extracted from the production of asphalt mixtures, when finisher and after compaction field. The method used is the assay of coarse and fine aggregate pores, extraction of bitumen content to separate the aggregate with bitumen. Results of testing the total absorption after extraction using a solvent preta max plus in the production of asphalt mixtures 0.80%, while gasoline solvent 0.67% deviation occurs 0.13%. In the finisher after the solvent extraction preta max plus 0.77%, while 0.67% gasoline solvent occurs deviation of 0.1%. At the core after extraction and solvent pertamax plus 0.71%, while gasoline solvent 0.60% 0.11% deviation occurs. The total water absorption after extraction using a solvent pertamax plus greater than gasoline. This proves that the solvent dissolves pertamax plus more asphalt than gasoline.

  11. Migration studies of 3-chloro-1,2-propanediol (3-MCPD) in polyethylene extrusion-coated paperboard food packaging.

    PubMed

    Pace, Gregory V; Hartman, Thomas G

    2010-06-01

    The manufacturing process of paperboard food packaging can produce small quantities of 3-chloro-1,2-propanediol (3-MCPD or 3-monochloropropane-1,2-diol) when wet-strength resins containing epichlorohydrin are used. 3-MCPD is from the same family as 1,3-dichloro-2-propanol (1,3-DCP), which is known to cause cancer in animals. 3-MCPD has been found in acid hydrolyzed vegetable protein, Asian sauces and paperboard for food contact. In this investigation, we conducted extraction studies to measure 3-MCPD migration into food simulant solvents from the food contact side of polyethylene extrusion-coated paperboard beverage cartons and aqueous extractions of cut pieces from the entire paperboard. We demonstrate that 3-MCPD confirmed present at concentrations up to 9.9 mg kg(-1) within the paperboard matrix does not migrate through the polyethylene-coated food contact surface. The aqueous extraction of the entire paperboard and food contact side extractions with aqueous/acidic food simulants were performed using US Food and Drug Administration (FDA) and European Commission (EU) migration testing protocols. We also show that no significant amount of 3-MCPD migrates through the unskived edges on the inside seam of the paperboard structure. The methodology for the aqueous and migration cell extractions using GC-MS analyses was validated with a limit of quantification (LOQ) of 0.009 mg kg(-1) and a limit of detection (LOD) of 0.005 mg kg(-1).

  12. RECOVERY OF URANIUM BY SECONDARY XANTHATE COMPLEXING

    DOEpatents

    Neville, O.K.

    1959-09-01

    A method is described for separating and recovering uranium values contained in an acidic aqueous solution together with thorium or protactinium values. In accordance with the invention, the acidic solution containing uranium in the uranyl form is contacted with an organic xanthate. The xanthate forms a urano-xanthate complex but is substantially non-reactive with thorium and protactinium. The urano-xanthate complex is recovered by organic solvent extraction.

  13. A microfluidic study of liquid-liquid extraction mediated by carbon dioxide.

    PubMed

    Lestari, Gabriella; Salari, Alinaghi; Abolhasani, Milad; Kumacheva, Eugenia

    2016-07-05

    Liquid-liquid extraction is an important separation and purification method; however, it faces a challenge in reducing the energy consumption and the environmental impact of solvent (extractant) recovery. The reversible chemical reactions of switchable solvents (nitrogenous bases) with carbon dioxide (CO2) can be implemented in reactive liquid-liquid extraction to significantly reduce the cost and energy requirements of solvent recovery. The development of new effective switchable solvents reacting with CO2 and the optimization of extraction conditions rely on the ability to evaluate and screen the performance of switchable solvents in extraction processes. We report a microfluidic strategy for time- and labour-efficient studies of CO2-mediated solvent extraction. The platform utilizes a liquid segment containing an aqueous extractant droplet and a droplet of a solution of a switchable solvent in a non-polar liquid, with gaseous CO2 supplied to the segment from both sides. Following the reaction of the switchable solvent with CO2, the solvent becomes hydrophilic and transfers from the non-polar solvent to the aqueous droplet. By monitoring the time-dependent variation in droplet volumes, we determined the efficiency and extraction time for the CO2-mediated extraction of different nitrogenous bases in a broad experimental parameter space. The platform enables a significant reduction in the amount of switchable solvents used in these studies, provides accurate temporal characterization of the liquid-liquid extraction process, and offers the capability of high-throughput screening of switchable solvents.

  14. Method for testing earth samples for contamination by organic contaminants

    DOEpatents

    Schabron, J.F.

    1996-10-01

    Provided is a method for testing earth samples for contamination by organic contaminants, and particularly for aromatic compounds such as those found in diesel fuel and other heavy fuel oils, kerosene, creosote, coal oil, tars and asphalts. A drying step is provided in which a drying agent is contacted with either the earth sample or a liquid extract phase to reduce to possibility of false indications of contamination that could occur when humic material is present in the earth sample. This is particularly a problem when using relatively safe, non-toxic and inexpensive polar solvents such as isopropyl alcohol since the humic material tends to be very soluble in those solvents when water is present. Also provided is an ultraviolet spectroscopic measuring technique for obtaining an indication as to whether a liquid extract phase contains aromatic organic contaminants. In one embodiment, the liquid extract phase is subjected to a narrow and discrete band of radiation including a desired wave length and the ability of the liquid extract phase to absorb that wavelength of ultraviolet radiation is measured to provide an indication of the presence of aromatic organic contaminants. 2 figs.

  15. SEPARATION OF SCANDIUM VALUES FORM IRON VALUES BY SOLVENT EXTRACTION

    DOEpatents

    Kuhlman, C.W. Jr.; Lang, G.P.

    1961-12-19

    A process is given for separating scandium from trivalent iron values. In this process, an aqueous nitric acid solution is contacted with a water- immiscible alkyl phosphate solution, the aqueous solution containing the values to be separated, whereby the scandium is taken up by the alkyl phosphate. The aqueous so1ution is preferably saturated with magnesium nitrate to retain the iron in the aqueous solution. (AEC)

  16. Solvent wash solution

    DOEpatents

    Neace, J.C.

    1984-03-13

    A process is claimed for removing diluent degradation products from a solvent extraction solution, which has been used to recover uranium and plutonium from spent nuclear fuel. A wash solution and the solvent extraction solution are combined. The wash solution contains (a) water and (b) up to about, and including, 50 vol % of at least one-polar water-miscible organic solvent based on the total volume of the water and the highly-polar organic solvent. The wash solution also preferably contains at least one inorganic salt. The diluent degradation products dissolve in the highly-polar organic solvent and the organic solvent extraction solvent do not dissolve in the highly-polar organic solvent. The highly-polar organic solvent and the extraction solvent are separated.

  17. Solvent wash solution

    DOEpatents

    Neace, James C.

    1986-01-01

    Process for removing diluent degradation products from a solvent extraction solution, which has been used to recover uranium and plutonium from spent nuclear fuel. A wash solution and the solvent extraction solution are combined. The wash solution contains (a) water and (b) up to about, and including, 50 volume percent of at least one-polar water-miscible organic solvent based on the total volume of the water and the highly-polar organic solvent. The wash solution also preferably contains at least one inorganic salt. The diluent degradation products dissolve in the highly-polar organic solvent and the organic solvent extraction solvent do not dissolve in the highly-polar organic solvent. The highly-polar organic solvent and the extraction solvent are separated.

  18. [Study of amount of evaporation residue in extracts from plastic kitchen utensils into four food-simulating solvents].

    PubMed

    Ohno, Hiroyuki; Suzuki, Masako; Kawamura, Yoko

    2011-01-01

    The amount of evaporation residue was investigated as an index of total amount of non-volatile substances that migrated from plastic kitchen utensils into four food-simulating solvents (water, 4% acetic acid, 20% ethanol and heptane). The samples were 71 products made of 12 types of plastics for food contact use. The amount was determined in accordance with the Japanese testing method. The quantitation limit was 5 µg/mL. In the cases of polyethylene, polypropylene, polystyrene, acrylonitrile styrene resin, acrylonitrile butadiene styrene resin, polyvinyl chloride, polyvinylidene chloride, polymethylpentene, polymethylmethacrylate and polyethylene terephthalate samples, the amount was highest for heptane and very low for the other solvents. On the other hand, in the cases of melamine resin and polyamide samples, the amount was highest for 4% acetic acid or 20% ethanol and lowest for heptane. These results enabled the selection of the most suitable solvent, and the rapid and efficient determination of evaporation residue.

  19. Measurement of dielectric constant of organic solvents by indigenously developed dielectric probe

    NASA Astrophysics Data System (ADS)

    Keshari, Ajay Kumar; Rao, J. Prabhakar; Rao, C. V. S. Brahmmananda; Ramakrishnan, R.; Ramanarayanan, R. R.

    2018-04-01

    The extraction, separation and purification of actinides (uranium and plutonium) from various matrices are an important step in nuclear fuel cycle. One of the separation process adopted in an industrial scale is the liquid-liquid extraction or solvent extraction. Liquid-liquid extraction uses a specific ligand/extractant in conjunction with suitable diluent. Solvent extraction or liquid-liquid extraction, involves the partitioning of the solute between two immiscible phases. In most cases, one of the phases is aqueous, and the other one is an organic solvent. The solvent used in solvent extraction should be selective for the metal of interest, it should have optimum distribution ratio, and the loaded metal from the organic phase should be easily stripped under suitable experimental conditions. Some of the important physical properties which are important for the solvent are density, viscosity, phase separation time, interfacial surface tension and the polarity of the extractant.

  20. Highly efficient secondary dewatering of dewatered sewage sludge using low boiling point solvents.

    PubMed

    He, Chao; Chena, Chia-Lung; Xu, Zhirong; Wang, Jing-Yuan

    2014-01-01

    Secondary dewatering of dewatered sludge is imperative to make conventional drying and incineration of sludge more economically feasible. In this study, a secondary dewatering of dewatered sludge with selected solvents (i.e. acetone and ethanol) followed by vacuum filtration and nature drying was investigated to achieve in-depth dewatering. After the entire secondary dewatering process, the sludge was shown to be odourless and the organic matter content was greatly retained. Increased mean particle size of sludge after solvent contact improved solid-liquid separation. With an acetone/sludge ratio of 3:1 (mL:g) in solvent contact and subsequent nature drying at ambient temperature after 24 h, the moisture content of sludge can be reduced to a level less than 20%. It is found that the polysaccharides were mainly precipitated by acetone, whereas the release ratios of protein and DNA were increased significantly as the added acetone volumes were elevated. During nature drying, accumulated evaporation rates of the sludge after solvent contact were 5-6 times higher than original dewatered sludge. Furthermore, sludge after acetone contact had better nature drying performance than ethanol. The two-stage dewatering involves solvent contact dewatering and solvent enhanced evaporation dewatering. Through selecting an appropriate solvent/sludge ratio as well as economical solvents and minimizing the solvent loss in a closed-pilot system, this dewatering process can be competitive in industrial applications. Therefore, this solvent-aided secondary dewatering is an energy-saving technology for effective in-depth dewatering of dewatered sludge and subsequent sludge utilization.

  1. A three step supercritical process to improve the dissolution rate of eflucimibe.

    PubMed

    Rodier, Elisabeth; Lochard, Hubert; Sauceau, Martial; Letourneau, Jean-Jacques; Freiss, Bernard; Fages, Jacques

    2005-10-01

    The aim of this study is to improve the dissolution properties of a poorly-soluble active substance, Eflucimibe by associating it with gamma-cyclodextrin. To achieve this objective, a new three-step process based on supercritical fluid technology has been proposed. First, Eflucimibe and cyclodextrin are co-crystallized using an anti-solvent process, dimethylsulfoxide being the solvent and supercritical carbon dioxide being the anti-solvent. Second, the co-crystallized powder is held in a static mode under supercritical conditions for several hours. This is the maturing step. Third, in a final stripping step, supercritical CO(2) is flowed through the matured powder to extract the residual solvent. The coupling of the first two steps brings about a significant synergistic effect to improve the dissolution rate of the drug. The nature of the entity obtained at the end of each step is discussed and some suggestions are made as to what happens in these operations. It is shown the co-crystallization ensures a good dispersion of both compounds and is rather insensitive to the operating parameters tested. The maturing step allows some dissolution-recrystallization to occur thus intensifying the intimate contact between the two compounds. Addition of water is necessary to make maturing effective as this is governed by the transfer properties of the medium. The stripping step allows extraction of the residual solvent but also removes some of the Eflucimibe which is the main drawback of this final stage.

  2. Compressed air-assisted solvent extraction (CASX) for metal removal.

    PubMed

    Li, Chi-Wang; Chen, Yi-Ming; Hsiao, Shin-Tien

    2008-03-01

    A novel process, compressed air-assisted solvent extraction (CASX), was developed to generate micro-sized solvent-coated air bubbles (MSAB) for metal extraction. Through pressurization of solvent with compressed air followed by releasing air-oversaturated solvent into metal-containing wastewater, MSAB were generated instantaneously. The enormous surface area of MSAB makes extraction process extremely fast and achieves very high aqueous/solvent weight ratio (A/S ratio). CASX process completely removed Cr(VI) from acidic electroplating wastewater under A/S ratio of 115 and extraction time of less than 10s. When synthetic wastewater containing Cd(II) of 50mgl(-1) was treated, A/S ratios of higher than 714 and 1190 could be achieved using solvent with extractant/diluent weight ratio of 1:1 and 5:1, respectively. Also, MSAB have very different physical properties, such as size and density, compared to the emulsified solvent droplets, making separation and recovery of solvent from treated effluent very easy.

  3. ISDP salt batch #2 supernate qualification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T. B.; Nash, C. A.; Fink, S. D.

    2009-01-05

    This report covers the laboratory testing and analyses of the second Integrated Salt Disposition Project (ISDP) salt supernate samples, performed in support of initial radioactive operations of Actinide Removal Process (ARP) and Modular Caustic-Side Solvent Extraction Unit (MCU). Major goals of this work include characterizing Tank 22H supernate, characterizing Tank 41H supernate, verifying actinide and strontium adsorption with a standard laboratory-scale test using monosodium titanate (MST) and filtration, and checking cesium mass transfer behavior for the MCU solvent performance when contacted with the liquid produced from MST contact. This study also includes characterization of a post-blend Tank 49H sample asmore » part of the Nuclear Criticality Safety Evaluation (NCSE). This work was specified by Task Technical Request and by Task Technical and Quality Assurance Plan (TTQAP). In addition, a sampling plan will be written to guide analytical future work. Safety and environmental aspects of the work were documented in a Hazard Assessment Package.« less

  4. Optimization of deep eutectic solvent-based ultrasound-assisted extraction of polysaccharides from Dioscorea opposita Thunb.

    PubMed

    Zhang, Lijin; Wang, Maoshan

    2017-02-01

    In this study, deep eutectic solvents were proposed for the ultrasound-assisted extraction of polysaccharides from Dioscorea opposita Thunb. Several deep eutectic solvents were prepared for the extraction of polysaccharides, among which the deep eutectic solvent composed of choline chloride and 1,4-butanediol was proved to be suitable for the extraction. Based on the screening of single-factor experiment design and orthogonal experiment design, three experimental factors were optimized for the Box-Behnken experimental design combined with response surface methodology, which gave the optimal extraction conditions: water content of 32.89%(v/v), extraction temperature of 94.00°C, and the extraction time of 44.74min. The optimal extraction conditions could supply higher extraction yield than those of hot water extraction and water-based ultrasound-assisted extraction. Therefore, deep eutectic solvents were an excellent extraction solvent alternative to the extraction of polysaccharides from sample matrices. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Process for radioisotope recovery and system for implementing same

    DOEpatents

    Meikrantz, David H [Idaho Falls, ID; Todd, Terry A [Aberdeen, ID; Tranter, Troy J [Idaho Falls, ID; Horwitz, E Philip [Naperville, IL

    2009-10-06

    A method of recovering daughter isotopes from a radioisotope mixture. The method comprises providing a radioisotope mixture solution comprising at least one parent isotope. The at least one parent isotope is extracted into an organic phase, which comprises an extractant and a solvent. The organic phase is substantially continuously contacted with an aqueous phase to extract at least one daughter isotope into the aqueous phase. The aqueous phase is separated from the organic phase, such as by using an annular centrifugal contactor. The at least one daughter isotope is purified from the aqueous phase, such as by ion exchange chromatography or extraction chromatography. The at least one daughter isotope may include actinium-225, radium-225, bismuth-213, or mixtures thereof. A liquid-liquid extraction system for recovering at least one daughter isotope from a source material is also disclosed.

  6. Process for radioisotope recovery and system for implementing same

    DOEpatents

    Meikrantz, David H.; Todd, Terry A.; Tranter, Troy J.; Horwitz, E. Philip

    2007-01-02

    A method of recovering daughter isotopes from a radioisotope mixture. The method comprises providing a radioisotope mixture solution comprising at least one parent isotope. The at least one parent isotope is extracted into an organic phase, which comprises an extractant and a solvent. The organic phase is substantially continuously contacted with an aqueous phase to extract at least one daughter isotope into the aqueous phase. The aqueous phase is separated from the organic phase, such as by using an annular centrifugal contactor. The at least one daughter isotope is purified from the aqueous phase, such as by ion exchange chromatography or extraction chromatography. The at least one daughter isotope may include actinium-225, radium-225, bismuth-213, or mixtures thereof. A liquid-liquid extraction system for recovering at least one daughter isotope from a source material is also disclosed.

  7. 21 CFR 173.280 - Solvent extraction process for citric acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Solvent extraction process for citric acid. 173..., Lubricants, Release Agents and Related Substances § 173.280 Solvent extraction process for citric acid. A solvent extraction process for recovery of citric acid from conventional Aspergillus niger fermentation...

  8. REMOVAL OF URANIUM FROM ORGANIC LIQUIDS

    DOEpatents

    Vavalides, S.P.

    1959-08-25

    A process is described for recovering small quantities of uranium from organic liquids such as hydrocarbon oils. halogen-substituted hydrocarbons, and alcohols. The organic liquid is contacted with a comminuted alkaline earth hydroxide, calcium hydroxide particularly, and the resulting uranium-bearing solid is separated from the liquid by filtration. Uranium may then be recovered from the solid by means of dissolution in nitric acid and conventional extraction with an organic solvent such as tributyl phosphate.

  9. Remediating pesticide contaminated soils using solvent extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahle-Demessie, E.; Meckes, M.C.; Richardson, T.L.

    Bench-scale solvent extraction studies were performed on soil samples obtained from a Superfund site contaminated with high levels of p,p{prime}-DDT, p,p{prime}-DDE and toxaphene. The effectiveness of the solvent extraction process was assessed using methanol and 2-propanol as solvents over a wide range of operating conditions. It was demonstrated that a six-stage methanol extraction using a solvent-to-soil ratio of 1.6 can decrease pesticide levels in the soil by more than 99% and reduce the volume of material requiring further treatment by 25 times or more. The high solubility of the pesticides in methanol resulted in rapid extraction rates, with the systemmore » reaching quasi-equilibrium state in 30 minutes. The extraction efficiency was influenced by the number of extraction stages, the solvent-to-soil ratio, and the soil moisture content. Various methods were investigated to regenerate and recycle the solvent. Evaporation and solvent stripping are low cost and reliable methods for removing high pesticide concentrations from the solvent. For low concentrations, GAC adsorption may be used. Precipitating and filtering pesticides by adding water to the methanol/pesticide solution was not successful when tested with soil extracts. 26 refs., 10 figs., 6 tabs.« less

  10. Microbial process for the preparation of acetic acid, as well as solvent for its extraction from the fermentation broth

    DOEpatents

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2007-03-27

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. Solvent mixtures formed of such a modified solvent with a desired co-solvent, preferably a low boiling hydrocarbon, are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  11. Microbial process for the preparation of acetic acid, as well as solvent for its extraction from the fermentation broth

    DOEpatents

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2004-06-22

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. Solvent mixtures formed of such a modified solvent with a desired co-solvent, preferably a low boiling hydrocarbon, are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  12. 21 CFR 173.280 - Solvent extraction process for citric acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Solvent extraction process for citric acid. 173... Solvent extraction process for citric acid. A solvent extraction process for recovery of citric acid from conventional Aspergillus niger fermentation liquor may be safely used to produce food-grade citric acid in...

  13. 21 CFR 173.280 - Solvent extraction process for citric acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Solvent extraction process for citric acid. 173... Solvent extraction process for citric acid. A solvent extraction process for recovery of citric acid from conventional Aspergillus niger fermentation liquor may be safely used to produce food-grade citric acid in...

  14. 21 CFR 173.280 - Solvent extraction process for citric acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Solvent extraction process for citric acid. 173... Solvent extraction process for citric acid. A solvent extraction process for recovery of citric acid from conventional Aspergillus niger fermentation liquor may be safely used to produce food-grade citric acid in...

  15. The role of contact chemoreception in the host location process of an egg parasitoid.

    PubMed

    Iacovone, Alessia; French, Alice Sarah; Tellier, Frédérique; Cusumano, Antonino; Clément, Gilles; Gaertner, Cyril; Conti, Eric; Salerno, Gianandrea; Marion-Poll, Frédéric

    2016-01-01

    Taste allows insects to detect palatable or toxic foods, identify a mate, and select appropriate oviposition sites. The gustatory system strongly contributes to the survival and reproductive success of many species, yet it is rarely studied in insect parasitoids. In order to locate and assess a host in which they will lay their eggs, female wasps actively search for chemical cues using their sensory organs present mainly on the antennae. In this paper, we studied the role of antennal taste sensilla chaetica in the perception of contact semiochemicals in Trissolcus brochymenae (Hymenoptera: Platygastridae), an egg parasitoid of the brassicaceae pest Murgantia histrionica (Heteroptera: Pentatomidae). Methanolic extracts obtained from male and female hosts elicited action potentials in taste neurons housed in antennal sensilla chaetica, indicating that these sensilla are involved in the perception of non volatile host kairomones. In behavioural assays, wasp females displayed an intense searching behaviour in open arenas treated with host extracts, thus confirming that these kairomones are soluble in polar solvents. We further investigated the extracts by Gas Chromatography-Mass Spectrometry (GC-MS) and found that they contain several compounds which are good candidates for these contact kairomones. This study contributes to better understanding contact chemoreception in egg parasitoids and identifying gustatory receptor neurons involved in the host location process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Synthesis of Surface-Modified Iron Oxides for the Solvent-Free Recovery of Bacterial Bioactive Compound Prodigiosin and Its Algicidal Activity.

    PubMed

    Arivizhivendhan, K V; Mahesh, M; Boopathy, R; Patchaimurugan, K; Maharaja, P; Swarnalatha, S; Regina Mary, R; Sekaran, G

    2016-09-15

    Prodigiosin (PG) is a bioactive compound produced by several bacterial species. Currently, many technologies are being developed for the production of PG by fermentation processes. However, new challenges are being faced with regard to the production of PG in terms of the recovery and purification steps, owing to the labile nature of PG molecules and the cost of the purification steps. Conventional methods have limitations due to high cost, low reusability, and health hazards. Hence, the present investigation was focused on the development of surface-functionalized magnetic iron oxide ([Fe3O4]F) for solvent-free extraction of bioactive PG from the bacterial fermented medium. Fe3O4 was functionalized with diethanolamine and characterized by FT-IR, diffuse reflectance spectroscopy, thermogravimetric analysis, scanning electron microscopy, and confocal microscopy. The various process parameters, such as contact time, temperature, pH, and mass of Fe3O4, were optimized for the extraction of PG using functionalized Fe3O4. Instrumental analyses confirmed that the PG molecules were cross-linked with functional groups on [Fe3O4]F through van der Waals forces of attraction. PG extracted through Fe3O4 or [Fe3O4]F was separated from the fermentation medium by applying an external electromagnetic field and regenerated for successive reuse cycles. The purity of the extracted PG was characterized by high-performance liquid chromatography, FT-IR, and UV-visible spectroscopy. The iron oxide-diethanolamine-PG cross-linked ([Fe3O4]F-PG) composite matrix effectively deactivates harmful fouling by cyanobacterial growth in water-treatment plants. The present investigation provides the possibility of solvent-free extraction of bacterial bioactive PG from a fermented medium using functionalized magnetic iron oxide.

  17. Conventional and Accelerated-Solvent Extractions of Green Tea (Camellia sinensis) for Metabolomics-based Chemometrics

    PubMed Central

    Kellogg, Joshua J.; Wallace, Emily D.; Graf, Tyler N.; Oberlies, Nicholas H.; Cech, Nadja B.

    2018-01-01

    Metabolomics has emerged as an important analytical technique for multiple applications. The value of information obtained from metabolomics analysis depends on the degree to which the entire metabolome is present and the reliability of sample treatment to ensure reproducibility across the study. The purpose of this study was to compare methods of preparing complex botanical extract samples prior to metabolomics profiling. Two extraction methodologies, accelerated solvent extraction and a conventional solvent maceration, were compared using commercial green tea [Camellia sinensis (L.) Kuntze (Theaceae)] products as a test case. The accelerated solvent protocol was first evaluated to ascertain critical factors influencing extraction using a D-optimal experimental design study. The accelerated solvent and conventional extraction methods yielded similar metabolite profiles for the green tea samples studied. The accelerated solvent extraction yielded higher total amounts of extracted catechins, was more reproducible, and required less active bench time to prepare the samples. This study demonstrates the effectiveness of accelerated solvent as an efficient methodology for metabolomics studies. PMID:28787673

  18. Extraction, scrub, and strip test results for the salt waste processing facility caustic side solvent extraction solvent example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T. B.

    An Extraction, Scrub, and Strip (ESS) test was performed on a sample of Salt Waste Processing Facility (SWPF) Caustic-Side Solvent Extraction (CSSX) solvent and salt simulant to determine cesium distribution ratios (D(Cs)), and cesium concentration in the strip effluent (SE) and decontaminated salt solution (DSS) streams; this data will be used by Parsons to help determine if the solvent is qualified for use at the SWPF. The ESS test showed acceptable performance of the solvent for extraction, scrub, and strip operations. The extraction D(Cs) measured 12.9, exceeding the required value of 8. This value is consistent with results from previousmore » ESS tests using similar solvent formulations. Similarly, scrub and strip cesium distribution ratios fell within acceptable ranges.« less

  19. A combined Cyanex-923/HEH[EHP]/Dodecane solvent for recovery of transuranic elements from used nuclear fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, A.; Nash, K.L.

    2013-07-01

    The separation of minor actinides from fission product lanthanides remains a primary challenge for enabling the recycle of used nuclear fuel. To minimize the complexity of materials handling, combining extractant processes has become an increasingly attractive option. Unfortunately, combined processes sometimes suffer reduced utility due to strong dipole-dipole interactions between the extractants. The results reported here describe a system based on a combination of commercially available extractants Cyanex-923 and HEH[EHP]. In contrast to other combined extractant systems, these extractant molecules exhibit comparatively weak interactions, reducing the impact of secondary interactions. In this process, mixtures containing equal ratios of Cyanex-923 andmore » HEH[EHP] were seen to co-extract americium and the lanthanides from nitric acid solutions. Stripping of An(III) was effectively achieved through contact with an aqueous phase comprised of glycine (for pH control) and a polyamino-poly-carboxylate stripping reagent that selectively removes An(III) from the extractant phase. The lanthanides can then be stripped from the loaded organic phase contacting with high nitric acid concentrations. Extraction of fission products zirconium and molybdenum was also investigated and potential strategies for their management have been identified. The work presented demonstrates the feasibility of combining Cyanex-923 and HEH[EHP] for separating and recovering the transuranic elements from the Ln(III). (authors)« less

  20. The extraction of essential oil from patchouli leaves (Pogostemon cablin Benth) using microwave hydrodistillation and solvent-free microwave extraction methods

    NASA Astrophysics Data System (ADS)

    Putri, D. K. Y.; Kusuma, H. S.; Syahputra, M. E.; Parasandi, D.; Mahfud, M.

    2017-12-01

    Patchouli plant (Pogostemon cablin Benth) is one of the important essential oil-producing plant, contributes more than 50% of total exports of Indonesia’s essential oil. However, the extraction of patchouli oil that has been done in Indonesia is generally still used conventional methods that require enormous amount of energy, high solvent usage, and long time of extraction. Therefore, in this study, patchouli oil extraction was carried out by using microwave hydrodistillation and solvent-free microwave extraction methods. Based on this research, it is known that the extraction of patchouli oil using microwave hydrodistillation method with longer extraction time (240 min) only produced patchouli oil’s yield 1.2 times greater than solvent-free microwave extraction method which require faster extraction time (120 min). Otherwise the analysis of electric consumption and the environmental impact, the solvent-free microwave extraction method showed a smaller amount when compared with microwave hydrodistillation method. It is conclude that the use of solvent-free microwave extraction method for patchouli oil extraction is suitably method as a new green technique.

  1. Intraspecific Signals Inducing Aggregation in Periplaneta americana (Insecta: Dictyoptera).

    PubMed

    Imen, Saïd; Christian, Malosse; Virginie, Durier; Colette, Rivault

    2015-06-01

    Chemical communication is necessary to induce aggregation and to maintain the cohesion of aggregates in Periplaneta americana (L.) cockroaches. We aimed to identify the chemical message inducing aggregation in this species. Two types of bioassays were used-binary choice tests in Petri dishes and tests in Y-olfactometer. Papers conditioned by direct contact of conspecifics induce aggregation when proposed in binary choice tests and were attractive in a Y-olfactometer. The identification of the molecules present on these conditioned papers indicated that dichloromethane extracts contained mainly cuticular hydrocarbons whereas methanol extracts contained more volatile molecules. Only a mixture of extracts in both solvents induced aggregation. High concentrations of cuticular hydrocarbons are necessary to induce aggregation when presented alone. When presented with volatile molecules present in methanol extracts, low concentrations of cuticular hydrocarbons are sufficient to induce aggregation if they are presented in contact. Among volatile molecules collected on filter paper, a mixture of three compounds-hexadecanoic acid, pentadecanoic acid, and pentaethylene glycol-induced aggregation. Our results provide evidence that aggregation processes in P. americana relies on a dual mechanism: attraction over long distances by three volatile molecules and maintenance on site by contact with cuticular hydrocarbons. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Optimization of soy isoflavone extraction with different solvents using the simplex-centroid mixture design.

    PubMed

    Yoshiara, Luciane Yuri; Madeira, Tiago Bervelieri; Delaroza, Fernanda; da Silva, Josemeyre Bonifácio; Ida, Elza Iouko

    2012-12-01

    The objective of this study was to optimize the extraction of different isoflavone forms (glycosidic, malonyl-glycosidic, aglycone and total) from defatted cotyledon soy flour using the simplex-centroid experimental design with four solvents of varying polarity (water, acetone, ethanol and acetonitrile). The obtained extracts were then analysed by high-performance liquid chromatography. The profile of the different soy isoflavones forms varied with different extractions solvents. Varying the solvent or mixture used, the extraction of different isoflavones was optimized using the centroid-simplex mixture design. The special cubic model best fitted to the four solvents and its combination for soy isoflavones extraction. For glycosidic isoflavones extraction, the polar ternary mixture (water, acetone and acetonitrile) achieved the best extraction; malonyl-glycosidic forms were better extracted with mixtures of water, acetone and ethanol. Aglycone isoflavones, water and acetone mixture were best extracted and total isoflavones, the best solvents were ternary mixture of water, acetone and ethanol.

  3. A sparse autoencoder-based deep neural network for protein solvent accessibility and contact number prediction.

    PubMed

    Deng, Lei; Fan, Chao; Zeng, Zhiwen

    2017-12-28

    Direct prediction of the three-dimensional (3D) structures of proteins from one-dimensional (1D) sequences is a challenging problem. Significant structural characteristics such as solvent accessibility and contact number are essential for deriving restrains in modeling protein folding and protein 3D structure. Thus, accurately predicting these features is a critical step for 3D protein structure building. In this study, we present DeepSacon, a computational method that can effectively predict protein solvent accessibility and contact number by using a deep neural network, which is built based on stacked autoencoder and a dropout method. The results demonstrate that our proposed DeepSacon achieves a significant improvement in the prediction quality compared with the state-of-the-art methods. We obtain 0.70 three-state accuracy for solvent accessibility, 0.33 15-state accuracy and 0.74 Pearson Correlation Coefficient (PCC) for the contact number on the 5729 monomeric soluble globular protein dataset. We also evaluate the performance on the CASP11 benchmark dataset, DeepSacon achieves 0.68 three-state accuracy and 0.69 PCC for solvent accessibility and contact number, respectively. We have shown that DeepSacon can reliably predict solvent accessibility and contact number with stacked sparse autoencoder and a dropout approach.

  4. Development of deep eutectic solvents applied in extraction and separation.

    PubMed

    Li, Xiaoxia; Row, Kyung Ho

    2016-09-01

    Deep eutectic solvents, as an alternative to ionic liquids, have greener credentials than ionic liquids, and have attracted considerable attention in related chemical research. Deep eutectic solvents have attracted increasing attention in chemistry for the extraction and separation of various target compounds from natural products. This review highlights the preparation of deep eutectic solvents, unique properties of deep eutectic solvents, and synthesis of deep-eutectic-solvent-based materials. On the other hand, application in the extraction and separation of deep eutectic solvents is also included in this report. In this paper, the available data and references in this field are reviewed to summarize the applications and developments of deep eutectic solvents. Based on the development of deep eutectic solvents, an exploitation of new deep eutectic solvents and deep eutectic solvents-based materials is expected to diversify into extraction and separation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Ultrasonic Removal of Mucilage for Pressurized Liquid Extraction of Omega-3 Rich Oil from Chia Seeds (Salvia hispanica L.).

    PubMed

    Castejón, Natalia; Luna, Pilar; Señoráns, Francisco J

    2017-03-29

    Chia (Salvia hispanica L.) seeds contain an important amount of edible oil rich in omega-3 fatty acids. Fast and alternative extraction techniques based on polar solvents, such as ethanol or water, have become relevant for oil extraction in recent years. However, chia seeds also contain a large amount of soluble fiber or mucilage, which makes difficult an oil extraction process with polar solvents. For that reason, the aim of this study was to develop a gentle extraction method for mucilage in order to extract chia oil with polar solvents using pressurized liquids and compare with organic solvent extraction. The proposed mucilage extraction method, using an ultrasonic probe and only water, was optimized at mild conditions (50 °C and sonication 3 min) to guarantee the omega-3 oil quality. Chia oil extraction was performed using pressurized liquid extraction (PLE) with different solvents and their mixtures at five different extraction temperatures (60, 90, 120, 150, and 200 °C). Optimal PLE conditions were achieved with ethyl acetate or hexane at 90 °C in only 10 min of static extraction time (chia oil yield up to 30.93%). In addition, chia oils extracted with nonpolar and polar solvents by PLE were analyzed by gas chromatography-mass spectrometry (GC-MS) to evaluate fatty acid composition at different extraction conditions. Chia oil contained ∼65% of α-linolenic acid regardless of mucilage extraction method, solvent, or temperature used. Furthermore, tocopherols and tocotrienols were also analyzed by HPLC in the extracted chia oils. The mucilage removal allowed the subsequent extraction of the chia oil with polar or nonpolar solvents by PLE producing chia oil with the same fatty acid and tocopherol composition as traditional extraction.

  6. Substitution of carcinogenic solvent dichloromethane for the extraction of volatile compounds in a fat-free model food system.

    PubMed

    Cayot, Nathalie; Lafarge, Céline; Bou-Maroun, Elias; Cayot, Philippe

    2016-07-22

    Dichloromethane is known as a very efficient solvent, but, as other halogenated solvents, is recognized as a hazardous product (CMR substance). The objective of the present work is to propose substitution solvent for the extraction of volatile compounds. The most important physico-chemical parameters in the choice of an appropriate extraction solvent of volatile compounds are reviewed. Various solvents are selected on this basis and on their hazard characteristics. The selected solvents, safer than dichloromethane, are compared using the extraction efficiency of volatile compounds from a model food product able to interact with volatile compounds. Volatile compounds with different hydrophobicity are used. High extraction yields were positively correlated with high boiling points and high Log Kow values of volatile compounds. Mixtures of solvents such as azeotrope propan-2-one/cyclopentane, azeotrope ethyl acetate/ethanol, and mixture ethyl acetate/ethanol (3:1, v/v) gave higher extraction yields than those obtained with dichloromethane. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Microbial process for the preparation of acetic acid as well as solvent for its extraction from the fermentation broth

    DOEpatents

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2006-07-11

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. This solvent is substantially devoid of mono-alkyl amines and alcohols. Solvent mixtures formed of such a modified solvent with a desired cosolvent, preferably a low boiling hydrocarbon which forms an azeotrope with water are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  8. Microbial process for the preparation of acetic acid as well as solvent for its extraction from the fermentation broth

    DOEpatents

    Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.

    2002-01-01

    A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. This solvent is substantially devoid of mono-alkyl amines and alcohols. Solvent mixtures formed of such a modified solvent with a desired cosolvent, preferably a low boiling hydrocarbon which forms an azeotrope with water are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.

  9. Evaluation of solvent effect on the extraction of phenolic compounds and antioxidant capacities from the berries: application of principal component analysis.

    PubMed

    Boeing, Joana Schuelter; Barizão, Erica Oliveira; E Silva, Beatriz Costa; Montanher, Paula Fernandes; de Cinque Almeida, Vitor; Visentainer, Jesuí Vergilio

    2014-01-01

    This study evaluated the effect of the solvent on the extraction of antioxidant compounds from black mulberry (Morus nigra), blackberry (Rubus ulmifolius) and strawberry (Fragaria x ananassa). Different extracts of each berry were evaluated from the determination of total phenolic content, anthocyanin content and antioxidant capacity, and data were applied to the principal component analysis (PCA) to gain an overview of the effect of the solvent in extraction method. For all the berries analyzed, acetone/water (70/30, v/v) solvent mixture was more efficient solvent in the extracting of phenolic compounds, and methanol/water/acetic acid (70/29.5/0.5, v/v/v) showed the best values for anthocyanin content. Mixtures of ethanol/water (50/50, v/v), acetone water/acetic acid (70/29.5/0.5, v/v/v) and acetone/water (50/50, v/v) presented the highest antioxidant capacities for black mulberries, blackberries and strawberries, respectively. Antioxidants extractions are extremely affected by the solvent combination used. In addition, the obtained extracts with the organic solvent-water mixtures were distinguished from the extracts obtained with pure organic solvents, through the PCA analysis.

  10. Effect of extraction method on the yield of furanocoumarins from fruits of Archangelica officinalis Hoffm.

    PubMed

    Waksmundzka-Hajnos, M; Petruczynik, A; Dragan, A; Wianowska, D; Dawidowicz, A L

    2004-01-01

    Optimal conditions for the extraction and analysis of furanocoumarins from fruits of Archangelica officinalis Hoffm. have been determined. The following extraction methods were used: exhaustive extraction in a Soxhlet apparatus, ultrasonication at 25 and 60 degrees C, microwave-assisted solvent extraction in open and closed systems, and accelerated solvent extraction (ASE). In most cases the yields of furanocoumarins were highest using the ASE method. The effects of extracting solvent, temperature and time of extraction using this method were investigated. The highest yield of furanocoumarins by ASE was obtained with methanol at 100-130 degrees C for 10 min. The extraction yields of furanocoumarins from plant material by ultrasonication at 60 degrees C and microwave-assisted solvent extraction in an open system were comparable to the extraction yields obtained in the time- and solvent-consuming exhaustive process involving the Soxhlet apparatus.

  11. Effect of Different Solvents on the Measurement of Phenolics and the Antioxidant Activity of Mulberry (Morus atropurpurea Roxb.) with Accelerated Solvent Extraction.

    PubMed

    Yang, Jiufang; Ou, XiaoQun; Zhang, Xiaoxu; Zhou, ZiYing; Ma, LiYan

    2017-03-01

    The effects of 9 different solvents on the measurement of the total phenolics and antioxidant activities of mulberry fruits were studied using accelerated solvent extraction (ASE). Sixteen to 22 types of phenolics (flavonols, flavan-3-ols, flavanol, hydroxycinnamic acids, hydroxybenzoic acids, and stilbenes) from different mulberry extracts were characterized and quantified using HPLC-MS/MS. The principal component analysis (PCA) was used to determine the suitable solvents to distinguish between different classes of phenolics. Additionally, the phenolic extraction abilities of ASE and ultrasound-assisted extraction (UAE) were compared. The highest extraction efficiency could be achieved by using 50% acidified methanol (50MA) as ASE solvents with 15.14 mg/gallic acid equivalents g dry weight of mulberry fruit. The PCA results revealed that the 50MA followed by 50% acidified acetone (50AA) was the most efficient solvent for the extraction of phenolics, particularly flavonols (627.12 and 510.31 μg/g dry weight, respectively), while water (W) was not beneficial to the extraction of all categories of phenolics. Besides, the results of 3 antioxidant capability assays (DPPH, ABTS free radical-scavenging assay, and ferric-reducing antioxidant power assay) showed that water-based organic solvents increased the antioxidant capabilities of the extracts compared with water or pure organic solvents. ASE was more suitable for the extraction of phenolics than UAE. © 2017 Institute of Food Technologists®.

  12. Switchable hydrophilicity solvents for lipid extraction from microalgae for biofuel production.

    PubMed

    Boyd, Alaina R; Champagne, Pascale; McGinn, Patrick J; MacDougall, Karen M; Melanson, Jeremy E; Jessop, Philip G

    2012-08-01

    A switchable hydrophilicity solvent (SHS) was studied for its effectiveness at extracting lipids from freeze-dried samples of Botryococcus braunii microalgae. The SHS N,N-dimethylcyclohexylamine extracted up to 22 wt.% crude lipid relative to the freeze-dried cell weight. The solvent was removed from the extract with water saturated with carbon dioxide at atmospheric pressure and recovered from the water upon de-carbonation of the mixture. Liquid chromatography-mass spectrometry (LC-MS) showed that the extracted lipids contained high concentrations of long chain tri-, di- and mono-acylglycerols, no phospholipids, and only 4-8% of residual solvent. Unlike extractions with conventional organic solvents, this new method requires neither distillation nor the use of volatile, flammable or chlorinated organic solvents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Terra-Kleen Response Group, Inc. Solvent Extraction Technology Rapid Commercialization Initiative Report

    EPA Science Inventory

    Terra-Kleen Response Group Inc. (Terra-Kleen), has commercialized a solvent extraction technology that uses a proprietary extraction solvent to transfer organic constituents from soil to a liquid phase in a batch process at ambient temperatures. The proprietary solvent has a rel...

  14. Contact angle studies on anodic porous alumina.

    PubMed

    Redón, Rocío; Vázquez-Olmos, A; Mata-Zamora, M E; Ordóñez-Medrano, A; Rivera-Torres, F; Saniger, J M

    2005-07-15

    The preparation of nanostructures using porous anodic aluminum oxide (AAO) as templates involves the introduction of dissolved materials into the pores of the membranes; one way to determine which materials are preferred to fill the pores involves the measurement of the contact angles (theta) of different solvents or test liquids on the AAOs. Thus, we present measurements of contact angles of nine solvents on four different AAO sheets by tensiometric and goniometric methods. From the solvents tested, we found dimethyl sulfoxide (DMSO) and N,N(')-dimethylformamide (DMF) to interact with the AAOs, the polarity of the solvents and the surfaces being the driving force.

  15. Analytical strategies for organic food packaging contaminants.

    PubMed

    Sanchis, Yovana; Yusà, Vicent; Coscollà, Clara

    2017-03-24

    In this review, we present current approaches in the analysis of food-packaging contaminants. Gas and liquid chromatography coupled to mass spectrometry detection have been widely used in the analysis of some relevant families of these compounds such as primary aromatic amines, bisphenol A, bisphenol A diglycidyl ether and related compounds, UV-ink photoinitiators, perfluorinated compounds, phthalates and non-intentionally added substances. Main applications for sample treatment and different types of food-contact material migration studies have been also discussed. Pressurized Liquid Extraction, Solid-Phase Microextraction, Focused Ultrasound Solid-Liquid Extraction and Quechers have been mainly used in the extraction of food contact material (FCM) contaminants, due to the trend of minimising solvent consumption, automatization of sample preparation and integration of extraction and clean-up steps. Recent advances in analytical methodologies have allowed unequivocal identification and confirmation of these contaminants using Liquid Chromatography coupled to High Resolution Mass Spectrometry (LC-HRMS) through mass accuracy and isotopic pattern applying. LC-HRMS has been used in the target analysis of primary aromatic amines in different plastic materials, but few studies have been carried out applying this technique in post-target and non-target analysis of FCM contaminants. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Conventional and accelerated-solvent extractions of green tea (camellia sinensis) for metabolomics-based chemometrics.

    PubMed

    Kellogg, Joshua J; Wallace, Emily D; Graf, Tyler N; Oberlies, Nicholas H; Cech, Nadja B

    2017-10-25

    Metabolomics has emerged as an important analytical technique for multiple applications. The value of information obtained from metabolomics analysis depends on the degree to which the entire metabolome is present and the reliability of sample treatment to ensure reproducibility across the study. The purpose of this study was to compare methods of preparing complex botanical extract samples prior to metabolomics profiling. Two extraction methodologies, accelerated solvent extraction and a conventional solvent maceration, were compared using commercial green tea [Camellia sinensis (L.) Kuntze (Theaceae)] products as a test case. The accelerated solvent protocol was first evaluated to ascertain critical factors influencing extraction using a D-optimal experimental design study. The accelerated solvent and conventional extraction methods yielded similar metabolite profiles for the green tea samples studied. The accelerated solvent extraction yielded higher total amounts of extracted catechins, was more reproducible, and required less active bench time to prepare the samples. This study demonstrates the effectiveness of accelerated solvent as an efficient methodology for metabolomics studies. Copyright © 2017. Published by Elsevier B.V.

  17. A comparison of accelerated solvent extraction, Soxhlet extraction, and ultrasonic-assisted extraction for analysis of terpenoids and sterols in tobacco.

    PubMed

    Shen, Jinchao; Shao, Xueguang

    2005-11-01

    The performance of accelerated solvent extraction in the analysis of terpenoids and sterols in tobacco samples was investigated and compared with those of Soxhlet extraction and ultrasonically assisted extraction with respect to yield, extraction time, reproducibility and solvent consumption. The results indicate that although the highest yield was achieved by Soxhlet extraction, ASE appears to be a promising alternative to classical methods since it is faster and uses less solvent, especially when applied to the investigation of large batch tobacco samples. However, Soxhlet extraction is still the preferred method for analyzing sterols since it gives a higher extraction efficiency than other methods.

  18. [Advances in studies on multi-stage countercurrent extraction technology in traditional Chinese medicine].

    PubMed

    Xie, Zhi-Peng; Liu, Xue-Song; Chen, Yong; Cai, Ming; Qu, Hai-Bin; Cheng, Yi-Yu

    2007-05-01

    Multi-stage countercurrent extraction technology, integrating solvent extraction, repercolation with dynamic and countercurrent extraction, is a novel extraction technology for the traditional Chinese medicine. This solvent-saving, energy-saving and high-extraction-efficiency technology can at the most drive active compounds to diffuse from the herbal materials into the solvent stage by stage by creating concentration differences between the herbal materials and the solvents. This paper reviewed the basic principle, the influence factors and the research progress and trends of the equipments and the application of the multi-stage countercurrent extraction.

  19. CONTINUOUS CHELATION-EXTRACTION PROCESS FOR THE SEPARATION AND PURIFICATION OF METALS

    DOEpatents

    Thomas, J.R.; Hicks, T.E.; Rubin, B.; Crandall, H.W.

    1959-12-01

    A continuous process is presented for separating metal values and groups of metal values from each other. A complex mixture. e.g., neutron-irradiated uranium, can be resolved into component parts. In the present process the values are dissolved in an acidic solution and adjusted to the proper oxidation state. Thenceforth the solution is contacted with an extractant phase comprising a fluorinated beta -diketone in an organic solvent under centain pH conditions whereupon plutonium and zirconium are extracted. Plutonium is extracted from the foregoing extract with reducing aqueous solutions or under specified acidic conditions and can be recovered from the aqueous solution. Zirconium is then removed with an oxalic acid aqueous phase. The uranium is recovered from the residual original solution using hexone and hexone-diketone extractants leaving residual fission products in the original solution. The uranium is extracted from the hexone solution with dilute nitric acid. Improved separations and purifications are achieved using recycled scrub solutions and the "self-salting" effect of uranyl ions.

  20. Phenolic Extracts from Wild Olive Leaves and Their Potential as Edible Oils Antioxidants

    PubMed Central

    Lafka, Theodora-Ioanna; Lazou, Andriana E.; Sinanoglou, Vassilia J.; Lazos, Evangelos S.

    2013-01-01

    The kinetics solid-liquid extraction of phenolics from wild olive leaves was elaborated using different mathematical models (Peleg, second order, Elovich, and power law model). As solvents, methanol, ethanol, ethanol:water 1:1, n-propanol, isopropanol and ethyl acetate were used. The second order model best described the solvent extraction process, followed by the Elovich model. The most effective solvent was ethanol with optimum phenol extraction conditions 180 min, solvent to sample ratio 5:1 v/w and pH 2. Ethanol extract exhibited the highest antiradical activity among solvent and supercritical fluid extraction (SFE) extracts, which in addition showed the highest antioxidant capacity compared to synthetic and natural food antioxidants such as BHT, ascorbyl palmitate and vitamin E. Antioxidant potential of SFE extract was quite high, although its phenolic potential was not. Leaf extracts were proven to be good protectors for olive and sunflower oils at levels of 150 ppm. PMID:28239093

  1. Step-wise supercritical extraction of carbonaceous residua

    DOEpatents

    Warzinski, Robert P.

    1987-01-01

    A method of fractionating a mixture containing high boiling carbonaceous material and normally solid mineral matter includes processing with a plurality of different supercritical solvents. The mixture is treated with a first solvent of high critical temperature and solvent capacity to extract a large fraction as solute. The solute is released as liquid from solvent and successively treated with other supercritical solvents of different critical values to extract fractions of differing properties. Fractionation can be supplemented by solute reflux over a temperature gradient, pressure let down in steps and extractions at varying temperature and pressure values.

  2. Comparison of extraction methods for quantifying vitamin E from animal tissues.

    PubMed

    Xu, Zhimin

    2008-12-01

    Four extraction methods: (1) solvent (SOL), (2) ultrasound assisted solvent (UA), (3) saponification and solvent (SP), and (4) saponification and ultrasound assisted solvent (SP-UA), were used in sample preparation for quantifying vitamin E (tocopherols) in chicken liver and plasma samples. The extraction yields of SOL, UA, SP, and SP-UA methods obtained by adding delta-tocopherol as internal reference were 95%, 104%, 65%, and 62% for liver and 98%, 103%, 97%, and 94% for plasma, respectively. The methods with saponification significantly affected the stabilities of tocopherols in liver samples. The measured values of alpha- and gamma-tocopherols using the solvent only extraction (SOL) method were much lower than that using any of the other extraction methods. This indicated that less of the tocopherols in those samples were in a form that could be extracted directly by solvent. The measured value of alpha-tocopherol in the liver sample using the ultrasound assisted solvent (UA) method was 1.5-2.5 times of that obtained from the saponification and solvent (SP) method. The differences in measured values of tocopherols in the plasma samples by using the two methods were not significant. However, the measured value of the saponification and ultrasound assisted solvent (SP-UA) method was lower than either the saponification and solvent (SP) or the ultrasound assisted solvent (UA) method. Also, the reproducibility of the ultrasound assisted solvent (UA) method was greater than any of the saponification methods. Compared with the traditional saponification method, the ultrasound assisted solvent method could effectively extract tocopherols from sample matrix without any chemical degradation reactions, especially for complex animal tissue such as liver.

  3. Extraction, Scrub, and Strip Test Results for the Salt Waste Processing Facility Caustic Side Solvent Extraction Solvent Sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T. B.

    An Extraction, Scrub, and Strip (ESS) test was performed on a sample of Salt Waste Processing Facility (SWPF) Caustic-Side Solvent Extraction (CSSX) solvent and salt simulant to determine cesium distribution ratios (D( Cs)), and cesium concentration in the strip effluent (SE) and decontaminated salt solution (DSS) streams; this data will be used by Parsons to help determine if the solvent is qualified for use at the SWPF. The ESS test showed acceptable performance of the solvent for extraction, scrub, and strip operations. The extraction D( Cs) measured 12.5, exceeding the required value of 8. This value is consistent with resultsmore » from previous ESS tests using similar solvent formulations. Similarly, scrub and strip cesium distribution ratios fell within acceptable ranges. This revision was created to correct an error. The previous revision used an incorrect set of temperature correction coefficients which resulted in slight deviations from the correct D( Cs) results.« less

  4. Effect of Organic Solvents on Microalgae Growth, Metabolism and Industrial Bioproduct Extraction: A Review.

    PubMed

    Miazek, Krystian; Kratky, Lukas; Sulc, Radek; Jirout, Tomas; Aguedo, Mario; Richel, Aurore; Goffin, Dorothee

    2017-07-04

    In this review, the effect of organic solvents on microalgae cultures from molecular to industrial scale is presented. Traditional organic solvents and solvents of new generation-ionic liquids (ILs), are considered. Alterations in microalgal cell metabolism and synthesis of target products (pigments, proteins, lipids), as a result of exposure to organic solvents, are summarized. Applications of organic solvents as a carbon source for microalgal growth and production of target molecules are discussed. Possible implementation of various industrial effluents containing organic solvents into microalgal cultivation media, is evaluated. The effect of organic solvents on extraction of target compounds from microalgae is also considered. Techniques for lipid and carotenoid extraction from viable microalgal biomass (milking methods) and dead microalgal biomass (classical methods) are depicted. Moreover, the economic survey of lipid and carotenoid extraction from microalgae biomass, by means of different techniques and solvents, is conducted.

  5. Effect of Organic Solvents on Microalgae Growth, Metabolism and Industrial Bioproduct Extraction: A Review

    PubMed Central

    Miazek, Krystian; Sulc, Radek; Jirout, Tomas; Aguedo, Mario; Goffin, Dorothee

    2017-01-01

    In this review, the effect of organic solvents on microalgae cultures from molecular to industrial scale is presented. Traditional organic solvents and solvents of new generation-ionic liquids (ILs), are considered. Alterations in microalgal cell metabolism and synthesis of target products (pigments, proteins, lipids), as a result of exposure to organic solvents, are summarized. Applications of organic solvents as a carbon source for microalgal growth and production of target molecules are discussed. Possible implementation of various industrial effluents containing organic solvents into microalgal cultivation media, is evaluated. The effect of organic solvents on extraction of target compounds from microalgae is also considered. Techniques for lipid and carotenoid extraction from viable microalgal biomass (milking methods) and dead microalgal biomass (classical methods) are depicted. Moreover, the economic survey of lipid and carotenoid extraction from microalgae biomass, by means of different techniques and solvents, is conducted. PMID:28677659

  6. Green extraction of grape skin phenolics by using deep eutectic solvents.

    PubMed

    Cvjetko Bubalo, Marina; Ćurko, Natka; Tomašević, Marina; Kovačević Ganić, Karin; Radojčić Redovniković, Ivana

    2016-06-01

    Conventional extraction techniques for plant phenolics are usually associated with high organic solvent consumption and long extraction times. In order to establish an environmentally friendly extraction method for grape skin phenolics, deep eutectic solvents (DES) as a green alternative to conventional solvents coupled with highly efficient microwave-assisted and ultrasound-assisted extraction methods (MAE and UAE, respectively) have been considered. Initially, screening of five different DES for proposed extraction was performed and choline chloride-based DES containing oxalic acid as a hydrogen bond donor with 25% of water was selected as the most promising one, resulting in more effective extraction of grape skin phenolic compounds compared to conventional solvents. Additionally, in our study, UAE proved to be the best extraction method with extraction efficiency superior to both MAE and conventional extraction method. The knowledge acquired in this study will contribute to further DES implementation in extraction of biologically active compounds from various plant sources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Extraction, scrub, and strip test results for the solvent transfer to salt waste processing facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T.

    The Savannah River National Laboratory (SRNL) prepared approximately 240 gallons of Caustic-Side Solvent Extraction (CSSX) solvent for use at the Salt Waste Processing Facility (SWPF). An Extraction, Scrub, and Strip (ESS) test was performed on a sample of the prepared solvent using a salt solution prepared by Parsons to determine cesium distribution ratios (D(Cs)), and cesium concentration in the strip effluent (SE) and decontaminated salt solution (DSS) streams. This data will be used by Parsons to help qualify the solvent for use at the SWPF. The ESS test showed acceptable performance of the solvent for extraction, scrub, and strip operations.more » The extraction D(Cs) measured 15.5, exceeding the required value of 8. This value is consistent with results from previous ESS tests using similar solvent formulations. Similarly, scrub and strip cesium distribution ratios fell within acceptable ranges.« less

  8. Extracting organic matter on Mars: A comparison of methods involving subcritical water, surfactant solutions and organic solvents

    NASA Astrophysics Data System (ADS)

    Luong, Duy; Court, Richard W.; Sims, Mark R.; Cullen, David C.; Sephton, Mark A.

    2014-09-01

    The first step in many life detection protocols on Mars involves attempts to extract or isolate organic matter from its mineral matrix. A number of extraction options are available and include heat and solvent assisted methods. Recent operations on Mars indicate that heating samples can cause the loss or obfuscation of organic signals from target materials, raising the importance of solvent-based systems for future missions. Several solvent types are available (e.g. organic solvents, surfactant based solvents and subcritical water extraction) but a comparison of their efficiencies in Mars relevant materials is missing. We have spiked the well characterised Mars analogue material JSC Mars-1 with a number of representative organic standards. Extraction of the spiked JSC Mars-1 with the three solvent methods provides insights into the relative efficiency of these methods and indicates how they may be used on future Mars missions.

  9. Evaluation of various solvent systems for lipid extraction from wet microalgal biomass and its effects on primary metabolites of lipid-extracted biomass.

    PubMed

    Ansari, Faiz Ahmad; Gupta, Sanjay Kumar; Shriwastav, Amritanshu; Guldhe, Abhishek; Rawat, Ismail; Bux, Faizal

    2017-06-01

    Microalgae have tremendous potential to grow rapidly, synthesize, and accumulate lipids, proteins, and carbohydrates. The effects of solvent extraction of lipids on other metabolites such as proteins and carbohydrates in lipid-extracted algal (LEA) biomass are crucial aspects of algal biorefinery approach. An effective and economically feasible algae-based oil industry will depend on the selection of suitable solvent/s for lipid extraction, which has minimal effect on metabolites in lipid-extracted algae. In current study, six solvent systems were employed to extract lipids from dry and wet biomass of Scenedesmus obliquus. To explore the biorefinery concept, dichloromethane/methanol (2:1 v/v) was a suitable solvent for dry biomass; it gave 18.75% lipids (dry cell weight) in whole algal biomass, 32.79% proteins, and 24.73% carbohydrates in LEA biomass. In the case of wet biomass, in order to exploit all three metabolites, isopropanol/hexane (2:1 v/v) is an appropriate solvent system which gave 7.8% lipids (dry cell weight) in whole algal biomass, 20.97% proteins, and 22.87% carbohydrates in LEA biomass. Graphical abstract: Lipid extraction from wet microalgal biomass and biorefianry approach.

  10. Highly efficient extraction of anthocyanins from grape skin using deep eutectic solvents as green and tunable media.

    PubMed

    Jeong, Kyung Min; Zhao, Jing; Jin, Yan; Heo, Seong Rok; Han, Se Young; Yoo, Da Eun; Lee, Jeongmi

    2015-12-01

    Deep eutectic solvents (DESs) were investigated as tunable, environmentally benign, yet superior extraction media to enhance the extraction of anthocyanins from grape skin, which is usually discarded as waste. Ten DESs containing choline chloride as hydrogen bond acceptor combined with different hydrogen bond donors were screened for high extraction efficiencies based on the anthocyanin extraction yields. As a result, citric acid, D-(+)-maltose, and fructose were selected as the effective DES components, and the newly designed DES, CM-6 that is composed of citric acid and D-(+)-maltose at 4:1 molar ratio, exhibited significantly higher levels of anthocyanin extraction yields than conventional extraction solvents such as 80% aqueous methanol. The final extraction method was established based on the ultrasound-assisted extraction under conditions optimized using response surface methodology. Its extraction yields were double or even higher than those of conventional methods that are time-consuming and use volatile organic solvents. Our method is truly a green method for anthocyanin extraction with great extraction efficiency using a minimal amount of time and solvent. Moreover, this study suggested that grape skin, the by-products of grape juice processing, could serve as a valuable source for safe, natural colorants or antioxidants by use of the eco-friendly extraction solvent, CM-6.

