Nojavan, Saeed; Gorji, Tayebeh; Davarani, Saied Saeed Hosseiny; Morteza-Najarian, Amin
2014-08-01
There are numerous published reports about dispersive liquid phase microextraction of the wide range of substances, however, till now no broadly accepted systematic and purpose oriented selection of extraction solvent has been proposed. Most works deal with the optimization of available solvents without adequate pre-consideration of properness. In this study, it is tried to compare the performances of low- and high-density solvents at the same conditions by means of novel type of extraction vessel with head and bottom conical shape. Extraction efficiencies of seven basic pharmaceutical compounds using eighteen common organic solvents were studied in this work. It was much easier to work with high-density solvents and they mostly showed better performances. This work shows that although exact predicting the performance of the solvents is multifaceted case but the pre-consideration of initial selection of solvents with attention to the physiochemical properties of the desired analytes is feasible and promising. Finally, the practicality of the method for extraction from urine and plasma samples was investigated. Copyright © 2014 Elsevier B.V. All rights reserved.
Oil recovery from petroleum sludge through ultrasonic assisted solvent extraction.
Hu, Guangji; Li, Jianbing; Huang, Shuhui; Li, Yubao
2016-09-18
The effect of ultrasonic assisted extraction (UAE) process on oil recovery from refinery oily sludge was examined in this study. Two types of UAE treatment including UAE probe (UAEP) system and UAE bath (UAEB) system were investigated. Their oil recovery efficiencies were compared to that of mechanical shaking extraction (MSE). Three solvents including cyclohexane (CHX), ethyl acetate (EA), and methyl ethyl ketone (MEK) were examined as the extraction solvents. The influence of experimental factors on oil and solvent recovery was investigated using an orthogonal experimental design. Results indicated that solvent type, solvent-to-sludge (S/S) ratio, and treatment duration could have significant effects on oil recovery in UAE treatment. Under the optimum conditions, UAEP treatment can obtain an oil recovery of 68.8% within 20 s, which was higher than that (i.e., 62.0%) by MSE treatment after 60 min' extraction. UAEB treatment can also obtain a promising oil recovery within shorter extraction duration (i.e., 15 min) than MSE. UAE was thus illustrated as an effective and improved approach for oily sludge recycling.
Subcritical water extraction of organic matter from sedimentary rocks.
Luong, Duy; Sephton, Mark A; Watson, Jonathan S
2015-06-16
Subcritical water extraction of organic matter containing sedimentary rocks at 300°C and 1500 psi produces extracts comparable to conventional solvent extraction. Subcritical water extraction of previously solvent extracted samples confirms that high molecular weight organic matter (kerogen) degradation is not occurring and that only low molecular weight organic matter (free compounds) are being accessed in analogy to solvent extraction procedures. The sedimentary rocks chosen for extraction span the classic geochemical organic matter types. A type I organic matter-containing sedimentary rock produces n-alkanes and isoprenoidal hydrocarbons at 300°C and 1500 psi that indicate an algal source for the organic matter. Extraction of a rock containing type II organic matter at the same temperature and pressure produces aliphatic hydrocarbons but also aromatic compounds reflecting the increased contributions from terrestrial organic matter in this sample. A type III organic matter-containing sample produces a range of non-polar and polar compounds including polycyclic aromatic hydrocarbons and oxygenated aromatic compounds at 300°C and 1500 psi reflecting a dominantly terrestrial origin for the organic materials. Although extraction at 300°C and 1500 psi produces extracts that are comparable to solvent extraction, lower temperature steps display differences related to organic solubility. The type I organic matter produces no products below 300°C and 1500 psi, reflecting its dominantly aliphatic character, while type II and type III organic matter contribute some polar components to the lower temperature steps, reflecting the chemical heterogeneity of their organic inventory. The separation of polar and non-polar organic compounds by using different temperatures provides the potential for selective extraction that may obviate the need for subsequent preparative chromatography steps. Our results indicate that subcritical water extraction can act as a suitable replacement for conventional solvent extraction of sedimentary rocks, but can also be used for any organic matter containing mineral matrix, including soils and recent sediments, and has the added benefit of tailored extraction for analytes of specific polarities. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Supercritical-Multiple-Solvent Extraction From Coal
NASA Technical Reports Server (NTRS)
Corcoran, W.; Fong, W.; Pichaichanarong, P.; Chan, P.; Lawson, D.
1983-01-01
Large and small molecules dissolve different constituents. Experimental apparatus used to test supercritical extraction of hydrogen rich compounds from coal in various organic solvents. In decreasing order of importance, relevant process parameters were found to be temperature, solvent type, pressure, and residence time.
Mansour, Fotouh R; Danielson, Neil D
2017-08-01
Dispersive liquid-liquid microextraction (DLLME) is a special type of microextraction in which a mixture of two solvents (an extracting solvent and a disperser) is injected into the sample. The extraction solvent is then dispersed as fine droplets in the cloudy sample through manual or mechanical agitation. Hence, the sample is centrifuged to break the formed emulsion and the extracting solvent is manually separated. The organic solvents commonly used in DLLME are halogenated hydrocarbons that are highly toxic. These solvents are heavier than water, so they sink to the bottom of the centrifugation tube which makes the separation step difficult. By using solvents of low density, the organic extractant floats on the sample surface. If the selected solvent such as undecanol has a freezing point in the range 10-25°C, the floating droplet can be solidified using a simple ice-bath, and then transferred out of the sample matrix; this step is known as solidification of floating organic droplet (SFOD). Coupling DLLME to SFOD combines the advantages of both approaches together. The DLLME-SFOD process is controlled by the same variables of conventional liquid-liquid extraction. The organic solvents used as extractants in DLLME-SFOD must be immiscible with water, of lower density, low volatility, high partition coefficient and low melting and freezing points. The extraction efficiency of DLLME-SFOD is affected by types and volumes of organic extractant and disperser, salt addition, pH, temperature, stirring rate and extraction time. This review discusses the principle, optimization variables, advantages and disadvantages and some selected applications of DLLME-SFOD in water, food and biomedical analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Extraction Techniques for Polycyclic Aromatic Hydrocarbons in Soils
Lau, E. V.; Gan, S.; Ng, H. K.
2010-01-01
This paper aims to provide a review of the analytical extraction techniques for polycyclic aromatic hydrocarbons (PAHs) in soils. The extraction technologies described here include Soxhlet extraction, ultrasonic and mechanical agitation, accelerated solvent extraction, supercritical and subcritical fluid extraction, microwave-assisted extraction, solid phase extraction and microextraction, thermal desorption and flash pyrolysis, as well as fluidised-bed extraction. The influencing factors in the extraction of PAHs from soil such as temperature, type of solvent, soil moisture, and other soil characteristics are also discussed. The paper concludes with a review of the models used to describe the kinetics of PAH desorption from soils during solvent extraction. PMID:20396670
NASA Astrophysics Data System (ADS)
Luong, Duy; Court, Richard W.; Sims, Mark R.; Cullen, David C.; Sephton, Mark A.
2014-09-01
The first step in many life detection protocols on Mars involves attempts to extract or isolate organic matter from its mineral matrix. A number of extraction options are available and include heat and solvent assisted methods. Recent operations on Mars indicate that heating samples can cause the loss or obfuscation of organic signals from target materials, raising the importance of solvent-based systems for future missions. Several solvent types are available (e.g. organic solvents, surfactant based solvents and subcritical water extraction) but a comparison of their efficiencies in Mars relevant materials is missing. We have spiked the well characterised Mars analogue material JSC Mars-1 with a number of representative organic standards. Extraction of the spiked JSC Mars-1 with the three solvent methods provides insights into the relative efficiency of these methods and indicates how they may be used on future Mars missions.
A survey of extraction solvents in the forensic analysis of textile dyes.
Groves, Ethan; Palenik, Christopher S; Palenik, Skip
2016-11-01
The characterization and identification of dyes in fibers can be used to provide investigative leads and strengthen associations between known and questioned items of evidence. The isolation of a dye from its matrix (e.g., a textile fiber) permits detailed characterization, comparison and, in some cases, identification using methods such as thin layer chromatography in conjunction with infrared and Raman spectroscopy. A survey of dye extraction publications reveals that pyridine:water (4:3) is among the most commonly cited extraction solvent across a range of fiber and dye chemistries. Here, the efficacy of this solvent system has been evaluated for the extraction of dyes from 172 commercially prevalent North American textile dyes. The evaluated population represents seven dye application classes, 18 chemical classes, and spans nine types of commercial textile fibers. The results of this survey indicate that ∼82% of the dyestuffs studied are extractable using this solvent system. The results presented here summarize the extraction efficacy by class and fiber type and illustrate that this solvent system is applicable to a wider variety of classes and fibers than previously indicated in the literature. While there is no universal solvent for fiber extraction, these results demonstrate that pyridine:water represents an excellent first step for extracting unknown dyes from questioned fibers in forensic casework. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Guo, Liang; Tan, Shufang; Li, Xiao; Lee, Hian Kee
2016-03-18
An automated procedure, combining low density solvent based solvent demulsification dispersive liquid-liquid microextraction (DLLME) with gas chromatography-mass spectrometry analysis, was developed for the determination of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. Capitalizing on a two-rail commercial autosampler, fast solvent transfer using a large volume syringe dedicated to the DLLME process, and convenient extract collection using a small volume microsyringe for better GC performance were enabled. Extraction parameters including the type and volume of extraction solvent, the type and volume of dispersive solvent and demulsification solvent, extraction and demulsification time, and the speed of solvent injection were investigated and optimized. Under the optimized conditions, the linearity ranged from 0.1 to 50 μg/L, 0.2 to 50 μg/L, and 0.5 to 50 μg/L, depending on the analytes. Limits of detection were determined to be between 0.023 and 0.058 μg/L. The method was applied to determine PAHs in environmental water samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Ge, Dandan; Zhang, Yi; Dai, Yixiu; Yang, Shumin
2018-04-01
Deep eutectic solvents are considered as new and green solvents that can be widely used in analytical chemistry such as microextraction. In the present work, a new dl-menthol-based hydrophobic deep eutectic solvent was synthesized and used as extraction solvents in an air-assisted dispersive liquid-liquid microextraction method for preconcentration and extraction of benzophenone-type UV filters from aqueous samples followed by high-performance liquid chromatography with diode array detection. In an experiment, the deep eutectic solvent formed by dl-menthol and decanoic acid was added to an aqueous solution containing the UV filters, and then the mixture was sucked up and injected five times by using a glass syringe, and a cloudy state was achieved. After extraction, the solution was centrifuged and the upper phase was subjected to high-performance liquid chromatography for analysis. Various parameters such as the type and volume of the deep eutectic solvent, number of pulling, and pushing cycles, solution pH and salt concentration were investigated and optimized. Under the optimum conditions, the developed method exhibited low limits of detection and limits of quantitation, good linearity, and precision. Finally, the proposed method was successfully applied to determine the benzophenone-type filters in environmental water samples with relative recoveries of 88.8-105.9%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Peasura, Napassorn; Laohakunjit, Natta; Kerdchoechuen, Orapin; Wanlapa, Sorada
2015-11-01
Ulva intestinalis, a tubular green seaweed, is a rich source of nutrient, especially sulphated polysaccharides. Sulphated polysaccharides from U. intestinalis were extracted with distilled water, 0.1N HCl, and 0.1N NaOH at 80°C for 1, 3, 6, 12, and 24h to study the effect of the extraction solvent and time on their chemical composition and antioxidant activity. Different types of solvents and extraction time had a significant influence on the chemical characteristics and antioxidant activity (p<0.05). Monosaccharide composition and FT-IR spectra analyses revealed that sulphated polysaccharides from all solvent extractions have a typical sugar backbone (glucose, rhamnose, and sulphate attached at C-2 or C-3 of rhamnose). Sulphated polysaccharides extracted with acid exhibited greater antioxidant activity than did those extracted with distilled water and alkali. The results indicated that solvent extraction could be an efficacious method for enhancing antioxidant activity by distinct molecular weight and chemical characteristic of sulphated polysaccharides. Copyright © 2015 Elsevier B.V. All rights reserved.
Yang, Jiufang; Ou, XiaoQun; Zhang, Xiaoxu; Zhou, ZiYing; Ma, LiYan
2017-03-01
The effects of 9 different solvents on the measurement of the total phenolics and antioxidant activities of mulberry fruits were studied using accelerated solvent extraction (ASE). Sixteen to 22 types of phenolics (flavonols, flavan-3-ols, flavanol, hydroxycinnamic acids, hydroxybenzoic acids, and stilbenes) from different mulberry extracts were characterized and quantified using HPLC-MS/MS. The principal component analysis (PCA) was used to determine the suitable solvents to distinguish between different classes of phenolics. Additionally, the phenolic extraction abilities of ASE and ultrasound-assisted extraction (UAE) were compared. The highest extraction efficiency could be achieved by using 50% acidified methanol (50MA) as ASE solvents with 15.14 mg/gallic acid equivalents g dry weight of mulberry fruit. The PCA results revealed that the 50MA followed by 50% acidified acetone (50AA) was the most efficient solvent for the extraction of phenolics, particularly flavonols (627.12 and 510.31 μg/g dry weight, respectively), while water (W) was not beneficial to the extraction of all categories of phenolics. Besides, the results of 3 antioxidant capability assays (DPPH, ABTS free radical-scavenging assay, and ferric-reducing antioxidant power assay) showed that water-based organic solvents increased the antioxidant capabilities of the extracts compared with water or pure organic solvents. ASE was more suitable for the extraction of phenolics than UAE. © 2017 Institute of Food Technologists®.
Ultrasonically assisted extraction of total phenols and flavonoids from Rhodiola rosea.
Staneva, Jordanka; Todorova, Milka; Neykov, Neyko; Evstatieva, Ljuba
2009-07-01
This work deals with ultrasonically assisted extraction (UAE) of biologically active compounds from rhizomes of Rhodiola rosea, a popular medicinal plant. The influence of temperature, type of solvent and solid/solvent ratio on the yield of total extracts, total phenols and flavonoids was established. The best extraction of total phenols and flavonoids was achieved by using 50% aqueous EtOH and MeOH, respectively. Five times increase of solid/solvent ratio (from 1:20 to 1:100 (w/v)) leads to slow increase of the yield of total phenols and flavonoids. The extraction effectiveness of conventional maceration with 50% EtOH and UAE performed for 1 h at 25 degrees C using the same solvent with respect of total phenols was comparable.
Cao, Jun; Peng, Li-Qing; Du, Li-Jing; Zhang, Qi-Dong; Xu, Jing-Jing
2017-04-22
An ionic liquid-(IL) based micellar extraction combined with microcrystalline cellulose- (MCC) assisted dispersive micro solid-phase extraction method was developed to extract phenolic compounds from propolis. A total of 20 target compounds were identified by ultra-high- performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. The main extraction parameters were optimized and included the ultrasonic power, ultrasonic time, sample pH, type of IL, the concentration of [C12mim]Br, extraction time, concentration of MCC, type of sorbent and type of elution solvents. Under the optimum conditions, the proposed method exhibited good linearities (r 2 ≥ 0.999) for all plant phenolic compounds with the lower limits of detection in the range of 0.21-0.41 ng/mL. The recoveries ranged from 82.74% to 97.88% for pinocembrin, chrysin and galangin. Compared with conventional solvent extraction, the present method was simpler and more efficient and required less organic solvent and a shorter extraction time. Finally, the methodology was successfully used for the extraction and enrichment of phenolic compounds in propolis. Copyright © 2017 Elsevier B.V. All rights reserved.
Reactive extraction at liquid-liquid systems
NASA Astrophysics Data System (ADS)
Wieszczycka, Karolina
2018-01-01
The chapter summarizes the state of knowledge about a metal transport in two-phase system. The first part of this review focuses on the distribution law and main factors determination in classical solvent extraction (solubility and polarity of the solute, as well as inter- and intramolecules interaction. Next part of the chapter is devoted to the reactive solvent extraction and the molecular modeling requiring knowledge on type of extractants, complexation mechanisms, metals ions speciation and oxidation during complexes forming, and other parameters that enable to understand the extraction process. Also the kinetic data that is needed for proper modeling, simulation and design of processes needed for critical separations are discussed. Extraction at liquid-solid system using solvent impregnated resins is partially identical as in the case of the corresponding solvent extraction, therefore this subject was also presented in all aspects of separation process (equilibrium, mechanism, kinetics).
Separation of Gadolinium (Gd) using Synergic Solvent Mixed Topo-D2EHPA with Extraction Method.
NASA Astrophysics Data System (ADS)
Effendy, N.; Basuki, K. T.; Biyantoro, D.; Perwira, N. K.
2018-04-01
The main problem to obtain Gd with high purity is the similarity of chemical properties and physical properties with the other rare earth elements (REE) such as Y and Dy, it is necessary to do separation by the extraction process. The purpose of this research to determine the best solvent type, amount of solvent, feed and solvent ratio in the Gd extraction process, to determine the rate order and the value of the rate constant of Gd concentration based on experimental data of aqueous phase concentration as a function of time and to know the effect of temperature on the reaction speed constant. This research was conducted on variation of solvent, amount of solvent, feed and solvent ratio in the extraction process of Gd separation, extraction time to determine the order value and the rate constant of Gd concentration in extraction process based on the aqueous phase concentration data as a function of time, to the rate constant of decreasing concentration of Gd. Based on the calculation results, the solvent composition was obtained with the best feed to separate the rare earth elements Gd in the extraction process is 1 : 4 with 15% concentration of TOPO and 10% concentration of D2EHPA. The separation process of Gd using extraction method by solvent TOPO-D2EHPA 2 : 1 comparison is better than single solvent D2EHPA / TOPO because of the synergistic effect. The rate order of separation process of Gd follows order 1. The Arrhenius Gd equation becomes k = 1.46 x 10-7 exp (-6.96 kcal / mol / RT).
Scharlack, Nayara K; Aracava, Keila K; Rodrigues, Christianne Ec
2017-10-01
The present study aimed to evaluate the replacement of hexane by alcoholic solvents in oil extraction from sunflower seed press cake. The use of ethanol and isopropanol has important advantages, including low toxicity and good operational safety. Thus, in the present study, solid-liquid extractions were performed in a single stage from 60 to 90 °C and in consecutive extractions in three stages at 90 °C. Solvent hydration negatively affected the extraction of oil but favored the extraction of chlorogenic acids (CAs), especially when ethanol was used. Regarding oxidative stability, the oils extracted using ethanol presented long induction times, which could be related to the high levels of not only CAs and tocopherols, but also phospholipids. Alcoholic solvents can be used for extraction to produce sunflower seed oil containing minor compounds that give it greater oxidative stability. In addition, the results obtained using hydrous ethanol showed that this solvent can yield defatted sunflower seed meal with a low content of CAs, enabling future use of the protein fraction. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Sepahpour, Shabnam; Selamat, Jinap; Abdul Manap, Mohd Yazid; Khatib, Alfi; Abdull Razis, Ahmad Faizal
2018-02-13
This study evaluated the efficacy of various organic solvents (80% acetone, 80% ethanol, 80% methanol) and distilled water for extracting antioxidant phenolic compounds from turmeric, curry leaf, torch ginger and lemon grass extracts. They were analyzed regarding the total phenol and flavonoid contents, antioxidant activity and concentration of some phenolic compounds. Antioxidant activity was determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay and the ferric reducing antioxidant power (FRAP) assay. Quantification of phenolic compounds was carried out using high-performance liquid chromatography (HPLC). All the extracts possessed antioxidant activity, however, the different solvents showed different efficiencies in the extraction of phenolic compounds. Turmeric showed the highest DPPH values (67.83-13.78%) and FRAP (84.9-2.3 mg quercetin/g freeze-dried crude extract), followed by curry leaf, torch ginger and lemon grass. While 80% acetone was shown to be the most efficient solvent for the extraction of total phenolic compounds from turmeric, torch ginger and lemon grass (221.68, 98.10 and 28.19 mg GA/g freeze dried crude extract, respectively), for the recovery of phenolic compounds from curry leaf (92.23 mg GA/g freeze-dried crude extract), 80% ethanol was the most appropriate solvent. Results of HPLC revealed that the amount of phenolic compounds varied depending on the types of solvents used.
Solvent extraction: the coordination chemistry behind extractive metallurgy.
Wilson, A Matthew; Bailey, Phillip J; Tasker, Peter A; Turkington, Jennifer R; Grant, Richard A; Love, Jason B
2014-01-07
The modes of action of the commercial solvent extractants used in extractive hydrometallurgy are classified according to whether the recovery process involves the transport of metal cations, M(n+), metalate anions, MXx(n-), or metal salts, MXx into a water-immiscible solvent. Well-established principles of coordination chemistry provide an explanation for the remarkable strengths and selectivities shown by most of these extractants. Reagents which achieve high selectivity when transporting metal cations or metal salts into a water-immiscible solvent usually operate in the inner coordination sphere of the metal and provide donor atom types or dispositions which favour the formation of particularly stable neutral complexes that have high solubility in the hydrocarbons commonly used in recovery processes. In the extraction of metalates, the structures of the neutral assemblies formed in the water-immiscible phase are usually not well defined and the cationic reagents can be assumed to operate in the outer coordination spheres. The formation of secondary bonds in the outer sphere using, for example, electrostatic or H-bonding interactions are favoured by the low polarity of the water-immiscible solvents.
MICROWAVE-ASSISTED EXTRACTION OF PHENOLIC COMPOUNDS FROM POLYGONUM MULTIFLORUM THUNB. ROOTS.
Quoc, Le Pham Tan; Muoi, Nguyen Van
2016-01-01
The aim of this study was to determine the best extraction conditions for total phenolic content (TPC) and antioxidant capacity (AC) of Polygonum multiflorum Thunb. root using microwave-assisted extraction (MAE). The raw material used was Polygonum multiflorum Thunb. root powder. Five factors such as solvent type, solvent concentrations, solvent/material ratio, extraction time and microwave power were studied; TPC and AC values were determined by the Folin-Ciocalteu method and DPPH free radical scavenging activity measurement, respectively. In addition, studies involved assaying the HPLC test of extracts and SEM of samples. Optimal results pointed to acetone as the solvent, acetone concentration of 60%, solvent/material ratio of 40/1 (v/w), extraction time of 5 mins and microwave power of 127 W. TPC and AC obtained were approximates 44.3 ±0.13 mg GAE/g DW and 341.26 ±1.54 μmol TE/g DW, respectively. The effect of microwaving on the cell destruction of Polygonum multiflorum Thunb. root was observed by scanning electron microscopy (SEM). Some phenolic compounds were determined by the HPLC method, for instance, gallic acid, catechin and resveratrol. These factors significantly affected TPC and AC. We can use acetone as a solvent with microwave-assisted extraction to achieve the best result.
Yin, Xiulian; You, Qinghong; Jiang, Zhonghai
2012-01-01
The immunomodulatory activities of different solvent extracts from the culinary-medicinal mushroom Tricholoma matsutake were studied in vivo in normal mice. The extracts were prepared using different solvents in an order of increasing polarity. The immunomodulatory activities were investigated by measuring the thymus and spleen index, phagocytic rate of macrophage phagocytosis, delayed-type hypersensitivity, plaque-forming cell, and proliferation of splenocytes. Results demonstrated that water extract (WE) and n-butyl alcohol extract (BAE) of T. matsutake could enhance the immunity of mice significantly compared with the control group. Main components of WE and BAE were polysaccharides, proteins, and flavonoids; we presume that these may be the main immunomodulating and immuno-enhancing agents in T. matsutake.
Barker, C.E.; Lewan, M.D.; Pawlewicz, M.J.
2007-01-01
The vitrinite reflectance suppression literature shows that while bitumen impregnation of the vitrinite group is often invoked as a significant contributor to suppression, its existence is not often supported by petrological evidence. This study examines bitumen impregnation as a factor in vitrinite suppression by comparing the vitrinite reflectance of source rock and coal samples before and after solvent-extraction. Bitumen, often defined as organic matter soluble or extractable in certain organic solvents, should be removed by Soxhlet method solvent extraction using chloroform. Removing the extractable bitumen should restore the suppressed reflectance to its true higher value. However, the solvent extracted samples averaged 0.014% Rv less than that of the unextracted samples. We conclude from these results and from other published data that reflectance suppression by bitumen impregnation in the vitrinite maceral group, above the huminite stage of gelification, is seemingly a rare phenomenon and whose effect on suppressing vitrinite reflectance is typically negligible. ?? 2006.
Wang, Kun; Jiang, Jia; Lv, Xinping; Zang, Shuang; Tian, Sizhu; Zhang, Hanqi; Yu, Aimin; Zhang, Ziwei; Yu, Yong
2018-03-01
Based on the foaming property of the honey, a rapid, simple, and effective method solvent floatation (SF) was developed and firstly applied to the extraction and separation of triazine herbicides in honey. The analytes were determined by high-performance liquid chromatography. Some parameters affecting the extraction efficiencies, such as the type and volume of extraction solvent, type of salt, amount of (NH 4 ) 2 SO 4 , pH value of sample solution, gas flow rate, and floatation time, were investigated and optimized. The limits of detection for analytes are in the range of 0.16-0.56 μg kg -1 . The recoveries and relative standard deviations for determining triazines in five real honey samples are in the range of 78.2-112.9 and 0.2-9.2%, respectively.
Process analysis and modeling of a single-step lutein extraction method for wet microalgae.
Gong, Mengyue; Wang, Yuruihan; Bassi, Amarjeet
2017-11-01
Lutein is a commercial carotenoid with potential health benefits. Microalgae are alternative sources for the lutein production in comparison to conventional approaches using marigold flowers. In this study, a process analysis of a single-step simultaneous extraction, saponification, and primary purification process for free lutein production from wet microalgae biomass was carried out. The feasibility of binary solvent mixtures for wet biomass extraction was successfully demonstrated, and the extraction kinetics of lutein from chloroplast in microalgae were first evaluated. The effects of types of organic solvent, solvent polarity, cell disruption method, and alkali and solvent usage on lutein yields were examined. A mathematical model based on Fick's second law of diffusion was applied to model the experimental data. The mass transfer coefficients were used to estimate the extraction rates. The extraction rate was found more significantly related with alkali ratio to solvent than to biomass. The best conditions for extraction efficiency were found to be pre-treatment with ultrasonication at 0.5 s working cycle per second, react 0.5 h in 0.27 L/g solvent to biomass ratio, and 1:3 ether/ethanol (v/v) with 1.25 g KOH/L. The entire process can be controlled within 1 h and yield over 8 mg/g lutein, which is more economical for scale-up.
Shirsath, S R; Sable, S S; Gaikwad, S G; Sonawane, S H; Saini, D R; Gogate, P R
2017-09-01
Curcumin, a dietary phytochemical, has been extracted from rhizomes of Curcuma amada using ultrasound assisted extraction (UAE) and the results compared with the conventional extraction approach to establish the process intensification benefits. The effect of operating parameters such as type of solvent, extraction time, extraction temperature, solid to solvent ratio, particle size and ultrasonic power on the extraction yield have been investigated in details for the approach UAE. The maximum extraction yield as 72% was obtained in 1h under optimized conditions of 35°C temperature, solid to solvent ratio of 1:25, particle size of 0.09mm, ultrasonic power of 250W and ultrasound frequency of 22kHz with ethanol as the solvent. The obtained yield was significantly higher as compared to the batch extraction where only about 62% yield was achieved in 8h of treatment. Peleg's model was used to describe the kinetics of UAE and the model showed a good agreement with the experimental results. Overall, ultrasound has been established to be a green process for extraction of curcumin with benefits of reduction in time as compared to batch extraction and the operating temperature as compared to Soxhlet extraction. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Fernandes, L.; Ramalhosa, E.; Pereira, J. A.; Casal, S.; Saraiva, J. A.
2017-10-01
The present study aimed to compare the influence of different extraction solvents (water, methanol, water:acetone (6:4, v/v)), methods (heating (37 °C, 30 min) or high pressure (HP) (300 or 500 MPa) and extraction time (7.5 or 15 min)) on flavonoids, hydrolysable tannins and antioxidant activity (Total Reducing Capacity (TRC), DPPH Free Radical Scavenging Activity and Reducing Power) of Gomphrena globosa L. flower extracts. The water:acetone extracts obtained by heating had the highest values of flavonoids, hydrolysable tannins and antioxidant activity. When applying HP, variable results were obtained. Still, the application of HP to water allowed to extract more hydrolysable tannins, as well as to obtain extracts with higher antioxidant activity than with heating, but no significant alterations were observed with methanol. In conclusion, both solvent and extraction method influence the content of bioactive compounds, being HP treatment a promising method to obtain enriched aqueous extracts in line with the principles of green-chemistry.
21 CFR 177.1460 - Melamine-formaldehyde resins in molded articles.
Code of Federal Regulations, 2012 CFR
2012-04-01
... polymerization reaction control agent. Phthalic acid anhydride Do. Zinc stearate For use as lubricant. (c) The... extracted with the solvent or solvents characterizing the type of food and under the conditions of time and...
NASA Astrophysics Data System (ADS)
Audah, K. A.; Amsyir, J.; Almasyhur, F.; Hapsari, A. M.; Sutanto, H.
2018-03-01
Antibacterial drugs derived from natural sources play significant roles in the prevention and treatment of bacterial infections since antibiotics have become less effective against many infectious diseases. Mangroves are very potential natural antibacterial sources among great numbers of wild medicinal plants. Bruguiera cylindrica is one of the many mangroves species which spread along Indonesian coastline. The aim of this study was to explore the antibacterial activity of B. cylindrica wet and dried leaf extracts. The wet extracts study was conducted with three different solvents system (water, ethanol, and n-Hexane) against Escherichia coli and Staphylococcus aureus. While, the dried extracts study was conducted with four different solvents system (water, ethanol, chloroform and n-Hexane) against three types of bacteria, Escherichia coli, Staphylococcus epidermidis and Staphylococcus aureus. The study showed that ethanol was the best solvent for extraction of phenolic and flavonoid. Antibacterial actitivity was measured by zone of inhibition which obtained from agar-disk diffusion method. The widest area of zone of inhibition was showed by wet extracts with ethanol against S. aureus and E. coli are 14.30 and 13.30 mm, respectively. While, the zone of inhibition dried extracts with ethanol against S. aureus, S. epidermidis and E. coli are 9.32, 6.59 and 6.20 mm, respectively. In conclusion, both type of extracts showed significant antibacterial activity against gram-positive bacteria as crude extracts.
Sun, Jian-Nan; Chen, Juan; Shi, Yan-Ping
2014-07-01
A new mode of ionic liquid based dispersive liquid-liquid microextraction (IL-DLLME) is developed. In this work, [C6MIm][PF6] was chosen as the extraction solvent, and two kinds of hydrophilic ionic liquids, [EMIm][BF4] and [BSO3HMIm][OTf], functioned as the dispersive solvent. So in the whole extraction procedure, no organic solvent was used. With the aid of SO3H group, the acidic compound was extracted from the sample solution without pH adjustment. Two phenolic compounds, namely, 2-naphthol and 4-nitrophenol were chosen as the target analytes. Important parameters affecting the extraction efficiency, such as the type of hydrophilic ionic liquids, the volume ratio of [EMIm][BF4] to [BSO3HMIm][OTf], type and volume of extraction solvent, pH value of sample solution, sonication time, extraction time and centrifugation time were investigated and optimized. Under the optimized extraction conditions, the method exhibited good sensitivity with the limits of detection (LODs) at 5.5 μg L(-1)and 10.0 μg L(-1) for 4-nitrophenol and 2-naphthol, respectively. Good linearity over the concentration ranges of 24-384 μg L(-1) for 4-nitrophenol and 28-336 μg L(-1) for 2-naphthol was obtained with correlation coefficients of 0.9998 and 0.9961, respectively. The proposed method can directly extract acidic compound from environmental sample or even more complex sample matrix without any pH adjustment procedure. Copyright © 2014 Elsevier B.V. All rights reserved.
Bazregar, Mohammad; Rajabi, Maryam; Yamini, Yadollah; Asghari, Alireza; Abdossalami asl, Yousef
2015-09-04
A simple and efficient extraction technique with a sub-microliter organic solvent consumption termed as in-tube electro-membrane extraction (IEME) is introduced. This method is based upon the electro-kinetic migration of ionized compounds by the application of an electrical potential difference. For this purpose, a thin polypropylene (PP) sheet placed inside a tube acts as a support for the membrane solvent, and 30μL of an aqueous acceptor solution is separated by this solvent from 1.2mL of an aqueous donor solution. This method yielded high extraction recoveries (63-81%), and the consumption of the organic solvent used was only 0.5μL. By performing this method, the purification is high, and the utilization of the organic solvent, used as a mediator, is very simple and repeatable. The proposed method was evaluated by extraction of four synthetic food dyes (Amaranth, Ponceau 4R, Allura Red, and Carmoisine) as the model analytes. Optimization of variables affecting the method was carried out in order to achieve the best extraction efficiency. These variables were the type of membrane solvent, applied extraction voltage, extraction time, pH range, and concentration of salt added. Under the optimized conditions, IEME-HPLC-UV provided a good linearity in the range of 1.00-800ngmL(-1), low limits of detection (0.3-1ngmL(-1)), and good extraction repeatabilities (RSDs below 5.2%, n=5). It seems that this design is a proper one for the automation of the method. Also the consumption of the organic solvent in a sub-microliter scale, and its simplicity, high efficiency, and high purification can help one getting closer to the objectives of the green chemistry. Copyright © 2015 Elsevier B.V. All rights reserved.
Hofmann, Tamás; Nebehaj, Esztella; Albert, Levente
2015-05-08
The aim of the present work was the high-performance liquid chromatographic separation and multistage mass spectrometric characterization of the polyphenolic compounds of beech bark, as well as the extraction optimization of the identified compounds. Beech is a common and widely used material in the wood industry, yet its bark is regarded as a by-product. Using appropriate extraction methods these compounds could be extracted and utilized in the future. Different extraction methods (stirring, sonication, microwave assisted extraction) using different solvents (water, methanol:water 80:20 v/v, ethanol:water 80:20 v/v) and time/temperature schedules have been compared basing on total phenol contents (Folin-Ciocâlteu) and MRM peak areas of the identified compounds to investigate optimum extraction efficiency. Altogether 37 compounds, including (+)-catechin, (-)-epicatechin, quercetin-O-hexoside, taxifolin-O-hexosides (3), taxifolin-O-pentosides (4), B-type (6) and C-type (6) procyanidins, syringic acid- and coumaric acid-di-O-glycosides, coniferyl alcohol- and sinapyl alcohol-glycosides, as well as other unknown compounds with defined [M-H](-) m/z values and MS/MS spectra have been tentatively identified. The choice of the method, solvent system and time/temperature parameters favors the extraction of different types of compounds. Pure water can extract compounds as efficiently as mixtures containing organic solvents under high-pressure and high temperature conditions. This supports the implementation of green extraction methods in the future. Extraction times that are too long and high temperatures can result in the decrease of the concentrations. Future investigations will focus on the evaluation of the antioxidant capacity and utilization possibilities of the prepared extracts. Copyright © 2015 Elsevier B.V. All rights reserved.
You, Xiangwei; Wang, Suli; Liu, Fengmao; Shi, Kaiwei
2013-07-26
A novel ultrasound-assisted surfactant-enhanced emulsification microextraction technique based on the solidification of a floating organic droplet followed by high performance liquid chromatography with diode array detection was developed for simultaneous determination of six fungicide residues in juices and red wine samples. The low-toxicity solvent, 1-dodecanol, was used as an extraction solvent. For its low density and proper melting point near room temperature, the extractant droplet was collected easily by solidifying it at a low temperature. The surfactant, Tween 80, was used as an emulsifier to enhance the dispersion of the water-immiscible extraction solvent into an aqueous phase, which hastened the mass-transfer of the analytes. Organic dispersive solvent typically required in common dispersive liquid-liquid microextraction methods was not used in the proposed method. Some parameters (e.g., the type and volume of extraction solvent, the type and concentration of surfactant, ultrasound extraction time, salt addition, and volume of samples) that affect the extraction efficiency were optimized. The proposed method showed a good linearity within the range of 5μgL(-1)-1000μgL(-1), with the correlation coefficients (γ) higher than 0.9969. The limits of detection for the method ranged from 0.4μgL(-1) to 1.4μgL(-1). Further, this simple, practical, sensitive, and environmentally friendly method was successfully applied to determine the target fungicides in juice and red wine samples. The recoveries of the target fungicides in red wine and fruit juice samples were 79.5%-113.4%, with relative standard deviations that ranged from 0.4% to 12.3%. Copyright © 2013 Elsevier B.V. All rights reserved.
Brazinha, Carla; Cadima, Mafalda; Crespo, João G
2014-06-01
Natural extracts obtained from grape pomace are particularly interesting, due to the substantial variety of valuable compounds present with health benefits, specifically phenolic compounds such as anthocyanins, trans-resveratrol, quercetin, and proanthocyanidins. The production of such extracts has been recognized as a profitable way to valorize grape byproducts, which are low-value and most abundant. First, the effect of the solvent on the extraction of bioactive compounds from grape pomace is studied. The selected solvents are water and ethanol, biocompatible and available in wineries and distilleries. Then, different types of grape pomace obtained along the various stages of current industrial winemaking and distillation processes are analyzed. As a result, the best stage of the winemaking and distillation processes for pomace valorization is identified, corresponding to the grape byproduct with the highest potential as source of bioactive compounds. These studies were performed with Vitis vinifera variety of Tempranillo grapes (same year, same vineyard). This work optimizes the production of natural extracts from (byproduct) grape pomace with recognized health benefits, to be used as high value nutraceuticals ingredients. The process proposed uses renewable and low-cost resources existent in wineries and distilleries. The select solvent extracting is a mixture of the biocompatible water and ethanol. The selected fermented grape pomace was chosen from different and comparable types of grape pomace obtained at current winemaking and distillation processes, to be used in extraction without any pretreatment. © 2014 Institute of Food Technologists®
Caldas, Sergiane Souza; Rombaldi, Caroline; Arias, Jean Lucas de Oliveira; Marube, Liziane Cardoso; Primel, Ednei Gilberto
2016-01-01
A rapid and efficient sample pretreatment using solvent-based de-emulsification dispersive liquid-liquid microextraction (SD-DLLME) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) was studied for the extraction of 58 pharmaceuticals and personal care products (PPCPs) and pesticides from water samples. Type and volume of extraction and disperser solvents, pH, salt addition, amount of salt and type of demulsification solvent were evaluated. Limits of quantification (LOQ) in the range from 0.0125 to 1.25 µg L(-1) were reached, and linearity was in the range from the LOQ of each compound to 25 μg L(-1). Recoveries ranged from 60% to 120% for 84% of the compounds, with relative standard deviations lower than 29%. The proposed method demonstrated, for the first time, that sample preparation by SD-DLLME with determination by LC-MS/MS can be successfully used for the simultaneous extraction of 32 pesticides and 26 PPCPs from water samples. The entire procedure, including the extraction of 58 organic compounds from the aqueous sample solution and the breaking up of the emulsion after extraction with water, rather than with an organic solvent, was environmentally friendly. In addition, this technique was less expensive and faster than traditional techniques. Finally, the analytical method under study was successfully applied to the analysis of all 58 pesticides and PPCPs in surface water samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhang, Liyuan; Wang, Changyuan; Li, Zuotong; Zhao, Changjiang; Zhang, Hanqi; Zhang, Dongjie
2018-04-15
Ionic liquid-based matrix solid phase dispersion-solvent flotation coupled with high performance liquid chromatography was developed for the determination of the acetanilide herbicides, including metazachlor, propanil, alachlor, propisochlor, pretilachlor, and butachlor in rice samples. Some experimental parameters, including the type of dispersant, the mass ratio of dispersant to sample, pH of sample solution, the type of extraction solvent, the type of ionic liquid, flotation time, and flow rate of N 2 were optimized. The average recoveries of the acetanilide herbicides at spiked concentrations of 50, 125, and 250 µg/kg ranged from 89.4% to 108.7%, and relative standard deviations were equal to or lower than 7.1%, the limits of quantification were in the range of 38.0 to 84.7 µg/kg. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tomaz, Ivana; Maslov, Luna; Stupić, Domagoj; Preiner, Darko; Ašperger, Danijela; Karoglan Kontić, Jasminka
2016-01-01
For the characterisation of grape cultivars, the profile and content of flavonoids are important because these compounds impact grape and wine quality. To determine the correct profile and content of flavonoids, the use of robust, sensitive and reliable methods is necessary. The object of this research is to develop a new ultrasound-assisted extraction (UAE) method for the recovery of flavonoids from grape skins using response surface methodology. Optimisation of UAE was performed using a complementary study combining a Box-Behnken experimental design with qualitative analysis by high-performance liquid chromatography. Optimal extraction conditions were obtained using the extraction solvent composed of acetonitrile:water:formic acid (26:73:1, v/v/v) at an extraction temperature of 50 °C, an extraction time of 15 min in a single-extraction step and with a solid-to-solvent ratio of 1:80 g/mL. The calculated relative standard deviations for the optimal extraction method were very low, measuring less than 5%. This study demonstrates that numerous factors have strong effects on the extraction efficiency, including the type of organic modifier and its percentage in the extraction solvent, the number of extraction steps, the solid-to-solvent ratio, the extraction time and temperature and, finally, the particular nature of analyte and their position within the grape skin cell. Copyright © 2015 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tfaily, Malak M.; Chu, Rosalie K.; Toyoda, Jason
A vast number of organic compounds are present in soil organic matter (SOM) and play an important role in the terrestrial carbon cycle, facilitate interactions between organisms, and represent a sink for atmospheric CO2. The diversity of different SOM compounds and their molecular characteristics is a function of the organic source material and biogeochemical history. By understanding how SOM composition changes with sources and the processes by which it is biogeochemically altered in different terrestrial ecosystems, it may be possible to predict nutrient and carbon cycling, response to system perturbations, and impact of climate change will have on SOM composition.more » In this study, a sequential chemical extraction procedure was developed to reveal the diversity of organic matter (OM) in different ecosystems and was compared to the previously published protocol using parallel solvent extraction (PSE). We compared six extraction methods using three sample types, peat soil, spruce forest soil and river sediment, so as to select the best method for extracting a representative fraction of organic matter from soils and sediments from a wide range of ecosystems. We estimated the extraction yield of dissolved organic carbon (DOC) by total organic carbon analysis, and measured the composition of extracted OM using high resolution mass spectrometry. This study showed that OM composition depends primarily on soil and sediment characteristics. Two sequential extraction protocols, progressing from polar to non-polar solvents, were found to provide the highest number and diversity of organic compounds extracted from the soil and sediments. Water (H2O) is the first solvent used for both protocols followed by either co-extraction with methanol-chloroform (MeOH-CHCl3) mixture, or acetonitrile (ACN) and CHCl3 sequentially. The sequential extraction protocol developed in this study offers improved sensitivity, and requires less sample compared to the PSE workflow where a new sample is used for each solvent type. Furthermore, a comparison of SOM composition from the different sample types revealed that our sequential protocol allows for ecosystem comparisons based on the diversity of compounds present, which in turn could provide new insights about source and processing of organic compounds in different soil and sediment types.« less
Tfaily, Malak M; Chu, Rosalie K; Toyoda, Jason; Tolić, Nikola; Robinson, Errol W; Paša-Tolić, Ljiljana; Hess, Nancy J
2017-06-15
A vast number of organic compounds are present in soil organic matter (SOM) and play an important role in the terrestrial carbon cycle, facilitate interactions between organisms, and represent a sink for atmospheric CO 2 . The diversity of different SOM compounds and their molecular characteristics is a function of the organic source material and biogeochemical history. By understanding how SOM composition changes with sources and the processes by which it is biogeochemically altered in different terrestrial ecosystems, it may be possible to predict nutrient and carbon cycling, response to system perturbations, and impact of climate change will have on SOM composition. In this study, a sequential chemical extraction procedure was developed to reveal the diversity of organic matter (OM) in different ecosystems and was compared to the previously published protocol using parallel solvent extraction (PSE). We compared six extraction methods using three sample types, peat soil, spruce forest soil and river sediment, so as to select the best method for extracting a representative fraction of organic matter from soils and sediments from a wide range of ecosystems. We estimated the extraction yield of dissolved organic carbon (DOC) by total organic carbon analysis, and measured the composition of extracted OM using high resolution mass spectrometry. This study showed that OM composition depends primarily on soil and sediment characteristics. Two sequential extraction protocols, progressing from polar to non-polar solvents, were found to provide the highest number and diversity of organic compounds extracted from the soil and sediments. Water (H 2 O) is the first solvent used for both protocols followed by either co-extraction with methanol-chloroform (MeOH-CHCl 3 ) mixture, or acetonitrile (ACN) and CHCl 3 sequentially. The sequential extraction protocol developed in this study offers improved sensitivity, and requires less sample compared to the PSE workflow where a new sample is used for each solvent type. Furthermore, a comparison of SOM composition from the different sample types revealed that our sequential protocol allows for ecosystem comparisons based on the diversity of compounds present, which in turn could provide new insights about source and processing of organic compounds in different soil and sediment types. Copyright © 2017 Elsevier B.V. All rights reserved.
Damm, Markus; Kappe, C Oliver
2011-11-30
A high-throughput platform for performing parallel solvent extractions in sealed HPLC/GC vials inside a microwave reactor is described. The system consist of a strongly microwave-absorbing silicon carbide plate with 20 cylindrical wells of appropriate dimensions to be fitted with standard HPLC/GC autosampler vials serving as extraction vessels. Due to the possibility of heating up to four heating platforms simultaneously (80 vials), efficient parallel analytical-scale solvent extractions can be performed using volumes of 0.5-1.5 mL at a maximum temperature/pressure limit of 200°C/20 bar. Since the extraction and subsequent analysis by either gas chromatography or liquid chromatography coupled with mass detection (GC-MS or LC-MS) is performed directly from the autosampler vial, errors caused by sample transfer can be minimized. The platform was evaluated for the extraction and quantification of caffeine from commercial coffee powders assessing different solvent types, extraction temperatures and times. For example, 141±11 μg caffeine (5 mg coffee powder) were extracted during a single extraction cycle using methanol as extraction solvent, whereas only 90±11 were obtained performing the extraction in methylene chloride, applying the same reaction conditions (90°C, 10 min). In multiple extraction experiments a total of ~150 μg caffeine was extracted from 5 mg commercial coffee powder. In addition to the quantitative caffeine determination, a comparative qualitative analysis of the liquid phase coffee extracts and the headspace volatiles was performed, placing special emphasis on headspace analysis using solid-phase microextraction (SPME) techniques. The miniaturized parallel extraction technique introduced herein allows solvent extractions to be performed at significantly expanded temperature/pressure limits and shortened extraction times, using standard HPLC autosampler vials as reaction vessels. Remarkable differences regarding peak pattern and main peaks were observed when low-temperature extraction (60°C) and high-temperature extraction (160°C) are compared prior to headspace-SPME-GC-MS performed in the same HPLC/GC vials. Copyright © 2011 Elsevier B.V. All rights reserved.
Quispe-Fuentes, Issis; Vega-Gálvez, Antonio; Campos-Requena, Víctor H.
2017-01-01
The optimum conditions for the antioxidant extraction from maqui berry were determined using a response surface methodology. A three level D-optimal design was used to investigate the effects of three independent variables namely, solvent type (methanol, acetone and ethanol), solvent concentration and extraction time over total antioxidant capacity by using the oxygen radical absorbance capacity (ORAC) method. The D-optimal design considered 42 experiments including 10 central point replicates. A second-order polynomial model showed that more than 89% of the variation is explained with a satisfactory prediction (78%). ORAC values are higher when acetone was used as a solvent at lower concentrations, and the extraction time range studied showed no significant influence on ORAC values. The optimal conditions for antioxidant extraction obtained were 29% of acetone for 159 min under agitation. From the results obtained it can be concluded that the given predictive model describes an antioxidant extraction process from maqui berry.
Behbahani, Mohammad; Najafi, Fatemeh; Bagheri, Saman; Bojdi, Majid Kalate; Hassanlou, Parmoon Ghareh; Bagheri, Akbar
2014-04-01
A simple, rapid, and efficient sample pretreatment technique, based on solvent-based de-emulsification dispersive liquid-liquid microextraction (SD-DLLME), followed by high performance liquid chromatography (HPLC) has been developed for simultaneous preconcentration and trace detection of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic acid (MCPA) in water and urine samples. Some parameters such as acidity of solution, the amount of salt, type, and volume of extraction solvents, type of disperser/de-emulsifier solvent, and its volume were investigated and optimized. Under optimum extraction conditions, the limits of detections (LODs) of this method for MCPA and 2,4-D were 0.2 and 0.6 μg L(-1) (based on 3S(b)/m) in water and 0.4 and 1.6 μg L(-1) in urine, respectively. Furthermore, dynamic linear range of this method for MCPA and 2,4-D was 1-300 and 2-400 μg L(-1), repectively. Finally, the applicability of the proposed method was evaluated by extraction and determination of the herbicides in urine and different water samples.
Ruan, Chunqiang; Zhao, Xiang; Liu, Chenglan
2015-09-01
In this study, a simple and low-organic-solvent-consuming method combining an acetonitrile-partitioning extraction procedure followed by "quick, easy, cheap, effective, rugged and safe" cleanup with ionic-liquid-based dispersive liquid-liquid microextraction and high-performance liquid chromatography with diode array detection was developed for the determination of diflubenzuron and chlorbenzuron in grapes and pears. Ionic-liquid-based dispersive liquid-liquid microextraction was performed using the ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate as the extractive solvent and acetonitrile extract as the dispersive solvent. The main factors influencing the efficiency of the dispersive liquid-liquid microextraction were evaluated, including the extractive solvent type and volume and the dispersive solvent volume. The validation parameters indicated the suitability of the method for routine analyses of benzoylurea insecticides in a large number of samples. The relative recoveries at three spiked levels ranged between 98.6 and 109.3% with relative standard deviations of less than 5.2%. The limit of detection was 0.005 mg/kg for the two insecticides. The proposed method was successfully used for the rapid determination of diflubenzuron and chlorbenzuron residues in real fruit samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Green technology approach towards herbal extraction method
NASA Astrophysics Data System (ADS)
Mutalib, Tengku Nur Atiqah Tengku Ab; Hamzah, Zainab; Hashim, Othman; Mat, Hishamudin Che
2015-05-01
The aim of present study was to compare maceration method of selected herbs using green and non-green solvents. Water and d-limonene are a type of green solvents while non-green solvents are chloroform and ethanol. The selected herbs were Clinacanthus nutans leaf and stem, Orthosiphon stamineus leaf and stem, Sesbania grandiflora leaf, Pluchea indica leaf, Morinda citrifolia leaf and Citrus hystrix leaf. The extracts were compared with the determination of total phenolic content. Total phenols were analyzed using a spectrophotometric technique, based on Follin-ciocalteau reagent. Gallic acid was used as standard compound and the total phenols were expressed as mg/g gallic acid equivalent (GAE). The most suitable and effective solvent is water which produced highest total phenol contents compared to other solvents. Among the selected herbs, Orthosiphon stamineus leaves contain high total phenols at 9.087mg/g.
NASA Astrophysics Data System (ADS)
Semenov, K. N.; Charykov, N. A.; Postnov, V. N.; Sharoyko, V. V.; Murin, I. V.
2016-01-01
This review is the first attempt to integrate the available data on all types of phase equilibria (solubility, extraction and sorption) in systems containing light fullerenes (C60 and C70). In the case of solubility diagrams, the following types of phase equilibria are considered: individual fullerene (C60 or C70)-solvent under polythermal and polybaric conditions; C60-C70-solvent, individual fullerene-solvent(1)-solvent(2), as well as multicomponent systems comprising a single fullerene or an industrial mixture of fullerenes and vegetable oils, animal fats or essential oils under polythermal conditions. All published experimental data on the extraction equilibria in C60-C70-liquid phase(1)-liquid phase(2) systems are described systematically and the sorption characteristics of various materials towards light fullerenes are estimated. The possibility of application of these experimental data for development of pre-chromatographic and chromatographic methods for separation of fullerene mixtures and application of fullerenes as nanomodifiers are described. The bibliography includes 87 references.
Ghanbarian, Maryam; Afzali, Daryoush; Mostafavi, Ali; Fathirad, Fariba
2013-01-01
A new displacement-dispersive liquid-liquid microextraction method based on the solidification of floating organic drop was developed for separation and preconcentration of Pd(ll) in road dust and aqueous samples. This method involves two steps of dispersive liquid-liquid microextraction based on solidification. In Step 1, Cu ions react with diethyldithiocarbamate (DDTC) to form Cu-DDTC complex, which is extracted by dispersive liquid-liquid microextraction based on a solidification procedure using 1-undecanol (extraction solvent) and ethanol (dispersive solvent). In Step 2, the extracted complex is first dispersed using ethanol in a sample solution containing Pd ions, then a dispersive liquid-liquid microextraction based on a solidification procedure is performed creating an organic drop. In this step, Pd(ll) replaces Cu(ll) from the pre-extracted Cu-DDTC complex and goes into the extraction solvent phase. Finally, the Pd(ll)-containing drop is introduced into a graphite furnace using a microsyringe, and Pd(ll) is determined using atomic absorption spectrometry. Several factors that influence the extraction efficiency of Pd and its subsequent determination, such as extraction and dispersive solvent type and volume, pH of sample solution, centrifugation time, and concentration of DDTC, are optimized.
NASA Astrophysics Data System (ADS)
Othman, Zetty Shafiqa; Hassan, Nur Hasyareeda; Zubairi, Saiful Irwan
2015-09-01
Deep eutectic solvents (DESs) are basically molten salts that interact by forming hydrogen bonds between two added components at a ratio where eutectic point reaches a melting point lower than that of each individual component. Their remarkable physicochemical properties (similar to ionic liquids) with remarkable green properties, low cost and easy handling make them a growing interest in many fields of research. Therefore, the objective of pursuing this study is to analyze the potential of alcohol-based DES as an extraction medium for rotenone extraction from Derris elliptica roots. DES was prepared by a combination of choline chloride, ChCl and 1, 4-butanediol at a ratio of 1/5. The structure of elucidation of DES was analyzed using FTIR, 1H-NMR and 13C-NMR. Normal soaking extraction (NSE) method was carried out for 14 hours using seven different types of solvent systems of (1) acetone; (2) methanol; (3) acetonitrile; (4) DES; (5) DES + methanol; (6) DES + acetonitrile; and (7) [BMIM] OTf + acetone. Next, the yield of rotenone, % (w/w), and its concentration (mg/ml) in dried roots were quantitatively determined by means of RP-HPLC. The results showed that a binary solvent system of [BMIM] OTf + acetone and DES + acetonitrile was the best solvent system combination as compared to other solvent systems. It contributed to the highest rotenone content of 0.84 ± 0.05% (w/w) (1.09 ± 0.06 mg/ml) and 0.84 ± 0.02% (w/w) (1.03 ± 0.01 mg/ml) after 14 hours of exhaustive extraction time. In conclusion, a combination of the DES with a selective organic solvent has been proven to have a similar potential and efficiency as of ILs in extracting bioactive constituents in the phytochemical extraction process.
Bahrami, Niloufar; Yonekura, Lina; Linforth, Robert; Carvalho da Silva, Margarida; Hill, Sandra; Penson, Simon; Chope, Gemma; Fisk, Ian Denis
2014-01-01
BACKGROUND Lipids are minor components of flours, but are major determinants of baking properties and end-product quality. To the best of our knowledge, there is no single solvent system currently known that efficiently extracts all non-starch lipids from all flours without the risk of chemical, mechanical or thermal damage. This paper compares nine ambient solvent systems (monophasic and biphasic) with varying polarities: Bligh and Dyer (BD); modified Bligh and Dyer using HCl (BDHCL); modified BD using NaCl (BDNaCl); methanol–chloroform–hexane (3:2:1, v/v); Hara and Radin (hexane–isopropanol, 3:2, v/v); water-saturated n-butanol; chloroform; methanol and hexane for their ability to extract total non-starch lipids (separated by lipid classes) from wheat flour (Triticum aestivum L.). Seven ambient extraction protocols were further compared for their ability to extract total non-starch lipids from three alternative samples: barley flour (Hordeum vulgare L.), maize starch (Zea mays L.) and tapioca starch (Manihot esculenta Crantz). RESULTS For wheat flour the original BD method and those containing HCl or NaCl tended to extract the maximum lipid and a significant correlation between lipid extraction yield (especially the glycolipids and phospholipids) and the polarity of the solvent was observed. For the wider range of samples BD and BD HCl repeatedly offered the maximum extraction yield and using pooled standardized (by sample) data from all flours, total non-starch lipid extraction yield was positively correlated with solvent polarity (r = 0.5682, P < 0.05) and water ratio in the solvent mixture (r = 0.5299, P < 0.05). CONCLUSION In general, BD-based methods showed better extraction yields compared to methods without the addition of water and, most interestingly, there was much greater method dependence of lipid yields in the starches when compared to the flour samples, which is due to the differences in lipid profiles between the two sample types (flours and starches). PMID:24132804
Shao, Feng; Gu, Lifei; Chen, Huijuan; Liu, Ronghua; Huang, Huilian; Ren, Gang
2016-01-01
Background: Hawthorn (Crataegus pinnatifida) is a Chinese medicinal plant traditionally used in the treatment of hyperlipidemia. Recently, studies indicated free radical scavenging was one of the major pathways to alleviate hyperlipidemia. Moreover, hawthorn fruit is a rich source of phenols, which quench free radical and attenuate hyperlipidemia. However, the phenols vary with processing methods, especially solvent type. Objective: Our aim was to compare hypolipidemic and antioxidant effects of aqueous and ethanol extracts of hawthorn fruit in hyperlipidemia rats. Materials and Methods: After a 4-week treatment of high-fat emulsion, lipid profile levels and antioxidant levels of two extracts were determined using commercial analysis. Total phenols content in the extract of hawthorn fruit was determined colorimetrically by the Folin–Ciocalteu method. Results: Both ethanol and aqueous extracts of hawthorn fruit possessed hypolipidemic and antioxidant activities. Simultaneously, stronger activities were observed in ethanol extract. Besides, total phenols content in ethanol extract from the same quality of hawthorn fruit was 3.9 times more than that in aqueous extract. Conclusion: The obvious difference of hypolipidemic and antioxidant effects between ethanol extract and aqueous extract of hawthorn fruit was probably due to the presence of total phenols content, under the influence of extraction solvent. SUMMARY Ethanol extract of hawthorn fruit exhibited more favorable hypolipidemic and antioxidant effects than aqueous extract. The higher effects could be due to the higher content of total phenols that varies with extraction solvent. Abbreviations used: TC: Total cholesterol, TG: Triglyceride, LDL-C: Low-density lipoprotein cholesterol, HDL-C: High-density lipoprotein cholesterol, GSH-Px: Glutathione peroxidase, SOD: Superoxide dismutase, MDA: Malondialdehyde, CAT: Catalase, NO: Nitric oxide, NOS: Nitric oxide synthase, SR-BI: Scavenger receptor Class B Type I PMID:27019563
Shao, Feng; Gu, Lifei; Chen, Huijuan; Liu, Ronghua; Huang, Huilian; Ren, Gang
2016-01-01
Hawthorn (Crataegus pinnatifida) is a Chinese medicinal plant traditionally used in the treatment of hyperlipidemia. Recently, studies indicated free radical scavenging was one of the major pathways to alleviate hyperlipidemia. Moreover, hawthorn fruit is a rich source of phenols, which quench free radical and attenuate hyperlipidemia. However, the phenols vary with processing methods, especially solvent type. Our aim was to compare hypolipidemic and antioxidant effects of aqueous and ethanol extracts of hawthorn fruit in hyperlipidemia rats. After a 4-week treatment of high-fat emulsion, lipid profile levels and antioxidant levels of two extracts were determined using commercial analysis. Total phenols content in the extract of hawthorn fruit was determined colorimetrically by the Folin-Ciocalteu method. Both ethanol and aqueous extracts of hawthorn fruit possessed hypolipidemic and antioxidant activities. Simultaneously, stronger activities were observed in ethanol extract. Besides, total phenols content in ethanol extract from the same quality of hawthorn fruit was 3.9 times more than that in aqueous extract. The obvious difference of hypolipidemic and antioxidant effects between ethanol extract and aqueous extract of hawthorn fruit was probably due to the presence of total phenols content, under the influence of extraction solvent. Ethanol extract of hawthorn fruit exhibited more favorable hypolipidemic and antioxidant effects than aqueous extract. The higher effects could be due to the higher content of total phenols that varies with extraction solvent. Abbreviations used: TC: Total cholesterol, TG: Triglyceride, LDL-C: Low-density lipoprotein cholesterol, HDL-C: High-density lipoprotein cholesterol, GSH-Px: Glutathione peroxidase, SOD: Superoxide dismutase, MDA: Malondialdehyde, CAT: Catalase, NO: Nitric oxide, NOS: Nitric oxide synthase, SR-BI: Scavenger receptor Class B Type I.
Uhm, Joo Tae; Yoon, Won Byong
2011-08-01
Mass transfer models of leaching oil from soybean (Glycine max) flour with hexane after high-pressure process (HPP) treatment were developed. High pressure (450 MPa) was applied to the soybean flour (mean diameter of flour particle: 365 μm) for 30 min before leaching the oil components in the solvent. The ratio of solvent (volume, mL) to soybean flour (mass, g), such as 1:10 and 1:20, was employed to characterize the effect of solvent ratio on the leaching rate in the batch type of extraction process. Ultraviolet absorbance at 300 nm was used to monitor the extraction rate. Saturation solubility (C(AS)) was determined to be 21.73 kg/m³. The mass transfer coefficients (k) were determined based on the 1st- and 2nd-order kinetic models. The 2nd kinetic model showed better fit. The HPP treatment showed a higher extraction rate and yield compared to the control, while the amount of solvent did not affect the extraction rate and yield. The scanning electron microscope showed that HPP-treated soybean particles included more pores than the untreated. The pores observed in the HPP-treated soybean flours might help increase the mass transfer rate of solvent and solute in the solid matrix. High-pressure processing can help increase the extraction rate of oil from the soybean flour operated in batch systems. The conventional solid to solvent ratio (1:20) used to extract oil composition from the plant seed did not help increase the amount of oil extracted from the soybean flour. © 2011 Institute of Food Technologists®
Water extractable arabinoxylan aerogels prepared by supercritical CO2 drying.
Marquez-Escalante, Jorge; Carvajal-Millan, Elizabeth; Miki-Yoshida, Mario; Alvarez-Contreras, Lorena; Toledo-Guillén, Alma Rosa; Lizardi-Mendoza, Jaime; Rascón-Chu, Agustín
2013-05-14
Water extractable arabinoxylan (WEAX) aerogels were prepared by extracting the solvent from the alcogels (WEAX hydrogels with an alcohol as the solvent) with carbon dioxide under supercritical conditions. WEAX aerogels were characterized using scanning electron microscopy and adsorption and desorption nitrogen isotherms. The micrographs indicate a heterogeneous porous network structure in WEAX aerogel. Adsorption/desorption nitrogen isotherms of this material were type IV, which confirm that this material possess a mesoporous structure. WEAX aerogels rehydration capability was evaluated and the water absorption mechanism was determined. The WEAX aerogels water absorption mechanism was non-Fickian (n = 0.54).
Otero, Paz; Saha, Sushanta Kumar; Gushin, Joanne Mc; Moane, Siobhan; Barron, John; Murray, Patrick
2017-07-01
Microalgae have the potential to synthesize and accumulate lipids which contain high value fatty acids intended for nutrition and biodiesel applications. Nevertheless, lipid extraction methods for microalgae cells are not well established and there is not a standard analytical methodology to extract fatty acids from lipid-producing microalgae. In this paper, current lipid extraction procedures employing organic solvents (chloroform/methanol, 2:1 and 1:2, v/v), sodium hypochlorite solution (NaClO), acid-catalysed hot-water extraction and the saponification process [2.5 M KOH/methanol (1:4, v/v)] have been evaluated with two species of microalgae with different types of cell walls. One is a marine diatom, Phaeodactylum tricornutum, and the other a freshwater green microalga, Haematococcus pluvialis. Lipids from all types of extracts were estimated gravimetrically and their fatty acids were quantified by a HPLC equipped with Q-TOF mass spectrometer. Results indicated significant differences both in lipids yield and fatty acids composition. The chloroform and methanol mixture was the most effective extraction solvent for the unsaturated fatty acids such as DPA (C22:05), DHA, (C22:06), EPA (C20:05) and ARA (C20:04). While acid treatments improved the saturated fatty acids (SFAs) yield, especially the short chain SFA, lauric acid (C12:0), whose amount was 64% higher in P. tricornutum and 156% higher in H. pluvialis compared to organic solvent extractions. Graphical abstract ᅟ.
NASA Astrophysics Data System (ADS)
Nishimura, Mitsugu; Baker, Earl W.
1987-06-01
Five recent sediment samples from a variety of North American continental shelves were analyzed for fatty acids (FAs) in the solvent-extractable (SOLEX) lipids as well as four types of non-solvent extractable (NONEX) lipids. The NONEX lipids were operationally defined by the succession of extraction procedure required to recover them. The complete procedure included (i) very mild acid treatment, (ii) HF digestion and (iii) saponification of the sediment residue following exhaustive solvent extraction. The distribution pattern and various compositional parameters of SOLEX FAs in the five sediments were divided into three different groups, indicating the difference of biological sources and also diagenetic factors and processes among the three groups of samples. Nevertheless, the compositions of the corresponding NONEX FAs after acid treatment were surprisingly very similar. This was also true for the remaining NONEX FA groups in the five sediment samples. The findings implied that most of the NONEX FAs reported here are derived directly from living organisms. It is also concluded that a large part of NONEX FAs are much more resistant to biodegradation than we have thought, so that they can form the large percentage of total lipids with increasing depth of water and sediments.
21 CFR 177.1620 - Polyethylene, oxidized.
Code of Federal Regulations, 2014 CFR
2014-04-01
... temperature vapor pressure osmometry, contains a maximum of 5 percent by weight of total oxygen, and has an acid value of 9 to 19. (b) The finished food-contact article, when extracted with the solvent or solvents characterizing the type of food and under the conditions of time and temperature characterizing...
Anfossi, Laura; Calderara, Marianna; Baggiani, Claudio; Giovannoli, Cristina; Arletti, Enrico; Giraudi, Gianfranco
2008-03-26
The official methods for the quantification of aflatoxin M1 in dairy products (cheese and yogurt) include extraction into dichloromethane or chloroform, evaporation of the solvent, partitioning of the reconstituted residue with hexane, and subsequent analysis. To secure a rapid and inexpensive screen for aflatoxin M1 contamination, a sensitive competitive ELISA, using a rabbit polyclonal antibody, was developed for measuring aflatoxin M1 in milk and used in a comparative study for measuring the extraction efficiency of aflatoxin M1 in aqueous or organic solvent buffers using yogurt samples. An aqueous sodium citrate solution was found to be suitable for extracting aflatoxin M1, thus eliminating the need for organic solvents. The citrate extraction proved to be efficient (recovery ranged from 70 to 124%) in fortified samples of very different kinds of dairy products, including yogurt and six types of cheese. Fourteen yogurt and cheese samples were extracted with citrate solution and analyzed by ELISA. A good correlation was observed (y=0.95x-0.59, r2=0.98) when the data were compared with those obtained through the official method, across a wide range of aflatoxin M1 contaminations (10-200 ng/kg).
Extraction study on uranyl nitrate for energy applications
NASA Astrophysics Data System (ADS)
Giri, R.; Nath, G.
2017-07-01
Due to the ever-growing demand of energy nuclear reactor materials and the nuclear energy are now considered to be the most critical materials and source of energy for future era. Deposition of nuclear wastes in different industry, nuclear power sector are very much toxic in open environment which are hazardous to living being. There are different methods for extraction and reprocessing of these materials which are cost effective and tedious process. Ultrasonic assisted solvent extraction process is a most efficient and economical way for extraction of such type materials. The presence of third phase in mixing of extractants-diluent pair with aqueous phase imposes the problems in extraction of nuclear reactor materials. The appropriate solvent mixture in proper concentration is an important step in the solvent extraction process. Study of thermo-physical properties helps in selecting an optimum blend for extraction process. In the present work, the extraction of uranium with the binary mixture of Methyl Ethyl Ketone (MEK) and Kerosene was investigated and discussed with the variation of ultrasonic frequency for different temperatures. The result shows that the low frequency and low temperature is suitable environment for extraction. The extraction of uranium by this method is found to be a better result for extraction study in laboratory scale as well as industrial sector.
NASA Astrophysics Data System (ADS)
Baba, Bibi Marliana; Mustapha, Wan Aida Wan; Joe, Lim Seng
2016-11-01
The objective of this study was to determine the effects of extraction solvent on the fucose content in fucoidan that had been isolated from Sargassum sp., which is a type of brown seaweed that was harvested in Pulau Langkawi, Kedah, Malaysia. There were three different solvents that were used in the extraction process in order to isolate the crude fucoidan including the hydrochloric acid, HCl, calcium chloride, CaCl2 solution and also the papain ezyme solution. Other extraction parameters that were the extraction temperature and time were fixed at three hours, at 45°C respectively. It was found that there was a significant different (p< 0.05) on the fucose content of fucoidan that had been extracted by using the enzymatic extraction (papain) with those were extracted by HCl and CaCl2 solution. However, the fucose content in fucoidan been extracted with HCl and CaCl2 solution showed no significant different (p> 0.05) amongst each other. Hence, this study indicated that the extraction of fucoidan using HCl tend to possess higher fucose content which will increase the potential of the extraction method to be used in the industries such as pharmaceuticals as well as the nutraceuticals.
The optimization of phthalate analysis from plastic matrices by using GC/MS related techniques
NASA Astrophysics Data System (ADS)
Pusfitasari, Eka Dian; Hendarsyah, Hendris; Athaillah, Zatil Afrah
2017-11-01
Indication of malicious acts conducted by food vendors has been reported in many places in Indonesia and has been worrying the population. One of the issues is the indication that frying oil used by the vendors has been added with food packaging plastic to impart more crispy texture of the fried foods. One of the challenges for the monitoring process is to find suitable analytical method to identify this type of food adulteration. Because some food packaging, particularly from polyethylene group, contains plasticizer diethylhexylphthalate (DEHP), we intended to investigate the adulteration by detecting the phthalate compound. In this preliminary study, we focused on the optimization of GC equipment as well as the optimization of plastic extraction process with various types of solvents (hexane, dichloromethane, and acetonitrile) and extraction time (24, 48, and 72 hours). For 72-hour duration, treatment with solvent refreshment was also conducted to minimize solvent saturation effect. Our findings suggested that LOD and LOQ of the GC/MS instrument used for the DEHP analysis were 19.6 ng and 65.5 ng, respectively. In addition, it could be concluded that the process of plastic extraction through sonication for five minutes with n-hexane as a solvent resulted in the optimal value.
