Hoogerstraete, Tom Vander; Onghena, Bieke; Binnemans, Koen
2013-01-01
Several fundamental extraction parameters such as the kinetics and loading were studied for a new type of metal solvent extraction system with ionic liquids. The binary mixture of the ionic liquid betainium bis(trifluoromethylsulfonyl)imide and water shows thermomorphic behavior with an upper critical solution temperature (UCST), which can be used to avoid the slower mass transfer due to the generally higher viscosity of ionic liquids. A less viscous homogeneous phase and mixing on a molecular scale are obtained when the mixture is heated up above 55 °C. The influence of the temperature, the heating and cooling times, were studied for the extraction of neodymium(III) with betaine. A plausible and equal extraction mechanism is proposed in bis(trifluoromethylsulfonyl)imide, nitrate, and chloride media. After stripping of the metals from the ionic liquid phase, a higher recovery of the ionic liquid was obtained by salting-out of the ionic liquid fraction lost by dissolution in the aqueous phase. The change of the upper critical solution temperature by the addition of HCl or betaine was investigated. In addition, the viscosity was measured below and above the UCST as a function of the temperature. PMID:24169434
Ionic Liquids as Extraction Media for Metal Ions
NASA Astrophysics Data System (ADS)
Hirayama, Naoki
In solvent extraction separation of metal ions, recently, many researchers have investigated possible use of hydrophobic ionic liquids as extraction media instead of organic solvents. Ionic liquids are salts of liquid state around room temperature and can act not only as solvents but also as ion-exchangers. Therefore, the extraction mechanism of metal ions into ionic liquids is complicated. This review presents current overview and perspective on evaluation of nature of hydrophobic ionic liquids as extraction media for metal ions.
NASA Astrophysics Data System (ADS)
Habibullah, Wilfred, Cecilia Devi
2016-11-01
This study compares the performance of ionic liquids to substitute conventional solvents (hexane, dichloromethane and methanol) to extract essential oil from Botryophora geniculate plant. Two different Ionic liquids ([C3MIM][Ac], [C4MIM][Ac]) with co-solvent diethyl ether were used in the ultrasonic-assisted extraction. The effect of various experimental conditions such as time, temperature and solvent were studied. Gas chromatography-mass spectroscopy (GC-MS) was used to analyze essential oils. The results showed that in ultrasonic-assisted extraction using ionic liquids as a solvent gave highest yield (9.5%) in 30 min at temperature 70°C. When using ultrasonic bath with hexane, dichloromethane and methanol, yields was (3.34%), (3.6%) and (3.81%) at 90 min, respectively were obtained. The ultrasonic-assisted extraction under optimal extraction conditions (time 30 min, temperature of 70°C) gave the best yield for the essential oil extraction.
Extraction of organic compounds with room temperature ionic liquids.
Poole, Colin F; Poole, Salwa K
2010-04-16
Room temperature ionic liquids are novel solvents with a rather specific blend of physical and solution properties that makes them of interest for applications in separation science. They are good solvents for a wide range of compounds in which they behave as polar solvents. Their physical properties of note that distinguish them from conventional organic solvents are a negligible vapor pressure, high thermal stability, and relatively high viscosity. They can form biphasic systems with water or low polarity organic solvents and gases suitable for use in liquid-liquid and gas-liquid partition systems. An analysis of partition coefficients for varied compounds in these systems allows characterization of solvent selectivity using the solvation parameter model, which together with spectroscopic studies of solvent effects on probe substances, results in a detailed picture of solvent behavior. These studies indicate that the solution properties of ionic liquids are similar to those of polar organic solvents. Practical applications of ionic liquids in sample preparation include extractive distillation, aqueous biphasic systems, liquid-liquid extraction, liquid-phase microextraction, supported liquid membrane extraction, matrix solvents for headspace analysis, and micellar extraction. The specific advantages and limitations of ionic liquids in these studies is discussed with a view to defining future uses and the need not to neglect the identification of new room temperature ionic liquids with physical and solution properties tailored to the needs of specific sample preparation techniques. The defining feature of the special nature of ionic liquids is not their solution or physical properties viewed separately but their unique combinations when taken together compared with traditional organic solvents. Copyright 2009 Elsevier B.V. All rights reserved.
Wu, Lijie; Song, Ying; Hu, Mingzhu; Xu, Xu; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming
2015-01-01
A novel, simple, and environmentally friendly pretreatment method, ionic liquid magnetic bar liquid-phase microextraction, was developed for the determination of sulfonamides in butter samples by high-performance liquid chromatography. The ionic liquid magnetic bar was prepared by inserting a stainless steel wire into the hollow of a hollow fiber and immobilizing ionic liquid in the micropores of the hollow fiber. In the extraction process, the ionic liquid magnetic bars were used to stir the mixture of sample and extraction solvent and enrich the sulfonamides in the mixture. After extraction, the analyte-adsorbed ionic liquid magnetic bars were readily isolated with a magnet from the extraction system. It is notable that the present method was environmentally friendly since water and only several microliters of ionic liquid were used in the whole extraction process. Several parameters affecting the extraction efficiency were investigated and optimized, including the type of ionic liquid, sample-to-extraction solvent ratio, the number of ionic liquid magnetic bars, extraction temperature, extraction time, salt concentration, stirring speed, pH of the extraction solvent, and desorption conditions. The recoveries were in the range of 73.25-103.85 % and the relative standard deviations were lower than 6.84 %. The experiment results indicated that the present method was effective for the extraction of sulfonamides in high-fat content samples.
Bhatt, Darshak R; Maheria, Kalpana C; Parikh, Jigisha K
2015-12-30
A simple and new approach in cloud point extraction (CPE) method was developed for removal of picric acid (PA) by the addition of N,N,N,N',N',N'-hexaethyl-ethane-1,2-diammonium dibromide ionic liquid (IL) in non-ionic surfactant Triton X-114 (TX-114). A significant increase in extraction efficiency was found upon the addition of dicationic ionic liquid (DIL) at both nearly neutral and high acidic pH. The effects of different operating parameters such as pH, temperature, time, concentration of surfactant, PA and DIL on extraction of PA were investigated and optimum conditions were established. The extraction mechanism was also proposed. A developed Langmuir isotherm was used to compute the feed surfactant concentration required for the removal of PA up to an extraction efficiency of 90%. The effects of temperature and concentration of surfactant on various thermodynamic parameters were examined. It was found that the values of ΔG° increased with temperature and decreased with surfactant concentration. The values of ΔH° and ΔS° increased with surfactant concentration. The developed approach for DIL mediated CPE has proved to be an efficient and green route for extraction of PA from water sample. Copyright © 2015 Elsevier B.V. All rights reserved.
Ding, Xueqin; Wang, Yuzhi; Wang, Ying; Pan, Qi; Chen, Jing; Huang, Yanhua; Xu, Kaijia
2015-02-25
A series of novel cationic functional hexaalkylguanidinium ionic liquids and anionic functional tetraalkylguanidinium ionic liquids have been synthesized, and then magnetic chitosan graphene oxide (MCGO) composite has been prepared and coated with these functional guanidinium ionic liquids to extract protein by magnetic solid-phase extraction. MCGO-functional guanidinium ionic liquid has been characterized by vibrating sample magnetometer, field emission scanning electron microscopy, X-ray diffraction spectrometer and Fourier transform infrared spectrometer. After extraction, the concentrations of protein were determined by measuring the absorbance at 278 nm using an ultra violet visible spectrophotometer. The advantages of MCGO-functional guanidinium ionic liquid in protein extraction were compared with magnetic chitosan, graphene oxide, MCGO and MCGO-ordinary imidazolium ionic liquid. The proposed method has been applied to extract trypsin, lysozyme, ovalbumin and bovine serum albumin. A comprehensive study of the adsorption conditions such as the concentration of protein, the amount of MCGO-functional guanidinium ionic liquid, the pH, the temperature and the extraction time were also presented. Moreover, the MCGO-functional guanidinium ionic liquid can be easily regenerated, and the extraction capacity was about 94% of the initial one after being used three times. Copyright © 2015 Elsevier B.V. All rights reserved.
Solvent extraction separation of Th-227 and Ac-225 in room temperature ionic liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, Jason R; Boll, Rose Ann; Dai, Sheng
2012-01-01
The solvent extractions of Th-227 and Ac-225 from the aqueous phase into ionic liquids (ILs) were investigated by using N,N,N ,N - tetraoctyldiglycolamide (TODGA) or di(2-ethylhexyl)phosphoric acid (HDEHP) as an extractant. Four ionic liquids, 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4mim][NTf2]), 1-butyl-3-methylimidazolium bis(perfluoroethanesulfonyl)imide ([C4mim][BETI]), 1-butyl-2,3-trimethyleneimidazolium (trifluoromethanesulfonyl)imide [BuI5][NTf2], and 1-benzyl pyridinium bis(trifluoromethanesulfonyl)imide ([PhCH2Py][NTf2]) were used as extraction solvents for separation of Th-227 and Ac-225 in this study. Excellent extraction efficiencies and selectivities were found for Th-227/Ac-225 when HDEHP was used as an extractant in these ionic liquids. The effects of different extractant concentrations in ionic liquids and acidities of the aqueous phase on extraction efficienciesmore » and selectivities of Th-227/Ac-225 are also presented in this article.« less
Rout, Alok; Kotlarska, Justyna; Dehaen, Wim; Binnemans, Koen
2013-10-21
The ionic liquids 1-hexyl-3-methylimidazolium bis(2-ethylhexyl)phosphate, [C6mim][DEHP], 1-hexyl-1-methylpyrrolidinium bis(2-ethylhexyl)phosphate, [C6mpyr][DEHP], and tetrabutylammonium bis(2-ethylhexyl)phosphate, [N4444][DEHP], were prepared and characterized using (1)H and (13)C NMR spectroscopy. The extraction behavior of neodymium(iii) from nitrate medium by these ionic liquids, diluted with the room temperature ionic liquids 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C6mim][NTf2], 1-hexyl-3-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, [C6mpyr][NTf2], and tributylmethylammonium bis(trifluoromethylsulfonyl)imide, [N1444][NTf2], was studied. The distribution ratio of neodymium(iii) was measured as a function of various parameters, such as pH, concentration of the ionic liquid extractant, nature of diluents, concentration of ionic liquid cations and nitrate anions in the aqueous phase. The extraction behavior was compared with that obtained for a solution of the molecular extractant bis(2-ethylhexyl)phosphoric acid (DEHPA) in an ionic liquid diluent. The extraction of neodymium(iii) in the ionic liquids [C6mim][DEHP] and [C6mpyr][DEHP] showed markedly different extraction properties in comparison with that of the quaternary ammonium analogue [N4444][DEHP], especially concerning the pH dependence of the extraction process. These results show that the extraction process can be tuned by the selection of the ionic liquid cation. The extraction experiments also included the trivalent rare-earth ions lanthanum(iii), cerium(iii), praseodymium(iii), ytterbium(iii) and yttrium(iii). Studies of the stripping behavior and the reusability of the ionic liquids were carried out, which indicate that the ionic liquids can be reused with no loss in activity.
Liu, Tingting; Sui, Xiaoyu; Li, Li; Zhang, Jie; Liang, Xin; Li, Wenjing; Zhang, Honglian; Fu, Shuang
2016-01-15
A new approach for ionic liquid based enzyme-assisted extraction (ILEAE) of chlorogenic acid (CGA) from Eucommia ulmoides is presented in which enzyme pretreatment was used in ionic liquids aqueous media to enhance extraction yield. For this purpose, the solubility of CGA and the activity of cellulase were investigated in eight 1-alkyl-3-methylimidazolium ionic liquids. Cellulase in 0.5 M [C6mim]Br aqueous solution was found to provide better performance in extraction. The factors of ILEAE procedures including extraction time, extraction phase pH, extraction temperatures and enzyme concentrations were investigated. Moreover, the novel developed approach offered advantages in term of yield and efficiency compared with other conventional extraction techniques. Scanning electronic microscopy of plant samples indicated that cellulase treated cell wall in ionic liquid solution was subjected to extract, which led to more efficient extraction by reducing mass transfer barrier. The proposed ILEAE method would develope a continuous process for enzyme-assisted extraction including enzyme incubation and solvent extraction process. In this research, we propose a novel view for enzyme-assisted extraction of plant active component, besides concentrating on enzyme facilitated cell wall degradation, focusing on improvement of bad permeability of ionic liquids solutions. Copyright © 2015 Elsevier B.V. All rights reserved.
Wu, Lijie; Song, Ying; Hu, Mingzhu; Yu, Cui; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming
2015-09-01
Microwave-assisted ionic-liquid-impregnated resin solid-liquid extraction was developed for the extraction of triazine herbicides, including cyanazine, metribuzin, desmetryn, secbumeton, terbumeton, terbuthylazine, dimethametryn, and dipropetryn in honey samples. The ionic-liquid-impregnated resin was prepared by immobilizing 1-hexyl-3-methylimidazolium hexafluorophosphate in the microspores of resin. The resin was used as the extraction adsorbent. The extraction and enrichment of analytes were performed in a single step. The extraction time can be shortened greatly with the help of microwave. The effects of experimental parameters including type of resin, type of ionic liquid, mass ratio of resin to ionic liquid, extraction time, amount of the impregnated resin, extraction temperature, salt concentration, and desorption conditions on the extraction efficiency, were investigated. A Box-Behnken design was applied to the selection of the experimental parameters. The recoveries were in the range of 80.1 to 103.4% and the relative standard deviations were lower than 6.8%. The present method was applied to the analysis of honey samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chen, Hsiu-Liang; Chang, Shuo-Kai; Lee, Chia-Ying; Chuang, Li-Lin; Wei, Guor-Tzo
2012-09-12
In this study, we employed the room-temperature ionic liquid [bmim][PF(6)] as both ion-pair agent and an extractant in the phase-transfer liquid-phase microextraction (PTLPME) of aqueous dyes. In the PTLPME method, a dye solution was added to the extraction solution, comprising a small amount of [bmim][PF(6)] in a relatively large amount of CH(2)Cl(2), which serves as the disperser solvent to an extraction solution. Following extraction, CH(2)Cl(2) was evaporated from the extractant, resulting in the extracted dyes being concentrated in a small volume of the ionic liquid phase to increase the enrichment factor. The enrichment factors of for the dye Methylene Blue, Neutral Red, and Methyl Red were approximately 500, 550 and 400, respectively; their detection limits were 0.014, 0.43, and 0.02 μg L(-1), respectively, with relative standard deviations of 4.72%, 4.20%, and 6.10%, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.
Oxidative desulfurization of fuel oil by pyridinium-based ionic liquids.
Zhao, Dishun; Wang, Yanan; Duan, Erhong
2009-10-28
In this work, an N-butyl-pyridinium-based ionic liquid [BPy]BF(4) was prepared. The effect of extraction desulfurization on model oil with thiophene and dibenzothiophene (DBT) was investigated. Ionic liquids and hydrogen peroxide (30%) were tested in extraction-oxidation desulfurization of model oil. The results show that the ionic liquid [BPy]BF(4) has a better desulfurization effect. The best technological conditions are: V(IL)/V(Oil) /V(H(2)O(2)) = 1:1:0.4, temperature 55 degrees C, the time 30 min. The ratio of desulfurization to thiophene and DBT reached 78.5% and 84.3% respectively, which is much higher than extraction desulfurization with simple ionic liquids. Under these conditions, the effect of desulfurization on gasoline was also investigated. The used ionic liquids can be recycled up to four times after regeneration.
Liu, Zhongling; Yu, Wei; Zhang, Hanqi; Gu, Fanbin; Jin, Xiangqun
2016-12-01
Salting-out homogenous extraction followed by ionic liquid/ionic liquid dispersive liquid-liquid micro-extraction system was developed and applied to the extraction of sulfonamides in blood. High-performance liquid chromatography was applied to the determination of the analytes. The blood sample was centrifuged to obtain the serum. After the proteins in the serum were removed in the presence of acetonitrile, ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate, dipotassium hydrogen phosphate, ionic liquid 1-Hexyl-3-methylimidazolium hexafluorophosphate were added into the resulting solution. After the resulting mixture was ultrasonically shaken and centrifuged, the precipitate was separated. The acetonitrile was added in the precipitate and the analytes were extracted into the acetonitrile phase. The parameters affecting the extraction efficiency, such as volume of ionic liquid, amount of dipotassium hydrogen phosphate, volume of dispersant, extraction time and temperature were investigated. The limits of detection of sulfamethizole (STZ), sulfachlorpyridazine (SCP), sulfamethoxazole (SMX) and Sulfisoxazole (SSZ) were 4.78, 3.99, 5.21 and 3.77μgL -1 , respectively. When the present method was applied to the analysis of real blood samples, the recoveries of analytes ranged from 90.0% to 113.0% and relative standard deviations were lower than 7.2%. Copyright © 2016 Elsevier B.V. All rights reserved.
Ma, Teng; Li, Zheng; Jia, Qiong; Zhou, Weihong
2016-07-01
We developed a CE and ultrasound-assisted temperature-controlled ionic liquid emulsification microextraction method for the determination of four parabens (methyl paraben, ethyl paraben, propyl paraben, and butyl paraben) in personal care products including mouthwash and toning lotion. In the proposed extraction procedure, ionic liquid (IL, 1-octyl-3-methylimidazolium hexafluorophosphate) was used as extraction solvent, moreover, no disperser solvent was needed. Parameters affecting the extraction efficiency including volume of IL, heating temperature, ultrasonic time, extraction time, sample pH, ionic strength, and centrifugation time were optimized. Under the optimized conditions, the method was found to be linear over the range of 3-500 ng/mL with coefficient of determination (R(2) ) in the range of 0.9990-0.9998. The LODs and LOQs for the four parabens were 0.45-0.72 ng/mL and 1.50-2.40 ng/mL, respectively. Intraday and interday precisions (RSDs, n = 5) were in the range of 5.4-6.8% and 7.0-8.7%, respectively. The recoveries of parabens at different spiked levels ranged from 71.9 to 119.2% with RSDs less than 9.5%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sarafraz-Yazdi, Ali; Vatani, Hossein
2013-07-26
Ionic liquid mediated sol-gel sorbents for head-space solid phase microextraction (HS-SPME) were developed for the extraction of benzene, toluene, ethylbenzene and o-xylene (BTEX) compounds from water samples in ultra-trace levels. The analytes were subsequently analyzed with gas chromatography coupled to flame ionization detector (GC-FID). Three different coating fibers were prepared including: poly(dimethylsiloxane) (PDMS), coating prepared from poly(dimethylsiloxane) in the presence of ionic liquid as co-solvent and conditioned at a higher temperature than decomposition temperature of ionic liquid (PDMS-IL-HT) and coating prepared from poly(dimethylsiloxane) in the presence of ionic liquid as co-solvent and conditioned at a lower temperature than decomposition temperature of ionic liquid (PDMS-IL-LT). Prepared fibers demonstrate many advantages such as high thermal and chemical stabilities due to the chemical bonding of the coatings with the silanol groups on the fused-silica surface fiber. These fibers have shown long life time up to 180 extractions. The scanning electron micrographs of the fibers surfaces revealed that addition of ionic liquid into the sol solution during the sol-gel process increases the fiber coating thickness, affects the form of fiber structure and also leaves high pores in the fiber surface that cause high surface area and therefore increases sample capacity of the fibers. The important parameters that affect the extraction efficiency are desorption temperature and time, sample volume, extraction temperature, extraction time, stirring speed and salt effect. Therefore these factors were investigated and optimized. Under optimal conditions, the dynamic linear range with PDMS-IL-HT, PDMS and PDMS-IL-LT fibers were 0.3-200,000; 50-200,000 and 170-150,000pgmL(-1) and the detection limits (S/N=3) were 0.1-2 and 15-200 and 50-500pgmL(-1), and limit of quantifications (S/N=10) were 0.3-8 and 50-700 and 170-1800, respectively. The relative standard deviations (RSD) for one fiber (repeatability) (n=5), were obtained from 3.1 up to 5.4% and between fibers or batch to batch (reproducibility) (n=3) in the range of 3.8-8.5% for three fibers. The developed method was successfully applied to the real water samples while the relative recovery percentages obtained for the spiked water samples at 20pgmL(-1) were from 91.2 to 103.3%. Copyright © 2013 Elsevier B.V. All rights reserved.
Favre-Réguillon, Alain; Draye, Micheline; Lebuzit, Gérard; Thomas, Sylvie; Foos, Jacques; Cote, Gérard; Guy, Alain
2004-06-17
Cloud point extraction (CPE) was used to extract and separate lanthanum(III) and gadolinium(III) nitrate from an aqueous solution. The methodology used is based on the formation of lanthanide(III)-8-hydroxyquinoline (8-HQ) complexes soluble in a micellar phase of non-ionic surfactant. The lanthanide(III) complexes are then extracted into the surfactant-rich phase at a temperature above the cloud point temperature (CPT). The structure of the non-ionic surfactant, and the chelating agent-metal molar ratio are identified as factors determining the extraction efficiency and selectivity. In an aqueous solution containing equimolar concentrations of La(III) and Gd(III), extraction efficiency for Gd(III) can reach 96% with a Gd(III)/La(III) selectivity higher than 30 using Triton X-114. Under those conditions, a Gd(III) decontamination factor of 50 is obtained.
Oxidative desulfurization of dibenzothiophene from model oil using ionic liquids as extracting agent
NASA Astrophysics Data System (ADS)
Taha, Mohd F.; Atikah, N.; Chong, F. K.; Shaharun, Maizatul S.
2012-09-01
The oxidative desulfurization of dibenzothiophene (DBT) from model oil (in n-dodecane) was carried out using ionic liquid as the extractant and catalyst, and hydrogen peroxide (H2O2) in combination with acetic acid (CH3COOH) and sulphuric acid (H2SO4) as the oxidant. The ionic liquids used were 1-butyl-3-methylimidazolium octyl sulphate ([Bmim][OcSO4]) and 1-butyl-3-methylimidazolium acetate ([Bmim][Ac]). The effect of the amounts of H2O2 on oxidative desulphurization of model oil was first investigated without the usage of ionic liquids at room temperature. The results indicate that greater amount of H2O2 give higher desulfurization and the maximum desulfurization in this study, i.e. 34 %, was occurred when the molar ratio of H2O2 to sulfur was 5:1. With the usage of ionic liquid and the molar ratio of 5:1 (H2O2:sulfur), the efficiency of DBT removal from model oil was increased significantly in terms of percent removal and removal time. Ionic liquid of [Bmim][OcSO4] performed better than [Bmim][Ac] with 72 % DBT removal. When molar ratio of H2O2 to sulphur was 5:1, volume ratio of ionic liquid to model oil was 1:1 and mixing time was 60 min at room temperature. The results indicate the potential of ionic liquids as the extractant and catalyst for oxidative desulfurization of hydrocarbon fuels.
Padró, Juan M; Pellegrino Vidal, Rocío B; Reta, Mario
2014-12-01
The partition coefficients, P IL/w, of several compounds, some of them of biological and pharmacological interest, between water and room-temperature ionic liquids based on the imidazolium, pyridinium, and phosphonium cations, namely 1-octyl-3-methylimidazolium hexafluorophosphate, N-octylpyridinium tetrafluorophosphate, trihexyl(tetradecyl)phosphonium chloride, trihexyl(tetradecyl)phosphonium bromide, trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)imide, and trihexyl(tetradecyl)phosphonium dicyanamide, were accurately measured. In this way, we extended our database of partition coefficients in room-temperature ionic liquids previously reported. We employed the solvation parameter model with different probe molecules (the training set) to elucidate the chemical interactions involved in the partition process and discussed the most relevant differences among the three types of ionic liquids. The multiparametric equations obtained with the aforementioned model were used to predict the partition coefficients for compounds (the test set) not present in the training set, most being of biological and pharmacological interest. An excellent agreement between calculated and experimental log P IL/w values was obtained. Thus, the obtained equations can be used to predict, a priori, the extraction efficiency for any compound using these ionic liquids as extraction solvents in liquid-liquid extractions.
Sheikhian, Leila; Bina, Sedigheh
2016-01-15
In this study, ionic liquid-modified silica was used as sorbent for simultaneous extraction and preconcentration of 3-indole butyric acid and 3-indole acetic acid in pea plants. The effect of some parameters such as pH and ionic strength of sample solution, amount of sorbent, flow rate of aqueous sample solution and eluent solution, concentration of eluent solution, and temperature were studied for each hormone solution. Percent extraction of 3-indole butyric acid and 3-indole acetic acid was strongly affected by pH of aqueous sample solution. Ionic strength of aqueous phase and temperature showed no serious effects on extraction efficiency of studied plant hormones. Obtained breakthrough volume was 200mL for each of studied hormones. Preconcentration factor for spectroscopic and chromatographic determination of studied hormones was 100 and 4.0×10(3) respectively. Each solid sorbent phase was reusable for almost 10 times of extraction/stripping procedure. Relative standard deviations of extraction/stripping processes of 3-indole butyric acid and 3-indole acetic acid were 2.79% and 3.66% respectively. The calculated limit of detections for IBA and IAA were 9.1×10(-2)mgL(-1) and 1.6×10(-1)mgL(-1) respectively. Copyright © 2015 Elsevier B.V. All rights reserved.
Gonzalez García, Eric; Ressmann, Anna K; Gaertner, Peter; Zirbs, Ronald; Mach, Robert L; Krska, Rudolf; Bica, Katharina; Brunner, Kurt
2014-12-01
To date, the extraction of genomic DNA is considered a bottleneck in the process of genetically modified organisms (GMOs) detection. Conventional DNA isolation methods are associated with long extraction times and multiple pipetting and centrifugation steps, which makes the entire procedure not only tedious and complicated but also prone to sample cross-contamination. In recent times, ionic liquids have emerged as innovative solvents for biomass processing, due to their outstanding properties for dissolution of biomass and biopolymers. In this study, a novel, easily applicable, and time-efficient method for the direct extraction of genomic DNA from biomass based on aqueous-ionic liquid solutions was developed. The straightforward protocol relies on extraction of maize in a 10 % solution of ionic liquids in aqueous phosphate buffer for 5 min at room temperature, followed by a denaturation step at 95 °C for 10 min and a simple filtration to remove residual biopolymers. A set of 22 ionic liquids was tested in a buffer system and 1-ethyl-3-methylimidazolium dimethylphosphate, as well as the environmentally benign choline formate, were identified as ideal candidates. With this strategy, the quality of the genomic DNA extracted was significantly improved and the extraction protocol was notably simplified compared with a well-established method.
Yang, Xiao; Zhang, Shaohua; Yu, Wei; Liu, Zhongling; Lei, Lei; Li, Na; Zhang, Hanqi; Yu, Yong
2014-06-01
An ionic liquid-anionic surfactant based aqueous two-phase extraction was developed and applied for the extraction of tetracycline, oxytetracycline and chloramphenicol in honey. The honey sample was mixed with Na2EDTA aqueous solution. The sodium dodecyl sulfate, ionic liquid 1-octyl-3-methylimidazolium bromide and sodium chloride were added in the mixture. After the resulting mixture was ultrasonically shaken and centrifuged, the aqueous two phase system was formed and analytes were extracted into the upper phase. The parameters affecting the extraction efficiency, such as the volume of ionic liquid, the category and amount of salts, sample pH value, extraction time and temperature were investigated. The limits of detection of tetracycline, oxytetracycline and chloramphenicol were 5.8, 8.2 and 4.2 μg kg(-1), respectively. When the present method was applied to the analysis of real honey samples, the recoveries of analytes ranged from 85.5 to 110.9% and relative standard deviations were lower than 6.9%. Copyright © 2014 Elsevier B.V. All rights reserved.
Pierson, Stephen A; Trujillo-Rodríguez, María J; Anderson, Jared L
2018-05-29
An ionic-liquid-based in situ dispersive liquid-liquid microextraction method coupled to headspace gas chromatography and mass spectrometry was developed for the rapid analysis of ultraviolet filters. The chemical structures of five ionic liquids were specifically designed to incorporate various functional groups for the favorable extraction of the target analytes. Extraction parameters including ionic liquid mass, molar ratio of ionic liquid to metathesis reagent, vortex time, ionic strength, pH, and total sample volume were studied and optimized. The effect of the headspace temperature and volume during the headspace sampling step was also evaluated to increase the sensitivity of the method. The optimized procedure is fast as it only required ∼7-10 min per extraction and allowed for multiple extractions to be performed simultaneously. In addition, the method exhibited high precision, good linearity, and low limits of detection for six ultraviolet filters in aqueous samples. The developed method was applied to both pool and lake water samples attaining acceptable relative recovery values. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Deng, Ning; Li, Min; Zhao, Lijie; Lu, Chengfei; de Rooy, Sergio L.; Warner, Isiah M.
2011-01-01
A hydrophobic magnetic room temperature ionic liquid (MRTIL), trihexyltetradecylphosphonium tetrachloroferrate(III) ([3C6PC14][FeCl4]), was synthesized from trihexyltetradecylphosphonium chloride and FeCl3·6H2O. This MRTIL was investigated as a possible separation agent for solvent extraction of phenolic compounds from aqueous solution. Due to its strong paramagnetism, [3C6PC14][FeCl4] responds to an external neodymium magnet, which was employed in the design of a novel magnetic extraction technique. The conditions for extraction, including extraction time, volume ratio between MRTIL and aqueous phase, pH of aqueous solution, and structures of phenolic compounds were investigated and optimized. The magnetic extraction of phenols achieved equilibrium in 20 min and the phenolic compounds were found to have higher distribution ratios under acidic conditions. In addition, it was observed that phenols containing a greater number of chlorine or nitro substitutents exhibited higher distribution ratios. For example, the distribution ratio of phenol (DPh) was 107. In contrast, 3,5-dichlorophenol distribution ratio (D3,5-DCP) had a much higher value of 6372 under identical extraction conditions. When compared with four selected traditional non-magnetic room temperature ionic liquids, our [3C6PC14][FeCl4] exhibited significantly higher extraction efficiency under the same experimental conditions used in this work. Pentachlorophenol, a major component in the contaminated soil sample obtained from a superfund site, was successfully extracted and removed by use of [3C6PC14][FeCl4] with high extraction efficiency. Pentachlorophenol concentration was dramatically reduced from 7.8 μg.mL−1 to 0.2 μg.mL−1 after the magnetic extraction by use of [3C6PC14][FeCl4]. PMID:21783320
Li, Chunying; Lu, Zhicheng; Zhao, Chunjian; Yang, Lei; Fu, Yujie; Shi, Kunming; He, Xin; Li, Zhao; Zu, Yuangang
2015-01-01
We evaluated an ionic-liquid-based ultrasound/microwave-assisted extraction method for the extraction of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one and 6-methoxy-benzoxazolin-2-one from etiolated maize seedlings. We performed single-factor and central composite rotatable design experiments to optimize the most important parameters influencing this technique. The best results were obtained using 1.00 M 1-octyl-3-methylimidazolium bromide as the extraction solvent, a 50°C extraction temperature, a 20:1 liquid/solid ratio (mL/g), a 21 min treatment time, 590 W microwave power, and 50 W fixed ultrasonic power. We performed a comparison between ionic-liquid-based ultrasound/microwave-assisted extraction and conventional homogenized extraction. Extraction yields of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one and 6-methoxy-benzoxazolin-2-one by the ionic-liquid-based ultrasound/microwave-assisted extraction method were 1.392 ± 0.051 and 0.205 ± 0.008 mg/g, respectively, which were correspondingly 1.46- and 1.32-fold higher than those obtained by conventional homogenized extraction. All the results show that the ionic-liquid-based ultrasound/microwave-assisted extraction method is therefore an efficient and credible method for the extraction of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one and 6-methoxy-benzoxazolin-2-one from maize seedlings. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Application of Ionic Liquids in Hydrometallurgy
Park, Jesik; Jung, Yeojin; Kusumah, Priyandi; Lee, Jinyoung; Kwon, Kyungjung; Lee, Churl Kyoung
2014-01-01
Ionic liquids, low temperature molten salts, have various advantages manifesting themselves as durable and environmentally friendly solvents. Their application is expanding into various fields including hydrometallurgy due to their unique properties such as non-volatility, inflammability, low toxicity, good ionic conductivity, and wide electrochemical potential window. This paper reviews previous literatures and our recent results adopting ionic liquids in extraction, synthesis and processing of metals with an emphasis on the electrolysis of active/light, rare earth, and platinum group metals. Because the research and development of ionic liquids in this area are still emerging, various, more fundamental approaches are expected to popularize ionic liquids in the metal manufacturing industry. PMID:25177864
Yang, Fan; Kubota, Fukiko; Baba, Yuzo; Kamiya, Noriho; Goto, Masahiro
2013-06-15
The recycling of rare earth metals from phosphor powders in waste fluorescent lamps by solvent extraction using ionic liquids was studied. Acid leaching of rare earth metals from the waste phosphor powder was examined first. Yttrium (Y) and europium (Eu) dissolved readily in the acid solution; however, the leaching of other rare earth metals required substantial energy input. Ionization of target rare earth metals from the waste phosphor powders into the leach solution was critical for their successful recovery. As a high temperature was required for the complete leaching of all rare earth metals, ionic liquids, for which vapor pressure is negligible, were used as an alternative extracting phase to the conventional organic diluent. An extractant, N, N-dioctyldiglycol amic acid (DODGAA), which was recently developed, showed a high affinity for rare earth metal ions in liquid-liquid extraction although a conventional commercial phosphonic extractant did not. An effective recovery of the rare earth metals, Y, Eu, La and Ce, from the metal impurities, Fe, Al and Zn, was achieved from the acidic leach solution of phosphor powders using an ionic liquid containing DODGAA as novel extractant system. Copyright © 2013 Elsevier B.V. All rights reserved.
Room temperature electrodeposition of actinides from ionic solutions
Hatchett, David W.; Czerwinski, Kenneth R.; Droessler, Janelle; Kinyanjui, John
2017-04-25
Uranic and transuranic metals and metal oxides are first dissolved in ozone compositions. The resulting solution in ozone can be further dissolved in ionic liquids to form a second solution. The metals in the second solution are then electrochemically deposited from the second solutions as room temperature ionic liquid (RTIL), tri-methyl-n-butyl ammonium n-bis(trifluoromethansulfonylimide) [Me.sub.3N.sup.nBu][TFSI] providing an alternative non-aqueous system for the extraction and reclamation of actinides from reprocessed fuel materials. Deposition of U metal is achieved using TFSI complexes of U(III) and U(IV) containing the anion common to the RTIL. TFSI complexes of uranium were produced to ensure solubility of the species in the ionic liquid. The methods provide a first measure of the thermodynamic properties of U metal deposition using Uranium complexes with different oxidation states from RTIL solution at room temperature.
Song, Ying; Wu, Lijie; Lu, Chunmei; Li, Na; Hu, Mingzhu; Wang, Ziming
2014-12-01
An easy, quick, and green method, microwave-assisted liquid-liquid microextraction based on solidification of ionic liquid, was first developed and applied to the extraction of sulfonamides in environmental water samples. 1-Ethy-3-methylimidazolium hexafluorophosphate, which is a solid-state ionic liquid at room temperature, was used as extraction solvent in the present method. After microwave irradiation for 90 s, the solid-state ionic liquid was melted into liquid phase and used to finish the extraction of the analytes. The ionic liquid and sample matrix can be separated by freezing and centrifuging. Several experimental parameters, including amount of extraction solvent, microwave power and irradiation time, pH of sample solution, and ionic strength, were investigated and optimized. Under the optimum experimental conditions, good linearity was observed in the range of 2.00-400.00 μg/L with the correlation coefficients ranging from 0.9995 to 0.9999. The limits of detection for sulfathiazole, sulfachlorpyridazine, sulfamethoxazole, and sulfaphenazole were 0.39, 0.33, 0.62, and 0.85 μg/L, respectively. When the present method was applied to the analysis of environmental water samples, the recoveries of the analytes ranged from 75.09 to 115.78% and relative standard deviations were lower than 11.89%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yang, Jinjuan; Wei, Hongmin; Teng, Xiane; Zhang, Hanqi; Shi, Yuhua
2014-01-01
Ionic liquids have attracted much attention as an extraction solvent instead of traditional organic solvent in single-drop microextraction. However, non-volatile ionic liquids are difficult to couple with gas chromatography. Thus, the following injection system for the determination of organic compounds is described. To establish an environmentally friendly, simple, and effective extraction method for preparation and analysis of the essential oil from aromatic plants. The dynamic ultrasonic nebulisation extraction was coupled with headspace ionic liquid-based single-drop microextraction(UNE-HS/IL/SDME)for the extraction of essential oils from Forsythia suspense fruits. After 13 min of extraction for 50 mg sample, the extracts in ionic liquid were evaporated rapidly in the gas chromatography injector through a thermal desorption unit (5 s). The traditional extraction method was carried out for comparative study. The optimum conditions were: 3 μL of 1-methyl-3-octylimidazolium hexafluorophosphate was selected as the extraction solvent, the sample amount was 50 mg, the flow rate of purging gas was 200 mL/min, the extraction time was 13 min, the injection volume was 2 μL, and the thermal desorption temperature and time were 240 °C and 5 s respectively. Comparing with hydrodistillation (HD), the proposed method was environment friendly and efficient. The proposed method is environmentally friendly, time saving, with high efficiency and low consumption. It would extend the application range of the HS/SDME and would be useful especially for aromatic plants analysis. Copyright © 2013 John Wiley & Sons, Ltd.
L'Hocine, Lamia; Pitre, Mélanie
2016-03-01
A D-optimal design was constructed to optimize allergen extraction efficiency simultaneously from roasted, non-roasted, defatted, and non-defatted almond, hazelnut, peanut, and pistachio flours using three non-denaturing aqueous (phosphate, borate, and carbonate) buffers at various conditions of ionic strength, buffer-to-protein ratio, extraction temperature, and extraction duration. Statistical analysis showed that roasting and non-defatting significantly lowered protein recovery for all nuts. Increasing the temperature and the buffer-to-protein ratio during extraction significantly increased protein recovery, whereas increasing the extraction time had no significant impact. The impact of the three buffers on protein recovery varied significantly among the nuts. Depending on the extraction conditions, protein recovery varied from 19% to 95% for peanut, 31% to 73% for almond, 17% to 64% for pistachio, and 27% to 88% for hazelnut. A modulation by the buffer type and ionic strength of protein and immunoglobuline E binding profiles of extracts was evidenced, where high protein recovery levels did not always correlate with high immunoreactivity. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Pan, Ru; Shao, Dejia; Qi, Xueyong; Wu, Yun; Fu, Wenyan; Ge, Yanru; Fu, Haizhen
2013-01-01
The effective method of ionic liquid-based aqueous two-phase extraction, which involves ionic liquid (IL) (1-butyl-3-methyllimidazolium chloride, [C4mim]Cl) and inorganic salt (K2HPO4) coupled with high-performance liquid chromatography (HPLC), has been used to extract trace tilmicosin in real water samples which were passed through a 0.45 μm filter. The effects of the different types of salts, the concentration of K2HPO4 and of ILs, the pH value and temperature of the systems on the extraction efficiencies have all been investigated. Under the optimum conditions, the average extraction efficiency is up to 95.8%. This method was feasible when applied to the analysis of tilmicosin in real water samples within the range 0.5-40 μg mL(-1). The limit of detection was found to be 0.05 μg mL(-1). The recovery rate of tilmicosin was 92.0-99.0% from the real water samples by the proposed method. This process is suggested to have important applications for the extraction of tilmicosin.
Beiraghi, Asadollah; Shokri, Masood; Seidi, Shahram; Godajdar, Bijan Mombani
2015-01-09
A new centrifuge-less dispersive liquid-liquid microextraction technique based on application of magnetomotive room temperature dicationic ionic liquid followed by electrothermal atomic absorption spectrometry (ETAAS) was developed for preconcentration and determination of trace amount of gold and silver in water and ore samples, for the first time. Magnetic ionic liquids not only have the excellent properties of ionic liquids but also exhibit strong response to an external magnetic field. These properties provide more advantages and potential application prospects for magnetic ionic liquids than conventional ones in the fields of extraction processes. In this work, thio-Michler's ketone (TMK) was used as chelating agent to form Ag/Au-TMK complexes. Several important factors affecting extraction efficiency including extraction time, rate of vortex agitator, pH of sample solution, concentration of the chelating agent, volume of ionic liquid as well as effects of interfering species were investigated and optimized. Under the optimal conditions, the limits of detection (LOD) were 3.2 and 7.3ngL(-1) with the preconcentration factors of 245 and 240 for Au and Ag, respectively. The precision values (RSD%, n=7) were 5.3% and 5.8% at the concentration level of 0.05μgL(-1) for Au and Ag, respectively. The relative recoveries for the spiked samples were in the acceptable range of 96-104.5%. The results demonstrated that except Hg(2+), no remarkable interferences are created by other various ions in the determination of Au and Ag, so that the tolerance limits (WIon/WAu or Ag) of major cations and anions were in the range of 250-1000. The validated method was successfully applied for the analysis of Au and Ag in some water and ore samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Novel applications of ionic liquids in materials processing
NASA Astrophysics Data System (ADS)
Reddy, Ramana G.
2009-05-01
Ionic liquids are mixtures of organic and inorganic salts which are liquids at room temperature. Several potential applications of ionic liquids in the field of materials processing are electrowinning and electrodeposition of metals and alloys, electrolysis of active metals at low temperature, liquid-liquid extraction of metals. Results using 1-butyl-3-methylimidazolium chloride with AlCl3 at low temperatures yielded high purity aluminium deposits (>99.9% pure) and current efficiencies >98%. Titanium and aluminium were co-deposited with/without the addition of TiCl4 with up to 27 wt% Ti in the deposit with current efficiencies in the range of 78-85 %. Certain ionic liquids are potential replacements for thermal oils and molten salts as heat transfer fluids in solar energy applications due to high thermal stability, very low corrosivity and substantial sensible heat retentivity. The calculated storage densities for several chloride and fluoride ionic liquids are in the range of 160-210 MJ/m3. A 3-D mathematical model was developed to simulate the large scale electrowinning of aluminium. Since ionic liquids processing results in their low energy consumption, low pollutant emissions many more materials processing applications are expected in future.
An, Jiwoo; Rahn, Kira L; Anderson, Jared L
2017-05-15
A headspace single drop microextraction (HS-SDME) method and a dispersive liquid-liquid microextraction (DLLME) method were developed using two tetrachloromanganate ([MnCl 4 2- ])-based magnetic ionic liquids (MIL) as extraction solvents for the determination of twelve aromatic compounds, including four polyaromatic hydrocarbons, by reversed phase high-performance liquid chromatography (HPLC). The analytical performance of the developed HS-SDME method was compared to the DLLME approach employing the same MILs. In the HS-SDME approach, the magnetic field generated by the magnet was exploited to suspend the MIL solvent from the tip of a rod magnet. The utilization of MILs in HS-SDME resulted in a highly stable microdroplet under elevated temperatures and long extraction times, overcoming a common challenge encountered in traditional SDME approaches of droplet instability. The low UV absorbance of the [MnCl 4 2- ]-based MILs permitted direct analysis of the analyte enriched extraction solvent by HPLC. In HS-SDME, the effects of ionic strength of the sample solution, temperature of the extraction system, extraction time, stir rate, and headspace volume on extraction efficiencies were examined. Coefficients of determination (R 2 ) ranged from 0.994 to 0.999 and limits of detection (LODs) varied from 0.04 to 1.0μgL -1 with relative recoveries from lake water ranging from 70.2% to 109.6%. For the DLLME method, parameters including disperser solvent type and volume, ionic strength of the sample solution, mass of extraction solvent, and extraction time were studied and optimized. Coefficients of determination for the DLLME method varied from 0.997 to 0.999 with LODs ranging from 0.05 to 1.0μgL -1 . Relative recoveries from lake water samples ranged from 68.7% to 104.5%. Overall, the DLLME approach permitted faster extraction times and higher enrichment factors for analytes with low vapor pressure whereas the HS-SDME approach exhibited better extraction efficiencies for analytes with relatively higher vapor pressure. Copyright © 2017 Elsevier B.V. All rights reserved.
Jiang, Yuehuang; Tang, Tingting; Cao, Zhen; Shi, Guoyue; Zhou, Tianshu
2015-06-01
A hydroxyl-functionalized ionic liquid, 1-hydroxyethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, was employed in an improved dispersive liquid-phase microextraction method coupled with ultra high performance liquid chromatography for the enrichment and determination of three estrogens and bisphenol A in environmental water samples. The introduced hydroxyl group acted as the H-bond acceptor that dispersed the ionic liquid effectively in the aqueous phase without dispersive solvent or external force. Fourier transform infrared spectroscopy indicated that the hydroxyl group of the cation of the ionic liquid enhanced the combination of extractant and analytes through the formation of hydrogen bonds. The improvement of the extraction efficiency compared with that with the use of alkyl ionic liquid was proved by a comparison study. The main parameters including volume of extractant, temperature, pH, and extraction time were investigated. The calibration curves were linear in the range of 5.0-1000 μg/L for estrone, estradiol, and bisphenol A, and 10.0-1000 μg/L for estriol. The detection limits were in the range of 1.7-3.4 μg/L. The extraction efficiency was evaluated by enrichment factor that were between 85 and 129. The proposed method was proved to be simple, low cost, and environmentally friendly for the determination of the four endocrine disruptors in environmental water samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Zaizhi; Gu, Huiyan; Yang, Lei
2015-10-23
Ionic liquids/lithium salts solvent system was successfully introduced into the separation technique for the preparation of two coumarins (aesculin and aesculetin) from Cortex fraxini. Ionic liquids/lithium salts based microwave irradiation pretreatment followed by ultrasound-microwave synergy extraction (ILSMP-UMSE) procedure was developed and optimized for the sufficient extraction of these two analytes. Several variables which can potentially influence the extraction yields, including pretreatment time and temperature, [C4mim]Br concentration, LiAc content, ultrasound-microwave synergy extraction (UMSE) time, liquid-solid ratio, and UMSE power were optimized by Plackett-Burman design. Among seven variables, UMSE time, liquid-solid ratio, and UMSE power were the statistically significant variables and these three factors were further optimized by Box-Behnken design to predict optimal extraction conditions and find out operability ranges with maximum extraction yields. Under optimum operating conditions, ILSMP-UMSE showed higher extraction yields of two target compounds than those obtained by reference extraction solvents. Method validation studies also evidenced that ILSMP-UMSE is credible for the preparation of two coumarins from Cortex fraxini. This study is indicative of the proposed procedure that has huge application prospects for the preparation of natural products from plant materials. Copyright © 2015 Elsevier B.V. All rights reserved.
Hydrophobic ionic liquids for quantitative bacterial cell lysis with subsequent DNA quantification.
Fuchs-Telka, Sabine; Fister, Susanne; Mester, Patrick-Julian; Wagner, Martin; Rossmanith, Peter
2017-02-01
DNA is one of the most frequently analyzed molecules in the life sciences. In this article we describe a simple and fast protocol for quantitative DNA isolation from bacteria based on hydrophobic ionic liquid supported cell lysis at elevated temperatures (120-150 °C) for subsequent PCR-based analysis. From a set of five hydrophobic ionic liquids, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide was identified as the most suitable for quantitative cell lysis and DNA extraction because of limited quantitative PCR inhibition by the aqueous eluate as well as no detectable DNA uptake. The newly developed method was able to efficiently lyse Gram-negative bacterial cells, whereas Gram-positive cells were protected by their thick cell wall. The performance of the final protocol resulted in quantitative DNA extraction efficiencies for Gram-negative bacteria similar to those obtained with a commercial kit, whereas the number of handling steps, and especially the time required, was dramatically reduced. Graphical Abstract After careful evaluation of five hydrophobic ionic liquids, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([BMPyr + ][Ntf 2 - ]) was identified as the most suitable ionic liquid for quantitative cell lysis and DNA extraction. When used for Gram-negative bacteria, the protocol presented is simple and very fast and achieves DNA extraction efficiencies similar to those obtained with a commercial kit. ddH 2 O double-distilled water, qPCR quantitative PCR.
Ding, Xueqin; Li, Li; Wang, Yuzhi; Chen, Jing; Huang, Yanhua; Xu, Kaijia
2014-12-01
A series of novel tetramethylguanidinium ionic liquids and hexaalkylguanidinium ionic liquids have been synthesized based on 1,1,3,3-tetramethylguanidine. The structures of the ionic liquids were confirmed by (1)H NMR spectroscopy and mass spectrometry. A green guanidinium ionic liquid based microwave-assisted extraction method has been developed with these guanidinium ionic liquids for the effective extraction of Praeruptorin A from Radix peucedani. After extraction, reversed-phase high-performance liquid chromatography with UV detection was employed for the analysis of Praeruptorin A. Several significant operating parameters were systematically optimized by single-factor and L9 (3(4)) orthogonal array experiments. The amount of Praeruptorin A extracted by [1,1,3,3-tetramethylguanidine]CH2CH(OH)COOH is the highest, reaching 11.05 ± 0.13 mg/g. Guanidinium ionic liquid based microwave-assisted extraction presents unique advantages in Praeruptorin A extraction compared with guanidinium ionic liquid based maceration extraction, guanidinium ionic liquid based heat reflux extraction and guanidinium ionic liquid based ultrasound-assisted extraction. The precision, stability, and repeatability of the process were investigated. The mechanisms of guanidinium ionic liquid based microwave-assisted extraction were researched by scanning electron microscopy and IR spectroscopy. All the results show that guanidinium ionic liquid based microwave-assisted extraction has a huge potential in the extraction of bioactive compounds from complex samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Arain, Sadaf Sadia; Kazi, Tasneem Gul; Arain, Asma Jabeen; Afridi, Hassan Imran; Baig, Jameel Ahmed; Brahman, Kapil Dev; Naeemullah; Arain, Salma Aslam
2015-03-01
A new approach was developed for the preconcentration of cadmium (Cd) and nickel (Ni) in artificial saliva extract of dry snuff (brown and black) products using temperature-controlled ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction (TIL-UDLLμE) followed by electrothermal atomic absorption spectrometry (ETAAS). The Cd and Ni were complexed with ammonium pyrrolidinedithiocarbamate (APDC), extracted in ionic liquid drops, 1-butyl-3-methylimidazolium hexafluorophosphate [C4MIM][PF6]. The multivariate strategy was applied to estimate the optimum values of experimental variables influence the % recovery of analytes by TIL-UDLLμE method. At optimum experimental conditions, the limit of detection (3s) were 0.05 and 0.14 μg L-1 while relative standard deviations (% RSD) were 3.97 and 3.55 for Cd and Ni respectively. After extraction, the enhancement factors (EF) were 87 and 79 for Cd and Ni, respectively. The RSD for six replicates of 10 μg L-1 Cd and Ni were 3.97% and 3.55% respectively. To validate the proposed method, certified reference material (CRM) of Virginia tobacco leaves was analyzed, and the determined values of Cd and Ni were in good agreement with the certified values. The concentration of Cd and Ni in artificial saliva extracts corresponds to 39-52% and 21-32%, respectively, of the total contents of both elements in dry brown and black snuff products.