  11. EXTRACTION AND DETECTION OF ARSENICALS IN SEAWEED VIA ACCELERATED SOLVENT EXTRACTION WITH ION CHROMATOGRAPHIC SEPARATION AND ICP-MS DETECTION

    EPA Science Inventory

    An accelerated solvent extraction (ASE) device was evaluated as a semi-automated means of extracting arsenicals from ribbon kelp. Objective was to investigate effect of experimentally controllable ASE parameters (pressure, temperature, static time and solvent composition) on extr...

  12. RECOVERY OF URANIUM VALUES

    DOEpatents

    Brown, K.B.; Crouse, D.J. Jr.; Moore, J.G.

    1959-03-10

    A liquid-liquid extraction method is presented for recovering uranium values from an aqueous acidic solution by means of certain high molecular weight amine in the amine classes of primary, secondary, heterocyclic secondary, tertiary, or heterocyclic tertiary. The uranium bearing aqueous acidic solution is contacted with the selected amine dissolved in a nonpolar water-immiscible organic solvent such as kerosene. The uranium which is substantially completely exiracted by the organic phase may be stripped therefrom by waters and recovered from the aqueous phase by treatment into ammonia to precipitate ammonium diuranate.

  13. [Determination of photoinitiators in printing inks used in food contact materials].

    PubMed

    Han, Wei; Yu, Yanjun; Li, Ningtao; Wang, Libing

    2011-05-01

    A new analytical method based on gas chromatography-mass spectrometry (GC-MS) techniques was developed for the determination of five photoinitiators (PIs), benzophenone (BP), 4-methylbenzophenone (MBP), ethyl-4-dimethylaminobenzoate (EDAB), 2-ethylhexyl-4-dimethylaminobenzoate (EHDAB) and 1-hydroxycyclohexyl phenyl ketone (Irgacure 184), in the printing inks used in food contact materials. The test solutions were extracted from selected food contact materials using Soxhlet extractor with ethyl acetate as the extraction solvent. By adding 50 and 200 microg/L of a standard mixture of photoinitiators into the extracts of the blank packaging materials, the recoveries obtained were in the range of 66.7%-89.4%. The repeatability of the method was assessed by determining the contents of the photoinitiators in five types of food contact materials, and the results were lower than 10%. The instrumental detection limits (IDLs) and method quantification limits (MQLs) were in the range of 2.9-6.0 microg/L and 0.0017-0.0036 mg/dm2, respectively. The method was applied in the analysis of about twenty real samples (yogurt carton, milk carton, fruit juice carton and plastic bags samples). The most significant pollutants were BP and MBP. The concentrations of Irgacure 184, EDAB and EHDAB found in three individual samples were 0.84 mg/dm2, 0.2 mg/dm2 and 1.2 mg/dm2, respectively. The work proposed a new method to analyze the migration level of initiators from the inks.

  14. Supercritical solvent extraction of oil sand bitumen

    NASA Astrophysics Data System (ADS)

    Imanbayev, Ye. I.; Ongarbayev, Ye. K.; Tileuberdi, Ye.; Mansurov, Z. A.; Golovko, A. K.; Rudyk, S.

    2017-08-01

    The supercritical solvent extraction of bitumen from oil sand studied with organic solvents. The experiments were performed in autoclave reactor at temperature above 255 °C and pressure 29 atm with stirring for 6 h. The reaction resulted in the formation of coke products with mineral part of oil sands. The remaining products separated into SARA fractions. The properties of the obtained products were studied. The supercritical solvent extraction significantly upgraded extracted natural bitumen.

  15. Solvent selection in ultrasonic-assisted emulsification microextraction: Comparison between high- and low-density solvents by means of novel type of extraction vessel.

    PubMed

    Nojavan, Saeed; Gorji, Tayebeh; Davarani, Saied Saeed Hosseiny; Morteza-Najarian, Amin

    2014-08-01

    There are numerous published reports about dispersive liquid phase microextraction of the wide range of substances, however, till now no broadly accepted systematic and purpose oriented selection of extraction solvent has been proposed. Most works deal with the optimization of available solvents without adequate pre-consideration of properness. In this study, it is tried to compare the performances of low- and high-density solvents at the same conditions by means of novel type of extraction vessel with head and bottom conical shape. Extraction efficiencies of seven basic pharmaceutical compounds using eighteen common organic solvents were studied in this work. It was much easier to work with high-density solvents and they mostly showed better performances. This work shows that although exact predicting the performance of the solvents is multifaceted case but the pre-consideration of initial selection of solvents with attention to the physiochemical properties of the desired analytes is feasible and promising. Finally, the practicality of the method for extraction from urine and plasma samples was investigated. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Separation of Gadolinium (Gd) using Synergic Solvent Mixed Topo-D2EHPA with Extraction Method.

    NASA Astrophysics Data System (ADS)

    Effendy, N.; Basuki, K. T.; Biyantoro, D.; Perwira, N. K.

    2018-04-01

    The main problem to obtain Gd with high purity is the similarity of chemical properties and physical properties with the other rare earth elements (REE) such as Y and Dy, it is necessary to do separation by the extraction process. The purpose of this research to determine the best solvent type, amount of solvent, feed and solvent ratio in the Gd extraction process, to determine the rate order and the value of the rate constant of Gd concentration based on experimental data of aqueous phase concentration as a function of time and to know the effect of temperature on the reaction speed constant. This research was conducted on variation of solvent, amount of solvent, feed and solvent ratio in the extraction process of Gd separation, extraction time to determine the order value and the rate constant of Gd concentration in extraction process based on the aqueous phase concentration data as a function of time, to the rate constant of decreasing concentration of Gd. Based on the calculation results, the solvent composition was obtained with the best feed to separate the rare earth elements Gd in the extraction process is 1 : 4 with 15% concentration of TOPO and 10% concentration of D2EHPA. The separation process of Gd using extraction method by solvent TOPO-D2EHPA 2 : 1 comparison is better than single solvent D2EHPA / TOPO because of the synergistic effect. The rate order of separation process of Gd follows order 1. The Arrhenius Gd equation becomes k = 1.46 x 10-7 exp (-6.96 kcal / mol / RT).

  17. Terpenes as green solvents for extraction of oil from microalgae.

    PubMed

    Dejoye Tanzi, Celine; Abert Vian, Maryline; Ginies, Christian; Elmaataoui, Mohamed; Chemat, Farid

    2012-07-09

    Herein is described a green and original alternative procedure for the extraction of oil from microalgae. Extractions were carried out using terpenes obtained from renewable feedstocks as alternative solvents instead of hazardous petroleum solvents such as n-hexane. The described method is achieved in two steps using Soxhlet extraction followed by the elimination of the solvent from the medium using Clevenger distillation in the second step. Oils extracted from microalgae were compared in terms of qualitative and quantitative determination. No significant difference was obtained between each extract, allowing us to conclude that the proposed method is green, clean and efficient.

  18. Preferential Solvation of an Asymmetric Redox Molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Kee Sung; Rajput, Nav Nidhi; Vijayakumar, M.

    2016-12-15

    The fundamental correlations between inter-molecular interactions, solvation structure and functionality of electrolytes are in many cases unknown, particularly for multi-component liquid systems. In this work, we explore such correlations by investigating the complex interplay between solubility and solvation structure for the electrolyte system comprising N-(ferrocenylmethyl)-N,N-dimethyl-N-ethylammonium bistrifluoromethylsulfonimide (Fc1N112-TFSI) dissolved in a ternary carbonate solvent mixture using combined NMR relaxation and computational analyses. Probing the evolution of the solvent-solvent, ion-solvent and ion-ion interactions with an increase in solute concentration provides a molecular level understanding of the solubility limit of the Fc1N112-TFSI system. An increase in solute con-centration leads to pronounced Fc1N112-TFSI contact-ionmore » pair formation by diminishing solvent-solvent and ion-solvent type interactions. At the solubility limit, the precipitation of solute is initiated through agglomeration of contact-ion pairs due to overlapping solvation shells.« less

  19. Evaluation of the essential oil of Foeniculum vulgare Mill (fennel) fruits extracted by three different extraction methods by GC/MS.

    PubMed

    Hammouda, Faiza M; Saleh, Mahmoud A; Abdel-Azim, Nahla S; Shams, Khaled A; Ismail, Shams I; Shahat, Abdelaaty A; Saleh, Ibrahim A

    2014-01-01

    Hydrodistillation (HD) and steam-distillation, or solvent extraction methods of essential oils have some disadvantages like thermal decomposition of extracts, its contamination with solvent or solvent residues and the pollution of residual vegetal material with solvent which can be also an environmental problem. Thus, new green techniques, such as supercritical fluid extraction and microwave assisted techniques, are potential solutions to overcome these disadvantages. The aim of this study was to evaluate the essential oil of Foeniculum vulgare subsp. Piperitum fruits extracted by three different extraction methods viz. Supercritical fluid extraction (SFE) using CO2, microwave-assisted extraction (MAE) and hydro-distillation (HD) using gas chromatography-mass spectrometry (GC/MS). The results revealed that both MAE and SFE enhanced the extraction efficiency of the interested components. MAE gave the highest yield of oil as well as higher percentage of Fenchone (28%), whereas SFE gave the highest percentage of anethol (72%). Microwave-assisted extraction (MAE) and supercritical fluid extraction (SFE) not only enhanced the essential oil extraction but also saved time, reduced the solvents use and produced, ecologically, green technologies.

  20. Deep Eutectic Solvents as Efficient Media for the Extraction and Recovery of Cynaropicrin from Cynara cardunculus L. Leaves.

    PubMed

    de Faria, Emanuelle L P; do Carmo, Rafael S; Cláudio, Ana Filipa M; Freire, Carmen S R; Freire, Mara G; Silvestre, Armando J D

    2017-10-30

    In recent years a high demand for natural ingredients with nutraceutical properties has been witnessed, for which the development of more environmentally-friendly and cost-efficient extraction solvents and methods play a primary role. In this perspective, in this work, the application of deep eutectic solvents (DES), composed of quaternary ammonium salts and organic acids, as alternative solvents for the extraction of cynaropicrin from Cynara cardunculus L. leaves was studied. After selecting the most promising DES, their aqueous solutions were investigated, allowing to obtain a maximum cynaropicrin extraction yield of 6.20 wt %, using 70 wt % of water. The sustainability of the extraction process was further optimized by carrying out several extraction cycles, reusing either the biomass or the aqueous solutions of DES. A maximum cynaropicrin extraction yield of 7.76 wt % by reusing the solvent, and of 8.96 wt % by reusing the biomass, have been obtained. Taking advantage of the cynaropicrin solubility limit in aqueous solutions, water was added as an anti-solvent, allowing to recover 73.6 wt % of the extracted cynaropicrin. This work demonstrates the potential of aqueous solutions of DES for the extraction of value-added compounds from biomass and the possible recovery of both the target compounds and solvents.

  1. Comparison of extraction techniques and modeling of accelerated solvent extraction for the authentication of natural vanilla flavors.

    PubMed

    Cicchetti, Esmeralda; Chaintreau, Alain

    2009-06-01

    Accelerated solvent extraction (ASE) of vanilla beans has been optimized using ethanol as a solvent. A theoretical model is proposed to account for this multistep extraction. This allows the determination, for the first time, of the total amount of analytes initially present in the beans and thus the calculation of recoveries using ASE or any other extraction technique. As a result, ASE and Soxhlet extractions have been determined to be efficient methods, whereas recoveries are modest for maceration techniques and depend on the solvent used. Because industrial extracts are obtained by many different procedures, including maceration in various solvents, authenticating vanilla extracts using quantitative ratios between the amounts of vanilla flavor constituents appears to be unreliable. When authentication techniques based on isotopic ratios are used, ASE is a valid sample preparation technique because it does not induce isotopic fractionation.

  2. Ultrasonic-assisted extraction of essential oil from Botryophora geniculate using different extracting solvents

    NASA Astrophysics Data System (ADS)

    Habibullah, Wilfred, Cecilia Devi

    2016-11-01

    This study compares the performance of ionic liquids to substitute conventional solvents (hexane, dichloromethane and methanol) to extract essential oil from Botryophora geniculate plant. Two different Ionic liquids ([C3MIM][Ac], [C4MIM][Ac]) with co-solvent diethyl ether were used in the ultrasonic-assisted extraction. The effect of various experimental conditions such as time, temperature and solvent were studied. Gas chromatography-mass spectroscopy (GC-MS) was used to analyze essential oils. The results showed that in ultrasonic-assisted extraction using ionic liquids as a solvent gave highest yield (9.5%) in 30 min at temperature 70°C. When using ultrasonic bath with hexane, dichloromethane and methanol, yields was (3.34%), (3.6%) and (3.81%) at 90 min, respectively were obtained. The ultrasonic-assisted extraction under optimal extraction conditions (time 30 min, temperature of 70°C) gave the best yield for the essential oil extraction.

  3. A green deep eutectic solvent dispersive liquid-liquid micro-extraction (DES-DLLME) for the UHPLC-PDA determination of oxyprenylated phenylpropanoids in olive, soy, peanuts, corn, and sunflower oil.

    PubMed

    Ferrone, Vincenzo; Genovese, Salvatore; Carlucci, Maura; Tiecco, Matteo; Germani, Raimondo; Preziuso, Francesca; Epifano, Francesco; Carlucci, Giuseppe; Taddeo, Vito Alessandro

    2018-04-15

    A green dispersive liquid-liquid microextraction (DLLME) using deep eutectic solvent (DES) as the extracting solvent has been developed and applied for the simultaneous quantification of ferulic acid, umbelliferone, boropinic acid, 7-isopentenyloxycoumarin, 4'-geranyloxyferulic acid (GOFA), and auraptene in some vegetable oils using ultra high performance liquid chromatography (UHPLC) with photodiode array detection (PDA). All parameters in the extraction step, including selection and loading of both extracting and dispersing solvents, amount of both extractant and disperser solvent were investigated and optimized. PhAA/TMG DES achieved higher recovery and enrichment factor compared to other DESs. The validated method showed good linearity with correlation coefficients, r 2 >0.9990 for all the analytes. Furthermore, this is the first time that eco-friendly solvents are used for the extraction of oxyprenylated phenylpropanoids and the corresponding extract analyzed with ultra high performance liquid chromatography with photodiode array detection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Preparation and use of polymeric materials containing hydrophobic anions and plasticizers for separation of cesium and strontium

    DOEpatents

    Abney, Kent D.; Kinkead, Scott A.; Mason, Caroline F. V.; Rais, Jiri

    1997-01-01

    Preparation and use of polymeric materials containing hydrophobic anions and plasticizers for extraction of cesium and strontium. The use of polymeric materials containing plasticizers which are solvents for hydrophobic anions such as derivatives of cobalt dicarbollide or tetraphenylborate which are capable of extracting cesium and strontium ions from aqueous solutions in contact with the polymeric materials, is described. The polymeric material may also include a synergistic agent for a given ion like polyethylene glycol or a crown ether, for removal of radioactive isotopes of cesium and strontium from solutions of diverse composition and, in particular, for solutions containing large excess of sodium nitrate.

  5. Preparation and use of polymeric materials containing hydrophobic anions and plasticizers for separation of cesium and strontium

    DOEpatents

    Abney, K.D.; Kinkead, S.A.; Mason, C.F.V.; Rais, J.

    1997-09-09

    Preparation and use is described for polymeric materials containing hydrophobic anions and plasticizers for extraction of cesium and strontium. The use of polymeric materials containing plasticizers which are solvents for hydrophobic anions such as derivatives of cobalt dicarbollide or tetraphenylborate which are capable of extracting cesium and strontium ions from aqueous solutions in contact with the polymeric materials, is described. The polymeric material may also include a synergistic agent for a given ion like polyethylene glycol or a crown ether, for removal of radioactive isotopes of cesium and strontium from solutions of diverse composition and, in particular, for solutions containing large excess of sodium nitrate.

  6. Solvent and process for recovery of hydroxide from aqueous mixtures

    DOEpatents

    Moyer, Bruce A.; Chambliss, C. Kevin; Bonnesen, Peter V.; Keever, Tamara J.

    2001-01-01

    Hydroxide values and associated alkali metal may be recovered from alkaline aqueous solutions using classes of fluorinated alcohols in a water immiscible solvent. The alcohols are characterized by fluorine substituents which are proximal to the acidic alcohol protons and are located to adjust the acidity of the extractant and the solubility of the extractant in the solvent. A method for stripping the extractant and solvent to regenerate the extractant and purified aqueous hydroxide solution is described.

  7. Solvent extraction of diatomite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, W.

    1984-07-24

    There is provided a method of extracting hydrocarbons from a diatomite ore. The particle size of the ore is first reduced to form a processed ore. The processed ore is then mixed with a substantially irregular granular material to form an unstratified ore mixture having increased permeability to an extracting solvent. The unstratified ore mixture is then permeated with an extracting solvent to obtain a hydrocarbon-solvent stream from which hydrocarbons are subsequently separated. The irregular granular material may be sand.

  8. Improved Supercritical-Solvent Extraction of Coal

    NASA Technical Reports Server (NTRS)

    Compton, L.

    1982-01-01

    Raw coal upgraded by supercritical-solvent extraction system that uses two materials instead of one. System achieved extraction yields of 20 to 49 weight percent. Single-solvent yields are about 25 weight percent. Experimental results show extraction yields may be timedependent. Observed decreases in weight of coal agreed well with increases in ash content of residue.

  9. 21 CFR 173.280 - Solvent extraction process for citric acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Solvent extraction process for citric acid. 173.280... extraction process for citric acid. A solvent extraction process for recovery of citric acid from conventional Aspergillus niger fermentation liquor may be safely used to produce food-grade citric acid in...

  10. Extraction of aucubin from seeds of Eucommia ulmoides Oliv. using supercritical carbon dioxide.

    PubMed

    Li, Hui; Hu, Jiangyu; Ouyang, Hui; Li, Yanan; Shi, Hui; Ma, Chengjin; Zhang, Yongkang

    2009-01-01

    Supercritical CO2 was used as solvent for the extraction of aucubin from the seeds of Eucommia ulmoides Oliv. The co-solvent composition was tested and extraction conditions were optimized. Results showed that the best co-solvent was a water-ethanol mixture (1 + 3, v/v), and the highest yield was obtained when the extraction was performed under 26 MPa at extraction and separation temperatures of 55 and 30 degrees C for 120 min, using 6 mL co-solvent/g material at a CO2 flow rate of 20 L/h. In a comparison of the supercritical CO2 and Soxhlet extraction methods, the Soxhlet method needed 3 h to extract 10 g material, whereas the supercritical CO2 extraction technique needed only 2 h to extract 100 g material, thus showing a high extraction capability. The supercritical CO2 extraction produced a higher yield, with a lower cost for the extraction. Owing to the advantages of low extraction temperature, high yield, and ease of separating the product from the solvent, supercritical CO2 extraction is likely to be developed into an ideal technique for the extraction of aucubin, a compound with thermal instability, from the seeds of this plant.

  11. Use of normal propyl bromide solvents for extraction and recovery of asphalt cements

    DOT National Transportation Integrated Search

    2000-11-01

    Four normal propyl bromide (nPB) solvents were evaluated for use as chlorinated solvent replacements in typical hot mix asphalt (HMA) extraction and recovery processes. The experimental design included one method of extraction (centrifuge), one metho...

  12. Semiautomated solid-phase extraction manifold with a solvent-level sensor.

    PubMed

    Orlando, R M; Rath, S; Rohwedder, J J R

    2013-11-15

    A semiautomated solid-phase extraction manifold for multiple extractions is presented. The manifold utilizes commercial solid-phase syringe cartridges and automatically introduces and elutes all the solvents during the extraction, reducing the typical workload and stress of the analyst. The manifold consists of a peristaltic pump with solenoid valves in a flow circuit that contains transmissive photomicrosensors. The photomicrosensors were used to control the solvent dispenser and the solvent level inside the cartridge. As solvent-level sensors, the photomicrosensors determined the exact time the solvent reached the top frit to avoid sorbent drying and accurately perform the solvent exchange. The repeatability of the manifold to introduce a particular volume of solvent into the cartridges was measured, and the precisions were between 0.05 and 2.89% (RSD). To evaluate the manifold, the amount of two fluoroquinolones in a fortified blank milk sample was determined. The results of the intra- and inter-day precision of multiple extractions from the fortified milk samples resulted in precisions better than 9.0% (RSD) and confirmed that the arrangement of the semiautomated manifold could adequately be used in solid-phase extraction with commercial cartridges. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Solvent Extraction of Chemical Attribution Signature Compounds from Painted Wall Board: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahl, Jon H.; Colburn, Heather A.

    2009-10-29

    This report summarizes work that developed a robust solvent extraction procedure for recovery of chemical attribution signature (CAS) compound dimethyl methyl phosphonate (DMMP) (as well as diethyl methyl phosphonate (DEMP), diethyl methyl phosphonothioate (DEMPT), and diisopropyl methyl phosphonate (DIMP)) from painted wall board (PWB), which was selected previously as the exposed media by the chemical attribution scientific working group (CASWG). An accelerated solvent extraction approach was examined to determine the most effective method of extraction from PWB. Three different solvent systems were examined, which varied in solvent strength and polarity (i.e., 1:1 dichloromethane : acetone,100% methanol, and 1% isopropanol inmore » pentane) with a 1:1 methylene chloride : acetone mixture having the most robust and consistent extraction for four original target organophosphorus compounds. The optimum extraction solvent was determined based on the extraction efficiency of the target analytes from spiked painted wallboard as determined by gas chromatography x gas chromatography mass spectrometry (GCxGC-MS) analysis of the extract. An average extraction efficiency of approximately 60% was obtained for these four compounds. The extraction approach was further demonstrated by extracting and detecting the chemical impurities present in neat DMMP that was vapor-deposited onto painted wallboard tickets.« less

  14. Effect of solvent polarity on the extraction of components of pharmaceutical plastic containers.

    PubMed

    Ahmad, Iqbal; Sabah, Arif; Anwar, Zubair; Arif, Aysha; Arsalan, Adeel; Qadeer, Kiran

    2017-01-01

    A study of the extraction of polymeric material and dyes from the pharmaceutical plastic containers using various organic solvents was conducted to evaluate the effect of polarity on the extraction process. The plastic containers used included semi-opaque, opaque, transparent and amber colored and the solvent used were acetonitrile, methanol, ethanol, acetone, dichloroethane, chloroform and water. The determination of extractable material was carried out by gravimetric and spectrometric methods. The yield of extractable materials from containers in 60 h was 0.10-1.29% (w/w) and the first-order rate constant (kobs) for the extraction of polymeric material ranged from 0.52-1.50 × 10-3 min -1 and for the dyes 6.43- 6.74 x10-3min-1. The values of (k obs ) were found to be an inverse function of solvent dielectric constant and decreased linearly with the solvent acceptor number. The extractable polymeric materials exhibited absorption in the 200-400 nm region and the dyes in the 300-500nm region. The rates of extraction of polymeric material and dyes from plastic containers were dependent on the solvent dielectric constant. The solvents of low polarity were more effective in the extraction of material indicating that the extracted material were of low polarity or have non-polar character. The dyes were soluble in acetone and chloroform. No plastic material was found to be extracted from the containers in aqueous solution.

  15. Focused microwave-assisted solvent extraction and HPLC determination of effective constituents in Eucommia ulmodies Oliv. (E. ulmodies).

    PubMed

    Li, Hui; Chen, Bo; Zhang, Zhaohui; Yao, Shouzhuo

    2004-06-17

    A new focused microwave-assisted solvent extraction method using water as solvent has been developed for leaching geniposidic and chlorogenic acids from Eucommia ulmodies Oliv. The extraction procedures were optimized using a two indexes orthogonal experimental design and graphical analysis, by varying irradiation time, solvent volume, solvent composition and microwave power. The optimum extraction conditions were obtained: for geniposidic acid, 50% micorwave power, 40s irradiation, and 80% (v/v) aqueous methanol as extraction solvent (20mlg(-1) sample); and for chlorogenic acid, 50% micorwave power, 30s irradiation, and 20% aqueous methanol (20mlg(-1) sample). The composition of the extraction solvent was optimized and can be directly used as the mobile phase in the HPLC separation. Quantification of organic acids was done by HPLC at room temperature using Spherigel C(18) chromatographic column (250 mm x4.6 mm , i.d. 5mum), the methanol:water:acetic acid (20:80:1.0, v/v) mobile phase and UV detection at 240nm. The R.S.D. of the extraction process for geniposidic and chlorogenic acid were 3.8 and 4.1%, respectively.

  16. Enhancement of photocurrent extraction and electron injection in dual-functional CH3NH3PbBr3 perovskite-based optoelectronic devices via interfacial engineering

    NASA Astrophysics Data System (ADS)

    Tsai, Chia-Lung; Lu, Yi-Chen; Hsiung Chang, Sheng

    2018-07-01

    Photocurrent extraction and electron injection in CH3NH3PbBr3 (MAPbBr3) perovskite-based optoelectronic devices are both significantly increased by improving the contact at the PCBM/MAPbBr3 interface with an extended solvent annealing (ESA) process. Photoluminescence quenching and x-ray diffraction experiments show that the ESA not only improves the contact at the PCBM/MAPbBr3 interface but also increases the crystallinity of the MAPbBr3 thin films. The optimized dual-functional PCBM-MAPbBr3 heterojunction based optoelectronic device has a high power conversion efficiency of 4.08% and a bright visible luminescence of 1509 cd m‑2. In addition, the modulation speed of the MAPbBr3 based light-emitting diodes is larger than 14 MHz, which indicates that the defect density in the MAPbBr3 thin film can be effectively reduced by using the ESA process.

  17. Enhancement of photocurrent extraction and electron injection in dual-functional CH3NH3PbBr3 perovskite-based optoelectronic devices via interfacial engineering.

    PubMed

    Tsai, Chia-Lung; Lu, Yi-Chen; Chang, Sheng Hsiung

    2018-07-06

    Photocurrent extraction and electron injection in CH 3 NH 3 PbBr 3 (MAPbBr 3 ) perovskite-based optoelectronic devices are both significantly increased by improving the contact at the PCBM/MAPbBr 3 interface with an extended solvent annealing (ESA) process. Photoluminescence quenching and x-ray diffraction experiments show that the ESA not only improves the contact at the PCBM/MAPbBr 3 interface but also increases the crystallinity of the MAPbBr 3 thin films. The optimized dual-functional PCBM-MAPbBr 3 heterojunction based optoelectronic device has a high power conversion efficiency of 4.08% and a bright visible luminescence of 1509 cd m -2 . In addition, the modulation speed of the MAPbBr 3 based light-emitting diodes is larger than 14 MHz, which indicates that the defect density in the MAPbBr 3 thin film can be effectively reduced by using the ESA process.

  18. Comparative analysis of essential oil composition of Iranian and Indian Nigella sativa L. extracted using supercritical fluid extraction and solvent extraction

    PubMed Central

    Ghahramanloo, Kourosh Hasanzadeh; Kamalidehghan, Behnam; Akbari Javar, Hamid; Teguh Widodo, Riyanto; Majidzadeh, Keivan; Noordin, Mohamed Ibrahim

    2017-01-01

    The objective of this study was to compare the oil extraction yield and essential oil composition of Indian and Iranian Nigella sativa L. extracted by using Supercritical Fluid Extraction (SFE) and solvent extraction methods. In this study, a gas chromatography equipped with a mass spectrophotometer detector was employed for qualitative analysis of the essential oil composition of Indian and Iranian N. sativa L. The results indicated that the main fatty acid composition identified in the essential oils extracted by using SFE and solvent extraction were linoleic acid (22.4%–61.85%) and oleic acid (1.64%–18.97%). Thymoquinone (0.72%–21.03%) was found to be the major volatile compound in the extracted N. sativa oil. It was observed that the oil extraction efficiency obtained from SFE was significantly (P<0.05) higher than that achieved by the solvent extraction technique. The present study showed that SFE can be used as a more efficient technique for extraction of N. Sativa L. essential oil, which is composed of higher linoleic acid and thymoquinone contents compared to the essential oil obtained by the solvent extraction technique. PMID:28814830

  19. Comparative analysis of essential oil composition of Iranian and Indian Nigella sativa L. extracted using supercritical fluid extraction and solvent extraction.

    PubMed

    Ghahramanloo, Kourosh Hasanzadeh; Kamalidehghan, Behnam; Akbari Javar, Hamid; Teguh Widodo, Riyanto; Majidzadeh, Keivan; Noordin, Mohamed Ibrahim

    2017-01-01

    The objective of this study was to compare the oil extraction yield and essential oil composition of Indian and Iranian Nigella sativa L. extracted by using Supercritical Fluid Extraction (SFE) and solvent extraction methods. In this study, a gas chromatography equipped with a mass spectrophotometer detector was employed for qualitative analysis of the essential oil composition of Indian and Iranian N. sativa L. The results indicated that the main fatty acid composition identified in the essential oils extracted by using SFE and solvent extraction were linoleic acid (22.4%-61.85%) and oleic acid (1.64%-18.97%). Thymoquinone (0.72%-21.03%) was found to be the major volatile compound in the extracted N. sativa oil. It was observed that the oil extraction efficiency obtained from SFE was significantly ( P <0.05) higher than that achieved by the solvent extraction technique. The present study showed that SFE can be used as a more efficient technique for extraction of N. Sativa L. essential oil, which is composed of higher linoleic acid and thymoquinone contents compared to the essential oil obtained by the solvent extraction technique.

  20. Solidification of floating organic droplet in dispersive liquid-liquid microextraction as a green analytical tool.

    PubMed

    Mansour, Fotouh R; Danielson, Neil D

    2017-08-01

    Dispersive liquid-liquid microextraction (DLLME) is a special type of microextraction in which a mixture of two solvents (an extracting solvent and a disperser) is injected into the sample. The extraction solvent is then dispersed as fine droplets in the cloudy sample through manual or mechanical agitation. Hence, the sample is centrifuged to break the formed emulsion and the extracting solvent is manually separated. The organic solvents commonly used in DLLME are halogenated hydrocarbons that are highly toxic. These solvents are heavier than water, so they sink to the bottom of the centrifugation tube which makes the separation step difficult. By using solvents of low density, the organic extractant floats on the sample surface. If the selected solvent such as undecanol has a freezing point in the range 10-25°C, the floating droplet can be solidified using a simple ice-bath, and then transferred out of the sample matrix; this step is known as solidification of floating organic droplet (SFOD). Coupling DLLME to SFOD combines the advantages of both approaches together. The DLLME-SFOD process is controlled by the same variables of conventional liquid-liquid extraction. The organic solvents used as extractants in DLLME-SFOD must be immiscible with water, of lower density, low volatility, high partition coefficient and low melting and freezing points. The extraction efficiency of DLLME-SFOD is affected by types and volumes of organic extractant and disperser, salt addition, pH, temperature, stirring rate and extraction time. This review discusses the principle, optimization variables, advantages and disadvantages and some selected applications of DLLME-SFOD in water, food and biomedical analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Next Generation Solvent Performance in the Modular Caustic Side Solvent Extraction Process - 15495

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Tara E.; Scherman, Carl; Martin, David

    Changes to the Modular Caustic Side Solvent Extraction Unit (MCU) flow-sheet were implemented in the facility. Implementation included changing the scrub and strip chemicals and concentrations, modifying the O/A ratios for the strip, scrub, and extraction contactor banks, and blending the current BoBCalixC6 extractant-based solvent in MCU with clean MaxCalix extractant-based solvent. During the successful demonstration period, the MCU process was subject to rigorous oversight to ensure hydraulic stability and chemical/radionuclide analysis of the key process tanks (caustic wash tank, solvent hold tank, strip effluent hold tank, and decontaminated salt solution hold tank) to evaluate solvent carryover to downstream facilitiesmore » and the effectiveness of cesium removal from the liquid salt waste. Results indicated the extraction of cesium was significantly more effective with an average Decontamination Factor (DF) of 1,129 (range was 107 to 1,824) and that stripping was effective. The contactor hydraulic performance was stable and satisfactory, as indicated by contactor vibration, contactor rotational speed, and flow stability; all of which remained at or near target values. Furthermore, the Solvent Hold Tank (SHT) level and specific gravity was as expected, indicating that solvent integrity and organic hydraulic stability were maintained. The coalescer performances were in the range of processing results under the BOBCalixC6 flow sheet, indicating negligible adverse impact of NGS deployment. After the Demonstration period, MCU began processing via routine operations. Results to date reiterate the enhanced cesium extraction and stripping capability of the Next Generation Solvent (NGS) flow sheet. This paper presents process performance results of the NGS Demonstration and continued operations of MCU utilizing the blended BobCalixC6-MaxCalix solvent under the NGS flowsheet.« less

  2. Electric field-driven, magnetically-stabilized ferro-emulsion phase contactor

    DOEpatents

    Scott, T.C.

    1990-07-17

    Methods and systems are disclosed for interfacial surface area contact between a dispersed phase liquid and a continuous phase liquid in counter-current flow for purposes such as solvent extraction. Initial droplets of a dispersed phase liquid material containing ferromagnetic particles functioning as a packing'' are introduced to a counter-current flow of the continuous phase. A high intensity pulsed electric field is applied so as to shatter the initial droplets into a ferromagnetic emulsion comprising many smaller daughter droplets having a greater combined total surface area than that of the initial droplets in contact with the continuous phase material. A magnetic field is applied to control the position of the ferromagnetic emulsion for enhanced coalescence of the daughter droplets into larger reformed droplets. 2 figs.

  3. Electric field-driven, magnetically-stabilized ferro-emulsion phase contactor

    DOEpatents

    Scott, Timothy C.

    1990-01-01

    Methods and systems for interfacial surface area contact between a dispersed phase liquid and a continuous phase liquid in counter-current flow for purposes such as solvent extraction. Initial droplets of a dispersed phase liquid material containing ferromagnetic particles functioning as a "packing" are introduced to a counter-current flow of the continuous phase. A high intensity pulsed electric field is applied so as to shatter the initial droplets into a ferromagnetic emulsion comprising many smaller daughter droplets having a greater combined total surface area than that of the initial droplets in contact with the continuous phase material. A magnetic field is applied to control the position of the ferromagnetic emulsion for enhanced coalescence of the daughter droplets into larger reformed droplets.

  4. Method for cleaning and passivating a metal surface

    NASA Technical Reports Server (NTRS)

    Alexander, George B. (Inventor); Carpenter, Norman F. (Inventor)

    1976-01-01

    A cleaning solvent useful in the cleaning of metal surfaces, e.g. nickle-iron alloys, contains sulfamic acid, citric acid, a solvent for hydrocarbon residues, and a surfactant. Metal surfaces are cleaned by contacting the surface with the cleaning solvent and then passivated by contact with aqueous solutions of citric acid or sodium nitrite or a combination of the two.

  5. Extraction of vitexin from binahong (Anredera cordifolia (Ten.) Steenis) leaves using betaine - 1,4 butanediol natural deep eutectic solvent (NADES)

    NASA Astrophysics Data System (ADS)

    Mulia, Kamarza; Muhammad, Fajri; Krisanti, Elsa

    2017-03-01

    The leaves of binahong (Anredera cordifolia (Ten) Steenis) contain flavonoids as bioactive substances that have efficacy to treat wounds and diseases caused by bacteria. One of the flavonoids contained in the leaves is 8-glucopyranosyl-4'5'7-trihydroxyflavone or vitexin. Conventional extraction of flavonoids from leaves of binahong has been developed and usually using non-friendly organic solvent. To overcome these problems, a Natural Deep Eutectic Solvent (NADES) is used to replace the conventional organic solvents, as it is an environmentally friendly, non-toxic and high boiling point solvent. In this study, a betaine-based NADES combined with 1,4-butanediol in 1:3 mole ratio was used as the extraction solvent. Vitexin in the extract was analyzed qualitatively and quantitatively using an HPLC. The extraction of vitexin from binahong leaves at room temperature (27 °C) for four hours give yield of 46 ppm, much lower than 200 ppm yield obtained after extraction at 55 °C for 90 minutes. This results showed that (a) NADES consisting of betaine and 1,4 butanediol is a promising green solvent for extraction of vitexin from binahong leaves, and, (b) the extraction can be performed above ambient temperature, as long as it does not exceed the degradation temperature of the bioactive compound extracted.

  6. Selective separation of copper over solder alloy from waste printed circuit boards leach solution.

    PubMed

    Kavousi, Maryam; Sattari, Anahita; Alamdari, Eskandar Keshavarz; Firozi, Sadegh

    2017-02-01

    The printed circuit boards (PCBs) from electronic waste are important resource, since the PCBs contain precious metals such as gold, copper, tin, silver, platinum and so forth. In addition to the economic point of view, the presence of lead turns this scrap into dangerous to environment. This study was conducted as part of the development of a novel process for selective recovery of copper over tin and lead from printed circuit boards by HBF 4 leaching. In previous study, Copper with solder alloy was associated, simultaneously were leached in HBF 4 solution using hydrogen peroxide as an oxidant at room temperature. The objective of this study is the separation of copper from tin and lead from Fluoroborate media using CP-150 as an extractant. The influence of organic solvent's concentration, pH, temperature and A/O phase ratio was investigated. The possible extraction mechanism and the composition of the extracted species have been determined. The separation factors for these metals using this agent are reported, while efficient methods for separation of Cu (II) from other metal ions are proposed. The treatment of leach liquor for solvent extraction of copper with CP-150 revealed that 20% CP-150 in kerosene, a 30min period of contact time, and a pH of 3 were sufficient for the extraction of Cu(II) and 99.99% copper was recovered from the leached solution. Copyright © 2016. Published by Elsevier Ltd.

  7. PREPARATION OF ALKYL PYROPHOSPHATE EXTRACTANTS

    DOEpatents

    Levine, C.A.; Skiens, W.E.; Moore, G.R.

    1960-08-01

    A process for providing superior solvent extractants for metal recovery processes is given wherein the extractant comprises an alkyl pyrophosphoric acid ester dissolved in an organic solvent diluent. Finely divided solid P/sub 2/O/ sub 5/ is slurried in an organic solvent-diluent selected from organic solvents such as kerosene, benzene, chlorobenzene, toluene, etc. An alcohol selected from the higher alcohols having 4 to 17 carbon atoms. e.g.. hexanol-1. heptanol-3, octanol-1. 2.6-dimethyl-heptanol-4, and decanol-1, is rapidly added to the P/sub 2/O/sub 5/ slurry in the amount of about 2 moles of alcohol to 1 mole of P/sub 2/ O/sub 5/. The temperature is maintained below about 110 deg C during the course of the P/sub 2/O/sub 5/-alcohol reaction. An alkyl pyrophosphate extractant compound is formed as a consequence of the reaction process. The alkyl pyrophosphate solvent-diluent extractant phase is useful in solvent extraction metal recovery processes.

  8. Process for the removal of impurities from combustion fullerenes

    DOEpatents

    Alford, J. Michael; Bolskar, Robert

    2005-08-02

    The invention generally relates to purification of carbon nanomaterials, particularly fullerenes, by removal of PAHs and other hydrocarbon impurities. The inventive process involves extracting a sample containing carbon nanomaterials with a solvent in which the PAHs are substantially soluble but in which the carbon nanomaterials are not substantially soluble. The sample can be repeatedly or continuously extracted with one or more solvents to remove a greater amount of impurities. Preferred solvents include ethanol, diethyl ether, and acetone. The invention also provides a process for efficiently separating solvent extractable fullerenes from samples containing fullerenes and PAHs wherein the sample is extracted with a solvent in which both fullerenes and PAHs are substantially soluble and the sample extract then undergoes selective extraction to remove PAHs. Suitable solvents in which both fullerenes and PAHs are soluble include o-xylene, toluene, and o-dichlorobenzene. The purification process is capable of treating quantities of combustion soot in excess of one kilogram and can produce fullerenes or fullerenic soot of suitable purity for many applications.

  9. Sorptive tape extraction in the analysis of the volatile fraction emitted from biological solid matrices.

    PubMed

    Bicchi, C; Cordero, C; Liberto, E; Rubiolo, P; Sgorbini, B; Sandra, P

    2007-05-04

    Sorptive tape extraction (STE) is a recent sorption-based sampling technique in which a flexible polydimethylsiloxane (PDMS) tape is used to recover analytes at the surface of a solid matrix by direct contact as well as from the headspace in equilibrium with it. Solutes thus enriched on the inert PDMS material can be recovered either by solvent desorption or by thermo-desorption. The concentration capability of both direct contact and headspace STE was evaluated by sampling (a) aromatic plants to study the reaction of a vegetable matrix submitted to stress, and (b) fruits at the surface of the pulp or inside the pulp; the composition of the volatile fraction released from the skin when a perfume is sprayed on the back of the hand was also studied. The concentration capability of direct contact and headspace STE was compared to that of HSSE with a 20 microL PDMS twister and HS-SPME with a PDMS 100 microm fibre, by determining the relative abundances (RA) of the characterizing components of the aromatic plants under investigation. Repeatability and influence of tape surface on STE recovery were also evaluated.

  10. Extraction of Illegal Dyes from Red Chili Peppers with Cholinium-Based Deep Eutectic Solvents

    PubMed Central

    Zhu, Shuqiang; Zhu, Xinyue; Su, Along

    2017-01-01

    Deep eutectic solvents (DESs) as a new kind of green solvents have been used to extract bioactive compounds but there are few applications in extracting chrysoidine dyes. In this study, we developed an ultrasonic-assisted extraction method with choline chloride/hydrogen bond donor (ChCl/HBD) DES for the extraction of chrysoidine G (COG), astrazon orange G (AOG), and astrazon orange R (AOR) in food samples. Some experimental parameters, such as extraction time, raw material/solvent ratio, and temperature, were evaluated and optimized as follows: the ratio of ChCl/HBD, 1 : 2 (v/v); the ratio of sample/DES, 1 : 10 (g/mL); extraction time, 20 min; extraction temperature, 50°C. Under the optimized conditions, the limits of detection (μg/mL) were 0.10 for COG and 0.06 for AOG and AOR. The relative standard deviations were in the range of 1.2–2.1%. The recoveries of the three dyes were in the range of 80.2–105.0%. By comparing with other commonly used solvents for extracting chrysoidine dyes, the advantages of DESs proved them to be potential extraction solvents for chrysoidine G, astrazon orange G, and astrazon orange R in foods. PMID:28831327

  11. Study to find the best extraction solvent for use with guava leaves (Psidium guajava L.) for high antioxidant efficacy.

    PubMed

    Seo, Jongkwon; Lee, Soojung; Elam, Marcus L; Johnson, Sarah A; Kang, Jonghoon; Arjmandi, Bahram H

    2014-03-01

    The effects of guava leaves extracted using solvents of water, ethanol, methanol, and different concentrations of hydroethanolic solvents on phenolic compounds and flavonoids, and antioxidant properties have been investigated. The antioxidant capability was assessed based on 2,2-diphenyl-1-picrylhydrazyl radical and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical-scavenging abilities, reducing power, and nitric oxide-and nitrate-scavenging activities. The results demonstrated that the antioxidant ability of guava leaf extracts has a strong relationship with phenolic compound content rather than flavonoid content. Phenolic compound content of water extracted guava leaves was higher compared to pure ethanol and methanol extracts. However, phenolic compound content extracted using hydroethanolic solvent was higher than water, whereas 50% hydroethanolic was observed to be the most effective solvent showing high antioxidant ability.

  12. Deep eutectic solvents as efficient solvent system for the extraction of κ-carrageenan from Kappaphycus alvarezii.

    PubMed

    Das, Arun Kumar; Sharma, Mukesh; Mondal, Dibyendu; Prasad, Kamalesh

    2016-01-20

    Three different deep eutectic solvents (DESs) prepared by the complexation of choline chloride with urea, ethylene glycol and glycerol along with their hydrated counterparts were used for the selective extraction of κ-carrageenan from Kappaphycus alvarezii. Upon comparison of the quality of the polysaccharide with the one obtained using water as extraction media as well as the one extracted using widely practiced conventional method, it was found that, the physicochemical as well as rheological properties of κ-carrageenan obtained using DESs as solvents was at par to the one obtained using conventional method and was superior in quality when compared to κ-carrageenan obtained using water as solvent. Considering the tedious nature of the extraction method employed in conventional extraction process, the DESs can be considered as suitable alternative solvents for the facile extraction of the polysaccharide directly from the seaweed. However, among the hydrated and non-hydrated DESs, the hydrated ones were found to be more effective in comparison to their non-hydrated counterparts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Green ultrasound-assisted extraction of carotenoids from pomegranate wastes using vegetable oils.

    PubMed

    Goula, Athanasia M; Ververi, Maria; Adamopoulou, Anna; Kaderides, Kyriakos

    2017-01-01

    The objective of this work was to develop a new process for pomegranate peels application in food industries based on ultrasound-assisted extraction of carotenoids using different vegetable oils as solvents. In this way, an oil enriched with antioxidants is produced. Sunflower oil and soy oil were used as alternative solvents and the effects of various parameters on extraction yield were studied. Extraction temperature, solid/oil ratio, amplitude level, and extraction time were the factors investigated with respect to extraction yield. Comparative studies between ultrasound-assisted and conventional solvent extraction were carried out in terms of processing procedure and total carotenoids content. The efficient extraction period for achieving maximum yield of pomegranate peel carotenoids was about 30min. The optimum operating conditions were found to be: extraction temperature, 51.5°C; peels/solvent ratio, 0.10; amplitude level, 58.8%; solvent, sunflower oil. A second-order kinetic model was successfully developed for describing the mechanism of ultrasound extraction under different processing parameters. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Solvent extraction of gold using ionic liquid based process

    NASA Astrophysics Data System (ADS)

    Makertihartha, I. G. B. N.; Zunita, Megawati; Rizki, Z.; Dharmawijaya, P. T.

    2017-01-01

    In decades, many research and mineral processing industries are using solvent extraction technology for metal ions separation. Solvent extraction technique has been used for the purification of precious metals such as Au and Pd, and base metals such as Cu, Zn and Cd. This process uses organic compounds as solvent. Organic solvents have some undesired properties i.e. toxic, volatile, excessive used, flammable, difficult to recycle, low reusability, low Au recovery, together with the problems related to the disposal of spent extractants and diluents, even the costs associated with these processes are relatively expensive. Therefore, a lot of research have boosted into the development of safe and environmentally friendly process for Au separation. Ionic liquids (ILs) are the potential alternative for gold extraction because they possess several desirable properties, such as a the ability to expanse temperature process up to 300°C, good solvent properties for a wide range of metal ions, high selectivity, low vapor pressures, stability up to 200°C, easy preparation, environmentally friendly (commonly called as "green solvent"), and relatively low cost. This review paper is focused in investigate of some ILs that have the potentials as solvent in extraction of Au from mineral/metal alloy at various conditions (pH, temperature, and pressure). Performances of ILs extraction of Au are studied in depth, i.e. structural relationship of ILs with capability to separate Au from metal ions aggregate. Optimal extraction conditon in order to gain high percent of Au in mineral processing is also investigated.

  15. Characteristics and antioxidant of Ulva intestinalis sulphated polysaccharides extracted with different solvents.

    PubMed

    Peasura, Napassorn; Laohakunjit, Natta; Kerdchoechuen, Orapin; Wanlapa, Sorada

    2015-11-01

    Ulva intestinalis, a tubular green seaweed, is a rich source of nutrient, especially sulphated polysaccharides. Sulphated polysaccharides from U. intestinalis were extracted with distilled water, 0.1N HCl, and 0.1N NaOH at 80°C for 1, 3, 6, 12, and 24h to study the effect of the extraction solvent and time on their chemical composition and antioxidant activity. Different types of solvents and extraction time had a significant influence on the chemical characteristics and antioxidant activity (p<0.05). Monosaccharide composition and FT-IR spectra analyses revealed that sulphated polysaccharides from all solvent extractions have a typical sugar backbone (glucose, rhamnose, and sulphate attached at C-2 or C-3 of rhamnose). Sulphated polysaccharides extracted with acid exhibited greater antioxidant activity than did those extracted with distilled water and alkali. The results indicated that solvent extraction could be an efficacious method for enhancing antioxidant activity by distinct molecular weight and chemical characteristic of sulphated polysaccharides. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Acaricidal and repellent effects of Cnidium officinale-derived material against Dermanyssus gallinae (Acari: Dermanyssidae).

    PubMed

    Kim, Hyun Kyung; Lee, Seung Ju; Hwang, Bang-Yeon; Yoon, Jong Ung; Kim, Gil-Hah

    2018-04-01

    The acaricidal activity of a methanolic extract and fractions from the rhizome of Cnidium officinale against Dermanyssus gallinae adults was investigated. The C. officinale methanolic extract exhibited 100% acaricidal activity after 48 h of treatment at a dose of 4000 ppm. The acaricidal constituents of the plant were sequentially partitioned with several solvents and then purified using silica gel column chromatography and high-performance liquid chromatography. Gas chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy revealed (Z)-ligustilide as a constituent of C. officinale. Acaricidal activity was examined in three experimental tests (spray, fumigation and contact), with the spraying method being the most effective. The methanolic extract of C. officinale showed both contact and fumigant activities, though only fumigant activity was observed with (Z)-ligustilide. The fumigant effects of the methanolic extract and (Z)-ligustilide caused 86.5 and 62.6% mortality, respectively, of D. gallinae adults at 48 h. Among (Z)-ligustilide, acaricides (bifenthrin, cypermethrin and spinosad) and butylidenephthalide, bifenthrin displayed the highest acaricidal activity, and the activity of butylidenephthalide was 2.3-fold higher than that of (Z)-ligustilide. These results suggest that C. officinale-derived material can be used for the development of a control agent for D. gallinae.

  17. REMEDIATING PESTICIDE CONTAMINATED SOILS USING SOLVENT EXTRACTION

    EPA Science Inventory

    Bench-scale solvent extraction studies were performed on soil samples obtained from a Superfund site contaminated with high levels of p,p'-DDT, p,p'-DDD,, p,p'-DDE and toxaphene. The effectiveness of the solvent extraction process was assessed using methanol and 2-propanol as sol...

  18. Extraction Techniques for Polycyclic Aromatic Hydrocarbons in Soils

    PubMed Central

    Lau, E. V.; Gan, S.; Ng, H. K.

    2010-01-01

    This paper aims to provide a review of the analytical extraction techniques for polycyclic aromatic hydrocarbons (PAHs) in soils. The extraction technologies described here include Soxhlet extraction, ultrasonic and mechanical agitation, accelerated solvent extraction, supercritical and subcritical fluid extraction, microwave-assisted extraction, solid phase extraction and microextraction, thermal desorption and flash pyrolysis, as well as fluidised-bed extraction. The influencing factors in the extraction of PAHs from soil such as temperature, type of solvent, soil moisture, and other soil characteristics are also discussed. The paper concludes with a review of the models used to describe the kinetics of PAH desorption from soils during solvent extraction. PMID:20396670

  19. Comparison of solvent extraction and solid-phase extraction for the determination of polychlorinated biphenyls in transformer oil.

    PubMed

    Mahindrakar, A N; Chandra, S; Shinde, L P

    2014-01-01

    Solid-phase extraction (SPE) of nine polychlorinated biphenyls (PCBs) from transformer oil samples was evaluated using octadecyl (CI8)-bonded porous silica. The efficiency of SPE of these PCBs was compared with those obtained by solvent extraction with DMSO and hexane. Average recoveries exceeding 95% for these PCBs were obtained via the SPE method using small cartridges containing 100mg of 40 pm CI8-bonded porous silica. The average recovery by solvent extraction with DMSO and hexane exceeded 83%. It was concluded that the recoveries and precision for the solvent extraction of PCBs were poorer than those for the SPE. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Temporal dissolution of potentially toxic elements from silver smelting slag by synthetic environmental solutions.

    PubMed

    Ash, Christopher; Borůvka, Luboš; Tejnecký, Václav; Šebek, Ondřej; Nikodem, Antonín; Drábek, Ondřej

    2013-11-15

    Waste slag which is created during precious metal smelting contains high levels of potentially toxic elements (PTE) which can be mobilised from unconfined deposits into the local environment. This paper examines the extractability of selected PTE (Pb, Zn, Cd, Mn) from slag samples by synthetic solutions designed to replicate those in the environment. Extracting agents were used to replicate potential leaching scenarios which are analogous to natural chemical weathering. Slag was submersed in a rainwater simulation solution (RSS), weak citric acid solution (representing rhizosphere secretions) and control solutions (deionised water) for a one month period with solution analyses made at intervals of 1, 24, 168 and 720 h. In 1 mM citric acid, dissolution of Cd and Zn showed little change with time, although for Zn the initial dissolution was considerable. Lead in citric acid was characterized by overall poor extractability. Mn solubility increased until an equilibrium state occurred within 24 h. The solubility of studied metals in citric acid can be characterized by a short time to equilibrium. RSS proved to be an effective solvent that, unlike citric acid solution, extracted increasing concentrations of Cd, Mn and Zn with time. Solubility of Pb in RSS was again very low. When taken as a proportion of a single 2 M HNO3 extraction which was applied to slag samples, Cd was the element most readily leached into RSS and control samples. In both studied solvents, slag heterogeneity is prominent in the case of Cd and Zn solubility. Contact time with solvent appears to be an important variable for the release of PTE from slag into solution. The purpose of this study was to provide insight into the environmental chemical dissolution of PTE from slag, which causes their enrichment in surrounding soils and surface waters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Ionic liquid solutions as extractive solvents for value-added compounds from biomass

    PubMed Central

    Passos, Helena; Freire, Mara G.; Coutinho, João A. P.

    2014-01-01

    In the past few years, the number of studies regarding the application of ionic liquids (ILs) as alternative solvents to extract value-added compounds from biomass has been growing. Based on an extended compilation and analysis of the data hitherto reported, the main objective of this review is to provide an overview on the use of ILs and their mixtures with molecular solvents for the extraction of value-added compounds present in natural sources. The ILs (or IL solutions) investigated as solvents for the extraction of natural compounds, such as alkaloids, flavonoids, terpenoids, lipids, among others, are outlined. The extraction techniques employed, namely solid–liquid extraction, and microwave-assisted and ultrasound-assisted extractions, are emphasized and discussed in terms of extraction yields and purification factors. Furthermore, the evaluation of the IL chemical structure and the optimization of the process conditions (IL concentration, temperature, biomass–solvent ratio, etc.) are critically addressed. Major conclusions on the role of the ILs towards the extraction mechanisms and improved extraction yields are additionally provided. The isolation and recovery procedures of the value-added compounds are ascertained as well as some scattered strategies already reported for the IL solvent recovery and reusability. Finally, a critical analysis on the economic impact versus the extraction performance of IL-based methodologies was also carried out and is here presented and discussed. PMID:25516718

  2. Ionic liquid solutions as extractive solvents for value-added compounds from biomass.

    PubMed

    Passos, Helena; Freire, Mara G; Coutinho, João A P

    2014-12-01

    In the past few years, the number of studies regarding the application of ionic liquids (ILs) as alternative solvents to extract value-added compounds from biomass has been growing. Based on an extended compilation and analysis of the data hitherto reported, the main objective of this review is to provide an overview on the use of ILs and their mixtures with molecular solvents for the extraction of value-added compounds present in natural sources. The ILs (or IL solutions) investigated as solvents for the extraction of natural compounds, such as alkaloids, flavonoids, terpenoids, lipids, among others, are outlined. The extraction techniques employed, namely solid-liquid extraction, and microwave-assisted and ultrasound-assisted extractions, are emphasized and discussed in terms of extraction yields and purification factors. Furthermore, the evaluation of the IL chemical structure and the optimization of the process conditions (IL concentration, temperature, biomass-solvent ratio, etc.) are critically addressed. Major conclusions on the role of the ILs towards the extraction mechanisms and improved extraction yields are additionally provided. The isolation and recovery procedures of the value-added compounds are ascertained as well as some scattered strategies already reported for the IL solvent recovery and reusability. Finally, a critical analysis on the economic impact versus the extraction performance of IL-based methodologies was also carried out and is here presented and discussed.

  3. Method of infusion extraction

    NASA Technical Reports Server (NTRS)

    Chang-Diaz, Franklin R. (Inventor)

    1989-01-01

    Apparatus and method of removing desirable constituents from an infusible material by infusion extraction, where a piston operating in a first chamber draws a solvent into the first chamber where it may be heated, and then moves the heated solvent into a second chamber containing the infusible material, and where infusion extraction takes place. The piston then moves the solvent containing the extract through a filter into the first chamber, leaving the extraction residue in the second chamber.

  4. Continuous extraction of organic materials from water

    USGS Publications Warehouse

    Goldberg, M.C.; DeLong, L.; Kahn, L.

    1971-01-01

    A continuous liquid solvent extractor, designed to utilize organic solvents that are heavier than water, is described. The extractor is capable of handling input rates up to 2 liters per hour and has a 500-ml. extractant capacity. Extraction efficiency is dependent upon the p-value, the two solvent ratios, rate of flow of the aqueous phase, and rate of reflux of the organic phase. Extractors can be serially coupled to increase extraction efficiency and, when coupled with a lighter-than-water extractor, the system will allow the use of any immiscible solvent.

  5. Process for producing fuel grade ethanol by continuous fermentation, solvent extraction and alcohol separation

    DOEpatents

    Tedder, Daniel W.

    1985-05-14

    Alcohol substantially free of water is prepared by continuously fermenting a fermentable biomass feedstock in a fermentation unit, thereby forming an aqueous fermentation liquor containing alcohol and microorganisms. Continuously extracting a portion of alcohol from said fermentation liquor with an organic solvent system containing an extractant for said alcohol, thereby forming an alcohol-organic solvent extract phase and an aqueous raffinate. Said alcohol is separated from said alcohol-organic solvent phase. A raffinate comprising microorganisms and unextracted alcohol is returned to the fermentation unit.

  6. Microwave-assisted extraction (MAE) of bioactive saponin from mahogany seed (Swietenia mahogany Jacq)

    NASA Astrophysics Data System (ADS)

    Waziiroh, E.; Harijono; Kamilia, K.

    2018-03-01

    Mahogany is frequently used for medicines for cancer, tumor, and diabetes, as it contains saponin and flavonoid. Saponin is a complex glycosydic compound consisted of triterpenoids or steroids. Saponin can be extracted from a plant by using a solvent extraction. Microwave Assisted Extraction (MAE) is a non-conventional extraction method that use micro waves in the process. This research was conducted by a Complete Random Design with two factors which were extraction time (120, 150, and 180 seconds) and solvent ratio (10:1, 15:1, and 20:1 v/w). The best treatment of MAE were the solvent ratio 15:1 (v/w) for 180 seconds. The best treatment resulting crude saponin extract yield of 41.46%, containing 11.53% total saponins, and 49.17% of antioxidant activity. Meanwhile, the treatment of maceration method were the solvent ratio 20:1 (v/w) for 48 hours resulting 39.86% yield of saponin crude extract, 9.26% total saponins and 56.23% of antioxidant activity. The results showed MAE was more efficient (less time of extraction and solvent amount) than maceration method.

  7. Environmental life cycle assessment on the separation of rare earth oxides through solvent extraction.

    PubMed

    Vahidi, Ehsan; Zhao, Fu

    2017-12-01

    Over the past decade, Rare Earth Elements (REEs) have gained special interests due to their significance in many industrial applications, especially those related to clean energy. While REEs production is known to cause damage to the ecosystem, only a handful of Life Cycle Assessment (LCA) investigations have been conducted in recent years, mainly due to lack of data and information. This is especially true for the solvent extraction separation of REEs from aqueous solution which is a challenging step in the REEs production route. In the current investigation, an LCA is carried out on a typical REE solvent extraction process using P204/kerosene and the energy/material flows and emissions data were collected from two different solvent extraction facilities in Inner Mongolia and Fujian provinces in China. In order to develop life cycle inventories, Ecoinvent 3 and SimaPro 8 software together with energy/mass stoichiometry and balance were utilized. TRACI and ILCD were applied as impact assessment tools and LCA outcomes were employed to examine and determine ecological burdens of the REEs solvent extraction operation. Based on the results, in comparison with the production of generic organic solvent in the Ecoinvent dataset, P204 production has greater burdens on all TRACI impact categories. However, due to the small amount of consumption, the contribution of P204 remains minimal. Additionally, sodium hydroxide and hydrochloric acid are the two impactful chemicals on most environmental categories used in the solvent extraction operation. On average, the solvent extraction step accounts for 30% of the total environmental impacts associated with individual REOs. Finally, opportunities and challenges for an enhanced environmental performance of the REEs solvent extraction operation were investigated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Study to find the best extraction solvent for use with guava leaves (Psidium guajava L.) for high antioxidant efficacy

    PubMed Central

    Seo, Jongkwon; Lee, Soojung; Elam, Marcus L; Johnson, Sarah A; Kang, Jonghoon; Arjmandi, Bahram H

    2014-01-01

    The effects of guava leaves extracted using solvents of water, ethanol, methanol, and different concentrations of hydroethanolic solvents on phenolic compounds and flavonoids, and antioxidant properties have been investigated. The antioxidant capability was assessed based on 2,2-diphenyl-1-picrylhydrazyl radical and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical-scavenging abilities, reducing power, and nitric oxide-and nitrate-scavenging activities. The results demonstrated that the antioxidant ability of guava leaf extracts has a strong relationship with phenolic compound content rather than flavonoid content. Phenolic compound content of water extracted guava leaves was higher compared to pure ethanol and methanol extracts. However, phenolic compound content extracted using hydroethanolic solvent was higher than water, whereas 50% hydroethanolic was observed to be the most effective solvent showing high antioxidant ability. PMID:24804076

  9. A combination of solvent extraction and freeze thaw for oil recovery from petroleum refinery wastewater treatment pond sludge.