Farajzadeh, Mir Ali; Dehghani, Hamideh; Yadeghari, Adeleh; Khoshmaram, Leila
2017-02-01
The present study describes a microextraction and determination method for analyzing residual solvents in pharmaceutical products using dynamic headspace-liquid phase microextraction technique followed by gas chromatography-flame ionization detection. In this method dimethyl sulfoxide (μL level) placed into a GC liner-shaped extraction vessel is used as a collection/extraction solvent. Then the liner is exposed to the headspace of a vial containing the sample solution. The effect of different parameters influencing the microextraction procedure including collection/extraction solvent type and its volume, ionic strength, extraction time, extraction temperature and concentration of NaOH solution used in dissolving the studied pharmaceuticals are investigated and optimized. Under the optimum extraction conditions, the method showed wide linear ranges between 0.5 and 5000 mg L -1 . The other analytical parameters were obtained in the following ranges: enrichment factors 240-327, extraction recoveries 72-98% and limits of detection 0.1-0.8 mg L -1 in solution and 0.6-3.2 μg g -1 in solid. Relative standard deviations for the extraction of 100 mg L -1 of each analyte were obtained in the ranges of 4-7 and 5-8% for intra-day (n = 6) and inter-day (n = 4) respectively. Finally the target analytes were determined in different samples such as erythromycin, azithromycin, cefalexin, amoxicillin and co-amoxiclav by the proposed method. Copyright © 2016 John Wiley & Sons, Ltd.
Sporring, Sune; Björklund, Erland
2004-06-25
Sulphuric acid impregnated silica was used for the lipid free extraction of polychlorinated biphenyls from fat containing food and feed matrices using pressurized liquid extraction on a Dionex ASE300, with 34 mL cells. Data were compared to a previous publication where extractions had been performed on a Dionex ASE200, with 33 mL cells. Four different fat/fat retainer ratios (FFRs) were tested (0.100, 0.075, 0.050 and 0.025) at 50 and 100 degrees C using n-pentane, n-hexane or n-heptane as extraction solvent. The best results were obtained with a FFR of 0.025 when applying a temperature of 100 degrees C. Both n-pentane and n-heptane were capable of replacing n-hexane as extraction solvent. A flush volume of 60% was sufficient as suggested in US Environmental Protection Agency Method 3545. The applicability of the method was demonstrated for naturally contaminated fish meal as well as various spiked and certified materials.
Comparison Pore Aggregate Levels After Extraction With Solvents Pertamax Plus And Gasoline
NASA Astrophysics Data System (ADS)
Anggraini, Muthia
2017-12-01
Loss of asphalt content extraction results become problems in Field Work For implementing parties. The use of solvents with high octane (pertamax plus) for the extraction, dissolving the asphalt more than gasoline. By comparing the levels of aggregate pores after using solvent extraction pertamax plus compared to gasoline could answer that pertamax plus more solvent dissolves the bitumen compared to gasoline. This study aims to obtain comparative levels of porous aggregate mix AC-WC after using solvent extraction pertamax plus compared to gasoline. This study uses the aggregate that has been extracted from the production of asphalt mixtures, when finisher and after compaction field. The method used is the assay of coarse and fine aggregate pores, extraction of bitumen content to separate the aggregate with bitumen. Results of testing the total absorption after extraction using a solvent preta max plus in the production of asphalt mixtures 0.80%, while gasoline solvent 0.67% deviation occurs 0.13%. In the finisher after the solvent extraction preta max plus 0.77%, while 0.67% gasoline solvent occurs deviation of 0.1%. At the core after extraction and solvent pertamax plus 0.71%, while gasoline solvent 0.60% 0.11% deviation occurs. The total water absorption after extraction using a solvent pertamax plus greater than gasoline. This proves that the solvent dissolves pertamax plus more asphalt than gasoline.
Zheng, Cao; Zhao, Jing; Bao, Peng; Gao, Jin; He, Jin
2011-06-24
A novel, simple and efficient dispersive liquid-liquid microextraction based on solidification of floating organic droplet (DLLME-SFO) technique coupled with high-performance liquid chromatography with ultraviolet detection (HPLC-UV) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for the determination of triclosan and its degradation product 2,4-dichlorophenol in real water samples. The extraction solvent used in this work is of low density, low volatility, low toxicity and proper melting point around room temperature. The extractant droplets can be collected easily by solidifying it at a lower temperature. Parameters that affect the extraction efficiency, including type and volume of extraction solvent and dispersive solvent, salt effect, pH and extraction time, were investigated and optimized in a 5 mL sample system by HPLC-UV. Under the optimum conditions (extraction solvent: 12 μL of 1-dodecanol; dispersive solvent: 300 of μL acetonitrile; sample pH: 6.0; extraction time: 1 min), the limits of detection (LODs) of the pretreatment method combined with LC-MS/MS were in the range of 0.002-0.02 μg L(-1) which are lower than or comparable with other reported approaches applied to the determination of the same compounds. Wide linearities, good precisions and satisfactory relative recoveries were also obtained. The proposed technique was successfully applied to determine triclosan and 2,4-dichlorophenol in real water samples. Copyright © 2011 Elsevier B.V. All rights reserved.
Senra-Ferreiro, Sonia; Pena-Pereira, Francisco; Costas-Mora, Isabel; Romero, Vanesa; Lavilla, Isela; Bendicho, Carlos
2011-09-15
A miniaturized method based on liquid-phase microextraction (LPME) in combination with microvolume UV-vis spectrophotometry for monitoring ammonia in waters is proposed. The methodology is based on the extraction of the ion pair formed between the blue indophenol obtained according to the Berthelot reaction and a quaternary ammonium salt into a microvolume of organic solvent. Experimental parameters affecting the LPME performance such as type and concentration of the quaternary ammonium ion salt required to form the ion pair, type and volume of extractant solvent, effect of disperser solvent, ionic strength and extraction time, were optimized. A detection limit of 5.0 μg L(-1) ammonia and an enrichment factor of 30 can be attained after a microextraction time of 4 min. The repeatability, expressed as relative standard deviation, was 7.6% (n=7). The proposed method can be successfully applied to the determination of trace amounts of ammonia in several environmental water samples. Copyright © 2011 Elsevier B.V. All rights reserved.
Optimization of microwave-assisted extraction of polyphenols from Myrtus communis L. leaves.
Dahmoune, Farid; Nayak, Balunkeswar; Moussi, Kamal; Remini, Hocine; Madani, Khodir
2015-01-01
Phytochemicals, such as phenolic compounds, are of great interest due to their health-benefitting antioxidant properties and possible protection against inflammation, cardiovascular diseases and certain types of cancer. Maximum retention of these phytochemicals during extraction requires optimised process parameter conditions. A microwave-assisted extraction (MAE) method was investigated for extraction of total phenolics from Myrtus communis leaves. The total phenolic capacity (TPC) of leaf extracts at optimised MAE conditions was compared with ultrasound-assisted extraction (UAE) and conventional solvent extraction (CSE). The influence of extraction parameters including ethanol concentration, microwave power, irradiation time and solvent-to-solid ratio on the extraction of TPC was modeled by using a second-order regression equation. The optimal MAE conditions were 42% ethanol concentration, 500 W microwave power, 62 s irradiation time and 32 mL/g solvent to material ratio. Ethanol concentration and liquid-to-solid ratio were the significant parameters for the extraction process (p<0.01). Under the MAE optimised conditions, the recovery of TPC was 162.49 ± 16.95 mg gallic acidequivalent/gdry weight(DW), approximating the predicted content (166.13 mg GAE/g DW). When bioactive phytochemicals extracted from Myrtus leaves using MAE compared with UAE and CSE, it was also observed that tannins (32.65 ± 0.01 mg/g), total flavonoids (5.02 ± 0.05 mg QE/g) and antioxidant activities (38.20 ± 1.08 μg GAE/mL) in MAE extracts were higher than the other two extracts. These findings further illustrate that extraction of bioactive phytochemicals from plant materials using MAE method consumes less extraction solvent and saves time. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kwak, Minsoo; Kang, Seul Gi; Hong, Won-Kyung; Han, Jong-In; Chang, Yong Keun
2018-05-01
Microalgae are regarded as a promising source of biofuels, and the concept of a microalgae-based biorefinery has attracted increasing attention in recent years. From an economic perspective, however, the process remains far from competitive with fossil fuels. This is particularly true of lipid extraction, due in part to the energy-intensive drying step. As a result, wet extraction methods have been studied as an economic alternative. In the present study, a novel extraction approach which utilizes high shear stress mixing was adopted and demonstrated for simultaneous lipid extraction and cell disruption to enable the retrieval of lipids directly from concentrated wet biomass. When a high shear mixer (HSM) was used to extract lipid from a dense biomass (> 350 g/L) of the oleaginous algae Aurantiochytrium sp., it exhibited a yield of esterifiable lipids which exceeded 80% in 10 min at 15,000 rpm with various solvent types. The HSM was found to improve the lipid yields substantially with solvents less miscible with either lipids or water, such that the range of Hansen solubility parameters for the usable solvents became 3.3 times wider (14.9-26.5 MPa 1/2 ). The HSM, which appeared effectively to loosen the water barrier that prevents solvent molecules from penetrating through the cell envelope, was found to be more efficient with hexane, hexane/isopropanol, and ethanol, all of which showed nearly identical lipid yields compared to the dry extraction process. The HSM can, indeed, offer a powerful mechanical means of lipid extraction with non-polar and less toxic solvents from wet biomass.
An, Jiwoo; Rahn, Kira L; Anderson, Jared L
2017-05-15
A headspace single drop microextraction (HS-SDME) method and a dispersive liquid-liquid microextraction (DLLME) method were developed using two tetrachloromanganate ([MnCl 4 2- ])-based magnetic ionic liquids (MIL) as extraction solvents for the determination of twelve aromatic compounds, including four polyaromatic hydrocarbons, by reversed phase high-performance liquid chromatography (HPLC). The analytical performance of the developed HS-SDME method was compared to the DLLME approach employing the same MILs. In the HS-SDME approach, the magnetic field generated by the magnet was exploited to suspend the MIL solvent from the tip of a rod magnet. The utilization of MILs in HS-SDME resulted in a highly stable microdroplet under elevated temperatures and long extraction times, overcoming a common challenge encountered in traditional SDME approaches of droplet instability. The low UV absorbance of the [MnCl 4 2- ]-based MILs permitted direct analysis of the analyte enriched extraction solvent by HPLC. In HS-SDME, the effects of ionic strength of the sample solution, temperature of the extraction system, extraction time, stir rate, and headspace volume on extraction efficiencies were examined. Coefficients of determination (R 2 ) ranged from 0.994 to 0.999 and limits of detection (LODs) varied from 0.04 to 1.0μgL -1 with relative recoveries from lake water ranging from 70.2% to 109.6%. For the DLLME method, parameters including disperser solvent type and volume, ionic strength of the sample solution, mass of extraction solvent, and extraction time were studied and optimized. Coefficients of determination for the DLLME method varied from 0.997 to 0.999 with LODs ranging from 0.05 to 1.0μgL -1 . Relative recoveries from lake water samples ranged from 68.7% to 104.5%. Overall, the DLLME approach permitted faster extraction times and higher enrichment factors for analytes with low vapor pressure whereas the HS-SDME approach exhibited better extraction efficiencies for analytes with relatively higher vapor pressure. Copyright © 2017 Elsevier B.V. All rights reserved.
Matrix solid-phase dispersion extraction of sulfonamides from blood.
Zhang, Yupu; Xu, Xu; Liu, He; Zhai, Yujuan; Sun, Ye; Sun, Shuo; Zhang, Hanqi; Yu, Aimin; Wang, Yinghua
2012-02-01
Matrix solid-phase dispersion extraction was applied to the extraction of sulfadiazine, sulfamerazine, and sulfamethazine from human and animal bloods. The separation and determination of the analytes were carried out by high-performance liquid chromatography. The effects of the types of the dispersion adsorbents and elution solvents were investigated, and the highest recovery was obtained when diatomaceous earth was used as the dispersion adsorbent, while acetone was used as the elution solvent. Under the optimal conditions, the linear range for determining the sulfonamides in blood samples was 0.020-10.0 µg/mL, and the average recoveries of the three sulfonamides were higher than 87.5%.
Pang, Long; Yang, Peijie; Ge, Liming; Du, Jingjing; Zhang, Hongzhong
2017-02-01
Organophosphate esters (OPEs), widely used as flame retardants and plasticizers, are regarded as emerging pollutants. OPEs are prone to concentrate into residual activated sludge, which might cause secondary pollution if not suitably treated. Composting is an economical and effective approach to make sewage sludge stable and harmless. Therefore, it is essential to develop a novel method for analyzing OPEs in sewage sludge compost samples. However, in the composting process, large amounts of amendments are doped into the sludge to adjust the carbon-nitrogen ratio. Amendment has a strong capacity for adsorption and thus induces a decrease of extraction efficiency. This study developed a novel procedure for determining OPEs in compost samples. Accelerated solvent extraction (ASE) and solid phase extraction (SPE) were used for extracting and concentrating the OPEs from sewage sludge compost samples, and then analyzed by UHPLC-MS/MS. Some parameters were optimized in this study, mainly including the extraction solvent type, extraction temperature, static extraction time, extraction cycles, and flush volume. Under the optimal conditions, the proposed method showed good linearity between 0.50 and 100 μg kg -1 with regression coefficients in the range of 0.9984-0.9998. Detection limits were in the range of 0.02-3 μg kg -1 with standard deviations ranging from 2 to 6%. Acceptable recoveries between 56 and 119% for samples spiked at different concentration levels were achieved. In contrast, the recoveries merely ranged from 24 to 58% by using ultrasonic-assisted extraction. Graphical abstract A comparison of recoveries between ultrasonic-assisted extraction (UAS) and accelerated solvent extraction (ASE) for organophosphate esters from sewage sludge compost samples.
Jerković, Igor; Kuś, Piotr M
2017-11-06
A volatile profile of ramson (wild garlic, Allium ursinum L.) honey was investigated by headspace solid-phase microextraction (HS-SPME) and ultrasonic solvent extraction (USE) followed by gas chromatography and mass spectrometry (GC-FID/GC-MS) analyses. The headspace was dominated by linalool derivatives: cis - and trans -linalool oxides (25.3%; 9.2%), hotrienol (12.7%), and linalool (5.8%). Besides direct extraction with dichloromethane and pentane/diethyl ether mixture (1:2, v / v ), two solvent sequences (I: pentane → diethyl ether; II: pentane → pentane/diethyl ether (1:2, v / v ) → dichloromethane) were applied. Striking differences were noted among the obtained chemical profiles. The extracts with diethyl ether contained hydroquinone (25.8-36.8%) and 4-hydroxybenzoic acid (11.6-16.6%) as the major compounds, while ( E )-4-(r-1',t-2',c-4'-trihydroxy-2',6',6'-trimethylcyclohexyl)but-3-en-2-one predominated in dichloromethane extracts (18.3-49.1%). Therefore, combination of different solvents was crucial for the comprehensive investigation of volatile organic compounds in this honey type. This particular magastigmane was previously reported only in thymus honey and hydroquinone in vipers bugloss honey, while a combination of the mentioned predominant compounds is unique for A. ursinum honey.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Othman, Zetty Shafiqa; Hassan, Nur Hasyareeda; Zubairi, Saiful Irwan
Deep eutectic solvents (DESs) are basically molten salts that interact by forming hydrogen bonds between two added components at a ratio where eutectic point reaches a melting point lower than that of each individual component. Their remarkable physicochemical properties (similar to ionic liquids) with remarkable green properties, low cost and easy handling make them a growing interest in many fields of research. Therefore, the objective of pursuing this study is to analyze the potential of alcohol-based DES as an extraction medium for rotenone extraction from Derris elliptica roots. DES was prepared by a combination of choline chloride, ChCl and 1,more » 4-butanediol at a ratio of 1/5. The structure of elucidation of DES was analyzed using FTIR, {sup 1}H-NMR and {sup 13}C-NMR. Normal soaking extraction (NSE) method was carried out for 14 hours using seven different types of solvent systems of (1) acetone; (2) methanol; (3) acetonitrile; (4) DES; (5) DES + methanol; (6) DES + acetonitrile; and (7) [BMIM] OTf + acetone. Next, the yield of rotenone, % (w/w), and its concentration (mg/ml) in dried roots were quantitatively determined by means of RP-HPLC. The results showed that a binary solvent system of [BMIM] OTf + acetone and DES + acetonitrile was the best solvent system combination as compared to other solvent systems. It contributed to the highest rotenone content of 0.84 ± 0.05% (w/w) (1.09 ± 0.06 mg/ml) and 0.84 ± 0.02% (w/w) (1.03 ± 0.01 mg/ml) after 14 hours of exhaustive extraction time. In conclusion, a combination of the DES with a selective organic solvent has been proven to have a similar potential and efficiency as of ILs in extracting bioactive constituents in the phytochemical extraction process.« less
Xing, Rongrong; Hu, Shuang; Chen, Xuan; Bai, Xiaohong
2014-09-01
A novel graphene-sensitized microporous membrane/solvent microextraction method named microporous membrane/graphene/solvent synergistic microextraction, coupled with high-performance liquid chromatography and UV detection, was developed and introduced for the extraction and determination of three cinnamic acid derivatives in Rhizoma Typhonii. Several factors affecting performance were investigated and optimized, including the types of graphene and extraction solvent, concentration of graphene dispersed in octanol, sample phase pH, ionic strength, stirring rate, extraction time, extraction temperature, and sample volume. Under optimized conditions, the enrichment factors of cinnamic acid derivatives ranged from 75 to 269. Good linearities were obtained from 0.01 to 10 μg/mL for all analytes with regression coefficients between 0.9927 and 0.9994. The limits of quantification were <1 ng/mL, and satisfactory recoveries (99-104%) and precision (1.1-10.8%) were also achieved. The synergistic microextraction mechanism based on graphene sensitization was analyzed and described. The experimental results showed that the method was simple, sensitive, practical, and effective for the preconcentration and determination of cinnamic acid derivatives in Rhizoma Typhonii. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A green deep eutectic solvent-based aqueous two-phase system for protein extracting.
Xu, Kaijia; Wang, Yuzhi; Huang, Yanhua; Li, Na; Wen, Qian
2015-03-15
As a new type of green solvent, deep eutectic solvent (DES) has been applied for the extraction of proteins with an aqueous two-phase system (ATPS) in this work. Four kinds of choline chloride (ChCl)-based DESs were synthesized to extract bovine serum albumin (BSA), and ChCl-glycerol was selected as the suitable extraction solvent. Single factor experiments have been done to investigate the effects of the extraction process, including the amount of DES, the concentration of salt, the mass of protein, the shaking time, the temperature and PH value. Experimental results show 98.16% of the BSA could be extracted into the DES-rich phase in a single-step extraction under the optimized conditions. A high extraction efficiency of 94.36% was achieved, while the conditions were applied to the extraction of trypsin (Try). Precision, repeatability and stability experiments were studied and the relative standard deviations (RSD) of the extraction efficiency were 0.4246% (n=3), 1.6057% (n=3) and 1.6132% (n=3), respectively. Conformation of BSA was not changed during the extraction process according to the investigation of UV-vis spectra, FT-IR spectra and CD spectra of BSA. The conductivity, dynamic light scattering (DLS) and transmission electron microscopy (TEM) were used to explore the mechanism of the extraction. It turned out that the formation of DES-protein aggregates play a significant role in the separation process. All the results suggest that ChCl-based DES-ATPS are supposed to have the potential to provide new possibilities in the separation of proteins. Copyright © 2015 Elsevier B.V. All rights reserved.
Bağda, Esra; Altundağ, Huseyin; Tüzen, Mustafa; Soylak, Mustafa
2017-08-01
In the present study, a simple, mono step deep eutectic solvent (DES) extraction was developed for selective extraction of copper from sediment samples. The optimization of all experimental parameters, e.g. DES type, sample/DES ratio, contact time and temperature were performed with using BCR-280 R (lake sediment certified reference material). The limit of detection (LOD) and the limit of quantification (LOQ) were found as 1.2 and 3.97 µg L -1 , respectively. The RSD of the procedure was 7.5%. The proposed extraction method was applied to river and lake sediments sampled from Serpincik, Çeltek, Kızılırmak (Fadl and Tecer region of the river), Sivas-Turkey.
A microfluidic study of liquid-liquid extraction mediated by carbon dioxide.
Lestari, Gabriella; Salari, Alinaghi; Abolhasani, Milad; Kumacheva, Eugenia
2016-07-05
Liquid-liquid extraction is an important separation and purification method; however, it faces a challenge in reducing the energy consumption and the environmental impact of solvent (extractant) recovery. The reversible chemical reactions of switchable solvents (nitrogenous bases) with carbon dioxide (CO2) can be implemented in reactive liquid-liquid extraction to significantly reduce the cost and energy requirements of solvent recovery. The development of new effective switchable solvents reacting with CO2 and the optimization of extraction conditions rely on the ability to evaluate and screen the performance of switchable solvents in extraction processes. We report a microfluidic strategy for time- and labour-efficient studies of CO2-mediated solvent extraction. The platform utilizes a liquid segment containing an aqueous extractant droplet and a droplet of a solution of a switchable solvent in a non-polar liquid, with gaseous CO2 supplied to the segment from both sides. Following the reaction of the switchable solvent with CO2, the solvent becomes hydrophilic and transfers from the non-polar solvent to the aqueous droplet. By monitoring the time-dependent variation in droplet volumes, we determined the efficiency and extraction time for the CO2-mediated extraction of different nitrogenous bases in a broad experimental parameter space. The platform enables a significant reduction in the amount of switchable solvents used in these studies, provides accurate temporal characterization of the liquid-liquid extraction process, and offers the capability of high-throughput screening of switchable solvents.
Dawidowicz, Andrzej L; Czapczyńska, Natalia B; Wianowska, Dorota
2012-05-30
The influence of different Purge Times on the effectiveness of Pressurized Liquid Extraction (PLE) of volatile oil components from cypress plant matrix (Cupressus sempervirens) was investigated, applying solvents of diverse extraction efficiencies. The obtained results show the decrease of the mass yields of essential oil components as a result of increased Purge Time. The loss of extracted components depends on the extrahent type - the greatest mass yield loss occurred in the case of non-polar solvents, whereas the smallest was found in polar extracts. Comparisons of the PLE method with Sea Sand Disruption Method (SSDM), Matrix Solid-Phase Dispersion Method (MSPD) and Steam Distillation (SD) were performed to assess the method's accuracy. Independent of the solvent and Purge Time applied in the PLE process, the total mass yield was lower than the one obtained for simple, short and relatively cheap low-temperature matrix disruption procedures - MSPD and SSDM. Thus, in the case of volatile oils analysis, the application of these methods is advisable. Copyright © 2012 Elsevier B.V. All rights reserved.
Process for removing halogenated aliphatic and aromatic compounds from petroleum products
Googin, J.M.; Napier, J.M.; Travaglini, M.A.
1983-09-20
A process is described for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contacting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible compound, such as, water or a polyhydroxy compound, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of water or polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the water or polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds and the low polar or nonpolar solvent are separated by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered from recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced. 1 fig.
Process for removing halogenated aliphatic and aromatic compounds from petroleum products
Googin, John M.; Napier, John M.; Travaglini, Michael A.
1983-01-01
A process for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contacting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible compound, such as, water or a polyhydroxy compound, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of water or polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the water or polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds and the low polar or nonpolar solvent are separated by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered from recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced.
Googin, J.M.; Napier, J.M.; Travaglini, M.A.
1982-03-31
A process for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contracting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible polyhydroxy compound, such as, water, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds in the low polar or nonpolar solvent by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered for recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced. 2 tables.
Neace, J.C.
1984-03-13
A process is claimed for removing diluent degradation products from a solvent extraction solution, which has been used to recover uranium and plutonium from spent nuclear fuel. A wash solution and the solvent extraction solution are combined. The wash solution contains (a) water and (b) up to about, and including, 50 vol % of at least one-polar water-miscible organic solvent based on the total volume of the water and the highly-polar organic solvent. The wash solution also preferably contains at least one inorganic salt. The diluent degradation products dissolve in the highly-polar organic solvent and the organic solvent extraction solvent do not dissolve in the highly-polar organic solvent. The highly-polar organic solvent and the extraction solvent are separated.
Neace, James C.
1986-01-01
Process for removing diluent degradation products from a solvent extraction solution, which has been used to recover uranium and plutonium from spent nuclear fuel. A wash solution and the solvent extraction solution are combined. The wash solution contains (a) water and (b) up to about, and including, 50 volume percent of at least one-polar water-miscible organic solvent based on the total volume of the water and the highly-polar organic solvent. The wash solution also preferably contains at least one inorganic salt. The diluent degradation products dissolve in the highly-polar organic solvent and the organic solvent extraction solvent do not dissolve in the highly-polar organic solvent. The highly-polar organic solvent and the extraction solvent are separated.
NEPTUNIUM SOLVENT EXTRACTION PROCESS
Dawson, L.R.; Fields, P.R.
1959-10-01
The separation of neptunium from an aqueous solution by solvent extraction and the extraction of neptunium from the solvent solution are described. Neptunium is separated from an aqueous solution containing tetravalent or hexavalent neptunium nitrate, nitric acid, and a nitrate salting out agent, such as sodium nitrate, by contacting the solution with an organic solvent such as diethyl ether. Subsequently, the neptunium nitrate is extracted from the organic solvent extract phase with water.
Measurement of dielectric constant of organic solvents by indigenously developed dielectric probe
NASA Astrophysics Data System (ADS)
Keshari, Ajay Kumar; Rao, J. Prabhakar; Rao, C. V. S. Brahmmananda; Ramakrishnan, R.; Ramanarayanan, R. R.
2018-04-01
The extraction, separation and purification of actinides (uranium and plutonium) from various matrices are an important step in nuclear fuel cycle. One of the separation process adopted in an industrial scale is the liquid-liquid extraction or solvent extraction. Liquid-liquid extraction uses a specific ligand/extractant in conjunction with suitable diluent. Solvent extraction or liquid-liquid extraction, involves the partitioning of the solute between two immiscible phases. In most cases, one of the phases is aqueous, and the other one is an organic solvent. The solvent used in solvent extraction should be selective for the metal of interest, it should have optimum distribution ratio, and the loaded metal from the organic phase should be easily stripped under suitable experimental conditions. Some of the important physical properties which are important for the solvent are density, viscosity, phase separation time, interfacial surface tension and the polarity of the extractant.
Wu, Lijie; Song, Ying; Hu, Mingzhu; Xu, Xu; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming
2015-01-01
A novel, simple, and environmentally friendly pretreatment method, ionic liquid magnetic bar liquid-phase microextraction, was developed for the determination of sulfonamides in butter samples by high-performance liquid chromatography. The ionic liquid magnetic bar was prepared by inserting a stainless steel wire into the hollow of a hollow fiber and immobilizing ionic liquid in the micropores of the hollow fiber. In the extraction process, the ionic liquid magnetic bars were used to stir the mixture of sample and extraction solvent and enrich the sulfonamides in the mixture. After extraction, the analyte-adsorbed ionic liquid magnetic bars were readily isolated with a magnet from the extraction system. It is notable that the present method was environmentally friendly since water and only several microliters of ionic liquid were used in the whole extraction process. Several parameters affecting the extraction efficiency were investigated and optimized, including the type of ionic liquid, sample-to-extraction solvent ratio, the number of ionic liquid magnetic bars, extraction temperature, extraction time, salt concentration, stirring speed, pH of the extraction solvent, and desorption conditions. The recoveries were in the range of 73.25-103.85 % and the relative standard deviations were lower than 6.84 %. The experiment results indicated that the present method was effective for the extraction of sulfonamides in high-fat content samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fondeur, F.; Fink, S.
2012-08-01
During processing of Salt Batches 3 and 4 in the Modular Caustic-Side Solvent Extraction Unit (MCU), the decontamination efficiency for cesium declined from historical values and from expectations based on laboratory testing. This report documents efforts to analyze samples of solvent and process solutions from MCU in an attempt to understand the cause of the reduced performance and to recommend mitigations. CWT Solutions from MCU from the time period of variable decontamination factor (DF) performance which covers from April 2011 to September 2011 (during processing of Salt Batch 4) were examined for impurities using chromatography and spectroscopy. The results indicatemore » that impurities were found to be of two types: aromatic containing impurities most likely from Modifier degradation and aliphatic type impurities most likely from Isopar{reg_sign} L and tri-n-octylamine (TOA) degradation. Caustic washing the Solvent Hold Tank (SHT) solution with 1M NaOH improved its extraction ability as determined from {sup 22}Na uptake tests. Evidence from this work showed that pH variance in the aqueous solutions within the range of 1M nitric acid to 1.91M NaOH that contacted the solvent samples does not influence the analytical determination of the TOA concentration by GC-MS.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tfaily, Malak M.; Chu, Rosalie K.; Tolic, Nikola
2015-05-19
Soil organic matter (SOM) a complex, heterogeneous mixture of above and belowground plant litter and animal and microbial residues at various degrees of decomposition, is a key reservoir for carbon (C) and nutrient biogeochemical cycling in soil based ecosystems. A limited understanding of the molecular composition of SOM limits the ability to routinely decipher chemical processes within soil and predict accurately how terrestrial carbon fluxes will response to changing climatic conditions and land use. To elucidate the molecular-level structure of SOM, we selectively extracted a broad range of intact SOM compounds by a combination of different organic solvents from soilsmore » with a wide range of C content. Our use of Electrospray ionization (ESI) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) and a suite of solvents with varying polarity significantly expands the inventory of the types of organic molecules present in soils. Specifically, we found that hexane is selective for lipid-like compounds with very low O:C ratios; water was selective for carbohydrates with high O:C ratios; acetonitrile preferentially extracts lignin, condensed structures, and tannin poly phenolic compounds with O:C > 0.5; methanol has higher selectivity towards compounds characterized with low O:C < 0.5; and hexane, MeOH, ACN and water solvents increase the number and types of organic molecules extracted from soil for a broader range of chemically diverse soil types. Our study of SOM molecules by ESI-FTICR MS revealed new insight into the molecular-level complexity of organics contained in soils.« less
Compressed air-assisted solvent extraction (CASX) for metal removal.
Li, Chi-Wang; Chen, Yi-Ming; Hsiao, Shin-Tien
2008-03-01
A novel process, compressed air-assisted solvent extraction (CASX), was developed to generate micro-sized solvent-coated air bubbles (MSAB) for metal extraction. Through pressurization of solvent with compressed air followed by releasing air-oversaturated solvent into metal-containing wastewater, MSAB were generated instantaneously. The enormous surface area of MSAB makes extraction process extremely fast and achieves very high aqueous/solvent weight ratio (A/S ratio). CASX process completely removed Cr(VI) from acidic electroplating wastewater under A/S ratio of 115 and extraction time of less than 10s. When synthetic wastewater containing Cd(II) of 50mgl(-1) was treated, A/S ratios of higher than 714 and 1190 could be achieved using solvent with extractant/diluent weight ratio of 1:1 and 5:1, respectively. Also, MSAB have very different physical properties, such as size and density, compared to the emulsified solvent droplets, making separation and recovery of solvent from treated effluent very easy.
Ultrasound-assisted extraction of ginseng saponins from ginseng roots and cultured ginseng cells.
Wu, J; Lin, L; Chau, F T
2001-10-01
Ultrasound-assisted extraction was evaluated as a simpler and more effective alternative to conventional extraction methods for the isolation of ginsenosides (saponins) from various types of ginseng. The ginseng samples were extracted with different solvents, under either direct sonication by an ultrasound probe horn or indirect sonication in an ultrasound cleaning bath. The ultrasonic extraction was compared with the conventional method of refluxing boiling solvents in a soxhlet extractor, on the yields of both the total saponin isolated by thin-layer chromatography and the individual ginsenosides by high performance liquid chromatography. It was found that the sonication-assisted extraction of ginseng saponins was about three times faster than the traditional extraction method. The ultrasonic extraction was not only more efficient but also convenient for the recovery and purification of the active ingredients of plant materials. In addition, the sonication-assisted extraction can be carried out at lower temperatures which are favorable for the thermally unstable compounds.
Jonke, A.A.
1957-10-01
In improved solvent extraction process is described for the extraction of metal values from highly dilute aqueous solutions. The process comprises contacting an aqueous solution with an organic substantially water-immiscible solvent, whereby metal values are taken up by a solvent extract phase; scrubbing the solvent extract phase with an aqueous scrubbing solution; separating an aqueous solution from the scrubbed solvent extract phase; and contacting the scrubbed solvent phase with an aqueous medium whereby the extracted metal values are removed from the solvent phase and taken up by said medium to form a strip solution containing said metal values, the aqueous scrubbing solution being a mixture of strip solution and an aqueous solution which contains mineral acids anions and is free of the metal values. The process is particularly effective for purifying uranium, where one starts with impure aqueous uranyl nitrate, extracts with tributyl phosphate dissolved in carbon tetrachloride, scrubs with aqueous nitric acid and employs water to strip the uranium from the scrubbed organic phase.
The antioxidant activity test by using DPPH method from the white tea using different solvents
NASA Astrophysics Data System (ADS)
Darmajana, Doddy A.; Hadiansyah, Firman; Desnilasari, Dewi
2017-11-01
The solvents used in this study are: aquades, ethanol and glacial acetic acid. The raw material as the source of antioxidants is white tea. Pure Quercetin is used as a comparing antioxidant. The treatment design was the solvent type for extraction, while the antioxidant activity was tested using DPPH method, with IC50 as the reference of antioxidant activity value. The results of antioxidant activity tests with three different solvent types are IC50 of 22,499 µg/mL for aquades, IC50 of 13,317 µg/mL for Ethanol and IC50 of 60,555 µg/mL for Glacial Acetic Acid. As a control of the standard antioxidant activity value of Quercetin is 4,313 µg/mL.
Farajzadeh, Mir Ali; Mohebbi, Ali; Feriduni, Behruz
2016-05-12
In this study, a rapid, simple, and efficient sample preparation method based on continuous dispersive liquid-liquid microextraction has been developed for the extraction and preconcentration of aryloxyphenoxy-propionate herbicides from aqueous samples prior to their analysis by gas chromatography-flame ionization detection. In this method, two parallel glass tubes with different diameters are connected with a teflon stopcock and used as an extraction device. A mixture of disperser and extraction solvents is transferred into one side (narrow tube) of the extraction device and an aqueous phase containing the analytes is filled into the other side (wide tube). Then the stopcock is opened and the mixture of disperser and extraction solvents mixes with the aqueous phase. By this action, the extraction solvent is dispersed continuously as fine droplets into the aqueous sample and the target analytes are extracted into the fine droplets of the extraction solvent. The fine droplets move up through the aqueous phase due to its low density compared to aqueous phase and collect on the surface of the aqueous phase as an organic layer. Finally an aliquot of the organic phase is removed and injected into the separation system for analysis. Several parameters that can affect extraction efficiency including type and volume of extraction and disperser solvents, sample pH, and ionic strength were investigated and optimized. Under the optimum extraction conditions, the extraction recoveries and enrichment factors ranged from 49 to 74% and 1633 to 2466, respectively. Relative standard deviations were in the ranges of 3-6% (n = 6, C = 30 μg L(-1)) for intra-day and 4-7% (n = 4, C = 30 μg L(-1)) for inter-day precisions. The limits of detection were in the range of 0.20-0.86 μg L(-1). Finally the proposed method was successfully applied to determine the target herbicides in fruit juice and vegetable samples. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
van Niekerk, Daniel
The structural differences and similarities of two Permian-aged South African coals, vitrinite-rich Waterberg and inertinite-rich Highveld coals (similar rank, carbon content and Permian age), were evaluated. With South African coals the opportunity presented itself to study not only Permian-aged Gondwana vitrinite but also inertinite. It was expected that these coals would differ from Northern hemisphere Carboniferous coals. It was concluded from various structural data that both coals, although different in maceral composition and depositional basins, are similar in their base structural composition. The main differences were that the inertinite-rich Highveld coal was more ordered, more aromatic, and had less hydrogen than the vitrinite-rich Waterberg coal. Analytical data were used to construct large-scale advanced molecular representations for vitrinite-rich Waterberg and inertinite-rich Highveld coals. The three-dimensional models were structurally diverse with a molecular weight range of 78 to 1900 amu. The vitrinite-rich coal model consisted of 18,572 atoms and 191 individual molecules and the inertinite-rich coal model consisted of 14,242 atoms and 158 individual molecules. This largescale modeling effort was enabled by the development of various PERL scripts to automate various visualization and analytical aspects. Coal swelling studies were conducted using the traditional pack-bed swelling method and a new novel single-particle stop-motion videography swelling method with NMP and CS2/NMP solvents. The pack-bed swelling showed that vitrinite-rich coal had a greater swelling extent and that swelling extent for both coals was greater in CS2/NMP binary solvent than for NMP. Single-particle swelling experiments showed that both coals, for both solvents, exhibit overshoot-type and climbing-type swelling behaviors. Inertinite-coal had a faster swelling rate, in both solvents, than the vitrinite-rich coal. The single-particle swelling data was used to calculate the kinetic parameters and it was found that the swelling was governed by relaxation of the coal structure (super-Case II swelling). X-ray computed tomography was conducted confirming anisotropic swelling. The petrographic transitions (maceral-group composition and reflectance) with solvent swelling and extraction were quantified. No changes in the maceral compositions were found, but changes in some coal particles were observed. Random reflectance analysis showed that, for both vitrinite and inertinite, there is a decrease in reflectance values with solvent treatment. Vitrinite reflectograms showed a shift from the dominant reflecting V-types to lower V-types. The inertinite reflectograms exhibited an increase in number of I-types (broadening of reflectrograms). Molecular simulation and visualization approaches to solvent swelling and extraction were performed on the proposed molecular models of vitrinite-rich and inertinite-rich coals. A theoretical extraction yield was determined using solubility parameters and showed agreement with experimental extraction yield trends. Statistical Associating Fluid Theory (SAFT) modeling was explored to test whether this method could predict swelling extent. The predicted swelling trends of SAFT were comparable to that of the experimental swelling results. SAFT was found to be a promising tool for solvent-coal interaction predictions. Partially solvent swollen structures were constructed by the addition of solvent molecules to the original coal molecules using a amorphous building approach. This method showed that coal-coal non-bonding interaction changed with the introduction of solvent. A disruption in the van der Waals interaction energies and a change in hydrogen bond distributions were observed in the swollen coal models and quantified. It was concluded that small changes in coal structure translates to significant changes in solvent interaction behavior. These changes were successfully visualized and simulated using atomistic molecular representations.
Zhang, Lijin; Wang, Maoshan
2017-02-01
In this study, deep eutectic solvents were proposed for the ultrasound-assisted extraction of polysaccharides from Dioscorea opposita Thunb. Several deep eutectic solvents were prepared for the extraction of polysaccharides, among which the deep eutectic solvent composed of choline chloride and 1,4-butanediol was proved to be suitable for the extraction. Based on the screening of single-factor experiment design and orthogonal experiment design, three experimental factors were optimized for the Box-Behnken experimental design combined with response surface methodology, which gave the optimal extraction conditions: water content of 32.89%(v/v), extraction temperature of 94.00°C, and the extraction time of 44.74min. The optimal extraction conditions could supply higher extraction yield than those of hot water extraction and water-based ultrasound-assisted extraction. Therefore, deep eutectic solvents were an excellent extraction solvent alternative to the extraction of polysaccharides from sample matrices. Copyright © 2016 Elsevier B.V. All rights reserved.
21 CFR 173.280 - Solvent extraction process for citric acid.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Solvent extraction process for citric acid. 173..., Lubricants, Release Agents and Related Substances § 173.280 Solvent extraction process for citric acid. A solvent extraction process for recovery of citric acid from conventional Aspergillus niger fermentation...
Low extractable wipers for cleaning space flight hardware
NASA Technical Reports Server (NTRS)
Tijerina, Veronica; Gross, Frederick C.
1986-01-01
There is a need for low extractable wipers for solvent cleaning of space flight hardware. Soxhlet extraction is the method utilized today by most NASA subcontractors, but there may be alternate methods to achieve the same results. The need for low non-volatile residue materials, the history of soxhlet extraction, and proposed alternate methods are discussed, as well as different types of wipers, test methods, and current standards.
Li, Yajing; Fu, Xiaoting; Duan, Delin; Liu, Xiaoyong; Xu, Jiachao; Gao, Xin
2017-01-01
Phlorotannins are a group of complex polymers of phloroglucinol (1,3,5-trihydroxybenzene), which are unique compounds from marine brown algae. In our present study, a procedure for extraction and enrichment of phlorotannins from S. fusiforme with highly antioxidant potentials was established. After comparison of different extraction methods, the optimal extraction conditions were established as follows. The freeze-dried seaweed powder was extracted with 30% ethanol-water solvent with a solid/liquid ratio of 1:5 at temperature of 25 °C for 30 min. After extraction, the phlorotannins were fractioned by different solvents, among which the ethyl acetate fraction exhibited both the highest total phlorotannin content (88.48 ± 0.30 mg PGE/100 mg extract) and the highest antioxidant activities. The extracts obtained from these locations were further purified and characterized using a modified UHPLC-QQQ-MS method. Compounds with 42 different molecular weights were detected and tentatively identified, among which the fuhalol-type phlorotannins were the dominant compounds, followed by phlorethols and fucophlorethols with diverse degree of polymerization. Eckol-type phlorotannins including some newly discovered carmalol derivatives were detected in Sargassum species for the first time. Our study not only described the complex phlorotannins composition in S. fusiforme, but also highlighted the challenges involved in structural elucidation of these compounds. PMID:28230766
Van Loo, Ellen J; Babu, D; Crandall, Philip G; Ricke, Steven C
2012-06-01
Liquid smoke extracts have traditionally been used as flavoring agents, are known to possess antioxidant properties, and serve as natural alternatives to conventional antimicrobials. The antimicrobial efficacies of commercial liquid smoke samples may vary depending on their source and composition and the methods used to extract and concentrate the smoke. We investigated the MICs of eight commercial liquid smoke samples against Salmonella Enteritidis, Staphylococcus aureus, and Escherichia coli . The commercial liquid smoke samples purchased were supplied by the manufacturer as water-based or concentrated extracts of smoke from different wood sources. The MICs of the commercial smokes to inhibit the growth of foodborne pathogens ranged from 0.5 to 6.0% for E. coli, 0.5 to 8.0% for Salmonella, and 0.38 to 6% for S. aureus. The MIC for each liquid smoke sample was similar in its effect on both E. coli and Salmonella. Solvent-extracted antimicrobials prepared using pecan shells displayed significant differences between their inhibitory concentrations depending on the type of solvent used for extraction. The results indicated that the liquid smoke samples tested in this study could serve as effective natural antimicrobials and that their inhibitory effects depended more on the solvents used for extraction than the wood source.
Process and apparatus for solvent extraction of oil from oil-containing diatomite ore
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karnofsky, G. B.
1980-12-16
A process for solvent extraction of oil from oil bearing diatomite ore and an apparatus for use therewith, wherein the ore is extracted by countercurrent decantation with a hydrocarbon solvent, solvent is recovered from the extract by multiple effect evaporation followed by stripping, and the spent diatomite is contacted with water to displace a major portion of the solvent therefrom, and solvent is recovered from the aqueous slurry of the spent diatomite by stripping with steam at superatmospheric pressure.
Li, Na; Wang, Yuzhi; Xu, Kaijia; Huang, Yanhua; Wen, Qian; Ding, Xueqin
2016-05-15
Six kinds of new type of green betaine-based deep eutectic solvents (DESs) have been synthesized. Deep eutectic solvent aqueous two-phase systems (DES-ATPS) were established and successfully applied in the extraction of protein. Betaine-urea (Be-U) was selected as the suitable extractant. Single factor experiments were carried out to determine the optimum conditions of the extraction process, such as the salt concentration, the mass of DES, the separation time, the amount of protein, the temperature and the pH value. The extraction efficiency could achieve to 99.82% under the optimum conditions. Mixed sample and practical sample analysis were discussed. The back extraction experiment was implemented and the back extraction efficiency could reach to 32.66%. The precision experiment, repeatability experiment and stability experiment were investigated. UV-vis, FT-IR and circular dichroism (CD) spectra confirmed that the conformation of protein was not changed during the process of extraction. The mechanisms of extraction were researched by dynamic light scattering (DLS), the measurement of the conductivity and transmission electron microscopy (TEM). DES-protein aggregates and embraces phenomenon play considerable roles in the separation process. All of these results indicated that betaine-based DES-ATPS may provide a potential substitute new method for the separation of proteins. Copyright © 2016 Elsevier B.V. All rights reserved.
Remediating pesticide contaminated soils using solvent extraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahle-Demessie, E.; Meckes, M.C.; Richardson, T.L.
Bench-scale solvent extraction studies were performed on soil samples obtained from a Superfund site contaminated with high levels of p,p{prime}-DDT, p,p{prime}-DDE and toxaphene. The effectiveness of the solvent extraction process was assessed using methanol and 2-propanol as solvents over a wide range of operating conditions. It was demonstrated that a six-stage methanol extraction using a solvent-to-soil ratio of 1.6 can decrease pesticide levels in the soil by more than 99% and reduce the volume of material requiring further treatment by 25 times or more. The high solubility of the pesticides in methanol resulted in rapid extraction rates, with the systemmore » reaching quasi-equilibrium state in 30 minutes. The extraction efficiency was influenced by the number of extraction stages, the solvent-to-soil ratio, and the soil moisture content. Various methods were investigated to regenerate and recycle the solvent. Evaporation and solvent stripping are low cost and reliable methods for removing high pesticide concentrations from the solvent. For low concentrations, GAC adsorption may be used. Precipitating and filtering pesticides by adding water to the methanol/pesticide solution was not successful when tested with soil extracts. 26 refs., 10 figs., 6 tabs.« less
Bandforuzi, Samereh Ranjbar; Hadjmohammadi, Mohammad Reza
2018-08-03
The extraction of phthalate esters (PEs) from aqueous matrices using two-phase solvent bar microextraction by organic micellar phase was investigated. A short hollow fiber immobilized with reverse micelles of Brij 35 surfactant in 1-octanol was served as the solvent bar for microextraction. Experimental results show that the extraction efficiency were much higher using two-phase solvent bar microextraction based on non-ionic surfactant than conventional two-phase solvent bar microextraction because of a positive effect of surfactant-containing extraction phase in promoting the partition process by non-ionic intermolecular forces such as polar and hydrophobicity interactions. The nature of the extraction solvent, type and concentration of non-ionic surfactant, extraction time, sample pH, temperature, stirring rate and ionic strength were the effecting parameters which optimized to obtain the highest extraction recovery. Analysis of recovered analytes was carried out with high performance liquid chromatography coupled with ultraviolet detection (HPLC-UV). Under the optimum conditions, linearity was observed in the range of 1-800 ng mL -1 for dimethylphthalate (DMP) and 0.5-800 ng mL -1 for diethylphthalate (DEP) and di-n-butyl phthalate (DBP) with correlation determination values above 0.99 for them. The limits of detection and quantification were ranged from 0.012 to 0.03 ng mL -1 and 0.04-0.1 ng mL -1 , respectively. The ranges of intra-day and inter-day RSD (n = 3) at 20 ng mL -1 of PEs were 1.8-2.1% and 2.1-2.6%, respectively. Results showed that developed method can be a very powerful, innovative and promising sample preparation technique in PEs analysis from environmental and drinking water samples. Copyright © 2018. Published by Elsevier B.V.
Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.
2007-03-27
A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. Solvent mixtures formed of such a modified solvent with a desired co-solvent, preferably a low boiling hydrocarbon, are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.
Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.
2004-06-22
A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. Solvent mixtures formed of such a modified solvent with a desired co-solvent, preferably a low boiling hydrocarbon, are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.
Salahinejad, Maryam; Aflaki, Fereydoon
2011-06-01
Dispersive liquid-liquid microextraction followed by inductively coupled plasma-optical emission spectrometry has been investigated for determination of Cd(II) ions in water samples. Ammonium pyrrolidine dithiocarbamate was used as chelating agent. Several factors influencing the microextraction efficiency of Cd (II) ions such as extracting and dispersing solvent type and their volumes, pH, sample volume, and salting effect were optimized. The optimization was performed both via one variable at a time, and central composite design methods and the optimum conditions were selected. Both optimization methods showed nearly the same results: sample size 5 mL; dispersive solvent ethanol; dispersive solvent volume 2 mL; extracting solvent chloroform; extracting solvent volume 200 [Formula: see text]L; pH and salt amount do not affect significantly the microextraction efficiency. The limits of detection and quantification were 0.8 and 2.5 ng L( - 1), respectively. The relative standard deviation for five replicate measurements of 0.50 mg L( - 1) of Cd (II) was 4.4%. The recoveries for the spiked real samples from tap, mineral, river, dam, and sea waters samples ranged from 92.2% to 104.5%.
21 CFR 173.280 - Solvent extraction process for citric acid.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Solvent extraction process for citric acid. 173... Solvent extraction process for citric acid. A solvent extraction process for recovery of citric acid from conventional Aspergillus niger fermentation liquor may be safely used to produce food-grade citric acid in...
21 CFR 173.280 - Solvent extraction process for citric acid.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Solvent extraction process for citric acid. 173... Solvent extraction process for citric acid. A solvent extraction process for recovery of citric acid from conventional Aspergillus niger fermentation liquor may be safely used to produce food-grade citric acid in...
21 CFR 173.280 - Solvent extraction process for citric acid.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Solvent extraction process for citric acid. 173... Solvent extraction process for citric acid. A solvent extraction process for recovery of citric acid from conventional Aspergillus niger fermentation liquor may be safely used to produce food-grade citric acid in...
Chakraborty, Sumanta; Singha, Someshwar; Bhattacharya, Kuntal; Chandra, Goutam
2013-12-01
To investigate the mosquito larvicidal activity of Cayratia trifolia (L.) Domin (Vitaceae: Vitales) (C. trifolia) which is distributed in many parts of India with medicinal properties as vector control is facing threat due to the emergence of resistance to synthetic insecticides. Young and mature leaves of C. trifolia were investigated for larvicidal activity against 3rd instars larvae of Culex quinquefasciatus in different seasons throughout the year. The active fractions were extracted using six different solvents in a non-polar to polar fashion viz petroleum-ether, benzene, chloroform: methanol (1:1 v/v), acetone, absolute alcohol and distilled water. Dose dependent mortality was recorded against each solvent extract. Determination of LD50 and LD90 were executed through log-probit analysis using the most bioactive fraction. The fluctuations in mortality were statistically co-related through ANOVA analyses concerning different seasons and types of leaves as random variables. Justification of larvicidal activity was established through student's t-test. Costing effects were evaluated on the non-target water fauna under laboratory conditions. Thin layer chromatographic techniques were performed for phytochemical analysis and categorization of chemical personality of the active fractions using the most effective solvent extract following standard methods. Significant variations in mortality rate were noted with respect to the type of leaves (mature and senescence), concentration of leaf extract and between seasons. The water extract among all the solvent extracts was found to induce cent percent mortality at 50 mg/L in test mosquito species within 24 h with a LD50 and LD90 value of 10.70 mg/L and 27.64 mg/L respectively. No significant mortality was recorded in non-target water population. Chromatographic analyses of the water extract revealed the presence of steroids, triterpene glycosides, essential oil, phenolics and diterpenes as secondary phytochemicals. Water extract of C. trifolia leaf promised as a cost effective and potent larvicidal agent against Culex quinquefasciatus. Copyright © 2013 Asian Pacific Tropical Biomedical Magazine. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Puspitasari, Nurrisma; Nurul Amalia, Silviyanti S.; Yudoyono, Gatut; Endarko
2017-07-01
Dye Sensitized Solar Cell (DSSC) using natural dyes (chlorophyll, curcumin from turmeric extract, and anthocyanin from mangosteen extract) have been successfully fabricated for determining the effect of variation natural dyes, mixing dyes and acetonitrile in electrolyte toward characterization of DSSC. DSSC consists of five parts namely ITO (Indium Tin Oxide) as a substrate; TiO2 as semiconductor materials; natural dyes as an electron donor; electrolyte as electron transfer; and carbon as a catalyst that can convert light energy into electric energy. Two types of gel electrolyte based on PEG that mixed with liquid electrolyte have utilized for analyzing the lifetime of DSSC. Type I used distilled water as a solvent whilst type II used acetonitrile as a solvent with addition of concentration of KI and iodine. The main purpose of study was to investigate influence of solvent in electrolyte, variation of natural dyes and mixing dyes toward an efficiency that resulted by DSSC. The result showed that electrolyte type II is generally better than type I with efficiency 0,0556 and 0,0456 %, respectively. An efficiency values which resulted from a variation of mixed three natural dyes showed the greatest efficiency compared to mixed two natural dyes and one dye, with an efficiency value can be achieved at 0,0194 % for chlorophyll; 0,111 % for turmeric; 0,0105 % for mangosteen; 0,0244% (mangosteen and chlorophyll); 0,0117 % (turmeric and mangosteen); 0,0158 % (turmeric and chlorophyll); and 0.0566 % (mixed three natural dyes).
Kellogg, Joshua J.; Wallace, Emily D.; Graf, Tyler N.; Oberlies, Nicholas H.; Cech, Nadja B.
2018-01-01
Metabolomics has emerged as an important analytical technique for multiple applications. The value of information obtained from metabolomics analysis depends on the degree to which the entire metabolome is present and the reliability of sample treatment to ensure reproducibility across the study. The purpose of this study was to compare methods of preparing complex botanical extract samples prior to metabolomics profiling. Two extraction methodologies, accelerated solvent extraction and a conventional solvent maceration, were compared using commercial green tea [Camellia sinensis (L.) Kuntze (Theaceae)] products as a test case. The accelerated solvent protocol was first evaluated to ascertain critical factors influencing extraction using a D-optimal experimental design study. The accelerated solvent and conventional extraction methods yielded similar metabolite profiles for the green tea samples studied. The accelerated solvent extraction yielded higher total amounts of extracted catechins, was more reproducible, and required less active bench time to prepare the samples. This study demonstrates the effectiveness of accelerated solvent as an efficient methodology for metabolomics studies. PMID:28787673
Conversion and Extraction of Insoluble Organic Materials in Meteorites
NASA Technical Reports Server (NTRS)
Locke, Darren R.; Burton, Aaron S.; Niles, Paul B.
2016-01-01
We endeavor to develop and implement methods in our laboratory to convert and extract insoluble organic materials (IOM) from low car-bon bearing meteorites (such as ordinary chondrites) and Precambrian terrestrial rocks for the purpose of determining IOM structure and prebiotic chemistries preserved in these types of samples. The general scheme of converting and extracting IOM in samples is summarized in Figure 1. First, powdered samples are solvent extracted in a micro-Soxhlet apparatus multiple times using solvents ranging from non-polar to polar (hexane - non-polar, dichloromethane - non-polar to polar, methanol - polar protic, and acetonitrile - polar aprotic). Second, solid residue from solvent extractions is processed using strong acids, hydrochloric and hydrofluoric, to dissolve minerals and isolate IOM. Third, the isolated IOM is subjected to both thermal (pyrolysis) and chemical (oxidation) degradation to release compounds from the macromolecular material. Finally, products from oxidation and pyrolysis are analyzed by gas chromatography - mass spectrometry (GCMS). We are working toward an integrated method and analysis scheme that will allow us to determine prebiotic chemistries in ordinary chondrites and Precambrian terrestrial rocks. Powerful techniques that we are including are stepwise, flash, and gradual pyrolysis and ruthenium tetroxide oxidation. More details of the integrated scheme will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, T. B.
An Extraction, Scrub, and Strip (ESS) test was performed on a sample of Salt Waste Processing Facility (SWPF) Caustic-Side Solvent Extraction (CSSX) solvent and salt simulant to determine cesium distribution ratios (D(Cs)), and cesium concentration in the strip effluent (SE) and decontaminated salt solution (DSS) streams; this data will be used by Parsons to help determine if the solvent is qualified for use at the SWPF. The ESS test showed acceptable performance of the solvent for extraction, scrub, and strip operations. The extraction D(Cs) measured 12.9, exceeding the required value of 8. This value is consistent with results from previousmore » ESS tests using similar solvent formulations. Similarly, scrub and strip cesium distribution ratios fell within acceptable ranges.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roach, Benjamin D.; Williams, Neil J.; Moyer, Bruce A.
As part of the ongoing development of the Next-Generation Caustic-Side Solvent Extraction (NGS) process, the thermal stability of the process solvent was investigated and shown to be adequate for industrial application. The solvent was thermally treated at 35 C over a period of 13 months whilst in dynamic contact with each of the aqueous phases of the current NGS process, namely SRS 15 (a highly caustic waste simulant), sodium hydroxide scrub solution (0.025 M), and boric acid strip solution (0.01 M). The effect of thermal treatment was evaluated by assessing batch extract/scrub/strip performance as a function of time, by monitoringmore » the sodium extraction capacity of the solvent, and by analysis of the solvent using electrospray mass spectrometry. Current studies indicate that the NGS solvent should be thermally robust for a period of XXX months at the Modular Caustic-Side Solvent Extraction Unit (MCU) pilot plant located at Savannah River Site. Furthermore, the guanidine suppressor appears to be the solvent component most significantly impacted by thermal treatment of the solvent, showing significant degradation over time.« less
Roach, Benjamin D.; Williams, Neil J.; Moyer, Bruce A.
2015-09-02
As part of the ongoing development of the Next-Generation Caustic-Side Solvent Extraction (NGS) process, the thermal stability of the process solvent was investigated and shown to be adequate for industrial application. The solvent was thermally treated at 35 C over a period of 13 months whilst in dynamic contact with each of the aqueous phases of the current NGS process, namely SRS 15 (a highly caustic waste simulant), sodium hydroxide scrub solution (0.025 M), and boric acid strip solution (0.01 M). The effect of thermal treatment was evaluated by assessing batch extract/scrub/strip performance as a function of time, by monitoringmore » the sodium extraction capacity of the solvent, and by analysis of the solvent using electrospray mass spectrometry. Current studies indicate that the NGS solvent should be thermally robust for a period of XXX months at the Modular Caustic-Side Solvent Extraction Unit (MCU) pilot plant located at Savannah River Site. Furthermore, the guanidine suppressor appears to be the solvent component most significantly impacted by thermal treatment of the solvent, showing significant degradation over time.« less
NASA Astrophysics Data System (ADS)
Putri, D. K. Y.; Kusuma, H. S.; Syahputra, M. E.; Parasandi, D.; Mahfud, M.
2017-12-01
Patchouli plant (Pogostemon cablin Benth) is one of the important essential oil-producing plant, contributes more than 50% of total exports of Indonesia’s essential oil. However, the extraction of patchouli oil that has been done in Indonesia is generally still used conventional methods that require enormous amount of energy, high solvent usage, and long time of extraction. Therefore, in this study, patchouli oil extraction was carried out by using microwave hydrodistillation and solvent-free microwave extraction methods. Based on this research, it is known that the extraction of patchouli oil using microwave hydrodistillation method with longer extraction time (240 min) only produced patchouli oil’s yield 1.2 times greater than solvent-free microwave extraction method which require faster extraction time (120 min). Otherwise the analysis of electric consumption and the environmental impact, the solvent-free microwave extraction method showed a smaller amount when compared with microwave hydrodistillation method. It is conclude that the use of solvent-free microwave extraction method for patchouli oil extraction is suitably method as a new green technique.
Extraction and electrospinning of gelatin from fish skin.
Songchotikunpan, Panida; Tattiyakul, Jirarat; Supaphol, Pitt
2008-04-01
Ultra-fine gelatin fibers were successfully fabricated by electrospinning from the solutions of Nile tilapia (Oreochromis niloticus) skin-extracted gelatin in either acetic acid or formic acid aqueous solutions. The extracted gelatin contained 7.3% moisture, 89.4% protein, 0.3% lipid, and 0.4% ash contents (on the basis of wet weight), while the bloom gel strength, the shear viscosity, and the pH values were 328 g, 17.8 mPa s, and 5.0, respectively. Both the acid concentration and the concentration of the gelatin solutions strongly influenced the properties of the as-prepared solutions and the obtained gelatin fibers. At low acid concentrations (i.e., 15% (w/v) extracted gelatin solutions in 10 and 20% (v/v) acetic acid solvents or 10-60% (v/v) formic acid solvents), a combination between smooth and beaded fibers was observed. At low concentrations of the gelatin solutions in either 40% (v/v) acetic acid solvent or 80% (v/v) formic acid solvent (i.e., 5-11%, w/v), either discrete beads or beaded fibers were obtained, while, at higher concentrations (i.e., 14-29%, w/v), only smooth or a combination of smooth and beaded fibers were obtained. The average diameters of the obtained fibers, regardless of the types of the acid solvents used, ranged between 109 and 761 nm. Lastly, cross-linking of the obtained gelatin fiber mats with glutaraldehyde vapor caused slight shrinkage from their original dimension, and the cross-linked gelatin fiber mats became stiffer.
Process and apparatus for solvent extraction of oil from oil-containing diatomite ore
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karnofsky, G.B.
1979-09-11
A process is described for solvent extraction of oil-bearing diatomite ore. An apparatus is provided for use therewith, wherein the ore is extracted by countercurrent decantation with a hydrocarbon solvent. The solvent is recovered from the extract by multiple effect evaporation followed by stripping, and the spent diatomite is contacted with water to displace a major portion of the solvent therefrom. The solvent is recovered from the aqueous slurry of the spent diatomite by stripping with steam at superatmospheric pressure. 17 claims.
Yoshiara, Luciane Yuri; Madeira, Tiago Bervelieri; Delaroza, Fernanda; da Silva, Josemeyre Bonifácio; Ida, Elza Iouko
2012-12-01
The objective of this study was to optimize the extraction of different isoflavone forms (glycosidic, malonyl-glycosidic, aglycone and total) from defatted cotyledon soy flour using the simplex-centroid experimental design with four solvents of varying polarity (water, acetone, ethanol and acetonitrile). The obtained extracts were then analysed by high-performance liquid chromatography. The profile of the different soy isoflavones forms varied with different extractions solvents. Varying the solvent or mixture used, the extraction of different isoflavones was optimized using the centroid-simplex mixture design. The special cubic model best fitted to the four solvents and its combination for soy isoflavones extraction. For glycosidic isoflavones extraction, the polar ternary mixture (water, acetone and acetonitrile) achieved the best extraction; malonyl-glycosidic forms were better extracted with mixtures of water, acetone and ethanol. Aglycone isoflavones, water and acetone mixture were best extracted and total isoflavones, the best solvents were ternary mixture of water, acetone and ethanol.
Caldas, Sergiane Souza; Soares, Bruno Meira; Abreu, Fiamma; Castro, Ítalo Braga; Fillmann, Gilberto; Primel, Ednei Gilberto
2018-03-01
This paper reports the development of an analytical method employing vortex-assisted matrix solid-phase dispersion (MSPD) for the extraction of diuron, Irgarol 1051, TCMTB (2-thiocyanomethylthiobenzothiazole), DCOIT (4,5-dichloro-2-n-octyl-3-(2H)-isothiazolin-3-one), and dichlofluanid from sediment samples. Separation and determination were performed by liquid chromatography tandem-mass spectrometry. Important MSPD parameters, such as sample mass, mass of C18, and type and volume of extraction solvent, were investigated by response surface methodology. Quantitative recoveries were obtained with 2.0 g of sediment sample, 0.25 g of C18 as the solid support, and 10 mL of methanol as the extraction solvent. The MSPD method was suitable for the extraction and determination of antifouling biocides in sediment samples, with recoveries between 61 and 103% and a relative standard deviation lower than 19%. Limits of quantification between 0.5 and 5 ng g -1 were obtained. Vortex-assisted MPSD was shown to be fast and easy to use, with the advantages of low cost and reduced solvent consumption compared to the commonly employed techniques for the extraction of booster biocides from sediment samples. Finally, the developed method was applied to real samples. Results revealed that the developed extraction method is effective and simple, thus allowing the determination of biocides in sediment samples.
NASA Astrophysics Data System (ADS)
Aminah; Nugraheni, E. R.; Yugatama, A.
2018-03-01
The aim of this study was to evaluate the antibacterial activity from Attacus atlas cocoon extract against Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus) with 3 diffferent solvents polar, semi-polar and non polar which was ethanol, ethyl acetate and chloroform, also to determine the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of the extract. Cocoon was extracted with maceration method using 3 solvents with ratio of sample and solvent 1:10. Antibacterial activity of the Extracts obtained was evaluated with Agar disk diffusion method. The best result was then continued to determine the MIC and MBC of the extract using broth macro-dilution method. The results show that each of the extracts have antibacterial activity with broad spectrum against two different type of bacteria at concentration of 1 g/mL with different clear zone between these extracts. Clear zone from the biggest to the smallest against Escherichia coli was ethyl acetate (10.5 mm), chloroform (9 mm) and ethanol (8 mm). While against Staphylococcus aureus, was obtained by chloroform (12.5 mm), ethyl acetate (10.5 mm) and ethanol (7 mm). The MIC value of extracts can not be determine. The smallest MBC value against both bacteria was obtained by ethyl acetate with concentration of 3.125% b/v as a bactericidal.
Tfaily, Malak M; Chu, Rosalie K; Tolić, Nikola; Roscioli, Kristyn M; Anderton, Christopher R; Paša-Tolić, Ljiljana; Robinson, Errol W; Hess, Nancy J
2015-01-01
Soil organic matter (SOM), a complex, heterogeneous mixture of above and belowground plant litter and animal and microbial residues at various degrees of decomposition, is a key reservoir for carbon (C) and nutrient biogeochemical cycling in soil based ecosystems. A limited understanding of the molecular composition of SOM limits the ability to routinely decipher chemical processes within soil and accurately predict how terrestrial carbon fluxes will respond to changing climatic conditions and land use. To elucidate the molecular-level structure of SOM, we selectively extracted a broad range of intact SOM compounds by a combination of different organic solvents from soils with a wide range of C content. Our use of electrospray ionization (ESI) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) and a suite of solvents with varying polarity significantly expands the inventory of the types of organic molecules present in soils. Specifically, we found that hexane is selective for lipid-like compounds with very low O/C ratios (<0.1); water (H2O) was selective for carbohydrates with high O/C ratios; acetonitrile (ACN) preferentially extracts lignin, condensed structures, and tannin polyphenolic compounds with O/C > 0.5; methanol (MeOH) has higher selectivity toward compounds characterized with low O/C < 0.5; and hexane, MeOH, ACN, and H2O solvents increase the number and types of organic molecules extracted from soil for a broader range of chemically diverse soil types. Our study of SOM molecules by ESI FTICR MS revealed new insight into the molecular-level complexity of organics contained in soils. We present the first comparative study of the molecular composition of SOM from different ecosystems using ultra high-resolution mass spectrometry.
Development of deep eutectic solvents applied in extraction and separation.
Li, Xiaoxia; Row, Kyung Ho
2016-09-01
Deep eutectic solvents, as an alternative to ionic liquids, have greener credentials than ionic liquids, and have attracted considerable attention in related chemical research. Deep eutectic solvents have attracted increasing attention in chemistry for the extraction and separation of various target compounds from natural products. This review highlights the preparation of deep eutectic solvents, unique properties of deep eutectic solvents, and synthesis of deep-eutectic-solvent-based materials. On the other hand, application in the extraction and separation of deep eutectic solvents is also included in this report. In this paper, the available data and references in this field are reviewed to summarize the applications and developments of deep eutectic solvents. Based on the development of deep eutectic solvents, an exploitation of new deep eutectic solvents and deep eutectic solvents-based materials is expected to diversify into extraction and separation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Castejón, Natalia; Luna, Pilar; Señoráns, Francisco J
2017-03-29
Chia (Salvia hispanica L.) seeds contain an important amount of edible oil rich in omega-3 fatty acids. Fast and alternative extraction techniques based on polar solvents, such as ethanol or water, have become relevant for oil extraction in recent years. However, chia seeds also contain a large amount of soluble fiber or mucilage, which makes difficult an oil extraction process with polar solvents. For that reason, the aim of this study was to develop a gentle extraction method for mucilage in order to extract chia oil with polar solvents using pressurized liquids and compare with organic solvent extraction. The proposed mucilage extraction method, using an ultrasonic probe and only water, was optimized at mild conditions (50 °C and sonication 3 min) to guarantee the omega-3 oil quality. Chia oil extraction was performed using pressurized liquid extraction (PLE) with different solvents and their mixtures at five different extraction temperatures (60, 90, 120, 150, and 200 °C). Optimal PLE conditions were achieved with ethyl acetate or hexane at 90 °C in only 10 min of static extraction time (chia oil yield up to 30.93%). In addition, chia oils extracted with nonpolar and polar solvents by PLE were analyzed by gas chromatography-mass spectrometry (GC-MS) to evaluate fatty acid composition at different extraction conditions. Chia oil contained ∼65% of α-linolenic acid regardless of mucilage extraction method, solvent, or temperature used. Furthermore, tocopherols and tocotrienols were also analyzed by HPLC in the extracted chia oils. The mucilage removal allowed the subsequent extraction of the chia oil with polar or nonpolar solvents by PLE producing chia oil with the same fatty acid and tocopherol composition as traditional extraction.
Extraction of Proanthocyanidins and Anthocyanins from Grape Skin by Using Ionic Liquids
2017-01-01
Summary In this study, eight different types of imidazolium-based ionic liquids (ILs) were applied as new solvents in the extraction of flavonoids from grape skin, and compared to the conventional organic solvent extraction that was not reported earlier. The structure of anions, cations and concentration of ILs significantly affected extraction yields. The highest mass fractions of proanthocyanidins and anthocyanins were obtained with 2.5 mol/L of 1-butyl-3-methylimidazolium bromide [C4mim][Br] and 2.5 mol/L of 1-ethyl-3-methylimidazolium bromide [C2mim][Br], respectively. The studied ILs provided an excellent preliminary result in the extraction of anthocyanins. Significantly higher mass fractions of total and all free anthocyanins were extracted with 2.5 mol/L of [C2mim][Br] and 2.5 mol/L of 1-methylimidazolium hydrogen sulfate [mim][HSO4] than with conventional solvent with the exception of anthocyanin-3-O-acetylmonoglucosides in the latter. On the other hand, 2.5 mol/L of [C4mim][Br] and 2.5 mol/L of 1-(4-sulfobutyl)-3-methylimidazolium hydrogen sulfate [sC4mim][HSO4] showed significantly higher selectivity towards anthocyanin-3-O-acetylmonoglucosides and anthocyanin-3-(6-O-p-coumaroyl)monoglucosides. PMID:29089857
Cayot, Nathalie; Lafarge, Céline; Bou-Maroun, Elias; Cayot, Philippe
2016-07-22
Dichloromethane is known as a very efficient solvent, but, as other halogenated solvents, is recognized as a hazardous product (CMR substance). The objective of the present work is to propose substitution solvent for the extraction of volatile compounds. The most important physico-chemical parameters in the choice of an appropriate extraction solvent of volatile compounds are reviewed. Various solvents are selected on this basis and on their hazard characteristics. The selected solvents, safer than dichloromethane, are compared using the extraction efficiency of volatile compounds from a model food product able to interact with volatile compounds. Volatile compounds with different hydrophobicity are used. High extraction yields were positively correlated with high boiling points and high Log Kow values of volatile compounds. Mixtures of solvents such as azeotrope propan-2-one/cyclopentane, azeotrope ethyl acetate/ethanol, and mixture ethyl acetate/ethanol (3:1, v/v) gave higher extraction yields than those obtained with dichloromethane. Copyright © 2016 Elsevier B.V. All rights reserved.
Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.
2006-07-11
A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. This solvent is substantially devoid of mono-alkyl amines and alcohols. Solvent mixtures formed of such a modified solvent with a desired cosolvent, preferably a low boiling hydrocarbon which forms an azeotrope with water are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.
Gaddy, James L.; Clausen, Edgar C.; Ko, Ching-Whan; Wade, Leslie E.; Wikstrom, Carl V.
2002-01-01
A modified water-immiscible solvent useful in the extraction of acetic acid from aqueous streams is a substantially pure mixture of isomers of highly branched di-alkyl amines. This solvent is substantially devoid of mono-alkyl amines and alcohols. Solvent mixtures formed of such a modified solvent with a desired cosolvent, preferably a low boiling hydrocarbon which forms an azeotrope with water are useful in the extraction of acetic acid from aqueous gaseous streams. An anaerobic microbial fermentation process for the production of acetic acid employs such solvents, under conditions which limit amide formation by the solvent and thus increase the efficiency of acetic acid recovery. Methods for the direct extraction of acetic acid and the extractive fermentation of acetic acid also employ the modified solvents and increase efficiency of acetic acid production. Such increases in efficiency are also obtained where the energy source for the microbial fermentation contains carbon dioxide and the method includes a carbon dioxide stripping step prior to extraction of acetic acid in solvent.
Boeing, Joana Schuelter; Barizão, Erica Oliveira; E Silva, Beatriz Costa; Montanher, Paula Fernandes; de Cinque Almeida, Vitor; Visentainer, Jesuí Vergilio
2014-01-01
This study evaluated the effect of the solvent on the extraction of antioxidant compounds from black mulberry (Morus nigra), blackberry (Rubus ulmifolius) and strawberry (Fragaria x ananassa). Different extracts of each berry were evaluated from the determination of total phenolic content, anthocyanin content and antioxidant capacity, and data were applied to the principal component analysis (PCA) to gain an overview of the effect of the solvent in extraction method. For all the berries analyzed, acetone/water (70/30, v/v) solvent mixture was more efficient solvent in the extracting of phenolic compounds, and methanol/water/acetic acid (70/29.5/0.5, v/v/v) showed the best values for anthocyanin content. Mixtures of ethanol/water (50/50, v/v), acetone water/acetic acid (70/29.5/0.5, v/v/v) and acetone/water (50/50, v/v) presented the highest antioxidant capacities for black mulberries, blackberries and strawberries, respectively. Antioxidants extractions are extremely affected by the solvent combination used. In addition, the obtained extracts with the organic solvent-water mixtures were distinguished from the extracts obtained with pure organic solvents, through the PCA analysis.
Waksmundzka-Hajnos, M; Petruczynik, A; Dragan, A; Wianowska, D; Dawidowicz, A L
2004-01-01
Optimal conditions for the extraction and analysis of furanocoumarins from fruits of Archangelica officinalis Hoffm. have been determined. The following extraction methods were used: exhaustive extraction in a Soxhlet apparatus, ultrasonication at 25 and 60 degrees C, microwave-assisted solvent extraction in open and closed systems, and accelerated solvent extraction (ASE). In most cases the yields of furanocoumarins were highest using the ASE method. The effects of extracting solvent, temperature and time of extraction using this method were investigated. The highest yield of furanocoumarins by ASE was obtained with methanol at 100-130 degrees C for 10 min. The extraction yields of furanocoumarins from plant material by ultrasonication at 60 degrees C and microwave-assisted solvent extraction in an open system were comparable to the extraction yields obtained in the time- and solvent-consuming exhaustive process involving the Soxhlet apparatus.
Switchable hydrophilicity solvents for lipid extraction from microalgae for biofuel production.
Boyd, Alaina R; Champagne, Pascale; McGinn, Patrick J; MacDougall, Karen M; Melanson, Jeremy E; Jessop, Philip G
2012-08-01
A switchable hydrophilicity solvent (SHS) was studied for its effectiveness at extracting lipids from freeze-dried samples of Botryococcus braunii microalgae. The SHS N,N-dimethylcyclohexylamine extracted up to 22 wt.% crude lipid relative to the freeze-dried cell weight. The solvent was removed from the extract with water saturated with carbon dioxide at atmospheric pressure and recovered from the water upon de-carbonation of the mixture. Liquid chromatography-mass spectrometry (LC-MS) showed that the extracted lipids contained high concentrations of long chain tri-, di- and mono-acylglycerols, no phospholipids, and only 4-8% of residual solvent. Unlike extractions with conventional organic solvents, this new method requires neither distillation nor the use of volatile, flammable or chlorinated organic solvents. Copyright © 2012 Elsevier Ltd. All rights reserved.
Terra-Kleen Response Group Inc. (Terra-Kleen), has commercialized a solvent extraction technology that uses a proprietary extraction solvent to transfer organic constituents from soil to a liquid phase in a batch process at ambient temperatures. The proprietary solvent has a rel...
Kellogg, Joshua J; Wallace, Emily D; Graf, Tyler N; Oberlies, Nicholas H; Cech, Nadja B
2017-10-25
Metabolomics has emerged as an important analytical technique for multiple applications. The value of information obtained from metabolomics analysis depends on the degree to which the entire metabolome is present and the reliability of sample treatment to ensure reproducibility across the study. The purpose of this study was to compare methods of preparing complex botanical extract samples prior to metabolomics profiling. Two extraction methodologies, accelerated solvent extraction and a conventional solvent maceration, were compared using commercial green tea [Camellia sinensis (L.) Kuntze (Theaceae)] products as a test case. The accelerated solvent protocol was first evaluated to ascertain critical factors influencing extraction using a D-optimal experimental design study. The accelerated solvent and conventional extraction methods yielded similar metabolite profiles for the green tea samples studied. The accelerated solvent extraction yielded higher total amounts of extracted catechins, was more reproducible, and required less active bench time to prepare the samples. This study demonstrates the effectiveness of accelerated solvent as an efficient methodology for metabolomics studies. Copyright © 2017. Published by Elsevier B.V.
Supercritical CO2/Co-solvents Extraction of Porogen and Surfactant to Obtain
NASA Astrophysics Data System (ADS)
Lubguban, Jorge
2005-03-01
A method of pore generation by supercritical CO2 (SCCO2)/co-solvents extraction for the preparation of nanoporous organosilicate thin films for ultralow dielectric constant materials is investigated. A nanohybrid film was prepared from poly (propylene glycol) (PPG) and poly(methylsilsesquioxane) (PMSSQ) whereby the PPG porogen are entrapped within the crosslinked PMSSQ matrix. Another set of thin films was produced by liquid crystal templating whereby non-ionic (polyoxyethylene 10 stearyl ether) (Brij76) and ionic (cetyltrimethylammonium bromide) (CTAB) surfactant were used as sacrificial templates in a tetraethoxy silane (TEOS) and methyltrimethoxy silane (MTMS) based matrix. These two types of films were treated with SCCO2/co-solvents to remove porogen and surfactant templates. As a comparison, porous structures generated by thermal decomposition were also evaluated. It is found that SCCO2/co-solvents treatment produced closely comparable results with thermal decomposition. The results were evident from Fourier Transform Infrared (FT- IR) spectroscopy and optical constants data obtained from variable angle spectroscopic ellipsometry (VASE).
Chen, Fengli; Zhang, Qiang; Fei, Shimin; Gu, Huiyan; Yang, Lei
2017-03-01
In this study, ultrasonic circulating extraction (UCE) technique was firstly and successfully applied for extraction of samara oil from Acer saccharum. The extraction kinetics were fitted and described, and the extraction mechanism was discussed. Through comparison, n-hexane was selected as the extraction solvent, the influence of solvent type on the responses was detailedly interpreted based on the influence of their properties on the occurrence and intensity of cavitation. Seven parameters potentially influencing the extraction yield of samara oil and content of nervonic acid, including ultrasound irradiation time, ultrasound irradiation power, ultrasound temperature, liquid-solid ratio, soaking time, particle size and stirring rate, were screened through Plackett-Burman design to determine the significant variables. Then, three parameters performed statistically significant, including liquid-solid ratio, ultrasound irradiation time and ultrasound irradiation power, were further optimized using Box-Behnken design to predict optimum extraction conditions. Satisfactory yield of samara oil (11.72±0.38%) and content of nervonic acid (5.28±0.18%) were achieved using the optimal conditions. 1% proportion of ethanol in extraction solvent, 120°C of drying temperature and 6.4% moisture were selected and applied for effective extraction. There were no distinct differences in the physicochemical properties of samara oil obtained by UCE and Soxhlet extraction, and the samara oil obtained by UCE exhibited better antioxidant activities. Therefore, UCE method has enormous potential for efficient extraction of edible oil with high quality from plant materials. Copyright © 2016 Elsevier B.V. All rights reserved.
Shen, Jinchao; Shao, Xueguang
2005-11-01
The performance of accelerated solvent extraction in the analysis of terpenoids and sterols in tobacco samples was investigated and compared with those of Soxhlet extraction and ultrasonically assisted extraction with respect to yield, extraction time, reproducibility and solvent consumption. The results indicate that although the highest yield was achieved by Soxhlet extraction, ASE appears to be a promising alternative to classical methods since it is faster and uses less solvent, especially when applied to the investigation of large batch tobacco samples. However, Soxhlet extraction is still the preferred method for analyzing sterols since it gives a higher extraction efficiency than other methods.
Place, Benjamin J; Kleber, Markus; Field, Jennifer A
2013-03-01
Fullerenes possess unique chemical properties that make the isolation of these compounds from heterogeneous environmental matrices difficult. For example, previous reports indicate that toluene-based extraction techniques vary in their ability to extract C60, especially from highly carbonaceous solid matrices. Here, we examined the effects of (i) solvent type (toluene alone versus an 80:20 v/v mixture of toluene and 1-methylnaphthalene) and (ii) analyte concentration on the extraction efficiency of an isotopically labeled surrogate compound, (13)C60. The toluene/1-methylnaphthalene mixture increased fullerene extraction efficiency from carbon lampblack by a factor of five, but was not significantly different from 100% toluene when applied to wood stove soot or montmorillonite. Recovery of the (13)C60 surrogate declined with decreasing analyte concentration. The usefulness of isotopically labeled surrogate is demonstrated and the study provides a quantitative assessment regarding the dependence of fullerene extraction efficiencies on the geochemical characteristics of solid matrices. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mass transfer coefficient in ginger oil extraction by microwave hydrotropic solution
NASA Astrophysics Data System (ADS)
Handayani, Dwi; Ikhsan, Diyono; Yulianto, Mohamad Endy; Dwisukma, Mandy Ayulia
2015-12-01
This research aims to obtain mass transfer coefficient data on the extraction of ginger oil using microwave hydrotropic solvent as an alternative to increase zingiberene. The innovation of this study is extraction with microwave heater and hydrotropic solvent,which able to shift the phase equilibrium, and the increasing rate of the extraction process and to improve the content of ginger oil zingiberene. The experiment was conducted at the Laboratory of Separation Techniques at Chemical Engineering Department of Diponegoro University. The research activities carried out in two stages, namely experimental and modeling work. Preparation of the model postulated, then lowered to obtain equations that were tested and validated using data obtained from experimental. Measurement of experimental data was performed using microwave power (300 W), extraction temperature of 90 ° C and the independent variable, i.e.: type of hydrotropic, the volume of solvent and concentration in order, to obtain zingiberen levels as a function of time. Measured data was used as a tool to validate the postulation, in order to obtain validation of models and empirical equations. The results showed that the mass transfer coefficient (Kla) on zingiberene mass transfer models ginger oil extraction at various hydrotropic solution attained more 14 ± 2 Kla value than its reported on the extraction with electric heating. The larger value of Kla, the faster rate of mass transfer on the extraction process. To obtain the same yields, the microwave-assisted extraction required one twelfth time shorter.
Ferrer, I.; Furlong, E.T.
2002-01-01
Benzalkonium chlorides (BACs) were successfully extracted from sediment samples using a new methodology based on accelerated solvent extraction (ASE) followed by an on-line cleanup step. The BACs were detected by liquid chromatography/ion trap mass spectrometry (LC/MS) or tandem mass spectrometry (MS/MS) using an electrospray interface operated in the positive ion mode. This methodology combines the high efficiency of extraction provided by a pressurized fluid and the high sensitivity offered by the ion trap MS/MS. The effects of solvent type and ASE operational variables, such as temperature and pressure, were evaluated. After optimization, a mixture of acetonitrile/water (6:4 or 7:3) was found to be most efficient for extracting BACs from the sediment samples. Extraction recoveries ranged from 95 to 105% for C12 and C14 homologues, respectively. Total method recoveries from fortified sediment samples, using a cleanup step followed by ASE, were 85% for C12BAC and 79% for C14-BAC. The methodology developed in this work provides detection limits in the subnanogram per gram range. Concentrations of BAC homologues ranged from 22 to 206 ??g/kg in sediment samples from different river sites downstream from wastewater treatment plants. The high affinity of BACs for soil suggests that BACs preferentially concentrate in sediment rather than in water.
Xie, Zhi-Peng; Liu, Xue-Song; Chen, Yong; Cai, Ming; Qu, Hai-Bin; Cheng, Yi-Yu
2007-05-01
Multi-stage countercurrent extraction technology, integrating solvent extraction, repercolation with dynamic and countercurrent extraction, is a novel extraction technology for the traditional Chinese medicine. This solvent-saving, energy-saving and high-extraction-efficiency technology can at the most drive active compounds to diffuse from the herbal materials into the solvent stage by stage by creating concentration differences between the herbal materials and the solvents. This paper reviewed the basic principle, the influence factors and the research progress and trends of the equipments and the application of the multi-stage countercurrent extraction.
NASA Astrophysics Data System (ADS)
Wijanarko, Anondho; Januardi Ginting, Mikael; Sahlan, Muhamad; Krisanta Endah Savitri, Imelda; Florensia, Yunita; Sudiarta, Maria Regina; Pastika, Satria; Rafiki, Fakhri; Hermansyah, Heri
2017-10-01
The outbreaks of crown of thorns starfish (Acanthaster planci) resulted in the severe destruction of coral reefs in a large number of Indonesia’s marine ecosystem, especially in the western part. At the moment, control efforts are proven to be ineffective because of its high cost and labor intensive. Recent research found that A. planci contain saponins that act as cytotoxic compound and can be used as an environment-friendly insecticide to eradicate Kalotermitidae pest. Saponins extracted by maceration using ethanol 96.0% with a total yield of saponins 9.04% and 4.66% for two test. Purification of saponin was achieved by utilization of activated carbon with a mass of carbon:volume sample 1:2 (w/v) and stirred for 20 minutes. Sapogenin can be isolated by hydrolyzing using hydrochloric acid, and thus 168.4 mg sapogenin is obtained. In addition to saponins, A. planci also contains collagen Type I. Collagen isolation by multistage extraction began with extracting the collagen with alkaline solvent, with water, NaOH 0.1 M, and Ca(OH)2 0.2 M as the solvent variations. The second step is acid-enzymatic extraction by pepsin digestion in 0.5 M acetic acid. Collagen extract will be further purified by salting out and dialysis method to obtain pure collagen yield called Pepsin Solubilized Collagens (PSC). Characterization of PSC consists of quantitative and qualitative analysis such as Lowry method, gel electrophoresis, UV spectroscopy, amino acid composition analysis, and Scanning Electron Microscopy (SEM). The result shows Ca(OH)2 0.2 M as the best extraction solvent with 2.26% yield of PSC.
Taamalli, Amani; Arráez-Román, David; Ibañez, Elena; Zarrouk, Mokhtar; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto
2012-01-25
In the present work, a simple and rapid method for the extraction of phenolic compounds from olive leaves, using microwave-assisted extraction (MAE) technique, has been developed. The experimental variables that affect the MAE process, such as the solvent type and composition, microwave temperature, and extraction time, were optimized using a univariate method. The obtained extracts were analyzed by using high-performance liquid chromatography (HPLC) coupled to electrospray time-of-flight mass spectrometry (ESI-TOF-MS) and electrospray ion trap tandem mass spectrometry (ESI-IT-MS(2)) to prove the MAE extraction efficiency. The optimal MAE conditions were methanol:water (80:20, v/v) as extracting solvent, at a temperature equal to 80 °C for 6 min. Under these conditions, several phenolic compounds could be characterized by HPLC-ESI-MS/MS(2). As compared to the conventional method, MAE can be used as an alternative extraction method for the characterization of phenolic compounds from olive leaves due to its efficiency and speed.
Phenolic Extracts from Wild Olive Leaves and Their Potential as Edible Oils Antioxidants
Lafka, Theodora-Ioanna; Lazou, Andriana E.; Sinanoglou, Vassilia J.; Lazos, Evangelos S.
2013-01-01
The kinetics solid-liquid extraction of phenolics from wild olive leaves was elaborated using different mathematical models (Peleg, second order, Elovich, and power law model). As solvents, methanol, ethanol, ethanol:water 1:1, n-propanol, isopropanol and ethyl acetate were used. The second order model best described the solvent extraction process, followed by the Elovich model. The most effective solvent was ethanol with optimum phenol extraction conditions 180 min, solvent to sample ratio 5:1 v/w and pH 2. Ethanol extract exhibited the highest antiradical activity among solvent and supercritical fluid extraction (SFE) extracts, which in addition showed the highest antioxidant capacity compared to synthetic and natural food antioxidants such as BHT, ascorbyl palmitate and vitamin E. Antioxidant potential of SFE extract was quite high, although its phenolic potential was not. Leaf extracts were proven to be good protectors for olive and sunflower oils at levels of 150 ppm. PMID:28239093
Step-wise supercritical extraction of carbonaceous residua
Warzinski, Robert P.
1987-01-01
A method of fractionating a mixture containing high boiling carbonaceous material and normally solid mineral matter includes processing with a plurality of different supercritical solvents. The mixture is treated with a first solvent of high critical temperature and solvent capacity to extract a large fraction as solute. The solute is released as liquid from solvent and successively treated with other supercritical solvents of different critical values to extract fractions of differing properties. Fractionation can be supplemented by solute reflux over a temperature gradient, pressure let down in steps and extractions at varying temperature and pressure values.
Comparison of extraction methods for quantifying vitamin E from animal tissues.
Xu, Zhimin
2008-12-01
Four extraction methods: (1) solvent (SOL), (2) ultrasound assisted solvent (UA), (3) saponification and solvent (SP), and (4) saponification and ultrasound assisted solvent (SP-UA), were used in sample preparation for quantifying vitamin E (tocopherols) in chicken liver and plasma samples. The extraction yields of SOL, UA, SP, and SP-UA methods obtained by adding delta-tocopherol as internal reference were 95%, 104%, 65%, and 62% for liver and 98%, 103%, 97%, and 94% for plasma, respectively. The methods with saponification significantly affected the stabilities of tocopherols in liver samples. The measured values of alpha- and gamma-tocopherols using the solvent only extraction (SOL) method were much lower than that using any of the other extraction methods. This indicated that less of the tocopherols in those samples were in a form that could be extracted directly by solvent. The measured value of alpha-tocopherol in the liver sample using the ultrasound assisted solvent (UA) method was 1.5-2.5 times of that obtained from the saponification and solvent (SP) method. The differences in measured values of tocopherols in the plasma samples by using the two methods were not significant. However, the measured value of the saponification and ultrasound assisted solvent (SP-UA) method was lower than either the saponification and solvent (SP) or the ultrasound assisted solvent (UA) method. Also, the reproducibility of the ultrasound assisted solvent (UA) method was greater than any of the saponification methods. Compared with the traditional saponification method, the ultrasound assisted solvent method could effectively extract tocopherols from sample matrix without any chemical degradation reactions, especially for complex animal tissue such as liver.
Gatidou, Georgia; Thomaidis, Nikolaos S; Stasinakis, Athanasios S; Lekkas, Themistokles D
2007-01-05
An integrated analytical method for the simultaneous determination of 4-n-nonylphenol (4-n-NP), nonylphenol monoethoxylate (NP1EO), nonylphenol diethoxylate (NP2EO), bisphenol A (BPA) and triclosan (TCS) in wastewater (dissolved and particulate phase) and sewage sludge was developed based on gas chromatography-mass spectrometry. Chromatographic analysis was achieved after derivatization with bis(trimethylsilyl)trifluoroacetamide (BSTFA). Extraction from water samples was performed by solid-phase extraction (SPE). The optimization of SPE procedure included the type of sorbent and the type of the organic solvent used for the elution. Referred to solid samples, the target compounds were extracted by sonication. In this case the optimization of the extraction procedure included the variation of the amount of the extracted biomass, the duration and the temperature of sonication and the type of the extraction organic solvent. The developed extraction procedures resulted in good repeatability and reproducibility with relative standard deviations (RSDs) less than 13% for all the tested compounds for both types of samples. Satisfactory recoveries were obtained (>60%) for all the compounds in both liquid and solid samples, except for 4-n-NP, which gave recoveries up to 35% in wastewater samples and up to 63% in sludge samples. The limits of detection (LODs) of the target compounds varied from 0.03 (4-n-NP) to 0.41 microg l(-1) (NP2EO) and from 0.04 (4-n-NP) to 0.96 microg kg(-1) (NP2EO) for liquid and solid samples, respectively. The developed methods were successfully applied to the analysis of the target compounds in real samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, T. B.
An Extraction, Scrub, and Strip (ESS) test was performed on a sample of Salt Waste Processing Facility (SWPF) Caustic-Side Solvent Extraction (CSSX) solvent and salt simulant to determine cesium distribution ratios (D( Cs)), and cesium concentration in the strip effluent (SE) and decontaminated salt solution (DSS) streams; this data will be used by Parsons to help determine if the solvent is qualified for use at the SWPF. The ESS test showed acceptable performance of the solvent for extraction, scrub, and strip operations. The extraction D( Cs) measured 12.5, exceeding the required value of 8. This value is consistent with resultsmore » from previous ESS tests using similar solvent formulations. Similarly, scrub and strip cesium distribution ratios fell within acceptable ranges. This revision was created to correct an error. The previous revision used an incorrect set of temperature correction coefficients which resulted in slight deviations from the correct D( Cs) results.« less
Miazek, Krystian; Kratky, Lukas; Sulc, Radek; Jirout, Tomas; Aguedo, Mario; Richel, Aurore; Goffin, Dorothee
2017-07-04
In this review, the effect of organic solvents on microalgae cultures from molecular to industrial scale is presented. Traditional organic solvents and solvents of new generation-ionic liquids (ILs), are considered. Alterations in microalgal cell metabolism and synthesis of target products (pigments, proteins, lipids), as a result of exposure to organic solvents, are summarized. Applications of organic solvents as a carbon source for microalgal growth and production of target molecules are discussed. Possible implementation of various industrial effluents containing organic solvents into microalgal cultivation media, is evaluated. The effect of organic solvents on extraction of target compounds from microalgae is also considered. Techniques for lipid and carotenoid extraction from viable microalgal biomass (milking methods) and dead microalgal biomass (classical methods) are depicted. Moreover, the economic survey of lipid and carotenoid extraction from microalgae biomass, by means of different techniques and solvents, is conducted.
Miazek, Krystian; Sulc, Radek; Jirout, Tomas; Aguedo, Mario; Goffin, Dorothee
2017-01-01
In this review, the effect of organic solvents on microalgae cultures from molecular to industrial scale is presented. Traditional organic solvents and solvents of new generation-ionic liquids (ILs), are considered. Alterations in microalgal cell metabolism and synthesis of target products (pigments, proteins, lipids), as a result of exposure to organic solvents, are summarized. Applications of organic solvents as a carbon source for microalgal growth and production of target molecules are discussed. Possible implementation of various industrial effluents containing organic solvents into microalgal cultivation media, is evaluated. The effect of organic solvents on extraction of target compounds from microalgae is also considered. Techniques for lipid and carotenoid extraction from viable microalgal biomass (milking methods) and dead microalgal biomass (classical methods) are depicted. Moreover, the economic survey of lipid and carotenoid extraction from microalgae biomass, by means of different techniques and solvents, is conducted. PMID:28677659
Influence of extraction solvent on antioxidant capacity value of oleaster measured by ORAC method.
Yalcin, Gorkem; Sogut, Ozlem
2014-01-01
Oxygen radical absorbance capacity (ORAC) is a widely used hydrogen atom transfer-based method which measures the antioxidant capacity of natural products. ORAC values of oleaster (Elaeagnus angustifolia L.), which was extracted with ethanol/acetone (7:3, v/v), ethanol/water (1:1, v/v) and methanol/water (1:1, v/v) in order to evaluate the effects of solvent type on antioxidant capacity, were examined. In general, results revealed that ethanol/water extracts exhibited better antioxidant capacity values. Furthermore, results obtained by using ORAC-eosin y (ORAC-EY), one of the widely used derivative of fluorescein (FL), as a fluorescent probe were compared with those obtained by using ORAC-FL. According to the results, ORAC-EY values were found to be compatible with ORAC-FL values.
Green extraction of grape skin phenolics by using deep eutectic solvents.
Cvjetko Bubalo, Marina; Ćurko, Natka; Tomašević, Marina; Kovačević Ganić, Karin; Radojčić Redovniković, Ivana
2016-06-01
Conventional extraction techniques for plant phenolics are usually associated with high organic solvent consumption and long extraction times. In order to establish an environmentally friendly extraction method for grape skin phenolics, deep eutectic solvents (DES) as a green alternative to conventional solvents coupled with highly efficient microwave-assisted and ultrasound-assisted extraction methods (MAE and UAE, respectively) have been considered. Initially, screening of five different DES for proposed extraction was performed and choline chloride-based DES containing oxalic acid as a hydrogen bond donor with 25% of water was selected as the most promising one, resulting in more effective extraction of grape skin phenolic compounds compared to conventional solvents. Additionally, in our study, UAE proved to be the best extraction method with extraction efficiency superior to both MAE and conventional extraction method. The knowledge acquired in this study will contribute to further DES implementation in extraction of biologically active compounds from various plant sources. Copyright © 2016 Elsevier Ltd. All rights reserved.
Timofeeva, Irina; Kanashina, Daria; Moskvin, Leonid; Bulatov, Andrey
2017-08-25
A sample pre-treatment technique based on evaporation-assisted dispersive liquid-liquid microextraction (EVA-DLLME), followed by HPLC-MS/MS has been developed for the determination of organophosphate insecticides (malathion, diazinon, phosalone) in wine samples. The procedure includes the addition of mixture of organic solvents (with density higher than water), consisting of the extraction (low density) and volatile (high density) solvents, to aqueous sample followed by heating of the mixture obtained, what promotes the volatile solvent evaporation and moving extraction solvent droplets from down to top of the aqueous sample and, as a consequence, microextraction of target analytes. To initiate the evaporation process an initiator is required. It was established that hexanol (extraction solvent) and dichloromethane (volatile solvent) mixture (1:1, v/v) provides effective microextraction of the insecticides from wine samples with recovery from 92 to 103%. The conditions of insecticides' microextraction such as selection of extraction solvent, ratio of hexanol/dichloromethane and hexanol/sample, type and concentration of initiator, and effect of ethanol as one of the main components of wine have been studied. Under optimal experimental conditions the linear detection ranges were found to be 10 -7 -10 -3 gL -1 for malathion, 10 -9 -10 -4 gL -1 for diazinon, and 10 -6 -10 -2 gL -1 for phosalone. The LODs, calculated from a blank test, based on 3σ, found to be 3×10 -8 gL -1 for malathion, 3×10 -10 gL -1 for diazinon and 3×10 -7 gL -1 for phosalone. The advantages of EVA-DLLME are the rapidity, simplicity, high sample throughput and low cost. As an outcome, the analytical results agreed fairly well with the results obtained by a reference GC-MS method. Copyright © 2017 Elsevier B.V. All rights reserved.
Extraction, scrub, and strip test results for the solvent transfer to salt waste processing facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, T.
The Savannah River National Laboratory (SRNL) prepared approximately 240 gallons of Caustic-Side Solvent Extraction (CSSX) solvent for use at the Salt Waste Processing Facility (SWPF). An Extraction, Scrub, and Strip (ESS) test was performed on a sample of the prepared solvent using a salt solution prepared by Parsons to determine cesium distribution ratios (D(Cs)), and cesium concentration in the strip effluent (SE) and decontaminated salt solution (DSS) streams. This data will be used by Parsons to help qualify the solvent for use at the SWPF. The ESS test showed acceptable performance of the solvent for extraction, scrub, and strip operations.more » The extraction D(Cs) measured 15.5, exceeding the required value of 8. This value is consistent with results from previous ESS tests using similar solvent formulations. Similarly, scrub and strip cesium distribution ratios fell within acceptable ranges.« less
Ansari, Faiz Ahmad; Gupta, Sanjay Kumar; Shriwastav, Amritanshu; Guldhe, Abhishek; Rawat, Ismail; Bux, Faizal
2017-06-01
Microalgae have tremendous potential to grow rapidly, synthesize, and accumulate lipids, proteins, and carbohydrates. The effects of solvent extraction of lipids on other metabolites such as proteins and carbohydrates in lipid-extracted algal (LEA) biomass are crucial aspects of algal biorefinery approach. An effective and economically feasible algae-based oil industry will depend on the selection of suitable solvent/s for lipid extraction, which has minimal effect on metabolites in lipid-extracted algae. In current study, six solvent systems were employed to extract lipids from dry and wet biomass of Scenedesmus obliquus. To explore the biorefinery concept, dichloromethane/methanol (2:1 v/v) was a suitable solvent for dry biomass; it gave 18.75% lipids (dry cell weight) in whole algal biomass, 32.79% proteins, and 24.73% carbohydrates in LEA biomass. In the case of wet biomass, in order to exploit all three metabolites, isopropanol/hexane (2:1 v/v) is an appropriate solvent system which gave 7.8% lipids (dry cell weight) in whole algal biomass, 20.97% proteins, and 22.87% carbohydrates in LEA biomass. Graphical abstract: Lipid extraction from wet microalgal biomass and biorefianry approach.
Jeong, Kyung Min; Zhao, Jing; Jin, Yan; Heo, Seong Rok; Han, Se Young; Yoo, Da Eun; Lee, Jeongmi
2015-12-01
Deep eutectic solvents (DESs) were investigated as tunable, environmentally benign, yet superior extraction media to enhance the extraction of anthocyanins from grape skin, which is usually discarded as waste. Ten DESs containing choline chloride as hydrogen bond acceptor combined with different hydrogen bond donors were screened for high extraction efficiencies based on the anthocyanin extraction yields. As a result, citric acid, D-(+)-maltose, and fructose were selected as the effective DES components, and the newly designed DES, CM-6 that is composed of citric acid and D-(+)-maltose at 4:1 molar ratio, exhibited significantly higher levels of anthocyanin extraction yields than conventional extraction solvents such as 80% aqueous methanol. The final extraction method was established based on the ultrasound-assisted extraction under conditions optimized using response surface methodology. Its extraction yields were double or even higher than those of conventional methods that are time-consuming and use volatile organic solvents. Our method is truly a green method for anthocyanin extraction with great extraction efficiency using a minimal amount of time and solvent. Moreover, this study suggested that grape skin, the by-products of grape juice processing, could serve as a valuable source for safe, natural colorants or antioxidants by use of the eco-friendly extraction solvent, CM-6.
An accelerated solvent extraction (ASE) device was evaluated as a semi-automated means of extracting arsenicals from ribbon kelp. Objective was to investigate effect of experimentally controllable ASE parameters (pressure, temperature, static time and solvent composition) on extr...
Supercritical solvent extraction of oil sand bitumen
NASA Astrophysics Data System (ADS)
Imanbayev, Ye. I.; Ongarbayev, Ye. K.; Tileuberdi, Ye.; Mansurov, Z. A.; Golovko, A. K.; Rudyk, S.
2017-08-01
The supercritical solvent extraction of bitumen from oil sand studied with organic solvents. The experiments were performed in autoclave reactor at temperature above 255 °C and pressure 29 atm with stirring for 6 h. The reaction resulted in the formation of coke products with mineral part of oil sands. The remaining products separated into SARA fractions. The properties of the obtained products were studied. The supercritical solvent extraction significantly upgraded extracted natural bitumen.
Re-refining of waste petroleum by competing solubility characteristics
NASA Astrophysics Data System (ADS)
Byars, Michael Steven
1998-11-01
The United States produces over 1.3 billion gallons of used oil per year. Of the 1.3 billion gallons about 60% is used as fuel, nearly 20% is dumped into the environment, 13% is placed in landfills, 2% is re-refined into lube oil, and the remaining is either used for other purposes or incinerated. This is a great potential source of lubricating oil. The work presented here is a solvent extraction process using a solvent (highly miscible with the oil) and a co-solvent (slightly miscible with the oil). Extractions using isopropanol, ethanol, methyl tert-butylether and methanol are presented. The criteria used for evaluation of the extraction processes are yield, product viscosity index, and ash percent. The solvent/co-solvent combinations of MTBE and ethanol performed best and had the advantage of a common solvent/co-solvent in all extraction steps. The extraction process that provided the best results was a two step process using a combination solvent of MTBE and ethanol. The used oil was first extracted using MTBE/ethanol. The extracted oil was then contacted with a solvent combination composed of 80% ethanol. This solvent combination extracted the remaining additives from the oil. The recovered oil was nearly 60% by weight with a high viscosity index and no ash content. A preliminary battery limits design and economic analysis of the process was performed. A 500 bbl/day plant would have a capital cost of 1.9 million and an annual operation cost of 310,000. The plant as designed would produce 300 bbl/day of lube feedstock and have an ROI of 19%.
Terpenes as green solvents for extraction of oil from microalgae.
Dejoye Tanzi, Celine; Abert Vian, Maryline; Ginies, Christian; Elmaataoui, Mohamed; Chemat, Farid
2012-07-09
Herein is described a green and original alternative procedure for the extraction of oil from microalgae. Extractions were carried out using terpenes obtained from renewable feedstocks as alternative solvents instead of hazardous petroleum solvents such as n-hexane. The described method is achieved in two steps using Soxhlet extraction followed by the elimination of the solvent from the medium using Clevenger distillation in the second step. Oils extracted from microalgae were compared in terms of qualitative and quantitative determination. No significant difference was obtained between each extract, allowing us to conclude that the proposed method is green, clean and efficient.
Optimization of extraction parameters on the antioxidant properties of banana waste.
Toh, Pui Yee; Leong, Fei Shan; Chang, Sui Kiat; Khoo, Hock Eng; Yim, Hip Seng
2016-01-01
Banana is grown worldwide and consumed as ripe fruit or used for culinary purposes. Peels form about 18-33% of the whole fruit and are discarded as a waste product. With a view to exploiting banana peel as a source of valuable compounds, this study was undertaken to evaluate the effect of different extraction parameters on the antioxidant activities of the industrial by-product of banana waste (peel). Influence of different extraction parameters such as types of solvent, percentages of solvent, and extraction times on total phenolic content (TPC) and antioxidant activity of mature and green peels of Pisang Abu (PA), Pisang Berangan (PB), and Pisang Mas (PM) were investigated. The best extraction parameters were initially selected based on different percentages of ethanol (0-100% v/v), extraction time (1-5 hr), and extraction temperature (25-60°C) for extraction of antioxidants in the banana peels. Total phenolic content (TPC) was evaluated using Folin-Ciocalteu reagent assay while antioxidant activities (AA) of banana peel were accessed by DPPH, ABTS, and β-carotene bleaching (BCB) assays at optimum extraction conditions. Based on different extraction solvents and percentages of solvents used, 70% and 90% of acetone had yielded the highest TPC for the mature and green PA peels, respectively; 90% of ethanol and methanol has yielded the highest TPC for the mature and green PB peels, respectively; while 90% ethanol for the mature and green PM peels. Similar extraction conditions were found for the antioxidant activities for the banana peel assessed using DPPH assay except for green PB peel, which 70% methanol had contributed to the highest AA. Highest TPC and AA were obtained by applying 4, 1, and 2 hrs extraction for the peels of PA, PB and PM, respectively. The best extraction conditions were also used for determination of AAs using ABTS and β-carotene bleaching assays. Therefore, the best extraction conditions used have given the highest TPC and AAs. By-products of banana (peel) can be considered as a potential source of antioxidants in food and pharmaceutical industry.
Wang, Zhibing; He, Mengyu; Jiang, Chunzhu; Zhang, Fengqing; Du, Shanshan; Feng, Wennan; Zhang, Hanqi
2015-12-01
Matrix solid-phase dispersion coupled with homogeneous ionic liquid microextraction was developed and applied to the extraction of some sulfonamides, including sulfamerazine, sulfamethazine, sulfathiazole, sulfachloropyridazine, sulfadoxine, sulfisoxazole, and sulfaphenazole, in animal tissues. High-performance liquid chromatography was applied to the separation and determination of the target analytes. The solid sample was directly treated by matrix solid-phase dispersion and the eluate obtained was treated by homogeneous ionic liquid microextraction. The ionic liquid was used as the extraction solvent in this method, which may result in the improvement of the recoveries of the target analytes. To avoid using organic solvent and reduce environmental pollution, water was used as the elution solvent of matrix solid-phase dispersion. The effects of the experimental parameters on recoveries, including the type and volume of ionic liquid, type of dispersant, ratio of sample to dispersant, pH value of elution solvent, volume of elution solvent, amount of salt in eluate, amount of ion-pairing agent (NH4 PF6 ), and centrifuging time, were evaluated. When the present method was applied to the analysis of animal tissues, the recoveries of the analytes ranged from 85.4 to 118.0%, and the relative standard deviations were lower than 9.30%. The detection limits for the analytes were 4.3-13.4 μg/kg. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hammouda, Faiza M; Saleh, Mahmoud A; Abdel-Azim, Nahla S; Shams, Khaled A; Ismail, Shams I; Shahat, Abdelaaty A; Saleh, Ibrahim A
2014-01-01
Hydrodistillation (HD) and steam-distillation, or solvent extraction methods of essential oils have some disadvantages like thermal decomposition of extracts, its contamination with solvent or solvent residues and the pollution of residual vegetal material with solvent which can be also an environmental problem. Thus, new green techniques, such as supercritical fluid extraction and microwave assisted techniques, are potential solutions to overcome these disadvantages. The aim of this study was to evaluate the essential oil of Foeniculum vulgare subsp. Piperitum fruits extracted by three different extraction methods viz. Supercritical fluid extraction (SFE) using CO2, microwave-assisted extraction (MAE) and hydro-distillation (HD) using gas chromatography-mass spectrometry (GC/MS). The results revealed that both MAE and SFE enhanced the extraction efficiency of the interested components. MAE gave the highest yield of oil as well as higher percentage of Fenchone (28%), whereas SFE gave the highest percentage of anethol (72%). Microwave-assisted extraction (MAE) and supercritical fluid extraction (SFE) not only enhanced the essential oil extraction but also saved time, reduced the solvents use and produced, ecologically, green technologies.
Pressurised fluid extraction of bupirimate and ethirimol from aged soils.
Fitzpatrick, L J; Dean, J R
2001-05-25
This paper assesses the effect of pressurised fluid extraction (PFE) on the recovery of bupirimate and its degradation product, ethirimol from a range of soil types. The analytes were extracted under standard conditions (pressure, 2000 p.s.i.; temperature, 100 degrees C; and, three static flush cycles of 5 min static extraction time each) using a variety of individual and combined solvents. It was found that the recovery of bupirimate was dependent upon the organic matter content of soil.
Lovrić, Vanja; Putnik, Predrag; Kovačević, Danijela Bursać; Jukić, Marijana; Dragović-Uzelac, Verica
2017-06-01
This research was undertaken to investigate the influence of extraction parameters during microwave-assisted extraction on total phenolic content, total flavonoids, total hydroxycinnamic acids and total flavonols of blackthorn flowers as well as to evaluate the antioxidant capacity by two different methods (2,2-diphenyl-1-picrylhydrazyl free radical scavenging capacity and ferric reducing antioxidant power assays). The investigated extraction parameters were: solvent type and volume fraction of alcohol in solvent (50 and 70% aqueous solutions of ethanol and methanol), extraction time (5, 15 and 25 min) and extraction temperature (40, 50 and 60 °C) controlled by microwave power of 100, 200 and 300 W. Multivariate analysis of variance (MANOVA) was used to evaluate the differences at a 95% confidence level (p≤0.05). The obtained results show that aqueous solution of ethanol was more appropriate solvent for extraction of phenolic compounds (total flavonoids, total hydroxycinnamic acids and total flavonols) than aqueous solution of methanol. The amount of phenolic compounds was higher in 70% aqueous solution of ethanol or methanol, while higher antioxidant capacity was observed in 50% aqueous solution of methanol. Higher temperature of extraction improved the amount of phenolic compounds and also antioxidant capacity determined by 2,2-diphenyl-1-picrylhydrazyl free radical scavenging capacity assay. Extensive duration of extraction (15- to 25-minute interval) has a significant effect only on the increase of total phenolic content, while specific phenolic compound content and antioxidant capacity were the highest when microwave extraction time of 5 min was applied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skavdahl, R.E.; Mason, E.A.
1962-06-01
An investigation of the solvent extraction characteristics of the nitro and nitrato complexes of nitrosylruthenium in nitric acid- sodium nitrate aqueous media was conducted. As the organic extractant phase, a solution of trilaurylamine (TLA) in toluene was utilized. In addition to the usual process parameter variation tyne of experiment, a rapid dilution type of experiment was used extensively to determine qualitative and semiquantitative results regarding the degree of extractability and concentration of the more extractable species of the nitrato complexes of nitrosylruthenium. It was found that the acids of the tetra-nitrato and pentanitrato complexes were the more extractable species formore » that set of complexes and that the acid of the penta-nitrato complex was the more extractable of the two. It was observed that for freshly prepared solutions, the dinitro complex of nitrosylruthenium was much more extractable than the gross nitrato complexes solutions. Nitro complexes in general, and the dinitro complex in particular, may be the controlling agent in ruthenium decontamination of spent nuclear fuel processed by solvent extraction methods. The experimental results from both sets of complexes could be more meaningfully correlated on the basis of unbound nitric acid concentration in the organic phase than on the basis of nitric acid concentration in the aqueous phase. The extraction of nitric acid by TLA from nitric acid-sodium nitrate aqueous solutions was investigated and the results correlated on the basis of activity of the undissociated nitric acid in the aqueous phase. (auth)« less
de Faria, Emanuelle L P; do Carmo, Rafael S; Cláudio, Ana Filipa M; Freire, Carmen S R; Freire, Mara G; Silvestre, Armando J D
2017-10-30
In recent years a high demand for natural ingredients with nutraceutical properties has been witnessed, for which the development of more environmentally-friendly and cost-efficient extraction solvents and methods play a primary role. In this perspective, in this work, the application of deep eutectic solvents (DES), composed of quaternary ammonium salts and organic acids, as alternative solvents for the extraction of cynaropicrin from Cynara cardunculus L. leaves was studied. After selecting the most promising DES, their aqueous solutions were investigated, allowing to obtain a maximum cynaropicrin extraction yield of 6.20 wt %, using 70 wt % of water. The sustainability of the extraction process was further optimized by carrying out several extraction cycles, reusing either the biomass or the aqueous solutions of DES. A maximum cynaropicrin extraction yield of 7.76 wt % by reusing the solvent, and of 8.96 wt % by reusing the biomass, have been obtained. Taking advantage of the cynaropicrin solubility limit in aqueous solutions, water was added as an anti-solvent, allowing to recover 73.6 wt % of the extracted cynaropicrin. This work demonstrates the potential of aqueous solutions of DES for the extraction of value-added compounds from biomass and the possible recovery of both the target compounds and solvents.
Cicchetti, Esmeralda; Chaintreau, Alain
2009-06-01
Accelerated solvent extraction (ASE) of vanilla beans has been optimized using ethanol as a solvent. A theoretical model is proposed to account for this multistep extraction. This allows the determination, for the first time, of the total amount of analytes initially present in the beans and thus the calculation of recoveries using ASE or any other extraction technique. As a result, ASE and Soxhlet extractions have been determined to be efficient methods, whereas recoveries are modest for maceration techniques and depend on the solvent used. Because industrial extracts are obtained by many different procedures, including maceration in various solvents, authenticating vanilla extracts using quantitative ratios between the amounts of vanilla flavor constituents appears to be unreliable. When authentication techniques based on isotopic ratios are used, ASE is a valid sample preparation technique because it does not induce isotopic fractionation.
NASA Astrophysics Data System (ADS)
Habibullah, Wilfred, Cecilia Devi
2016-11-01
This study compares the performance of ionic liquids to substitute conventional solvents (hexane, dichloromethane and methanol) to extract essential oil from Botryophora geniculate plant. Two different Ionic liquids ([C3MIM][Ac], [C4MIM][Ac]) with co-solvent diethyl ether were used in the ultrasonic-assisted extraction. The effect of various experimental conditions such as time, temperature and solvent were studied. Gas chromatography-mass spectroscopy (GC-MS) was used to analyze essential oils. The results showed that in ultrasonic-assisted extraction using ionic liquids as a solvent gave highest yield (9.5%) in 30 min at temperature 70°C. When using ultrasonic bath with hexane, dichloromethane and methanol, yields was (3.34%), (3.6%) and (3.81%) at 90 min, respectively were obtained. The ultrasonic-assisted extraction under optimal extraction conditions (time 30 min, temperature of 70°C) gave the best yield for the essential oil extraction.
Ferrone, Vincenzo; Genovese, Salvatore; Carlucci, Maura; Tiecco, Matteo; Germani, Raimondo; Preziuso, Francesca; Epifano, Francesco; Carlucci, Giuseppe; Taddeo, Vito Alessandro
2018-04-15
A green dispersive liquid-liquid microextraction (DLLME) using deep eutectic solvent (DES) as the extracting solvent has been developed and applied for the simultaneous quantification of ferulic acid, umbelliferone, boropinic acid, 7-isopentenyloxycoumarin, 4'-geranyloxyferulic acid (GOFA), and auraptene in some vegetable oils using ultra high performance liquid chromatography (UHPLC) with photodiode array detection (PDA). All parameters in the extraction step, including selection and loading of both extracting and dispersing solvents, amount of both extractant and disperser solvent were investigated and optimized. PhAA/TMG DES achieved higher recovery and enrichment factor compared to other DESs. The validated method showed good linearity with correlation coefficients, r 2 >0.9990 for all the analytes. Furthermore, this is the first time that eco-friendly solvents are used for the extraction of oxyprenylated phenylpropanoids and the corresponding extract analyzed with ultra high performance liquid chromatography with photodiode array detection. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Chi-Wang; Chiu, Chun-Hao; Lee, Yu-Cheng; Chang, Chia-Hao; Lee, Yu-Hsun; Chen, Yi-Ming
2010-01-01
In our previous publications, compressed air-assisted solvent extraction process (CASX) was developed and proved to be kinetically efficient process for metal removal. In the current study, CASX with a ceramic MF membrane integrated for separation of spent solvent was employed to remove and recover metal from wastewater. MF was operated either in crossflow mode or dead-end with intermittent flushing mode. Under crossflow mode, three distinct stages of flux vs. TMP (trans-membrane pressure) relationship were observed. In the first stage, flux increases with increasing TMP which is followed by the stage of stable flux with increasing TMP. After reaching a threshold TMP which is dependent of crossflow velocity, flux increases again with increasing TMP. At the last stage, solvent was pushed through membrane pores as indicated by increasing permeate COD. In dead-end with intermittent flushing mode, an intermittent flushing flow (2 min after a 10-min or a 30-min dead-end filtration) was incorporated to reduce membrane fouling by flush out MSAB accumulated on membrane surface. Effects of solvent concentration and composition were also investigated. Solvent concentrations ranging from 0.1 to 1% (w/w) have no adverse effect in terms of membrane fouling. However, solvent composition, i.e. D(2)EHPA/kerosene ratio, shows impact on membrane fouling. The type of metal extractants employed in CASX has significant impact on both membrane fouling and the quality of filtrate due to the differences in their viscosity and water solubility. Separation of MSAB was the limiting process controlling metal removal efficiency, and the removal efficiency of Cd(II) and Cr(VI) followed the same trend as that for COD.
[Determination of benzo(alpha)pyrene in food with microwave-assisted extraction].
Zhou, Na; Luo, He-Dong; Li, Na; Li, Yao-Qun
2014-03-01
Coupling derivative technique and constant-energy synchronous fluorescence scanning technique, a method of determining benzo[alpha] pyrene in foods by second derivative constant-energy synchronous spectrofluorimetry after microwave-assisted treatment of samples was established using domestic microwave oven. The main factors of influencing the efficiency of microwave extraction were discussed, including the extraction solvent types and amounts, the microwave extraction time, microwave radiation power and cooling time. And the comparison with ultrasonic extraction was made. Low-fat food samples, which were just microwave-extracted with mixed-solvents, could be analyzed immediately by the spectrofluorimetric technique. For high-fat food samples, microwave-assisted saponification and extraction were made at the same time, thus simplifying operation steps and reducing sample analysis time. So the whole sample analysis process could be completed within one hour. This method was simple, rapid and inexpensive. In consequence, it was applied to determine benzo(a)pyrene in food with good reproducibility and the recoveries of benzo(alpha) pyrene ranged from 90.0% to 105.0% for the low fat samples and 83.3% to 94.6% for high-fat samples.
Naseri, Mohammad Taghi; Hemmatkhah, Payam; Hosseini, Mohammad Reza Milani; Assadi, Yaghoub
2008-03-03
The dispersive liquid-liquid microextraction (DLLME) was combined with the flame atomic absorption spectrometry (FAAS) for determination of lead in the water samples. Diethyldithiophosphoric acid (DDTP), carbon tetrachloride and methanol were used as chelating agent, extraction solvent and disperser solvent, respectively. A new FAAS sample introduction system was employed for the microvolume nebulization of the non-flammable chlorinated organic extracts. Injection of 20 microL volumes of the organic extract into an air-acetylene flame provided very sensitive spike-like and reproducible signals. Some effective parameters on the microextraction and the complex formation were selected and optimized. These parameters include extraction and disperser solvent type as well as their volume, extraction time, salt effect, pH and amount of the chelating agent. Under the optimized conditions, the enrichment factor of 450 was obtained from a sample volume of 25.0 mL. The enhancement factor, calculated as the ratio of the slopes of the calibration graphs with and without preconcentration, which was about 1000. The calibration graph was linear in the range of 1-70 microgL(-1) with a detection limit of 0.5 microgL(-1). The relative standard deviation (R.S.D.) for seven replicate measurements of 5.0 and 50 microgL(-1) of lead were 3.8 and 2.0%, respectively. The relative recoveries of lead in tap, well, river and seawater samples at the spiking level of 20 microgL(-1) ranged from 93.8 to 106.2%. The characteristics of the proposed method were compared with those of the liquid-liquid extraction (LLE), cloud point extraction (CPE), on-line and off-line solid-phase extraction (SPE) as well as co-precipitation, based on bibliographic data. Operation simplicity, rapidity, low cost, high enrichment factor, good repeatability, and low consumption of the extraction solvent at a microliter level are the main advantages of the proposed method.
Xu, Kaijia; Wang, Yuzhi; Ding, Xueqin; Huang, Yanhua; Li, Na; Wen, Qian
2016-01-01
As a new type of green solvent, four kinds of choline chloride (ChCl)-based deep eutectic solvents (DESs) have been synthesized, and then a core-shell structure magnetic graphene oxide (Fe3O4-NH2@GO) nanoparticles have been prepared and coated with the ChCl-based DESs. Magnetic solid-phase extraction (MSPE) based Fe3O4-NH2@GO@DES was studied for the first time for the extraction of proteins. The characteristic results of vibrating sample magnetometer (VSM), X-ray diffraction (XRD), Fourier transform infrared spectrometry (FT-IR), thermal gravimetric analysis (TGA) and field emission scanning electron microscopy (FESEM) indicated the successful preparation of Fe3O4-NH2@GO@DES. The concentrations of proteins in studies were determined by a UV-vis spectrophotometer. The advantages of Fe3O4-NH2@GO@DES in protein extraction were compared with Fe3O4-NH2@GO and Fe3O4-NH2, and Fe3O4-NH2@GO@ChCl-glycerol was selected as the suitable extraction solvent. The influence factors of the extraction process such as the pH value, the temperature, the extraction time, the concentration of protein and the amount of Fe3O4-NH2@GO@ChCl-glycerol were evaluated. Desorption experimental result showed 98.73% of BSA could be eluted from the solid extractant with 0.1 mol/L Na2HPO4 solution contained 1 mol/L NaCl. Besides, the conformation of BSA was not changed during the elution by the investigation of circular dichromism (CD) spectra. Furthermore, the analysis of real sample demonstrated that the prepared magnetic nanoparticles did have extraction ability on proteins in bovine whole blood. Copyright © 2015 Elsevier B.V. All rights reserved.
Solvent and process for recovery of hydroxide from aqueous mixtures
Moyer, Bruce A.; Chambliss, C. Kevin; Bonnesen, Peter V.; Keever, Tamara J.
2001-01-01
Hydroxide values and associated alkali metal may be recovered from alkaline aqueous solutions using classes of fluorinated alcohols in a water immiscible solvent. The alcohols are characterized by fluorine substituents which are proximal to the acidic alcohol protons and are located to adjust the acidity of the extractant and the solubility of the extractant in the solvent. A method for stripping the extractant and solvent to regenerate the extractant and purified aqueous hydroxide solution is described.
Solvent extraction of diatomite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, W.
1984-07-24
There is provided a method of extracting hydrocarbons from a diatomite ore. The particle size of the ore is first reduced to form a processed ore. The processed ore is then mixed with a substantially irregular granular material to form an unstratified ore mixture having increased permeability to an extracting solvent. The unstratified ore mixture is then permeated with an extracting solvent to obtain a hydrocarbon-solvent stream from which hydrocarbons are subsequently separated. The irregular granular material may be sand.
Improved Supercritical-Solvent Extraction of Coal
NASA Technical Reports Server (NTRS)
Compton, L.
1982-01-01
Raw coal upgraded by supercritical-solvent extraction system that uses two materials instead of one. System achieved extraction yields of 20 to 49 weight percent. Single-solvent yields are about 25 weight percent. Experimental results show extraction yields may be timedependent. Observed decreases in weight of coal agreed well with increases in ash content of residue.
21 CFR 173.280 - Solvent extraction process for citric acid.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Solvent extraction process for citric acid. 173.280... extraction process for citric acid. A solvent extraction process for recovery of citric acid from conventional Aspergillus niger fermentation liquor may be safely used to produce food-grade citric acid in...
Trofimova, E S; Zykova, M V; Ligacheva, A A; Sherstoboev, E Y; Zhdanov, V V; Belousov, M V; Yusubov, M S; Krivoshchekov, S V; Danilets, M G; Dygai, A M
2017-04-01
We studied activation of macrophages with humic acids extracted from peat of large deposits in the Tomsk region by two extraction methods: by hydroxide or sodium pyrophosphate. Humic acid of lowland peat types containing large amounts of aromatic carbon, phenolic and alcohol groups, carbohydrate residues and ethers, irrespectively of the extraction methods contained LPS admixture that probably determines their activating properties. Humic acid of upland peat types characterized by high content of carbonyl, carboxyl, and ester groups enhance NO production and reduce arginase expression, but these effects were minimized when sodium hydroxide was used as an extraction solvent. Pyrophosphate samples of the upland peat types were characterized by aromaticity and diversity of functional groups and have a significant advantage because of they induce specific endotoxin-independent stimulating action on antigen presenting cells.
Extraction of aucubin from seeds of Eucommia ulmoides Oliv. using supercritical carbon dioxide.
Li, Hui; Hu, Jiangyu; Ouyang, Hui; Li, Yanan; Shi, Hui; Ma, Chengjin; Zhang, Yongkang
2009-01-01
Supercritical CO2 was used as solvent for the extraction of aucubin from the seeds of Eucommia ulmoides Oliv. The co-solvent composition was tested and extraction conditions were optimized. Results showed that the best co-solvent was a water-ethanol mixture (1 + 3, v/v), and the highest yield was obtained when the extraction was performed under 26 MPa at extraction and separation temperatures of 55 and 30 degrees C for 120 min, using 6 mL co-solvent/g material at a CO2 flow rate of 20 L/h. In a comparison of the supercritical CO2 and Soxhlet extraction methods, the Soxhlet method needed 3 h to extract 10 g material, whereas the supercritical CO2 extraction technique needed only 2 h to extract 100 g material, thus showing a high extraction capability. The supercritical CO2 extraction produced a higher yield, with a lower cost for the extraction. Owing to the advantages of low extraction temperature, high yield, and ease of separating the product from the solvent, supercritical CO2 extraction is likely to be developed into an ideal technique for the extraction of aucubin, a compound with thermal instability, from the seeds of this plant.
Process for solvent refining of coal using a denitrogenated and dephenolated solvent
Garg, Diwakar; Givens, Edwin N.; Schweighardt, Frank K.
1984-01-01
A process is disclosed for the solvent refining of non-anthracitic coal at elevated temperatures and pressure in a hydrogen atmosphere using a hydrocarbon solvent which before being recycled in the solvent refining process is subjected to chemical treatment to extract substantially all nitrogenous and phenolic constituents from the solvent so as to improve the conversion of coal and the production of oil in the solvent refining process. The solvent refining process can be either thermal or catalytic. The extraction of nitrogenous compounds can be performed by acid contact such as hydrogen chloride or fluoride treatment, while phenolic extraction can be performed by caustic contact or contact with a mixture of silica and alumina.
Use of normal propyl bromide solvents for extraction and recovery of asphalt cements
DOT National Transportation Integrated Search
2000-11-01
Four normal propyl bromide (nPB) solvents were evaluated for use as chlorinated solvent replacements in typical hot mix asphalt (HMA) extraction and recovery processes. The experimental design included one method of extraction (centrifuge), one metho...
Semiautomated solid-phase extraction manifold with a solvent-level sensor.
Orlando, R M; Rath, S; Rohwedder, J J R
2013-11-15
A semiautomated solid-phase extraction manifold for multiple extractions is presented. The manifold utilizes commercial solid-phase syringe cartridges and automatically introduces and elutes all the solvents during the extraction, reducing the typical workload and stress of the analyst. The manifold consists of a peristaltic pump with solenoid valves in a flow circuit that contains transmissive photomicrosensors. The photomicrosensors were used to control the solvent dispenser and the solvent level inside the cartridge. As solvent-level sensors, the photomicrosensors determined the exact time the solvent reached the top frit to avoid sorbent drying and accurately perform the solvent exchange. The repeatability of the manifold to introduce a particular volume of solvent into the cartridges was measured, and the precisions were between 0.05 and 2.89% (RSD). To evaluate the manifold, the amount of two fluoroquinolones in a fortified blank milk sample was determined. The results of the intra- and inter-day precision of multiple extractions from the fortified milk samples resulted in precisions better than 9.0% (RSD) and confirmed that the arrangement of the semiautomated manifold could adequately be used in solid-phase extraction with commercial cartridges. Copyright © 2013 Elsevier B.V. All rights reserved.
Solvent Extraction of Chemical Attribution Signature Compounds from Painted Wall Board: Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wahl, Jon H.; Colburn, Heather A.
2009-10-29
This report summarizes work that developed a robust solvent extraction procedure for recovery of chemical attribution signature (CAS) compound dimethyl methyl phosphonate (DMMP) (as well as diethyl methyl phosphonate (DEMP), diethyl methyl phosphonothioate (DEMPT), and diisopropyl methyl phosphonate (DIMP)) from painted wall board (PWB), which was selected previously as the exposed media by the chemical attribution scientific working group (CASWG). An accelerated solvent extraction approach was examined to determine the most effective method of extraction from PWB. Three different solvent systems were examined, which varied in solvent strength and polarity (i.e., 1:1 dichloromethane : acetone,100% methanol, and 1% isopropanol inmore » pentane) with a 1:1 methylene chloride : acetone mixture having the most robust and consistent extraction for four original target organophosphorus compounds. The optimum extraction solvent was determined based on the extraction efficiency of the target analytes from spiked painted wallboard as determined by gas chromatography x gas chromatography mass spectrometry (GCxGC-MS) analysis of the extract. An average extraction efficiency of approximately 60% was obtained for these four compounds. The extraction approach was further demonstrated by extracting and detecting the chemical impurities present in neat DMMP that was vapor-deposited onto painted wallboard tickets.« less
Effect of solvent polarity on the extraction of components of pharmaceutical plastic containers.
Ahmad, Iqbal; Sabah, Arif; Anwar, Zubair; Arif, Aysha; Arsalan, Adeel; Qadeer, Kiran
2017-01-01
A study of the extraction of polymeric material and dyes from the pharmaceutical plastic containers using various organic solvents was conducted to evaluate the effect of polarity on the extraction process. The plastic containers used included semi-opaque, opaque, transparent and amber colored and the solvent used were acetonitrile, methanol, ethanol, acetone, dichloroethane, chloroform and water. The determination of extractable material was carried out by gravimetric and spectrometric methods. The yield of extractable materials from containers in 60 h was 0.10-1.29% (w/w) and the first-order rate constant (kobs) for the extraction of polymeric material ranged from 0.52-1.50 × 10-3 min -1 and for the dyes 6.43- 6.74 x10-3min-1. The values of (k obs ) were found to be an inverse function of solvent dielectric constant and decreased linearly with the solvent acceptor number. The extractable polymeric materials exhibited absorption in the 200-400 nm region and the dyes in the 300-500nm region. The rates of extraction of polymeric material and dyes from plastic containers were dependent on the solvent dielectric constant. The solvents of low polarity were more effective in the extraction of material indicating that the extracted material were of low polarity or have non-polar character. The dyes were soluble in acetone and chloroform. No plastic material was found to be extracted from the containers in aqueous solution.
Li, Hui; Chen, Bo; Zhang, Zhaohui; Yao, Shouzhuo
2004-06-17
A new focused microwave-assisted solvent extraction method using water as solvent has been developed for leaching geniposidic and chlorogenic acids from Eucommia ulmodies Oliv. The extraction procedures were optimized using a two indexes orthogonal experimental design and graphical analysis, by varying irradiation time, solvent volume, solvent composition and microwave power. The optimum extraction conditions were obtained: for geniposidic acid, 50% micorwave power, 40s irradiation, and 80% (v/v) aqueous methanol as extraction solvent (20mlg(-1) sample); and for chlorogenic acid, 50% micorwave power, 30s irradiation, and 20% aqueous methanol (20mlg(-1) sample). The composition of the extraction solvent was optimized and can be directly used as the mobile phase in the HPLC separation. Quantification of organic acids was done by HPLC at room temperature using Spherigel C(18) chromatographic column (250 mm x4.6 mm , i.d. 5mum), the methanol:water:acetic acid (20:80:1.0, v/v) mobile phase and UV detection at 240nm. The R.S.D. of the extraction process for geniposidic and chlorogenic acid were 3.8 and 4.1%, respectively.
Mandlate, Jaime S; Soares, Bruno M; Seeger, Tassia S; Vecchia, Paula Dalla; Mello, Paola A; Flores, Erico M M; Duarte, Fabio A
2017-04-15
A DLLME method for extraction and preconcentration of Cd and Pb from soft drinks and further determination by GF AAS was developed. Important parameters of DLLME such as the type and volume of dispersive and extraction solvents, concentration of DDTC (complexing agent) and pH were evaluated. Better results were obtained using 500μL of acetone for Cd and 700μL of acetonitrile for Pb as dispersive solvents, 60μL of CCl 4 as extraction solvent for both analytes and 500μL of 1.5% DDTC solution. Accuracy was evaluated by recovery assays and ranged from 91 to 113% for Cd and from 95 to 108% for Pb, with RSD below 10 and 7%, respectively. The LODs were 0.006 and 0.072ngL -1 for Cd and Pb, respectively. The optimized method was applied for the determination of Cd and Pb in soft drinks with different brands and flavours. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wu, Lijie; Hu, Mingzhu; Li, Zhanchao; Song, Ying; Yu, Cui; Zhang, Yupu; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming
2015-02-01
A novel extraction method, dynamic microwave-assisted extraction coupled with homogeneous ionic liquid microextraction, was developed for the determination of triazine herbicides, including desmetryn, terbumeton, propazine, terbuthylazine, dimethametryn, and dipropetryn in fresh vegetable samples by high performance liquid chromatography (HPLC). In the developed method, 120 μL of 1-butyl-3-methylimidazolium tetrafluoroborate ([C4MIM][BF4]) was added to 10 mL of aqueous solution containing 0.3 g of NaCl to obtained the extraction solvent. Six triazines could be extracted completely within 4 min by the present method. Then, [NH4][PF6] was added into the extract to form a water-insoluble ionic liquid [C4MIM][PF6] via a simple metathesis reaction, and the analytes were enriched into the ionic liquid phase. After centrifugation and dilution with acetonitrile, the resulting solution was analyzed directly by HPLC. The effects of some experimental parameters, including type and volume of ionic liquid, volume of extraction solvent, amount of ion-pairing agent [NH4][PF6], salt concentration, microwave power, and flow rate of extraction solvent on the extraction efficiency were investigated and optimized. Under the optimum experimental conditions, the linearity for determining the analytes was in the range of 2.50-250.00 μg kg(-1), with the correlation coefficients ranging from 0.9989 to 0.9999. When the present method was applied to the analysis of vegetable samples, satisfactory recoveries were obtained in the range of 76.8%-106.9%, and relative standard deviations were lower than 9.8%.
Ghahramanloo, Kourosh Hasanzadeh; Kamalidehghan, Behnam; Akbari Javar, Hamid; Teguh Widodo, Riyanto; Majidzadeh, Keivan; Noordin, Mohamed Ibrahim
2017-01-01
The objective of this study was to compare the oil extraction yield and essential oil composition of Indian and Iranian Nigella sativa L. extracted by using Supercritical Fluid Extraction (SFE) and solvent extraction methods. In this study, a gas chromatography equipped with a mass spectrophotometer detector was employed for qualitative analysis of the essential oil composition of Indian and Iranian N. sativa L. The results indicated that the main fatty acid composition identified in the essential oils extracted by using SFE and solvent extraction were linoleic acid (22.4%–61.85%) and oleic acid (1.64%–18.97%). Thymoquinone (0.72%–21.03%) was found to be the major volatile compound in the extracted N. sativa oil. It was observed that the oil extraction efficiency obtained from SFE was significantly (P<0.05) higher than that achieved by the solvent extraction technique. The present study showed that SFE can be used as a more efficient technique for extraction of N. Sativa L. essential oil, which is composed of higher linoleic acid and thymoquinone contents compared to the essential oil obtained by the solvent extraction technique. PMID:28814830
Ghahramanloo, Kourosh Hasanzadeh; Kamalidehghan, Behnam; Akbari Javar, Hamid; Teguh Widodo, Riyanto; Majidzadeh, Keivan; Noordin, Mohamed Ibrahim
2017-01-01
The objective of this study was to compare the oil extraction yield and essential oil composition of Indian and Iranian Nigella sativa L. extracted by using Supercritical Fluid Extraction (SFE) and solvent extraction methods. In this study, a gas chromatography equipped with a mass spectrophotometer detector was employed for qualitative analysis of the essential oil composition of Indian and Iranian N. sativa L. The results indicated that the main fatty acid composition identified in the essential oils extracted by using SFE and solvent extraction were linoleic acid (22.4%-61.85%) and oleic acid (1.64%-18.97%). Thymoquinone (0.72%-21.03%) was found to be the major volatile compound in the extracted N. sativa oil. It was observed that the oil extraction efficiency obtained from SFE was significantly ( P <0.05) higher than that achieved by the solvent extraction technique. The present study showed that SFE can be used as a more efficient technique for extraction of N. Sativa L. essential oil, which is composed of higher linoleic acid and thymoquinone contents compared to the essential oil obtained by the solvent extraction technique.
Kuś, Piotr Marek; Jerković, Igor; Tuberoso, Carlo Ignazio Giovanni; Marijanović, Zvonimir; Congiu, Francesca
2014-01-01
The samples of cornflower (Centaurea cyanus L.) honey from Poland were subjected to ultrasonic solvent extraction applying the mixture of pentane and diethyl ether 1:2v/v (solvent A) as well as dichloromethane (solvent B). The major compounds of the extracts (analysed by GC-MS/GC-FID) were C13 and C9 norisoprenoids. Among them, (E)-3-oxo-retro-α-ionol (2.4-23.9% (solvent A); 3.9-14.4% (solvent B)) and (Z)-3-oxo-retro-α-ionol (3.7-29.9% (solvent A); 8.4-20.4% (solvent B)) were found to be useful as chemical biomarkers of this honey. Other abundant compounds were: methyl syringate (0.0-31.4% (solvent A); 0.0-25.4% (solvent B)) and 3-hydroxy-4-phenylbutan-2-one (1.6-15.8% (solvent A); 5.1-15.1% (solvent B)). HPLC-DAD analysis of the samples revealed lumichrome (4.7-10.0mg/kg), riboflavin (1.9-2.7mg/kg) and phenyllactic acid (112.1-250.5mg/kg) as typical compounds for this honey type. Antioxidant and antiradical properties as well as total phenolic content of the samples were found to be rather moderate by FRAP (ferric reducing antioxidant power), DPPH (1,1-diphenyl-2-picrylhydrazyl radical) and Folin-Ciocalteu assays, respectively. Additionally, CIE L(∗)a(∗)b(∗)C(∗)h chromatic coordinates were evaluated. Colour attributes of cornflower honey were characterised by elevated values of L(∗) and particularly high values of b(∗) and h coordinates, which correspond to medium bright honey with intense yellow colour. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ebrahim, Karim; Poursafa, Parinaz; Amin, Mohammad Mehdi
2017-11-01
A new method was developed for the trace determination of phthalic acid esters in plasma using dispersive liquid-liquid microextraction and gas chromatography with mass spectrometry analysis. Plasma proteins were efficiently precipitated by trichloroacetic acid and then a mixture of chlorobenzene (as extraction solvent) and acetonitrile (as dispersive solvent) rapidly injected to clear supernatant using a syringe. After centrifuging, chlorobenzene sedimented at the bottom of the test tube. 1 μL of this sedimented phase was injected into the gas chromatograph for phthalic acid esters analysis. Different factors affecting the extraction performance, such as the type of extraction and dispersive solvent, their volume, extraction time, and the effects of salt addition were investigated and optimized. Under the optimum conditions, the enrichment factors and extraction recoveries were satisfactory and ranged between 820-1020 and 91-97%, respectively. The linear range was wide (50-1000 ng/mL) and limit of detection was very low (1.5-2.5 ng/mL for all analytes). The relative standard deviations for analysis of 1 μg/mL of the analytes were between 3.2-6.1%. Salt addition showed no significant effect on extraction recovery. Finally, the proposed method was successfully utilized for the extraction and determination of the phthalic acid esters in human plasma samples and satisfactory results were obtained. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
SOLVENT EXTRACTION OF URANIUM VALUES
Feder, H.M.; Ader, M.; Ross, L.E.