Błachnio, Karina
2010-01-01
Detergents commonly used for solubilization of membrane proteins may be ionic or non-ionic. Exposing membrane proteins to detergents, however, can adversely affect their native structure, which can be a major hindrance for functional studies. This is especially true for proteins with multiple transmembrane domains. The ProteoExtract Transmembrane Protein Extraction Kit (TM-PEK), offered by Merck, provides a detergent-free novel reagents to enable the mild and efficient extraction of proteins containing seven transmembrane domains, such as GPCRs (G-Protein Coupled Receptors) e.g.: Frizzled-4 and CELSR-3, from mammalian cells. The fraction enriched in transmembrane proteins using TM-PEK is directly compatible with enzyme assays, non-denaturing gel electrophoresis, 1- and 2-D SDS-PAGE, MS analysis, Western blotting, immunoprecipitation and ELISA. Unlike many alternatives, TM-PEK extraction procedure does not require sonication, extended rigorous vortexing, ultracentrifugation, or incubation of samples at elevated temperatures--thus minimizing the risk of post-extraction degradation or modifications.
Zhao, Chunjian; Lu, Zhicheng; He, Xin; Li, Zhao; Shi, Kunming; Yang, Lei; Fu, Yujie; Zu, Yuangang
2014-01-01
An ionic liquids based simultaneous ultrasonic and microwave assisted extraction (ILs-UMAE) method has been proposed for the extraction of rutin (RU), quercetin (QU), from velvetleaf leaves. The influential parameters of the ILs-UMAE were optimized by the single factor and the central composite design (CCD) experiments. A 2.00 M 1-butyl-3-methylimidazolium bromide ([C4mim]Br) was used as the experimental ionic liquid, extraction temperature 60°C, extraction time 12 min, liquid-solid ratio 32 mL/g, microwave power of 534 W, and a fixed ultrasonic power of 50 W. Compared to conventional heating reflux extraction (HRE), the RU and QU extraction yields obtained by ILs-UMAE were, respectively, 5.49 mg/g and 0.27 mg/g, which increased, respectively, 2.01-fold and 2.34-fold with the recoveries that were in the range of 97.62–102.36% for RU and 97.33–102.21% for QU with RSDs lower than 3.2% under the optimized UMAE conditions. In addition, the shorter extraction time was used in ILs-UMAE, compared with HRE. Therefore, ILs-UMAE was a rapid and an efficient method for the extraction of RU and QU from the leaves of velvetleaf. PMID:25243207
Khan, Sumaira; Soylak, Mustafa; Kazi, Tasneem Gul
2013-12-01
The current work develops a new green methodology for the separation/preconcentration of cadmium ions (Cd(2+)) using room temperature ionic liquid-dispersive liquid phase microextraction (RTIL-DLME) prior to analysis by flame atomic absorption spectrometry with microsample introduction system. Room temperature ionic liquids (RTIL) are considered "Green Solvents" for their thermally stable and non-volatile properties, here 1-butyl-3-methylimidazolium hexafluorophosphate [C4mim][PF6] was used as an extractant. The preconcentration of Cd(2+) in different waters and acid digested scalp hair samples were complexed with 1-(2-pyridylazo)-2-naphthol and extracted into the fine drops of RTILs. Some significant factors influencing the extraction efficiency of Cd(2+) and its subsequent determination, including pH, amount of ligand, volume of RTIL, dispersant solvent, sample volume, temperature, and incubation time were investigated in detail. The limit of detection and the enhancement factor under the optimal conditions were 0.05 μg/L and 50, respectively. The relative standard deviation of 100 μg/L Cd(2+) was 4.3 %. The validity of the proposed method was checked by determining Cd(2+) in certified reference material (TM-25.3 fortified water). The sufficient recovery (>98 %) of Cd(2+) with the certified value. The mean concentrations of Cd in lake water 13.2, waste water 15.7 and hair sample 16.8 μg/L, respectively and the developed method was applied satisfactorily to the preconcentration and determination of Cd(2+) in real samples.
Li, Zhenhan; Xia, Shanhong; Wang, Jinfen; Bian, Chao; Tong, Jianhua
2016-01-15
A novel method for determination of trace mercury in water is developed. The method is performed by extracting mercury firstly with ionic liquids (ILs) and then detecting the concentration of mercury in organic media with anodic stripping voltammetry. Liquid-liquid extraction of mercury(II) ions by four ionic liquids with N-octylpyridinium cations ([OPy](+)) was studied. N-octylpyridinium tetrafluoroborate and N-octylpyridinium trifluoromethylsulfonate were found to be efficient and selective extractant for mercury. Temperature controlled dispersive liquid phase microextraction (TC-DLPME) technique was utilized to improve the performance of preconcentration. After extraction, precipitated IL was diluted by acetonitrile buffer and mercury was detected by differential pulse stripping voltammetry (DPSV) with gold disc electrode. Mercury was enriched by 17 times while interfering ions were reduced by two orders of magnitude in the organic media under optimum condition. Sensitivity and selectivity for electrochemical determination of mercury were improved by using the proposed method. Tap, pond and waste water samples were analyzed with recoveries ranging from 81% to 107% and detection limit of 0.05 μg/L. Copyright © 2015 Elsevier B.V. All rights reserved.
Anthemidis, Aristidis N; Ioannou, Kallirroy-Ioanna G
2012-08-01
A novel, automatic on-line sequential injection dispersive liquid-liquid microextraction (SI-DLLME) method, based on 1-hexyl-3-methylimidazolium hexafluorophosphate ([Hmim][PF(6)]) ionic liquid as an extractant solvent was developed and demonstrated for trace thallium determination by flame atomic absorption spectrometry. The ionic liquid was on-line fully dispersed into the aqueous solution in a continuous flow format while the TlBr(4)(-) complex was easily migrated into the fine droplets of the extractant due to the huge contact area of them with the aqueous phase. Furthermore, the extractant was simply retained onto the surface of polyurethane foam packed into a microcolumn. No specific conditions like low temperature are required for extractant isolation. All analytical parameters of the proposed method were investigated and optimized. For 15 mL of sample solution, an enhancement factor of 290, a detection limit of 0.86 μg L(-1) and a precision (RSD) of 2.7% at 20.0 μg L(-1) Tl(I) concentration level, was obtained. The developed method was evaluated by analyzing certified reference materials while good recoveries from environmental and biological samples proved that present method was competitive in practical applications.
Bandforuzi, Samereh Ranjbar; Hadjmohammadi, Mohammad Reza
2018-08-03
The extraction of phthalate esters (PEs) from aqueous matrices using two-phase solvent bar microextraction by organic micellar phase was investigated. A short hollow fiber immobilized with reverse micelles of Brij 35 surfactant in 1-octanol was served as the solvent bar for microextraction. Experimental results show that the extraction efficiency were much higher using two-phase solvent bar microextraction based on non-ionic surfactant than conventional two-phase solvent bar microextraction because of a positive effect of surfactant-containing extraction phase in promoting the partition process by non-ionic intermolecular forces such as polar and hydrophobicity interactions. The nature of the extraction solvent, type and concentration of non-ionic surfactant, extraction time, sample pH, temperature, stirring rate and ionic strength were the effecting parameters which optimized to obtain the highest extraction recovery. Analysis of recovered analytes was carried out with high performance liquid chromatography coupled with ultraviolet detection (HPLC-UV). Under the optimum conditions, linearity was observed in the range of 1-800 ng mL -1 for dimethylphthalate (DMP) and 0.5-800 ng mL -1 for diethylphthalate (DEP) and di-n-butyl phthalate (DBP) with correlation determination values above 0.99 for them. The limits of detection and quantification were ranged from 0.012 to 0.03 ng mL -1 and 0.04-0.1 ng mL -1 , respectively. The ranges of intra-day and inter-day RSD (n = 3) at 20 ng mL -1 of PEs were 1.8-2.1% and 2.1-2.6%, respectively. Results showed that developed method can be a very powerful, innovative and promising sample preparation technique in PEs analysis from environmental and drinking water samples. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Brikner, Natalya; Lozano, Paulo C.
2012-11-01
Ionic liquid ion sources produce molecular ions from micro-tip emitters wetted with room-temperature molten salts. When a single ion polarity is extracted, counterions accumulate and generate electrochemical reactions that limit the source lifetime. The dynamics of double layer formation are reviewed and distal electrode contacts are introduced to resolve detrimental electrochemical decomposition effects at the micro-tip apex. By having the emitter follow the ionic liquid potential, operation can be achieved for an extended period of time with no apparent degradation of the material, indicating that electrochemistry can be curtailed and isolated to the upstream distal electrode.
Habib, Ullah; Cecilia, D Wilfred; Maizatul, S Shaharun
2017-06-08
Ionic liquids (ILs) based ultrasonic-assisted extract has been applied for the extraction of essential oil from Persicaria minor leaves. The effects of temperature, sonication time, and particle size of the plant material on the yield of essential oil were investigated. Among the different ILs employed, 1-ethyl-3-methylimidazolium acetate was the most effective, providing a 9.55% yield of the essential oil under optimum conditions (70 ℃, 25 min, IL:hexane ratio of 7:10 (v/v), particle size 60-80 mesh). The performance of 1-ethyl-3-methylimidazolium acetate in the extraction was attributed to its low viscosity and ability to disintegrate the structural matrix of the plant material. The ability of 1-ethyl-3-methylimidazolium acetate was also confirmed using the conductor like-screening model for realistic solvents. This research proves that ILs can be used to extract essential oils from lignocellulosic biomass.
Huang, Fangzhi; Berton, Paula; Lu, Chengfei; Siraj, Noureen; Wang, Chun; Magut, Paul K S; Warner, Isiah M
2014-09-01
A rapid liquid phase extraction employing a novel hydrophobic surfactant-based room temperature ionic liquid (RTIL), tetrabutylphosphonium dioctyl sulfosuccinate ([4C4 P][AOT]), coupled with capillary electrophoretic-UV (CE-UV) detection is developed for removal and determination of phenolic compounds. The long-carbon-chain RTIL used is sparingly soluble in most solvents and can be used to replace volatile organic solvents. This fact, in combination with functional-surfactant-anions, is proposed to reduce the interfacial energy of the two immiscible liquid phases, resulting in highly efficient extraction of analytes. Several parameters that influence the extraction efficiencies, such as extraction time, RTIL type, pH value, and ionic strength of aqueous solutions, were investigated. It was found that, under acidic conditions, most of the investigated phenols were extracted from aqueous solution into the RTIL phase within 12 min. Good linearity was observed over the concentration range of 0.1-80.0 μg/mL for all phenols investigated. The precision of this method, expressed as RSD, was determined to be within 3.4-5.3% range. The LODs (S/N = 3) of the method were in the range of 0.047-0.257 μg/mL. The proposed methodology was successfully applied to determination of phenols in real water samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Powell, D.B.; Palm, R.C.; MacKenzie, A.P.; Winton, J.R.
2009-01-01
The effects of temperature, ionic strength, and new cryopreservatives derived from polar ice bacteria were investigated to help accelerate the development of economical, live attenuated vaccines for aquaculture. Extracts of the extremophile Gelidibacter algens functioned very well as part of a lyophilization cryoprotectant formulation in a 15-week storage trial. The bacterial extract and trehalose additives resulted in significantly higher colony counts of columnaris bacteria (Flavobacterium columnare) compared to nonfat milk or physiological saline at all time points measured. The bacterial extract combined with trehalose appeared to enhance the relative efficiency of recovery and growth potential of columnaris in flask culture compared to saline, nonfat milk, or trehalose-only controls. Pre-lyophilization temperature treatments significantly affected F. columnare survival following rehydration. A 30-min exposure at 0 ??C resulted in a 10-fold increase in bacterial survival following rehydration compared to mid-range temperature treatments. The brief 30 and 35 ??C pre-lyophilization exposures appeared to be detrimental to the rehydration survival of the bacteria. The survival of F. columnare through the lyophilization process was also strongly affected by changes in ionic strength of the bacterial suspension. Changes in rehydration constituents were also found to be important in promoting increased survival and growth. As the sodium chloride concentration increased, the viability of rehydrated F. columnare decreased. ?? 2009 Elsevier Inc.
Vidal, Lorena; Psillakis, Elefteria; Domini, Claudia E; Grané, Nuria; Marken, Frank; Canals, Antonio
2007-02-12
A headspace single-drop microextraction (HS-SDME) procedure using room temperature ionic liquid and coupled to high-performance liquid chromatography capable of quantifying trace amounts of chlorobenzenes in environmental water samples is proposed. A Plackett-Burman design for screening was carried out in order to determine the significant experimental conditions affecting the HS-SDME process (namely drop volume, aqueous sample volume, stirring speed, ionic strength, extraction time and temperature), and then a central composite design was used to optimize the significant conditions. The optimum experimental conditions found from this statistical evaluation were: a 5 microL microdrop of 1-butyl-3-methylimidazolium hexafluorophosphate, exposed for 37 min to the headspace of a 10 mL aqueous sample placed in a 15 mL vial, stirred at 1580 rpm at room temperature and containing 30% (w/v) NaCl. The calculated calibration curves gave a high level of linearity for all target analytes with correlation coefficients ranging between 0.9981 and 0.9997. The repeatability of the proposed method, expressed as relative standard deviation, varied between 1.6 and 5.1% (n=5). The limits of detection ranged between 0.102 and 0.203 microg L(-1). Matrix effects upon extraction were evaluated by analysing spiked tap and river water as well as effluent water samples originating from a municipal wastewater treatment plant.
Yang, Qin; Wang, Yuzhi; Zhang, Hongmei; Xu, Kaijia; Wei, Xiaoxiao; Xu, Panli; Zhou, Yigang
2017-11-01
A novel magnetic extractant, PEG 4000 modified Fe 3 O 4 nanomaterial that coated with dianionic amino acid ionic liquid (Fe 3 O 4 @PEG@DAAAIL), was successfully synthesized and characterized. X-ray diffraction (XRD), transmission electron microscope (TEM), vibrating sample magnetometer (VSM), fourier transform infrared spectrometry (FT-IR), thermal gravimetric analysis (TGA) and zeta potentials were used to confirm that the novel nanocomposite was successfully synthesized. Subsequently, the prepared Fe 3 O 4 @PEG@DAAAIL nanocomposite was used as the extractant for trypsin coupled with magnetic solid-phase extraction (MSPE). The concentrations of trypsin in the supernatant were detected by UV-vis spectrophotometer at 278nm. The extraction ability turned out to be better than the other four kinds of extractants prepared in this work. Furthermore, the influence of a series of factors, such as extraction time and temperature, initial trypsin concentration, the value of pH and ionic strength, was systematically investigated. Under the optimal extraction condition, the extraction capacity for trypsin could reach up to 718.73mg/g, absolutely higher than that of other adsorbents reported. This satisfactory extraction capacity could be maintained unchangeable after at least eight days, and kept over 90% of initial extraction capacity after eight recycles. What's more, the activity of trypsin after extraction retained 92.29% of initial activity, verifying the biocompatibility of the prepared extractant. Finally, the developed Fe 3 O 4 @PEG@DAAAIL-MSPE method was successfully applied to the real sample analysis with satisfactory results. All of above proves the potential value of Fe 3 O 4 @PEG@DAAAIL-MSPE in the analysis of biomass. Copyright © 2017 Elsevier B.V. All rights reserved.
Solvent extraction of gold using ionic liquid based process
NASA Astrophysics Data System (ADS)
Makertihartha, I. G. B. N.; Zunita, Megawati; Rizki, Z.; Dharmawijaya, P. T.
2017-01-01
In decades, many research and mineral processing industries are using solvent extraction technology for metal ions separation. Solvent extraction technique has been used for the purification of precious metals such as Au and Pd, and base metals such as Cu, Zn and Cd. This process uses organic compounds as solvent. Organic solvents have some undesired properties i.e. toxic, volatile, excessive used, flammable, difficult to recycle, low reusability, low Au recovery, together with the problems related to the disposal of spent extractants and diluents, even the costs associated with these processes are relatively expensive. Therefore, a lot of research have boosted into the development of safe and environmentally friendly process for Au separation. Ionic liquids (ILs) are the potential alternative for gold extraction because they possess several desirable properties, such as a the ability to expanse temperature process up to 300°C, good solvent properties for a wide range of metal ions, high selectivity, low vapor pressures, stability up to 200°C, easy preparation, environmentally friendly (commonly called as "green solvent"), and relatively low cost. This review paper is focused in investigate of some ILs that have the potentials as solvent in extraction of Au from mineral/metal alloy at various conditions (pH, temperature, and pressure). Performances of ILs extraction of Au are studied in depth, i.e. structural relationship of ILs with capability to separate Au from metal ions aggregate. Optimal extraction conditon in order to gain high percent of Au in mineral processing is also investigated.
Wang, Huazi; Hu, Lu; Li, Wanzhen; Lu, Runhua; Zhang, Sanbing; Zhou, Wenfeng; Gao, Haixiang
2016-11-04
A pretreatment method using in-syringe dispersive liquid-liquid microextraction based on the direct solidification of ionic liquids before high performance liquid chromatography analysis was developed for the determination of benzoylurea insecticides (BUs) in honey samples. The hydrophobic ionic liquid [N 4444 ][PF 6 ], formed in situ by the hydrophilic ionic liquid [N 4444 ]Cl and the ion exchange reagent KPF 6 , was used to extract the target analytes. The entire extraction procedure was performed in a syringe. The extractant was solidified at room temperature and collected using a nylon membrane filter. This technique did not require a dispersive solvent, vortex mixer, ultrasound bath, or centrifugation. The parameters affecting the extraction efficiency were investigated through an experimental design. Under the optimal conditions, the limits of detection for the four BUs varied from 0.21 to 0.42μgL -1 in solution (2.1-4.2μgkg -1 in honey). Good linearities were obtained in the range of 2-300μgL -1 , with coefficients of determination greater than 0.999. The recoveries of the four BUs ranged from 80.94% to 84.59%. The intra-day (n=3) and inter-day (n=3) relative standard deviations were less than 5.08%. Finally, the proposed method was applied to the determination of BUs in commercial honey samples with satisfactory results. Copyright © 2016 Elsevier B.V. All rights reserved.
Merdivan, Melek; Pino, Verónica; Anderson, Jared L
2017-08-01
A benzyl-functionalized crosslinked polymeric ionic liquid (PIL), produced through the co-polymerization of the 1-vinylbenzyl-3-hexadecylimidazolium bis[(trifluoromethyl)sulfonyl]imide (VBHDIM-NTf 2 ) ionic liquid (IL) monomer and 1,12-di(3-vinylbenzylimidazolium)dodecane bis[(trifluoromethyl)sulfonyl]imide ((DVBIM) 2 C 12- 2NTf 2 ) IL crosslinker, was successfully used as a sorbent coating in headspace solid-phase microextraction (SPME) coupled to gas chromatography (GC) with flame-ionization detection (FID) to determine seven volatile polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. Optimum extraction conditions for the PAHs when using the novel sorbent include an extraction temperature of 50°C, an ionic strength content adjusted with 30% (w/v) NaCl in the aqueous sample, and an extraction time of 60 min. The extraction performance of the crosslinked PIL fiber was compared to the SPME commercial coating polydimethylsiloxane fiber. The calibration ranges of the studied PAHs were linear in the range of 0.02-20 µg L -1 for the crosslinked PIL fiber. The accuracy of the proposed method was demonstrated by examining the spiked recoveries of seven PAHs which produced values ranging from 67.2% to 130% (for river- and seawater samples), and precision values lower than 9.4% for a spiked level of 1 µg L -1 , and detection limits between 0.01 and 0.04 µg L -1 , which supports the sensitivity of the method using GC-FID.
Wei, Xiaoxiao; Wang, Yuzhi; Chen, Jing; Xu, Panli; Zhou, Yigang
2018-05-15
A novel magnetic solid-phase extraction (MSPE) method based on 1-hexyl-3-methyl imidazolium chloride ionic liquid (IL) modified magnetic Fe 3 O 4 nanoparticles, hydroxylated multiwall carbon nanotubes (MWCNTs-OH) and zeolitic imidazolate frameworks (ZIFs) nanocomposites (Fe 3 O 4 -MWCNTs-OH@ZIF-67@IL) were proposed and applied to extract α-chymotrypsin. The magnetic materials were synthesized successfully and characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), thermal gravimetric analysis (TGA), fourier transform infrared spectrometry (FT-IR), vibrating sample magnetometer (VSM) and zeta potentials. Subsequently, the UV-vis spectrophotometer at about 280 nm was utilized to quantitatively analyze the α-chymotrypsin concentration in the supernatant. Furthermore, single factor experiments revealed that the extraction capacity was influenced by initial α-chymotrypsin concentration, ionic strength, extraction time, extraction temperature and pH value. The extraction capacity could reach up to about 635 mg g -1 under the optimized conditions, absolutely higher than that of extraction for Ovalbumin (OVA), Bovine serum albumin (BSA) and Bovine hemoglobin (BHb). In addition, the regeneration studies showed Fe 3 O 4 -MWCNTs-OH@ZIF-67@IL particles could be reused several times and kept a high extraction capacity. Besides, the study of enzymatic activity also indicated that the activity of the extracted α-chymotrypsin was well maintained 93% of initial activity. What's more, the proposed method was successfully applied to extract α-chymotrypsin in porcine pancreas crude extract with satisfactory results. All of above conclusions highlight the great potential of the proposed Fe 3 O 4 -MWCNTs-OH@ZIF-67@IL-MSPE method in the analysis of biomolecules. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhou, Caihong; Tong, Shanshan; Chang, Yunxia; Jia, Qiong; Zhou, Weihong
2012-04-01
Ionic liquid (IL) based dispersive liquid-liquid microextraction (DLLME) with back-extraction coupled with capillary electrophoresis ultraviolet detection was developed to determine four phenolic compounds (bisphenol-A, β-naphthol, α-naphthol, 2, 4-dichlorophenol) in aqueous cosmetics. The developed method was used to preconcentrate and clean up the four phenolic compounds including two steps. The analytes were transferred into room temperature ionic liquid (1-octyl-3-methylimidazolium hexafluorophosphate, [C(8) MIM][PF(6) ]) rich-phase in the first step. In the second step, the analytes were back-extracted into the alkaline aqueous phase. The effects of extraction parameters, such as type and volume of extraction solvent, type and volume of disperser, extraction and centrifugal time, sample pH, salt addition, and concentration and volume of NaOH in back-extraction were investigated. Under the optimal experimental conditions, the preconcentration factors were 60.1 for bisphenol-A, 52.7 for β-naphthol, 49.2 for α-naphthol, and 18.0 for 2, 4-dichlorophenol. The limits of detection for bisphenol-A, β-naphthol, α-naphthol and 2, 4-dichlorophenol were 5, 5, 8, and 100 ng mL(-1), respectively. Four kinds of aqueous cosmetics including toner, soften lotion, make-up remover, and perfume were analyzed and yielded recoveries ranging from 81.6% to 119.4%. The main advantages of the proposed method are quick, easy, cheap, and effective. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Superbase-derived protic ionic liquid extractants for metal ion separation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, Jason R.; Dai, Sheng; Luo, Huimin
2014-04-19
Solvent extraction of La 3+ and Ba 2+ by an ionic liquid extractant in an imidazolium-based ionic liquid diluent was investigated. Seven protic ionic liquid extractants were examined and these protic ILs are based on five organic superbases and either 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octadione (Hfod) or 1,1,1,5,5,5-hexafluoroacetylacetone (Hhfac) -diketones as anion. For fod-based extractants, the extraction efficiencies and separation factors were found to be concentration dependent. The effects of aqueous phase acidity, extractant structure, and extractant concentration on separation properties of La 3+ and Ba 2+ are discussed in this paper.
Castro Grijalba, Alexander; Martinis, Estefanía M; Wuilloud, Rodolfo G
2017-03-15
A highly sensitive vortex assisted liquid-liquid microextraction (VA-LLME) method was developed for inorganic Se [Se(IV) and Se(VI)] speciation analysis in Allium and Brassica vegetables. Trihexyl(tetradecyl)phosphonium decanoate phosphonium ionic liquid (IL) was applied for the extraction of Se(IV)-ammonium pyrrolidine dithiocarbamate (APDC) complex followed by Se determination with electrothermal atomic absorption spectrometry. A complete optimization of the graphite furnace temperature program was developed for accurate determination of Se in the IL-enriched extracts and multivariate statistical optimization was performed to define the conditions for the highest extraction efficiency. Significant factors of IL-VA-LLME method were sample volume, extraction pH, extraction time and APDC concentration. High extraction efficiency (90%), a 100-fold preconcentration factor and a detection limit of 5.0ng/L were achieved. The high sensitivity obtained with preconcentration and the non-chromatographic separation of inorganic Se species in complex matrix samples such as garlic, onion, leek, broccoli and cauliflower, are the main advantages of IL-VA-LLME. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Arain, Mariam S.; Arain, Salma A.; Kazi, Tasneem G.; Afridi, Hassan I.; Ali, Jamshaid; Naeemulllah; Arain, Sadaf S.; Brahman, Kapil Dev; Mughal, Moina Akhtar
2015-02-01
A green and sensitive temperature controlled dispersive liquid-liquid microextraction (TIL-DLLME) methodology based on the application of ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate, [C4mim][PF6], as an extractant solvent was proposed for the preconcentration of trace levels of aluminium (Al3+) in scalp hair samples of Alzheimer's (AD) patients, prior to analyzing by flame atomic absorption spectrometry (FAAS). The Al3+ was complexed with 8-hydrooxyquinoline (oxine) (L1) and 3,5,7,2‧-4‧ pentahydroxy flavone (morin) (L2) separately and then extracted by IL at temperature (50 ± 2.0 °C). Some effective factors that influence the TIL-DLLME efficiency such as pH, ligands concentrations, volume of IL, ionic strength, and incubation time were investigated and optimized by multivariate analysis. In the optimum experimental conditions, the limit of detection (3 s) and enhancement factor were 0.56 μg L-1, 0.64 μg L-1 and 85, 73 for both ligands, respectively. The relative standard deviation (RSD) for six replicate determinations of 100 μg L-1 Al3+ complexed with oxine and morin were found to be 3.88% and 4.74%, respectively. The developed method was validated by the analysis of certified reference material of human hair (NCSZC81002).and applied satisfactorily to the determination of Al3+ in acid digested scalp hair samples of AD patients and healthy controls. The resulted data shows significant higher level in scalp hair samples of AD male patients with related to referents of same age and socioeconomic status.
Membrane contactor assisted extraction/reaction process employing ionic liquids
Lin, Yupo J [Naperville, IL; Snyder, Seth W [Lincolnwood, IL
2012-02-07
The present invention relates to a functionalized membrane contactor extraction/reaction system and method for extracting target species from multi-phase solutions utilizing ionic liquids. One preferred embodiment of the invented method and system relates to an extraction/reaction system wherein the ionic liquid extraction solutions act as both extraction solutions and reaction mediums, and allow simultaneous separation/reactions not possible with prior art technology.
Wu, Datong; Cai, Pengfei; Zhao, Xiaoyong; Kong, Yong; Pan, Yuanjiang
2018-01-01
Ionic liquids have been functionalized for modern applications. The functional ionic liquids are also called task-specific ionic liquids. Various task-specific ionic liquids with certain groups have been constructed and exploited widely in the field of separation. To take advantage of their properties in separation science, task-specific ionic liquids are generally used in techniques such as liquid-liquid extraction, solid-phase extraction, gas chromatography, high-performance liquid chromatography, and capillary electrophoresis. This review mainly covers original research papers published in the last five years, and we will focus on task-specific ionic liquids as the chiral selectors in chiral resolution and as extractant or sensor for biological samples and metal ion purification. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mohammadnezhad, Nasim; Matin, Amir Abbas; Samadi, Naser; Shomali, Ashkan; Valizadeh, Hassan
2017-01-01
Linear ionic liquid bonded to fused silica and its application as a solid-phase microextraction fiber for the extraction of bisphenol A (BPA) from water samples were studied. After optimization of microextraction conditions (15 mL sample volume, extraction time of 40 min, extraction temperature of 30 ± 1°C, 300 μL acetonitrile as the desorption solvent, and desorption time of 7 min), the fiber was used to extract BPA from packed mineral water, followed by HPLC-UV on an XDB-C18 column (150 × 4.6 mm id, 3.5 μm particle) with a mobile phase of acetonitrile-water (45 + 55%, v/v) and flow rate of 1 mL . min-1). A low LOD (0.20 μg . L-1) and good linearity (0.9977) in the calibration graph indicated that the proposed method was suitable for the determination of BPA.
Food grade microemulsion systems: canola oil/lecithin:n-propanol/water.
Abbasi, Soleiman; Radi, Mohsen
2016-03-01
In this study, the capability of a natural surfactant, lecithin, and the influence of ionic strength, pH, and temperature on some properties of a food grade microemulsion system were evaluated. For this purpose, the pseudoternary phase diagrams of canola oil/lecithin:n-propanol/water microemulsions in the presence of different salts (NaCl and CaCl2), ionic strengths, pHs, and temperatures were constructed. Our findings showed that the presence of salts slightly increased the W/O areas on the phase diagrams, whereas pH variation was not effective on the microemulsion formation. The expansion of microemulsion areas with temperature indicated the greater triglycerides solubilization capacity of lecithin based microemulsions at higher temperatures. These findings revealed the efficiency of lecithin-based microemulsion system for solubilization of triglycerides which can potentially be used for extraction of edible vegetable oils particularly canola oil. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gabrić, Beata; Sander, Aleksandra; Cvjetko Bubalo, Marina; Macut, Dejan
2013-01-01
Liquid-liquid extraction is an alternative method that can be used for desulfurization and denitrification of gasoline and diesel fuels. Recent approaches employ different ionic liquids as selective solvents, due to their general immiscibility with gasoline and diesel, negligible vapor pressure, and high selectivity to sulfur- and nitrogen-containing compounds. For that reason, five imidazolium-based ionic liquids and one pyridinium-based ionic liquid were selected for extraction of thiophene, dibenzothiophene, and pyridine from two model solutions. The influences of hydrodynamic conditions, mass ratio, and number of stages were investigated. Increasing the mass ratio of ionic liquid/model fuel and multistage extraction promotes the desulfurization and denitrification abilities of the examined ionic liquids. All selected ionic liquids can be reused and regenerated by means of vacuum evaporation.
Gabrić, Beata; Sander, Aleksandra; Cvjetko Bubalo, Marina; Macut, Dejan
2013-01-01
Liquid-liquid extraction is an alternative method that can be used for desulfurization and denitrification of gasoline and diesel fuels. Recent approaches employ different ionic liquids as selective solvents, due to their general immiscibility with gasoline and diesel, negligible vapor pressure, and high selectivity to sulfur- and nitrogen-containing compounds. For that reason, five imidazolium-based ionic liquids and one pyridinium-based ionic liquid were selected for extraction of thiophene, dibenzothiophene, and pyridine from two model solutions. The influences of hydrodynamic conditions, mass ratio, and number of stages were investigated. Increasing the mass ratio of ionic liquid/model fuel and multistage extraction promotes the desulfurization and denitrification abilities of the examined ionic liquids. All selected ionic liquids can be reused and regenerated by means of vacuum evaporation. PMID:23843736
NASA Astrophysics Data System (ADS)
Chu, Weijing; Yang, Junyou; Jiang, Qinghui; Li, Xin; Xin, Jiwu
2018-05-01
The quality of interface between the electron transport layer (ETL) and perovskite is very crucial to the photovoltaic performance of a flexible perovskite solar cell fabricated under low-temperature process. This work demonstrates a room temperature ionic liquid modification strategy to the interface between ZnO layer and MAPbI3 film for high performance flexible perovskite solar cells based on a PET substrate. [BMIM]BF4 ionic liquid modification can significantly improve the surface quality and wettability of the ZnO ETL, thus greatly increase the charge mobility of ZnO ETL and improve the crystalline of perovskite film based on it. Moreover, the dipolar polarization layer among the ZnO ETL with perovskite, built by modification, can adjust the energy level between the ZnO ETL and perovskite and facilitates the charge extraction. Therefore, an overall power conversion efficiency (PCE) of 12.1% have been achieved under standard illumination, it increases by 1.4 times of the flexible perovskite solar cells on a pristine ZnO ETL.
Rare Earth Extraction from NdFeB Magnet Using a Closed-Loop Acid Process.
Kitagawa, Jiro; Uemura, Ryohei
2017-08-14
There is considerable interest in extraction of rare earth elements from NdFeB magnets to enable recycling of these elements. In practical extraction methods using wet processes, the acid waste solution discharge is a problem that must be resolved to reduce the environmental impact of the process. Here, we present an encouraging demonstration of rare earth element extraction from a NdFeB magnet using a closed-loop hydrochloric acid (HCl)-based process. The extraction method is based on corrosion of the magnet in a pretreatment stage and a subsequent ionic liquid technique for Fe extraction from the HCl solution. The rare earth elements are then precipitated using oxalic acid. Triple extraction has been conducted and the recovery ratio of the rare earth elements from the solution is approximately 50% for each extraction process, as compared to almost 100% recovery when using a one-shot extraction process without the ionic liquid but with sufficient oxalic acid. Despite its reduced extraction efficiency, the proposed method with its small number of procedures at almost room temperature is still highly advantageous in terms of both cost and environmental friendliness. This study represents an initial step towards realization of a closed-loop acid process for recycling of rare earth elements.
Martinis, Estefanía M; Bertón, Paula; Olsina, Roberto A; Altamirano, Jorgelina C; Wuilloud, Rodolfo G
2009-08-15
A liquid-liquid extraction procedure (L-L) based on room temperature ionic liquid (RTIL) was developed for the preconcentration and determination of mercury in different water samples. The analyte was quantitatively extracted with 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim][PF(6)]) under the form of Hg-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Hg-5-Br-PADAP) complex. A volume of 500 microl of 9.0 mol L(-1) hydrochloric acid was used to back-extract the analyte from the RTIL phase into an aqueous media prior to its analysis by flow injection-cold vapor atomic absorption spectrometry (FI-CV-AAS). A preconcentration factor of 36 was achieved upon preconcentration of 20 mL of sample. The limit of detection (LOD) obtained under the optimal conditions was 2.3ngL(-1) and the relative standard deviation (RSD) for 10 replicates at 1 microg L(-1) Hg(2+) was 2.8%, calculated with peaks height. The method was successfully applied to the determination of mercury in river, sea, mineral and tap water samples and a certified reference material (CRM).
Ravelo-Pérez, Lidia M; Hernández-Borges, Javier; Asensio-Ramos, María; Rodríguez-Delgado, Miguel Angel
2009-10-23
This paper describes a dispersive liquid-liquid microextraction (DLLME) procedure using room temperature ionic liquids (RTILs) coupled to high-performance liquid chromatography with diode array detection capable of quantifying trace amounts of eight pesticides (i.e. thiophanate-methyl, carbofuran, carbaryl, tebuconazole, iprodione, oxyfluorfen, hexythiazox and fenazaquin) in bananas. Fruit samples were first homogenized and extracted (1g) with acetonitrile and after suitable evaporation and reconstitution of the extract in 10 mL of water, a DLLME procedure using 1-hexyl-3-methylimidazolium hexafluorophosphate ([C(6)MIM][PF(6)]) as extraction solvent was used. Experimental conditions affecting the DLLME procedure (sample pH, sodium chloride percentage, ionic liquid amount and volume of disperser solvent) were optimized by means of an experimental design. In order to determine the presence of a matrix effect, calibration curves for standards and fortified banana extracts (matrix matched calibration) were studied. Mean recovery values of the extraction of the pesticides from banana samples were in the range of 69-97% (except for thiophanate-methyl and carbofuran, which were 53-63%) with a relative standard deviation lower than 8.7% in all cases. Limits of detection achieved (0.320-4.66 microg/kg) were below the harmonized maximum residue limits established by the European Union (EU). The proposed method, was also applied to the analysis of this group of pesticides in nine banana samples taken from the local markets of the Canary Islands (Spain). To the best of our knowledge, this is the first application of RTILs as extraction solvents for DLLME of pesticides from samples different than water.
Sharma, Mukesh; Mondal, Dibyendu; Mukesh, Chandrakant; Prasad, Kamalesh
2013-10-15
Guar gum is a galactomannan extracted from the seed of the leguminous shrub Cyamopsis tetragonoloba. It was found to form a soft viscoelastic gel in 1-butyl-3-methylimidazolium chloride, an ionic liquid at an optimized concentration of 10%w/v. A nanocomposite gel of the gum with enhanced strength could be prepared with 0.2%w/v of multiwalled carbon nanotubes (MWCNTs) in the ionic liquid. When the gels thus prepared were subjected to surface fractures or bisected completely, they found to self-heal at room temperature without any external interventions. The self-healing process could be repeated several times. These viscoelastic gel systems showed thixotropic nature and recovery of the storage modulus with time for several cycles was observed upon rheological investigations. The interaction took place between ionic liquid, guar gum and MWCNT was studied by SEM, TEM, FT-IR, powder XRD and rheometry. The results suggested that, upon standing at room temperature development of electrostatic interactions and the van der Waals interactions among the ionic liquid molecules facilitated the formation of reversible noncovalent bonds and eventually activated the self-healing in the gel systems through appropriate chain entanglements. Copyright © 2013 Elsevier Ltd. All rights reserved.
Li, Dan; Qian, Yan; Tian, Yu-Jia; Yuan, Shi-Meng; Wei, Wei; Wang, Gang
2017-04-07
As new green solvents, ionic liquids (ILs) have been generally applied in the extraction and separation of natural product. In this study, microwave assisted extraction based on IL (IL-MAE) was firstly employed to extract total biflavonoids from Selaginella doederleinii . Based on single-factor experiment, microwave power (300-700 W), extract time (30-50 min) and extract temperature (40-60 °C) on total bioflavonoids and antioxidant activities of the extracts were further investigated by a Box-Behnken design of response surface methodology (RSM) selecting total bioflavonoids yields and IC 50 of radical scavenging as index. Besides antioxidant activity of the extract was evaluated by a 2,2-diphenyl-1-picrylhydarzyl (DPPH) and 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate (ABTS) radical scavenging assay, ferric reducing power assay and chelation of ferrous ions assay, and then anticaner activity was also researched against A549 cell line and 7721 cell line. The results illustrated that three factors and their interactions could be well suited for second-order polynomial models ( p < 0.05). Through process parameters, optimization of the extract (460 W, 40 min, and 45 °C) and detection of bioactivity, the yield of total bioflavonoids was 16.83 mg/g and IC 50 value was 56.24 μg/mL, respectively, indicating the extract has better anti-oxidation effect and antitumor activity. Furthermore, IL-MAE was the most efficient extracting method compared with MAE and Soxhlet extraction, which could improve extraction efficiency in a shorter time and at a lower temperature. In general, ILs-MAE was first adopted to establish a novel and green extraction process on the yields of total biflavonoids from S. doederleinii . In addition, the extract of containing biflavones showed potent antioxidant and anticancer capacity as a utilized valuable bioactive source for natural medicine.
Liang, Pei; Wang, Fang; Wan, Qin
2013-02-15
A highly efficient and environmentally friendly sample preparation method termed ionic liquid-based ultrasound-assisted emulsification microextraction (IL-USAEME) combined with high performance liquid chromatography has been developed for the determination of four fungicides (azoxystrobin, diethofencarb, pyrimethanil and kresoxim-methyl) in water samples. In this novel approach, ionic liquid (IL) was used as extraction solvent in place of the organic solvent used in conventional USAEME assay, and there is no need for using organic dispersive solvent which is typically required in the common dispersive liquid-liquid microextraction method. Various parameters that affect the extraction efficiency, such as the kind and volume of IL, ultrasound emulsification time, extraction temperature and salt addition were investigated and optimized. Under the optimum extraction condition, the linearities of calibration curves were in the range from 3 to 5000 ng mL(-1) for target analytes with the correlation coefficient higher than 0.9992. The enrichment factors and the limits of detection were in the range of 88-137 and 0.73-2.2 ng mL(-1), depending on the analytes. The environmental water samples were successfully analyzed using the proposed method, and the relative recoveries at fortified levels of 50 and 100 ng mL(-1) were in the range of 83.9%-116.2%. Copyright © 2012 Elsevier B.V. All rights reserved.
Ravelo-Pérez, Lidia M; Hernández-Borges, Javier; Herrera-Herrera, Antonio V; Rodríguez-Delgado, Miguel Angel
2009-12-01
Room temperature ionic liquids (RTILs) have been used as extraction solvents in dispersive liquid-liquid microextraction (DLLME) for the determination of eight multi-class pesticides (i.e. thiophanate-methyl, carbofuran, carbaryl, tebuconazole, iprodione, oxyfluorfen, hexythiazox, and fenazaquin) in table grapes and plums. The developed method involves the combination of DLLME and high-performance liquid chromatography with diode array detection. Samples were first homogenized and extracted with acetonitrile. After evaporation and reconstitution of the extract in water containing sodium chloride, a quick DLLME procedure that used the ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate ([C(6)MIM][PF(6)]) and methanol was developed. The RTIL dissolved in a very small volume of acetonitrile was directed injected in the chromatographic system. The comparison between the calibration curves obtained from standards and from spiked sample extracts (matrix-matched calibration) showed the existence of a strong matrix effect for most of the analyzed pesticides. A recovery study was also developed with five consecutive extractions of the two types of fruits spiked at three concentration levels. Mean recovery values were in the range of 72-100% for table grapes and 66-105% for plum samples (except for thiophanate-methyl and carbofuran, which were 64-75% and 58-66%, respectively). Limits of detection (LODs) were in the range 0.651-5.44 microg/kg for table grapes and 0.902-6.33 microg/kg for plums, representing LODs below the maximum residue limits (MRLs) established by the European Union in these fruits. The potential of the method was demonstrated by analyzing 12 commercial fruit samples (six of each type).
Zu, Ge; Zhang, Rongrui; Yang, Lei; Ma, Chunhui; Zu, Yuangang; Wang, Wenjie; Zhao, Chunjian
2012-01-01
Ionic liquid based, ultrasound-assisted extraction was successfully applied to the extraction of phenolcarboxylic acids, carnosic acid and rosmarinic acid, from Rosmarinus officinalis. Eight ionic liquids, with different cations and anions, were investigated in this work and [C8mim]Br was selected as the optimal solvent. Ultrasound extraction parameters, including soaking time, solid–liquid ratio, ultrasound power and time, and the number of extraction cycles, were discussed by single factor experiments and the main influence factors were optimized by response surface methodology. The proposed approach was demonstrated as having higher efficiency, shorter extraction time and as a new alternative for the extraction of carnosic acid and rosmarinic acid from R. officinalis compared with traditional reference extraction methods. Ionic liquids are considered to be green solvents, in the ultrasound-assisted extraction of key chemicals from medicinal plants, and show great potential. PMID:23109836
Ionic liquid solutions as extractive solvents for value-added compounds from biomass
Passos, Helena; Freire, Mara G.; Coutinho, João A. P.
2014-01-01
In the past few years, the number of studies regarding the application of ionic liquids (ILs) as alternative solvents to extract value-added compounds from biomass has been growing. Based on an extended compilation and analysis of the data hitherto reported, the main objective of this review is to provide an overview on the use of ILs and their mixtures with molecular solvents for the extraction of value-added compounds present in natural sources. The ILs (or IL solutions) investigated as solvents for the extraction of natural compounds, such as alkaloids, flavonoids, terpenoids, lipids, among others, are outlined. The extraction techniques employed, namely solid–liquid extraction, and microwave-assisted and ultrasound-assisted extractions, are emphasized and discussed in terms of extraction yields and purification factors. Furthermore, the evaluation of the IL chemical structure and the optimization of the process conditions (IL concentration, temperature, biomass–solvent ratio, etc.) are critically addressed. Major conclusions on the role of the ILs towards the extraction mechanisms and improved extraction yields are additionally provided. The isolation and recovery procedures of the value-added compounds are ascertained as well as some scattered strategies already reported for the IL solvent recovery and reusability. Finally, a critical analysis on the economic impact versus the extraction performance of IL-based methodologies was also carried out and is here presented and discussed. PMID:25516718
Ionic liquid solutions as extractive solvents for value-added compounds from biomass.
Passos, Helena; Freire, Mara G; Coutinho, João A P
2014-12-01
In the past few years, the number of studies regarding the application of ionic liquids (ILs) as alternative solvents to extract value-added compounds from biomass has been growing. Based on an extended compilation and analysis of the data hitherto reported, the main objective of this review is to provide an overview on the use of ILs and their mixtures with molecular solvents for the extraction of value-added compounds present in natural sources. The ILs (or IL solutions) investigated as solvents for the extraction of natural compounds, such as alkaloids, flavonoids, terpenoids, lipids, among others, are outlined. The extraction techniques employed, namely solid-liquid extraction, and microwave-assisted and ultrasound-assisted extractions, are emphasized and discussed in terms of extraction yields and purification factors. Furthermore, the evaluation of the IL chemical structure and the optimization of the process conditions (IL concentration, temperature, biomass-solvent ratio, etc.) are critically addressed. Major conclusions on the role of the ILs towards the extraction mechanisms and improved extraction yields are additionally provided. The isolation and recovery procedures of the value-added compounds are ascertained as well as some scattered strategies already reported for the IL solvent recovery and reusability. Finally, a critical analysis on the economic impact versus the extraction performance of IL-based methodologies was also carried out and is here presented and discussed.
Predictive model for ionic liquid extraction solvents for rare earth elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grabda, Mariusz; Oleszek, Sylwia; Institute of Environmental Engineering of the Polish Academy of Sciences, ul. M. Sklodowskiej-Curie 34, 41-819, Zabrze
2015-12-31
The purpose of our study was to select the most effective ionic liquid extraction solvents for dysprosium (III) fluoride using a theoretical approach. Conductor-like Screening Model for Real Solvents (COSMO-RS), based on quantum chemistry and the statistical thermodynamics of predefined DyF{sub 3}-ionic liquid systems, was applied to reach the target. Chemical potentials of the salt were predicted in 4,400 different ionic liquids. On the base of these predictions set of ionic liquids’ ions, manifesting significant decrease of the chemical potentials, were selected. Considering the calculated physicochemical properties (hydrophobicity, viscosity) of the ionic liquids containing these specific ions, the most effectivemore » extraction solvents for liquid-liquid extraction of DyF{sub 3} were proposed. The obtained results indicate that the COSMO-RS approach can be applied to quickly screen the affinity of any rare earth element for a large number of ionic liquid systems, before extensive experimental tests.« less
Hu, Lu; Zhang, Panjie; Shan, Wanyu; Wang, Xuan; Li, Songqing; Zhou, Wenfeng; Gao, Haixiang
2015-11-01
A novel dispersion liquid-liquid microextraction method based on the solidification of sedimentary ionic liquids (SSIL-DLLME), in which an in situ metathesis reaction forms an ionic liquid (IL) extraction phase, was developed to determine four pyrethroid insecticides (i.e., permethrin, cyhalothrin, fenpropathrin, and transfluthrin) in water followed by separation using high-performance liquid chromatography. In the developed method, in situ DLLME was used to enhance the extraction efficiency and yield. After centrifugation, the extraction solvent, tributyldodecylphosphonium hexafluorophosphate ([P44412][PF6]), was easily collected by solidification in the bottom of the tube. The effects of various experimental parameters, the quantity of tributyldodecylphosphonium bromide ([P44412]Br), the molar ratio of [P44412]Br to potassium hexafluorophosphate (KPF6), the ionic strength, the temperature of the sample solution, and the centrifugation time, were optimized using a Plackett-Burman design to identify the significant factors that affected the extraction efficiency. These significant factors were then optimized using a central composite design. Under the optimized conditions, the recoveries of the four pyrethroid insecticides at four spiked levels ranged from 87.1% to 101.7%, with relative standard deviations (RSDs) ranging from 0.1% to 5.5%. At concentration levels between 1 and 500 µg/L, good linearity was obtained, with coefficients of determination greater than 0.9995. The limits of detection (LODs) for the four pyrethroid insecticides were in the range of 0.71-1.54 µg/L. The developed method was then successfully used for the determination of pyrethroid insecticides in environmental samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Joshi, Manishkumar D; Ho, Tien D; Cole, William T S; Anderson, Jared L
2014-01-01
Crosslinked polymeric ionic liquid (PIL)-based sorbent coatings were employed in the extraction of 21 polychlorinated biphenyls (PCBs) from ocean water and bovine milk using solid-phase microextraction (SPME). The extraction temperature, time, and concentration of sodium chloride added to the matrix were optimized in order to determine the best extraction conditions for the extraction of PCBs. The analytical performance of the crosslinked PIL-based SPME fibers was compared with a commercial 7 µm polydimethylsiloxane (PDMS) fiber using gas chromatography (GC) employing an electron capture detector (ECD) and mass spectrometric detection (MS). Higher sensitivities for PCBs were achieved using PIL-based fibers when compared to PDMS fiber due to the incorporation of benzyl moieties into the PIL structures. The limits of detection (LOD) for all PCBs were determined to be in the low ng L(-1) range using the three studied coatings. Recovery studies were performed for PCBs in ocean water and bovine milk to validate the applicability of the current SPME method. © 2013 Published by Elsevier B.V.