    PubMed

    Hu, Guangji; Li, Jianbing; Hou, Haobo

    2015-01-01

    A combination of solvent extraction and freeze thaw was examined for recovering oil from the high-moisture petroleum refinery wastewater treatment pond sludge. Five solvents including cyclohexane (CHX), dichloromethane (DCM), methyl ethyl ketone (MEK), ethyl acetate (EA), and 2-propanol (2-Pro) were examined. It was found that these solvents except 2-Pro showed a promising oil recovery rate of about 40%, but the recycling of DCM solvent after oil extraction was quite low. Three solvents (CHX, MEK and EA) were then selected for examining the effect of freeze/thaw treatment on improving the quality of recovered oil. This treatment increased the total petroleum hydrocarbon (TPH) content in recovered oil from about 40% to 60% for both MEK and EA extractions, but little effect was observed for CHX extraction. Although the solid residue after oil recovery had a significantly decreased TPH content, a high concentration of heavy metals was observed, indicating that this residue may require proper management. In general, the combination of solvent extraction with freeze/thaw is effective for high-moisture oily hazardous waste treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Optimisation of Microwave-Assisted Extraction of Pomegranate (Punica granatum L.) Seed Oil and Evaluation 
of Its Physicochemical and Bioactive Properties.

    PubMed

    Çavdar, Hasene Keskin; Yanık, Derya Koçak; Gök, Uğur; Göğüş, Fahrettin

    2017-03-01

    Pomegranate seed oil was extracted in a closed-vessel high-pressure microwave system. The characteristics of the obtained oil, such as fatty acid composition, free fatty acidity, total phenolic content, antioxidant activity and colour, were compared to those of the oil obtained by cold solvent extraction. Response surface methodology was applied to optimise extraction conditions: power (176-300 W), time (5-20 min), particle size ( d =0.125-0.800 mm) and solvent to sample ratio (2:1, 6:1 and 10:1, by mass). The predicted highest extraction yield (35.19%) was obtained using microwave power of 220 W, particle size in the range of d =0.125-0.450 mm and solvent-to-sample ratio of 10:1 (by mass) in 5 min extraction time. Microwave-assisted solvent extraction (MASE) resulted in higher extraction yield than that of Soxhlet (34.70% in 8 h) or cold (17.50% in 8 h) extraction. The dominant fatty acid of pomegranate seed oil was punicic acid (86%) irrespective of the extraction method. Oil obtained by MASE had better physicochemical properties, total phenolic content and antioxidant activity than the oil obtained by cold solvent extraction.

  11. Group extraction of organic compounds present in liquid samples

    NASA Technical Reports Server (NTRS)

    Jahnsen, Vilhelm J. (Inventor)

    1976-01-01

    An extraction device is disclosed comprising a tube containing a substantially inert, chemically non-reactive packing material with a large surface area to volume ratio. A sample which consists of organic compounds dissolved in a liquid, is introduced into the tube. As the sample passes through the packing material it spreads over the material's large surface area to form a thin liquid film which is held on the packing material in a stationary state. A particular group or family of compounds is extractable from the sample by passing a particular solvent system consisting of a solvent and selected reagents through the packing material. The reagents cause optimum conditions to exist for the compounds of the particular family to pass through the phase boundary between the sample liquid and the solvent of the solvent system. Thus, the compounds of the particular family are separated from the sample liquid and become dissolved in the solvent of the solvent system. The particular family of compounds dissolved in the solvent, representing an extract, exits the tube together with the solvent through the tube's nozzle, while the rest of the sample remains on the packing material in a stationary state. Subsequently, a different solvent system may be passed through the packing material to extract another family of compounds from the remaining sample on the packing material.

  12. EXTRACTION OF SEDIMENT-BOUND CHLORINATED ORGANIC COMPOUNDS: IMPLICATIONS ON FATE AND HAZARD ASSESSMENT. (R825513C007)

    EPA Science Inventory

    Five methods were used for the extraction of hexachlorobutadiene and chlorobenzenes from a contaminated estuarine sediment. The following extraction methods were used: Soxhlet extraction, sonication and solvent extraction, sequential solvent extraction, saponification and solv...

  13. Phenolic content and antioxidant activity of Hibiscus cannabinus L. seed extracts after sequential solvent extraction.

    PubMed

    Yusri, Noordin Mohd; Chan, Kim Wei; Iqbal, Shahid; Ismail, Maznah

    2012-10-25

    A sequential solvent extraction scheme was employed for the extraction of antioxidant compounds from kenaf (Hibiscus cannabinus L.) seeds. Yield of extracts varied widely among the solvents and was the highest for hexane extract (16.6% based on dry weight basis), while water extract exhibited the highest total phenolic content (18.78 mg GAE/g extract), total flavonoid content (2.49 mg RE/g extract), and antioxidant activities (p < 0.05). DPPH and hydroxyl radical scavenging, β-carotene bleaching, metal chelating activity, ferric thiocyanate and thiobarbituric acid reactive substances assays were employed to comprehensively assess the antioxidant potential of different solvent extracts prepared sequentially. Besides water, methanolic extract also exhibited high retardation towards the formation of hydroperoxides and thiobarbituric acid reactive substances in the total antioxidant activity tests (p < 0.05). As conclusion, water and methanol extracts of kenaf seed may potentially serve as new sources of antioxidants for food and nutraceutical applications.

  14. Effects of pH changes in water-based solvents to isolate antibacterial activated extracts of natural products

    NASA Astrophysics Data System (ADS)

    Buang, Yohanes; Suwari, Ola, Antonius R. B.

    2017-12-01

    Effects of pH changes in solvents on isolation of antibacterial activities of natural product extracts were conducted in the present study. Sarang semut (M. pendens) tubers as the model material for the study was considered to be the strategic resource of natural products based on its biochemical and therapeutical effects. The water with pH 5, 7, 9, and 13 was used as the solvents. The antibacterial activities of the resulted extracts indicated that higher the working pH, higher activities of the resulted extracts. The extent activities of the resulted extracts followed the increasing pH of the maceration system. The study also found that higher pH of the working solvent, higher the amounts of the antibacterial extracts isolated from the sample matrix of the natural product. The higher pH of the water solvents plays essential roles to promote the antibacterial activities of the natural product extracts from M. pendens tubers.

  15. Comparisons between conventional, ultrasound-assisted and microwave-assisted methods for extraction of anthraquinones from Heterophyllaea pustulata Hook f. (Rubiaceae).

    PubMed

    Barrera Vázquez, M F; Comini, L R; Martini, R E; Núñez Montoya, S C; Bottini, S; Cabrera, J L

    2014-03-01

    This work reports a comparative study about extraction methods used to obtain anthraquinones (AQs) from stems and leaves of Heterophyllae pustulata Hook (Rubiáceae). One of the conventional procedures used to extract these metabolites from a vegetable matrix is by successive Soxhlet extractions with solvents of increasing polarity: starting with hexane to eliminate chlorophylls and fatty components, following by benzene and finally ethyl acetate. However, this technique shows a low extraction yield of total AQs, and consumes large quantities of solvent and time. Ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE) have been investigated as alternative methods to extract these compounds, using the same sequence of solvents. It was found that UAE increases the extraction yield of total AQs and reduces the time and amount of solvent used. Nevertheless, the combination UAE with benzene, plus MAE with ethyl acetate at a constant power of 900 W showed the best results. A higher yield of total AQs was obtained in less time and using the same amount of solvent that UAE. The optimal conditions for this latter procedure were UAE with benzene at 50 °C during 60 min, followed by MAE at 900 W during 15 min using ethyl acetate as extraction solvent. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Organosolv extraction of lignin from hydrolyzed almond shells and application of the delta-value theory.

    PubMed

    Quesada-Medina, Joaquín; López-Cremades, Francisco Javier; Olivares-Carrillo, Pilar

    2010-11-01

    The solubility of lignin from hydrolyzed almond (Prunus amygdalus) shells in different acetone, ethanol and dioxane-water mixtures and conditions (extraction time and temperature) was studied. The concept of the solubility parameter (delta-value) was applied to explain the effect of organic solvent concentration on lignin solubility. The organic solvent-water mixture that led to the highest lignin extraction was composed of a 75% vol. of organic solvent for all the solvent series investigated (acetone, ethanol and dioxane). Moreover, the best lignin extraction conditions were a temperature of 210 degrees C and an extraction time of 40 min for the acetone and ethanol series, and 25 min for the dioxane series. The delta-value of the hydrolyzed almond shell lignin [14.60 (cal/cm(3))(1/2)] and that of the organic solvent-water mixtures was calculated. The experimental delignification capacity of the aqueous organic solvents clearly reflected the proximity of their delta-value to that of lignin. The hydrogen-bonding capacity of the solvent-water mixtures was also taken into account. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Switchable solvents and methods of use thereof

    DOEpatents

    Jessop, Philip G.; Eckert, Charles A.; Liotta, Charles L.; Heldebrant, David J.

    2013-08-20

    A solvent that reversibly converts from a nonionic liquid mixture to an ionic liquid upon contact with a selected trigger, e.g., contact with CO.sub.2, is described. In preferred embodiments, the ionic solvent is readily converted back to the nonionic liquid mixture. The nonionic liquid mixture includes an amidine or guanidine or both, and water, alcohol, or a combination thereof. Single component amine solvents that reversibly convert between ionic and non-ionic states are also described. Some embodiments require increased pressure to convert; others convert at 1 atmosphere.

  18. Switchable solvents and methods of use thereof

    DOEpatents

    Jessop, Philip G [Kingston, CA; Eckert, Charles A [Atlanta, GA; Liotta, Charles L [Atlanta, GA; Heldebrant, David J [Richland, WA

    2011-07-19

    A solvent that reversibly converts from a nonionic liquid mixture to an ionic liquid upon contact with a selected trigger, e.g., contact with CO.sub.2, is described. In preferred embodiments, the ionic solvent is readily converted back to the nonionic liquid mixture. The nonionic liquid mixture includes an amidine or guanidine or both, and water, alcohol, or a combination thereof. Single component amine solvents that reversibly convert between ionic and non-ionic states are also described. Some embodiments require increased pressure to convert; others convert at 1 atmosphere.

  19. Switchable solvents and methods of use thereof

    DOEpatents

    Jessop, Philip G; Eckert, Charles A; Liotta, Charles L; Heldebrant, David J

    2014-04-29

    A solvent that reversibly converts from a nonionic liquid mixture to an ionic liquid upon contact with a selected trigger, e.g., contact with CO.sub.2, is described. In preferred embodiments, the ionic solvent is readily converted back to the nonionic liquid mixture. The nonionic liquid mixture includes an amidine or guanidine or both, and water, alcohol, or a combination thereof. Single component amine solvents that reversibly convert between ionic and non-ionic states are also described. Some embodiments require increased pressure to convert; others convert at 1 atmosphere.

  20. SEPARATION OF HAFNIUM FROM ZIRCONIUM

    DOEpatents

    Overholser, L.B.; Barton, C.J. Sr.; Ramsey, J.W.

    1960-05-31

    The separation of hafnium impurities from zirconium can be accomplished by means of organic solvent extraction. The hafnium-containing zirconium feed material is dissolved in an aqueous chloride solution and the resulting solution is contacted with an organic hexone phase, with at least one of the phases containing thiocyanate. The hafnium is extracted into the organic phase while zirconium remains in the aqueous phase. Further recovery of zirconium is effected by stripping the onganic phase with a hydrochloric acid solution and commingling the resulting strip solution with the aqueous feed solution. Hexone is recovered and recycled by means of scrubbing the onganic phase with a sulfuric acid solution to remove the hafnium, and thiocyanate is recovered and recycled by means of neutralizing the effluent streams to obtain ammonium thiocyanate.

  1. SEPARATION OF POLONIUM, PROTACTINIUM OR MIXTURES THEREOF IN AQUEOUS SOLUTION FROM BISMUTH, LEAD, ZIRCONIUM AND/OR COLUMBIUM VALUES

    DOEpatents

    Van Winkle, Q.; Kraus, K.A.

    1959-10-27

    A process is presented for separating polonium, protactinium, or mixtures thereof in aqueous solution from bismuth, zirconium, lead, and niobium values contained in the solution. The method comprises providing hydrochloric acid in the solution in a concentration of at least 5N. contacting the aqueous solution with a substantially waterimmiscible organic solvent such as diisopropyl ketone, and separating the aqueous phase containing the bismuth, zirconium, lead, and niobium from the organic extract phase containing the polonium, protactinium, or mixture thereof.

  2. Supercritical multicomponent solvent coal extraction

    NASA Technical Reports Server (NTRS)

    Corcoran, W. H.; Fong, W. S.; Pichaichanarong, P.; Chan, P. C. F.; Lawson, D. D. (Inventor)

    1983-01-01

    The yield of organic extract from the supercritical extraction of coal with larger diameter organic solvents such as toluene is increased by use of a minor amount of from 0.1 to 10% by weight of a second solvent such as methanol having a molecular diameter significantly smaller than the average pore diameter of the coal.

  3. Oil recovery from petroleum sludge through ultrasonic assisted solvent extraction.

    PubMed

    Hu, Guangji; Li, Jianbing; Huang, Shuhui; Li, Yubao

    2016-09-18

    The effect of ultrasonic assisted extraction (UAE) process on oil recovery from refinery oily sludge was examined in this study. Two types of UAE treatment including UAE probe (UAEP) system and UAE bath (UAEB) system were investigated. Their oil recovery efficiencies were compared to that of mechanical shaking extraction (MSE). Three solvents including cyclohexane (CHX), ethyl acetate (EA), and methyl ethyl ketone (MEK) were examined as the extraction solvents. The influence of experimental factors on oil and solvent recovery was investigated using an orthogonal experimental design. Results indicated that solvent type, solvent-to-sludge (S/S) ratio, and treatment duration could have significant effects on oil recovery in UAE treatment. Under the optimum conditions, UAEP treatment can obtain an oil recovery of 68.8% within 20 s, which was higher than that (i.e., 62.0%) by MSE treatment after 60 min' extraction. UAEB treatment can also obtain a promising oil recovery within shorter extraction duration (i.e., 15 min) than MSE. UAE was thus illustrated as an effective and improved approach for oily sludge recycling.

  4. Alternatives for Benzene in the Extraction of Bitumen Fume from Exposure Sample Media.

    PubMed

    Sutter, Benjamin; Ravera, Christel; Hussard, Caroline; Langlois, Eddy

    2016-01-01

    Benzene is frequently used to extract collected bitumen fumes from personal sampler substrates. However, this solvent is particularly dangerous because of its carcinogenicity (group 1 of the International Agency for Research on Cancer classification). Therefore, to prevent the exposure of laboratory technicians to benzene during the fume extraction step from samplers, a compromise had to be found to identify a less toxic solvent with the same extraction capacity. To compare the extraction capacities of selected solvents, bitumen fumes were generated in the laboratory from three different batches of road surfacing bitumen collected on dedicated bitumen fume samplers. The samplers were then extracted by benzene and the solvents tested. Of 11 selected solvents less toxic than benzene and used in studies on bitumen and bitumen fume analyses, n-hexane and n-heptane were identified as alternatives to benzene. In particular, the results demonstrated that n-heptane was the best candidate solvent for benzene replacement, due to its extraction efficiency comparable to benzene for the three bitumen fumes tested and its low toxicity, which is highly compatible with benzene replacement. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  5. Adsorption of flexible polymer chains on a surface: Effects of different solvent conditions

    NASA Astrophysics Data System (ADS)

    Martins, P. H. L.; Plascak, J. A.; Bachmann, M.

    2018-05-01

    Polymer chains undergoing a continuous adsorption-desorption transition are studied through extensive computer simulations. A three-dimensional self-avoiding walk lattice model of a polymer chain grafted onto a surface has been treated for different solvent conditions. We have used an advanced contact-density chain-growth algorithm, in which the density of contacts can be directly obtained. From this quantity, the order parameter and its fourth-order Binder cumulant are computed, as well as the corresponding critical exponents and the adsorption-desorption transition temperature. As the number of configurations with a given number of surface contacts and monomer-monomer contacts is independent of the temperature and solvent conditions, it can be easily applied to get results for different solvent parameter values without the need of any extra simulations. In analogy to continuous magnetic phase transitions, finite-size-scaling methods have been employed. Quite good results for the critical properties and phase diagram of very long single polymer chains have been obtained by properly taking into account the effects of corrections to scaling. The study covers all solvent effects, going from the limit of super-self-avoiding walks, characterized by effective monomer-monomer repulsion, to poor solvent conditions that enable the formation of compact polymer structures.

  6. Three-dimensional simulation of rivulet and film flows over an inclined plate: Effects of solvent properties and contact angle

    DOE PAGES

    Singh, Rajesh K.; Galvin, Janine E.; Sun, Xin

    2015-12-10

    We numerically investigated the film flow down an inclined plate using the volume of fluid (VOF) method. The flow simulations have been systematically carried out for a wide range of parameters, such as inlet size, inclination angle, contact angle, flow rates and solvent properties (viscosity and surface tension). Based on the simulation results, scaling theory is proposed for both interfacial area and for film thickness in terms of the Kapitza number (Ka).The Kapitza number is advantageous because it depends only on solvent properties. The Kapitza number decreases with increased solvent viscosity and is fixed for a given fluid. Here, tomore » investigate the effects of solvent properties on interfacial area a small inlet cross-section was used. The interfacial area decreases with increased value of Ka. The time to reach pseudo-steady state of rivulet is also observed to increase with decreasing Ka. For a fixed flow rate, the inlet cross-section has marginal effect on the interfacial area; however, the developed width of the rivulet remains unchanged. In addition to inlet size, flow rate and solvent properties, the impact of contact angle on film thickness and interfacial area was also investigated. The contact angle has negligible effect for a fully wetted plate, but it significantly affects the interfacial area of the rivulet. Finally, a scaling theory for interfacial area in terms of the contact angle and Ka is presented.« less

  7. Potential of mean force between two hydrophobic solutes in water.

    PubMed

    Southall, Noel T; Dill, Ken A

    2002-12-10

    We study the potential of mean force between two nonpolar solutes in the Mercedes Benz model of water. Using NPT Monte Carlo simulations, we find that the solute size determines the relative preference of two solute molecules to come into contact ('contact minimum') or to be separated by a single layer of water ('solvent-separated minimum'). Larger solutes more strongly prefer the contacting state, while smaller solutes have more tendency to become solvent-separated, particularly in cold water. The thermal driving forces oscillate with solute separation. Contacts are stabilized by entropy, whereas solvent-separated solute pairing is stabilized by enthalpy. The free energy of interaction for small solutes is well-approximated by scaled-particle theory. Copyright 2002 Elsevier Science B.V.

  8. Optimisation and validation of the microwave-assisted extraction of phenolic compounds from rice grains.

    PubMed

    Setyaningsih, W; Saputro, I E; Palma, M; Barroso, C G

    2015-02-15

    A new microwave-assisted extraction (MAE) method has been investigated for the extraction of phenolic compounds from rice grains. The experimental conditions studied included temperature (125-175°C), microwave power (500-1000W), time (5-15min), solvent (10-90% EtOAc in MeOH) and solvent-to-sample ratio (10:1 to 20:1). The extraction variables were optimised by the response surface methodology. Extraction temperature and solvent were found to have a highly significant effect on the response value (p<0.0005) and the extraction time also had a significant effect (p<0.05). The optimised MAE conditions were as follows: extraction temperature 185°C, microwave power 1000W, extraction time 20min, solvent 100% MeOH, and solvent-to-sample ratio 10:1. The developed method had a high precision (in terms of CV: 5.3% for repeatability and 5.5% for intermediate precision). Finally, the new method was applied to real samples in order to investigate the presence of phenolic compounds in a wide variety of rice grains. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Alternative Bio-Based Solvents for Extraction of Fat and Oils: Solubility Prediction, Global Yield, Extraction Kinetics, Chemical Composition and Cost of Manufacturing

    PubMed Central

    Sicaire, Anne-Gaëlle; Vian, Maryline; Fine, Frédéric; Joffre, Florent; Carré, Patrick; Tostain, Sylvain; Chemat, Farid

    2015-01-01

    The present study was designed to evaluate the performance of alternative bio-based solvents, more especially 2-methyltetrahydrofuran, obtained from crop’s byproducts for the substitution of petroleum solvents such as hexane in the extraction of fat and oils for food (edible oil) and non-food (bio fuel) applications. First a solvent selection as well as an evaluation of the performance was made with Hansen Solubility Parameters and the COnductor-like Screening MOdel for Realistic Solvation (COSMO-RS) simulations. Experiments were performed on rapeseed oil extraction at laboratory and pilot plant scale for the determination of lipid yields, extraction kinetics, diffusion modeling, and complete lipid composition in term of fatty acids and micronutrients (sterols, tocopherols and tocotrienols). Finally, economic and energetic evaluations of the process were conducted to estimate the cost of manufacturing using 2-methyltetrahydrofuran (MeTHF) as alternative solvent compared to hexane as petroleum solvent. PMID:25884332

  10. Supercritical solvent coal extraction

    NASA Technical Reports Server (NTRS)

    Compton, L. E. (Inventor)

    1984-01-01

    Yields of soluble organic extract are increased up to about 50% by the supercritical extraction of particulate coal at a temperature below the polymerization temperature for coal extract fragments (450 C.) and a pressure from 500 psig to 5,000 psig by the conjoint use of a solvent mixture containing a low volatility, high critical temperature coal dissolution catalyst such as phenanthrene and a high volatility, low critical temperature solvent such as toluene.

  11. Higher Americium Oxidation State Research Roadmap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mincher, Bruce J.; Law, Jack D.; Goff, George S.

    2015-12-18

    The partitioning of hexavalent Am from dissolved nuclear fuel requires the ability to efficiently oxidize Am(III) to Am(VI) and to maintain that oxidation state for a length of time sufficient to perform the separation. Several oxidants have been, or are being developed. Chemical oxidants include Ag-catalyzed ozone, Ag-catalyzed peroxydisulfate, Cu(III) periodate, and sodium bismuthate. Hexavalent americium has also now successfully been prepared by electrolysis, using functionalized electrodes. So-called auto-reduction rates of Am(VI) are sufficiently slow to allow for separations. However, for separations based on solvent extraction or ion exchange using organic resins, the high valence state must be maintained undermore » the reducing conditions of the organic phase contact, and a holding oxidant is probably necessary. Until now, only Cu(III) periodate and sodium bismuthate oxidation have been successfully combined with solvent extraction separations. Bismuthate oxidation provided the higher DAm, since it acts as its own holding oxidant, and a successful hot test using centrifugal contactors was performed. For the other oxidants, Ag-catalyzed peroxydisulfate will not oxidize americium in nitric acid concentrations above 0.3 M, and it is not being further investigated. Peroxydisulfate in the absence of Ag catalysis is being used to prepare Am(V) in ion exchange work, discussed below. Preliminary work with Ag-catalyzed ozone has been unsuccessful for extractions of Am(VI) from 6.5 M HNO3, and only one attempt at extraction, also from 6.5 M HNO3, using the electrolytic oxidation has been attempted. However, this high acid concentration was based on the highest Am extraction efficiency using the bismuthate oxidant; which is only sparingly soluble, and thus the oxidation yield is based on bismuthate solubility. Lower acid concentrations may be sufficient with alternative oxidants and work with Ag-ozone, Cu(III) and electrolysis is on-going. Two non-solvent-extraction separations are also under investigation. The first would separate Am(VI) by co-crystallization with uranium and the other oxidizable actinides as their nitrate salts. This novel idea has been successful in lab scale testing, and merits further investigation. Similarly, success has been achieved in separations using inorganic or hybrid ion exchange materials to sorb the lanthanides and actinides, while allowing pentavalent americium to elute. This is the only technique currently investigating Am(V), despite the advantages of this oxidation state with regard to its higher stability. The ultimate destination for this roadmap is to develop an americium separation that can be applied under process conditions, preferably affording a co-separation of the actinyl (VI) ions. Toward that end, emphasis is given here to selection of a solvent extraction flowsheet for testing in the INL centrifugal contactor hot test bed during FY16. A solvent extraction process will be tested mainly because solvent extraction separations of Am(VI) are relatively mature and the test bed currently exists in a configuration to support them. Thus, a major goal of FY16 is to select the oxidant/ligand combination to run such a test using the contactors. The only ligands under consideration are DAAP and DEHBA. This is not to say that ion exchange and co-crystallization techniques are unimportant. They merit continued investigation, but are not mature enough for hot test bed testing at this time.« less

  12. Ionic Liquids as Extraction Media for Metal Ions

    NASA Astrophysics Data System (ADS)

    Hirayama, Naoki

    In solvent extraction separation of metal ions, recently, many researchers have investigated possible use of hydrophobic ionic liquids as extraction media instead of organic solvents. Ionic liquids are salts of liquid state around room temperature and can act not only as solvents but also as ion-exchangers. Therefore, the extraction mechanism of metal ions into ionic liquids is complicated. This review presents current overview and perspective on evaluation of nature of hydrophobic ionic liquids as extraction media for metal ions.

  13. Surface Nanobubbles in Nonaqueous Media: Looking for Nanobubbles in DMSO, Formamide, Propylene Carbonate, Ethylammonium Nitrate, and Propylammonium Nitrate.

    PubMed

    An, Hongjie; Liu, Guangming; Atkin, Rob; Craig, Vincent S J

    2015-07-28

    Surface nanobubbles produced by supersaturation during the exchange of ethanol for water are routinely observed on hydrophobic surfaces, are stable for days, and have contact angles that are very much greater than observed macroscopically. Here, we test the hypothesis that nanobubbles can also be observed in nonaqueous solvents in order to ascertain if their anomalous lifetimes and contact angles are related to properties of the solvent. Nanobubbles were seen in the protic solvents formamide, ethylammonium nitrate, and propylammonium nitrate, but not in propylene carbonate or dimethyl sulfoxide. Solvents in which nanobubbles were observed exhibit a three-dimensional hydrogen-bonding network. Like in aqueous systems, the nanobubbles were stable for days and exhibited high contact angles (∼165°).

  14. Central composite design parameterization of microalgae/cyanobacteria co-culture pretreatment for enhanced lipid extraction using an external clamp-on ultrasonic transducer.

    PubMed

    Ellison, Candice R; Overa, Sean; Boldor, Dorin

    2018-05-19

    Lipids extracted from algal biomass could provide an abundant, rapidly growing, high yield feedstock for bio-diesel and other green fuels to supplement current fossil-based sources. Ultrasound pretreatment is a mechanical cell disruption method that has been shown to enhance lipid recovery from algae due to cavitation effects that disrupt algae cell walls. In this study, a locally grown mixture of Chlorella vulgaris/Cyanobacteria leptolyngbya was sonicated in an ultrasonic reactor with a clamp-on transducer prior to solvent lipid extraction. This configuration allows for a non-contact delivery method of ultrasonic energy with improved operational advantages (no fouling of transducer, continuous operation, and fully scalable design). A central composite design (CCD) was implemented to statistically analyze and evaluate the effect of ultrasonic power (350-750 W) and treatment time (5-30 min) on lipid yield. Lipid recovery was found to increase with both ultrasonic power and treatment time. Total lipid yields (on dry biomass basis) extracted via the Bligh and Dyer method from Chlorella vulgaris/cyanobacteria co-culture ranged from 8.3% for untreated algae to 16.9% for algae sonicated with 750 W power for 30 min, which corresponds to more than a doubling of lipid recovery due to ultrasound pretreatment. Increased power and treatment times were found to increase the degree of cell disruption as observed in the SEM and TEM images after ultrasonic pretreatment. Additionally, hexane (1:1 v/v) was evaluated as an alternative to the standard Bligh & Dyer (2:2:1.8 v/v/v chloroform/methanol/cell suspension) lipid extraction solvent system. On average, the Bligh and Dyer method extracted on average over twice the amount of lipids compared to hexane extraction. The lipid profile of the algae extracts indicates high concentrations of lauric acid (12:0), palmitic acid (16:0), stearic acid (18:0), oleic acid (18:1), and linoleic acid (18:2). This particular configuration of an ultrasonic system proved to be a viable method for the pretreatment of algae for enhanced lipid yields. Future research should focus on identifying alternative extraction solvents and expanding the range of treatment conditions to optimize the ultrasonic power and treatment times for maximum lipid recovery. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Effect of Piper betle L. and its extracts on the growth and aflatoxin production by Aspergillus parasiticus.

    PubMed

    Chou, C C; Yu, R C

    1984-01-01

    Ground powder of the leaf and fruit of Piper betle L., a tropical spice plant grown in Southeast Asia, was prepared and extracted by chloroform, ethanol and water with one solvent only or with 3 solvents in sequence. The betel powder and various extracts were added to YES broth to determine their effects on the growth and aflatoxin production by Aspergillus parasiticus. Results showed that betel leaf powder exhibited higher antimycotic activity than fruit. One half percent of ground leaf powder completely inhibited the growth and aflatoxin production by A. parasiticus. Among the solvent extracts, chloroform and ethanol extracts of betel leaf prepared from a single solvent extraction showed more antimycotic activity. The ethanol extract of betel leaf at the level of 450 micrograms/ml would eliminate A. parasiticus growth and aflatoxin production. The antimycotic activity of this ethanol extract was most pronounced at pH 4.

  16. Comparative Analysis of Chemical Composition, Antioxidant Activity and Quantitative Characterization of Some Phenolic Compounds in Selected Herbs and Spices in Different Solvent Extraction Systems.

    PubMed

    Sepahpour, Shabnam; Selamat, Jinap; Abdul Manap, Mohd Yazid; Khatib, Alfi; Abdull Razis, Ahmad Faizal

    2018-02-13

    This study evaluated the efficacy of various organic solvents (80% acetone, 80% ethanol, 80% methanol) and distilled water for extracting antioxidant phenolic compounds from turmeric, curry leaf, torch ginger and lemon grass extracts. They were analyzed regarding the total phenol and flavonoid contents, antioxidant activity and concentration of some phenolic compounds. Antioxidant activity was determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay and the ferric reducing antioxidant power (FRAP) assay. Quantification of phenolic compounds was carried out using high-performance liquid chromatography (HPLC). All the extracts possessed antioxidant activity, however, the different solvents showed different efficiencies in the extraction of phenolic compounds. Turmeric showed the highest DPPH values (67.83-13.78%) and FRAP (84.9-2.3 mg quercetin/g freeze-dried crude extract), followed by curry leaf, torch ginger and lemon grass. While 80% acetone was shown to be the most efficient solvent for the extraction of total phenolic compounds from turmeric, torch ginger and lemon grass (221.68, 98.10 and 28.19 mg GA/g freeze dried crude extract, respectively), for the recovery of phenolic compounds from curry leaf (92.23 mg GA/g freeze-dried crude extract), 80% ethanol was the most appropriate solvent. Results of HPLC revealed that the amount of phenolic compounds varied depending on the types of solvents used.

  17. Occupational allergic contact dermatitis to nitromethane.

    PubMed

    Webb, Kelli G; Fowler, Joseph F

    2002-12-01

    Nitromethane has wide industrial and commercial application as a polar solvent for adhesives and acrylics as well as explosive fuel. Allergic contact dermatitis to this chemical has not been described previously. The authors documented allergic contact hand dermatitis in 4 coworkers who similarly handled an adhesive solvent containing nitromethane. All 4 cases were confirmed by patch testing and resolved after allergen avoidance. Copyright 2002, Elsevier Science (USA)

  18. Extraction of cesium, strontium and the platinium group metals from acidic high activity nuclear waste using a Purex process compatible organic extractant. Final report, December 15, 1980-August 15, 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, M.W. Jr.; Van Brunt, V.

    1984-09-14

    Purex process compatible organic systems which selectively and reversibly extract cesium, strontium, and palladium from synthetic mixed fission product solutions containing 3M HNO/sub 3/ have been developed. This advance makes the development of continuous solvent extraction processes for their recovery more likely. The most favorable cesium and strontium complexing solutions have been tested for radiation stability to 10/sup 7/ rad using a 0.4 x 10/sup 7/ rad/h /sup 60/Co source. The distribution coefficients dropped somewhat but remained above unity. For cesium the complexing organic solution is 5 vol % (0.1M) NNS, 27 vol % TBP and 68 vol % kerosenemore » containing 0.05m Bis 4,4',(5')(1-hydroxy 2-ethylhexyl)-benzo 18-crown-6 (Crown XVII). The NNS is a sulfonic acid cation exchanger. With an aqueous phase containing 0.006M Cs/sup +1/ in contact with an equal volume of extractant the D org/aq = 1.6 at a temperature of 25 to 35/sup 0/C. For strontium the complexing organic solution is 5 vol % (0.1M) NNS, 27 vol % TBP and 68 vol % Kerosene containing 0.02M Bis 4,4'(5') (1-hydroxyheptyl)cyclohexo 18-crown-6 (Crown XVI). With an aqueous phase containing 0.003M Sr/sup +2/ in contact with an equal volume of extractant the D org/aq = 1.98 at a temperature of 25 to 35/sup 0/C. For palladium the complexing organic solution consisted of a ratio of TBP/kerosene of 0.667 containing 0.3M Alamine 336 which is a tertiary amine anion exchanger. With an aqueous phase containing 0.0045M Pd/sup +/ in contact with an equal volume of extractant the D org/aq = 1.95 at a temperature of 25 to 35/sup 0/C.« less

  19. Optimisation of Microwave-Assisted Extraction of Pomegranate (Punica granatum L.) Seed Oil and Evaluation 
of Its Physicochemical and Bioactive Properties

    PubMed Central

    Çavdar, Hasene Keskin; Gök, Uğur; Göğüş, Fahrettin

    2017-01-01

    Summary Pomegranate seed oil was extracted in a closed-vessel high-pressure microwave system. The characteristics of the obtained oil, such as fatty acid composition, free fatty acidity, total phenolic content, antioxidant activity and colour, were compared to those of the oil obtained by cold solvent extraction. Response surface methodology was applied to optimise extraction conditions: power (176–300 W), time (5–20 min), particle size (d=0.125–0.800 mm) and solvent to sample ratio (2:1, 6:1 and 10:1, by mass). The predicted highest extraction yield (35.19%) was obtained using microwave power of 220 W, particle size in the range of d=0.125–0.450 mm and solvent-to-sample ratio of 10:1 (by mass) in 5 min extraction time. Microwave-assisted solvent extraction (MASE) resulted in higher extraction yield than that of Soxhlet (34.70% in 8 h) or cold (17.50% in 8 h) extraction. The dominant fatty acid of pomegranate seed oil was punicic acid (86%) irrespective of the extraction method. Oil obtained by MASE had better physicochemical properties, total phenolic content and antioxidant activity than the oil obtained by cold solvent extraction. PMID:28559737

  20. Cesium and strontium extraction using a mixed extractant solvent including crown ether and calixarene extractants

    DOEpatents

    Meikrantz, David H.; Todd, Terry A.; Riddle, Catherine L.; Law, Jack D.; Peterman, Dean R.; Mincher, Bruce J.; McGrath, Christopher A.; Baker, John D.

    2007-11-06

    A mixed extractant solvent including calix[4]arene-bis-(tert-octylbenzo)-crown-6 ("BOBCalixC6"), 4',4',(5')-di-(t-butyldicyclo-hexano)-18-crown-6 ("DtBu18C6"), and at least one modifier dissolved in a diluent. The mixed extractant solvent may be used to remove cesium and strontium from an acidic solution. The DtBu18C6 may be present from approximately 0.01 M to approximately 0.4M, such as from approximately 0.086 M to approximately 0.108 M. The modifier may be 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol ("Cs-7SB") and may be present from approximately 0.01M to approximately 0.8M. In one embodiment, the mixed extractant solvent includes approximately 0.15M DtBu18C6, approximately 0.007M BOBCalixC6, and approximately 0.75M Cs-7SB modifier dissolved in an isoparaffinic hydrocarbon diluent. The mixed extractant solvent may form an organic phase in an extraction system that also includes an aqueous phase. Methods of extracting cesium and strontium as well as strontium alone are also disclosed.

  1. Effect of various solvent on the specific amino acids of black soybean (Glycine soja) sprout

    NASA Astrophysics Data System (ADS)

    Kanetro, B.; Slamet, A.; Wazyka, A.

    2018-01-01

    The objective of this research was to study the effect of various solvent extractions on the specific amino acids as small peptide or free amino acids that was contained in the extract after removal of the macromolecule protein of black soybean sprouts. The experimental design of this research was randomized complete design with one factor, which was the three various solvent, i.e. hexane, ethanol and water. The black soybean seed was germinated for 36 h. The small peptide and free amino acids of black soybean sprout were isolated at 3 various of solvents extraction, and then the macromolecule proteins in the extracts were precipitated at the pH 4. The extracts of black soybean sprout after removal of the macromolecule protein were analysed by HPLC to determine the profile of amino acids for stimulation of insulin secretion. The result of this research showed that the extracts contained the small peptide and free amino acid for stimulation of insulin secretion. The best solvent extraction was water that was due to the content of Leu, Arg, Ala, Phe, Ile, and Lys of water extract was higher than hexane and ethanol extracts.

  2. Alternative and Efficient Extraction Methods for Marine-Derived Compounds

    PubMed Central

    Grosso, Clara; Valentão, Patrícia; Ferreres, Federico; Andrade, Paula B.

    2015-01-01

    Marine ecosystems cover more than 70% of the globe’s surface. These habitats are occupied by a great diversity of marine organisms that produce highly structural diverse metabolites as a defense mechanism. In the last decades, these metabolites have been extracted and isolated in order to test them in different bioassays and assess their potential to fight human diseases. Since traditional extraction techniques are both solvent- and time-consuming, this review emphasizes alternative extraction techniques, such as supercritical fluid extraction, pressurized solvent extraction, microwave-assisted extraction, ultrasound-assisted extraction, pulsed electric field-assisted extraction, enzyme-assisted extraction, and extraction with switchable solvents and ionic liquids, applied in the search for marine compounds. Only studies published in the 21st century are considered. PMID:26006714

  3. Extraction of phenolic compounds from extra virgin olive oil by a natural deep eutectic solvent: Data on UV absorption of the extracts.

    PubMed

    Paradiso, Vito Michele; Clemente, Antonia; Summo, Carmine; Pasqualone, Antonella; Caponio, Francesco

    2016-09-01

    This data article refers to the paper "Towards green analysis of virgin olive oil phenolic compounds: extraction by a natural deep eutectic solvent and direct spectrophotometric detection" [1]. A deep eutectic solvent (DES) based on lactic acid and glucose was used as green solvent for phenolic compounds. Eight standard phenolic compounds were solubilized in the DES. Then, a set of extra virgin olive oil (EVOO) samples (n=65) were submitted to liquid-liquid extraction by the DES. The standard solutions and the extracts were analyzed by UV spectrophotometry. This article reports the spectral data of both the standard solutions and the 65 extracts, as well as the total phenolic content of the corresponding oils, assessed by the Folin-Ciocalteu assay.

  4. Infusion Extractor

    NASA Technical Reports Server (NTRS)

    Chang-Diaz, Franklin R.

    1988-01-01

    Apparatus and method of removing desirable constituents from an infusible material by infusion extraction, where a piston operating in a first chamber draws a solvent into the first chamber where it may be heated, and then moves the heated solvent into a second chamber containing the infusible material, and where infusion extraction takes place. The piston then moves the solvent containing the extract through a filter into the first chamber, leaving the extraction residue in the second chamber.

  5. An interesting two-phase solvent system and its use in preparative isolation of aconitines from aconite roots by counter-current chromatography.

    PubMed

    Han, Quan-Bin; Tang, Wai-Lun; Dong, Cai-Xia; Xu, Hong-Xi; Jiang, Zhi-Hong

    2013-04-01

    Two-phase solvent system plays crucial role in successful separation of organic compounds using counter-current chromatography (CCC). An interesting two-phase solvent system, composed of chloroform/ethyl acetate/methanol/water, is reported here, in which both phases contain sufficient organic solvents to balance their dissolving capacities. Adjusting the solvent system to get satisfactory partition coefficients (K values) for target compounds becomes relatively simple. This solvent system succeeded in sample preparation of aconitine (8.07 mg, 93.69%), hypaconitine (7.74 mg, 93.17%), mesaconitine (1.95 mg, 94.52%) from raw aconite roots (102.24 mg, crude extract), benzoylmesaconine (34.79 mg, 98.67%) from processed aconite roots (400.01 mg, crude extract), and yunaconitine (253.59 mg, 98.65%) from a crude extract of Aconitum forrestii (326.69 mg, crude extract). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Optimization of flavanones extraction by modulating differential solvent densities and centrifuge temperatures.

    PubMed

    Chebrolu, Kranthi K; Jayaprakasha, G K; Jifon, J; Patil, Bhimanagouda S

    2011-07-15

    Understanding the factors influencing flavonone extraction is critical for the knowledge in sample preparation. The present study was focused on the extraction parameters such as solvent, heat, centrifugal speed, centrifuge temperature, sample to solvent ratio, extraction cycles, sonication time, microwave time and their interactions on sample preparation. Flavanones were analyzed in a high performance liquid chromatography (HPLC) and later identified by liquid chromatography and mass spectrometry (LC-MS). The five flavanones were eluted by a binary mobile phase with 0.03% phosphoric acid and acetonitrile in 20 min and detected at 280 nm, and later identified by mass spectral analysis. Dimethylsulfoxide (DMSO) and dimethyl formamide (DMF) had optimum extraction levels of narirutin, naringin, neohesperidin, didymin and poncirin compared to methanol (MeOH), ethanol (EtOH) and acetonitrile (ACN). Centrifuge temperature had a significant effect on flavanone distribution in the extracts. The DMSO and DMF extracts had homogeneous distribution of flavanones compared to MeOH, EtOH and ACN after centrifugation. Furthermore, ACN showed clear phase separation due to differential densities in the extracts after centrifugation. The number of extraction cycles significantly increased the flavanone levels during extraction. Modulating the sample to solvent ratio increased naringin quantity in the extracts. Current research provides critical information on the role of centrifuge temperature, extraction solvent and their interactions on flavanone distribution in extracts. Published by Elsevier B.V.

  7. Extraction of organic compounds with room temperature ionic liquids.

    PubMed

    Poole, Colin F; Poole, Salwa K

    2010-04-16

    Room temperature ionic liquids are novel solvents with a rather specific blend of physical and solution properties that makes them of interest for applications in separation science. They are good solvents for a wide range of compounds in which they behave as polar solvents. Their physical properties of note that distinguish them from conventional organic solvents are a negligible vapor pressure, high thermal stability, and relatively high viscosity. They can form biphasic systems with water or low polarity organic solvents and gases suitable for use in liquid-liquid and gas-liquid partition systems. An analysis of partition coefficients for varied compounds in these systems allows characterization of solvent selectivity using the solvation parameter model, which together with spectroscopic studies of solvent effects on probe substances, results in a detailed picture of solvent behavior. These studies indicate that the solution properties of ionic liquids are similar to those of polar organic solvents. Practical applications of ionic liquids in sample preparation include extractive distillation, aqueous biphasic systems, liquid-liquid extraction, liquid-phase microextraction, supported liquid membrane extraction, matrix solvents for headspace analysis, and micellar extraction. The specific advantages and limitations of ionic liquids in these studies is discussed with a view to defining future uses and the need not to neglect the identification of new room temperature ionic liquids with physical and solution properties tailored to the needs of specific sample preparation techniques. The defining feature of the special nature of ionic liquids is not their solution or physical properties viewed separately but their unique combinations when taken together compared with traditional organic solvents. Copyright 2009 Elsevier B.V. All rights reserved.

  8. Extraction processes and solvents for recovery of cesium, strontium, rare earth elements, technetium and actinides from liquid radioactive waste

    DOEpatents

    Zaitsev, Boris N.; Esimantovskiy, Vyacheslav M.; Lazarev, Leonard N.; Dzekun, Evgeniy G.; Romanovskiy, Valeriy N.; Todd, Terry A.; Brewer, Ken N.; Herbst, Ronald S.; Law, Jack D.

    2001-01-01

    Cesium and strontium are extracted from aqueous acidic radioactive waste containing rare earth elements, technetium and actinides, by contacting the waste with a composition of a complex organoboron compound and polyethylene glycol in an organofluorine diluent mixture. In a preferred embodiment the complex organoboron compound is chlorinated cobalt dicarbollide, the polyethylene glycol has the formula RC.sub.6 H.sub.4 (OCH.sub.2 CH.sub.2).sub.n OH, and the organofluorine diluent is a mixture of bis-tetrafluoropropyl ether of diethylene glycol with at least one of bis-tetrafluoropropyl ether of ethylene glycol and bis-tetrafluoropropyl formal. The rare earths, technetium and the actinides (especially uranium, plutonium and americium), are extracted from the aqueous phase using a phosphine oxide in a hydrocarbon diluent, and reextracted from the resulting organic phase into an aqueous phase by using a suitable strip reagent.

  9. Optimisation of the recovery of carotenoids from tomato processing wastes: application on textile dyeing and assessment of its antioxidant activity.

    PubMed

    Baaka, Noureddine; El Ksibi, Imen; Mhenni, Mohamed Farouk

    2017-01-01

    The present study has been focused on the extraction of natural pigments from tomato industry waste. At first, different solvents and solvents mixture were compared to determine which one is the best for extracting carotenoids compounds from tomato by-products. A mixture of hexane and acetone gave the highest carotenoids extraction yield among the others examined. The extraction conditions were optimised using a five-level-five-factor central composite design. Under optimal conditions, solvent solid ratio 90, hexane percentage in the solvent mixture 60, extraction duration 50, number of extractions 4 and extraction temperature 35 °C, the yield of carotenoids was 80.7 μg/g. The coloured extract of tomato by-products was applied on textile fabrics to investigate the dyeing characteristics and antioxidant activities. The results indicate that extract can be applied on textile fabrics (wool, silk and polyamide) to produce coloured clothing with acceptable antioxidant properties.

  10. MICROWAVE-ASSISTED EXTRACTION OF PHENOLIC COMPOUNDS FROM POLYGONUM MULTIFLORUM THUNB. ROOTS.

    PubMed

    Quoc, Le Pham Tan; Muoi, Nguyen Van

    2016-01-01

    The aim of this study was to determine the best extraction conditions for total phenolic content (TPC) and antioxidant capacity (AC) of Polygonum multiflorum Thunb. root using microwave-assisted extraction (MAE). The raw material used was Polygonum multiflorum Thunb. root powder. Five factors such as solvent type, solvent concentrations, solvent/material ratio, extraction time and microwave power were studied; TPC and AC values were determined by the Folin-Ciocalteu method and DPPH free radical scavenging activity measurement, respectively. In addition, studies involved assaying the HPLC test of extracts and SEM of samples. Optimal results pointed to acetone as the solvent, acetone concentration of 60%, solvent/material ratio of 40/1 (v/w), extraction time of 5 mins and microwave power of 127 W. TPC and AC obtained were approximates 44.3 ±0.13 mg GAE/g DW and 341.26 ±1.54 μmol TE/g DW, respectively. The effect of microwaving on the cell destruction of Polygonum multiflorum Thunb. root was observed by scanning electron microscopy (SEM). Some phenolic compounds were determined by the HPLC method, for instance, gallic acid, catechin and resveratrol. These factors significantly affected TPC and AC. We can use acetone as a solvent with microwave-assisted extraction to achieve the best result.

  11. Ultrasonically assisted extraction of total phenols and flavonoids from Rhodiola rosea.

    PubMed

    Staneva, Jordanka; Todorova, Milka; Neykov, Neyko; Evstatieva, Ljuba

    2009-07-01

    This work deals with ultrasonically assisted extraction (UAE) of biologically active compounds from rhizomes of Rhodiola rosea, a popular medicinal plant. The influence of temperature, type of solvent and solid/solvent ratio on the yield of total extracts, total phenols and flavonoids was established. The best extraction of total phenols and flavonoids was achieved by using 50% aqueous EtOH and MeOH, respectively. Five times increase of solid/solvent ratio (from 1:20 to 1:100 (w/v)) leads to slow increase of the yield of total phenols and flavonoids. The extraction effectiveness of conventional maceration with 50% EtOH and UAE performed for 1 h at 25 degrees C using the same solvent with respect of total phenols was comparable.

  12. Green ultrasound-assisted extraction of carotenoids based on the bio-refinery concept using sunflower oil as an alternative solvent.

    PubMed

    Li, Ying; Fabiano-Tixier, Anne Sylvie; Tomao, Valérie; Cravotto, Giancarlo; Chemat, Farid

    2013-01-01

    A green, inexpensive and easy-to-use method for carotenoids extraction from fresh carrots assisted by ultrasound was designed in this work. Sunflower oil was applied as a substitute to organic solvents in this green ultrasound-assisted extraction (UAE): a process which is in line with green extraction and bio-refinery concepts. The processing procedure of this original UAE was first compared with conventional solvent extraction (CSE) using hexane as solvent. Moreover, the UAE optimal conditions for the subsequent comparison were optimized using response surface methodology (RSM) and ultra performance liquid chromatography--diode array detector--mass spectroscopy (UPLC-DAD-MS). The results showed that the UAE using sunflower as solvent has obtained its highest β-carotene yield (334.75 mg/l) in 20 min only, while CSE using hexane as solvent obtained a similar yield (321.35 mg/l) in 60 min. The green UAE performed under optimal extraction conditions (carrot to oil ratio of 2:10, ultrasonic intensity of 22.5 W cm(-2), temperature of 40 °C and sonication time of 20 min) gave the best yield of β-carotene. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Analysis of polycyclic aromatic hydrocarbons in water and beverages using membrane-assisted solvent extraction in combination with large volume injection-gas chromatography-mass spectrometric detection.

    PubMed

    Rodil, Rosario; Schellin, Manuela; Popp, Peter

    2007-09-07

    Membrane-assisted solvent extraction (MASE) in combination with large volume injection-gas chromatography-mass spectrometry (LVI-GC-MS) was applied for the determination of 16 polycyclic aromatic hydrocarbons (PAHs) in aqueous samples. The MASE conditions were optimized for achieving high enrichment of the analytes from aqueous samples, in terms of extraction conditions (shaking speed, extraction temperature and time), extraction solvent and composition (ionic strength, sample pH and presence of organic solvent). Parameters like linearity and reproducibility of the procedure were determined. The extraction efficiency was above 65% for all the analytes and the relative standard deviation (RSD) for five consecutive extractions ranged from 6 to 18%. At optimized conditions detection limits at the ng/L level were achieved. The effectiveness of the method was tested by analyzing real samples, such as river water, apple juice, red wine and milk.

  14. Reactive extraction at liquid-liquid systems

    NASA Astrophysics Data System (ADS)

    Wieszczycka, Karolina

    2018-01-01

    The chapter summarizes the state of knowledge about a metal transport in two-phase system. The first part of this review focuses on the distribution law and main factors determination in classical solvent extraction (solubility and polarity of the solute, as well as inter- and intramolecules interaction. Next part of the chapter is devoted to the reactive solvent extraction and the molecular modeling requiring knowledge on type of extractants, complexation mechanisms, metals ions speciation and oxidation during complexes forming, and other parameters that enable to understand the extraction process. Also the kinetic data that is needed for proper modeling, simulation and design of processes needed for critical separations are discussed. Extraction at liquid-solid system using solvent impregnated resins is partially identical as in the case of the corresponding solvent extraction, therefore this subject was also presented in all aspects of separation process (equilibrium, mechanism, kinetics).

  15. [Establishment of optimun conditions in order to obtain a protein isolate from Chilean Hazelnut].

    PubMed

    Villarroel, Mario; Zapata, Constanza; Pino, Leonardo; Rubilar, Mónica

    2012-03-01

    An alternative to solve the problem of the overall deficit of proteins has been the use ofdefatted cakes generated by the extraction of oil from vegetable sources such as rapeseed, soybean, lupin, etc. This process at the same time increases the protein content, making this feasible to be used to enrich some types of food. This is the case of the chilean hazelnut (Gevuina avellana, Mol), monotypic species characterized by their high percentage of oil (50%) and whose defatted cake isolated protein could be used to obtain an isolated protein. For this purpose optimized conditions of extraction of protein were carried out using the surface response methodology (SRM) and a central composite design with three independent variables: time of contact of the cake with the solvent, sample/solvent ratio and pH was used. All variables were controlled at five different levels. The data were subjected to an analysis of regression and ANOVA, the first to determine the polynomial equation and the second to select the control factors with significant effect on the extraction of the protein. The best combination of factors turned out to be: time between 30 and 40 minutes, pH between 9 and 9.5 and a relationship sample/solvent between 1/15 to 1/16 with a final yield of 76%. The physical characteristics were: density 0,504 g/cm3, compaction 43, 34% apparent and pale yellow. Proximal analysis showed a concentration of protein of 76%, 13%, raw fiber carbohydrate 0.68% and oil 1.29%. With regard to the functional properties emphasized water absorption (320 g/100 g), absorption of oil (410 g/100 g) and foaming capacity (221%).

  16. TEFLON BELLOWS PULSE GENERATORS FOR SOLVENT EXTRACTION PULSE COLUMNS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarthy, P.B.

    1954-01-01

    A Teflon bellows-type pulse generator is described which consists of two 3-in. nominal diameter Teflon bellows mounted on either end of a flanged spool piece and rigidly connected internally by a push rod so that the two of bellows move in tandem. The ends of the two bellows are closed by means of blind flanges. Tne spool piece is designed for insertion in a 6-in. diameter nozzle on a solvent extraction pulse column. The double bellows arrangement constitutes a safety feature to prevent loss of the column contents in the event of failure of the inner bellows in contact withmore » column solution. Failure of the inner bellows may be detected by a conductivity probe mounted in the air space inside of the double bellows assembly. Reciprocating motion is imcrank arm rigidly connected through a cross head and push rod to the face of the external bellows flange. The push rod is guided by means of linear ball bushings. Frequency variation over a range of 30 to 100 cycles/ min.was obtained by use of a Thymotrol-controlled electric motor to drive the crank arm. Variable stroke adjustment (0 to 1-in. range) was possible by adjustment of linkages on the crank arm. A load compensating spring was founnd desirable to counteract the thrust on the push rod resulting tom the static pressure at the bottom of the solvent extraction column. Without the spring, accelerated wear of the bearing on the crank arm occured. The pulse generator operated uneventfully for 1776 hours (6.61x lO/sup 6/ cycles) at a frequency of 62 cycles/min. and a bellows travel of l-in. (equivalent to a displacement of 1.6 in. in a 3-in. diam. column). (auth)« less

  17. A survey of extraction solvents in the forensic analysis of textile dyes.

    PubMed

    Groves, Ethan; Palenik, Christopher S; Palenik, Skip

    2016-11-01

    The characterization and identification of dyes in fibers can be used to provide investigative leads and strengthen associations between known and questioned items of evidence. The isolation of a dye from its matrix (e.g., a textile fiber) permits detailed characterization, comparison and, in some cases, identification using methods such as thin layer chromatography in conjunction with infrared and Raman spectroscopy. A survey of dye extraction publications reveals that pyridine:water (4:3) is among the most commonly cited extraction solvent across a range of fiber and dye chemistries. Here, the efficacy of this solvent system has been evaluated for the extraction of dyes from 172 commercially prevalent North American textile dyes. The evaluated population represents seven dye application classes, 18 chemical classes, and spans nine types of commercial textile fibers. The results of this survey indicate that ∼82% of the dyestuffs studied are extractable using this solvent system. The results presented here summarize the extraction efficacy by class and fiber type and illustrate that this solvent system is applicable to a wider variety of classes and fibers than previously indicated in the literature. While there is no universal solvent for fiber extraction, these results demonstrate that pyridine:water represents an excellent first step for extracting unknown dyes from questioned fibers in forensic casework. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Effect of the type and level of hydration of alcoholic solvents on the simultaneous extraction of oil and chlorogenic acids from sunflower seed press cake.

    PubMed

    Scharlack, Nayara K; Aracava, Keila K; Rodrigues, Christianne Ec

    2017-10-01

    The present study aimed to evaluate the replacement of hexane by alcoholic solvents in oil extraction from sunflower seed press cake. The use of ethanol and isopropanol has important advantages, including low toxicity and good operational safety. Thus, in the present study, solid-liquid extractions were performed in a single stage from 60 to 90 °C and in consecutive extractions in three stages at 90 °C. Solvent hydration negatively affected the extraction of oil but favored the extraction of chlorogenic acids (CAs), especially when ethanol was used. Regarding oxidative stability, the oils extracted using ethanol presented long induction times, which could be related to the high levels of not only CAs and tocopherols, but also phospholipids. Alcoholic solvents can be used for extraction to produce sunflower seed oil containing minor compounds that give it greater oxidative stability. In addition, the results obtained using hydrous ethanol showed that this solvent can yield defatted sunflower seed meal with a low content of CAs, enabling future use of the protein fraction. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Optimization of an accelerated solvent extraction dispersive liquid-liquid microextraction method for the separation and determination of essential oil from Ligusticum chuanxiong Hort by gas chromatography with mass spectrometry.

    PubMed

    Yang, Guang; Sun, Qiushi; Hu, Zhiyan; Liu, Hua; Zhou, Tingting; Fan, Guorong

    2015-10-01

    In this study, an accelerated solvent extraction dispersive liquid-liquid microextraction coupled with gas chromatography and mass spectrometry was established and employed for the extraction, concentration and analysis of essential oil constituents from Ligusticum chuanxiong Hort. Response surface methodology was performed to optimize the key parameters in accelerated solvent extraction on the extraction efficiency, and key parameters in dispersive liquid-liquid microextraction were discussed as well. Two representative constituents in Ligusticum chuanxiong Hort, (Z)-ligustilide and n-butylphthalide, were quantitatively analyzed. It was shown that the qualitative result of the accelerated solvent extraction dispersive liquid-liquid microextraction approach was in good agreement with that of hydro-distillation, whereas the proposed approach took far less extraction time (30 min), consumed less plant material (usually <1 g, 0.01 g for this study) and solvent (<20 mL) than the conventional system. To sum up, the proposed method could be recommended as a new approach in the extraction and analysis of essential oil. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Mass Transfer And Hydraulic Testing Of The V-05 And V-10 Contactors With The Next Generation Solvent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herman, D. T.; Duignan, M. R.; Williams, M. R.