1959-02-01
A process is presented for extracting uranium salt from aqueous acidic solutions by organic solvent extraction. It consists in contacting the uranium bearing solution with a water immiscible dialkylacetamide having at least 8 carbon atoms in the molecule. Mentioned as a preferred extractant is dibutylacetamide. The organic solvent is usually used with a diluent such as kerosene or CCl/sub 4/.
Next Generation Solvent Performance in the Modular Caustic Side Solvent Extraction Process - 15495
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Tara E.; Scherman, Carl; Martin, David
Changes to the Modular Caustic Side Solvent Extraction Unit (MCU) flow-sheet were implemented in the facility. Implementation included changing the scrub and strip chemicals and concentrations, modifying the O/A ratios for the strip, scrub, and extraction contactor banks, and blending the current BoBCalixC6 extractant-based solvent in MCU with clean MaxCalix extractant-based solvent. During the successful demonstration period, the MCU process was subject to rigorous oversight to ensure hydraulic stability and chemical/radionuclide analysis of the key process tanks (caustic wash tank, solvent hold tank, strip effluent hold tank, and decontaminated salt solution hold tank) to evaluate solvent carryover to downstream facilitiesmore » and the effectiveness of cesium removal from the liquid salt waste. Results indicated the extraction of cesium was significantly more effective with an average Decontamination Factor (DF) of 1,129 (range was 107 to 1,824) and that stripping was effective. The contactor hydraulic performance was stable and satisfactory, as indicated by contactor vibration, contactor rotational speed, and flow stability; all of which remained at or near target values. Furthermore, the Solvent Hold Tank (SHT) level and specific gravity was as expected, indicating that solvent integrity and organic hydraulic stability were maintained. The coalescer performances were in the range of processing results under the BOBCalixC6 flow sheet, indicating negligible adverse impact of NGS deployment. After the Demonstration period, MCU began processing via routine operations. Results to date reiterate the enhanced cesium extraction and stripping capability of the Next Generation Solvent (NGS) flow sheet. This paper presents process performance results of the NGS Demonstration and continued operations of MCU utilizing the blended BobCalixC6-MaxCalix solvent under the NGS flowsheet.« less
NASA Astrophysics Data System (ADS)
Mulia, Kamarza; Muhammad, Fajri; Krisanti, Elsa
2017-03-01
The leaves of binahong (Anredera cordifolia (Ten) Steenis) contain flavonoids as bioactive substances that have efficacy to treat wounds and diseases caused by bacteria. One of the flavonoids contained in the leaves is 8-glucopyranosyl-4'5'7-trihydroxyflavone or vitexin. Conventional extraction of flavonoids from leaves of binahong has been developed and usually using non-friendly organic solvent. To overcome these problems, a Natural Deep Eutectic Solvent (NADES) is used to replace the conventional organic solvents, as it is an environmentally friendly, non-toxic and high boiling point solvent. In this study, a betaine-based NADES combined with 1,4-butanediol in 1:3 mole ratio was used as the extraction solvent. Vitexin in the extract was analyzed qualitatively and quantitatively using an HPLC. The extraction of vitexin from binahong leaves at room temperature (27 °C) for four hours give yield of 46 ppm, much lower than 200 ppm yield obtained after extraction at 55 °C for 90 minutes. This results showed that (a) NADES consisting of betaine and 1,4 butanediol is a promising green solvent for extraction of vitexin from binahong leaves, and, (b) the extraction can be performed above ambient temperature, as long as it does not exceed the degradation temperature of the bioactive compound extracted.
PROCESS OF SEPARATING URANIUM FROM AQUEOUS SOLUTION BY SOLVENT EXTRACTION
Warf, J.C.
1958-08-19
A process is described for separating uranium values from aqueous uranyl nitrate solutions. The process consists in contacting the uramium bearing solution with an organic solvent, tributyl phosphate, preferably diluted with a less viscous organic liquida whereby the uranyl nitrate is extracted into the organic solvent phase. The uranvl nitrate may be recovered from the solvent phase bv back extracting with an aqueous mediuin.
Molins, C; Hogendoorn, E A; Dijkman, E; Heusinkveld, H A; Baumann, R A
2000-02-11
The combination of microwave-assisted solvent extraction (MASE) and reversed-phase liquid chromatography (RPLC) with UV detection has been investigated for the efficient determination of phenylurea herbicides in soils involving the single-residue method (SRM) approach (linuron) and the multi-residue method (MRM) approach (monuron, monolinuron, isoproturon, metobromuron, diuron and linuron). Critical parameters of MASE, viz, extraction temperature, water content and extraction solvent were varied in order to optimise recoveries of the analytes while simultaneously minimising co-extraction of soil interferences. The optimised extraction procedure was applied to different types of soil with an organic carbon content of 0.4-16.7%. Besides freshly spiked soil samples, method validation included the analysis of samples with aged residues. A comparative study between the applicability of RPLC-UV without and with the use of column switching for the processing of uncleaned extracts, was carried out. For some of the tested analyte/matrix combinations the one-column approach (LC mode) is feasible. In comparison to LC, coupled-column LC (LC-LC mode) provides high selectivity in single-residue analysis (linuron) and, although less pronounced in multi-residue analysis (all six phenylurea herbicides), the clean-up performance of LC-LC improves both time of analysis and sample throughput. In the MRM approach the developed procedure involving MASE and LC-LC-UV provided acceptable recoveries (range, 80-120%) and RSDs (<12%) at levels of 10 microg/kg (n=9) and 50 microg/kg (n=7), respectively, for most analyte/matrix combinations. Recoveries from aged residue samples spiked at a level of 100 microg/kg (n=7) ranged, depending of the analyte/soil type combination, from 41-113% with RSDs ranging from 1-35%. In the SRM approach the developed LC-LC procedure was applied for the determination of linuron in 28 sandy soil samples collected in a field study. Linuron could be determined in soil with a limit of quantitation of 10 microg/kg.
PREPARATION OF ALKYL PYROPHOSPHATE EXTRACTANTS
Levine, C.A.; Skiens, W.E.; Moore, G.R.
1960-08-01
A process for providing superior solvent extractants for metal recovery processes is given wherein the extractant comprises an alkyl pyrophosphoric acid ester dissolved in an organic solvent diluent. Finely divided solid P/sub 2/O/ sub 5/ is slurried in an organic solvent-diluent selected from organic solvents such as kerosene, benzene, chlorobenzene, toluene, etc. An alcohol selected from the higher alcohols having 4 to 17 carbon atoms. e.g.. hexanol-1. heptanol-3, octanol-1. 2.6-dimethyl-heptanol-4, and decanol-1, is rapidly added to the P/sub 2/O/sub 5/ slurry in the amount of about 2 moles of alcohol to 1 mole of P/sub 2/ O/sub 5/. The temperature is maintained below about 110 deg C during the course of the P/sub 2/O/sub 5/-alcohol reaction. An alkyl pyrophosphate extractant compound is formed as a consequence of the reaction process. The alkyl pyrophosphate solvent-diluent extractant phase is useful in solvent extraction metal recovery processes.
Process for the removal of impurities from combustion fullerenes
Alford, J. Michael; Bolskar, Robert
2005-08-02
The invention generally relates to purification of carbon nanomaterials, particularly fullerenes, by removal of PAHs and other hydrocarbon impurities. The inventive process involves extracting a sample containing carbon nanomaterials with a solvent in which the PAHs are substantially soluble but in which the carbon nanomaterials are not substantially soluble. The sample can be repeatedly or continuously extracted with one or more solvents to remove a greater amount of impurities. Preferred solvents include ethanol, diethyl ether, and acetone. The invention also provides a process for efficiently separating solvent extractable fullerenes from samples containing fullerenes and PAHs wherein the sample is extracted with a solvent in which both fullerenes and PAHs are substantially soluble and the sample extract then undergoes selective extraction to remove PAHs. Suitable solvents in which both fullerenes and PAHs are soluble include o-xylene, toluene, and o-dichlorobenzene. The purification process is capable of treating quantities of combustion soot in excess of one kilogram and can produce fullerenes or fullerenic soot of suitable purity for many applications.
Extraction of Illegal Dyes from Red Chili Peppers with Cholinium-Based Deep Eutectic Solvents
Zhu, Shuqiang; Zhu, Xinyue; Su, Along
2017-01-01
Deep eutectic solvents (DESs) as a new kind of green solvents have been used to extract bioactive compounds but there are few applications in extracting chrysoidine dyes. In this study, we developed an ultrasonic-assisted extraction method with choline chloride/hydrogen bond donor (ChCl/HBD) DES for the extraction of chrysoidine G (COG), astrazon orange G (AOG), and astrazon orange R (AOR) in food samples. Some experimental parameters, such as extraction time, raw material/solvent ratio, and temperature, were evaluated and optimized as follows: the ratio of ChCl/HBD, 1 : 2 (v/v); the ratio of sample/DES, 1 : 10 (g/mL); extraction time, 20 min; extraction temperature, 50°C. Under the optimized conditions, the limits of detection (μg/mL) were 0.10 for COG and 0.06 for AOG and AOR. The relative standard deviations were in the range of 1.2–2.1%. The recoveries of the three dyes were in the range of 80.2–105.0%. By comparing with other commonly used solvents for extracting chrysoidine dyes, the advantages of DESs proved them to be potential extraction solvents for chrysoidine G, astrazon orange G, and astrazon orange R in foods. PMID:28831327
Seo, Jongkwon; Lee, Soojung; Elam, Marcus L; Johnson, Sarah A; Kang, Jonghoon; Arjmandi, Bahram H
2014-03-01
The effects of guava leaves extracted using solvents of water, ethanol, methanol, and different concentrations of hydroethanolic solvents on phenolic compounds and flavonoids, and antioxidant properties have been investigated. The antioxidant capability was assessed based on 2,2-diphenyl-1-picrylhydrazyl radical and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical-scavenging abilities, reducing power, and nitric oxide-and nitrate-scavenging activities. The results demonstrated that the antioxidant ability of guava leaf extracts has a strong relationship with phenolic compound content rather than flavonoid content. Phenolic compound content of water extracted guava leaves was higher compared to pure ethanol and methanol extracts. However, phenolic compound content extracted using hydroethanolic solvent was higher than water, whereas 50% hydroethanolic was observed to be the most effective solvent showing high antioxidant ability.
Das, Arun Kumar; Sharma, Mukesh; Mondal, Dibyendu; Prasad, Kamalesh
2016-01-20
Three different deep eutectic solvents (DESs) prepared by the complexation of choline chloride with urea, ethylene glycol and glycerol along with their hydrated counterparts were used for the selective extraction of κ-carrageenan from Kappaphycus alvarezii. Upon comparison of the quality of the polysaccharide with the one obtained using water as extraction media as well as the one extracted using widely practiced conventional method, it was found that, the physicochemical as well as rheological properties of κ-carrageenan obtained using DESs as solvents was at par to the one obtained using conventional method and was superior in quality when compared to κ-carrageenan obtained using water as solvent. Considering the tedious nature of the extraction method employed in conventional extraction process, the DESs can be considered as suitable alternative solvents for the facile extraction of the polysaccharide directly from the seaweed. However, among the hydrated and non-hydrated DESs, the hydrated ones were found to be more effective in comparison to their non-hydrated counterparts. Copyright © 2015 Elsevier Ltd. All rights reserved.
Green ultrasound-assisted extraction of carotenoids from pomegranate wastes using vegetable oils.
Goula, Athanasia M; Ververi, Maria; Adamopoulou, Anna; Kaderides, Kyriakos
2017-01-01
The objective of this work was to develop a new process for pomegranate peels application in food industries based on ultrasound-assisted extraction of carotenoids using different vegetable oils as solvents. In this way, an oil enriched with antioxidants is produced. Sunflower oil and soy oil were used as alternative solvents and the effects of various parameters on extraction yield were studied. Extraction temperature, solid/oil ratio, amplitude level, and extraction time were the factors investigated with respect to extraction yield. Comparative studies between ultrasound-assisted and conventional solvent extraction were carried out in terms of processing procedure and total carotenoids content. The efficient extraction period for achieving maximum yield of pomegranate peel carotenoids was about 30min. The optimum operating conditions were found to be: extraction temperature, 51.5°C; peels/solvent ratio, 0.10; amplitude level, 58.8%; solvent, sunflower oil. A second-order kinetic model was successfully developed for describing the mechanism of ultrasound extraction under different processing parameters. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Caesar, Jennifer; Tamm, Alexandra; Ruckteschler, Nina; Lena Leifke, Anna; Weber, Bettina
2018-03-01
Chlorophyll concentrations of biological soil crust (biocrust) samples are commonly determined to quantify the relevance of photosynthetically active organisms within these surface soil communities. Whereas chlorophyll extraction methods for freshwater algae and leaf tissues of vascular plants are well established, there is still some uncertainty regarding the optimal extraction method for biocrusts, where organism composition is highly variable and samples comprise major amounts of soil. In this study we analyzed the efficiency of two different chlorophyll extraction solvents, the effect of grinding the soil samples prior to the extraction procedure, and the impact of shaking as an intermediate step during extraction. The analyses were conducted on four different types of biocrusts. Our results show that for all biocrust types chlorophyll contents obtained with ethanol were significantly lower than those obtained using dimethyl sulfoxide (DMSO) as a solvent. Grinding of biocrust samples prior to analysis caused a highly significant decrease in chlorophyll content for green algal lichen- and cyanolichen-dominated biocrusts, and a tendency towards lower values for moss- and algae-dominated biocrusts. Shaking of the samples after each extraction step had a significant positive effect on the chlorophyll content of green algal lichen- and cyanolichen-dominated biocrusts. Based on our results we confirm a DMSO-based chlorophyll extraction method without grinding pretreatment and suggest the addition of an intermediate shaking step for complete chlorophyll extraction (see Supplement S6 for detailed manual). Determination of a universal chlorophyll extraction method for biocrusts is essential for the inter-comparability of publications conducted across all continents.
Solvent vapour monitoring in work space by solid phase micro extraction.
Li, K; Santilli, A; Goldthorp, M; Whiticar, S; Lambert, P; Fingas, M
2001-05-07
Solid phase micro extraction (SPME) is a fast, solvent-less alternative to conventional charcoal tube sampling/carbon disulfide extraction for volatile organic compounds (VOC). In this work, SPME was compared to the active sampling technique in a typical lab atmosphere. Two different types of fibre coatings were evaluated for solvent vapour at ambient concentration. A general purpose 100 microm film polydimethylsiloxane (PDMS) fibre was found to be unsuitable for VOC work, despite the thick coating. The mixed-phase carboxen/PDMS fibre was found to be suitable. Sensitivity of the SPME was far greater than charcoal sorbent tube method. Calibration studies using typical solvent such as dichloromethane (DCM), benzene (B) and toluene (T) showed an optimal exposure time of 5 min, with a repeatability of less than 20% for a broad spectrum of organic vapour. Minimum detectable amount for DCM is in the range of 0.01 microg/l (0.003 ppmv). Variation among different fibres was generally within 30% at a vapour concentration of 1 microg DCM/l, which was more than adequate for field monitoring purpose. Adsorption characteristics and calibration procedures were studied. An actual application of SPME was carried out to measure background level of solvent vapour at a bench where DCM was used extensively. Agreement between the SPME and the charcoal sampling method was generally within a factor of two. No DCM concentration was found to be above the regulatory limit of 50 ppmv.
Solvent extraction of gold using ionic liquid based process
NASA Astrophysics Data System (ADS)
Makertihartha, I. G. B. N.; Zunita, Megawati; Rizki, Z.; Dharmawijaya, P. T.
2017-01-01
In decades, many research and mineral processing industries are using solvent extraction technology for metal ions separation. Solvent extraction technique has been used for the purification of precious metals such as Au and Pd, and base metals such as Cu, Zn and Cd. This process uses organic compounds as solvent. Organic solvents have some undesired properties i.e. toxic, volatile, excessive used, flammable, difficult to recycle, low reusability, low Au recovery, together with the problems related to the disposal of spent extractants and diluents, even the costs associated with these processes are relatively expensive. Therefore, a lot of research have boosted into the development of safe and environmentally friendly process for Au separation. Ionic liquids (ILs) are the potential alternative for gold extraction because they possess several desirable properties, such as a the ability to expanse temperature process up to 300°C, good solvent properties for a wide range of metal ions, high selectivity, low vapor pressures, stability up to 200°C, easy preparation, environmentally friendly (commonly called as "green solvent"), and relatively low cost. This review paper is focused in investigate of some ILs that have the potentials as solvent in extraction of Au from mineral/metal alloy at various conditions (pH, temperature, and pressure). Performances of ILs extraction of Au are studied in depth, i.e. structural relationship of ILs with capability to separate Au from metal ions aggregate. Optimal extraction conditon in order to gain high percent of Au in mineral processing is also investigated.
Boonchiangma, Suthasinee; Ngeontae, Wittaya; Srijaranai, Supalax
2012-01-15
Dispersive liquid-liquid microextraction (DLLME) coupled to high performance liquid chromatography (HPLC) with UV detection was applied for the determination of six pyrethroids (tetramethrin, fenpropathrin, cypermethrin, deltamethrin, fenvalerate and permethrin) in various fruit juices including apple, red grape, orange, kiwi, passion fruit, pomegranate and guava juice. Six pyrethroids were separated within 30 min using a Waters Atlantis T3 column under an isocratic elution of acetonitrile-water (72:28). The parameters affecting extraction efficiency of the DLLME method such as type of disperser and extraction solvent, volume of disperser and extraction solvent and centrifugation time were investigated. Under the optimum conditions, 5.00 mL of sample solution, 300 μL of chloroform as extraction solvent and 1.25 mL of methanol as dispersive solvent gave high enrichment factor in the range of 62-84. Good linearity was obtained from 2 to 1,500 μg/L (r(2)>0.995). The mean recoveries of the pyrethroids evaluated by fortification of real samples were in the range of 84-94%. The limits of detection ranging from 2 to 5 μg/L are sufficient to analyze pyrethroid residues at the maximum residue limits (MRLs) established by the European Union (EU) in fruit juices. The proposed method can be applied to direct determination of pyrethroid residues in fruit juices. Copyright © 2011 Elsevier B.V. All rights reserved.
Rainey, R.H.; Moore, J.G.
1962-08-14
A liquid-liquid extraction process was developed for recovering thorium and uranium values from a neutron irradiated thorium composition. They are separated from a solvent extraction system comprising a first end extraction stage for introducing an aqueous feed containing thorium and uranium into the system consisting of a plurality of intermediate extractiorr stages and a second end extractron stage for introducing an aqueous immiscible selective organic solvent for thorium and uranium in countercurrent contact therein with the aqueous feed. A nitrate iondeficient aqueous feed solution containing thorium and uranium was introduced into the first end extraction stage in countercurrent contact with the organic solvent entering the system from the second end extraction stage while intro ducing an aqueous solution of salting nitric acid into any one of the intermediate extraction stages of the system. The resultant thorium and uranium-laden organic solvent was removed at a point preceding the first end extraction stage of the system. (AEC)
Medina, Giselle S; Reta, Mario
2016-11-01
A dispersive liquid-liquid microextraction method using a lighter-than-water phosphonium-based ionic liquid for the extraction of 16 polycyclic aromatic hydrocarbons from water samples has been developed. The extracted compounds were analyzed by liquid chromatography coupled to fluorescence/diode array detectors. The effects of several experimental parameters on the extraction efficiency, such as type and volume of ionic liquid and disperser solvent, type and concentration of salt in the aqueous phase and extraction time, were investigated and optimized. Three phosphonium-based ionic liquids were assayed, obtaining larger extraction efficiencies when trihexyl-(tetradecyl)phosphonium bromide was used. The optimized methodology requires a few microliters of a lighter-than-water phosphonium-based ionic liquid, which allows an easy separation of the extraction solvent phase. The obtained limits of detection were between 0.02 and 0.56 μg/L, enrichment factors between 109 and 228, recoveries between 60 and 108%, trueness between 0.4 and 9.9% and reproducibility values between 3 and 12% were obtained. These figures of merit combined with the simplicity, rapidity and low cost of the analytical methodology indicate that this is a viable and convenient alternative to the methods reported in the literature. The developed method was used to analyze polycyclic aromatic hydrocarbons in river water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Koçoğlu, Elif Seda; Bakırdere, Sezgin; Keyf, Seyfullah
2017-09-01
A simple, green and fast analytical method was developed for the determination of sertraline in tap and waste water samples at trace levels by using supportive liquid-liquid extraction with gas chromatography-mass spectrometry. Different parameters affecting extraction efficiency such as types and volumes of extraction and supporter solvents, extraction period, salt type and amount were optimized to get lower detection limits. Ethyl acetate was selected as optimum extraction solvent. In order to improve the precision, anthracene-D10 was used as an internal standard. The calibration plot of sertraline was linear from 1.0 to 1000 ng/mL with a correlation coefficient of 0.999. The limit of detection value under the optimum conditions was found to be 0.43 ng/mL. In real sample measurements, spiking experiments were performed to check the reliability of the method for these matrices. The spiking experiments yielded satisfactory recoveries of 91.19 ± 2.48%, 90.48 ± 5.19% and 95.46 ± 6.56% for 100, 250 and 500 ng/mL sertraline for tap water, and 85.80 ± 2.15% and 92.43 ± 4.02% for 250 and 500 ng/mL sertraline for waste water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleinheinz, G.T.; St. John, W.P.
A study was conducted to develop a rapid and reliable method for the collection and incorporation of biofiltration air samples containing volatile organic compounds (VOCs) into the Microtox toxicity testing system. To date, no method exists for this type of assay. A constant stream of VOCs was generated by air stripping compounds from a complex mixture of petroleum hydrocarbons (PHCs). Samples were collected on coconut charcoal ORBO tubes and the VOCs extracted with methylene chloride. The compounds extracted were then solvent exchanged into dimethyl sulfoxide (DMSO) under gaseous nitrogen. The resulting DMSO extract was directly incorporated into the Microtox toxicitymore » testing system. In order to determine the efficiency of the solvent exchange, the VOCs in the DMSO extract were then extracted into hexane and subsequently analyzed using gas chromatography (GC) with a flame ionization detector (FID). It was determined that all but the most volatile VOCs could be effectively transferred from the ORBO tubes to DMSO for Microtox testing. Potential trace amounts of residual methylene chloride in the DMSO extracts showed no adverse effects in the Microtox system when compared to control samples.« less
Díaz-Santana, Oscar; Vega-Moreno, Daura; Conde-Hardisson, Francisco
2017-09-15
An extraction and determination method is shown for the analysis of dyes and solvents present in two types of ballpoint pen inks that are deposited onto paper. Ink extracts are analysed using a combination of gas chromatography with mass spectrometry (GC-MS), and high-pressure liquid chromatography with photodiode array detection (HPLC-DAD), within a single sample extraction procedure. Seventeen solvents and thirteen dyes contained in two Montblanc ® inks (black and blue) were monitored for 45 months at monthly intervals, in order to determine variations in the concentrations of the compounds over time. We also studied the relative variations between different compounds and the generation of degradation products such as phenol. The concentration data obtained from these compounds during their exposure have been analysed and a multiple regression model is developed for each ink type that allows an estimate of the exposure time of the ink on paper with a maximum error of between 4 and 7 months. Copyright © 2017 Elsevier B.V. All rights reserved.
REMEDIATING PESTICIDE CONTAMINATED SOILS USING SOLVENT EXTRACTION
Bench-scale solvent extraction studies were performed on soil samples obtained from a Superfund site contaminated with high levels of p,p'-DDT, p,p'-DDD,, p,p'-DDE and toxaphene. The effectiveness of the solvent extraction process was assessed using methanol and 2-propanol as sol...
Solvent Extraction of Furfural From Biomass
NASA Technical Reports Server (NTRS)
Humphrey, M. F.
1984-01-01
Solvent-extraction method reduces energy required to remove furfural produced during acid hydrolysis of biomass. Acid hydrolysis performed in vessel containing both solvents and reacting ingredients. With intimate contact between solvents and aqueous hydrolyis liqour, furfural removed form liquor almost as fast as it forms.
Mahindrakar, A N; Chandra, S; Shinde, L P
2014-01-01
Solid-phase extraction (SPE) of nine polychlorinated biphenyls (PCBs) from transformer oil samples was evaluated using octadecyl (CI8)-bonded porous silica. The efficiency of SPE of these PCBs was compared with those obtained by solvent extraction with DMSO and hexane. Average recoveries exceeding 95% for these PCBs were obtained via the SPE method using small cartridges containing 100mg of 40 pm CI8-bonded porous silica. The average recovery by solvent extraction with DMSO and hexane exceeded 83%. It was concluded that the recoveries and precision for the solvent extraction of PCBs were poorer than those for the SPE. Copyright © 2013 Elsevier Ltd. All rights reserved.
Tejada-Casado, Carmen; Lara, Francisco J; García-Campaña, Ana M; Del Olmo-Iruela, Monsalud
2018-03-30
Ultra-high performance liquid chromatography (UHPLC) coupled with fluorescence detection (FL) has been proposed for the first time to determine thirteen benzimidazoles (BZs) in farmed fish samples. In order to optimize the chromatographic separation, parameters such as mobile phase composition and flow rate were carefully studied, establishing a gradient mode with a mobile phase consisted of water (solvent A) and acetonitrile (solvent B) at a flow rate of 0.4 mL/min. The separation was performed on a Zorbax Eclipse Plus RRHD C 18 column (50 × 2.1 mm, 1.8 μm), involving a total analysis time lower than 12 min. Salting-out assisted liquid-liquid extraction (SALLE) was applied as sample treatment to different types of farmed fish (trout, sea bream and sea bass). To obtain satisfactory extraction efficiencies for the studied analytes, several parameters affecting the SALLE procedure were optimized including the amount of sample, type and volume of the extraction solvent, and the nature and amount of the salt used. Characterization of the method in terms of performance characteristics was carried out, obtaining satisfactory results for the linearity (R 2 ≥ 0.997), repeatability (RSD ≤ 6.1%), reproducibility (RSD ≤ 10.8%) and recoveries (R ≥ 79%; RSD ≤ 7.8%). Detection limits between 0.04-29.9 μg kg -1 were obtained, demonstrating the applicability of this fast, simple and environmentally friendly method. Copyright © 2018 Elsevier B.V. All rights reserved.
Ionic liquid solutions as extractive solvents for value-added compounds from biomass
Passos, Helena; Freire, Mara G.; Coutinho, João A. P.
2014-01-01
In the past few years, the number of studies regarding the application of ionic liquids (ILs) as alternative solvents to extract value-added compounds from biomass has been growing. Based on an extended compilation and analysis of the data hitherto reported, the main objective of this review is to provide an overview on the use of ILs and their mixtures with molecular solvents for the extraction of value-added compounds present in natural sources. The ILs (or IL solutions) investigated as solvents for the extraction of natural compounds, such as alkaloids, flavonoids, terpenoids, lipids, among others, are outlined. The extraction techniques employed, namely solid–liquid extraction, and microwave-assisted and ultrasound-assisted extractions, are emphasized and discussed in terms of extraction yields and purification factors. Furthermore, the evaluation of the IL chemical structure and the optimization of the process conditions (IL concentration, temperature, biomass–solvent ratio, etc.) are critically addressed. Major conclusions on the role of the ILs towards the extraction mechanisms and improved extraction yields are additionally provided. The isolation and recovery procedures of the value-added compounds are ascertained as well as some scattered strategies already reported for the IL solvent recovery and reusability. Finally, a critical analysis on the economic impact versus the extraction performance of IL-based methodologies was also carried out and is here presented and discussed. PMID:25516718
Ionic liquid solutions as extractive solvents for value-added compounds from biomass.
Passos, Helena; Freire, Mara G; Coutinho, João A P
2014-12-01
In the past few years, the number of studies regarding the application of ionic liquids (ILs) as alternative solvents to extract value-added compounds from biomass has been growing. Based on an extended compilation and analysis of the data hitherto reported, the main objective of this review is to provide an overview on the use of ILs and their mixtures with molecular solvents for the extraction of value-added compounds present in natural sources. The ILs (or IL solutions) investigated as solvents for the extraction of natural compounds, such as alkaloids, flavonoids, terpenoids, lipids, among others, are outlined. The extraction techniques employed, namely solid-liquid extraction, and microwave-assisted and ultrasound-assisted extractions, are emphasized and discussed in terms of extraction yields and purification factors. Furthermore, the evaluation of the IL chemical structure and the optimization of the process conditions (IL concentration, temperature, biomass-solvent ratio, etc.) are critically addressed. Major conclusions on the role of the ILs towards the extraction mechanisms and improved extraction yields are additionally provided. The isolation and recovery procedures of the value-added compounds are ascertained as well as some scattered strategies already reported for the IL solvent recovery and reusability. Finally, a critical analysis on the economic impact versus the extraction performance of IL-based methodologies was also carried out and is here presented and discussed.
NASA Technical Reports Server (NTRS)
Chang-Diaz, Franklin R. (Inventor)
1989-01-01
Apparatus and method of removing desirable constituents from an infusible material by infusion extraction, where a piston operating in a first chamber draws a solvent into the first chamber where it may be heated, and then moves the heated solvent into a second chamber containing the infusible material, and where infusion extraction takes place. The piston then moves the solvent containing the extract through a filter into the first chamber, leaving the extraction residue in the second chamber.
Torres-Pelayo, Vianey del R.; Rovirosa-Hernández, M. J.; García-Orduña, F.; Chavira-Ramírez, R. D.; Boeck, L.; Canales-Espinosa, D.; Rodríguez-Landa, J. F.
2011-01-01
Several fecal steroid extraction techniques have been developed to measure the ovary function in different species of mammals. However, regardless of the method of extraction and the sample type chosen, it has been observed that they can yield results with different percentages of recuperation. The objective of this study was to determine whether the type of substratum, solvent and extraction method used have any influence on the extraction efficiency in the feces of Alouatta pigra (black howler monkey). For this purpose we used two methods: agitation and ebullition. With each method, we utilized moist and lyophilized feces. The validation of radioimmunoassay method was accurate and precise for quantify estradiol and progesterone in lyophilized feces of A. pigra. To both of which ethanol and methanol, absolute and at 80%, were added, besides the hormones 125I-Estradiol and 125I-Progesterone. The extraction efficiency for 125I-Estradiol was from 87.72 ± 3.97 to 41.24 ± 2.67%, and for 125I-Progesterone from 71.15 ± 4.24 to 42.30 ± 1.19% when we used the agitation method. Whereas with the ebullition method, the extraction efficiency for 125I-Estradiol ranged from 86.89 ± 2.66 to 71.68 ± 3.02% and for 125I-Progesterone from 98.31 ± 1.26 to 85.40 ± 1.98%. Due to the differences found in these assays, which depend on the method used, the type of feces employed and the type of solvent added to them, we recommend the ebullition method and the lyophilized feces of A. pigra for extracting the hormones, since in moist feces there may exist variables which might interfere in the quantification of 125I-Estradiol and 125I-Progesterone. PMID:22194723
Tejada-Casado, Carmen; Del Olmo-Iruela, Monsalud; García-Campaña, Ana M; Lara, Francisco J
2018-08-01
A green and simple multiresidue method using capillary liquid chromatography (CLC) with UV-diode array detection (DAD) has been developed for the determination of sixteen benzimidazoles (BZs) and its metabolites in milk samples. The separation was achieved in <32 min, using a Zorbax XDB-C18 column (150 mm × 0.5 mm I.D, 5 μm), with a mobile phase consisting of 50 mM ammonium acetate (solvent A) and a mixture of acetonitrile/methanol (1:1 v/v) (solvent B), at a flow rate of 9 μL min -1 . The temperature of the column was 20 °C and 6 μL of sample were injected. In spite of the complexity of milk samples, an effective, simple and fast sample preparation method called salting out-assisted liquid-liquid extraction (SALLE) was developed for the analysis of these compounds in cow milk samples. To obtain satisfactory extraction efficiencies for the studied analytes, several parameters affecting the SALLE procedure were optimized including the amount of sample, type and volume of the extraction solvent, and the nature and amount of the salt. Good linearity was obtained (R 2 > 0.9985 for all BZs) with limits of detection (LOD) between 1.0 and 2.8 μg kg -1 . Relative standard deviations of repeatability and intermediate precision were below 1.6 and 14.2%, respectively. Satisfactory recoveries between 79.1 and 99.6% were also obtained for three types of milk samples (cow, sheep and goat). The advantages of a miniaturized technique such as CLC in terms of better efficiencies and reduced solvent consumption, combined with the simplicity of the SALLE procedure, make this method a useful alternative for the monitoring of these residues at trace level. Copyright © 2018 Elsevier B.V. All rights reserved.
Continuous extraction of organic materials from water
Goldberg, M.C.; DeLong, L.; Kahn, L.
1971-01-01
A continuous liquid solvent extractor, designed to utilize organic solvents that are heavier than water, is described. The extractor is capable of handling input rates up to 2 liters per hour and has a 500-ml. extractant capacity. Extraction efficiency is dependent upon the p-value, the two solvent ratios, rate of flow of the aqueous phase, and rate of reflux of the organic phase. Extractors can be serially coupled to increase extraction efficiency and, when coupled with a lighter-than-water extractor, the system will allow the use of any immiscible solvent.
Tedder, Daniel W.
1985-05-14
Alcohol substantially free of water is prepared by continuously fermenting a fermentable biomass feedstock in a fermentation unit, thereby forming an aqueous fermentation liquor containing alcohol and microorganisms. Continuously extracting a portion of alcohol from said fermentation liquor with an organic solvent system containing an extractant for said alcohol, thereby forming an alcohol-organic solvent extract phase and an aqueous raffinate. Said alcohol is separated from said alcohol-organic solvent phase. A raffinate comprising microorganisms and unextracted alcohol is returned to the fermentation unit.
NASA Astrophysics Data System (ADS)
Waziiroh, E.; Harijono; Kamilia, K.
2018-03-01
Mahogany is frequently used for medicines for cancer, tumor, and diabetes, as it contains saponin and flavonoid. Saponin is a complex glycosydic compound consisted of triterpenoids or steroids. Saponin can be extracted from a plant by using a solvent extraction. Microwave Assisted Extraction (MAE) is a non-conventional extraction method that use micro waves in the process. This research was conducted by a Complete Random Design with two factors which were extraction time (120, 150, and 180 seconds) and solvent ratio (10:1, 15:1, and 20:1 v/w). The best treatment of MAE were the solvent ratio 15:1 (v/w) for 180 seconds. The best treatment resulting crude saponin extract yield of 41.46%, containing 11.53% total saponins, and 49.17% of antioxidant activity. Meanwhile, the treatment of maceration method were the solvent ratio 20:1 (v/w) for 48 hours resulting 39.86% yield of saponin crude extract, 9.26% total saponins and 56.23% of antioxidant activity. The results showed MAE was more efficient (less time of extraction and solvent amount) than maceration method.
Vahidi, Ehsan; Zhao, Fu
2017-12-01
Over the past decade, Rare Earth Elements (REEs) have gained special interests due to their significance in many industrial applications, especially those related to clean energy. While REEs production is known to cause damage to the ecosystem, only a handful of Life Cycle Assessment (LCA) investigations have been conducted in recent years, mainly due to lack of data and information. This is especially true for the solvent extraction separation of REEs from aqueous solution which is a challenging step in the REEs production route. In the current investigation, an LCA is carried out on a typical REE solvent extraction process using P204/kerosene and the energy/material flows and emissions data were collected from two different solvent extraction facilities in Inner Mongolia and Fujian provinces in China. In order to develop life cycle inventories, Ecoinvent 3 and SimaPro 8 software together with energy/mass stoichiometry and balance were utilized. TRACI and ILCD were applied as impact assessment tools and LCA outcomes were employed to examine and determine ecological burdens of the REEs solvent extraction operation. Based on the results, in comparison with the production of generic organic solvent in the Ecoinvent dataset, P204 production has greater burdens on all TRACI impact categories. However, due to the small amount of consumption, the contribution of P204 remains minimal. Additionally, sodium hydroxide and hydrochloric acid are the two impactful chemicals on most environmental categories used in the solvent extraction operation. On average, the solvent extraction step accounts for 30% of the total environmental impacts associated with individual REOs. Finally, opportunities and challenges for an enhanced environmental performance of the REEs solvent extraction operation were investigated. Copyright © 2017 Elsevier Ltd. All rights reserved.
Seo, Jongkwon; Lee, Soojung; Elam, Marcus L; Johnson, Sarah A; Kang, Jonghoon; Arjmandi, Bahram H
2014-01-01
The effects of guava leaves extracted using solvents of water, ethanol, methanol, and different concentrations of hydroethanolic solvents on phenolic compounds and flavonoids, and antioxidant properties have been investigated. The antioxidant capability was assessed based on 2,2-diphenyl-1-picrylhydrazyl radical and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical-scavenging abilities, reducing power, and nitric oxide-and nitrate-scavenging activities. The results demonstrated that the antioxidant ability of guava leaf extracts has a strong relationship with phenolic compound content rather than flavonoid content. Phenolic compound content of water extracted guava leaves was higher compared to pure ethanol and methanol extracts. However, phenolic compound content extracted using hydroethanolic solvent was higher than water, whereas 50% hydroethanolic was observed to be the most effective solvent showing high antioxidant ability. PMID:24804076
Hu, Guangji; Li, Jianbing; Hou, Haobo
2015-01-01
A combination of solvent extraction and freeze thaw was examined for recovering oil from the high-moisture petroleum refinery wastewater treatment pond sludge. Five solvents including cyclohexane (CHX), dichloromethane (DCM), methyl ethyl ketone (MEK), ethyl acetate (EA), and 2-propanol (2-Pro) were examined. It was found that these solvents except 2-Pro showed a promising oil recovery rate of about 40%, but the recycling of DCM solvent after oil extraction was quite low. Three solvents (CHX, MEK and EA) were then selected for examining the effect of freeze/thaw treatment on improving the quality of recovered oil. This treatment increased the total petroleum hydrocarbon (TPH) content in recovered oil from about 40% to 60% for both MEK and EA extractions, but little effect was observed for CHX extraction. Although the solid residue after oil recovery had a significantly decreased TPH content, a high concentration of heavy metals was observed, indicating that this residue may require proper management. In general, the combination of solvent extraction with freeze/thaw is effective for high-moisture oily hazardous waste treatment. Copyright © 2014 Elsevier B.V. All rights reserved.
Çavdar, Hasene Keskin; Yanık, Derya Koçak; Gök, Uğur; Göğüş, Fahrettin
2017-03-01
Pomegranate seed oil was extracted in a closed-vessel high-pressure microwave system. The characteristics of the obtained oil, such as fatty acid composition, free fatty acidity, total phenolic content, antioxidant activity and colour, were compared to those of the oil obtained by cold solvent extraction. Response surface methodology was applied to optimise extraction conditions: power (176-300 W), time (5-20 min), particle size ( d =0.125-0.800 mm) and solvent to sample ratio (2:1, 6:1 and 10:1, by mass). The predicted highest extraction yield (35.19%) was obtained using microwave power of 220 W, particle size in the range of d =0.125-0.450 mm and solvent-to-sample ratio of 10:1 (by mass) in 5 min extraction time. Microwave-assisted solvent extraction (MASE) resulted in higher extraction yield than that of Soxhlet (34.70% in 8 h) or cold (17.50% in 8 h) extraction. The dominant fatty acid of pomegranate seed oil was punicic acid (86%) irrespective of the extraction method. Oil obtained by MASE had better physicochemical properties, total phenolic content and antioxidant activity than the oil obtained by cold solvent extraction.
NASA Astrophysics Data System (ADS)
Susanti, R. F.; Natalia, Desy
2016-11-01
In traditional medicine, Physalis angulata which is well known as ceplukan in Indonesia, has been utilized to cure several diseases by conventional extraction in hot water. The investigation of the Swietenia mahagoni extract activity in modern medicine typically utilized organic solvents such as ethanol, methanol, chloroform and hexane in extraction. In this research, subcritical water was used as a solvent instead of organic solvent to extract the Pysalis angulata leaf part. The focus of this research was the investigation of extract drying condition in the presence of filler to preserve the quality of antioxidant in Swietenia mahagoni extract. Filler, which is inert, was added to the extract during drying to help absorb the water while protect the extract from exposure in heat during drying. The effects of filler types, concentrations and oven drying temperatures were investigated to the antioxidant quality covering total phenol and antioxidant activity. Aerosil and microcrystalline cellulose (MCC) were utilized as fillers with concentration was varied from 0-30 wt% for MCC and 0-15 wt% for aerosil. The oven drying temperature was varied from 40-60 oC. The results showed that compare to extract dried without filler, total phenol and antioxidant activity were improved upon addition of filler. The higher the concentration of filler, the better the antioxidant; however it was limited by the homogeneity of filler in the extract. Both of the variables (oven temperature and concentration) played an important role in the improvement of extract quality of Swietenia mahagoni leaf. It was related to the drying time which can be minimized to protect the deterioration of extract from heat. In addition, filler help to provide the powder form of extract instead of the typical extract form which is sticky and oily.
Manubolu, Manjunath; Lee, Jiyoung; Riedl, Kenneth M; Kua, Zi Xun; Collart, Lindsay P; Ludsin, Stuart A
2018-06-01
Human-driven environmental change has increased the occurrence of harmful cyanobacteria blooms in aquatic ecosystems. Concomitantly, exposure to microcystin (MC), a cyanobacterial toxin that can accumulate in animals, edible plants, and agricultural soils, has become a growing public health concern. For accurate estimation of health risks and timely monitoring, availability of reliable detection methods is imperative. Nonetheless, quantitative analysis of MCs in many types of biological and environmental samples has proven challenging because matrix interferences can hinder sample preparation and extraction procedures, leading to poor MC recovery. Herein, controlled experiments were conducted to enhance the use of ultra-performance liquid-chromatography tandem-mass spectrometry (UPLC-MS/MS) to recover MC-LR and MC-RR at a range of concentrations in seafood (fish), vegetables (lettuce), and environmental (soil) matrices. Although these experiments offer insight into detailed technical aspects of the MC homogenization and extraction process (i.e., sonication duration and centrifugation speed during homogenization; elution solvent to use during the final extraction), they centered on identifying the best (1) solvent system to use during homogenization (2-3 tested per matrix) and (2) single-phase extraction (SPE) column type (3 tested) to use for the final extraction. The best procedure consisted of the following, regardless of sample type: centrifugation speed = 4200 × g; elution volume = 8 mL; elution solvent = 80% methanol; and SPE column type = hydrophilic-lipophilic balance (HLB), with carbon also being satisfactory for fish. For sonication, 2 min, 5 min, and 10 min were optimal for fish, lettuce, and soil matrices, respectively. Using the recommended HLB column, the solvent systems that led to the highest recovery of MCs were methanol:water:butanol for fish, methanol:water for lettuce, and EDTA-Na 4 P 2 O 7 for soils. Given that the recommended procedures resulted in average MC-LR and MC-RR recoveries that ranged 93 to 98%, their adoption for the preparation of samples with complex matrices before UPLC-MS/MS analysis is encouraged. Copyright © 2018 Elsevier B.V. All rights reserved.
Lai, Xian-Wen; Sun, Dai-Li; Ruan, Chun-Qiang; Zhang, He; Liu, Cheng-Lan
2014-01-01
A novel, simple, and rapid method is presented for the analysis of aflatoxin B1, aflatoxin B2, and ochratoxin A in rice samples by dispersive liquid-liquid microextraction combined with LC and fluorescence detection. After extraction of the rice samples with a mixture of acetonitrile/water/acetic acid, mycotoxins were rapidly partitioned into a small volume of organic solvent (chloroform) by dispersive liquid-liquid microextraction. The three mycotoxins were simultaneously determined by LC with fluorescence detection after precolumn derivatization for aflatoxin B1 and B2. Parameters affecting both extraction and dispersive liquid-liquid microextraction procedures, including the extraction solvent, the type and volume of extractant, the volume of dispersive solvent, the addition of salt, the pH and the extraction time, were optimized. The optimized protocol provided an enrichment factor of approximately 1.25 and with detection of limits (0.06-0.5 μg/kg) below the maximum levels imposed by current regulations for aflatoxins and ochratoxin A. The mean recovery of three mycotoxins ranged from 82.9-112%, with a RSD less than 7.9% in all cases. The method was successfully applied to measure mycotoxins in commercial rice samples collected from local supermarkets in China. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xie, Dan; Mu, Hongyan; Tang, Tianpei; Wang, Xiaosan; Wei, Wei; Jin, Jun; Wang, Xingguo; Jin, Qingzhe
2018-05-15
In this study, a three-step extraction method (separately use acetone, hexane, and ethanol as extraction solvent in each step) was conducted to selectively extract three types of krill oils with different compositions. The lipid yields were 5.08% in step 1, 4.80% in step 2, and 9.11% in step 3, with a total of 18.99%. The krill oil extracted with acetone in step 1 (A-KO) contained the lowest contents of phospholipids (PL) (2.32%) and n-3 polyunsaturated fatty acids (PUFA) (16.63%), but the highest levels of minor components (505.00 mg/kg of astaxanthin, 29.39 mg/100 g of tocopherols, 34.32 mg/100 g of vitamin A and 27.95 mg/g of cholesterol). By contrast, despite having traces of minor components, the krill oil extracted using ethanol in step 3 (E-KO) was the most abundant in PL (59.52%) and n-3 PUFA (41.74%). The krill oil extracted using hexane in step 2 (H-KO) expressed medium contents of all the testing indices. The oils showed significant differences in the antioxidant capacity (E-KO > H-KO > A-KO) which exhibited positive correlation with the PL content. These results could be used for further development of a wide range of krill oil products with tailor-made functions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Group extraction of organic compounds present in liquid samples
NASA Technical Reports Server (NTRS)
Jahnsen, Vilhelm J. (Inventor)
1976-01-01
An extraction device is disclosed comprising a tube containing a substantially inert, chemically non-reactive packing material with a large surface area to volume ratio. A sample which consists of organic compounds dissolved in a liquid, is introduced into the tube. As the sample passes through the packing material it spreads over the material's large surface area to form a thin liquid film which is held on the packing material in a stationary state. A particular group or family of compounds is extractable from the sample by passing a particular solvent system consisting of a solvent and selected reagents through the packing material. The reagents cause optimum conditions to exist for the compounds of the particular family to pass through the phase boundary between the sample liquid and the solvent of the solvent system. Thus, the compounds of the particular family are separated from the sample liquid and become dissolved in the solvent of the solvent system. The particular family of compounds dissolved in the solvent, representing an extract, exits the tube together with the solvent through the tube's nozzle, while the rest of the sample remains on the packing material in a stationary state. Subsequently, a different solvent system may be passed through the packing material to extract another family of compounds from the remaining sample on the packing material.
Method of separating and recovering uranium and related cations from spent Purex-type systems
Mailen, J.C.; Tallent, O.K.
1987-02-25
A process for separating uranium and related cations from a spent Purex-type solvent extraction system which contains degradation complexes of tributylphosphate wherein the system is subjected to an ion-exchange process prior to a sodium carbonate scrubbing step. A further embodiment comprises recovery of the separated uranium and related cations. 5 figs.
Five methods were used for the extraction of hexachlorobutadiene and chlorobenzenes from a contaminated estuarine sediment. The following extraction methods were used: Soxhlet extraction, sonication and solvent extraction, sequential solvent extraction, saponification and solv...
Alothman, Zeid A; Habila, Mohamed; Yilmaz, Erkan; Soylak, Mustafa
2013-01-01
A simple, environmentally friendly, and efficient dispersive liquid-liquid microextraction method combined with microsample injection flame atomic absorption spectrometry was developed for the separation and preconcentration of Cu(II). 2-(5-Bromo-2-pyridylazo)-5-(diethylamino)phenol (5-Br-PADAP) was used to form a hydrophobic complex of Cu(II) ions in the aqueous phase before extraction. To extract the Cu(II)-5-Br-PADAP complex from the aqueous phase to the organic phase, 2.0 mL of acetone as a disperser solvent and 200 microL of chloroform as an extraction solvent were used. The influences of important analytical parameters, such as the pH, types and volumes of the extraction and disperser solvents, amount of chelating agent, sample volume, and matrix effects, on the microextraction procedure were evaluated and optimized. Using the optimal conditions, the LOD, LOQ, preconcentration factor, and RSD were determined to be 1.4 microg/L, 4.7 microg/L, 120, and 6.5%, respectively. The accuracy of the proposed method was investigated using standard addition/recovery tests. The analysis of certified reference materials produced satisfactory analytical results. The developed method was applied for the determination of Cu in real samples.
Yusri, Noordin Mohd; Chan, Kim Wei; Iqbal, Shahid; Ismail, Maznah
2012-10-25
A sequential solvent extraction scheme was employed for the extraction of antioxidant compounds from kenaf (Hibiscus cannabinus L.) seeds. Yield of extracts varied widely among the solvents and was the highest for hexane extract (16.6% based on dry weight basis), while water extract exhibited the highest total phenolic content (18.78 mg GAE/g extract), total flavonoid content (2.49 mg RE/g extract), and antioxidant activities (p < 0.05). DPPH and hydroxyl radical scavenging, β-carotene bleaching, metal chelating activity, ferric thiocyanate and thiobarbituric acid reactive substances assays were employed to comprehensively assess the antioxidant potential of different solvent extracts prepared sequentially. Besides water, methanolic extract also exhibited high retardation towards the formation of hydroperoxides and thiobarbituric acid reactive substances in the total antioxidant activity tests (p < 0.05). As conclusion, water and methanol extracts of kenaf seed may potentially serve as new sources of antioxidants for food and nutraceutical applications.
NASA Astrophysics Data System (ADS)
Buang, Yohanes; Suwari, Ola, Antonius R. B.
2017-12-01
Effects of pH changes in solvents on isolation of antibacterial activities of natural product extracts were conducted in the present study. Sarang semut (M. pendens) tubers as the model material for the study was considered to be the strategic resource of natural products based on its biochemical and therapeutical effects. The water with pH 5, 7, 9, and 13 was used as the solvents. The antibacterial activities of the resulted extracts indicated that higher the working pH, higher activities of the resulted extracts. The extent activities of the resulted extracts followed the increasing pH of the maceration system. The study also found that higher pH of the working solvent, higher the amounts of the antibacterial extracts isolated from the sample matrix of the natural product. The higher pH of the water solvents plays essential roles to promote the antibacterial activities of the natural product extracts from M. pendens tubers.
Barrera Vázquez, M F; Comini, L R; Martini, R E; Núñez Montoya, S C; Bottini, S; Cabrera, J L
2014-03-01
This work reports a comparative study about extraction methods used to obtain anthraquinones (AQs) from stems and leaves of Heterophyllae pustulata Hook (Rubiáceae). One of the conventional procedures used to extract these metabolites from a vegetable matrix is by successive Soxhlet extractions with solvents of increasing polarity: starting with hexane to eliminate chlorophylls and fatty components, following by benzene and finally ethyl acetate. However, this technique shows a low extraction yield of total AQs, and consumes large quantities of solvent and time. Ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE) have been investigated as alternative methods to extract these compounds, using the same sequence of solvents. It was found that UAE increases the extraction yield of total AQs and reduces the time and amount of solvent used. Nevertheless, the combination UAE with benzene, plus MAE with ethyl acetate at a constant power of 900 W showed the best results. A higher yield of total AQs was obtained in less time and using the same amount of solvent that UAE. The optimal conditions for this latter procedure were UAE with benzene at 50 °C during 60 min, followed by MAE at 900 W during 15 min using ethyl acetate as extraction solvent. Copyright © 2013 Elsevier B.V. All rights reserved.
Quesada-Medina, Joaquín; López-Cremades, Francisco Javier; Olivares-Carrillo, Pilar
2010-11-01
The solubility of lignin from hydrolyzed almond (Prunus amygdalus) shells in different acetone, ethanol and dioxane-water mixtures and conditions (extraction time and temperature) was studied. The concept of the solubility parameter (delta-value) was applied to explain the effect of organic solvent concentration on lignin solubility. The organic solvent-water mixture that led to the highest lignin extraction was composed of a 75% vol. of organic solvent for all the solvent series investigated (acetone, ethanol and dioxane). Moreover, the best lignin extraction conditions were a temperature of 210 degrees C and an extraction time of 40 min for the acetone and ethanol series, and 25 min for the dioxane series. The delta-value of the hydrolyzed almond shell lignin [14.60 (cal/cm(3))(1/2)] and that of the organic solvent-water mixtures was calculated. The experimental delignification capacity of the aqueous organic solvents clearly reflected the proximity of their delta-value to that of lignin. The hydrogen-bonding capacity of the solvent-water mixtures was also taken into account. Copyright 2010 Elsevier Ltd. All rights reserved.
Fakhari, Ali Reza; Nojavan, Saeed; Ebrahimi, Samad Nejad; Evenhuis, Christopher John
2010-07-01
This study investigated the use of ultrasound-assisted extraction to improve the extraction efficiency of morphine, codeine and thebaine from the papaver plants. Extraction conditions such as type of solvent, temperature, duration, frequency and power level of ultrasonic were optimized and the influences of different parameters on resolution of alkaloids in CE were studied. The optimized condition for CE separation includes a sodium phosphate buffer (100 mM, pH 3.0) containing 5 mM alpha-CD. The optimized extraction conditions for ultrasound-assisted extraction was an extraction time of 1 h, an ultrasonic frequency of 60 kHz with water-methanol (80:20) at 40 degrees C as the extraction solvent. The LOD for alkaloids was found to be 0.1 microg/mL at a signal-to-noise ratio of 3:1. The RSDs for peak areas were in the range of 1.4-4.4%. The amounts of opium alkaloids (mg/100 g dried sample) in four Iranian papaver plants were found to be in the range of 7.8-8.7 (morphine), 5.5-9.5 (codeine) and 1.4-10.4 (thebaine). It should be emphasized that no cleanup of the filtered extract was required; hence, direct determination after extraction drastically simplifies the analytical process.
Supercritical multicomponent solvent coal extraction
NASA Technical Reports Server (NTRS)
Corcoran, W. H.; Fong, W. S.; Pichaichanarong, P.; Chan, P. C. F.; Lawson, D. D. (Inventor)
1983-01-01
The yield of organic extract from the supercritical extraction of coal with larger diameter organic solvents such as toluene is increased by use of a minor amount of from 0.1 to 10% by weight of a second solvent such as methanol having a molecular diameter significantly smaller than the average pore diameter of the coal.
Deep Eutectic Solvents (DESs) for the Isolation of Willow Lignin (Salix matsudana cv. Zhuliu)
Li, Tengfei; Liu, Yu; Lou, Rui; Yang, Guihua; Chen, Jiachuan; Saeed, Haroon A. M.
2017-01-01
Deep eutectic solvents (DESs) are a potentially high-value lignin extraction methodology. DESs prepared from choline chloride (ChCl) and three hydrogen-bond donors (HBD)—lactic acid (Lac), glycerol, and urea—were evaluated for isolation of willow (Salix matsudana cv. Zhuliu) lignin. DESs types, mole ratio of ChCl to HBD, extraction temperature, and time on the fractionated DES-lignin yield demonstrated that the optimal DES-lignin yield (91.8 wt % based on the initial lignin in willow) with high purity of 94.5% can be reached at a ChCl-to-Lac molar ratio of 1:10, extraction temperature of 120 °C, and time of 12 h. Fourier transform infrared spectroscopy (FT-IR) , 13C-NMR, and 31P-NMR showed that willow lignin extracted by ChCl-Lac was mainly composed of syringyl and guaiacyl units. Serendipitously, a majority of the glucan in willow was preserved after ChCl-Lac treatment. PMID:29143790
Leitz, Jenny; Kuballa, Thomas; Rehm, Jürgen; Lachenmeier, Dirk W.
2009-01-01
Background Phthalates are synthetic compounds with a widespread field of applications. For example, they are used as plasticizers in PVC plastics and food packaging, or are added to personal care products. Diethyl phthalate (DEP) may be used to denature alcohol, e.g., for cosmetic purposes. Public health concerns of phthalates include carcinogenic, teratogenic, hepatotoxic and endocrine effects. The aim of this study was to develop and validate a method for determining phthalates in alcohol samples and to provide a risk assessment for consumers of such products. Methodology/Principal Findings A liquid-liquid extraction procedure was optimized by varying the following parameters: type of extraction solvent (cyclohexane, n-hexane, 1,1,2-trichlorotrifluoroethane), the ratio extraction solvent/sample volume (1∶1 to 50∶1) and the number of extraction repetitions (1–10). The best extraction yield (99.9%) was achieved with the solvent 1,1,2-trichlorotrifluoroethane, an extraction solvent volume/sample volume ratio of 10∶1 and a double extraction. For quantification, gas chromatography/mass spectrometry with deuterated internal standards was used. The investigated samples were alcoholic beverages and unrecorded alcohol products from different countries (n = 257). Two unrecorded alcohol samples from Lithuania contained diethyl phthalate in concentrations of 608 mg/L and 210 mg/L. Conclusions/Significance The consumption of the phthalate-positive unrecorded alcohols would exceed tolerable daily intakes as derived from animal experiments. Both positive samples were labelled as cosmetic alcohol, but had clearly been offered for human consumption. DEP seems to be unsuitable as a denaturing agent as it has no effect on the organoleptic properties of ethanol. In light of our results that DEP might be consumed by humans in unrecorded alcohols, the prohibition of its use as a denaturing agent should be considered. PMID:19956573
Alternatives for Benzene in the Extraction of Bitumen Fume from Exposure Sample Media.
Sutter, Benjamin; Ravera, Christel; Hussard, Caroline; Langlois, Eddy
2016-01-01
Benzene is frequently used to extract collected bitumen fumes from personal sampler substrates. However, this solvent is particularly dangerous because of its carcinogenicity (group 1 of the International Agency for Research on Cancer classification). Therefore, to prevent the exposure of laboratory technicians to benzene during the fume extraction step from samplers, a compromise had to be found to identify a less toxic solvent with the same extraction capacity. To compare the extraction capacities of selected solvents, bitumen fumes were generated in the laboratory from three different batches of road surfacing bitumen collected on dedicated bitumen fume samplers. The samplers were then extracted by benzene and the solvents tested. Of 11 selected solvents less toxic than benzene and used in studies on bitumen and bitumen fume analyses, n-hexane and n-heptane were identified as alternatives to benzene. In particular, the results demonstrated that n-heptane was the best candidate solvent for benzene replacement, due to its extraction efficiency comparable to benzene for the three bitumen fumes tested and its low toxicity, which is highly compatible with benzene replacement. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Setyaningsih, W; Saputro, I E; Palma, M; Barroso, C G
2015-02-15
A new microwave-assisted extraction (MAE) method has been investigated for the extraction of phenolic compounds from rice grains. The experimental conditions studied included temperature (125-175°C), microwave power (500-1000W), time (5-15min), solvent (10-90% EtOAc in MeOH) and solvent-to-sample ratio (10:1 to 20:1). The extraction variables were optimised by the response surface methodology. Extraction temperature and solvent were found to have a highly significant effect on the response value (p<0.0005) and the extraction time also had a significant effect (p<0.05). The optimised MAE conditions were as follows: extraction temperature 185°C, microwave power 1000W, extraction time 20min, solvent 100% MeOH, and solvent-to-sample ratio 10:1. The developed method had a high precision (in terms of CV: 5.3% for repeatability and 5.5% for intermediate precision). Finally, the new method was applied to real samples in order to investigate the presence of phenolic compounds in a wide variety of rice grains. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chu, R. K.; Tfaily, M. M.; Tolic, N.; Kyle, J. E.; Robinson, E. R.; Hess, N. J.; Paša-Tolić, L.
2015-12-01
Soil organic matter (SOM) is a complex mixture of above and belowground plant litter and microbial residues, and is a key reservoir for carbon (C) and nutrient biogeochemical cycling in different ecosystems. A limited understanding of the molecular composition of SOM prohibits the ability to routinely decipher chemical processes within soil and predict how terrestrial C fluxes will response to changing climatic conditions. Here, we present that the choice of solvent can be used to selectively extract different compositional fractions from SOM to either target a specific class of compounds or gain a better understanding of the entire composition of the soil sample using 12T Fourier transform ion cyclotron resonance mass spectrometry. Specifically, we found that hexane and chloroform were selective for lipid-like compounds with very low O:C ratios; water was selective for carbohydrates with high O:C ratios; acetonitrile preferentially extracts lignin, condensed structures, and tannin polyphenolic compounds with O:C > 0.5; methanol has higher selectivity towards lignin and lipid compounds characterized with relatively low O:C < 0.5. Hexane, chloroform, methanol, acetonitrile and water increase the number and types of organic molecules extracted from soil for a broader range of chemically diverse soil types. Since each solvent extracts a selective group of compounds, using a suite of solvents with varying polarity for analysis results in more comprehensive representation of the diversity of organic molecules present in soil and a better representation of the whole spectrum of available substrates for microorganisms. Moreover, we have developed a sequential extraction protocol that permits sampling diverse classes of organic compounds while minimizing ionization competition during ESI while increasing sample throughput and decreasing sample volume. This allowed us to hypothesize about possible chemical reactions relating classes of organic molecules that reflect abiotic and biotic processes impacting SOM composition.
Sicaire, Anne-Gaëlle; Vian, Maryline; Fine, Frédéric; Joffre, Florent; Carré, Patrick; Tostain, Sylvain; Chemat, Farid
2015-01-01
The present study was designed to evaluate the performance of alternative bio-based solvents, more especially 2-methyltetrahydrofuran, obtained from crop’s byproducts for the substitution of petroleum solvents such as hexane in the extraction of fat and oils for food (edible oil) and non-food (bio fuel) applications. First a solvent selection as well as an evaluation of the performance was made with Hansen Solubility Parameters and the COnductor-like Screening MOdel for Realistic Solvation (COSMO-RS) simulations. Experiments were performed on rapeseed oil extraction at laboratory and pilot plant scale for the determination of lipid yields, extraction kinetics, diffusion modeling, and complete lipid composition in term of fatty acids and micronutrients (sterols, tocopherols and tocotrienols). Finally, economic and energetic evaluations of the process were conducted to estimate the cost of manufacturing using 2-methyltetrahydrofuran (MeTHF) as alternative solvent compared to hexane as petroleum solvent. PMID:25884332
Supercritical solvent coal extraction
NASA Technical Reports Server (NTRS)
Compton, L. E. (Inventor)
1984-01-01
Yields of soluble organic extract are increased up to about 50% by the supercritical extraction of particulate coal at a temperature below the polymerization temperature for coal extract fragments (450 C.) and a pressure from 500 psig to 5,000 psig by the conjoint use of a solvent mixture containing a low volatility, high critical temperature coal dissolution catalyst such as phenanthrene and a high volatility, low critical temperature solvent such as toluene.
Wang, Zhibing; Hu, Jianxue; Du, Hongxia; He, Shuang; Li, Qing; Zhang, Hanqi
2016-06-05
The microwave-assisted ionic liquid homogeneous liquid-liquid microextraction (MA-IL-HLLME) coupled with high performance liquid chromatography with diode array detection (HPLC-DAD) was developed for the determination of anthraquinones, including aloe-emodin, emodin, chrysophanol and physcion in root of Rheum palmatum L. Several experimental parameters influencing the extraction efficiency, including amount of sample, type and volume of ionic liquid, volume and pH value of extraction medium, microwave power and extraction time, concentration of NH4PF6 as well as centrifugal condition were optimized. When 140μL of ionic liquid ([C8MIM][BF4]) was used as an extraction solvent, target analytes can be extracted from sample matrix in one minute with the help of microwave irradiation. The MA-IL-HLLME is simple and quick. The calibration curves exhibited good linear relationship (r>0.9984). The limits of detection and quantification were in the range of 0.015-0.026 and 0.051-0.088μgmL(-1), respectively. The spiked recovery for each analyte was in the range of 81.13-93.07% with relative standard deviations lower than 6.89%. The present method is free of volatile organic solvents, and represents lower expenditures of sample, extraction time and solvent, compared with ultrasonic and heat reflux extraction. The results indicated that the present method can be successfully applied to the determination of anthraquinones in medicinal plant. Copyright © 2016 Elsevier B.V. All rights reserved.
Ionic Liquids as Extraction Media for Metal Ions
NASA Astrophysics Data System (ADS)
Hirayama, Naoki
In solvent extraction separation of metal ions, recently, many researchers have investigated possible use of hydrophobic ionic liquids as extraction media instead of organic solvents. Ionic liquids are salts of liquid state around room temperature and can act not only as solvents but also as ion-exchangers. Therefore, the extraction mechanism of metal ions into ionic liquids is complicated. This review presents current overview and perspective on evaluation of nature of hydrophobic ionic liquids as extraction media for metal ions.
Jerković, Igor; Kranjac, Marina; Marijanović, Zvonimir; Zekić, Marina; Radonić, Ani; Tuberoso, Carlo Ignazio Giovanni
2016-03-21
The samples of Satureja subspicata Vis. honey were confirmed to be unifloral by melissopalynological analysis with the characteristic pollen share from 36% to 71%. Bioprospecting of the samples was performed by HPLC-DAD, GC-FID/MS, and UV/VIS. Prephenate derivatives were shown to be dominant by the HPLC-DAD analysis, particularly phenylalanine (167.8 mg/kg) and methyl syringate (MSYR, 114.1 mg/kg), followed by tyrosine and benzoic acid. Higher amounts of MSYR (3-4 times) can be pointed out for distinguishing S. subspicata Vis. honey from other Satureja spp. honey types. GC-FID/MS analysis of ultrasonic solvent extracts of the samples revealed MSYR (46.68%, solvent pentane/Et2O 1:2 (v/v); 52.98%, solvent CH2Cl2) and minor abundance of other volatile prephenate derivatives, as well as higher aliphatic compounds characteristic of the comb environment. Two combined extracts (according to the solvents) of all samples were evaluated for their antioxidant properties by FRAP and DPPH assay; the combined extracts demonstrated higher activity (at lower concentrations) in comparison with the average honey sample. UV/VIS analysis of the samples was applied for determination of CIE Lab colour coordinates, total phenolics (425.38 mg GAE/kg), and antioxidant properties (4.26 mmol Fe(2+)/kg (FRAP assay) and 0.8 mmol TEAC/kg (DDPH assay)).
Chou, C C; Yu, R C
1984-01-01
Ground powder of the leaf and fruit of Piper betle L., a tropical spice plant grown in Southeast Asia, was prepared and extracted by chloroform, ethanol and water with one solvent only or with 3 solvents in sequence. The betel powder and various extracts were added to YES broth to determine their effects on the growth and aflatoxin production by Aspergillus parasiticus. Results showed that betel leaf powder exhibited higher antimycotic activity than fruit. One half percent of ground leaf powder completely inhibited the growth and aflatoxin production by A. parasiticus. Among the solvent extracts, chloroform and ethanol extracts of betel leaf prepared from a single solvent extraction showed more antimycotic activity. The ethanol extract of betel leaf at the level of 450 micrograms/ml would eliminate A. parasiticus growth and aflatoxin production. The antimycotic activity of this ethanol extract was most pronounced at pH 4.
NASA Astrophysics Data System (ADS)
Hossain, Md. Khalid; Pervez, M. Firoz; Mia, M. N. H.; Mortuza, A. A.; Rahaman, M. S.; Karim, M. R.; Islam, Jahid M. M.; Ahmed, Farid; Khan, Mubarak A.
In this study, natural dye sensitizer based solar cells were successfully fabricated and photovoltaic performance was measured. Sensitizer (turmeric) sources, dye extraction process, and photoanode sensitization time of the fabricated cells were analyzed and optimized. Dry turmeric, verdant turmeric, and powder turmeric were used as dye sources. Five distinct types of solvents were used for extraction of natural dye from turmeric. Dyes were characterized by UV-Vis spectrophotometric analysis. The extracted turmeric dye was used as a sensitizer in the dye sensitized solar cell's (DSSC) photoanode assembly. Nano-crystalline TiO2 was used as a film coating semiconductor material of the photoanode. TiO2 films on ITO glass substrate were prepared by simple doctor blade technique. The influence of the different parameters VOC, JSC, power density, FF, and η% on the photovoltaic characteristics of DSSCs was analyzed. The best energy conversion performance was obtained for 2 h adsorption time of dye on TiO2 nano-porous surface with ethanol extracted dye from dry turmeric.
Çavdar, Hasene Keskin; Gök, Uğur; Göğüş, Fahrettin
2017-01-01
Summary Pomegranate seed oil was extracted in a closed-vessel high-pressure microwave system. The characteristics of the obtained oil, such as fatty acid composition, free fatty acidity, total phenolic content, antioxidant activity and colour, were compared to those of the oil obtained by cold solvent extraction. Response surface methodology was applied to optimise extraction conditions: power (176–300 W), time (5–20 min), particle size (d=0.125–0.800 mm) and solvent to sample ratio (2:1, 6:1 and 10:1, by mass). The predicted highest extraction yield (35.19%) was obtained using microwave power of 220 W, particle size in the range of d=0.125–0.450 mm and solvent-to-sample ratio of 10:1 (by mass) in 5 min extraction time. Microwave-assisted solvent extraction (MASE) resulted in higher extraction yield than that of Soxhlet (34.70% in 8 h) or cold (17.50% in 8 h) extraction. The dominant fatty acid of pomegranate seed oil was punicic acid (86%) irrespective of the extraction method. Oil obtained by MASE had better physicochemical properties, total phenolic content and antioxidant activity than the oil obtained by cold solvent extraction. PMID:28559737
Meikrantz, David H.; Todd, Terry A.; Riddle, Catherine L.; Law, Jack D.; Peterman, Dean R.; Mincher, Bruce J.; McGrath, Christopher A.; Baker, John D.