Task-specific ionic liquid-assisted extraction and separation of astaxanthin from shrimp waste.
Bi, Wentao; Tian, Minglei; Zhou, Jun; Row, Kyung Ho
2010-08-15
Astaxanthin, as an outstanding antioxidant reagent, was successfully extracted from shrimp waste by the ionic liquids based ultrasonic-assisted extraction. Seven kinds of imidazolium ionic liquids with different cations and anions were investigated in this work and one task-specific ionic liquid in ethanol with 0.50molL(-1) was selected as the solvent. At the optimized ultrasonic extraction conditions, the extraction amount of astaxanthin increased 98% (92.7microg g(-1)) compared to the conventional method (46.7microg g(-1)). Furthermore, the extracted solution was isolated through the solid-phase extraction with a molecularly imprinted polymer sorbent. After loading the samples on molecularly imprinted polymer cartridge, the different washing and elution solvents, such as water, methanol, n-hexane, acetone and dichloromethane, were evaluated, and finally, astaxanthin was separated from the shrimp waste extract. Copyright 2010 Elsevier B.V. All rights reserved.
Ionic liquids screening for desulfurization of natural gasoline by liquid-liquid extraction.
Likhanova, Natalya V; Guzmán-Lucero, Diego; Flores, Eugenio A; García, Paloma; Domínguez-Aguilar, Marco A; Palomeque, Jorge; Martínez-Palou, Rafael
2010-11-01
Seventy five ionic liquids (ILs) were tested as a sequestering agent of sulfured compounds in natural gasoline (NG). Desulphurization of NG was performed by means of liquid-liquid extraction method at room temperature and atmospheric pressure. Experimental ILs containing imidazolium, pyridinium, and ammonium cations along with organic and inorganic anions were synthesized conventionally and under microwave and sonochemical conditions. The effect of the molecular structure of ILs on the desulfurization efficiency of NG with high sulfur content was evaluated. Analysis indicated that the anion type played a more important role than the cation on the desulphurization process. ILs based on halogen-ferrates and halogen-aluminates exhibited the highest efficiency in sulfur removal, and their efficiency is further improved when there is an excess of metallic salt in a ratio of at least 1:1.3 during the synthesis of the corresponding IL. An explanation for the ability of metallic ILs to remove sulfur-containing compounds from natural gasoline based on the ratio of the ionic charge to the atomic radius is proposed. Furthermore, a method to recover and reuse water-sensitive to halogenated precursors is described.
2016-09-01
to the characteristics and extract the non-ideality. These capabilities and calibration results will assist in the characterization of advanced...superconductor-ionic quantum memory and computation devices. iv CONTENTS EXECUTIVE SUMMARY...Josephson effect makes these measurements useful for characterization and calibration of superconducting quantum memory and computational devices
NASA Astrophysics Data System (ADS)
Irfan, Muhammad; Ahmad, Tausif; Moniruzzaman, Muhammad; Abdullah, Bawadi
2017-05-01
This study was conducted for microwave assisted synthesis of stable gold nanoparticles (AuNPs) by reduction of chloroauric acid with Elaeis Guineensis (palm oil) kernel (POK) extract which was prepared in aqueous solution of ionic liquid, [EMIM][OAc], 1-Ethyl-3-methylimidazolium acetate. Effect of initial pH of reaction mixture (3.5 - 8.5) was observed on SPR absorbance, maximum wavelength (λmax ) and size distribution of AuNPs. Change of pH of reaction mixture from acidic to basic region resulted in appearance of strong SPR absorption peaks and blue shifting of λmax from 533 nm to 522 nm. TEM analysis revealed the formation of predominantly spherical AuNPs with mean diameter of 8.51 nm. Presence of reducing moieties such as flavonoids, phenolic and carboxylic groups in POK extract was confirmed by FTIR analysis. Colloidal solution of AuNPs was remained stable at room temperature and insignificant difference in zeta value was recorded within experimental tenure of 4 months.
Structure and lifetimes in ionic liquids and their mixtures.
Gehrke, Sascha; von Domaros, Michael; Clark, Ryan; Hollóczki, Oldamur; Brehm, Martin; Welton, Tom; Luzar, Alenka; Kirchner, Barbara
2018-01-01
With the aid of molecular dynamics simulations, we study the structure and dynamics of different ionic liquid systems, with focus on hydrogen bond, ion pair and ion cage formation. To do so, we report radial distribution functions, their number integrals, and various time-correlation functions, from which we extract well-defined lifetimes by means of the reactive flux formalism. We explore the influence of polarizable force fields vs. non-polarizable ones with downscaled charges (±0.8) for the example of 1-butyl-3-methylimidazolium bromide. Furthermore, we use 1-butyl-3-methylimidazolium trifluoromethanesulfonate to investigate the impact of temperature and mixing with water as well as with the chloride ionic liquid. Smaller coordination numbers, larger distances, and tremendously accelerated dynamics are observed when the polarizable force field is applied. The same trends are found with increasing temperature. Adding water decreases the ion-ion coordination numbers whereas the water-ion and water-water coordination is enhanced. A domain analysis reveals that the nonpolar parts of the ions are dispersed and when more water is added the water clusters increase in size. The dynamics accelerate in general upon addition of water. In the ionic liquid mixture, the coordination number around the cation changes between the two anions, but the number integrals of the cation around the anions remain constant and the dynamics slow down with increasing content of the chloride ionic liquid.
Kiszkiel, Ilona; Starczewska, Barbara; Leśniewska, Barbara; Późniak, Patrycja
2015-03-15
A new extraction medium was proposed for liquid-liquid extraction of the histamine H2 receptor antagonists ranitidine (RNT) and nizatidine (NZT). The ionic liquids with low vapor pressure and favorable solvating properties for a range of compounds such as 1-butyl-3-methylimidazolium hexafluorophosphate [C4mim][PF6] and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C4mim][Tf2N] were tested for isolation of analytes. The extraction parameters of RNT and NZT, namely, amount of ionic liquid, pH of sample solution, shaking and centrifugation time were optimized. The isolation processes were performed with 1 mL of the ionic liquids. The extracted samples (pH values near 4) were shaken at 1750 rpm. The influence of interfering substances on the efficiency of extraction process was also studied. Methods for the histamine H2 receptor antagonists (ranitidine and nizatidine) determination after their separation using imidazolium ionic liquids by high performance liquid chromatography (HPLC) combined with UV spectrophotometry were developed. The application of ionic liquids in extraction step allows for selective isolation of analytes from aqueous matrices and their preconcentration. The above methods were applied to the determination of RNT and NZT in environmental samples (river water and wastewater after treatment). Copyright © 2014 Elsevier B.V. All rights reserved.
Yang, Lei; Sun, Xiaowei; Yang, Fengjian; Zhao, Chunjian; Zhang, Lin; Zu, Yuangang
2012-01-01
Ionic liquid based, microwave-assisted extraction (ILMAE) was successfully applied to the extraction of proanthocyanidins from Larix gmelini bark. In this work, in order to evaluate the performance of ionic liquids in the microwave-assisted extraction process, a series of 1-alkyl-3-methylimidazolium ionic liquids with different cations and anions were evaluated for extraction yield, and 1-butyl-3-methylimidazolium bromide was selected as the optimal solvent. In addition, the ILMAE procedure for the proanthocyanidins was optimized and compared with other conventional extraction techniques. Under the optimized conditions, satisfactory extraction yield of the proanthocyanidins was obtained. Relative to other methods, the proposed approach provided higher extraction yield and lower energy consumption. The Larix gmelini bark samples before and after extraction were analyzed by Thermal gravimetric analysis, Fourier-transform infrared spectroscopy and characterized by scanning electron microscopy. The results showed that the ILMAE method is a simple and efficient technique for sample preparation. PMID:22606036
Zhou, Qingxiang; Gao, Yuanyuan; Xie, Guohong
2011-09-15
Present study described a simple, sensitive, and viable method for the determination of bisphenol A, 4-n-nonylphenol and 4-tert-octylphenol in water samples using temperature-controlled ionic liquid dispersive liquid-phase microextraction coupled to high performance liquid chromatography-fluorescence detector. In this experiment, 1-octyl-3-methylimidazolium hexafluorophosphate ([C(8)MIM][PF(6)]) was used as the extraction solvent, and bisphenol A, 4-n-nonylphenol and 4-tert-octylphenol were selected as the model analytes. Parameters affecting the extraction efficiency such as the volume of [C(8)MIM][PF(6)], dissolving temperature, extraction time, sample pH, centrifuging time and salting-out effect have been investigated in detail. Under the optimized conditions, good linear relationship was found in the concentration range of 1.0-100 μg L(-1) for BPA, 1.5-150 μg L(-1) for 4-NP, and 3-300 μg L(-1) for 4-OP, respectively. Limits of detection (LOD, S/N=3) were in the range of 0.23-0.48 μg L(-1). Intra day and inter day precisions (RSDs, n=6) were in the range of 4.6-5.5% and 8.5-13.3%, respectively. This method has been also successfully applied to analyze the real water samples at two different spiked concentrations and excellent results were obtained. Copyright © 2011 Elsevier B.V. All rights reserved.
Selective Extraction of Uranium from Liquid or Supercritical Carbon Dioxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farawila, Anne F.; O'Hara, Matthew J.; Wai, Chien M.
2012-07-31
Current liquid-liquid extraction processes used in recycling irradiated nuclear fuel rely on (1) strong nitric acid to dissolve uranium oxide fuel, and (2) the use of aliphatic hydrocarbons as a diluent in formulating the solvent used to extract uranium. The nitric acid dissolution process is not selective. It dissolves virtually the entire fuel meat which complicates the uranium extraction process. In addition, a solvent washing process is used to remove TBP degradation products, which adds complexity to the recycling plant and increases the overall plant footprint and cost. A liquid or supercritical carbon dioxide (l/sc -CO2) system was designed tomore » mitigate these problems. Indeed, TBP nitric acid complexes are highly soluble in l/sc -CO2 and are capable of extracting uranium directly from UO2, UO3 and U3O8 powders. This eliminates the need for total acid dissolution of the irradiated fuel. Furthermore, since CO2 is easily recycled by evaporation at room temperature and pressure, it eliminates the complex solvent washing process. In this report, we demonstrate: (1) A reprocessing scheme starting with the selective extraction of uranium from solid uranium oxides into a TBP-HNO3 loaded Sc-CO2 phase, (2) Back extraction of uranium into an aqueous phase, and (3) Conversion of recovered purified uranium into uranium oxide. The purified uranium product from step 3 can be disposed of as low level waste, or mixed with enriched uranium for use in a reactor for another fuel cycle. After an introduction on the concept and properties of supercritical fluids, we first report the characterization of the different oxides used for this project. Our extraction system and our online monitoring capability using UV-Vis absorbance spectroscopy directly in sc-CO2 is then presented. Next, the uranium extraction efficiencies and kinetics is demonstrated for different oxides and under different physical and chemical conditions: l/sc -CO2 pressure and temperature, TBP/HNO3 complex used, reductant or complexant used for selectivity, and ionic liquids used as supportive media. To complete the extraction and recovery cycle, we then demonstrate uranium back extraction from the TBP loaded sc-CO2 phase into an aqueous phase and the characterization of the uranium complex formed at the end of this process. Another aspect of this project was to limit proliferation risks by either co-extracting uranium and plutonium, or by leaving plutonium behind by selectively extracting uranium. We report that the former is easily achieved, since plutonium is in the tetravalent or hexavalent oxidation state in the oxidizing environment created by the TBP-nitric acid complex, and is therefore co-extracted. The latter is more challenging, as a reductant or complexant to plutonium has to be used to selectively extract uranium. After undertaking experiments on different reducing or complexing systems (e.g., AcetoHydroxamic Acid (AHA), Fe(II), ascorbic acid), oxalic acid was chosen as it can complex tetravalent actinides (Pu, Np, Th) in the aqueous phase while allowing the extraction of hexavalent uranium in the sc-CO2 phase. Finally, we show results using an alternative media to commonly used aqueous phases: ionic liquids. We show the dissolution of uranium in ionic liquids and its extraction using sc-CO2 with and without the presence of AHA. The possible separation of trivalent actinides from uranium is also demonstrated in ionic liquids using neodymium as a surrogate and diglycolamides as the extractant.« less
NASA Astrophysics Data System (ADS)
Zaid, Hayyiratul Fatimah Mohd; Kait, Chong Fai; Mutalib, Mohamed Ibrahim Abdul
2014-10-01
Photocatalyts TiO2 doped with Cu, Fe and Cu-Fe metal at different calcination temperature and duration were successfully prepared and characterized. Photocatalytic oxidative desulfurization of model oil containing dibenzothiophene as the sulfur compound (100 ppm) using the prepared photocatalyst was investigated. The photocatalyst calcined at 500°C and duration of 1 h showed the best performance.
Rezig, Leila; Chibani, Farhat; Chouaibi, Moncef; Dalgalarrondo, Michèle; Hessini, Kamel; Guéguen, Jacques; Hamdi, Salem
2013-08-14
Seed proteins extracted from Tunisian pumpkin seeds ( Cucurbita maxima ) were investigated for their solubility properties and sequentially extracted according to the Osborne procedure. The solubility of pumpkin proteins from seed flour was greatly influenced by pH changes and ionic strength, with higher values in the alkaline pH regions. It also depends on the seed defatting solvent. Protein solubility was decreased by using chloroform/methanol (CM) for lipid extraction instead of pentane (P). On the basis of differential solubility fractionation and depending on the defatting method, the alkali extract (AE) was the major fraction (42.1 (P), 22.3% (CM)) compared to the salt extract (8.6 (P), 7.5% (CM)). In salt, alkali, and isopropanol extracts, all essential amino acids with the exceptions of threonine and lysine met the minimum requirements for preschool children (FAO/WHO/UNU). The denaturation temperatures were 96.6 and 93.4 °C for salt and alkali extracts, respectively. Pumpkin protein extracts with unique protein profiles and higher denaturation temperatures could impart novel characteristics when used as food ingredients.
Wei, Wei; Fu, Yu-jie; Zu, Yuan-gang; Wang, Wei; Luo, Meng; Zhao, Chun-jian; Li, Chun-ying; Zhang, Lin; Wei, Zuo-fu
2012-11-01
In this study, an ionic liquid-based microwave-assisted extraction (ILMAE) followed by high-performance liquid chromatography-diode array detector with a pentafluorophenyl column for the extraction and quantification of eight flavonoid glycosides in pigeon pea leaves is described. Compared with conventional extraction methods, ILMAE is a more effective and environment friendly method for the extraction of nature compounds from herbal plants. Nine different types of ionic liquids with different cations and anions were investigated. The results suggested that varying the anion and cation had significant effects on the extraction of flavonoid glycosides, and 1.0 M 1-butyl-3-methylimidazolium bromide ([C4MIM]Br) solution was selected as solvent. In addition, the extraction procedures were also optimized using a series of single-factor experiments. The optimum parameters were obtained as follows: extraction temperature 60°C, liquid-solid ratio 20:1 mL/g and extraction time 13 min. Moreover, an HPLC method using pentafluorophenyl column was established and validated. Good linearity was observed with the regression coefficients (r(2)) more than 0.999. The limit of detection (LODs) (S/N = 3) and limit of quantification (LOQs) (S/N = 10) for the components were less than 0.41 and 1.47 μg/mL, respectively. The inter- and intraday precisions that were used to evaluate the reproducibility and relative standard deviation (RSD) values were less than 4.57%. The recoveries were between 97.26 and 102.69%. The method was successfully used for the analysis of samples of pigeon pea leaves. In conclusion, the developed ILMAE-HPLC-diode array detector using pentafluorophenyl column method can be applied for quality control of pigeon pea leaves and related medicinal products. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Changes in the Coherent Dynamics of Nanoconfined Room Temperature Ionic Liquids
NASA Astrophysics Data System (ADS)
Vallejo, Kevin; Cano, Melissa; Li, Song; Rotner, Gernot; Faraone, Antonio; Banuelos, Jose
Confinement and temperature effects on the coherent dynamics of the room temperature ionic liquid (RTIL) [C10MPy+] [Tf2N-] were investigated using neutron spin-echo (NSE) in two silica matrices with different pore size. Several intermolecular forces give rise to the bulk molecular structure between anions and cations. NSE provided dynamics (via the coherent intermediate scattering function) in the time range of 0.004 to 10 ns, and at Q-values corresponding to intermediate range ordering and inter- and intra-molecular length scales of the RTIL. Pore wall effects were delineated by comparing bulk RTIL dynamics with those of the confined fluid in 2.8 nm and 8 nm pores. Analytical models were applied to the experimental data to extract decay times and amplitudes of each component. We find a fast relaxation outside the experiment time window, a primary relaxation, and slow, surface-induced dynamics, which all speed up with increased temperature, however, the temperature dependence differs between bulk and confinement. This study sheds light on the structure and dynamics of RTILs and is relevant to the optimization of RTILs for green technologies and applications.
Research progress on ionic plasmas generated in an intense hydrogen negative ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeiri, Y., E-mail: takeiri@nifs.ac.jp; Tsumori, K.; Nagaoka, K.
2015-04-08
Characteristics of ionic plasmas, observed in a high-density hydrogen negative ion source, are investigated with a multi-diagnostics system. The ionic plasma, which consists of hydrogen positive- and negative-ions with a significantly low-density of electrons, is generated in the ion extraction region, from which the negative ions are extracted through the plasma grid. The negative ion density, i.e., the ionic plasma density, as high as the order of 1×10{sup 17}m{sup −3}, is measured with cavity ring-down spectroscopy, while the electron density is lower than 1×10{sup 16}m{sup −3}, which is confirmed with millimeter-wave interferometer. Reduction of the negative ion density is observedmore » at the negative ion extraction, and at that time the electron flow into the ionic plasma region is observed to conserve the charge neutrality. Distribution of the plasma potential is measured in the extraction region in the direction normal to the plasma grid surface with a Langmuir probe, and the results suggest that the sheath is formed at the plasma boundary to the plasma grid to which the bias voltage is applied. The beam extraction should drive the negative ion transport in the ionic plasma across the sheath formed on the extraction surface. Larger reduction of the negative ions at the beam extraction is observed in a region above the extraction aperture on the plasma grid, which is confirmed with 2D image measurement of the Hα emission and cavity ring-down spectroscopy. The electron distribution is also measured near the plasma grid surface. These various properties observed in the ionic plasma are discussed.« less
Surface layering and melting in an ionic liquid studied by resonant soft X-ray reflectivity
Mezger, Markus; Ocko, Benjamin M.; Reichert, Harald; Deutsch, Moshe
2013-01-01
The molecular-scale structure of the ionic liquid [C18mim]+[FAP]− near its free surface was studied by complementary methods. X-ray absorption spectroscopy and resonant soft X-ray reflectivity revealed a depth-decaying near-surface layering. Element-specific interfacial profiles were extracted with submolecular resolution from energy-dependent soft X-ray reflectivity data. Temperature-dependent hard X-ray reflectivity, small- and wide-angle X-ray scattering, and infrared spectroscopy uncovered an intriguing melting mechanism for the layered region, where alkyl chain melting drove a negative thermal expansion of the surface layer spacing. PMID:23431181
Zeeb, Mohsen; Mirza, Behrooz
2015-04-30
Carvedilol belongs to a group of medicines termed non-selective beta-adrenergic blocking agents. In the presented approach, a practical and environmentally friendly microextraction method based on the application of ionic liquids (ILs) was followed by fluorescence spectrometry for trace determination of carvedilol in pharmaceutical and biological media. A rapid and simple ionic liquid phase microextraction was utilized for preconcentration and extraction of carvedilol. A hydrophobic ionic liquid (IL) was applied as a microextraction solvent. In order to disperse the IL through the aqueous media and extract the analyte of interest, IL was injected into the sample solution and a proper temperature was applied and then for aggregating the IL-phase, the sample was cooled in an ice water-bath. The aqueous media was centrifuged and IL-phase collected at the bottom of the test tube was introduced to the micro-cell of spectrofluorimeter, in order to determine the concentration of the enriched analyte. Main parameters affecting the accuracy and precision of the proposed approach were investigated and optimized values were obtained. A linear response range of 10-250 μg I(-1) and a limit of detection (LOD) of 1.7 μg I(-1) were obtained. Finally, the presented method was utilized for trace determination of carvedilol in commercial pharmaceutical preparations and biological media.
NASA Astrophysics Data System (ADS)
Morales, M.; Roa, J. J.; Perez-Falcón, J. M.; Moure, A.; Tartaj, J.; Espiell, F.; Segarra, M.
2014-01-01
The relation between the electrical and the mechanical properties in Sr and Mg doped LaGaO3 ceramics, which can be used as electrolyte for solid oxide fuel cells, was investigated in terms of hardness and ionic conductivity. For this purpose, ceramic materials corresponding to the compositions of La1-xSrxGa1-yMgyO3-δ (LSGM), with x = 0.1 and y = 0.2, and x = 0.15 and y = 0.2, were prepared. LSGM powders synthesized by the ethylene glycol complex solution method were shaped into disks by isostatic pressing method. The variation in the microstructure of samples was achieved by varying the sintering temperature between 1300 and 1450 °C. While the effect of the different microstructures on the electrical properties of the LSGM electrolytes was determined by impedance spectroscopy, the influence of the hardness was extracted by instrumented indentation technique. The results showed a linear correlation between the hardness and total ionic conductivity within the temperature range of 500-660 °C, thus indicating that both properties were strongly influenced on the relative density and purity of the samples. It has a potential practical implication: by measuring the LSGM hardness at room temperature, one can achieve an approach to the ionic conductivity within the studied temperature range.
Oxygen Extraction from Regolith Using Ionic Liquids
NASA Technical Reports Server (NTRS)
Barrios, Elizabeth A.; Curreri, Peter A.; Karr, Laurel J.
2011-01-01
An important concern with long-duration manned space travel is the need to furnish enough materials to the vehicle, as well as the crew, for the duration of the mission. By extracting oxygen from the oxides present in regolith, propellant and life support could be supplied to the vehicle and the crew while in space, thereby limiting the amount of supplies needed prior to lift-off. Using a class of compounds known as ionic liquids, we have been able to lower the electrolysis operating temperature from 1600 C (molten oxide electrolysis) to less than 200 C, making this process much more feasible in terms of energy consumption and materials handling. To make this process ready for deployment into space, we have investigated what steps of the process would be affected by the low-gravity environment in space. In the lab, the solubilization of lunar regolith simulant in ionic liquid produces water vapor that is normally distilled out of solution and subsequently electrolyzed for oxygen production. This distillation is not possible in space, so we have tested a method known as pervaporation and have suggested a way this technique could be incorporated into a reactor design.
Pelit, Füsun Okçu; Pelit, Levent; Dizdaş, Tuğberk Nail; Aftafa, Can; Ertaş, Hasan; Yalçınkaya, E E; Türkmen, Hayati; Ertaş, F N
2015-02-15
This report comprises the novel usage of polythiophene - ionic liquid modified clay surfaces for solid phase microextraction (SPME) fiber production to improve the analysis of pesticides in fruit juice samples. Montmorillonite (Mmt) clay intercalated with ionic liquids (IL) was co-deposited with polythiophene (PTh) polymer coated electrochemically on an SPME fiber. The surface of the fibers were characterized by using scanning electron microscopy (SEM). Operational parameters effecting the extraction efficiency namely; the sample volume and pH, adsorption temperature and time, desorption temperature and time, stirring rate and salt amount were optimized. In order to reveal the major effects, these eight factors were selected and Plackett-Burman Design was constructed. The significant parameters detected; adsorption and temperature along with the stirring rate, were further investigated by Box-Behnken design. Under optimized conditions, calibration graphs were plotted and detection limits were calculated in the range of 0.002-0.667ng mL(-1). Relative standard deviations were no higher than 18%. Overall results have indicated that this novel PTh-IL-Mmt SPME surface developed by the aid of electrochemical deposition could offer a selective and sensitive head space analysis for the selected pesticide residues. Copyright © 2014 Elsevier B.V. All rights reserved.
Andersen, Stephen J; Berton, Jan K E T; Naert, Pieter; Gildemyn, Sylvia; Rabaey, Korneel; Stevens, Christian V
2016-08-23
Ionic liquids can both act as a solvent and mediate esterification to valorize low-titer volatile fatty acids and generate organic solvents from renewable carbon sources including biowaste and CO2 . In this study, four phosphonium ionic liquids were tested for single-stage extraction of acetic acid from a dilute stream and esterification to ethyl acetate with added ethanol and heat. The esterification proceeded with a maximum conversion of 85.9±1.3 % after 30 min at 75 °C at a 1:1 stoichiometric ratio of reactants. Extraction and esterification can be tailored using mixed-anion ionic liquids; this is demonstrated herein using a common trihexyl(tetradecyl)phosphonium cation and a mixed chloride and bis(trifluoromethylsulfonyl)imide anion ionic liquid. As a further proof-of-concept, ethyl acetate was generated from an ionic liquid-driven esterification of an acetic acid extractant generated using CO2 as the only carbon source by microbial electrosynthesis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Advances in the analysis of biological samples using ionic liquids.
Clark, Kevin D; Trujillo-Rodríguez, María J; Anderson, Jared L
2018-02-12
Ionic liquids are a class of solvents and materials that hold great promise in bioanalytical chemistry. Task-specific ionic liquids have recently been designed for the selective extraction, separation, and detection of proteins, peptides, nucleic acids, and other physiologically relevant analytes from complex biological samples. To facilitate rapid bioanalysis, ionic liquids have been integrated in miniaturized and automated procedures. Bioanalytical separations have also benefited from the modification of nonspecific magnetic materials with ionic liquids or the implementation of ionic liquids with inherent magnetic properties. Furthermore, the direct detection of the extracted molecules in the analytical instrument has been demonstrated with structurally tuned ionic liquids and magnetic ionic liquids, providing a significant advantage in the analysis of low-abundance analytes. This article gives an overview of these advances that involve the application of ionic liquids and derivatives in bioanalysis. Graphical abstract Ionic liquids, magnetic ionic liquids, and ionic liquid-based sorbents are increasing the speed, selectivity, and sensitivity in the analysis of biological samples.
Bi, Wentao; Tian, Minglei; Row, Kyung Ho
2012-01-01
This study highlighted the application of a two-stepped extraction method for extraction and separation of oxymatrine from Sophora flavescens Ait. extract by utilizing silica-confined ionic liquids as sorbent. The optimized silica-confined ionic liquid was firstly mixed with plant extract to adsorb oxymatrine. Simultaneously, some interference, such as matrine, was removed. The obtained suspension was then added to a cartridge for solid phase extraction. Through these two steps, target compound was adequately separated from interferences with 93.4% recovery. In comparison with traditional solid phase extraction, this method accelerates loading and reduces the use of organic solvents during washing. Moreover, the optimization of loading volume was simplified as optimization of solid/liquid ratio. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ramly, N. H.; Zakaria, R.; Naim, M. N.
2016-06-01
Surfactant-assisted aqueous extraction has been proposed as a “green” alternative to hexane extraction for the recovery of oil from plant matters. An efficient aqueous surfactant extraction system usually use an extended type of ionic surfactant with the ability to produce Winsor type III microemulsion, reducing the interfacial tension (IFT) between plant oil and surfactant solution to an ultralow level (10-3 mN/m). However, the safe used of this surfactant in food processing is uncertain leading to non-food application of the recovered oil. In the present study, the potential of Tween 80, a commercial food-grade non-ionic surfactant, was evaluated in the recovery of residual oil from palm-pressed mesocarp. The emulsion produced between Tween 80 and crude palm oil (CPO) was characterised in terms of IFT, droplet size, viscosity and phase inversion temperature (PIT). The effect of surfactant concentration, electrolyte (NaCl) and temperature were studied to determine whether a Winsor Type III microemulsion can be produced. Results shows that although these parameters were able to reduce the IFT to very low values, Winsor type III microemulsion was not produced with this single surfactant. Emulsion of CPO and Tween 80 solution did not produce a PIT even after heating to 100°C indicating that middle phase emulsion was not able to be formed with increasing temperature. The highest percentage of oil extraction (38.84%) was obtained at the concentration above the critical micelle concentration (CMC) of Tween 80 and CPO, which was at 0.5 wt% Tween 80 with 6% NaCl, and temperature of 60°C. At this concentration, the IFT value is 0.253 mN/m with a droplet size of 4183.8 nm, and a viscosity of 7.38 cp.
Lu, Chunxia; Wang, Hongxin; Lv, Wenping; Ma, Chaoyang; Lou, Zaixiang; Xie, Jun; Liu, Bo
2012-01-01
Ionic liquid was used as extraction solvents and applied to the extraction of tannins from Galla chinensis in the simultaneous ultrasonic- and microwave-assisted extraction (UMAE) technique. Several parameters of UMAE were optimised, and the results were compared with of the conventional extraction techniques. Under optimal conditions, the content of tannins was 630.2 ± 12.1 mg g⁻¹. Compared with the conventional heat-reflux extraction, maceration extraction, regular ultrasound- and microwave-assisted extraction, the proposed approach exhibited higher efficiency (11.7-22.0% enhanced) and shorter extraction time (from 6 h to 1 min). The tannins were then identified by ultraperformance liquid chromatography tandem mass spectrometry. This study suggests that ionic liquid-based UMAE is an efficient, rapid, simple and green sample preparation technique.
Wang, Xiaoqin; Li, Guizhen; Row, Kyung Ho
2017-08-01
Magnetic graphene oxide was modified by four imidazole-based ionic liquids to synthesize materials for the extraction of polysaccharides by magnetic solid-phase extraction. Fucoidan and laminarin were chosen as the representative polysaccharides owing to their excellent pharmaceutical value and availability. Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, and thermogravimetric analysis were applied to characterize the synthesized materials. Single-factor experiments showed that the extraction efficiency of polysaccharides was affected by the amount of ionic liquids for modification, solid-liquid ratio of brown alga and ethanol, the stirring time of brown alga and ionic liquid-modified magnetic graphene oxide materials, and amount of 1-(3-aminopropyl)imidazole chloride modified magnetic graphene oxide materials added to the brown alga sample solution. The results indicated that 1-(3-aminopropyl)imidazole chloride modified magnetic graphene oxide possessed better extraction ability than graphene oxide, magnetic graphene oxide, and other three ionic-liquid-modified magnetic graphene oxide materials. The highest extraction recoveries of fucoidan and laminarin extracted by 1-(3-aminopropyl)imidazole chloride modified magnetic graphene oxide were 93.3 and 87.2%, respectively. In addition, solid materials could be separated and reused easily owing to their magnetic properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Hsin-Yi; Chen, Chien-Yuan; Cheng, Hui-Ting; Chu, Yen-Ho
2016-10-13
Based on a common structural core of 4,5,6,7-tetrahydro[1,2,3]triazolo[1,5- a ]pyridine, a number of bicyclic triazolium ionic liquids 1 - 3 were designed and successfully prepared. In our hands, this optimized synthesis of ionic liquids 1 and 2 requires no chromatographic separation. Also in this work, ionic liquids 1 , 2 were shown to be efficient ionic solvents for fast synthesis of tryptanthrin natural product. Furthermore, a new affinity ionic liquid 3 was tailor-synthesized and displayed its effectiveness in chemoselective extraction of both Cu(II) ions and, for the first time, histidine-containing peptides.
Cao, Xiaoji; Shen, Lingxiao; Ye, Xuemin; Zhang, Feifei; Chen, Jiaoyu; Mo, Weimin
2014-04-21
An ultrasound-assisted magnetic solid-phase extraction procedure with the [C7MIM][PF6] ionic liquid-coated Fe3O4-grafted graphene nanocomposite as the magnetic adsorbent has been developed for the determination of five nitrobenzene compounds (NBs) in environmental water samples, in combination with high performance liquid chromatography-photodiode array detector (HPLC-PDA). Several significant factors that affect the extraction efficiency, such as the types of magnetic nanoparticle and ionic liquid, the volume of ionic liquid and the amount of magnetic nanoparticles, extraction time, ionic strength, and solution pH, were investigated. With the assistance of ultrasound, adsorbing nitrobenzene compounds by ionic liquid and self-aggregating ionic liquid onto the surface of the Fe3O4-grafted graphene proceeded synchronously, which made the extraction achieved the maximum within 20 min using only 144 μL [C7MIM][PF6] and 3 mg Fe3O4-grafted graphene. Under the optimized conditions, satisfactory linearities were obtained for all NBs with correlation coefficients larger than 0.9990. The mean recoveries at two spiked levels ranged from 80.35 to 102.77%. Attributed to the convenient magnetic separation, the Fe3O4-grafted graphene could be recycled many times. The proposed method was demonstrated to be feasible, simple, solvent-saving and easy to operate for the trace analysis of NBs in environmental water samples.
Cull, S G; Holbrey, J D; Vargas-Mora, V; Seddon, K R; Lye, G J
2000-07-20
Organic solvents are widely used in a range of multiphase bioprocess operations including the liquid-liquid extraction of antibiotics and two-phase biotransformation reactions. There are, however, considerable problems associated with the safe handling of these solvents which relate to their toxic and flammable nature. In this work we have shown for the first time that room-temperature ionic liquids, such as 1-butyl-3-methylimi- dazolium hexafluorophosphate, [bmim][PF(6)], can be successfully used in place of conventional solvents for the liquid-liquid extraction of erythromycin-A and for the Rhodococcus R312 catalyzed biotransformation of 1, 3-dicyanobenzene (1,3-DCB) in a liquid-liquid, two-phase system. Extraction of erythromycin with either butyl acetate or [bmim][PF(6)] showed that values of the equilibrium partition coefficient, K, up to 20-25 could be obtained for both extractants. The variation of K with the extraction pH was also similar in the pH range 5-9 though differed significantly at higher pH values. Biotransformation of 1,3-DCB in both water-toluene and water-[bmim][PF(6)] systems showed similar profiles for the conversion of 1,3-DCB initially to 3-cyanobenzamide and then 3-cyanobenzoic acid. The initial rate of 3-cyanobenzamide production in the water-[bmim][PF(6)] system was somewhat lower, however, due to the reduced rate of 1,3-DCB mass transfer from the more viscous [bmim] [PF(6)] phase. It was also shown that the specific activity of the biocatalyst in the water-[bmim] [PF(6)] system was almost an order of magnitude greater than in the water-toluene system which suggests that the rate of 3-cyanobenzamide production was limited by substrate mass transfer rather than the activity of the biocatalyst. Copyright 2000 John Wiley & Sons, Inc.
Kaur, Dilraj Preet; Yamada, K; Park, Jin-Soo; Sekhon, S S
2009-04-23
Room temperature ionic liquid 2,3-dimethyl-1-hexylimidazolium bis(trifluoromethane sulfonyl)imide (DMHxImTFSI) has been synthesized and used in the preparation of polymer gel electrolytes containing polymethylmethacrylate and propylene carbonate (PC). The onset of ion diffusional motion has been studied by (1)H and (19)F NMR spectroscopy and the results obtained for ionic liquid, liquid electrolytes, and polymer gel electrolytes have been correlated with the ionic conductivity results for these electrolytes in the 100-400 K temperature range. The temperature at which (1)H and (19)F NMR lines show motional narrowing and hence ion diffusional motion starts has been found to be closely related to the temperature at which a large increase in ionic conductivity has been observed for these electrolytes. Polymer gel electrolytes have high ionic conductivity over a wide range of temperatures. Thermogravimetric analysis/differential scanning calorimetry studies show that the ionic liquid (DMHxImTFSI) used in the present study is thermally stable up to 400 degrees C, whereas the addition of PC lowers the thermal stability of polymer gel electrolytes containing the ionic liquid. Different electrolytes have been observed to show high ionic conductivity in different range of temperatures, which can be helpful in the design of polymer gel electrolytes for specific applications.
Wu, Jia; Xu, Zilin; Pan, Yixuan; Shi, Yi; Bao, Xiujie; Li, Jun; Tong, Yu; Tang, Han; Ma, Shuyan; Wang, Xuedong; Lyu, Jianxin
2018-05-01
Herein, a novel magnetic effervescence tablet-assisted microextraction coupled to in situ metathesis reaction of ionic liquid (IS-META-ILDM) is presented for the determination of four endogenous steroids in human urine, pregnant women's blood, and fetal umbilical cord blood. The magnetic effervescent tablets, which were composed of Fe 3 O 4 nanoparticles, sodium carbonate (alkaline source), and tartaric acid (acidic source), were used to disperse the extractant and for convenient magnetic separation. After the effervescent reaction, in situ reaction between NH 4 PF 6 and [C 6 MIM]BF 4 was adopted to change hydrophilic ionic liquid to hydrophobic liquid, which could be separated from the aqueous phase. The newly developed method has three obvious advantages: (1) combination of effervescent dispersion and magnetic nanoparticles' retrieval is cost-effective and the dispersion and collection of the extractant can be completed almost simultaneously; (2) as compared to temperature-controlled ionic liquid dispersive microextraction and cold-induced solidified microextraction, this method avoids a heating and cooling process which significantly reduces the extraction time and energy cost; and (3) the combination of adsorption by magnetic nanoparticles with extraction by in situ metathesis reaction easily produces high recoveries for target analytes. The optimized composition of effervescent tablet and experimental parameters are as follows: 0.64 g mixture of sodium carbonate and tartaric acid, 7 mg of Fe 3 O 4 (20 nm) as magnetic sorbents, 40 μL of [C 6 MIM]BF 4 as the extraction solvent, 0.15 g NH 4 PF 6 , and 300 μL of elution solvent. Under the optimized conditions, the newly developed method provided high extraction recoveries (90.0-118.5%) and low LODs (0.14-0.17 μg L -1 ) in urine and blood samples. In total, this IS-META-ILDM method provided high extraction efficiency, fast and convenient separation, and underutilization of any organic solvent, and thus it has great potential for the determination of trace endogenous steroids in complex human fluids. Graphical abstract The newly developed method has three obvious advantages: combination of effervescent dispersion and magnetic nanoparticles' retrieval is cost-effective and the dispersion and collection of the extractant can be completed almost simultaneously. It avoids a heating and cooling process which significantly reduces the extraction time and energy cost and easily produces high recoveries for target analytes.
Farhadi, Khalil; Maleki, Ramin; Tahmasebi, Raheleh
2010-01-01
A new fiber based on titania-chitin sol-gel coated on a silver wire for the headspace solid phase microextraction of aliphatic alcohols from apple juice samples was developed. The influences of fiber coating composition and microextraction conditions (extraction temperature, extraction time, and ionic strength of the sample matrix) on the fiber performance were investigated. Also, the influence of temperature and time on desorption of analytes from fiber were studied. Under the optimized conditions, a porous fiber with a high extraction capacity and good thermal stability (up to 250 degrees C) was obtained. The proposed headspace solid-phase microextraction-GC method was successfully used for the analysis of aliphatic alcohols in apple juice and concentrate samples. The recovery values were from 92.8 to 98.6%. The RSD (n=5) for all analytes were below 7.8%.
Cláudio, Ana Filipa M.; Neves, Márcia C.; Shimizu, Karina; Canongia Lopes, José N.; Freire, Mara G.; Coutinho, João A. P.
2015-01-01
Hydrotropes are compounds able to enhance the solubility of hydrophobic substances in aqueous media and therefore are widely used in the formulation of drugs, cleaning and personal care products. In this work, it is shown that ionic liquids are a new class of powerful catanionic hydrotropes where both the cation and the anion synergistically contribute to increase the solubility of biomolecules in water. The effects of the ionic liquid chemical structures, their concentration and the temperature on the solubility of two model biomolecules, vanillin and gallic acid were evaluated and compared with the performance of conventional hydrotropes. The solubility of these two biomolecules was studied in the entire composition range, from pure water to pure ionic liquids, and an increase in the solubility of up to 40-fold was observed, confirming the potential of ionic liquids to act as hydrotropes. Using dynamic light scattering, NMR and molecular dynamics simulations, it was possible to infer that the enhanced solubility of the biomolecule in the IL aqueous solutions is related to the formation of ionic-liquid–biomolecules aggregates. Finally, it was demonstrated that hydrotropy induced by ionic liquids can be used to recover solutes from aqueous media by precipitation, simply by using water as an anti-solvent. The results reported here have a significant impact on the understanding of the role of ionic liquid aqueous solutions in the extraction of value-added compounds from biomass as well as in the design of novel processes for their recovery from aqueous media. PMID:26379471
Ionic liquid technology to recover volatile organic compounds (VOCs).
Salar-García, M J; Ortiz-Martínez, V M; Hernández-Fernández, F J; de Los Ríos, A P; Quesada-Medina, J
2017-01-05
Volatile organic compounds (VOCs) comprise a wide variety of carbon-based materials which are volatile at relatively low temperatures. Most of VOCs pose a hazard to both human health and the environment. For this reason, in the last years, big efforts have been made to develop efficient techniques for the recovery of VOCs produced from industry. The use of ionic liquids (ILs) is among the most promising separation technologies in this field. This article offers a critical overview on the use of ionic liquids for the separation of VOCs both in bulk and in immobilized form. It covers the most relevant works within this field and provides a global outlook on the limitations and future prospects of this technology. The extraction processes of VOCs by using different IL-based assemblies are described in detail and compared with conventional methods This review also underlines the advantages and limitations posed by ionic liquids according to the nature of the cation and the anions present in their structure and the stability of the membrane configurations in which ILs are used as liquid phase. Copyright © 2016 Elsevier B.V. All rights reserved.
Wu, Lijie; Hu, Mingzhu; Li, Zhanchao; Song, Ying; Yu, Cui; Zhang, Yupu; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming
2015-02-01
A novel extraction method, dynamic microwave-assisted extraction coupled with homogeneous ionic liquid microextraction, was developed for the determination of triazine herbicides, including desmetryn, terbumeton, propazine, terbuthylazine, dimethametryn, and dipropetryn in fresh vegetable samples by high performance liquid chromatography (HPLC). In the developed method, 120 μL of 1-butyl-3-methylimidazolium tetrafluoroborate ([C4MIM][BF4]) was added to 10 mL of aqueous solution containing 0.3 g of NaCl to obtained the extraction solvent. Six triazines could be extracted completely within 4 min by the present method. Then, [NH4][PF6] was added into the extract to form a water-insoluble ionic liquid [C4MIM][PF6] via a simple metathesis reaction, and the analytes were enriched into the ionic liquid phase. After centrifugation and dilution with acetonitrile, the resulting solution was analyzed directly by HPLC. The effects of some experimental parameters, including type and volume of ionic liquid, volume of extraction solvent, amount of ion-pairing agent [NH4][PF6], salt concentration, microwave power, and flow rate of extraction solvent on the extraction efficiency were investigated and optimized. Under the optimum experimental conditions, the linearity for determining the analytes was in the range of 2.50-250.00 μg kg(-1), with the correlation coefficients ranging from 0.9989 to 0.9999. When the present method was applied to the analysis of vegetable samples, satisfactory recoveries were obtained in the range of 76.8%-106.9%, and relative standard deviations were lower than 9.8%.
da Silva, Meire Ribeiro; Mauro Lanças, Fernando
2018-03-10
Sulfonamides are antibiotics widely used in the treatment of diseases in dairy cattle. However, their indiscriminate use for disease control may lead to their presence in tissues and milk and their determination requires a sample preparation step as part of an analytical approach. Among the several sample preparation techniques available, those based upon the use of sorptive materials have been widely employed. Recently, the application of ionic liquids immobilized on silica surfaces or polymeric materials has been evaluated for such an application. This manuscript addresses the evaluation of silica-based ionic liquid obtained by a sol-gel synthesis process by basic catalysis as sorbent for online solid-phase extraction with liquid chromatography and electrospray ionization time-of-flight mass spectrometry for sulfonamides determination. Infrared vibrational spectroscopy confirmed the presence of the ionic liquid on the silica surface, suggesting that the ionic liquid was anchored on to the silica surface. Other sorbents varying the ionic liquid alkyl chain were also synthesized and evaluated by off-line solid-phase extraction in the sulfonamide extraction. As the length of the alkyl chain increased, the amount of extracted sulfonamides decreased, possibly due to a decrease in the electrostatic interaction caused by the reduction in the polarity, as well as the presence of a hexafluorophosphate anion that increases the hydrophobic character of the material. The use of 1-butyl-3-methylimidazolium hexafluorophosphate as a selective ionic liquid sorbent enabled the isolation and sulfonamide preconcentration in bovine milk by online solid-phase extraction with liquid chromatography and electrospray ionization time-of-flight mass spectrometry. The limit of quantification for the method developed was 5-7, 5 μg/mL, with extraction recoveries ranging between 74 and 93% and intra- and interassay between 1.5-12.5 and 2.3-13.1, respectively. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Detection of Ionic liquid using terahertz time-domain spectroscopy
NASA Astrophysics Data System (ADS)
Wang, Cuicui; Zhao, Xiaojing; Liu, Shangjian; Zuo, Jian; Zhang, Cunlin
2018-01-01
Terahertz (THz, THz+1012Hz) spectroscopy is a far-infrared analytical technology with spectral bands locating between microware and infrared ranges. Being of excellent transmission, non-destruction and high discrimination, this technology has been applied in various fields such as physics, chemistry, nondestructive detection, communication, biomedicine public security. Terahertz spectrum is corresponding with vibration and rotation of liquid molecules, which is suitable to identify and study the liquid molecular dynamics. It is as a powerful spectral detection technology, terahertz time-domain spectroscopy is widely used in solution detection. can enable us to extract the material parameters or dielectric spectrum that show material micro-structure and dynamics by measuring amplitude and phase from coherent terahertz pulses. Ionic liquid exists in most biological tissues, and it is very important for life. It has recently been suggested that near-fired terahertz ionic contrast microscopy can be employed to image subtle changes in ionic concentrations arising from neuronal activity. In this paper, we detected Ionic liquid with different concentrations at room temperature by THz-TDS technique in the range of 0.2-1.5 THz. The liquid cell with a thickness of 0.2mm is made of quartz. The absorption coefficient, refractive index and dielectric function of solutions can be extracted based on THz-TDS. We use an expanded model for fitting the dielectric function based on a combination of a Debye relation for the anions and cations. We find A linear increase of the real and imaginary part of the dielectric function compared with pure water with increasing ion concentrations. A good agreement between the model and the experimental results is obtained. By means of dielectric relaxation process, it was found that the characteristic time of molecular movement and the information related to the liquid molecular structure and movement was obtained.
Rodil, Rosario; Schellin, Manuela; Popp, Peter
2007-09-07
Membrane-assisted solvent extraction (MASE) in combination with large volume injection-gas chromatography-mass spectrometry (LVI-GC-MS) was applied for the determination of 16 polycyclic aromatic hydrocarbons (PAHs) in aqueous samples. The MASE conditions were optimized for achieving high enrichment of the analytes from aqueous samples, in terms of extraction conditions (shaking speed, extraction temperature and time), extraction solvent and composition (ionic strength, sample pH and presence of organic solvent). Parameters like linearity and reproducibility of the procedure were determined. The extraction efficiency was above 65% for all the analytes and the relative standard deviation (RSD) for five consecutive extractions ranged from 6 to 18%. At optimized conditions detection limits at the ng/L level were achieved. The effectiveness of the method was tested by analyzing real samples, such as river water, apple juice, red wine and milk.
Li, Hongping; Zhu, Wenshuai; Chang, Yonghui; Jiang, Wei; Zhang, Ming; Yin, Sheng; Xia, Jiexiang; Li, Huaming
2015-06-01
In this work, interaction nature between a group of aromatic sulfur compounds and [BMIM](+)[FeCl4](-) have been investigated by density functional theory (DFT). A coordination structure is found to be critical to the mechanism of extractive desulfurization. Interaction energy and extractive selectivity follow the order: thiophene (TH)
Crown ether stereoisomerism: Implications in metal ion extraction and ionic liquid design
NASA Astrophysics Data System (ADS)
Pawlak, Alan J.