    The Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) facility is actively pursuing the transition from the current BOBCalixC6 based solvent to the Next Generation Solvent (NGS)-MCU solvent. To support this integration of NGS into the MCU facilities, Savannah River Remediation (SRR) requested that Savannah River National Laboratory (SRNL) perform testing of a blend of the NGS (MaxCalix based solvent) with the current solvent (BOBCalixC6 based solvent) for the removal of cesium (Cs) from the liquid salt waste stream. This testing differs from prior testing by utilizing a blend of BOBCalixC6 based solvent and the NGS with the full (0.05more » M) concentration of the MaxCalix as well as a new suppressor, tris(3,7dimethyloctyl) guanidine. Single stage tests were conducted using the full size V-05 and V-10 centrifugal contactors installed at SRNL. These tests were designed to determine the mass transfer and hydraulic characteristics with the NGS solvent blended with the projected heel of the BOBCalixC6 based solvent that will exist in MCU at time of transition. The test program evaluated the amount of organic carryover and the droplet size of the organic carryover phases using several analytical methods. Stage efficiency and mass distribution ratios were determined by measuring Cs concentration in the aqueous and organic phases during single contactor testing. The nominal cesium distribution ratio, D(Cs) measured for extraction ranged from 37-60. The data showed greater than 96% stage efficiency for extraction. No significant differences were noted for operations at 4, 8 or 12 gpm aqueous salt simulant feed flow rates. The first scrub test (contact with weak caustic solution) yielded average scrub D(Cs) values of 3.3 to 5.2 and the second scrub test produced an average value of 1.8 to 2.3. For stripping behavior, the “first stage” D Cs) values ranged from 0.04 to 0.08. The efficiency of the low flow (0.27 gpm aqueous) was calculated to be 82.7%. The Spreadsheet Algorithm for Stagewise Solvent Extraction (SASSE) predicted equivalent DF for MCU from this testing is greater than 3,500 assuming 95% efficiency during extraction and 80% efficiency during scrub and strip. Hydraulically, the system performed very well in all tests. Target flows were easily obtained and stable throughout testing. Though some issues were encountered with plugging in the coalescer, they were not related to the solvent. No hydraulic upsets due to the solvent were experienced during any of the tests conducted. The first extraction coalescer element used in testing developed high pressure drop that made it difficult to maintain the target flow rates. Analysis showed an accumulation of sodium aluminosilicate solids. The coalescer was replaced with one from the same manufacturer’s lot and pressure drop was no longer an issue. Concentrations of Isopar™ L and Modifier were measured using semi-volatile organic analysis (SVOA) and high performance liquid chromatography (HPLC) to determine the amount of solvent carryover. For low-flow (0.27 gpm aqueous) conditions in stripping, SVOA measured the Isopar™ L post-contactor concentration to be 25 mg/L, HPLC measured 39 mg/L of Modifier. For moderate-flow (0.54 gpm aqueous) conditions, SVOA measured the Isopar™ L postcontactor to be ~69 mg/L, while the HPLC measured 56 mg/L for Modifier. For high-flow (0.8 gpm aqueous) conditions, SVOA measured the Isopar™ L post-contactor to be 39 mg/L. The post-coalescer (pre-decanter) measurements by SVOA for Isopar™ L were all less than the analysis detection limit of 10 mg/L. The HPLC measured 18, 22 and 20 mg/L Modifier for the low, medium, and high-low rates respectively. In extraction, the quantity of pre-coalescer Isopar™ L carryover measured by SVOA was ~280-410 mg/L at low flow (4 gpm aqueous), ~400-450 mg/L at moderate flow (8 gpm aqueous), and ~480 mg/L at high flow (12 gpm aqueous). The amount of post coalescer (pre-decanter) Isopar™ L carryover measured by SVOA was less than 45 mg/L for all flow rates. HPLC results for Modifier were 182, 217 and 222 mg/L for the post-contactor low, medium and high flow rates. The post-coalescer (pre-decanter) samples were measured to contain 12, 10 and 22 mg/L Modifier for the low, medium, and high flow rates. The carryover results and droplet size measurements were used to determine the decanter performance utilizing the decanter model developed by the ARES Corporation. Results show for the targeted salt flow rate of approximately 8 gpm, that over 93% of the solvent carryover from stripping is predicted to be recovered and over 96% solvent carryover from extraction is predicted to be recovered. This translates to a predicted solvent carryover of <3 ppm from stripping and <20 ppm solvent carryover from extraction. This projected performance at MCU is expected to be well within the operating limits and the historical performance for the baseline BOBCalixC6 based solvent. Droplet-size data obtained by MicroTrac™ S3400 analyzer consistently shows that the droplet size post-oalescer is significantly greater than the post-contactor or pre-coalescer samples. Increased flow rates did not show a consistent impact to the droplet size results. For the extraction testing, droplet size analysis showed that the post-contactor and pre-coalescer samples were essentially the same. The mean droplet sizes post-coalescer were less than the mean droplet sizes pre-coalescer with a very slight upward trend in the mean droplet size as the flow rate was increased. This result is probably due to the method of sampling. The larger post-coalescer drops immediately rise to the surface after leaving the coalescer element. The downstream sampling point was horizontally in-line with the element and therefore would only capture those organic droplets well mixed in the flowing aqueous stream.« less

  1. Solvent composition of one-step self-etch adhesives and dentine wettability.

    PubMed

    Grégoire, Geneviève; Dabsie, Firas; Dieng-Sarr, Farimata; Akon, Bernadette; Sharrock, Patrick

    2011-01-01

    Our aim was to determine the wettability of dentine by four commercial self-etch adhesives and evaluate their spreading rate on the dentine surface. Any correlation with chemical composition was sought, particularly with the amount of solvent or HEMA present in the adhesive. The adhesives used were AdheSE One, Optibond All.In.One, Adper Easy Bond and XenoV. Chemical compositions were determined by proton nuclear magnetic resonance (NMR) spectroscopy of the adhesives dissolved in dimethylsulfoxide. Apparent contact angles for sessile drops of adhesives were measured on dentine slices as a function of time for up to 180s. The water contact angles were determined for fully polymerised adhesives. All adhesives were water-based with total solvent contents ranging from 27% to 73% for HEMA-free adhesives, and averaging 45% for HEMA containing adhesives. The contents in hydrophobic groups decreased as water contents increased. No differences were found in the adhesive contact angles after 180s even though the spreading rates were different for the products tested. Water contact angles differed significantly but were not correlated with HEMA or solvent presence. Manufacturers use different approaches to stabilise acid co-monomer ingredients in self-etch adhesives. Co-solvents, HEMA, or acrylamides without co-solvents are used to simultaneously etch and infiltrate dentine. A large proportion of water is necessary for decalcification action. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Supercritical-Multiple-Solvent Extraction From Coal

    NASA Technical Reports Server (NTRS)

    Corcoran, W.; Fong, W.; Pichaichanarong, P.; Chan, P.; Lawson, D.

    1983-01-01

    Large and small molecules dissolve different constituents. Experimental apparatus used to test supercritical extraction of hydrogen rich compounds from coal in various organic solvents. In decreasing order of importance, relevant process parameters were found to be temperature, solvent type, pressure, and residence time.

  3. 4-Nonylphenol (NP) in food-contact materials: analytical methodology and occurrence.

    PubMed

    Fernandes, A R; Rose, M; Charlton, C

    2008-03-01

    Nonylphenol is a recognized environmental contaminant, but it is unclear whether its occurrence in food arises only through environmental pathways or also during the processing or packaging of food, as there are reports that indicate that materials in contact with food such as rubber products and polyvinylchloride wraps can contain nonylphenol. A review of the literature has highlighted the scarcity of robust analytical methodology or data on the occurrence of nonylphenol in packaging materials. This paper describes a methodology for the determination of nonylphenol in a variety of packaging materials, which includes plastics, paper and rubber. The method uses either Soxhlet extraction or dissolution followed by solvent extraction (depending on the material type), followed by purification using adsorption chromatography. Procedures were internally standardized using 13C-labelled nonylphenol and the analytes were measured by gas chromatography-mass spectrometry. The method is validated and data relating to quality parameters such as limits of detection, recovery, precision and linearity of measurement are provided. Analysis of a range of 25 food-contact materials found nonylphenol at concentrations of 64-287 microg g(-1) in some polystyrene and polyvinylchloride samples. Far lower concentrations (<0.03-1.4 microg g(-1)) were detected in the other materials. It is possible that occurrence at the higher levels has the potential for migration to food.

  4. Theory of hydrophobicity: transient cavities in molecular liquids

    NASA Technical Reports Server (NTRS)

    Pratt, L. R.; Pohorille, A.

    1992-01-01

    Observation of the size distribution of transient cavities in computer simulations of water, n-hexane, and n-dodecane under benchtop conditions shows that the sizes of cavities are more sharply defined in liquid water but the most-probable-size cavities are about the same size in each of these liquids. The calculated solvent atomic density in contact with these cavities shows that water applies more force per unit area of cavity surface than do the hydrocarbon liquids. This contact density, or "squeezing" force, reaches a maximum near cavity diameters of 2.4 angstroms. The results for liquid water are compared to the predictions of simple theories and, in addition, to results for a reference simple liquid. The numerical data for water at a range of temperatures are analyzed to extract a surface free energy contribution to the work of formation of atomic-size cavities. Comparison with the liquid-vapor interfacial tensions of the model liquids studied here indicates that the surface free energies extracted for atomic-size cavities cannot be accurately identified with the macroscopic surface tensions of the systems.

  5. Theory of hydrophobicity: Transient cavities in molecular liquids

    PubMed Central

    Pratt, Lawrence R.; Pohorille, Andrew

    1992-01-01

    Observation of the size distribution of transient cavities in computer simulations of water, n-hexane, and n-dodecane under benchtop conditions shows that the sizes of cavities are more sharply defined in liquid water but the most-probable-size cavities are about the same size in each of these liquids. The calculated solvent atomic density in contact with these cavities shows that water applies more force per unit area of cavity surface than do the hydrocarbon liquids. This contact density, or “squeezing” force, reaches a maximum near cavity diameters of 2.4 Å. The results for liquid water are compared to the predictions of simple theories and, in addition, to results for a reference simple liquid. The numerical data for water at a range of temperatures are analyzed to extract a surface free energy contribution to the work of formation of atomic-size cavities. Comparison with the liquid-vapor interfacial tensions of the model liquids studies here indicates that the surface free energies extracted for atomic-size cavities cannot be accurately identified with the macroscopic surface tensions of the systems. PMID:11537863

  6. In-tube electro-membrane extraction with a sub-microliter organic solvent consumption as an efficient technique for synthetic food dyes determination in foodstuff samples.

    PubMed

    Bazregar, Mohammad; Rajabi, Maryam; Yamini, Yadollah; Asghari, Alireza; Abdossalami asl, Yousef

    2015-09-04

    A simple and efficient extraction technique with a sub-microliter organic solvent consumption termed as in-tube electro-membrane extraction (IEME) is introduced. This method is based upon the electro-kinetic migration of ionized compounds by the application of an electrical potential difference. For this purpose, a thin polypropylene (PP) sheet placed inside a tube acts as a support for the membrane solvent, and 30μL of an aqueous acceptor solution is separated by this solvent from 1.2mL of an aqueous donor solution. This method yielded high extraction recoveries (63-81%), and the consumption of the organic solvent used was only 0.5μL. By performing this method, the purification is high, and the utilization of the organic solvent, used as a mediator, is very simple and repeatable. The proposed method was evaluated by extraction of four synthetic food dyes (Amaranth, Ponceau 4R, Allura Red, and Carmoisine) as the model analytes. Optimization of variables affecting the method was carried out in order to achieve the best extraction efficiency. These variables were the type of membrane solvent, applied extraction voltage, extraction time, pH range, and concentration of salt added. Under the optimized conditions, IEME-HPLC-UV provided a good linearity in the range of 1.00-800ngmL(-1), low limits of detection (0.3-1ngmL(-1)), and good extraction repeatabilities (RSDs below 5.2%, n=5). It seems that this design is a proper one for the automation of the method. Also the consumption of the organic solvent in a sub-microliter scale, and its simplicity, high efficiency, and high purification can help one getting closer to the objectives of the green chemistry. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. [Study on ultrafine vibration extraction technology of Rhizoma Chuanxiong].

    PubMed

    Dai, Long

    2009-04-01

    To explore the best ultrafine vibration extraction technology of Rhizoma Chuanxiong. Using the content of ligustrazine hydrochloride and ferulic acid as determination indexes, quadrature test was used to choose extraction times, time, solvent amount and to compare with the result of conventional extraction technology. The best condition of the Rhizoma chuanxiong was with 90% ethanol of 4 times volume, extracting 2 times in 25 degrees C, 15 minutes each time. Comparing with conventional extraction technology, extraction time of UVET was 1/6, solvent amount was 4/7, the extraction rate of marker components was 1.19 and 1.09 times, respectivley. UVET can improve the extracting rate of effective constituents, reduce the time and solvent amount and be used in industrialization.

  8. High-efficient extraction of principal medicinal components from fresh Phellodendron bark (cortex phellodendri).

    PubMed

    Xu, Keqin; He, Gongxiu; Qin, Jieming; Cheng, Xuexiang; He, Hanjie; Zhang, Dangquan; Peng, Wanxi

    2018-05-01

    There are three key medicinal components (phellodendrine, berberine and palmatine) in the extracts of Phellodendron bark, as one of the fundamental herbs of traditional Chinese medicine. Different extraction methods and solvent combinations were investigated to obtain the optimal technologies for high-efficient extraction of these medicinal components. The results showed that combined solvents have higher extracting effect of phellodendrine, berberine and palmatine than single solvent, and the effect of ultrasonic extraction is distinctly better than those of distillation and soxhlet extraction. The hydrochloric acid/methanol-ultrasonic extraction has the best effect for three medicinal components of fresh Phellodendron bark, providing an extraction yield of 103.12 mg/g berberine, 24.41 mg/g phellodendrine, 1.25 mg/g palmatine.

  9. Centrifugal contactor with liquid mixing and flow control vanes and method of mixing liquids of different phases

    DOEpatents

    Jubin, Robert T.; Randolph, John D.

    1991-01-01

    The invention is directed to a centrifugal contactor for solvent extraction systems. The centrifugal contactor is provided with an annular vertically oriented mixing chamber between the rotor housing and the rotor for mixing process liquids such as the aqueous and organic phases of the solvent extraction process used for nuclear fuel reprocessing. A set of stationary helically disposed vanes carried by the housing is in the lower region of the mixing chamber at a location below the process-liquid inlets for the purpose of urging the liquids in an upward direction toward the inlets and enhancing the mixing of the liquids and mass transfer between the liquids. The upper region of the mixing vessel above the inlets for the process liquids is also provided with a set helically disposed vanes carried by the housing for urging the process liquids in a downward direction when the liquid flow rates through the inlets are relatively high and the liquids contact the vane set in the upper region. The use of these opposing vane sets in the mixing zone maintains the liquid in the mixing zone at suitable levels.

  10. Am(VI) Extraction Final Report: FY16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mincher, Bruce Jay; Grimes, Travis Shane; Tillotson, Richard Dean

    This report summarizes activities related to hexavalent Am extraction for FY16, in completion of FCR&D Milestone M3FT-16IN030103027. Activities concentrated on three areas of research: 1) centrifugal contactor hot testing, 2) Am(VI) stability studies, and 3) alternative oxidant studies. A brief summary of each task follows. Hot Testing: A new engineering-scale oxidation and solvent extraction test bed was built at Idaho National Laboratory to allow for solvent extraction testing of minor actinide separation concepts. The test bed consists of an oxidation vessel, filtration apparatus, four, 3D printed, 2-cm diameter centrifugal contactors, feed/product vessels, and sample ports. This system replaced the previousmore » 3 stage, 5-cm contactor test bed that was used for the initial testing in FY14. In the FY16 hot test, a feed simulant was spiked with 243Am and 139Ce and treated with 60 g/L sodium bismuthate for two hours to oxidize the Am(III) to Am(VI). This solution was then pumped through a filter and into the four-stage centrifugal contactor setup. The organic phase solvent formulation was 1 M diethylhexylbutyramide (DEHBA)/dodecane. The test showed that Am(VI) was produced by bismuthate oxidation and the residual oxidant was successfully filtered without back pressure buildup. Sixty-four percent of Am was extracted in the contactors using DEHBA. Both Am and Ce were quantitatively stripped by 0.1 M H2O2. Successful demonstration of the utility of small, printable contactors suggests that hot testing of separations concepts can now be conducted more often, since it is cheaper, generates less waste, and entails much less radcon risk than previous testing. Am(VI) stability: A rigorous examination of reagents was conducted to determine if contaminants could interfere with Am oxidation and extraction. An series of DAm measurements showed that bismuthate particle size, water source, acid quality, and DAAP batch or pre-treatment had little effect on extraction efficiency, with a mean distribution ratio of 3.74 ± 0.5, using 1 M DAAP extraction. Additionally, the purposeful addition of millimolar amounts of nitrite or H2O2 to bismuthate-treated Am solutions did not prevent oxidation, as long as residual solid bismuthate was present. Finally, a series of irradiation experiments using a Nordion Gammacell 220E 60Co source was performed, and kinetic data for the radiolytic reduction of Am(VI) were obtained. Unsurprisingly, it was found that radiolysis reduces Am(VI), but that the presence of Ce(IV) acts as a radioprotection agent, to scavenge radiolytically-produced reducing agents, thereby enhancing the stability of the higher Am oxidation state. Alternative oxidants: To date, sodium bismuthate is the only practical oxidant for Am with utility in solvent extraction. While successful oxidation has been demonstrated with sodium peroxydisulfate, it is impractical for solvent extraction because it is only useful in dilute acid and it introduces sulfate into the process. Oxidation has been demonstrated using silver and cobalt catalyzed ozone, however, reduction upon contact with an organic phase is instantaneous. Oxidation is successful using Cu(III) periodate, and marginally successful in initial testing using DAAP extraction. However, the distribution ratios for the oxidized Am are marginal, because Cu(III) is also rapidly reduced by the organic phase. The possibility may exist that this can be optimized.« less

  11. Evaluation of new natural deep eutectic solvents for the extraction of isoflavones from soy products.

    PubMed

    Bajkacz, Sylwia; Adamek, Jakub

    2017-06-01

    Natural deep eutectic solvents (NADESs) are considered to be new, safe solvents in green chemistry that can be widely used in many chemical processes such as extraction or synthesis. In this study, a simple extraction method based on NADES was used for the isolation of isoflavones (daidzin, genistin, genistein, daidzein) from soy products. Seventeen different NADES systems each including two or three components were tested. Multivariate data analysis revealed that NADES based on a 30% solution of choline chloride: citric acid (molar ratio of 1:1) are the most effective systems for the extraction of isoflavones from soy products. After extraction, the analytes were detected and quantified using ultra-high performance liquid chromatography with ultraviolet detection (UHPLC-UV). The proposed NADES extraction procedure achieved enrichment factors up to 598 for isoflavones and the recoveries of the analytes were in the range 64.7-99.2%. The developed NADES extraction procedure and UHPLC-UV determination method was successfully applied for the analysis of isoflavones in soy-containing food samples. The obtained results indicated that new natural deep eutectic solvents could be an alternative to traditional solvents for the extraction of isoflavones and can be used as sustainable and safe extraction media for another applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Infusion extractor

    NASA Technical Reports Server (NTRS)

    Chang-Diaz, Franklin R. (Inventor)

    1986-01-01

    This invention relates to an apparatus and method of removing desirable constituents from an infusible material by infusion extraction. A piston operating in a first chamber draws a solvent into the first chamber where it may be heated, and then moves the heated solvent into a second chamber containing the infusible material, where infusion extraction takes place. The piston then moves the solvent containing the extract through a filter into the first chamber, leaving the extraction residue in the second chamber. The method is applicable to operation in low or micro-gravity environments.

  13. Ultrasound-assisted extraction of three bufadienolides from Chinese medicine ChanSu.

    PubMed

    Sun, Yinshi; Bi, Jianjie; Zhang, Li; Ye, Baoxing

    2012-11-01

    In this study, the application of ultrasound-assisted extraction (UAE) method was shown to be more efficient in extracting anti-tumor bufadienolides (bufalin, cinobufagin and resibufogenin) from important animal medicine of ChanSu than the maceration extraction (ME) and soxhlet extraction (SE) method. The effects of ultrasonic variables including extraction solvent, solvent concentration, solvent to solid ratio, ultrasound power, temperature, extraction time and particle size on the yields of three bufadienolides were investigated. The optimum extraction conditions found were: 70% (v/v) methanol solution, solvent to solid ratio of 10ml/g, ultrasound power of 125W, temperature of 20°C, extraction time of 20min and particle size of 60-80 mesh. The extraction yields of bufalin, cinobufagin and resibufogenin were 43.17±0.85, 52.58±1.12, 137.70±2.65mg/g, respectively. In order to achieve a similar yield as UAE, soxhlet extraction required 6h and maceration extraction required much longer time of 18h. The results indicated that UAE is an alternative method for extracting bufadienolides from ChanSu. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. DEMONSTRATION BULLETIN: TERRA KLEEN SOLVENT EXTRACTION TECHNOLOGY - TERRA-KLEEN RESPONSE GROUP, INC.

    EPA Science Inventory

    The Terra-Kleen Solvent Extraction Technology was developed by Terra-Kleen Response Group, Inc., to remove polychlorinated biphenyls (PCB) and other organic constituents from contaminated soil. This batch process system uses a proprietary solvent at ambient temperatures to treat ...

  15. Research News: Emulsion Liquid Membrane Extraction in a Hollow-Fiber Contactor

    NASA Technical Reports Server (NTRS)

    Wiencek, John M.; Hu, Shih-Yao

    2000-01-01

    This article describes how ELMs (emulsion liquid membranes) can be used for extraction. The article addresses the disadvantages of ELM extraction in a stirred contactor, and the advantages of SELMs (supported emulsion liquid membranes). The introduction of the article provides background information on liquid-liquid solvent extraction and dispersion-free solvent extraction.

  16. AN EVALUATION OF SAMPLE DISPERSION MEDIAS USED WITH ACCELERATED SOLVENT EXTRACTION FOR THE EXTRACTION AND RECOVERY OF ARSENICALS FROM LFB AND DORM-2

    EPA Science Inventory

    An accelerated solvent extraction (ASE) device was evaluated as a semi-automated means for extracting arsenicals from quality control (QC) samples and DORM-2 [standard reference material (SRM)]. Unlike conventional extraction procedures, the ASE requires that the sample be dispe...

  17. A combination strategy for extraction and isolation of multi-component natural products by systematic two-phase solvent extraction-(13)C nuclear magnetic resonance pattern recognition and following conical counter-current chromatography separation: Podophyllotoxins and flavonoids from Dysosma versipellis (Hance) as examples.

    PubMed

    Yang, Zhi; Wu, Youqian; Wu, Shihua

    2016-01-29

    Despite of substantial developments of extraction and separation techniques, isolation of natural products from natural resources is still a challenging task. In this work, an efficient strategy for extraction and isolation of multi-component natural products has been successfully developed by combination of systematic two-phase liquid-liquid extraction-(13)C NMR pattern recognition and following conical counter-current chromatography separation. A small-scale crude sample was first distributed into 9 systematic hexane-ethyl acetate-methanol-water (HEMWat) two-phase solvent systems for determination of the optimum extraction solvents and partition coefficients of the prominent components. Then, the optimized solvent systems were used in succession to enrich the hydrophilic and lipophilic components from the large-scale crude sample. At last, the enriched components samples were further purified by a new conical counter-current chromatography (CCC). Due to the use of (13)C NMR pattern recognition, the kinds and structures of major components in the solvent extracts could be predicted. Therefore, the method could collect simultaneously the partition coefficients and the structural information of components in the selected two-phase solvents. As an example, a cytotoxic extract of podophyllotoxins and flavonoids from Dysosma versipellis (Hance) was selected. After the systematic HEMWat system solvent extraction and (13)C NMR pattern recognition analyses, the crude extract of D. versipellis was first degreased by the upper phase of HEMWat system (9:1:9:1, v/v), and then distributed in the two phases of the system of HEMWat (2:8:2:8, v/v) to obtain the hydrophilic lower phase extract and lipophilic upper phase extract, respectively. These extracts were further separated by conical CCC with the HEMWat systems (1:9:1:9 and 4:6:4:6, v/v). As results, total 17 cytotoxic compounds were isolated and identified. In general, whole results suggested that the strategy was very efficient for the systematic extraction and isolation of biological active components from the complex biomaterials. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Comparison of the Solubilization Properties of Polysorbate 80 and Isopropanol/Water Solvent Systems for Organic Compounds Extracted from Three Pharmaceutical Packaging Configurations.

    PubMed

    Zdravkovic, Steven A

    2016-10-10

    It has been reported that the presence of polysorbate 80 in a pharmaceutical product's formulation may increase the number and/or amount of impurities leached from materials used during its manufacture, storage, and/or administration. However, it is uncertain if/how the solubilization properties of this surfactant compare to non-surfactant solvent systems. The goal of this study is to provide insight into this area of uncertainty by comparing the solubilization properties of polysorbate 80 to those of isopropanol/water solutions while in contact with a plasticized polyvinylchloride parenteral delivery bag, a single-use type manufacturing bag, and a polypropylene bottle. These properties were determined via a binding experiment, in which a set of model compounds was introduced into the solutions, and via an extraction experiment, in which compounds were extracted from the packaging material by the solutions. In both experiments, the amount of each compound present at equilibrium was assayed to determine the extent they were solubilized by the solution from the packaging material. Results from these experiments illustrate differences in the magnitude of solubilization obtained from solutions containing polysorbate 80 as compared to those composed of isopropanol/water. However, it was also demonstrated that their solubilization properties can be linked via a mathematical model. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. A comparison of certain extracting agents for extraction of adenosine triphosphate (ATP) from microorganisms for use in the firefly luciferase ATP assay

    NASA Technical Reports Server (NTRS)

    Knust, E. A.; Chappelle, E. W.; Picciolo, G. L.

    1975-01-01

    Firefly luciferase ATP assay is used in clinical and industrial applications, such as determination of urinary infection levels, microbial susceptibility testing, and monitoring of yeast levels in beverages. Three categories of extractants were investigated for their extracting efficiency. They were ionizing organic solvents, nonionizing organic solvents, and inorganic acids. Dimethylsulfoxide and formamide represented the ionizing organic solvents, while n-butanol, chloroform, ethanol, acetone, and methylene chloride were used for the nonionizing organic solvents. Nitric acid and perchloric acid were chosen for the inorganic acids category. Pathogens were tested with each solvent. They included: Saccharomyces carlsbergensis, E. coli, Staphylococcus aureus, Klebsiella pneumoniae, Enterobacter species, Proteus mirabilis, Proteus vulgaris, Staphylococcus epidermidis, Streptococcus faecalis, Pseudomonas aeruginosa, and Candida albicans. These results are shown in graphic representations.

  20. AFM fluid delivery/liquid extraction surface sampling/electrostatic spray cantilever probe

    DOEpatents

    Van Berkel, Gary J.

    2015-06-23

    An electrospray system comprises a liquid extraction surface sampling probe. The probe comprises a probe body having a liquid inlet and a liquid outlet, and having a liquid extraction tip. A solvent delivery conduit is provided for receiving solvent liquid from the liquid inlet and delivering the solvent liquid to the liquid extraction tip. An open liquid extraction channel extends across an exterior surface of the probe body from the liquid extraction tip to the liquid outlet. An electrospray emitter tip is in liquid communication with the liquid outlet of the liquid extraction surface sampling probe. A system for analyzing samples, a liquid junction surface sampling system, and a method of analyzing samples are also disclosed.

  1. Optimisation of Croton gratissimus Oil Extraction by n-Hexane and Ethyl Acetate Using Response Surface Methodology.

    PubMed

    Jiyane, Phiwe Charles; Tumba, Kaniki; Musonge, Paul

    2018-04-01

    The extraction of oil from Croton gratissimus seeds was studied using the three-factor five-level full-factorial central composite rotatable design (CCRD) of the response surface methodology (RSM). The effect of the three factors selected, viz., extraction time, extraction temperature and solvent-to-feed ratio on the extraction oil yield was investigated when n-hexane and ethyl acetate were used as extraction solvents. The coefficients of determination (R 2 ) of the models developed were 0.98 for n-hexane extraction and 0.97 for ethyl acetate extraction. These results demonstrated that the models developed adequately represented the processes they described. From the optimized model, maximum extraction yield obtained from n-hexane and ethyl acetate extraction were 23.88% and 23.25%, respectively. In both cases the extraction temperature and solvent-to-feed ratio were 35°C and 5 mL/g, respectively. In n-hexane extraction the maximum conditions were reached only after 6 min whereas in ethyl acetate extraction it took 20 min to get the maximum extraction oil yield. Oil extraction of Croton gratissimus seeds, in this work, favoured the use of n-hexane as an extraction solvent as it offered higher oil yields at low temperatures and reduced residence times.

  2. MEASUREMENT OF PYRETHROID RESIDUES IN ENVIRONMENTAL AND FOOD SAMPLES BY ENHANCED SOLVENT EXTRACTION/SUPERCRITICAL FLUID EXTRACTION COUPLED WITH GAS CHROMATOGRAPHY-TANDEM MASS SPECTROMETRY

    EPA Science Inventory

    The abstract summarizes pyrethorid methods development research. It provides a summary of sample preparation and analytical techniques such as supercritical fluid extraction, enhance solvent extraction, gas chromatography and tandem mass spectrometry.

  3. Solvent extraction: the coordination chemistry behind extractive metallurgy.

    PubMed

    Wilson, A Matthew; Bailey, Phillip J; Tasker, Peter A; Turkington, Jennifer R; Grant, Richard A; Love, Jason B

    2014-01-07

    The modes of action of the commercial solvent extractants used in extractive hydrometallurgy are classified according to whether the recovery process involves the transport of metal cations, M(n+), metalate anions, MXx(n-), or metal salts, MXx into a water-immiscible solvent. Well-established principles of coordination chemistry provide an explanation for the remarkable strengths and selectivities shown by most of these extractants. Reagents which achieve high selectivity when transporting metal cations or metal salts into a water-immiscible solvent usually operate in the inner coordination sphere of the metal and provide donor atom types or dispositions which favour the formation of particularly stable neutral complexes that have high solubility in the hydrocarbons commonly used in recovery processes. In the extraction of metalates, the structures of the neutral assemblies formed in the water-immiscible phase are usually not well defined and the cationic reagents can be assumed to operate in the outer coordination spheres. The formation of secondary bonds in the outer sphere using, for example, electrostatic or H-bonding interactions are favoured by the low polarity of the water-immiscible solvents.

  4. Extraction of basil leaves (ocimum canum) oleoresin with ethyl acetate solvent by using soxhletation method

    NASA Astrophysics Data System (ADS)

    Tambun, R.; Purba, R. R. H.; Ginting, H. K.

    2017-09-01

    The goal of this research is to produce oleoresin from basil leaves (Ocimum canum) by using soxhletation method and ethyl acetate as solvent. Basil commonly used in culinary as fresh vegetables. Basil contains essential oils and oleoresin that are used as flavouring agent in food, in cosmetic and ingredient in traditional medicine. The extraction method commonly used to obtain oleoresin is maceration. The problem of this method is many solvents necessary and need time to extract the raw material. To resolve the problem and to produce more oleoresin, we use soxhletation method with a combination of extraction time and ratio from the material with a solvent. The analysis consists of yield, density, refractive index, and essential oil content. The best treatment of basil leaves oleoresin extraction is at ratio of material and solvent 1:6 (w / v) for 6 hours extraction time. In this condition, the yield of basil oleoresin is 20.152%, 0.9688 g/cm3 of density, 1.502 of refractive index, 15.77% of essential oil content, and the colour of oleoresin product is dark-green.

  5. RECOVERY OF METAL VALUES FROM AQUEOUS SOLUTIONS BY SOLVENT EXTRACTION

    DOEpatents

    Moore, R.L.

    1959-09-01

    An organic solvent mixure is described for extracting actinides from aqueous solutions; the solvent mixture consists of from 10 to 25% by volume of tributyl phosphate and the remainder a chlorine-fluorine-substituted saturated hydrocarbon having two carbon atoms in the molecule.

  6. Thermal stability study of a new guanidine suppressor for the next-generation caustic-side solvent extraction process

    DOE PAGES

    Hill, Talon G.; Ensor, Dale D.; Delmau, Lætitia Helene; ...

    2016-02-06

    Cesium stripping performance of thermally stressed solvent degrades slowly over time in batch tests of the Next Generation Caustic-Side Solvent Extraction (NGS) process. NGS is currently used at pilot scale at the Savannah River Site for the selective removal of cesium from high-level salt waste. Recently a new guanidine, N,N',N" -tris(3,7-dimethyloctyl)guanidine (TiDG), was chosen for use as the suppressor, a lipophilic organic base needed for stripping, and the present study was undertaken to address the question of its stability. The NGS process solvent was evaluated for a period of three months under a variety of temperature and storage conditions. Themore » performance of the solvent was tested at 30-day increments using a standard extraction, scrub, strip, and extraction (ES 2S 3E) sequence. Lastly, the results provide insight on the effects of storage and process conditions, the stripping behavior of TiDG, and the stability of the new solvent composition.« less

  7. Thermal stability study of a new guanidine suppressor for the next-generation caustic-side solvent extraction process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Talon G.; Ensor, Dale D.; Delmau, Lætitia Helene

    Cesium stripping performance of thermally stressed solvent degrades slowly over time in batch tests of the Next Generation Caustic-Side Solvent Extraction (NGS) process. NGS is currently used at pilot scale at the Savannah River Site for the selective removal of cesium from high-level salt waste. Recently a new guanidine, N,N',N" -tris(3,7-dimethyloctyl)guanidine (TiDG), was chosen for use as the suppressor, a lipophilic organic base needed for stripping, and the present study was undertaken to address the question of its stability. The NGS process solvent was evaluated for a period of three months under a variety of temperature and storage conditions. Themore » performance of the solvent was tested at 30-day increments using a standard extraction, scrub, strip, and extraction (ES 2S 3E) sequence. Lastly, the results provide insight on the effects of storage and process conditions, the stripping behavior of TiDG, and the stability of the new solvent composition.« less

  8. Extraction of three bioactive diterpenoids from Andrographis paniculata: effect of the extraction techniques on extract composition and quantification of three andrographolides using high-performance liquid chromatography.

    PubMed

    Kumar, Satyanshu; Dhanani, Tushar; Shah, Sonal

    2014-10-01

    Andrographis paniculata (Burm.f.) wall.ex Nees (Acanthaceae) or Kalmegh is an important medicinal plant finding uses in many Ayurvedic formulations. Diterpenoid compounds andrographolides (APs) are the main bioactive phytochemicals present in leaves and herbage of A. paniculata. The efficiency of supercritical fluid extraction (SFE) using carbon dioxide was compared with the solid-liquid extraction techniques such as solvent extraction, ultrasound-assisted solvent extraction and microwave-assisted solvent extraction with methanol, water and methanol-water as solvents. Also a rapid and validated reverse-phase high-performance liquid chromatography-diode array detection method was developed for the simultaneous determination of the three biologically active compounds, AP, neoandrographolide and andrograpanin, in the extracts of A. paniculata. Under the best SFE conditions tested for diterpenoids, which involved extraction at 60°C and 100 bar, the extractive efficiencies were 132 and 22 µg/g for AP and neoandrographolide, respectively. The modifier percentage significantly affected the extraction efficiency. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. An absorbing microwave micro-solid-phase extraction device used in non-polar solvent microwave-assisted extraction for the determination of organophosphorus pesticides.

    PubMed

    Wang, Ziming; Zhao, Xin; Xu, Xu; Wu, Lijie; Su, Rui; Zhao, Yajing; Jiang, Chengfei; Zhang, Hanqi; Ma, Qiang; Lu, Chunmei; Dong, Deming

    2013-01-14

    A single-step extraction-cleanup method, including microwave-assisted extraction (MAE) and micro-solid-phase extraction (μ-SPE), was developed for the extraction of ten organophosphorus pesticides in vegetable and fruit samples. Without adding any polar solvent, only one kind of non-polar solvent (hexane) was used as extraction solvent in the whole extraction step. Absorbing microwave μ-SPE device, was prepared by packing activated carbon with microporous polypropylene membrane envelope, and used as not only the sorbent in μ-SPE, but also the microwave absorption medium. Some experimental parameters effecting on extraction efficiency was investigated and optimized. 1.0 g of sample, 8 mL of hexane and three absorbing microwave μ-SPE devices were added in the microwave extraction vessel, the extraction was carried out under 400 W irradiation power at 60°C for 10 min. The extracts obtained by MAE-μ-SPE were directly analyzed by GC-MS without any clean-up process. The recoveries were in the range of 93.5-104.6%, and the relative standard deviations were lower than 8.7%. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Two-Stage Separation of V(IV) and Al(III) by Crystallization and Solvent Extraction from Aluminum-Rich Sulfuric Acid Leaching Solution of Stone Coal

    NASA Astrophysics Data System (ADS)

    Shi, Qihua; Zhang, Yimin; Liu, Tao; Huang, Jing; Liu, Hong

    2017-10-01

    To improve separation of V(IV) and Al(III) from aluminum-rich sulfuric acid leaching solution of stone coal, the two-stage separation by crystallization and solvent extraction methods have been developed. A co-extraction coefficient ( k) was put forward to evaluate comprehensively co-extraction extent in different solutions. In the crystallization stage, 68.2% of aluminum can be removed from the solution. In the solvent extraction stage, vanadium was selectively extracted using di-2-ethylhexyl phosphoric acid/tri-n-butyl phosphate from the crystalline mother solution, followed by H2SO4 stripped efficiently. A V2O5 product with purity of 98.39% and only 0.10% Al was obtained after oxidation, precipitation, and calcination. Compared with vanadium extraction from solution without crystallization, the counter-current extraction stage of vanadium can be decreased from 6 to 3 and co-extraction coefficient ( k) decreased from 2.51 to 0.58 with two-stage separation. It is suggested that the aluminum removal by crystallization can evidently weaken the influence of aluminum co-extraction on vanadium extraction and improve the selectivity of solvent extraction for vanadium.

  11. LC-MS determination of steroidal glycosides from Dioscorea deltoidea Wall cell suspension culture: Optimization of pre-LC-MS procedure parameters by Latin Square design.

    PubMed

    Sarvin, Boris; Fedorova, Elizaveta; Shpigun, Oleg; Titova, Maria; Nikitin, Mikhail; Kochkin, Dmitry; Rodin, Igor; Stavrianidi, Andrey

    2018-03-30

    In this paper, the ultrasound assisted extraction method for isolation of steroidal glycosides from D. deltoidea plant cell suspension culture with a subsequent HPLC-MS determination was developed. After the organic solvent was selected via a two-factor experiment the optimization via Latin Square 4 × 4 experimental design was carried out for the following parameters: extraction time, organic solvent concentration in extraction solution and the ratio of solvent to sample. It was also shown that the ultrasound assisted extraction method is not suitable for isolation of steroidal glycosides from the D. deltoidea plant material. The results were double-checked using the multiple successive extraction method and refluxing extraction. Optimal conditions for the extraction of steroidal glycosides by the ultrasound assisted extraction method were: extraction time, 60 min; acetonitrile (water) concentration in extraction solution, 50%; the ratio of solvent to sample, 400 mL/g. Also, the developed method was tested on D. deltoidea cell suspension cultures of different terms and conditions of cultivation. The completeness of the extraction was confirmed using the multiple successive extraction method. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Complex investigation of extraction techniques applied for cyclitols and sugars isolation from different species of Solidago genus.

    PubMed

    Ratiu, Ileana-Andreea; Al-Suod, Hossam; Ligor, Magdalena; Ligor, Tomasz; Railean-Plugaru, Viorica; Buszewski, Bogusław

    2018-03-15

    Cyclitols are phytochemicals naturally occurring in plant material, which attracted an increasing interest due to multiple medicinal attributes, among which the most important are the antidiabetic, antioxidant, and anticancer properties. Due to their valuable properties, sugars are used in the food industry as sweeteners, preservatives, texture modifiers, fermentation substrates, and flavoring and coloring agents. In this study, we report for the first time the quantitative analysis of sugars and cyclitols isolated from Solidago virgaurea L., which was used for the selection of the optimal solvent and extraction technique that can provide the best possible yield. Moreover, the quantities of sugars and cyclitols extracted from two other species, Solidago canadensis and Solidago gigantea, were investigated using the best extraction method and the most appropriate solvent. Comparative analysis of natural plant extracts obtained using five different techniques-maceration, Soxhlet extraction, pressurized liquid extraction, ultrasound-assisted extraction, and supercritical fluid extraction-was performed in order to decide the most suitable, efficient, and economically convenient extraction method. Three different solvents were used. Analysis of samples has been performed by solid-phase extraction for purification and pre-concentration, followed by derivation and GC-MS analysis. Highest efficiency for the total amount of obtained compounds has been reached by PLE, when water was used as a solvent. d-pinitol amount was almost similar for every solvent and for all the extraction techniques involved. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Enhanced and green extraction polyphenols and furanocoumarins from Fig (Ficus carica L.) leaves using deep eutectic solvents.

    PubMed

    Wang, Tong; Jiao, Jiao; Gai, Qing-Yan; Wang, Peng; Guo, Na; Niu, Li-Li; Fu, Yu-Jie

    2017-10-25

    Nowadays, green extraction of bioactive compounds from medicinal plants has gained increasing attention. As green solvent, deep eutectic solvent (DES) have been highly rated to replace toxic organic solvents in extraction process. In present study, to simultaneous extraction five main bioactive compounds from fig leaves, DES was tailor-made. The tailor-made DES composed of a 3:3:3 molar ratio of glycerol, xylitol and D-(-)-Fructose showed enhanced extraction yields for five target compounds simultaneously compared with traditional methanol and non-tailor DESs. Then, the tailor-made DES based extraction methods have compared and microwave-assisted extraction was selected and optimized due to its high extraction yields with lower time consumption. The influencing parameters including extraction temperature, liquid-solid ratio, and extraction time were optimized using response surface methodology (RSM). Under optimal conditions the extraction yield of caffeoylmalic acid, psoralic acid-glucoside, rutin, psoralen and bergapten was 6.482mg/g, 16.34mg/g, 5.207mg/g, 15.22mg/g and 2.475mg/g, respectively. Macroporous resin D101 has been used to recovery target compounds with recovery yields of 79.2%, 83.4%, 85.5%, 81.2% and 75.3% for caffeoylmalic acid, psoralic acid-glucoside, rutin, psoralen and bergapten, respectively. The present study suggests that DESs are truly designer and efficient solvents and the method we developed was efficient and sustainable for extraction main compounds from Fig leaves.mg/g. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Green procedure with a green solvent for fats and oils' determination. Microwave-integrated Soxhlet using limonene followed by microwave Clevenger distillation.

    PubMed

    Virot, Matthieu; Tomao, Valérie; Ginies, Christian; Visinoni, Franco; Chemat, Farid

    2008-07-04

    Here is described a green and original alternative procedure for fats and oils' determination in oleaginous seeds. Extractions were carried out using a by-product of the citrus industry as extraction solvent, namely d-limonene, instead of hazardous petroleum solvents such as n-hexane. The described method is achieved in two steps using microwave energy: at first, extractions are attained using microwave-integrated Soxhlet, followed by the elimination of the solvent from the medium using a microwave Clevenger distillation in the second step. Oils extracted from olive seeds were compared with both conventional Soxhlet and microwave-integrated Soxhlet extraction procedures performed with n-hexane in terms of qualitative and quantitative determination. No significant difference was obtained between each extract allowing us to conclude that the proposed method is effective and valuable.

  15. Comparison of microwave hydrodistillation and solvent-free microwave extraction of essential oil from Melaleuca leucadendra Linn

    NASA Astrophysics Data System (ADS)

    Ismanto, A. W.; Kusuma, H. S.; Mahfud, M.

    2017-12-01

    The comparison of solvent-free microwave extraction (SFME) and microwave hydrodistillation (MHD) in the extraction of essential oil from Melaleuca leucadendra Linn. was examined. Dry cajuput leaves were used in this study. The purpose of this study is also to determine optimal condition (microwave power). The relative electric consumption of SFME and MHD methods are both showing 0,1627 kWh/g and 0,3279 kWh/g. The results showed that solvent-free microwave extraction methods able to reduce energy consumption and can be regarded as a green technique for extraction of cajuput oil.

  16. Process analysis and modeling of a single-step lutein extraction method for wet microalgae.

    PubMed

    Gong, Mengyue; Wang, Yuruihan; Bassi, Amarjeet

    2017-11-01

    Lutein is a commercial carotenoid with potential health benefits. Microalgae are alternative sources for the lutein production in comparison to conventional approaches using marigold flowers. In this study, a process analysis of a single-step simultaneous extraction, saponification, and primary purification process for free lutein production from wet microalgae biomass was carried out. The feasibility of binary solvent mixtures for wet biomass extraction was successfully demonstrated, and the extraction kinetics of lutein from chloroplast in microalgae were first evaluated. The effects of types of organic solvent, solvent polarity, cell disruption method, and alkali and solvent usage on lutein yields were examined. A mathematical model based on Fick's second law of diffusion was applied to model the experimental data. The mass transfer coefficients were used to estimate the extraction rates. The extraction rate was found more significantly related with alkali ratio to solvent than to biomass. The best conditions for extraction efficiency were found to be pre-treatment with ultrasonication at 0.5 s working cycle per second, react 0.5 h in 0.27 L/g solvent to biomass ratio, and 1:3 ether/ethanol (v/v) with 1.25 g KOH/L. The entire process can be controlled within 1 h and yield over 8 mg/g lutein, which is more economical for scale-up.

  17. Accelerated solvent extraction combined with dispersive liquid-liquid microextraction before gas chromatography with mass spectrometry for the sensitive determination of phenols in soil samples.

    PubMed

    Xing, Han-Zhu; Wang, Xia; Chen, Xiang-Feng; Wang, Ming-Lin; Zhao, Ru-Song

    2015-05-01

    A method combining accelerated solvent extraction with dispersive liquid-liquid microextraction was developed for the first time as a sample pretreatment for the rapid analysis of phenols (including phenol, m-cresol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol) in soil samples. In the accelerated solvent extraction procedure, water was used as an extraction solvent, and phenols were extracted from soil samples into water. The dispersive liquid-liquid microextraction technique was then performed on the obtained aqueous solution. Important accelerated solvent extraction and dispersive liquid-liquid microextraction parameters were investigated and optimized. Under optimized conditions, the new method provided wide linearity (6.1-3080 ng/g), low limits of detection (0.06-1.83 ng/g), and excellent reproducibility (<10%) for phenols. Four real soil samples were analyzed by the proposed method to assess its applicability. Experimental results showed that the soil samples were free of our target compounds, and average recoveries were in the range of 87.9-110%. These findings indicate that accelerated solvent extraction with dispersive liquid-liquid microextraction as a sample pretreatment procedure coupled with gas chromatography and mass spectrometry is an excellent method for the rapid analysis of trace levels of phenols in environmental soil samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Application of natural deep eutectic solvents to the extraction of anthocyanins from Catharanthus roseus with high extractability and stability replacing conventional organic solvents.

    PubMed

    Dai, Yuntao; Rozema, Evelien; Verpoorte, Robert; Choi, Young Hae

    2016-02-19

    Natural deep eutectic solvents (NADES) have attracted a great deal of attention in recent times as promising green media. They are generally composed of neutral, acidic or basic compounds that form liquids of high viscosity when mixed in certain molar ratio. Despite their potential, viscosity and acid or basic nature of some ingredients may affect the extraction capacity and stabilizing ability of the target compounds. To investigate these effects, extraction with a series of NADES was employed for the analysis of anthocyanins in flower petals of Catharanthus roseus in combination with HPLC-DAD-based metabolic profiling. Along with the extraction yields of anthocyanins their stability in NADES was also studied. Multivariate data analysis indicates that the lactic acid-glucose (LGH), and 1,2-propanediol-choline chloride (PCH) NADES present a similar extraction power for anthocyanins as conventional organic solvents. Furthermore, among the NADES employed, LGH exhibits an at least three times higher stabilizing capacity for cyanidins than acidified ethanol, which facilitates their extraction and analysis process. Comparing NADES to the conventional organic solvents, in addition to their reduced environmental impact, they proved to provide higher stability for anthocyanins, and therefore have a great potential as possible alternatives to those organic solvents in health related areas such as food, pharmaceuticals and cosmetics. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Investigation of aggregation in solvent extraction of lanthanides by acidic extractants (organophosphorus and naphthenic acid)

    USGS Publications Warehouse

    Zhou, N.; Wu, J.; Yu, Z.; Neuman, R.D.; Wang, D.; Xu, G.

    1997-01-01

    Three acidic extractants (I) di(2-ethylhexyl) phosphoric acid (HDEHP), (II) 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (HEHPEHE) and (III) naphthenic acid were employed in preparing the samples for the characterization of the coordination structure of lanthanide-extractant complexes and the physicochemical nature of aggregates formed in the organic diluent of the solvent extraction systems. Photo correlation spectroscopy (PCS) results on the aggregates formed by the partially saponified HDEHP in n-heptane showed that the hydrodynamic radius of the aggregates was comparable to the molecular dimensions of HDEHP. The addition of 2-octanol into the diluent, by which the mixed solvent was formed, increased the dimensions of the corresponding aggregates. Aggregates formed from the lanthanide ions and HDEHP in the organic phase of the extraction systems were found very unstable. In the case of naphthenic acid, PCS data showed the formation of w/o microemulsion from the saponified naphthenic acid in the mixed solvent. The extraction of lanthanides by the saponified naphthenic acid in the mixed solvent under the given experimental conditions was a process of destruction of the w/o microemulsion. A possible mechanism of the breakdown of the w/o microemulsion droplets is discussed.

  20. Mathematical modeling of two phase stratified flow in a microchannel with curved interface

    NASA Astrophysics Data System (ADS)

    Dandekar, Rajat; Picardo, Jason R.; Pushpavanam, S.

    2017-11-01

    Stratified or layered two-phase flows are encountered in several applications of microchannels, such as solvent extraction. Assuming steady, unidirectional creeping flow, it is possible to solve the Stokes equations by the method of eigenfunctions, provided the interface is flat and meets the wall with a 90 degree contact angle. However, in reality the contact angle depends on the pair of liquids and the material of the channel, and differs significantly from 90 degrees in many practical cases. For unidirectional flow, this implies that the interface is a circular arc (of constant curvature). We solve this problem within the framework of eigenfunctions, using the procedure developed by Shankar. We consider two distinct cases: (a) the interface meets the wall with the equilibrium contact angle; (b) the interface is pinned by surface treatment of the walls, so that the flow rates determine the apparent contact angle. We show that the contact angle appreciably affects the velocity profile and the volume fractions of the liquids, while limiting the range of flow rates that can be sustained without the interface touching the top/bottom walls. Non-intuitively, we find that the pressure drop is reduced when the more viscous liquid wets the wall.

  1. AcconPred: Predicting Solvent Accessibility and Contact Number Simultaneously by a Multitask Learning Framework under the Conditional Neural Fields Model.

    PubMed

    Ma, Jianzhu; Wang, Sheng

    2015-01-01

    The solvent accessibility of protein residues is one of the driving forces of protein folding, while the contact number of protein residues limits the possibilities of protein conformations. The de novo prediction of these properties from protein sequence is important for the study of protein structure and function. Although these two properties are certainly related with each other, it is challenging to exploit this dependency for the prediction. We present a method AcconPred for predicting solvent accessibility and contact number simultaneously, which is based on a shared weight multitask learning framework under the CNF (conditional neural fields) model. The multitask learning framework on a collection of related tasks provides more accurate prediction than the framework trained only on a single task. The CNF method not only models the complex relationship between the input features and the predicted labels, but also exploits the interdependency among adjacent labels. Trained on 5729 monomeric soluble globular protein datasets, AcconPred could reach 0.68 three-state accuracy for solvent accessibility and 0.75 correlation for contact number. Tested on the 105 CASP11 domain datasets for solvent accessibility, AcconPred could reach 0.64 accuracy, which outperforms existing methods.

  2. AcconPred: Predicting Solvent Accessibility and Contact Number Simultaneously by a Multitask Learning Framework under the Conditional Neural Fields Model

    PubMed Central

    Ma, Jianzhu; Wang, Sheng

    2015-01-01

    Motivation. The solvent accessibility of protein residues is one of the driving forces of protein folding, while the contact number of protein residues limits the possibilities of protein conformations. The de novo prediction of these properties from protein sequence is important for the study of protein structure and function. Although these two properties are certainly related with each other, it is challenging to exploit this dependency for the prediction. Method. We present a method AcconPred for predicting solvent accessibility and contact number simultaneously, which is based on a shared weight multitask learning framework under the CNF (conditional neural fields) model. The multitask learning framework on a collection of related tasks provides more accurate prediction than the framework trained only on a single task. The CNF method not only models the complex relationship between the input features and the predicted labels, but also exploits the interdependency among adjacent labels. Results. Trained on 5729 monomeric soluble globular protein datasets, AcconPred could reach 0.68 three-state accuracy for solvent accessibility and 0.75 correlation for contact number. Tested on the 105 CASP11 domain datasets for solvent accessibility, AcconPred could reach 0.64 accuracy, which outperforms existing methods. PMID:26339631

  3. Modified extraction procedure for gas-liquid chromatography applied to the identification of anaerobic bacteria.

    PubMed Central

    Thomann, W R; Hill, G B

    1986-01-01

    Chloroform and ether commonly are used as solvents to extract metabolic organic acids for analysis by gas-liquid chromatography in the identification of anaerobic bacteria. Because these solvents are potentially hazardous to personnel, modified extraction procedures involving the use of a safer solvent, methyl tert-butyl ether were developed which remained both simple to perform and effective for organism identification. PMID:3700623

  4. SOLVENT EXTRACTION OF RUTHENIUM

    DOEpatents

    Hyman, H.H.; Leader, G.R.

    1959-07-14

    The separation of rathenium from aqueous solutions by solvent extraction is described. According to the invention, a nitrite selected from the group consisting of alkali nitrite and alkaline earth nitrite in an equimolecular quantity with regard to the quantity of rathenium present is added to an aqueous solution containing ruthenium tetrantrate to form a ruthenium complex. Adding an organic solvent such as ethyl ether to the resulting mixture selectively extracts the rathenium complex.

  5. Comparison of microwave, ultrasound and accelerated-assisted solvent extraction for recovery of polyphenols from Citrus sinensis peels.

    PubMed

    Nayak, Balunkeswar; Dahmoune, Farid; Moussi, Kamal; Remini, Hocine; Dairi, Sofiane; Aoun, Omar; Khodir, Madani

    2015-11-15

    Peel of Citrus sinensis contains significant amounts of bioactive polyphenols that could be used as ingredients for a number of value-added products with health benefits. Extraction of polyphenols from the peels was performed using a microwave-assisted extraction (MAE) technique. The effects of aqueous acetone concentration, microwave power, extraction time and solvent-to-solid ratio on the total phenolic content (TPC), total antioxidant activity (TAA) (using DPPH and ORAC-values) and individual phenolic acids (IPA) were investigated using a response surface method. The TPC, TAA and IPA of peel extracts using MAE was compared with conventional, ultrasound-assisted and accelerated solvent extraction. The maximum predicted TPC under the optimal MAE conditions (51% acetone concentration in water (v/v), 500 W microwave power, 122 s extraction time and 25 mL g(-1) solvent to solid ratio), was 12.20 mg GAE g(-1) DW. The TPC and TAA in MAE extracts were higher than the other three extracts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. The influence of purge times on the yields of essential oil components extracted from plants by pressurized liquid extraction.

    PubMed

    Wianowska, Dorota

    2014-01-01

    The influence of different purge times on the yield of the main essential oil constituents of rosemary (Rosmarinus officinalis L.), thyme (Thymus vulgaris L.), and chamomile (Chamomilla recutita L.) was investigated. The pressurized liquid extraction process was performed by applying different extraction temperatures and solvents. The results presented in the paper show that the estimated yield of essential oil components extracted from the plants in the pressurized liquid extraction process is purge time-dependent. The differences in the estimated yields are mainly connected with the evaporation of individual essential oil components and the applied solvent during the purge; the more volatile an essential oil constituent is, the greater is its loss during purge time, and the faster the evaporation of the solvent during the purge process is, the higher the concentration of less volatile essential oil components in the pressurized liquid extraction receptacle. The effect of purge time on the estimated yield of individual essential oil constituents is additionally differentiated by the extraction temperature and the extraction ability of the applied solvent.

  7. Interdisciplinary Chemistry Experiment: An Environmentally Friendly Extraction of Lycopene

    ERIC Educational Resources Information Center

    Zhu, Jie; Zhang, Mingjie; Liu, Qingwei

    2008-01-01

    A novel experiment for the extraction of lycopene from tomato paste without the use of an organic solvent is described. The experiment employs polymer, green, and analytical chemistry. This environmentally friendly extraction is more efficient and requires less time than the traditional approach using an organic solvent. The extraction is…

  8. Multiple Solvent Extraction System with Flow Injection Technology.

    DTIC Science & Technology

    1981-09-30

    encounters a back extraction step where the direction of the extraction is from organic to aqueous solvent. Thus it is advantageous to incorporate both...stainless steel ( Alltech Associates, Arlington Heights, IQ) and prepared from a single section of 180 cmn in length. The Section 2 mixing and extraction

  9. A green analytical chemistry approach for lipid extraction: computation methods in the selection of green solvents as alternative to hexane.

    PubMed

    Cascant, Mari Merce; Breil, Cassandra; Garrigues, Salvador; de la Guardia, Miguel; Fabiano-Tixier, Anne Silvie; Chemat, Farid

    2017-05-01

    There is a great interest in finding alternatives and green solvents in extraction processes to replace petroleum based solvents. In order to investigate these possibilities, computational methods, as Hansen solubility parameters (HSP) and conductor-like screening model for real solvent (COSMO-RS), were used in this work to predict the solvation power of a series of solvents in salmon fish lipids. Additionally, experimental studies were used to evaluate the performance in lipids extraction using 2-methyltetrahydrofurane, cyclopentyl methyl ether, dimethyl carbonate, isopropanol, ethanol, ethyl acetate, p-cymene and d-limonene compared with hexane. Lipid classes of extracts were obtained by using high performance thin-layer chromatography (HPTLC), whereas gas chromatography with a flame ionization detector (GC/FID) technique was employed to obtain fatty acid profiles. Some differences between theoretical and experimental results were observed, especially regarding the behavior of p-cymene and d-limonene, which separate from the predicted capability. Results obtained from HPTLC indicated that p-cymene and d-limonene extract triglycerides (TAGs) and diglycerides (DAGs) at levels of 73 and 19%, respectively, whereas the other studied extracts contain between 75 and 76% of TAGs and between 16 and 17% of DAGs. Fatty acid profiles, obtained by using GC-FID, indicated that saturated fatty acids (SFAs) between 19.5 and 19.9% of extracted oil, monounsaturated fatty acids (MUFAs) in the range between 43.5 and 44.9%, and PUFAs between 31.2 and 34.6% were extracted. p-Cymene and limonene extracts contained lower percentages than the other studied solvents of some PUFAs due probably to the fact that these unsaturated fatty acids are more susceptible to oxidative degradation than MUFAs. Ethyl acetate has been found to be the best alternative solvent to hexane for the extraction of salmon oil lipids. Graphical Abstract ᅟ.

  10. Systematic assessment of different solvents for the extraction of drugs of abuse and pharmaceuticals from an authentic hair pool.

    PubMed

    Madry, Milena M; Kraemer, Thomas; Baumgartner, Markus R

    2018-01-01

    Hair analysis has been established as a prevalent tool for retrospective drug monitoring. In this study, different extraction solvents for the determination of drugs of abuse and pharmaceuticals in hair were evaluated for their efficiency. A pool of authentic hair from drug users was used for extraction experiments. Hair was pulverized and extracted in triplicate with seven different solvents in a one- or two-step extraction. Three one- (methanol, acetonitrile, and acetonitrile/water) and four two-step extractions (methanol two-fold, methanol and methanol/acetonitrile/formate buffer, methanol and methanol/formate buffer, and methanol and methanol/hydrochloric acid) were tested under accurately equal experimental conditions. The extracts were directly analyzed by liquid chromatography-tandem mass spectrometry for opiates/opioids, stimulants, ketamine, selected benzodiazepines, antidepressants, antipsychotics, and antihistamines using deuterated internal standards. For most analytes, a two-step extraction with methanol did not significantly improve the yield compared to a one-step extraction with methanol. Extraction with acetonitrile alone was least efficient for most analytes. Extraction yields of acetonitrile/water, methanol and methanol/acetonitrile/formate buffer, and methanol and methanol/formate buffer were significantly higher compared to methanol. Highest efficiencies were obtained by a two-step extraction with methanol and methanol/hydrochloric acid, particularly for morphine, 6-monoacetylmorphine, codeine, 6-acetylcodeine, MDMA, zopiclone, zolpidem, amitriptyline, nortriptyline, citalopram, and doxylamine. For some analytes (e.g., tramadol, fluoxetine, sertraline), all extraction solvents, except for acetonitrile, were comparably efficient. There was no significant correlation between extraction efficiency with an acidic solvent and the pka or log P of the analyte. However, there was a significant trend for the extraction efficiency with acetonitrile to the log P of the analyte. The study demonstrates that the choice of extraction solvent has a strong impact on hair analysis outcomes. Therefore, validation protocols should include the evaluation of extraction efficiency of drugs by using authentic rather than spiked hair. Different extraction procedures may contribute to the scatter of quantitative results in inter-laboratory comparisons. Harmonization of extraction protocols is recommended, when interpretation is based on same cut-off levels. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A high-throughput platform for low-volume high-temperature/pressure sealed vessel solvent extractions.