2007-11-06
A mixed extractant solvent including calix[4]arene-bis-(tert-octylbenzo)-crown-6 ("BOBCalixC6"), 4',4',(5')-di-(t-butyldicyclo-hexano)-18-crown-6 ("DtBu18C6"), and at least one modifier dissolved in a diluent. The mixed extractant solvent may be used to remove cesium and strontium from an acidic solution. The DtBu18C6 may be present from approximately 0.01 M to approximately 0.4M, such as from approximately 0.086 M to approximately 0.108 M. The modifier may be 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol ("Cs-7SB") and may be present from approximately 0.01M to approximately 0.8M. In one embodiment, the mixed extractant solvent includes approximately 0.15M DtBu18C6, approximately 0.007M BOBCalixC6, and approximately 0.75M Cs-7SB modifier dissolved in an isoparaffinic hydrocarbon diluent. The mixed extractant solvent may form an organic phase in an extraction system that also includes an aqueous phase. Methods of extracting cesium and strontium as well as strontium alone are also disclosed.
Effect of various solvent on the specific amino acids of black soybean (Glycine soja) sprout
NASA Astrophysics Data System (ADS)
Kanetro, B.; Slamet, A.; Wazyka, A.
2018-01-01
The objective of this research was to study the effect of various solvent extractions on the specific amino acids as small peptide or free amino acids that was contained in the extract after removal of the macromolecule protein of black soybean sprouts. The experimental design of this research was randomized complete design with one factor, which was the three various solvent, i.e. hexane, ethanol and water. The black soybean seed was germinated for 36 h. The small peptide and free amino acids of black soybean sprout were isolated at 3 various of solvents extraction, and then the macromolecule proteins in the extracts were precipitated at the pH 4. The extracts of black soybean sprout after removal of the macromolecule protein were analysed by HPLC to determine the profile of amino acids for stimulation of insulin secretion. The result of this research showed that the extracts contained the small peptide and free amino acid for stimulation of insulin secretion. The best solvent extraction was water that was due to the content of Leu, Arg, Ala, Phe, Ile, and Lys of water extract was higher than hexane and ethanol extracts.
Xu, Xu; Su, Rui; Zhao, Xin; Liu, Zhuang; Zhang, Yupu; Li, Dan; Li, Xueyuan; Zhang, Hanqi; Wang, Ziming
2011-11-30
The ionic liquid-based microwave-assisted dispersive liquid-liquid microextraction (IL-based MADLLME) and derivatization was applied for the pretreatment of six sulfonamides (SAs) prior to the determination by high-performance liquid chromatography (HPLC). By adding methanol (disperser), fluorescamine solution (derivatization reagent) and ionic liquid (extraction solvent) into sample, extraction, derivatization, and preconcentration were continuously performed. Several experimental parameters, such as the type and volume of extraction solvent, the type and volume of disperser, amount of derivatization reagent, microwave power, microwave irradiation time, pH of sample solution, and ionic strength were investigated and optimized. When the microwave power was 240 W, the analytes could be derivatized and extracted simultaneously within 90 s. The proposed method was applied to the analysis of river water, honey, milk, and pig plasma samples, and the recoveries of analytes obtained were in the range of 95.0-110.8, 95.4-106.3, 95.0-108.3, and 95.7-107.7, respectively. The relative standard deviations varied between 1.5% and 7.3% (n=5). The results showed that the proposed method was a rapid, convenient and feasible method for the determination of SAs in liquid samples. Copyright © 2011 Elsevier B.V. All rights reserved.
Development status of the life marker chip instrument for ExoMars
NASA Astrophysics Data System (ADS)
Sims, Mark R.; Cullen, David C.; Rix, Catherine S.; Buckley, Alan; Derveni, Mariliza; Evans, Daniel; Miguel García-Con, Luis; Rhodes, Andrew; Rato, Carla C.; Stefinovic, Marijan; Sephton, Mark A.; Court, Richard W.; Bulloch, Christopher; Kitchingman, Ian; Ali, Zeshan; Pullan, Derek; Holt, John; Blake, Oliver; Sykes, Jonathan; Samara-Ratna, Piyal; Canali, Massimiliano; Borst, Guus; Leeuwis, Henk; Prak, Albert; Norfini, Aleandro; Geraci, Ennio; Tavanti, Marco; Brucato, John; Holm, Nils
2012-11-01
The Life Marker Chip (LMC) is one of the instruments being developed for possible flight on the 2018 ExoMars mission. The instrument uses solvents to extract organic compounds from samples of martian regolith and to transfer the extracts to dedicated detectors based around the use of antibodies. The scientific aims of the instrument are to detect organics in the form of biomarkers that might be associated with extinct life, extant life or abiotic sources of organics. The instrument relies on a novel surfactant-based solvent system and bespoke, commercial and research-developed antibodies against a number of distinct biomarkers or molecular types. The LMC comprises of a number of subsystems designed to accept up to four discrete samples of martian regolith or crushed rock, implement the solvent extraction, perform microfluidic-based multiplexed antibody-assays for biomarkers and other targets, optically detect the fluorescent output of the assays, control the internal instrument pressure and temperature, in addition to the associated instrument control electronics and software. The principle of operation, the design and the instrument development status as of December 2011 are reported here. The instrument principle can be extended to other configurations and missions as needed.
Alternative and Efficient Extraction Methods for Marine-Derived Compounds
Grosso, Clara; Valentão, Patrícia; Ferreres, Federico; Andrade, Paula B.
2015-01-01
Marine ecosystems cover more than 70% of the globe’s surface. These habitats are occupied by a great diversity of marine organisms that produce highly structural diverse metabolites as a defense mechanism. In the last decades, these metabolites have been extracted and isolated in order to test them in different bioassays and assess their potential to fight human diseases. Since traditional extraction techniques are both solvent- and time-consuming, this review emphasizes alternative extraction techniques, such as supercritical fluid extraction, pressurized solvent extraction, microwave-assisted extraction, ultrasound-assisted extraction, pulsed electric field-assisted extraction, enzyme-assisted extraction, and extraction with switchable solvents and ionic liquids, applied in the search for marine compounds. Only studies published in the 21st century are considered. PMID:26006714
Paradiso, Vito Michele; Clemente, Antonia; Summo, Carmine; Pasqualone, Antonella; Caponio, Francesco
2016-09-01
This data article refers to the paper "Towards green analysis of virgin olive oil phenolic compounds: extraction by a natural deep eutectic solvent and direct spectrophotometric detection" [1]. A deep eutectic solvent (DES) based on lactic acid and glucose was used as green solvent for phenolic compounds. Eight standard phenolic compounds were solubilized in the DES. Then, a set of extra virgin olive oil (EVOO) samples (n=65) were submitted to liquid-liquid extraction by the DES. The standard solutions and the extracts were analyzed by UV spectrophotometry. This article reports the spectral data of both the standard solutions and the 65 extracts, as well as the total phenolic content of the corresponding oils, assessed by the Folin-Ciocalteu assay.
NASA Technical Reports Server (NTRS)
Chang-Diaz, Franklin R.
1988-01-01
Apparatus and method of removing desirable constituents from an infusible material by infusion extraction, where a piston operating in a first chamber draws a solvent into the first chamber where it may be heated, and then moves the heated solvent into a second chamber containing the infusible material, and where infusion extraction takes place. The piston then moves the solvent containing the extract through a filter into the first chamber, leaving the extraction residue in the second chamber.
Han, Quan-Bin; Tang, Wai-Lun; Dong, Cai-Xia; Xu, Hong-Xi; Jiang, Zhi-Hong
2013-04-01
Two-phase solvent system plays crucial role in successful separation of organic compounds using counter-current chromatography (CCC). An interesting two-phase solvent system, composed of chloroform/ethyl acetate/methanol/water, is reported here, in which both phases contain sufficient organic solvents to balance their dissolving capacities. Adjusting the solvent system to get satisfactory partition coefficients (K values) for target compounds becomes relatively simple. This solvent system succeeded in sample preparation of aconitine (8.07 mg, 93.69%), hypaconitine (7.74 mg, 93.17%), mesaconitine (1.95 mg, 94.52%) from raw aconite roots (102.24 mg, crude extract), benzoylmesaconine (34.79 mg, 98.67%) from processed aconite roots (400.01 mg, crude extract), and yunaconitine (253.59 mg, 98.65%) from a crude extract of Aconitum forrestii (326.69 mg, crude extract). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chebrolu, Kranthi K; Jayaprakasha, G K; Jifon, J; Patil, Bhimanagouda S
2011-07-15
Understanding the factors influencing flavonone extraction is critical for the knowledge in sample preparation. The present study was focused on the extraction parameters such as solvent, heat, centrifugal speed, centrifuge temperature, sample to solvent ratio, extraction cycles, sonication time, microwave time and their interactions on sample preparation. Flavanones were analyzed in a high performance liquid chromatography (HPLC) and later identified by liquid chromatography and mass spectrometry (LC-MS). The five flavanones were eluted by a binary mobile phase with 0.03% phosphoric acid and acetonitrile in 20 min and detected at 280 nm, and later identified by mass spectral analysis. Dimethylsulfoxide (DMSO) and dimethyl formamide (DMF) had optimum extraction levels of narirutin, naringin, neohesperidin, didymin and poncirin compared to methanol (MeOH), ethanol (EtOH) and acetonitrile (ACN). Centrifuge temperature had a significant effect on flavanone distribution in the extracts. The DMSO and DMF extracts had homogeneous distribution of flavanones compared to MeOH, EtOH and ACN after centrifugation. Furthermore, ACN showed clear phase separation due to differential densities in the extracts after centrifugation. The number of extraction cycles significantly increased the flavanone levels during extraction. Modulating the sample to solvent ratio increased naringin quantity in the extracts. Current research provides critical information on the role of centrifuge temperature, extraction solvent and their interactions on flavanone distribution in extracts. Published by Elsevier B.V.
Extraction of organic compounds with room temperature ionic liquids.
Poole, Colin F; Poole, Salwa K
2010-04-16
Room temperature ionic liquids are novel solvents with a rather specific blend of physical and solution properties that makes them of interest for applications in separation science. They are good solvents for a wide range of compounds in which they behave as polar solvents. Their physical properties of note that distinguish them from conventional organic solvents are a negligible vapor pressure, high thermal stability, and relatively high viscosity. They can form biphasic systems with water or low polarity organic solvents and gases suitable for use in liquid-liquid and gas-liquid partition systems. An analysis of partition coefficients for varied compounds in these systems allows characterization of solvent selectivity using the solvation parameter model, which together with spectroscopic studies of solvent effects on probe substances, results in a detailed picture of solvent behavior. These studies indicate that the solution properties of ionic liquids are similar to those of polar organic solvents. Practical applications of ionic liquids in sample preparation include extractive distillation, aqueous biphasic systems, liquid-liquid extraction, liquid-phase microextraction, supported liquid membrane extraction, matrix solvents for headspace analysis, and micellar extraction. The specific advantages and limitations of ionic liquids in these studies is discussed with a view to defining future uses and the need not to neglect the identification of new room temperature ionic liquids with physical and solution properties tailored to the needs of specific sample preparation techniques. The defining feature of the special nature of ionic liquids is not their solution or physical properties viewed separately but their unique combinations when taken together compared with traditional organic solvents. Copyright 2009 Elsevier B.V. All rights reserved.
Process for enhancing the value of hydrocabonaceous natural recources
Bunger, James W.; Cogswell, Donald E.
2005-04-05
A process for upgrading hydrocarbonaceous oil containing heteroatom-containing compounds where the hydrocarbonaceous oil is contacted with a solvent system that is a mixture of a major portion of a polar solvent having a dipole moment greater than about 1 debye and a minor portion of water to selectively separate the constituents of the carbonaceous oil into a heteroatom-depleted raffinate fraction and heteroatom-enriched extract fraction. The polar solvent and the water-in-solvent system are formulated at a ratio where the water is an antisolvent in an amount to inhibit solubility of heteroatom-containing compounds and the polar solvent in the raffinate, and to inhibit solubility of non-heteroatom-containing compounds in the extract. The ratio of the hydrocarbonaceous oil to the solvent system is such that a coefficient of separation is at least 50%. The coefficient of separation is the mole percent of heteroatom-containing compounds from the carbonaceous oil that are recovered in the extract fraction minus the mole percent of non-heteroatom-containing compounds from the carbonaceous oil that are recovered in the extract fraction. The solvent-free extract and the raffinate concentrates may be used directly or processed to make valuable petroleum, chemical or industrial products.
Baaka, Noureddine; El Ksibi, Imen; Mhenni, Mohamed Farouk
2017-01-01
The present study has been focused on the extraction of natural pigments from tomato industry waste. At first, different solvents and solvents mixture were compared to determine which one is the best for extracting carotenoids compounds from tomato by-products. A mixture of hexane and acetone gave the highest carotenoids extraction yield among the others examined. The extraction conditions were optimised using a five-level-five-factor central composite design. Under optimal conditions, solvent solid ratio 90, hexane percentage in the solvent mixture 60, extraction duration 50, number of extractions 4 and extraction temperature 35 °C, the yield of carotenoids was 80.7 μg/g. The coloured extract of tomato by-products was applied on textile fabrics to investigate the dyeing characteristics and antioxidant activities. The results indicate that extract can be applied on textile fabrics (wool, silk and polyamide) to produce coloured clothing with acceptable antioxidant properties.
Li, Ying; Fabiano-Tixier, Anne Sylvie; Tomao, Valérie; Cravotto, Giancarlo; Chemat, Farid
2013-01-01
A green, inexpensive and easy-to-use method for carotenoids extraction from fresh carrots assisted by ultrasound was designed in this work. Sunflower oil was applied as a substitute to organic solvents in this green ultrasound-assisted extraction (UAE): a process which is in line with green extraction and bio-refinery concepts. The processing procedure of this original UAE was first compared with conventional solvent extraction (CSE) using hexane as solvent. Moreover, the UAE optimal conditions for the subsequent comparison were optimized using response surface methodology (RSM) and ultra performance liquid chromatography--diode array detector--mass spectroscopy (UPLC-DAD-MS). The results showed that the UAE using sunflower as solvent has obtained its highest β-carotene yield (334.75 mg/l) in 20 min only, while CSE using hexane as solvent obtained a similar yield (321.35 mg/l) in 60 min. The green UAE performed under optimal extraction conditions (carrot to oil ratio of 2:10, ultrasonic intensity of 22.5 W cm(-2), temperature of 40 °C and sonication time of 20 min) gave the best yield of β-carotene. Copyright © 2012 Elsevier B.V. All rights reserved.
Rodil, Rosario; Schellin, Manuela; Popp, Peter
2007-09-07
Membrane-assisted solvent extraction (MASE) in combination with large volume injection-gas chromatography-mass spectrometry (LVI-GC-MS) was applied for the determination of 16 polycyclic aromatic hydrocarbons (PAHs) in aqueous samples. The MASE conditions were optimized for achieving high enrichment of the analytes from aqueous samples, in terms of extraction conditions (shaking speed, extraction temperature and time), extraction solvent and composition (ionic strength, sample pH and presence of organic solvent). Parameters like linearity and reproducibility of the procedure were determined. The extraction efficiency was above 65% for all the analytes and the relative standard deviation (RSD) for five consecutive extractions ranged from 6 to 18%. At optimized conditions detection limits at the ng/L level were achieved. The effectiveness of the method was tested by analyzing real samples, such as river water, apple juice, red wine and milk.
Preparation of highly luminescent and biocompatible carbon dots using a new extraction method
NASA Astrophysics Data System (ADS)
Zhang, Rui; Liu, Ying-Bo; Sun, Shu-Qing
2013-10-01
C dots (CDs) are among the most promising emerging fluorescent labels for biological imaging and sensing. A facile new synthesis method was developed using common organic solvents for fabricating CDs from candle soot. The common organic solvents were used as extractants and the obtained CDs have a narrow size distribution with average diameters of about 3.4 nm for ethylene glycol, 3.5 nm for ethanol, and 3.4 nm for n-butanol. This approach is simpler, easier, and more effective than other methods currently used for CD fabrication. The obtained CDs had a high quantum yield (38 %), tunable emission and are water-soluble. The mechanism for the luminescence of the CDs was investigated and the results indicate that the ability of the solvent to disperse the CDs plays a very important role in the photoluminescence of these CDs. The type of organic solvent and the surface groups on the CDs also influenced the optical properties of the CDs. Different emissive traps are shown to play the major role in the luminescence of the carbon materials. An in vitro hemolysis assay was performed and showed that the CDs are biocompatible.
NASA Astrophysics Data System (ADS)
Inayati, Puspita, Rifka Intan; Fajrin, Vika Latifiana
2018-02-01
One of fruit preservation method is by applying the edible coating. Rind of passion fruit (Passiflora edulis var. flavicarpa Degener), which is kind of waste, can be utilized as edible coating through pectin extraction process. The purposes of this work were to determine the suitable solvent for the pectin extraction and techniques for applying the produced edible coating on strawberry, to produce edible coating from the pectin, and the test the performance of the edible coating which was applied to strawberries. Pectin from passion fruit rind was collected through conventional extraction method using two types of solvent, i.e. acetic acid solution and hydrochloric acid solution with concentration of 0.01 N, 0.015 N, 0.02 N, 0.025 N, and 0.03 N. The results showed that chloric acid solution was more suitable for the pectin extraction from passion fruit. Maximum yield of 30.78% was obtained at hydrochloric acid concentration of 0.02 N. Obtained pectin from the extraction was then processed into the edible coating by adding plasticizers and calcium chloride dihydrate. Storability of the coated strawberry was observed to measure the performance of the edible coating
Jerković, Igor; Marijanović, Zvonimir; Kranjac, Marina; Radonić, Ani
2015-02-01
Headspace solid-phase microextraction (HS-SPME), ultrasonic solvent extraction (USE) and solid phase extraction (SPE), followed by GC-FID/MS were used for screening of dandelion (Taraxacum officinale Weber) honey headspace, volatiles and semi-volatiles. The obtained results constitute a breakthrough towards screening of dandelion honey since dominant compounds identified in the extracts were not previously reported for this honey type. Nitriles dominated in the headspace, particularly 3-methylpentanenitrile (up to 29.9%) and phenylacetonitrile (up to 20.9%). Lower methyl branched aliphatic acids and norisoprenoids were relevant minor constituents of the headspace. The extracts contained phenylacetic acid (up to 24.0%) and dehydrovomifoliol (up to 19.3%) as predominant compounds, while 3-methylpentanenitrile and phenylacetonitrile were detected in the extracts in minor abundance. Dehydrovomifoliol can be considered more characteristic for dandelion honey in distinction from phenylacetic acid. Low molecular aliphatic acids, benzene derivatives and an array of higher aliphatic compounds were also found in the extracts. The results of SPE/GC-FID/MS were very similar to USE/GC-FID/MS with the solvent dichloromethane. The use of all applied methodologies was relevant for the comprehensive chemical fingerprinting of dandelion honey volatiles.
Mohammadiazar, Sirwan; Hasanli, Fateme; Maham, Mehdi; Payami Samarin, Somayeh
2017-08-01
Electrochemically co-deposited sol-gel/Cu nanocomposites have been introduced as a novel, simple and single-step technique for preparation of solid-phase microextraction (SPME) coating to extract methadone (MDN) (a synthetic opioid) in urine samples. The porous surface structure of the sol-gel/Cu nanocomposite coating was revealed by scanning electron microscopy. Direct immersion SPME followed by HPLC-UV determination was employed. The factors influencing the SPME procedure, such as the salt content, desorption solvent type, pH and equilibration time, were optimized. The best conditions were obtained with no salt content, acetonitrile as desorption solvent type, pH 9 and 10 min equilibration time. The calibration graphs for urine samples showed good linearity. The detection limit was about 0.2 ng mL -1 . Also, the novel method for preparation of nanocomposite fiber was compared with previously reported techniques for MDN determination. The results show that the novel nanocomposite fiber has relatively high extraction efficiency. Copyright © 2016 John Wiley & Sons, Ltd.
Yang, Guang; Sun, Qiushi; Hu, Zhiyan; Liu, Hua; Zhou, Tingting; Fan, Guorong
2015-10-01
In this study, an accelerated solvent extraction dispersive liquid-liquid microextraction coupled with gas chromatography and mass spectrometry was established and employed for the extraction, concentration and analysis of essential oil constituents from Ligusticum chuanxiong Hort. Response surface methodology was performed to optimize the key parameters in accelerated solvent extraction on the extraction efficiency, and key parameters in dispersive liquid-liquid microextraction were discussed as well. Two representative constituents in Ligusticum chuanxiong Hort, (Z)-ligustilide and n-butylphthalide, were quantitatively analyzed. It was shown that the qualitative result of the accelerated solvent extraction dispersive liquid-liquid microextraction approach was in good agreement with that of hydro-distillation, whereas the proposed approach took far less extraction time (30 min), consumed less plant material (usually <1 g, 0.01 g for this study) and solvent (<20 mL) than the conventional system. To sum up, the proposed method could be recommended as a new approach in the extraction and analysis of essential oil. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Abian, Olga; Mateo, César; Fernández-Lorente, Gloria; Guisán, José M; Fernández-Lafuente, Roberto
2003-01-01
The hydrolysis of penicillin G in the presence of an organic solvent, used with the purpose of extracting it from the culture medium, may greatly simplify the industrial preparation of 6-APA. However, under these conditions, PGA immobilized onto Eupergit displays very low stability (half-life of 5 h in butanone-saturated water) and a significant degree of inhibition by the organic solvent (30%). The negative effect of the organic solvent strongly depended on the type of solvent utilized: water saturated with butanone (around 28% v/v) had a much more pronounced negative effect than that of methylisobutyl ketone (MIBK) (solubility in water was only 2%). These problems were sorted out by using a new penicillin G acylase derivative designed to work in the presence of organic solvents (with each enzyme molecule surrounded by an hydrophilic artificial environment) and a suitable organic solvent (MIBK). Using such solvent, this derivative kept its activity unaltered for 1 week at 32 degrees C. Moreover, the enzyme activity was hardly inhibited by the presence of the organic solvent. In this way, the new enzyme derivative thus prepared enables simplification of the industrial hydrolysis of penicillin G.
Rezvani-Eivari, Mostafa; Amiri, Amirhassan; Baghayeri, Mehdi; Ghaemi, Ferial
2016-09-23
The application of magnetized graphene (G) layers synthesized on the carbon nanofibers (CNFs) (m-G/CNF) was investigated as novel adsorbent for the magnetic solid-phase extraction (MSPE) of polycyclic aromatic hydrocarbons (PAHs) in water samples followed by gas chromatography-flame ionization detector (GC-FID). Six important parameters, affecting the extraction efficiency of PAHs, including: amount of adsorbent, adsorption and desorption times, type and volume of the eluent solvent and salt content of the sample were evaluated. The optimum extraction conditions were obtained as: 5min for extraction time, 20mg for sorbent amount, dichloromethane as desorption solvent, 1mL for desorption solvent volume, 5min for desorption time and 15% (w/v) for NaCl concentration. Good performance data were obtained at the optimized conditions. The calibration curves were linear over the concentration ranges from 0.012 to 100ngmL(-1) with correlation coefficients (r) between 0.9950 and 0.9967 for all the analytes. The limits of detection (LODs, S/N=3) of the proposed method for the studied PAHs were 0.004-0.03ngmL(-1). The relative standard deviations (RSDs) for five replicates at two concentration levels (0.1 and 50ngmL(-1)) of PAHs were ranged from 3.4 to 5.7%. Appropriate relative recovery values, in the range of 95.5-99.9%, were also obtained for the real water sample analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
[Study on ultrafine vibration extraction technology of Rhizoma Chuanxiong].
Dai, Long
2009-04-01
To explore the best ultrafine vibration extraction technology of Rhizoma Chuanxiong. Using the content of ligustrazine hydrochloride and ferulic acid as determination indexes, quadrature test was used to choose extraction times, time, solvent amount and to compare with the result of conventional extraction technology. The best condition of the Rhizoma chuanxiong was with 90% ethanol of 4 times volume, extracting 2 times in 25 degrees C, 15 minutes each time. Comparing with conventional extraction technology, extraction time of UVET was 1/6, solvent amount was 4/7, the extraction rate of marker components was 1.19 and 1.09 times, respectivley. UVET can improve the extracting rate of effective constituents, reduce the time and solvent amount and be used in industrialization.
Xu, Keqin; He, Gongxiu; Qin, Jieming; Cheng, Xuexiang; He, Hanjie; Zhang, Dangquan; Peng, Wanxi
2018-05-01
There are three key medicinal components (phellodendrine, berberine and palmatine) in the extracts of Phellodendron bark, as one of the fundamental herbs of traditional Chinese medicine. Different extraction methods and solvent combinations were investigated to obtain the optimal technologies for high-efficient extraction of these medicinal components. The results showed that combined solvents have higher extracting effect of phellodendrine, berberine and palmatine than single solvent, and the effect of ultrasonic extraction is distinctly better than those of distillation and soxhlet extraction. The hydrochloric acid/methanol-ultrasonic extraction has the best effect for three medicinal components of fresh Phellodendron bark, providing an extraction yield of 103.12 mg/g berberine, 24.41 mg/g phellodendrine, 1.25 mg/g palmatine.
Farajzadeh, Mir Ali; Mogaddam, Mohammad Reza Afshar; Ghorbanpour, Houshang
2014-06-20
In the present study, a rapid, highly efficient, and reliable sample preparation method named "elevated temperature dispersive liquid-liquid microextraction" followed by gas chromatography-nitrogen-phosphorus detection was developed for the extraction, preconcentration, and determination of five triazole pesticides (penconazole, hexaconazole, diniconazole, tebuconazole, and difenoconazole) in honey samples. In this method the temperature of high-volume aqueous phase was adjusted at an elevated temperature and then a disperser solvent containing an extraction solvent was rapidly injected into the aqueous phase. After cooling to room temperature, the phase separation was accelerated by centrifugation. Various parameters affecting the extraction efficiency such as type and volume of the extraction and disperser solvents, temperature, salt addition, and pH were evaluated. Under the optimum extraction conditions, the method resulted in low limits of detection and quantification within the range 0.05-0.21ngg(-1) in honey (15-70ngL(-1) in solution) and 0.15-1.1ngg(-1) in honey (45-210ngL(-1) in solution), respectively. Enrichment factors and extraction recoveries were in the ranges of 1943-1994 and 97-100%, respectively. The method precision was evaluated at 1.5ngg(-1) of each analyte, and the relative standard deviations were found to be less than 4% for intra-day (n=6) and less than 6% for inter-days. The method was successfully applied to the analysis of honey samples and difenoconazole was determined at ngg(-1) levels. Copyright © 2014 Elsevier B.V. All rights reserved.
Bajkacz, Sylwia; Adamek, Jakub
2017-06-01
Natural deep eutectic solvents (NADESs) are considered to be new, safe solvents in green chemistry that can be widely used in many chemical processes such as extraction or synthesis. In this study, a simple extraction method based on NADES was used for the isolation of isoflavones (daidzin, genistin, genistein, daidzein) from soy products. Seventeen different NADES systems each including two or three components were tested. Multivariate data analysis revealed that NADES based on a 30% solution of choline chloride: citric acid (molar ratio of 1:1) are the most effective systems for the extraction of isoflavones from soy products. After extraction, the analytes were detected and quantified using ultra-high performance liquid chromatography with ultraviolet detection (UHPLC-UV). The proposed NADES extraction procedure achieved enrichment factors up to 598 for isoflavones and the recoveries of the analytes were in the range 64.7-99.2%. The developed NADES extraction procedure and UHPLC-UV determination method was successfully applied for the analysis of isoflavones in soy-containing food samples. The obtained results indicated that new natural deep eutectic solvents could be an alternative to traditional solvents for the extraction of isoflavones and can be used as sustainable and safe extraction media for another applications. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Chang-Diaz, Franklin R. (Inventor)
1986-01-01
This invention relates to an apparatus and method of removing desirable constituents from an infusible material by infusion extraction. A piston operating in a first chamber draws a solvent into the first chamber where it may be heated, and then moves the heated solvent into a second chamber containing the infusible material, where infusion extraction takes place. The piston then moves the solvent containing the extract through a filter into the first chamber, leaving the extraction residue in the second chamber. The method is applicable to operation in low or micro-gravity environments.
Ultrasound-assisted extraction of three bufadienolides from Chinese medicine ChanSu.
Sun, Yinshi; Bi, Jianjie; Zhang, Li; Ye, Baoxing
2012-11-01
In this study, the application of ultrasound-assisted extraction (UAE) method was shown to be more efficient in extracting anti-tumor bufadienolides (bufalin, cinobufagin and resibufogenin) from important animal medicine of ChanSu than the maceration extraction (ME) and soxhlet extraction (SE) method. The effects of ultrasonic variables including extraction solvent, solvent concentration, solvent to solid ratio, ultrasound power, temperature, extraction time and particle size on the yields of three bufadienolides were investigated. The optimum extraction conditions found were: 70% (v/v) methanol solution, solvent to solid ratio of 10ml/g, ultrasound power of 125W, temperature of 20°C, extraction time of 20min and particle size of 60-80 mesh. The extraction yields of bufalin, cinobufagin and resibufogenin were 43.17±0.85, 52.58±1.12, 137.70±2.65mg/g, respectively. In order to achieve a similar yield as UAE, soxhlet extraction required 6h and maceration extraction required much longer time of 18h. The results indicated that UAE is an alternative method for extracting bufadienolides from ChanSu. Copyright © 2012 Elsevier B.V. All rights reserved.
DEMONSTRATION BULLETIN: TERRA KLEEN SOLVENT EXTRACTION TECHNOLOGY - TERRA-KLEEN RESPONSE GROUP, INC.
The Terra-Kleen Solvent Extraction Technology was developed by Terra-Kleen Response Group, Inc., to remove polychlorinated biphenyls (PCB) and other organic constituents from contaminated soil. This batch process system uses a proprietary solvent at ambient temperatures to treat ...
Pérez-Palacios, David; Fernández-Recio, Miguel Ángel; Moreta, Cristina; Tena, María Teresa
2012-09-15
Focused ultrasonic solid-liquid extraction (FUSLE) and reverse-phase ultra performance liquid chromatography (UPLC) coupled to a quadrupole-time of flight mass spectrometer (Q-TOF-MS) was applied to the determination of bisphenol-type endocrine disrupting compounds (EDCs) in food-contact recycled-paper materials. Recycled paper is a potential source of EDCs. Bisphenol A (BPA), bisphenol F (BPF) and their derivatives bisphenol A diglycidyl ether (BADGE) and bisphenol F diglycidyl ether (BFDGE) are used for the production of epoxy resins employed in the formulation of printing inks. The FUSLE of bisphenol-type EDCs from packaging is reported for the first time. First, different extraction solvents were studied and methanol was selected. Then, the main FUSLE factors affecting the extraction efficiency (solvent volume, extraction time and ultrasonic irradiation power) were studied by means of a central composite design. The FUSLE conditions selected for further experiments were 20 ml of methanol at ultrasonic amplitude of 100% for 5s. Finally, the number of extraction cycles necessary for complete extraction was established in two. The analysis of the FUSLE extracts was carried out by UPLC-Q-TOF-MS with electrospray ionization and the determination of the four analytes took place in only 4 min. The FUSLE and UPLC-ESI-QTOF-MS method was validated and applied to the analysis of different food-contact recycled-paper-based materials and packaging. The proposed method provided recoveries from 72% to 97%, repeatability and intermediate precision under 9% and 14%, respectively, and detection limits of 0.33, 0.16, 0.65 and 0.40 μg/g for BPA, BPF, BADGE and BFDGE, respectively. The analysis of paper and cardboard samples confirmed the presence of EDCs in these packaging. Copyright © 2012 Elsevier B.V. All rights reserved.
Wei, Qizhen; Song, Zhiyu; Nie, Jing; Xia, Hailun; Chen, Fujiang; Li, Zuguang; Lee, Mawrong
2016-12-01
A pretreatment method named tablet-effervescence-assisted dissolved carbon flotation was introduced for the determination of four triazole fungicides in environmental water. In this method, the use of effervescent tablet composed of nontoxic sodium carbonate and sodium dihydrogen phosphate could generate CO 2 in situ to assist the dispersion of extraction solvent and to accelerate mass transfer of target analytes. In addition, the simple phase separation simply based on the rising of low-density organic solvent from the aqueous phase was applied rather than the application of apparatus, which demonstrated the potential for on-site extraction in the field. The experimental variables, including the composition of effervescent tablets, amount of effervescent tablets, types and volume of extraction solvent, were investigated. Under the optimized conditions, the method showed good linearity for myclobutanil, tebuconazole, epoxiconazole, and difenoconazole in the range of 1-100 μg/L. The limits of detection and the limits of quantification were within the range of 0.15-0.26 and 0.49-0.86 μg/L, respectively. The obtained correlation coefficients varied from 0.997 to 0.999, and suitable enrichment factors were 422-589. The recoveries were 82.5-112.9% with relative standard deviations of 4.7-13.5%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Research News: Emulsion Liquid Membrane Extraction in a Hollow-Fiber Contactor
NASA Technical Reports Server (NTRS)
Wiencek, John M.; Hu, Shih-Yao
2000-01-01
This article describes how ELMs (emulsion liquid membranes) can be used for extraction. The article addresses the disadvantages of ELM extraction in a stirred contactor, and the advantages of SELMs (supported emulsion liquid membranes). The introduction of the article provides background information on liquid-liquid solvent extraction and dispersion-free solvent extraction.
An accelerated solvent extraction (ASE) device was evaluated as a semi-automated means for extracting arsenicals from quality control (QC) samples and DORM-2 [standard reference material (SRM)]. Unlike conventional extraction procedures, the ASE requires that the sample be dispe...
Yang, Zhi; Wu, Youqian; Wu, Shihua
2016-01-29
Despite of substantial developments of extraction and separation techniques, isolation of natural products from natural resources is still a challenging task. In this work, an efficient strategy for extraction and isolation of multi-component natural products has been successfully developed by combination of systematic two-phase liquid-liquid extraction-(13)C NMR pattern recognition and following conical counter-current chromatography separation. A small-scale crude sample was first distributed into 9 systematic hexane-ethyl acetate-methanol-water (HEMWat) two-phase solvent systems for determination of the optimum extraction solvents and partition coefficients of the prominent components. Then, the optimized solvent systems were used in succession to enrich the hydrophilic and lipophilic components from the large-scale crude sample. At last, the enriched components samples were further purified by a new conical counter-current chromatography (CCC). Due to the use of (13)C NMR pattern recognition, the kinds and structures of major components in the solvent extracts could be predicted. Therefore, the method could collect simultaneously the partition coefficients and the structural information of components in the selected two-phase solvents. As an example, a cytotoxic extract of podophyllotoxins and flavonoids from Dysosma versipellis (Hance) was selected. After the systematic HEMWat system solvent extraction and (13)C NMR pattern recognition analyses, the crude extract of D. versipellis was first degreased by the upper phase of HEMWat system (9:1:9:1, v/v), and then distributed in the two phases of the system of HEMWat (2:8:2:8, v/v) to obtain the hydrophilic lower phase extract and lipophilic upper phase extract, respectively. These extracts were further separated by conical CCC with the HEMWat systems (1:9:1:9 and 4:6:4:6, v/v). As results, total 17 cytotoxic compounds were isolated and identified. In general, whole results suggested that the strategy was very efficient for the systematic extraction and isolation of biological active components from the complex biomaterials. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Knust, E. A.; Chappelle, E. W.; Picciolo, G. L.
1975-01-01
Firefly luciferase ATP assay is used in clinical and industrial applications, such as determination of urinary infection levels, microbial susceptibility testing, and monitoring of yeast levels in beverages. Three categories of extractants were investigated for their extracting efficiency. They were ionizing organic solvents, nonionizing organic solvents, and inorganic acids. Dimethylsulfoxide and formamide represented the ionizing organic solvents, while n-butanol, chloroform, ethanol, acetone, and methylene chloride were used for the nonionizing organic solvents. Nitric acid and perchloric acid were chosen for the inorganic acids category. Pathogens were tested with each solvent. They included: Saccharomyces carlsbergensis, E. coli, Staphylococcus aureus, Klebsiella pneumoniae, Enterobacter species, Proteus mirabilis, Proteus vulgaris, Staphylococcus epidermidis, Streptococcus faecalis, Pseudomonas aeruginosa, and Candida albicans. These results are shown in graphic representations.
Vera-Candioti, Luciana; Teglia, Carla M; Cámara, María S
2016-10-01
A dispersive liquid-liquid microextraction procedure was developed to extract nine fluoroquinolones in porcine blood, six of which were quantified using a univariate calibration method. Extraction parameters including type and volume of extraction and dispersive solvent and pH, were optimized using a full factorial and a central composite designs. The optimum extraction parameters were a mixture of 250 μL dichloromethane (extract solvent) and 1250 μL ACN (dispersive solvent) in 500 μL of porcine blood reached to pH 6.80. After shaking and centrifugation, the upper phase was transferred in a glass tube and evaporated under N 2 steam. The residue was resuspended into 50 μL of water-ACN (70:30, v/v) and determined by CE method with DAD, under optimum separation conditions. Consequently, a tenfold enrichment factor can potentially be reached with the pretreatment, taking into account the relationship between initial sample volume and final extract volume. Optimum separation conditions were as follows: BGE solution containing equal amounts of sodium borate (Na 2 B 4 O 7 ) and di-sodium hydrogen phosphate (Na 2 HPO 4 ) with a final concentration of 23 mmol/L containing 0.2% of poly (diallyldimethylammonium chloride) and adjusted to pH 7.80. Separation was performed applying a negative potential of 25 kV, the cartridge was maintained at 25.0°C and the electropherograms were recorded at 275 nm during 4 min. The hydrodynamic injection was performed in the cathode by applying a pressure of 50 mbar for 10 s. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
SEPARATION PROCESS FOR TRANSURANIC ELEMENT AND COMPOUNDS THEREOF
Magnusson, L.B.
1958-04-01
A process is described for the separation of neptunium, from aqueous solutions of neptunium, plutonium, uraniunn, and fission prcducts. This separation from an acidic aqueous solution of a tetravalent neptuniunn can be made by contacting the solution with a certain type of chelating,; agent, preferably dissolved in an organic solvent, to form a neptunium chelate compound. When the organic solvent is present, the neptunium chelate compound is extracted; otherwise, it precipitates from the aqueous solution and is separated by any suitable means. The chelating agent is a fluorinated BETA -diketone. such as trifluoroacetyl acetone.
AFM fluid delivery/liquid extraction surface sampling/electrostatic spray cantilever probe
Van Berkel, Gary J.
2015-06-23
An electrospray system comprises a liquid extraction surface sampling probe. The probe comprises a probe body having a liquid inlet and a liquid outlet, and having a liquid extraction tip. A solvent delivery conduit is provided for receiving solvent liquid from the liquid inlet and delivering the solvent liquid to the liquid extraction tip. An open liquid extraction channel extends across an exterior surface of the probe body from the liquid extraction tip to the liquid outlet. An electrospray emitter tip is in liquid communication with the liquid outlet of the liquid extraction surface sampling probe. A system for analyzing samples, a liquid junction surface sampling system, and a method of analyzing samples are also disclosed.
Jiyane, Phiwe Charles; Tumba, Kaniki; Musonge, Paul
2018-04-01
The extraction of oil from Croton gratissimus seeds was studied using the three-factor five-level full-factorial central composite rotatable design (CCRD) of the response surface methodology (RSM). The effect of the three factors selected, viz., extraction time, extraction temperature and solvent-to-feed ratio on the extraction oil yield was investigated when n-hexane and ethyl acetate were used as extraction solvents. The coefficients of determination (R 2 ) of the models developed were 0.98 for n-hexane extraction and 0.97 for ethyl acetate extraction. These results demonstrated that the models developed adequately represented the processes they described. From the optimized model, maximum extraction yield obtained from n-hexane and ethyl acetate extraction were 23.88% and 23.25%, respectively. In both cases the extraction temperature and solvent-to-feed ratio were 35°C and 5 mL/g, respectively. In n-hexane extraction the maximum conditions were reached only after 6 min whereas in ethyl acetate extraction it took 20 min to get the maximum extraction oil yield. Oil extraction of Croton gratissimus seeds, in this work, favoured the use of n-hexane as an extraction solvent as it offered higher oil yields at low temperatures and reduced residence times.
The abstract summarizes pyrethorid methods development research. It provides a summary of sample preparation and analytical techniques such as supercritical fluid extraction, enhance solvent extraction, gas chromatography and tandem mass spectrometry.
NASA Astrophysics Data System (ADS)
Tambun, R.; Purba, R. R. H.; Ginting, H. K.
2017-09-01
The goal of this research is to produce oleoresin from basil leaves (Ocimum canum) by using soxhletation method and ethyl acetate as solvent. Basil commonly used in culinary as fresh vegetables. Basil contains essential oils and oleoresin that are used as flavouring agent in food, in cosmetic and ingredient in traditional medicine. The extraction method commonly used to obtain oleoresin is maceration. The problem of this method is many solvents necessary and need time to extract the raw material. To resolve the problem and to produce more oleoresin, we use soxhletation method with a combination of extraction time and ratio from the material with a solvent. The analysis consists of yield, density, refractive index, and essential oil content. The best treatment of basil leaves oleoresin extraction is at ratio of material and solvent 1:6 (w / v) for 6 hours extraction time. In this condition, the yield of basil oleoresin is 20.152%, 0.9688 g/cm3 of density, 1.502 of refractive index, 15.77% of essential oil content, and the colour of oleoresin product is dark-green.
RECOVERY OF METAL VALUES FROM AQUEOUS SOLUTIONS BY SOLVENT EXTRACTION
Moore, R.L.
1959-09-01
An organic solvent mixure is described for extracting actinides from aqueous solutions; the solvent mixture consists of from 10 to 25% by volume of tributyl phosphate and the remainder a chlorine-fluorine-substituted saturated hydrocarbon having two carbon atoms in the molecule.
Hill, Talon G.; Ensor, Dale D.; Delmau, Lætitia Helene; ...
2016-02-06
Cesium stripping performance of thermally stressed solvent degrades slowly over time in batch tests of the Next Generation Caustic-Side Solvent Extraction (NGS) process. NGS is currently used at pilot scale at the Savannah River Site for the selective removal of cesium from high-level salt waste. Recently a new guanidine, N,N',N" -tris(3,7-dimethyloctyl)guanidine (TiDG), was chosen for use as the suppressor, a lipophilic organic base needed for stripping, and the present study was undertaken to address the question of its stability. The NGS process solvent was evaluated for a period of three months under a variety of temperature and storage conditions. Themore » performance of the solvent was tested at 30-day increments using a standard extraction, scrub, strip, and extraction (ES 2S 3E) sequence. Lastly, the results provide insight on the effects of storage and process conditions, the stripping behavior of TiDG, and the stability of the new solvent composition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, Talon G.; Ensor, Dale D.; Delmau, Lætitia Helene
Cesium stripping performance of thermally stressed solvent degrades slowly over time in batch tests of the Next Generation Caustic-Side Solvent Extraction (NGS) process. NGS is currently used at pilot scale at the Savannah River Site for the selective removal of cesium from high-level salt waste. Recently a new guanidine, N,N',N" -tris(3,7-dimethyloctyl)guanidine (TiDG), was chosen for use as the suppressor, a lipophilic organic base needed for stripping, and the present study was undertaken to address the question of its stability. The NGS process solvent was evaluated for a period of three months under a variety of temperature and storage conditions. Themore » performance of the solvent was tested at 30-day increments using a standard extraction, scrub, strip, and extraction (ES 2S 3E) sequence. Lastly, the results provide insight on the effects of storage and process conditions, the stripping behavior of TiDG, and the stability of the new solvent composition.« less
Kumar, Satyanshu; Dhanani, Tushar; Shah, Sonal
2014-10-01
Andrographis paniculata (Burm.f.) wall.ex Nees (Acanthaceae) or Kalmegh is an important medicinal plant finding uses in many Ayurvedic formulations. Diterpenoid compounds andrographolides (APs) are the main bioactive phytochemicals present in leaves and herbage of A. paniculata. The efficiency of supercritical fluid extraction (SFE) using carbon dioxide was compared with the solid-liquid extraction techniques such as solvent extraction, ultrasound-assisted solvent extraction and microwave-assisted solvent extraction with methanol, water and methanol-water as solvents. Also a rapid and validated reverse-phase high-performance liquid chromatography-diode array detection method was developed for the simultaneous determination of the three biologically active compounds, AP, neoandrographolide and andrograpanin, in the extracts of A. paniculata. Under the best SFE conditions tested for diterpenoids, which involved extraction at 60°C and 100 bar, the extractive efficiencies were 132 and 22 µg/g for AP and neoandrographolide, respectively. The modifier percentage significantly affected the extraction efficiency. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Wang, Ziming; Zhao, Xin; Xu, Xu; Wu, Lijie; Su, Rui; Zhao, Yajing; Jiang, Chengfei; Zhang, Hanqi; Ma, Qiang; Lu, Chunmei; Dong, Deming
2013-01-14
A single-step extraction-cleanup method, including microwave-assisted extraction (MAE) and micro-solid-phase extraction (μ-SPE), was developed for the extraction of ten organophosphorus pesticides in vegetable and fruit samples. Without adding any polar solvent, only one kind of non-polar solvent (hexane) was used as extraction solvent in the whole extraction step. Absorbing microwave μ-SPE device, was prepared by packing activated carbon with microporous polypropylene membrane envelope, and used as not only the sorbent in μ-SPE, but also the microwave absorption medium. Some experimental parameters effecting on extraction efficiency was investigated and optimized. 1.0 g of sample, 8 mL of hexane and three absorbing microwave μ-SPE devices were added in the microwave extraction vessel, the extraction was carried out under 400 W irradiation power at 60°C for 10 min. The extracts obtained by MAE-μ-SPE were directly analyzed by GC-MS without any clean-up process. The recoveries were in the range of 93.5-104.6%, and the relative standard deviations were lower than 8.7%. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shi, Qihua; Zhang, Yimin; Liu, Tao; Huang, Jing; Liu, Hong
2017-10-01
To improve separation of V(IV) and Al(III) from aluminum-rich sulfuric acid leaching solution of stone coal, the two-stage separation by crystallization and solvent extraction methods have been developed. A co-extraction coefficient ( k) was put forward to evaluate comprehensively co-extraction extent in different solutions. In the crystallization stage, 68.2% of aluminum can be removed from the solution. In the solvent extraction stage, vanadium was selectively extracted using di-2-ethylhexyl phosphoric acid/tri-n-butyl phosphate from the crystalline mother solution, followed by H2SO4 stripped efficiently. A V2O5 product with purity of 98.39% and only 0.10% Al was obtained after oxidation, precipitation, and calcination. Compared with vanadium extraction from solution without crystallization, the counter-current extraction stage of vanadium can be decreased from 6 to 3 and co-extraction coefficient ( k) decreased from 2.51 to 0.58 with two-stage separation. It is suggested that the aluminum removal by crystallization can evidently weaken the influence of aluminum co-extraction on vanadium extraction and improve the selectivity of solvent extraction for vanadium.
Sarvin, Boris; Fedorova, Elizaveta; Shpigun, Oleg; Titova, Maria; Nikitin, Mikhail; Kochkin, Dmitry; Rodin, Igor; Stavrianidi, Andrey
2018-03-30
In this paper, the ultrasound assisted extraction method for isolation of steroidal glycosides from D. deltoidea plant cell suspension culture with a subsequent HPLC-MS determination was developed. After the organic solvent was selected via a two-factor experiment the optimization via Latin Square 4 × 4 experimental design was carried out for the following parameters: extraction time, organic solvent concentration in extraction solution and the ratio of solvent to sample. It was also shown that the ultrasound assisted extraction method is not suitable for isolation of steroidal glycosides from the D. deltoidea plant material. The results were double-checked using the multiple successive extraction method and refluxing extraction. Optimal conditions for the extraction of steroidal glycosides by the ultrasound assisted extraction method were: extraction time, 60 min; acetonitrile (water) concentration in extraction solution, 50%; the ratio of solvent to sample, 400 mL/g. Also, the developed method was tested on D. deltoidea cell suspension cultures of different terms and conditions of cultivation. The completeness of the extraction was confirmed using the multiple successive extraction method. Copyright © 2018 Elsevier B.V. All rights reserved.
Ratiu, Ileana-Andreea; Al-Suod, Hossam; Ligor, Magdalena; Ligor, Tomasz; Railean-Plugaru, Viorica; Buszewski, Bogusław
2018-03-15
Cyclitols are phytochemicals naturally occurring in plant material, which attracted an increasing interest due to multiple medicinal attributes, among which the most important are the antidiabetic, antioxidant, and anticancer properties. Due to their valuable properties, sugars are used in the food industry as sweeteners, preservatives, texture modifiers, fermentation substrates, and flavoring and coloring agents. In this study, we report for the first time the quantitative analysis of sugars and cyclitols isolated from Solidago virgaurea L., which was used for the selection of the optimal solvent and extraction technique that can provide the best possible yield. Moreover, the quantities of sugars and cyclitols extracted from two other species, Solidago canadensis and Solidago gigantea, were investigated using the best extraction method and the most appropriate solvent. Comparative analysis of natural plant extracts obtained using five different techniques-maceration, Soxhlet extraction, pressurized liquid extraction, ultrasound-assisted extraction, and supercritical fluid extraction-was performed in order to decide the most suitable, efficient, and economically convenient extraction method. Three different solvents were used. Analysis of samples has been performed by solid-phase extraction for purification and pre-concentration, followed by derivation and GC-MS analysis. Highest efficiency for the total amount of obtained compounds has been reached by PLE, when water was used as a solvent. d-pinitol amount was almost similar for every solvent and for all the extraction techniques involved. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Tong; Jiao, Jiao; Gai, Qing-Yan; Wang, Peng; Guo, Na; Niu, Li-Li; Fu, Yu-Jie
2017-10-25
Nowadays, green extraction of bioactive compounds from medicinal plants has gained increasing attention. As green solvent, deep eutectic solvent (DES) have been highly rated to replace toxic organic solvents in extraction process. In present study, to simultaneous extraction five main bioactive compounds from fig leaves, DES was tailor-made. The tailor-made DES composed of a 3:3:3 molar ratio of glycerol, xylitol and D-(-)-Fructose showed enhanced extraction yields for five target compounds simultaneously compared with traditional methanol and non-tailor DESs. Then, the tailor-made DES based extraction methods have compared and microwave-assisted extraction was selected and optimized due to its high extraction yields with lower time consumption. The influencing parameters including extraction temperature, liquid-solid ratio, and extraction time were optimized using response surface methodology (RSM). Under optimal conditions the extraction yield of caffeoylmalic acid, psoralic acid-glucoside, rutin, psoralen and bergapten was 6.482mg/g, 16.34mg/g, 5.207mg/g, 15.22mg/g and 2.475mg/g, respectively. Macroporous resin D101 has been used to recovery target compounds with recovery yields of 79.2%, 83.4%, 85.5%, 81.2% and 75.3% for caffeoylmalic acid, psoralic acid-glucoside, rutin, psoralen and bergapten, respectively. The present study suggests that DESs are truly designer and efficient solvents and the method we developed was efficient and sustainable for extraction main compounds from Fig leaves.mg/g. Copyright © 2017 Elsevier B.V. All rights reserved.
Virot, Matthieu; Tomao, Valérie; Ginies, Christian; Visinoni, Franco; Chemat, Farid
2008-07-04
Here is described a green and original alternative procedure for fats and oils' determination in oleaginous seeds. Extractions were carried out using a by-product of the citrus industry as extraction solvent, namely d-limonene, instead of hazardous petroleum solvents such as n-hexane. The described method is achieved in two steps using microwave energy: at first, extractions are attained using microwave-integrated Soxhlet, followed by the elimination of the solvent from the medium using a microwave Clevenger distillation in the second step. Oils extracted from olive seeds were compared with both conventional Soxhlet and microwave-integrated Soxhlet extraction procedures performed with n-hexane in terms of qualitative and quantitative determination. No significant difference was obtained between each extract allowing us to conclude that the proposed method is effective and valuable.
Phytochemical screening and antibacterial activity of Cyclamen persicum Mill tuber extracts.
Alkowni, Raed; Jodeh, Shehdeh; Hussein, Fatima; Jaradat, Nidal
2018-01-01
The emerging drug resistance bacteria increased the demand on the discovery of antibiotics from natural sources. This research was aimed to study the antibacterial reactivity; as well as the phytochemicals, of the wild type of Cyclamen persicum, using nine different extraction methods where four solvents (Methanol, Ethanol, Hexane; and Water) were involved with varied extraction periods ranged from 2 up to 10 hours. The antibacterial activity of crude methanol extract (CME) was found as the best method of extraction, with particular emphasis on the method with prolonged extraction time of (10 hrs). The antibacterial activities of produced CME were determined by using agar diffusion method against two of gram-positive bacteria and two gram-negative ones. The CME treated Mueller-Hinton-Agar plates, were exhibited antibacterial effects against the gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis) by showing of inhibition zone after overnight incubation, while nothing was noticed on those of gram negative ones (Pseudomonas aeruginosa and Escherichia coli). These results that proved the antibacterial activity of the Cyclamen persicum tubers were positively tested the Saponin glycosides from plant. In addition to that, methanol solvent could be the useful method for extractions of Cyclamen and can be used in any developing drugs against pathogenic gram positive bacteria.
NASA Astrophysics Data System (ADS)
Ismanto, A. W.; Kusuma, H. S.; Mahfud, M.
2017-12-01
The comparison of solvent-free microwave extraction (SFME) and microwave hydrodistillation (MHD) in the extraction of essential oil from Melaleuca leucadendra Linn. was examined. Dry cajuput leaves were used in this study. The purpose of this study is also to determine optimal condition (microwave power). The relative electric consumption of SFME and MHD methods are both showing 0,1627 kWh/g and 0,3279 kWh/g. The results showed that solvent-free microwave extraction methods able to reduce energy consumption and can be regarded as a green technique for extraction of cajuput oil.
Xing, Han-Zhu; Wang, Xia; Chen, Xiang-Feng; Wang, Ming-Lin; Zhao, Ru-Song
2015-05-01
A method combining accelerated solvent extraction with dispersive liquid-liquid microextraction was developed for the first time as a sample pretreatment for the rapid analysis of phenols (including phenol, m-cresol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol) in soil samples. In the accelerated solvent extraction procedure, water was used as an extraction solvent, and phenols were extracted from soil samples into water. The dispersive liquid-liquid microextraction technique was then performed on the obtained aqueous solution. Important accelerated solvent extraction and dispersive liquid-liquid microextraction parameters were investigated and optimized. Under optimized conditions, the new method provided wide linearity (6.1-3080 ng/g), low limits of detection (0.06-1.83 ng/g), and excellent reproducibility (<10%) for phenols. Four real soil samples were analyzed by the proposed method to assess its applicability. Experimental results showed that the soil samples were free of our target compounds, and average recoveries were in the range of 87.9-110%. These findings indicate that accelerated solvent extraction with dispersive liquid-liquid microextraction as a sample pretreatment procedure coupled with gas chromatography and mass spectrometry is an excellent method for the rapid analysis of trace levels of phenols in environmental soil samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dai, Yuntao; Rozema, Evelien; Verpoorte, Robert; Choi, Young Hae
2016-02-19
Natural deep eutectic solvents (NADES) have attracted a great deal of attention in recent times as promising green media. They are generally composed of neutral, acidic or basic compounds that form liquids of high viscosity when mixed in certain molar ratio. Despite their potential, viscosity and acid or basic nature of some ingredients may affect the extraction capacity and stabilizing ability of the target compounds. To investigate these effects, extraction with a series of NADES was employed for the analysis of anthocyanins in flower petals of Catharanthus roseus in combination with HPLC-DAD-based metabolic profiling. Along with the extraction yields of anthocyanins their stability in NADES was also studied. Multivariate data analysis indicates that the lactic acid-glucose (LGH), and 1,2-propanediol-choline chloride (PCH) NADES present a similar extraction power for anthocyanins as conventional organic solvents. Furthermore, among the NADES employed, LGH exhibits an at least three times higher stabilizing capacity for cyanidins than acidified ethanol, which facilitates their extraction and analysis process. Comparing NADES to the conventional organic solvents, in addition to their reduced environmental impact, they proved to provide higher stability for anthocyanins, and therefore have a great potential as possible alternatives to those organic solvents in health related areas such as food, pharmaceuticals and cosmetics. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhou, N.; Wu, J.; Yu, Z.; Neuman, R.D.; Wang, D.; Xu, G.
1997-01-01
Three acidic extractants (I) di(2-ethylhexyl) phosphoric acid (HDEHP), (II) 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (HEHPEHE) and (III) naphthenic acid were employed in preparing the samples for the characterization of the coordination structure of lanthanide-extractant complexes and the physicochemical nature of aggregates formed in the organic diluent of the solvent extraction systems. Photo correlation spectroscopy (PCS) results on the aggregates formed by the partially saponified HDEHP in n-heptane showed that the hydrodynamic radius of the aggregates was comparable to the molecular dimensions of HDEHP. The addition of 2-octanol into the diluent, by which the mixed solvent was formed, increased the dimensions of the corresponding aggregates. Aggregates formed from the lanthanide ions and HDEHP in the organic phase of the extraction systems were found very unstable. In the case of naphthenic acid, PCS data showed the formation of w/o microemulsion from the saponified naphthenic acid in the mixed solvent. The extraction of lanthanides by the saponified naphthenic acid in the mixed solvent under the given experimental conditions was a process of destruction of the w/o microemulsion. A possible mechanism of the breakdown of the w/o microemulsion droplets is discussed.
Immobilized aptamer paper spray ionization source for ion mobility spectrometry.
Zargar, Tahereh; Khayamian, Taghi; Jafari, Mohammad T
2017-01-05
A selective thin-film microextraction based on aptamer immobilized on cellulose paper was used as a paper spray ionization source for ion mobility spectrometry (PSI-IMS), for the first time. In this method, the paper is not only used as an ionization source but also it is utilized for the selective extraction of analyte, based on immobilized aptamer. This combination integrates both sample preparation and analyte ionization in a Whatman paper. To that end, an appropriate sample introduction system with a novel design was constructed for the paper spray ionization source. Using this system, a continuous solvent flow works as an elution and spray solvent simultaneously. In this method, analyte is adsorbed on a triangular paper with immobilized aptamer and then it is desorbed and ionized by elution solvent and applied high voltage on paper, respectively. The effects of different experimental parameters such as applied voltage, angle of paper tip, distance between paper tip and counter electrode, elution solvent type, and solvent flow rate were optimized. The proposed method was exhaustively validated in terms of sensitivity and reproducibility by analyzing the standard solutions of codeine and acetamiprid. The analytical results obtained are promising enough to ensure the use of immobilized aptamer paper-spray as both the extraction and ionization techniques in IMS for direct analysis of biomedicine. Copyright © 2016 Elsevier B.V. All rights reserved.
2016-01-01
Levetiracetam (LEV) is an antiepileptic drug that is clinically effective in generalized and partial epilepsy syndromes. The use of this drug has been increasing in clinical practice and intra- or -interindividual variability has been exhibited for special population. For this reason, bioanalytical methods are required for drug monitoring in biological matrices. So this work presents a dispersive liquid-liquid microextraction method followed by gas chromatography-mass spectrometry (DLLME-GC-MS) for LEV quantification in human plasma. However, due to the matrix complexity a previous purification step is required. Unlike other pretreatment techniques presented in the literature, for the first time, a procedure employing ultrafiltration tubes Amicon® (10 kDa porous size) without organic solvent consumption was developed. GC-MS analyses were carried out using a linear temperature program, capillary fused silica column, and helium as the carrier gas. DLLME optimized parameters were type and volume of extraction and dispersing solvents, salt addition, and vortex agitation time. Under chosen parameters (extraction solvent: chloroform, 130 μL; dispersing solvent: isopropyl alcohol, 400 μL; no salt addition and no vortex agitation time), the method was completely validated and all parameters were in agreement with the literature recommendations. LEV was quantified in patient's plasma sample using less than 550 μL of organic solvent. PMID:27830105
Thomann, W R; Hill, G B
1986-01-01
Chloroform and ether commonly are used as solvents to extract metabolic organic acids for analysis by gas-liquid chromatography in the identification of anaerobic bacteria. Because these solvents are potentially hazardous to personnel, modified extraction procedures involving the use of a safer solvent, methyl tert-butyl ether were developed which remained both simple to perform and effective for organism identification. PMID:3700623
SOLVENT EXTRACTION OF RUTHENIUM
Hyman, H.H.; Leader, G.R.
1959-07-14
The separation of rathenium from aqueous solutions by solvent extraction is described. According to the invention, a nitrite selected from the group consisting of alkali nitrite and alkaline earth nitrite in an equimolecular quantity with regard to the quantity of rathenium present is added to an aqueous solution containing ruthenium tetrantrate to form a ruthenium complex. Adding an organic solvent such as ethyl ether to the resulting mixture selectively extracts the rathenium complex.
Nayak, Balunkeswar; Dahmoune, Farid; Moussi, Kamal; Remini, Hocine; Dairi, Sofiane; Aoun, Omar; Khodir, Madani
2015-11-15
Peel of Citrus sinensis contains significant amounts of bioactive polyphenols that could be used as ingredients for a number of value-added products with health benefits. Extraction of polyphenols from the peels was performed using a microwave-assisted extraction (MAE) technique. The effects of aqueous acetone concentration, microwave power, extraction time and solvent-to-solid ratio on the total phenolic content (TPC), total antioxidant activity (TAA) (using DPPH and ORAC-values) and individual phenolic acids (IPA) were investigated using a response surface method. The TPC, TAA and IPA of peel extracts using MAE was compared with conventional, ultrasound-assisted and accelerated solvent extraction. The maximum predicted TPC under the optimal MAE conditions (51% acetone concentration in water (v/v), 500 W microwave power, 122 s extraction time and 25 mL g(-1) solvent to solid ratio), was 12.20 mg GAE g(-1) DW. The TPC and TAA in MAE extracts were higher than the other three extracts. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wianowska, Dorota
2014-01-01
The influence of different purge times on the yield of the main essential oil constituents of rosemary (Rosmarinus officinalis L.), thyme (Thymus vulgaris L.), and chamomile (Chamomilla recutita L.) was investigated. The pressurized liquid extraction process was performed by applying different extraction temperatures and solvents. The results presented in the paper show that the estimated yield of essential oil components extracted from the plants in the pressurized liquid extraction process is purge time-dependent. The differences in the estimated yields are mainly connected with the evaporation of individual essential oil components and the applied solvent during the purge; the more volatile an essential oil constituent is, the greater is its loss during purge time, and the faster the evaporation of the solvent during the purge process is, the higher the concentration of less volatile essential oil components in the pressurized liquid extraction receptacle. The effect of purge time on the estimated yield of individual essential oil constituents is additionally differentiated by the extraction temperature and the extraction ability of the applied solvent.
Interdisciplinary Chemistry Experiment: An Environmentally Friendly Extraction of Lycopene
ERIC Educational Resources Information Center
Zhu, Jie; Zhang, Mingjie; Liu, Qingwei
2008-01-01
A novel experiment for the extraction of lycopene from tomato paste without the use of an organic solvent is described. The experiment employs polymer, green, and analytical chemistry. This environmentally friendly extraction is more efficient and requires less time than the traditional approach using an organic solvent. The extraction is…
Multiple Solvent Extraction System with Flow Injection Technology.
1981-09-30
encounters a back extraction step where the direction of the extraction is from organic to aqueous solvent. Thus it is advantageous to incorporate both...stainless steel ( Alltech Associates, Arlington Heights, IQ) and prepared from a single section of 180 cmn in length. The Section 2 mixing and extraction
Cascant, Mari Merce; Breil, Cassandra; Garrigues, Salvador; de la Guardia, Miguel; Fabiano-Tixier, Anne Silvie; Chemat, Farid
2017-05-01
There is a great interest in finding alternatives and green solvents in extraction processes to replace petroleum based solvents. In order to investigate these possibilities, computational methods, as Hansen solubility parameters (HSP) and conductor-like screening model for real solvent (COSMO-RS), were used in this work to predict the solvation power of a series of solvents in salmon fish lipids. Additionally, experimental studies were used to evaluate the performance in lipids extraction using 2-methyltetrahydrofurane, cyclopentyl methyl ether, dimethyl carbonate, isopropanol, ethanol, ethyl acetate, p-cymene and d-limonene compared with hexane. Lipid classes of extracts were obtained by using high performance thin-layer chromatography (HPTLC), whereas gas chromatography with a flame ionization detector (GC/FID) technique was employed to obtain fatty acid profiles. Some differences between theoretical and experimental results were observed, especially regarding the behavior of p-cymene and d-limonene, which separate from the predicted capability. Results obtained from HPTLC indicated that p-cymene and d-limonene extract triglycerides (TAGs) and diglycerides (DAGs) at levels of 73 and 19%, respectively, whereas the other studied extracts contain between 75 and 76% of TAGs and between 16 and 17% of DAGs. Fatty acid profiles, obtained by using GC-FID, indicated that saturated fatty acids (SFAs) between 19.5 and 19.9% of extracted oil, monounsaturated fatty acids (MUFAs) in the range between 43.5 and 44.9%, and PUFAs between 31.2 and 34.6% were extracted. p-Cymene and limonene extracts contained lower percentages than the other studied solvents of some PUFAs due probably to the fact that these unsaturated fatty acids are more susceptible to oxidative degradation than MUFAs. Ethyl acetate has been found to be the best alternative solvent to hexane for the extraction of salmon oil lipids. Graphical Abstract ᅟ.
Nojavan, Saeed; Pourahadi, Ahmad; Hosseiny Davarani, Saied Saeed; Morteza-Najarian, Amin; Beigzadeh Abbassi, Mojtaba
2012-10-01
This study has performed on electromembrane extraction (EME) of some zwitterionic compounds based on their acidic and basic properties. High performance liquid chromatography (HPLC) equipped with UV detection was used for determination of model compounds. Cetirizine (CTZ) and mesalazine (MS) were chosen as model compounds, and each of them was extracted from acidic (as a cation) and basic (as an anion) sample solutions, separately. 1-Octanol and 2-nitrophenyl octylether (NPOE) were used as the common supported liquid membrane (SLM) solvents. EME parameters, such as extraction time, extraction voltage and pH of donor and acceptor solutions were studied in details for cationic and anionic forms of each model compound and obtained results for two ionic forms (cationic and anionic) of each compound were compared together. Results showed that zwitterionic compounds could be extracted in both cationic and anionic forms. Moreover, it was found that the extraction of anionic form of each model compound could be done in low voltages when 1-octanol was used as the SLM solvent. Results showed that charge type was not highly effective on the extraction efficiency of model compounds whereas the position of charge within the molecule was the key parameter. In optimized conditions, enrichment factors (EF) of 27-60 that corresponded to recoveries ranging from 39 to 86% were achieved. Copyright © 2012 Elsevier B.V. All rights reserved.
Madry, Milena M; Kraemer, Thomas; Baumgartner, Markus R
2018-01-01
Hair analysis has been established as a prevalent tool for retrospective drug monitoring. In this study, different extraction solvents for the determination of drugs of abuse and pharmaceuticals in hair were evaluated for their efficiency. A pool of authentic hair from drug users was used for extraction experiments. Hair was pulverized and extracted in triplicate with seven different solvents in a one- or two-step extraction. Three one- (methanol, acetonitrile, and acetonitrile/water) and four two-step extractions (methanol two-fold, methanol and methanol/acetonitrile/formate buffer, methanol and methanol/formate buffer, and methanol and methanol/hydrochloric acid) were tested under accurately equal experimental conditions. The extracts were directly analyzed by liquid chromatography-tandem mass spectrometry for opiates/opioids, stimulants, ketamine, selected benzodiazepines, antidepressants, antipsychotics, and antihistamines using deuterated internal standards. For most analytes, a two-step extraction with methanol did not significantly improve the yield compared to a one-step extraction with methanol. Extraction with acetonitrile alone was least efficient for most analytes. Extraction yields of acetonitrile/water, methanol and methanol/acetonitrile/formate buffer, and methanol and methanol/formate buffer were significantly higher compared to methanol. Highest efficiencies were obtained by a two-step extraction with methanol and methanol/hydrochloric acid, particularly for morphine, 6-monoacetylmorphine, codeine, 6-acetylcodeine, MDMA, zopiclone, zolpidem, amitriptyline, nortriptyline, citalopram, and doxylamine. For some analytes (e.g., tramadol, fluoxetine, sertraline), all extraction solvents, except for acetonitrile, were comparably efficient. There was no significant correlation between extraction efficiency with an acidic solvent and the pka or log P of the analyte. However, there was a significant trend for the extraction efficiency with acetonitrile to the log P of the analyte. The study demonstrates that the choice of extraction solvent has a strong impact on hair analysis outcomes. Therefore, validation protocols should include the evaluation of extraction efficiency of drugs by using authentic rather than spiked hair. Different extraction procedures may contribute to the scatter of quantitative results in inter-laboratory comparisons. Harmonization of extraction protocols is recommended, when interpretation is based on same cut-off levels. Copyright © 2017 Elsevier B.V. All rights reserved.
Chaudhary, Bratati; Mukhopadhyay, Kunal
2013-05-01
Anthocyanins are plant pigments that are potential candidates for use as natural food colourant. In this study, Syzygium cumini fruit skin has been used as anthocyanin source. All the six major types of anthocyanins were identified in the sample by ultra performance liquid chromatography studies, and the antioxidant activity was found to be 4.34 ± 0.26 Fe(2+)g(- 1) in the sample with highest anthocyanin content. Optimization of conditions for extracting high amounts of anthocyanin from the fruit peels was investigated by response surface methodology. The results suggested that highest anthocyanin yield (763.80 mg; 100 ml(- 1)), highest chroma and hue angle in the red colour range could be obtained when 20% ethanol was used in combination with 1% acetic acid. Methanol was replaced with ethanol for the extraction of pigments due to its less toxicity and being safe for human consumption. The optimized solvent can be used to extract anthocyanins from the S. cumini fruits and used as natural colourants in the food industries.