Since their discovery more than four decades ago, crown ethers (CEs) have been the subject of intense investigation in a number of fields. Although many of the structural features that govern the behavior of these compounds have been thoroughly explored, the effect of their stereochemistry has received relatively little attention. In the present work, crown ether stereochemistry is shown to have important implications in both the design of ternary (i.e., three-component) ionic liquids (TILs) and metal ion extraction. Specifically, as a first step toward the development of guidelines for the rational design of ternary ionic liquids employing crown ethers as the neutral extractant, a systematic examination of the effect of crown ether stereochemistry (employing dicyclohexano-18-crown-6 (DCH18C6) as a representative crown compound), along with ring size, the nature and number of donor atoms, and the presence of functional groups, on the thermal properties (i.e., melting point or glass transition; decomposition or evaporation) of these compounds was carried out. Stereochemistry was found to have no appreciable impact on the onset temperature for mass loss. Rather, molecular weight and aromaticity were found to be more influential. Stereochemistry was, however, found to significantly affect the melting point of a TIL prepared from it; while the metal-CE formation constant, which varies with stereoisomer was observed to determine the onset temperature for mass loss of the TIL. To explore the implications of crown ether stereoisomerism in metal ion extraction, the formation constants for alkaline earth cation complexes with the isomers of DCH18C6 and selected stereoisomers of di-tert-butylcyclohexano-18-crown-6 (DtBuCH18C6) were measured. These values were found to vary inversely with the ligand strain (i.e., reorganizational) energy for the isomer, as determined by molecular mechanics calculations. Using this relationship (along with additional identification methods), three isomers of DtBuCH18C6, which were separated by preparative LC, were definitively identified. Three additional isomers were partially identified.
Medina, Giselle S; Reta, Mario
2016-11-01
A dispersive liquid-liquid microextraction method using a lighter-than-water phosphonium-based ionic liquid for the extraction of 16 polycyclic aromatic hydrocarbons from water samples has been developed. The extracted compounds were analyzed by liquid chromatography coupled to fluorescence/diode array detectors. The effects of several experimental parameters on the extraction efficiency, such as type and volume of ionic liquid and disperser solvent, type and concentration of salt in the aqueous phase and extraction time, were investigated and optimized. Three phosphonium-based ionic liquids were assayed, obtaining larger extraction efficiencies when trihexyl-(tetradecyl)phosphonium bromide was used. The optimized methodology requires a few microliters of a lighter-than-water phosphonium-based ionic liquid, which allows an easy separation of the extraction solvent phase. The obtained limits of detection were between 0.02 and 0.56 μg/L, enrichment factors between 109 and 228, recoveries between 60 and 108%, trueness between 0.4 and 9.9% and reproducibility values between 3 and 12% were obtained. These figures of merit combined with the simplicity, rapidity and low cost of the analytical methodology indicate that this is a viable and convenient alternative to the methods reported in the literature. The developed method was used to analyze polycyclic aromatic hydrocarbons in river water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marin, T.; Shkrob, I.; Dietz, M.
2011-04-14
Nuclear magnetic resonance (NMR) spectroscopy has been used to study hydrogen-bonding interactions between water, associated and dissociated acids (i.e., nitric and methanesulfonic acids), and the constituent ions of several water-immiscible room-temperature ionic liquids (ILs). In chloroform solutions also containing a crown ether (CE), water molecules strongly associate with the IL ions, and there is rapid proton exchange between these bound water molecules and hydronium associated with the CE. In neat ILs, the acids form clusters differing in their degree of association and ionization, and their interactions with the CEs are weak. The CE can either promote proton exchange between differentmore » clusters in IL solution when their association is weak or inhibit such exchange when the association is strong. Even strongly hydrophobic ILs are shown to readily extract nitric acid from aqueous solution, typically via the formation of a 1:1:1 {l_brace}H{sub 3}O{sup +} {center_dot} CE{r_brace}NO{sub 3}{sup -} complex. In contrast, the extraction of methanesulfonic acid is less extensive and proceeds mainly by IL cation-hydronium ion exchange. The relationship of these protic equilibria to the practical application of hydrophobic ILs (e.g., in spent nuclear fuel reprocessing) is discussed.« less
Thermoelectric Generators Based on Ionic Liquids
NASA Astrophysics Data System (ADS)
Laux, Edith; Uhl, Stefanie; Jeandupeux, Laure; López, Pilar Pérez; Sanglard, Pauline; Vanoli, Ennio; Marti, Roger; Keppner, Herbert
2018-03-01
Looking at energy harvesting using body or waste heat for portable electronic or on-board devices, Ionic liquids are interesting candidates as thermoactive materials in thermoelectric generators (TEGs) because of their outstanding properties. Two different kinds of ionic liquid, with alkylammonium and choline as cations, were studied, whereby different anions and redox couples were combined. This study focussed on the intention to find non-hazardous and environmentally friendly ionic liquids for TEGs to be selected among the thousands that can potentially be used. Seebeck coefficients (SEs) as high as - 15 mV/K were measured, in a particular case for an electrode temperature difference of 20 K. The bottleneck of our TEG device is still the abundance of negative SE liquids matching the internal resistance with the existing positive SE-liquids at series connections. In this paper, we show further progress in finding increased negative SE liquids. For current extraction from the TEG, the ionic liquid must be blended with a redox couple, allowing carrier exchange in a cyclic process under a voltage which is incuced by the asymmetry of the generator in terms of hot and cold electrodes. In our study, two types of redox pairs were tested. It was observed that a high SE of an ionic liquid/redox blend is not a sufficient condition for high power output. It appears that more complex effects between the ionic liquid and the electrode determine the magnitude of the final current/power output. The physico-chemical understanding of such a TEG cell is not yet available.
Thermoelectric Generators Based on Ionic Liquids
NASA Astrophysics Data System (ADS)
Laux, Edith; Uhl, Stefanie; Jeandupeux, Laure; López, Pilar Pérez; Sanglard, Pauline; Vanoli, Ennio; Marti, Roger; Keppner, Herbert
2018-06-01
Looking at energy harvesting using body or waste heat for portable electronic or on-board devices, Ionic liquids are interesting candidates as thermoactive materials in thermoelectric generators (TEGs) because of their outstanding properties. Two different kinds of ionic liquid, with alkylammonium and choline as cations, were studied, whereby different anions and redox couples were combined. This study focussed on the intention to find non-hazardous and environmentally friendly ionic liquids for TEGs to be selected among the thousands that can potentially be used. Seebeck coefficients (SEs) as high as - 15 mV/K were measured, in a particular case for an electrode temperature difference of 20 K. The bottleneck of our TEG device is still the abundance of negative SE liquids matching the internal resistance with the existing positive SE-liquids at series connections. In this paper, we show further progress in finding increased negative SE liquids. For current extraction from the TEG, the ionic liquid must be blended with a redox couple, allowing carrier exchange in a cyclic process under a voltage which is incuced by the asymmetry of the generator in terms of hot and cold electrodes. In our study, two types of redox pairs were tested. It was observed that a high SE of an ionic liquid/redox blend is not a sufficient condition for high power output. It appears that more complex effects between the ionic liquid and the electrode determine the magnitude of the final current/power output. The physico-chemical understanding of such a TEG cell is not yet available.
Sun, Mei; Wu, Qianghua
2010-04-15
A cloud point extraction (CPE) method for the preconcentration of ultra-trace aluminum in human albumin prior to its determination by graphite furnace atomic absorption spectrometry (GFAAS) had been developed in this paper. The CPE method was based on the complex of Al(III) with 1-(2-pyridylazo)-2-naphthol (PAN) and Triton X-114 was used as non-ionic surfactant. The main factors affecting cloud point extraction efficiency, such as pH of solution, concentration and kind of complexing agent, concentration of non-ionic surfactant, equilibration temperature and time, were investigated in detail. An enrichment factor of 34.8 was obtained for the preconcentration of Al(III) with 10 mL solution. Under the optimal conditions, the detection limit of Al(III) was 0.06 ng mL(-1). The relative standard deviation (n=7) of sample was 3.6%, values of recovery of aluminum were changed from 92.3% to 94.7% for three samples. This method is simple, accurate, sensitive and can be applied to the determination of ultra-trace aluminum in human albumin. 2009 Elsevier B.V. All rights reserved.
Yang, Shan; Yan, Binggong; Wu, Jiaxiong; Lu, Li; Zeng, Kaiyang
2017-04-26
This paper presents the in situ mapping of temperature-dependent lithium-ion diffusion at the nanometer level in thin film Li 1.2 Co 0.13 Ni 0.13 Mn 0.54 O 2 cathode using electrochemical strain microscopy. The thin-film Li 1.2 Co 0.13 Ni 0.13 Mn 0.54 O 2 cathode exhibits higher lithium-ion diffusivities with increasing temperature, which explains the higher capacity observed in the lithium-ion batteries with a Li-rich cathode at elevated temperature. In addition, the activation energy for lithium-ion diffusion can be extracted in an Arrhenius-type plot at the level of grain structure with the assumption that the ionic movement is diffusion controlled. Compared with the grain interiors, the grain boundaries show relatively lower activation energy; hence, it is the preferred diffusion path for lithium ions. This study has bridged the gap between atomistic calculations and traditional macroscopic experiments, showing direct evidence as well as mechanisms for ionic diffusion for Li-rich cathode material.
Chen, Songqing; Qin, Xingxiu; Gu, Weixi; Zhu, Xiashi
2016-12-01
Ionic liquids-β-cyclodextrin polymer (ILs-β-CDCP) was attached on Fe 3 O 4 nanoparticles to prepare magnetic solid phase extraction agent (Fe 3 O 4 @ILs-β-CDCP). The properties and morphology of Fe 3 O 4 @ILs-β-CDCP were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction(XRD), size distribution and magnetic analysis. A new method of magnetic solid phase extraction (MSPE) coupled to ICP-OES for the speciation of Mn(II)/Mn(VII) in water samples was established. The results showed that Mn(VII) and total manganese [Mn(II)+Mn(VII)] were quantitatively extracted after adjusting aqueous sample solution to pH 6.0 and 10.0, respectively. Mn(II) was calculated by subtraction of Mn(VII) from total manganese. Fe 3 O 4 @ILs-β-CDCP showed a higher adsorption capacity toward Mn(II) and Mn(VII). Several factors, such as the pH value, extraction temperature and sample volume, were optimized to achieve the best extraction efficiency. Moreover, the adsorption ability of Fe 3 O 4 @ILs-β-CDCP would not be significantly lower after reusing of 10 times. The accuracy of the developed method was confirmed by analyzing certified reference materials (GSB 07-1189-2000), and by spiking spring water, city water and lake water samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Merouani, Slimane; Hamdaoui, Oualid; Haddad, Boumediene
2018-03-01
In this work, a comparison between the temperatures/pressures within acoustic cavitation bubble in an imidazolium-based room-temperature ionic liquid (RTIL), 1-butyl-3-methylimidazolium bis(triflluoromethyl-sulfonyl)imide ([BMIM][NTf 2 ]), and in water has been made for a wide range of cavitation parameters including frequency (140-1000kHz), acoustic intensity (0.5-1Wcm -2 ), liquid temperature (20-50°C) and external static pressure (0.7-1.5atm). The used cavitation model takes into account the liquid compressibility as well as the surface tension and the viscosity of the medium. It was found that the bubble temperatures and pressures were always much higher in the ionic liquid compared to those predicted in water. The valuable effect of [BMIM][NTf 2 ] on the bubble temperature was more pronounced at higher acoustic intensity and liquid temperature and lower frequency and external static pressure. However, confrontation between the predicted and the experimental estimated temperatures in ionic liquids showed an opposite trend as the temperatures measured in some pure ionic liquids are of the same order as those observed in water. The injection of liquid droplets into cavitation bubbles, the pyrolysis of ionic liquids at the bubble-solution interface as well as the lower number of collapsing bubbles in the ionic liquid may be the responsible for the lower measured bubble temperatures in ionic liquids, as compared with water. Copyright © 2017 Elsevier B.V. All rights reserved.
López Monzón, A; Vega Moreno, D; Torres Padrón, M E; Sosa Ferrera, Z; Santana Rodríguez, J J
2007-03-01
Solid-phase microextraction (SPME) coupled with high-performance liquid chromatography (HPLC) with fluorescence detection was optimized for extraction and determination of four benzimidazole fungicides (benomyl, carbendazim, thiabendazole, and fuberidazole) in water. We studied extraction and desorption conditions, for example fiber type, extraction time, ionic strength, extraction temperature, and desorption time to achieve the maximum efficiency in the extraction. Results indicate that SPME using a Carboxen-polydimethylsiloxane 75 microm (CAR-PDMS) fiber is suitable for extraction of these types of compound. Final analysis of benzimidazole fungicides was performed by HPLC with fluorescence detection. Recoveries ranged from 80.6 to 119.6 with RSDs below 9% and limits of detection between 0.03 and 1.30 ng mL-1 for the different analytes. The optimized procedure was applied successfully to the determination of benzimidazole fungicides mixtures in environmental water samples (sea, sewage, and ground water).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehaudt, Jeremy; Williams, Neil J.; Shkrob, Ilya A.
1,10-Phenanthroline-2,9-dicarboxamide complexants decorated with alkyl chains and imidazolium cations have been studied for extraction of trivalent f-ions into imidazolium ionic liquids. The dicationic complexants are shown to extract Am over Eu with separation factors > 50 and high extraction efficiencies. Lastly, the different size selectivities for lanthanide ions were observed for these two types of the complexants, highlighting the importance of the positive charge in controlling both extraction efficiencies and extraction selectivities.
Dehaudt, Jeremy; Williams, Neil J.; Shkrob, Ilya A.; ...
2016-06-13
1,10-Phenanthroline-2,9-dicarboxamide complexants decorated with alkyl chains and imidazolium cations have been studied for extraction of trivalent f-ions into imidazolium ionic liquids. The dicationic complexants are shown to extract Am over Eu with separation factors > 50 and high extraction efficiencies. Lastly, the different size selectivities for lanthanide ions were observed for these two types of the complexants, highlighting the importance of the positive charge in controlling both extraction efficiencies and extraction selectivities.
Zhou, Jun; Bi, Wentao; Row, Kyung Ho
2011-04-01
An effective and accurate method including extraction, saponification, and separation was developed to determine astaxanthin (AX) in Saccharina japonica. The optimal extraction conditions with different solvents were investigated. 29.30 μg/g of AX was extracted from dry Saccharina japonica powder by solvent. After subsequent saponification, the extracted amount of AX was increased to 37.26 μg/g. Furthermore, 3 different ionic liquid-based silicas were prepared as sorbents for the solid phase extraction of AX from the extract. By comparing the adsorption isotherms of AX on different ionic liquid-based silicas, suitable sorbent was successfully selected and applied for separation of AX from extract. Astaxanthin, in 3 main forms (free, monoesters, and diesters), can be obtained from marine plants and animals. By extraction with subsequent saponification, the astaxanthin was extracted from Saccharina japonica. And then, ionic liquid-based silicas were used to separate the astaxanthin from the extract solution. This method can be widely applied for determination, or even industrial separation and purification of astaxanthin from many other algae.
Aguilera-Herrador, Eva; Lucena, Rafael; Cárdenas, Soledad; Valcárcel, Miguel
2008-10-31
A simple, rapid, solventless method for the determination of trihalomethanes (THMs) (chloroform, bromodichloromethane, dibromochloromethane and bromoform) in water samples is presented. The analytes are extracted from the headspace of the aqueous matrix into a 2 microL drop of the ionic liquid 1-octyl-3-methyl-imidazolium hexafluorophosphate working at 30 degrees C for 30 min. The separation and detection of the target compounds is accomplished by gas chromatography/mass spectrometry owing to the use of an interface that efficiently transfers the analytes extracted in the ionic liquid drop to the gas chromatograph while preventing the ionic liquid from entering the column. The detection limits obtained are below the values compelled by the legislation, ranging from 0.5 microg L(-1) for chloroform and bromodichloromethane to 0.9 microg L(-1) for dibromochloromethane. The use of ionic liquid in the extraction procedure avoids the use of organic solvents and leads to relative standard deviations that range from 3.1% to 4.8%.
NASA Astrophysics Data System (ADS)
Kurade, S. S.; Ramteke, A. A.
2018-05-01
In this work, we have investigated the rate of reaction by using ionic strength at different temperatures. The main goal of this experiment is to determine the relation between ionic strength with reaction rate, reaction time and rate constant with temperature. It is observed that the addition of positive salt indicate the increasing ionic strength with increase in run time at various temperatures. Thus the temperature affects the speed of reaction and mechanism by which chemical reaction occurs and time variable plays vital role in the progress of reaction at different temperatures.
Sun, Shuo; Wang, Ying; Yu, Wenzhi; Zhao, Tianqi; Gao, Shiqian; Kang, Mingqin; Zhang, Yupu; Zhang, Hanqi; Yu, Yong
2011-07-01
The liquid-liquid microextraction (LLME) was developed for extracting sudan dyes from red wine and fruit juice. Room temperature ionic liquid was used as the extraction solvent. The target analytes were determined by high-performance liquid chromatography. The extraction parameters were optimized. The optimal conditions are as follows: volume of [C(6)MIM][PF(6)] 50 μL; the extraction time 10 min; pH value of the sample solution 7.0; NaCl concentration in sample solution 5%. The extraction recoveries for the analytes in red wine and fruit samples are 86.79-108.28 and 68.54-85.66%, whereas RSDs are 1.42-5.12 and 1.43-6.19%, respectively. The limits of detection and quantification were 0.428 and 1.426 ng/mL for sudan I, 0.938 and 3.127 ng/mL for sudan II, 1.334 and 4.445 ng/mL for sudan III, 1.454 and 4.846 ng/mL for sudan IV, respectively. Compared with conventional liquid-liquid extraction (CLLE) and ultrasonic extraction (UE), when LLME was applied, the sample amount was less (LLME: 4 mL; CLLE: 10 mL; UE: 10 mL), the extraction time was shorter (LLME: 15 min; CLLE: 110 min; UE: 50 min) and the extraction solvent amount was less (LLME: 0.05 mL IL; CLLE: 15 mL hexane; UE: 20 mL hexane). The proposed method offers a simple, rapid and efficient sample preparation for determining sudan dyes in red wine and fruit juice samples. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Sadi, Maryam
2018-01-01
In this study a group method of data handling model has been successfully developed to predict heat capacity of ionic liquid based nanofluids by considering reduced temperature, acentric factor and molecular weight of ionic liquids, and nanoparticle concentration as input parameters. In order to accomplish modeling, 528 experimental data points extracted from the literature have been divided into training and testing subsets. The training set has been used to predict model coefficients and the testing set has been applied for model validation. The ability and accuracy of developed model, has been evaluated by comparison of model predictions with experimental values using different statistical parameters such as coefficient of determination, mean square error and mean absolute percentage error. The mean absolute percentage error of developed model for training and testing sets are 1.38% and 1.66%, respectively, which indicate excellent agreement between model predictions and experimental data. Also, the results estimated by the developed GMDH model exhibit a higher accuracy when compared to the available theoretical correlations.
Kakinuma, Shohei; Shirota, Hideaki
2018-05-25
In this study, we have investigated the effects of cation structures on the temperature dependence of the intermolecular vibrational dynamics of ionic liquids using femtosecond Raman-induced Kerr effect spectroscopy. The ionic liquids used in this study are bis(trifluoromethylsulfonyl)amide [NTf 2 ] - salts of the cations 1-butyl-3-methylimidazolium [C 4 MIm] + , 1-butyl-1-methylpyrrolidinium [Pyrr 14 ] + , 1-butylpyridinium [C 4 Py] + , butyldiethylmethylammonium [N 1224 ] + , triethyloctylammonium [N 2228 ] + , and triethyloctylphosphonium [P 2228 ] + . All of the ionic liquids show temperature-dependent low-frequency spectra. A difference in the temperature dependence between the spectra of the aromatic and nonaromatic cation based ionic liquids is especially significant. In the case of the aromatic cation based ionic liquids [C 4 MIm][NTf 2 ] and [C 4 Py][NTf 2 ], the spectral intensities in the low-frequency region below ca. 50 cm -1 increase and the high-frequency components at ca. 80 cm -1 shift to lower frequencies with rising temperature. In contrast, the ionic liquids based on nonaromatic cations only exhibit an increase in the low-frequency region below ca. 50 cm -1 with increasing temperature, while the high-frequency region of the spectra above ca. 50 cm -1 shows little change with variation of the temperature. These results suggest that the presence or absence of aromatic rings is the main factor in determining the temperature-dependent spectral features, particularly in the high-frequency region. We also found that the alkyl chain length and central atoms of the nonaromatic quaternary cations do not have much influence on the temperature-dependent spectral features. The first moments of the aromatic cation based ionic liquids are a little more sensitive to temperature than those of the nonaromatic cation based ionic liquids. The temperature-dependent viscosities and fragilities of the ionic liquids have also been examined.
Billard, Isabelle; Ouadi, Ali; Gaillard, Clotilde
2011-06-01
Liquid-liquid extraction of actinides and lanthanides by use of ionic liquids is reviewed, considering, first, phenomenological aspects, then looking more deeply at the various mechanisms. Future trends in this developing field are presented.
Liu, Tingting; Sui, Xiaoyu; Zhang, Rongrui; Yang, Lei; Zu, Yuangang; Zhang, Lin; Zhang, Ying; Zhang, Zhonghua
2011-11-25
An ionic liquid based microwave-assisted simultaneous extraction and distillation (ILMSED) method has been developed for the effective extraction of carnosic acid (CA), rosmarinic acid (RA) and essential oil (EO) from Rosmarinus officinalis. A series of 1-alkyl-3-methylimidazolium ionic liquids differing in composition of anion and cation were evaluated for extraction yield in this work. The results obtained indicated that the anions and cations of ionic liquids had influences on the extraction of CA and RA, 1.0M 1-octyl-3-methylimidazolium bromide ([C8mim]Br) solution was selected as solvent. In addition, the ILMSED procedures for the three target ingredients were optimized and compared with other conventional extraction techniques. ILMSED gave the best result due to the highest extraction yield within the shortest extraction time for CA and RA. The novel process developed offered advantages in term of yield and selectivity of EO and shorter isolation time (20 min in comparison of 4h of hydrodistillation), and provides a more valuable EO (with high amount of oxygenated compounds). The microstructures and chemical structures of rosemary samples before and after extraction were also investigated. Moreover, the proposed method was validated by the stability, repeatability and recovery experiments. The results indicated that the developed ILMSED method provided a good alternative for the both extraction of non-volatile compounds (CA and RA) and EO from rosemary as well as other herbs. Copyright © 2011 Elsevier B.V. All rights reserved.
Chen, Fengli; Hou, Kexin; Li, Shuangyang; Zu, Yuangang; Yang, Lei
2014-01-01
An ionic liquids-based ultrasound-assisted extraction (ILUAE) method was successfully developed for extracting shikimic acid from conifer needles. Eleven 1-alkyl-3-methylimidazolium ionic liquids with different cations and anions were investigated and 1-benzyl-3-methylimidazolium bromide solution was selected as the solvent. The conditions for ILUAE, including the ionic liquid concentration, ultrasound power, ultrasound time, and liquid-solid ratio, were optimized. The proposed method had good recovery (99.37%–100.11%) and reproducibility (RSD, n = 6; 3.6%). ILUAE was an efficient, rapid, and simple sample preparation technique that showed high reproducibility. Based on the results, a number of plant species, namely, Picea koraiensis, Picea meyeri, Pinus elliottii, and Pinus banksiana, were identified as among the best resources of shikimic acid. PMID:24782942
Ma, Ke; Forsman, Jan; Woodward, Clifford E
2015-05-07
We explore the influence of ion pairing in room temperature ionic liquids confined by planar electrode surfaces. Using a coarse-grained model for the aromatic ionic liquid [C4MIM(+)][BF4 (-)], we account for an ion pairing component as an equilibrium associating species within a classical density functional theory. We investigated the resulting structure of the electrical double layer as well as the ensuing surface forces and differential capacitance, as a function of the degree of ion association. We found that the short-range structure adjacent to surfaces was remarkably unaffected by the degree of ion pairing, up to several molecular diameters. This was even the case for 100% of ions being paired. The physical implications of ion pairing only become apparent in equilibrium properties that depend upon the long-range screening of charges, such as the asymptotic behaviour of surface forces and the differential capacitance, especially at low surface potential. The effect of ion pairing on capacitance is consistent with their invocation as a source of the anomalous temperature dependence of the latter. This work shows that ion pairing effects on equilibrium properties are subtle and may be difficult to extract directly from simulations.
Bonny, Sarah; Paquin, Ludovic; Carrié, Daniel; Boustie, Joël; Tomasi, Sophie
2011-11-30
Ionic liquids based extraction method has been applied to the effective extraction of norstictic acid, a common depsidone isolated from Pertusaria pseudocorallina, a crustose lichen. Five 1-alkyl-3-methylimidazolium ionic liquids (ILs) differing in composition of alkyl chain and anion were investigated for extraction efficiency. The extraction amount of norstictic acid was determined after recovery on HPTLC with a spectrophotodensitometer. The proposed approaches (IL-MAE and IL-heat extraction (IL-HE)) have been evaluated in comparison with usual solvents such as tetrahydrofuran in heat-reflux extraction and microwave-assisted extraction (MAE). The results indicated that both the characteristics of the alkyl chain and anion influenced the extraction of polyphenolic compounds. The sulfate-based ILs [C(1)mim][MSO(4)] and [C(2)mim][ESO(4)] presented the best extraction efficiency of norstictic acid. The reduction of the extraction times between HE and MAE (2 h-5 min) and a non-negligible ratio of norstictic acid in total extract (28%) supports the suitability of the proposed method. This approach was successfully applied to obtain additional compounds from other crustose lichens (Pertusaria amara and Ochrolechia parella). Copyright © 2011 Elsevier B.V. All rights reserved.
Lunar Oxygen Production and Metals Extraction Using Ionic Liquids
NASA Technical Reports Server (NTRS)
Marone, Matthew; Paley, Mark Steven; Donovan, David N.; Karr, Laurel J.
2009-01-01
Initial results indicate that ionic liquids are promising media for the extraction of oxygen from lunar regolith. IL acid systems can solubilize regolith and produce water with high efficiency. IL electrolytes are effective for water electrolysis, and the spent IL acid media are capable of regeneration.
Novel Fission-Product Separation based on Room-Temperature Ionic Liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, Robin D.
2004-12-31
U.S. DOE's underground storage tanks at Hanford, SRS, and INEEL contain liquid wastes with high concentrations of radioactive cesium-137 and strontium-90. Because the primary chemical components of alkaline supernatants are sodium nitrate and sodium hydroxide, the majority of this could be disposed of as low level waste if radioactive cesium-137 and strontium- 90 could be selectively removed. The underlying goal of this project was to investigate the application of ionic liquids as novel solvents for new solvent extraction processes for separation of cesium-137 and strontium-90 from tank wastes. Ionic liquids are a distinct sub-set of liquids, comprising only of cationsmore » and anions they are proving to be increasingly interesting fluids for application in systems from electrochemistry to energetic materials, and are also rapidly establishing their promise as viable media for synthesis and separations operations. Properties including low melting points, electrochemical conductivity, wide liquid ranges, lack of vapor-pressure, and chemical tunability have encouraged researchers to explore the uses of ILs in place of volatile organic solvents. The most promising current developments arise from control of the unique combinations of chemical and physical properties characteristic of ionic liquids.« less
Wang, Kun; Jiang, Jia; Kang, Mingqin; Li, Dan; Zang, Shuang; Tian, Sizhu; Zhang, Hanqi; Yu, Aimin; Zhang, Ziwei
2017-04-01
The homogeneous ionic liquid microextraction combined with magnetical hollow fiber bar collection was developed for extracting triazine herbicides from water samples. These analytes were separated and determined by high performance liquid chromatography. The triazines were quickly extracted into ionic liquid microdroplets dispersed in solution, and then these microdroplets were completely collected with magnetical hollow fiber bars; the pores of which were impregnated with hydrophobic ionic liquid, which makes the phase separation simplified with no need of centrifugation. Some experimental parameters, such as the type of ionic liquid, ultrasonic immersion time of hollow fiber, pH of sample solution, volume of hydrophilic ionic liquid, amount of ion-pairing agent NH 4 PF 6 , NaCl concentration, number of magnetical hollow fiber bar, stirring rate, and collection time were investigated and optimized. When the present method was applied to the analysis of real water samples, the precision and recoveries of six triazine herbicides vary from 0.1 to 9.2% and 73.4 to 118.5%, respectively. The detection limits for terbumeton, ametryn, prometryn, terbutryn, trietazine, and dimethametryn were 0.48, 0.15, 0.15, 0.14, 0.35, and 0.16 μg L -1 , respectively.
Larangeira, Paula Martins; de Rosso, Veridiana Vera; da Silva, Victor Hugo Pereira; de Moura, Carolina Foot Gomes; Ribeiro, Daniel Araki
2016-11-01
The ionic liquid or melted salt 1-Butyl-3-methylimidazolium is an alternative process to extract natural pigments, such as carotenoids. Lycopene represents 80-90% of total of carotenoids presents in tomatoes and it has been widely studied due its potent antioxidant action. The aim of this study was to evaluate genotoxicity, mutagenicity and cytotoxicity of carotenoids extracted from ionic liquid using experimental model in vivo. For this purpose, a total of 20 male Wistar rats were distributed into four groups (n=5), as follows: control group; received a corresponding amount of corn oil for 7days by intragastric gavage (i.g.), ionic liquid group, received 10mgkg -1 body weight for 7days by gavage; 10mg carotenoids group, received 10mgkg -1 bw dissolved in corn oil for 7days by gavage and 500mg carotenoids group, received 500mgkg -1 bw dissolved in corn oil for 7days by gavage. Rat liver treated with ionic liquid exhibited moderate histopathological changes randomly distributed in the parenchyma, such as cytoplasmic eosinophilia, apoptotic bodies, inflammatory infiltrate and focal necrosis. DNA damage was found in peripheral blood and liver cells of rats treated with ionic liquid or carotenoids at 500mg. An increase of micronucleated cells and 8-OhDG immunopositive cells were also detected in rats treated with carotenoids at 500mg. In summary, our results demonstrate that recommended dose for human daily intake of carotenoids extracted by ionic liquid did not induce genotoxicity, mutagenicity and cytotoxicity in multiple organs of rats. Copyright © 2016 Elsevier GmbH. All rights reserved.
Ionic liquid-modified materials for solid-phase extraction and separation: a review.
Vidal, Lorena; Riekkola, Marja-Liisa; Canals, Antonio
2012-02-17
In recent years, materials science has propelled to the research forefront. Ionic liquids with unique and fascinating properties have also left their footprints to the developments of materials science during the last years. In this review we highlight some of their recent advances and provide an overview at the current status of ionic liquid-modified materials applied in solid-phase extraction, liquid and gas chromatography and capillary electrochromatography with reference to recent applications. In addition, the potential of ionic liquids in the modification of capillary inner wall in capillary electrophoresis is demonstrated. The main target material modified with ionic liquids is silica, but polymers and monoliths have recently joined the studies. Although imidazolium is still clearly the most commonly used ionic liquid for the covalently modification of materials, the exploitation of pyridinium and phosphonium will most probably increase in the future. Copyright © 2011 Elsevier B.V. All rights reserved.
Gu, Huiyan; Chen, Fengli; Zhang, Qiang; Zang, Jing
2016-03-01
Rutin, hyperoside and hesperidin were effectively extracted from Sorbus tianschanica leaves by an ionic liquid vacuum microwave-assisted method. A series of ionic liquids with various anions and alkyl chain length of the cations were studied and the extraction was performed in [C6mim][BF4] aqueous solution. After optimization by a factorial design and response surface methodology, total extraction yield of 2.37mg/g with an error of 0.12mg/g (0.71±0.04mg/g, 1.18±0.06mg/g and 0.48±0.02 for rutin, hyperoside and hesperidin, respectively) was achieved under -0.08MPa for vacuum, 19min and 420W for microwave irradiation time and power, and 15mL/g for liquid-solid ratio. The proposed method here is more efficient and needs a shorter extraction time for rutin, hyperoside and hesperidin from S. tianschanica leaves than reference extraction techniques. In stability studies performed with standard rutin, hyperoside and hesperidin, the target analytes were stable under the optimum conditions. The proposed method had a high reproducibility and precision. In addition, separation of rutin, hyperoside and hesperidin from [C6mim][BF4] extraction solution was completed effectively by AB-8 macroporous resin adsorption and desorption process. Ionic liquid vacuum microwave-assisted extraction is a simple, rapid and efficient sample extraction technique. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ghasemi, Elham; Kaykhaii, Massoud
2016-07-01
A novel, green, simple and fast method was developed for spectrophotometric determination of Malachite green, Crystal violet, and Rhodamine B in water samples based on Micro-cloud Point extraction (MCPE) at room temperature. This is the first report on the application of MCPE on dyes. In this method, to reach the cloud point at room temperature, the MCPE procedure was carried out in brine using Triton X-114 as a non-ionic surfactant. The factors influencing the extraction efficiency were investigated and optimized. Under the optimized condition, calibration curves were found to be linear in the concentration range of 0.06-0.60 mg/L, 0.10-0.80 mg/L, and 0.03-0.30 mg/L with the enrichment factors of 29.26, 85.47 and 28.36, respectively for Malachite green, Crystal violet, and Rhodamine B. Limit of detections were between 2.2 and 5.1 μg/L.
Ghasemi, Elham; Kaykhaii, Massoud
2016-07-05
A novel, green, simple and fast method was developed for spectrophotometric determination of Malachite green, Crystal violet, and Rhodamine B in water samples based on Micro-cloud Point extraction (MCPE) at room temperature. This is the first report on the application of MCPE on dyes. In this method, to reach the cloud point at room temperature, the MCPE procedure was carried out in brine using Triton X-114 as a non-ionic surfactant. The factors influencing the extraction efficiency were investigated and optimized. Under the optimized condition, calibration curves were found to be linear in the concentration range of 0.06-0.60mg/L, 0.10-0.80mg/L, and 0.03-0.30mg/L with the enrichment factors of 29.26, 85.47 and 28.36, respectively for Malachite green, Crystal violet, and Rhodamine B. Limit of detections were between 2.2 and 5.1μg/L. Copyright © 2016 Elsevier B.V. All rights reserved.
Cui, Meiyu; Qiu, Jinxue; Li, Zhenghua; He, Miao; Jin, Mingshi; Kim, Jiman; Quinto, Maurizio; Li, Donghao
2015-01-01
In this study, a stainless steel wire/ionic liquid-solid phase microextraction technique was developed for the direct extraction of APs from water samples. Some parameters were optimised, such as selection of the substrate and ILs, extraction time, extraction temperature, stirring rate and sample pH, etc. The experimental data demonstrated that the etched stainless steel wire was a suitable substrate for IL-coated SPME. The coating was prepared by directly depositing the ILs onto the surface of the etched stainless steel wire, which exhibited a porous structure and a high surface area. The [C8MIM][PF6] IL exhibited maximum efficiency with an extraction time of 30 min, and the aqueous sample was maintained at 40 °C and adjusted to pH 2 under stirring conditions. The enrichment factor of the IL coating for the four APs ranged from 1382 to 4779, the detection limits (LOD, S/N=3) of the four APs ranged from 0.01 to 0.04 ng mL(-1) and the RSD values for purified water spiked with APs ranged from 4.0 to 11.8% (n=3). The calibration graphs were linear in the concentration range from 0.5 to 200 ng mL(-1) (R(2)>0.9569). The optimised method was successfully applied for the analysis of real water samples, and the method was suitable for the extraction of APs from water samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Li, Fa-tang; Kou, Cheng-guang; Sun, Zhi-min; Hao, Ying-juan; Liu, Rui-hong; Zhao, Di-shun
2012-02-29
A new C5H9NO·SnCl2 coordinated ionic liquid (IL) was prepared by reacting N-methyl-pyrrolidone with anhydrous SnCl2. Desulfurization of dibenzothiophene (DBT) via extraction and oxidation with C5H9NO·SnCl2 IL as extractant, H2O2 and equal mol of CH3COOH as oxidants was investigated. The Nernst partition coefficients k(N) of C5H9NO·SnCl2 IL for the DBT in n-octane was above 5.0, showing its excellent extraction ability. During the oxidative desulfurization process, the optimal molar ratio of H2O2/DBT was six. Sulfur removal of DBT in n-octane was 94.8% in 30 min at 30 °C under the conditions of H2O2/DBT molar ratio of six and V (IL):V (oil)=1:3. Moreover, the sulfur removal increased with increasing temperature because of the high reaction rate constant, low viscosity, and high solubility of dibenzothiophene-sulfone in the IL. The kinetics of oxidative desulfurization of DBT was also investigated, and the apparent activation energy was found to be 32.5 kJ/mol. The IL could be recycled six times without a significant decrease in activity. Copyright © 2011 Elsevier B.V. All rights reserved.
Mohd, N I; Zain, N N M; Raoov, M; Mohamad, S
2018-04-01
A new cloud point methodology was successfully used for the extraction of carcinogenic pesticides in milk samples as a prior step to their determination by spectrophotometry. In this work, non-ionic silicone surfactant, also known as 3-(3-hydroxypropyl-heptatrimethylxyloxane), was chosen as a green extraction solvent because of its structure and properties. The effect of different parameters, such as the type of surfactant, concentration and volume of surfactant, pH, salt, temperature, incubation time and water content on the cloud point extraction of carcinogenic pesticides such as atrazine and propazine, was studied in detail and a set of optimum conditions was established. A good correlation coefficient ( R 2 ) in the range of 0.991-0.997 for all calibration curves was obtained. The limit of detection was 1.06 µg l -1 (atrazine) and 1.22 µg l -1 (propazine), and the limit of quantitation was 3.54 µg l -1 (atrazine) and 4.07 µg l -1 (propazine). Satisfactory recoveries in the range of 81-108% were determined in milk samples at 5 and 1000 µg l -1 , respectively, with low relative standard deviation, n = 3 of 0.301-7.45% in milk matrices. The proposed method is very convenient, rapid, cost-effective and environmentally friendly for food analysis.
Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R
2008-03-01
Biosorption of copper ions by an industrial algal waste, from agar extraction industry has been studied in a batch system. This biosorbent was compared with the algae Gelidium itself, which is the raw material for agar extraction, and the industrial waste immobilized with polyacrylonitrile (composite material). The effects of contact time, pH, ionic strength (IS) and temperature on the biosorption process have been studied. Equilibrium data follow both Langmuir and Langmuir-Freundlich models. The parameters of Langmuir equilibrium model were: q(max)=33.0mgg(-1), K(L)=0.015mgl(-1); q(max)=16.7mgg(-1), K(L)=0.028mgl(-1) and q(max)=10.3mgg(-1), K(L)=0.160mgl(-1) respectively for Gelidium, algal waste and composite material at pH=5.3, T=20 degrees C and IS=0.001M. Increasing the pH, the number of deprotonated active sites increases and so the uptake capacity of copper ions. In the case of high ionic strengths, the contribution of the electrostatic component to the overall binding decreases, and so the uptake capacity. The temperature has little influence on the uptake capacity principally for low equilibrium copper concentrations. Changes in standard enthalpy, Gibbs energy and entropy during biosorption were determined. Kinetic data at different solution pH (3, 4 and 5.3) were fitted to pseudo-first-order and pseudo-second-order models. The adsorptive behaviour of biosorbent particles was modelled using a batch reactor mass transfer kinetic model, which successfully predicts Cu(II) concentration profiles.
Synthesis and characterization of new class of ionic liquids containing phenolate anion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lethesh, Kallidanthiyil Chellappan, E-mail: lethesh.chellappan@petronas.com.my; Wilfred, Cecilia Devi; Taha, M. F.
2014-10-24
In these manuscript novel ionic liquids containing a new class of 'phenolate' anions was synthesized and characterized. 1-methylmidazole with different alkyl chains such as butyl, hexyl and octyl groups was used as the cationic part. All the ionic liquids were obtained as liquids at room temperature. The synthesized ionic liquids were characterized using {sup 1}H NMR and {sup 13}C NMR spectroscopy. The thermal stability of the ionic liquids was studied using thermo gravimetric analysis (TGA). The effect of temperature on the density and viscosity of the ionic liquids were studied over a temperature range from 293.15 K to 373.15K atmore » atmospheric pressure. From the experimental values of density, the molecular volume, standard molar entropy and the lattice energy of the ionic liquids were calculated.« less
Yang, Hongpeng; Chen, Li; Zhou, Cunshan; Yu, Xiaojie; Yagoub, Abu ElGasim A; Ma, Haile
2018-04-15
Polyethylene glycol (PEG) is widely used in the polymer-salt systems. However, the low polarity of the PEG-rich phase limits the application of aqueous biphasic systems (ABS). To overcome this disadvantage, a small quantity of ionic liquid (IL) was used as an adjuvant in ABS to enlarge the polarity range. Therefore, an innovative study involving addition of 4wt% imidazolium-based ILs to the PEG 600/NaH 2 PO 4 ABS, aiming at controlling the phase behavior and extraction ability, was carried out. The phase diagrams, the tie-lines and the partitioning behavior of l-phenylalanine and ILs were studied in these systems. The results reveal that l-phenylalanine preferentially partitions for the PEG-rich phase. The addition of 4wt% IL to ABS controls the partitioning behavior of l-phenylalanine, which depends on the type of IL employed. Moreover, it is verified that increasing temperature lead to a decrease in the partition coefficient of l-phenylalanine. Copyright © 2017 Elsevier Ltd. All rights reserved.
Feng, Juanjuan; Sun, Min; Bu, Yanan; Luo, Chuannan
2015-01-01
A novel nanostructured copper-based solid-phase microextraction fiber was developed and applied for determining the two most common types of phthalate environmental estrogens (dibutyl phthalate and diethylhexyl phthalate) in aqueous samples, coupled to gas chromatography with flame ionization detection. The copper film was coated onto a stainless-steel wire via an electroless plating process, which involved a surface activation process to improve the surface properties of the fiber. Several parameters affecting extraction efficiency such as extraction time, extraction temperature, ionic strength, desorption temperature, and desorption time were optimized by a factor-by-factor procedure to obtain the highest extraction efficiency. The as-established method showed wide linear ranges (0.05-250 μg/L). Precision of single fiber repeatability was <7.0%, and fiber-to-fiber repeatability was <10%. Limits of detection were 0.01 μg/L. The proposed method exhibited better or comparable extraction performance compared with commercial and other lab-made fibers, and excellent thermal stability and durability. The proposed method was applied successfully for the determination of model analytes in plastic soaking water. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhao, Jiao; Zhu, Yan; Jiao, Yang; Ning, Jinyan; Yang, Yaling
2016-10-01
A novel two-step extraction technique combining ionic-liquid-based dispersive liquid-liquid microextraction with magnetic solid-phase extraction was developed for the preconcentration and separation of aflatoxins in animal feedstuffs before high-performance liquid chromatography coupled with fluorescence detection. In this work, ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate was used as the extractant in dispersive liquid-liquid microextraction, and hydrophobic pelargonic acid modified Fe 3 O 4 magnetic nanoparticles as an efficient adsorbent were applied to retrieve the aflatoxins-containing ionic liquid. Notably, the target of magnetic nanoparticles was the ionic liquid rather than the aflatoxins. Because of the rapid mass transfer associated with the dispersive liquid-liquid microextraction and magnetic solid phase steps, fast extraction could be achieved. The main parameters affecting the extraction recoveries of aflatoxins were investigated and optimized. Under the optimum conditions, vortexing at 2500 rpm for 1 min in the dispersive liquid-liquid microextraction and magnetic solid-phase extraction and then desorption by sonication for 2 min with acetonitrile as eluent. The recoveries were 90.3-103.7% with relative standard deviations of 3.2-6.4%. Good linearity was observed with correlation coefficients ranged from 0.9986 to 0.9995. The detection limits were 0.632, 0.087, 0.422 and 0.146 ng/mL for aflatoxins B 1 , B2, G1, and G2, respectively. The results were also compared with the pretreatment method carried out by conventional immunoaffinity columns. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Rui; Wang, Chuanliu; Yue, Qiaohong; Zhou, Tiecheng; Li, Na; Zhang, Hanqi; Hao, Xiaoke
2014-11-01
An ionic liquid foam floatation coupled with ionic liquid dispersive liquid-liquid microextraction method was proposed for the extraction and concentration of 17-α-estradiol, 17-β-estradiol-benzoate, and quinestrol in environmental water samples by high-performance liquid chromatography with fluorescence detection. 1-Hexyl-3-methylimidazolium tetrafluoroborate was applied as foaming agent in the foam flotation process and dispersive solvent in microextraction. The introduction of the ion-pairing and salting-out agent NH4 PF6 was beneficial to the improvement of recoveries for the hydrophobic ionic liquid phase and analytes. Parameters of the proposed method including concentration of 1-hexyl-3-methylimidazolium tetrafluoroborate, flow rate of carrier gas, floatation time, types and concentration of ionic liquids, salt concentration in samples, extraction time, and centrifugation time were evaluated. The recoveries were between 98 and 105% with relative standard deviations lower than 7% for lake water and well water samples. The isolation of the target compounds from the water was found to be efficient, and the enrichment factors ranged from 4445 to 4632. This developing method is free of volatile organic solvents compared with regular extraction. Based on the unique properties of ionic liquids, the application of foam floatation, and dispersive liquid-liquid microextraction was widened. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gujar, R B; Ansari, S A; Verboom, W; Mohapatra, P K
2016-05-27
Extraction chromatography resins, prepared by impregnating two multi-podant diglycolamide ligands, viz. diglycolamide-functionalized calix[4]arene (C4DGA) and tripodal diglycolamide (T-DGA) dissolved in the room temperature ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide (RTIL: C4mimTf2N) on Chromosorb-W (an inert solid support), gave excellent results for the removal of trivalent actinides from acidic waste solutions. Distribution coefficient measurements on several metal ions showed selective sorption of Am(III) over hexavalent uranyl ions and other fission product elements such as strontium and cesium. The sorbed metal ions could be efficiently desorbed with a complexing solution containing guanidine carbonate and EDTA buffer. The sorption of Am(III) on both resins followed pseudo-second order rate kinetics with rate constants of 1.37×10(-6) and 6.88×10(-7)g/cpmmin for T-DGA and C4DGA resins, respectively. The metal sorption on both resins indicated the Langmuir monolayer chemisorption phenomenon with Eu(III) sorption capacities of 4.83±0.21 and 0.52±0.05mg per g of T-DGA and C4DGA resins, respectively. The results of column studies show that these resins are of interest for a possible application for the recovery of hazardous trivalent actinides from dilute aqueous solutions. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Xiao-Mei; Chen, Yi-Long; Yao, Yuan-Yuan; Li, Na; Liu, You-Ping; Liang, Xu-Ming
2016-03-01
Using six kinds of ionic liquids as extractants, ultrasonic-assisted extraction coupled with HPLC method was developed for the simultaneous determination of wilforgine, wiforizine, triptophenolide, wilforine and triptoquinone A in Tripterygium hypoglaucum. The separation was performed on an Inertsil ODS-4 column with the mobile phase of acetonitrile-0.1% phosphoric acid in gradient elution at a flow rate of 0.75 mL•min⁻¹. Detection wavelength was 220 nm and the column temperature was 30℃. Under the optimal extractions, the results showed that triptophenolide and triptoquinone A had the highest extraction yield by using 0.6 mol•L⁻¹ [BMIm]PF6 methanol solution as extraction solvent with the solid-liquid ratio of 1∶10. The calibration curves of triptophenolide and triptoquinone A showed a good linearity in the range of 0.000 65-0.026, 0.066 55-2.662 μg (r=0.999 9)respectively. The average recovery was 102.4% and 97.90% with RSD of 2.5% and 1.5%, respectively. Wilforgine, wiforizine and wilforine had the highest extraction yield when using 0.6 mol• L⁻¹ [BMIm]PF6absolute ethanol solution as extraction solvent with the solid-liquid ratio of 1∶10. The content of wilforgine, wiforizine and wilforine from 0.023 9-0.956, 0.002 7-0.108, 0.006 4-0.256 μg showed a good linearity (r=0.999 9), and the average recovery was 100.6%,99.50% and 98.70% with RSD of 2.1%,1.9% and 2.7%, respectively. The results indicated that this method is convenient, reliable and green, and can be used as a reliableanalytical method for the quality control of T.hypoglaucum. Copyright© by the Chinese Pharmaceutical Association.
NASA Astrophysics Data System (ADS)
Hess, Ryan F.; Boyle, Timothy J.; Limmer, Steven; Yelton, William G.; Bingham, Samuel; Stillman, Greg; Lindblom, Scott; Cieslewski, Grzegorz
2014-06-01
For enhanced or Engineered Geothermal Systems (EGS) geothermal brine is pumped to the surface via the production wells, the heat extracted to turn a turbine to generate electricity, and the spent brine re-injected via injection wells back underground. If designed properly, the subsurface rock formations will lead this water back to the extraction well as heated brine. Proper monitoring of these geothermal reservoirs is essential for developing and maintaining the necessary level of productivity of the field. Chemical tracers are commonly used to characterize the fracture network and determine the connectivity between the injection and production wells. Currently, most tracer experiments involve injecting the tracer at the injection well, manually collecting liquid samples at the wellhead of the production well, and sending the samples off for laboratory analysis. While this method provides accurate tracer concentration data at very low levels of detection, it does not provide information regarding the location of the fractures which were conducting the tracer between wellbores. Sandia is developing a high-temperature electrochemical sensor capable of measuring tracer concentrations and pH downhole on a wireline tool. The goal of this effort is to collect real-time pH and ionic tracer concentration data at temperatures up to 225 °C and pressures up to 3000 psi. In this paper, a prototype electrochemical sensor and the initial data obtained will be presented detailing the measurement of iodide tracer concentrations at high temperature and pressure in a newly developed laboratory scale autoclave.