    PubMed

    Damm, Markus; Kappe, C Oliver

    2011-11-30

    A high-throughput platform for performing parallel solvent extractions in sealed HPLC/GC vials inside a microwave reactor is described. The system consist of a strongly microwave-absorbing silicon carbide plate with 20 cylindrical wells of appropriate dimensions to be fitted with standard HPLC/GC autosampler vials serving as extraction vessels. Due to the possibility of heating up to four heating platforms simultaneously (80 vials), efficient parallel analytical-scale solvent extractions can be performed using volumes of 0.5-1.5 mL at a maximum temperature/pressure limit of 200°C/20 bar. Since the extraction and subsequent analysis by either gas chromatography or liquid chromatography coupled with mass detection (GC-MS or LC-MS) is performed directly from the autosampler vial, errors caused by sample transfer can be minimized. The platform was evaluated for the extraction and quantification of caffeine from commercial coffee powders assessing different solvent types, extraction temperatures and times. For example, 141±11 μg caffeine (5 mg coffee powder) were extracted during a single extraction cycle using methanol as extraction solvent, whereas only 90±11 were obtained performing the extraction in methylene chloride, applying the same reaction conditions (90°C, 10 min). In multiple extraction experiments a total of ~150 μg caffeine was extracted from 5 mg commercial coffee powder. In addition to the quantitative caffeine determination, a comparative qualitative analysis of the liquid phase coffee extracts and the headspace volatiles was performed, placing special emphasis on headspace analysis using solid-phase microextraction (SPME) techniques. The miniaturized parallel extraction technique introduced herein allows solvent extractions to be performed at significantly expanded temperature/pressure limits and shortened extraction times, using standard HPLC autosampler vials as reaction vessels. Remarkable differences regarding peak pattern and main peaks were observed when low-temperature extraction (60°C) and high-temperature extraction (160°C) are compared prior to headspace-SPME-GC-MS performed in the same HPLC/GC vials. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Pressurized liquid extraction of ginger (Zingiber officinale Roscoe) with bioethanol: an efficient and sustainable approach.

    PubMed

    Hu, Jiajin; Guo, Zheng; Glasius, Marianne; Kristensen, Kasper; Xiao, Langtao; Xu, Xuebing

    2011-08-26

    To develop an efficient green extraction approach for recovery of bioactive compounds from natural plants, we examined the potential of pressurized liquid extraction (PLE) of ginger (Zingiber officinale Roscoe) with bioethanol/water as solvents. The advantages of PLE over other extraction approaches, in addition to reduced time/solvent cost, the extract of PLE showed a distinct constituent profile from that of Soxhlet extraction, with significantly improved recovery of diarylheptanoids, etc. Among the pure solvents tested for PLE, bioethanol yield the highest efficiency for recovering most constituents of gingerol-related compounds; while for a broad concentration spectrum of ethanol aqueous solutions, 70% ethanol gave the best performance in terms of yield of total extract, complete constituent profile and recovery of most gingerol-related components. PLE with 70% bioethanol operated at 1500 psi and 100 °C for 20 min (static extraction time: 5 min) is recommended as optimized extraction conditions, achieving 106.8%, 109.3% and 108.0% yield of [6]-, [8]- and [10]-gingerol relative to the yield of corresponding constituent obtained by 8h Soxhlet extraction (absolute ethanol as extraction solvent). Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Microwave-assisted extraction of total bioactive saponin fraction from Gymnema sylvestre with reference to gymnemagenin: a potential biomarker.

    PubMed

    Mandal, Vivekananda; Dewanjee, Saikat; Mandal, Subhash C

    2009-01-01

    To develop a fast and ecofriendly microwave assisted extraction (MAE) technique for the effective and exhaustive extraction of gymnemagenin as an indicative biomarker for the quality control of Gymnema sylvestre. Several extraction parameters such as microwave power, extraction time, solvent composition, pre-leaching time, loading ratio and extraction cycle were studied for the determination of the optimum extraction condition. Scanning electron micrographs were obtained to elucidate the mechanism of extraction. The final optimum extraction conditions as obtained from the study were: 40% microwave power, 6 min irradiation time, 85% v/v methanol as the extraction solvent, 15 min pre-leaching time and 25 : 1 (mL/g) as the solvent-to-material loading ratio. The proposed extraction technique produced a maximum yield of 4.3% w/w gymnemagenin in 6 min which was 1.3, 2.5 and 1.95 times more efficient than 6 h of heat reflux, 24 h of maceration and stirring extraction, respectively. A synergistic heat and mass transfer theory was also proposed to support the extraction mechanism. Comparison with conventional extraction methods revealed that MAE could save considerable amounts of time and energy, whilst the reduction of volume of organic solvent consumed provides an ecofriendly feature.

  14. Extraction of Trivalent Actinides and Lanthanides from Californium Campaign Rework Solution Using TODGA-based Solvent Extraction System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benker, Dennis; Delmau, Laetitia Helene; Dryman, Joshua Cory

    This report presents the studies carried out to demonstrate the possibility of quantitatively extracting trivalent actinides and lanthanides from highly acidic solutions using a neutral ligand-based solvent extraction system. These studies stemmed from the perceived advantage of such systems over cationexchange- based solvent extraction systems that require an extensive feed adjustment to make a low-acid feed. The targeted feed solutions are highly acidic aqueous phases obtained after the dissolution of curium targets during a californium (Cf) campaign. Results obtained with actual Cf campaign solutions, but highly diluted to be manageable in a glove box, are presented, followed by results ofmore » tests run in the hot cells with Cf campaign rework solutions. It was demonstrated that a solvent extraction system based on the tetraoctyl diglycolamide molecule is capable of quantitatively extracting trivalent actinides from highly acidic solutions. This system was validated using actual feeds from a Cf campaign.« less

  15. Optimization by response surface methodology of lutein recovery from paprika leaves using accelerated solvent extraction.

    PubMed

    Kang, Jae-Hyun; Kim, Suna; Moon, BoKyung

    2016-08-15

    In this study, we used response surface methodology (RSM) to optimize the extraction conditions for recovering lutein from paprika leaves using accelerated solvent extraction (ASE). The lutein content was quantitatively analyzed using a UPLC equipped with a BEH C18 column. A central composite design (CCD) was employed for experimental design to obtain the optimized combination of extraction temperature (°C), static time (min), and solvent (EtOH, %). The experimental data obtained from a twenty sample set were fitted to a second-order polynomial equation using multiple regression analysis. The adjusted coefficient of determination (R(2)) for the lutein extraction model was 0.9518, and the probability value (p=0.0000) demonstrated a high significance for the regression model. The optimum extraction conditions for lutein were temperature: 93.26°C, static time: 5 min, and solvent: 79.63% EtOH. Under these conditions, the predicted extraction yield of lutein was 232.60 μg/g. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Ultrasound-Assisted Extraction of Stilbenes from Grape Canes.

    PubMed

    Piñeiro, Zulema; Marrufo-Curtido, Almudena; Serrano, Maria Jose; Palma, Miguel

    2016-06-16

    An analytical ultrasound-assisted extraction (UAE) method has been optimized and validated for the rapid extraction of stilbenes from grape canes. The influence of sample pre-treatment (oven or freeze-drying) and several extraction variables (solvent, sample-solvent ratio and extraction time between others) on the extraction process were analyzed. The new method allowed the main stilbenes in grape canes to be extracted in just 10 min, with an extraction temperature of 75 °C and 60% ethanol in water as the extraction solvent. Validation of the extraction method was based on analytical properties. The resulting RSDs (n = 5) for interday/intraday precision were less than 10%. Furthermore, the method was successfully applied in the analysis of 20 different grape cane samples. The result showed that grape cane byproducts are potentially sources of bioactive compounds of interest for pharmaceutical and food industries.

  17. Liquefaction process wherein solvents derived from the material liquefied and containing increased concentrations of donor species are employed

    DOEpatents

    Fant, B. T.; Miller, John D.; Ryan, D. F.

    1982-01-01

    An improved process for the liquefaction of solid carbonaceous materials wherein a solvent or diluent derived from the solid carbonaceous material being liquefied is used to form a slurry of the solid carbonaceous material and wherein the solvent or diluent comprises from about 65 to about 85 wt. % hydroaromatic components. The solvent is prepared by first separating a solvent or diluent distillate fraction from the liquefaction product, subjecting this distillate fraction to hydrogenation and then extracting the naphthenic components from the hydrogenated product. The extracted naphthenic components are then dehydrogenated and hydrotreated to produce additional hydroaromatic components. These components are combined with the solvent or diluent distillate fraction. The solvent may also contain hydroaromatic constituents prepared by extracting naphthenic components from a heavy naphtha, dehydrogenating the same and then hydrotreating the dehydrogenated product. When the amount of solvent produced in this manner exceeds that required for steady state operation of the liquefaction process a portion of the solvent or diluent distillated fraction will be withdrawn as product.

  18. Experiment on the treatment of waste extraction solvent from the molybdenum-99 process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsien-Ming Hsiao; Chang-Liang Hu; Kuang-Li Chien

    2013-07-01

    In the Mo-99 (Molybdenum-99) isotope extraction test process for radiopharmaceutical applications, organic solvent is used to extract Mo-99 from an irradiated UO{sub 2} dissolution. The extraction solvent was stored when the test work was stopped. A total of about 120 liters of waste solvent was stored at INER (Institute of Nuclear Energy Research, Taiwan). The extraction solvent consisted of 5% di-(2-ethylhexyl)-phosphoric acid (D2EHPA) and kerosene. The radionuclides found in the waste solvent include Cs-137, Am-241, Tc-99, and Sr-90, which give off gross alpha and beta radioactivity of 1898 and 471 Bq/ml, respectively. This study aims to remove radionuclides from themore » waste solvent using sodium carbonate and sodium hydroxide solutions in different concentrations. After mixing the waste solvent with the alkaline solution followed by settling, a third phase other than organic and aqueous phase appeared which is expected due to the saponification reaction. The experimental results showed that increasing the number of washing and the alkaline solution concentration could enhance the radionuclides removal rate. An optimal removal method was proposed using 2 M Na{sub 2}CO{sub 3} solution twice followed by 1 M NaOH solution one time for the third phase generated early in the mixing stages. The remaining gross alpha and beta radioactivity of the treated organic solvent was 2 and 3 Bq/ml, respectively. The treated solvent could be stabilized by ashing at 500 deg. C and then immobilized. The alkaline solution would be neutralized by hydrochloric or nitric acid and then treated using a variety of adsorbents or bone char via adsorption to remove nuclides to meet the wastewater discharge limitation. (authors)« less

  19. Changes in total phenol, flavonoid contents and anti-Lactobacillus activity of Callisia fragrans due to extraction solvent

    NASA Astrophysics Data System (ADS)

    Le, Thom; Cao, Diem Kieu; Pham, Thanh Vy; Huynh, Tan Dat; Ta, Nhat Thuy Anh; Nguyen, Ngoc Thao Linh; Nguyen, Huu Thanh; Le, Hue Huong; Bui, Anh Vo; Truong, Dieu-Hien

    2018-04-01

    Callisia fragrans is a wonder herb with many medicinal properties such as burn, dental diseases, cancer diseases and arthritis in folk medicine. It is noted that the phytochemical constituents and antimicrobial activity of traditional plants depend on not only the extracting method but also the solvent used for extraction. In this study, the effect of five extraction solvents (i.e., distilled water, 80% methanol, 80% ethanol, 80% ethyl acetate, and 80% chloroform) on yield, total phenolic content (TPC) and total flavonoid content (TFC) of Callisia leaves was determined. Besides, changes in anti-Lactobacillus fermentum activity of C. fragrans freeze-dried extract was also evaluated using disk-diffusion method. The recovery percentage of extractable yield of fresh leaves are ranged from 11.93% w/w for distilled water extract to 16.60% w/w for aqueous ethanol extracts. The yield of 80% aqueous methanol extract (16.27% w/w) is only slightly less than that of the ethanol extract. Significant differences were observed among TPC and TFC obtaining by 80% methanol (0.0522% and 0.0335% w/w, respectively) compared to other solvents (p < 0.05). TPC and TFC of C. fragrans extracts increase in the following order: distilled water < 80% chloroform < 80% ethyl acetate < 80% ethanol < 80% methanol. The results revealed that 80% aqueous methanol Calissia extracts has moderate inhibition (9.0 mm of inhibition zone for 1.5 mg/mL of extracts) of L. fermentum compared to standard antibacterial agent. Based on the study results, it can be concluded that the yield, TPC and TFC of C. frgrans extract varied with the extracting solvent. It also showed that Callisia extracts can prevent dental caries by inhibiting the growth of L. fermentum, towards new insights for treatment of dental caries.

  20. Assessment of Multiple Solvents for Extraction and Direct GC-MS Determination of the Phytochemical Inventory of Sansevieria Extrafoliar Nectar Droplets.

    PubMed

    Gaylor, Michael O; Juntunen, Hope L; Hazelwood, Donna; Videau, Patrick

    2018-04-01

    Considerable effort has been devoted to analytical determinations of sugar and amino acid constituents of plant nectars, with the primary aim of understanding their ecological roles, yet few studies have reported more exhaustive organic compound inventories of plant nectars or extrafoliar nectars. This work evaluated the efficacy of four solvents (ethyl acetate, dichloromethane, toluene and hexane) to extract the greatest number of organic compound classes and unique compounds from extrafoliar nectar drops produced by Sansevieria spp. Aggregation of the results from each solvent revealed that 240 unique compounds were extracted in total, with 42.5% of those detected in multiple extracts. Aliphatic hydrocarbons dominated in all but the ethyl acetate extracts, with 44 unique aliphatic hydrocarbons detected in dichloromethane (DCM) extracts, followed by 41, 19 and 8 in hexane, toluene and ethyl acetate extracts, respectively. Hexane extracted the most unique compounds (79), followed by DCM (73), ethyl acetate (56) and toluene (32). Integrated total ion chromatographic peak areas of extracted compound classes were positively correlated with numbers of unique compounds detected within those classes. In addition to demonstrating that multi-solvent extraction with direct GC-MS detection is a suitable analytical approach for determining secondary nectar constituents, to the best of our knowledge, this study also represents: (i) the first attempt to inventory the secondary phytochemical constituents of Sansevieria spp. extrafoliar nectar secretions and (ii) the largest organic solvent extractable compound inventory reported for any plant matrix to date.

  1. Optimization of solvent extraction of shea butter (Vitellaria paradoxa) using response surface methodology and its characterization.

    PubMed

    Ajala, E O; Aberuagba, F; Olaniyan, A M; Onifade, K R

    2016-01-01

    Shea butter (SB) was extracted from its kernel by using n-hexane as solvent in an optimization study. This was to determine the optima operating variables that would give optimum yield of SB and to study the effect of solvent on the physico-chemical properties and chemical composition of SB extracted using n-hexane. A Box-behnken response surface methodology (RSM) was used for the optimization study while statistical analysis using ANOVA was used to test the significance of the variables for the process. The variables considered for this study were: sample weight (g), solvent volume (ml) and extraction time (min). The physico-chemical properties of SB extracted were determined using standard methods and Fourier Transform Infrared Spectroscopy (FTIR) for the chemical composition. The results of RSM analysis showed that the three variables investigated have significant effect (p < 0.05) on the %yield of SB, with R(2) - 0.8989 which showed good fitness of a second-order model. Based on this model, optima operating variables for the extraction process were established as: sample weight of 30.04 g, solvent volume of 346.04 ml and extraction time of 40 min, which gave 66.90 % yield of SB. Furthermore, the result of the physico-chemical properties obtained for the shea butter extracted using traditional method (SBT) showed that it is a more suitable raw material for food, biodiesel production, cosmetics, medicinal and pharmaceutical purposes than shea butter extracted using solvent extraction method (SBS). Fourier Transform Infrared Spectroscopy (FTIR) results obtained for the two samples were similar to what was obtainable from other vegetable oil.

  2. Solvent for the simultaneous recovery of radionuclides from liquid radioactive wastes

    DOEpatents

    Romanovskiy, Valeriy Nicholiavich; Smirnov, Igor V.; Babain, Vasiliy A.; Todd, Terry A.; Brewer, Ken N.

    2002-01-01

    The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide, PEG-400, and a diluent of phenylpolyfluoroalkyl sulfone. The invention also provides a method of using the invention extracting agents to recover cesium, strontium, rare earths and actinides from liquid radioactive waste.

  3. Method for the simultaneous recovery of radionuclides from liquid radioactive wastes using a solvent

    DOEpatents

    Romanovskiy, Valeriy Nicholiavich; Smirnov, Igor V.; Babain, Vasiliy A.; Todd, Terry A.; Brewer, Ken N.

    2001-01-01

    The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide, PEG-400, and a diluent of phenylpolyfluoroalkyl sulfone. The invention also provides a method of using the invention extracting agents to recover cesium, strontium, rare earths and actinides from liquid radioactive waste.

  4. Antifungal activity of extracts from Piper aduncum leaves prepared by different solvents and extraction techniques against dermatophytes Trichophyton rubrum and Trichophyton interdigitale.

    PubMed

    Santos, Maximillan Leite; Magalhães, Chaiana Froés; da Rosa, Marcelo Barcellos; de Assis Santos, Daniel; Brasileiro, Beatriz Gonçalves; de Carvalho, Leandro Machado; da Silva, Marcelo Barreto; Zani, Carlos Leomar; de Siqueira, Ezequias Pessoa; Peres, Rodrigo Loreto; Andrade, Anderson Assunção

    2013-12-01

    The effects of different solvents and extraction techniques upon the phytochemical profile and anti-Trichophyton activity of extracts from Piper aduncum leaves were evaluated. Extract done by maceration method with ethanol has higher content of sesquiterpenes and antifungal activity. This extract may be useful as an alternative treatment for dermatophytosis.

  5. Antifungal activity of extracts from Piper aduncum leaves prepared by different solvents and extraction techniques against dermatophytes Trichophyton rubrum and Trichophyton interdigitale

    PubMed Central

    Santos, Maximillan Leite; Magalhães, Chaiana Froés; da Rosa, Marcelo Barcellos; de Assis Santos, Daniel; Brasileiro, Beatriz Gonçalves; de Carvalho, Leandro Machado; da Silva, Marcelo Barreto; Zani, Carlos Leomar; de Siqueira, Ezequias Pessoa; Peres, Rodrigo Loreto; Andrade, Anderson Assunção

    2013-01-01

    The effects of different solvents and extraction techniques upon the phytochemical profile and anti-Trichophyton activity of extracts from Piper aduncum leaves were evaluated. Extract done by maceration method with ethanol has higher content of sesquiterpenes and antifungal activity. This extract may be useful as an alternative treatment for dermatophytosis. PMID:24688522

  6. Microwave-assisted extraction of polycyclic aromatic compounds from coal.

    PubMed

    Kerst, M; Andersson, J T

    2001-08-01

    Microwave-assisted extraction (MAE) of polycyclic aromatic compounds (PACs) from coal is shown to give the same pattern of compounds as Soxhlet extraction. MAE requires only 10 mL solvent and 10 min extraction time whereas Soxhlet uses 200 mL and takes 24 h. Although the yields were lower, dichloromethane (DCM) was preferred to pyridine, N-methyl-2-pyrrolidone (NMP), and NMP with CS2 because the pattern of the PACs is shown to be independent of solvent and DCM is a much more convenient solvent to work with.

  7. CHLORINATED SOLVENT CONTAMINATED SOILS AND GROUNDWATER: FIELD APPLICATION OF THE SOLVENT EXTRACTION RESIDUAL BIOTREATMENT TECHNOLOGY

    EPA Science Inventory

    A pilot scale demonstration of the Solvent Extraction Residual Biotreatment (SERB) technology was conducted at the former Sage's Dry Cleaner site in Jacksonville, FL. The SERB technology is a treatment train approach to complete site restoration, which combines an active in situ...

  8. Extraction and identification of cyclobutanones from irradiated cheese employing a rapid direct solvent extraction method.

    PubMed

    Tewfik, Ihab

    2008-01-01

    2-Alkylcyclobutanones (cyclobutanones) are accepted as chemical markers for irradiated foods containing lipid. However, current extraction procedures (Soxhlet-florisil chromatography) for the isolation of these markers involve a long and tedious clean-up regime prior to gas chromatography-mass spectrophotometry identification. This paper outlines an alternative isolation and clean-up method for the extraction of cyclobutanones in irradiated Camembert cheese. The newly developed direct solvent extraction method enables the efficient screening of large numbers of food samples and is not as resource intensive as the BS EN 1785:1997 method. Direct solvent extraction appears to be a simple, robust method and has the added advantage of a considerably shorter extraction time for the analysis of foods containing lipid.

  9. Microwave-assisted extraction of rutin and quercetin from the stalks of Euonymus alatus (Thunb.) Sieb.

    PubMed

    Zhang, Fan; Yang, Yi; Su, Ping; Guo, Zhenku

    2009-01-01

    Euonymus alatus (Thunb.) has been used as one of traditional Chinese medicines for several thousand years. Conventional methods for the extraction of rutin and quercetin from E. alatus, including solvent extraction, Soxhlet extraction and heat reflux extraction are characterised by long extraction times and consumption of large amounts of solvents. To develop a simple and rapid method for the extraction of rutin and quercetin from the stalks of Euonymus alatus (Thunb.) Sieb using microwave-assisted extraction (MAE) technique. MAE experiments were performed with a multimode microwave extraction system. The experimental variables that affect the MAE process, such as the concentration of ethanol solution, extractant volume, microwave power and extraction time were optimised. Yields were determined by HPLC. The results were compared with that obtained by classical Soxhlet and ultrasonic-assisted extraction (UAE). From the optimised conditions for MAE of rutin and quercetin it can be concluded that the solvent is 50% ethanol (v/v) solution, the extractant volume is 40 mL, microwave power is 170 W and irradiation time is 6 min. Compared with Soxhlet extraction and ultrasonic extraction, microwave extraction is a rapid method with a higher yield and lower solvent consumption. The results showed that MAE can be used as an efficient and rapid method for the extraction of the active components from plants.

  10. Recovery of catechin compounds from Korean tea by solvent extraction.

    PubMed

    Row, Kyung Ho; Jin, Yinzhe

    2006-03-01

    Catechin compounds from Korean green tea as potential sources of anticancer and antioxidant components were target materials in this work. The methodologies of solvent extraction and partition were utilized to recover catechin compounds from green tea. The optimum experimental condition was obtained by optimizing operating factors, such as, the extraction solvent, extraction time and operating temperature. After extracting the green tea with water at 80 degrees C for 40 min, the extract was partitioned with water/chloroform, which was best suited to remove caffeine impurity from the extract. Further, the resulting extract was partitioned water/ethyl acetate to deeply purify the catechin compounds of EGC, EC, EGCG and ECG. The experimental result in this work could be extended to preparative HPLC to obtain EGCG on commercial scale.

  11. Hierarchy of folding and unfolding events of protein G, CI2, and ACBP from explicit-solvent simulations

    NASA Astrophysics Data System (ADS)

    Camilloni, Carlo; Broglia, Ricardo A.; Tiana, Guido

    2011-01-01

    The study of the mechanism which is at the basis of the phenomenon of protein folding requires the knowledge of multiple folding trajectories under biological conditions. Using a biasing molecular-dynamics algorithm based on the physics of the ratchet-and-pawl system, we carry out all-atom, explicit solvent simulations of the sequence of folding events which proteins G, CI2, and ACBP undergo in evolving from the denatured to the folded state. Starting from highly disordered conformations, the algorithm allows the proteins to reach, at the price of a modest computational effort, nativelike conformations, within a root mean square deviation (RMSD) of approximately 1 Å. A scheme is developed to extract, from the myriad of events, information concerning the sequence of native contact formation and of their eventual correlation. Such an analysis indicates that all the studied proteins fold hierarchically, through pathways which, although not deterministic, are well-defined with respect to the order of contact formation. The algorithm also allows one to study unfolding, a process which looks, to a large extent, like the reverse of the major folding pathway. This is also true in situations in which many pathways contribute to the folding process, like in the case of protein G.

  12. Bio-Oil Separation and Stabilization by Near-Critical Propane Fractionation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginosar, Daniel M.; Petkovic, Lucia M.; Agblevor, Foster A.

    Bio-oils produced by thermal process are promising sources of sustainable, low greenhouse gas alternative fuels. These thermal processes are also well suited to decentralized energy production due to low capital and operating costs. Algae feedstocks for bio-oil production are of particular interest, due in part to their high-energy growth yields. Further, algae can be grown in non-arable areas in fresh, brackish, salt water, or even waste water. Unfortunately, bio-oils produced by thermal processes present significant stability challenges. These oils have complex chemical compositions, are viscous, reactive, and thermally unstable. Further, the components within the oils are difficult to separate bymore » fractional distillation. By far, the most effective separation and stabilization method has been solvent extraction. However, liquid phase extraction processes pose two main obstacles to commercialization; they require a significant amount of energy to remove and recover the solvent from the product, and they have a propensity for the solvent to become contaminated with minerals from the char and ash present in the original bio-oil. Separation and fractionation of thermally produced bio-oils using supercritical fluids (SCF) offers the advantages of liquid solvent extraction while drastically reducing energy demands and the predisposition to carry over solids into the extracted phase. SCFs are dense fluids with liquid-like solvent properties and gas-like transport properties. Further, SCF density and solvent strength can be tuned with minor adjustments in pressure, co-solvent addition, or gas anti-solvent addition. Catalytic pyrolysis oils were produced from Scenedesmus dimorphus algae using a fluid catalytic cracking catalyst. Bio-oil produced from catalytic fast pyrolysis (CFP) was separated using critical fluids. Propane extraction was performed at 65 °C at a fluid reduced pressure of 2.0 (85 bar) using an eight to one solvent to feed ratio by weight. Extraction of catalytic fast pyrolysis oil with near critical propane produced an oil extract that was physically and chemically different from and more stable than the original oil. The propane extract displayed lower viscosity and lower average molecular weight. The species present in the propane extract were likely the less polar that would be expected from using a non-polar solvent (propane). Carbonyl containing species in the extract were likely ketones and esters. The raffinate contained a higher amnount of OH bonded species along with the more polar more polar acids, amides, and alcohols. The higher concentration of nitrogen in the raffinate may confirm the presence of amides. Viscosity of the propane extract increased only half as much as that of the CFP bio-oil. Further, In situ NMR aging studies showed that the propane extract was more stable than the raw oil. In conclusion, propane extraction is a promising method to decrease the nitrogen content of bio-oils and to improve the stability of bio-oils obtained by the catalytic pyrolysis of algae based biomass.« less

  13. Determination of terpenoid content in pine by organic solvent extraction and fast-GC analysis

    DOE PAGES

    Harman-Ware, Anne E.; Sykes, Robert; Peter, Gary F.; ...

    2016-01-25

    Terpenoids, naturally occurring compounds derived from isoprene units present in pine oleoresin, are a valuable source of chemicals used in solvents, fragrances, flavors, and have shown potential use as a biofuel. This paper describes a method to extract and analyze the terpenoids present in loblolly pine saplings and pine lighter wood. Various extraction solvents were tested over different times and temperatures. Samples were analyzed by pyrolysis-molecular beam mass spectrometry before and after extractions to monitor the extraction efficiency. The pyrolysis studies indicated that the optimal extraction method used a 1:1 hexane/acetone solvent system at 22°C for 1 h. Extracts frommore » the hexane/acetone experiments were analyzed using a low thermal mass modular accelerated column heater for fast-GC/FID analysis. The most abundant terpenoids from the pine samples were quantified, using standard curves, and included the monoterpenes, α- and β-pinene, camphene, and δ-carene. Sesquiterpenes analyzed included caryophyllene, humulene, and α-bisabolene. In conclusion, diterpenoid resin acids were quantified in derivatized extractions, including pimaric, isopimaric, levopimaric, palustric, dehydroabietic, abietic, and neoabietic acids.« less

  14. Fast automated dual-syringe based dispersive liquid-liquid microextraction coupled with gas chromatography-mass spectrometry for the determination of polycyclic aromatic hydrocarbons in environmental water samples.

    PubMed

    Guo, Liang; Tan, Shufang; Li, Xiao; Lee, Hian Kee

    2016-03-18

    An automated procedure, combining low density solvent based solvent demulsification dispersive liquid-liquid microextraction (DLLME) with gas chromatography-mass spectrometry analysis, was developed for the determination of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. Capitalizing on a two-rail commercial autosampler, fast solvent transfer using a large volume syringe dedicated to the DLLME process, and convenient extract collection using a small volume microsyringe for better GC performance were enabled. Extraction parameters including the type and volume of extraction solvent, the type and volume of dispersive solvent and demulsification solvent, extraction and demulsification time, and the speed of solvent injection were investigated and optimized. Under the optimized conditions, the linearity ranged from 0.1 to 50 μg/L, 0.2 to 50 μg/L, and 0.5 to 50 μg/L, depending on the analytes. Limits of detection were determined to be between 0.023 and 0.058 μg/L. The method was applied to determine PAHs in environmental water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Automation of static and dynamic non-dispersive liquid phase microextraction. Part 2: Approaches based on impregnated membranes and porous supports.

    PubMed

    Alexovič, Michal; Horstkotte, Burkhard; Solich, Petr; Sabo, Ján

    2016-02-11

    A critical overview on automation of modern liquid phase microextraction (LPME) approaches based on the liquid impregnation of porous sorbents and membranes is presented. It is the continuation of part 1, in which non-dispersive LPME techniques based on the use of the extraction phase (EP) in the form of drop, plug, film, or microflow have been surveyed. Compared to the approaches described in part 1, porous materials provide an improved support for the EP. Simultaneously they allow to enlarge its contact surface and to reduce the risk of loss by incident flow or by components of surrounding matrix. Solvent-impregnated membranes or hollow fibres are further ideally suited for analyte extraction with simultaneous or subsequent back-extraction. Their use can therefore improve the procedure robustness and reproducibility as well as it "opens the door" to the new operation modes and fields of application. However, additional work and time are required for membrane replacement and renewed impregnation. Automation of porous support-based and membrane-based approaches plays an important role in the achievement of better reliability, rapidness, and reproducibility compared to manual assays. Automated renewal of the extraction solvent and coupling of sample pretreatment with the detection instrumentation can be named as examples. The different LPME methodologies using impregnated membranes and porous supports for the extraction phase and the different strategies of their automation, and their analytical applications are comprehensively described and discussed in this part. Finally, an outlook on future demands and perspectives of LPME techniques from both parts as a promising area in the field of sample pretreatment is given. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. SOLVENT EXTRACTION PROCESSES: A SURVEY OF SYSTEMS IN THE SITE PROGRAM

    EPA Science Inventory

    Solvent extraction of contaminated soils, sludges and sediments has been successfully completed at a number ofSuperfund sites. Each commercialized process uses a unique operating system to extract organic contaminants from solids. These operating systems may be classified by the ...

  17. Effective recovery of poly-β-hydroxybutyrate (PHB) biopolymer from Cupriavidus necator using a novel and environmentally friendly solvent system.

    PubMed

    Fei, Tao; Cazeneuve, Stacy; Wen, Zhiyou; Wu, Lei; Wang, Tong

    2016-05-01

    This work demonstrates a significant advance in bioprocessing for a high-melting lipid polymer. A novel and environmental friendly solvent mixture, acetone/ethanol/propylene carbonate (A/E/P, 1:1:1 v/v/v) was identified for extracting poly-hydroxybutyrate (PHB), a high-value biopolymer, from Cupriavidus necator. A set of solubility curves of PHB in various solvents was established. PHB recovery of 85% and purity of 92% were obtained from defatted dry biomass (DDB) using A/E/P. This solvent mixture is compatible with water, and from non-defatted wet biomass, PHB recovery of 83% and purity of 90% were achieved. Water and hexane were evaluated as anti-solvents to assist PHB precipitation, and hexane improved recovery of PHB from biomass to 92% and the purity to 93%. A scale-up extraction and separation reactor was designed, built and successfully tested. Properties of PHB recovered were not significantly affected by the extraction solvent and conditions, as shown by average molecular weight (1.4 × 10(6) ) and melting point (175.2°C) not being different from PHB extracted using chloroform. Therefore, this biorenewable solvent system was effective and versatile for extracting PHB biopolymers. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:678-685, 2016. © 2016 American Institute of Chemical Engineers.

  18. Intensification of extraction of curcumin from Curcuma amada using ultrasound assisted approach: Effect of different operating parameters.

    PubMed

    Shirsath, S R; Sable, S S; Gaikwad, S G; Sonawane, S H; Saini, D R; Gogate, P R

    2017-09-01

    Curcumin, a dietary phytochemical, has been extracted from rhizomes of Curcuma amada using ultrasound assisted extraction (UAE) and the results compared with the conventional extraction approach to establish the process intensification benefits. The effect of operating parameters such as type of solvent, extraction time, extraction temperature, solid to solvent ratio, particle size and ultrasonic power on the extraction yield have been investigated in details for the approach UAE. The maximum extraction yield as 72% was obtained in 1h under optimized conditions of 35°C temperature, solid to solvent ratio of 1:25, particle size of 0.09mm, ultrasonic power of 250W and ultrasound frequency of 22kHz with ethanol as the solvent. The obtained yield was significantly higher as compared to the batch extraction where only about 62% yield was achieved in 8h of treatment. Peleg's model was used to describe the kinetics of UAE and the model showed a good agreement with the experimental results. Overall, ultrasound has been established to be a green process for extraction of curcumin with benefits of reduction in time as compared to batch extraction and the operating temperature as compared to Soxhlet extraction. Copyright © 2017. Published by Elsevier B.V.

  19. Comparative Analysis of the Properties of Acid-Base Indicator of Rose (Rosa setigera), Allamanda (Allamanda cathartica), and Hibiscus (Hibiscus rosa-sinensis) Flowers

    PubMed Central

    Okoduwa, Stanley I. R.; Mbora, Lovina O.; Adu, Matthew E.; Adeyi, Ameh A.

    2015-01-01

    The need to develop effective alternative for synthetic indicators is the demand of present-day chemistry. The acid-base indicator properties of Rose (Rosa setigera), Allamanda (Allamanda cathartica), and Hibiscus (Hibiscus rosa-sinensis) flowers were examined. Colour pigments were extracted from the flowers via cold and solvent extraction using soxhlet extractor. The pH value of the extracts with wavelengths of absorption was determined using ultraviolet spectrophotometer. From the results obtained, all the extracts exhibited sharp contrast between their colours in acid and base. Their pH was found to be 5.5 for cold extract of Rose and 5.6 for solvent extraction, 5.24 for cold extract of a Hibiscus and 6.52 for solvent extraction, 5.35 for cold extract of Allamanda, and 5.45 for solvent extraction. The maximum wavelengths of absorption obtained for all the extract fall within the visible region of electromagnetic spectrum. These values are almost similar to that obtained from synthetic indicators. It is on these bases that we concluded that natural indicators could be an excellent replacement for synthetic indicators since they are cheap, readily available, simple to extract, not toxic, user and environmentally friendly. PMID:26819757

  20. Maximizing Lipid Yield in Neochloris oleoabundans Algae Extraction by Stressing and Using Multiple Extraction Stages with N-Ethylbutylamine as Switchable Solvent

    PubMed Central

    2017-01-01

    The extraction yield of lipids from nonbroken Neochloris oleoabundans was maximized by using multiple extraction stages and using stressed algae. Experimental parameters that affect the extraction were investigated. The study showed that with wet algae (at least) 18 h extraction time was required for maximum yield at room temperature and a solvent/feed ratio of 1:1 (w/w). For fresh water (FW), nonstressed, nonbroken Neochloris oleoabundans, 13.1 wt % of lipid extraction yield (based on dry algae mass) was achieved, which could be improved to 61.3 wt % for FW stressed algae after four extractions, illustrating that a combination of stressing the algae and applying the solvent N-ethylbutylamine in multiple stages of extraction results in almost 5 times higher yield and is very promising for further development of energy-efficient lipid extraction technology targeting nonbroken wet microalgae. PMID:28781427

  1. LPS-induced NO inhibition and antioxidant activities of ethanol extracts and their solvent partitioned fractions from four brown seaweeds

    NASA Astrophysics Data System (ADS)

    Cho, Myoung Lae; Lee, Dong-Jin; Lee, Hyi-Seung; Lee, Yeon-Ju; You, Sang Guan

    2013-12-01

    The nitric oxide inhibitory (NOI) and antioxidant (ABTS and DPPH radical scavenging effects with reducing power) activities of the ethanol (EtOH) extracts and solvent partitioned fractions from Scytosiphon lomentaria, Chorda filum, Agarum cribrosum, and Desmarestia viridis were investigated, and the correlation between biological activity and total phenolic (TP) and phlorotannin (TPT) content was determined by PCA analysis. The yield of EtOH extracts from four brown seaweeds ranged from 2.6 to 6.6% with the highest yield from D. viridis, and the predominant compounds in their solvent partitioned fractions had medium and/or less polarity. The TP and TPT content of the EtOH extracts were in the ranges of 25.0-44.1 mg GAE/g sample and 0.2-4.6 mg PG/g sample, respectively, which were mostly included in the organic solvent partitioned fractions. Strong NOI activity was observed in the EtOH extracts and their solvent partitioned fractions from D. viridis and C. filum. In addition, the EtOH extract and its solvent partitioned fractions of D. viridis exhibited little cytotoxicity to Raw 264.7 cells. The most potent ABTS and DPPH radical scavenging capacity was shown in the EtOH extracts and their solvent partitioned fractions from S. lomentaria and C. filum, and both also exhibited strong reducing ability. In the PCA analysis the content of TPT had a good correlation with DPPH ( r = 0.62), ABTS ( r = 0.69) and reducing power ( r = 0.65), however, an unfair correlation was observed between the contents of TP and TPT and NOI, suggesting that the phlorotannins might be responsible for the DPPH and ABTS radical scavenging activities.

  2. Use of solvent mixtures for total lipid extraction of Chlorella vulgaris and gas chromatography FAME analysis.

    PubMed

    Moradi-Kheibari, Narges; Ahmadzadeh, Hossein; Hosseini, Majid

    2017-09-01

    Lipid extraction is the bottleneck step for algae-based biodiesel production. Herein, 12 solvent mixture systems (mixtures of three non-polar and two polar organic solvents) were examined to evaluate their effects on the total lipid yield from Chlorella vulgaris (C. vulgaris). Moreover, the extraction yields of three solvent systems with maximum extraction efficiency of esterifiable lipids were determined by acidic transesterification and GC-FID analysis. Three solvent systems, which resulted in a higher extraction yield, were further subjected to fatty acid methyl ester (FAME) analysis. The total lipid extraction yields (based on dry biomass) were (38.57 ± 1.51), (25.33 ± 0.58), and (25.17 ± 1.14) %, for chloroform-methanol (1:2) (C1M2), hexane-methanol (1:2) (H1M2), and chloroform-methanol (2:1) (C2M1), respectively. The extraction efficiency of C1M2 was approximately 1.5 times higher than H1M2 and C2M1, whereas the FAME profile of extracted lipids by H1M2 and C1M2 were almost identical. Moreover, the esterifiable lipid extraction yields of (18.14 ± 2.60), (16.66 ± 0.35), and (13.22 ± 0.31) % (based on dry biomass) were obtained for C1M2, H1M2, and C2M1 solvent mixture systems, respectively. The biodiesel fuel properties produced from C. vulgaris were empirically predicted and compared to that of the EN 14214 and ASTM 6751 standard specifications.

  3. A robust and efficient method for the extraction of plant extracellular surface lipids as applied to the analysis of silks and seedling leaves of maize

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loneman, Derek M.; Peddicord, Layton; Al-Rashid, Amani

    Aerial plant organs possess a diverse array of extracellular surface lipids, including both non-polar and amphipathic constituents that collectively provide a primary line of defense against environmental stressors. Extracellular surface lipids on the stigmatic silks of maize are composed primarily of saturated and unsaturated linear hydrocarbons, as well as fatty acids, and aldehydes. To efficiently extract lipids of differing polarities from maize silks, five solvent systems (hexanes; hexanes:diethyl ether (95:5); hexanes:diethyl ether (90:10); chloroform:hexanes (1:1) and chloroform) were tested by immersing fresh silks in solvent for different extraction times. Surface lipid recovery and the relative composition of individual constituents weremore » impacted to varying degrees depending on solvent choice and duration of extraction. Analyses were performed using both silks and leaves to demonstrate the utility of the solvent- and time-optimized protocol in comparison to extraction with the commonly used chloroform solvent. Overall, the preferred solvent system was identified as hexanes:diethyl ether (90:10), based on its effectiveness in extracting surface hydrocarbons and fatty acids as well as its reduced propensity to extract presumed internal fatty acids. Metabolite profiling of wildtype and glossy1 seedlings, which are impaired in surface lipid biosynthesis, demonstrated the ability of the preferred solvent to extract extracellular surface lipids rich in amphipathic compounds (aldehydes and alcohols). In addition to the expected deficiencies in dotriacontanal and dotriacontan-1-ol for gl1 seedlings, an unexpected increase in fatty acid recovery was observed in gl1 seedlings extracted in chloroform, suggesting that chloro-form extracts lipids from internal tissues of gl1 seedlings. This highlights the importance of extraction method when evaluating mutants that have altered cuticular lipid compositions. Lastly, metabolite profiling of silks from maize inbreds B73 and Mo17, exposed to different environments and harvested at different ages, revealed differences in hydrocarbon and fatty acid composition, demonstrating the dynamic nature of surface lipid accumulation on silks.« less

  4. A robust and efficient method for the extraction of plant extracellular surface lipids as applied to the analysis of silks and seedling leaves of maize

    DOE PAGES

    Loneman, Derek M.; Peddicord, Layton; Al-Rashid, Amani; ...

    2017-07-11

    Aerial plant organs possess a diverse array of extracellular surface lipids, including both non-polar and amphipathic constituents that collectively provide a primary line of defense against environmental stressors. Extracellular surface lipids on the stigmatic silks of maize are composed primarily of saturated and unsaturated linear hydrocarbons, as well as fatty acids, and aldehydes. To efficiently extract lipids of differing polarities from maize silks, five solvent systems (hexanes; hexanes:diethyl ether (95:5); hexanes:diethyl ether (90:10); chloroform:hexanes (1:1) and chloroform) were tested by immersing fresh silks in solvent for different extraction times. Surface lipid recovery and the relative composition of individual constituents weremore » impacted to varying degrees depending on solvent choice and duration of extraction. Analyses were performed using both silks and leaves to demonstrate the utility of the solvent- and time-optimized protocol in comparison to extraction with the commonly used chloroform solvent. Overall, the preferred solvent system was identified as hexanes:diethyl ether (90:10), based on its effectiveness in extracting surface hydrocarbons and fatty acids as well as its reduced propensity to extract presumed internal fatty acids. Metabolite profiling of wildtype and glossy1 seedlings, which are impaired in surface lipid biosynthesis, demonstrated the ability of the preferred solvent to extract extracellular surface lipids rich in amphipathic compounds (aldehydes and alcohols). In addition to the expected deficiencies in dotriacontanal and dotriacontan-1-ol for gl1 seedlings, an unexpected increase in fatty acid recovery was observed in gl1 seedlings extracted in chloroform, suggesting that chloro-form extracts lipids from internal tissues of gl1 seedlings. This highlights the importance of extraction method when evaluating mutants that have altered cuticular lipid compositions. Lastly, metabolite profiling of silks from maize inbreds B73 and Mo17, exposed to different environments and harvested at different ages, revealed differences in hydrocarbon and fatty acid composition, demonstrating the dynamic nature of surface lipid accumulation on silks.« less

  5. Miscibility Evaluation Of The Next Generation Solvent With Polymers Currently Used At DWPF, MCU, And Saltstone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fondeur, F. F.

    The Office of Waste Processing, within the Office of Technology Innovation and Development, funded the development of an enhanced Caustic-Side Solvent Extraction (CSSX) solvent for deployment at the Savannah River Site for removal of cesium from High Level Waste. This effort lead to the development of the Next Generation Solvent (NGS) with Tris (3,7-dimethyl octyl) guanidine (TiDG). The first deployment target for the NGS solvent is within the Modular CSSX Unit (MCU). Deployment of a new chemical within an existing facility requires verification that the new chemical components are compatible with the installed equipment. In the instance of a newmore » organic solvent, the primary focus is on compatibility of the solvent with organic polymers used in the affected facility. This report provides the calculated data from exposing these polymers to the Next Generation Solvent. An assessment of the dimensional stability of polymers known to be used or present in the MCU, Defense Waste Processing Facility (DWPF), and Saltstone facilities that will be exposed to the NGS showed that TiDG could selectively affect the elastomers and some thermoplastics to varying extents, but the typical use of these polymers in a confined geometry will likely prevent the NGS from impacting component performance. The polymers identified as of primary concern include Grafoil® (flexible graphite), Tefzel®, Isolast®, ethylene-propylene-diene monomer (EPDM) rubber, nitrile-butadiene rubber (NBR), styrene-butadiene rubber (SBR), ultra high molecular weight polyethylene (UHMWPE), and fluorocarbon rubber (FKM). Certain polymers like NBR and EPDM were found to interact mildly with NGS but their calculated swelling and the confined geometry will impede interaction with NGS. In addition, it was found that Vellumoid (cellulose fibers-reinforced glycerin and protein) may leach protein and Polyvinyl Chloride (PVC) may leach plasticizer (such as Bis-Ethylhexyl-Phthalates) into the NGS solvent. Either case will not impact decontamination or immobilization operations at Savannah River Site (SRS). Some applications have zero tolerance for dimensional changes such as the operation of valves while other applications a finite dimensional change improves the function of the application such as seals and gaskets. Additional considerations are required before using the conclusions from this work to judge outcomes in field applications. Decane, a component of Isopar L that is most likely to interact with the polymers, mildly interacted with the elastomers and the propylene based polymers but their degree of swelling is at most 10% and the confined geometry that they are typically placed in indicate this is not significant. In addition, it was found that Vellumoid may leach protein into the NGS solvent. Since Vellumoid is used at the mixer in Saltstone where it sees minimum quantities of solvent, this leaching has no effect on the extraction process at MCU or the immobilization process at saltstone. No significant interaction is expected between MaxCalix and the polymers and elastomers used at MCU, DWPF, and Saltstone. Overall, minimal and insignificant interactions are expected on extraction and immobilization operations when MCU switches from CSSX to NGS solvent. It is expected that contacting NGS will not accelerate the aging rate of polymers and elastomers under radiation and heat. This is due to the minimal interaction between NGS and the polymers and the confined geometries for these polymers. SRNL recommends the use of the HSP method (for screening) and some testing to evaluate the impact of other organic such as alcohols, glycolate, and their byproducts on the polymers used throughout the site.« less

  6. Impact of quality parameters on the recovery of putrescine and cadaverine in fish using methanol-hydrochloric acid solvent extraction.

    PubMed

    Richard, Nicole L; Pivarnik, Lori F; Ellis, P Christopher; Lee, Chong M

    2011-01-01

    Methanol (MeOH) extraction by AOAC Official Method 996.07 has resulted in low amine recoveries in fresh fish tissue. Addition of 25% 0.4 M HCl to the 75% methanol-water extraction solvent resulted in higher recoveries of putrescine and cadaverine. Average putrescine recovery increased from 55 to 92% in flounder, scup, bluefish, and salmon; from 92 to 98% in mackerel; and from 83 to 107% in processed mackerel. Average cadaverine recovery increased from 57 to 95% in flounder, scup, bluefish, and salmon; from 91 to 97% in mackerel; and from 92 to 108% in processed mackerel. Fish stored on ice for 12 days also showed differences between background concentrations determined with the two solvents. However, the values decreased with storage time, indicating that degradation of the protein matrix may cause more comparable measurements between the two solvents. However, consistently higher putrescine and cadaverine measurements were determined using MeOH-HCl. Although significant differences in the extraction of amines from the high-fat fish tissue were not seen between MeOH and MeOH-HCl, it would be ideal to have one solvent for biogenic amine extraction. This study confirms that MeOH-HCl is a better solvent for complete extraction and recovery of putrescine and cadaverine in fresh and processed fish tissues.

  7. Trace elements retained in washed nuclear fuel reprocessing solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, L.W.; MacMurdo, K.W.

    1979-09-01

    Analysis of purified TBP extractant from solvent extraction processes at Savannah River Plant showed several stable elements and several long-lived radioisotopes. Stable elements Al, Na, Br, Ce, Hg, and Sm are found in trace quantities in the solvent. The only stable metallic element consistently found in the solvent was Al, with a concentration which varies from about 30 ppM to about 10 ppM. The halogens Br and Cl appear to be found in the solvent systems as organo halides. Radionuclides found were principally /sup 106/Ru, /sup 129/I, /sup 3/H, /sup 235/U, and /sup 239/Pu. The /sup 129/I concentration was aboutmore » 1 ppM in the first solvent extraction cycle of each facility. In the other cycles, /sup 129/I concentration varied from about 0.1 to 0.5 ppM. Both /sup 129/I and /sup 3/H appear to be in the organic solvent as a result of exchange with hydrogen.« less

  8. Deep Eutectic Solvent-Based Microwave-Assisted Method for Extraction of Hydrophilic and Hydrophobic Components from Radix Salviae miltiorrhizae.

    PubMed

    Chen, Jue; Liu, Mengjun; Wang, Qi; Du, Huizhi; Zhang, Liwei

    2016-10-17

    Deep eutectic solvents (DESs) have attracted significant attention as a promising green media. In this work, twenty-five kinds of benign choline chloride-based DESs with microwave-assisted methods were applied to quickly extract active components from Radix Salviae miltiorrhizae . The extraction factors, including temperature, time, power of microwave, and solid/liquid ratio, were investigated systematically by response surface methodology. The hydrophilic and hydrophobic ingredients were extracted simultaneously under the optimized conditions: 20 vol% of water in choline chloride/1,2-propanediol (1:1, molar ratio) as solvent, microwave power of 800 W, temperature at 70 °C, time at 11.11 min, and solid/liquid ratio of 0.007 g·mL -1 . The extraction yield was comparable to, or even better than, conventional methods with organic solvents. The microstructure alteration of samples before and after extraction was also investigated. The method validation was tested as the linearity of analytes ( r ² > 0.9997 over two orders of magnitude), precision (intra-day relative standard deviation (RSD) < 2.49 and inter-day RSD < 2.96), and accuracy (recoveries ranging from 95.04% to 99.93%). The proposed DESs combined with the microwave-assisted method provided a prominent advantage for fast and efficient extraction of active components, and DESs could be extended as solvents to extract and analyze complex environmental and pharmaceutical samples.

  9. Application of enzyme-linked immunosorbent assay for measurement of polychlorinated biphenyls from hydrophobic solutions: Extracts of fish and dialysates of semipermeable membrane devices: Chapter 26

    USGS Publications Warehouse

    Zajicek, James L.; Tillitt, Donald E.; Huckins, James N.; Petty, Jimmie D.; Potts, Michael E.; Nardone, David A.

    1996-01-01

    Determination of PCBs in biological tissue extracts by enzyme-linked immunosorbent assays (ELISAs) can be problematic, since the hydrophobic solvents used for their extraction and isolation from interfering biochemicals have limited compatibility with the polar solvents (e.g. methanol/water) and the immunochemical reagents used in ELISA. Our studies of these solvent effects indicate that significant errors can occur when microliter volumes of PCB containing extracts, in hydrophobic solvents, are diluted directly into methanol/water diluents. Errors include low recovery and excess variability among sub-samples taken from the same sample dilution. These errors are associated with inhomogeneity of the dilution, which is readily visualized by the use of a hydrophobic dye, Solvent Blue 35. Solvent Blue 35 is also used to visualize the evaporative removal of hydrophobic solvent and the dissolution of the resulting PCB/dye residue by pure methanol and 50% (v/v) methanol/water, typical ELISA diluents. Evaporative removal of isooctane by an ambient temperature nitrogen purge with subsequent dissolution in 100% methanol gives near quantitative recovery of model PCB congeners. We also compare concentrations of total PCBs from ELISA (ePCB) to their corresponding concentrations determined from capillary gas chromatography (GC) in selected fish sample extracts and dialysates of semipermeable membrane device (SPMD) passive samplers using an optimized solvent exchange procedure. Based on Aroclor 1254 calibrations, ePCBs (ng/mL) determined in fish extracts are positively correlated with total PCB concentrations (ng/mL) determined by GC: ePCB = 1.16 * total-cPCB - 5.92. Measured ePCBs (ng/3 SPMDs) were also positively correlated (r2 = 0.999) with PCB totals (ng/3 SPMDs) measured by GC for dialysates of SPMDs: ePCB = 1.52 * total PCB - 212. Therefore, this ELISA system for PCBs can be a rapid alternative to traditional GC analyses for determination of PCBs in extracts of biota or in SPMD dialysates.

  10. The influence of extractable organic matter on vitrinite reflectance suppression: A survey of kerogen and coal types

    USGS Publications Warehouse

    Barker, C.E.; Lewan, M.D.; Pawlewicz, M.J.

    2007-01-01

    The vitrinite reflectance suppression literature shows that while bitumen impregnation of the vitrinite group is often invoked as a significant contributor to suppression, its existence is not often supported by petrological evidence. This study examines bitumen impregnation as a factor in vitrinite suppression by comparing the vitrinite reflectance of source rock and coal samples before and after solvent-extraction. Bitumen, often defined as organic matter soluble or extractable in certain organic solvents, should be removed by Soxhlet method solvent extraction using chloroform. Removing the extractable bitumen should restore the suppressed reflectance to its true higher value. However, the solvent extracted samples averaged 0.014% Rv less than that of the unextracted samples. We conclude from these results and from other published data that reflectance suppression by bitumen impregnation in the vitrinite maceral group, above the huminite stage of gelification, is seemingly a rare phenomenon and whose effect on suppressing vitrinite reflectance is typically negligible. ?? 2006.

  11. Oil extraction from sheanut (Vitellaria paradoxa Gaertn C.F.) kernels assisted by microwaves.

    PubMed

    Nde, Divine B; Boldor, Dorin; Astete, Carlos; Muley, Pranjali; Xu, Zhimin

    2016-03-01

    Shea butter, is highly solicited in cosmetics, pharmaceuticals, chocolates and biodiesel formulations. Microwave assisted extraction (MAE) of butter from sheanut kernels was carried using the Doehlert's experimental design. Factors studied were microwave heating time, temperature and solvent/solute ratio while the responses were the quantity of oil extracted and the acid number. Second order models were established to describe the influence of experimental parameters on the responses studied. Under optimum MAE conditions of heating time 23 min, temperature 75 °C and solvent/solute ratio 4:1 more than 88 % of the oil with a free fatty acid (FFA) value less than 2, was extracted compared to the 10 h and solvent/solute ratio of 10:1 required for soxhlet extraction. Scanning electron microscopy was used to elucidate the effect of microwave heating on the kernels' microstructure. Substantial reduction in extraction time and volumes of solvent used and oil of suitable quality are the main benefits derived from the MAE process.

  12. ALKYL PYROPHOSPHATE METAL SOLVENT EXTRACTANTS AND PROCESS

    DOEpatents

    Long, R.L.

    1958-09-30

    A process is presented for the recovery of uranium from aqueous mineral acidic solutions by solvent extraction. The extractant is a synmmetrical dialkyl pyrophosphate in which the alkyl substituents have a chain length of from 4 to 17 carbon atoms. Mentioned as a preferred extractant is dioctyl pyrophosphate. The uranium is precipitated irom the organic extractant phase with an agent such as HF, fluoride salts. alcohol, or ammonia.

  13. Assessing Ink Transfer Performance of Gravure-Offset Fine-Line Circuitry Printing

    NASA Astrophysics Data System (ADS)

    Cheng, Hsien-Chie; Chen, You-Wei; Chen, Wen-Hwa; Lu, Su-Tsai; Lin, Shih-Ming

    2018-03-01

    In this study, the printing mechanism and performance of gravure-offset fine-line circuitry printing technology are investigated in terms of key printing parameters through experimental and theoretical analyses. First, the contact angles of the ink deposited on different substrates, blankets, and gravure metal plates are experimentally determined; moreover, their temperature and solvent content dependences are analyzed. Next, the ink solvent absorption and evaporation behaviors of the blankets at different temperatures, times, and numbers of printing repetitions are characterized by conducting experiments. In addition, while printing repeatedly, the surface characteristics of the blankets, such as the contact angle, vary with the amount of absorbed ink solvent, further affecting the ink transfer performance (ratio) and printing quality. Accordingly, the surface effect of the blanket due to ink solvent absorption on the ink contact angle is analyzed. Furthermore, the amount of ink transferred from the gravure plate to the blanket in the "off process" and from the blanket to the substrate in the "set process" is evaluated by conducting a simplified plate-to-plate experiment. The influences of loading rate (printing velocity), temperature, and solvent content on the ink transfer performance are addressed. Finally, the ink transfer mechanism is theoretically analyzed for different solvent contents using Surface Evolver. The calculation results are compared with those of the experiment.

  14. Stable Isotope-Assisted Evaluation of Different Extraction Solvents for Untargeted Metabolomics of Plants

    PubMed Central

    Doppler, Maria; Kluger, Bernhard; Bueschl, Christoph; Schneider, Christina; Krska, Rudolf; Delcambre, Sylvie; Hiller, Karsten; Lemmens, Marc; Schuhmacher, Rainer

    2016-01-01

    The evaluation of extraction protocols for untargeted metabolomics approaches is still difficult. We have applied a novel stable isotope-assisted workflow for untargeted LC-HRMS-based plant metabolomics , which allows for the first time every detected feature to be considered for method evaluation. The efficiency and complementarity of commonly used extraction solvents, namely 1 + 3 (v/v) mixtures of water and selected organic solvents (methanol, acetonitrile or methanol/acetonitrile 1 + 1 (v/v)), with and without the addition of 0.1% (v/v) formic acid were compared. Four different wheat organs were sampled, extracted and analysed by LC-HRMS. Data evaluation was performed with the in-house-developed MetExtract II software and R. With all tested solvents a total of 871 metabolites were extracted in ear, 785 in stem, 733 in leaf and 517 in root samples, respectively. Between 48% (stem) and 57% (ear) of the metabolites detected in a particular organ were found with all extraction mixtures, and 127 of 996 metabolites were consistently shared between all extraction agent/organ combinations. In aqueous methanol, acidification with formic acid led to pronounced pH dependency regarding the precision of metabolite abundance and the number of detectable metabolites, whereas extracts of acetonitrile-containing mixtures were less affected. Moreover, methanol and acetonitrile have been found to be complementary with respect to extraction efficiency. Interestingly, the beneficial properties of both solvents can be combined by the use of a water-methanol-acetonitrile mixture for global metabolite extraction instead of aqueous methanol or aqueous acetonitrile alone. PMID:27367667

  15. Unique reversibility in extraction mechanism of U compared to solvent extraction for sorption of U(VI) and Pu(IV) by a novel solvent impregnated resin containing trialkyl phosphine oxide functionalized ionic liquid.

    PubMed

    Paramanik, M; Panja, S; Dhami, P S; Yadav, J S; Kaushik, C P; Ghosh, S K

    2018-07-15

    Novel Solvent Impregnated Resin (SIR) material was prepared by impregnating a trialkyl phosphine oxide functionalized ionic liquid (IL) into an inert polymeric material XAD-7. A series of SIR materials were prepared by varying the IL quantity. Sorption of both U(VI) and Pu(IV) were found to increase with increasing IL concentration in SIR up to an optimum IL concentration of 435 mg g -1 of SIR beyond which no effect of IL concentration was observed. A change of mechanism of sorption for U(VI) by SIR was observed in comparison to solvent extraction. The dependency of U(VI) sorption with nitric acid concentration showed a reverse trend compared to solvent extraction studies while for Pu(IV) the trend remained same as observed with solvent extraction. Sorption of both the radionuclides was found to follow pseudo second order mechanism and Langmuir adsorption isotherm. Distribution co-efficient measurements on IL impregnated SIR showed highly selective sorption of U(VI) and Pu(IV) over other trivalent f-elements and fission products from nitric acid medium. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Fluid extraction

    DOEpatents

    Wai, Chien M.; Laintz, Kenneth E.

    1999-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  17. REMOVAL OF PCBS FROM A CONTAMINATED SOIL USING CF-SYSTEMS SOLVENT EXTRACTION PROCESS

    EPA Science Inventory

    The US EPA's START team in cooperation with EPA's SITE program evaluated a pilot scale solvent extraction process developed by CF-Systems. This process uses liquified propane to extract organic contaminants from soils, sludges, and sediments. A pilot-scale evaluation was conducte...

  18. RESOURCES CONSERVATIONS COMPANY - B.E.S.T. SOLVENT EXTRACTION TECHNOLOGY - APPLICATIONS ANALYSIS REPORT

    EPA Science Inventory

    This document is an evaluation of the performance of the Resources Conservation Company (RCC) Basic Extractive Sludge Treatment (B.E.S.T.®) solvent extraction technology and its applicability as a treatment technique for soils, sediments, and sludges contaminated with organics. B...