Hu, Jiajin; Guo, Zheng; Glasius, Marianne; Kristensen, Kasper; Xiao, Langtao; Xu, Xuebing
2011-08-26
To develop an efficient green extraction approach for recovery of bioactive compounds from natural plants, we examined the potential of pressurized liquid extraction (PLE) of ginger (Zingiber officinale Roscoe) with bioethanol/water as solvents. The advantages of PLE over other extraction approaches, in addition to reduced time/solvent cost, the extract of PLE showed a distinct constituent profile from that of Soxhlet extraction, with significantly improved recovery of diarylheptanoids, etc. Among the pure solvents tested for PLE, bioethanol yield the highest efficiency for recovering most constituents of gingerol-related compounds; while for a broad concentration spectrum of ethanol aqueous solutions, 70% ethanol gave the best performance in terms of yield of total extract, complete constituent profile and recovery of most gingerol-related components. PLE with 70% bioethanol operated at 1500 psi and 100 °C for 20 min (static extraction time: 5 min) is recommended as optimized extraction conditions, achieving 106.8%, 109.3% and 108.0% yield of [6]-, [8]- and [10]-gingerol relative to the yield of corresponding constituent obtained by 8h Soxhlet extraction (absolute ethanol as extraction solvent). Copyright © 2011 Elsevier B.V. All rights reserved.
Mandal, Vivekananda; Dewanjee, Saikat; Mandal, Subhash C
2009-01-01
To develop a fast and ecofriendly microwave assisted extraction (MAE) technique for the effective and exhaustive extraction of gymnemagenin as an indicative biomarker for the quality control of Gymnema sylvestre. Several extraction parameters such as microwave power, extraction time, solvent composition, pre-leaching time, loading ratio and extraction cycle were studied for the determination of the optimum extraction condition. Scanning electron micrographs were obtained to elucidate the mechanism of extraction. The final optimum extraction conditions as obtained from the study were: 40% microwave power, 6 min irradiation time, 85% v/v methanol as the extraction solvent, 15 min pre-leaching time and 25 : 1 (mL/g) as the solvent-to-material loading ratio. The proposed extraction technique produced a maximum yield of 4.3% w/w gymnemagenin in 6 min which was 1.3, 2.5 and 1.95 times more efficient than 6 h of heat reflux, 24 h of maceration and stirring extraction, respectively. A synergistic heat and mass transfer theory was also proposed to support the extraction mechanism. Comparison with conventional extraction methods revealed that MAE could save considerable amounts of time and energy, whilst the reduction of volume of organic solvent consumed provides an ecofriendly feature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benker, Dennis; Delmau, Laetitia Helene; Dryman, Joshua Cory
This report presents the studies carried out to demonstrate the possibility of quantitatively extracting trivalent actinides and lanthanides from highly acidic solutions using a neutral ligand-based solvent extraction system. These studies stemmed from the perceived advantage of such systems over cationexchange- based solvent extraction systems that require an extensive feed adjustment to make a low-acid feed. The targeted feed solutions are highly acidic aqueous phases obtained after the dissolution of curium targets during a californium (Cf) campaign. Results obtained with actual Cf campaign solutions, but highly diluted to be manageable in a glove box, are presented, followed by results ofmore » tests run in the hot cells with Cf campaign rework solutions. It was demonstrated that a solvent extraction system based on the tetraoctyl diglycolamide molecule is capable of quantitatively extracting trivalent actinides from highly acidic solutions. This system was validated using actual feeds from a Cf campaign.« less
Kang, Jae-Hyun; Kim, Suna; Moon, BoKyung
2016-08-15
In this study, we used response surface methodology (RSM) to optimize the extraction conditions for recovering lutein from paprika leaves using accelerated solvent extraction (ASE). The lutein content was quantitatively analyzed using a UPLC equipped with a BEH C18 column. A central composite design (CCD) was employed for experimental design to obtain the optimized combination of extraction temperature (°C), static time (min), and solvent (EtOH, %). The experimental data obtained from a twenty sample set were fitted to a second-order polynomial equation using multiple regression analysis. The adjusted coefficient of determination (R(2)) for the lutein extraction model was 0.9518, and the probability value (p=0.0000) demonstrated a high significance for the regression model. The optimum extraction conditions for lutein were temperature: 93.26°C, static time: 5 min, and solvent: 79.63% EtOH. Under these conditions, the predicted extraction yield of lutein was 232.60 μg/g. Copyright © 2016 Elsevier Ltd. All rights reserved.
Romero-González, R; Frenich, A Garrido; Vidal, J L Martínez; Aguilera-Luiz, M M
2010-06-30
A new method for the determination of ochratoxin A and T-2 toxin in alcoholic beverages (wine and beer) by hollow fiber liquid microextraction was optimized. The extraction step was followed by ultra high-pressure liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). The extraction procedure was based on the extraction of mycotoxins from the sample to the organic solvent (1-octanol) immobilized in the fiber, and afterwards, they were desorbed in a mixture of acetonitrile/water (80:20, v/v) at pH 7 prior to chromatographic determination. Different variables affecting the extraction process such as organic solvent, salt content, extraction time and desorption solution were studied. The developed method was validated in wine and beer, using white wine and alcoholic beer as representative matrices for both types of samples. Relative recoveries higher than 70% were obtained for the selected mycotoxins. Good linearity (R(2)>0.993) was obtained and quantification limits (0.02-0.09 microg L(-1)) below European regulatory levels were achieved. Repeatability, expressed as relative standard deviation, was always lower than 12%, whereas interday precision was lower than 21%. The proposed method was applied to the analysis of several types of wines and beers and ochratoxin A was detected in a rosé wine at 1.1 microg L(-1). Copyright 2010 Elsevier B.V. All rights reserved.
Ultrasound-Assisted Extraction of Stilbenes from Grape Canes.
Piñeiro, Zulema; Marrufo-Curtido, Almudena; Serrano, Maria Jose; Palma, Miguel
2016-06-16
An analytical ultrasound-assisted extraction (UAE) method has been optimized and validated for the rapid extraction of stilbenes from grape canes. The influence of sample pre-treatment (oven or freeze-drying) and several extraction variables (solvent, sample-solvent ratio and extraction time between others) on the extraction process were analyzed. The new method allowed the main stilbenes in grape canes to be extracted in just 10 min, with an extraction temperature of 75 °C and 60% ethanol in water as the extraction solvent. Validation of the extraction method was based on analytical properties. The resulting RSDs (n = 5) for interday/intraday precision were less than 10%. Furthermore, the method was successfully applied in the analysis of 20 different grape cane samples. The result showed that grape cane byproducts are potentially sources of bioactive compounds of interest for pharmaceutical and food industries.
Fant, B. T.; Miller, John D.; Ryan, D. F.
1982-01-01
An improved process for the liquefaction of solid carbonaceous materials wherein a solvent or diluent derived from the solid carbonaceous material being liquefied is used to form a slurry of the solid carbonaceous material and wherein the solvent or diluent comprises from about 65 to about 85 wt. % hydroaromatic components. The solvent is prepared by first separating a solvent or diluent distillate fraction from the liquefaction product, subjecting this distillate fraction to hydrogenation and then extracting the naphthenic components from the hydrogenated product. The extracted naphthenic components are then dehydrogenated and hydrotreated to produce additional hydroaromatic components. These components are combined with the solvent or diluent distillate fraction. The solvent may also contain hydroaromatic constituents prepared by extracting naphthenic components from a heavy naphtha, dehydrogenating the same and then hydrotreating the dehydrogenated product. When the amount of solvent produced in this manner exceeds that required for steady state operation of the liquefaction process a portion of the solvent or diluent distillated fraction will be withdrawn as product.
Experiment on the treatment of waste extraction solvent from the molybdenum-99 process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsien-Ming Hsiao; Chang-Liang Hu; Kuang-Li Chien
2013-07-01
In the Mo-99 (Molybdenum-99) isotope extraction test process for radiopharmaceutical applications, organic solvent is used to extract Mo-99 from an irradiated UO{sub 2} dissolution. The extraction solvent was stored when the test work was stopped. A total of about 120 liters of waste solvent was stored at INER (Institute of Nuclear Energy Research, Taiwan). The extraction solvent consisted of 5% di-(2-ethylhexyl)-phosphoric acid (D2EHPA) and kerosene. The radionuclides found in the waste solvent include Cs-137, Am-241, Tc-99, and Sr-90, which give off gross alpha and beta radioactivity of 1898 and 471 Bq/ml, respectively. This study aims to remove radionuclides from themore » waste solvent using sodium carbonate and sodium hydroxide solutions in different concentrations. After mixing the waste solvent with the alkaline solution followed by settling, a third phase other than organic and aqueous phase appeared which is expected due to the saponification reaction. The experimental results showed that increasing the number of washing and the alkaline solution concentration could enhance the radionuclides removal rate. An optimal removal method was proposed using 2 M Na{sub 2}CO{sub 3} solution twice followed by 1 M NaOH solution one time for the third phase generated early in the mixing stages. The remaining gross alpha and beta radioactivity of the treated organic solvent was 2 and 3 Bq/ml, respectively. The treated solvent could be stabilized by ashing at 500 deg. C and then immobilized. The alkaline solution would be neutralized by hydrochloric or nitric acid and then treated using a variety of adsorbents or bone char via adsorption to remove nuclides to meet the wastewater discharge limitation. (authors)« less
NASA Astrophysics Data System (ADS)
Le, Thom; Cao, Diem Kieu; Pham, Thanh Vy; Huynh, Tan Dat; Ta, Nhat Thuy Anh; Nguyen, Ngoc Thao Linh; Nguyen, Huu Thanh; Le, Hue Huong; Bui, Anh Vo; Truong, Dieu-Hien
2018-04-01
Callisia fragrans is a wonder herb with many medicinal properties such as burn, dental diseases, cancer diseases and arthritis in folk medicine. It is noted that the phytochemical constituents and antimicrobial activity of traditional plants depend on not only the extracting method but also the solvent used for extraction. In this study, the effect of five extraction solvents (i.e., distilled water, 80% methanol, 80% ethanol, 80% ethyl acetate, and 80% chloroform) on yield, total phenolic content (TPC) and total flavonoid content (TFC) of Callisia leaves was determined. Besides, changes in anti-Lactobacillus fermentum activity of C. fragrans freeze-dried extract was also evaluated using disk-diffusion method. The recovery percentage of extractable yield of fresh leaves are ranged from 11.93% w/w for distilled water extract to 16.60% w/w for aqueous ethanol extracts. The yield of 80% aqueous methanol extract (16.27% w/w) is only slightly less than that of the ethanol extract. Significant differences were observed among TPC and TFC obtaining by 80% methanol (0.0522% and 0.0335% w/w, respectively) compared to other solvents (p < 0.05). TPC and TFC of C. fragrans extracts increase in the following order: distilled water < 80% chloroform < 80% ethyl acetate < 80% ethanol < 80% methanol. The results revealed that 80% aqueous methanol Calissia extracts has moderate inhibition (9.0 mm of inhibition zone for 1.5 mg/mL of extracts) of L. fermentum compared to standard antibacterial agent. Based on the study results, it can be concluded that the yield, TPC and TFC of C. frgrans extract varied with the extracting solvent. It also showed that Callisia extracts can prevent dental caries by inhibiting the growth of L. fermentum, towards new insights for treatment of dental caries.
Gaylor, Michael O; Juntunen, Hope L; Hazelwood, Donna; Videau, Patrick
2018-04-01
Considerable effort has been devoted to analytical determinations of sugar and amino acid constituents of plant nectars, with the primary aim of understanding their ecological roles, yet few studies have reported more exhaustive organic compound inventories of plant nectars or extrafoliar nectars. This work evaluated the efficacy of four solvents (ethyl acetate, dichloromethane, toluene and hexane) to extract the greatest number of organic compound classes and unique compounds from extrafoliar nectar drops produced by Sansevieria spp. Aggregation of the results from each solvent revealed that 240 unique compounds were extracted in total, with 42.5% of those detected in multiple extracts. Aliphatic hydrocarbons dominated in all but the ethyl acetate extracts, with 44 unique aliphatic hydrocarbons detected in dichloromethane (DCM) extracts, followed by 41, 19 and 8 in hexane, toluene and ethyl acetate extracts, respectively. Hexane extracted the most unique compounds (79), followed by DCM (73), ethyl acetate (56) and toluene (32). Integrated total ion chromatographic peak areas of extracted compound classes were positively correlated with numbers of unique compounds detected within those classes. In addition to demonstrating that multi-solvent extraction with direct GC-MS detection is a suitable analytical approach for determining secondary nectar constituents, to the best of our knowledge, this study also represents: (i) the first attempt to inventory the secondary phytochemical constituents of Sansevieria spp. extrafoliar nectar secretions and (ii) the largest organic solvent extractable compound inventory reported for any plant matrix to date.
Ajala, E O; Aberuagba, F; Olaniyan, A M; Onifade, K R
2016-01-01
Shea butter (SB) was extracted from its kernel by using n-hexane as solvent in an optimization study. This was to determine the optima operating variables that would give optimum yield of SB and to study the effect of solvent on the physico-chemical properties and chemical composition of SB extracted using n-hexane. A Box-behnken response surface methodology (RSM) was used for the optimization study while statistical analysis using ANOVA was used to test the significance of the variables for the process. The variables considered for this study were: sample weight (g), solvent volume (ml) and extraction time (min). The physico-chemical properties of SB extracted were determined using standard methods and Fourier Transform Infrared Spectroscopy (FTIR) for the chemical composition. The results of RSM analysis showed that the three variables investigated have significant effect (p < 0.05) on the %yield of SB, with R(2) - 0.8989 which showed good fitness of a second-order model. Based on this model, optima operating variables for the extraction process were established as: sample weight of 30.04 g, solvent volume of 346.04 ml and extraction time of 40 min, which gave 66.90 % yield of SB. Furthermore, the result of the physico-chemical properties obtained for the shea butter extracted using traditional method (SBT) showed that it is a more suitable raw material for food, biodiesel production, cosmetics, medicinal and pharmaceutical purposes than shea butter extracted using solvent extraction method (SBS). Fourier Transform Infrared Spectroscopy (FTIR) results obtained for the two samples were similar to what was obtainable from other vegetable oil.
Solvent for the simultaneous recovery of radionuclides from liquid radioactive wastes
Romanovskiy, Valeriy Nicholiavich; Smirnov, Igor V.; Babain, Vasiliy A.; Todd, Terry A.; Brewer, Ken N.
2002-01-01
The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide, PEG-400, and a diluent of phenylpolyfluoroalkyl sulfone. The invention also provides a method of using the invention extracting agents to recover cesium, strontium, rare earths and actinides from liquid radioactive waste.
Method for the simultaneous recovery of radionuclides from liquid radioactive wastes using a solvent
Romanovskiy, Valeriy Nicholiavich; Smirnov, Igor V.; Babain, Vasiliy A.; Todd, Terry A.; Brewer, Ken N.
2001-01-01
The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide, PEG-400, and a diluent of phenylpolyfluoroalkyl sulfone. The invention also provides a method of using the invention extracting agents to recover cesium, strontium, rare earths and actinides from liquid radioactive waste.
Santos, Maximillan Leite; Magalhães, Chaiana Froés; da Rosa, Marcelo Barcellos; de Assis Santos, Daniel; Brasileiro, Beatriz Gonçalves; de Carvalho, Leandro Machado; da Silva, Marcelo Barreto; Zani, Carlos Leomar; de Siqueira, Ezequias Pessoa; Peres, Rodrigo Loreto; Andrade, Anderson Assunção
2013-12-01
The effects of different solvents and extraction techniques upon the phytochemical profile and anti-Trichophyton activity of extracts from Piper aduncum leaves were evaluated. Extract done by maceration method with ethanol has higher content of sesquiterpenes and antifungal activity. This extract may be useful as an alternative treatment for dermatophytosis.
Santos, Maximillan Leite; Magalhães, Chaiana Froés; da Rosa, Marcelo Barcellos; de Assis Santos, Daniel; Brasileiro, Beatriz Gonçalves; de Carvalho, Leandro Machado; da Silva, Marcelo Barreto; Zani, Carlos Leomar; de Siqueira, Ezequias Pessoa; Peres, Rodrigo Loreto; Andrade, Anderson Assunção
2013-01-01
The effects of different solvents and extraction techniques upon the phytochemical profile and anti-Trichophyton activity of extracts from Piper aduncum leaves were evaluated. Extract done by maceration method with ethanol has higher content of sesquiterpenes and antifungal activity. This extract may be useful as an alternative treatment for dermatophytosis. PMID:24688522
Liang, Li; Wang, Xinghua; Sun, Ying; Ma, Pinyi; Li, Xinpei; Piao, Huilan; Jiang, Yanxiao; Song, Daqian
2018-03-01
The metal-organic framework (MOF) functionalized magnetic graphene oxide/mesoporous silica composites (Fe 3 O 4 @SiO 2 -GO/MIL-101(Cr)) were synthesized and utilized as magnetic solid-phase extraction (MSPE) adsorbent for the extraction of seven triazine herbicides (terbuthylazine, secbumeton, terbumeton, atraton, atrazine, prometon and trietazine) in rice samples. Several experimental parameters, including type and volume of extraction solvent, amount of MIL-101(Cr), extraction time, volume of desorption solvent and desorption time were investigated and optimized. The limits of detection (LODs) of seven triazine herbicides obtained by using the proposed MSPE method combined with high performance liquid chromatography (HPLC) were in the range of 0.010-0.080µgkg -1 . The recoveries of the triazine herbicides in spiked rice samples ranged from of 83.9-103.5% with the relative standard deviations lower than 8.7%. The intra and inter-day (n = 6) precisions for all triazine herbicides at the spiked level of 100.0µgkg -1 were 1.4-5.9% and 2.6-7.8%, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.
Microwave-assisted extraction of polycyclic aromatic compounds from coal.
Kerst, M; Andersson, J T
2001-08-01
Microwave-assisted extraction (MAE) of polycyclic aromatic compounds (PACs) from coal is shown to give the same pattern of compounds as Soxhlet extraction. MAE requires only 10 mL solvent and 10 min extraction time whereas Soxhlet uses 200 mL and takes 24 h. Although the yields were lower, dichloromethane (DCM) was preferred to pyridine, N-methyl-2-pyrrolidone (NMP), and NMP with CS2 because the pattern of the PACs is shown to be independent of solvent and DCM is a much more convenient solvent to work with.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakayasu, Ernesto S.; Nicora, Carrie D.; Sims, Amy C.
2016-05-03
ABSTRACT Integrative multi-omics analyses can empower more effective investigation and complete understanding of complex biological systems. Despite recent advances in a range of omics analyses, multi-omic measurements of the same sample are still challenging and current methods have not been well evaluated in terms of reproducibility and broad applicability. Here we adapted a solvent-based method, widely applied for extracting lipids and metabolites, to add proteomics to mass spectrometry-based multi-omics measurements. Themetabolite,protein, andlipidextraction (MPLEx) protocol proved to be robust and applicable to a diverse set of sample types, including cell cultures, microbial communities, and tissues. To illustrate the utility of thismore » protocol, an integrative multi-omics analysis was performed using a lung epithelial cell line infected with Middle East respiratory syndrome coronavirus, which showed the impact of this virus on the host glycolytic pathway and also suggested a role for lipids during infection. The MPLEx method is a simple, fast, and robust protocol that can be applied for integrative multi-omic measurements from diverse sample types (e.g., environmental,in vitro, and clinical). IMPORTANCEIn systems biology studies, the integration of multiple omics measurements (i.e., genomics, transcriptomics, proteomics, metabolomics, and lipidomics) has been shown to provide a more complete and informative view of biological pathways. Thus, the prospect of extracting different types of molecules (e.g., DNAs, RNAs, proteins, and metabolites) and performing multiple omics measurements on single samples is very attractive, but such studies are challenging due to the fact that the extraction conditions differ according to the molecule type. Here, we adapted an organic solvent-based extraction method that demonstrated broad applicability and robustness, which enabled comprehensive proteomics, metabolomics, and lipidomics analyses from the same sample.« less
A pilot scale demonstration of the Solvent Extraction Residual Biotreatment (SERB) technology was conducted at the former Sage's Dry Cleaner site in Jacksonville, FL. The SERB technology is a treatment train approach to complete site restoration, which combines an active in situ...
Zhu, Shuqiang; Zhou, Jia; Jia, Hongfang; Zhang, Haixia
2018-03-15
A method was developed for the determination of eight synthetic pigments in beverage samples by liquid-liquid microextraction followed by high performance liquid chromatography. Using hydrophobic deep eutectic solvent (DES) as the microextraction solvent, several key parameters were optimized, including the type and volume of the hydrophobic DES, pH value, vortex time and salt content. Detection limits were in the range 0.016-1.12 ng/mL, recoveries were in the range 74.5-102.5% and relative standard deviations were <5.4%. The method is simple, green and practical, and could be applied to the extraction and determination of synthetic pigments in beverages. Copyright © 2017 Elsevier Ltd. All rights reserved.
Towards metals analysis using corona discharge ionization ion mobility spectrometry.
Jafari, Mohammad T; Saraji, Mohammad; Sherafatmand, Hossein
2016-02-25
For the first time, the capability of corona discharge ionization ion mobility spectrometry (CD-IMS) in the determination of metal complex was evaluated. The extreme simplicity of dispersive liquid-liquid microextraction (DLLME) coupled to the high sensitivity of CD-IMS measurement could make this combination really useful for simple, rapid, and sensitive determination of metals in different samples. In this regard, mercury, as a model metal, was complexed with diethyldithiocarbamate (DEDTC), and then extracted into the carbon tetrachloride using DLLME. Some parameters affecting the extraction efficiency, including the type and volume of the extraction solvent, the type and volume of the disperser solvent, the concentration of the chelating agent, salt addition and, pH were exhaustively investigated. Under the optimized condition, the enrichment factor was obtained to be 142. The linear range of 0.035-10.0 μg mL(-1) with r(2) = 0.997 and the detection limit of 0.010 μg mL(-1) were obtained. The relative standard deviation values were calculated to be lower than 4% and 8% for intra-day and inter-day, respectively. Finally, the developed method was successfully applied for the extraction and determination of mercury in various real samples. The satisfactory results revealed the capability of the proposed method in trace analysis without tedious derivatization or hydride generation. Copyright © 2016 Elsevier B.V. All rights reserved.
Tewfik, Ihab
2008-01-01
2-Alkylcyclobutanones (cyclobutanones) are accepted as chemical markers for irradiated foods containing lipid. However, current extraction procedures (Soxhlet-florisil chromatography) for the isolation of these markers involve a long and tedious clean-up regime prior to gas chromatography-mass spectrophotometry identification. This paper outlines an alternative isolation and clean-up method for the extraction of cyclobutanones in irradiated Camembert cheese. The newly developed direct solvent extraction method enables the efficient screening of large numbers of food samples and is not as resource intensive as the BS EN 1785:1997 method. Direct solvent extraction appears to be a simple, robust method and has the added advantage of a considerably shorter extraction time for the analysis of foods containing lipid.
Zhang, Fan; Yang, Yi; Su, Ping; Guo, Zhenku
2009-01-01
Euonymus alatus (Thunb.) has been used as one of traditional Chinese medicines for several thousand years. Conventional methods for the extraction of rutin and quercetin from E. alatus, including solvent extraction, Soxhlet extraction and heat reflux extraction are characterised by long extraction times and consumption of large amounts of solvents. To develop a simple and rapid method for the extraction of rutin and quercetin from the stalks of Euonymus alatus (Thunb.) Sieb using microwave-assisted extraction (MAE) technique. MAE experiments were performed with a multimode microwave extraction system. The experimental variables that affect the MAE process, such as the concentration of ethanol solution, extractant volume, microwave power and extraction time were optimised. Yields were determined by HPLC. The results were compared with that obtained by classical Soxhlet and ultrasonic-assisted extraction (UAE). From the optimised conditions for MAE of rutin and quercetin it can be concluded that the solvent is 50% ethanol (v/v) solution, the extractant volume is 40 mL, microwave power is 170 W and irradiation time is 6 min. Compared with Soxhlet extraction and ultrasonic extraction, microwave extraction is a rapid method with a higher yield and lower solvent consumption. The results showed that MAE can be used as an efficient and rapid method for the extraction of the active components from plants.
Recovery of catechin compounds from Korean tea by solvent extraction.
Row, Kyung Ho; Jin, Yinzhe
2006-03-01
Catechin compounds from Korean green tea as potential sources of anticancer and antioxidant components were target materials in this work. The methodologies of solvent extraction and partition were utilized to recover catechin compounds from green tea. The optimum experimental condition was obtained by optimizing operating factors, such as, the extraction solvent, extraction time and operating temperature. After extracting the green tea with water at 80 degrees C for 40 min, the extract was partitioned with water/chloroform, which was best suited to remove caffeine impurity from the extract. Further, the resulting extract was partitioned water/ethyl acetate to deeply purify the catechin compounds of EGC, EC, EGCG and ECG. The experimental result in this work could be extended to preparative HPLC to obtain EGCG on commercial scale.
Zhang, Hongmei; Wang, Yuzhi; Zhou, Yigang; Chen, Jing; Wei, Xiaoxiao; Xu, Panli
2018-05-01
Deep eutectic solvent (DES) composed of polypropylene glycol 400 (PPG 400) and tetrabutylammonium bromide (TBAB) was combined with a series of new-type salts such as quaternary ammonium salts, amino acid and polyols to form Aqueous Biphasic Systems (ABSs). Phase-forming ability of the salts was investigated firstly. The results showed that polyols had a relatively weak power to produce phases within studied scopes. And the shorter of carbon chain length of salts, the easier to obtain phase-splitting. Then partitioning of three pigments in PPG 400/betaine-based ABSs was addressed to investigate the effect of pigments' hydrophobicity on extraction efficiency. It was found that an increase in hydrophobicity contributed to the migration of pigments in the DES-rich phase. On the other hand, with a decline in phase-forming ability of salts, the extraction efficiency of the whole systems started to go down gradually. Based on the results, selective separation experiment was conducted successfully in the PPG 400/betaine-based systems, including more than 93.00% Sudan Ⅲ in the top phase and about 80.00% sunset yellow FCF/amaranth in the bottom phase. Additionally, ABSs constructed by DES/betaine for partitioning amaranth were further utilized to explore the performances of influence factors and back extraction. It can be concluded that after the optimization above 98.00% amaranth was transferred into the top phase. And 67.98% amaranth can be transferred into the bottom phase in back-extraction experiment. At last, dynamic light scattering (DLS) and transmission electron microscope (TEM) were applied to probe into extraction mechanism. The results demonstrated that hydrophobicity played an important role in the separation process of pigments. Through combining with new-type DES, this work was devoted to introducing plentiful salts as novel compositions of ABSs and providing an eco-friendly extraction way for partitioning pigments, which boosted development of ABSs in the monitoring food safety field. Copyright © 2018 Elsevier B.V. All rights reserved.
Carro, Antonia M; González, Paula; Lorenzo, Rosa A
2013-06-28
Pressurized liquid extraction (PLE) is an exhaustive technique used for the extraction of analytes from solid samples. Temperature, pressure, solvent type and volume, and the addition of other reagents notably influence the efficiency of the extraction. The analytical applications of this technique can be improved by coupling with appropriate derivatization reactions. The aim of this review is to discuss the recent applications of the sequential combination of PLE with derivatization and the approaches that involve simultaneous extraction and in situ derivatization. The potential of the latest developments to the trace analysis of environmental, food and biological samples is also analyzed. Copyright © 2013 Elsevier B.V. All rights reserved.
Bio-Oil Separation and Stabilization by Near-Critical Propane Fractionation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ginosar, Daniel M.; Petkovic, Lucia M.; Agblevor, Foster A.
Bio-oils produced by thermal process are promising sources of sustainable, low greenhouse gas alternative fuels. These thermal processes are also well suited to decentralized energy production due to low capital and operating costs. Algae feedstocks for bio-oil production are of particular interest, due in part to their high-energy growth yields. Further, algae can be grown in non-arable areas in fresh, brackish, salt water, or even waste water. Unfortunately, bio-oils produced by thermal processes present significant stability challenges. These oils have complex chemical compositions, are viscous, reactive, and thermally unstable. Further, the components within the oils are difficult to separate bymore » fractional distillation. By far, the most effective separation and stabilization method has been solvent extraction. However, liquid phase extraction processes pose two main obstacles to commercialization; they require a significant amount of energy to remove and recover the solvent from the product, and they have a propensity for the solvent to become contaminated with minerals from the char and ash present in the original bio-oil. Separation and fractionation of thermally produced bio-oils using supercritical fluids (SCF) offers the advantages of liquid solvent extraction while drastically reducing energy demands and the predisposition to carry over solids into the extracted phase. SCFs are dense fluids with liquid-like solvent properties and gas-like transport properties. Further, SCF density and solvent strength can be tuned with minor adjustments in pressure, co-solvent addition, or gas anti-solvent addition. Catalytic pyrolysis oils were produced from Scenedesmus dimorphus algae using a fluid catalytic cracking catalyst. Bio-oil produced from catalytic fast pyrolysis (CFP) was separated using critical fluids. Propane extraction was performed at 65 °C at a fluid reduced pressure of 2.0 (85 bar) using an eight to one solvent to feed ratio by weight. Extraction of catalytic fast pyrolysis oil with near critical propane produced an oil extract that was physically and chemically different from and more stable than the original oil. The propane extract displayed lower viscosity and lower average molecular weight. The species present in the propane extract were likely the less polar that would be expected from using a non-polar solvent (propane). Carbonyl containing species in the extract were likely ketones and esters. The raffinate contained a higher amnount of OH bonded species along with the more polar more polar acids, amides, and alcohols. The higher concentration of nitrogen in the raffinate may confirm the presence of amides. Viscosity of the propane extract increased only half as much as that of the CFP bio-oil. Further, In situ NMR aging studies showed that the propane extract was more stable than the raw oil. In conclusion, propane extraction is a promising method to decrease the nitrogen content of bio-oils and to improve the stability of bio-oils obtained by the catalytic pyrolysis of algae based biomass.« less
Determination of terpenoid content in pine by organic solvent extraction and fast-GC analysis
Harman-Ware, Anne E.; Sykes, Robert; Peter, Gary F.; ...
2016-01-25
Terpenoids, naturally occurring compounds derived from isoprene units present in pine oleoresin, are a valuable source of chemicals used in solvents, fragrances, flavors, and have shown potential use as a biofuel. This paper describes a method to extract and analyze the terpenoids present in loblolly pine saplings and pine lighter wood. Various extraction solvents were tested over different times and temperatures. Samples were analyzed by pyrolysis-molecular beam mass spectrometry before and after extractions to monitor the extraction efficiency. The pyrolysis studies indicated that the optimal extraction method used a 1:1 hexane/acetone solvent system at 22°C for 1 h. Extracts frommore » the hexane/acetone experiments were analyzed using a low thermal mass modular accelerated column heater for fast-GC/FID analysis. The most abundant terpenoids from the pine samples were quantified, using standard curves, and included the monoterpenes, α- and β-pinene, camphene, and δ-carene. Sesquiterpenes analyzed included caryophyllene, humulene, and α-bisabolene. In conclusion, diterpenoid resin acids were quantified in derivatized extractions, including pimaric, isopimaric, levopimaric, palustric, dehydroabietic, abietic, and neoabietic acids.« less
SOLVENT EXTRACTION PROCESS FOR THE RECOVERY OF METALS FROM PHOSPHORIC ACID
Bailes, R.H.; Long, R.S.
1958-11-01
> A solvent extraction process is presented for recovering metal values including uranium, thorium, and other lanthanide and actinide elements from crude industrial phosphoric acid solutions. The process conslsts of contacting said solution with an immisclble organic solvent extractant containing a diluent and a material selected from the group consisting of mono and di alkyl phosphates, alkyl phosphonates and alkyl phosphites. The uranlum enters the extractant phase and is subsequently recovered by any of the methods known to the art. Recovery is improved if the phosphate solution is treated with a reducing agent such as iron or aluminum powder prior to the extraction step.
Method for recovering and using lignin in adhesive resins by extracting demethylated lignin
Schroeder, Herbert A.
1991-01-01
Lignin, or a lignin derived material, which has been significantly demethylated (e.g., the demethylated lignin found in the raffinate produced as a by-product of dimethyl sulfide production which can be carried out using the spent liquor from wood pulping operations) can be isolated by a process wherein an organic solvent is added to a lignin-containing aqueous solution. The organic solvent is typically a polar, and at least a partially water-immiscible substance such as, for example, ethyl acetate. The resulting lignin-containing aqueous solution/organic solvent mixture is acidified to produce a water layer which is discarded and an organic solvent layer which contains the demethylated lignin. Upon its recovery, the demethylated lignin is preferably dried and stored until it is used (along with an alkali, an aldehyde and an adhesive filler) in compounding an adhesive of the type generally used in the manufacture of plywood.
Method for recovering and using lignin in adhesive resins by extracting demethylated lignin
Schroeder, Herbert A.
1991-01-01
Lignin, or a lignin derived material, which has been significantly demethylated (e.g., the demethylated lignin found in the raffinate produced as a by-product of dimethyl sulfide production which can be carried out using the spent liquor from wood pulping operations) can be isolated by a process wherein an organic solvent is added to a lignin-containing aqueous solution. The organic solvent is typically a polar, and at least a partially water-immiscible substance such as, for example, ethyl acetate. The resulting lignin-containing aqueous solution/organic solvent mixture is acidified to produce a water layer which is discarded and an organic solvent layer which contains the demethylated lignin. Upon its recovery, the demethylated lignin is dissolved in an alkaline solution to which an aldehyde source is added to produce a resol-type resin. The aldehyde source may be formaldehyde in solution, paraformaldehyde, hexamethylenetetramine, or other aldehydes including acetaldehyde, furfural, and their derivatives.
SOLVENT EXTRACTION PROCESSES: A SURVEY OF SYSTEMS IN THE SITE PROGRAM
Solvent extraction of contaminated soils, sludges and sediments has been successfully completed at a number ofSuperfund sites. Each commercialized process uses a unique operating system to extract organic contaminants from solids. These operating systems may be classified by the ...
Fei, Tao; Cazeneuve, Stacy; Wen, Zhiyou; Wu, Lei; Wang, Tong
2016-05-01
This work demonstrates a significant advance in bioprocessing for a high-melting lipid polymer. A novel and environmental friendly solvent mixture, acetone/ethanol/propylene carbonate (A/E/P, 1:1:1 v/v/v) was identified for extracting poly-hydroxybutyrate (PHB), a high-value biopolymer, from Cupriavidus necator. A set of solubility curves of PHB in various solvents was established. PHB recovery of 85% and purity of 92% were obtained from defatted dry biomass (DDB) using A/E/P. This solvent mixture is compatible with water, and from non-defatted wet biomass, PHB recovery of 83% and purity of 90% were achieved. Water and hexane were evaluated as anti-solvents to assist PHB precipitation, and hexane improved recovery of PHB from biomass to 92% and the purity to 93%. A scale-up extraction and separation reactor was designed, built and successfully tested. Properties of PHB recovered were not significantly affected by the extraction solvent and conditions, as shown by average molecular weight (1.4 × 10(6) ) and melting point (175.2°C) not being different from PHB extracted using chloroform. Therefore, this biorenewable solvent system was effective and versatile for extracting PHB biopolymers. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:678-685, 2016. © 2016 American Institute of Chemical Engineers.
Okoduwa, Stanley I. R.; Mbora, Lovina O.; Adu, Matthew E.; Adeyi, Ameh A.
2015-01-01
The need to develop effective alternative for synthetic indicators is the demand of present-day chemistry. The acid-base indicator properties of Rose (Rosa setigera), Allamanda (Allamanda cathartica), and Hibiscus (Hibiscus rosa-sinensis) flowers were examined. Colour pigments were extracted from the flowers via cold and solvent extraction using soxhlet extractor. The pH value of the extracts with wavelengths of absorption was determined using ultraviolet spectrophotometer. From the results obtained, all the extracts exhibited sharp contrast between their colours in acid and base. Their pH was found to be 5.5 for cold extract of Rose and 5.6 for solvent extraction, 5.24 for cold extract of a Hibiscus and 6.52 for solvent extraction, 5.35 for cold extract of Allamanda, and 5.45 for solvent extraction. The maximum wavelengths of absorption obtained for all the extract fall within the visible region of electromagnetic spectrum. These values are almost similar to that obtained from synthetic indicators. It is on these bases that we concluded that natural indicators could be an excellent replacement for synthetic indicators since they are cheap, readily available, simple to extract, not toxic, user and environmentally friendly. PMID:26819757
2017-01-01
The extraction yield of lipids from nonbroken Neochloris oleoabundans was maximized by using multiple extraction stages and using stressed algae. Experimental parameters that affect the extraction were investigated. The study showed that with wet algae (at least) 18 h extraction time was required for maximum yield at room temperature and a solvent/feed ratio of 1:1 (w/w). For fresh water (FW), nonstressed, nonbroken Neochloris oleoabundans, 13.1 wt % of lipid extraction yield (based on dry algae mass) was achieved, which could be improved to 61.3 wt % for FW stressed algae after four extractions, illustrating that a combination of stressing the algae and applying the solvent N-ethylbutylamine in multiple stages of extraction results in almost 5 times higher yield and is very promising for further development of energy-efficient lipid extraction technology targeting nonbroken wet microalgae. PMID:28781427
NASA Astrophysics Data System (ADS)
Cho, Myoung Lae; Lee, Dong-Jin; Lee, Hyi-Seung; Lee, Yeon-Ju; You, Sang Guan
2013-12-01
The nitric oxide inhibitory (NOI) and antioxidant (ABTS and DPPH radical scavenging effects with reducing power) activities of the ethanol (EtOH) extracts and solvent partitioned fractions from Scytosiphon lomentaria, Chorda filum, Agarum cribrosum, and Desmarestia viridis were investigated, and the correlation between biological activity and total phenolic (TP) and phlorotannin (TPT) content was determined by PCA analysis. The yield of EtOH extracts from four brown seaweeds ranged from 2.6 to 6.6% with the highest yield from D. viridis, and the predominant compounds in their solvent partitioned fractions had medium and/or less polarity. The TP and TPT content of the EtOH extracts were in the ranges of 25.0-44.1 mg GAE/g sample and 0.2-4.6 mg PG/g sample, respectively, which were mostly included in the organic solvent partitioned fractions. Strong NOI activity was observed in the EtOH extracts and their solvent partitioned fractions from D. viridis and C. filum. In addition, the EtOH extract and its solvent partitioned fractions of D. viridis exhibited little cytotoxicity to Raw 264.7 cells. The most potent ABTS and DPPH radical scavenging capacity was shown in the EtOH extracts and their solvent partitioned fractions from S. lomentaria and C. filum, and both also exhibited strong reducing ability. In the PCA analysis the content of TPT had a good correlation with DPPH ( r = 0.62), ABTS ( r = 0.69) and reducing power ( r = 0.65), however, an unfair correlation was observed between the contents of TP and TPT and NOI, suggesting that the phlorotannins might be responsible for the DPPH and ABTS radical scavenging activities.
Moradi-Kheibari, Narges; Ahmadzadeh, Hossein; Hosseini, Majid
2017-09-01
Lipid extraction is the bottleneck step for algae-based biodiesel production. Herein, 12 solvent mixture systems (mixtures of three non-polar and two polar organic solvents) were examined to evaluate their effects on the total lipid yield from Chlorella vulgaris (C. vulgaris). Moreover, the extraction yields of three solvent systems with maximum extraction efficiency of esterifiable lipids were determined by acidic transesterification and GC-FID analysis. Three solvent systems, which resulted in a higher extraction yield, were further subjected to fatty acid methyl ester (FAME) analysis. The total lipid extraction yields (based on dry biomass) were (38.57 ± 1.51), (25.33 ± 0.58), and (25.17 ± 1.14) %, for chloroform-methanol (1:2) (C1M2), hexane-methanol (1:2) (H1M2), and chloroform-methanol (2:1) (C2M1), respectively. The extraction efficiency of C1M2 was approximately 1.5 times higher than H1M2 and C2M1, whereas the FAME profile of extracted lipids by H1M2 and C1M2 were almost identical. Moreover, the esterifiable lipid extraction yields of (18.14 ± 2.60), (16.66 ± 0.35), and (13.22 ± 0.31) % (based on dry biomass) were obtained for C1M2, H1M2, and C2M1 solvent mixture systems, respectively. The biodiesel fuel properties produced from C. vulgaris were empirically predicted and compared to that of the EN 14214 and ASTM 6751 standard specifications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loneman, Derek M.; Peddicord, Layton; Al-Rashid, Amani
Aerial plant organs possess a diverse array of extracellular surface lipids, including both non-polar and amphipathic constituents that collectively provide a primary line of defense against environmental stressors. Extracellular surface lipids on the stigmatic silks of maize are composed primarily of saturated and unsaturated linear hydrocarbons, as well as fatty acids, and aldehydes. To efficiently extract lipids of differing polarities from maize silks, five solvent systems (hexanes; hexanes:diethyl ether (95:5); hexanes:diethyl ether (90:10); chloroform:hexanes (1:1) and chloroform) were tested by immersing fresh silks in solvent for different extraction times. Surface lipid recovery and the relative composition of individual constituents weremore » impacted to varying degrees depending on solvent choice and duration of extraction. Analyses were performed using both silks and leaves to demonstrate the utility of the solvent- and time-optimized protocol in comparison to extraction with the commonly used chloroform solvent. Overall, the preferred solvent system was identified as hexanes:diethyl ether (90:10), based on its effectiveness in extracting surface hydrocarbons and fatty acids as well as its reduced propensity to extract presumed internal fatty acids. Metabolite profiling of wildtype and glossy1 seedlings, which are impaired in surface lipid biosynthesis, demonstrated the ability of the preferred solvent to extract extracellular surface lipids rich in amphipathic compounds (aldehydes and alcohols). In addition to the expected deficiencies in dotriacontanal and dotriacontan-1-ol for gl1 seedlings, an unexpected increase in fatty acid recovery was observed in gl1 seedlings extracted in chloroform, suggesting that chloro-form extracts lipids from internal tissues of gl1 seedlings. This highlights the importance of extraction method when evaluating mutants that have altered cuticular lipid compositions. Lastly, metabolite profiling of silks from maize inbreds B73 and Mo17, exposed to different environments and harvested at different ages, revealed differences in hydrocarbon and fatty acid composition, demonstrating the dynamic nature of surface lipid accumulation on silks.« less
Loneman, Derek M.; Peddicord, Layton; Al-Rashid, Amani; ...
2017-07-11
Aerial plant organs possess a diverse array of extracellular surface lipids, including both non-polar and amphipathic constituents that collectively provide a primary line of defense against environmental stressors. Extracellular surface lipids on the stigmatic silks of maize are composed primarily of saturated and unsaturated linear hydrocarbons, as well as fatty acids, and aldehydes. To efficiently extract lipids of differing polarities from maize silks, five solvent systems (hexanes; hexanes:diethyl ether (95:5); hexanes:diethyl ether (90:10); chloroform:hexanes (1:1) and chloroform) were tested by immersing fresh silks in solvent for different extraction times. Surface lipid recovery and the relative composition of individual constituents weremore » impacted to varying degrees depending on solvent choice and duration of extraction. Analyses were performed using both silks and leaves to demonstrate the utility of the solvent- and time-optimized protocol in comparison to extraction with the commonly used chloroform solvent. Overall, the preferred solvent system was identified as hexanes:diethyl ether (90:10), based on its effectiveness in extracting surface hydrocarbons and fatty acids as well as its reduced propensity to extract presumed internal fatty acids. Metabolite profiling of wildtype and glossy1 seedlings, which are impaired in surface lipid biosynthesis, demonstrated the ability of the preferred solvent to extract extracellular surface lipids rich in amphipathic compounds (aldehydes and alcohols). In addition to the expected deficiencies in dotriacontanal and dotriacontan-1-ol for gl1 seedlings, an unexpected increase in fatty acid recovery was observed in gl1 seedlings extracted in chloroform, suggesting that chloro-form extracts lipids from internal tissues of gl1 seedlings. This highlights the importance of extraction method when evaluating mutants that have altered cuticular lipid compositions. Lastly, metabolite profiling of silks from maize inbreds B73 and Mo17, exposed to different environments and harvested at different ages, revealed differences in hydrocarbon and fatty acid composition, demonstrating the dynamic nature of surface lipid accumulation on silks.« less
Richard, Nicole L; Pivarnik, Lori F; Ellis, P Christopher; Lee, Chong M
2011-01-01
Methanol (MeOH) extraction by AOAC Official Method 996.07 has resulted in low amine recoveries in fresh fish tissue. Addition of 25% 0.4 M HCl to the 75% methanol-water extraction solvent resulted in higher recoveries of putrescine and cadaverine. Average putrescine recovery increased from 55 to 92% in flounder, scup, bluefish, and salmon; from 92 to 98% in mackerel; and from 83 to 107% in processed mackerel. Average cadaverine recovery increased from 57 to 95% in flounder, scup, bluefish, and salmon; from 91 to 97% in mackerel; and from 92 to 108% in processed mackerel. Fish stored on ice for 12 days also showed differences between background concentrations determined with the two solvents. However, the values decreased with storage time, indicating that degradation of the protein matrix may cause more comparable measurements between the two solvents. However, consistently higher putrescine and cadaverine measurements were determined using MeOH-HCl. Although significant differences in the extraction of amines from the high-fat fish tissue were not seen between MeOH and MeOH-HCl, it would be ideal to have one solvent for biogenic amine extraction. This study confirms that MeOH-HCl is a better solvent for complete extraction and recovery of putrescine and cadaverine in fresh and processed fish tissues.
Trace elements retained in washed nuclear fuel reprocessing solvents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, L.W.; MacMurdo, K.W.
1979-09-01
Analysis of purified TBP extractant from solvent extraction processes at Savannah River Plant showed several stable elements and several long-lived radioisotopes. Stable elements Al, Na, Br, Ce, Hg, and Sm are found in trace quantities in the solvent. The only stable metallic element consistently found in the solvent was Al, with a concentration which varies from about 30 ppM to about 10 ppM. The halogens Br and Cl appear to be found in the solvent systems as organo halides. Radionuclides found were principally /sup 106/Ru, /sup 129/I, /sup 3/H, /sup 235/U, and /sup 239/Pu. The /sup 129/I concentration was aboutmore » 1 ppM in the first solvent extraction cycle of each facility. In the other cycles, /sup 129/I concentration varied from about 0.1 to 0.5 ppM. Both /sup 129/I and /sup 3/H appear to be in the organic solvent as a result of exchange with hydrogen.« less
Chen, Jue; Liu, Mengjun; Wang, Qi; Du, Huizhi; Zhang, Liwei
2016-10-17
Deep eutectic solvents (DESs) have attracted significant attention as a promising green media. In this work, twenty-five kinds of benign choline chloride-based DESs with microwave-assisted methods were applied to quickly extract active components from Radix Salviae miltiorrhizae . The extraction factors, including temperature, time, power of microwave, and solid/liquid ratio, were investigated systematically by response surface methodology. The hydrophilic and hydrophobic ingredients were extracted simultaneously under the optimized conditions: 20 vol% of water in choline chloride/1,2-propanediol (1:1, molar ratio) as solvent, microwave power of 800 W, temperature at 70 °C, time at 11.11 min, and solid/liquid ratio of 0.007 g·mL -1 . The extraction yield was comparable to, or even better than, conventional methods with organic solvents. The microstructure alteration of samples before and after extraction was also investigated. The method validation was tested as the linearity of analytes ( r ² > 0.9997 over two orders of magnitude), precision (intra-day relative standard deviation (RSD) < 2.49 and inter-day RSD < 2.96), and accuracy (recoveries ranging from 95.04% to 99.93%). The proposed DESs combined with the microwave-assisted method provided a prominent advantage for fast and efficient extraction of active components, and DESs could be extended as solvents to extract and analyze complex environmental and pharmaceutical samples.
Zajicek, James L.; Tillitt, Donald E.; Huckins, James N.; Petty, Jimmie D.; Potts, Michael E.; Nardone, David A.
1996-01-01
Determination of PCBs in biological tissue extracts by enzyme-linked immunosorbent assays (ELISAs) can be problematic, since the hydrophobic solvents used for their extraction and isolation from interfering biochemicals have limited compatibility with the polar solvents (e.g. methanol/water) and the immunochemical reagents used in ELISA. Our studies of these solvent effects indicate that significant errors can occur when microliter volumes of PCB containing extracts, in hydrophobic solvents, are diluted directly into methanol/water diluents. Errors include low recovery and excess variability among sub-samples taken from the same sample dilution. These errors are associated with inhomogeneity of the dilution, which is readily visualized by the use of a hydrophobic dye, Solvent Blue 35. Solvent Blue 35 is also used to visualize the evaporative removal of hydrophobic solvent and the dissolution of the resulting PCB/dye residue by pure methanol and 50% (v/v) methanol/water, typical ELISA diluents. Evaporative removal of isooctane by an ambient temperature nitrogen purge with subsequent dissolution in 100% methanol gives near quantitative recovery of model PCB congeners. We also compare concentrations of total PCBs from ELISA (ePCB) to their corresponding concentrations determined from capillary gas chromatography (GC) in selected fish sample extracts and dialysates of semipermeable membrane device (SPMD) passive samplers using an optimized solvent exchange procedure. Based on Aroclor 1254 calibrations, ePCBs (ng/mL) determined in fish extracts are positively correlated with total PCB concentrations (ng/mL) determined by GC: ePCB = 1.16 * total-cPCB - 5.92. Measured ePCBs (ng/3 SPMDs) were also positively correlated (r2 = 0.999) with PCB totals (ng/3 SPMDs) measured by GC for dialysates of SPMDs: ePCB = 1.52 * total PCB - 212. Therefore, this ELISA system for PCBs can be a rapid alternative to traditional GC analyses for determination of PCBs in extracts of biota or in SPMD dialysates.
Oil extraction from sheanut (Vitellaria paradoxa Gaertn C.F.) kernels assisted by microwaves.
Nde, Divine B; Boldor, Dorin; Astete, Carlos; Muley, Pranjali; Xu, Zhimin
2016-03-01
Shea butter, is highly solicited in cosmetics, pharmaceuticals, chocolates and biodiesel formulations. Microwave assisted extraction (MAE) of butter from sheanut kernels was carried using the Doehlert's experimental design. Factors studied were microwave heating time, temperature and solvent/solute ratio while the responses were the quantity of oil extracted and the acid number. Second order models were established to describe the influence of experimental parameters on the responses studied. Under optimum MAE conditions of heating time 23 min, temperature 75 °C and solvent/solute ratio 4:1 more than 88 % of the oil with a free fatty acid (FFA) value less than 2, was extracted compared to the 10 h and solvent/solute ratio of 10:1 required for soxhlet extraction. Scanning electron microscopy was used to elucidate the effect of microwave heating on the kernels' microstructure. Substantial reduction in extraction time and volumes of solvent used and oil of suitable quality are the main benefits derived from the MAE process.
ALKYL PYROPHOSPHATE METAL SOLVENT EXTRACTANTS AND PROCESS
Long, R.L.
1958-09-30
A process is presented for the recovery of uranium from aqueous mineral acidic solutions by solvent extraction. The extractant is a synmmetrical dialkyl pyrophosphate in which the alkyl substituents have a chain length of from 4 to 17 carbon atoms. Mentioned as a preferred extractant is dioctyl pyrophosphate. The uranium is precipitated irom the organic extractant phase with an agent such as HF, fluoride salts. alcohol, or ammonia.
Doppler, Maria; Kluger, Bernhard; Bueschl, Christoph; Schneider, Christina; Krska, Rudolf; Delcambre, Sylvie; Hiller, Karsten; Lemmens, Marc; Schuhmacher, Rainer
2016-01-01
The evaluation of extraction protocols for untargeted metabolomics approaches is still difficult. We have applied a novel stable isotope-assisted workflow for untargeted LC-HRMS-based plant metabolomics , which allows for the first time every detected feature to be considered for method evaluation. The efficiency and complementarity of commonly used extraction solvents, namely 1 + 3 (v/v) mixtures of water and selected organic solvents (methanol, acetonitrile or methanol/acetonitrile 1 + 1 (v/v)), with and without the addition of 0.1% (v/v) formic acid were compared. Four different wheat organs were sampled, extracted and analysed by LC-HRMS. Data evaluation was performed with the in-house-developed MetExtract II software and R. With all tested solvents a total of 871 metabolites were extracted in ear, 785 in stem, 733 in leaf and 517 in root samples, respectively. Between 48% (stem) and 57% (ear) of the metabolites detected in a particular organ were found with all extraction mixtures, and 127 of 996 metabolites were consistently shared between all extraction agent/organ combinations. In aqueous methanol, acidification with formic acid led to pronounced pH dependency regarding the precision of metabolite abundance and the number of detectable metabolites, whereas extracts of acetonitrile-containing mixtures were less affected. Moreover, methanol and acetonitrile have been found to be complementary with respect to extraction efficiency. Interestingly, the beneficial properties of both solvents can be combined by the use of a water-methanol-acetonitrile mixture for global metabolite extraction instead of aqueous methanol or aqueous acetonitrile alone. PMID:27367667
Zhao, Xiangsheng; Zhou, Yakui; Kong, Weijun; Gong, Bao; Chen, Deli; Wei, Jianhe; Yang, Meihua
2016-04-01
A simple and effective multi-residue method was developed and validated for the analysis of 26 organochlorine pesticide residues in Alpinia oxyphylla by a gas chromatography with an electron capture detector (GC-ECD). The target pesticides were extracted by sonication and cleaned up with florisil solid phase extraction and sulphuric acid. Some crucial parameters, including extraction solvent and time, sorbent type, elute solvent and concentration of sulphuric acid were optimized to improve the performance of sample preparation procedure. The optimized method gave high sensitivity with detection limit ranging from 0.1 to 2.0μg/kg. Matrix-matched calibration was employed for the quantification, and a wide linear range (from 1.0 to 1000μg/kg) with r(2) values ranging from 0.9971 to 0.9998 was obtained. For the majority of the tested pesticides, the average recoveries were in acceptable range (between 70% and 110%) with relative standard deviation values below 15.0%. Matrix effect was evaluated for target compounds through the study of ratio of peak area obtained in the solvent and blank matrix. The proposed method was applied to simultaneously analyze 26 pesticides in 55 batches of Alpinia oxyphylla samples. 3 samples were found to be positive with four pesticides (α-BHC, quintozene, trans-chlordane and op'-DDD), which were confirmed by gas chromatography-mass spectrometry (GC-MS) in selective ion monitoring (SIM) mode. Copyright © 2016 Elsevier B.V. All rights reserved.
Nakayasu, Ernesto S.; Nicora, Carrie D.; Sims, Amy C.; Burnum-Johnson, Kristin E.; Kim, Young-Mo; Kyle, Jennifer E.; Matzke, Melissa M.; Shukla, Anil K.; Chu, Rosalie K.; Schepmoes, Athena A.; Jacobs, Jon M.; Baric, Ralph S.; Webb-Robertson, Bobbie-Jo; Smith, Richard D.
2016-01-01
ABSTRACT Integrative multi-omics analyses can empower more effective investigation and complete understanding of complex biological systems. Despite recent advances in a range of omics analyses, multi-omic measurements of the same sample are still challenging and current methods have not been well evaluated in terms of reproducibility and broad applicability. Here we adapted a solvent-based method, widely applied for extracting lipids and metabolites, to add proteomics to mass spectrometry-based multi-omics measurements. The metabolite, protein, and lipid extraction (MPLEx) protocol proved to be robust and applicable to a diverse set of sample types, including cell cultures, microbial communities, and tissues. To illustrate the utility of this protocol, an integrative multi-omics analysis was performed using a lung epithelial cell line infected with Middle East respiratory syndrome coronavirus, which showed the impact of this virus on the host glycolytic pathway and also suggested a role for lipids during infection. The MPLEx method is a simple, fast, and robust protocol that can be applied for integrative multi-omic measurements from diverse sample types (e.g., environmental, in vitro, and clinical). IMPORTANCE In systems biology studies, the integration of multiple omics measurements (i.e., genomics, transcriptomics, proteomics, metabolomics, and lipidomics) has been shown to provide a more complete and informative view of biological pathways. Thus, the prospect of extracting different types of molecules (e.g., DNAs, RNAs, proteins, and metabolites) and performing multiple omics measurements on single samples is very attractive, but such studies are challenging due to the fact that the extraction conditions differ according to the molecule type. Here, we adapted an organic solvent-based extraction method that demonstrated broad applicability and robustness, which enabled comprehensive proteomics, metabolomics, and lipidomics analyses from the same sample. Author Video: An author video summary of this article is available. PMID:27822525
Paramanik, M; Panja, S; Dhami, P S; Yadav, J S; Kaushik, C P; Ghosh, S K
2018-07-15
Novel Solvent Impregnated Resin (SIR) material was prepared by impregnating a trialkyl phosphine oxide functionalized ionic liquid (IL) into an inert polymeric material XAD-7. A series of SIR materials were prepared by varying the IL quantity. Sorption of both U(VI) and Pu(IV) were found to increase with increasing IL concentration in SIR up to an optimum IL concentration of 435 mg g -1 of SIR beyond which no effect of IL concentration was observed. A change of mechanism of sorption for U(VI) by SIR was observed in comparison to solvent extraction. The dependency of U(VI) sorption with nitric acid concentration showed a reverse trend compared to solvent extraction studies while for Pu(IV) the trend remained same as observed with solvent extraction. Sorption of both the radionuclides was found to follow pseudo second order mechanism and Langmuir adsorption isotherm. Distribution co-efficient measurements on IL impregnated SIR showed highly selective sorption of U(VI) and Pu(IV) over other trivalent f-elements and fission products from nitric acid medium. Copyright © 2018 Elsevier B.V. All rights reserved.
Wai, Chien M.; Laintz, Kenneth E.
1999-01-01
A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.
REMOVAL OF PCBS FROM A CONTAMINATED SOIL USING CF-SYSTEMS SOLVENT EXTRACTION PROCESS
The US EPA's START team in cooperation with EPA's SITE program evaluated a pilot scale solvent extraction process developed by CF-Systems. This process uses liquified propane to extract organic contaminants from soils, sludges, and sediments. A pilot-scale evaluation was conducte...
This document is an evaluation of the performance of the Resources Conservation Company (RCC) Basic Extractive Sludge Treatment (B.E.S.T.®) solvent extraction technology and its applicability as a treatment technique for soils, sediments, and sludges contaminated with organics. B...
Investigation of the pharmaceutical and pharmacological equivalence of different Hawthorn extracts.
Vierling, W; Brand, N; Gaedcke, F; Sensch, K H; Schneider, E; Scholz, M
2003-01-01
Seven Hawthorn extracts were tested in isolated guinea pig aorta rings. The effect on noradrenaline- (10 microM) induced contraction was investigated. The extracts were prepared using ethanol (40 to 70% v/v), methanol (40 to 70% v/v), and water as the extraction solvents. The aqueous-alcoholic extracts displayed similar spectra of constituents. They were characterised by similar procyanidin, flavonoid, total vitexin and total phenols content and by similar TLC fingerprint chromatograms. The aqueous extract, however, showed a different fingerprint and a noticeably lower concentration of procyanidins, flavonoids and total phenols but a similar total vitexin content. All 7 extracts had a relaxant effect on the aorta precontracted by noradrenaline and led to relaxations to 44 until 29% of the initial values. The EC50 values of the aqueous-alcoholic extracts varied between 4.16 and 9.8 mg/l. The aqueous extract produced a similarly strong maximal relaxation as the other extracts, but the EC50, at 22.39 mg/l, was markedly higher. The results show that Hawthorn extracts with comparable quality profiles were obtained by using aqueous-alcoholic extraction solvents (40 to 70% ethanol or methanol). The extracts exerted comparable pharmacological effects. When using water as the extraction solvent, both, the spectrum of constituents and the pharmacological effect, deviated remarkably. It is thus possible to obtain bioequivalent extracts with comparable effect profiles by using 40 to 70% ethanol or methanol as the extraction solvent.
Solvent Selection for Extraction of Neodymium Concentrates of Monazite Sand Processed Product
NASA Astrophysics Data System (ADS)
Setyadji, Moch; Purwani, MV
2018-02-01
The extraction of neodymium concentrates of monazite sand processed product has been done. The objective of this investigation was to determine the best solvent to separate Nd from Nd concentrate. As an aqueous phase was Nd(OH)3 concentrated in HNO3 and as solvent or the organic phase was trioctylamine (TOA). tryibuthyl phosphate (TBP). trioctylphosphine oxyde (TOPO) and di-ethyl hexyl phosphoric acid (D2EHPA) in kerosene. The investigated variables were HNO3 concentration. feed concentration. solvent concentration or solvent in kerosene. time and stirring speeds. From the investigation on the selection of solvent for the extraction of Nd(OH)3 concentrate with various solvents. it was concluded that the extraction of Nd could be carried out by using TBP or TOA. Extraction of Nd using TOA at the optimum HNO3 concentration of 2M. feed concentration of 5 gram/10 mL. TOA in kerosene concentration of 6 %. stirring time of 15 minutes. stirring speed of 200 rpm was chosen if the Y concentration in Nd concentrate is small. In these condition DNd obtained was 0.65; extraction efficiency of Nd (ENd)=37.10%. the concentrations of Nd2(C2O4)3 = 67.14%. Ce2(C2O4)3 = 1.79%. La2(C2O4)3 = 1.37% and Y2(C2O4)3 = 24.70%. Extraction of Nd using TBP at the optimum HNO3 concentration of 1M. feed concentration of 5 gram/10 m. the TBP concentration in kerosene of 15%. stirring time of 15 minutes and stirring speed of 200 rpm was chosen if the Ce concentration in Nd concentrate is small. In these condition DNd obtained was 0.20. extraction efficiency of Nd (ENd)=17%. concentration of Nd2(C2O4)3 = 70.84%. Ce2(C2O4)3=15.53%. La2(C2O4)3 = 0.00% and Y2(C2O4)3 = 8.63%.
Sample Results From The Extraction, Scrub, And Strip Test For The Blended NGS Solvent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Washington, A. L. II; Peters, T. B.
This report summarizes the results of the extraction, scrub, and strip testing for the September 2013 sampling of the Next Generation Solvent (NGS) Blended solvent from the Modular Caustic Side-Solvent Extraction Unit (MCU) Solvent Hold Tank. MCU is in the process of transitioning from the BOBCalixC6 solvent to the NGS Blend solvent. As part of that transition, MCU has intentionally created a blended solvent to be processed using the Salt Batch program. This sample represents the first sample received from that blended solvent. There were two ESS tests performed where NGS blended solvent performance was assessed using either the Tankmore » 21 material utilized in the Salt Batch 7 analyses or a simulant waste material used in the V-5/V-10 contactor testing. This report tabulates the temperature corrected cesium distribution, or D Cs values, step recovery percentage, and actual temperatures recorded during the experiment. This report also identifies the sample receipt date, preparation method, and analysis performed in the accumulation of the listed values. The calculated extraction D Cs values using the Tank 21H material and simulant are 59.4 and 53.8, respectively. The DCs values for two scrub and three strip processes for the Tank 21 material are 4.58, 2.91, 0.00184, 0.0252, and 0.00575, respectively. The D-values for two scrub and three strip processes for the simulant are 3.47, 2.18, 0.00468, 0.00057, and 0.00572, respectively. These values are similar to previous measurements of Salt Batch 7 feed with lab-prepared blended solvent. These numbers are considered compatible to allow simulant testing to be completed in place of actual waste due to the limited availability of feed material.« less
Asadi, Mohammad; Dadfarnia, Shayessteh; Haji Shabani, Ali Mohammad; Abbasi, Bijan
2015-07-01
A novel and simple method based on solidified floating organic drop microextraction followed by high-performance liquid chromatography with ultraviolet detection has been developed for simultaneous preconcentration and determination of phenobarbital, lamotrigine, and phenytoin in human plasma and urine samples. Factors affecting microextraction efficiency such as the type and volume of the extraction solvent, sample pH, extraction time, stirring rate, extraction temperature, ionic strength, and sample volume were optimized. Under the optimum conditions (i.e. extraction solvent, 1-undecanol (40 μL); sample pH, 8.0; temperature, 25°C; stirring rate, 500 rpm; sample volume, 7 mL; potassium chloride concentration, 5% and extraction time, 50 min), the limits of detection for phenobarbital, lamotrigine, and phenytoin were 1.0, 0.1, and 0.3 μg/L, respectively. Also, the calibration curves for phenobarbital, lamotrigine, and phenytoin were linear in the concentration range of 2.0-300.0, 0.3-200.0, and 1.0-200.0 μg/L, respectively. The relative standard deviations for six replicate extractions and determinations of phenobarbital, lamotrigine, and phenytoin at 50 μg/L level were less than 4.6%. The method was successfully applied to determine phenobarbital, lamotrigine, and phenytoin in plasma and urine samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kuźma, Paula; Drużyńska, Beata; Obiedziński, Mieczysław
2014-01-01
Parsley leaf is a rich source of natural antioxidants, which serve a lot of functions in human body and prevent food from oxidation processes. The aim of the study was to investigate the influence of different extraction solvents and times of extraction on natural antioxidants content. Owing to the knowledge of the properties of extracted components and solvents, as well as their interactions, it is possible to achieve a high effectiveness of active compounds recovery. Three different extraction solvents (acetone 70% in water, methanol 80% in water and distilled water) and different times of extraction (30 and 60 minutes) were used to determine the efficiency of extraction of polyphenols and catechins, antioxidant activity against free radicals DPPH and ABTS and the ability to chelate ion Fe(2+) in dried parsley leaves. Other natural antioxidants contents in parsley leaves were also determined. In this study the best extraction solvent for polyphenols was acetone 70% and for catechins was distilled water. All extracts examined displayed the antioxidative activity, but water was the best solvent in the method of assaying the activity against ABTS(•+) and Fe(2+) ions chelating capability, whereas methanol turned out to be the least effective in this respect. Opposite results were observed in the case of determining the activity against DPPH(•). The prolongation of the extraction time enhanced or decreased antiradical activity in some cases. Additionally, important biologically active compounds in parsley leaves, such as vitamin C (248.31 mg/100 g dry matter), carotenoids (31.28 mg/100 g dry matter), chlorophyll (0.185 mg/g dry matter) were also analysed.
NASA Astrophysics Data System (ADS)
Hameed, Anmar; Usup, Gires; Ahmad, Asmat
2016-11-01
This study was aimed to evaluate the algicidal activity of Loktanella sp. Gb-03 bacterial extracts against toxic dinoflagellate, using various polar and non-polar solvents. For this purpose, six different solvent extracts were prepared (i.e. methanol, ethyl acetate, hexane, chloroform, acetonitrile and water). Ratio of 1:100 (v:v) (extract to dinoflagellate culture) of each extract was used for preliminary algicidal activity screening against toxic dinoflagellate Coolia malaynesis. Dinoflagellate cells at the stationary phase (1.0 × 103 cells/ mL) were treated with 1% (v/v) of each extract by using 24-well microplate. The plates were then incubated for 24 hours at dinoflagellate culture condition (under a light intensity of 140 µmol m-2s-1 and 12:12 hours light:dark photoperiod). The result of algicidal activity screening showed that all 6 extracts from Loktanella sp. Gb-03 had different ranges of algicidal activity against the toxic dinoflagellates. Ethyl acetate extract showed the highest activity against C. malaynesis and also other harmful dinoflagellate (Alexandrium sp. Alexandrium leei, Alexandrium affine, Alexandrium tamiyavanichi, Alexandrium tamarense, Gambierdiscus belizeanus, and Ostreopsis). This study was the first to explore the algicidal activity of Loktanella sp. Gb-03 extracts against toxic dinoflagellate with ethyl acetate as the best solvent to extract algicidal active compounds.
Feasibility of Surfactant-Free Supported Emulsion Liquid Membrane Extraction
NASA Technical Reports Server (NTRS)
Hu, Shih-Yao B.; Li, Jin; Wiencek, John M.
2001-01-01
Supported emulsion liquid membrane (SELM) is an effective means to conduct liquid-liquid extraction. SELM extraction is particularly attractive for separation tasks in the microgravity environment where density difference between the solvent and the internal phase of the emulsion is inconsequential and a stable dispersion can be maintained without surfactant. In this research, dispersed two-phase flow in SELM extraction is modeled using the Lagrangian method. The results show that SELM extraction process in the microgravity environment can be simulated on earth by matching the density of the solvent and the stripping phase. Feasibility of surfactant-free SELM (SFSELM) extraction is assessed by studying the coalescence behavior of the internal phase in the absence of the surfactant. Although the contacting area between the solvent and the internal phase in SFSELM extraction is significantly less than the area provided by regular emulsion due to drop coalescence, it is comparable to the area provided by a typical hollow-fiber membrane. Thus, the stripping process is highly unlikely to become the rate-limiting step in SFSELM extraction. SFSELM remains an effective way to achieve simultaneous extraction and stripping and is able to eliminate the equilibrium limitation in the typical solvent extraction processes. The SFSELM design is similar to the supported liquid membrane design in some aspects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chrisp, C.; Hobbs, C.; Clark, R.
1979-01-01
This experiment showed that mutagenicity of fly ash derived from different coal conversion technologies, as determined by the Ames plate incorporation test, was similar in all three laboratories. The differences in mutagenic activity of each fly ash between laboratories with different solvent extraction methods were no greater than one order of magnitude. In addition, there were much smaller, but still significant differences in mutagenic activity between laboratories when the same solvent extract of a particular fly ash was tested in each laboratory. There were also significant differences in mutagenicity of the positive control mutagen (maximum of fivefold) between laboratories. Becausemore » of this difference in Ames test sensitivity between laboratories, the influence of the solvent extraction methods on differences in mutagenicity was not clear. However, the data suggested that either there were significant differences in the degree of sensitivity of Ames tests for different complex mixtures within each laboratory, or else there were differences in mutagen extraction efficiency between different solvent extraction methods. Both Ames test sensitivity and solvent extraction may be important. Further work would be necessary to separate the contribution of these two factors. An important aspect of further work would be to separate the contribution of the innate sensitivity of substrains of Ames tester strains in each laboratory from the possible effects of differences in Ames testing methodology. This could be done by testing the same extracts of fly ash and positive control mutagens with substrains of tester strains exchanged between laboratories. This work also implies that caution should be exercised in assuming that the same solvent would have the same efficiency for extraction of mutagens from different fly ashes even within the same laboratory.« less
NASA Astrophysics Data System (ADS)
Laeliocattleya, R. A.; Estiasih, T.; Griselda, G.; Muchlisyiyah, J.
2018-03-01
Banana has various benefits for health. One local variety of banana is candi banana (Musa paradisiaca). The aim of this research was to study the content of the bioactive compounds of phenolics, flavonoids, tannin, carotenoids and the antioxidant activity of extract ethanol and ethyl acetate of candi banana. Powdered candi banana was extracted using ethanol and ethyl acetate in an ultrasonic bath. The results showed that the content of phenolics, flavonoids, tannin and carotenoids in ethanol extract were 58.76 ± 3.19 mg/kg, 416.08 ± 18.79 mg/kg, 209.83 ± 15.87 mg/kg and 74.55 ± 4.31 mg/kg, respectively. The content of phenolics, flavonoids, tannin and carotenoids in ethyl acetate extract were 0.83 ± 0.12 mg/kg, 4.31 ± 0.66 mg/kg, 49.97 ± 2.43 mg/kg and 304.40 ± 16.62 mg/kg. While the antioxidant activity (IC50) of ethanol extract and ethyl acetate were 3374.13 ± 123.46 ppm and 40318.19 ± 1014.90 ppm. This research showed that type of solvents of ethanol and ethyl acetate affected the content of bioactive compounds and antioxidant activity of candi banana. The antioxidant activity of ethanol extract was higher than that of ethyl acetate extract. It showed that ethanol was a better solvent than ethyl acetate to extract bioactive compounds in candi banana.