Sun, Lili; Yang, Jianwen; Wang, Meng; Zhang, Huijie; Liu, Yanan; Ren, Xiaoliang; Qi, Aidi
2015-11-10
Xue-Zhi-Ning (XZN) is a widely used traditional Chinese medicine formula to treat hyperlipidemia. Recently, cyclodextrins (CDs) have been extensively used to minimize problems relative to medicine bioavailability, such as low solubility and poor stability. The objective of this study was to determine the associated-extraction efficiency of various CDs in XZN. Three various type CDs were evaluated, including native CDs (α-CD, β-CD), hydrophilic CD derivatives (HP-β-CD and Me-β-CD), and ionic CD derivatives (SBE-β-CD and CM-β-CD). An ultra high-performance liquid chromatography (UHPLC) fingerprint was applied to determine the components in CD extracts and original aqueous extract (OAE). A counterpropagation artificial neural network (CP-ANN) was used to analyze the components in different extracts and compare the selective extraction of various CDs. Extraction efficiencies of the various CDs in terms of extracted components follow the ranking, ionic CD derivatives>hydrophilic CD derivatives>native CDs>OAE. Besides, different types of CDs have their own selective extraction and ionic CD derivatives present the strongest associated-extraction efficiency. Antioxidant potentials of various extracts were evaluated by determining the inhibition of spontaneous, H2O2-induced, CCl4-induced and Fe(2+)/ascorbic acid-induced lipid peroxidation (LPO) and analyzing the scavenging capacity for DPPH and hydroxyl radicals. The order of extraction efficiencies of the various CDs relative to antioxidant activities is as follows: SBE-β-CD>CM-β-CD>HP-β-CD>Me-β-CD>β-CD>α-CD. It can be demonstrated that all of the CDs studied increase the extraction efficiency and that ionic CD derivatives (SBE-β-CD and CM-β-CD) present the highest extraction capability in terms of amount extracted and antioxidant activities of extracts. Copyright © 2015 Elsevier B.V. All rights reserved.
Ventura, Sónia P M; E Silva, Francisca A; Quental, Maria V; Mondal, Dibyendu; Freire, Mara G; Coutinho, João A P
2017-05-24
Ionic liquids (ILs) have been proposed as promising media for the extraction and separation of bioactive compounds from the most diverse origins. This critical review offers a compilation on the main results achieved by the use of ionic-liquid-based processes in the extraction and separation/purification of a large range of bioactive compounds (including small organic extractable compounds from biomass, lipids, and other hydrophobic compounds, proteins, amino acids, nucleic acids, and pharmaceuticals). ILs have been studied as solvents, cosolvents, cosurfactants, electrolytes, and adjuvants, as well as used in the creation of IL-supported materials for separation purposes. The IL-based processes hitherto reported, such as IL-based solid-liquid extractions, IL-based liquid-liquid extractions, IL-modified materials, and IL-based crystallization approaches, are here reviewed and compared in terms of extraction and separation performance. The key accomplishments and future challenges to the field are discussed, with particular emphasis on the major lacunas found within the IL community dedicated to separation processes and by suggesting some steps to overcome the current limitations.
2017-01-01
Ionic liquids (ILs) have been proposed as promising media for the extraction and separation of bioactive compounds from the most diverse origins. This critical review offers a compilation on the main results achieved by the use of ionic-liquid-based processes in the extraction and separation/purification of a large range of bioactive compounds (including small organic extractable compounds from biomass, lipids, and other hydrophobic compounds, proteins, amino acids, nucleic acids, and pharmaceuticals). ILs have been studied as solvents, cosolvents, cosurfactants, electrolytes, and adjuvants, as well as used in the creation of IL-supported materials for separation purposes. The IL-based processes hitherto reported, such as IL-based solid–liquid extractions, IL-based liquid–liquid extractions, IL-modified materials, and IL-based crystallization approaches, are here reviewed and compared in terms of extraction and separation performance. The key accomplishments and future challenges to the field are discussed, with particular emphasis on the major lacunas found within the IL community dedicated to separation processes and by suggesting some steps to overcome the current limitations. PMID:28151648
Heat Capacity of Room-Temperature Ionic Liquids: A Critical Review
NASA Astrophysics Data System (ADS)
Paulechka, Yauheni U.
2010-09-01
Experimental data on heat capacity of room-temperature ionic liquids in the liquid state were compiled and critically evaluated. The compilation contains data for 102 aprotic ionic liquids from 63 literature references and covers the period of time from 1998 through the end of February 2010. Parameters of correlating equations for temperature dependence of the heat capacities were developed.
Talebpour, Zahra; Taraji, Maryam; Adib, Nuoshin
2012-05-04
This article presents a method employing stir bar coated with a film of poly (methyl methacrylate/ethyleneglycol dimethacrylate) (PA-EG) and polydimethylsiloxane (PDMS) in combination with liquid desorption (LD) using ionic liquid, followed by high performance liquid chromatography (HPLC) equipped with ultraviolet (UV) detection for the determination of carvedilol in human serum samples. Stir bar sorptive extraction (SBSE) variables, such as desorption and extraction time and temperature, desorption solvent and pH of the matrix were optimized, in order to achieve suitable analytical sensitivity in a short period of time. Also, the concentration effect of 1-methyl-3-octylimidazolium tetrafluoroborate [Omim][BF4] ionic liquid on the efficiency of LD was investigated. A comparison between PA-EG/SBSE and PDMS/SBSE was made by calculating the experimental recovery and partition coefficient (K), where PA-EG phase demonstrated to be an excellent alternative for the enrichment of the carvedilol from serum samples. The effect of [Omim][BF4] on carryover was studied and no carryover was observed. Under optimized experimental conditions, the analytical performance showed excellent linear dynamic range, with correlation coefficients higher than 0.999 and limits of detection and quantification of 0.3 and 1.0 ng mL(-1), respectively. Intra- and inter-day recovery ranged from 94 to 103% and the coefficients of variations were less than 3.2%. The proposed method was shown to be simple, highly sensitive and suitable for the measurement of trace concentration levels of carvedilol in biological fluid media. Copyright © 2012 Elsevier B.V. All rights reserved.
Su, Rui; Li, Dan; Wu, Lijie; Han, Jing; Lian, Wenhui; Wang, Keren; Yang, Hongmei
2017-07-01
A novel microextraction method, termed microwave-assisted ionic liquid/ionic liquid dispersive liquid-liquid microextraction, has been developed for the rapid enrichment and analysis of triazine herbicides in fruit juice samples by high-performance liquid chromatography. Instead of using hazardous organic solvents, two kinds of ionic liquids, a hydrophobic ionic liquid (1-hexyl-3-methylimidazolium hexafluorophosphate) and a hydrophilic ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate), were used as the extraction solvent and dispersion agent, respectively, in this method. The extraction procedure was induced by the formation of cloudy solution, which was composed of fine drops of 1-hexyl-3-methylimidazolium hexafluorophosphate dispersed entirely into sample solution with the help of 1-butyl-3-methylimidazolium tetrafluoroborate. In addition, an ion-pairing agent (NH 4 PF 6 ) was introduced to improve recoveries of the ionic liquid phase. Several experimental parameters that might affect the extraction efficiency were investigated. Under the optimum experimental conditions, the linearity for determining the analytes was in the range of 5.00-250.00 μg/L, with the correlation coefficients of 0.9982-0.9997. The practical application of this effective and green method is demonstrated by the successful analysis of triazine herbicides in four juice samples, with satisfactory recoveries (76.7-105.7%) and relative standard deviations (lower than 6.6%). In general, this method is fast, effective, and robust to determine triazine herbicides in juice samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lu, Chunxia; Luo, Xiaoling; Lu, Liliang; Li, Hongmin; Chen, Xia; Ji, Yong
2013-03-01
In recent years, ionic liquids have become increasingly attractive as 'green solvents' used in the extraction of bioactive compounds from natural plant. However, the separation of ionic liquid from the target compounds was difficult, due to their low vapour pressure and high stabilities. In our study, ionic liquid-based ultrasonic and microwave-assisted extraction was used to obtain the crude tannins, then the macroporous resin adsorption technology was further employed to purify the tannins and remove the ionic liquid from crude extract. The results showed that XDA-6 had higher separation efficiency than other tested resins, and the equilibrium experimental data were well fitted to Langmuir isotherms. Dynamic adsorption and desorption were performed on XDA-6 packed in glass columns to optimise the separation process. The optimum conditions as follows: the ratio of column height to diameter bed was 1:8, flow rate 1 BV/h (bed volume per hour), 85% ethanol was used as eluant while the elution volume was 2 BV. Under the optimised conditions, the adsorption and desoption rate of tannins in XDA-6 were 94.81 and 91.63%, respectively. The content of tannins was increased from 70.24% in Galla chinensis extract to 85.12% with a recovery of 99.06%. The result of ultra-performance liquid chromatography (UPLC)-MS/MS analysis showed that [bmim]Br could be removed from extract. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Single ion dynamics in molten sodium bromide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alcaraz, O.; Trullas, J.; Demmel, F.
We present a study on the single ion dynamics in the molten alkali halide NaBr. Quasielastic neutron scattering was employed to extract the self-diffusion coefficient of the sodium ions at three temperatures. Molecular dynamics simulations using rigid and polarizable ion models have been performed in parallel to extract the sodium and bromide single dynamics and ionic conductivities. Two methods have been employed to derive the ion diffusion, calculating the mean squared displacements and the velocity autocorrelation functions, as well as analysing the increase of the line widths of the self-dynamic structure factors. The sodium diffusion coefficients show a remarkable goodmore » agreement between experiment and simulation utilising the polarisable potential.« less
All-Solid-State Batteries with Thick Electrode Configurations.
Kato, Yuki; Shiotani, Shinya; Morita, Keisuke; Suzuki, Kota; Hirayama, Masaaki; Kanno, Ryoji
2018-02-01
We report the preparation of thick electrode all-solid-state lithium-ion cells in which a large geometric capacity of 15.7 mAh cm -2 was achieved at room temperature using a 600 μm-thick cathode layer. The effect of ionic conductivity on the discharge performance was then examined using two different materials for the solid electrolyte. Furthermore, important morphological information regarding the tortuosity factor was electrochemically extracted from the capacity-current data. The effect of tortuosity on cell performance was also quantitatively discussed.
Mixed conduction and chemical diffusion in a Pb(Zr0.53,Ti0.47)O3 buried capacitor structure
NASA Astrophysics Data System (ADS)
Donnelly, Niall J.; Randall, Clive A.
2010-02-01
Impedance spectroscopy is performed on a buried capacitor structure composed of a PZT-0.75% Nb ceramic with platinum electrodes. The ionic and electronic conductivities (σion,σelec) are extracted from the impedance spectra using an equivalent circuit based on the premise of mixed conduction. In the temperature range 500-700 °C, a change in local pO2 mainly affects σelec, suggesting that the samples are ionically compensated, i.e., [VO••]=[VPb″]. The chemical diffusion coefficient, D˜, is obtained by a conductivity relaxation technique assuming two-dimensional diffusion geometry. In comparison to BaTiO3, or SrTiO3, the chemical diffusivity is found to be relatively high, D˜=2.0×10-4 cm2 s-1 (700 °C, in air).
Sun, Jian-Nan; Chen, Juan; Shi, Yan-Ping
2014-07-01
A new mode of ionic liquid based dispersive liquid-liquid microextraction (IL-DLLME) is developed. In this work, [C6MIm][PF6] was chosen as the extraction solvent, and two kinds of hydrophilic ionic liquids, [EMIm][BF4] and [BSO3HMIm][OTf], functioned as the dispersive solvent. So in the whole extraction procedure, no organic solvent was used. With the aid of SO3H group, the acidic compound was extracted from the sample solution without pH adjustment. Two phenolic compounds, namely, 2-naphthol and 4-nitrophenol were chosen as the target analytes. Important parameters affecting the extraction efficiency, such as the type of hydrophilic ionic liquids, the volume ratio of [EMIm][BF4] to [BSO3HMIm][OTf], type and volume of extraction solvent, pH value of sample solution, sonication time, extraction time and centrifugation time were investigated and optimized. Under the optimized extraction conditions, the method exhibited good sensitivity with the limits of detection (LODs) at 5.5 μg L(-1)and 10.0 μg L(-1) for 4-nitrophenol and 2-naphthol, respectively. Good linearity over the concentration ranges of 24-384 μg L(-1) for 4-nitrophenol and 28-336 μg L(-1) for 2-naphthol was obtained with correlation coefficients of 0.9998 and 0.9961, respectively. The proposed method can directly extract acidic compound from environmental sample or even more complex sample matrix without any pH adjustment procedure. Copyright © 2014 Elsevier B.V. All rights reserved.
Li, Senlin; Li, Sainan; Huang, Yu; Liu, Chunming; Chen, Lina; Zhang, Yuchi
2017-06-01
The separation of a compound of interest from its structurally similar homologues to produce high-purity natural products is a challenging problem. This work proposes a novel method for the separation of iristectorigenin A from its structurally similar homologues by ionic-liquid-based ultrasound-assisted extraction and the subsequent screening and isolation of potential α-glucosidase inhibitors via ultrafiltration and semipreparative high-performance liquid chromatography. Ionic-liquid-based ultrasound-assisted extraction was successfully applied to the extraction of tectorigenin, iristectorigenin A, irigenin, and irisflorentin from Belamcanda chinensis. The optimum conditions for the efficient extraction of isoflavones were determined as 1.0 M 1-ethyl-3-methylimidazolium tetrafluoroborate with extraction time of 30 min and a solvent to solid ratio of 30 mL/g. Ultrafiltration with liquid chromatography and mass spectrometry was applied to screen and identify α-glucosidase inhibitors from B. chinensis, followed by the application of semipreparative high-performance liquid chromatography to separate and isolate the active constituents. Four major compounds including tectorigenin, iristectorigenin A, irigenin, and irisflorentin were screened and identified as α-glucosidase inhibitors, and then the four active compounds abovementioned were subsequently isolated by semipreparative high-performance liquid chromatography (99.89, 88.97, 99.79, and 99.97% purity, respectively). The results demonstrate that ionic liquid extraction can be successfully applied to the extraction of isoflavones from B. chinensis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xia, Zhaoyang; Li, Dongdong; Li, Qing; Zhang, Yan; Kang, Wenyi
2017-11-13
The conditions of heating, ionic liquid-based ultrasonic-assisted extraction combined with reverse-phase high performance liquid chromatography were optimized to simultaneously isolate and determinate brazilin and protosappanin B in Caesalpinia sappan. Ionic liquids, including [BMIM]Br, [BMIM]BF 4 , [BMIM]PF 6 and [HMIM]PF 6 , were selected as extraction solvents while methanol, acetone, acetonitrile, ethanol and water were selected as dispersants. The chromatographic column was Purospher star RP-C 18 (250 mm × 4.6 mm, 5 μm), a mixture of methanol and 0.2% phosphoric acid-water was used as mobile phase at a flow rate 0.65 mL/min. The result displayed that the extraction yields of brazilin and protosappanin B were highest when the concentration of [BMIM]Br methanol solution as extraction solvent was 0.5 mol/L and the solid-liquid ratio was 1:50 (g/mL). Under the optimal extraction conditions, the contents of brazilin showed a good linearity (r = 1.0000) within the range of 1.25-7.50 μg with the average recovery of 99.33%, the contents of protosappanin B also showed a good linearity (r = 0.9999) within the range of 0.50-3.00 μg with the average recovery of 98.31%. This experiment, which adopted environmentally friendly reagent as extraction solvent, not only improved the extraction efficiency, but also avoided the environmental pollution caused by organic solvent. Moreover, it was simple and reliable, and can be of important significance in the study of Traditional Chinese Medicine active ingredient extraction methods. The antibacterial activities of the ionic liquids and methanol extracts were determined using the paper disc diffusion method. The ionic liquid extract was found to possess antibacterial activity against Staphylococcus aureus and methicillin-resistant S. aureus (MIC value of 37.5 mg crude drug/mL), β-Lactamase producing S. aureus (MIC values of 18.8 mg crude drug/mL), but not against E. coli, Extended spectrum β-Lactamases E. coli and P. aeruginosa. Compared with the ionic liquid extract, the methanol extract was found to have antibacterial activity against S. aureus and methicillin-resistant S. aureus (MIC value of 75.0 mg crude drug/mL), β-Lactamase producing S. aureus (MIC values of 150.0 mg crude drug/mL). However, the same, the methanol extract did not have antibacterial activity against E. coli, Extended spectrum β-Lactamases E. coli and P. aeruginosa.
Numerical modeling of ultrasonic cavitation in ionic liquids
NASA Astrophysics Data System (ADS)
Calvisi, Michael L.; Elder, Ross M.
2017-11-01
Ionic liquids have favorable properties for sonochemistry applications in which the high temperatures and pressures achieved by cavitation bubbles are important drivers of chemical processes. Two different numerical models are presented to simulate ultrasonic cavitation in ionic liquids, each with different capabilities and physical assumptions. A model based on a compressible form of the Rayleigh-Plesset equation (RPE) simulates ultrasonic cavitation of a spherical bubble with a homogeneous interior, incorporating evaporation and condensation at the bubble surface, and temperature-varying thermodynamic properties in the interior. A second, more computationally intensive model of a spherical bubble uses the finite element method (FEM) and accounts for spatial variations in pressure and temperature throughout the flow domain. This model provides insight into heat transfer across the bubble surface and throughout the bubble interior and exterior. Parametric studies are presented for sonochemistry applications involving ionic liquids as a solvent, examining a range of realistic ionic liquid properties and initial conditions to determine their effect on temperature and pressure. Results from the two models are presented for parametric variations including viscosity, thermal conductivity, water content of the ionic liquid solvent, acoustic frequency, and initial bubble pressure. An additional study performed with the FEM model examines thermal penetration into the surrounding ionic liquid during bubble oscillation. The results suggest the prospect of tuning ionic liquid properties for specific applications.
Cacho, Juan Ignacio; Campillo, Natalia; Viñas, Pilar; Hernández-Córdoba, Manuel
2017-03-01
A new procedure is proposed for the analysis of migration test solutions obtained from plastic bottles used in the packaging of edible oils. Ultrasound-assisted emulsification microextraction with ionic liquids was applied for the preconcentration of six phthalate esters: dimethylphthalate, diethylphthalate, di-n-butylphthalate, n-butylbenzylphthalate, di-2-ethylhexylphthalate, and di-n-octylphthalate. The enriched ionic liquid was directly analyzed by gas chromatography and mass spectrometry using direct insert microvial thermal desorption. The different factors affecting the microextraction efficiency, such as volume of the extracting phase (30 μL of the ionic liquid) and ultrasound application time (25 s), and the thermal desorption step, such as desorption temperature and time, and gas flow rate, were studied. Under the selected conditions, detection limits for the analytes were in the 0.012-0.18 μg/L range, while recovery assays provided values ranging from 80 to 112%. The use of butyl benzoate as internal standard increased the reproducibility of the analytical procedure. When the release of the six phthalate esters from the tested plastic bottles to liquid simulants was monitored using the optimized procedure, analyte concentrations of between 1.0 and 273 μg/L were detected. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Eckard, P R; Taylor, L T
1997-02-01
The supercritical fluid extraction (SFE) of an ionic compound, pseudoephedrine hydrochloride, from a spiked-sand surface was successfully demonstrated. The effect of carbon dioxide density (CO2), supercritical fluid composition (pure vs. methanol modified), and the addition of a commonly used reversed-phase liquid chromatographic ion-pairing reagent, 1-heptanesulfonic acid, sodium salt, on extraction efficiency was examined. The extraction recoveries of pseudoephedrine hydrochloride with the addition of the ion-pairing reagent from a spiked-sand surface were shown to be statistically greater than the extraction recoveries without the ion-pairing reagent with both pure and methanol-modified carbon dioxide.
Wang, Ruifeng; Qi, Xiujuan; Zhao, Lei; Liu, Shimin; Gao, Shuang; Ma, Xiangyuan; Deng, Youquan
2016-07-01
Determination of methamphetamine in forensic laboratories is a major issue due to its health and social harm. In this work, a simple, sensitive, and environmentally friendly method based on ionic liquid dispersive liquid-liquid microextraction combined with high-performance liquid chromatography was established for the analysis of methamphetamine in human urine. 1-Octyl-3-methylimidazolium hexafluorophosphate with the help of disperser solvent methanol was selected as the microextraction solvent in this process. Various parameters affecting the extraction efficiency of methamphetamine were investigated systemically, including extraction solvent and its volume, disperser solvent and its volume, sample pH, extraction temperature, and centrifugal time. Under the optimized conditions, a good linearity was obtained in the concentration range of 10-1000 ng/mL with determination coefficient >0.99. The limit of detection calculated at a signal-to-noise ratio of 3 was 1.7 ng/mL and the relative standard deviations for six replicate experiments at three different concentration levels of 100, 500, and 1000 ng/mL were 6.4, 4.5, and 4.7%, respectively. Meanwhile, up to 220-fold enrichment factor of methamphetamine and acceptable extraction recovery (>80.0%) could be achieved. Furthermore, this method has been successfully employed for the sensitive detection of a urine sample from a suspected drug abuser. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Sengwa, R. J.; Dhatarwal, Priyanka; Choudhary, Shobhna
2016-05-01
Solid polymer electrolyte (SPE) film consisted of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blend matrix with lithium tetrafluroborate (LiBF4) as dopant ionic salt and poly(ethylene glycol) (PEG) as plasticizer has been prepared by solution casting method followed by melt pressing. Dielectric properties and ionic conductivity of the SPE film at different temperatures have been determined by dielectric relaxation spectroscopy. It has been observed that the dc ionic conductivity of the SPE film increases with increase of temperature and also the decrease of relaxation time. The temperature dependent relaxation time and ionic conductivity values of the electrolyte are governed by the Arrhenius relation. Correlation observed between dc conductivity and relaxation time confirms that ion transportation occurs with polymer chain segmental dynamics through hopping mechanism. The room temperature ionic conductivity is found to be 4 × 10-6 S cm-1 which suggests the suitability of the SPE film for rechargeable lithium batteries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengwa, R. J., E-mail: rjsengwa@rediffmail.com; Dhatarwal, Priyanka, E-mail: dhatarwalpriyanka@gmail.com; Choudhary, Shobhna, E-mail: shobhnachoudhary@rediffmail.com
2016-05-06
Solid polymer electrolyte (SPE) film consisted of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blend matrix with lithium tetrafluroborate (LiBF{sub 4}) as dopant ionic salt and poly(ethylene glycol) (PEG) as plasticizer has been prepared by solution casting method followed by melt pressing. Dielectric properties and ionic conductivity of the SPE film at different temperatures have been determined by dielectric relaxation spectroscopy. It has been observed that the dc ionic conductivity of the SPE film increases with increase of temperature and also the decrease of relaxation time. The temperature dependent relaxation time and ionic conductivity values of the electrolyte are governedmore » by the Arrhenius relation. Correlation observed between dc conductivity and relaxation time confirms that ion transportation occurs with polymer chain segmental dynamics through hopping mechanism. The room temperature ionic conductivity is found to be 4 × 10{sup −6} S cm{sup −1} which suggests the suitability of the SPE film for rechargeable lithium batteries.« less
Asadi, Mohammad; Dadfarnia, Shayessteh; Haji Shabani, Ali Mohammad; Abbasi, Bijan
2015-07-01
A novel and simple method based on solidified floating organic drop microextraction followed by high-performance liquid chromatography with ultraviolet detection has been developed for simultaneous preconcentration and determination of phenobarbital, lamotrigine, and phenytoin in human plasma and urine samples. Factors affecting microextraction efficiency such as the type and volume of the extraction solvent, sample pH, extraction time, stirring rate, extraction temperature, ionic strength, and sample volume were optimized. Under the optimum conditions (i.e. extraction solvent, 1-undecanol (40 μL); sample pH, 8.0; temperature, 25°C; stirring rate, 500 rpm; sample volume, 7 mL; potassium chloride concentration, 5% and extraction time, 50 min), the limits of detection for phenobarbital, lamotrigine, and phenytoin were 1.0, 0.1, and 0.3 μg/L, respectively. Also, the calibration curves for phenobarbital, lamotrigine, and phenytoin were linear in the concentration range of 2.0-300.0, 0.3-200.0, and 1.0-200.0 μg/L, respectively. The relative standard deviations for six replicate extractions and determinations of phenobarbital, lamotrigine, and phenytoin at 50 μg/L level were less than 4.6%. The method was successfully applied to determine phenobarbital, lamotrigine, and phenytoin in plasma and urine samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Griffin, Philip; Holt, Adam; Wang, Yangyang; Sokolov, Alexei
2015-03-01
Amphiphilic room temperature ionic liquids (ILs) segregate on the nanoscale, forming intricate networks of charge-rich ionic domains intercalated with charge-poor aliphatic domains. While this structural phenomenon has been well established through x-ray diffraction studies and atomistic MD simulations, the precise effects of nanophase segregation on ion transport and structural dynamics in ILs remains poorly understood. Using a combination of broadband dielectric spectroscopy, light scattering spectroscopy, and rheology, we have characterized the ionic conductivity, structural dynamics, and shear viscosity of a homologous series of quaternary ammonium ionic liquids over a wide temperature range. Upon increasing the length and volume fraction of the alkyl side chains of these quaternary ammonium ILs, ionic conductivity decreases precipitously, although no corresponding slowing of the structural dynamics is observed. Instead, we identify the dynamical signature of supramolecular aggregates. Our results directly demonstrate the role that chemical structure and ionic aggregation plays in determining the charge transport properties of amphiphilic ILs.
Stockmann, T Jane; Zhang, Jing; Montgomery, Anne-Marie; Ding, Zhifeng
2014-04-22
A room temperature ionic liquid (IL) composed of a quaternary alkylphosphonium (trihexyltetradecylphosphonium, P66614(+)) and tetrakis(pentafluorophenyl)borate anion (TB(-)) was employed within a water|P66614TB (w|P66614TB or w|IL) biphasic system to evaluate cesium ion extraction in comparison to that with a traditional water|organic solvent (w|o) combination. (137)Cs is a major contributor to the radioactivity of spent nuclear fuel as it leaves the reactor, and its extraction efficiency is therefore of considerable importance. The extraction was facilitated by the ligand octyl(phenyl)-N,N'-diisobutylcarbamoylphosphine oxide (CMPO) used in TRans-Uranium EXtraction processes and investigated through well established liquid|liquid electrochemistry. This study gave access to the metal ion to ligand (1:n) stoichiometry and overall complexation constant, β, of the interfacial complexation reaction which were determined to be 1:3 and 1.6×10(11) at the w|P66614TB interface while the study at w|o elicited an n equal to 1 with β equal to 86.5. Through a straightforward relationship, these complexation constant values were converted to distribution coefficients, δ(α), with the ligand concentrations studied for comparison to other studies present in the literature; the w|o and w|IL systems gave δ(α) of 2 and 8.2×10(7), respectively, indicating a higher overall extraction efficiency for the latter. For the w|o system, the metal ion-ligand stoichiometries were confirmed through isotopic distribution analysis of mass spectra obtained by the direct injection of an emulsified water-organic solvent mixture into an electron spray ionization mass spectrometer. Copyright © 2014 Elsevier B.V. All rights reserved.
Novel Nanocomposite Structures as Active and Passive Barrier Materials
2010-06-01
during the course of this ARO-funded project. The development of a novel polymer material based on a diol-functionalized room-temperature ionic liquid ...material based on a diol-functionalized room- temperature ionic liquid (RTIL) monomer led to fabrication of membranes, which were tested for their...stimulant vapor. Technical Report A polymerizable room-temperature ionic liquid (4, Figure 1) was chosen as the starting material for making poly(RTIL
Matsumiya, Hiroaki; Kato, Tatsuya; Hiraide, Masataka
2014-02-01
The analysis of high-purity materials for trace impurities is an important and challenging task. The present paper describes a facile and sensitive method for the determination of trace heavy metals in high-purity iron metal. Trace heavy metals in an iron sample solution were rapidly and selectively preconcentrated by the extraction into a tiny volume of an ionic liquid [1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide] for the determination by graphite-furnace atomic absorption spectrometry (GFAAS). A nitrogen-donating neutral ligand, 2,4,6-tris(2-pyridyl)-1,3,5-triazine (TPTZ), was found to be effective in the ionic liquid-based selective extraction, allowing the nearly complete (~99.8%) elimination of the iron matrix. The combination with the optimized GFAAS was successful. The detectability reached sub-μg g(-1) levels in iron metal. The novel use of TPTZ in ionic liquid-based extraction followed by GFAAS was successfully applied to the determination of traces of Co, Ni, Cu, Cd, and Pb in certified reference materials for high-purity iron metal. © 2013 Published by Elsevier B.V.
Farajzadeh, Mir Ali; Bamorowat, Mahdi; Mogaddam, Mohammad Reza Afshar
2016-11-01
An efficient, reliable, sensitive, rapid, and green analytical method for the extraction and determination of neonicotinoid insecticides in aqueous samples has been developed using ionic liquid phase microextraction coupled with high performance liquid chromatography-diode array detector. In this method, a few microliters of 1-hexyl-3-methylimidazolium hexafluorophosphate (as an extractant) is added onto a ringer tablet and it is transferred into a conical test tube containing aqueous phase of the analytes. By manually shaking, the ringer tablet is dissolved and the extractant is released into the aqueous phase as very tiny droplets to provide a cloudy solution. After centrifuging the extracted analytes into ionic liquid are collected at the bottom of a conical test tube. Under the optimum extraction conditions, the method showed low limits of detection and quantification between 0.12 and 0.33 and 0.41 and 1.11ngmL(-1), respectively. Extraction recoveries and enrichment factors were from 66% to 84% and 655% to 843%, respectively. Finally different aqueous samples were successfully analyzed using the proposed method. Copyright © 2016 Elsevier B.V. All rights reserved.
Method and apparatus using an active ionic liquid for algae biofuel harvest and extraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.
The invention relates to use of an active ionic liquid to dissolve algae cell walls. The ionic liquid is used to, in an energy efficient manner, dissolve and/or lyse an algae cell walls, which releases algae constituents used in the creation of energy, fuel, and/or cosmetic components. The ionic liquids include ionic salts having multiple charge centers, low, very low, and ultra low melting point ionic liquids, and combinations of ionic liquids. An algae treatment system is described, which processes wet algae in a lysing reactor, separates out algae constituent products, and optionally recovers the ionic liquid in an energymore » efficient manner.« less
[Advances of poly (ionic liquid) materials in separation science].
Liu, Cuicui; Guo, Ting; Su, Rina; Gu, Yuchen; Deng, Qiliang
2015-11-01
Ionic liquids, as novel ionization reagents, possess beneficial characteristics including good solubility, conductivity, thermal stability, biocompatibility, low volatility and non-flammability. Ionic liquids are attracting a mass of attention of analytical chemists. Poly (ionic liquid) materials have common performances of ionic liquids and polymers, and have been successfully applied in separation science area. In this paper, we discuss the interaction mechanisms between the poly(ionic liquid) materials and analytes including hydrophobic/hydrophilic interactions, hydrogen bond, ion exchange, π-π stacking and electrostatic interactions, and summarize the application advances of the poly(ionic liquid) materials in solid phase extraction, chromatographic separation and capillary electrophoresis. At last, we describe the future prospect of poly(ionic liquid) materials.
Wang, Lei; Gong, Xinying; Wang, Ruonan; Gan, Zhiwei; Lu, Yuan; Sun, Hongwen
2017-09-15
Ionic liquids have been used to efficiently extract a wide range of polar and nonpolar organic contaminants from water. In this study, imidazole ionic liquids immobilized on silica gel were synthesized through a chemical bonding method, and the immobilized dodecylimidazolium ionic liquid was selected as the receiving phase material in a POCIS (polar organic chemical integrative sampler) like passive sampler to monitor five perfluoroalkyl substances (PFASs) in water. Twenty-one days of integrative accumulation was conducted in laboratory scale experiments, and the accumulated PFASs in the samplers were eluted and analyzed by high performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). The partitioning coefficients of most PFASs between sampler sorbents and water in the immobilized ionic liquid (IIL)-sampler were higher than those in the HLB-sampler, especially for compounds with shorter alkyl chains. The effects of flow velocity, temperature, dissolved organic matter (DOM) and pH on the uptake of these analytes were also evaluated. Under the experimental conditions, the uptake of PFASs in the IIL-sampler slightly increased with the flow velocity and temperature, while different influences of DOM and pH on the uptake of PFAS homologues with short or long chains were observed. The designed IIL-samplers were applied in the influent and effluent of a wastewater treatment plant. All five PFASs could be accumulated in the samplers, with concentrations ranging from 6.5×10 -3 -3.6×10 -1 nmol/L in the influent and from 1.3×10 -2 -2.2×10 -1 nmol/L in the effluent. The calculated time-weighted average concentrations of most PFASs fit well with the detected concentrations of the active sampling, indicating the applicability of the IIL-sampler in monitoring these compounds in water. Copyright © 2017 Elsevier B.V. All rights reserved.
Obermayer, David; Kappe, C Oliver
2010-01-07
The temperature profiles obtained from both an external infrared and internal fiber-optic sensor were compared for heating and synthesizing the ionic liquid 1-butyl-3-methylimidazolium bromide (bmimBr) under microwave conditions. Utilizing a single-mode microwave reactor that allows simultaneous infrared/fiber-optic temperature measurements, significant differences between the two methods of temperature monitoring were revealed. Due to the strong microwave absorptivity of ionic liquids and the delay experienced in monitoring temperature on the outer surface of a heavy-walled glass vial, external infrared temperature sensors can not be used to accurately control the temperature in the heating of ionic liquids under microwave conditions. The use of internal fiber-optic probes allows the monitoring and control of the heating behavior in a much better way. In order to prevent the strong exotherm in the synthesis of bmimBr under microwave conditions the use of a reaction vessel made out of silicon carbide is the method of choice. Because of the high thermal conductivity and effusivity of silicon carbide, the heat generated during the ionic liquid formation is efficiently exchanged with the comparatively cool air in the microwave cavity via the silicon carbide ceramic.
Dinda, Enakshi; Si, Satyabrata; Kotal, Atanu; Mandal, Tarun K
2008-01-01
A series of newly designed ascorbic acid based room temperature ionic liquids were successfully used to prepare quasi-spherical and anisotropic gold nanostructures in an aqueous medium at ambient temperature. The synthesis of these room temperature ionic liquids involves, first, the preparation of a 1-alkyl (such as methyl, ethyl, butyl, hexyl, octyl, and decyl) derivative of 3-methylimidazolium hydroxide followed by the neutralization of the derivatised product with ascorbic acid. These ionic liquids show significantly better thermal stability and their glass transition temperature (Tg) decreases with increasing alkyl chain length. The ascorbate counter anion of these ionic liquids acts as a reducing agent for HAuCl4 to produce metallic gold and the alkylated imidazolium counter cation acts as a capping/shape-directing agent. It has been found that the nature of the ionic liquids and the mole ratio of ionic liquid to HAuCl4 has a significant effect on the morphology of the formed gold nanostructures. If an equimolar mixture of ionic liquid and HAuCl4 is used, predominantly anisotropic gold nanostructures are formed and by varying the alkyl chain length attached to imidazolium cation of the ionic liquids, various particle morphologies can formed, such as quasispherical, raspberry-like, flakes or dendritic. A probable formation mechanism for such anisotropic gold nanostructures has been proposed, which is based on the results of some control experiments.
Chemical and Electrochemical Studies in Ionic Liquids
1990-01-12
Electrochemistry and Witchcraft ", Gordon Research Conference on Electrochemistry", Santa Barbara, CA, January, 1985. OR. A. Osteryoung, ’An Introduction to...Temperature Chloroaluminate Ionic Liquids: Chemistry, Electrochemistry and Witchcraft ", Chemistry Department Colloquium, University of Alabama...Tuscaloosa, Alabama, December 1, 1988. OR. A. Osteryoung, "Ambient Temperature Chloroaluminate Ionic Liquids: Chemistry, Electrochemistry and Witchcraft
Wang, Zhibing; Hu, Jianxue; Du, Hongxia; He, Shuang; Li, Qing; Zhang, Hanqi
2016-06-05
The microwave-assisted ionic liquid homogeneous liquid-liquid microextraction (MA-IL-HLLME) coupled with high performance liquid chromatography with diode array detection (HPLC-DAD) was developed for the determination of anthraquinones, including aloe-emodin, emodin, chrysophanol and physcion in root of Rheum palmatum L. Several experimental parameters influencing the extraction efficiency, including amount of sample, type and volume of ionic liquid, volume and pH value of extraction medium, microwave power and extraction time, concentration of NH4PF6 as well as centrifugal condition were optimized. When 140μL of ionic liquid ([C8MIM][BF4]) was used as an extraction solvent, target analytes can be extracted from sample matrix in one minute with the help of microwave irradiation. The MA-IL-HLLME is simple and quick. The calibration curves exhibited good linear relationship (r>0.9984). The limits of detection and quantification were in the range of 0.015-0.026 and 0.051-0.088μgmL(-1), respectively. The spiked recovery for each analyte was in the range of 81.13-93.07% with relative standard deviations lower than 6.89%. The present method is free of volatile organic solvents, and represents lower expenditures of sample, extraction time and solvent, compared with ultrasonic and heat reflux extraction. The results indicated that the present method can be successfully applied to the determination of anthraquinones in medicinal plant. Copyright © 2016 Elsevier B.V. All rights reserved.
Poole, Colin F
2004-05-28
Room temperature ionic liquids are novel solvents with favorable environmental and technical features. Synthetic routes to over 200 room temperature ionic liquids are known but for most ionic liquids physicochemical data are generally lacking or incomplete. Chromatographic and spectroscopic methods afford suitable tools for the study of solvation properties under conditions that approximate infinite dilution. Gas-liquid chromatography is suitable for the determination of gas-liquid partition coefficients and activity coefficients as well as thermodynamic constants derived from either of these parameters and their variation with temperature. The solvation parameter model can be used to define the contribution from individual intermolecular interactions to the gas-liquid partition coefficient. Application of chemometric procedures to a large database of system constants for ionic liquids indicates their unique solvent properties: low cohesion for ionic liquids with weakly associated ions compared with non-ionic liquids of similar polarity; greater hydrogen-bond basicity than typical polar non-ionic solvents; and a range of dipolarity/polarizability that encompasses the same range as occupied by the most polar non-ionic liquids. These properties can be crudely related to ion structures but further work is required to develop a comprehensive approach for the design of ionic liquids for specific applications. Data for liquid-liquid partition coefficients is scarce by comparison with gas-liquid partition coefficients. Preliminary studies indicate the possibility of using the solvation parameter model for interpretation of liquid-liquid partition coefficients determined by shake-flask procedures as well as the feasibility of using liquid-liquid chromatography for the convenient and rapid determination of liquid-liquid partition coefficients. Spectroscopic measurements of solvatochromic and fluorescent probe molecules in room temperature ionic liquids provide insights into solvent intermolecular interactions although interpretation of the different and generally uncorrelated "polarity" scales is sometimes ambiguous. All evidence points to the ionic liquids as a unique class of polar solvents suitable for technical development. In terms of designer solvents, however, further work is needed to fill the gaps in our knowledge of the relationship between ion structures and physicochemical properties.
Thermoelectricity in Heterogeneous Nanofluidic Channels.
Li, Long; Wang, Qinggong
2018-05-01
Ionic fluids are essential to energy conversion, water desalination, drug delivery, and lab-on-a-chip devices. Ionic transport in nanoscale confinements and complex physical fields still remain elusive. Here, a nanofluidic system is developed using nanochannels of heterogeneous surface properties to investigate transport properties of ions under different temperatures. Steady ionic currents are observed under symmetric temperature gradients, which is equivalent to generating electricity using waste heat (e.g., electronic chips and solar panels). The currents increase linearly with temperature gradient and nonlinearly with channel size. Contributions to ion motion from temperatures and channel properties are evaluated for this phenomenon. The findings provide insights into the study of confined ionic fluids in multiphysical fields, and suggest applications in thermal energy conversion, temperature sensors, and chip-level thermal management. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Seki, Shiro; Tsuzuki, Seiji; Hayamizu, Kikuko; Serizawa, Nobuyuki; Ono, Shimpei; Takei, Katsuhito; Doi, Hiroyuki; Umebayashi, Yasuhiro
2014-05-01
We have measured physicochemical properties of five alkyltrimethylammonium cation-based room-temperature ionic liquids and compared them with those obtained from computational methods. We have found that static properties (density and refractive index) and transport properties (ionic conductivity, self-diffusion coefficient, and viscosity) of these ionic liquids show close relations with the length of the alkyl chain. In particular, static properties obtained by experimental methods exhibit a trend complementary to that by computational methods (refractive index ∝ [polarizability/molar volume]). Moreover, the self-diffusion coefficient obtained by molecular dynamics (MD) simulation was consistent with the data obtained by the pulsed-gradient spin-echo nuclear magnetic resonance technique, which suggests that computational methods can be supplemental tools to predict physicochemical properties of room-temperature ionic liquids.
de Moura, Sílvia C S R; Berling, Carolina L; Germer, Sílvia P M; Alvim, Izabela D; Hubinger, Míriam D
2018-02-15
Hibiscus extract (HE) has a strong antioxidant activity and high anthocyanin content; it can be used as a natural pigment, also adding potential health benefits. The objective of this work was the microencapsulation of HE anthocyanin by ionic gelation (IG) using two techniques: dripping-extrusion and atomization, both by means of a double emulsion (HE/rapseed oil/pectin) and a cross-linked solution (CaCl 2 ). Particles (77-83% moisture content) were conditioned in acidified solution at 5, 15 and 25°C, absence of light, and evaluated for anthocyanins and color for 50-days. The median diameter (D 50 ) of the particles ranged from 78 to 1100μm and encapsulation efficiency ranged from 67.9 to 93.9%. The encapsulation caused higher temperature stability compared with the free extract. The half-life (t 1/2 ) values of the particles ranged from 7 (25°C) to 180days (5°C) for anthocyanins and from 25 (25°C) to 462days (5°C) for Chroma value. The IG increased the stability of HE anthocyanin. Both the dripping-extrusion and the atomization have shown to be feasible techniques. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ma, Chun-hui; Liu, Ting-ting; Yang, Lei; Zu, Yuan-gang; Chen, Xiaoqiang; Zhang, Lin; Zhang, Ying; Zhao, Chunjian
2011-12-02
Ionic liquid-based microwave-assisted extraction (ILMAE) has been successfully applied in extracting essential oil and four kinds of biphenyl cyclooctene lignans from Schisandra chinensis Baill. 0.25 M 1-lauryl-3-methylimidazolium bromide ionic liquid is selected as solvent. The optimum parameters of dealing with 25.0 g sample are 385 W irradiation power, 40 min microwave extraction time and 1:12 solid-liquid ratio. The yields of essential oil and lignans are 12.12±0.37 ml/kg and 250.2±38.2 mg/kg under the optimum conditions. The composition of the essential oil extracted by hydro-distillation, steam-distillation and ILMAE is analyzed by GC-MS. With ILMAE method, the energy consumption time has not only been shortened to 40 min (hydro-distillation 3.0 h for extracting essential oil and reflux extraction 4.0 h for extracting lignans, respectively), but also the extraction efficiency has been improved (extraction of lignans and distillation of essential oil at the same time) and reduces the environmental pollution. S. chinensis materials treated by different methods are observed by scanning electronic microscopy. Micrographs provide more evidence to prove that ILMAE is a better and faster method. The experimental results also indicate that ILMAE is a simple and efficient technique for sample preparation. Copyright © 2011 Elsevier B.V. All rights reserved.
Methods of using ionic liquids having a fluoride anion as solvents
Pagoria, Philip [Livermore, CA; Maiti, Amitesh [San Ramon, CA; Gash, Alexander [Brentwood, CA; Han, Thomas Yong [Pleasanton, CA; Orme, Christine [Oakland, CA; Fried, Laurence [Livermore, CA
2011-12-06
A method in one embodiment includes contacting a strongly hydrogen bonded organic material with an ionic liquid having a fluoride anion for solubilizing the strongly hydrogen bonded organic material; and maintaining the ionic liquid at a temperature of about 90.degree. C. or less during the contacting. A method in another embodiment includes contacting a strongly hydrogen bonded organic material with an ionic liquid having an acetate or formate anion for solubilizing the strongly hydrogen bonded organic material; and maintaining the ionic liquid at a temperature of less than about 90.degree. C. during the contacting.
Zhang, Cheng; Cagliero, Cecilia; Pierson, Stephen A; Anderson, Jared L
2017-01-20
A simple and rapid ionic liquid (IL)-based in situ dispersive liquid-liquid microextraction (DLLME) method was developed and coupled to headspace gas chromatography (HS-GC) employing electron capture (ECD) and mass spectrometry (MS) detection for the analysis of polychlorinated biphenyls (PCBs) and acrylamide at trace levels from milk and coffee samples. The chemical structures of the halide-based ILs were tailored by introducing various functional groups to the cations to evaluate the effect of different structural features on the extraction efficiency of the target analytes. Extraction parameters including the molar ratio of IL to metathesis reagent and IL mass were optimized. The effects of HS oven temperature and the HS sample vial volume on the analyte response were also evaluated. The optimized in situ DLLME method exhibited good analytical precision, good linearity, and provided detection limits down to the low ppt level for PCBs and the low ppb level for acrylamide in aqueous samples. The matrix-compatibility of the developed method was also established by quantifying acrylamide in brewed coffee samples. This method is much simpler and faster compared to previously reported GC-MS methods using solid-phase microextraction (SPME) for the extraction/preconcentration of PCBs and acrylamide from complex food samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Membrane interactions of ionic liquids and imidazolium salts.
Wang, Da; Galla, Hans-Joachim; Drücker, Patrick
2018-06-01
Room-temperature ionic liquids (RTILs) have attracted considerable attention in recent years due to their versatile properties such as negligible volatility, inflammability, high extractive selectivity and thermal stability. In general, RTILs are organic salts with a melting point below ~100 °C determined by the asymmetry of at least one of their ions. Due to their amphiphilic character, strong interactions with biological materials can be expected. However, rising attention has appeared towards their similarity and interaction with biomolecules. By employing structural modifications, the biochemical properties of RTILs can be designed to mimic lipid structures and to tune their hydrophobicity towards a lipophilic behavior. This is evident for the interaction with lipid-membranes where some of these compounds present membrane-disturbing effects or cellular toxicity. Moreover, they can form micelles or lipid-like bilayer structures by themselves. Both aspects, cellular effects and membrane-forming capacities, of a novel class of lipophilic imidazolium salts will be discussed.
Liew, Chiam-Wen; Ramesh, S
2015-06-25
Biopolymer electrolytes containing corn starch, lithium hexafluorophosphate (LiPF6) and ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate (BmImPF6) are prepared by solution casting technique. Temperature dependence-ionic conductivity studies reveal Vogel-Tamman-Fulcher (VTF) relationship which is associated with free volume theory. Ionic liquid-based biopolymer electrolytes show lower glass transition temperature (Tg) than ionic liquid-free biopolymer electrolyte. X-ray diffraction (XRD) studies demonstrate higher amorphous region of ionic liquid-added biopolymer electrolytes. In addition, the potential stability window of the biopolymer electrolyte becomes wider and stable up to 2.9V. Conclusively, the fabricated electric double layer capacitor (EDLC) shows improved electrochemical performance upon addition of ionic liquid into the biopolymer electrolyte. The specific capacitance of EDLC based on ionic liquid-added polymer electrolyte is relatively higher than that of ionic liquid-free polymer electrolyte as depicted in cyclic voltammogram. Copyright © 2015 Elsevier Ltd. All rights reserved.
NafionxAE-based polymer actuators with ionic liquids as solvent incorporated at room temperature
NASA Astrophysics Data System (ADS)
Kikuchi, Kunitomo; Tsuchitani, Shigeki
2009-09-01
Nafion®-based ionic polymer-metal composites (IPMCs), with ionic liquids as solvent, were fabricated by exchanging counterions to ionic liquids at room temperature. Ion exchange is performed by only immersing IPMC in a mixture of de-ionized water and ionic liquids at room temperature for 48 h. The fabricated IPMCs exhibited a bending curvature the same as or larger than that of conventional IPMCs with ionic liquids, formed by ion exchange to ionic liquids at an elevated temperature up to about 100 °C, and also had long-term stability in operation in air, with a fluctuation smaller than 21% in bending curvature during a 180 min operation. The effective ion exchange to ionic liquids in the present method is probably due to an increase in diffusion speed of ionic liquids into IPMC by adsorption of water in a Nafion® membrane. It is a surprise that among IPMCs with ionic liquids 1-ethyl-3-methyl-imidazolium tetrafluoroborate, 1-buthyl-3-methyl-imidazolium tetrafluoroborate (BMIBF4), and 1-buthyl-3-methyl-imidazolium hexafluorophosphate (BMIPF6), IPMC with water-insoluble BMIPF6 exhibited a larger bending curvature than that IPMC with water-miscible BMIBF4. This might be due to effective incorporation of BMIPF6 into IPMC, since BMIPF6 has a higher affinity with IPMC than with water in the mixture of water and BMIPF6. From measurements of complex impedance and step voltage response of the driving current of IPMCs with ionic liquid, they are expressed by an equivalent circuit of a parallel combination of a serial circuit of membrane resistance of Nafion® and electric double layer capacitance at metal electrodes, with membrane capacitance of Nafion®, in a frequency range higher than about 0.1 Hz. The difference in magnitude of bending curvature in three kinds of IPMCs with ionic liquids is mainly due to the difference in bending response speed coming from the difference in the membrane resistance.