  19. Investigation of the pharmaceutical and pharmacological equivalence of different Hawthorn extracts.

    PubMed

    Vierling, W; Brand, N; Gaedcke, F; Sensch, K H; Schneider, E; Scholz, M

    2003-01-01

    Seven Hawthorn extracts were tested in isolated guinea pig aorta rings. The effect on noradrenaline- (10 microM) induced contraction was investigated. The extracts were prepared using ethanol (40 to 70% v/v), methanol (40 to 70% v/v), and water as the extraction solvents. The aqueous-alcoholic extracts displayed similar spectra of constituents. They were characterised by similar procyanidin, flavonoid, total vitexin and total phenols content and by similar TLC fingerprint chromatograms. The aqueous extract, however, showed a different fingerprint and a noticeably lower concentration of procyanidins, flavonoids and total phenols but a similar total vitexin content. All 7 extracts had a relaxant effect on the aorta precontracted by noradrenaline and led to relaxations to 44 until 29% of the initial values. The EC50 values of the aqueous-alcoholic extracts varied between 4.16 and 9.8 mg/l. The aqueous extract produced a similarly strong maximal relaxation as the other extracts, but the EC50, at 22.39 mg/l, was markedly higher. The results show that Hawthorn extracts with comparable quality profiles were obtained by using aqueous-alcoholic extraction solvents (40 to 70% ethanol or methanol). The extracts exerted comparable pharmacological effects. When using water as the extraction solvent, both, the spectrum of constituents and the pharmacological effect, deviated remarkably. It is thus possible to obtain bioequivalent extracts with comparable effect profiles by using 40 to 70% ethanol or methanol as the extraction solvent.

  20. Solvent Selection for Extraction of Neodymium Concentrates of Monazite Sand Processed Product

    NASA Astrophysics Data System (ADS)

    Setyadji, Moch; Purwani, MV

    2018-02-01

    The extraction of neodymium concentrates of monazite sand processed product has been done. The objective of this investigation was to determine the best solvent to separate Nd from Nd concentrate. As an aqueous phase was Nd(OH)3 concentrated in HNO3 and as solvent or the organic phase was trioctylamine (TOA). tryibuthyl phosphate (TBP). trioctylphosphine oxyde (TOPO) and di-ethyl hexyl phosphoric acid (D2EHPA) in kerosene. The investigated variables were HNO3 concentration. feed concentration. solvent concentration or solvent in kerosene. time and stirring speeds. From the investigation on the selection of solvent for the extraction of Nd(OH)3 concentrate with various solvents. it was concluded that the extraction of Nd could be carried out by using TBP or TOA. Extraction of Nd using TOA at the optimum HNO3 concentration of 2M. feed concentration of 5 gram/10 mL. TOA in kerosene concentration of 6 %. stirring time of 15 minutes. stirring speed of 200 rpm was chosen if the Y concentration in Nd concentrate is small. In these condition DNd obtained was 0.65; extraction efficiency of Nd (ENd)=37.10%. the concentrations of Nd2(C2O4)3 = 67.14%. Ce2(C2O4)3 = 1.79%. La2(C2O4)3 = 1.37% and Y2(C2O4)3 = 24.70%. Extraction of Nd using TBP at the optimum HNO3 concentration of 1M. feed concentration of 5 gram/10 m. the TBP concentration in kerosene of 15%. stirring time of 15 minutes and stirring speed of 200 rpm was chosen if the Ce concentration in Nd concentrate is small. In these condition DNd obtained was 0.20. extraction efficiency of Nd (ENd)=17%. concentration of Nd2(C2O4)3 = 70.84%. Ce2(C2O4)3=15.53%. La2(C2O4)3 = 0.00% and Y2(C2O4)3 = 8.63%.

  1. Sample Results From The Extraction, Scrub, And Strip Test For The Blended NGS Solvent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington, A. L. II; Peters, T. B.

    This report summarizes the results of the extraction, scrub, and strip testing for the September 2013 sampling of the Next Generation Solvent (NGS) Blended solvent from the Modular Caustic Side-Solvent Extraction Unit (MCU) Solvent Hold Tank. MCU is in the process of transitioning from the BOBCalixC6 solvent to the NGS Blend solvent. As part of that transition, MCU has intentionally created a blended solvent to be processed using the Salt Batch program. This sample represents the first sample received from that blended solvent. There were two ESS tests performed where NGS blended solvent performance was assessed using either the Tankmore » 21 material utilized in the Salt Batch 7 analyses or a simulant waste material used in the V-5/V-10 contactor testing. This report tabulates the temperature corrected cesium distribution, or D Cs values, step recovery percentage, and actual temperatures recorded during the experiment. This report also identifies the sample receipt date, preparation method, and analysis performed in the accumulation of the listed values. The calculated extraction D Cs values using the Tank 21H material and simulant are 59.4 and 53.8, respectively. The DCs values for two scrub and three strip processes for the Tank 21 material are 4.58, 2.91, 0.00184, 0.0252, and 0.00575, respectively. The D-values for two scrub and three strip processes for the simulant are 3.47, 2.18, 0.00468, 0.00057, and 0.00572, respectively. These values are similar to previous measurements of Salt Batch 7 feed with lab-prepared blended solvent. These numbers are considered compatible to allow simulant testing to be completed in place of actual waste due to the limited availability of feed material.« less

  2. Solvent Orange 60 is a potent contact sensitizer in occupational and everyday life.

    PubMed

    Linauskienė, Kotryna; Zimerson, Erik; Antelmi, Annarita; Bruze, Magnus; Hagvall, Lina; Hamnerius, Nils; Hauksson, Inese; Ryberg, Kristina; Isaksson, Marléne

    2018-05-30

    Solvent Orange (SO) 60 is a perinone-type dye that is often used in plastic materials such as spectacle frames and has been shown to cause contact allergy. The first case of SO 60 allergic contact dermatitis caused by spectacle frames was reported in 1999, and the second in 2011. We have recently seen 10 patients, of whom 6 developed dermatitis in the retroauricular/temporal area after wearing plastic spectacles. To report the cause of the dermatitis in the 10 patients and to describe our first case with occupational SO 60 contact allergy. In this retrospective study, patch test results of 10 patients, tested with the Swedish baseline series and our specific spectacle and/or plastic series, including SO 60 1.0% pet., in 2011-2017, were analysed and compared with data published earlier. Ten patients, 2 males and 8 females, aged 43 to 71 years, reacted positively to SO 60 1.0% pet., namely, 4 pensioners, 2 nurses, 1 office worker, 1 teacher, 1 shop assistant, and 1 unemployed person. Four of the patients had an atopic history. Patch test reactions varied from + to +++; some had spread >20 cm outside the test area, and consisted of erythematous, infiltrated skin with papules. Retesting of patient no. 1 with serial dilutions of SO 60 in acetone to pinpoint his level of reactivity showed positive reactions down to 1 ppm. Three patients reacted to the extracts of their earpieces. Gas chromatography-mass spectrometry was used to confirm the presence of SO 60 in 2 earpieces. SO 60 should be included in any spectacle patch test series that may be used. If there is a strong suspicion of contact allergy to SO 60 before patch testing, lowering the test concentration from 1.0% to 0.01% should be considered. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Optimization of extraction conditions of some polyphenolic compounds from parsley leaves (Petroselinum crispum).

    PubMed

    Kuźma, Paula; Drużyńska, Beata; Obiedziński, Mieczysław

    2014-01-01

    Parsley leaf is a rich source of natural antioxidants, which serve a lot of functions in human body and prevent food from oxidation processes. The aim of the study was to investigate the influence of different extraction solvents and times of extraction on natural antioxidants content. Owing to the knowledge of the properties of extracted components and solvents, as well as their interactions, it is possible to achieve a high effectiveness of active compounds recovery. Three different extraction solvents (acetone 70% in water, methanol 80% in water and distilled water) and different times of extraction (30 and 60 minutes) were used to determine the efficiency of extraction of polyphenols and catechins, antioxidant activity against free radicals DPPH and ABTS and the ability to chelate ion Fe(2+) in dried parsley leaves. Other natural antioxidants contents in parsley leaves were also determined. In this study the best extraction solvent for polyphenols was acetone 70% and for catechins was distilled water. All extracts examined displayed the antioxidative activity, but water was the best solvent in the method of assaying the activity against ABTS(•+) and Fe(2+) ions chelating capability, whereas methanol turned out to be the least effective in this respect. Opposite results were observed in the case of determining the activity against DPPH(•). The prolongation of the extraction time enhanced or decreased antiradical activity in some cases. Additionally, important biologically active compounds in parsley leaves, such as vitamin C (248.31 mg/100 g dry matter), carotenoids (31.28 mg/100 g dry matter), chlorophyll (0.185 mg/g dry matter) were also analysed.

  4. Effect of different solvents extracts and mode of action of Loktanella spp. Gb03 on toxic dinoflagellate

    NASA Astrophysics Data System (ADS)

    Hameed, Anmar; Usup, Gires; Ahmad, Asmat

    2016-11-01

    This study was aimed to evaluate the algicidal activity of Loktanella sp. Gb-03 bacterial extracts against toxic dinoflagellate, using various polar and non-polar solvents. For this purpose, six different solvent extracts were prepared (i.e. methanol, ethyl acetate, hexane, chloroform, acetonitrile and water). Ratio of 1:100 (v:v) (extract to dinoflagellate culture) of each extract was used for preliminary algicidal activity screening against toxic dinoflagellate Coolia malaynesis. Dinoflagellate cells at the stationary phase (1.0 × 103 cells/ mL) were treated with 1% (v/v) of each extract by using 24-well microplate. The plates were then incubated for 24 hours at dinoflagellate culture condition (under a light intensity of 140 µmol m-2s-1 and 12:12 hours light:dark photoperiod). The result of algicidal activity screening showed that all 6 extracts from Loktanella sp. Gb-03 had different ranges of algicidal activity against the toxic dinoflagellates. Ethyl acetate extract showed the highest activity against C. malaynesis and also other harmful dinoflagellate (Alexandrium sp. Alexandrium leei, Alexandrium affine, Alexandrium tamiyavanichi, Alexandrium tamarense, Gambierdiscus belizeanus, and Ostreopsis). This study was the first to explore the algicidal activity of Loktanella sp. Gb-03 extracts against toxic dinoflagellate with ethyl acetate as the best solvent to extract algicidal active compounds.

  5. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%

    NASA Astrophysics Data System (ADS)

    Arora, Neha; Dar, M. Ibrahim; Hinderhofer, Alexander; Pellet, Norman; Schreiber, Frank; Zakeeruddin, Shaik Mohammed; Grätzel, Michael

    2017-11-01

    Perovskite solar cells (PSCs) with efficiencies greater than 20% have been realized only with expensive organic hole-transporting materials. We demonstrate PSCs that achieve stabilized efficiencies exceeding 20% with copper(I) thiocyanate (CuSCN) as the hole extraction layer. A fast solvent removal method enabled the creation of compact, highly conformal CuSCN layers that facilitate rapid carrier extraction and collection. The PSCs showed high thermal stability under long-term heating, although their operational stability was poor. This instability originated from potential-induced degradation of the CuSCN/Au contact. The addition of a conductive reduced graphene oxide spacer layer between CuSCN and gold allowed PSCs to retain >95% of their initial efficiency after aging at a maximum power point for 1000 hours under full solar intensity at 60°C. Under both continuous full-sun illumination and thermal stress, CuSCN-based devices surpassed the stability of spiro-OMeTAD-based PSCs.

  6. Interlaboratory comparison of mutagenesis testing of coal fly ash derived from differenct coal conversion technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chrisp, C.; Hobbs, C.; Clark, R.

    1979-01-01

    This experiment showed that mutagenicity of fly ash derived from different coal conversion technologies, as determined by the Ames plate incorporation test, was similar in all three laboratories. The differences in mutagenic activity of each fly ash between laboratories with different solvent extraction methods were no greater than one order of magnitude. In addition, there were much smaller, but still significant differences in mutagenic activity between laboratories when the same solvent extract of a particular fly ash was tested in each laboratory. There were also significant differences in mutagenicity of the positive control mutagen (maximum of fivefold) between laboratories. Becausemore » of this difference in Ames test sensitivity between laboratories, the influence of the solvent extraction methods on differences in mutagenicity was not clear. However, the data suggested that either there were significant differences in the degree of sensitivity of Ames tests for different complex mixtures within each laboratory, or else there were differences in mutagen extraction efficiency between different solvent extraction methods. Both Ames test sensitivity and solvent extraction may be important. Further work would be necessary to separate the contribution of these two factors. An important aspect of further work would be to separate the contribution of the innate sensitivity of substrains of Ames tester strains in each laboratory from the possible effects of differences in Ames testing methodology. This could be done by testing the same extracts of fly ash and positive control mutagens with substrains of tester strains exchanged between laboratories. This work also implies that caution should be exercised in assuming that the same solvent would have the same efficiency for extraction of mutagens from different fly ashes even within the same laboratory.« less

  7. Reutilization of mango byproducts: study of the effect of extraction solvent and temperature on their antioxidant properties.

    PubMed

    Dorta, Eva; Lobo, M Gloria; Gonzalez, Monica

    2012-01-01

    Mango biowastes, obtained after processing, contain large amounts of compounds with antioxidant activity that can be reused to reduce their environmental impact. The present study evaluates the effect of solvent (methanol, ethanol, acetone, water, methanol:water [1:1], ethanol:water [1:1], and acetone:water [1:1]), and temperature (25, 50, and 75 °C) on the efficiency of the extraction of antioxidants from mango peel and seed. Among the factors optimized, extraction solvent was the most important. The solvents that best obtained extracts with high antioxidant capacity were methanol, methanol:water, ethanol:water, and acetone:water (β-carotene test, antioxidant activity coefficient 173 to 926; thiobarbituric acid reactive substances test, inhibition ratio 15% to 89%; 2,2'-azino-bis-(3-ethylbenzothiazoline)-6-sulfonic acid ABTS(·+); and 2,2-diphenyl-1-picrylhydrazyl DPPH· scavenging, 7 to 22 and 8 to 28 g trolox equivalent antioxidant capacity [TE] per 100 g mango biowaste on a dry matter basis [DW]). Similarly, the flavonoid (0.21 to 1.4 g (+)-catechin equivalents per 100 g DW), tannin (3.8 to 14 g tannic acid equivalents per 100 g DW), and proanthocyanidin (0.23 to 7.8 g leucoanthocyanidin equivalents per 100 g DW) content was highest in the peel extracts obtained with methanol, ethanol:water, or acetone:water and in the seed extracts obtained with methanol or acetone:water. From the perspective of food security, it is advisable to choose ethanol (which also has a notable antioxidant content), ethanol:water, or acetone:water, as they are all solvents that can be used in compliance with good manufacturing practice. In general, increasing temperature improves the capacity of the extracts obtained from mango peel and seed to inhibit lipid peroxidation; however, its effect on the extraction of phytochemical compounds or on the capacity of the extracts to scavenge free radicals was negligible in comparison to that of the solvent. There are many antioxidant compounds in mango peel and seed, and they could be used as a natural and very inexpensive alternative to synthetic food additives. However, the conditions in which the antioxidants are extracted must be optimized. This work proves that conditions such as extraction solvent or temperature have a crucial impact on obtaining extracts rich in antioxidants from mango biowastes. © 2011 Institute of Food Technologists®

  8. Multi-response optimisation of ultrasound-assisted extraction for recovery of flavonoids from red grape skins using response surface methodology.

    PubMed

    Tomaz, Ivana; Maslov, Luna; Stupić, Domagoj; Preiner, Darko; Ašperger, Danijela; Karoglan Kontić, Jasminka

    2016-01-01

    For the characterisation of grape cultivars, the profile and content of flavonoids are important because these compounds impact grape and wine quality. To determine the correct profile and content of flavonoids, the use of robust, sensitive and reliable methods is necessary. The object of this research is to develop a new ultrasound-assisted extraction (UAE) method for the recovery of flavonoids from grape skins using response surface methodology. Optimisation of UAE was performed using a complementary study combining a Box-Behnken experimental design with qualitative analysis by high-performance liquid chromatography. Optimal extraction conditions were obtained using the extraction solvent composed of acetonitrile:water:formic acid (26:73:1, v/v/v) at an extraction temperature of 50 °C, an extraction time of 15 min in a single-extraction step and with a solid-to-solvent ratio of 1:80 g/mL. The calculated relative standard deviations for the optimal extraction method were very low, measuring less than 5%. This study demonstrates that numerous factors have strong effects on the extraction efficiency, including the type of organic modifier and its percentage in the extraction solvent, the number of extraction steps, the solid-to-solvent ratio, the extraction time and temperature and, finally, the particular nature of analyte and their position within the grape skin cell. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Optimization of extraction of polysaccharides from fruiting body of Cordyceps militaris (L.) link using response surface methodology

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoang Chinh; Thi, Dinh Huynh Mong; Pham, Dinh Chuong

    2018-04-01

    Polysaccharides from fruiting body of Cordyceps militaris (L.) Link possess various pharmaceutical activities. In this study, polysaccharides from the fruiting body of C. militaris were extracted with different solvents. Of those solvents tested, distilled water was identified as the most efficient solvent for the extraction, resulting in a significant increase in polysaccharides yield. Response surface methodology was then used to optimize the extraction conditions and establish a reliable mathematical model for prediction. A maximum polysaccharides yield of 11.07% was reached at a ratio of water to raw material of 23.2:1 mL/g, an extraction time of 76 min, and a temperature of 93.6°C. This study indicates that the obtained optimal extraction conditions are an efficient method for extraction of polysaccharides from the fruiting body of C. militaris.

  10. Evaluation of different solvent mixtures in esterifiable lipids extraction from microalgae Botryococcus braunii for biodiesel production.

    PubMed

    Hidalgo, Pamela; Ciudad, Gustavo; Navia, Rodrigo

    2016-02-01

    Non-polar and polar solvents as well as their mixtures were tested for the extraction of microalgae lipids and thus, to evaluate their effect on total and esterifiable lipids extraction yields with potential to be converted to biodiesel. The obtained results show an increase in lipids and esterifiable lipids extraction yields when non-polar and polar solvent mixtures were used. The higher esterifiable lipids extraction yield was 19.2%wt (based on dry biomass) using a chloroform-methanol mixture (75%v/v of methanol), corresponding to a 98.9%wt esterifiable lipids extraction. In addition, esterifiable lipids extraction yield of 18.9%wt (based on dry biomass) was obtained when a petroleum ether-methanol mixture (75%v/v of methanol) was used, corresponding to a 96.9%wt esterifiable lipids extraction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Comparison of ambient solvent extraction methods for the analysis of fatty acids in non-starch lipids of flour and starch

    PubMed Central

    Bahrami, Niloufar; Yonekura, Lina; Linforth, Robert; Carvalho da Silva, Margarida; Hill, Sandra; Penson, Simon; Chope, Gemma; Fisk, Ian Denis

    2014-01-01

    BACKGROUND Lipids are minor components of flours, but are major determinants of baking properties and end-product quality. To the best of our knowledge, there is no single solvent system currently known that efficiently extracts all non-starch lipids from all flours without the risk of chemical, mechanical or thermal damage. This paper compares nine ambient solvent systems (monophasic and biphasic) with varying polarities: Bligh and Dyer (BD); modified Bligh and Dyer using HCl (BDHCL); modified BD using NaCl (BDNaCl); methanol–chloroform–hexane (3:2:1, v/v); Hara and Radin (hexane–isopropanol, 3:2, v/v); water-saturated n-butanol; chloroform; methanol and hexane for their ability to extract total non-starch lipids (separated by lipid classes) from wheat flour (Triticum aestivum L.). Seven ambient extraction protocols were further compared for their ability to extract total non-starch lipids from three alternative samples: barley flour (Hordeum vulgare L.), maize starch (Zea mays L.) and tapioca starch (Manihot esculenta Crantz). RESULTS For wheat flour the original BD method and those containing HCl or NaCl tended to extract the maximum lipid and a significant correlation between lipid extraction yield (especially the glycolipids and phospholipids) and the polarity of the solvent was observed. For the wider range of samples BD and BD HCl repeatedly offered the maximum extraction yield and using pooled standardized (by sample) data from all flours, total non-starch lipid extraction yield was positively correlated with solvent polarity (r = 0.5682, P < 0.05) and water ratio in the solvent mixture (r = 0.5299, P < 0.05). CONCLUSION In general, BD-based methods showed better extraction yields compared to methods without the addition of water and, most interestingly, there was much greater method dependence of lipid yields in the starches when compared to the flour samples, which is due to the differences in lipid profiles between the two sample types (flours and starches). PMID:24132804

  12. Fluoro-alcohol phase modifiers and process for cesium solvent extraction

    DOEpatents

    Bonnesen, Peter V.; Moyer, Bruce A.; Sachleben, Richard A.

    2003-05-20

    The invention relates to a class of phenoxy fluoro-alcohols, their preparation, and their use as phase modifiers and solvating agents in a solvent composition for the extraction of cesium from alkaline solutions. These phenoxy fluoro-alcohols comply with the formula: ##STR1## in which n=2 to 4; X represents a hydrogen or a fluorine atom, and R.sup.2 -R.sup.6 are hydrogen or alkyl substituents. These phenoxy fluoro-alcohol phase modifiers are a necessary component to a robust solvent composition and process useful for the removal of radioactive cesium from alkaline nuclear waste streams. The fluoro-alcohols can also be used in solvents designed to extract other cesium from acidic or neutral solutions.

  13. Design of experiment approach for the process optimisation of microwave assisted extraction of lupeol from Ficus racemosa leaves using response surface methodology.

    PubMed

    Das, Anup Kumar; Mandal, Vivekananda; Mandal, Subhash C

    2013-01-01

    Triterpenoids are a group of important phytocomponents from Ficus racemosa (syn. Ficus glomerata Roxb.) that are known to possess diverse pharmacological activities and which have prompted the development of various extraction techniques and strategies for its better utilisation. To develop an effective, rapid and ecofriendly microwave-assisted extraction (MAE) strategy to optimise the extraction of a potent bioactive triterpenoid compound, lupeol, from young leaves of Ficus racemosa using response surface methodology (RSM) for industrial scale-up. Initially a Plackett-Burman design matrix was applied to identify the most significant extraction variables amongst microwave power, irradiation time, particle size, solvent:sample ratio loading, varying solvent strength and pre-leaching time on lupeol extraction. Among the six variables tested, microwave power, irradiation time and solvent-sample/loading ratio were found to have a significant effect (P < 0.05) on lupeol extraction and were fitted to a Box-Behnken-design-generated quadratic polynomial equation to predict optimal extraction conditions as well as to locate operability regions with maximum yield. The optimal conditions were microwave power of 65.67% of 700 W, extraction time of 4.27 min and solvent-sample ratio loading of 21.33 mL/g. Confirmation trials under the optimal conditions gave an experimental yield (18.52 µg/g of dry leaves) close to the RSM predicted value of 18.71 µg/g. Under the optimal conditions the mathematical model was found to be well fitted with the experimental data. The MAE was found to be a more rapid, convenient and appropriate extraction method, with a higher yield and lower solvent consumption when compared with conventional extraction techniques. Copyright © 2012 John Wiley & Sons, Ltd.

  14. Chemical composition and antibacterial activity of Cordia verbenacea extracts obtained by different methods.

    PubMed

    Michielin, Eliane M Z; Salvador, Ana A; Riehl, Carlos A S; Smânia, Artur; Smânia, Elza F A; Ferreira, Sandra R S

    2009-12-01

    The present study describes the chemical composition and the antibacterial activity of extracts from Cordia verbenacea DC (Borraginaceae), a traditional medicinal plant that grows widely along the southeastern coast of Brazil. The extracts were obtained using different extraction techniques: high-pressure operations and low-pressure methods. The high-pressure technique was applied to obtain C. verbenacea extracts using pure CO(2) and CO(2) with co-solvent at pressures up to 30MPa and temperatures of 30, 40 and 50 degrees C. Organic solvents such as n-hexane, ethyl acetate, ethanol, acetone and dichloromethane were used to obtain extracts by low-pressure processes. The antibacterial activity of the extracts was also subjected to screening against four strains of bacteria using the agar dilution method. The extraction yields were up to 5.0% w/w and up to 8.6% w/w for supercritical fluid extraction with pure CO(2) and with ethyl acetate as co-solvent, respectively, while the low-pressure extraction indicates yields up to 24.0% w/w in the soxhlet extraction using water and aqueous mixture with 50% ethanol as solvents. The inhibitory activity of the extracts in gram-positive bacteria was significantly higher than in gram-negative. The quantification and the identification of the extracts recovered were accomplished using GC/MS analysis. The most important components identified in the extract were artemetin, beta-sitosterol, alpha-humulene and beta-caryophyllene, among others.

  15. Alcohol based-deep eutectic solvent (DES) as an alternative green additive to increase rotenone yield

    NASA Astrophysics Data System (ADS)

    Othman, Zetty Shafiqa; Hassan, Nur Hasyareeda; Zubairi, Saiful Irwan

    2015-09-01

    Deep eutectic solvents (DESs) are basically molten salts that interact by forming hydrogen bonds between two added components at a ratio where eutectic point reaches a melting point lower than that of each individual component. Their remarkable physicochemical properties (similar to ionic liquids) with remarkable green properties, low cost and easy handling make them a growing interest in many fields of research. Therefore, the objective of pursuing this study is to analyze the potential of alcohol-based DES as an extraction medium for rotenone extraction from Derris elliptica roots. DES was prepared by a combination of choline chloride, ChCl and 1, 4-butanediol at a ratio of 1/5. The structure of elucidation of DES was analyzed using FTIR, 1H-NMR and 13C-NMR. Normal soaking extraction (NSE) method was carried out for 14 hours using seven different types of solvent systems of (1) acetone; (2) methanol; (3) acetonitrile; (4) DES; (5) DES + methanol; (6) DES + acetonitrile; and (7) [BMIM] OTf + acetone. Next, the yield of rotenone, % (w/w), and its concentration (mg/ml) in dried roots were quantitatively determined by means of RP-HPLC. The results showed that a binary solvent system of [BMIM] OTf + acetone and DES + acetonitrile was the best solvent system combination as compared to other solvent systems. It contributed to the highest rotenone content of 0.84 ± 0.05% (w/w) (1.09 ± 0.06 mg/ml) and 0.84 ± 0.02% (w/w) (1.03 ± 0.01 mg/ml) after 14 hours of exhaustive extraction time. In conclusion, a combination of the DES with a selective organic solvent has been proven to have a similar potential and efficiency as of ILs in extracting bioactive constituents in the phytochemical extraction process.

  16. Experimental study on thermal hazard of tributyl phosphate-nitric acid mixtures using micro calorimeter technique.

    PubMed

    Sun, Qi; Jiang, Lin; Gong, Liang; Sun, Jin-Hua

    2016-08-15

    During PUREX spent nuclear fuel reprocessing, mixture of tributyl phosphate (TBP) and hydrocarbon solvent are employed as organic solvent to extract uranium in consideration of radiation contaminated safety and resource recycling, meanwhile nitric acid is utilized to dissolve the spent fuel into small pieces. However, once TBP contacts with nitric acid or nitrates above 130°C, a heavy "red oil" layer would occur accompanied by thermal runaway reactions, even caused several nuclear safety accident. Considering nitric acid volatility and weak exothermic detection, C80micro calorimeter technique was used in this study to investigate thermal decomposition of TBP mixed with nitric acid. Results show that the concentration of nitric acid greatly influences thermal hazard of the system by direct reactions. Even with a low heating rate, if the concentration of nitric acid increases due to evaporation of water or improper operations, thermal runaway in the closed system could start at a low temperature. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Vegetable Oils as Alternative Solvents for Green Oleo-Extraction, Purification and Formulation of Food and Natural Products.

    PubMed

    Yara-Varón, Edinson; Li, Ying; Balcells, Mercè; Canela-Garayoa, Ramon; Fabiano-Tixier, Anne-Sylvie; Chemat, Farid

    2017-09-05

    Since solvents of petroleum origin are now strictly regulated worldwide, there is a growing demand for using greener, bio-based and renewable solvents for extraction, purification and formulation of natural and food products. The ideal alternative solvents are non-volatile organic compounds (VOCs) that have high dissolving power and flash point, together with low toxicity and less environmental impact. They should be obtained from renewable resources at a reasonable price and be easy to recycle. Based on the principles of Green Chemistry and Green Engineering, vegetable oils could become an ideal alternative solvent to extract compounds for purification, enrichment, or even pollution remediation. This review presents an overview of vegetable oils as solvents enriched with various bioactive compounds from natural resources, as well as the relationship between dissolving power of non-polar and polar bioactive components with the function of fatty acids and/or lipid classes in vegetable oils, and other minor components. A focus on simulation of solvent-solute interactions and a discussion of polar paradox theory propose a mechanism explaining the phenomena of dissolving polar and non-polar bioactive components in vegetable oils as green solvents with variable polarity.

  18. Investigating the effect of various extracting solvents on the potential use of red-apple skin (Malus domestica) as natural sensitizer for dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Saputro, Aldhi; Mizan, Adlan; Sofyan, Nofrijon; Yuwono, Akhmad Herman

    2017-03-01

    In the current investigation, the natural dye extracted from red-apple (Malus domestica) skin was used as natural sensitizer for dye sensitized solar cell (DSSC) application. The present study was specifically aimed at observing the effect of different solvents, i.e. deionized water, ethanol, and acidified ethanol, on the performance of the natural dye and thus the DSSC. For synthesis purposes, red-apple skin was peeled off, dried, crushed and furthermore extracted with ratio red-apple skin powder to solvent 1:20 w/v for 2 hours at 50°C under mechanical stirring. Subsequently, the resulting natural dyes with different solvents were examined by Fourier transform infrared (FTIR) to analyze their functional groups, UV-Vis spectroscopy to observe their absorption spectra for a wide range of wavelength, while TiO2 nanoparticle used as the semiconductor oxide layer in the device was characterized by field emission scanning electron microscope (FESEM). The FTIR results showed that the red-apple skin has anthocyanin group which functions as the sensitizer agent for photon energy absorption from the sunlight. The UV-Vis spectroscopy results showed that ethanol solvent has higher absorption of sunlight wavelength as compared to those of deionized water and acidified ethanol solvents. The performance test of the fabricated DSSC showed the prototype made of the red apple skin dye extracted by ethanol solvent can provide the highest open circuit voltage (Voc) up to 324 mV and efficiency around 0.046%. On the basis of investigation, it has been found that ethanol was the best solvent to extract anthocyanin from the red-apple skin.

  19. Simulated Leaching (Migration) Study for a Model Container-Closure System Applicable to Parenteral and Ophthalmic Drug Products.

    PubMed

    Jenke, Dennis; Egert, Thomas; Hendricker, Alan; Castner, James; Feinberg, Tom; Houston, Christopher; Hunt, Desmond G; Lynch, Michael; Nicholas, Kumudini; Norwood, Daniel L; Paskiet, Diane; Ruberto, Michael; Smith, Edward J; Holcomb, Frank; Markovic, Ingrid

    2017-01-01

    A simulating leaching (migration) study was performed on a model container-closure system relevant to parenteral and ophthalmic drug products. This container-closure system consisted of a linear low-density polyethylene bottle (primary container), a polypropylene cap and an elastomeric cap liner (closure), an adhesive label (labeling), and a foil overpouch (secondary container). The bottles were filled with simulating solvents (aqueous salt/acid mixture at pH 2.5, aqueous buffer at pH 9.5, and 1/1 v/v isopropanol/water), a label was affixed to the filled and capped bottles, the filled bottles were placed into the foil overpouch, and the filled and pouched units were stored either upright or inverted for up to 6 months at 40 °C. After storage, the leaching solutions were tested for leached substances using multiple complementary analytical techniques to address volatile, semi-volatile, and non-volatile organic and inorganic extractables as potential leachables.The leaching data generated supported several conclusions, including that (1) the extractables (leachables) profile revealed by a simulating leaching study can qualitatively be correlated with compositional information for materials of construction, (2) the chemical nature of both the extracting medium and the individual extractables (leachables) can markedly affect the resulting profile, and (3) while direct contact between a drug product and a system's material of construction may exacerbate the leaching of substances from that material by the drug product, direct contact is not a prerequisite for migration and leaching to occur. LAY ABSTRACT: The migration of container-related extractables from a model pharmaceutical container-closure system and into simulated drug product solutions was studied, focusing on circumstances relevant to parenteral and ophthalmic drug products. The model system was constructed specifically to address the migration of extractables from labels applied to the outside of the primary container. The study demonstrated that (1) the extractables that do migrate can be correlated to the composition of the materials used to construct the container-closure systems, (2) the extent of migration is affected by the chemical nature of the simulating solutions and the extractables themselves, and (3) even though labels may not be in direct contact with a contained solution, label-related extractables can accumulate as leachables in those solutions. © PDA, Inc. 2017.

  20. U-EXTRACTION--IMPROVEMENTS IN ELIMINATION OF Mo BY USE OF FERRIC ION

    DOEpatents

    Clark, H.M.; Duffey, D.

    1958-06-10

    An improved solvent extraction process is described whereby U may be extracted by a water immiscible organic solvent from an aqueous solution of uranyl nitrate. It has been found that Mo in the presence of phosphate ions appears to form a complex with the phosphate which extracts along with the U. This extraction of Mo may be suppressed by providing ferric ion in the solution prior to the extraction step. The ferric ion is preferably provided in the form of ferric nitrate.

  1. Immunomodulatory activities of different solvent extracts from Tricholoma matsutake (S. Ito et S. Imai) singer (higher basidiomycetes) on normal mice.

    PubMed

    Yin, Xiulian; You, Qinghong; Jiang, Zhonghai

    2012-01-01

    The immunomodulatory activities of different solvent extracts from the culinary-medicinal mushroom Tricholoma matsutake were studied in vivo in normal mice. The extracts were prepared using different solvents in an order of increasing polarity. The immunomodulatory activities were investigated by measuring the thymus and spleen index, phagocytic rate of macrophage phagocytosis, delayed-type hypersensitivity, plaque-forming cell, and proliferation of splenocytes. Results demonstrated that water extract (WE) and n-butyl alcohol extract (BAE) of T. matsutake could enhance the immunity of mice significantly compared with the control group. Main components of WE and BAE were polysaccharides, proteins, and flavonoids; we presume that these may be the main immunomodulating and immuno-enhancing agents in T. matsutake.

  2. Specific minor groove solvation is a crucial determinant of DNA binding site recognition

    PubMed Central

    Harris, Lydia-Ann; Williams, Loren Dean; Koudelka, Gerald B.

    2014-01-01

    The DNA sequence preferences of nearly all sequence specific DNA binding proteins are influenced by the identities of bases that are not directly contacted by protein. Discrimination between non-contacted base sequences is commonly based on the differential abilities of DNA sequences to allow narrowing of the DNA minor groove. However, the factors that govern the propensity of minor groove narrowing are not completely understood. Here we show that the differential abilities of various DNA sequences to support formation of a highly ordered and stable minor groove solvation network are a key determinant of non-contacted base recognition by a sequence-specific binding protein. In addition, disrupting the solvent network in the non-contacted region of the binding site alters the protein's ability to recognize contacted base sequences at positions 5–6 bases away. This observation suggests that DNA solvent interactions link contacted and non-contacted base recognition by the protein. PMID:25429976

  3. Fundamental studies on the feasibility of deep eutectic solvents for the selective partition of glaucarubinone present in the roots of Simarouba glauca.

    PubMed

    Kholiya, Faisal; Bhatt, Nidhi; Rathod, Meena R; Meena, Ramavatar; Prasad, Kamalesh

    2015-07-14

    Several deep eutectic solvents prepared by the complexation of choline chloride as the hydrogen bond acceptor and hydrogen bond donors such as urea, thiourea, ethylene glycol, and glycerol were employed to partition glaucarubinone, an antimalarial compound present in roots of the plant, Simarouba glauca. Among all the solvents, the deep eutectic solvent consisting of the mixture of choline chloride and urea the most suitable to partition the antimalarial compound from the extract selectively. Analytical tools such as high-performance liquid chromatography and electrospray ionization mass spectrometry were used for characterizations, and glaucarubinone extracted from the roots of the plant by conventional solvent extraction method was used as a reference for comparison. The hydrogen and noncovalent bonds formed between glaucarubinone and the deep eutectic solvents could be responsible for the selective partition of the drug molecule. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Effect of HEH[EHP] impurities on the ALSEP solvent extraction process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holfeltz, Vanessa E.; Campbell, Emily L.; Peterman, Dean R.

    In solvent extraction processes, organic phase impurities can negatively impact separation factors, hydrolytic performance, and overall system robustness. This affects the process-level viability of a separation concept and necessitates knowledge of the behavior and mechanisms to control impurities in the solvent. The most widespread way through which impurities are introduced into a system is through impure extractants and/or diluents used to prepare the solvent, and often development of new purification schemes to achieve the desired level of purity is needed. In this work, the acidic extractant, 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP])—proposed for application in extractive processes aimed at separating trivalentmore » minor actinides from lanthanides and other fission products—is characterized with respect to its common impurities and their impact on Am(III) stripping in the Actinide Lanthanide SEParation (ALSEP) system. To control impurities in HEH[EHP], existing purification technologies commonly applied for the acidic organophosphorus reagents are reviewed, and a new method specific to HEH[EHP] purification is presented.« less

  5. Supercritical-Fluid Extraction of Oil From Tar Sands

    NASA Technical Reports Server (NTRS)

    Compton, L. E.

    1982-01-01

    New supercritical solvent mixtures have been laboratory-tested for extraction of oil from tar sands. Mixture is circulated through sand at high pressure and at a temperature above critical point, dissolving organic matter into the compressed gas. Extract is recovered from sand residues. Low-temperature super-critical solvents reduce energy consumption and waste-disposal problems.

  6. Spectroscopic, calorimetric and structural analyses of the effects of hydrothermal treatment of rice beans and the extraction solvent on starch characteristics.

    PubMed

    González-Cruz, Leopoldo; Montañez-Soto, José Luis; Conde-Barajas, Eloy; Negrete-Rodríguez, María de la Luz Xochilt; Flores-Morales, Areli; Bernardino-Nicanor, Aurea

    2018-02-01

    The modification of the starches extracted from rice beans both with and without hydrothermal treatment was evaluated via scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and Fourier transform infrared (FT-IR) and Raman spectroscopy. SEM indicated that the starch granules of rice beans exhibit wide variation in granule shape, showing the greatest size and modification of the surface when extracted with ethanol. It was found that the extraction solvent had no significant effect on the onset (T o ) and peak (T p ) temperatures of the starch, whereas hydrothermal treatment of rice beans decreased the T o , T p and ΔH of the starch. The modification of FT-IR spectra showed that hydrothermal treatment of rice beans and the solvent used in the extraction of starch affected starch crystallinity, mainly when ethanol was used. Raman spectroscopy revealed that the smaller changes in the starch bonds were due to the solvent used for starch extraction but that hydrothermal treatment disturbed all bonds in the starch. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Dispersive liquid-liquid microextraction based on the solidification of floating organic droplet for the determination of polychlorinated biphenyls in aqueous samples.

    PubMed

    Dai, Liping; Cheng, Jing; Matsadiq, Guzalnur; Liu, Lu; Li, Jun-Kai

    2010-08-03

    In the proposed method, an extraction solvent with a lower toxicity and density than the solvents typically used in dispersive liquid-liquid microextraction was used to extract seven polychlorinated biphenyls (PCBs) from aqueous samples. Due to the density and melting point of the extraction solvent, the extract which forms a layer on top of aqueous sample can be collected by solidifying it at low temperatures, which form a layer on top of the aqueous sample. Furthermore, the solidified phase can be easily removed from the aqueous phase. Based on preliminary studies, 1-undecanol was selected as the extraction solvent, and a series of parameters that affect the extraction efficiency were systematically investigated. Under the optimized conditions, enrichment factors for PCBs ranged between 494 and 606. Based on a signal-to-noise ratio of 3, the limit of detection for the method ranged between 3.3 and 5.4 ng L(-1). Good linearity, reproducibility and recovery were also obtained. 2010 Elsevier B.V. All rights reserved.

  8. Comparison of magnesium sulfate and sodium sulfate for removal of water from pesticide extracts of foods.

    PubMed

    Schenck, Frank J; Callery, Patrick; Gannett, Peter M; Daft, Jonathan R; Lehotay, Steven J

    2002-01-01

    Water-miscible solvents, such as acetone and acetonitrile, effectively extract both polar and nonpolar pesticide residues from nonfatty foods. The addition of sodium chloride to the resulting acetonitrile-water or acetone-water extract (salting out) results in the separation of the water from the organic solvent. However, the organic solvent layer (pesticide extract) still contains some residual water, which can adversely affect separation procedures that follow, such as solid-phase extraction and/or gas chromatography. Drying agents, such as sodium sulfate or magnesium sulfate, are used to remove the water from the organic extracts. In the present study, we used nuclear magnetic resonance spectroscopy to study the composition of the phases resulting from salting out and to compare the effectiveness of sodium sulfate and magnesium sulfate as drying agents. The study showed that considerable amounts of water remained in the organic phase after phase separation. Sodium sulfate was a relatively ineffective drying agent, removing little or no residual water from the organic solvent. Magnesium sulfate proved to be a much more effective drying agent.

  9. Deterred drug abuse using superabsorbent polymers.

    PubMed

    Mastropietro, David J; Muppalaneni, Srinath; Omidian, Hossein

    2016-11-01

    This study aimed to determine whether selected superabsorbent polymers (SAPs) could be used as a suitable alternative to thwart extraction, filtration, and syringeability attempts for abuse. Many abuse-deterrent formulations (ADFs) rely on high molecular weight polymers such as poly(ethylene oxide) to provide crush and extraction resistance. However, these polymers suffer from slow dissolution kinetics, and are susceptible to a variety of abuse conditions. Several commercially available SAPs were evaluated for swelling behavior in extraction solvents, and tableting properties. Post-compaction abuse properties were evaluated by recoverable volume and syringeability after solvent extraction. Drug release and percent drug extraction were conducted using tramadol HCl as a model drug. Certain SAPs had the ability to rapidly imbibe solvent and effectively stop extraction processes in a variety of solvents, including water and water/alcohol mixtures. Tablets containing SAP and drug showed no effect on drug release in vitro. SAPs possess adequate properties for tableting, and maintain their high and fast swelling properties after compaction. The fast and extensive interactions of SAPs with aqueous medium are a major advantage over non-crosslinked high molecular weight viscosifying agents such as poly(ethylene oxide).

  10. Gradient x Isocratic Elution CCC on the Isolation of Verbascoside and Other Phenylethanoids: Influence of the Complexity of the Matrix.

    PubMed

    Leitão, Gilda Guimarães; Pinto, Shaft Correa; de Oliveira, Danilo Ribeiro; Timoteo, Patrícia; Guimarães, Michelle Guedes; Cordova, Wilmer H Perera; Leitão, Suzana Guimarães

    2015-11-01

    Verbascoside is a phenylethanoid glycoside widely distributed in nature, especially among the order Lamiales, occurring in numerous plants that are constituents of folk medicine preparations. This natural compound, previously isolated by our group from the ethyl acetate extract of Lantana trifolia using the gradient approach in countercurrent chromatography, was now isolated from the butanol extract of the same plant and from Lippia alba f. intermedia (Verbenaceae) using countercurrent chromatography in either gradient or isocratic elution modes. The ethyl acetate extract of L. alba, rich in phenylethanoids and flavonoids, was fractionated using countercurrent chromatography in the step-gradient elution approach. The four-step solvent system was composed of n-hexane-ethyl acetate-n-butanol-water (4 : 10 : X : 10), where X = 1 (solvent system A), 3 (solvent system B), 5 (solvent system C), and 7 (solvent system D), and allowed for the isolation of verbascoside along with other phenylethanoids and flavonoids from both plants. Verbascoside and 2'-O-β-apiosylverbascoside were further isolated from the n-butanol extract of L. trifolia using the solvent system ethyl acetate-n-butanol-water 10 : 2 : 10 on an isocratic run. The difference in the complexity of the two plant extracts demanded different purification steps, which included a second high-speed countercurrent chromatography purification using the isocratic elution mode. Georg Thieme Verlag KG Stuttgart · New York.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Rajesh K.; Galvin, Janine E.; Sun, Xin

    We have numerically investigated the breakup of a rivulet falling over a smooth inclined plate using the volume of fluid method. The breakup the rivulet is a complex phenomenon that is dictated by many factors, such as solvent properties, contact angle, inertia, plate inclination, etc. An extensive simulation campaign was conducted wherein these factors were systematically investigated. Regimes for a stable rivulet and an unstable rivulet that leads to the breakup and formation of a droplet are examined in terms of a critical value of the Weber number (Wecr) that delineates these regimes. The effect of plate inclination on themore » breakup of the rivulet shows that the critical Weber number decreases with increased inclination angle () owing to higher liquid velocity. However, the effect is negligible beyond >60. The impact of solvent properties is characterized using the Kapitza number (Ka). Variation of Wecr with Ka shows two trends depending on the Ka value of the solvent. Solvents with lower Ka values, corresponding to high viscosities and/or low surface tensions, show smaller values of the critical Weber number and the variation is linear. While solvents with higher Ka values exhibit higher values of the Wecr and the variation in Wecr is steep. This behavior is more pronounced with increasing contact angle. Higher contact angles promote rivulet breakup so that inertia must be higher to the breakup. A phenomenological scaling for a critical Weber number with the Kapitza number and contact angle is presented that can offer insight into rivulet breakup.« less

  12. [Extraction of lambda-cyhalothrin from aqueous dioxan solutions].

    PubMed

    Shormanov, V K; Chigareva, E N; Belousova, O V

    2011-01-01

    The results of extraction of lambda-cigalotrin from dioxan aqueous solutions by hydrophobic organic solvents are presented. It is shown that the degree of extraction depends on the nature of the extractant, the water to dioxan ratio, and saturation of the water-dioxan layer with the electrolyte. The highest efficiency of lambda-cigalotrin extraction was achieved using chlorophorm as a solvent under desalination conditions. The extraction factor was calculated necessary to obtain the desired amount of lambda-cigalotrin from the water-dioxan solution (4:1) with the help of the extractants being used.

  13. Extraction of metals using supercritical fluid and chelate forming legand

    DOEpatents

    Wai, Chien M.; Laintz, Kenneth E.

    1998-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  14. Extraction of metals using supercritical fluid and chelate forming ligand

    DOEpatents

    Wai, C.M.; Laintz, K.E.

    1998-03-24

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated {beta}-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated {beta}-diketone and a trialkyl phosphate, or a fluorinated {beta}-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated {beta}-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process. 7 figs.

  15. Solvent Extraction Separation of Trivalent Americium from Curium and the Lanthanides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Mark P.; Chiarizia, Renato; Ulicki, Joseph S.

    2015-02-27

    The sterically constrained, macrocyclic, aqueous soluble ligand N,N'-bis[(6-carboxy-2-pyridyl)methyl]-1,10-diaza-18-crown-6 (H2BP18C6) was investigated for separating americium from curium and all the lanthanides by solvent extraction. Pairing H2BP18C6, which favors complexation of larger f-element cations, with acidic organophosphorus extractants that favor extraction of smaller f-element cations, such as bis-(2-ethylhexyl)phosphoric acid (HDEHP) or (2-ethylhexyl)phosphonic acid mono(2-ethylhexyl) ester (HEH[EHP]), created solvent extraction systems with good Cm/Am selectivity, excellent trans-lanthanide selectivity (Kex,Lu/Kex,La = 108), but poor selectivity for Am against the lightest lanthanides. However, using an organic phase containing both a neutral extractant, N,N,N’,N’-tetra(2-ethylhexyl)diglycolamide (TEHDGA), and HEH[EHP] enabled rejection of the lightest lanthanides during loading ofmore » the organic phase from aqueous nitric acid, eliminating their interference in the americium stripping stages. In addition, although it is a macrocyclic ligand, H2BP18C6 does not significantly impede the mass transfer kinetics of the HDEHP solvent extraction system« less

  16. Effect of solvent type and high pressure treatment on the extraction of Gomphrena globosa L. bioactive compounds

    NASA Astrophysics Data System (ADS)

    Fernandes, L.; Ramalhosa, E.; Pereira, J. A.; Casal, S.; Saraiva, J. A.

    2017-10-01

    The present study aimed to compare the influence of different extraction solvents (water, methanol, water:acetone (6:4, v/v)), methods (heating (37 °C, 30 min) or high pressure (HP) (300 or 500 MPa) and extraction time (7.5 or 15 min)) on flavonoids, hydrolysable tannins and antioxidant activity (Total Reducing Capacity (TRC), DPPH Free Radical Scavenging Activity and Reducing Power) of Gomphrena globosa L. flower extracts. The water:acetone extracts obtained by heating had the highest values of flavonoids, hydrolysable tannins and antioxidant activity. When applying HP, variable results were obtained. Still, the application of HP to water allowed to extract more hydrolysable tannins, as well as to obtain extracts with higher antioxidant activity than with heating, but no significant alterations were observed with methanol. In conclusion, both solvent and extraction method influence the content of bioactive compounds, being HP treatment a promising method to obtain enriched aqueous extracts in line with the principles of green-chemistry.

  17. Selective Extraction of Flavonoids from Sophora flavescens Ait. by Mechanochemistry.

    PubMed

    Zhang, Qihong; Yu, Jingbo; Wang, Yingyao; Su, Weike

    2016-07-29

    Flavonoids from Sophora flavescens were selectively extracted by mechanochemical-promoted extraction technology (MPET) after using response surface methodology to determine the optimal extraction parameters. The highest yield of 35.17 mg/g was achieved by grinding the roots with Na₂CO₃ (15%) at 440 rpm/min for 17.0 min and water was used as the sole solvent with a ratio of solvent to solid material of 25 mL/g. Flavonoids prepared by MPET demonstrated relatively higher antioxidant activities in subsequent DPPH and hydroxyl radical scavenging assays. Main constituents in the extracts, including kurarinol, kushenol I/N and kurarinone, were characterized by HPLC-MS/MS, indicating good selective extraction by MPET. Physicochemical property changes of powder during mechanochemical milling were identified by scanning electron microscopy, X-ray powder diffraction, and UV-Vis diffuse-reflectance spectroscopy. Compared with traditional extraction methods, MPET possesses notable advantages of higher selectivity, lower extraction temperature, shorter extraction time, and organic solvent free properties.

  18. Effects of high-pressure process on kinetics of leaching oil from soybean powder using hexane in batch systems.

    PubMed

    Uhm, Joo Tae; Yoon, Won Byong

    2011-08-01

    Mass transfer models of leaching oil from soybean (Glycine max) flour with hexane after high-pressure process (HPP) treatment were developed. High pressure (450 MPa) was applied to the soybean flour (mean diameter of flour particle: 365 μm) for 30 min before leaching the oil components in the solvent. The ratio of solvent (volume, mL) to soybean flour (mass, g), such as 1:10 and 1:20, was employed to characterize the effect of solvent ratio on the leaching rate in the batch type of extraction process. Ultraviolet absorbance at 300 nm was used to monitor the extraction rate. Saturation solubility (C(AS)) was determined to be 21.73 kg/m³. The mass transfer coefficients (k) were determined based on the 1st- and 2nd-order kinetic models. The 2nd kinetic model showed better fit. The HPP treatment showed a higher extraction rate and yield compared to the control, while the amount of solvent did not affect the extraction rate and yield. The scanning electron microscope showed that HPP-treated soybean particles included more pores than the untreated. The pores observed in the HPP-treated soybean flours might help increase the mass transfer rate of solvent and solute in the solid matrix. High-pressure processing can help increase the extraction rate of oil from the soybean flour operated in batch systems. The conventional solid to solvent ratio (1:20) used to extract oil composition from the plant seed did not help increase the amount of oil extracted from the soybean flour. © 2011 Institute of Food Technologists®

  19. Combination of Antioxidants from Different Sources Could Offer Synergistic Benefits: A Case Study of Tea and Ginger Blend.

    PubMed

    Makanjuola, Solomon A; Enujiugha, Victor N; Omoba, Olufunmilayo S; Sanni, David M

    2015-11-01

    Tea and ginger are plants with high antioxidant potential. Combinations of antioxidants from different sources could also produce synergistic antioxidant effects. This study investigated the influence of solvent on antioxidant content of tea, ginger, and tea + ginger blends. Under the investigated extraction conditions, water was the most effective extraction solvent to maximise peroxide scavenging and iron chelating activity of tea, ginger, and their blends. Aqueous ethanol was the most effective solvent to maximise ABTS radical scavenging activity and ethanol was the best solvent to maximise DPPH radical scavenging activity. A good multivariate regression model that explains the relationship between the total flavonoid content of the extracts and their antioxidant activities was obtained (R2 and Q2 of 0.93 and 0.83, respectively). Extracts of tea-ginger blends exhibited synergistic effects in their ABTS and DPPH radical scavenging activity.

  20. Microwave- and ultrasound-assisted extraction of vanillin and its quantification by high-performance liquid chromatography in Vanilla planifolia.

    PubMed

    Sharma, Anuj; Verma, Subash Chandra; Saxena, Nisha; Chadda, Neetu; Singh, Narendra Pratap; Sinha, Arun Kumar

    2006-03-01

    Microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE) and conventional extraction of vanillin and its quantification by HPLC in pods of Vanilla planifolia is described. A range of nonpolar to polar solvents were used for the extraction of vanillin employing MAE, UAE and conventional methods. Various extraction parameters such as nature of the solvent, solvent volume, time of irradiation, microwave and ultrasound energy inputs were optimized. HPLC was performed on RP ODS column (4.6 mm ID x 250 mm, 5 microm, Waters), a photodiode array detector (Waters 2996) using gradient solvent system of ACN and ortho-phosphoric acid in water (0.001:99.999 v/v) at 25 degrees C. Regression equation revealed a linear relationship (r2 > 0.9998) between the mass of vanillin injected and the peak areas. The detection limit (S/N = 3) and limit of quantification (S/N = 10) were 0.65 and 1.2 microg/g, respectively. Recovery was achieved in the range 98.5-99.6% for vanillin. Maximum yield of vanilla extract (29.81, 29.068 and 14.31% by conventional extraction, MAE and UAE, respectively) was found in a mixture of ethanol/water (40:60 v/v). Dehydrated ethanolic extract showed the highest amount of vanillin (1.8, 1.25 and 0.99% by MAE, conventional extraction and UAE, respectively).

  1. Selective extraction of high-value phenolic compounds from distillation wastewater of basil (Ocimum basilicum L.) by pressurized liquid extraction.

    PubMed

    Pagano, Imma; Sánchez-Camargo, Andrea Del Pilar; Mendiola, Jose Antonio; Campone, Luca; Cifuentes, Alejandro; Rastrelli, Luca; Ibañez, Elena

    2018-01-31

    During the essential oil steam distillation from aromatic herbs, huge amounts of distillation wastewaters (DWWs) are generated. These by-products represent an exceptionally rich source of phenolic compounds such as rosmarinic acid (RA) and caffeic acid (CA). Herein, the alternative use of dried basil DWWs (dDWWs) to perform a selective extraction of RA and CA by pressurized liquid extraction (PLE) employing bio-based solvent was studied. To select the most suitable solvent for PLE, the theoretical modelling of Hansen solubility parameters (HSP) was carried out. This approach allows reducing the list of candidate to two solvents: ethanol and ethyl lactate. Due to the composition of the sample, mixtures of water with those solvents were also tested. An enriched PLE extract in RA (23.90 ± 2.06 mg/g extract) with an extraction efficiency of 75.89 ± 16.03% employing a water-ethanol mixture 25:75 (% v/v) at 50°C was obtained. In the case of CA, a PLE extract with 2.42 ± 0.04 mg/g extract, having an extraction efficiency of 13.86 ± 4.96% using ethanol absolute at 50°C was achieved. DWWs are proposed as new promising sources of natural additives and/or functional ingredients for cosmetic, nutraceutical, and food applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Optimization of microwave-assisted extraction conditions for preparing lignan-rich extract from Saraca asoca bark using Box-Behnken design.

    PubMed

    Mishra, Shikha; Aeri, Vidhu

    2016-07-01

    Lyoniside is the major constituent of Saraca asoca Linn. (Caesalpiniaceae) bark. There is an immediate need to develop an efficient method to isolate its chemical constituents, since it is a therapeutically important plant. A rapid extraction method for lyoniside based on microwave-assisted extraction of S. asoca bark was developed and optimized using response surface methodology (RSM). Lyoniside was analyzed and quantified by high-performance liquid chromatography coupled with ultraviolet detection (HPLC-UV). The extraction solvent ratio (%), material solvent ratio (g/ml) and extraction time (min) were optimized using Box-Behnken design (BBD) to obtain the highest extraction efficiency. The optimal conditions were the use of 1:30 material solvent ratio with 70:30 mixture of methanol:water for 10 min duration. The optimized microwave-assisted extraction yielded 9.4 mg/g of lyoniside content in comparison to reflux extraction under identical conditions which yielded 4.2 mg/g of lyoniside content. Under optimum conditions, the experimental values agreed closely with the predicted values. The analysis of variance (ANOVA) indicated a high goodness-of-fit model and the success of the RSM method for optimizing lyoniside extraction from the bark of S. asoca. All the three variables significantly affected the lyoniside content. Increased polarity of solvent medium enhances the lyoniside yield. The present study shows the applicability of microwave-assisted extraction in extraction of lyoniside from S. asoca bark.

  3. Extraction and identification of bioactive compounds from agarwood leaves

    NASA Astrophysics Data System (ADS)

    Lee, N. Y.; Yunus, M. A. C.; Idham, Z.; Ruslan, M. S. H.; Aziz, A. H. A.; Irwansyah, N.

    2016-11-01

    Agarwood commonly known as gaharu, aloeswood or eaglewood have been used as traditional medicine for centuries and its essential oil also being used as perfumery ingredients and aroma enhancers in food products. However, there is least study on the agarwood leaves though it contains large number of biomolecules component that show diverse pharmacological activity. Previous study showed that the extracted compounds from the leaves possess activities like anti-mutagenic, anti-tumor and anti-helminthic. The main objectives of this research were to determine bioactive compounds in agarwood leaves; leaves extract and oil yield obtained from maceration and soxhlet extraction methods respectively. The maceration process was performed at different operating temperature of 25°C, 50°C and 75°C and different retention time at 30, 60, 90 and 120 minutes. Meanwhile, various solvents were used to extract the oil from agarwood leaves using soxhlet method which are hexane, water, isopropanol and ethanol. The extracted oil from agarwood leaves by soxhlet extraction was analyzed using gas chromatography mass spectrometry. The results showed that the highest extract of 1.53% was obtained when increase the temperature to 75 °C and longest retention time of 120 minutes gave the highest oil yield of 2.10 % by using maceration. This is because at higher temperature enhances the solubility solute and diffusivity coefficient, thus increase the extract yield while longer retention time allow the reaction between solvent and solute occurred more rapidly giving higher extract. Furthermore, the soxhlet extraction using n-hexane as the solvent gave the highest oil yield as compared to other solvent due to the non-polar properties of n-hexane increase the efficiency of oil which is also non-polar to soluble in the solvent. In addition, the results also reported that the oil extracted from agarwood leaves contains bioactive compounds which are phytol, squalene, n-hexadecanoic acid and octadecatrienoic acid. Therefore, oil extracted from agarwood leaves has the potential to be applied in food, pharmaceutical, nutraceutical and cosmetics industries.

  4. Novel Palm Fatty Acid Functionalized Magnetite Nanoparticles for Magnetic Solid-Phase Extraction of Trace Polycyclic Aromatic Hydrocarbons from Environmental Samples.