Omoregie, Samson N; Omoruyi, Felix O; Wright, Vincent F; Jones, Lemore; Zimba, Paul V
2013-07-01
Acute monocytic leukemia (AML M5 or AMoL) is one of the several types of leukemia that are still awaiting cures. The use of chemotherapy for cancer management can be harmful to normal cells in the vicinity of the target leukemia cells. This study assessed the potency of the extracts from lesser galangal, turmeric, and ginger against AML M5 to use the suitable fractions in neutraceuticals. Aqueous and organic solvent extracts from the leaves and rhizomes of lesser galangal and turmeric, and from the rhizomes only of ginger were examined for their antiproliferative activities against THP-1 AMoL cells in vitro. Lesser galangal leaf extracts in organic solvents of methanol, chloroform, and dichloromethane maintained distinctive antiproliferative activities over a 48-h period. The turmeric leaf and rhizome extracts and ginger rhizome extracts in methanol also showed distinctive anticancer activities. The lesser galangal leaf methanol extract was subsequently separated into 13, and then 18 fractions using reversed-phase high-performance liquid chromatography. Fractions 9 and 16, respectively, showed the greatest antiproliferative activities. These results indicate that the use of plant extracts might be a safer approach to finding a lasting cure for AMoL. Further investigations will be required to establish the discriminatory tolerance of normal cells to these extracts, and to identify the compounds in these extracts that possess the antiproliferative activities.
Dorta, Eva; Lobo, M Gloria; Gonzalez, Monica
2012-01-01
Mango biowastes, obtained after processing, contain large amounts of compounds with antioxidant activity that can be reused to reduce their environmental impact. The present study evaluates the effect of solvent (methanol, ethanol, acetone, water, methanol:water [1:1], ethanol:water [1:1], and acetone:water [1:1]), and temperature (25, 50, and 75 °C) on the efficiency of the extraction of antioxidants from mango peel and seed. Among the factors optimized, extraction solvent was the most important. The solvents that best obtained extracts with high antioxidant capacity were methanol, methanol:water, ethanol:water, and acetone:water (β-carotene test, antioxidant activity coefficient 173 to 926; thiobarbituric acid reactive substances test, inhibition ratio 15% to 89%; 2,2'-azino-bis-(3-ethylbenzothiazoline)-6-sulfonic acid ABTS(·+); and 2,2-diphenyl-1-picrylhydrazyl DPPH· scavenging, 7 to 22 and 8 to 28 g trolox equivalent antioxidant capacity [TE] per 100 g mango biowaste on a dry matter basis [DW]). Similarly, the flavonoid (0.21 to 1.4 g (+)-catechin equivalents per 100 g DW), tannin (3.8 to 14 g tannic acid equivalents per 100 g DW), and proanthocyanidin (0.23 to 7.8 g leucoanthocyanidin equivalents per 100 g DW) content was highest in the peel extracts obtained with methanol, ethanol:water, or acetone:water and in the seed extracts obtained with methanol or acetone:water. From the perspective of food security, it is advisable to choose ethanol (which also has a notable antioxidant content), ethanol:water, or acetone:water, as they are all solvents that can be used in compliance with good manufacturing practice. In general, increasing temperature improves the capacity of the extracts obtained from mango peel and seed to inhibit lipid peroxidation; however, its effect on the extraction of phytochemical compounds or on the capacity of the extracts to scavenge free radicals was negligible in comparison to that of the solvent. There are many antioxidant compounds in mango peel and seed, and they could be used as a natural and very inexpensive alternative to synthetic food additives. However, the conditions in which the antioxidants are extracted must be optimized. This work proves that conditions such as extraction solvent or temperature have a crucial impact on obtaining extracts rich in antioxidants from mango biowastes. © 2011 Institute of Food Technologists®
NASA Astrophysics Data System (ADS)
Nguyen, Hoang Chinh; Thi, Dinh Huynh Mong; Pham, Dinh Chuong
2018-04-01
Polysaccharides from fruiting body of Cordyceps militaris (L.) Link possess various pharmaceutical activities. In this study, polysaccharides from the fruiting body of C. militaris were extracted with different solvents. Of those solvents tested, distilled water was identified as the most efficient solvent for the extraction, resulting in a significant increase in polysaccharides yield. Response surface methodology was then used to optimize the extraction conditions and establish a reliable mathematical model for prediction. A maximum polysaccharides yield of 11.07% was reached at a ratio of water to raw material of 23.2:1 mL/g, an extraction time of 76 min, and a temperature of 93.6°C. This study indicates that the obtained optimal extraction conditions are an efficient method for extraction of polysaccharides from the fruiting body of C. militaris.
Fortunati, E; Puglia, D; Luzi, F; Santulli, C; Kenny, J M; Torre, L
2013-09-12
PVA bio-nanocomposites reinforced with cellulose nanocrystals (CNC) extracted from commercial microcrystalline cellulose (MCC) and from two types of natural fibres, Phormium tenax and Flax of the Belinka variety, were produced by solvent casting in water. Morphological, thermal, mechanical and transparency properties were studied while the respective efficiency of the extraction process of CNC from the three sources was evaluated. The effect of CNC types and content on PVA properties and water absorption capacity were also evaluated. Natural fibres offered higher levels of extraction efficiency when compared with MCC hydrolysis yield. Thermal analysis proved that CNC promotes the crystallization of the PVA matrix, while improving its plastic response. It was also clarified that all PVA/CNC systems remain transparent due to CNC dispersion at the nanoscale, while being all saturated after the first 18-24h of water absorption. Copyright © 2013 Elsevier Ltd. All rights reserved.
Hidalgo, Pamela; Ciudad, Gustavo; Navia, Rodrigo
2016-02-01
Non-polar and polar solvents as well as their mixtures were tested for the extraction of microalgae lipids and thus, to evaluate their effect on total and esterifiable lipids extraction yields with potential to be converted to biodiesel. The obtained results show an increase in lipids and esterifiable lipids extraction yields when non-polar and polar solvent mixtures were used. The higher esterifiable lipids extraction yield was 19.2%wt (based on dry biomass) using a chloroform-methanol mixture (75%v/v of methanol), corresponding to a 98.9%wt esterifiable lipids extraction. In addition, esterifiable lipids extraction yield of 18.9%wt (based on dry biomass) was obtained when a petroleum ether-methanol mixture (75%v/v of methanol) was used, corresponding to a 96.9%wt esterifiable lipids extraction. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fluoro-alcohol phase modifiers and process for cesium solvent extraction
Bonnesen, Peter V.; Moyer, Bruce A.; Sachleben, Richard A.
2003-05-20
The invention relates to a class of phenoxy fluoro-alcohols, their preparation, and their use as phase modifiers and solvating agents in a solvent composition for the extraction of cesium from alkaline solutions. These phenoxy fluoro-alcohols comply with the formula: ##STR1## in which n=2 to 4; X represents a hydrogen or a fluorine atom, and R.sup.2 -R.sup.6 are hydrogen or alkyl substituents. These phenoxy fluoro-alcohol phase modifiers are a necessary component to a robust solvent composition and process useful for the removal of radioactive cesium from alkaline nuclear waste streams. The fluoro-alcohols can also be used in solvents designed to extract other cesium from acidic or neutral solutions.
Das, Anup Kumar; Mandal, Vivekananda; Mandal, Subhash C
2013-01-01
Triterpenoids are a group of important phytocomponents from Ficus racemosa (syn. Ficus glomerata Roxb.) that are known to possess diverse pharmacological activities and which have prompted the development of various extraction techniques and strategies for its better utilisation. To develop an effective, rapid and ecofriendly microwave-assisted extraction (MAE) strategy to optimise the extraction of a potent bioactive triterpenoid compound, lupeol, from young leaves of Ficus racemosa using response surface methodology (RSM) for industrial scale-up. Initially a Plackett-Burman design matrix was applied to identify the most significant extraction variables amongst microwave power, irradiation time, particle size, solvent:sample ratio loading, varying solvent strength and pre-leaching time on lupeol extraction. Among the six variables tested, microwave power, irradiation time and solvent-sample/loading ratio were found to have a significant effect (P < 0.05) on lupeol extraction and were fitted to a Box-Behnken-design-generated quadratic polynomial equation to predict optimal extraction conditions as well as to locate operability regions with maximum yield. The optimal conditions were microwave power of 65.67% of 700 W, extraction time of 4.27 min and solvent-sample ratio loading of 21.33 mL/g. Confirmation trials under the optimal conditions gave an experimental yield (18.52 µg/g of dry leaves) close to the RSM predicted value of 18.71 µg/g. Under the optimal conditions the mathematical model was found to be well fitted with the experimental data. The MAE was found to be a more rapid, convenient and appropriate extraction method, with a higher yield and lower solvent consumption when compared with conventional extraction techniques. Copyright © 2012 John Wiley & Sons, Ltd.
Villar-Navarro, Mercedes; Martín-Valero, María Jesús; Fernández-Torres, Rut Maria; Callejón-Mochón, Manuel; Bello-López, Miguel Ángel
2017-02-15
An easy and environmental friendly method, based on the use of magnetic molecular imprinted polymers (mag-MIPs) is proposed for the simultaneous extraction of the 16 U.S. EPA polycyclic aromatic hydrocarbons (PAHs) priority pollutants. The mag-MIPs based extraction protocol is simple, more sensitive and low organic solvent consuming compared to official methods and also adequate for those PAHs more retained in the particulate matter. The new proposed extraction method followed by HPLC determination has been validated and applied to different types of water samples: tap water, river water, lake water and mineral water. Copyright © 2017 Elsevier B.V. All rights reserved.
Michielin, Eliane M Z; Salvador, Ana A; Riehl, Carlos A S; Smânia, Artur; Smânia, Elza F A; Ferreira, Sandra R S
2009-12-01
The present study describes the chemical composition and the antibacterial activity of extracts from Cordia verbenacea DC (Borraginaceae), a traditional medicinal plant that grows widely along the southeastern coast of Brazil. The extracts were obtained using different extraction techniques: high-pressure operations and low-pressure methods. The high-pressure technique was applied to obtain C. verbenacea extracts using pure CO(2) and CO(2) with co-solvent at pressures up to 30MPa and temperatures of 30, 40 and 50 degrees C. Organic solvents such as n-hexane, ethyl acetate, ethanol, acetone and dichloromethane were used to obtain extracts by low-pressure processes. The antibacterial activity of the extracts was also subjected to screening against four strains of bacteria using the agar dilution method. The extraction yields were up to 5.0% w/w and up to 8.6% w/w for supercritical fluid extraction with pure CO(2) and with ethyl acetate as co-solvent, respectively, while the low-pressure extraction indicates yields up to 24.0% w/w in the soxhlet extraction using water and aqueous mixture with 50% ethanol as solvents. The inhibitory activity of the extracts in gram-positive bacteria was significantly higher than in gram-negative. The quantification and the identification of the extracts recovered were accomplished using GC/MS analysis. The most important components identified in the extract were artemetin, beta-sitosterol, alpha-humulene and beta-caryophyllene, among others.
METHOD FOR DISSOLVING ZIRCONIUM-URANIUM COMPOSITIONS
Gens, T.A.
1961-07-18
A method is descrioed for treating a zirconium-- uranium composition to form a stable solution from which uranium and other values may be extracted by contacting the composition with at least a 4 molar aqueous solution of ammonium fluoride at a temperature of about 100 deg C, adding a peroxide, in incremental amounts, to the heated solution throughout the period of dissolution until all of the uranium is converted to soluble uranyl salt, adding nitric acid to the resultant solution to form a solvent extraction feed solution to convert the uranyl salt to a solvent extractable state, and thereafter recovering the uranium and other desired values from the feed solution by solvent extraction.
Kamada, T
The extraction behaviour of arsenic(III) and arsenic(V) with ammonium pyrrolidinedithiocarbamate, sodium diethyldithiocarbamate and dithizone in organic solvents has been investigated by means of nameless atomic-absorption spectrophotometry with a carbon-tube atomizer. The selective extraction of arsenic(III) and differential determination of arsenic(III) and arsenic(V) have been developed. With ammonium pyrrolidinedithiocarbamate and methyl isobutyl ketone or nitrobenzene, when the aqueous phase/solvent volume ratio is 5 and the injection volume in the carbon tube is 20 mul, the sensitivities for 1% absorption are 0.4 and 0.5 part per milliard of arsenic, respectively. The relative standard deviations are ca. 3%. Interference by many metal ions can be prevented by masking with EDTA. The proposed methods are applied satisfactorily for determination of As(III) and As(V) in various types of water.
Behera, Padma Charan; Ghosh, Manik
2018-01-01
Introduction: Aerva lanata (Linn) of family Amaranthaceae is an important and commonly used plant for its medicinal and pharmacological properties and proving the traditional uses of flowers of A. lanata Linn. Objective: All extracts of A. lanata were further evaluated for antioxidant, antimicrobial, and antiurolithiatic potential to scientifically prove the traditional uses. Materials and Methods: In the present investigation, different solvent extracts of flowers were obtained using a Soxhlet extractor. Microorganisms were obtained from IMTECH, Chandigarh. Antiurolithiatic study was carried out in Albino Research and Training Centre, Hyderabad. Results: Regardless of the antioxidant studied, the methanolic extract presented the highest antioxidant activity and the aqueous extracts offered the lowest, following the order: methanolic extract > ethyl acetate > chloroform > aqueous. The results of this antimicrobial study indicate that methanolic extract of A. lanata could be used as antimicrobial agents. Overall, the methanolic flower extract of A. lanata (Linn) was significantly more promising as antiurolithiatic spectrum. This result also suggested the potential usefulness of the methanolic extract as an antiurolithiatic agent. Conclusion: Henceforward, this research can be acknowledged as a prime new report that focuses on the application of A. lanata (Linn) as an antioxidant, antimicrobial, and antiurolithiatic agent. SUMMARY Overall, methanolic flower extract of Aerva lanata Linn showed promising antioxidant activityAdditionally, methanolic flower extract of A. lanata Linn exhibited remarkable antimicrobial and antiurolithiatic potential. Abbreviations used: IMTECH Chandigarh: Institute of Microbial Technology, Chandigarh; IMMT: Institute of Mineral and Material Technology; CSIR: Council of Scientific & Industrial Research; DPPH: 1,1-diphenyl-2-picrylhydrazyl; MTCC: Microbial Type Culture Collection; BHT: Butylated Hydroxyl Toluene. PMID:29576701
Evaluation of Chemical Warfare Agent Wipe Sampling ...
Report This investigation tested specific (CWAs), including sarin (GB), soman (GD), cyclosarin (GF), sulfur mustard (HD), and O-ethyl-S-(2-diisopropylaminoethyl) methylphosphonothioate (VX) on the non-ideal (e.g., porous and permeable) surfaces of drywall, vinyl tile, wood, laminate, and coated glass. Pesticides (diazinon and malathion) were used so that a comparison is possible with existing literature data (1). Experiments included testing with coupons having surface areas of 10 cm2 and 100 cm2. The 10-cm2 coupons were of a size that could easily be extracted in a 2 oz jar (to provide comparative data for CWA recoveries generated by direct extraction) and the 100-cm2 coupons better represented the area of a surface that might typically be sampled by wipe extraction. In addition, CWA, at a normalized surface concentration of 0.1 µg per cm2 surface area, were spiked on coupons of the tested surfaces. Wipes were wetted with either dichloromethane (DCM) or isopropanol (IPA) before sampling for CWA. Experimental parameters include multiple wipe types, porous/permeable surfaces, coupon surface area, solvent used to wet the wipe (i.e., wetting solvent), and the utility of VX-d14 as an extracted internal standard.
NASA Astrophysics Data System (ADS)
Fırat, Merve; Bakırdere, Sezgin; Fındıkoğlu, Maral Selin; Kafa, Emine Betül; Yazıcı, Elif; Yolcu, Melda; Büyükpınar, Çağdaş; Chormey, Dotse Selali; Sel, Sabriye; Turak, Fatma
2017-03-01
This study was performed to develop a sensitive analytical method for the determination of cadmium by slotted quartz tube-flame atomic absorption spectrometry (SQT-FAAS) after dispersive liquid-liquid microextraction (DLLME). The parameters affecting the cadmium complex formation and its extraction output were optimized to obtain high extraction efficiency. These included the pH and amount of the buffer solution, and the concentration of the ligand. The DLLME method was comprehensively optimized based on the type and amount of extraction solvent, dispersive solvent and salt. The type and period of mixing needed for a more effective extraction was also investigated. In order to further improve the sensitivity for the determination of cadmium, the flame atomic absorption spectrometry was fitted with a slotted quartz tube to increase the residence time of cadmium atoms in the pathway of incident light from a hollow cathode lamp. The limits of detection and quantitation (LOD and LOQ) for the FAAS were found to be 42 and 140 μg L- 1, respectively. Under the optimum conditions, LOD and LOQ of the FAAS after DLLME were calculated as 1.3 and 4.4 μg L- 1, respectively. Combining both optimized parameters of the DLLME and SQT-FAAS gave 0.5 and 1.5 μg L- 1 as LOD and LOQ, respectively. Accuracy of the method was also checked using a wastewater certified reference material (EU-L-2), and the result was in good agreement with the certified value.
Yara-Varón, Edinson; Li, Ying; Balcells, Mercè; Canela-Garayoa, Ramon; Fabiano-Tixier, Anne-Sylvie; Chemat, Farid
2017-09-05
Since solvents of petroleum origin are now strictly regulated worldwide, there is a growing demand for using greener, bio-based and renewable solvents for extraction, purification and formulation of natural and food products. The ideal alternative solvents are non-volatile organic compounds (VOCs) that have high dissolving power and flash point, together with low toxicity and less environmental impact. They should be obtained from renewable resources at a reasonable price and be easy to recycle. Based on the principles of Green Chemistry and Green Engineering, vegetable oils could become an ideal alternative solvent to extract compounds for purification, enrichment, or even pollution remediation. This review presents an overview of vegetable oils as solvents enriched with various bioactive compounds from natural resources, as well as the relationship between dissolving power of non-polar and polar bioactive components with the function of fatty acids and/or lipid classes in vegetable oils, and other minor components. A focus on simulation of solvent-solute interactions and a discussion of polar paradox theory propose a mechanism explaining the phenomena of dissolving polar and non-polar bioactive components in vegetable oils as green solvents with variable polarity.
Fundamental Chemical Kinetic And Thermodynamic Data For Purex Process Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, R.J.; Fox, O.D.; Sarsfield, M.J.
2007-07-01
To support either the continued operations of current reprocessing plants or the development of future fuel processing using hydrometallurgical processes, such as Advanced Purex or UREX type flowsheets, the accurate simulation of Purex solvent extraction is required. In recent years we have developed advanced process modeling capabilities that utilize modern software platforms such as Aspen Custom Modeler and can be run in steady state and dynamic simulations. However, such advanced models of the Purex process require a wide range of fundamental data including all relevant basic chemical kinetic and thermodynamic data for the major species present in the process. Thismore » paper will summarize some of these recent process chemistry studies that underpin our simulation, design and testing of Purex solvent extraction flowsheets. Whilst much kinetic data for actinide redox reactions in nitric acid exists in the literature, the data on reactions in the diluted TBP solvent phase is much rarer. This inhibits the accurate modelization of the Purex process particularly when species show a significant extractability in to the solvent phase or when cycling between solvent and aqueous phases occurs, for example in the reductive stripping of Pu(IV) by ferrous sulfamate in the Magnox reprocessing plant. To support current oxide reprocessing, we have investigated a range of solvent phase reactions: - U(IV)+HNO{sub 3}; - U(IV)+HNO{sub 2}; - U(IV)+HNO{sub 3} (Pu catalysis); - U(IV)+HNO{sub 3} (Tc catalysis); - U(IV)+ Np(VI); - U(IV)+Np(V); - Np(IV)+HNO{sub 3}; - Np(V)+Np(V); Rate equations have been determined for all these reactions and kinetic rate constants and activation energies are now available. Specific features of these reactions in the TBP phase include the roles of water and hydrolyzed intermediates in the reaction mechanisms. In reactions involving Np(V), cation-cation complex formation, which is much more favourable in TBP than in HNO{sub 3}, also occurs and complicates the redox chemistry. Whilst some features of the redox chemistry in TBP appear similar to the corresponding reactions in aqueous HNO{sub 3}, there are notable differences in rates, the forms of the rate equations and mechanisms. Secondly, to underpin the development of advanced single cycle flowsheets using the complexant aceto-hydroxamic acid, we have also characterised in some detail its redox chemistry and solvent extraction behaviour with both Np and Pu ions. We find that simple hydroxamic acids are remarkably rapid reducing agents for Np(VI). They also reduce Pu(VI) and cause a much slower reduction of Pu(IV) through a complex mechanism involving acid hydrolysis of the ligand. AHA is a strong hydrophilic and selective complexant for the tetravalent actinide ions as evidenced by stability constant and solvent extraction data for An(IV), M(III) and U(VI) ions. This has allowed the successful design of U/Pu+Np separation flowsheets suitable for advanced fuel cycles. (authors)« less
NASA Astrophysics Data System (ADS)
Saputro, Aldhi; Mizan, Adlan; Sofyan, Nofrijon; Yuwono, Akhmad Herman
2017-03-01
In the current investigation, the natural dye extracted from red-apple (Malus domestica) skin was used as natural sensitizer for dye sensitized solar cell (DSSC) application. The present study was specifically aimed at observing the effect of different solvents, i.e. deionized water, ethanol, and acidified ethanol, on the performance of the natural dye and thus the DSSC. For synthesis purposes, red-apple skin was peeled off, dried, crushed and furthermore extracted with ratio red-apple skin powder to solvent 1:20 w/v for 2 hours at 50°C under mechanical stirring. Subsequently, the resulting natural dyes with different solvents were examined by Fourier transform infrared (FTIR) to analyze their functional groups, UV-Vis spectroscopy to observe their absorption spectra for a wide range of wavelength, while TiO2 nanoparticle used as the semiconductor oxide layer in the device was characterized by field emission scanning electron microscope (FESEM). The FTIR results showed that the red-apple skin has anthocyanin group which functions as the sensitizer agent for photon energy absorption from the sunlight. The UV-Vis spectroscopy results showed that ethanol solvent has higher absorption of sunlight wavelength as compared to those of deionized water and acidified ethanol solvents. The performance test of the fabricated DSSC showed the prototype made of the red apple skin dye extracted by ethanol solvent can provide the highest open circuit voltage (Voc) up to 324 mV and efficiency around 0.046%. On the basis of investigation, it has been found that ethanol was the best solvent to extract anthocyanin from the red-apple skin.
U-EXTRACTION--IMPROVEMENTS IN ELIMINATION OF Mo BY USE OF FERRIC ION
Clark, H.M.; Duffey, D.
1958-06-10
An improved solvent extraction process is described whereby U may be extracted by a water immiscible organic solvent from an aqueous solution of uranyl nitrate. It has been found that Mo in the presence of phosphate ions appears to form a complex with the phosphate which extracts along with the U. This extraction of Mo may be suppressed by providing ferric ion in the solution prior to the extraction step. The ferric ion is preferably provided in the form of ferric nitrate.
Kholiya, Faisal; Bhatt, Nidhi; Rathod, Meena R; Meena, Ramavatar; Prasad, Kamalesh
2015-07-14
Several deep eutectic solvents prepared by the complexation of choline chloride as the hydrogen bond acceptor and hydrogen bond donors such as urea, thiourea, ethylene glycol, and glycerol were employed to partition glaucarubinone, an antimalarial compound present in roots of the plant, Simarouba glauca. Among all the solvents, the deep eutectic solvent consisting of the mixture of choline chloride and urea the most suitable to partition the antimalarial compound from the extract selectively. Analytical tools such as high-performance liquid chromatography and electrospray ionization mass spectrometry were used for characterizations, and glaucarubinone extracted from the roots of the plant by conventional solvent extraction method was used as a reference for comparison. The hydrogen and noncovalent bonds formed between glaucarubinone and the deep eutectic solvents could be responsible for the selective partition of the drug molecule. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of HEH[EHP] impurities on the ALSEP solvent extraction process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holfeltz, Vanessa E.; Campbell, Emily L.; Peterman, Dean R.
In solvent extraction processes, organic phase impurities can negatively impact separation factors, hydrolytic performance, and overall system robustness. This affects the process-level viability of a separation concept and necessitates knowledge of the behavior and mechanisms to control impurities in the solvent. The most widespread way through which impurities are introduced into a system is through impure extractants and/or diluents used to prepare the solvent, and often development of new purification schemes to achieve the desired level of purity is needed. In this work, the acidic extractant, 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP])—proposed for application in extractive processes aimed at separating trivalentmore » minor actinides from lanthanides and other fission products—is characterized with respect to its common impurities and their impact on Am(III) stripping in the Actinide Lanthanide SEParation (ALSEP) system. To control impurities in HEH[EHP], existing purification technologies commonly applied for the acidic organophosphorus reagents are reviewed, and a new method specific to HEH[EHP] purification is presented.« less
Supercritical-Fluid Extraction of Oil From Tar Sands
NASA Technical Reports Server (NTRS)
Compton, L. E.
1982-01-01
New supercritical solvent mixtures have been laboratory-tested for extraction of oil from tar sands. Mixture is circulated through sand at high pressure and at a temperature above critical point, dissolving organic matter into the compressed gas. Extract is recovered from sand residues. Low-temperature super-critical solvents reduce energy consumption and waste-disposal problems.
González-Cruz, Leopoldo; Montañez-Soto, José Luis; Conde-Barajas, Eloy; Negrete-Rodríguez, María de la Luz Xochilt; Flores-Morales, Areli; Bernardino-Nicanor, Aurea
2018-02-01
The modification of the starches extracted from rice beans both with and without hydrothermal treatment was evaluated via scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and Fourier transform infrared (FT-IR) and Raman spectroscopy. SEM indicated that the starch granules of rice beans exhibit wide variation in granule shape, showing the greatest size and modification of the surface when extracted with ethanol. It was found that the extraction solvent had no significant effect on the onset (T o ) and peak (T p ) temperatures of the starch, whereas hydrothermal treatment of rice beans decreased the T o , T p and ΔH of the starch. The modification of FT-IR spectra showed that hydrothermal treatment of rice beans and the solvent used in the extraction of starch affected starch crystallinity, mainly when ethanol was used. Raman spectroscopy revealed that the smaller changes in the starch bonds were due to the solvent used for starch extraction but that hydrothermal treatment disturbed all bonds in the starch. Copyright © 2017 Elsevier B.V. All rights reserved.
Dai, Liping; Cheng, Jing; Matsadiq, Guzalnur; Liu, Lu; Li, Jun-Kai
2010-08-03
In the proposed method, an extraction solvent with a lower toxicity and density than the solvents typically used in dispersive liquid-liquid microextraction was used to extract seven polychlorinated biphenyls (PCBs) from aqueous samples. Due to the density and melting point of the extraction solvent, the extract which forms a layer on top of aqueous sample can be collected by solidifying it at low temperatures, which form a layer on top of the aqueous sample. Furthermore, the solidified phase can be easily removed from the aqueous phase. Based on preliminary studies, 1-undecanol was selected as the extraction solvent, and a series of parameters that affect the extraction efficiency were systematically investigated. Under the optimized conditions, enrichment factors for PCBs ranged between 494 and 606. Based on a signal-to-noise ratio of 3, the limit of detection for the method ranged between 3.3 and 5.4 ng L(-1). Good linearity, reproducibility and recovery were also obtained. 2010 Elsevier B.V. All rights reserved.
Schenck, Frank J; Callery, Patrick; Gannett, Peter M; Daft, Jonathan R; Lehotay, Steven J
2002-01-01
Water-miscible solvents, such as acetone and acetonitrile, effectively extract both polar and nonpolar pesticide residues from nonfatty foods. The addition of sodium chloride to the resulting acetonitrile-water or acetone-water extract (salting out) results in the separation of the water from the organic solvent. However, the organic solvent layer (pesticide extract) still contains some residual water, which can adversely affect separation procedures that follow, such as solid-phase extraction and/or gas chromatography. Drying agents, such as sodium sulfate or magnesium sulfate, are used to remove the water from the organic extracts. In the present study, we used nuclear magnetic resonance spectroscopy to study the composition of the phases resulting from salting out and to compare the effectiveness of sodium sulfate and magnesium sulfate as drying agents. The study showed that considerable amounts of water remained in the organic phase after phase separation. Sodium sulfate was a relatively ineffective drying agent, removing little or no residual water from the organic solvent. Magnesium sulfate proved to be a much more effective drying agent.
Deterred drug abuse using superabsorbent polymers.
Mastropietro, David J; Muppalaneni, Srinath; Omidian, Hossein
2016-11-01
This study aimed to determine whether selected superabsorbent polymers (SAPs) could be used as a suitable alternative to thwart extraction, filtration, and syringeability attempts for abuse. Many abuse-deterrent formulations (ADFs) rely on high molecular weight polymers such as poly(ethylene oxide) to provide crush and extraction resistance. However, these polymers suffer from slow dissolution kinetics, and are susceptible to a variety of abuse conditions. Several commercially available SAPs were evaluated for swelling behavior in extraction solvents, and tableting properties. Post-compaction abuse properties were evaluated by recoverable volume and syringeability after solvent extraction. Drug release and percent drug extraction were conducted using tramadol HCl as a model drug. Certain SAPs had the ability to rapidly imbibe solvent and effectively stop extraction processes in a variety of solvents, including water and water/alcohol mixtures. Tablets containing SAP and drug showed no effect on drug release in vitro. SAPs possess adequate properties for tableting, and maintain their high and fast swelling properties after compaction. The fast and extensive interactions of SAPs with aqueous medium are a major advantage over non-crosslinked high molecular weight viscosifying agents such as poly(ethylene oxide).
Extractables analysis of single-use flexible plastic biocontainers.
Marghitoiu, Liliana; Liu, Jian; Lee, Hans; Perez, Lourdes; Fujimori, Kiyoshi; Ronk, Michael; Hammond, Matthew R; Nunn, Heather; Lower, Asher; Rogers, Gary; Nashed-Samuel, Yasser
2015-01-01
Studies of the extractable profiles of bioprocessing components have become an integral part of drug development efforts to minimize possible compromise in process performance, decrease in drug product quality, and potential safety risk to patients due to the possibility of small molecules leaching out from the components. In this study, an effective extraction solvent system was developed to evaluate the organic extractable profiles of single-use bioprocess equipment, which has been gaining increasing popularity in the biopharmaceutical industry because of the many advantages over the traditional stainless steel-based bioreactors and other fluid mixing and storage vessels. The chosen extraction conditions were intended to represent aggressive conditions relative to the application of single-use bags in biopharmaceutical manufacture, in which aqueous based systems are largely utilized. Those extraction conditions, along with a non-targeted analytical strategy, allowed for the generation and identification of an array of extractable compounds; a total of 53 organic compounds were identified from four types of commercially available single-use bags, the majority of which are degradation products of polymer additives. The success of this overall extractables analysis strategy was reflected partially by the effectiveness in the extraction and identification of a compound that was later found to be highly detrimental to mammalian cell growth. The usage of single-use bioreactors has been increasing in biopharmaceutical industry because of the appealing advantages that it promises regarding to the cleaning, sterilization, operational flexibility, and so on, during manufacturing of biologics. However, compared to its conventional counterparts based mainly on stainless steel, single-use bioreactors are more susceptible to potential problems associated with compound leaching into the bioprocessing fluid. As a result, extractable profiling of the single-use system has become essential in the qualification of such systems for its use in drug manufacturing. The aim of this study is to evaluate the effectiveness of an extraction solvent system developed to study the extraction profile of single-use bioreactors in which aqueous-based systems are largely used. The results showed that with a non-targeted analytical approach, the extraction solvent allowed the generation and identification of an array of extractable compounds from four commercially available single-use bioreactors. Most of extractables are degradation products of polymer additives, among which was a compound that was later found to be highly detrimental to mammalian cell growth. © PDA, Inc. 2015.
Leitão, Gilda Guimarães; Pinto, Shaft Correa; de Oliveira, Danilo Ribeiro; Timoteo, Patrícia; Guimarães, Michelle Guedes; Cordova, Wilmer H Perera; Leitão, Suzana Guimarães
2015-11-01
Verbascoside is a phenylethanoid glycoside widely distributed in nature, especially among the order Lamiales, occurring in numerous plants that are constituents of folk medicine preparations. This natural compound, previously isolated by our group from the ethyl acetate extract of Lantana trifolia using the gradient approach in countercurrent chromatography, was now isolated from the butanol extract of the same plant and from Lippia alba f. intermedia (Verbenaceae) using countercurrent chromatography in either gradient or isocratic elution modes. The ethyl acetate extract of L. alba, rich in phenylethanoids and flavonoids, was fractionated using countercurrent chromatography in the step-gradient elution approach. The four-step solvent system was composed of n-hexane-ethyl acetate-n-butanol-water (4 : 10 : X : 10), where X = 1 (solvent system A), 3 (solvent system B), 5 (solvent system C), and 7 (solvent system D), and allowed for the isolation of verbascoside along with other phenylethanoids and flavonoids from both plants. Verbascoside and 2'-O-β-apiosylverbascoside were further isolated from the n-butanol extract of L. trifolia using the solvent system ethyl acetate-n-butanol-water 10 : 2 : 10 on an isocratic run. The difference in the complexity of the two plant extracts demanded different purification steps, which included a second high-speed countercurrent chromatography purification using the isocratic elution mode. Georg Thieme Verlag KG Stuttgart · New York.
Homem, Vera; Alves, Alice; Alves, Arminda; Santos, Lúcia
2016-01-01
A rapid and simple method for the simultaneous determination of twelve synthetic musks in water samples, using ultrasound-assisted dispersive liquid-liquid microextraction (UA-DLLME) coupled with gas chromatography-mass spectrometry (GC-MS) was successfully developed. The influence of seven factors (volume of the extraction solvent and disperser solvent, sample volume, extraction time, ionic strength, type of extraction and disperser solvent) affecting the UA-DLLME extraction efficiency was investigated using a screening design. The significant factors were selected and optimised employing a central composite design: 80 μL of chloroform, 880 μL of acetonitrile, 6 mL of sample volume, 3.5% (wt) of NaCl and 2 min of extraction time. Under the optimised conditions, this methodology was successfully validated for the analysis of 12 synthetic musk compounds in different aqueous samples (tap, sea and river water, effluent and influent wastewater). The proposed method showed enrichment factors between 101 and 115 depending on the analyte, limits of detection in the range of 0.004-54 ng L(-1) and good repeatability (most relative standard deviation values below 10%). No significant matrix effects were found, since recoveries ranged between 71% and 118%. Finally, the method was satisfactorily applied to the analysis of five different aqueous samples. Results demonstrated the existence of a larger amount of synthetic musks in wastewaters than in other water samples (average concentrations of 2800 ng L(-1) in influent and 850 ng L(-1) in effluent). Galaxolide, tonalide and exaltolide were the compounds most detected. Copyright © 2015 Elsevier B.V. All rights reserved.
Wajs-Bonikowska, Anna; Stobiecka, Agnieszka; Bonikowski, Radosław; Krajewska, Agnieszka; Sikora, Magdalena; Kula, Józef
2017-08-01
Large quantities of blackberry seeds are produced as a pomace during the processing of juice and jam production; this by-product is a very interesting raw material both for oil manufacturing and as a source of bioactive compounds. In this work the composition, yield and antioxidant activity of three types of Rubus fructicosus pomace extracts isolated by liquid extraction using solvents of different polarity, as well with supercritical CO 2 fluid extraction have been compared. The highest extract yield was reported for Soxhlet extraction using ethanol as a solvent (14.2%). Supercritical carbon dioxide and hexane extracts were characterised by the highest content of phytosterols (1445 and 1583 mg 100 g -1 of extract, respectively) among which β-sitosterol was the main one, while the concentration of tocopherols, with predominant γ-isomer, was the highest for both hexane and ethanol extracts, being 2364 and 2334 mg 100 g -1 , respectively. Using a GC-MS method 95 volatiles, in which non-saturated aldehydes were predominant, were identified in the essential oil of seed pomace and in the volatile oil isolated from supercritical extract. The ethanolic extract which is characterised by the highest phenolic content (9443 mg GAE 100 g -1 ) exhibited the highest antioxidant activity (according to the ABTS •+ and DPPH • assays). All pomace extracts examined were of high quality, rich in essential omega fatty acids and with a very high content of bioactive compounds, such as phytosterols and tocopherols. The high nutritional value of extracts from berry seed pomace could justify the commercialisation of specific extracts not only as food additives but also as cosmetic components. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Fardhyanti, Dewi Selvia; Prasetiawan, Haniif; Hermawan, Sari, Lelita Sakina
2017-03-01
Liquid waste in textile industry contains large amounts of dyes and chemicals which are capable of harming the environment and human health. It is due to liquid waste characteristics which have high BOD, COD, temperature, dissolved and suspended solid. One of chemical compound which might be harmful for environment when disposed in high concentration is phenol. Currently, Phenol compound in textile industrial waste has reached 10 ppm meanwhile maximum allowable phenol concentration is not more than 0.2 ppm. Otherwise, Phenol also has economic value as feedstock of plastic, pharmaceutical and cosmetic industry. Furthermore, suitable method to separate phenol from waste water is needed. In this research, liquid - liquid extraction method was used with extraction time for 70 minutes. Waste water sample was then separated into two layers which are extract and raffinate. Thereafter, extract and raffinate were then tested by using UV-Vis Spectrophotometer to obtained liquid - liquid equilibrium data. Aim of this research is to study the effect of temperature, stirring speed and type of solvent to obtain distribution coefficient (Kd), phenol yield and correlation of Three-Suffix Margules model for the liquid - liquid extraction data equilibrium. The highest extraction yield at 80.43 % was found by using 70% methanol as solvent at extraction temperature 50 °C with stirring speed 300 rpm, coefficient distribution was found 216.334. From this research it can be concluded that Three-Suffix Margules Model is suitable to predict liquid - liquid equilibrium data for phenol system.
Code of Federal Regulations, 2014 CFR
2014-01-01
... dissolution, solvent extraction, and process liquor storage. There may also be equipment for thermal denitration of uranium nitrate, conversion of plutonium nitrate to oxide metal, and treatment of fission product waste liquor to a form suitable for long term storage or disposal. However, the specific type and...
Code of Federal Regulations, 2013 CFR
2013-01-01
... dissolution, solvent extraction, and process liquor storage. There may also be equipment for thermal denitration of uranium nitrate, conversion of plutonium nitrate to oxide metal, and treatment of fission product waste liquor to a form suitable for long term storage or disposal. However, the specific type and...
Code of Federal Regulations, 2012 CFR
2012-01-01
... dissolution, solvent extraction, and process liquor storage. There may also be equipment for thermal denitration of uranium nitrate, conversion of plutonium nitrate to oxide metal, and treatment of fission product waste liquor to a form suitable for long term storage or disposal. However, the specific type and...
Majedi, Seyed Mohammad; Lee, Hian Kee
2017-02-24
Short-chain aliphatic amines are ubiquitous in the atmospheric environment. They play an important role in the formation and growth of atmospheric particles. As such, there is a pressing need to monitor these particle-bound compounds present at trace quantities. The present work describes an efficient, one-step microextraction technique for the preconcentration and detection of trace levels of 10 aliphatic amines on fine particles (particulate matter of 2.5μm or less (PM 2.5 )) in the atmosphere. After extraction of amines from particles in acidified water samples, carbon-based sorbents (in dispersive solid-phase extraction mode), and vortex agitation were utilized for simultaneous derivatization-extraction and dispersive liquid-liquid microextraction. The approach significantly increased the recoveries and enrichment of the amine derivatives. This one-step, combined technique is proposed for the first time. Several influential factors including type and concentration of derivatization reagent (for gas chromatographic separation), type of buffer, sample pH, types and volumes of extraction and disperser solvents, type and amount of sorbent, vortex time and temperature, desorption solvent type and volume, and salt content were investigated and optimized. Under the optimum conditions, high enrichment factors (in the range of between 307 and 382) and good reproducibility (relative standard deviations, below 7.0%, n=5) were achieved. The linearity ranged from 0.1μg/L-100μg/L, and from 0.5μg/L-100μg/L, depending on the analytes. The limits of detection were between 0.02μg/L (corresponding to ∼0.01ng/m 3 in air) and 0.09μg/L (corresponding to ∼0.04ng/m 3 in air). The developed method was successfully applied to the analysis of PM 2.5 samples collected by air sampling through polytetrafluoroethylene filters. The concentration levels of amines ranged from 1.04 to 4.16ng/m 3 in the air sampled. Copyright © 2016 Elsevier B.V. All rights reserved.
[Extraction of lambda-cyhalothrin from aqueous dioxan solutions].
Shormanov, V K; Chigareva, E N; Belousova, O V
2011-01-01
The results of extraction of lambda-cigalotrin from dioxan aqueous solutions by hydrophobic organic solvents are presented. It is shown that the degree of extraction depends on the nature of the extractant, the water to dioxan ratio, and saturation of the water-dioxan layer with the electrolyte. The highest efficiency of lambda-cigalotrin extraction was achieved using chlorophorm as a solvent under desalination conditions. The extraction factor was calculated necessary to obtain the desired amount of lambda-cigalotrin from the water-dioxan solution (4:1) with the help of the extractants being used.
Extraction of metals using supercritical fluid and chelate forming legand
Wai, Chien M.; Laintz, Kenneth E.
1998-01-01
A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.
Extraction of metals using supercritical fluid and chelate forming ligand
Wai, C.M.; Laintz, K.E.
1998-03-24
A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated {beta}-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated {beta}-diketone and a trialkyl phosphate, or a fluorinated {beta}-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated {beta}-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process. 7 figs.
Solvent Extraction Separation of Trivalent Americium from Curium and the Lanthanides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Mark P.; Chiarizia, Renato; Ulicki, Joseph S.
2015-02-27
The sterically constrained, macrocyclic, aqueous soluble ligand N,N'-bis[(6-carboxy-2-pyridyl)methyl]-1,10-diaza-18-crown-6 (H2BP18C6) was investigated for separating americium from curium and all the lanthanides by solvent extraction. Pairing H2BP18C6, which favors complexation of larger f-element cations, with acidic organophosphorus extractants that favor extraction of smaller f-element cations, such as bis-(2-ethylhexyl)phosphoric acid (HDEHP) or (2-ethylhexyl)phosphonic acid mono(2-ethylhexyl) ester (HEH[EHP]), created solvent extraction systems with good Cm/Am selectivity, excellent trans-lanthanide selectivity (Kex,Lu/Kex,La = 108), but poor selectivity for Am against the lightest lanthanides. However, using an organic phase containing both a neutral extractant, N,N,N’,N’-tetra(2-ethylhexyl)diglycolamide (TEHDGA), and HEH[EHP] enabled rejection of the lightest lanthanides during loading ofmore » the organic phase from aqueous nitric acid, eliminating their interference in the americium stripping stages. In addition, although it is a macrocyclic ligand, H2BP18C6 does not significantly impede the mass transfer kinetics of the HDEHP solvent extraction system« less
Selective Extraction of Flavonoids from Sophora flavescens Ait. by Mechanochemistry.
Zhang, Qihong; Yu, Jingbo; Wang, Yingyao; Su, Weike
2016-07-29
Flavonoids from Sophora flavescens were selectively extracted by mechanochemical-promoted extraction technology (MPET) after using response surface methodology to determine the optimal extraction parameters. The highest yield of 35.17 mg/g was achieved by grinding the roots with Na₂CO₃ (15%) at 440 rpm/min for 17.0 min and water was used as the sole solvent with a ratio of solvent to solid material of 25 mL/g. Flavonoids prepared by MPET demonstrated relatively higher antioxidant activities in subsequent DPPH and hydroxyl radical scavenging assays. Main constituents in the extracts, including kurarinol, kushenol I/N and kurarinone, were characterized by HPLC-MS/MS, indicating good selective extraction by MPET. Physicochemical property changes of powder during mechanochemical milling were identified by scanning electron microscopy, X-ray powder diffraction, and UV-Vis diffuse-reflectance spectroscopy. Compared with traditional extraction methods, MPET possesses notable advantages of higher selectivity, lower extraction temperature, shorter extraction time, and organic solvent free properties.
Makanjuola, Solomon A; Enujiugha, Victor N; Omoba, Olufunmilayo S; Sanni, David M
2015-11-01
Tea and ginger are plants with high antioxidant potential. Combinations of antioxidants from different sources could also produce synergistic antioxidant effects. This study investigated the influence of solvent on antioxidant content of tea, ginger, and tea + ginger blends. Under the investigated extraction conditions, water was the most effective extraction solvent to maximise peroxide scavenging and iron chelating activity of tea, ginger, and their blends. Aqueous ethanol was the most effective solvent to maximise ABTS radical scavenging activity and ethanol was the best solvent to maximise DPPH radical scavenging activity. A good multivariate regression model that explains the relationship between the total flavonoid content of the extracts and their antioxidant activities was obtained (R2 and Q2 of 0.93 and 0.83, respectively). Extracts of tea-ginger blends exhibited synergistic effects in their ABTS and DPPH radical scavenging activity.
Sharma, Anuj; Verma, Subash Chandra; Saxena, Nisha; Chadda, Neetu; Singh, Narendra Pratap; Sinha, Arun Kumar
2006-03-01
Microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE) and conventional extraction of vanillin and its quantification by HPLC in pods of Vanilla planifolia is described. A range of nonpolar to polar solvents were used for the extraction of vanillin employing MAE, UAE and conventional methods. Various extraction parameters such as nature of the solvent, solvent volume, time of irradiation, microwave and ultrasound energy inputs were optimized. HPLC was performed on RP ODS column (4.6 mm ID x 250 mm, 5 microm, Waters), a photodiode array detector (Waters 2996) using gradient solvent system of ACN and ortho-phosphoric acid in water (0.001:99.999 v/v) at 25 degrees C. Regression equation revealed a linear relationship (r2 > 0.9998) between the mass of vanillin injected and the peak areas. The detection limit (S/N = 3) and limit of quantification (S/N = 10) were 0.65 and 1.2 microg/g, respectively. Recovery was achieved in the range 98.5-99.6% for vanillin. Maximum yield of vanilla extract (29.81, 29.068 and 14.31% by conventional extraction, MAE and UAE, respectively) was found in a mixture of ethanol/water (40:60 v/v). Dehydrated ethanolic extract showed the highest amount of vanillin (1.8, 1.25 and 0.99% by MAE, conventional extraction and UAE, respectively).
Pagano, Imma; Sánchez-Camargo, Andrea Del Pilar; Mendiola, Jose Antonio; Campone, Luca; Cifuentes, Alejandro; Rastrelli, Luca; Ibañez, Elena
2018-01-31
During the essential oil steam distillation from aromatic herbs, huge amounts of distillation wastewaters (DWWs) are generated. These by-products represent an exceptionally rich source of phenolic compounds such as rosmarinic acid (RA) and caffeic acid (CA). Herein, the alternative use of dried basil DWWs (dDWWs) to perform a selective extraction of RA and CA by pressurized liquid extraction (PLE) employing bio-based solvent was studied. To select the most suitable solvent for PLE, the theoretical modelling of Hansen solubility parameters (HSP) was carried out. This approach allows reducing the list of candidate to two solvents: ethanol and ethyl lactate. Due to the composition of the sample, mixtures of water with those solvents were also tested. An enriched PLE extract in RA (23.90 ± 2.06 mg/g extract) with an extraction efficiency of 75.89 ± 16.03% employing a water-ethanol mixture 25:75 (% v/v) at 50°C was obtained. In the case of CA, a PLE extract with 2.42 ± 0.04 mg/g extract, having an extraction efficiency of 13.86 ± 4.96% using ethanol absolute at 50°C was achieved. DWWs are proposed as new promising sources of natural additives and/or functional ingredients for cosmetic, nutraceutical, and food applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Huang, Fangzhi; Berton, Paula; Lu, Chengfei; Siraj, Noureen; Wang, Chun; Magut, Paul K S; Warner, Isiah M
2014-09-01
A rapid liquid phase extraction employing a novel hydrophobic surfactant-based room temperature ionic liquid (RTIL), tetrabutylphosphonium dioctyl sulfosuccinate ([4C4 P][AOT]), coupled with capillary electrophoretic-UV (CE-UV) detection is developed for removal and determination of phenolic compounds. The long-carbon-chain RTIL used is sparingly soluble in most solvents and can be used to replace volatile organic solvents. This fact, in combination with functional-surfactant-anions, is proposed to reduce the interfacial energy of the two immiscible liquid phases, resulting in highly efficient extraction of analytes. Several parameters that influence the extraction efficiencies, such as extraction time, RTIL type, pH value, and ionic strength of aqueous solutions, were investigated. It was found that, under acidic conditions, most of the investigated phenols were extracted from aqueous solution into the RTIL phase within 12 min. Good linearity was observed over the concentration range of 0.1-80.0 μg/mL for all phenols investigated. The precision of this method, expressed as RSD, was determined to be within 3.4-5.3% range. The LODs (S/N = 3) of the method were in the range of 0.047-0.257 μg/mL. The proposed methodology was successfully applied to determination of phenols in real water samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lafrenière, Nelson M; Mudrik, Jared M; Ng, Alphonsus H C; Seale, Brendon; Spooner, Neil; Wheeler, Aaron R
2015-04-07
There is great interest in the development of integrated tools allowing for miniaturized sample processing, including solid phase extraction (SPE). We introduce a new format for microfluidic SPE relying on C18-functionalized magnetic beads that can be manipulated in droplets in a digital microfluidic platform. This format provides the opportunity to tune the amount (and potentially the type) of stationary phase on-the-fly, and allows the removal of beads after the extraction (to enable other operations in same device-space), maintaining device reconfigurability. Using the new method, we employed a design of experiments (DOE) operation to enable automated on-chip optimization of elution solvent composition for reversed phase SPE of a model system. Further, conditions were selected to enable on-chip fractionation of multiple analytes. Finally, the method was demonstrated to be useful for online cleanup of extracts from dried blood spot (DBS) samples. We anticipate this combination of features will prove useful for separating a wide range of analytes, from small molecules to peptides, from complex matrices.
Mishra, Shikha; Aeri, Vidhu
2016-07-01
Lyoniside is the major constituent of Saraca asoca Linn. (Caesalpiniaceae) bark. There is an immediate need to develop an efficient method to isolate its chemical constituents, since it is a therapeutically important plant. A rapid extraction method for lyoniside based on microwave-assisted extraction of S. asoca bark was developed and optimized using response surface methodology (RSM). Lyoniside was analyzed and quantified by high-performance liquid chromatography coupled with ultraviolet detection (HPLC-UV). The extraction solvent ratio (%), material solvent ratio (g/ml) and extraction time (min) were optimized using Box-Behnken design (BBD) to obtain the highest extraction efficiency. The optimal conditions were the use of 1:30 material solvent ratio with 70:30 mixture of methanol:water for 10 min duration. The optimized microwave-assisted extraction yielded 9.4 mg/g of lyoniside content in comparison to reflux extraction under identical conditions which yielded 4.2 mg/g of lyoniside content. Under optimum conditions, the experimental values agreed closely with the predicted values. The analysis of variance (ANOVA) indicated a high goodness-of-fit model and the success of the RSM method for optimizing lyoniside extraction from the bark of S. asoca. All the three variables significantly affected the lyoniside content. Increased polarity of solvent medium enhances the lyoniside yield. The present study shows the applicability of microwave-assisted extraction in extraction of lyoniside from S. asoca bark.
Extraction and identification of bioactive compounds from agarwood leaves
NASA Astrophysics Data System (ADS)
Lee, N. Y.; Yunus, M. A. C.; Idham, Z.; Ruslan, M. S. H.; Aziz, A. H. A.; Irwansyah, N.
2016-11-01
Agarwood commonly known as gaharu, aloeswood or eaglewood have been used as traditional medicine for centuries and its essential oil also being used as perfumery ingredients and aroma enhancers in food products. However, there is least study on the agarwood leaves though it contains large number of biomolecules component that show diverse pharmacological activity. Previous study showed that the extracted compounds from the leaves possess activities like anti-mutagenic, anti-tumor and anti-helminthic. The main objectives of this research were to determine bioactive compounds in agarwood leaves; leaves extract and oil yield obtained from maceration and soxhlet extraction methods respectively. The maceration process was performed at different operating temperature of 25°C, 50°C and 75°C and different retention time at 30, 60, 90 and 120 minutes. Meanwhile, various solvents were used to extract the oil from agarwood leaves using soxhlet method which are hexane, water, isopropanol and ethanol. The extracted oil from agarwood leaves by soxhlet extraction was analyzed using gas chromatography mass spectrometry. The results showed that the highest extract of 1.53% was obtained when increase the temperature to 75 °C and longest retention time of 120 minutes gave the highest oil yield of 2.10 % by using maceration. This is because at higher temperature enhances the solubility solute and diffusivity coefficient, thus increase the extract yield while longer retention time allow the reaction between solvent and solute occurred more rapidly giving higher extract. Furthermore, the soxhlet extraction using n-hexane as the solvent gave the highest oil yield as compared to other solvent due to the non-polar properties of n-hexane increase the efficiency of oil which is also non-polar to soluble in the solvent. In addition, the results also reported that the oil extracted from agarwood leaves contains bioactive compounds which are phytol, squalene, n-hexadecanoic acid and octadecatrienoic acid. Therefore, oil extracted from agarwood leaves has the potential to be applied in food, pharmaceutical, nutraceutical and cosmetics industries.
NASA Astrophysics Data System (ADS)
Susanto, D. F.; Hapsari, S.; Trilutfiani, Z.; Borhet, A.; Aparamarta, H. W.; Widjaja, A.; Gunawan, S.
2018-03-01
Calophyllum inophyllum has various benefits that can be utilized from root, stem, leaf, until seed. C. inophyllum leaves contain many bioactive compounds, such as xanthone and coumarin which are useful as antioxidant, and inhibitors of enzyme activity from HIV virus. The aim of this research was to investigate the effect of solvent polarity levels on the separation of xanthone and coumarin compounds contained in the crude extract of C. inophyllum leaves. Crude leaves extract was obtained by percolation method. Moreover, Liquid Liquid Extraction (LLE) was used for separating xanthone and coumarin compounds. It was performed by methanol (polar solvent) and hexane (non-polar solvent) with solvent ratio of 1. Methanol concentration in water used were 20%, 50%, 80%, and 100%. Each fraction obtained was tested qualitatively using Thin Layer Chromatography (TLC) and quantitatively using Gas Chromatography (GC) to analyze xanthone and coumarin. The best separation result was obtained by using 50% methanol. In this results, coumarin and xanthones were separated in methanol fraction (81.18% recovery) and in hexane fraction (81.91% recovery), respectively.
Machado, Bruna Aparecida Souza; Barreto, Gabriele de Abreu; Costa, Aline Silva; Costa, Samantha Serra; Silva, Rejane Pina Dantas; da Silva, Danielle Figuerêdo; Brandão, Hugo Neves; da Rocha, José Luiz Carneiro; Nunes, Silmar Baptista; Umsza-Guez, Marcelo Andres; Padilha, Francine Ferreira
2015-01-01
The aim of this study was to determine the best processing conditions to extract Brazilian green propolis using a supercritical extraction technology. For this purpose, the influence of different parameters was evaluated such as S/F (solvent mass in relation to solute mass), percentage of co-solvent (1 and 2% ethanol), temperature (40 and 50°C) and pressure (250, 350 and 400 bar) using supercritical carbon dioxide. The Global Yield Isotherms (GYIs) were obtained through the evaluation of the yield, and the chemical composition of the extracts was also obtained in relation to the total phenolic compounds, flavonoids, antioxidant activity and 3,5-diprenyl-4-hydroxicinnamic acid (Artepillin C) and acid 4-hydroxycinnamic (p-coumaric acid). The best results were identified at 50°C, 350 bar, 1% ethanol (co-solvent) and S/F of 110. These conditions, a content of 8.93±0.01 and 0.40±0.05 g/100 g of Artepillin C and p-coumaric acid, respectively, were identified indicating the efficiency of the extraction process. Despite of low yield of the process, the extracts obtained had high contents of relevant compounds, proving the viability of the process to obtain green propolis extracts with important biological applications due to the extracts composition.
Summer 2017 Microfluidics Research Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mcculloch, Quinn
Liquid-liquid Extraction (LLE), also known as solvent extraction, represents a large subset of chemistry where one or more solutes are transferred across an interface between two immiscible liquids. This type of chemistry is used in industrial scale processes to purify solvents, refine ore, process petroleum, treat wastewater, and much more. Although LLE has been successfully employed at the macroscale, where many liters/kgs of species are processed at large flow rates, LLE stands to benefit from lab-on-a-chip technology, where reactions take place quickly and efficiently at the microscale. A device, called a screen contactor, has been invented at Los Alamos Nationalmore » Laboratory (LANL) to perform solvent extraction at the microscale. This invention has been submitted to LANL’s Feynman Center for Innovation, and has been filed for provisional patent under U.S. Patent Application No. 62/483,107 1. The screen contactor consists of a housing that contains two different screen materials, flametreated stainless steel and polyether ether ketone (PEEK) thermoplastic, that are uniquely wetted by either an aqueous or an organic liquid phase, respectively. Liquids in this device flow longitudinally through the screens. The fine pore size of the screens (tens of microns) provide large capillary/adhesional forces while maintaining small hydraulic pressure drops. These physical characteristics are paramount to efficient microscale liquid phase separation. To demonstrate mass transfer using the screen contactor, a well-known chemical system 2 consisting of water and n-decane as solvents and trimethylamine (TEA) as a solute was selected. TEA is basic in water so its concentration can easily be quantified using a digital pH meter and an experimentally determined base dissociation constant. Characterization of this solvent system and its behavior in the screen contactor have been the focus of my research activities this summer. In the following sections, I have detailed experimental results that have been gathered.« less
Karami, Zohreh; Emam-Djomeh, Zahra; Mirzaee, Habib Allah; Khomeiri, Morteza; Mahoonak, Alireza Sadeghi; Aydani, Emad
2015-06-01
In present study, response surface methodology was used to optimize extraction condition of phenolic compounds from licorice root by microwave application. Investigated factors were solvent (ethanol 80 %, methanol 80 % and water), liquid/solid ratio (10:1-25:1) and time (2-6 min). Experiments were designed according to the central composite rotatable design. The results showed that extraction conditions had significant effect on the extraction yield of phenolic compounds and antioxidant capacities. Optimal condition in microwave assisted method were ethanol 80 % as solvent, extraction time of 5-6 min and liquid/solid ratio of 12.7/1. Results were compared with those obtained by soxhlet extraction. In soxhlet extraction, Optimum conditions were extraction time of 6 h for ethanol 80 % as solvent. Value of phenolic compounds and extraction yield of licorice root in microwave assisted (MAE), and soxhlet were 47.47 mg/g and 16.38 %, 41.709 mg/g and 14.49 %, respectively. These results implied that MAE was more efficient extracting method than soxhlet.
Comparison of extraction techniques of robenidine from poultry feed samples.
Wilga, Joanna; Wasik, Agata Kot-; Namieśnik, Jacek
2007-10-31
In this paper, effectiveness of six different commonly applied extraction techniques for the determination of robenidine in poultry feed has been compared. The sample preparation techniques included shaking, Soxhlet, Soxtec, ultrasonically assisted extraction, microwave - assisted extraction and accelerated solvent extraction. Comparison of these techniques was done with respect to the recovery extraction, temperature and time, reproducibility and solvent consumption. Every single extract was subjected to clean - up using aluminium oxide column (Pasteur pipette filled with 1g of aluminium oxide), from which robenidine was eluted with 10ml of methanol. The eluate from the clean-up column was collected in a volumetric flask, and finally it was analysed by HPLC-DAD-MS. In general, all extraction techniques were capable of isolating of robenidine from poultry feed, but the recovery obtained using modern extraction techniques was higher than that obtained using conventional techniques. In particular, accelerated solvent extraction was more superior to other techniques, which highlights the advantages of this sample preparation technique. However, in routine analysis, shaking and ultrasonically assisted extraction is still the preferred method for the solution of robenidine and other coccidiostatics.
NASA Astrophysics Data System (ADS)
Christina, Daisy; Hermansyah, Heri; Wijanarko, Anondho; Rohmatin, Etin; Sahlan, Muhamad; Pratami, Diah Kartika; Mun'im, Abdul
2018-02-01
Antioxidants are inhibitory compounds that can inhibit auto oxidation reaction by binding to free radicals and highly reactive molecules. The human body needs antioxidant. Antioxidants can be obtained from a variety of natural ingredients, including propolis. Propolis is the natural sap of the bees, obtained from the herbs around the honeycomb. Ethanol is the solvent that often used to extract propolis. Although it has many advantages, ethanol also has weaknesses such as intolerance to alcohol by some people. Therefore, this research was to extract propolis Tetragonula sp. coarse (C) and soft (S) using four varieties of organic solvent, i.e. olive oil (OO), virgin coconut oil (VCO), propylene glycol (PG), and lecithin (L). It was expected to get the best solvent in extracting propolis. The selection of the best solvent was determined by total flavonoids and polyphenols content assay and antioxidant activity. At each test, the absorbance value read by a microplate reader. Flavonoids content assay is using AlCl3 method with best result on rough-VCO propolis extract of 2509,767 ± 615,02 µg/mL. Polyphenols content assay was using Folin Ciocalteu method with the best results on soft-VCO propolis extract of 1391 ± 171.47 µg/mL. Antioxidant activity assay is using DPPH method with best result on soft-VCO propolis extract with IC50 value of 1,559 ± 0,222 µg/mL.
Shawky, Eman; Selim, Dina A
2017-09-01
The evaluation of extraction protocols for untargeted and targeted metabolomics was implemented for root and aerial organs of Astragalus spinosus in this work. The efficiency and complementarity of commonly used extraction solvents, namely petroleum ether, methylene chloride, ethyl acetate and n-butanol were considered for method evaluation using chemometric techniques in conjunction with new, simple, and fast high performance thin layer chromatography (HPTLC) method for fingerprint analysis by extracting information from a digitalized HPTLC plate using ImageJ software. A targeted approach was furtherly implemented by developing and validating an HPTLC method allowing the quantification of three saponin glycosides. The results of untargeted and targeted principle component analysis (PCA) and hierarchical cluster analysis (HCA) revealed that the apparent saponins profile seems to depend on a combined effect of matrix composition and the properties of the selected solvent for extraction, where both the biological matrix of the investigated plant organs, as well as the extraction solvent can influence the precision of metabolite abundances. Although, the aerial part is frequently discarded as waste, it is shown hereby that it has similar chemical profile compared to the medicinal part, roots, yet a different extraction solvents pattern is recognized between the two organs which can be attributed to the differences in the composition, permeability or accessibility of the sample matrix/organ tissues, rather than the chemical structures of the detected metabolites. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Susanti, R. F.; Christianto, G.
2016-01-01
Physalis angulata or ceplukan is medicinal herb, which grows naturally in Indonesia. It has been used in traditional medicine to treat several diseases. It is also reported to have antimycobacterial, antileukemic, antipyretic. In this research, Pysalis angulata fruit was investigated for its antioxidant capacity. In order to avoid the toxic organic solvent commonly used in conventional extraction, subcritical water extraction method was used. During drying, filler which is inert was added to the extract. It can absorb water and change the oily and sticky form of extract to powder form. The effects of filler types, concentrations and drying temperatures were investigated to the antioxidant quality covering total phenol, flavonoid and antioxidant activity. The results showed that total phenol, flavonoid and antioxidant activity were improved by addition of filler because the drying time was shorter compared to extract without filler. Filler absorbs water and protects extract from exposure to heat during drying. The combination between high temperature and shorter drying time are beneficial to protect the antioxidant in extract. The type of fillers investigation showed that aerosil gave better performance compared to Microcrystalline Celullose (MCC).
Zou, Denglang; Zhu, Xuelin; Zhang, Fan; Du, Yurong; Ma, Jianbin; Jiang, Renwang
2018-01-31
This study presents an efficient strategy based on liquid-liquid extraction with three-phase solvent system and high speed counter-current chromatography for rapid enrichment and separation of epimers of minor bufadienolide from toad meat. The reflux extraction conditions were optimized by response surface methodology first, and a novel three-phase solvent system composed of n-hexane/methyl acetate/acetonitrile/water (3:6:5:5, v/v) was developed for liquid-liquid extraction of the crude extract. This integrative extraction process could enrich minor bufadienolide from complex matrix efficiently and minimize the loss of minor targets induced by repeated extraction with different kinds of organic solvents occurring in the classical liquid two-phase extraction. As a result, four epimers of minor bufadienolide were greatly enriched in the middle phase and total content of these epimers of minor bufadienolide was increased from 3.25% to 46.23%. Then, the enriched four epimers were separated by HSCCC with a two-phase solvent system composed of chloroform/methanol/water (4:2:2, v/v) successfully. Furthermore, we tested Na + ,K + -ATPase (NKA) inhibitory effect of the four epimers. 3β-Isomers of bufadienolide showed stronger (>8-fold) inhibitory activity than 3α-isomers. The characterization of minor bufadienolide in toad meat and their significant difference of inhibitory effect on NKA would promote the further quantitative analysis and safety evaluation of toad meat as a food source.
Shao, Dongyan; Atungulu, Griffiths G; Pan, Zhongli; Yue, Tianli; Zhang, Ang; Li, Xuan
2012-08-01
Value of tomato seed has not been fully recognized. The objectives of this research were to establish suitable processing conditions for extracting oil from tomato seed by using solvent, determine the impact of processing conditions on yield and antioxidant activity of extracted oil, and elucidate kinetics of the oil extraction process. Four processing parameters, including time, temperature, solvent-to-solid ratio and particle size were studied. A second order model was established to describe the oil extraction process. Based on the results, increasing temperature, solvent-to-solid ratio, and extraction time increased oil yield. In contrast, larger particle size reduced the oil yield. The recommended oil extraction conditions were 8 min of extraction time at temperature of 25 °C, solvent-to-solids ratio of 5/1 (v/w) and particle size of 0.38 mm, which gave oil yield of 20.32% with recovery rate of 78.56%. The DPPH scavenging activity of extracted oil was not significantly affected by the extraction parameters. The inhibitory concentration (IC(50) ) of tomato seed oil was 8.67 mg/mL which was notably low compared to most vegetable oils. A 2nd order model successfully described the kinetics of tomato oil extraction process and parameters of extraction kinetics including initial extraction rate (h), equilibrium concentration of oil (C(s) ), and the extraction rate constant (k) could be precisely predicted with R(2) of at least 0.957. The study revealed that tomato seed which is typically treated as a low value byproduct of tomato processing has great potential in producing oil with high antioxidant capability. The impact of processing conditions including time, temperature, solvent-to-solid ratio and particle size on yield, and antioxidant activity of extracted tomato seed oil are reported. Optimal conditions and models which describe the extraction process are recommended. The information is vital for determining the extraction processing conditions for industrial production of high quality tomato seed oil. Journal of Food Science © 2012 Institute of Food Technologists® No claim to original US government works.
Farajzadeh, Mir Ali; Sattari Dabbagh, Masoumeh; Yadeghari, Adeleh
2017-05-01
In this study, a gas-assisted dispersive liquid-phase microextraction method using a deep eutectic solvent as the extraction solvent combined with gas chromatography and flame ionization detection was developed for the extraction and determination of some pesticide residues in vegetable and fruit juice samples. In this method, choline chloride and 4-chlorophenol at a molar ratio of 1:2 were mixed. By heating and vortexing, a clear, water-immiscible, and homogeneous liquid was formed. The obtained deep eutectic solvent was added to an aqueous solution of the analytes in a conical test tube. Air was bubbled into the aqueous solution and a cloudy solution was obtained. During this step, the analytes were extracted into the fine droplets of the extraction solvent. After centrifugation, an aliquot of the settled phase was injected into the separation system. Under the optimum extraction conditions, enrichment factors, and extraction recoveries were obtained in the ranges of 247-355 and 49-71%, respectively. The obtained values for the limits of detection and quantification were in the ranges of 0.24-1.4 and 0.71-4.2 μg/L, respectively. The proposed method is simple, fast, efficient, and inexpensive. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cho, Yueh-Cheng; Wang, Yuan-Chuen; Shieh, Chwen-Jen; Lin, Justin Chun-Te; Chang, Chieh-Ming J; Han, Esther
2012-08-10
This study examined pilot scaled elution chromatography coupled with supercritical anti-solvent precipitation (using countercurrent flow) in generating zeaxanthin-rich particulates from a micro-algal species. Ultrasonic agitated acetone extract subjected to column fractionation successfully yielded a fraction containing 349.4 mg/g of zeaxanthin with a recovery of 85%. Subsequently, supercritical anti-solvent (SAS) precipitation of the column fraction at 150 bar and 343 K produced submicron-sized particulates with a concentration of 845.5mg/g of zeaxanthin with a recovery of 90%. Experimental results from a two-factor response surface method SAS precipitation indicated that purity, mean size and morphology of the precipitates were significantly affected by the flow type configuration, feed flow rate and injection time. Copyright © 2012 Elsevier B.V. All rights reserved.
Ohno, Hiroyuki; Suzuki, Masako; Kawamura, Yoko
2011-01-01
The amount of evaporation residue was investigated as an index of total amount of non-volatile substances that migrated from plastic kitchen utensils into four food-simulating solvents (water, 4% acetic acid, 20% ethanol and heptane). The samples were 71 products made of 12 types of plastics for food contact use. The amount was determined in accordance with the Japanese testing method. The quantitation limit was 5 µg/mL. In the cases of polyethylene, polypropylene, polystyrene, acrylonitrile styrene resin, acrylonitrile butadiene styrene resin, polyvinyl chloride, polyvinylidene chloride, polymethylpentene, polymethylmethacrylate and polyethylene terephthalate samples, the amount was highest for heptane and very low for the other solvents. On the other hand, in the cases of melamine resin and polyamide samples, the amount was highest for 4% acetic acid or 20% ethanol and lowest for heptane. These results enabled the selection of the most suitable solvent, and the rapid and efficient determination of evaporation residue.
SLURRY SOLVENT EXTRACTION PROCESS FOR THE RECOVERY OF METALS FROM SOLID MATERIALS
Grinstead, R.R.