NASA Astrophysics Data System (ADS)
Johan, Mohd Rafie; Ibrahim, Suriani
2012-01-01
In this study, the ionic conductivity of a nanocomposite polymer electrolyte system (PEO-LiPF 6-EC-CNT), which has been produced using solution cast technique, is obtained using artificial neural networks approach. Several results have been recorded from experiments in preparation for the training and testing of the network. In the experiments, polyethylene oxide (PEO), lithium hexafluorophosphate (LiPF 6), ethylene carbonate (EC) and carbon nanotubes (CNT) are mixed at various ratios to obtain the highest ionic conductivity. The effects of chemical composition and temperature on the ionic conductivity of the polymer electrolyte system are investigated. Electrical tests reveal that the ionic conductivity of the polymer electrolyte system varies with different chemical compositions and temperatures. In neural networks training, different chemical compositions and temperatures are used as inputs and the ionic conductivities of the resultant polymer electrolytes are used as outputs. The experimental data is used to check the system's accuracy following the training process. The neural network is found to be successful for the prediction of ionic conductivity of nanocomposite polymer electrolyte system.
Angell, C Austen [Mesa, AZ; Xu, Wu [Broadview Heights, OH; Belieres, Jean-Philippe [Chandler, AZ; Yoshizawa, Masahiro [Tokyo, JP
2011-01-11
Disclosed are developments in high temperature fuel cells including ionic liquids with high temperature stability and the storage of inorganic acids as di-anion salts of low volatility. The formation of ionically conducting liquids of this type having conductivities of unprecedented magnitude for non-aqueous systems is described. The stability of the di-anion configuration is shown to play a role in the high performance of the non-corrosive proton-transfer ionic liquids as high temperature fuel cell electrolytes. Performance of simple H.sub.2(g) electrolyte/O.sub.2(g) fuel cells with the new electrolytes is described. Superior performance both at ambient temperature and temperatures up to and above 200.degree. C. are achieved. Both neutral proton transfer salts and the acid salts with HSO.sup.-.sub.4 anions, give good results, the bisulphate case being particularly good at low temperatures and very high temperatures. The performance of all electrolytes is improved by the addition of a small amount of involatile base of pK.sub.a value intermediate between those of the acid and base that make the bulk electrolyte. The preferred case is the imidazole-doped ethylammonium hydrogensulfate which yields behavior superior in all respects to that of the industry standard phosphoric acid electrolyte.
Metal-air cell with performance enhancing additive
Friesen, Cody A; Buttry, Daniel
2015-11-10
Systems and methods drawn to an electrochemical cell comprising a low temperature ionic liquid comprising positive ions and negative ions and a performance enhancing additive added to the low temperature ionic liquid. The additive dissolves in the ionic liquid to form cations, which are coordinated with one or more negative ions forming ion complexes. The electrochemical cell also includes an air electrode configured to absorb and reduce oxygen. The ion complexes improve oxygen reduction thermodynamics and/or kinetics relative to the ionic liquid without the additive.
Quevillon, Michael J; Whitmer, Jonathan K
2018-01-02
Ionic liquid crystals occupy an intriguing middle ground between room-temperature ionic liquids and mesostructured liquid crystals. Here, we examine a non-polarizable, fully atomistic model of the 1-alkyl-3-methylimidazolium nitrate family using molecular dynamics in the constant pressure-constant temperature ensemble. These materials exhibit a distinct "smectic" liquid phase, characterized by layers formed by the molecules, which separate the ionic and aliphatic moieties. In particular, we discuss the implications this layering may have for electrolyte applications.
A Rayleighian approach for modeling kinetics of ionic transport in polymeric media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Rajeev
2017-02-14
Here, we report a theoretical approach for analyzing impedance of ionic liquids (ILs) and charged polymers such as polymerized ionic liquids (PolyILs) within linear response. The approach is based on the Rayleigh dissipation function formalism, which provides a computational framework for a systematic study of various factors, including polymer dynamics, in affecting the impedance. We present an analytical expression for the impedance within linear response by constructing a one-dimensional model for ionic transport in ILs/PolyILs. This expression is used to extract mutual diffusion constants, the length scale of mutual diffusion, and thicknesses of a low-dielectric layer on the electrodes frommore » the broadband dielectric spectroscopy (BDS) measurements done for an IL and three PolyILs. Also, static dielectric permittivities of the IL and the PolyILs are determined. The extracted mutual diffusion constants are compared with the self diffusion constants of ions measured using pulse field gradient (PFG) fluorine nuclear magnetic resonance (NMR). For the first time, excellent agreements between the diffusivities extracted from the Electrode Polarization spectra (EPS) of IL/PolyILs and those measured using the PFG-NMR are found, which allows the use of the EPS and the PFG-NMR techniques in a complimentary manner for a general understanding of the ionic transport.« less
NASA Astrophysics Data System (ADS)
The liquefaction of pre-gelatinized starch was studied with various analytical techniques to determine the effects of starch molecular weight, granule structure, granule size, and mechanical depolymerization. Also, improvements were made in the chromatographic system used to characterize starch hydrolysates. Progress is reported on protein removal. The effects of pH, temperature, and ionic strength were examined for the removal of protein from a syrup stream by adsorption on a phenolic resin. Buffered systems, which maintain more stable pH values, were also examined. Mathematical modeling of the results is in progress. The pilot plant facility is complete and in operation. Starch streams containing 1% protein are being produced by the protein extraction process.
Ullah, Habib; Wilfred, Cecilia Devi; Shaharun, Maizatul Shima
2018-06-06
The present work reports the extraction of phenolic compounds from Polygonum minus using ionic liquid as extracting solvent. In this work, 1-Butyl-3-methylimidazolium hydrogen sulfate [BMIM][HSO 4 ] was used for the extraction of bioactive compounds. Accordingly, ionic liquids based microwave-assisted extraction treatment for separating of bioactive compounds from polygonum minus was first performed in the present study. The results obtained in this work have high extraction yield in comparison with conventional solvent. UV/Vis results showed that microwave synthesis was fast, well dispersed and nanosized copper nanoparticle (CuNPs) in comparison with conventional synthesis. CuNPs was characterized by X-Rays diffractometer (XRD), Fourier transform infrared (FTIR), dynamic light scattering (DLS), field emission scanning electron microscopy combined with energy dispersive x-rays (FESEM-EDX), and thermogravimetric analysis (TGA). All the instrumental analyses confirmed the particles were nanosized. Furthermore, the antibacterial activity of as-synthesized CuNPs showed effective inhibitory zone against three different bacteria. The photocatalytic degradation of copper nanoparticles was studied using methylene blue (MB) and methyl orange (MO) dyes under UV light and degraded 99.9% within short time 8 and 7 minutes.
Saljooqi, Asma; Shamspur, Tayebeh; Mohamadi, Maryam; Afzali, Daryoush; Mostafavi, Ali
2015-05-01
First, the extraction and preconcentration of ultratrace amounts of lead(II) ions was performed using microliter volumes of a task-specific ionic liquid. The remarkable properties of ionic liquids were added to the advantages of microextraction procedure. The ionic liquid used was trioctylmethylammonium thiosalicylate, which formed a lead thiolate complex due to the chelating effect of the ortho-positioned carboxylate relative to thiol functionality. So, trioctylmethylammonium thiosalicylate played the roles of both chelating agent and extraction solvent simultaneously. Hence, there is no need to use a ligand. The main parameters affecting the efficiency of the method were investigated and optimized. Under optimized conditions, this approach showed a linear range of 2.0-24.0 ng/mL with a detection limit of 0.0010 ng/mL. The proposed method was applied to the extraction and preconcentration of lead from red lipstick and pine leaves samples prior to electrothermal atomic absorption spectroscopic determination. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Chang, Kai-Shiun; Lin, Yi-Feng; Tung, Kuo-Lun
A molecular dynamics (MD) simulation is used to reveal the grain boundary effect on the ionic transport of yttria-stabilized zirconia (YSZ). The oxygen ion displacements and diffusivities of the ideal and grain boundary-inserted YSZ models are analyzed at elevated temperatures. An optimized Y 2O 3 concentration within YSZ for the best ionic conductivity is achieved by balancing the trade-off between the increased vacancies and the decreased accessible free space. The mass transfer resistance of the grain boundary in YSZ can be more easily found at higher temperatures by observing the oxygen ion diffusivities or traveling trajectories. At lower temperatures, the grain interior and the grain boundary control the ionic transport. In contrast, the grain boundary effect on the diffusion barrier is gradually eliminated at elevated temperatures. The modeled results in this work agree well with previous experimental data.
Methods for separating medical isotopes using ionic liquids
Luo, Huimin; Boll, Rose Ann; Bell, Jason Richard; Dai, Sheng
2014-10-21
A method for extracting a radioisotope from an aqueous solution, the method comprising: a) intimately mixing a non-chelating ionic liquid with the aqueous solution to transfer at least a portion of said radioisotope to said non-chelating ionic liquid; and b) separating the non-chelating ionic liquid from the aqueous solution. In preferred embodiments, the method achieves an extraction efficiency of at least 80%, or a separation factor of at least 1.times.10.sup.4 when more than one radioisotope is included in the aqueous solution. In particular embodiments, the method is applied to the separation of medical isotopes pairs, such as Th from Ac (Th-229/Ac-225, Ac-227/Th-227), or Ra from Ac (Ac-225 and Ra-225, Ac-227 and Ra-223), or Ra from Th (Th-227 and Ra-223, Th-229 and Ra-225).
Fan, Chen; Liang, You; Dong, Hongqiang; Ding, Guanglong; Zhang, Wenbing; Tang, Gang; Yang, Jiale; Kong, Dandan; Wang, Deng; Cao, Yongsong
2017-07-04
In this work, in-situ ionic liquid dispersive liquid-liquid microextraction combined ultrasmall Fe 3 O 4 magnetic nanoparticles was developed as a kind of pretreatment method to detect pyrethroid pesticides in water samples. New anion-exchange reagents including Na[DDTC] and Na[N(CN) 2 ] were optimized for in-situ extraction pyrethroids, which showed enhanced microextraction performance. Pyrethroids were enriched by hydrophilic ionic liquid [P 4448 ][Br] (aqueous solution, 200 μL, 0.2 mmol mL -1 ) reaction in-situ with anion-exchange reagent Na[N(CN) 2 ] (aqueous solution, 300 μL, 0.2 mmol mL -1 ) forming hydrophobic ionic liquid as extraction agent in water sample (10 mL). Ultrasmall superparamagnetic iron oxide nanoparticles (30 mg) were used to collect the mixture of ionic liquid and pyrethroids followed by elution with acetonitrile. The extraction of ionic liquid strategies was unique and efficiently fulfilled with high enrichment factors (176-213) and good recoveries (80.20-117.31%). The method was successively applied to the determination of pyrethroid pesticides in different kinds of water samples with the limits of detection ranged from 0.16 to 0.21 μg L -1 . The proposed method is actually nanometer-level microextraction (average size 80 nm) with the advantages of simplicity, rapidity, and sensitivity. Copyright © 2017 Elsevier B.V. All rights reserved.
Ionic thermoelectric gating organic transistors
Zhao, Dan; Fabiano, Simone; Berggren, Magnus; Crispin, Xavier
2017-01-01
Temperature is one of the most important environmental stimuli to record and amplify. While traditional thermoelectric materials are attractive for temperature/heat flow sensing applications, their sensitivity is limited by their low Seebeck coefficient (∼100 μV K−1). Here we take advantage of the large ionic thermoelectric Seebeck coefficient found in polymer electrolytes (∼10,000 μV K−1) to introduce the concept of ionic thermoelectric gating a low-voltage organic transistor. The temperature sensing amplification of such ionic thermoelectric-gated devices is thousands of times superior to that of a single thermoelectric leg in traditional thermopiles. This suggests that ionic thermoelectric sensors offer a way to go beyond the limitations of traditional thermopiles and pyroelectric detectors. These findings pave the way for new infrared-gated electronic circuits with potential applications in photonics, thermography and electronic-skins. PMID:28139738
NASA Astrophysics Data System (ADS)
Hou, Yong; Fu, Yongsheng; Bredow, Richard; Kang, Dongdong; Redmer, Ronald; Yuan, Jianmin
2017-03-01
The average-atom model combined with the hyper-netted chain approximation is an efficient tool for electronic and ionic structure calculations for warm dense matter. Here we generalize this method in order to describe non-equilibrium states with different electron and ion temperature as produced in laser-matter interactions on ultra-short time scales. In particular, the electron-ion and ion-ion correlation effects are considered when calculating the electron structure. We derive an effective ion-ion pair-potential using the electron densities in the framework of temperature-depended density functional theory. Using this ion-ion potential we perform molecular dynamics simulations in order to determine the ionic transport properties such as the ionic diffusion coefficient and the shear viscosity through the ionic velocity autocorrelation functions.
Xu, Xu; Su, Rui; Zhao, Xin; Liu, Zhuang; Zhang, Yupu; Li, Dan; Li, Xueyuan; Zhang, Hanqi; Wang, Ziming
2011-11-30
The ionic liquid-based microwave-assisted dispersive liquid-liquid microextraction (IL-based MADLLME) and derivatization was applied for the pretreatment of six sulfonamides (SAs) prior to the determination by high-performance liquid chromatography (HPLC). By adding methanol (disperser), fluorescamine solution (derivatization reagent) and ionic liquid (extraction solvent) into sample, extraction, derivatization, and preconcentration were continuously performed. Several experimental parameters, such as the type and volume of extraction solvent, the type and volume of disperser, amount of derivatization reagent, microwave power, microwave irradiation time, pH of sample solution, and ionic strength were investigated and optimized. When the microwave power was 240 W, the analytes could be derivatized and extracted simultaneously within 90 s. The proposed method was applied to the analysis of river water, honey, milk, and pig plasma samples, and the recoveries of analytes obtained were in the range of 95.0-110.8, 95.4-106.3, 95.0-108.3, and 95.7-107.7, respectively. The relative standard deviations varied between 1.5% and 7.3% (n=5). The results showed that the proposed method was a rapid, convenient and feasible method for the determination of SAs in liquid samples. Copyright © 2011 Elsevier B.V. All rights reserved.
Choi, Sun-A; Jung, Joo-Young; Kim, Kyochan; Kwon, Jong-Hee; Lee, Jin-Suk; Kim, Seung Wook; Park, Ji-Yeon; Yang, Ji-Won
2014-11-01
In this study, lipid extraction from Aurantiochytrium sp. was performed using a molten-salt/ionic-liquid mixture. The total fatty acid content of Aurantiochytrium sp. was 478.8 mg/g cell, from which 145 mg/g cell (30.3% of total fatty acids) of docosahexaenoic acid (DHA) was obtained. FeCl3·6H2O showed a high lipid extraction yield (207.9 mg/g cell), when compared with that of [Emim]OAc, which was only 118.1 mg/g cell; notably however, when FeCl3·6H2O was mixed with [Emim]OAc (5:1, w/w), the yield was increased to 478.6 mg/g cell. When lipid was extracted by the FeCl3·6H2O/[Emim]OAc mixture at a 5:1 (w/w) blending ratio under 90 °C, 30 min reaction conditions, the fatty acid content of the extracted lipid was a high purity 997.7 mg/g lipid, with most of the DHA having been extracted (30.2% of total fatty acids). Overall, lipid extraction from Aurantiochytrium sp. was enhanced by the synergistic effects of the molten-salt/ionic-liquid mixture with different ions.
Rout, Alok; Binnemans, Koen
2014-02-28
The solvent extraction of trivalent rare-earth ions and their separation from divalent transition metal ions using molten salt hydrates as the feed phase and an undiluted fluorine-free ionic liquid as the extracting phase were investigated in detail. The extractant was tricaprylmethylammonium nitrate, [A336][NO3], and the hydrated melt was calcium nitrate tetrahydrate, Ca(NO3)2·4H2O. The extraction behavior of rare-earth ions was studied for solutions of individual elements, as well as for mixtures of rare earths in the hydrated melt. The influence of different extraction parameters was investigated: the initial metal loading in the feed phase, percentage of water in the feed solution, equilibration time, and the type of hydrated melt. The extraction of rare earths from Ca(NO3)2·4H2O was compared with extraction from CaCl2·4H2O by [A336][Cl] (Aliquat 336). The nitrate system was found to be the better one. The extraction and separation of rare earths from the transition metals nickel, cobalt and zinc were also investigated. Remarkably high separation factors of rare-earth ions over transition metal ions were observed for extraction from Ca(NO3)2·4H2O by the [A336][NO3] extracting phase. Furthermore, rare-earth ions could be separated efficiently from transition metal ions, even in melts with very high concentrations of transition metal ions. Rare-earth oxides could be directly dissolved in the Ca(NO3)2·4H2O phase in the presence of small amounts of Al(NO3)3·9H2O or concentrated nitric acid. The efficiency of extraction after dissolving the rare-earth oxides in the hydrated nitrate melt was identical to extraction from solutions with rare-earth nitrates dissolved in the molten phase. The stripping of the rare-earth ions from the loaded ionic liquid phase and the reuse of the recycled ionic liquid were also investigated in detail.
Effect of ionic radii on the Curie temperature in Ba1-x-ySrxCayTiO3 compounds.
Berenov, A; Le Goupil, F; Alford, N
2016-06-21
A series of Ba1-x-ySrxCayTiO3 compounds were prepared with varying average ionic radii and cation disorder on A-site. All samples showed typical ferroelectric behavior. A simple empirical equation correlated Curie temperature, TC, with the values of ionic radii of A-site cations. This correlation was related to the distortion of TiO6 octahedra observed during neutron diffraction studies. The equation was used for the selection of compounds with predetermined values of TC. The effects of A-site ionic radii on the temperatures of phase transitions in Ba1-x-ySrxCayTiO3 were discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dengl, Armin; Beyer, Rebecca; Peterseim, Tobias
2014-06-28
The neutral-to-ionic phase transition in the mixed-stack charge-transfer complex tetrathiafulvalene-p-chloranil (TTF-CA) has been studied by pressure-dependent infrared spectroscopy up to p = 11 kbar and down to low temperatures, T = 10 K. By tracking the C=O antisymmetric stretching mode of CA molecules, we accurately determine the ionicity of TTF-CA in the pressure-temperature phase diagram. At any point, the TTF-CA crystal bears only a single ionicity; there is no coexistence region or an exotic high-pressure phase. Our findings shed new light on the role of electron-phonon interaction in the neutral-ionic transition.
f-Elements in ionic liquids: A synthetic, spectroscopic and electrochemical study
NASA Astrophysics Data System (ADS)
Bhatt, Anand Indravadan
This thesis reports on chemical research directed towards the utilisation of low temperature ionic liquids (LTILs) for the electrorefming of uranium and plutonium from spent nuclear fuel. Initial studies focus on evaluating the relevant physical and electrochemical properties of LTILs. One room temperature ionic liquid, [(CH[3])[3]N(n-C[4]H[9])][N(SO[2]CF[3])[2
Sun, Liyuan; Morales-Collazo, Oscar; Xia, Han; Brennecke, Joan F
2015-12-03
A series of room temperature ionic liquids (RTILs) based on 1-ethyl-3-methylimidazolium ([emim](+)) with different aprotic heterocyclic anions (AHAs) were synthesized and characterized as potential electrolyte candidates for lithium ion batteries. The density and transport properties of these ILs were measured over the temperature range between 283.15 and 343.15 K at ambient pressure. The temperature dependence of the transport properties (viscosity, ionic conductivity, self-diffusion coefficient, and molar conductivity) is fit well by the Vogel-Fulcher-Tamman (VFT) equation. The best-fit VFT parameters, as well as linear fits to the density, are reported. The ionicity of these ILs was quantified by the ratio of the molar conductivity obtained from the ionic conductivity and molar concentration to that calculated from the self-diffusion coefficients using the Nernst-Einstein equation. The results of this study, which is based on ILs composed of both a planar cation and planar anions, show that many of the [emim][AHA] ILs exhibit very good conductivity for their viscosities and provide insight into the design of ILs with enhanced dynamics that may be suitable for electrolyte applications.
Ma, Wanwan; Row, Kyung Ho
2018-07-20
A type of magnetic ionic liquid based molecularly imprinted polymer coated on SiO 2 (Fe 3 O 4 @SiO 2 @IL-MIPs) was prepared with 1-vinyl-3-ethylimidazole ionic liquid as functional monomer, and 1,4-butane-3,3'-bis-1-ethylimidazole ionic liquid as cross linker, 4-Chlorophenol as template was successfully applied as a selective adsorbent for selective extraction of 5 chlorophenols in seawater samples by using the magnetic solid-phase extraction (MSPE) method. 11 types of Fe 3 O 4 @SiO 2 @IL-MIPs were synthesized and investigated for their different compositions of functional monomer (such as [C 2 min][Br], [C 2 min][BF 4 ], [C 2 min][PF 6 ], acrylamide, methacrylic acid and 4-vinyl pyridine) and cross-linker (such as [C 4 min 2 ][Br], [C 4 min 2 ][BF 4 ], [C 4 min 2 ][PF 6 ], divinylbenzene, and ethylene glycol dimethacrylate), respectively. The [C 2 min][BF 4 ] and [C 4 min 2 ][PF 6 ] based Fe 3 O 4 @SiO 2 @IL-MIP with the highest extraction efficiencies was applied to the optimization experiment of MSPE process (including extraction time, adsorbent mass and desorption solvents). Good linearity was obtained with correlation coefficients (R 2 ) over 0.9990 and the relative standard deviations for the intra-day and inter-day determination were less than 3.10% with the extraction recoveries ranged from 85.0% to 98.4%. The results indicated that the proposed Fe 3 O 4 @SiO 2 @IL-MIPs possesses great identification and adsorption properties, and could be used as a good sorbent for selective extraction of CPs in environment waters. Copyright © 2018 Elsevier B.V. All rights reserved.
Chen, Yuehua; Wang, Huiyong; Pei, Yuanchao; Wang, Jianji
2018-05-15
It is significant to develop sustainable strategies for the selective separation of rare earth from transition metals from fundamental and practical viewpoint. In this work, an environmentally friendly solvent extraction approach has been developed to selectively separate neodymium (III) from cobalt (II) and nickel (II) by using an ionic liquid-based aqueous two phase system (IL-ATPS). For this purpose, a hydrophilic ionic liquid (IL) tetrabutylphosphonate nitrate ([P 4444 ][NO 3 ]) was prepared and used for the formation of an ATPS with NaNO 3 . Binodal curves of the ATPSs have been determined for the design of extraction process. The extraction parameters such as contact time, aqueous phase pH, content of phase-formation components of NaNO 3 and the ionic liquid have been investigated systematically. It is shown that under optimal conditions, the extraction efficiency of neodymium (III) is as high as 99.7%, and neodymium (III) can be selectively separated from cobalt (II) and nickel (II) with a separation factor of 10 3 . After extraction, neodymium (III) can be stripped from the IL-rich phase by using dilute aqueous sodium oxalate, and the ILs can be quantitatively recovered and reused in the next extraction process. Since [P 4444 ][NO 3 ] works as one of the components of the ATPS and the extractant for the neodymium, no organic diluent, extra etractant and fluorinated ILs are used in the separation process. Thus, the strategy described here shows potential in green separation of neodymium from cobalt and nickel by using simple IL-based aqueous two-phase system. Copyright © 2018 Elsevier B.V. All rights reserved.
L'Hocine, Lamia; Pitre, Mélanie
2016-03-01
A full factorial design was used to assess the single and interactive effects of three non-denaturing aqueous (phosphate, borate, and carbonate) buffers at various ionic strengths (I) on allergen extractability from and immunoglobulin E (IgE) immunoreactivity of peanut, almond, hazelnut, and pistachio. The results indicated that the type and ionic strength of the buffer had different effects on protein recovery from the nuts under study. Substantial differences in protein profiles, abundance, and IgE-binding intensity with different combinations of pH and ionic strength were found. A significant interaction between pH and ionic strength was observed for pistachio and almond. The optimal buffer system conditions, which maximized the IgE-binding efficiency of allergens and provided satisfactory to superior protein recovery yield and profiles, were carbonate buffer at an ionic strength of I=0.075 for peanut, carbonate buffer at I=0.15 for almond, phosphate buffer at I=0.5 for hazelnut, and borate at I=0.15 for pistachio. The buffer type and its ionic strength could be manipulated to achieve the selective solubility of desired allergens. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Chen, Xuwei; Yang, Xu; Zeng, Wanying; Wang, Jianhua
2015-08-04
Protein transfer from aqueous medium into ionic liquid is an important approach for the isolation of proteins of interest from complex biological samples. We hereby report a solid-cladding/liquid-core/liquid-cladding sandwich optical waveguide system for the purpose of monitoring the dynamic mass-transfer behaviors of hemoglobin (Hb) at the aqueous/ionic liquid interface. The optical waveguide system is fabricated by using a hydrophobic IL (1,3-dibutylimidazolium hexafluorophosphate, BBimPF6) as the core, and protein solution as one of the cladding layer. UV-vis spectra are recorded with a CCD spectrophotometer via optical fibers. The recorded spectra suggest that the mass transfer of Hb molecules between the aqueous and ionic liquid media involve accumulation of Hb on the aqueous/IL interface followed by dynamic extraction/transfer of Hb into the ionic liquid phase. A part of Hb molecules remain at the interface even after the accomplishment of the extraction/transfer process. Further investigations indicate that the mass transfer of Hb from aqueous medium into the ionic liquid phase is mainly driven by the coordination interaction between heme group of Hb and the cationic moiety of ionic liquid, for example, imidazolium cation in this particular case. In addition, hydrophobic interactions also contribute to the transfer of Hb.
Effect of heat treatment on the properties of SiO2-CaO-MgO-P 2O 5 bioactive glasses.
Zhou, Yue; Li, Hongying; Lin, Kaili; Zhai, Wanying; Gu, Weiming; Chang, Jiang
2012-09-01
Since the invention of 45S5 Bioglass, researchers never stopped exploring new generation bioactive glass (BG) materials for wider applications in regenerative medicine, among which a novel SiO(2)-CaO-MgO-P(2)O(5) bioactive glass (BG20) is an excellent candidate. However, apart from their biocompatibility and bioactivity, a porous structure is also a must for a tissue engineering scaffold in successfully fixing bone defect. The porosity is the outcome of the high temperature (500-1,000 °C) treatment in the fabricating process of the bioglass scaffold. Under the high temperature, the amorphous glass material will become crystallized at certain percentage in the glass matrix, and possibly leading to consequent changes in the mechanical strength, biodegradability and bioactivity. To elucidate the effect of phase transition on the change of the properties of BG20, the experiments in this report were designed to fine-tuning the heat treating temperatures to fabricate a series of BG20 powders with different crystallization structures. X-ray diffraction revealed a positive correlation between the heating temperature and the crystallization, as well as the compressive strength of the materials. In vitro degradation and ion analysis by ICP-AES demonstrated a similar releasing behavior of different ions including Mg(2+), Ca(2+) and Si(4+), which in common is the tendency of decreasing of the ion concentration along with the increasing of the treating temperature. Cell proliferation assay using both mouse fibroblasts (NIH3T3) and bone marrow stromal cells (BMSCs) showed little toxicity of the ionic extract of the BG20 powders at all the treating temperatures, while fibroblasts demonstrated a significant promoting in the percentage of proliferation. Furthermore, reverse-transcription and polymerase chain reaction analysis on two representative marker genes for early osteogenesis and endochondral ossification, respectively, type I collagen alpha 1 and Indian Hedge-hog, showed an interesting induction of both genes over their basal levels by the treatment of the ionic extract of BG20, implying its important capability in regulating the fate of differentiation of the BMSCs as a novel biomaterial in bone tissue engineering.
Extraction photometric determination of yperite by phthaleins.
Halámek, E; Kobliha, Z
1999-01-01
Extraction spectrophotometric determination of sulfidic yperite, based on the reaction with four phthaleins, was developed. The method is technically simpler than the determination of yperites with reagent T-135 (alkaline-aqueous ethanolic thymolphthalein solution) because it does not require heating at 80 degrees C, cooling and acidification of the reaction mixture. Selection of the appropriate phthalein, and particularly optimization of the reagent composition and extraction of the coloured reaction product in chloroform, markedly increased the selectivity of the determination of yperites (HD, HN-3). The reaction is performed in a medium of increased polarity due to the low content of alcohol which enables the reaction to proceed at temperatures of 5-20 degrees C without any marked loss of sensitivity. Using (1)H and (13)C NMR spectroscopy, the reaction products of HD and o-cresolphthalein were identified and an ionic mechanism for the reaction of HD with phthaleins is suggested.
Drüschler, Marcel; Borisenko, Natalia; Wallauer, Jens; Winter, Christian; Huber, Benedikt; Endres, Frank; Roling, Bernhard
2012-04-21
Ionic liquids are of high interest for the development of safe electrolytes in modern electrochemical cells, such as batteries, supercapacitors and dye-sensitised solar cells. However, electrochemical applications of ionic liquids are still hindered by the limited understanding of the interface between electrode materials and ionic liquids. In this article, we first review the state of the art in both experiment and theory. Then we illustrate some general trends by taking the interface between the extremely pure ionic liquid 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate and an Au(111) electrode as an example. For the study of this interface, electrochemical impedance spectroscopy was combined with in situ STM and in situ AFM techniques. In addition, we present new results for the temperature dependence of the interfacial capacitance and dynamics. Since the interfacial dynamics are characterised by different processes taking place on different time scales, the temperature dependence of the dynamics can only be reliably studied by recording and carefully analysing broadband capacitance spectra. Single-frequency experiments may lead to artefacts in the temperature dependence of the interfacial capacitance. We demonstrate that the fast capacitive process exhibits a Vogel-Fulcher-Tamman temperature dependence, since its time scale is governed by the ionic conductivity of the ionic liquid. In contrast, the slower capacitive process appears to be Arrhenius activated. This suggests that the time scale of this process is determined by a temperature-independent barrier, which may be related to structural reorganisations of the Au surface and/or to charge redistributions in the strongly bound innermost ion layer. This journal is © the Owner Societies 2012
Huang, Xiaojia; Wang, Yulei; Hong, Qiuyun; Liu, Yi; Yuan, Dongxing
2013-11-01
A new multi-interaction sorbent (MIS) based on polymeric ionic liquid was prepared and used as extractive medium of stir cake sorptive extraction (SCSE). In the presence of dimethyl sulfoxide, an ionic liquid, 1-vinylbenzyl-3-methylimidazolium chloride was used as monomer to copolymerize in situ with divinylbenzene to form the MIS. The influences of the content of monomer and the porogen solvent in the polymerization mixture on the extraction performance were investigated thoroughly. The MIS was characterized by infrared spectroscopy, elemental analysis, scanning electron microscopy and mercury intrusion porosimetry. Parabens and aromatic amines were used to investigate the extraction performance of MIS-SCSE for apolar and strongly polar analytes, respectively. The extraction parameters for parabens and aromatic amines were optimized. At the same time, simple and sensitive analytical methods for parabens and aromatic amines in real samples were developed by the combination of MIS-SCSE and HPLC/DAD. Some inorganic anions, such as F(-), Br(-), NO3(-), PO4(3-) and SO4(2-), were used to test the extraction performance of MIS-SCSE for anions. Results indicated that mechanism involved in the extraction of MIS is the multi-interaction modes including π-π, hydrophobic, hydrogen-bonding, dipole-dipole and anion-exchange interactions. Copyright © 2013 Elsevier B.V. All rights reserved.
Wang, Qing; Qiu, Bin; Chen, Xianbo; Wang, Bin; Zhang, Hui; Zhang, Xiaoyuan
2017-06-01
A novel mixed hemimicelles and magnetic dispersive solid-phase extraction method based on long-chain ionic liquids for the extraction of five fluorescent whitening agents was established. The factors influenced on extraction efficiency were investigated. Under the optimal conditions, namely, the pH of sample solution at 8.0, the concentration of long chain ionic liquid at 0.5 mmol/L, the amount of Fe 3 O 4 nanoparticle at 12 mg, extraction time at 10 min, pH 6.0 of methanol as eluent, and the desorption time at 1 min, satisfactory results were obtained. Wide linear ranges (0.02-10 ng/mL) and good linearity were attained (0.9997-0.9999). The intraday and interday RSDs were 2.1-8.3%. Limits of detection were 0.004-0.01 ng/mL, which were decreased by almost an order of magnitude compared to direct detection without extraction. The present method was applied to extract the fluorescent whitening agents in two kinds of paper samples, obtaining satisfactory results. All showed results illustrated that the detection sensitivity was improved and the proposed method was a good choice for the enriching and monitoring of trace fluorescent whitening agents. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mao, Jia; Abushammala, Hatem; Pereira, Laura Barcellos; Laborie, Marie-Pierre
2016-11-20
1Butyl-3-methylimidazolium hydrogen sulfate ([Bmim]HSO4) is efficient at extracting cellulose nanocrystals from pulp fibers. To shed some light on the respective contributions of swelling and hydrolysis of pulp fibers by [Bmim]HSO4, the physical, structural and morphological characteristics of hardwood Kraft pulp fibers were monitored under various conditions of temperature, water content and time. Swelling was largely compounded by hydrolysis at the highest temperatures (120°C) as evidenced by mass loss and reduced degree of polymerization (DPn) at this temperature. At 120°C only, water content appeared to play a significant role on the extent of hydrolysis. At this temperature, a heterogeneous kinetic model involving weak links and amorphous regions best described the experimental data. Hydrolysis rates were maximum at 25% water content in the aqueous ionic liquid. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liu, Cheng; Liao, Yingmin; Huang, Xiaojia
2017-11-17
This work prepared a new poly (ionic liquid)-functionalized magnetic adsorbent (PFMA) for the extraction of triazole fungicides (TFs) in environmental waters prior to determination by high performance liquid chromatography/diode array detection (HPLC-DAD). A polymerizable ionic liquid, 1-methyl-3-allylimidazolium bis(trifluoromethylsulfonyl)imide was employed to copolymerize with divinylbenzene on the surface of modified magnetite to fabricate the PFMA. The morphology, spectroscopic and magnetic properties of the new adsorbent were investigated by different techniques. A series of key parameters that influence the extraction performance including the amount of PFMA, desorption solvent, adsorption and desorption time, sample pH value and ionic strength were optimized in detail. Under the optimum conditions, the prepared PFMA could extract targeted TFs effectively and quickly under the format of magnetic solid-phase extraction (MSPE). Satisfactory linearities were achieved in the range of 0.1-200.0μg/L for triadimenol and 0.05-200.0μg/L for other TFs with good coefficients of determination above 0.99 for all analytes. The limits of detection (S/N=3) and limits of quantification (S/N=10) for TFs were in the range of 0.0050-0.0078μg/L and 0.017-0.026μg/L, respectively. Environmental waters including lake, river and well waters were used to demonstrate the applicability of developed MSPE-HPLC-DAD method, and satisfactory recoveries and repeatability were obtained. Copyright © 2017 Elsevier B.V. All rights reserved.
Bonsa, Anne-Marie; Paschek, Dietmar; Zaitsau, Dzmitry H; Emel'yanenko, Vladimir N; Verevkin, Sergey P; Ludwig, Ralf
2017-05-19
Key properties for the use of ionic liquids as electrolytes in batteries are low viscosities, low vapor pressure and high vaporization enthalpies. Whereas the measurement of transport properties is well established, the determination of vaporization enthalpies of these extremely low volatile compounds is still a challenge. At a first glance both properties seem to describe different thermophysical phenomena. However, eighty years ago Eyring suggested a theory which related viscosities and vaporization enthalpies to each other. The model is based on Eyring's theory of absolute reaction rates. Recent attempts to apply Eyring's theory to ionic liquids failed. The motivation of our study is to show that Eyring's theory works, if the assumptions specific for ionic liquids are fulfilled. For that purpose we measured the viscosities of three well selected protic ionic liquids (PILs) at different temperatures. The temperature dependences of viscosities were approximated by the Vogel-Fulcher-Tamann (VFT) relation and extrapolated to the high-temperature regime up to 600 K. Then the VFT-data could be fitted to the Eyring-model. The values of vaporization enthalpies for the three selected PILs predicted by the Eyring model have been very close to the experimental values measured by well-established techniques. We conclude that the Eyring theory can be successfully applied to the chosen set of PILs, if the assumption that ionic pairs of the viscous flow in the liquid and the ionic pairs in the gas phase are similar is fulfilled. It was also noticed that proper transfer of energies can be only derived if the viscosities and the vaporization energies are known for temperatures close to the liquid-gas transition temperature. The idea to correlate easy measurable viscosities of ionic liquids with their vaporization enthalpies opens a new way for a reliable assessment of these thermodynamic properties for a broad range of ionic liquids. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Method and apparatus for lysing and processing algae
Chew, Geoffrey; Reich, Alton J.; Dykes, Jr., H. Waite H.; Di Salvo, Roberto
2013-03-05
Methods and apparatus for processing algae are described in which a hydrophilic ionic liquid is used to lyse algae cells at lower temperatures than existing algae processing methods. A salt or salt solution is used as a separation agent and to remove water from the ionic liquid, allowing the ionic liquid to be reused. The used salt may be dried or concentrated and reused. The relatively low lysis temperatures and recycling of the ionic liquid and salt reduce the environmental impact of the algae processing while providing biofuels and other useful products.
2018-01-01
Ionic liquid crystals occupy an intriguing middle ground between room-temperature ionic liquids and mesostructured liquid crystals. Here, we examine a non-polarizable, fully atomistic model of the 1-alkyl-3-methylimidazolium nitrate family using molecular dynamics in the constant pressure–constant temperature ensemble. These materials exhibit a distinct “smectic” liquid phase, characterized by layers formed by the molecules, which separate the ionic and aliphatic moieties. In particular, we discuss the implications this layering may have for electrolyte applications. PMID:29301305
Ionic liquids gels: Soft materials for environmental remediation.
Marullo, Salvatore; Rizzo, Carla; Dintcheva, Nadka T; Giannici, Francesco; D'Anna, Francesca
2018-05-01
Nanostructured sorbents and, in particular, supramolecular gels are emerging as efficient materials for the removal of toxic contaminants from water, like industrial dyes. It is also known that ionic liquids can dissolve significant amounts of dyes. Consequently, supramolecular ionic liquids gels could be highly efficient sorbents for dyes removal. This would also contribute to overcome the drawbacks associated with dye removal by liquid-liquid extraction with neat ionic liquids which would require large volumes of extractant and a more difficult separation of the phases. Herein we employed novel supramolecular ionic liquid gels based on diimidazolium salts bearing naturally occurring or biomass derived anions, to adsorb cationic and anionic dyes from wastewaters. We also carried out a detailed investigation of thermal, structural, morphological and rheological features of our gels to identify which of them are key in designing better sorbents for environmental remediation. The most effective gels showed fast and thorough removal of cationic dyes like Rhodamine B. These gels could also be reused up to 20 times without any loss in removal efficiency. Overall, our ionic gels outperform most of gel-based sorbents systems so far reported in literature. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffin, Philip J., E-mail: pgrif@seas.upenn.edu; Holt, Adam P.; Tsunashima, Katsuhiko
2015-02-28
Charge transport and structural dynamics in a homologous pair of ammonium and phosphonium based room temperature ionic liquids (ILs) have been characterized over a wide temperature range using broadband dielectric spectroscopy and quasi-elastic light scattering spectroscopy. We have found that the ionic conductivity of the phosphonium based IL is significantly enhanced relative to the ammonium homolog, and this increase is primarily a result of a lower glass transition temperature and higher ion mobility. Additionally, these ILs exhibit pronounced secondary relaxations which are strongly influenced by the atomic identity of the cation charge center. While the secondary relaxation in the phosphoniummore » IL has the expected Arrhenius temperature dependence characteristic of local beta relaxations, the corresponding relaxation process in the ammonium IL was found to exhibit a mildly non-Arrhenius temperature dependence in the measured temperature range—indicative of molecular cooperativity. These differences in both local and long-range molecular dynamics are a direct reflection of the subtly different inter-ionic interactions and mesoscale structures found in these homologous ILs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffin, Phillip J.; Holt, Adam P.; Tsunashima, Katsuhiko
2015-02-01
Charge transport and structural dynamics in a homologous pair of ammonium and phosphonium based room temperature ionic liquids (ILs) have been characterized over a wide temperature range using broadband dielectric spectroscopy and quasi-elastic light scattering spectroscopy. We have found that the ionic conductivity of the phosphonium based IL is significantly enhanced relative to the ammonium homolog, and this increase is primarily a result of a lower glass transition temperature and higher ion mobility. Additionally, these ILs exhibit pronounced secondary relaxations which are strongly influenced by the atomic identity of the cation charge center. While the secondary relaxation in the phosphoniummore » IL has the expected Arrhenius temperature dependence characteristic of local beta relaxations, the corresponding relaxation process in the ammonium IL was found to exhibit a mildly non-Arrhenius temperature dependence in the measured temperature range-indicative of molecular cooperativity. These differences in both local and long-range molecular dynamics are a direct reflection of the subtly different inter-ionic interactions and mesoscale structures found in these homologous ILs.« less
Ionic strength and DOC determinations from various freshwater sources to the San Francisco Bay
Hunter, Y.R.; Kuwabara, J.S.
1994-01-01
An exact estimation of dissolved organic carbon (DOC) within the salinity gradient of zinc and copper metals is significant in understanding the limit to which DOC could influence metal speciation. A low-temperature persulfate/oxygen/ultraviolet wet oxidation procedure was utilized for analyzing DOC samples adapted for ionic strength from major freshwater sources of the northern and southern regions of San Francisco Bay. The ionic strength of samples was modified with a chemically defined seawater medium up to 0.7M. Based on the results, a minimum effect of ionic strength on oxidation proficiency for DOC sources to the Bay over an ionic strength gradient of 0.0 to 0.7 M was observed. There was no major impacts of ionic strength on two Suwanee River fulvic acids. In general, the noted effects associated with ionic strength were smaller than the variances seen in the aquatic environment between high- and low-temperature methods.
Communication: Influence of nanophase segregation on ion transport in room temperature ionic liquids
Griffin, Philip J.; Wang, Yangyang; Holt, Adam P.; ...
2016-04-21
In this paper, we report measurements of the ionic conductivity, shear viscosity, and structural dynamics in a homologous series of quaternary ammonium ionic liquids (ILs) and a prototypical imidazolium-based IL over a wide range of temperatures down to the glass transition. We find that the ionic conductivity of these materials generally decreases, while the shear viscosity correspondingly increases, with increasing volume fraction of aliphatic side groups. Upon crossing an aliphatic volume fraction of ~0.40, we observe a sharp, order-of-magnitude decrease in ionic conductivity and enhancement of viscosity, which coincides with the presence of long-lived, nanometer-sized alkyl aggregates. These strong changesmore » in dynamics are not mirrored in the ionicity of these ILs, which decreases nearly linearly with aliphatic volume fraction. Finally, our results demonstrate that nanophase segregation in neat ILs strongly reduces ionic conductivity primarily due to an aggregation-induced suppression of dynamics.« less
Anisotropic amplification of proton transport in proton exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Thimmappa, Ravikumar; Fawaz, Mohammed; Devendrachari, Mruthyunjayachari Chattanahalli; Gautam, Manu; Kottaichamy, Alagar Raja; Shafi, Shahid Pottachola; Thotiyl, Musthafa Ottakam
2017-07-01
Though graphene oxide (GO) membrane shuttles protons under humid conditions, it suffer severe disintegration and anhydrous conditions lead to abysmal ionic conductivity. The trade-off between mechanical integrity and ionic conductivity challenge the amplification of GO's ionic transport under anhydrous conditions. We show anisotropic amplification of GO's ionic transport with a selective amplification of in plane contribution under anhydrous conditions by doping it with a plant extract, phytic acid (PA). The hygroscopic nature of PA stabilized interlayer water molecules and peculiar geometry of sbnd OH functionalities around saturated hydrocarbon ring anisotropically enhanced ionic transport amplifying the fuel cell performance metrics.
Desulfurization of oxidized diesel using ionic liquids
NASA Astrophysics Data System (ADS)
Wilfred, Cecilia D.; Salleh, M. Zulhaziman M.; Mutalib, M. I. Abdul
2014-10-01
The extraction of oxidized sulfur compounds from diesel were carried out using ten types of ionic liquids consisting of different cation and anion i.e. 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazoium thiocyanate, 1-butyl-3-methylimidazoium dicyanamide, 1-butyl-3-methylimidazolium trifluoromethanesulfonate, 1-butyl-3-methylimidazoliumhexafluorophosphate, 1-hexyl-3-methylimidazolium trifluoromethanesulfonate, trioctylmethylammonium chloride, 1-propionitrile-3-butylimidazolium thiocyanate, 1-propionitrile-3-butylimidazolium dicyanamide and 1-butyl-6-methylquinolinium dicyanamide. The oxidation of diesel was successfully done using phosphotungstic acid as the catalyst, hydrogen peroxide (H2O2) as the oxidant and trioctylmethylammonium chloride as the phase transfer agent. The oxidation of diesel changes the sulfur compounds into sulfone which increases its polarity and enhances the ionic liquid's extraction performance. Result showed that ionic liquid [C4mquin][N(CN)2] performed the highest sulfur removal (91% at 1:5 diesel:IL ratio) compared to the others.
NASA Astrophysics Data System (ADS)
Thakur, Punam; Xiong, Yongliang; Borkowski, Marian; Choppin, Gregory R.
2014-05-01
The dissociation constants of ethylenediaminetetraacetic acid (H4EDTA), and the stability constants of Am3+, Cm3+and Eu3+ with EDTA4- have been determined at 25 °C, over a range of concentration varying from 0.1 to 6.60 m NaClO4 using potentiometric titration and an extraction technique, respectively. The formation of only 1:1 complex, M(EDTA)-, where (M = Am3+, Cm3+ and Eu3+), was observed under the experimental conditions. The observed ionic strength dependencies of the dissociation constants and the stability constants have been described successfully over the entire ionic strength range using the Pitzer model. The thermodynamic stability constant: logβ1010=20.55±0.18 for Am3+, logβ1010=20.43±0.20 for Cm3+ and logβ1010=20.65±0.19 for Eu3+ were calculated by extrapolation of data to zero ionic strength in an NaClO4 medium. In addition, logβ1010 of 20.05 ± 0.40 for Am3+ was obtained by simultaneously modeling data both in NaCl and NaClO4 media. For all stability constants, the Pitzer model gives an excellent representation of the data using interaction parameters β(0), β(1), and Cϕ determined in this work. The improved model presented in this work would enable researchers to model accurately the potential mobility of actinides (III) and light rare earth elements to ionic strength of 6.60 m in low temperature environments in the presence of EDTA.
The shape-memory effect in ionic elastomers: fixation through ionic interactions.
González-Jiménez, Antonio; Malmierca, Marta A; Bernal-Ortega, Pilar; Posadas, Pilar; Pérez-Aparicio, Roberto; Marcos-Fernández, Ángel; Mather, Patrick T; Valentín, Juan L
2017-04-19
Shape-memory elastomers based on a commercial rubber cross-linked by both ionic and covalent bonds have been developed. The elastomeric matrix was a carboxylated nitrile rubber (XNBR) vulcanized with magnesium oxide (MgO) providing ionic interactions that form hierarchical structures. The so-named ionic transition is used as the unique thermal transition responsible for the shape-memory effect (SME) in these elastomers. These ionic interactions fix the temporary shape due to their behavior as dynamic cross-links with temperature changes. Covalent cross-links were incorporated with the addition of different proportions of dicumyl peroxide (DCP) to the ionic elastomer to establish and recover the permanent shape. In this article, the SME was modulated by modifying the degree of covalent cross-linking, while keeping the ionic contribution constant. In addition, different programming parameters, such as deformation temperature, heating/cooling rate, loading/unloading rate and percentage of tensile strain, were evaluated for their effects on shape-memory behavior.
Davarani, Saied Saeed Hosseiny; Nojavan, Saeed; Asadi, Roghayeh; Banitaba, Mohammad Hossein
2013-07-01
In this study, a platinum wire coated with poly(3,4-ethylenedioxythiophen) was used as an electro-assisted solid-phase microextraction fiber for the quantification of tricyclic antidepressant drugs in biological samples by coupling to GC employing a flame ionization detector. In this study, an electric field increased the extraction rate and recovery. The fiber used as a solid phase was synthesized by the electropolymerization of 3,4-ethylenedioxythiophen monomers onto a platinum wire. The ability of this fiber to extract imipramine, desipramine, and clomipramine by using the electro-assisted solid-phase microextraction technique was evaluated. The effect of various parameters that influence the extraction efficiency, which include solution temperature, extraction time, stirring rate, ionic strength, time and temperature of desorption, and thickness of the fiber, was optimized. Under optimized conditions, the linear ranges and regression coefficients of calibration curves were in the range of 0.5-250 and 0.990-0.998 ng/mL, respectively. Detection limits were in the range of 0.15-0.45 ng/mL. Finally, this method was applied to the determination of drugs in urine and wastewater samples and recoveries were 4.8-108.9%. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ionic liquids in chemical engineering.
Werner, Sebastian; Haumann, Marco; Wasserscheid, Peter
2010-01-01
The development of engineering applications with ionic liquids stretches back to the mid-1990s when the first examples of continuous catalytic processes using ionic liquids and the first studies of ionic liquid-based extractions were published. Ever since, the use of ionic liquids has seen tremendous progress in many fields of chemistry and engineering, and the first commercial applications have been reported. The main driver for ionic liquid engineering applications is to make practical use of their unique property profiles, which are the result of a complex interplay of coulombic, hydrogen bonding and van der Waals interactions. Remarkably, many ionic liquid properties can be tuned in a wide range by structural modifications at their cation and anion. This review highlights specific examples of ionic liquid applications in catalysis and in separation technologies. Additionally, the application of ionic liquids as working fluids in process machines is introduced.