    PubMed

    Rozi, Siti Khalijah Mahmad; Nodeh, Hamid Rashidi; Kamboh, Muhammad Afzal; Manan, Ninie Suhana Abdul; Mohamad, Sharifah

    2017-07-01

    A novel adsorbent, palm fatty acid coated magnetic Fe 3 O 4 nanoparticles (MNP-FA) was successfully synthesized with immobilization of the palm fatty acid onto the surface of MNPs. The successful synthesis of MNP-FA was further confirmed by X-Ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and Energy dispersive X-Ray spectroscopy (EDX) analyses and water contact angle (WCA) measurement. This newly synthesized MNP-FA was applied as magnetic solid phase extraction (MSPE) adsorbent for the enrichment of polycyclic aromatic hydrocarbons (PAHs), namely fluoranthene (FLT), pyrene (Pyr), chrysene (Cry) and benzo(a)pyrene (BaP) from environmental samples prior to High Performance Liquid Chromatography- Diode Array Detector (HPLC-DAD) analysis. The MSPE method was optimized by several parameters such as amount of sorbent, desorption solvent, volume of desorption solvent, extraction time, desorption time, pH and sample volume. Under the optimized conditions, MSPE method provided a low detection limit (LOD) for FLT, Pyr, Cry and BaP in the range of 0.01-0.05 ng mL -1 . The PAHs recoveries of the spiked leachate samples ranged from 98.5% to 113.8% with the RSDs (n = 5) ranging from 3.5% to 12.2%, while for the spiked sludge samples, the recoveries ranged from 81.1% to 119.3% with the RSDs (n = 5) ranging from 3.1% to 13.6%. The recyclability study revealed that MNP-FA has excellent reusability up to five times. Chromatrographic analysis demonstrated the suitability of MNP-FA as MSPE adsorbent for the efficient extraction of PAHs from environmental samples.

  5. Sunflower seeds as eliciting agents of Compositae dermatitis.

    PubMed

    Paulsen, Evy; El-Houri, Rime B; Andersen, Klaus E; Christensen, Lars P

    2015-03-01

    Sunflowers may cause dermatitis because of allergenic sesquiterpene lactones (SLs). Contact sensitization to sunflower seeds has also been reported, but the allergens are unknown. To analyse sunflower seeds for the presence of SLs and to assess the prevalence of sunflower sensitization in Compositae-allergic individuals. Sunflower-sensitive patients were identified by aimed patch testing. A dichloromethane extract of whole sunflower seeds was analysed by liquid chromatography-mass spectrometry and high-performance liquid chromatography. The prevalence of sensitivity to sunflower in Compositae-allergic individuals was 56%. A solvent wash of whole sunflower seeds yielded an extract containing SLs, the principal component tentatively being identified as argophyllin A or B, other SLs being present in minute amounts. The concentration of SLs on the sunflower seeds is considered high enough to elicit dermatitis in sensitive persons, and it seems appropriate to warn Compositae-allergic subjects against handling sunflower seeds. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Actinide extraction methods

    DOEpatents

    Peterman, Dean R [Idaho Falls, ID; Klaehn, John R [Idaho Falls, ID; Harrup, Mason K [Idaho Falls, ID; Tillotson, Richard D [Moore, ID; Law, Jack D [Pocatello, ID

    2010-09-21

    Methods of separating actinides from lanthanides are disclosed. A regio-specific/stereo-specific dithiophosphinic acid having organic moieties is provided in an organic solvent that is then contacted with an acidic medium containing an actinide and a lanthanide. The method can extend to separating actinides from one another. Actinides are extracted as a complex with the dithiophosphinic acid. Separation compositions include an aqueous phase, an organic phase, dithiophosphinic acid, and at least one actinide. The compositions may include additional actinides and/or lanthanides. A method of producing a dithiophosphinic acid comprising at least two organic moieties selected from aromatics and alkyls, each moiety having at least one functional group is also disclosed. A source of sulfur is reacted with a halophosphine. An ammonium salt of the dithiophosphinic acid product is precipitated out of the reaction mixture. The precipitated salt is dissolved in ether. The ether is removed to yield the dithiophosphinic acid.

  7. Effect of solvent polarity levels on separation of xanthone and coumarin from Calophyllum inophyllum leaves extract

    NASA Astrophysics Data System (ADS)

    Susanto, D. F.; Hapsari, S.; Trilutfiani, Z.; Borhet, A.; Aparamarta, H. W.; Widjaja, A.; Gunawan, S.

    2018-03-01

    Calophyllum inophyllum has various benefits that can be utilized from root, stem, leaf, until seed. C. inophyllum leaves contain many bioactive compounds, such as xanthone and coumarin which are useful as antioxidant, and inhibitors of enzyme activity from HIV virus. The aim of this research was to investigate the effect of solvent polarity levels on the separation of xanthone and coumarin compounds contained in the crude extract of C. inophyllum leaves. Crude leaves extract was obtained by percolation method. Moreover, Liquid Liquid Extraction (LLE) was used for separating xanthone and coumarin compounds. It was performed by methanol (polar solvent) and hexane (non-polar solvent) with solvent ratio of 1. Methanol concentration in water used were 20%, 50%, 80%, and 100%. Each fraction obtained was tested qualitatively using Thin Layer Chromatography (TLC) and quantitatively using Gas Chromatography (GC) to analyze xanthone and coumarin. The best separation result was obtained by using 50% methanol. In this results, coumarin and xanthones were separated in methanol fraction (81.18% recovery) and in hexane fraction (81.91% recovery), respectively.

  8. Headspace single drop microextraction versus dispersive liquid-liquid microextraction using magnetic ionic liquid extraction solvents.

    PubMed

    An, Jiwoo; Rahn, Kira L; Anderson, Jared L

    2017-05-15

    A headspace single drop microextraction (HS-SDME) method and a dispersive liquid-liquid microextraction (DLLME) method were developed using two tetrachloromanganate ([MnCl 4 2- ])-based magnetic ionic liquids (MIL) as extraction solvents for the determination of twelve aromatic compounds, including four polyaromatic hydrocarbons, by reversed phase high-performance liquid chromatography (HPLC). The analytical performance of the developed HS-SDME method was compared to the DLLME approach employing the same MILs. In the HS-SDME approach, the magnetic field generated by the magnet was exploited to suspend the MIL solvent from the tip of a rod magnet. The utilization of MILs in HS-SDME resulted in a highly stable microdroplet under elevated temperatures and long extraction times, overcoming a common challenge encountered in traditional SDME approaches of droplet instability. The low UV absorbance of the [MnCl 4 2- ]-based MILs permitted direct analysis of the analyte enriched extraction solvent by HPLC. In HS-SDME, the effects of ionic strength of the sample solution, temperature of the extraction system, extraction time, stir rate, and headspace volume on extraction efficiencies were examined. Coefficients of determination (R 2 ) ranged from 0.994 to 0.999 and limits of detection (LODs) varied from 0.04 to 1.0μgL -1 with relative recoveries from lake water ranging from 70.2% to 109.6%. For the DLLME method, parameters including disperser solvent type and volume, ionic strength of the sample solution, mass of extraction solvent, and extraction time were studied and optimized. Coefficients of determination for the DLLME method varied from 0.997 to 0.999 with LODs ranging from 0.05 to 1.0μgL -1 . Relative recoveries from lake water samples ranged from 68.7% to 104.5%. Overall, the DLLME approach permitted faster extraction times and higher enrichment factors for analytes with low vapor pressure whereas the HS-SDME approach exhibited better extraction efficiencies for analytes with relatively higher vapor pressure. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Determination of Parameters for the Supercritical Extraction of Antioxidant Compounds from Green Propolis Using Carbon Dioxide and Ethanol as Co-Solvent.

    PubMed

    Machado, Bruna Aparecida Souza; Barreto, Gabriele de Abreu; Costa, Aline Silva; Costa, Samantha Serra; Silva, Rejane Pina Dantas; da Silva, Danielle Figuerêdo; Brandão, Hugo Neves; da Rocha, José Luiz Carneiro; Nunes, Silmar Baptista; Umsza-Guez, Marcelo Andres; Padilha, Francine Ferreira

    2015-01-01

    The aim of this study was to determine the best processing conditions to extract Brazilian green propolis using a supercritical extraction technology. For this purpose, the influence of different parameters was evaluated such as S/F (solvent mass in relation to solute mass), percentage of co-solvent (1 and 2% ethanol), temperature (40 and 50°C) and pressure (250, 350 and 400 bar) using supercritical carbon dioxide. The Global Yield Isotherms (GYIs) were obtained through the evaluation of the yield, and the chemical composition of the extracts was also obtained in relation to the total phenolic compounds, flavonoids, antioxidant activity and 3,5-diprenyl-4-hydroxicinnamic acid (Artepillin C) and acid 4-hydroxycinnamic (p-coumaric acid). The best results were identified at 50°C, 350 bar, 1% ethanol (co-solvent) and S/F of 110. These conditions, a content of 8.93±0.01 and 0.40±0.05 g/100 g of Artepillin C and p-coumaric acid, respectively, were identified indicating the efficiency of the extraction process. Despite of low yield of the process, the extracts obtained had high contents of relevant compounds, proving the viability of the process to obtain green propolis extracts with important biological applications due to the extracts composition.

  10. Changes in the specific migration characteristics of packaging-food simulant combinations caused by ionizing radiation: Effect of food simulant

    NASA Astrophysics Data System (ADS)

    Zygoura, Panagiota D.; Paleologos, Evangelos K.; Kontominas, Michael G.

    2011-08-01

    The primary objective of the present study was to evaluate the extent to which the affinity of the surrounding medium for the migrant, as well as the packaging material, affects the specific migration characteristics of the latter. For this purpose, migration tests were conducted with vinylidene chloride copolymer (PVDC/PVC) in contact with the EU specified solvents simulating all food types: namely, distilled water, 3% w/v acetic acid, 10% v/v ethanol and isooctane. Migration testing was carried out at 40 °C for 10 days for the aqueous simulants, and at 20 °C for 2 days for the fatty food simulant (EC, 1997; EEC, 1993). In addition, food-grade saran film was subjected to ionizing radiation treatment with a [60Co] source at doses equal to 5, 15 and 25 kGy. Acetyl tributyl citrate (ATBC) plasticizer levels were monitored as a function of time for untreated, as well as gamma-irradiated packaging material, with a secondary objective to investigate the effect of ionizing radiation on polymer/migrant/surrounding medium interactions. Depending on the food simulant, determination of the analyte was performed by either direct gas chromatographic analysis, or surfactant (Triton X-114) mediated extraction followed by gas chromatographic-flame ionization detection (GC-FID). ATBC concentrations determined in aqueous and fatty food simulants were 0.216-0.497 and 5.0-5.9 mg/L, respectively. Therefore, the most efficient extracting medium of plasticizers in vinyl chloride copolymers is the non-polar isooctane. Moreover, an extremely high rate of ATBC migration into isooctane during the early stages of contact was observed. The above observation verifies the aggressiveness of isooctane towards plastic packaging materials. Amongst the aqueous food simulants tested, the 10% ethanol solution demonstrated the highest migration levels. Gamma-irradiation enhanced ATBC migration; specific migration levels increased with increasing contact time and radiation dose. This was expected, since ATBC did not undergo chemical decomposition upon irradiation up to 25 kGy. Finally, specific migration decreased proportionally with increasing polarity of the food-simulating solvent.

  11. Characterization and in vitro evaluation of electrospun chitosan/polycaprolactone blend fibrous mat for skin tissue engineering.

    PubMed

    Prasad, Tilak; Shabeena, E A; Vinod, D; Kumary, T V; Anil Kumar, P R

    2015-01-01

    The electrospinning technique allows engineering biomimetic scaffolds within micro to nanoscale range mimicking natural extracellular matrix (ECM). Chitosan (CS) and polycaprolactone (PCL) were dissolved in a modified solvent mixture consisting of formic acid and acetone (3:7) and mixed in different weight ratios to get chitosan-polycaprolactone [CS-PCL] blend solutions. The CS-PCL blend polymer was electrospun in the same solvent system and compared with PCL. The physicochemical characterization of the electrospun fibrous mats was done using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), tensile test, swelling properties, water contact angle (WCA) analysis, surface profilometry and thermo gravimetric analysis (TGA). The CS-PCL fibrous mat showed decreased hydrophobicity. The CS-PCL mats also showed improved swelling property, tensile strength, thermal stability and surface roughness. The cytocompatibility of the CS-PCL and PCL fibrous mats were examined using mouse fibroblast (L-929) cell line by direct contact and cellular activity with extract of materials confirmed non-cytotoxic nature. The potential of CS-PCL and PCL fibrous mats as skin tissue engineering scaffolds were assessed by cell adhesion, viability, proliferation and actin distribution using human keratinocytes (HaCaT) and L-929 cell lines. Results indicate that CS-PCL is a better scaffold for attachment and proliferation of keratinocytes and is a potential material for skin tissue engineering.

  12. Hydrogen donor solvent coal liquefaction process

    DOEpatents

    Plumlee, Karl W.

    1978-01-01

    An indigenous hydrocarbon product stream boiling within a range of from about C.sub.1 -700.degree. F., preferably C.sub.1 -400.degree. F., is treated to produce an upgraded hydrocarbon fuel component and a component which can be recycled, with a suitable donor solvent, to a coal liquefaction zone to catalyze the reaction. In accordance therewith, a liquid hydrocarbon fraction with a high end boiling point range up to about 700.degree. F., preferably up to about 400.degree. F., is separated from a coal liquefaction zone effluent, the separated fraction is contacted with an alkaline medium to provide a hydrocarbon phase and an aqueous extract phase, the aqueous phase is neutralized, and contacted with a peroxygen compound to convert indigenous components of the aqueous phase of said hydrocarbon fraction into catalytic components, such that the aqueous stream is suitable for recycle to the coal liquefaction zone. Naturally occurring phenols and alkyl substituted phenols, found in the aqueous phase, are converted, by the addition of hydroxyl constituents to phenols, to dihydroxy benzenes which, as disclosed in copending Application Ser. Nos. 686,813 now U.S. Pat. No. 4,049,536; 686,814 now U.S. Pat. No. 4,049,537; 686,827 now U.S. Pat. No. 4,051,012 and 686,828, K. W. Plumlee et al, filed May 17, 1976, are suitable hydrogen transfer catalysts.

  13. Optimization of microwave assisted extraction (MAE) and soxhlet extraction of phenolic compound from licorice root.

    PubMed

    Karami, Zohreh; Emam-Djomeh, Zahra; Mirzaee, Habib Allah; Khomeiri, Morteza; Mahoonak, Alireza Sadeghi; Aydani, Emad

    2015-06-01

    In present study, response surface methodology was used to optimize extraction condition of phenolic compounds from licorice root by microwave application. Investigated factors were solvent (ethanol 80 %, methanol 80 % and water), liquid/solid ratio (10:1-25:1) and time (2-6 min). Experiments were designed according to the central composite rotatable design. The results showed that extraction conditions had significant effect on the extraction yield of phenolic compounds and antioxidant capacities. Optimal condition in microwave assisted method were ethanol 80 % as solvent, extraction time of 5-6 min and liquid/solid ratio of 12.7/1. Results were compared with those obtained by soxhlet extraction. In soxhlet extraction, Optimum conditions were extraction time of 6 h for ethanol 80 % as solvent. Value of phenolic compounds and extraction yield of licorice root in microwave assisted (MAE), and soxhlet were 47.47 mg/g and 16.38 %, 41.709 mg/g and 14.49 %, respectively. These results implied that MAE was more efficient extracting method than soxhlet.

  14. Comparison of extraction techniques of robenidine from poultry feed samples.

    PubMed

    Wilga, Joanna; Wasik, Agata Kot-; Namieśnik, Jacek

    2007-10-31

    In this paper, effectiveness of six different commonly applied extraction techniques for the determination of robenidine in poultry feed has been compared. The sample preparation techniques included shaking, Soxhlet, Soxtec, ultrasonically assisted extraction, microwave - assisted extraction and accelerated solvent extraction. Comparison of these techniques was done with respect to the recovery extraction, temperature and time, reproducibility and solvent consumption. Every single extract was subjected to clean - up using aluminium oxide column (Pasteur pipette filled with 1g of aluminium oxide), from which robenidine was eluted with 10ml of methanol. The eluate from the clean-up column was collected in a volumetric flask, and finally it was analysed by HPLC-DAD-MS. In general, all extraction techniques were capable of isolating of robenidine from poultry feed, but the recovery obtained using modern extraction techniques was higher than that obtained using conventional techniques. In particular, accelerated solvent extraction was more superior to other techniques, which highlights the advantages of this sample preparation technique. However, in routine analysis, shaking and ultrasonically assisted extraction is still the preferred method for the solution of robenidine and other coccidiostatics.

  15. Selection of propolis Tetragonula sp. extract solvent with flavonoids and polyphenols concentration and antioxidant activity parameters

    NASA Astrophysics Data System (ADS)

    Christina, Daisy; Hermansyah, Heri; Wijanarko, Anondho; Rohmatin, Etin; Sahlan, Muhamad; Pratami, Diah Kartika; Mun'im, Abdul

    2018-02-01

    Antioxidants are inhibitory compounds that can inhibit auto oxidation reaction by binding to free radicals and highly reactive molecules. The human body needs antioxidant. Antioxidants can be obtained from a variety of natural ingredients, including propolis. Propolis is the natural sap of the bees, obtained from the herbs around the honeycomb. Ethanol is the solvent that often used to extract propolis. Although it has many advantages, ethanol also has weaknesses such as intolerance to alcohol by some people. Therefore, this research was to extract propolis Tetragonula sp. coarse (C) and soft (S) using four varieties of organic solvent, i.e. olive oil (OO), virgin coconut oil (VCO), propylene glycol (PG), and lecithin (L). It was expected to get the best solvent in extracting propolis. The selection of the best solvent was determined by total flavonoids and polyphenols content assay and antioxidant activity. At each test, the absorbance value read by a microplate reader. Flavonoids content assay is using AlCl3 method with best result on rough-VCO propolis extract of 2509,767 ± 615,02 µg/mL. Polyphenols content assay was using Folin Ciocalteu method with the best results on soft-VCO propolis extract of 1391 ± 171.47 µg/mL. Antioxidant activity assay is using DPPH method with best result on soft-VCO propolis extract with IC50 value of 1,559 ± 0,222 µg/mL.

  16. Evaluation of the effect of extraction solvent and organ selection on the chemical profile of Astragalus spinosus using HPTLC- multivariate image analysis.

    PubMed

    Shawky, Eman; Selim, Dina A

    2017-09-01

    The evaluation of extraction protocols for untargeted and targeted metabolomics was implemented for root and aerial organs of Astragalus spinosus in this work. The efficiency and complementarity of commonly used extraction solvents, namely petroleum ether, methylene chloride, ethyl acetate and n-butanol were considered for method evaluation using chemometric techniques in conjunction with new, simple, and fast high performance thin layer chromatography (HPTLC) method for fingerprint analysis by extracting information from a digitalized HPTLC plate using ImageJ software. A targeted approach was furtherly implemented by developing and validating an HPTLC method allowing the quantification of three saponin glycosides. The results of untargeted and targeted principle component analysis (PCA) and hierarchical cluster analysis (HCA) revealed that the apparent saponins profile seems to depend on a combined effect of matrix composition and the properties of the selected solvent for extraction, where both the biological matrix of the investigated plant organs, as well as the extraction solvent can influence the precision of metabolite abundances. Although, the aerial part is frequently discarded as waste, it is shown hereby that it has similar chemical profile compared to the medicinal part, roots, yet a different extraction solvents pattern is recognized between the two organs which can be attributed to the differences in the composition, permeability or accessibility of the sample matrix/organ tissues, rather than the chemical structures of the detected metabolites. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. An Efficient Strategy Based on Liquid-Liquid Extraction with Three-Phase Solvent System and High Speed Counter-Current Chromatography for Rapid Enrichment and Separation of Epimers of Minor Bufadienolide from Toad Meat.

    PubMed

    Zou, Denglang; Zhu, Xuelin; Zhang, Fan; Du, Yurong; Ma, Jianbin; Jiang, Renwang

    2018-01-31

    This study presents an efficient strategy based on liquid-liquid extraction with three-phase solvent system and high speed counter-current chromatography for rapid enrichment and separation of epimers of minor bufadienolide from toad meat. The reflux extraction conditions were optimized by response surface methodology first, and a novel three-phase solvent system composed of n-hexane/methyl acetate/acetonitrile/water (3:6:5:5, v/v) was developed for liquid-liquid extraction of the crude extract. This integrative extraction process could enrich minor bufadienolide from complex matrix efficiently and minimize the loss of minor targets induced by repeated extraction with different kinds of organic solvents occurring in the classical liquid two-phase extraction. As a result, four epimers of minor bufadienolide were greatly enriched in the middle phase and total content of these epimers of minor bufadienolide was increased from 3.25% to 46.23%. Then, the enriched four epimers were separated by HSCCC with a two-phase solvent system composed of chloroform/methanol/water (4:2:2, v/v) successfully. Furthermore, we tested Na + ,K + -ATPase (NKA) inhibitory effect of the four epimers. 3β-Isomers of bufadienolide showed stronger (>8-fold) inhibitory activity than 3α-isomers. The characterization of minor bufadienolide in toad meat and their significant difference of inhibitory effect on NKA would promote the further quantitative analysis and safety evaluation of toad meat as a food source.

  18. Study of optimal extraction conditions for achieving high yield and antioxidant activity of tomato seed oil.

    PubMed

    Shao, Dongyan; Atungulu, Griffiths G; Pan, Zhongli; Yue, Tianli; Zhang, Ang; Li, Xuan

    2012-08-01

    Value of tomato seed has not been fully recognized. The objectives of this research were to establish suitable processing conditions for extracting oil from tomato seed by using solvent, determine the impact of processing conditions on yield and antioxidant activity of extracted oil, and elucidate kinetics of the oil extraction process. Four processing parameters, including time, temperature, solvent-to-solid ratio and particle size were studied. A second order model was established to describe the oil extraction process. Based on the results, increasing temperature, solvent-to-solid ratio, and extraction time increased oil yield. In contrast, larger particle size reduced the oil yield. The recommended oil extraction conditions were 8 min of extraction time at temperature of 25 °C, solvent-to-solids ratio of 5/1 (v/w) and particle size of 0.38 mm, which gave oil yield of 20.32% with recovery rate of 78.56%. The DPPH scavenging activity of extracted oil was not significantly affected by the extraction parameters. The inhibitory concentration (IC(50) ) of tomato seed oil was 8.67 mg/mL which was notably low compared to most vegetable oils. A 2nd order model successfully described the kinetics of tomato oil extraction process and parameters of extraction kinetics including initial extraction rate (h), equilibrium concentration of oil (C(s) ), and the extraction rate constant (k) could be precisely predicted with R(2) of at least 0.957. The study revealed that tomato seed which is typically treated as a low value byproduct of tomato processing has great potential in producing oil with high antioxidant capability. The impact of processing conditions including time, temperature, solvent-to-solid ratio and particle size on yield, and antioxidant activity of extracted tomato seed oil are reported. Optimal conditions and models which describe the extraction process are recommended. The information is vital for determining the extraction processing conditions for industrial production of high quality tomato seed oil. Journal of Food Science © 2012 Institute of Food Technologists® No claim to original US government works.

  19. Deep eutectic solvent based gas-assisted dispersive liquid-phase microextraction combined with gas chromatography and flame ionization detection for the determination of some pesticide residues in fruit and vegetable samples.

    PubMed

    Farajzadeh, Mir Ali; Sattari Dabbagh, Masoumeh; Yadeghari, Adeleh

    2017-05-01

    In this study, a gas-assisted dispersive liquid-phase microextraction method using a deep eutectic solvent as the extraction solvent combined with gas chromatography and flame ionization detection was developed for the extraction and determination of some pesticide residues in vegetable and fruit juice samples. In this method, choline chloride and 4-chlorophenol at a molar ratio of 1:2 were mixed. By heating and vortexing, a clear, water-immiscible, and homogeneous liquid was formed. The obtained deep eutectic solvent was added to an aqueous solution of the analytes in a conical test tube. Air was bubbled into the aqueous solution and a cloudy solution was obtained. During this step, the analytes were extracted into the fine droplets of the extraction solvent. After centrifugation, an aliquot of the settled phase was injected into the separation system. Under the optimum extraction conditions, enrichment factors, and extraction recoveries were obtained in the ranges of 247-355 and 49-71%, respectively. The obtained values for the limits of detection and quantification were in the ranges of 0.24-1.4 and 0.71-4.2 μg/L, respectively. The proposed method is simple, fast, efficient, and inexpensive. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Insight into the CH3NH3PbI3/C interface in hole-conductor-free mesoscopic perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Li, Jiangwei; Niu, Guangda; Li, Wenzhe; Cao, Kun; Wang, Mingkui; Wang, Liduo

    2016-07-01

    Perovskite solar cells (PSCs) with hole-conductor-free mesoscopic architecture have shown superb stability and great potential in practical application. The printable carbon counter electrodes take full responsibility of extracting holes from the active CH3NH3PbI3 absorbers. However, an in depth study of the CH3NH3PbI3/C interface properties, such as the structural formation process and the effect of interfacial conditions on hole extraction, is still lacking. Herein, we present, for the first time, an insight into the spatial confinement induced CH3NH3PbI3/C interface formation by in situ photoluminescence observations during the crystallization process of CH3NH3PbI3. The derived reaction kinetics allows a quantitative description of the perovskite formation process. In addition, we found that the interfacial contact between carbon and perovskite was dominant for hole extraction efficiency and associated with the photovoltaic parameter of short circuit current density (JSC). Consequently, we conducted a solvent vapor assisted process of PbI2 diffusion to carefully control the CH3NH3PbI3/C interface with less unreacted PbI2 barrier. The improvement of interface conditions thereby contributes to a high hole extraction proved by the charge extraction resistance and PL lifetime change, resulting in the increased JSC valve.Perovskite solar cells (PSCs) with hole-conductor-free mesoscopic architecture have shown superb stability and great potential in practical application. The printable carbon counter electrodes take full responsibility of extracting holes from the active CH3NH3PbI3 absorbers. However, an in depth study of the CH3NH3PbI3/C interface properties, such as the structural formation process and the effect of interfacial conditions on hole extraction, is still lacking. Herein, we present, for the first time, an insight into the spatial confinement induced CH3NH3PbI3/C interface formation by in situ photoluminescence observations during the crystallization process of CH3NH3PbI3. The derived reaction kinetics allows a quantitative description of the perovskite formation process. In addition, we found that the interfacial contact between carbon and perovskite was dominant for hole extraction efficiency and associated with the photovoltaic parameter of short circuit current density (JSC). Consequently, we conducted a solvent vapor assisted process of PbI2 diffusion to carefully control the CH3NH3PbI3/C interface with less unreacted PbI2 barrier. The improvement of interface conditions thereby contributes to a high hole extraction proved by the charge extraction resistance and PL lifetime change, resulting in the increased JSC valve. Electronic supplementary information (ESI) available: Fig. S1-S11, Tables S1, S2 and details of the Avrami model for reaction kinetics. See DOI: 10.1039/c6nr03359h

  1. Development of a Supported Emulsion Liquid Membrane System for Propionic Acid Separation in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Li, Jin; Hu, Shih-Yao B.; Wiencek, John M.

    2001-01-01

    Perstractive fermentation is a good way to increase the productivity of bioreactors. Using Propionibacteria as the model system, the feasibility of using supported emulsion liquid membrane (SELM) for perstractive fermentation is assessed in this study. Five industrial solvents were considered as the solvent for preparing the SELM. The more polar a solvent is, the higher the partition coefficient. However, toxicity of a solvent also increases with its polarity. CO-1055 (industrial decanol/octanol blend) has the highest partition coefficient toward propionic acid among the solvents that has no molecular toxicity toward Propionibacteria. A preliminary extraction study was conducted using tetradecane as solvent in a hydrophobic hollow fiber contactor. The result confirmed that SELM eliminates the equilibrium limitation of conventional liquid-liquid extraction, and allows the use of a non-toxic solvent with low partition coefficient.

  2. Silybum marianum pericarp yields enhanced silymarin products.

    PubMed

    AbouZid, Sameh F; Chen, Shao-Nong; McAlpine, James B; Friesen, J Brent; Pauli, Guido F

    2016-07-01

    An improved method for the purification of silymarin, the flavonolignan complex from the fruits of milk thistle, Silybum marianum, is reported. The method enables a more efficient extraction of silymarin from the pericarp after it has been separated mechanically from the rest of the fruits. Accelerated solvent extraction (ASE) was employed for each extraction procedure. Quantitation of the eight major silymarin components in the pericarp extract was compared to that of the whole fruit extract using two orthogonal analytical methods. The pericarp extract showed higher silymarin content (2.24-fold by HPLC and 2.12-fold by qHNMR) than whole fruit extract using acetone as an extraction solvent following defatting with hexane. Furthermore, the mg/g recovery of silymarin major components was not diminished by eliminating the hexane defatting step from the pericarp extraction procedure. The efficiencies of acetone, ethanol, and methanol as extraction solvents were compared. Methanol pericarp extract showed the highest content of the silymarin major components, 2.72-fold higher than an extract prepared from the whole fruits using acetone. Finally, all of the major silymarin components showed a higher w/w content in the pericarp extract than in a commercial extract. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Solvent extraction separation of Th-227 and Ac-225 in room temperature ionic liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, Jason R; Boll, Rose Ann; Dai, Sheng

    2012-01-01

    The solvent extractions of Th-227 and Ac-225 from the aqueous phase into ionic liquids (ILs) were investigated by using N,N,N ,N - tetraoctyldiglycolamide (TODGA) or di(2-ethylhexyl)phosphoric acid (HDEHP) as an extractant. Four ionic liquids, 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4mim][NTf2]), 1-butyl-3-methylimidazolium bis(perfluoroethanesulfonyl)imide ([C4mim][BETI]), 1-butyl-2,3-trimethyleneimidazolium (trifluoromethanesulfonyl)imide [BuI5][NTf2], and 1-benzyl pyridinium bis(trifluoromethanesulfonyl)imide ([PhCH2Py][NTf2]) were used as extraction solvents for separation of Th-227 and Ac-225 in this study. Excellent extraction efficiencies and selectivities were found for Th-227/Ac-225 when HDEHP was used as an extractant in these ionic liquids. The effects of different extractant concentrations in ionic liquids and acidities of the aqueous phase on extraction efficienciesmore » and selectivities of Th-227/Ac-225 are also presented in this article.« less

  4. Compound Specific Extraction of Camptothecin from Nothapodytes nimmoniana and Piperine from Piper nigrum Using Accelerated Solvent Extractor

    PubMed Central

    Upadhya, Vinayak; Pai, Sandeep R.; Sharma, Ajay K.; Hegde, Harsha V.; Kholkute, Sanjiva D.; Joshi, Rajesh K.

    2014-01-01

    Effects of varying temperatures with constant pressure of solvent on extraction efficiency of two chemically different alkaloids were studied. Camptothecin (CPT) from stem of Nothapodytes nimmoniana (Grah.) Mabb. and piperine from the fruits of Piper nigrum L. were extracted using Accelerated Solvent Extractor (ASE). Three cycles of extraction for a particular sample cell at a given temperature assured complete extraction. CPT and piperine were determined and quantified by using a simple and efficient UFLC-PDA (245 and 343 nm) method. Temperature increased efficiency of extraction to yield higher amount of CPT, whereas temperature had diminutive effect on yield of piperine. Maximum yield for CPT was achieved at 80°C and for piperine at 40°C. Thus, the study determines compound specific extraction of CPT from N. nimmoniana and piperine from P. nigrum using ASE method. The present study indicates the use of this method for simple, fast, and accurate extraction of the compound of interest. PMID:24527258

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, G H; Thompson, M C

    Solvent extraction of /sup 237/Np and /sup 238/Pu from irradiated neptunium is being investigated as a possible replacement for the currently used anion exchange process at the Savannah River Plant. Solvent extraction would reduce separations costs and waste volume and increase the production rate. The major difficulty in solvent extraction processing is maintaining neptunium and plutonium in the extractable IV or VI valence states during initial extraction. This study investigated the stability of these states. Results show that: The extractable M(IV) valence states of neptunium and plutonium are mutually unstable in plant dissolver solution (2 g/l /sup 237/Np, 0.4 g/lmore » /sup 238/Pu, 1.2M Al/sup 3 +/, 4.6M NO/sub 3//sup -/, and 1M H/sup +/). The reaction rates producing inextractable species from extractable M(IV) or M(VI) are fast enough that greater than or equal to 99.9 percent extractable species in /sup 237/Np--/sup 238/Pu mixtures cannot be maintained for a practicable processing period (24 hours).« less

  6. Effects of process parameters on peanut skins extract and CO2 diffusivity by supercritical fluid extraction

    NASA Astrophysics Data System (ADS)

    Putra, N. R.; Yian, L. N.; Nasir, H. M.; Idham, Z. Binti; Yunus, M. A. C.

    2018-03-01

    Peanut skins (Arachis hypogea) are an agricultural waste product which has received much attention because they contain high nutritional values and can be potentially utilized in difference industries. At present, only a few studies have been conducted to study the effects of parameters on the peanut skins oil extraction. Therefore, this study aimed to determine the best extraction condition in order to obtain the highest extract yield using supercritical carbon dioxide (SC-CO2) with co-solvent Ethanol as compared to Soxhlet extraction method. Diffusivity of carbon dioxide in supercritical fluid extraction was determined using Crank model. The mean particle size used in this study was 425 µm. The supercritical carbon dioxide was performed at temperature (40 – 70 °C), flow rate of co-solvent ethanol (0 - 7.5% Vethanol/Vtotal), and extraction pressure (10 – 30 MPa) were used in this studies. The results showed that the percentage of oil yields and effective diffusivity increase as the pressure, rate of co-solvent, and temperature increased.

  7. SOLVENT EXTRACTION PROCESS FOR URANIUM RECOVERY

    DOEpatents

    Clark, H.M.; Duffey, D.

    1958-06-17

    A process is described for extracting uranium from uranium ore, wherein the uranium is substantially free from molybdenum contamination. In a solvent extraction process for recovering uranium, uranium and molybdenum ions are extracted from the ore with ether under high acidity conditions. The ether phase is then stripped with water at a lower controiled acidity, resaturated with salting materials such as sodium nitrate, and reextracted with the separation of the molybdenum from the uranium without interference from other metals that have been previously extracted.

  8. Occupational exposure to complex mixtures of volatile organic compounds in ambient air: desorption from activated charcoal using accelerated solvent extraction can replace carbon disulfide?

    PubMed

    Fabrizi, Giovanni; Fioretti, Marzia; Rocca, Lucia Mainero

    2013-01-01

    A desorption study of 57 volatile organic compounds (VOCs) has been conducted by use of accelerated solvent extraction (ASE) and gas chromatography-mass spectrometry. Different solvents were tested to extract activated charcoal tubes with the objective of replacing carbon disulfide, used in official methods, because of its highly toxic health and environmental effects. Extraction conditions, for example temperature and number of cycles, were investigated and optimized. The definitive extraction procedure selected was use of acetone at 150 °C and two consecutive extraction cycles at a pressure of 1,500 psi. Considering a sample volume of 0.005 Nm(3), corresponding to a sampling time of 8 h at a flow rate of 0.01 L min(-1), the method was validated over the concentration range 65-26,300 μg Nm(-3). The lowest limit of quantification was 6 μg Nm(-3), and recovery for the 93 % of analytes ranged from 65 to 102 %. For most of the compounds, relative standard deviations were less than 15 % for inter and intra-day precision. Uncertainty of measurement was also determined: the relative expanded uncertainty was always below 29.6 %, except for dichlorodifluoromethane. This work shows that use of friendlier solvent, for example acetone, coupled with use of ASE, can replace use of CS(2) for chemical removal of VOCs from activated charcoal. ASE has several advantages over traditional solvent-extraction methods, including shorter extraction time, minimum sample manipulation, high reproducibility, and less extraction discrimination. No loss of sensitivity occurs and there is also a salutary effect on bench workers' health and on the smell of laboratory air.

  9. Integrated microwave processing system for the extraction of organophosphorus pesticides in fresh vegetables.

    PubMed

    Wu, Lijie; Song, Ying; Hu, Mingzhu; Xu, Xu; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming

    2015-03-01

    A simple and efficient integrated microwave processing system (IMPS) was firstly assembled and validated for the extraction of organophosphorus pesticides in fresh vegetables. Two processes under microwave irradiation, dynamic microwave-assisted extraction (DMAE) and microwave-accelerated solvent elution (MASE), were integrated for simplifying the pretreatment of the sample. Extraction, separation, enrichment and elution were finished in a simple step. The organophosphorus pesticides were extracted from the fresh vegetables into hexane with DMAE, and then the extract was directly introduced into the enrichment column packed with active carbon fiber (ACF). Subsequently, the organophosphorus pesticides trapped on the ACF were eluted with ethyl acetate under microwave irradiation. No further filtration or cleanup was required before analysis of the eluate by gas chromatography-mass spectrometry. Some experimental parameters affecting extraction efficiency were investigated and optimized, such as microwave output power, kind and volume of extraction solvent, extraction time, amount of sorbent, elution microwave power, kind and volume of elution solvent, elution solvent flow rate. Under the optimized conditions, the recoveries were in the range of 71.5-105.2%, and the relative standard deviations were lower than 11.6%. The experiment results prove that the present method is a simple and effective sample preparation method for the determination of pesticides in solid samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. [Study on new extraction technology of astragaloside IV].

    PubMed

    Sun, Haiyan; Guan, Su; Huang, Min

    2005-08-01

    To explore the possibility and the optimal extraction technology of astragaloside IV by SFE-CO2. According the content of astragaloside IV, the optimum extraction technology parameters such as extraction temperature, pressure, extraction time, velocity of fluid and co-solvent were investigated and the result was compared with that of water extraction. The optimum technical parameters were as follows: Extracting pressure 40 Mpa, temperature 45 degrees C, extracting time 2h, co-solvent was 95% ethanol and its dosage was 4ml/g, the ratio of CO2 fluid was 10 kg/kg x h. Extraction technology of astragaloside IV by SFE-CO2 is reliable, stable.

  11. Subcritical water extraction of organic matter from sedimentary rocks.

    PubMed

    Luong, Duy; Sephton, Mark A; Watson, Jonathan S

    2015-06-16

    Subcritical water extraction of organic matter containing sedimentary rocks at 300°C and 1500 psi produces extracts comparable to conventional solvent extraction. Subcritical water extraction of previously solvent extracted samples confirms that high molecular weight organic matter (kerogen) degradation is not occurring and that only low molecular weight organic matter (free compounds) are being accessed in analogy to solvent extraction procedures. The sedimentary rocks chosen for extraction span the classic geochemical organic matter types. A type I organic matter-containing sedimentary rock produces n-alkanes and isoprenoidal hydrocarbons at 300°C and 1500 psi that indicate an algal source for the organic matter. Extraction of a rock containing type II organic matter at the same temperature and pressure produces aliphatic hydrocarbons but also aromatic compounds reflecting the increased contributions from terrestrial organic matter in this sample. A type III organic matter-containing sample produces a range of non-polar and polar compounds including polycyclic aromatic hydrocarbons and oxygenated aromatic compounds at 300°C and 1500 psi reflecting a dominantly terrestrial origin for the organic materials. Although extraction at 300°C and 1500 psi produces extracts that are comparable to solvent extraction, lower temperature steps display differences related to organic solubility. The type I organic matter produces no products below 300°C and 1500 psi, reflecting its dominantly aliphatic character, while type II and type III organic matter contribute some polar components to the lower temperature steps, reflecting the chemical heterogeneity of their organic inventory. The separation of polar and non-polar organic compounds by using different temperatures provides the potential for selective extraction that may obviate the need for subsequent preparative chromatography steps. Our results indicate that subcritical water extraction can act as a suitable replacement for conventional solvent extraction of sedimentary rocks, but can also be used for any organic matter containing mineral matrix, including soils and recent sediments, and has the added benefit of tailored extraction for analytes of specific polarities. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  12. FIELD EVALUATION OF THE SOLVENT EXTRACTION RESIDUAL BIOTREATMENT (SERB) TECHNOLOGY

    EPA Science Inventory

    The Solvent Extraction Residual Biotreatment (SERB) technology was demonstrated at the former Sage's Dry Cleaner site in Jacksonville, FL where an area of PCE (tetrachloroethylene) contamination was identified. The SERB technology is a treatment train approach to complete site...

  13. Alternative oil extraction methods from Echium plantagineum L. seeds using advanced techniques and green solvents.

    PubMed

    Castejón, Natalia; Luna, Pilar; Señoráns, Francisco J

    2018-04-01

    The edible oil processing industry involves large losses of organic solvent into the atmosphere and long extraction times. In this work, fast and environmentally friendly alternatives for the production of echium oil using green solvents are proposed. Advanced extraction techniques such as Pressurized Liquid Extraction (PLE), Microwave Assisted Extraction (MAE) and Ultrasound Assisted Extraction (UAE) were evaluated to efficiently extract omega-3 rich oil from Echium plantagineum seeds. Extractions were performed with ethyl acetate, ethanol, water and ethanol:water to develop a hexane-free processing method. Optimal PLE conditions with ethanol at 150 °C during 10 min produced a very similar oil yield (31.2%) to Soxhlet using hexane for 8 h (31.3%). UAE optimized method with ethanol at mild conditions (55 °C) produced a high oil yield (29.1%). Consequently, advanced extraction techniques showed good lipid yields and furthermore, the produced echium oil had the same omega-3 fatty acid composition than traditionally extracted oil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Microwave-assisted extraction and mild saponification for determination of organochlorine pesticides in oyster samples.

    PubMed

    Carro, N; García, I; Ignacio, M-C; Llompart, M; Yebra, M-C; Mouteira, A

    2002-10-01

    A sample-preparation procedure (extraction and saponification) using microwave energy is proposed for determination of organochlorine pesticides in oyster samples. A Plackett-Burman factorial design has been used to optimize the microwave-assisted extraction and mild saponification on a freeze dried sample spiked with a mixture of aldrin, endrin, dieldrin, heptachlor, heptachorepoxide, isodrin, transnonachlor, p, p'-DDE, and p, p'-DDD. Six variables: solvent volume, extraction time, extraction temperature, amount of acetone (%) in the extractant solvent, amount of sample, and volume of NaOH solution were considered in the optimization process. The results show that the amount of sample is statistically significant for dieldrin, aldrin, p, p'-DDE, heptachlor, and transnonachlor and solvent volume for dieldrin, aldrin, and p, p'-DDE. The volume of NaOH solution is statistically significant for aldrin and p, p'-DDE only. Extraction temperature and extraction time seem to be the main factors determining the efficiency of extraction process for isodrin and p, p'-DDE, respectively. The optimized procedure was compared with conventional Soxhlet extraction.

  15. Extraction and GC determination of volatile aroma compounds from extracts of three plant species of the Apiaceae family

    NASA Astrophysics Data System (ADS)

    Stan, M.; Soran, M. L.; Varodi, C.; Lung, I.; Copolovici, L.; MǎruÅ£oiu, C.

    2013-11-01

    Parsley (Petroselinum crispum), dill (Anethum graveolens) and celery (Apium graveolens), three aromatic plants belonging to the Apiaceae (Umbelliferae) botanical family, were selected as sources of essential or volatile oils. Essential oils are composed of a large diversity of volatile aroma compounds. Plant-derived essential oils and extracts have long been used as natural agents in food preservation, pharmaceuticals and medicinal therapies. In the present study, the plant extracts from leaves of parsley, dill and celery, were obtained by maceration, ultrasound-assisted extraction and microwave-assisted extraction. All extractions were performed at 30°C, using different solvents (ethanol, diethyl ether, n-hexane) and solvent mixtures (1:1, v/v). The most effective solvent system for the extraction of volatile aroma compounds was diethyl ether - n-hexane (1:1, v/v). Extraction efficiency and determination of aroma volatiles were performed by GC-FID and GC-MS, respectively. The major volatile compounds present in plant extracts were myristicin, α-phellandrene, β-phellandrene, 1,3,8-p-menthatriene, apiol, dill ether and allyl phenoxyacetate.

  16. AM(VI) partitioning studies. FY14 final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mincher, Bruce J.

    2014-10-01

    The use of higher oxidation states of americium in partitioning from the lanthanides is under continued investigation by the sigma team. This is based on the hypothesis that Am(VI) can be produced and remain stable in irradiated first cycle raffinate solution long enough to perform solvent extraction for separations. The stability of Am(VI) to autoreduction was measured using millimolar americium concentrations in a 1-cm cell with a Cary 6000 UV/Vis spectrophotometer for data acquisition. At millimolar americium concentrations, Am(VI) is stable enough against its own autoreduction for separations purposes. A second major accomplishment during FY14 was the hot test. Americiummore » oxidation and extraction was performed using a centrifugal contactor-based test bed consisting of an extraction stage and two stripping stages. Sixty-three percent americium extraction was obtained in one extraction stage, in agreement with batch contacts. Promising electrochemical oxidation results have also been obtained, using terpyridine ligand derivatized electrodes for binding of Am(III). Approximately 50 % of the Am(III) was oxidized to Am(V) over the course of 1 hour. It is believed that this is the first demonstration of the electrolytic oxidation of americium in a non-complexing solution. Finally, an initial investigation of Am(VI) extraction using diethylhexylbutyramide (DEHBA) was performed.« less

  17. Determination of diflubenzuron and chlorbenzuron in fruits by combining acetonitrile-based extraction with dispersive liquid-liquid microextraction followed by high-performance liquid chromatography.

    PubMed

    Ruan, Chunqiang; Zhao, Xiang; Liu, Chenglan

    2015-09-01

    In this study, a simple and low-organic-solvent-consuming method combining an acetonitrile-partitioning extraction procedure followed by "quick, easy, cheap, effective, rugged and safe" cleanup with ionic-liquid-based dispersive liquid-liquid microextraction and high-performance liquid chromatography with diode array detection was developed for the determination of diflubenzuron and chlorbenzuron in grapes and pears. Ionic-liquid-based dispersive liquid-liquid microextraction was performed using the ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate as the extractive solvent and acetonitrile extract as the dispersive solvent. The main factors influencing the efficiency of the dispersive liquid-liquid microextraction were evaluated, including the extractive solvent type and volume and the dispersive solvent volume. The validation parameters indicated the suitability of the method for routine analyses of benzoylurea insecticides in a large number of samples. The relative recoveries at three spiked levels ranged between 98.6 and 109.3% with relative standard deviations of less than 5.2%. The limit of detection was 0.005 mg/kg for the two insecticides. The proposed method was successfully used for the rapid determination of diflubenzuron and chlorbenzuron residues in real fruit samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. In Search of Functional Advantages of Knots in Proteins.

    PubMed

    Dabrowski-Tumanski, Pawel; Stasiak, Andrzej; Sulkowska, Joanna I

    2016-01-01

    We analysed the structure of deeply knotted proteins representing three unrelated families of knotted proteins. We looked at the correlation between positions of knotted cores in these proteins and such local structural characteristics as the number of intra-chain contacts, structural stability and solvent accessibility. We observed that the knotted cores and especially their borders showed strong enrichment in the number of contacts. These regions showed also increased thermal stability, whereas their solvent accessibility was decreased. Interestingly, the active sites within these knotted proteins preferentially located in the regions with increased number of contacts that also have increased thermal stability and decreased solvent accessibility. Our results suggest that knotting of polypeptide chains provides a favourable environment for the active sites observed in knotted proteins. Some knotted proteins have homologues without a knot. Interestingly, these unknotted homologues form local entanglements that retain structural characteristics of the knotted cores.

  19. Influence of sample processing on the analysis of carotenoids in maize.

    PubMed

    Rivera, Sol; Canela, Ramon

    2012-09-21

    We performed a number of tests with the aim to develop an effective extraction method for the analysis of carotenoid content in maize seed. Mixtures of methanol-ethyl acetate (6:4, v/v) and methanol-tetrahydrofuran (1:1, v/v) were the most effective solvent systems for carotenoid extraction from maize endosperm under the conditions assayed. In addition, we also addressed sample preparation prior to the analysis of carotenoids by liquid chromatography (LC). The LC response of extracted carotenoids and standards in several solvents was evaluated and results were related to the degree of solubility of these pigments. Three key factors were found to be important when selecting a suitable injection solvent: compatibility between the mobile phase and injection solvent, carotenoid polarity and content in the matrix.

  20. Extraction of polycyclic aromatic hydrocarbons and organochlorine pesticides from soils: a comparison between Soxhlet extraction, microwave-assisted extraction and accelerated solvent extraction techniques.

    PubMed

    Wang, Wentao; Meng, Bingjun; Lu, Xiaoxia; Liu, Yu; Tao, Shu

    2007-10-29

    The methods of simultaneous extraction of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) from soils using Soxhlet extraction, microwave-assisted extraction (MAE) and accelerated solvent extraction (ASE) were established, and the extraction efficiencies using the three methods were systemically compared from procedural blank, limits of detection and quantification, method recovery and reproducibility, method chromatogram and other factors. In addition, soils with different total organic carbon contents were used to test the extraction efficiencies of the three methods. The results showed that the values obtained in this study were comparable with the values reported by other studies. In some respects such as method recovery and reproducibility, there were no significant differences among the three methods for the extraction of PAHs and OCPs. In some respects such as procedural blank and limits of detection and quantification, there were significant differences among the three methods. Overall, ASE had the best extraction efficiency compared to MAE and Soxhlet extraction, and the extraction efficiencies of MAE and Soxhlet extraction were comparable to each other depending on the property such as TOC content of the studied soil. Considering other factors such as solvent consumption and extraction time, ASE and MAE are preferable to Soxhlet extraction.

  1. Effects of carbonization and solvent-extraction on change in fuel characteristics of sewage sludge.

    PubMed

    Park, Sang-Woo; Jang, Cheol-Hyeon

    2011-09-01

    Urban sewage sludge was carbonized at 300-500°C for 1h, and combustible components were extracted through the solvent-extraction process. N-methyl-2-pyrrolidinone (NMP) was used as the solvent for extraction, and the extraction temperature was fixed at 360°C. The atomic ratios of the solvent-extracted sludge of CS300 (ECS300) were shown to be 1.04 for H/C and 0.11 for O/C, which represented the characteristics of its coal band. Thus, its coal band was similar to that of a high-rank fuel such as bituminous coal. FT-IR analysis showed that the absorbance band of ECS300 was considerably different from that of dried sludge (RS) or the carbonized sludge at 300°C (CS300) but similar to that of coal, although the ash content absorbance band of 800-1200 cm(-1) was of very low intensity. The combustion profile showed that combustion of ESC300 occurred at a temperature higher than the ignition temperature (T(i)) or maximum weight loss rate (DTG(max)) of coal. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Optimization of microwave-assisted extraction of polyphenols from Myrtus communis L. leaves.

    PubMed

    Dahmoune, Farid; Nayak, Balunkeswar; Moussi, Kamal; Remini, Hocine; Madani, Khodir

    2015-01-01

    Phytochemicals, such as phenolic compounds, are of great interest due to their health-benefitting antioxidant properties and possible protection against inflammation, cardiovascular diseases and certain types of cancer. Maximum retention of these phytochemicals during extraction requires optimised process parameter conditions. A microwave-assisted extraction (MAE) method was investigated for extraction of total phenolics from Myrtus communis leaves. The total phenolic capacity (TPC) of leaf extracts at optimised MAE conditions was compared with ultrasound-assisted extraction (UAE) and conventional solvent extraction (CSE). The influence of extraction parameters including ethanol concentration, microwave power, irradiation time and solvent-to-solid ratio on the extraction of TPC was modeled by using a second-order regression equation. The optimal MAE conditions were 42% ethanol concentration, 500 W microwave power, 62 s irradiation time and 32 mL/g solvent to material ratio. Ethanol concentration and liquid-to-solid ratio were the significant parameters for the extraction process (p<0.01). Under the MAE optimised conditions, the recovery of TPC was 162.49 ± 16.95 mg gallic acidequivalent/gdry weight(DW), approximating the predicted content (166.13 mg GAE/g DW). When bioactive phytochemicals extracted from Myrtus leaves using MAE compared with UAE and CSE, it was also observed that tannins (32.65 ± 0.01 mg/g), total flavonoids (5.02 ± 0.05 mg QE/g) and antioxidant activities (38.20 ± 1.08 μg GAE/mL) in MAE extracts were higher than the other two extracts. These findings further illustrate that extraction of bioactive phytochemicals from plant materials using MAE method consumes less extraction solvent and saves time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Breakup of a liquid rivulet falling over an inclined plate: Identification of a critical Weber number

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Rajesh K.; Galvin, Janine E.; Whyatt, Greg A.

    2017-05-01

    We have numerically investigated the breakup of a rivulet falling over a smooth inclined plate using the volume of fluid method. The breakup the rivulet is a complex phenomenon that is dictated by many factors, such as solvent properties, contact angle, inertia, plate inclination, etc. An extensive simulation campaign was conducted wherein these factors were systematically investigated. Regimes for a stable rivulet and an unstable rivulet that leads to the breakup and formation of a droplet are examined in terms of a critical value of the Weber number (Wecr) that delineates these regimes. The effect of plate inclination on themore » breakup of the rivulet shows that the critical Weber number decreases with increased inclination angle () owing to higher liquid velocity. However, the effect is negligible beyond >60. The impact of solvent properties is characterized using the Kapitza number (Ka). Variation of Wecr with Ka shows two trends depending on the Ka value of the solvent. Solvents with lower Ka values, corresponding to high viscosities and/or low surface tensions, show smaller values of the critical Weber number and the variation is linear. While solvents with higher Ka values exhibit higher values of the Wecr and the variation in Wecr is steep. This behavior is more pronounced with increasing contact angle. Higher contact angles promote rivulet breakup so that inertia must be higher to the breakup. A phenomenological scaling for a critical Weber number with the Kapitza number and contact angle is presented that can offer insight into rivulet breakup.« less

  4. Headspace, volatile and semi-volatile organic compounds diversity and radical scavenging activity of ultrasonic solvent extracts from Amorpha fruticosa honey samples.

    PubMed

    Jerković, Igor; Marijanović, Zvonimir; Kezić, Janja; Gugić, Mirko

    2009-07-27

    Volatile organic compounds of Amorpha fruticosa honey samples were isolated by headspace solid-phase microextraction (HS-SPME) and ultrasonic solvent extraction (USE), followed by gas chromatography and mass spectrometry analyses (GC, GC-MS), in order to obtain complementary data for overall characterization of the honey aroma. The headspace of the honey was dominated by 2-phenylethanol (38.3-58.4%), while other major compounds were trans- and cis-linalool oxides, benzaldehyde and benzyl alcohol. 2-Phenylethanol (10.5-16.8%) and methyl syringate (5.8-8.2%) were the major compounds of ultrasonic solvent extracts, with an array of small percentages of linalool, benzene and benzoic acid derivatives, aliphatic hydrocarbons and alcohols, furan derivatives and others. The scavenging ability of the series of concentrations of the honey ultrasonic solvent extracts and the corresponding honey samples was tested by a DPPH (1,1-diphenyl-2-picrylhydrazyl) assay. Approximately 25 times lower concentration ranges (up to 2 g/L) of the extracts exhibited significantly higher free radical scavenging potential with respect to the honey samples.

  5. Optimization of extraction parameters of pentacyclic triterpenoids from Swertia chirata stem using response surface methodology.

    PubMed

    Pandey, Devendra Kumar; Kaur, Prabhjot

    2018-03-01

    In the present investigation, pentacyclic triterpenoids were extracted from different parts of Swertia chirata by solid-liquid reflux extraction methods. The total pentacyclic triterpenoids (UA, OA, and BA) in extracted samples were determined by HPTLC method. Preliminary studies showed that stem part contains the maximum pentacyclic triterpenoid and was chosen for further studies. Response surface methodology (RSM) has been employed successfully by solid-liquid reflux extraction methods for the optimization of different extraction variables viz., temperature ( X 1 35-70 °C), extraction time ( X 2 30-60 min), solvent composition ( X 3 20-80%), solvent-to-solid ratio ( X 4 30-60 mlg -1 ), and particle size ( X 5 3-6 mm) on maximum recovery of triterpenoid from stem parts of Swertia chirata . A Plackett-Burman design has been used initially to screen out the three extraction factors viz., particle size, temperature, and solvent composition on yield of triterpenoid. Moreover, central composite design (CCD) was implemented to optimize the significant extraction parameters for maximum triterpenoid yield. Three extraction parameters viz., mean particle size (3 mm), temperature (65 °C), and methanol-ethyl acetate solvent composition (45%) can be considered as significant for the better yield of triterpenoid A second-order polynomial model satisfactorily fitted the experimental data with the R 2 values of 0.98 for the triterpenoid yield ( p  < 0.001), implying good agreement between the experimental triterpenoid yield (3.71%) to the predicted value (3.79%).

  6. Identification and determination of the saikosaponins in Radix bupleuri by accelerated solvent extraction combined with rapid-resolution LC-MS.

    PubMed

    Yang, Yun-Yun; Tang, You-Zhi; Fan, Chun-Lin; Luo, Hui-Tai; Guo, Peng-Ran; Chen, Jian-Xin

    2010-07-01

    A method based on accelerated solvent extraction combined with rapid-resolution LC-MS for efficient extraction, rapid separation, online identification and accurate determination of the saikosaponins (SSs) in Radix bupleuri (RB) was developed. The RB samples were extracted by accelerated solvent extraction using 70% aqueous ethanol v/v as solvent, at a temperature of 120 degrees C and pressure of 100 bar, with 10 min of static extraction time and three extraction cycles. Rapid-resolution LC separation was performed by using a C(18) column at gradient elution of water (containing 0.5% formic acid) and acetonitrile, and the major constituents were well separated within 20 min. A TOF-MS and an IT-MS were used for online identification of the major constituents, and 27 SSs were identified or tentatively identified. Five major bioactive SSs (SSa, SSc, SSd, 6''-O-acetyl-SSa and 6''-O-acetyl-SSd) with obvious peak areas and good resolution were chosen as benchmark substances, and a triple quadrupole MS operating in multiple-reaction monitoring mode was used for their quantitative analysis. A total of 16 RB samples from different regions of China were analyzed. The results indicated that the method was rapid, efficient, accurate and suitable for use in the quality control of RB.

  7. Electro-driven extraction of inorganic anions from water samples and water miscible organic solvents and analysis by ion chromatography.

    PubMed

    Nojavan, Saeed; Bidarmanesh, Tina; Memarzadeh, Farkhondeh; Chalavi, Soheila

    2014-09-01

    A simple electromembrane extraction (EME) procedure combined with ion chromatography (IC) was developed to quantify inorganic anions in different pure water samples and water miscible organic solvents. The parameters affecting extraction performance, such as supported liquid membrane (SLM) solvent, extraction time, pH of donor and acceptor solutions, and extraction voltage were optimized. The optimized EME conditions were as follows: 1-heptanol was used as the SLM solvent, the extraction time was 10 min, pHs of the acceptor and donor solutions were 10 and 7, respectively, and the extraction voltage was 15 V. The mobile phase used for IC was a combination of 1.8 mM sodium carbonate and 1.7 mM sodium bicarbonate. Under these optimized conditions, all anions had enrichment factors ranging from 67 to 117 with RSDs between 7.3 and 13.5% (n = 5). Good linearity values ranging from 2 to 1200 ng/mL with coefficients of determination (R(2) ) between 0.987 and 0.999 were obtained. The LODs of the EME-IC method ranged from 0.6 to 7.5 ng/mL. The developed method was applied to different samples to evaluate the feasibility of the method for real applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Displacement-dispersive liquid-liquid microextraction based on solidification of floating organic drop of trace amounts of palladium in water and road dust samples prior to graphite furnace atomic absorption spectrometry determination.

    PubMed

    Ghanbarian, Maryam; Afzali, Daryoush; Mostafavi, Ali; Fathirad, Fariba

    2013-01-01

    A new displacement-dispersive liquid-liquid microextraction method based on the solidification of floating organic drop was developed for separation and preconcentration of Pd(ll) in road dust and aqueous samples. This method involves two steps of dispersive liquid-liquid microextraction based on solidification. In Step 1, Cu ions react with diethyldithiocarbamate (DDTC) to form Cu-DDTC complex, which is extracted by dispersive liquid-liquid microextraction based on a solidification procedure using 1-undecanol (extraction solvent) and ethanol (dispersive solvent). In Step 2, the extracted complex is first dispersed using ethanol in a sample solution containing Pd ions, then a dispersive liquid-liquid microextraction based on a solidification procedure is performed creating an organic drop. In this step, Pd(ll) replaces Cu(ll) from the pre-extracted Cu-DDTC complex and goes into the extraction solvent phase. Finally, the Pd(ll)-containing drop is introduced into a graphite furnace using a microsyringe, and Pd(ll) is determined using atomic absorption spectrometry. Several factors that influence the extraction efficiency of Pd and its subsequent determination, such as extraction and dispersive solvent type and volume, pH of sample solution, centrifugation time, and concentration of DDTC, are optimized.

  9. Superfund Innovative Technology Evaluation: Demonstration Bulletin: Organic Extraction Utilizing Solvents

    EPA Science Inventory

    This technology utilizes liquified gases as the extracting solvent to remove organics, such as hydrocarbons, oil and grease, from wastewater or contaminated sludges and soils. Carbon dioxide is generally used for aqueous solutions, and propane is used for sediment, sludges and ...