1959-01-20
A solvent extraction process is described for recovering uranium from low grade uranium bearing minerals such as carnotit or shale. The finely communited ore is made up as an aqueous slurry containing the necessary amount of acid to solubilize the uranium and simultaneously or subsequently contacted with an organic solvent extractant such as the alkyl ortho-, or pyro phosphoric acids, alkyl phosphites or alkyl phosphonates in combination with a diluent such as kerosene or carbon tetrachlorids. The extractant phase is separated from the slurry and treated by any suitable process to recover the uranium therefrom. One method for recovering the uranium comprises treating the extract with aqueous HF containing a reducing agent such as ferrous sulfate, which reduces the uranium and causes it to be precipitated as uranium tetrafluoride.
NASA Technical Reports Server (NTRS)
Li, Jin; Hu, Shih-Yao B.; Wiencek, John M.
2001-01-01
Perstractive fermentation is a good way to increase the productivity of bioreactors. Using Propionibacteria as the model system, the feasibility of using supported emulsion liquid membrane (SELM) for perstractive fermentation is assessed in this study. Five industrial solvents were considered as the solvent for preparing the SELM. The more polar a solvent is, the higher the partition coefficient. However, toxicity of a solvent also increases with its polarity. CO-1055 (industrial decanol/octanol blend) has the highest partition coefficient toward propionic acid among the solvents that has no molecular toxicity toward Propionibacteria. A preliminary extraction study was conducted using tetradecane as solvent in a hydrophobic hollow fiber contactor. The result confirmed that SELM eliminates the equilibrium limitation of conventional liquid-liquid extraction, and allows the use of a non-toxic solvent with low partition coefficient.
Silybum marianum pericarp yields enhanced silymarin products.
AbouZid, Sameh F; Chen, Shao-Nong; McAlpine, James B; Friesen, J Brent; Pauli, Guido F
2016-07-01
An improved method for the purification of silymarin, the flavonolignan complex from the fruits of milk thistle, Silybum marianum, is reported. The method enables a more efficient extraction of silymarin from the pericarp after it has been separated mechanically from the rest of the fruits. Accelerated solvent extraction (ASE) was employed for each extraction procedure. Quantitation of the eight major silymarin components in the pericarp extract was compared to that of the whole fruit extract using two orthogonal analytical methods. The pericarp extract showed higher silymarin content (2.24-fold by HPLC and 2.12-fold by qHNMR) than whole fruit extract using acetone as an extraction solvent following defatting with hexane. Furthermore, the mg/g recovery of silymarin major components was not diminished by eliminating the hexane defatting step from the pericarp extraction procedure. The efficiencies of acetone, ethanol, and methanol as extraction solvents were compared. Methanol pericarp extract showed the highest content of the silymarin major components, 2.72-fold higher than an extract prepared from the whole fruits using acetone. Finally, all of the major silymarin components showed a higher w/w content in the pericarp extract than in a commercial extract. Copyright © 2016 Elsevier B.V. All rights reserved.
Solvent extraction separation of Th-227 and Ac-225 in room temperature ionic liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, Jason R; Boll, Rose Ann; Dai, Sheng
2012-01-01
The solvent extractions of Th-227 and Ac-225 from the aqueous phase into ionic liquids (ILs) were investigated by using N,N,N ,N - tetraoctyldiglycolamide (TODGA) or di(2-ethylhexyl)phosphoric acid (HDEHP) as an extractant. Four ionic liquids, 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4mim][NTf2]), 1-butyl-3-methylimidazolium bis(perfluoroethanesulfonyl)imide ([C4mim][BETI]), 1-butyl-2,3-trimethyleneimidazolium (trifluoromethanesulfonyl)imide [BuI5][NTf2], and 1-benzyl pyridinium bis(trifluoromethanesulfonyl)imide ([PhCH2Py][NTf2]) were used as extraction solvents for separation of Th-227 and Ac-225 in this study. Excellent extraction efficiencies and selectivities were found for Th-227/Ac-225 when HDEHP was used as an extractant in these ionic liquids. The effects of different extractant concentrations in ionic liquids and acidities of the aqueous phase on extraction efficienciesmore » and selectivities of Th-227/Ac-225 are also presented in this article.« less
Upadhya, Vinayak; Pai, Sandeep R.; Sharma, Ajay K.; Hegde, Harsha V.; Kholkute, Sanjiva D.; Joshi, Rajesh K.
2014-01-01
Effects of varying temperatures with constant pressure of solvent on extraction efficiency of two chemically different alkaloids were studied. Camptothecin (CPT) from stem of Nothapodytes nimmoniana (Grah.) Mabb. and piperine from the fruits of Piper nigrum L. were extracted using Accelerated Solvent Extractor (ASE). Three cycles of extraction for a particular sample cell at a given temperature assured complete extraction. CPT and piperine were determined and quantified by using a simple and efficient UFLC-PDA (245 and 343 nm) method. Temperature increased efficiency of extraction to yield higher amount of CPT, whereas temperature had diminutive effect on yield of piperine. Maximum yield for CPT was achieved at 80°C and for piperine at 40°C. Thus, the study determines compound specific extraction of CPT from N. nimmoniana and piperine from P. nigrum using ASE method. The present study indicates the use of this method for simple, fast, and accurate extraction of the compound of interest. PMID:24527258
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, G H; Thompson, M C
Solvent extraction of /sup 237/Np and /sup 238/Pu from irradiated neptunium is being investigated as a possible replacement for the currently used anion exchange process at the Savannah River Plant. Solvent extraction would reduce separations costs and waste volume and increase the production rate. The major difficulty in solvent extraction processing is maintaining neptunium and plutonium in the extractable IV or VI valence states during initial extraction. This study investigated the stability of these states. Results show that: The extractable M(IV) valence states of neptunium and plutonium are mutually unstable in plant dissolver solution (2 g/l /sup 237/Np, 0.4 g/lmore » /sup 238/Pu, 1.2M Al/sup 3 +/, 4.6M NO/sub 3//sup -/, and 1M H/sup +/). The reaction rates producing inextractable species from extractable M(IV) or M(VI) are fast enough that greater than or equal to 99.9 percent extractable species in /sup 237/Np--/sup 238/Pu mixtures cannot be maintained for a practicable processing period (24 hours).« less
NASA Astrophysics Data System (ADS)
Putra, N. R.; Yian, L. N.; Nasir, H. M.; Idham, Z. Binti; Yunus, M. A. C.
2018-03-01
Peanut skins (Arachis hypogea) are an agricultural waste product which has received much attention because they contain high nutritional values and can be potentially utilized in difference industries. At present, only a few studies have been conducted to study the effects of parameters on the peanut skins oil extraction. Therefore, this study aimed to determine the best extraction condition in order to obtain the highest extract yield using supercritical carbon dioxide (SC-CO2) with co-solvent Ethanol as compared to Soxhlet extraction method. Diffusivity of carbon dioxide in supercritical fluid extraction was determined using Crank model. The mean particle size used in this study was 425 µm. The supercritical carbon dioxide was performed at temperature (40 – 70 °C), flow rate of co-solvent ethanol (0 - 7.5% Vethanol/Vtotal), and extraction pressure (10 – 30 MPa) were used in this studies. The results showed that the percentage of oil yields and effective diffusivity increase as the pressure, rate of co-solvent, and temperature increased.
SOLVENT EXTRACTION PROCESS FOR URANIUM RECOVERY
Clark, H.M.; Duffey, D.
1958-06-17
A process is described for extracting uranium from uranium ore, wherein the uranium is substantially free from molybdenum contamination. In a solvent extraction process for recovering uranium, uranium and molybdenum ions are extracted from the ore with ether under high acidity conditions. The ether phase is then stripped with water at a lower controiled acidity, resaturated with salting materials such as sodium nitrate, and reextracted with the separation of the molybdenum from the uranium without interference from other metals that have been previously extracted.
Fabrizi, Giovanni; Fioretti, Marzia; Rocca, Lucia Mainero
2013-01-01
A desorption study of 57 volatile organic compounds (VOCs) has been conducted by use of accelerated solvent extraction (ASE) and gas chromatography-mass spectrometry. Different solvents were tested to extract activated charcoal tubes with the objective of replacing carbon disulfide, used in official methods, because of its highly toxic health and environmental effects. Extraction conditions, for example temperature and number of cycles, were investigated and optimized. The definitive extraction procedure selected was use of acetone at 150 °C and two consecutive extraction cycles at a pressure of 1,500 psi. Considering a sample volume of 0.005 Nm(3), corresponding to a sampling time of 8 h at a flow rate of 0.01 L min(-1), the method was validated over the concentration range 65-26,300 μg Nm(-3). The lowest limit of quantification was 6 μg Nm(-3), and recovery for the 93 % of analytes ranged from 65 to 102 %. For most of the compounds, relative standard deviations were less than 15 % for inter and intra-day precision. Uncertainty of measurement was also determined: the relative expanded uncertainty was always below 29.6 %, except for dichlorodifluoromethane. This work shows that use of friendlier solvent, for example acetone, coupled with use of ASE, can replace use of CS(2) for chemical removal of VOCs from activated charcoal. ASE has several advantages over traditional solvent-extraction methods, including shorter extraction time, minimum sample manipulation, high reproducibility, and less extraction discrimination. No loss of sensitivity occurs and there is also a salutary effect on bench workers' health and on the smell of laboratory air.
Velmurugan, Palanivel; Kim, Jae-In; Kim, Kangmin; Park, Jung-Hee; Lee, Kui-Jae; Chang, Woo-Suk; Park, Yool-Jin; Cho, Min; Oh, Byung-Taek
2017-08-01
The main objective of this study was to extract natural colorant from purple sweet potato powder (PSPP) via a water bath and ultrasound water bath using acidified ethanol (A. EtOH) as the extraction solvent. When optimizing the colorant extraction conditions of the solvents, acidified ethanol with ultrasound yielded a high extraction capacity and color intensity at pH2, temperature of 80°C, 20mL of A. EtOH, 1.5g of PSPP, time of 45min, and ultrasonic output power of 75W. Subsequently, the colorant was extracted using the optimized conditions for dyeing of textiles (leather, silk, and cotton). This natural colorant extraction technique can avoid serious environmental pollution during the extraction and is an alternative to synthetic dyes, using less solvent and simplified abstraction procedures. The extracted purple sweet potato natural colorant (PSPC) was used to dye leather, silk, and cotton fabrics in an eco-friendly approach with augmented antibacterial activity by in situ synthesis of silver nanoparticles (AgNPs) and dyeing. The optimal dyeing conditions for higher color strength (K/S) values were pH2 and 70°C for 45min. The colorimetric parameters L ∗ , a ∗ , b ∗ , C, and H were measured to determine the depth of the color. The Fourier transform infrared spectroscopy (FTIR) spectra of undyed control, dyed with PSPC and dyed with blend of PSPC and AgNPs treated leather, silk and cotton fabric were investigated to study the interaction among fiber type, nanoparticles, and dye. The structural morphology of leather and silk and cotton fabrics and the anchoring of AgNPs with elemental compositions were investigated by scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS). The dry and wet rubbing fastness for dye alone and dye with nanoparticles were grade 4-5 and 4, respectively. Thus, the results of the present study clearly suggest that in situ synthesis of AgNPs along with dyeing should be considered in the development of antimicrobial textile finishes. Copyright © 2017. Published by Elsevier B.V.
Dong, Maofeng; Si, Wenshuai; Jiang, Keqiu; Nie, Dongxia; Wu, Yongjiang; Zhao, Zhihui; De Saeger, Sarah; Han, Zheng
2015-12-04
A solid-phase extraction (SPE) procedure using multi-walled carbon nanotubes (MWCNTs) as sorbents coupled with ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was developed for simultaneous determination of four type A trichothecenes in maize, wheat and rice for the first time. Several key parameters including the composition of sample loading solutions, washing and elution solvents were thoroughly investigated to achieve optimal SPE recoveries and efficiency. Performance of the MWCNTs materials was significantly affected by pH, and after optimization, n-hexane and 5% methanol aqueous solution as the washing solutions and methanol containing 1% formic acid as the elution solvent presented an excellent purification efficiency for the four targets in the different matrices. The method was validated by determining the linearity (R(2)≥0.992), recovery (73.4-113.7%), precision (1.2-17.1%) and sensitivity (limit of quantification in the range of 0.02-0.10μg/kg), and was further applied for simultaneous determination of type A trichothecenes in 30 samples. Although low contamination levels of type A trichothecenes in wheat, maize and rice were observed revealing mitigated risks to consumers in Shanghai, China, the developed method has proven to be a valuable tool for type A trichothecenes monitoring in complex crop matrices. Copyright © 2015 Elsevier B.V. All rights reserved.
Wu, Lijie; Song, Ying; Hu, Mingzhu; Xu, Xu; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming
2015-03-01
A simple and efficient integrated microwave processing system (IMPS) was firstly assembled and validated for the extraction of organophosphorus pesticides in fresh vegetables. Two processes under microwave irradiation, dynamic microwave-assisted extraction (DMAE) and microwave-accelerated solvent elution (MASE), were integrated for simplifying the pretreatment of the sample. Extraction, separation, enrichment and elution were finished in a simple step. The organophosphorus pesticides were extracted from the fresh vegetables into hexane with DMAE, and then the extract was directly introduced into the enrichment column packed with active carbon fiber (ACF). Subsequently, the organophosphorus pesticides trapped on the ACF were eluted with ethyl acetate under microwave irradiation. No further filtration or cleanup was required before analysis of the eluate by gas chromatography-mass spectrometry. Some experimental parameters affecting extraction efficiency were investigated and optimized, such as microwave output power, kind and volume of extraction solvent, extraction time, amount of sorbent, elution microwave power, kind and volume of elution solvent, elution solvent flow rate. Under the optimized conditions, the recoveries were in the range of 71.5-105.2%, and the relative standard deviations were lower than 11.6%. The experiment results prove that the present method is a simple and effective sample preparation method for the determination of pesticides in solid samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Huang, Yanhua; Wang, Yuzhi; Pan, Qi; Wang, Ying; Ding, Xueqin; Xu, Kaijia; Li, Na; Wen, Qian
2015-06-02
Four kinds of green deep eutectic solvents (DESs) based on choline chloride (ChCl) have been synthesized and coated on the surface of magnetic graphene oxide (Fe3O4@GO) to form Fe3O4@GO-DES for the magnetic solid-phase extraction of protein. X-ray diffraction (XRD), vibrating sample magnetometer (VSM), Fourier transform infrared spectrometry (FTIR), field emission scanning electron microscopy (FESEM) and thermal gravimetric analysis (TGA) were employed to characterize Fe3O4@GO-DES, and the results indicated the successful preparation of Fe3O4@GO-DES. The UV-vis spectrophotometer was used to measure the concentration of protein after extraction. Single factor experiments proved that the extraction amount was influenced by the types of DESs, solution temperature, solution ionic strength, extraction time, protein concentration and the amount of Fe3O4@GO-DES. Comparison of Fe3O4@GO and Fe3O4@GO-DES was carried out by extracting bovine serum albumin, ovalbumin, bovine hemoglobin and lysozyme. The experimental results showed that the proposed Fe3O4@GO-DES performs better than Fe3O4@GO in the extraction of acidic protein. Desorption of protein was carried out by eluting the solid extractant with 0.005 mol L(-1) Na2HPO4 contained 1 mol L(-1) NaCl. The obtained elution efficiency was about 90.9%. Attributed to the convenient magnetic separation, the solid extractant could be easily recycled. Copyright © 2015 Elsevier B.V. All rights reserved.
[Study on new extraction technology of astragaloside IV].
Sun, Haiyan; Guan, Su; Huang, Min
2005-08-01
To explore the possibility and the optimal extraction technology of astragaloside IV by SFE-CO2. According the content of astragaloside IV, the optimum extraction technology parameters such as extraction temperature, pressure, extraction time, velocity of fluid and co-solvent were investigated and the result was compared with that of water extraction. The optimum technical parameters were as follows: Extracting pressure 40 Mpa, temperature 45 degrees C, extracting time 2h, co-solvent was 95% ethanol and its dosage was 4ml/g, the ratio of CO2 fluid was 10 kg/kg x h. Extraction technology of astragaloside IV by SFE-CO2 is reliable, stable.
Li, Guizhen; Wang, Xiaoqin; Row, Kyung Ho
2018-04-01
Novel magnetic molecularly imprinted polymers (MMIPs) with multiple-template based on silica were modified by four types of deep eutectic solvents (DESs) for the rapid simultaneous magnetic solid-phase extraction (MSPE) of tanshinone Ⅰ, tanshinone ⅡA, and cryptotanshinone from Salvia miltiorrhiza bunge; glycitein, genistein, and daidzein from Glycine max (Linn.) Merr; and epicatechin, epigallocatechin gallate, and epicatechin gallate from green tea, respectively. The synthesized materials were characterized by Fourier transform infrared spectroscopy and field emission scanning electron microscopy. Single factor experiments were to explore the relationship between the extraction efficiency and four factors (the sample solution pH, amount of DESs for modification, amount of adsorbent, and extraction time). It was showed that the DES4-MMIPs have better extraction ability than the MMIPs without DESs and the other three DESs-modified MMIPs. The best extraction recoveries with DES4-MMIP were tanshinone Ⅰ (85.57%), tanshinone ⅡA (80.58%), cryptotanshinone (92.12%), glycitein (81.65%), genistein (87.72%), daidzein (92.24%), epicatechin (86.43%), epigallocatechin gallate (80.92%), and epicatechin gallate (93.64%), respectively. The novel multiple-template MMIPs materials modified by DES for the rapid simultaneous MSPE of active compounds were proved to reduce the experimental steps than single-template technique, and increase the extraction efficiency. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
FIELD EVALUATION OF THE SOLVENT EXTRACTION RESIDUAL BIOTREATMENT (SERB) TECHNOLOGY
The Solvent Extraction Residual Biotreatment (SERB) technology was demonstrated at the former Sage's Dry Cleaner site in Jacksonville, FL where an area of PCE (tetrachloroethylene) contamination was identified. The SERB technology is a treatment train approach to complete site...
Process for extracting technetium from alkaline solutions
Moyer, Bruce A.; Sachleben, Richard A.; Bonnesen, Peter V.
1995-01-01
A process for extracting technetium values from an aqueous alkaline solution containing at least one alkali metal hydroxide and at least one alkali metal nitrate, the at least one alkali metal nitrate having a concentration of from about 0.1 to 6 molar. The solution is contacted with a solvent consisting of a crown ether in a diluent for a period of time sufficient to selectively extract the technetium values from the aqueous alkaline solution. The solvent containing the technetium values is separated from the aqueous alkaline solution and the technetium values are stripped from the solvent.
Castejón, Natalia; Luna, Pilar; Señoráns, Francisco J
2018-04-01
The edible oil processing industry involves large losses of organic solvent into the atmosphere and long extraction times. In this work, fast and environmentally friendly alternatives for the production of echium oil using green solvents are proposed. Advanced extraction techniques such as Pressurized Liquid Extraction (PLE), Microwave Assisted Extraction (MAE) and Ultrasound Assisted Extraction (UAE) were evaluated to efficiently extract omega-3 rich oil from Echium plantagineum seeds. Extractions were performed with ethyl acetate, ethanol, water and ethanol:water to develop a hexane-free processing method. Optimal PLE conditions with ethanol at 150 °C during 10 min produced a very similar oil yield (31.2%) to Soxhlet using hexane for 8 h (31.3%). UAE optimized method with ethanol at mild conditions (55 °C) produced a high oil yield (29.1%). Consequently, advanced extraction techniques showed good lipid yields and furthermore, the produced echium oil had the same omega-3 fatty acid composition than traditionally extracted oil. Copyright © 2017 Elsevier Ltd. All rights reserved.
Carro, N; García, I; Ignacio, M-C; Llompart, M; Yebra, M-C; Mouteira, A
2002-10-01
A sample-preparation procedure (extraction and saponification) using microwave energy is proposed for determination of organochlorine pesticides in oyster samples. A Plackett-Burman factorial design has been used to optimize the microwave-assisted extraction and mild saponification on a freeze dried sample spiked with a mixture of aldrin, endrin, dieldrin, heptachlor, heptachorepoxide, isodrin, transnonachlor, p, p'-DDE, and p, p'-DDD. Six variables: solvent volume, extraction time, extraction temperature, amount of acetone (%) in the extractant solvent, amount of sample, and volume of NaOH solution were considered in the optimization process. The results show that the amount of sample is statistically significant for dieldrin, aldrin, p, p'-DDE, heptachlor, and transnonachlor and solvent volume for dieldrin, aldrin, and p, p'-DDE. The volume of NaOH solution is statistically significant for aldrin and p, p'-DDE only. Extraction temperature and extraction time seem to be the main factors determining the efficiency of extraction process for isodrin and p, p'-DDE, respectively. The optimized procedure was compared with conventional Soxhlet extraction.
NASA Astrophysics Data System (ADS)
Stan, M.; Soran, M. L.; Varodi, C.; Lung, I.; Copolovici, L.; MǎruÅ£oiu, C.
2013-11-01
Parsley (Petroselinum crispum), dill (Anethum graveolens) and celery (Apium graveolens), three aromatic plants belonging to the Apiaceae (Umbelliferae) botanical family, were selected as sources of essential or volatile oils. Essential oils are composed of a large diversity of volatile aroma compounds. Plant-derived essential oils and extracts have long been used as natural agents in food preservation, pharmaceuticals and medicinal therapies. In the present study, the plant extracts from leaves of parsley, dill and celery, were obtained by maceration, ultrasound-assisted extraction and microwave-assisted extraction. All extractions were performed at 30°C, using different solvents (ethanol, diethyl ether, n-hexane) and solvent mixtures (1:1, v/v). The most effective solvent system for the extraction of volatile aroma compounds was diethyl ether - n-hexane (1:1, v/v). Extraction efficiency and determination of aroma volatiles were performed by GC-FID and GC-MS, respectively. The major volatile compounds present in plant extracts were myristicin, α-phellandrene, β-phellandrene, 1,3,8-p-menthatriene, apiol, dill ether and allyl phenoxyacetate.
Roach, Benjamin D.; Williams, Neil J.; Duncan, Nathan C.; ...
2014-12-01
We show in this work that the solvent used in the Next Generation Caustic-Side Solvent Extraction (NGS) process can withstand a radiation dose well in excess of the dose it would receive in multiple years of treating legacy salt waste at the US Department of Energy Savannah River Site. The solvent was subjected to a maximum of 50 kGy of gamma radiation while in dynamic contact with each of the aqueous phases of the current NGS process, namely SRS-15 (a highly caustic waste simulant), sodium hydroxide scrub solution (0.025 M), and boric acid strip solution (0.01 M). Bench-top testing ofmore » irradiated solvent confirmed that irradiation has inconsequential impact on the extraction, scrubbing, and stripping performance of the solvent up to 13 times the estimated 0.73 kGy/y annual absorbed dose. Lastly, stripping performance is the most sensitive step to radiation, deteriorating more due to buildup of p-sec-butylphenol (SBP) and possibly other proton-ionizable products than to degradation of the guanidine suppressor, as shown by chemical analyses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roach, Benjamin D.; Williams, Neil J.; Duncan, Nathan C.
We show in this work that the solvent used in the Next Generation Caustic-Side Solvent Extraction (NGS) process can withstand a radiation dose well in excess of the dose it would receive in multiple years of treating legacy salt waste at the US Department of Energy Savannah River Site. The solvent was subjected to a maximum of 50 kGy of gamma radiation while in dynamic contact with each of the aqueous phases of the current NGS process, namely SRS-15 (a highly caustic waste simulant), sodium hydroxide scrub solution (0.025 M), and boric acid strip solution (0.01 M). Bench-top testing ofmore » irradiated solvent confirmed that irradiation has inconsequential impact on the extraction, scrubbing, and stripping performance of the solvent up to 13 times the estimated 0.73 kGy/y annual absorbed dose. Lastly, stripping performance is the most sensitive step to radiation, deteriorating more due to buildup of p-sec-butylphenol (SBP) and possibly other proton-ionizable products than to degradation of the guanidine suppressor, as shown by chemical analyses.« less
NASA Astrophysics Data System (ADS)
Choong, Yew-Keong; Sun, Su-Qin; Zhou, Qun; Lan, Jin; Lee, Han-Lim; Chen, Xiang-Dong
2014-07-01
Ganoderma commercial products are typically based on two sources, raw material (powder form and/or spores) and extract (water and/or solvent). This study compared three types of Ganoderma commercial products using 1 Dimensional Fourier Transform infrared and second derivative spectroscopy. The analyzed spectra of Ganoderma raw material products were compared with spectra of cultivated Ganoderma raw material powder from different mushroom farms in Malaysia. The Ganoderma extract product was also compared with three types of cultivated Ganoderma extracts. Other medicinal Ganoderma contents in commercial extract product that included glucan and triterpenoid were analyzed by using FTIR and 2DIR. The results showed that water extract of cultivated Ganoderma possessed comparable spectra with that of Ganoderma product water extract. By comparing the content of Ganoderma commercial products using FTIR and 2DIR, product content profiles could be detected. In addition, the geographical origin of the Ganoderma products could be verified by comparing their spectra with Ganoderma products from known areas. This study demonstrated the possibility of developing verification tool to validate the purity of commercial medicinal herbal and mushroom products.
NASA Astrophysics Data System (ADS)
Muhamad Fahmi, M. H.; Ahmad Bukhary, A. K.; Norma, H.; Idris, A. B.
2016-11-01
The main attractant compound for Eleidobius kamerunicus to male spikelet Elaeis guineensis (oil palm) were determined by analyzing volatile organic compound extracted from E. guineenses inflorescences planted on different soil types namely peat soil, clay soil and sandy soil. Anthesizing male oil palm inflorescences were randomly choosen from palm aged between 4-5 years old age. Extraction of the volatiles from the oil palm inflorescences were performed by Accelerated Solvent Extraction method (ASE). The extracted volatile compound were determined by using gas chromatography-mass spectrometry. Out of ten identified compound, estragole was found to be a major compound in sandy soil (37.49%), clay soil (30.71%) and peat soil (27.79%). Other compound such as 9,12-octadecadieonic acid and n-hexadecanoic acid were found as major compound in peat soil (27.18%) and (7.45%); sandy soil (14.15 %) and (9.31%); and clay soil (30.23%) and (4.99%). This study shows that estragole was the predominant volatile compound detected in oil palm inflorescences with highly concentrated in palm planted in sandy soil type.
Influence of sample processing on the analysis of carotenoids in maize.
Rivera, Sol; Canela, Ramon
2012-09-21
We performed a number of tests with the aim to develop an effective extraction method for the analysis of carotenoid content in maize seed. Mixtures of methanol-ethyl acetate (6:4, v/v) and methanol-tetrahydrofuran (1:1, v/v) were the most effective solvent systems for carotenoid extraction from maize endosperm under the conditions assayed. In addition, we also addressed sample preparation prior to the analysis of carotenoids by liquid chromatography (LC). The LC response of extracted carotenoids and standards in several solvents was evaluated and results were related to the degree of solubility of these pigments. Three key factors were found to be important when selecting a suitable injection solvent: compatibility between the mobile phase and injection solvent, carotenoid polarity and content in the matrix.
Wang, Wentao; Meng, Bingjun; Lu, Xiaoxia; Liu, Yu; Tao, Shu
2007-10-29
The methods of simultaneous extraction of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) from soils using Soxhlet extraction, microwave-assisted extraction (MAE) and accelerated solvent extraction (ASE) were established, and the extraction efficiencies using the three methods were systemically compared from procedural blank, limits of detection and quantification, method recovery and reproducibility, method chromatogram and other factors. In addition, soils with different total organic carbon contents were used to test the extraction efficiencies of the three methods. The results showed that the values obtained in this study were comparable with the values reported by other studies. In some respects such as method recovery and reproducibility, there were no significant differences among the three methods for the extraction of PAHs and OCPs. In some respects such as procedural blank and limits of detection and quantification, there were significant differences among the three methods. Overall, ASE had the best extraction efficiency compared to MAE and Soxhlet extraction, and the extraction efficiencies of MAE and Soxhlet extraction were comparable to each other depending on the property such as TOC content of the studied soil. Considering other factors such as solvent consumption and extraction time, ASE and MAE are preferable to Soxhlet extraction.
Effects of carbonization and solvent-extraction on change in fuel characteristics of sewage sludge.
Park, Sang-Woo; Jang, Cheol-Hyeon
2011-09-01
Urban sewage sludge was carbonized at 300-500°C for 1h, and combustible components were extracted through the solvent-extraction process. N-methyl-2-pyrrolidinone (NMP) was used as the solvent for extraction, and the extraction temperature was fixed at 360°C. The atomic ratios of the solvent-extracted sludge of CS300 (ECS300) were shown to be 1.04 for H/C and 0.11 for O/C, which represented the characteristics of its coal band. Thus, its coal band was similar to that of a high-rank fuel such as bituminous coal. FT-IR analysis showed that the absorbance band of ECS300 was considerably different from that of dried sludge (RS) or the carbonized sludge at 300°C (CS300) but similar to that of coal, although the ash content absorbance band of 800-1200 cm(-1) was of very low intensity. The combustion profile showed that combustion of ESC300 occurred at a temperature higher than the ignition temperature (T(i)) or maximum weight loss rate (DTG(max)) of coal. Copyright © 2011 Elsevier Ltd. All rights reserved.
A method for quantifying bioavailable organic carbon in aquifer sediments
Rectanus, H.V.; Widdowson, M.; Novak, J.; Chapelle, F.
2005-01-01
The fact that naturally occurring microorganisms can biodegrade PCE and TCE allows the use of monitored natural attenuation (MNA) as a remediation strategy at chlorinated solvent-contaminated sites. Research at numerous chlorinated solvent sites indicates an active dechlorinating microbial population coupled with an ample supply of organic carbon are conditions needed to sustain reductive dechlorination. A series of extraction experiments was used to compare the ability of the different extractants to remove organic carbon from aquifer sediments. The different extractants included pyrophosphate, sodium hydroxide, and polished water. Pyrophosphate served as a mild extractant that minimally alters the organic structure of the extracted material. Three concentrations (0.1, 0.5, and 1%) of pyrophosphate extracted 18.8, 24.9, and 30.8% of sediment organic carbon, respectively. Under alkali conditions (0.5 N NaOH), which provided the harshest extractant, 30.7% of the sediment organic carbon was recovered. Amorphous organic carbon, measured by potassium persulfate oxidization, consisted of 44.6% of the sediment organic carbon and served as a baseline control for maximum carbon removal. Conversely, highly purified water provided a minimal extraction control and extracted 5.7% of the sediment organic carbon. The removal of organic carbon was quantified by aqueous TOC in the extract and residual sediment organic carbon content. Characterization of the organic carbon extracts by compositional analysis prior and after exposure to the mixed culture might indicate the type organic carbon and functional groups used and/or generated by the organisms. This is an abstract of a paper presented at the 8th International In Situ and On-Site Bioremediation Symposium (Baltimore, MD 6/6-9/2005).
Olmstead, Ian L D; Kentish, Sandra E; Scales, Peter J; Martin, Gregory J O
2013-11-01
An industrially relevant method for disrupting microalgal cells and preferentially extracting neutral lipids for large-scale biodiesel production was demonstrated on pastes (20-25% solids) of Nannochloropsis sp. The highly resistant Nannochloropsis sp. cells. were disrupted by incubation for 15 h at 37°C followed by high pressure homogenization at 1200 ± 100 bar. Lipid extraction was performed by twice contacting concentrated algal paste with minimal hexane (solvent:biomass ratios (w/w) of <2:1 and <1.3:1) in a stirred vessel at 35°C. Cell disruption prior to extraction increased lipid recovery 100-fold, with yields of 30-50% w/w obtained in the first hexane contact, and a further 6.5-20% in the second contact. The hexane preferentially extracted neutral lipids over glyco- and phospholipids, with up to 86% w/w of the neutral lipids recovered. The process was effective on wet concentrated paste, required minimal solvent and moderate temperature, and did not require difficult to recover polar solvents. Copyright © 2013 Elsevier Ltd. All rights reserved.
Jerković, Igor; Marijanović, Zvonimir; Kezić, Janja; Gugić, Mirko
2009-07-27
Volatile organic compounds of Amorpha fruticosa honey samples were isolated by headspace solid-phase microextraction (HS-SPME) and ultrasonic solvent extraction (USE), followed by gas chromatography and mass spectrometry analyses (GC, GC-MS), in order to obtain complementary data for overall characterization of the honey aroma. The headspace of the honey was dominated by 2-phenylethanol (38.3-58.4%), while other major compounds were trans- and cis-linalool oxides, benzaldehyde and benzyl alcohol. 2-Phenylethanol (10.5-16.8%) and methyl syringate (5.8-8.2%) were the major compounds of ultrasonic solvent extracts, with an array of small percentages of linalool, benzene and benzoic acid derivatives, aliphatic hydrocarbons and alcohols, furan derivatives and others. The scavenging ability of the series of concentrations of the honey ultrasonic solvent extracts and the corresponding honey samples was tested by a DPPH (1,1-diphenyl-2-picrylhydrazyl) assay. Approximately 25 times lower concentration ranges (up to 2 g/L) of the extracts exhibited significantly higher free radical scavenging potential with respect to the honey samples.
Pandey, Devendra Kumar; Kaur, Prabhjot
2018-03-01
In the present investigation, pentacyclic triterpenoids were extracted from different parts of Swertia chirata by solid-liquid reflux extraction methods. The total pentacyclic triterpenoids (UA, OA, and BA) in extracted samples were determined by HPTLC method. Preliminary studies showed that stem part contains the maximum pentacyclic triterpenoid and was chosen for further studies. Response surface methodology (RSM) has been employed successfully by solid-liquid reflux extraction methods for the optimization of different extraction variables viz., temperature ( X 1 35-70 °C), extraction time ( X 2 30-60 min), solvent composition ( X 3 20-80%), solvent-to-solid ratio ( X 4 30-60 mlg -1 ), and particle size ( X 5 3-6 mm) on maximum recovery of triterpenoid from stem parts of Swertia chirata . A Plackett-Burman design has been used initially to screen out the three extraction factors viz., particle size, temperature, and solvent composition on yield of triterpenoid. Moreover, central composite design (CCD) was implemented to optimize the significant extraction parameters for maximum triterpenoid yield. Three extraction parameters viz., mean particle size (3 mm), temperature (65 °C), and methanol-ethyl acetate solvent composition (45%) can be considered as significant for the better yield of triterpenoid A second-order polynomial model satisfactorily fitted the experimental data with the R 2 values of 0.98 for the triterpenoid yield ( p < 0.001), implying good agreement between the experimental triterpenoid yield (3.71%) to the predicted value (3.79%).
Yang, Yun-Yun; Tang, You-Zhi; Fan, Chun-Lin; Luo, Hui-Tai; Guo, Peng-Ran; Chen, Jian-Xin
2010-07-01
A method based on accelerated solvent extraction combined with rapid-resolution LC-MS for efficient extraction, rapid separation, online identification and accurate determination of the saikosaponins (SSs) in Radix bupleuri (RB) was developed. The RB samples were extracted by accelerated solvent extraction using 70% aqueous ethanol v/v as solvent, at a temperature of 120 degrees C and pressure of 100 bar, with 10 min of static extraction time and three extraction cycles. Rapid-resolution LC separation was performed by using a C(18) column at gradient elution of water (containing 0.5% formic acid) and acetonitrile, and the major constituents were well separated within 20 min. A TOF-MS and an IT-MS were used for online identification of the major constituents, and 27 SSs were identified or tentatively identified. Five major bioactive SSs (SSa, SSc, SSd, 6''-O-acetyl-SSa and 6''-O-acetyl-SSd) with obvious peak areas and good resolution were chosen as benchmark substances, and a triple quadrupole MS operating in multiple-reaction monitoring mode was used for their quantitative analysis. A total of 16 RB samples from different regions of China were analyzed. The results indicated that the method was rapid, efficient, accurate and suitable for use in the quality control of RB.
Nojavan, Saeed; Bidarmanesh, Tina; Memarzadeh, Farkhondeh; Chalavi, Soheila
2014-09-01
A simple electromembrane extraction (EME) procedure combined with ion chromatography (IC) was developed to quantify inorganic anions in different pure water samples and water miscible organic solvents. The parameters affecting extraction performance, such as supported liquid membrane (SLM) solvent, extraction time, pH of donor and acceptor solutions, and extraction voltage were optimized. The optimized EME conditions were as follows: 1-heptanol was used as the SLM solvent, the extraction time was 10 min, pHs of the acceptor and donor solutions were 10 and 7, respectively, and the extraction voltage was 15 V. The mobile phase used for IC was a combination of 1.8 mM sodium carbonate and 1.7 mM sodium bicarbonate. Under these optimized conditions, all anions had enrichment factors ranging from 67 to 117 with RSDs between 7.3 and 13.5% (n = 5). Good linearity values ranging from 2 to 1200 ng/mL with coefficients of determination (R(2) ) between 0.987 and 0.999 were obtained. The LODs of the EME-IC method ranged from 0.6 to 7.5 ng/mL. The developed method was applied to different samples to evaluate the feasibility of the method for real applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
This technology utilizes liquified gases as the extracting solvent to remove organics, such as hydrocarbons, oil and grease, from wastewater or contaminated sludges and soils. Carbon dioxide is generally used for aqueous solutions, and propane is used for sediment, sludges and ...
The EPA has identified solvent extraction for vegetable oil production processes as major sources of a single hazardous air pollutant (HAP), n-hexane. Learn more about the rule requirements and regulations, as well as find compliance help
Pressurized solvent extraction of pure food grade starch
USDA-ARS?s Scientific Manuscript database
A commercial pressurized solvent extractor was used to remove lipid and non-lipid material from cornstarch using n-propanol/water and ethanol/water mixtures. Yields and chemical composition of the extract fractions were determined. Cornstarch samples were characterized using pasting properties and...
Kühbandner, Stephan; Ruther, Joachim
2015-06-01
Triacylglycerides (TAGs) and other non-volatile fatty acid derivatives (NFADs) occur in large amounts in the internal tissues of insects, but their presence on the insect cuticle is controversially discussed. Most studies investigating cuticular lipids of insects involve solvent extraction, which implies the risk of extracting lipids from internal tissues. Here, we present a new method that overcomes this problem. The method employs solid phase micro-extraction (SPME) to sample NFADs by rubbing the SPME fiber over the insect cuticle. Subsequently, the sampled NFADs are transesterified in situ with trimethyl sulfonium hydroxide (TMSH) into more volatile fatty acid methyl esters (FAMEs), which can be analyzed by standard GC/MS. We performed two types of control experiments to enable significant conclusions: (1) to rule out contamination of the GC/MS system with NFADs, and (2) to exclude the presence of free fatty acids on the insect cuticle, which would also furnish FAMEs after TMSH treatment, and thus might simulate the presence of NFADs. In combination with these two essential control experiments, the described SPME technique can be used to detect TAGs and/or other NFADs on the insect cuticle. We analyzed six insect species from four insect orders with our method and compared the results with conventional solvent extraction followed by ex situ transesterification. Several fatty acids typically found as constituents of TAGs were detected by the SPME method on the cuticle of all species analyzed. A comparison of the two methods revealed differences in the fatty acid compositions of the samples. Saturated fatty acids showed by trend higher relative abundances when sampled with the SPME method, while several minor FAMEs were detected only in the solvent extracts. Our study suggests that TAGs and maybe other NFADs are far more common on the insect cuticle than usually thought.
Guan, Jin; Zhang, Chi; Wang, Yang; Guo, Yiguang; Huang, Peiting; Zhao, Longshan
2016-11-01
A new analytical method was developed for simultaneous determination of 12 pharmaceuticals using ultrasound-assisted dispersive liquid-liquid microextraction (DLLME) followed by ultra-high performance liquid chromatography with tandem mass spectrometry (UHPLC-MS/MS). Six nonsteroidal anti-inflammatory drugs (NSAIDs, ketoprofen, mefenamic acid, tolfenamic acid, naproxen, sulindac, and piroxicam) and six antibiotics (tinidazole, cefuroxime axetil, ciprofloxacin, sulfamethoxazole, sulfadiazine, and chloramphenicol) were extracted by ultrasound-assisted DLLME using dichloromethane (800 μL) and methanol/acetonitrile (1:1, v/v, 1200 μL) as the extraction and dispersive solvents, respectively. The factors affecting the extraction efficiency, such as the type and volume of extraction and dispersive solvent, vortex and ultrasonic time, sample pH, and ionic strength, were optimized. The ultrasound-assisted process was applied to accelerate the formation of the fine cloudy solution by using a small volume of dispersive solvent, which increased the extraction efficiency and reduced the equilibrium time. Under the optimal conditions, the calibration curves showed good linearity in the range of 0.04-20 ng mL -1 (ciprofloxacin and sulfadiazine), 0.2-100 ng mL -1 (ketoprofen, tinidazole, cefuroxime axetil, naproxen, sulfamethoxazole, and sulindac), and 1-200 ng mL -1 (mefenamic acid, tolfenamic acid, piroxicam, and chloramphenicol). The LODs and LOQs of the method were in the range of 0.006-0.091 and 0.018-0.281 ng mL -1 , respectively. The relative recoveries of the target analytes were in the range from 76.77 to 99.97 % with RSDs between 1.6 and 8.8 %. The developed method was successfully applied to the extraction and analysis of 12 pharmaceuticals in five kinds of water samples (drinking water, running water, river water, influent and effluent wastewater) with satisfactory results. Graphical Abstract Twelve pharmaceuticals in water samples analyted by UHPLC-MS/MS using ultrasound-assisted DLLME.
Golovko, Oksana; Koba, Olga; Kodesova, Radka; Fedorova, Ganna; Kumar, Vimal; Grabic, Roman
2016-07-01
The aim of this study was to develop a simple extraction procedure and a multiresidual liquid chromatography-tandem mass spectrometry method for determination of a wide range of pharmaceuticals from various soil types. An extraction procedure for 91 pharmaceuticals from 13 soil types, followed by liquid chromatography-tandem mass spectrometry analysis, was optimized. The extraction efficiencies of three solvent mixtures for ultrasonic extraction were evaluated for 91 pharmaceuticals. The best results were obtained using acetonitrile/water (1/1 v/v with 0.1 % formic acid) followed by acetonitrile/2-propanol/water (3/3/4 v/v/v with 0.1 % formic acid) for extracting 63 pharmaceuticals. The method was validated at three fortification levels (10, 100, and 1000 ng/g) in all types of representative soils; recovery of 44 pharmaceuticals ranged between 55 and 135 % across all tested soils. The method was applied to analyze actual environmental samples of sediments, soils, and sludge, and 24 pharmaceuticals were found above limit of quantification with concentrations ranging between 0.83 ng/g (fexofenadine) and 223 ng/g (citalopram).
Lewis, G.W. Jr.; Rhodes, D.E.
1957-11-01
An improved method for extracting uranium from aqueous solutions by solvent extraction is presented. A difficulty encountered in solvent extraction operations using an organic extractant (e.g., tributyl phosphate dissolved in kerosene or carbon tetrachloride) is that emulsions sometimes form, and phase separation is difficult or impossible. This difficulty is overcome by dissolving the organic extractant in a molten wax which is a solid at operating temperatures. After cooling, the wax which now contains the extractant, is broken into small particles (preferably flakes) and this wax complex'' is used to contact the uranium bearing solutions and extract the metal therefrom. Microcrystalline petroleum wax and certain ethylene polymers have been found suitable for this purpose.
Sun, Shi-Hao; Chai, Guo-Bi; Li, Peng; Xie, Jian-Ping; Su, Yue
2017-10-13
Jujube extract is commonly used as a food additive and flavoring. The unique jujube aroma and the mild sweet aroma of the extract are critical factors that determine product quality and affect consumer acceptability. The aroma changes with changes in the extraction condition, which is typically dependent on the characteristics of volatile oils in the extract. Despite their importance, the volatile oils of jujube extract have received less attention compared with the soluble components. So, an appropriate qualitative and quantitative method for determination of the volatile oils is vitally important for quality control of the product. A method coupling steam distillation/drop-by-drop extraction with gas chromatography-mass spectrometry (S3DE/GC-MS) was developed to determine the volatile components of jujube extract. Steam distillation was coupled with solvent extraction; the resulting condensate containing volatile components from jujube extract was drop-by-drop extracted using 2 mL of methyl tertiary butyl ether. The solvent served two purposes. First, the solvent extracted the volatile components from the condensate. Second, the volatile components were pre-concentrated by drop-by-drop accumulation in the solvent. As a result, the extraction, separation, and concentration of analytes in the sample were simultaneously completed in one step. The main parameters affecting the S3DE procedure, such as the water steam bubbling rate, extraction solvent volume, sample weight and S3DE time, were optimized. The standard addition approach was essential to obtain accurate measurements by minimizing matrix effects. Good linearity (R 2 ≥ 0.9887) and good repeatability (RSDs ≤ 10.35%, n = 5) for 16 analytes in spiked standard analyte samples were achieved. With the S3DE/GC-MS method, seventy-six volatile compounds from jujube extract were identified and the content of 16 compounds was measured. The results were similar to those from simultaneous distillation extraction. The developed method was simple, fast, effective, sensitive, and provided an overall profile of the volatile components in jujube extract. Thus, this method can be used to determine the volatile components of extracts. Graphical abstract The diagram of steam distillation/drop-by-drop extraction device.
Enko, Jolanta; Gliszczyńska-Świgło, Anna
2015-01-01
Products containing natural additives, including antioxidants, are usually perceived by consumers as safer than those with synthetic ones. Natural antioxidants, besides having a preservative activity, may exert beneficial health effects. Interactions between antioxidants may significantly change their antioxidant activity, thus in designing functional foods or food/cosmetic ingredients knowledge about the type of interactions could be useful. In the present study, the interactions between ascorbic acid (AA; vitamin C) and different black and green tea extracts and the influence on their antioxidant activities were investigated. The antioxidant activities of tea extracts and their mixtures with AA prepared in several different weight ratios were measured using the trolox equivalent antioxidant capacity (TEAC), 1,1-diphenyl-2-picrylhydrazyl (DPPH), and ferric-reducing antioxidant power (FRAP) methods. The type of interaction was determined by interaction indexes and isobolograms. It was found that the weight ratio of extracts to AA significantly influenced the antioxidant activity of a mixture and the type of interaction between these components. The weight ratio of tea extract to AA can cause the change of interaction, e.g. from antagonism to additivism or from additivism to synergism. The observed differences in the type of interactions were probably also a result of different extracts' polyphenol composition and content. The type of interaction may also be affected by the medium in which extracts and AA interact, especially its pH and the solvent used. To obtain the best antioxidant effect, all these factors should be taken into account during the design of a tea extract-AA mixture.
Evaluation of extraction protocols for anti-diabetic phytochemical substances from medicinal plants.
Okoduwa, Stanley Irobekhian Reuben; Umar, Ismaila A; James, Dorcas B; Inuwa, Hajara M; Habila, James D
2016-12-15
To examine the efficacy of three extraction techniques: Soxhlet-extraction (SE), cold-maceration (CM) and microwave-assisted-extraction (MAE) using 80% methanol as solvent. The study was performed on each of 50 g of Vernonia amygdalina (VA) and Occimum gratissimum (OG) leaves respectively. The percentage yield, duration of extraction, volume of solvent used, qualitative and quantitative phytoconstituents present was compared. The biological activities (hypoglycemic effect) were investigated using albino wistar rat model of diabetes mellitus ( n = 36) with a combined dose (1:1) of the two plants leaf extracts (250 mg/kg b.w.) from the three methods. The extracts were administered orally, once daily for 21 d. In this report, the percentage VA extract yield from MAE was highest (20.9% ± 1.05%) within 39 min using 250 mL of solvent, when compared to the CM (14.35% ± 0.28%) within 4320 min using 900 mL of solvent and SE (15.75% ± 0.71%) within 265 min using 500 mL of solvent. The percentage differences in OG extract yield between: MAE vs SE was 41.05%; MAE vs CM was 46.81% and SE vs CM was 9.77%. The qualitative chemical analysis of the two plants showed no difference in the various phytoconstituents tested, but differs quantitatively in the amount of the individual phytoconstituents, as MAE had significantly high yield ( P > 0.05) on phenolics, saponins and tannins. SE technique gave significantly high yield ( P > 0.05) on alkaloid, while CM gave significant high yield on flavonoids. The extracts from CM exhibited a significantly ( P > 0.05) better hypoglycemic activity within the first 14-d of treatment (43.3% ± 3.62%) when compared to MAE (36.5% ± 0.08%) and SE methods (33.3% ± 1.60%). However, the percentage hypoglycemic activity, 21 d post-treatment with 250 mg/kg b.w. extract from MAE was 72.6% ± 1.03% and it was more comparable to 10 mg/kg b.w. glibenclamide treated group (75.0% ± 0.73%), unlike the SE (69.5% ± 0.71%) and CM (69.1% ± 1.03%). CM technique produces extract with better hypoglycemic activity, whereas; MAE is a better option for high yield of phytoconstituents using less solvent within a short time.
Evaluation of extraction protocols for anti-diabetic phytochemical substances from medicinal plants
Okoduwa, Stanley Irobekhian Reuben; Umar, Ismaila A; James, Dorcas B; Inuwa, Hajara M; Habila, James D
2016-01-01
AIM To examine the efficacy of three extraction techniques: Soxhlet-extraction (SE), cold-maceration (CM) and microwave-assisted-extraction (MAE) using 80% methanol as solvent. METHODS The study was performed on each of 50 g of Vernonia amygdalina (VA) and Occimum gratissimum (OG) leaves respectively. The percentage yield, duration of extraction, volume of solvent used, qualitative and quantitative phytoconstituents present was compared. The biological activities (hypoglycemic effect) were investigated using albino wistar rat model of diabetes mellitus (n = 36) with a combined dose (1:1) of the two plants leaf extracts (250 mg/kg b.w.) from the three methods. The extracts were administered orally, once daily for 21 d. RESULTS In this report, the percentage VA extract yield from MAE was highest (20.9% ± 1.05%) within 39 min using 250 mL of solvent, when compared to the CM (14.35% ± 0.28%) within 4320 min using 900 mL of solvent and SE (15.75% ± 0.71%) within 265 min using 500 mL of solvent. The percentage differences in OG extract yield between: MAE vs SE was 41.05%; MAE vs CM was 46.81% and SE vs CM was 9.77%. The qualitative chemical analysis of the two plants showed no difference in the various phytoconstituents tested, but differs quantitatively in the amount of the individual phytoconstituents, as MAE had significantly high yield (P > 0.05) on phenolics, saponins and tannins. SE technique gave significantly high yield (P > 0.05) on alkaloid, while CM gave significant high yield on flavonoids. The extracts from CM exhibited a significantly (P > 0.05) better hypoglycemic activity within the first 14-d of treatment (43.3% ± 3.62%) when compared to MAE (36.5% ± 0.08%) and SE methods (33.3% ± 1.60%). However, the percentage hypoglycemic activity, 21 d post-treatment with 250 mg/kg b.w. extract from MAE was 72.6% ± 1.03% and it was more comparable to 10 mg/kg b.w. glibenclamide treated group (75.0% ± 0.73%), unlike the SE (69.5% ± 0.71%) and CM (69.1% ± 1.03%). CONCLUSION CM technique produces extract with better hypoglycemic activity, whereas; MAE is a better option for high yield of phytoconstituents using less solvent within a short time. PMID:28031778
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexova, J.; Sirova, M.; Rais, J.
2008-07-01
Within the framework of the ARTIST project of total fuel retreatment with ecological mixtures of solvents and extractants containing only C, H, O, and N atoms, a process segment of extraction of {sup 137}Cs from acidic stream was developed. The process with 25,27-Bis(1-octyloxy)calix[4]arene-crown- 6, DOC[4]C6, dissolved at its 0.01 M concentration in a mixture of 90 vol % 1-octanol and 10% dihexyl octanamide, DHOA was proposed as a viable variant due to its good multicycle performance, even with irradiated solvent, and due to the good chemical stability of the chosen combination of solvent mixture. (authors)
Self-immobilization of poly(methyloctylsiloxane) on high-performance liquid chromatographic silica.
Collins, Kenneth E; Bottoli, Carla B G; Vigna, Camila R M; Bachmann, Stefan; Albert, Klaus; Collins, Carol H
2004-03-12
Poly(methyloctylsiloxane) (PMOS) was deposited on HPLC silica by a solvent evaporation procedure and this material was then extracted, using a good solvent for the PMOS, after different time periods, to remove unretained liquid polymer. Solvent extraction data reveal changes which occur at ambient temperature as a function of the time interval between particle loading and extraction. The quantity of PMOS remaining on the silica after extraction, as determined by elemental analysis for carbon, is attributed to strongly adsorbed polymer. This phenomenon is termed self-immobilization. Solid-state 29Si NMR spectra indicate the formation of a silicon species with a different chemical shift than the original PMOS. These new signals are attributed to a combination of different adsorbed and chemically bonded groups.
Nhien, Le Cao; Long, Nguyen Van Duc; Kim, Sangyong; Lee, Moonyong
2017-01-01
Lignocellulosic biomass is one of the most promising alternatives for replacing mineral resources to overcome global warming, which has become the most important environmental issue in recent years. Furfural was listed by the National Renewable Energy Laboratory as one of the top 30 potential chemicals arising from biomass. However, the current production of furfural is energy intensive and uses inefficient technology. Thus, a hybrid purification process that combines extraction and distillation to produce furfural from lignocellulosic biomass was considered and investigated in detail to improve the process efficiency. This effective hybrid process depends on the extracting solvent, which was selected based on a comprehensive procedure that ranged from solvent screening to complete process design. Various solvents were first evaluated in terms of their extraction ability. Then, the most promising solvents were selected to study the separation feasibility. Eventually, processes that used the three best solvents (toluene, benzene, and butyl chloride) were designed and optimized in detail using Aspen Plus. Sustainability analysis was performed to evaluate these processes in terms of their energy requirements, total annual costs (TAC), and carbon dioxide (CO 2 ) emissions. The results showed that butyl chloride was the most suitable solvent for the hybrid furfural process because it could save 44.7% of the TAC while reducing the CO 2 emissions by 45.5% compared to the toluene process. In comparison with the traditional purification process using distillation, this suggested hybrid extraction/distillation process can save up to 19.2% of the TAC and reduce 58.3% total annual CO 2 emissions. Furthermore, a sensitivity analysis of the feed composition and its effect on the performance of the proposed hybrid system was conducted. Butyl chloride was found to be the most suitable solvent for the hybrid extraction/distillation process of furfural production. The proposed hybrid sequence was more favorable than the traditional distillation process when the methanol fraction of the feed stream was <3% and more benefit could be obtained when that fraction decreased.
Zaghdoudi, Khalil; Pontvianne, Steve; Framboisier, Xavier; Achard, Mathilde; Kudaibergenova, Rabiga; Ayadi-Trabelsi, Malika; Kalthoum-Cherif, Jamila; Vanderesse, Régis; Frochot, Céline; Guiavarc'h, Yann
2015-10-01
Extraction of carotenoids from biological matrices and quantifications remains a difficult task. Accelerated solvent extraction was used as an efficient extraction process for carotenoids extraction from three fruits cultivated in Tunisia: kaki (Diospyros kaki L.), peach (Prunus persica L.) and apricot (Prunus armeniaca L.). Based on a design of experiment (DoE) approach, and using a binary solvent consisting of methanol and tetrahydrofuran, we could identify the best extraction conditions as being 40°C, 20:80 (v:v) methanol/tetrahydrofuran and 5 min of extraction time. Surprisingly and likely due to the high extraction pressure used (103 bars), these conditions appeared to be the best ones both for extracting xanthophylls such as lutein, zeaxanthin or β-cryptoxanthin and carotenes such as β-carotene, which present quite different polarities. Twelve surface responses were generated for lutein, zeaxanthin, β-cryptoxanthin and β-carotene in kaki, peach and apricot. Further LC-MS analysis allowed comparisons in carotenoids profiles between the fruits. Copyright © 2015 Elsevier Ltd. All rights reserved.
Chikushi, Hiroaki; Fujii, Yuka; Toda, Kei
2012-09-21
In this work, a method for measuring polychlorinated biphenyls (PCBs) in contaminated solid waste was investigated. This waste includes paper that is used in electric transformers to insulate electric components. The PCBs in paper sample were extracted by supercritical fluid extraction and analyzed by gas chromatography-electron capture detection. The recoveries with this method (84-101%) were much higher than those with conventional water extraction (0.08-14%), and were comparable to those with conventional organic solvent extraction. Limit of detection was 0.0074 mg kg(-1) and measurable up to 2.5 mg kg(-1) for 0.5 g of paper sample. Data for real insulation paper by the proposed method agreed well with those by the conventional organic solvent extraction. Extraction from wood and concrete was also investigated and good performance was obtained as well as for paper samples. The supercritical fluid extraction is simpler, faster, and greener than conventional organic solvent extraction. Copyright © 2012 Elsevier B.V. All rights reserved.
Stefan, Amy R; Dockery, Christopher R; Nieuwland, Alexander A; Roberson, Samantha N; Baguley, Brittany M; Hendrix, James E; Morgan, Stephen L
2009-08-01
The extraction and separation of dyes present on textile fibers offers the possibility of enhanced discrimination between forensic trace fiber evidence. An automated liquid sample handling workstation was programmed to deliver varying solvent combinations to acid-dyed nylon samples, and the resulting extracts were analyzed by an ultraviolet/visible microplate reader to evaluate extraction efficiencies at different experimental conditions. Combinatorial experiments using three-component mixture designs varied three solvents (water, pyridine, and aqueous ammonia) and were employed at different extraction temperatures for various extraction durations. The extraction efficiency as a function of the three solvents (pyridine/ammonia/water) was modeled and used to define optimum conditions for the extraction of three subclasses of acid dyes (anthraquinone, azo, and metal complex) from nylon fibers. The capillary electrophoresis analysis of acid dye extracts is demonstrated using an electrolyte solution of 15 mM ammonium acetate in acetonitrile/water (40:60, v/v) at pH 9.3. Excellent separations and discriminating diode array spectra are obtained even for dyes of similar color.
Stashenko, Elena E; Martínez, Jairo R; Cala, Mónica P; Durán, Diego C; Caballero, Deyanira
2013-01-01
Analytical methodologies based on GC and HPLC were developed for the separation and quantification of carnosic acid, ursolic acid, caffeic acid, p-coumaric acid, rosmarinic acid, apigenin, luteolin, quercetin, kaempferol, naringenin, and pinocembrin. These methods were used to characterize essential oils and extracts obtained by solvent (methanol) and by supercritical fluid (CO(2)) extraction from stems and leaves of Lippia (Verbenaceae family) aromatic plants (Lippia alba, Lippia origanoides, Lippia micromera, Lippia americana, Lippia graveolens, and Lippia citriodora). Supercritical CO(2) extraction isolated solely pinocembrin and narigenin from three L. origanoides chemotypes. Solvent extracts possessed a more varied composition that additionally included apigenin, quercetin, and luteolin. Solvent extraction afforded higher overall flavonoid yields from all species in comparison with supercritical CO(2) extraction. Pinocembrin was determined in L. origanoides extract at a concentration of 30 mg/g of plant material, which is more than ten times higher than the amount at which polyphenols are regularly found in aromatic plant extracts. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gadzała-Kopciuch, Renata; Cendrowski, Krzysztof; Cesarz, Anna; Kiełbasa, Paweł; Buszewski, Bogusław
2011-10-01
This study presents a selective method of isolation of zearalenone (ZON) and its metabolite, α-zearalenol (α-ZOL), in neoplastically changed human tissue by accelerated solvent and ultrasonic extractions using a mixture of acetonitrile/water (84/16% v/v) as the extraction solvent. Extraction effectiveness was determined through the selection of parameters (composition of the solvent mixture, temperature, pressure, number of cycles) with tissue contamination at the level of nanograms per gram. The produced acetonitrile/water extracts were purified, and analytes were enriched in columns packed with homemade molecularly imprinted polymers. Purified extracts were determined by liquid chromatography (LC) coupled with different detection systems (diode array detection--DAD and mass spectrometry--MS) involving the Ascentis RP-Amide as a stationary phase and gradient elution. The combination of UE-MISPE-LC (ultrasonic extraction--molecularly imprinted solid-phase extraction--liquid chromatography) produced high (R≈95-98%) and repeatable (RSD<3%) recovery values for ZON and α-ZOL. © The Author(s) 2011. This article is published with open access at Springerlink.com
Li, Na; Wu, Lijie; Nian, Li; Song, Ying; Lei, Lei; Yang, Xiao; Wang, Kun; Wang, Zhibing; Zhang, Liyuan; Zhang, Hanqi; Yu, Aimin; Zhang, Ziwei
2015-09-01
Non-polar solvent dynamic microwave assisted extraction was firstly applied to the treatment of high-fat soybean samples. In the dispersive micro-solid-phase extraction (D-µ-SPE), the herbicides in the high-fat extract were directly adsorbed on metal-organic frameworks MIL-101(Cr). The effects of several experimental parameters, including extraction solvent, microwave absorption medium, microwave power, volume and flow rate of extraction solvent, amount of MIL-101(Cr), and D-µ-SPE time, were investigated. At the optimal conditions, the limits of detection for the herbicides ranged from 1.56 to 2.00 μg kg(-1). The relative recoveries of the herbicides were in the range of 91.1-106.7%, and relative standard deviations were equal to or lower than 6.7%. The present method was simple, rapid and effective. A large amount of fat was also removed. This method was demonstrated to be suitable for treatment of high-fat samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Extractant composition including crown ether and calixarene extractants
Meikrantz, David H.; Todd, Terry A.; Riddle, Catherine L.; Law, Jack D.; Peterman, Dean R.; Mincher, Bruce J.; McGrath, Christopher A.; Baker, John D.
2009-04-28
An extractant composition comprising a mixed extractant solvent consisting of calix[4] arene-bis-(tert-octylbenzo)-crown-6 ("BOBCalixC6"), 4',4',(5')-di-(t-butyldicyclo-hexano)-18-crown-6 ("DtBu18C6"), and at least one modifier dissolved in a diluent. The DtBu18C6 may be present at from approximately 0.01M to approximately 0.4M, such as at from approximately 0.086 M to approximately 0.108 M. The modifier may be 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol ("Cs-7SB") and may be present at from approximately 0.01M to approximately 0.8M. In one embodiment, the mixed extractant solvent includes approximately 0.15M DtBu18C6, approximately 0.007M BOBCalixC6, and approximately 0.75M Cs-7SB modifier dissolved in an isoparaffinic hydrocarbon diluent. The extractant composition further comprises an aqueous phase. The mixed extractant solvent may be used to remove cesium and strontium from the aqueous phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harman-Ware, Anne E.; Sykes, Robert; Peter, Gary F.
Terpenoids, naturally occurring compounds derived from isoprene units present in pine oleoresin, are a valuable source of chemicals used in solvents, fragrances, flavors, and have shown potential use as a biofuel. This paper describes a method to extract and analyze the terpenoids present in loblolly pine saplings and pine lighter wood. Various extraction solvents were tested over different times and temperatures. Samples were analyzed by pyrolysis-molecular beam mass spectrometry before and after extractions to monitor the extraction efficiency. The pyrolysis studies indicated that the optimal extraction method used a 1:1 hexane/acetone solvent system at 22°C for 1 h. Extracts frommore » the hexane/acetone experiments were analyzed using a low thermal mass modular accelerated column heater for fast-GC/FID analysis. The most abundant terpenoids from the pine samples were quantified, using standard curves, and included the monoterpenes, α- and β-pinene, camphene, and δ-carene. Sesquiterpenes analyzed included caryophyllene, humulene, and α-bisabolene. In conclusion, diterpenoid resin acids were quantified in derivatized extractions, including pimaric, isopimaric, levopimaric, palustric, dehydroabietic, abietic, and neoabietic acids.« less
Adam, Fanny; Abert-Vian, Maryline; Peltier, Gilles; Chemat, Farid
2012-06-01
In order to comply with criteria of green chemistry concepts and sustainability, a new procedure has been performed for solvent-free ultrasound-assisted extraction (UAE) to extract lipids from fresh Nannochloropsis oculata biomass. Through response surface methodology (RSM) parameters affecting the oil recovery were optimized. Optimum conditions for oil extraction were estimated as follows: (i) 1000 W ultrasonic power, (ii) 30 min extraction time and (iii) biomass dry weight content at 5%. Yields were calculated by the total fatty acids methyl esters amounts analyzed by GC-FID-MS. The maximum oil recovery was around 0.21%. This value was compared with the one obtained with the conventional extraction method (Bligh and Dyer). Furthermore, effect of temperature on the yield was also investigated. The overall results show an innovative and effective extraction method adapted for microalgae oil recovery, without using solvent and with an enable scaling up. Copyright © 2012 Elsevier Ltd. All rights reserved.
Assessment of critical-fluid extractions in the process industries
NASA Technical Reports Server (NTRS)
1982-01-01
The potential for critical-fluid extraction as a separation process for improving the productive use of energy in the process industries is assessed. Critical-fluid extraction involves the use of fluids, normally gaseous at ambient conditions, as extraction solvents at temperatures and pressures around the critical point. Equilibrium and kinetic properties in this regime are very favorable for solvent applications, and generally allow major reductions in the energy requirements for separating and purifying chemical component of a mixture.
Barreto, Gabriele de Abreu; Costa, Samantha Serra; Silva, Rejane Pina Dantas; da Silva, Danielle Figuerêdo; Brandão, Hugo Neves; da Rocha, José Luiz Carneiro; Nunes, Silmar Baptista; Umsza-Guez, Marcelo Andres
2015-01-01
The aim of this study was to determine the best processing conditions to extract Brazilian green propolis using a supercritical extraction technology. For this purpose, the influence of different parameters was evaluated such as S/F (solvent mass in relation to solute mass), percentage of co-solvent (1 and 2% ethanol), temperature (40 and 50°C) and pressure (250, 350 and 400 bar) using supercritical carbon dioxide. The Global Yield Isotherms (GYIs) were obtained through the evaluation of the yield, and the chemical composition of the extracts was also obtained in relation to the total phenolic compounds, flavonoids, antioxidant activity and 3,5-diprenyl-4-hydroxicinnamic acid (Artepillin C) and acid 4-hydroxycinnamic (p-coumaric acid). The best results were identified at 50°C, 350 bar, 1% ethanol (co-solvent) and S/F of 110. These conditions, a content of 8.93±0.01 and 0.40±0.05 g/100 g of Artepillin C and p-coumaric acid, respectively, were identified indicating the efficiency of the extraction process. Despite of low yield of the process, the extracts obtained had high contents of relevant compounds, proving the viability of the process to obtain green propolis extracts with important biological applications due to the extracts composition. PMID:26252491
Liu, Qianjun; Chen, Di; Wu, Jiyuan; Yin, Guangcai; Lin, Qintie; Zhang, Min; Hu, Huawen
2018-04-01
A quick, easy, cheap, effective, rugged, and safe procedure was designed to extract pesticide residues from fruits and vegetables with a high percentage of water. It has not been used extensively for the extraction of phthalate esters from sediments, soils, and sludges. In this work, this procedure was combined with gas chromatography with mass spectrometry to determine 16 selected phthalate esters in soil. The extraction efficiency of the samples was improved by ultrasonic extraction and dissolution of the soil samples in ultra-pure water, which promoted the dispersion of the samples. Furthermore, we have simplified the extraction step and reduced the risk of organic solvent contamination by minimizing the use of organic solvents. Different extraction solvents and clean-up adsorbents were compared to optimize the procedure. Dichloromethane/n-hexane (1:1, v/v) and n-hexane/acetone (1:1, v/v) were selected as the extractants from the six extraction solvents tested. C18/primary secondary amine (1:1, m/m) was selected as the sorbent from the five clean-up adsorbents tested. The recoveries from the spiked soils ranged from 70.00 to 117.90% with relative standard deviation values of 0.67-4.62%. The proposed approach was satisfactorily applied for the determination of phthalate esters in 12 contaminated soil samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Chemistry of Separations Ligand Degradation by Organic Radical Cations
Mezyk, Stephen P.; Horne, Gregory P.; Mincher, Bruce J.; ...
2016-12-01
Solvent based extractions of used nuclear fuel use designer ligands in an organic phase extracting ligand complexed metal ions from an acidic aqueous phase. These extractions will be performed in highly radioactive environments, and the radiation chemistry of all these complexants and their diluents will play a major role in determining extraction efficiency, separation factors, and solvent-recycle longevity. Although there has been considerable effort in investigating ligand damage occurring in acidic water radiolysis conditions, only minimal fundamental kinetic and mechanistic data has been reported for the degradation of extraction ligands in the organic phase. Extraction solvent phases typically use normalmore » alkanes such as dodecane, TPH, and kerosene as diluents. The radiolysis of such diluents produce a mixture of radical cations (R •+), carbon-centered radicals (R •), solvated electrons, and molecular products such as hydrogen. Typically, the radical species will preferentially react with the dissolved oxygen present to produce relatively inert peroxyl radicals. This isolates the alkane radical cation species, R •+ as the major radiolytically-induced organic species that can react with, and degrade, extraction agents in this phase. Here we report on our recent studies of organic radical cation reactions with various ligands. Elucidating these parameters, and combining them with the known acidic aqueous phase chemistry, will allow a full, fundamental, understanding of the impact of radiation on solvent extraction based separation processes to be achieved.« less
Xiao, Ya-Bing; Zhang, Man; Wen, Hua-Wei
2014-04-01
A method for simultaneous determination of arsanilic, nitarsone and roxarsone (ROX) residues in foods of animal origin was developed by accelerated solvent extraction-liquid chromatography-atomic fluorescence spectrometry (ASE-LC-AFS). The ultrasound centrifugation extraction and accelerated solvent extraction were compared, and the accelerated solvent extraction conditions, namely the proportion of the extraction solvent, the extraction temperature, extraction time and extraction times, were optimized. The operating conditions of LC-AFS and the mobile phase were optimized. Under the optimal conditions, the calibration curves for ASA , NIT and ROX were linear over the concentration range of 0-2.0 mg x L(-1) and their correlation coefficients were 0.999 2-0.999 8. The detection limits of ASA, NIT and ROX were 2.4, 7.4 and 4.1 microg x L(-1) respectively. The average recoveries of ASA, NIT and ROX from two samples spiked at three levels of 0.5, 2, 5 mg x kg(-1) were in the ranges of 87.1%-93.2%, 85.2%-93.9%, and 84.2%-93.7% with RSDs of 1.4%-4.6%, 1.2%-4.2%, and 1.1%-4.5%, respectively. This method possesses the merits of convenience and good repeatability, and is a feasible method for analysis of ASA, NIT and ROX in foods of animal origin.