Quan, Ji; Hu, Zeshu
2018-01-01
Food safety issues closely related to human health have always received widespread attention from the world society. As a basic food source, wheat is the fundamental support of human survival; therefore, the detection of pesticide residues in wheat is very necessary. In this work, the ultrasonic-assisted ionic liquid-dispersive liquid-liquid microextraction (DLLME) method was firstly proposed, and the extraction and analysis of three organophosphorus pesticides were carried out by combining high-performance liquid chromatography (HPLC). The extraction efficiencies of three ionic liquids with bis(trifluoromethylsulfonyl)imide (Tf2N) anion were compared by extracting organophosphorus in wheat samples. It was found that the use of 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([OMIM][Tf2N]) had both high enrichment efficiency and appropriate extraction recovery. Finally, the method was used for the determination of three wheat samples, and the recoveries of them were 74.8–112.5%, 71.8–104.5%, and 83.8–115.5%, respectively. The results show that the method proposed is simple, fast, and efficient, which can be applied to the extraction of organic matters in wheat samples. PMID:29854562
Liu, Ye; Yang, Lei; Zu, Yuangang; Zhao, Chunjian; Zhang, Lin; Zhang, Ying; Zhang, Zhonghua; Wang, Wenjie
2012-12-15
Cortex cinnamomi is associated with many health benefits and is used in the food and pharmaceutical industries. In this study, an efficient ionic liquid-based microwave-assisted simultaneous extraction and distillation (ILMSED) technique was used to extract cassia oil and proanthocyanidins from Cortex cinnamomi; these were quantified by gas chromatography/mass spectrometry (GC-MS) and the vanillin-HCl colorimetric method, respectively. 0.5M 1-butyl-3-methylimidazolium bromide ionic liquid was selected as solvent. The optimum parameters of dealing with 20.0 g sample were 230 W microwave irradiation power, 15 min microwave extraction time and 10 liquid-solid ratio. The yields of essential oil and proanthocyanidins were 1.24 ± 0.04% and 4.58 ± 0.21% under the optimum conditions. The composition of the essential oil was analysed by GC-MS. Using the ILMSED method, the energy consumption was reduced and the extraction yields were improved. The proposed method was validated using stability, repeatability, and recovery experiments. The results indicated that the developed ILMSED method provided a good alternative for the extraction of both the essential oil and proanthocyanidins from Cortex cinnamomi. Copyright © 2012 Elsevier Ltd. All rights reserved.
Xu, Yiting; Zheng, Qiang; Song, Yihu
2015-08-14
Novel nanoparticle ionic liquids (NILs) are prepared by grafting modified nanoparticles with long-chain ionic liquids (ILs). The NIL behaves like a liquid at ambient temperature. We studied the rheological behavior of the IL and NIL over the range of 10-55 °C and found an extraordinary difference between the IL and NIL: a small content of nanosilica (7%) moderately improves the crystallinity by 7% of the poly(ethylene glycol) (PEG) segment in the IL, and it improves the dynamic moduli significantly (by 5 times at room temperature). It retards the decay temperature (by 10 °C) of the dynamic moduli during heating as well. The thermal rheological hysteresis observed during heating-cooling temperature sweeps is ascribed to the melting-recrystallization of the PEG segments. Meanwhile, the IL and NIL express accelerated crystallization behavior in comparison with the oligomeric anion. For the first time, we find that ILs and NILs are able to form nanoparticle-containing spherulites at room temperature after long time aging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoque, Md Nadim Ferdous; Islam, Nazifah; Li, Zhen
Practical hybrid perovskite solar cells (PSCs) must endure temperatures above the tetragonal-cubic structural phase transition of methylammonium lead iodide (MAPbI3). However, the ionic and optical properties of MAPbI3 in such a temperature range, and particularly, dramatic changes in these properties resulting from a structural phase transition, are not well studied. Herein, we report a striking contrast at approximately 45 degrees C in the ionic/electrical properties of MAPbl3 owing to a change of the ion activation energy from 0.7 to 0.5 eV, whereas the optical properties exhibit no particular transition except for the steady increase of the bandgap with temperature. Thesemore » observations can be explained by the 'continuous' nature of perovskite phase transition. We speculate that the critical temperature at which the ionic/electrical properties change, although related to crystal symmetry variation, is not necessarily the same temperature as when tetragonal-cubic structural phase transition occurs.« less
IMPROVED SYNTHESIS OF ROOM TEMPERATURE IONIC LIQUIDS
Room temperature ionic liquids (RTILs), molten salts comprised of N-alkylimidazolium cations and various anions, have received significant attention due to their commercial potential in a variety of chemical applications especially as substitutes for conventional volatile organic...
Ihlefeld, Jon F.; Gurniak, Emily; Jones, Brad H.; ...
2016-05-04
Preparation of sodium zirconium silicate phosphate (NaSICon), Na 1+xZr 2Si xP 3–xO 12 (0.25 ≤ x ≤ 1.0), thin films has been investigated via a chemical solution approach on platinized silicon substrates. Increasing the silicon content resulted in a reduction in the crystallite size and a reduction in the measured ionic conductivity. Processing temperature was also found to affect microstructure and ionic conductivity with higher processing temperatures resulting in larger crystallite sizes and higher ionic conductivities. The highest room temperature sodium ion conductivity was measured for an x = 0.25 composition at 2.3 × 10 –5 S/cm. In conclusion, themore » decreasing ionic conductivity trends with increasing silicon content and decreasing processing temperature are consistent with grain boundary and defect scattering of conducting ions.« less
New electrolytes for aluminum production: Ionic liquids
NASA Astrophysics Data System (ADS)
Zhang, Mingming; Kamavarum, Venkat; Reddy, Ramana G.
2003-11-01
In this article, the reduction, refining/recycling, and electroplating of aluminum from room-temperature molten salts are reviewed. In addition, the characteristics of several non-conventional organic solvents, electrolytes, and molten salts are evaluated, and the applicability of these melts for production of aluminum is discussed with special attention to ionic liquids. Also reviewed are electrochemical processes and conditions for electrodeposition of aluminum using ionic liquids at near room temperatures.
González-Sálamo, Javier; González-Curbelo, Miguel Ángel; Socas-Rodríguez, Bárbara; Hernández-Borges, Javier; Rodríguez-Delgado, Miguel Ángel
2018-06-01
A new hollow fiber liquid-phase microextraction (HF-LPME) method has been developed for the extraction of a group of phthalic acid esters (PAEs) of interest from different water samples prior to gas chromatography tandem mass spectrometry analysis. HF-LPME was carried out using 1-octanol as extraction solvent followed by a back extraction step with cyclohexane. The different parameters that affect HF-LPME such as sample pH, ionic strength, extraction time, stirring rate, extraction temperature and back extraction conditions were investigated. The optimized conditions involved the extraction of 10 mL of sample without pH adjustment or addition of salt during 75 min under a stirring of 850 rpm at 60 °C and subsequent desorption with 200 μL of cyclohexane for 10 min in an ultrasonic bath. The method was validated in terms of calibration and recovery studies using dibutyl phthalate-d 4 as internal standard. The developed procedure gave satisfactory recovery (74-120%) and relative standard deviation values (<20%) for the studied PAEs in mineral, tap, pond and waste water samples. Copyright © 2018 Elsevier Ltd. All rights reserved.
Li, Lan-Jie; Jin, Yong-Ri; Wang, Xiao-Zhong; Liu, Ying; Wu, Qian; Shi, Xiao-Lei; Li, Xu-Wen
2015-09-01
A method of ionic liquid salt aqueous two-phase extraction coupled with high-performance liquid chromatography has been developed for the analysis of seven rare ginsenosides including Rg6 , F4 , 20(S)-Rg3 , 20(R)-Rg3 , Rk3 , Rk1 , and Rg5 in Xue-Sai-Tong injection. The injection was mixed with ionic liquid 1-butyl-3-methylimidazolium bromide aqueous solution, and a mixture was obtained. With the addition of sodium dodecyl sulfate and dipotassium phosphate into the mixture, the aqueous two-phase mixture was formed after ultrasonic treatment and centrifuged. Rare ginsenosides were extracted into the upper phase. To obtain a high extraction factors, various influences were considered systematically, such as the volume of ionic liquid, the category and amount of salts, the amount of sodium dodecyl sulfate, the pH value of system, and the time of ultrasonic treatment. Under the optimal condition, rare ginsenosides in Xue-Sai-Tong injection were enriched and detected, the recoveries of seven rare ginsenosides ranged from 90.05 to 112.55%, while relative standard deviations were lower than 2.50%. The developed method was reliable, rapid and sensitive for the determination of seven rare ginsenosides in the injections. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gao, Jiajia; Wang, Hui; Qu, Jingang; Wang, Huili; Wang, Xuedong
2017-01-15
In traditional ionic liquids (ILs)-based microextraction, ILs are often used as extraction and dispersive solvents; however, their functional effects are not fully utilized. Herein, we developed a novel ionic liquid 1-butyl-3-methylimidazolium naphthoic acid salt ([C4MIM][NPA]) with strong acidity. It was used as a mixed dispersive solvent with conventional [C2MIM][BF4] in "functionalized ionic liquid-based non-organic solvent microextraction (FIL-NOSM)" for determination of tetracycline antibiotics (TCs) in milk and eggs. Utilization of [C4MIM][NPA] in FIL-NOSM method increased extraction recoveries (ERs) of TCs by more than 20% and eliminated the pH adjustment step because of its strong acidity. Under optimized conditions based on central composite design, the ERs of four TCs were 94.1-102.1%, and the limitsofdetection were 0.08-1.12μgkg(-1) in milk and egg samples. This proposed method provides high extraction efficiency, less pretreatment time and requires non-organic solvents for determination of trace TC concentrations in complex animal-based food matrices. Copyright © 2016 Elsevier Ltd. All rights reserved.
The potential of cloud point system as a novel two-phase partitioning system for biotransformation.
Wang, Zhilong
2007-05-01
Although the extractive biotransformation in two-phase partitioning systems have been studied extensively, such as the water-organic solvent two-phase system, the aqueous two-phase system, the reverse micelle system, and the room temperature ionic liquid, etc., this has not yet resulted in a widespread industrial application. Based on the discussion of the main obstacles, an exploitation of a cloud point system, which has already been applied in a separation field known as a cloud point extraction, as a novel two-phase partitioning system for biotransformation, is reviewed by analysis of some topical examples. At the end of the review, the process control and downstream processing in the application of the novel two-phase partitioning system for biotransformation are also briefly discussed.
Saraji, Mohammad; Mehrafza, Narges; Bidgoli, Ali Akbar Hajialiakbari; Jafari, Mohammad Taghi
2012-10-01
A method was established for the determination of desipramine in biological samples using liquid-liquid-liquid microextraction followed by in-syringe derivatization and gas chromatography-nitrogen phosphorus detection. The extraction method was based on the use of two immiscible organic solvents. n-Dodecane was impregnated in the pores of the hollow fiber and methanol was placed inside the lumen of the fiber as the acceptor phase. Acetic anhydride was used as the reagent for the derivatization of the analyte inside the syringe barrel. Parameters that affect the extraction efficiency (composition of donor and acceptor phase, ionic strength, sample temperature, and extraction time) as well as derivatization efficiency (amount of acetic anhydride and reaction time and temperature) were investigated. The limit of detection was 0.02 μg/L with intra and interday RSDs of 2.6 and 7.7%, respectively. The linearity of the method was in the range of 0.2-20 μg/L (r(2) = 0.9986). The method was successfully applied to determine desipramine in human plasma and urine. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xu, Lili; Feng, Juanjuan; Li, Jubai; Liu, Xia; Jiang, Shengxiang
2012-01-01
A novel chemically bonded graphene oxide/fused-silica fiber was prepared and applied in solid-phase microextraction of six polycyclic aromatic hydrocarbons from water samples coupled with gas chromatography. It exhibited high extraction efficiency and excellent stability. Effects of extraction time, extraction temperature, ionic strength, stirring rate and desorption conditions were investigated and optimized in our work. Detection limits to the six polycyclic aromatic hydrocarbons were less than 0.08 μg/L, and their calibration curves were all linear (R(2)≥0.9954) in the range from 0.05 to 200 μg/L. Single fiber repeatability and fiber-to-fiber reproducibility were less than 6.13 and 15.87%, respectively. This novel fiber was then utilized to analyze two real water samples from the Yellow River and local waterworks, and the recoveries of samples spiked at 1 and 10 μg/L ranged from 84.48 to 118.24%. Compared with other coating materials, this graphene oxide-coated fiber showed many advantages: wide linear range, low detection limit, and good stability in acid, alkali, organic solutions and at high temperature. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Mavris, Christian; Furrer, Gerhard; Dahms, Dennis; Anderson, Suzanne P.; Blum, Alex; Goetze, Jens; Wells, Aaron; Egli, Markus
2015-04-01
Climate change influences the evolution of soil and landscape. With changing climate, both flora and fauna must adapt to new conditions. It is unknown in many respects to what extent soils will react to warming and vegetation change. The aim of this study was to identify possible consequences for soils in a dry-alpine region with respect to weathering of primary minerals and leaching of elements under expected warming climate conditions due to shifts in vegetation. To achieve this, a field empirical approach was used in combination with laboratory weathering experiments simulating several scenarios. Study sites located in Sinks Canyon and in Stough Basin of the Wind River Range, Wyoming, USA, encompass ecotones that consist of tundra, forest, or sagebrush (from moist to dry, with increasing temperature, respectively). All soils are developed on granitoid moraines. The mineralogy of the soils along the altitudinal sequence was analysed using cathodoluminescence and X-ray diffraction, and revealed clear mineral transformations: biotite and plagioclase were both weathered to smectite while plagioclase also weathered to kaolinite. Cooler, wetter, altitude-dependent conditions seemed to promote weathering of these primary minerals. To test the impact of soil solutions from different ecotones on mineral weathering, aqueous extracts from topsoils (A horizons) were reacted with subsoils (B horizons) in batch experiments. Aqueous extracts of topsoil samples were generated for all three ecotones, and these solutions were characterized. For the batch experiments, the topsoil extracts were reacted for 1800 hours with the subsoil samples of the same ecotone, or with the subsoil samples from higher altitude ecotones. Solutions collected periodically during the experiments were measured using ICP-OES and ion chromatography. Dissolved Ca, Mg and K were mainly controlled by the chemical weathering of oligoclase, K-feldspar and biotite. With increasing altitude (and consequently cooler and moister climate) the total concentrations of Ca, Mg and K in the aqueous extracts decreased, the relative ionic contribution by K decreased, while the ionic contribution by Ca increased. Thus, a shift in vegetation due to climate change seems to affect the ionic composition - but not the ionic load - of the soil solution. In the case of a shift from forest - to - sagebrush and tundra - to - forest or sagebrush, the relative contribution by K strongly increases at the expense of Ca. We hypothesize that K should play an important role in future biogeochemical cycles under the assumptions of climate warming and subsequent vegetation shifts to higher altitudes.
Chen, Xiaochu; Bian, Yanli; Liu, Fengmao; Teng, Peipei; Sun, Pan
2017-10-06
Two simple sample pretreatment for the determination of difenoconazole in cowpea was developed including micellar extraction combined with ionic liquid based vortex-assisted liquid-liquid microextraction (ME-IL-VALLME) prior to high performance liquid chromatography (HPLC), and modified quick, easy, cheap, effective, rugged, and safe method (QuEChERS) coupled with HPLC-MS/MS. In ME-IL-VALLME method, the target analyte was extracted by surfactant Tween 20 micellar solution, then the supernatant was diluted with 3mL water to decrease the solubility of micellar solution. Subsequently, the vortex-assisted liquid-liquid microextraction (VALLME) procedure was performed in the diluted extraction solution by using the ionic liquid of 1-hexyl-3-methylimidazolium hexafluorophosphate ([HMIM]PF 6 ) as the extraction solvent and Tween 20 as an emulsifier to enhance the dispersion of the water-immiscible ionic liquid into the aqueous phase. Parameters that affect the extraction have been investigated in both methods Under the optimum conditions, the limits of quantitation were 0.10 and 0.05mgkg -1 , respectively. And good linearity was achieved with the correlation coefficient higher than 0.9941. The relative recoveries ranged from 78.6 to 94.8% and 92.0 to 118.0% with the relative standard deviations (RSD) of 7.9-9.6% and 1.2-3.2%, respectively. Both methods were quick, simple and inexpensive. However, the ME-IL-VALLME method provides higher enrichment factor compared with conventional QuEChERS method. The ME-IL-VALLME method has a strong potential for the determination of difenoconazole in complex vegetable matrices with HPLC. Copyright © 2017 Elsevier B.V. All rights reserved.
Polymeric ionic liquid bucky gels as sorbent coatings for solid-phase microextraction.
Zhang, Cheng; Anderson, Jared L
2014-05-30
Novel cross-linked polymeric ionic liquid (PIL) bucky gels were formed by free-radical polymerization of polymerizable ionic liquids gelled with multi-walled carbon nanotubes (MWCNT) and used as sorbent coatings for solid-phase microextraction (SPME). The combination of PIL with MWCNTs significantly enhanced the π-π interaction between the sorbent coatings and the aromatic analytes. Compared to the neat PIL-based sorbent coating, the PIL bucky gel sorbent coatings demonstrated higher extraction efficiency for the extraction of polycyclic aromatic hydrocarbons (PAHs). A partitioning extraction mechanism was observed for the PIL/MWCNT-based sorbent coatings indicating that the addition of MWCNTs did not seem to affect the extraction mechanism of the sorbent coating. The analyte-to-coating partition coefficients (logKfs) were estimated and the limits of detection (LOD) for selected PIL bucky gel sorbent coating were determined to be in the range of 1-2.5 ng L(-1). Recovery studies were also performed for PAHs in river and tap water to validate the applicability of the developed method. Copyright © 2014 Elsevier B.V. All rights reserved.
Wang, Yulei; Zhang, Jie; Huang, Xiaojia; Yuan, Dongxing
2014-08-20
In this work, a new stir cake sorptive extraction (SCSE) using polymeric ionic liquid monolith as sorbent was prepared. The sorbent was obtained by in situ copolymerization of an ionic liquid, 1-allyl-3-methylimidazolium bis[(trifluoro methyl)sulfonyl]imide (AMII) and divinylbenzene (DB) in the presence of N,N-dimethylformamide. The influence of the content of ionic liquid and the porogen in the polymerization mixture on extraction performance was studied thoroughly. The physicochemical properties of the polymeric ionic liquid were characterized by infrared spectroscopy, elemental analysis, scanning electron microscopy and mercury intrusion porosimetry. The usefulness of SCSE-AMIIDB was demonstrated by the enrichment of trace benzimidazole anthelmintics. Several parameters affecting the extraction efficiency were investigated, and under the optimized conditions, a simple and effective method for the determination of trace benzimidazoles residues in water, milk and honey samples was established by coupling SCSE-AMIIDB with high performance liquid chromatography/diode array detection (SCSE-AMIIDB-HPLC/DAD). Results indicated that the limits of detection (S/N=3) for target compounds were 0.020-0.072 μg L(-1), 0.035-0.10 μg L(-1) and 0.026-0.076 μg L(-1) in water, milk and honey samples, respectively. In addition, an acceptable reproducibility was achieved by evaluating the repeatability and intermediate precision with relative standard deviations (RSD) of less than 9% and 11%, respectively. Finally, the established AMII-SCSE-HPLC/DAD method was successfully applied for the determination of benzimidazoles residues in milk, honey and environmental water samples. Recoveries obtained for the determination of benzimidazole anthelmintics in spiking samples ranged from 70.2% to 117.6%, with RSD below 12% in all cases. Copyright © 2014 Elsevier B.V. All rights reserved.
Lipid extraction from microalgae using a single ionic liquid
Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo
2013-05-28
A one-step process for the lysis of microalgae cell walls and separation of the cellular lipids for use in biofuel production by utilizing a hydrophilic ionic liquid, 1-butyl-3-methylimidazolium. The hydrophilic ionic liquid both lyses the microalgae cell walls and forms two immiscible layers, one of which consists of the lipid contents of the lysed cells. After mixture of the hydrophilic ionic liquid with a suspension of microalgae cells, gravity causes a hydrophobic lipid phase to move to a top phase where it is removed from the mixture and purified. The hydrophilic ionic liquid is recycled to lyse new microalgae suspensions.
Wu, Qi; Sun, Taoxiang; Meng, Xianghai; Chen, Jing; Xu, Chao
2017-03-06
The complexation of U(VI) with octylphenyl-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO, denoted as L) in ionic liquid (IL) C 4 mimNTf 2 was investigated by UV-vis absorption spectrophotometry and isothermal titration calorimetry. Spectro-photometric titration suggests that three successive complexes, UO 2 L j 2+ (j = 1-3), formed both in "dry" (water content < 250 ppm) and "wet" (water content ≈ 12 500 ppm) ionic liquid. However, the thermodynamic parameters are distinctly different in the two ILs. In dry IL, the complexation strength between CMPO and U(VI) is much stronger, with stability constants of the respective complexes more than 1 order of magnitude higher than that in wet IL. Energetically, the complexation of U(VI) with CMPO in dry IL is mainly driven by negative enthalpies. In contrast, the complexation in wet IL is overwhelmingly driven by highly positive entropies as a result of the release of a large amount of water molecules from the solvation sphere of U(VI). Moreover, comparisons between the fitted absorption spectra of complexes in wet IL and that of extractive samples from solvent extraction have identified the speciation involved in the extraction of U(VI) by CMPO in ionic liquid. The results from this study not only offer a thermodynamic insight into the complexation behavior of U(VI) with CMPO in IL but also provide valuable information for understanding the extraction behavior in the corresponding solvent extraction system.
Lithium Fast-Ion Conductors: Polymer Based Materials.
1987-05-30
significant ambient temperature ionic conductivities. Some of the -aterials may be of interest in other contexts. A study of lithium tetra...This work was a search for lithium-containing materials with ambient temperature ionic conductivities of 10- 5 (ohm-cm) " or larger. The work began with...1-8). The discovery of solids, e.g., sodium.8-alumina(l), and polymer-salt complexes, e.g., (PEO) 8 LiCIO 4 (3), with ionic conductivities approaching
Supercritical Fluid Extraction of Metal Chelate: A Review.
Ding, Xin; Liu, Qinli; Hou, Xiongpo; Fang, Tao
2017-03-04
Supercritical fluid extraction (SFE), as a new green extraction technology, has been used in extracting various metal species. The solubilities of chelating agents and corresponding metal chelates are the key factors which influence the efficiency of SFE. Other main properties of them such as stability and selectivity are also reviewed. The extraction mechanisms of mainly used chelating agents are explained by typical examples in this paper. This is the important aspect of SFE of metal ions. Moreover, the extraction efficiencies of metal species also depend on other factors such as temperature, pressure, extraction time and matrix effect. The two main complexation methods namely in-situ and on-line chelating SFE are described in detail. As an efficient chelating agent, tributyl phosphate-nitric acid (TBP-HNO 3 ) complex attracts much attention. The SFE of metal ions, lanthanides and actinides as well as organometallic compounds are also summarized. With the proper selection of ligands, high efficient extraction of metal species can be obtained. As an efficient sample analysis method, supercritical fluid chromatography (SFC) is introduced in this paper. Recently, the extraction method combining ionic liquids (ILs) with supercritical fluid has been becoming a novel technology for treating metal ions. The kinetics related to SFE of metal species is discussed with some specific examples.
NASA Astrophysics Data System (ADS)
Goda, Kazuya; Takatoh, Kohki; Funasako, Yusuke; Inokuchi, Makoto
2018-06-01
We proposed a thermoresponsive light scattering device that utilizes the surface behavior between polyimide and an ionic liquid-water mixture exhibiting lower critical solution temperature (LCST)-type phase separation. The LCST behavior for an ionic liquid device utilizing the polyimide with and without alkyl side chains was investigated. In the here-reported ionic liquid device that utilized the polyimide with alkyl side chains, [nBu4P][CF3COO] droplets were generated by phase separation—they were predominantly formed at the alkyl surface by a surface pinning effect. A stable transmittance in the opaque state could be obtained with this device. In contrast, an ionic liquid device using polyimide without alkyl side chains deteriorated transmittance in the opaque state because there was no surface pinning effect. Additionally, the viewing angle, contrast ratio, and heat cycle testing of this ionic liquid device with polyimide with alkyl side chains were also investigated. The results indicated that no parallax was obtained and that the ionic liquid device has a stable transmittance (verified by heat cycle testing). This unique device is expected to find use in the smart window applications that are activated by temperature changes.
Chong, Bin; Yu, Dongliang; Jin, Rong; Wang, Yang; Li, Dongdong; Song, Ye; Gao, Mingqi; Zhu, Xufei
2015-04-10
Anodic TiO2 nanotubes have been studied extensively for many years. However, the growth kinetics still remains unclear. The systematic study of the current transient under constant anodizing voltage has not been mentioned in the original literature. Here, a derivation and its corresponding theoretical formula are proposed to overcome this challenge. In this paper, the theoretical expressions for the time dependent ionic current and electronic current are derived to explore the anodizing process of Ti. The anodizing current-time curves under different anodizing voltages and different temperatures are experimentally investigated in the anodization of Ti. Furthermore, the quantitative relationship between the thickness of the barrier layer and anodizing time, and the relationships between the ionic/electronic current and temperatures are proposed in this paper. All of the current-transient plots can be fitted consistently by the proposed theoretical expressions. Additionally, it is the first time that the coefficient A of the exponential relationship (ionic current j(ion) = A exp(BE)) has been determined under various temperatures and voltages. And the results indicate that as temperature and voltage increase, ionic current and electronic current both increase. The temperature has a larger effect on electronic current than ionic current. These results can promote the research of kinetics from a qualitative to quantitative level.
NASA Astrophysics Data System (ADS)
Chong, Bin; Yu, Dongliang; Jin, Rong; Wang, Yang; Li, Dongdong; Song, Ye; Gao, Mingqi; Zhu, Xufei
2015-04-01
Anodic TiO2 nanotubes have been studied extensively for many years. However, the growth kinetics still remains unclear. The systematic study of the current transient under constant anodizing voltage has not been mentioned in the original literature. Here, a derivation and its corresponding theoretical formula are proposed to overcome this challenge. In this paper, the theoretical expressions for the time dependent ionic current and electronic current are derived to explore the anodizing process of Ti. The anodizing current-time curves under different anodizing voltages and different temperatures are experimentally investigated in the anodization of Ti. Furthermore, the quantitative relationship between the thickness of the barrier layer and anodizing time, and the relationships between the ionic/electronic current and temperatures are proposed in this paper. All of the current-transient plots can be fitted consistently by the proposed theoretical expressions. Additionally, it is the first time that the coefficient A of the exponential relationship (ionic current jion = A exp(BE)) has been determined under various temperatures and voltages. And the results indicate that as temperature and voltage increase, ionic current and electronic current both increase. The temperature has a larger effect on electronic current than ionic current. These results can promote the research of kinetics from a qualitative to quantitative level.
Wang, Chaoli; Hu, Xiaoling; Guan, Ping; Wu, Danfeng; Qian, Liwei; Li, Ji; Song, Renyuan
2015-01-01
The synthesis and performance of molecularly imprinted membranes (MIMs) as a solid phase extraction packing materials for the separation and purification of thymopentin from crude samples was described. In order to increase structural selectivity and imprinting efficiency, surface-initiated ATRP and ionic liquid (1-vinyl-3-ethyl acetate imidazolium chloride) were used to prepare molecularly imprinting membranes. The results demonstrated that solid phase extraction disks stuffed by MIMs with ionic liquids as functional monomer demonstrated high isolation and purification of performance to the thymopentin. The molecular recognition of thymopentin was analyzed by using molecular modeling software. Copyright © 2014 Elsevier B.V. All rights reserved.
Ionic Liquids as Quasihydrostatic Pressure Media for Diamond Anvil Cell Experiments
NASA Astrophysics Data System (ADS)
Mayorga, Sierra; Moldowan, Kaela; Dan, Ioana; Forster, Paul; Iota, Valentin
2012-02-01
Ionic liquids (ILs) are salts in which the ions are poorly coordinated to the point where the eutectic mixture remains liquid at room temperature. In general, ILs exhibit high chemical and thermal stability, have extended liquid regions in the pressure-temperature domain, and can be easily obtained. Commercial ionic liquids are relatively inexpensive and custom ionic solutions can be easily synthesized by mixing common reactants. These properties make ionic liquids attractive candidates for high-pressure media in Diamond Anvil Cell (DAC) experiments. In this presentation we explore the use of ionic liquids as DAS quasihydrostatic pressure media for pressures up to 50 GPa. As a measure of hydrostaticity we monitor the splitting and peak-widths of the R1 andR 2 fluorescence lines from small ruby chips (Al2O3 :Cr^3+) imbedded in the pressure medium. We present results on a series of commercially available ionic fluids against standard pressure media: methanol-ethanol mixtures, silicone oil, sodium chloride (NaCl) and noble gases (Ar, Ne, He).
Peng, Li-Qing; Yu, Wen-Yan; Xu, Jing-Jing; Cao, Jun
2018-01-15
A simple, green and effective extraction method, namely, pyridinium ionic liquid- (IL) based liquid-solid extraction (LSE), was first designed to extract the main inorganic and organic iodine compounds (I - , monoiodo-tyrosine (MIT) and diiodo-tyrosine (DIT)). The optimal extraction conditions were as follows: ultrasonic intensity 100W, IL ([EPy]Br) concentration 200mM, extraction time 30min, liquid/solid ratio 10mL/g, and pH value 6.5. The morphologies of Laminaria were studied by scanning electron microscopy and transmission electron microscopy. The recovery values of I - , MIT and DIT from Laminaria were in the range of 88% to 94%, and limits of detection were in the range of 59.40 to 283.6ng/g. The proposed method was applied to the extraction and determination of iodine compounds in three Laminaria. The results showed that IL-based LSE could be a promising method for rapid extraction of bioactive iodine from complex food matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hybrid Perovskite Phase Transition and Its Ionic, Electrical and Optical Properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoque, Md Nadim Ferdous; Islam, Nazifah; Zhu, Kai
Hybrid perovskite solar cells (PSCs) under normal operation will reach a temperature above ~ 60 °C, across the tetragonal-cubic structural phase transition of methylammonium lead iodide (MAPbI 3). Whether the structural phase transition could result in dramatic changes of ionic, electrical and optical properties that may further impact the PSC performances should be studied. Herein, we report a structural phase transition temperature of MAPbI 3thin film at ~ 55 °C, but a striking contrast occurred at ~ 45 °C in the ionic and electrical properties of MAPbI 3due to a change of the ion activation energy from 0.7 eV tomore » 0.5 eV. The optical properties exhibited no sharp transition except for the steady increase of the bandgap with temperature. It was also observed that the activation energy for ionic migration steadily increased with increased grain sizes, and reduction of the grain boundary density reduced the ionic migration.« less
Fasih Ramandi, Negin; Shemirani, Farzaneh
2015-01-01
For the first time, a selective ionic liquid ferrofluid has been used in dispersive solid phase extraction (IL-FF-D-SPE) for simultaneous preconcentration and separation of lead and cadmium in milk and biological samples combined with flame atomic absorption spectrometry. To improve the selectivity of the ionic liquid ferrofluid, the surface of TiO2 nanoparticles with a magnetic core as sorbent was modified by loading 1-(2-pyridylazo)-2-naphtol. Due to the rapid injection of an appropriate amount of ionic liquid ferrofluid into the aqueous sample by a syringe, extraction can be achieved within a few seconds. In addition, based on the attraction of the ionic liquid ferrofluid to a magnet, no centrifugation step is needed for phase separation. The experimental parameters of IL-FF-D-SPE were optimized using a Box-Behnken design (BBD) after a Plackett-Burman screening design. Under the optimum conditions, the relative standard deviations of 2.2% and 2.4% were obtained for lead and cadmium, respectively (n=7). The limit of detections were 1.21 µg L(-1) for Pb(II) and 0.21 µg L(-1) for Cd(II). The preconcentration factors were 250 for lead and 200 for cadmium and the maximum adsorption capacities of the sorbent were 11.18 and 9.34 mg g(-1) for lead and cadmium, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.
Ionic liquid compatibility in polyethylene oxide/siloxane ion gel membranes
Kusuma, Victor A.; Macala, Megan K.; Liu, Jian; ...
2018-10-02
Ion gel films were prepared by incorporating eight commercially available ionic liquids in two different cross-linked polymer matrices to evaluate their phase miscibility, gas permeability and ionic conductivity for potential applications as gas separation membranes and solid electrolyte materials. The ionic liquids cations were 1-ethyl-3-methylimidazolium, 1-ethyl-3-methylpyridinium, 1-butyl-1-methylpyrrolidinium, tributylmethylphosphonium, and butyltrimethylammonium with a common anion (bis(trifluoromethylsulfonyl)imide). In addition, ionic liquids with 1-ethyl-3-methylimidazolium cation with acetate, dicyanamide and tetrafluoroborate counterions were evaluated. The two polymers were cross-linked poly(ethylene oxide) and cross-linked poly(ethylene oxide)/siloxane copolymer. Differential scanning calorimetry, X-ray diffractometry and visual observations were performed to evaluate the ion gels’ miscibility, thermal stabilitymore » and homogeneity. Ionic liquids with the least basic anion (bis(trifluoromethylsulfonyl)imide) and aromatic cations containing acidic proton (e.g. imidazolium and pyridinium) gave the most stable and miscible ion gels. Phase stability was shown to be a function of both ionic liquid content and temperature, with phase separation observed at elevated temperatures. In conclusion, gas permeability testing with carbon dioxide and nitrogen and ionic conductivity measurements confirmed that these ionic liquids increased the gas permeability and ionic conductivity of the polymers.« less
Ionic liquid compatibility in polyethylene oxide/siloxane ion gel membranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kusuma, Victor A.; Macala, Megan K.; Liu, Jian
Ion gel films were prepared by incorporating eight commercially available ionic liquids in two different cross-linked polymer matrices to evaluate their phase miscibility, gas permeability and ionic conductivity for potential applications as gas separation membranes and solid electrolyte materials. The ionic liquids cations were 1-ethyl-3-methylimidazolium, 1-ethyl-3-methylpyridinium, 1-butyl-1-methylpyrrolidinium, tributylmethylphosphonium, and butyltrimethylammonium with a common anion (bis(trifluoromethylsulfonyl)imide). In addition, ionic liquids with 1-ethyl-3-methylimidazolium cation with acetate, dicyanamide and tetrafluoroborate counterions were evaluated. The two polymers were cross-linked poly(ethylene oxide) and cross-linked poly(ethylene oxide)/siloxane copolymer. Differential scanning calorimetry, X-ray diffractometry and visual observations were performed to evaluate the ion gels’ miscibility, thermal stabilitymore » and homogeneity. Ionic liquids with the least basic anion (bis(trifluoromethylsulfonyl)imide) and aromatic cations containing acidic proton (e.g. imidazolium and pyridinium) gave the most stable and miscible ion gels. Phase stability was shown to be a function of both ionic liquid content and temperature, with phase separation observed at elevated temperatures. In conclusion, gas permeability testing with carbon dioxide and nitrogen and ionic conductivity measurements confirmed that these ionic liquids increased the gas permeability and ionic conductivity of the polymers.« less
Torres Padrón, M E; Sosa Ferrera, Z; Santana Rodríguez, J J
2006-09-01
A solid-phase microextraction (SPME) procedure using two commercial fibers coupled with high-performance liquid chromatography (HPLC) is presented for the extraction and determination of organochlorine pesticides in water samples. We have evaluated the extraction efficiency of this kind of compound using two different fibers: 60-mum polydimethylsiloxane-divinylbenzene (PDMS-DVB) and Carbowax/TPR-100 (CW/TPR). Parameters involved in the extraction and desorption procedures (e.g. extraction time, ionic strength, extraction temperature, desorption and soaking time) were studied and optimized to achieve the maximum efficiency. Results indicate that both PDMS-DVB and CW/TPR fibers are suitable for the extraction of this type of compound, and a simple calibration curve method based on simple aqueous standards can be used. All the correlation coefficients were better than 0.9950, and the RSDs ranged from 7% to 13% for 60-mum PDMS-DVB fiber and from 3% to 10% for CW/TPR fiber. Optimized procedures were applied to the determination of a mixture of six organochlorine pesticides in environmental liquid samples (sea, sewage and ground waters), employing HPLC with UV-diode array detector.
Dharaskar, Swapnil A.; Varma, Mahesh N.; Shende, Diwakar Z.; Yoo, Chang Kyoo; Wasewar, Kailas L.
2013-01-01
The possible application of imidazolium ionic liquids as energy-efficient green material for extractive deep desulfurization of liquid fuel has been investigated. 1-Butyl-3-methylimidazolium chloride [BMIM]Cl was synthesized by nucleophilic substitution reaction of n-methylimidazolium and 1-chlorobutane. Molecular structures of the ILs were confirmed by FTIR, 1H-NMR, and 13C-NMR. The thermal properties, conductivity, solubility, water content and viscosity analysis of [BMIM]Cl were carried out. The effects of reaction time, reaction temperature, sulfur compounds, and recycling of IL without regeneration on dibenzothiophene removal of liquid fuel were presented. In the extractive desulfurization process, the removal of dibenzothiophene in n-dodecane using [BMIM]Cl was 81% with mass ratio of 1 : 1, in 30 min at 30°C under the mild reaction conditions. Also, desulfurization of real fuels with IL and multistage extraction were studied. The results of this work might offer significant insights in the perceptive use of imidazoled ILs as energy-efficient green material for extractive deep desulfurization of liquid fuels as it can be reused without regeneration with considerable extraction efficiency. PMID:24307868
Importance of liquid fragility for energy applications of ionic liquids
NASA Astrophysics Data System (ADS)
Sippel, Pit; Lunkenheimer, Peter; Krohns, Stephan; Thoms, Erik; Loidl, Alois
Ionic liquids (ILs) are salts that are liquid at ambient temperatures. The strong electrostatic forces between their molecular ions result, e.g., in low volatility and high stability for many members of this huge material class. For this reason they bear a high potential for new advancements in applications, e.g., as electrolytes in energy-storage devices such as supercapacitors or batteries, where the ionic conductivity is an essential figure of merit. Most ILs show dynamic properties typical for glassy matter, which dominate many of their physical properties. An important method to study these dynamical glass-properties is dielectric spectroscopy that can access relaxation times of dynamic processes and the conductivity in a broad frequency and temperature range. In the present contribution, we present results on a large variety of ionic liquids showing that the conductivity of ILs depends in a systematic way not only on their glass temperature but also on the so-called fragility, characterizing the non-canonical super-Arrhenius temperature dependence of their ionic mobility. This work was supported by the Deutsche Forschungsgemeinschaft via Research Unit FOR1394 and by the BMBF via ENREKON 03EK3015.
Bio-oil extraction of Jatropha curcas with ionic liquid co-solvent: Fate of biomass protein.
Severa, Godwin; Edwards, Melisa; Cooney, Michael J
2017-02-01
The fate of oil-seed biomass protein has been tracked through all steps of a multi-phase extraction process using an ionic liquid based co-solvent system previously demonstrated to extract bio-oil and phorbol esters and to recover fermentable sugars from Jatropha oil seed. These analyses, however, did not address the fate of biomass protein. This work demonstrated that the majority of protein (∼86%) tracked with the biomass with the balance lost to co-solvent (∼12%) and methanol (∼2%) washes. A significant portion of the ionic liquid remained with the treated biomass and required aggressive methanol washes to recover. A system analysis showed a net-positive energy balance and thus the potential of this system to produce both bio-oil and protein-rich toxin-free biomass. While these results further support Jatropha as an oil seed crop, the additional costs of solvent recovery will need to be addressed if commercialization is to be realized. Copyright © 2016 Elsevier Ltd. All rights reserved.
Otálora, María Carolina; Carriazo, José Gregorio; Iturriaga, Laura; Osorio, Coralia; Nazareno, Mónica Azucena
2016-07-01
Betalain encapsulation was performed by ionic gelation as a stabilization strategy for these natural pigments. Betalains were extracted from purple cactus fruits and encapsulated in calcium-alginate and in combination of calcium alginate and bovine serum albumin. Beads were characterised by scanning electron microscopy and thermal analysis using differential scanning calorimetry and thermogravimetry. Moisture sorption isotherms were determined. Bead morphology was affected by matrix composition. Pigments storage stability was evaluated at different equilibrium relative humidity and temperatures. Pigment composition of beads was determined by HPLC-MS-MS and degradation products were also analysed after storage; betalamic acid being the major one. Both types of matrices protected the encapsulated pigments, being their storage stability better at low relative humidity than that of the non-encapsulated control material. Antiradical activities of beads were proportional to remaining betalain contents. At high relative humidity, there was no protection and low storage stability was observed in the samples. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hou, Xue-Dan; Li, Ning; Zong, Min-Hua
2013-05-01
Pretreatment of rice straw by using renewable cholinium lysine ionic liquid ([Ch][Lys] IL)-water mixtures and subsequent enzymatic hydrolysis of the residues were conducted in this work. There is a clear correlation between the delignification capacity of the pretreatment solvent and its basicity. After pretreatment, surface area and pore volume of rice straw increased significantly, which substantially improved polysaccharides accessibility to enzymes and thus enhanced polysaccharides digestion. By carefully controlling the pretreatment severity (IL content, temperature and duration), loss of readily extractable xylan could be minimized. The sugar yields of 81% for glucose and 48% for xylose were achieved in the enzymatic hydrolysis of rice straw after pretreatment with 20% [Ch][Lys]-water mixture at 90 °C for 1 h. This pretreatment process is highly promising for industrial application because of high sugar yields, low energy input, short pretreatment time, and being environmentally benign and highly tolerant to moisture. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ohno, Hiroyuki; Fukumoto, Kenta
2007-11-01
The preparation of ionic liquids derived from amino acids, and their properties, are outlined. Since amino acids have both a carboxylic acid residue and an amino group in a single molecule, they can be used as either anions or cations. These groups are also useful in their ability to introduce functional group(s). Twenty different natural amino acids were used as anions, to couple with the 1-ethyl-3-methylimidazolium cation. The salts obtained were all liquid at room temperature. The properties of the resulting ionic liquids (AAILs) depend on the side groups of the amino acids involved. These AAILs, composed of an amino acid with some functional groups such as a hydrogen bonding group, a charged group, or an aromatic ring, had an increased glass transition (or melting) temperature and/or higher viscosity as a result of additional interactions among the ions. Viscosity is reduced and the decomposition temperature of imidazolium-type salts is improved by using the tetrabutylphosphonium cation. The chirality of AAILs was maintained even upon heating to 150 degrees C after acetylation of the free amino group. The amino group was also modified to introduce a strong acid group so as to form hydrophobic and chiral ionic liquids. Unique phase behavior of the resulting hydrophobic ionic liquids and water mixture is found; the mixture is clearly phase separated at room temperature, but the solubility of water in this IL increases upon cooling, to give a homogeneous solution. This phase change is reversible, and separation occurs again by raising the temperature a few degrees. It is extraordinary for an IL/water mixture to display such behavior with a lower critical solution temperature. Some likely applications are proposed for these amino acid derived ionic liquids.
Weiss, Volker C
2015-10-14
In the correlation and prediction of thermophysical data of fluids based on a corresponding-states approach, the critical temperature Tc plays a central role. For some fluids, in particular ionic ones, however, the critical region is difficult or even impossible to access experimentally. For molten salts, Tc is on the order of 3000 K, which makes accurate measurements a challenging task. Room temperature ionic liquids (RTILs) decompose thermally between 400 K and 600 K due to their organic constituents; this range of temperatures is hundreds of degrees below recent estimates of their Tc. In both cases, reliable methods to deduce Tc based on extrapolations of experimental data recorded at much lower temperatures near the triple or melting points are needed and useful because the critical point influences the fluid's behavior in the entire liquid region. Here, we propose to employ the scaling approach leading to universal fluid behavior [Román et al., J. Chem. Phys. 123, 124512 (2005)] to derive a very simple expression that allows one to estimate Tc from the density of the liquid, the surface tension, or the enthalpy of vaporization measured in a very narrow range of low temperatures. We demonstrate the validity of the approach for simple and polar neutral fluids, for which Tc is known, and then use the methodology to obtain estimates of Tc for ionic fluids. When comparing these estimates to those reported in the literature, good agreement is found for RTILs, whereas the ones for the molten salts NaCl and KCl are lower than previous estimates by 10%. The coexistence curve for ionic fluids is found to be more adequately described by an effective exponent of βeff = 0.5 than by βeff = 0.33.
New Pyrazolium Salts as a Support for Ionic Liquid Crystals and Ionic Conductors.
Pastor, María Jesús; Sánchez, Ignacio; Campo, José A; Schmidt, Rainer; Cano, Mercedes
2018-04-03
Ionic liquid crystals (ILCs) are a class of materials that combine the properties of liquid crystals (LCs) and ionic liquids (ILs). This type of materials is directed towards properties such as conductivity in ordered systems at different temperatures. In this work, we synthesize five new families of ILCs containing symmetrical and unsymmetrical substituted pyrazolium cations, with different alkyl long-chains, and anions such as Cl - , BF₄ - , ReO₄ - , p -CH₃-₆H₄SO₃ - (PTS) and CF₃SO₃ - (OTf). We study their thermal behavior by polarized light optical microscopy (POM) and differential scanning calorimetry (DSC). All of them, except those with OTf as counteranion, show thermotropic mesomorphism. The observations by POM reveal textures of lamellar mesophases. Those agree with the arrangement observed in the X-ray crystal structure of [H₂pz R(4),R(4) ][ReO₄]. The nature of the mesophases is also confirmed by variable temperature powder X-ray diffraction. On the other hand, the study of the dielectric properties at variable temperature in mesomorphic (Cl - and BF₄ - ) and non-mesomorphic (OTf) salts indicates that the supramolecular arrangement of the mesophase favors a greater ionic mobility and therefore ionic conductivity.
Han, Yehong; Yang, Chunliu; Zhou, Yang; Han, Dandan; Yan, Hongyuan
2017-03-01
A new method involving ionic liquid-hybrid molecularly imprinted material-filter solid-phase extraction coupled to high-performance liquid chromatography (IL-HIM-FSPE-HPLC) was developed for the simultaneous isolation and determination of 6-benzyladenine (6-BA) and 4-chlorophenoxyacetic acid (4-CPA) in bean sprouts. Sample preconcentration was performed using a modified filter, with the new IL-HIM as the adsorbent, which shows double adsorption. The first adsorption involves special recognition of molecular imprinting, and the second involves ion exchange and electrostatic attraction caused by the ionic liquid. This method combines the advantages of ionic liquids, hybrid materials, and molecularly imprinted polymers and was successfully applied to determine 6-BA and 4-CPA in bean sprouts. The adsorption of 6-BA to IL-HIM is based on selective imprinted recognition, whereas the adsorption of 4-CPA is mainly dependent on ion-exchange interactions.
Fan, Chen; Li, Nai; Cao, Xueli
2015-05-01
In-situ ionic liquid-dispersive liquid-liquid microextraction (IL-DLLME) method was developed as a pretreatment method for the detection of six chlorophenols (CPs) in honey samples. The hydrophobic ionic liquid [C4MIM][NTf2], formed in-situ by the hydrophilic ionic liquid [C4MIM][BF4] and the ion exchange reagent LiNTf2 was used as the microextractant solvent of CPs from honey sample. Then the enriched analytes were back-extracted into 40 μL of 0.14 M NaOH solution and finally subjected to analysis by high-performance liquid chromatography. The method showed low limit of detection of CPs, 0.8-3.2 μg/L and high enrichment factor, 34-65 with the recoveries range from 91.60% to 114.33%. The method is simple, rapid, environmentally friendly and with high extraction efficiency. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Ruan, Chunqiang; Zhao, Xiang; Liu, Chenglan
2015-09-01
In this study, a simple and low-organic-solvent-consuming method combining an acetonitrile-partitioning extraction procedure followed by "quick, easy, cheap, effective, rugged and safe" cleanup with ionic-liquid-based dispersive liquid-liquid microextraction and high-performance liquid chromatography with diode array detection was developed for the determination of diflubenzuron and chlorbenzuron in grapes and pears. Ionic-liquid-based dispersive liquid-liquid microextraction was performed using the ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate as the extractive solvent and acetonitrile extract as the dispersive solvent. The main factors influencing the efficiency of the dispersive liquid-liquid microextraction were evaluated, including the extractive solvent type and volume and the dispersive solvent volume. The validation parameters indicated the suitability of the method for routine analyses of benzoylurea insecticides in a large number of samples. The relative recoveries at three spiked levels ranged between 98.6 and 109.3% with relative standard deviations of less than 5.2%. The limit of detection was 0.005 mg/kg for the two insecticides. The proposed method was successfully used for the rapid determination of diflubenzuron and chlorbenzuron residues in real fruit samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Excimer Formation Dynamics of Dipyrenyldecane in Structurally Different Ionic Liquids.