  10. Solvent Extraction for Vegetable Oil Production: National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    The EPA has identified solvent extraction for vegetable oil production processes as major sources of a single hazardous air pollutant (HAP), n-hexane. Learn more about the rule requirements and regulations, as well as find compliance help

  11. Pressurized solvent extraction of pure food grade starch

    USDA-ARS?s Scientific Manuscript database

    A commercial pressurized solvent extractor was used to remove lipid and non-lipid material from cornstarch using n-propanol/water and ethanol/water mixtures. Yields and chemical composition of the extract fractions were determined. Cornstarch samples were characterized using pasting properties and...

  12. How does low-molecular-weight polystyrene dissolve: osmotic swelling vs. surface dissolution.

    PubMed

    Marcon, Valentina; van der Vegt, Nico F A

    2014-12-07

    By means of multiscale hierarchical modeling we study the real time evolution of low-molecular-weight polystyrene, below the glass transition temperature, in contact with its solvent, toluene. We observe two concurrent phenomena taking place: (1) the solvent diffuses into the polymer by a Case II mechanism, leading to osmotic driven swelling and progressive chain dilution (inside-out mechanism); (2) polymer chains are solvated, detach from the interface and move into the solvent before the film is completely swollen (outside-in mechanism). From our simulations we conclude that, below the entanglement length, a thin swollen layer, also observed in previous experiments, forms almost instantaneously, which allows for the outside-in mechanism to start a few tens of nanoseconds after the polymer-solvent initial contact. After this initial transient time the two mechanisms are concurrent. We furthermore observe that the presence of the solvent significantly enhances the mobility of the polymer chains of the surface layer, but only in the direction parallel to the interface.

  13. Steam distillation/drop-by-drop extraction with gas chromatography-mass spectrometry for fast determination of volatile components in jujube (Ziziphus jujuba Mill.) extract.

    PubMed

    Sun, Shi-Hao; Chai, Guo-Bi; Li, Peng; Xie, Jian-Ping; Su, Yue

    2017-10-13

    Jujube extract is commonly used as a food additive and flavoring. The unique jujube aroma and the mild sweet aroma of the extract are critical factors that determine product quality and affect consumer acceptability. The aroma changes with changes in the extraction condition, which is typically dependent on the characteristics of volatile oils in the extract. Despite their importance, the volatile oils of jujube extract have received less attention compared with the soluble components. So, an appropriate qualitative and quantitative method for determination of the volatile oils is vitally important for quality control of the product. A method coupling steam distillation/drop-by-drop extraction with gas chromatography-mass spectrometry (S3DE/GC-MS) was developed to determine the volatile components of jujube extract. Steam distillation was coupled with solvent extraction; the resulting condensate containing volatile components from jujube extract was drop-by-drop extracted using 2 mL of methyl tertiary butyl ether. The solvent served two purposes. First, the solvent extracted the volatile components from the condensate. Second, the volatile components were pre-concentrated by drop-by-drop accumulation in the solvent. As a result, the extraction, separation, and concentration of analytes in the sample were simultaneously completed in one step. The main parameters affecting the S3DE procedure, such as the water steam bubbling rate, extraction solvent volume, sample weight and S3DE time, were optimized. The standard addition approach was essential to obtain accurate measurements by minimizing matrix effects. Good linearity (R 2  ≥ 0.9887) and good repeatability (RSDs ≤ 10.35%, n = 5) for 16 analytes in spiked standard analyte samples were achieved. With the S3DE/GC-MS method, seventy-six volatile compounds from jujube extract were identified and the content of 16 compounds was measured. The results were similar to those from simultaneous distillation extraction. The developed method was simple, fast, effective, sensitive, and provided an overall profile of the volatile components in jujube extract. Thus, this method can be used to determine the volatile components of extracts. Graphical abstract The diagram of steam distillation/drop-by-drop extraction device.

  14. Evaluation of extraction protocols for anti-diabetic phytochemical substances from medicinal plants.

    PubMed

    Okoduwa, Stanley Irobekhian Reuben; Umar, Ismaila A; James, Dorcas B; Inuwa, Hajara M; Habila, James D

    2016-12-15

    To examine the efficacy of three extraction techniques: Soxhlet-extraction (SE), cold-maceration (CM) and microwave-assisted-extraction (MAE) using 80% methanol as solvent. The study was performed on each of 50 g of Vernonia amygdalina (VA) and Occimum gratissimum (OG) leaves respectively. The percentage yield, duration of extraction, volume of solvent used, qualitative and quantitative phytoconstituents present was compared. The biological activities (hypoglycemic effect) were investigated using albino wistar rat model of diabetes mellitus ( n = 36) with a combined dose (1:1) of the two plants leaf extracts (250 mg/kg b.w.) from the three methods. The extracts were administered orally, once daily for 21 d. In this report, the percentage VA extract yield from MAE was highest (20.9% ± 1.05%) within 39 min using 250 mL of solvent, when compared to the CM (14.35% ± 0.28%) within 4320 min using 900 mL of solvent and SE (15.75% ± 0.71%) within 265 min using 500 mL of solvent. The percentage differences in OG extract yield between: MAE vs SE was 41.05%; MAE vs CM was 46.81% and SE vs CM was 9.77%. The qualitative chemical analysis of the two plants showed no difference in the various phytoconstituents tested, but differs quantitatively in the amount of the individual phytoconstituents, as MAE had significantly high yield ( P > 0.05) on phenolics, saponins and tannins. SE technique gave significantly high yield ( P > 0.05) on alkaloid, while CM gave significant high yield on flavonoids. The extracts from CM exhibited a significantly ( P > 0.05) better hypoglycemic activity within the first 14-d of treatment (43.3% ± 3.62%) when compared to MAE (36.5% ± 0.08%) and SE methods (33.3% ± 1.60%). However, the percentage hypoglycemic activity, 21 d post-treatment with 250 mg/kg b.w. extract from MAE was 72.6% ± 1.03% and it was more comparable to 10 mg/kg b.w. glibenclamide treated group (75.0% ± 0.73%), unlike the SE (69.5% ± 0.71%) and CM (69.1% ± 1.03%). CM technique produces extract with better hypoglycemic activity, whereas; MAE is a better option for high yield of phytoconstituents using less solvent within a short time.

  15. Evaluation of extraction protocols for anti-diabetic phytochemical substances from medicinal plants

    PubMed Central

    Okoduwa, Stanley Irobekhian Reuben; Umar, Ismaila A; James, Dorcas B; Inuwa, Hajara M; Habila, James D

    2016-01-01

    AIM To examine the efficacy of three extraction techniques: Soxhlet-extraction (SE), cold-maceration (CM) and microwave-assisted-extraction (MAE) using 80% methanol as solvent. METHODS The study was performed on each of 50 g of Vernonia amygdalina (VA) and Occimum gratissimum (OG) leaves respectively. The percentage yield, duration of extraction, volume of solvent used, qualitative and quantitative phytoconstituents present was compared. The biological activities (hypoglycemic effect) were investigated using albino wistar rat model of diabetes mellitus (n = 36) with a combined dose (1:1) of the two plants leaf extracts (250 mg/kg b.w.) from the three methods. The extracts were administered orally, once daily for 21 d. RESULTS In this report, the percentage VA extract yield from MAE was highest (20.9% ± 1.05%) within 39 min using 250 mL of solvent, when compared to the CM (14.35% ± 0.28%) within 4320 min using 900 mL of solvent and SE (15.75% ± 0.71%) within 265 min using 500 mL of solvent. The percentage differences in OG extract yield between: MAE vs SE was 41.05%; MAE vs CM was 46.81% and SE vs CM was 9.77%. The qualitative chemical analysis of the two plants showed no difference in the various phytoconstituents tested, but differs quantitatively in the amount of the individual phytoconstituents, as MAE had significantly high yield (P > 0.05) on phenolics, saponins and tannins. SE technique gave significantly high yield (P > 0.05) on alkaloid, while CM gave significant high yield on flavonoids. The extracts from CM exhibited a significantly (P > 0.05) better hypoglycemic activity within the first 14-d of treatment (43.3% ± 3.62%) when compared to MAE (36.5% ± 0.08%) and SE methods (33.3% ± 1.60%). However, the percentage hypoglycemic activity, 21 d post-treatment with 250 mg/kg b.w. extract from MAE was 72.6% ± 1.03% and it was more comparable to 10 mg/kg b.w. glibenclamide treated group (75.0% ± 0.73%), unlike the SE (69.5% ± 0.71%) and CM (69.1% ± 1.03%). CONCLUSION CM technique produces extract with better hypoglycemic activity, whereas; MAE is a better option for high yield of phytoconstituents using less solvent within a short time. PMID:28031778

  16. Development of a process for the extraction of {sup 137}Cs from acidic HLLW based on crown-calix extractant use of di-alkylamide modifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexova, J.; Sirova, M.; Rais, J.

    2008-07-01

    Within the framework of the ARTIST project of total fuel retreatment with ecological mixtures of solvents and extractants containing only C, H, O, and N atoms, a process segment of extraction of {sup 137}Cs from acidic stream was developed. The process with 25,27-Bis(1-octyloxy)calix[4]arene-crown- 6, DOC[4]C6, dissolved at its 0.01 M concentration in a mixture of 90 vol % 1-octanol and 10% dihexyl octanamide, DHOA was proposed as a viable variant due to its good multicycle performance, even with irradiated solvent, and due to the good chemical stability of the chosen combination of solvent mixture. (authors)

  17. Self-immobilization of poly(methyloctylsiloxane) on high-performance liquid chromatographic silica.

    PubMed

    Collins, Kenneth E; Bottoli, Carla B G; Vigna, Camila R M; Bachmann, Stefan; Albert, Klaus; Collins, Carol H

    2004-03-12

    Poly(methyloctylsiloxane) (PMOS) was deposited on HPLC silica by a solvent evaporation procedure and this material was then extracted, using a good solvent for the PMOS, after different time periods, to remove unretained liquid polymer. Solvent extraction data reveal changes which occur at ambient temperature as a function of the time interval between particle loading and extraction. The quantity of PMOS remaining on the silica after extraction, as determined by elemental analysis for carbon, is attributed to strongly adsorbed polymer. This phenomenon is termed self-immobilization. Solid-state 29Si NMR spectra indicate the formation of a silicon species with a different chemical shift than the original PMOS. These new signals are attributed to a combination of different adsorbed and chemically bonded groups.

  18. Techno-economic assessment of hybrid extraction and distillation processes for furfural production from lignocellulosic biomass.

    PubMed

    Nhien, Le Cao; Long, Nguyen Van Duc; Kim, Sangyong; Lee, Moonyong

    2017-01-01

    Lignocellulosic biomass is one of the most promising alternatives for replacing mineral resources to overcome global warming, which has become the most important environmental issue in recent years. Furfural was listed by the National Renewable Energy Laboratory as one of the top 30 potential chemicals arising from biomass. However, the current production of furfural is energy intensive and uses inefficient technology. Thus, a hybrid purification process that combines extraction and distillation to produce furfural from lignocellulosic biomass was considered and investigated in detail to improve the process efficiency. This effective hybrid process depends on the extracting solvent, which was selected based on a comprehensive procedure that ranged from solvent screening to complete process design. Various solvents were first evaluated in terms of their extraction ability. Then, the most promising solvents were selected to study the separation feasibility. Eventually, processes that used the three best solvents (toluene, benzene, and butyl chloride) were designed and optimized in detail using Aspen Plus. Sustainability analysis was performed to evaluate these processes in terms of their energy requirements, total annual costs (TAC), and carbon dioxide (CO 2 ) emissions. The results showed that butyl chloride was the most suitable solvent for the hybrid furfural process because it could save 44.7% of the TAC while reducing the CO 2 emissions by 45.5% compared to the toluene process. In comparison with the traditional purification process using distillation, this suggested hybrid extraction/distillation process can save up to 19.2% of the TAC and reduce 58.3% total annual CO 2 emissions. Furthermore, a sensitivity analysis of the feed composition and its effect on the performance of the proposed hybrid system was conducted. Butyl chloride was found to be the most suitable solvent for the hybrid extraction/distillation process of furfural production. The proposed hybrid sequence was more favorable than the traditional distillation process when the methanol fraction of the feed stream was <3% and more benefit could be obtained when that fraction decreased.

  19. Alcohol based-deep eutectic solvent (DES) as an alternative green additive to increase rotenone yield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Othman, Zetty Shafiqa; Hassan, Nur Hasyareeda; Zubairi, Saiful Irwan

    Deep eutectic solvents (DESs) are basically molten salts that interact by forming hydrogen bonds between two added components at a ratio where eutectic point reaches a melting point lower than that of each individual component. Their remarkable physicochemical properties (similar to ionic liquids) with remarkable green properties, low cost and easy handling make them a growing interest in many fields of research. Therefore, the objective of pursuing this study is to analyze the potential of alcohol-based DES as an extraction medium for rotenone extraction from Derris elliptica roots. DES was prepared by a combination of choline chloride, ChCl and 1,more » 4-butanediol at a ratio of 1/5. The structure of elucidation of DES was analyzed using FTIR, {sup 1}H-NMR and {sup 13}C-NMR. Normal soaking extraction (NSE) method was carried out for 14 hours using seven different types of solvent systems of (1) acetone; (2) methanol; (3) acetonitrile; (4) DES; (5) DES + methanol; (6) DES + acetonitrile; and (7) [BMIM] OTf + acetone. Next, the yield of rotenone, % (w/w), and its concentration (mg/ml) in dried roots were quantitatively determined by means of RP-HPLC. The results showed that a binary solvent system of [BMIM] OTf + acetone and DES + acetonitrile was the best solvent system combination as compared to other solvent systems. It contributed to the highest rotenone content of 0.84 ± 0.05% (w/w) (1.09 ± 0.06 mg/ml) and 0.84 ± 0.02% (w/w) (1.03 ± 0.01 mg/ml) after 14 hours of exhaustive extraction time. In conclusion, a combination of the DES with a selective organic solvent has been proven to have a similar potential and efficiency as of ILs in extracting bioactive constituents in the phytochemical extraction process.« less

  20. Hexavalent Americium recovery using Copper(III) periodate

    DOE PAGES

    McCann, Kevin; Brigham, Derek M.; Morrison, Samuel; ...

    2016-10-31

    Separation of americium from the lanthanides is considered one of the most difficult separation steps in closing the nuclear fuel cycle. One approach to this separation could involve oxidizing americium to the hexavalent state to form a linear dioxo cation while the lanthanides remain as trivalent ions. This work considers aqueous soluble Cu 3+ periodate as an oxidant under molar nitric acid conditions to separate hexavalent Am with diamyl amylphosphonate (DAAP) in n-dodecane. Initial studies assessed the kinetics of Cu 3+ periodate autoreduction in acidic media to aid in development of the solvent extraction system. Following characterization of the Cumore » 3+ periodate oxidant, solvent extraction studies optimized the recovery of Am from varied nitric acid media and in the presence of other fission product, or fission product surrogate, species. Short aqueous/organic contact times encouraged successful recovery of Am (distribution values as high as 2) from nitric acid media in the absence of redox active fission products. In the presence of a post-plutonium uranium redox extraction (post-PUREX) simulant aqueous feed, precipitation of tetravalent species (Ce, Ru, Zr) occurred and the distribution values of 241Am were suppressed, suggesting some oxidizing capacity of the Cu 3+ periodate is significantly consumed by other redox active metals in the simulant. Furthermore, the manuscript demonstrates Cu 3+ periodate as a potentially viable oxidant for Am oxidation and recovery and notes the consumption of oxidizing capacity observed in the presence of the post-PUREX simulant feed will need to be addressed for any approach seeking to oxidize Am for separations relevant to the nuclear fuel cycle.« less

  1. Accelerated solvent extraction of carotenoids from: Tunisian Kaki (Diospyros kaki L.), peach (Prunus persica L.) and apricot (Prunus armeniaca L.).

    PubMed

    Zaghdoudi, Khalil; Pontvianne, Steve; Framboisier, Xavier; Achard, Mathilde; Kudaibergenova, Rabiga; Ayadi-Trabelsi, Malika; Kalthoum-Cherif, Jamila; Vanderesse, Régis; Frochot, Céline; Guiavarc'h, Yann

    2015-10-01

    Extraction of carotenoids from biological matrices and quantifications remains a difficult task. Accelerated solvent extraction was used as an efficient extraction process for carotenoids extraction from three fruits cultivated in Tunisia: kaki (Diospyros kaki L.), peach (Prunus persica L.) and apricot (Prunus armeniaca L.). Based on a design of experiment (DoE) approach, and using a binary solvent consisting of methanol and tetrahydrofuran, we could identify the best extraction conditions as being 40°C, 20:80 (v:v) methanol/tetrahydrofuran and 5 min of extraction time. Surprisingly and likely due to the high extraction pressure used (103 bars), these conditions appeared to be the best ones both for extracting xanthophylls such as lutein, zeaxanthin or β-cryptoxanthin and carotenes such as β-carotene, which present quite different polarities. Twelve surface responses were generated for lutein, zeaxanthin, β-cryptoxanthin and β-carotene in kaki, peach and apricot. Further LC-MS analysis allowed comparisons in carotenoids profiles between the fruits. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Measurement of polychlorinated biphenyls in solid waste such as transformer insulation paper by supercritical fluid extraction and gas chromatography electron capture detection.

    PubMed

    Chikushi, Hiroaki; Fujii, Yuka; Toda, Kei

    2012-09-21

    In this work, a method for measuring polychlorinated biphenyls (PCBs) in contaminated solid waste was investigated. This waste includes paper that is used in electric transformers to insulate electric components. The PCBs in paper sample were extracted by supercritical fluid extraction and analyzed by gas chromatography-electron capture detection. The recoveries with this method (84-101%) were much higher than those with conventional water extraction (0.08-14%), and were comparable to those with conventional organic solvent extraction. Limit of detection was 0.0074 mg kg(-1) and measurable up to 2.5 mg kg(-1) for 0.5 g of paper sample. Data for real insulation paper by the proposed method agreed well with those by the conventional organic solvent extraction. Extraction from wood and concrete was also investigated and good performance was obtained as well as for paper samples. The supercritical fluid extraction is simpler, faster, and greener than conventional organic solvent extraction. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Forensic analysis of anthraquinone, azo, and metal complex acid dyes from nylon fibers by micro-extraction and capillary electrophoresis.

    PubMed

    Stefan, Amy R; Dockery, Christopher R; Nieuwland, Alexander A; Roberson, Samantha N; Baguley, Brittany M; Hendrix, James E; Morgan, Stephen L

    2009-08-01

    The extraction and separation of dyes present on textile fibers offers the possibility of enhanced discrimination between forensic trace fiber evidence. An automated liquid sample handling workstation was programmed to deliver varying solvent combinations to acid-dyed nylon samples, and the resulting extracts were analyzed by an ultraviolet/visible microplate reader to evaluate extraction efficiencies at different experimental conditions. Combinatorial experiments using three-component mixture designs varied three solvents (water, pyridine, and aqueous ammonia) and were employed at different extraction temperatures for various extraction durations. The extraction efficiency as a function of the three solvents (pyridine/ammonia/water) was modeled and used to define optimum conditions for the extraction of three subclasses of acid dyes (anthraquinone, azo, and metal complex) from nylon fibers. The capillary electrophoresis analysis of acid dye extracts is demonstrated using an electrolyte solution of 15 mM ammonium acetate in acetonitrile/water (40:60, v/v) at pH 9.3. Excellent separations and discriminating diode array spectra are obtained even for dyes of similar color.

  4. Chromatographic and mass spectrometric characterization of essential oils and extracts from Lippia (Verbenaceae) aromatic plants.

    PubMed

    Stashenko, Elena E; Martínez, Jairo R; Cala, Mónica P; Durán, Diego C; Caballero, Deyanira

    2013-01-01

    Analytical methodologies based on GC and HPLC were developed for the separation and quantification of carnosic acid, ursolic acid, caffeic acid, p-coumaric acid, rosmarinic acid, apigenin, luteolin, quercetin, kaempferol, naringenin, and pinocembrin. These methods were used to characterize essential oils and extracts obtained by solvent (methanol) and by supercritical fluid (CO(2)) extraction from stems and leaves of Lippia (Verbenaceae family) aromatic plants (Lippia alba, Lippia origanoides, Lippia micromera, Lippia americana, Lippia graveolens, and Lippia citriodora). Supercritical CO(2) extraction isolated solely pinocembrin and narigenin from three L. origanoides chemotypes. Solvent extracts possessed a more varied composition that additionally included apigenin, quercetin, and luteolin. Solvent extraction afforded higher overall flavonoid yields from all species in comparison with supercritical CO(2) extraction. Pinocembrin was determined in L. origanoides extract at a concentration of 30 mg/g of plant material, which is more than ten times higher than the amount at which polyphenols are regularly found in aromatic plant extracts. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Determination of zearalenone and its metabolites in endometrial cancer by coupled separation techniques.

    PubMed

    Gadzała-Kopciuch, Renata; Cendrowski, Krzysztof; Cesarz, Anna; Kiełbasa, Paweł; Buszewski, Bogusław

    2011-10-01

    This study presents a selective method of isolation of zearalenone (ZON) and its metabolite, α-zearalenol (α-ZOL), in neoplastically changed human tissue by accelerated solvent and ultrasonic extractions using a mixture of acetonitrile/water (84/16% v/v) as the extraction solvent. Extraction effectiveness was determined through the selection of parameters (composition of the solvent mixture, temperature, pressure, number of cycles) with tissue contamination at the level of nanograms per gram. The produced acetonitrile/water extracts were purified, and analytes were enriched in columns packed with homemade molecularly imprinted polymers. Purified extracts were determined by liquid chromatography (LC) coupled with different detection systems (diode array detection--DAD and mass spectrometry--MS) involving the Ascentis RP-Amide as a stationary phase and gradient elution. The combination of UE-MISPE-LC (ultrasonic extraction--molecularly imprinted solid-phase extraction--liquid chromatography) produced high (R≈95-98%) and repeatable (RSD<3%) recovery values for ZON and α-ZOL. © The Author(s) 2011. This article is published with open access at Springerlink.com

  6. Dynamic microwave assisted extraction coupled with dispersive micro-solid-phase extraction of herbicides in soybeans.

    PubMed

    Li, Na; Wu, Lijie; Nian, Li; Song, Ying; Lei, Lei; Yang, Xiao; Wang, Kun; Wang, Zhibing; Zhang, Liyuan; Zhang, Hanqi; Yu, Aimin; Zhang, Ziwei

    2015-09-01

    Non-polar solvent dynamic microwave assisted extraction was firstly applied to the treatment of high-fat soybean samples. In the dispersive micro-solid-phase extraction (D-µ-SPE), the herbicides in the high-fat extract were directly adsorbed on metal-organic frameworks MIL-101(Cr). The effects of several experimental parameters, including extraction solvent, microwave absorption medium, microwave power, volume and flow rate of extraction solvent, amount of MIL-101(Cr), and D-µ-SPE time, were investigated. At the optimal conditions, the limits of detection for the herbicides ranged from 1.56 to 2.00 μg kg(-1). The relative recoveries of the herbicides were in the range of 91.1-106.7%, and relative standard deviations were equal to or lower than 6.7%. The present method was simple, rapid and effective. A large amount of fat was also removed. This method was demonstrated to be suitable for treatment of high-fat samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Extractant composition including crown ether and calixarene extractants

    DOEpatents

    Meikrantz, David H.; Todd, Terry A.; Riddle, Catherine L.; Law, Jack D.; Peterman, Dean R.; Mincher, Bruce J.; McGrath, Christopher A.; Baker, John D.

    2009-04-28

    An extractant composition comprising a mixed extractant solvent consisting of calix[4] arene-bis-(tert-octylbenzo)-crown-6 ("BOBCalixC6"), 4',4',(5')-di-(t-butyldicyclo-hexano)-18-crown-6 ("DtBu18C6"), and at least one modifier dissolved in a diluent. The DtBu18C6 may be present at from approximately 0.01M to approximately 0.4M, such as at from approximately 0.086 M to approximately 0.108 M. The modifier may be 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol ("Cs-7SB") and may be present at from approximately 0.01M to approximately 0.8M. In one embodiment, the mixed extractant solvent includes approximately 0.15M DtBu18C6, approximately 0.007M BOBCalixC6, and approximately 0.75M Cs-7SB modifier dissolved in an isoparaffinic hydrocarbon diluent. The extractant composition further comprises an aqueous phase. The mixed extractant solvent may be used to remove cesium and strontium from the aqueous phase.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harman-Ware, Anne E.; Sykes, Robert; Peter, Gary F.

    Terpenoids, naturally occurring compounds derived from isoprene units present in pine oleoresin, are a valuable source of chemicals used in solvents, fragrances, flavors, and have shown potential use as a biofuel. This paper describes a method to extract and analyze the terpenoids present in loblolly pine saplings and pine lighter wood. Various extraction solvents were tested over different times and temperatures. Samples were analyzed by pyrolysis-molecular beam mass spectrometry before and after extractions to monitor the extraction efficiency. The pyrolysis studies indicated that the optimal extraction method used a 1:1 hexane/acetone solvent system at 22°C for 1 h. Extracts frommore » the hexane/acetone experiments were analyzed using a low thermal mass modular accelerated column heater for fast-GC/FID analysis. The most abundant terpenoids from the pine samples were quantified, using standard curves, and included the monoterpenes, α- and β-pinene, camphene, and δ-carene. Sesquiterpenes analyzed included caryophyllene, humulene, and α-bisabolene. In conclusion, diterpenoid resin acids were quantified in derivatized extractions, including pimaric, isopimaric, levopimaric, palustric, dehydroabietic, abietic, and neoabietic acids.« less

  9. "Solvent-free" ultrasound-assisted extraction of lipids from fresh microalgae cells: a green, clean and scalable process.

    PubMed

    Adam, Fanny; Abert-Vian, Maryline; Peltier, Gilles; Chemat, Farid

    2012-06-01

    In order to comply with criteria of green chemistry concepts and sustainability, a new procedure has been performed for solvent-free ultrasound-assisted extraction (UAE) to extract lipids from fresh Nannochloropsis oculata biomass. Through response surface methodology (RSM) parameters affecting the oil recovery were optimized. Optimum conditions for oil extraction were estimated as follows: (i) 1000 W ultrasonic power, (ii) 30 min extraction time and (iii) biomass dry weight content at 5%. Yields were calculated by the total fatty acids methyl esters amounts analyzed by GC-FID-MS. The maximum oil recovery was around 0.21%. This value was compared with the one obtained with the conventional extraction method (Bligh and Dyer). Furthermore, effect of temperature on the yield was also investigated. The overall results show an innovative and effective extraction method adapted for microalgae oil recovery, without using solvent and with an enable scaling up. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Dispersive liquid-liquid microextraction based on solidification of floating organic droplet followed by high-performance liquid chromatography with ultraviolet detection and liquid chromatography-tandem mass spectrometry for the determination of triclosan and 2,4-dichlorophenol in water samples.

    PubMed

    Zheng, Cao; Zhao, Jing; Bao, Peng; Gao, Jin; He, Jin

    2011-06-24

    A novel, simple and efficient dispersive liquid-liquid microextraction based on solidification of floating organic droplet (DLLME-SFO) technique coupled with high-performance liquid chromatography with ultraviolet detection (HPLC-UV) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for the determination of triclosan and its degradation product 2,4-dichlorophenol in real water samples. The extraction solvent used in this work is of low density, low volatility, low toxicity and proper melting point around room temperature. The extractant droplets can be collected easily by solidifying it at a lower temperature. Parameters that affect the extraction efficiency, including type and volume of extraction solvent and dispersive solvent, salt effect, pH and extraction time, were investigated and optimized in a 5 mL sample system by HPLC-UV. Under the optimum conditions (extraction solvent: 12 μL of 1-dodecanol; dispersive solvent: 300 of μL acetonitrile; sample pH: 6.0; extraction time: 1 min), the limits of detection (LODs) of the pretreatment method combined with LC-MS/MS were in the range of 0.002-0.02 μg L(-1) which are lower than or comparable with other reported approaches applied to the determination of the same compounds. Wide linearities, good precisions and satisfactory relative recoveries were also obtained. The proposed technique was successfully applied to determine triclosan and 2,4-dichlorophenol in real water samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Assessment of critical-fluid extractions in the process industries

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The potential for critical-fluid extraction as a separation process for improving the productive use of energy in the process industries is assessed. Critical-fluid extraction involves the use of fluids, normally gaseous at ambient conditions, as extraction solvents at temperatures and pressures around the critical point. Equilibrium and kinetic properties in this regime are very favorable for solvent applications, and generally allow major reductions in the energy requirements for separating and purifying chemical component of a mixture.

  12. METHOD OF DISSOLVING REFRACTORY ALLOYS

    DOEpatents

    Helton, D.M.; Savolainen, J.K.

    1963-04-23

    This patent relates to the dissolution of alloys of uranium with zirconium, thorium, molybdenum, or niobium. The alloy is contacted with an anhydrous solution of mercuric chloride in a low-molecular-weight monohydric alcohol to produce a mercury-containing alcohol slurry. The slurry is then converted to an aqueous system by adding water and driving off the alcohol. The resulting aqueous slurry is electrolyzed in the presence of a mercury cathode to remove the mercury and produce a uranium-bearing aqueous solution. This process is useful for dissolving irradiated nuclear reactor fuels for radiochemical reprocessing by solvent extraction. In addition, zirconium-alloy cladding is selectively removed from uranium dioxide fuel compacts by this means. (AEC)

  13. EXTRACTION APPARATUS

    DOEpatents

    Ballard, A.E.; Brigham, H.R.

    1958-10-28

    An apparatus whereby relatlvely volatile solvents may be contacted with volatile or non-volatile material without certaln attendant hazards is described. A suitable apparatus for handling relatively volatlle liqulds may be constructed comprising a tank, and a closure covering the tank and adapted to be securely attached to an external suppont. The closure is provided with a rigidly mounted motor-driven agitator. This agitator is connected from the driving motor lnto the lnterlor of the tank through a gland adapted to be cooled witb inert gas thereby eliminating possible hazard due to frictional heat. The closure is arranged so that the tank may be removed from it without materially dlsturbing the closure which, as described, carrles the motor driven agitator and other parts.

  14. Determination of Parameters for the Supercritical Extraction of Antioxidant Compounds from Green Propolis Using Carbon Dioxide and Ethanol as Co-Solvent

    PubMed Central

    Barreto, Gabriele de Abreu; Costa, Samantha Serra; Silva, Rejane Pina Dantas; da Silva, Danielle Figuerêdo; Brandão, Hugo Neves; da Rocha, José Luiz Carneiro; Nunes, Silmar Baptista; Umsza-Guez, Marcelo Andres

    2015-01-01

    The aim of this study was to determine the best processing conditions to extract Brazilian green propolis using a supercritical extraction technology. For this purpose, the influence of different parameters was evaluated such as S/F (solvent mass in relation to solute mass), percentage of co-solvent (1 and 2% ethanol), temperature (40 and 50°C) and pressure (250, 350 and 400 bar) using supercritical carbon dioxide. The Global Yield Isotherms (GYIs) were obtained through the evaluation of the yield, and the chemical composition of the extracts was also obtained in relation to the total phenolic compounds, flavonoids, antioxidant activity and 3,5-diprenyl-4-hydroxicinnamic acid (Artepillin C) and acid 4-hydroxycinnamic (p-coumaric acid). The best results were identified at 50°C, 350 bar, 1% ethanol (co-solvent) and S/F of 110. These conditions, a content of 8.93±0.01 and 0.40±0.05 g/100 g of Artepillin C and p-coumaric acid, respectively, were identified indicating the efficiency of the extraction process. Despite of low yield of the process, the extracts obtained had high contents of relevant compounds, proving the viability of the process to obtain green propolis extracts with important biological applications due to the extracts composition. PMID:26252491

  15. Determination of phthalate esters in soil using a quick, easy, cheap, effective, rugged, and safe method followed by GC-MS.

    PubMed

    Liu, Qianjun; Chen, Di; Wu, Jiyuan; Yin, Guangcai; Lin, Qintie; Zhang, Min; Hu, Huawen

    2018-04-01

    A quick, easy, cheap, effective, rugged, and safe procedure was designed to extract pesticide residues from fruits and vegetables with a high percentage of water. It has not been used extensively for the extraction of phthalate esters from sediments, soils, and sludges. In this work, this procedure was combined with gas chromatography with mass spectrometry to determine 16 selected phthalate esters in soil. The extraction efficiency of the samples was improved by ultrasonic extraction and dissolution of the soil samples in ultra-pure water, which promoted the dispersion of the samples. Furthermore, we have simplified the extraction step and reduced the risk of organic solvent contamination by minimizing the use of organic solvents. Different extraction solvents and clean-up adsorbents were compared to optimize the procedure. Dichloromethane/n-hexane (1:1, v/v) and n-hexane/acetone (1:1, v/v) were selected as the extractants from the six extraction solvents tested. C18/primary secondary amine (1:1, m/m) was selected as the sorbent from the five clean-up adsorbents tested. The recoveries from the spiked soils ranged from 70.00 to 117.90% with relative standard deviation values of 0.67-4.62%. The proposed approach was satisfactorily applied for the determination of phthalate esters in 12 contaminated soil samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The Chemistry of Separations Ligand Degradation by Organic Radical Cations

    DOE PAGES

    Mezyk, Stephen P.; Horne, Gregory P.; Mincher, Bruce J.; ...

    2016-12-01

    Solvent based extractions of used nuclear fuel use designer ligands in an organic phase extracting ligand complexed metal ions from an acidic aqueous phase. These extractions will be performed in highly radioactive environments, and the radiation chemistry of all these complexants and their diluents will play a major role in determining extraction efficiency, separation factors, and solvent-recycle longevity. Although there has been considerable effort in investigating ligand damage occurring in acidic water radiolysis conditions, only minimal fundamental kinetic and mechanistic data has been reported for the degradation of extraction ligands in the organic phase. Extraction solvent phases typically use normalmore » alkanes such as dodecane, TPH, and kerosene as diluents. The radiolysis of such diluents produce a mixture of radical cations (R •+), carbon-centered radicals (R •), solvated electrons, and molecular products such as hydrogen. Typically, the radical species will preferentially react with the dissolved oxygen present to produce relatively inert peroxyl radicals. This isolates the alkane radical cation species, R •+ as the major radiolytically-induced organic species that can react with, and degrade, extraction agents in this phase. Here we report on our recent studies of organic radical cation reactions with various ligands. Elucidating these parameters, and combining them with the known acidic aqueous phase chemistry, will allow a full, fundamental, understanding of the impact of radiation on solvent extraction based separation processes to be achieved.« less

  17. [Simultaneous determination of arsanilic, nitarsone and roxarsone residues in foods of animal origin by ASE-LC-AFS].

    PubMed

    Xiao, Ya-Bing; Zhang, Man; Wen, Hua-Wei

    2014-04-01

    A method for simultaneous determination of arsanilic, nitarsone and roxarsone (ROX) residues in foods of animal origin was developed by accelerated solvent extraction-liquid chromatography-atomic fluorescence spectrometry (ASE-LC-AFS). The ultrasound centrifugation extraction and accelerated solvent extraction were compared, and the accelerated solvent extraction conditions, namely the proportion of the extraction solvent, the extraction temperature, extraction time and extraction times, were optimized. The operating conditions of LC-AFS and the mobile phase were optimized. Under the optimal conditions, the calibration curves for ASA , NIT and ROX were linear over the concentration range of 0-2.0 mg x L(-1) and their correlation coefficients were 0.999 2-0.999 8. The detection limits of ASA, NIT and ROX were 2.4, 7.4 and 4.1 microg x L(-1) respectively. The average recoveries of ASA, NIT and ROX from two samples spiked at three levels of 0.5, 2, 5 mg x kg(-1) were in the ranges of 87.1%-93.2%, 85.2%-93.9%, and 84.2%-93.7% with RSDs of 1.4%-4.6%, 1.2%-4.2%, and 1.1%-4.5%, respectively. This method possesses the merits of convenience and good repeatability, and is a feasible method for analysis of ASA, NIT and ROX in foods of animal origin.

  18. The Chemistry of Separations Ligand Degradation by Organic Radical Cations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mezyk, Stephen P.; Horne, Gregory P.; Mincher, Bruce J.

    Solvent based extractions of used nuclear fuel use designer ligands in an organic phase extracting ligand complexed metal ions from an acidic aqueous phase. These extractions will be performed in highly radioactive environments, and the radiation chemistry of all these complexants and their diluents will play a major role in determining extraction efficiency, separation factors, and solvent-recycle longevity. Although there has been considerable effort in investigating ligand damage occurring in acidic water radiolysis conditions, only minimal fundamental kinetic and mechanistic data has been reported for the degradation of extraction ligands in the organic phase. Extraction solvent phases typically use normalmore » alkanes such as dodecane, TPH, and kerosene as diluents. The radiolysis of such diluents produce a mixture of radical cations (R •+), carbon-centered radicals (R •), solvated electrons, and molecular products such as hydrogen. Typically, the radical species will preferentially react with the dissolved oxygen present to produce relatively inert peroxyl radicals. This isolates the alkane radical cation species, R •+ as the major radiolytically-induced organic species that can react with, and degrade, extraction agents in this phase. Here we report on our recent studies of organic radical cation reactions with various ligands. Elucidating these parameters, and combining them with the known acidic aqueous phase chemistry, will allow a full, fundamental, understanding of the impact of radiation on solvent extraction based separation processes to be achieved.« less

  19. Simultaneous cell disruption and lipid extraction of wet aurantiochytrium sp. KRS101 using a high shear mixer.

    PubMed

    Kwak, Minsoo; Kang, Seul Gi; Hong, Won-Kyung; Han, Jong-In; Chang, Yong Keun

    2018-05-01

    Microalgae are regarded as a promising source of biofuels, and the concept of a microalgae-based biorefinery has attracted increasing attention in recent years. From an economic perspective, however, the process remains far from competitive with fossil fuels. This is particularly true of lipid extraction, due in part to the energy-intensive drying step. As a result, wet extraction methods have been studied as an economic alternative. In the present study, a novel extraction approach which utilizes high shear stress mixing was adopted and demonstrated for simultaneous lipid extraction and cell disruption to enable the retrieval of lipids directly from concentrated wet biomass. When a high shear mixer (HSM) was used to extract lipid from a dense biomass (> 350 g/L) of the oleaginous algae Aurantiochytrium sp., it exhibited a yield of esterifiable lipids which exceeded 80% in 10 min at 15,000 rpm with various solvent types. The HSM was found to improve the lipid yields substantially with solvents less miscible with either lipids or water, such that the range of Hansen solubility parameters for the usable solvents became 3.3 times wider (14.9-26.5 MPa 1/2 ). The HSM, which appeared effectively to loosen the water barrier that prevents solvent molecules from penetrating through the cell envelope, was found to be more efficient with hexane, hexane/isopropanol, and ethanol, all of which showed nearly identical lipid yields compared to the dry extraction process. The HSM can, indeed, offer a powerful mechanical means of lipid extraction with non-polar and less toxic solvents from wet biomass.

  20. SITE TECHNOLOGY CAPSULE: TERRA-KLEEN SOLVENT EXTRACTION TECHNOLOGY

    EPA Science Inventory

    Remediation of PCBs in soils has been difficult to implement on a full-scale, cost-effective basis. The Terra-Kleen solvent extraction system has overcome many of the soil handling, contaminant removal, and regulatory restrictions that have made it difficult to implement a cost-e...

  1. TERRA-KLEEN RESPONSE GROUP, INC. SOLVENT EXTRACTION TECHNOLOGY: INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    This report summarizes the results of a field demonstration conducted under the SITE program. The technology which was demonstrated was a solvent extraction technology developed by Terra-Kleen Response Group. Inc. to remove organic contaminants from soil. The technology employs...

  2. Synergism and antagonism in extracting local anesthetics from aqueous media with mixtures of solvents

    NASA Astrophysics Data System (ADS)

    Sukhanov, P. T.; Chibisova, T. V.; Korenman, Ya. I.

    2014-12-01

    The extraction of local anesthetics from aqueous media with mixtures of solvent is examined and its synergistic and antagonistic effects are determined. Synergism parameters, separation factors, constants for the formation of anesthetic complexes, and solvate numbers are calculated.

  3. Extraction-Scrub-Strip test results from the interim Salt Disposition Program Macrobatch 9 Tank 21H qualification samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T.

    2016-02-23

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 9 for the Interim Salt Disposition Program (ISDP). The Salt Batch 9 characterization results were previously reported. An Extraction-Scrub-Strip (ESS) test was performed to determine cesium distribution ratios (D (Cs)) and cesium concentration in the strip effluent and decontaminated salt solution (DSS) streams; this data will be used by Tank Farm Engineering to project a cesium decontamination factor (DF). This test used actual Tank 21H material, and a blend solvent prepared by SRNL that mimics the solvent composition currently being used atmore » the Modular Caustic-Side Solvent Extraction Unit (MCU). The ESS test showed acceptable performance with an extraction D (Cs) value of 52.4. This value is consistent with results from previous salt batch ESS tests using similar solvent formulations. This compares well against the predicted value of 56.5 from a recently created D (Cs) model« less

  4. Field-portable supercritical CO{sub 2} extractor

    DOEpatents

    Wright, B.W.; Zemanian, T.S.; Robins, W.H.; Woodcock, L.J.

    1997-06-10

    The present invention is an apparatus for extracting organic compounds from solid materials. A generator vessel has a removable closure for receiving a solid or liquid solvent which is heated with a resistive heating element to a gaseous or supercritical phase. The removable closure is unencumbered because the side wall is penetrated with an outlet for the gaseous or supercritical solvent. The generator vessel further has a pressure transducer that provides an electronic signal related to pressure of the gaseous or supercritical solvent. The apparatus of the present invention further includes at least one extraction cell having a top and a bottom and a wall extending there between, wherein the bottom is sealably penetrated by an inlet for gaseous or supercritical solvent received through a manifold connected to the outlet, the top having an easy-open removable closure cap, and the wall having an outlet port. Finally, a permeable sample cartridge is included for holding the solid materials and to provide radial-flow of the extraction fluid, which is placed within the extraction cell. 10 figs.

  5. Field-portable supercritical CO.sub.2 extractor

    DOEpatents

    Wright, Bob W.; Zemanian, Thomas S.; Robins, William H.; Woodcock, Leslie J.

    1997-01-01

    The present invention is an apparatus for extracting organic compounds from solid materials. A generator vessel has a removable closure for receiving a solid or liquid solvent which is heated with a resistive heating element to a gaseous or supercritical phase. The removable closure is unencumbered because the side wall is penetrated with an outlet for the gaseous or supercritical solvent. The generator vessel further has a pressure transducer that provides an electronic signal related to pressure of the gaseous or supercritical solvent. The apparatus of the present invention further includes at least one extraction cell having a top and a bottom and a wall extending therebetween, wherein the bottom is sealably penetrated by an inlet for gaseous or supercritical solvent received through a manifold connected to the outlet, the top having an easy-open removable closure cap, and the wall having an outlet port. Finally, a permeable sample cartridge is included for holding the solid materials and to provide radial-flow of the extraction fluid, which is placed within the extraction cell.

  6. Predictive model for ionic liquid extraction solvents for rare earth elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grabda, Mariusz; Oleszek, Sylwia; Institute of Environmental Engineering of the Polish Academy of Sciences, ul. M. Sklodowskiej-Curie 34, 41-819, Zabrze

    2015-12-31

    The purpose of our study was to select the most effective ionic liquid extraction solvents for dysprosium (III) fluoride using a theoretical approach. Conductor-like Screening Model for Real Solvents (COSMO-RS), based on quantum chemistry and the statistical thermodynamics of predefined DyF{sub 3}-ionic liquid systems, was applied to reach the target. Chemical potentials of the salt were predicted in 4,400 different ionic liquids. On the base of these predictions set of ionic liquids’ ions, manifesting significant decrease of the chemical potentials, were selected. Considering the calculated physicochemical properties (hydrophobicity, viscosity) of the ionic liquids containing these specific ions, the most effectivemore » extraction solvents for liquid-liquid extraction of DyF{sub 3} were proposed. The obtained results indicate that the COSMO-RS approach can be applied to quickly screen the affinity of any rare earth element for a large number of ionic liquid systems, before extensive experimental tests.« less

  7. Sugaring-out extraction of acetoin from fermentation broth by coupling with fermentation.

    PubMed

    Dai, Jian-Ying; Ma, Lin-Hui; Wang, Zhuang-Fei; Guan, Wen-Tian; Xiu, Zhi-Long

    2017-03-01

    Acetoin is a natural flavor and an important bio-based chemical which could be separated from fermentation broth by solvent extraction, salting-out extraction or recovered in the form of derivatives. In this work, a novel method named as sugaring-out extraction coupled with fermentation was tried in the acetoin production by Bacillus subtilis DL01. The effects of six solvents on bacterial growth and the distribution of acetoin and glucose in different solvent-glucose systems were explored. The operation parameters such as standing time, glucose concentration, and volume ratio of ethyl acetate to fermentation broth were determined. In a system composed of fermentation broth, glucose (100%, m/v) and two-fold volume of ethyl acetate, nearly 100% glucose was distributed into bottom phase, and 61.2% acetoin into top phase without coloring matters and organic acids. The top phase was treated by vacuum distillation to remove solvent and purify acetoin, while the bottom phase was used as carbon source to produce acetoin in the next batch of fermentation.

  8. From micelle supramolecular assemblies in selective solvents to isoporous membranes.

    PubMed

    Nunes, Suzana P; Karunakaran, Madhavan; Pradeep, Neelakanda; Behzad, Ali Reza; Hooghan, Bobby; Sougrat, Rachid; He, Haoze; Peinemann, Klaus-Viktor

    2011-08-16

    The supramolecular assembly of PS-b-P4VP copolymer micelles induced by selective solvent mixtures was used to manufacture isoporous membranes. Micelle order in solution was confirmed by cryo-scanning electron microscopy in casting solutions, leading to ordered pore morphology. When dioxane, a solvent that interacts poorly with the micelle corona, was added to the solution, polymer-polymer segment contact was preferential, increasing the intermicelle contact. Immersion in water gave rise to asymmetric porous membranes with exceptional pore uniformity and high porosity. The introduction of a small number of carbon nanotubes to the casting solution improved the membrane stability and the reversibility of the gate response in the presence of different pH values.

  9. Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology.

    PubMed

    Freitas, Sergio; Merkle, Hans P; Gander, Bruno

    2005-02-02

    The therapeutic benefit of microencapsulated drugs and vaccines brought forth the need to prepare such particles in larger quantities and in sufficient quality suitable for clinical trials and commercialisation. Very commonly, microencapsulation processes are based on the principle of so-called "solvent extraction/evaporation". While initial lab-scale experiments are frequently performed in simple beaker/stirrer setups, clinical trials and market introduction require more sophisticated technologies, allowing for economic, robust, well-controllable and aseptic production of microspheres. To this aim, various technologies have been examined for microsphere preparation, among them are static mixing, extrusion through needles, membranes and microfabricated microchannel devices, dripping using electrostatic forces and ultrasonic jet excitation. This article reviews the current state of the art in solvent extraction/evaporation-based microencapsulation technologies. Its focus is on process-related aspects, as described in the scientific and patent literature. Our findings will be outlined according to the four major substeps of microsphere preparation by solvent extraction/evaporation, namely, (i) incorporation of the bioactive compound, (ii) formation of the microdroplets, (iii) solvent removal and (iv) harvesting and drying the particles. Both, well-established and more advanced technologies will be reviewed.

  10. Separation of thorium from lanthanides by solvent extraction with ionizable crown ethers.

    PubMed

    Du, H S; Wood, D J; Elshani, S; Wai, C M

    1993-02-01

    Thorium and the lanthanides are extracted by alpha-(sym-dibenzo-16-crown-5-oxy)acetic acid and its analogues in different pH ranges. At pH 4.5, Th is quantitatively extracted by the crown ether carboxylic acids into chloroform whereas the extraction of the lanthanides is negligible. Separation of Th from the lanthanides can be achieved by solvent extraction under this condition. The extraction does not require specific counteranions and is reversible with respect to pH. Trace amounts of Th in water can be quantitatively recovered using this extraction system for neutron activation analysis. The nature of the extracted Th complex and the mechanism of extraction are discussed.

  11. System for removing contaminants from plastic resin

    DOEpatents

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2010-11-23

    A resin recycling system that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The system includes receiving the resin in container form. A grinder grinds the containers into resin particles. The particles are exposed to a solvent in one or more solvent wash vessels, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. A separator is used to separate the resin particles and the solvent. The resin particles are then placed in solvent removing element where they are exposed to a solvent removing agent which removes any residual solvent remaining on the resin particles after separation.

  12. Comparison of solvent/derivatization agent systems for determination of extractable toluene diisocyanate from flexible polyurethane foam.

    PubMed

    Vangronsveld, Erik; Berckmans, Steven; Spence, Mark

    2013-06-01

    Flexible polyurethane foam (FPF) is produced from the reaction of toluene diisocyanate (TDI) and polyols. Limited and conflicting results exist in the literature concerning the presence of unreacted TDI remaining in FPF as determined by various solvent extraction and analysis techniques. This study reports investigations into the effect of several solvent/derivatization agent combinations on extractable TDI results and suggests a preferred method. The suggested preferred method employs a syringe-based multiple extraction of foam samples with a toluene solution of 1-(2-methoxyphenyl)-piperazine. Extracts are analyzed by liquid chromatography using an ion trap mass spectrometry detection technique. Detection limits of the method are ~10ng TDI g(-1) foam (10 ppb, w/w) for each TDI isomer (i.e. 2,4-TDI and 2,6-TDI). The method was evaluated by a three-laboratory interlaboratory comparison using two representative foam samples. The total extractable TDI results found by the three labs for the two foams were in good agreement (relative standard deviation of the mean of 30-40%). The method has utility as a basis for comparing FPFs, but the interpretation of extractable TDI results using any solvent as the true value for 'free' or 'unreacted' TDI in the foam is problematic, as demonstrated by the difference in the extracted TDI results from the different extraction systems studied. Further, a consideration of polyurethane foam chemistry raises the possibility that extractable TDI may result from decomposition of parts of the foam structure (e.g. dimers, biurets, and allophanates) by the extraction system.

  13. SOLVENT EXTRACTION PROCESS FOR SEPARATING URANIUM AND PLUTONIUM FROM AQUEOUS ACIDIC SOLUTIONS OF NEUTRON IRRADIATED URANIUM

    DOEpatents

    Bruce, F.R.

    1962-07-24

    A solvent extraction process was developed for separating actinide elements including plutonium and uranium from fission products. By this method the ion content of the acidic aqueous solution is adjusted so that it contains more equivalents of total metal ions than equivalents of nitrate ions. Under these conditions the extractability of fission products is greatly decreased. (AEC)

  14. Chemical model for the solvent extraction of GdCl3 from a chloride solution with saponified PC88A

    NASA Astrophysics Data System (ADS)

    Lee, Man-Seung; Lee, Jin-Young; Kim, Joon-Soo

    2005-12-01

    Solvent extraction experiments of Gd with 40% saponified PC88A have been conducted from a chloride solution under different extraction conditions. The effect of saponification of an acidic extractant on the extraction of Gd was investigated. To analyze the ionic equilibria of a GdCl3 solution, we estimated the necessary thermodynamic properties from reported values. Moreover, when applying the chemical model developed in this study, we used experimental data to estimate the equilibrium constant for the extraction of Gd with partially saponified PC88A.

  15. Accelerated solvent extraction combined with solid phase extraction for the determination of organophosphate esters from sewage sludge compost by UHPLC-MS/MS.

    PubMed

    Pang, Long; Yang, Peijie; Ge, Liming; Du, Jingjing; Zhang, Hongzhong

    2017-02-01

    Organophosphate esters (OPEs), widely used as flame retardants and plasticizers, are regarded as emerging pollutants. OPEs are prone to concentrate into residual activated sludge, which might cause secondary pollution if not suitably treated. Composting is an economical and effective approach to make sewage sludge stable and harmless. Therefore, it is essential to develop a novel method for analyzing OPEs in sewage sludge compost samples. However, in the composting process, large amounts of amendments are doped into the sludge to adjust the carbon-nitrogen ratio. Amendment has a strong capacity for adsorption and thus induces a decrease of extraction efficiency. This study developed a novel procedure for determining OPEs in compost samples. Accelerated solvent extraction (ASE) and solid phase extraction (SPE) were used for extracting and concentrating the OPEs from sewage sludge compost samples, and then analyzed by UHPLC-MS/MS. Some parameters were optimized in this study, mainly including the extraction solvent type, extraction temperature, static extraction time, extraction cycles, and flush volume. Under the optimal conditions, the proposed method showed good linearity between 0.50 and 100 μg kg -1 with regression coefficients in the range of 0.9984-0.9998. Detection limits were in the range of 0.02-3 μg kg -1 with standard deviations ranging from 2 to 6%. Acceptable recoveries between 56 and 119% for samples spiked at different concentration levels were achieved. In contrast, the recoveries merely ranged from 24 to 58% by using ultrasonic-assisted extraction. Graphical abstract A comparison of recoveries between ultrasonic-assisted extraction (UAS) and accelerated solvent extraction (ASE) for organophosphate esters from sewage sludge compost samples.

  16. Extraction of organic compounds from representative shales and the effect on porosity

    DOE PAGES

    DiStefano, Victoria H.; McFarlane, Joanna; Anovitz, Lawrence M.; ...

    2016-09-01

    This study is an attempt to understand how native organics are distributed with respect to pore size to determine the relationship between hydrocarbon chemistry and pore structure in shales, as the location and accessibility of hydrocarbons is key to understanding and improving the extractability of hydrocarbons in hydraulic fracturing. Selected shale cores from the Eagle Ford and Marcellus formations were subjected to pyrolysis gas chromatography (GC), thermogravimetric analysis, and organic solvent extraction with the resulting effluent analyzed by GC-mass spectrometry (MS). Organics representing the oil and gas fraction (0.1 to 1 wt. %) were observed by GC-MS. For most ofmore » the samples, the amount of native organic extracted directly related to the percentage of clay in the shale. The porosity and pore size distribution (0.95 nm to 1.35 m) in the Eagle Ford and Marcellus shales was measured before and after solvent extraction using small angle neutron scattering (SANS). An unconventional method was used to quantify the background from incoherent scattering as the Porod transformation obscures the Bragg peak from the clay minerals. Furthermore, the change in porosity from SANS is indicative of the extraction or breakdown of higher molecular weight bitumen with high C/H ratios (asphaltenes and resins). This is mostly likely attributed to complete dissolution or migration of asphaltenes and resins. These longer carbon chain lengths, C30-C40, were observed by pyrolysis GC, but either were too heavy to be analyzed in the extracts by GC-MS or were not effectively leached into the organic solvents. Thus, experimental limitations meant that the amount of extractable material could not be directly correlated to the changes in porosity measured by SANS. But, the observable porosity generally increased with solvent extraction. A decrease in porosity after extraction as observed in a shale with high clay content and low maturity was attributed to swelling of pores with solvent uptake or migration of resins and asphaltenes.« less

  17. Effect of extraction solvents on the biomolecules and antioxidant properties of Scorzonera undulata (Asteraceae): Application of factorial design optimization phenolic extraction.

    PubMed

    Athmouni, Khaled; Belghith, Taheni; Bellassouad, Khaled; Feki, Abdelfattah El; Ayadi, Habib

    2015-01-01

    Phenolic compounds were extracted and isolated from S. undulata roots. Sample of roots from E. hirta was tested for phenolic compounds, and in vitro antioxidant activity by diphenyl-1-picrylhydrazyl (DPPH) assay, ABTS, FRAP and reducing power was measured using cyano- ferrate method. The methanolic fraction exhibited the highest total phenol content (6.12 ±0.11 mg AGE/g DW). On the other hand, the highest flavonoids concentration was observed in ethyl acetate fraction (2.90 ±0.05 mg CE/g DW) in addition to anthocyanins (28.56 ±3.96 mg/l). Besides, the highest level of tannins content was measured in the polar aprotic solvent ethyl acetate extract (3.25 ±0.06 mg CE/g DW). The different extracts of S. undulata were evaluated for their radical scavenging activities by means of the DPPH assay. The strongest scavenging activity was observed in methanolic fraction scavenged radicals effectively with IC   values of 0.14 ±0.02 mg/ml. Similarly, the potassium ferricyanide reduction (FRAP) and ABTS•+ of methanol extract. On the other hand, the total reducing power of ethyl acetate extract was found higher than of other extracts. This paper presents the application of the design-of experiment method for optimizing the extraction of phenolic content using methanol solvent. The resulting regression model has shown that the effect of temperature is not statistically significant (with >95% certainty), while that of agitation speed is. The two main effects are contributed by the solvent concentration and the maceration period. Our results clearly showed that the extraction of phenolic compounds and their antioxidant capacity is significantly affected by solvent combinations. S. undulata presented the highest total phenolic content, total flavonoids content and antioxidant capacity values. The resulting regression model has shown that the effect of temperature is not statistically significant (with >95% certainty), while that of agitation speed is.

  18. Characterization of Chemical Compounds with Antioxidant and Cytotoxic Activities in Bougainvillea x buttiana Holttum and Standl, (var. Rose) Extracts

    PubMed Central

    Abarca-Vargas, Rodolfo; Peña Malacara, Carlos F.; Petricevich, Vera L.

    2016-01-01

    Bougainvillea is widely used in traditional Mexican medicine to treat several diseases. This study was designed to characterize the chemical constituents of B. x buttiana extracts with antioxidant and cytotoxic activities using different solvents. The extraction solvents used were as follows: distilled water (dH2O), methanol (MeOH), acetone (DMK), ethanol (EtOH), ethyl acetate (EtOAc), dichloromethane (DCM), and hexane (Hex) (100%) at an extraction temperature of 26 °C. Analysis of bioactive compounds present in the B. x buttiana extracts included the application of common phytochemical screening assays, GC-MS analysis, and cytotoxicity and antioxidant assays. The results show that the highest extraction yield was observed with water and methanol. The maximum total phenolic content amount and highest antioxidant potential were obtained when extraction with methanol was used. With the exceptions of water and ethanol extractions, all other extracts showed cytotoxicity ranging between 31% and 50%. The prevailing compounds in water, methanol, ethanol, and acetone solvents were as follows: 4H-pyran-4-one, 2,3-dihydro-3, 5-dihydroxy-6-methyl (2), 2-propenoic acid, 3-(2-hydrophenyl)-(E)- (3), and 3-O-methyl-d-glucose (6). By contrast, the major components in the experiments using solvents such as EtOH, DMK, EtOAc, DCM, and Hex were n-hexadecanoic acid (8), 9,12-octadecadienoic acid (Z,Z) (12); 9-octadecenoic acid (E)- (13), and stigmasta-5,22-dien-3-ol (28). PMID:27918436

  19. Extraction and preconcentration of residual solvents in pharmaceuticals using dynamic headspace-liquid phase microextraction and their determination by gas chromatography-flame ionization detection.

    PubMed

    Farajzadeh, Mir Ali; Dehghani, Hamideh; Yadeghari, Adeleh; Khoshmaram, Leila

    2017-02-01

    The present study describes a microextraction and determination method for analyzing residual solvents in pharmaceutical products using dynamic headspace-liquid phase microextraction technique followed by gas chromatography-flame ionization detection. In this method dimethyl sulfoxide (μL level) placed into a GC liner-shaped extraction vessel is used as a collection/extraction solvent. Then the liner is exposed to the headspace of a vial containing the sample solution. The effect of different parameters influencing the microextraction procedure including collection/extraction solvent type and its volume, ionic strength, extraction time, extraction temperature and concentration of NaOH solution used in dissolving the studied pharmaceuticals are investigated and optimized. Under the optimum extraction conditions, the method showed wide linear ranges between 0.5 and 5000 mg L -1 . The other analytical parameters were obtained in the following ranges: enrichment factors 240-327, extraction recoveries 72-98% and limits of detection 0.1-0.8 mg L -1 in solution and 0.6-3.2 μg g -1 in solid. Relative standard deviations for the extraction of 100 mg L -1 of each analyte were obtained in the ranges of 4-7 and 5-8% for intra-day (n = 6) and inter-day (n = 4) respectively. Finally the target analytes were determined in different samples such as erythromycin, azithromycin, cefalexin, amoxicillin and co-amoxiclav by the proposed method. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Supercritical fluid extraction

    DOEpatents

    Wai, Chien M.; Laintz, Kenneth

    1994-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated or lipophilic crown ether or fluorinated dithiocarbamate. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

Top