Yadav, Anita; Pandey, Siddharth
2017-12-07
Ionic liquids, being composed of ions alone, may offer alternative pathways for molecular aggregation. These pathways could be controlled by the chemical structure of the cation and the anion of the ionic liquids. Intramolecular excimer formation dynamics of a bifluorophoric probe, 1,3-bis(1-pyrenyl)decane [1Py(10)1Py], where the fluorophoric pyrene moieties are separated by a long decyl chain, is investigated in seven different ionic liquids in 10-90 °C temperature range. The long alkyl separator allows for ample interaction with the solubilizing milieu prior to the formation of the excimer. The ionic liquids are composed of two sets, one having four ionic liquids of 1-butyl-3-methylimidazolium cation ([bmim + ]) with different anions and the other having four ionic liquids of bis(trifluoromethylsulfonyl)imide anion ([Tf 2 N - ]) with different cations. The excimer-to-monomer emission intensity ratio (I E /I M ) is found to increase with increasing temperature in sigmoidal fashion. Chemical structure of the ionic liquid controls the excimer formation efficiency, as I E /I M values within ionic liquids with the same viscosities are found to be significantly different. The excited-state intensity decay kinetics of 1Py(10)1Py in ionic liquids do not adhere to a simplistic Birk's scheme, where only one excimer conformer forms after excitation. The apparent rate constants of excimer formation (k a ) in highly viscous ionic liquids are an order of magnitude lower than those reported in organic solvents. In general, the higher the viscosity of the ionic liquid, the more sensitive is the k a to the temperature with higher activation energy, E a . The trend in E a is found to be similar to that for activation energy of the viscous flow (E a,η ). Stokes-Einstein relationship is not followed in [bmim + ] ionic liquids; however, with the exception of [choline][Tf 2 N], it is found to be followed in [Tf 2 N - ] ionic liquids suggesting the cyclization dynamics of 1Py(10)1Py to be diffusion-controlled and to depend on the viscosity of the ionic liquid irrespective of the identity of the cation. The dependence of ionic liquid structure on cyclization dynamics to form intramolecular excimer is amply highlighted.
Low severity coal conversion by ionic hydrogenation: Quarterly report, October--December 1988
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maioriello, J.; Larsen, J.W.
1988-12-31
A newly developed reaction system consisting of H/sub 2/O:BF/sub 3//H/sub 2//(CH/sub 3/CN)/sub 2/PtCl/sub 2/ was applied to the ionic hydrogenation of aromatic and functionalized aromatic compounds. Hydrogenations were carried out in this aqueous system at 50/degree/C and 500 psi H/sub 2/. Aryl ethers were hydrogenated and cleaved, yielding deoxygenated, fully saturated compounds as the major products. Reactions of nitrogen-containing aromatic compounds resulted in partial saturation of aromatic rings without cleavage of the C-N bonds. Aromatic and PNA compounds can be fully or partially hydrogenated depending on their structures. Aromatic thiols, sulfides and thiophenes poison the catalyst; the oxidized sulfur formsmore » (sulfonic acids, sulfones) were not reduced and did not poison the catalyst. It was found that certain aromatic compounds were easier to hydrogenate than others. Ionic hydrogenation of Wyodak cola using a H/sub 2/O:BF/sub 3//H/sub 2//(MeCN)/sub 2/PtCl/sub 2/ resulted in no significant increase in THF extractability (5.8--9.6% THF-extractables, wt) over that of the parent coal (4.6--6.7% THF-extractables, wt). Ionic hydrogenation of a demineralized Wyodak coal (1 M aq. citric acid, reflux 1 day) resulted in a slight increase in THF extractability (10.4%) over the untreated parent coal (5.6--5.8%). 4 refs., 1 fig., 1 tab.« less
Room-Temperature Ionic Liquids for Electrochemical Capacitors
NASA Technical Reports Server (NTRS)
Fireman, Heather; Yowell, Leonard; Moloney, Padraig G.; Arepalli, Sivaram; Nikolaev, P.; Huffman, C.; Ready, Jud; Higgins, C.D.; Turano, S. P.; Kohl, P.A.;
2009-01-01
A document discusses room-temperature ionic liquids (RTILs) used as electrolytes in carbon-nanotube-based, electrochemical, double-layer capacitors. Unlike the previous electrolyte (EtNB4 in acetonitrile), the RTIL used here does not produce cyanide upon thermal decomposition and does not have a moisture sensitivity.
Han, Juan; Wang, Yun; Liu, Yan; Li, Yanfang; Lu, Yang; Yan, Yongsheng; Ni, Liang
2013-02-01
Ionic liquid-salt aqueous two-phase extraction coupled with high-performance liquid chromatography with ultraviolet detection was developed for the determination of sulfonamides in water and food samples. In the procedure, the analytes were extracted from the aqueous samples into the ionic liquid top phase in one step. Three sulfonamides, sulfamerazine, sulfamethoxazole, and sulfamethizole were selected here as model compounds for developing and evaluating the method. The effects of various experimental parameters in extraction step were studied using two optimization methods, one variable at a time and Box-Behnken design. The results showed that the amount of sulfonamides did not have effect on the extraction efficiency. Therefore, a three-level Box-Behnken experimental design with three factors, which combined the response surface modeling, was used to optimize sulfonamides extraction. Under the most favorable extraction parameters, the detection limits (S/N = 3) and quantification limits (S/N = 10) of the proposed method for the target compounds were achieved within the range of 0.15-0.3 ng/mL and 0.5-1.0 ng/mL from spiked samples, respectively, which are lower than or comparable with other reported approaches applied to the determination of the same compounds. Finally, the proposed method was successfully applied to the determination of sulfonamide compounds in different water and food samples and satisfactory recoveries of spiked target compounds in real samples were obtained.
Benedé, Juan L; Anderson, Jared L; Chisvert, Alberto
2018-01-01
In this work, a novel hybrid approach called stir bar dispersive liquid microextraction (SBDLME) that combines the advantages of stir bar sorptive extraction (SBSE) and dispersive liquid-liquid microextraction (DLLME) has been employed for the accurate and sensitive determination of ten polycyclic aromatic hydrocarbons (PAHs) in natural water samples. The extraction is carried out using a neodymium stir bar magnetically coated with a magnetic ionic liquid (MIL) as extraction device, in such a way that the MIL is dispersed into the solution at high stirring rates. Once the stirring is ceased, the MIL is magnetically retrieved onto the stir bar, and subsequently subjected to thermal desorption (TD) coupled to a gas chromatography-mass spectrometry (GC-MS) system. The main parameters involved in TD, as well as in the extraction step affecting the extraction efficiency (i.e., MIL amount, extraction time and ionic strength) were evaluated. Under the optimized conditions, the method was successfully validated showing good linearity, limits of detection and quantification in the low ng L -1 level, good intra- and inter-day repeatability (RSD < 13%) and good enrichment factors (18 - 717). This sensitive analytical method was applied to the determination of trace amounts of PAHs in three natural water samples (river, tap and rainwater) with satisfactory relative recovery values (84-115%), highlighting that the matrices under consideration do not affect the extraction process. Copyright © 2017 Elsevier B.V. All rights reserved.
Aromatics extraction from pyrolytic sugars using ionic liquid to enhance sugar fermentability.
Li, Xiaohua; Luque-Moreno, Luis C; Oudenhoven, Stijn R G; Rehmann, Lars; Kersten, Sascha R A; Schuur, Boelo
2016-09-01
Fermentative bioethanol production from pyrolytic sugars was improved via aromatics removal by liquid-liquid extraction. As solvents, the ionic liquid (IL) trihexyltetradecylphosphonium dicyanamide (P666,14[N(CN)2]) and ethyl acetate (EA) were compared. Two pyrolytic sugar solutions were created from acid-leached and untreated pinewood, with levoglucosan contents (most abundant sugar) of 29.0% and 8.3% (w/w), respectively. In a single stage extraction, 70% of the aromatics were effectively removed by P666,14[N(CN)2] and 50% by EA, while no levoglucosan was extracted. The IL was regenerated by vacuum evaporation (100mbar) at 220°C, followed by extraction of aromatics from fresh pyrolytic sugar solutions. Regenerated IL extracted aromatics with similar extraction efficiency as the fresh IL, and the purified sugar fraction from pretreated pinewood was hydrolyzed to glucose and fermented to ethanol, yielding 0.46g ethanol/(g glucose), close to the theoretical maximum yield. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Wu, Hongwei; Chen, Meilan; Fan, Yunchang; Elsebaei, Fawzi; Zhu, Yan
2012-01-15
A novel ionic liquid-based pressurized liquid extraction (IL-PLE) procedure coupled with high performance liquid chromatography (HPLC) tandem chemiluminescence (CL) detection capable of quantifying trace amounts of rutin and quercetin in four Chinese medicine plants including Flos sophorae Immaturus, Crateagus pinnatifida Bunge, Hypericum japonicum Thunb and Folium Mori was described in this paper. To avoid environmental pollution and toxicity to the operators, ionic liquids (ILs), 1-alkyl-3-methylimidazolium chloride ([C(n)mim][Cl]) aqueous solutions were used in the PLE procedure as extractants replacing traditional organic solvents. In addition, chemiluminescence detection was utilized for its minimal interference from endogenous components of complex matrix. Parameters affecting extraction and analysis were carefully optimized. Compared with the conventional ultrasonic-assisted extraction (UAE) and heat-reflux extraction (HRE), the optimized method achieved the highest extraction efficiency in the shortest extraction time with the least solvent consumption. The applicability of the proposed method to real sample was confirmed. Under the optimized conditions, good reproducibility of extraction performance was obtained and good linearity was observed with correlation coefficients (r) between 0.9997 and 0.9999. The detection limits of rutin and quercetin (LOD, S/N=3) were 1.1×10(-2)mg/L and 3.8×10(-3)mg/L, respectively. The average recoveries of rutin and quercetin for real samples were 93.7-105% with relative standard deviation (RSD) lower than 5.7%. To the best of our knowledge, this paper is the first contribution to utilize a combination of IL-PLE with chemiluminescence detection. And the experimental results indicated that the proposed method shows a promising prospect in extraction and determination of rutin and quercetin in medicinal plants. Copyright © 2011 Elsevier B.V. All rights reserved.
Werner, Justyna
2016-04-01
Task-specific ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction was used for the preconcentration of cadmium(II), cobalt(II), and lead(II) ions in tea samples, which were subsequently analyzed by liquid chromatography with UV detection. The proposed method of preconcentration is free of volatile organic compounds, which are often used as extractants and dispersing solvents in classic techniques of microextraction. A task-specific ionic liquid trioctylmethylammonium thiosalicylate was used as an extractant and a chelating agent. Ultrasound was used to disperse the ionic liquid. After microextraction, the phases were separated by centrifugation, and the ionic liquid phase was solubilized in methanol and directly injected into the liquid chromatograph. Selected microextraction parameters, such as the volume of ionic liquid, the pH of the sample, the duration of ultrasound treatment, the speed and time of centrifugation, and the effect of ionic strength, were optimized. Under optimal conditions an enrichment factor of 200 was obtained for each analyte. The limits of detection were 0.002 mg/kg for Cd(II), 0.009 mg/kg for Co(II), and 0.013 mg/kg for Pb(II). The accuracy of the proposed method was evaluated by an analysis of the Certified Reference Materials (INCT-TL-1, INCT-MPH-2) with the recovery values in the range of 90-104%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Porous ionic liquids: synthesis and application.
Zhang, Shiguo; Dokko, Kaoru; Watanabe, Masayoshi
2015-07-15
Solidification of fluidic ionic liquids into porous materials yields porous ionic networks that combine the unique characteristics of ionic liquids with the common features of polymers and porous materials. This minireview reports the most recent advances in the design of porous ionic liquids. A summary of the synthesis of ordered and disordered porous ionic liquid-based nanoparticles or membranes with or without templates is provided, together with the new concept of room temperature porous ionic liquids. As a versatile platform for functional materials, porous ionic liquids have shown widespread applications in catalysis, adsorption, sensing, actuation, etc. This new research direction towards ionic liquids chemistry is still in its early stages but has great potential.
Water dynamics in rigid ionomer networks.
Osti, N C; Etampawala, T N; Shrestha, U M; Aryal, D; Tyagi, M; Diallo, S O; Mamontov, E; Cornelius, C J; Perahia, D
2016-12-14
The dynamics of water within ionic polymer networks formed by sulfonated poly(phenylene) (SPP), as revealed by quasi-elastic neutron scattering (QENS), is presented. These polymers are distinguished from other ionic macromolecules by their rigidity and therefore in their network structure. QENS measurements as a function of temperature as the fraction of ionic groups and humidity were varied have shown that the polymer molecules are immobile while absorbed water molecules remain dynamic. The water molecules occupy multiple sites, either bound or loosely constrained, and bounce between the two. With increasing temperature and hydration levels, the system becomes more dynamic. Water molecules remain mobile even at subzero temperatures, illustrating the applicability of the SPP membrane for selective transport over a broad temperature range.
Extraction of Structural Extracellular Polymeric Substances from Aerobic Granular Sludge
Felz, Simon; Al-Zuhairy, Salah; Aarstad, Olav Andreas; van Loosdrecht, Mark C.M.; Lin, Yue Mei
2016-01-01
To evaluate and develop methodologies for the extraction of gel-forming extracellular polymeric substances (EPS), EPS from aerobic granular sludge (AGS) was extracted using six different methods (centrifugation, sonication, ethylenediaminetetraacetic acid (EDTA), formamide with sodium hydroxide (NaOH), formaldehyde with NaOH and sodium carbonate (Na2CO3) with heat and constant mixing). AGS was collected from a pilot wastewater treatment reactor. The ionic gel-forming property of the extracted EPS of the six different extraction methods was tested with calcium ions (Ca2+). From the six extraction methods used, only the Na2CO3 extraction could solubilize the hydrogel matrix of AGS. The alginate-like extracellular polymers (ALE) recovered with this method formed ionic gel beads with Ca2+. The Ca2+-ALE beads were stable in EDTA, formamide with NaOH and formaldehyde with NaOH, indicating that ALE are one part of the structural polymers in EPS. It is recommended to use an extraction method that combines physical and chemical treatment to solubilize AGS and extract structural EPS. PMID:27768085
Long-range electrostatic screening in ionic liquids
Gebbie, Matthew A.; Dobbs, Howard A.; Valtiner, Markus; Israelachvili, Jacob N.
2015-01-01
Electrolyte solutions with high concentrations of ions are prevalent in biological systems and energy storage technologies. Nevertheless, the high interaction free energy and long-range nature of electrostatic interactions makes the development of a general conceptual picture of concentrated electrolytes a significant challenge. In this work, we study ionic liquids, single-component liquids composed solely of ions, in an attempt to provide a novel perspective on electrostatic screening in very high concentration (nonideal) electrolytes. We use temperature-dependent surface force measurements to demonstrate that the long-range, exponentially decaying diffuse double-layer forces observed across ionic liquids exhibit a pronounced temperature dependence: Increasing the temperature decreases the measured exponential (Debye) decay length, implying an increase in the thermally driven effective free-ion concentration in the bulk ionic liquids. We use our quantitative results to propose a general model of long-range electrostatic screening in ionic liquids, where thermally activated charge fluctuations, either free ions or correlated domains (quasiparticles), take on the role of ions in traditional dilute electrolyte solutions. This picture represents a crucial step toward resolving several inconsistencies surrounding electrostatic screening and charge transport in ionic liquids that have impeded progress within the interdisciplinary ionic liquids community. More broadly, our work provides a previously unidentified way of envisioning highly concentrated electrolytes, with implications for diverse areas of inquiry, ranging from designing electrochemical devices to rationalizing electrostatic interactions in biological systems. PMID:26040001
Saraji, Mohammad; Ghambari, Hoda
2018-06-21
In this work we seek clues to select the appropriate dispersive liquid-liquid microextraction mode for extracting three categories of compounds. For this purpose, three common dispersive liquid-liquid microextraction modes were compared under optimized conditions. Traditional dispersive liquid-liquid microextraction, in situ ionic liquid dispersive liquid-liquid microextraction and conventional ionic liquid dispersive liquid-liquid microextraction using chloroform, 1-butyl-3-methylimidazolium tetrafluoroborate, and 1-hexyl-3-methylimidazolium hexafluorophosphate as the extraction solvent, respectively, were considered in this work. Phenolic, neutral aromatic and amino compounds (each category included six members) were studied as analytes. The analytes in the extracts were determined by high-performance liquid chromatography with UV detection. For the analytes with polar functionalities, the in situ ionic liquid dispersive liquid-liquid microextraction mode mostly led to better results. In contrast, for neutral hydrocarbons without polar functionalities, traditional dispersive liquid-liquid microextraction using chloroform produced better results. In this case, where dispersion forces were the dominant interactions in the extraction, the refractive index of solvent and analyte predicted the extraction performance better than the octanol-water partition coefficient. It was also revealed that none of the methods were successful in extracting very hydrophilic analytes (compounds with the log octanol-water partition coefficient < 2). The results of this study could be helpful in selecting a dispersive liquid-liquid microextraction mode for the extraction of various groups of compounds. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Jiang, Qiong; Liu, Qin; Chen, Qiliang; Zhao, Wenjie; Xiang, Guoqiang; He, Lijun; Jiang, Xiuming; Zhang, Shusheng
2016-08-01
Magnetic particles modified with a dicationic polymeric ionic liquid are described as a new adsorbent in magnetic solid-phase extraction. They were obtained through the copolymerization of a 1,8-di(3-vinylimidazolium)octane-based ionic liquid with vinyl-modified SiO2 @Fe3 O4 , and were characterized by FTIR spectroscopy, X-ray diffraction, and vibrating sample magnetometry. The modified magnetic particles are effective in the extraction of organophosphate pesticides and polycyclic aromatic hydrocarbons. Also, they can provide different extraction performance for the selected analytes including fenitrothion, parathion, fenthion, phoxim, phenanthrene, and fluoranthene, where the extraction efficiency is found to be in agreement with the hydrophobicity of analytes. Various factors influencing the extraction efficiency, such as, the amount of adsorbent, extraction, and desorption time, and type and volume of the desorption solvent, were optimized. Under the optimized conditions, a good linearity ranging from 1-100 μg/L is obtained for all analytes, except for parathion (2-200 μg/L), where the correlation coefficients varied from 0.9960 to 0.9998. The limits of detection are 0.2-0.8 μg/L, and intraday and interday relative standard deviations are 1.7-7.4% (n = 5) and 3.8-8.0% (n = 3), respectively. The magnetic solid-phase extraction combined with high-performance liquid chromatography can be applied for the detection of trace targets in real water samples with satisfactory relative recoveries and relative standard deviations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Feng, Juanjuan; Wang, Xiuqin; Tian, Yu; Luo, Chuannan; Sun, Min
2017-12-01
An in-tube solid-phase microextraction device was developed by packing poly(ionic liquids)-coated stainless-steel wires into a polyether ether ketone tube. An anion-exchange process was performed to enhance the extraction performance. Surface properties of poly(ionic liquids)-coated stainless-steel wires were characterized by scanning electron microscopy and energy dispersive X-ray spectrometry. The extraction device was connected to high-performance liquid chromatography equipment to build an online enrichment and analysis system. Ten polycyclic aromatic hydrocarbons were used as model analytes, and important conditions including extraction time and desorption time were optimized. The enrichment factors from 268 to 2497, linear range of 0.03-20 μg/L, detection limits of 0.010-0.020 μg/L, extraction and preparation repeatability with relative standard deviation less than 1.8 and 19%, respectively were given by the established online analysis method. It has been used to detect polycyclic aromatic hydrocarbons in environmental samples, with the relative recovery (5, 10 μg/L) in the range of 85.1-118.9%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Benzene and cyclohexane separation using 1-butyl-3-methylimidazolium thiocyanate
NASA Astrophysics Data System (ADS)
Gonfa, Girma; Ismail, Marhaina; Bustam, Mohamad Azmi
2017-09-01
Cyclohexane is mainly produced by catalytic hydrogenation of benzene. Removal of unreacted benzene from the product stream is very important in this process. However, due to their close boiling points and azeotrope formation, it is very difficult to separate cyclohexane and benzene by conventional distillation. Currently, special separation processes such as processes extractive distillation is commercially used for this separation. However, this extractive distillation suffers from process complexity and higher energy consumption due to their low extractive selectivity of molecular entrainers used. The aim of the present work is to investigate the applicability of ionic liquids as entrainer in extractive distillation of benzene and cyclohexane mixture. In this study, we investigated 1-butyl-3-methylimidazolium thiocyanate ([BMIM][SCN]) ionic liquid for separation of benzene and cyclohexane by measuring the Vapor Liquid Equilibrium data of the two components in the presence of the ionic liquid. As green and potential environmentally friendly solvents, ionic liquids have attracted increasing attention as alternative conventional entrainers in extractive distillation. Isothermal Vapor Liquid Equilibrium for the benzene + cyclohexane + [BMIM][SCN] ternary system was obtained at 353.15 K using a Head Space Gas Chromatography. The addition of [BMIM][SCN] breaks the benzene-cyclohexane azeotrope and increased the relative volatility cyclohexane to benzene in the mixture. The effect of [BMIM][SCN] on the relative volatility cyclohexane to benzene was studied at various benzene and cyclohexane compositions and solvent to feed ratios. The performance of [BMIM][SCN] was compared with typical conventional solvents, dimethylformamide (DMF) and dimethylsulfoxide (DMSO). The results show that the relative volatility of cyclohexane to benzene in the presence of [BMIM][SCN] is higher compared that of DMSO and DMF.
Simulation of flux during electro-membrane extraction based on the Nernst-Planck equation.
Gjelstad, Astrid; Rasmussen, Knut Einar; Pedersen-Bjergaard, Stig
2007-12-07
The present work has for the first time described and verified a theoretical model of the analytical extraction process electro-membrane extraction (EME), where target analytes are extracted from an aqueous sample, through a thin layer of 2-nitrophenyl octylether immobilized as a supported liquid membrane (SLM) in the pores in the wall of a porous hollow fibre, and into an acceptor solution present inside the lumen of the hollow fibre by the application of an electrical potential difference. The mathematical model was based on the Nernst-Planck equation, and described the flux over the SLM. The model demonstrated that the magnitude of the electrical potential difference, the ion balance of the system, and the absolute temperature influenced the flux of analyte across the SLM. These conclusions were verified by experimental data with five basic drugs. The flux was strongly dependent of the potential difference over the SLM, and increased potential difference resulted in an increase in the flux. The ion balance, defined as the sum of ions in the donor solution divided by the sum of ions in the acceptor solution, was shown to influence the flux, and high ionic concentration in the acceptor solution relative to the sample solution was advantageous for high flux. Different temperatures also led to changes in the flux in the EME system.
Montesdeoca-Esponda, Sarah; Mahugo-Santana, Cristina; Sosa-Ferrera, Zoraida; Santana-Rodríguez, José Juan
2015-03-01
A dispersive liquid-liquid micellar microextraction (DLLMME) method coupled with ultra-high-performance liquid chromatography (UHPLC) using Diode Array Detector (DAD) detector was developed for the analysis of five pharmaceutical compounds of different nature in wastewaters. A micellar solution of a surfactant, polidocanol, as extraction solvent (100 μL) and chloroform as dispersive solvent (200 μL) were used to extract and preconcentrate the target analytes. Samples were heated above critical temperature and the cloudy solution was centrifuged. After removing the chloroform, the reduced volume of surfactant was then injected in the UHPLC system. In order to obtain high extraction efficiency, the parameters affecting the liquid-phase microextraction, such as time and temperature extraction, ionic strength and surfactant and organic solvent volume, were optimized using an experimental design. Under the optimized conditions, this procedure allows enrichment factors of up to 47-fold. The detection limit of the method ranged from 0.1 to 2.0 µg/L for the different pharmaceuticals. Relative standard deviations were <26% for all compounds. The procedure was applied to samples from final effluent collected from wastewater treatment plants in Las Palmas de Gran Canaria (Spain), and two compounds were measured at 67 and 113 µg/L in one of them. Copyright © 2014 John Wiley & Sons, Ltd.
Abolghasemi, Mir Mahdi; Arsalani, Naser; Yousefi, Vahid; Arsalani, Mahmood; Piryaei, Marzieh
2016-03-01
We have synthesized an organic-inorganic polyaniline-halloysite nanotube composite by an in situ polymerization method. This nanocomposite is immobilized on a stainless-steel wire and can be used as a fiber coating for solid-phase microextraction. It was found that our new solid-phase microextraction fiber is an excellent adsorbent for the extraction of some volatile organic compounds in aqueous samples in combination with gas chromatography and mass spectrometry. The coating can be prepared easily, is mechanically stable, and exhibits relatively high thermal stability. It is capable of extracting phenolic compounds from water samples. Following thermal desorption, the phenols were quantified by gas chromatography with mass spectrometry. The effects of extraction temperature, extraction time, sample ionic strength, stirring rate, pH, desorption temperature and desorption time were studied. Under optimal conditions, the repeatability for one fiber (n = 5), expressed as the relative standard deviation, is between 6.2 and 9.1%. The detection limits range from 0.005 to 4 ng/mL. The method offers the advantage of being simple to use, with a shorter analysis time, lower cost of equipment and higher thermal stability of the fiber in comparison to conventional methods of analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dissolution and fractionation of nut shells in ionic liquids.
Carneiro, Aristides P; Rodríguez, Oscar; Macedo, Eugénia A
2017-03-01
The aim of this work was to study the dissolution of raw peanut and chestnut shells in ionic liquids. Dissolution of raw biomass up to 7wt% was achieved under optimized operatory conditions. Quantification of polysaccharides dissolved through quantitative 13 Cq NMR revealed extractions of the cellulosic material to ionic liquids as high as 87%. Regeneration experiments using an antisolvent mixture allowed to recover the cellulosic material and the ionic liquid. The overall mass balance presented very low loss rates (<8%), recoveries of 75% and 95% of cellulosic material from peanut and chestnut shells, respectively, and the recovery of more than 95% of the ionic liquid in both cases. These results show the high potential of using nut shells and ionic liquids for biorefining purposes. Moreover, high recovery of ionic liquids favors the process from an economical point of view. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hydrodynamic model of temperature change in open ionic channels.
Chen, D P; Eisenberg, R S; Jerome, J W; Shu, C W
1995-01-01
Most theories of open ionic channels ignore heat generated by current flow, but that heat is known to be significant when analogous currents flow in semiconductors, so a generalization of the Poisson-Nernst-Planck theory of channels, called the hydrodynamic model, is needed. The hydrodynamic theory is a combination of the Poisson and Euler field equations of electrostatics and fluid dynamics, conservation laws that describe diffusive and convective flow of mass, heat, and charge (i.e., current), and their coupling. That is to say, it is a kinetic theory of solute and solvent flow, allowing heat and current flow as well, taking into account density changes, temperature changes, and electrical potential gradients. We integrate the equations with an essentially nonoscillatory shock-capturing numerical scheme previously shown to be stable and accurate. Our calculations show that 1) a significant amount of electrical energy is exchanged with the permeating ions; 2) the local temperature of the ions rises some tens of degrees, and this temperature rise significantly alters for ionic flux in a channel 25 A long, such as gramicidin-A; and 3) a critical parameter, called the saturation velocity, determines whether ionic motion is overdamped (Poisson-Nernst-Planck theory), is an intermediate regime (called the adiabatic approximation in semiconductor theory), or is altogether unrestricted (requiring the full hydrodynamic model). It seems that significant temperature changes are likely to accompany current flow in the open ionic channel. PMID:8599638
Chromatographic Separation, and Characteristics of Nucleic Acids from HeLa Cells
Philipson, Lennart
1961-01-01
The application of the phenol-duponol method to extraction of nucleic acids from HeLa cells is described. Chromatography of the phenol extract on an esterified bovine serum albumin column with a salt gradient of sodium chloride gives separation of soluble RNA, DNA, and two different high molecular RNA fractions. Ultracentrifugation of the DNA eluted from the column gives a sedimentation coefficient (s 20 o,w) of 38, which agrees with ultracentrifugation data on the phenol extract. The eluted RNA appears polydisperse at low ionic strength, but at high ionic strength and after alcohol precipitation two fractions with the sedimentation coefficients of 16 and 25 to 29, respectively, were obtained. PMID:13735276
Li, Zhen-Yu; Zhang, Sha-Sha; Jie-Xing; Qin, Xue-Mei
2015-01-01
In this study, an ionic liquids (ILs) based extraction approach has been successfully applied to the extraction of essential oil from Farfarae Flos, and the effect of lithium chloride was also investigated. The results indicated that the oil yields can be increased by the ILs, and the extraction time can be reduced significantly (from 4h to 2h), compared with the conventional water distillation. The addition of lithium chloride showed different effect according to the structures of ILs, and the oil yields may be related with the structure of cation, while the chemical compositions of essential oil may be related with the anion. The reduction of extraction time and remarkable higher efficiency (5.41-62.17% improved) by combination of lithium salt and proper ILs supports the suitability of the proposed approach. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhou, Jun; Sun, Jiang Bing; Xu, Xin Yu; Cheng, Zhao Hui; Zeng, Ping; Wang, Feng Qiao; Zhang, Qiong
2015-03-25
A simple, inexpensive and efficient method based on the mixed cloud point extraction (MCPE) combined with high performance liquid chromatography was developed for the simultaneous separation and determination of six flavonoids (rutin, hyperoside, quercetin-3-O-sophoroside, isoquercitrin, astragalin and quercetin) in Apocynum venetum leaf samples. The non-ionic surfactant Genapol X-080 and cetyl-trimethyl ammonium bromide (CTAB) was chosen as the mixed extracting solvent. Parameters that affect the MCPE processes, such as the content of Genapol X-080 and CTAB, pH, salt content, extraction temperature and time were investigated and optimized. Under the optimized conditions, the calibration curve for six flavonoids were all linear with the correlation coefficients greater than 0.9994. The intra-day and inter-day precision (RSD) were below 8.1% and the limits of detection (LOD) for the six flavonoids were 1.2-5.0 ng mL(-1) (S/N=3). The proposed method was successfully used to separate and determine the six flavonoids in A. venetum leaf samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Pano-Farias, Norma S; Ceballos-Magaña, Silvia G; Muñiz-Valencia, Roberto; Jurado, Jose M; Alcázar, Ángela; Aguayo-Villarreal, Ismael A
2017-12-15
Due the negative effects of pesticides on environment and human health, more efficient and environmentally friendly methods are needed. In this sense, a simple, fast, free from memory effects and economical direct-immersion single drop micro-extraction (SDME) method and GC-MS for multi-class pesticides determination in mango samples was developed. Sample pre-treatment using ultrasound-assisted solvent extraction and factors affecting the SDME procedure (extractant solvent, drop volume, stirring rate, ionic strength, time, pH and temperature) were optimized using factorial experimental design. This method presented high sensitive (LOD: 0.14-169.20μgkg -1 ), acceptable precision (RSD: 0.7-19.1%), satisfactory recovery (69-119%) and high enrichment factors (20-722). Several obtained LOQs are below the MRLs established by the European Commission; therefore, the method could be applied for pesticides determination in routing analysis and custom laboratories. Moreover, this method has shown to be suitable for determination of some of the studied pesticides in lime, melon, papaya, banana, tomato, and lettuce. Copyright © 2017 Elsevier Ltd. All rights reserved.
Liu, Yaxi; Gao, Zongjun; Wu, Ri; Wang, Zhenhua; Chen, Xiangfeng; Chan, T-W Dominic
2017-01-06
In this work, magnetic porous carbon material derived from a bimetallic metal-organic framework was explored as an adsorbent for magnetic solid-phase extraction of organochlorine pesticides (OCPs). The synthesized porous carbon possessed a high specific surface area and magnetization saturation. The OCPs in the samples were quantified using gas chromatography coupled with a triple quadrupole mass spectrometer. The experimental parameters, including the desorption solvent and conditions, amount of adsorbent, extraction time, extraction temperature, and ionic strength of the solution, were optimized. Under optimal conditions, the developed method displayed good linearity (r>0.99) within the concentration range of 2-500ngL -1 . Low limits of detection (0.39-0.70ngL -1 , signal-to-noise ratio=3:1) and limits of quantification (1.45-2.0ngL -1 , signal-to-noise ratio=10:1) as well as good precision (relative standard deviation<10%) were also obtained. The developed method was applied in the analysis of OCPs in drinking and environmental water samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Graphene-ionic liquid composites
Aksay, Ilhan A.; Korkut, Sibel; Pope, Michael; Punckt, Christian
2016-11-01
Method of making a graphene-ionic liquid composite. The composite can be used to make elec-trodes for energy storage devices, such as batteries and supercapacitors. Dis-closed and claimed herein is method of making a graphene-ionic liquid com-posite, comprising combining a graphene source with at least one ionic liquid and heating the combination at a temperature of at least about 130 .degree. C.
Diwakar, Sanjeev Kumar; Mishra, Sarad Kumar
2011-01-01
An ionically unbound and thermostable polyphenol oxidase (PPO) was extracted from the leaf of Musa paradisiaca. The enzyme was purified 2.54-fold with a total yield of 9.5% by ammonium sulfate precipitation followed by Sephadex G-100 gel filtration chromatography. The purified enzyme exhibited a clear single band on native polyacrylamide gel electrophoresis (PAGE) and sodium dodecyl sulfate (SDS) PAGE. It was found to be monomeric protein with molecular mass of about 40 kD. The zymographic study using crude extract as enzyme source showed a very clear band around 40 kD and a faint band at around 15 kD, which might be isozymes. The enzyme was optimally active at pH 7.0 and 50°C temperature. The enzyme was active in wide range of pH (4.0-9.0) and temperature (30-90°C). From the thermal inactivation studies in the range 60-75°C, the half-life (t(1/2)) values of the enzyme ranged from 17 to 77 min. The inactivation energy (Ea) value of PPO was estimated to be 91.3 kJ mol(-1). It showed higher specificity with catechol (K(m) = 8 mM) as compared to 4-methylcatechol (K(m) = 10 mM). Among metal ions and reagents tested, Cu(2+), Fe(2+), Hg(2+), Mn(2+), Ni(2+), protocatechuic acid, and ferrulic acid enhanced the enzyme activity, while K(+), Na(+), Co(2+), kojic acid, ascorbic acid, ethylenediamine tetraacetic acid (EDTA), sodium azide, β-mercaptoethanol, and L-cysteine inhibited the activity of the enzyme.
Biocatalytic transformations in ionic liquids.
van Rantwijk, Fred; Madeira Lau, Rute; Sheldon, Roger A
2003-03-01
Room temperature ionic liquids are non-volatile, thermally stable and highly polar; they are also moderately hydrophilic solvents. Here, we discuss their use as reaction media for biocatalysis. Enzymes of widely diverging types are catalytically active in ionic liquids or aqueous biphasic ionic liquid systems. Lipases, in particular, maintain their activity in anhydrous ionic liquid media; the (enantio)selectivity and operational stability are often better than in traditional media. The unconventional solvent properties of ionic liquids have been exploited in biocatalyst recycling and product recovery schemes that are not feasible with traditional solvent systems.
Ionic structures and transport properties of hot dense W and U plasmas
NASA Astrophysics Data System (ADS)
Hou, Yong; Yuan, Jianmin
2016-10-01
We have combined the average-atom model with the hyper-netted chain approximation (AAHNC) to describe the electronic and ionic structure of uranium and tungsten in the hot dense matter regime. When the electronic structure is described within the average-atom model, the effects of others ions on the electronic structure are considered by the correlation functions. And the ionic structure is calculated though using the hyper-netted chain (HNC) approximation. The ion-ion pair potential is calculated using the modified Gordon-Kim model based on the electronic density distribution in the temperature-depended density functional theory. And electronic and ionic structures are determined self-consistently. On the basis of the ion-ion pair potential, we perform the classical (CMD) and Langevin (LMD) molecular dynamics to simulate the ionic transport properties, such as ionic self-diffusion and shear viscosity coefficients, through the ionic velocity correlation functions. Due that the free electrons become more and more with increasing the plasma temperature, the influence of the electron-ion collisions on the transport properties become more and more important.
Zhang, Wei; Wang, Zhong-Sheng
2014-07-09
Replacing liquid-state electrolytes with solid-state electrolytes has been proven to be an effective way to improve the durability of dye-sensitized solar cells (DSSCs). We report herein the synthesis of amorphous ionic conductors based on polyhedral oligomeric silsesquioxane (POSS) with low glass transition temperatures for solid-state DSSCs. As the ionic conductor is amorphous and in the elastomeric state at the operating temperature of DSSCs, good pore filling in the TiO2 film and good interfacial contact between the solid-state electrolyte and the TiO2 film can be guaranteed. When the POSS-based ionic conductor containing an allyl group is doped with only iodine as the solid-state electrolyte without any other additives, power conversion efficiency of 6.29% has been achieved with good long-term stability under one-sun soaking for 1000 h.
Ionic supramolecular networks fully based on chemicals coming from renewable sources.
Aboudzadeh, Ali; Fernandez, Mercedes; Muñoz, Maria Eugenia; Santamaría, Antxon; Mecerreyes, David
2014-02-01
New supramolecular ionic networks are synthesized by proton transfer reaction between a bio-based fatty diamine molecule (Priamine 1074) and a series of naturally occurring carboxylic acids such as malonic acid, citric acid, tartaric acid, and 2,5-furandicarboxylic acid. The resulting solid soft material exhibits a thermoreversible transition becoming a viscoelastic liquid at high temperatures. All the networks show an elastic behavior at low temperatures/high frequencies, with elastic modulus values ranging from 4.5 × 10(6) to 4.5 × 10(7) Pa and soft network to liquid transitions T(nl) between -10 and 60 °C. The supramolecular ionic network based on cationic Priamine 1074 and anionic citrate shows promising self-healing properties at room temperature as well as relatively high ionic conductivity values close to 10(-6) S cm(-1). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jafari, Mostafa; Ebrahimzadeh, Homeira; Banitaba, Mohammad Hossein; Davarani, Saied Saeed Hosseiny
2014-11-01
A novel polypyrole/graphene oxide coating was made by the electrochemical polymerization of pyrrole in the presence of sodium dodecyl sulfate and graphene oxide on a platinum wire. The prepared fiber has shown a good thermal stability up to 300°C. The fiber was applied to the direct solid-phase microextraction and gas chromatographic analysis of four phthalate esters. The effect of four parameters on gas chromatography peak area including extraction temperature, extraction time, injection temperature, and ionic strength were investigated. Under the optimized conditions, the detection limits were between 0.042 and 0.26 μg/L. The intraday and interday relative standard deviations obtained at 55 μg/L, using a single fiber, were 8.2-16% and 17.3-25.6%, respectively. The method was successfully applied to the analysis of phthalate esters in two real samples of boiling water in cheap disposable clear plastic drinking cups showing recoveries from 83 to 120%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electrochemically stable electrolytes
Angell, Charles Austen; Zhang, Sheng-Shui; Xu, Kang
1999-01-01
This invention relates generally to inorganic ionic liquids which function as electrolytes and do not crystallize at ambient temperature. More specifically, this invention is directed to quasi-salt inorganic ionic liquids which comprise the reaction product of a strong Lewis acid with an inorganic halide-donating molecule. This invention is further directed to quasi-salt inorganic ionic liquid mixtures which comprise combinations of electrolyte additives and quasi-salt inorganic ionic liquids. These quasi-salt inorganic ionic liquid mixtures are useful electrolytes.
Electrochemically stable electrolytes
Angell, C.A.; Zhang, S.S.; Xu, K.
1999-01-05
This invention relates generally to inorganic ionic liquids which function as electrolytes and do not crystallize at ambient temperature. More specifically, this invention is directed to quasi-salt inorganic ionic liquids which comprise the reaction product of a strong Lewis acid with an inorganic halide-donating molecule. This invention is further directed to quasi-salt inorganic ionic liquid mixtures which comprise combinations of electrolyte additives and quasi-salt inorganic ionic liquids. These quasi-salt inorganic ionic liquid mixtures are useful electrolytes. 16 figs.
Thermal Decomposition Mechanism of 1-ethyl-3-methylimidazolium Bromide Ionic Liquid (Preprint)
2011-09-14
TetraethylammoniumTrifluoromentanesulfonate Ionic Liquid and Neutralized Nafion 117 for High-Temperature Fuel Cells J. Am. Chem. Soc. 2010, 132, 2183-2195. (7) Kim, S. Y.; Kim, S...bromide 5b. GRANT NUMBER ionic liquid (Preprint) 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Steven D. Chambreau, Jerry A. Boatz, Ghanshyam L. Vaaghjiani...In order to better understand the volatilization process for ionic liquids , the vapor evolved from heating the ionic liquid 1-ethyl-3
Free volume dependence of an ionic molecular rotor in Fluoroalkylphosphate (FAP) based ionic liquids
NASA Astrophysics Data System (ADS)
Singh, Prabhat K.; Mora, Aruna K.; Nath, Sukhendu
2016-01-01
The emission properties of Thioflavin-T (ThT), a cationic molecular rotor, have been investigated in two fluoroalkylphosphate ([FAP]) anion based ionic liquids, namely, 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate and 1-(2-hydroxyethyl)-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate, over a wide temperature range. The micro-viscosities of ionic liquids around ThT, measured from the emission quantum yield, are found to be quite different from their bulk viscosities. The temperature dependence of the viscosity and the emission quantum yield reveals that, despite the very low shear viscosity of these ILs, the non-radiative torsional relaxation has a strong dependence on the free volume of these [FAP] anion based ILs.
The Formation and Properties of Thin Lipid Membranes from HK and LK Sheep Red Cell Lipids
Andreoli, Thomas E.; Bangham, J. Andrew; Tosteson, Daniel C.
1967-01-01
Lipids were obtained from high potassium (HK) and low potassium (LK) sheep red cells by sequential extraction of the erythrocytes with isopropanol-chloroform, chloroform-methanol-0.1 M KCl, and chloroform. The extract contained cholesterol and phospholipid in a molar ratio of 0.8:1.0, and less than 1% protein contaminant. Stable thin lipid membranes separating two aqueous compartments were formed from an erythrocyte lipid-hydrocarbon solution, and had an electrical resistance of ∼108 ohm-cm2 and a capacitance of 0.38–0.4 µf/cm2. From the capacitance values, membrane thickness was estimated to be 46–132 A, depending on the assumed value for the dielectric constant (2.0–4.5). Membrane voltage was recorded in the presence of ionic (NaCl and/or KCl) concentration gradients in the solutions bathing the membrane. The permeability of the membrane to Na+, K+, and Cl- (expressed as the transference number, T ion) was computed from the steady-state membrane voltage and the activity ratio of the ions in the compartments bathing the membrane. T Na and T K were approximately equal (∼0.8) and considerably greater than T Cl (∼0.2). The ionic transference numbers were independent of temperature, the hydrocarbon solvent, the osmolarity of the solutions bathing the membranes, and the cholesterol content of the membranes, over the range 21–38°C. The high degree of membrane cation selectivity was tentatively attributed to the negatively charged phospholipids (phosphatidylethanolamine and phosphatidylserine) present in the lipid extract. PMID:6034765
Ionic liquid stationary phases for gas chromatography.
Poole, Colin F; Poole, Salwa K
2011-04-01
This article provides a summary of the development of ionic liquids as stationary phases for gas chromatography beginning with early work on packed columns that established details of the retention mechanism and established working methods to characterize selectivity differences compared with molecular stationary phases through the modern development of multi-centered cation and cross-linked ionic liquids for high-temperature applications in capillary gas chromatography. Since there are many reviews on ionic liquids dealing with all aspects of their chemical and physical properties, the emphasis in this article is placed on the role of gas chromatography played in the design of ionic liquids of low melting point, high thermal stability, high viscosity, and variable selectivity for separations. Ionic liquids provide unprecedented opportunities for extending the selectivity range and temperature-operating range of columns for gas chromatography, an area of separation science that has otherwise been almost stagnant for over a decade. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electrodeposition of Si from an Ionic Liquid Bath at Room Temperature in the Presence of Water.
Shah, Nisarg K; Pati, Ranjan Kumar; Ray, Abhijit; Mukhopadhyay, Indrajit
2017-02-21
The electrochemical deposition of Si has been carried out in an ionic liquid medium in the presence of water in a limited dry nitrogen environment on highly oriented pyrolytic graphite (HOPG) at room temperature. It has been found that the presence of water in ionic liquids does not affect the available effective potential window to a large extent. Silicon has been successfully deposited electrochemically in the overpotential regime in two different ionic liquids, namely, BMImTf 2 N and BMImPF 6 , in the presence of water. Although a Si thin film has been obtained from BMImTf 2 N; only distinguished Si crystals protected in ionic liquid droplets have been observed from BMImPF 6 . The most important observation of the present investigation is that the Si precursor, SiCl 4 , instead of undergoing hydrolysis, even in the presence of water, coexisted with ionic liquids, and elemental Si has been successfully electrodeposited.
He, Huan; Yuan, Danhua; Gao, Zhanqi; Xiao, Deli; He, Hua; Dai, Hao; Peng, Jun; Li, Nan
2014-01-10
A novel magnetic solid-phase extraction (MSPE) method based on mixed hemimicelles of room temperature ionic liquids (RTILs) coated Fe3O4/SiO2 nanoparticles (NPs) was developed for simultaneous extraction of trace amounts of flavonoids in bio-matrix samples. A comparative study on the use of RTILs (C16mimBr) and CTAB-coated Fe3O4/SiO2 NPs as sorbents was presented. Owing to bigger adsorption amounts for analytes, RTILs-coated Fe3O4/SiO2 NPs was selected as MSPE materials and three analytes luteolin, quercetin and kaempferol can be quantitatively extracted and simultaneously determined coupled with high performance liquid chromatography (HPLC) in urine samples. No interferences were caused by proteins or endogenous compounds. Good linearity (R(2)>0.9993) for all calibration curves was obtained, and the limits of detection (LOD) for luteolin, quercetin and kaempferol were 0.10 ng/mL, 0.50 ng/mL and 0.20 ng/mL in urine samples, respectively. Satisfactory recoveries (93.5-97.6%, 90.1-95.4% and 93.3-96.6% for luteolin, quercetin and kaempferol) in biological matrices were achieved. It was notable that while using a small amount of Fe3O4/SiO2 NPs (4.0 mg) and C16mimBr (1.0 mg), satisfactory preconcentration factors and extraction recoveries for the three flavonoids were obtained. To the best of our knowledge, this is the first time a mixed hemimicelles MSPE method based on RTILs and Fe3O4/SiO2 NPs magnetic separation has ever been used for pretreatment of complex biological samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Metals and Oxygen Mining from Meteorites, Asteroids and Planets using Reusable Ionic Liquids
NASA Technical Reports Server (NTRS)
Karr, Laurel J.; Paley, Mark S.; Marone, Matthew J.; Kaukler, William F.; Curreri, Peter A.
2012-01-01
In order for humans to explore beyond Low Earth Orbit both safely and economically, it will be essential to learn how to make use of in situ materials and energy in an environment much different than on earth. Precursor robotic missions will be necessary to determine what resources will be available and to demonstrate the capabilities for their use. To that end, we have recently been studying acidic Ionic Liquid (IL) systems for use in a low temperature (< 200 C) process to solubilize regolith, and to extract, as water, the oxygen available in metal oxides. Using this method, we have solubilized lunar regolith simulant (JSC-1A), as well as extraterrestrial materials in the form of meteorites, and have extracted up to 80% of the available oxygen. Moreover, by using a hydrogen gas electrode, we have shown that the IL can be regenerated at the anode and metals (e.g. iron) can be plated onto the cathode. These results indicate that IL processing is an excellent candidate for extracting oxygen in situ, for life support and propulsion, and for extracting metals to be used as feedstock in fabrication processes. We have obtained small amounts of meteorite materials believed by meteoriticists to have originated from our moon, Mars, and the asteroid Vesta, and were able to solubilize those using acidic IL systems. From the Vesta meteorite, we were able to extract about 60% of the available oxygen as water. As far as is known, this is the first time that extraterrestrial/earth hybrid water has been obtained. NMR analysis provided proof that the liquid retrieved is indeed water. We have also been able to electro-plate nickel and iron contained in meteorite material. By varying voltage they can be plated separately (electro-winning), and we plan to soon have sufficient quantities to form usable parts utilizing the additive manufacturing process.
NASA Astrophysics Data System (ADS)
Burba, Christopher M.; Chang, Hai-Chou
2018-03-01
Continued growth and development of ionic liquids requires a thorough understanding of how cation and anion molecular structure defines the liquid structure of the materials as well as the various properties that make them technologically useful. Infrared spectroscopy is frequently used to assess molecular-level interactions among the cations and anions of ionic liquids because the intramolecular vibrational modes of the ions are sensitive to the local potential energy environments in which they reside. Thus, different interaction modes among the ions may lead to different spectroscopic signatures in the vibrational spectra. Charge organization present in ionic liquids, such as 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([C4mim]CF3SO3), is frequently modeled in terms of a quasicrystalline structure. Highly structured quasilattices enable the dynamic coupling of vibrationally-induced dipole moments to produce optical dispersion and transverse optical-longitudinal optical (TO-LO) splitting of vibrational modes of the ionic liquid. According to dipolar coupling theory, the degree of TO-LO splitting is predicted to have a linear dependence on the number density of the ionic liquid. Both temperature and pressure will affect the number density of the ionic liquid and, therefore, the amount of TO-LO splitting for this mode. Therefore, we test these relationships through temperature- and pressure-dependent FT-IR spectroscopic studies of [C4mim]CF3SO3, focusing on the totally symmetric Ssbnd O stretching mode for the anion, νs(SO3). Increased temperature decreases the amount of TO-LO splitting for νs(SO3), whereas elevated pressure is found to increase the amount of band splitting. In both cases, the experimental observations follow the general predictions of dipolar coupling theory, thereby supporting the quasilattice model for this ionic liquid.
Fuentes, Manuel; Pessela, Benevides C C; Maquiese, Jorgette V; Ortiz, Claudia; Segura, Rosa L; Palomo, Jose M; Abian, Olga; Torres, Rodrigo; Mateo, Cesar; Fernández-Lafuente, Roberto; Guisán, J M
2004-01-01
New and strong ionic exchange resins have been prepared by the simple and rapid ionic adsorption of anionic polymers (sulfate-dextran) on porous supports activated with the opposite ionic group (DEAE/MANAE). Ionic exchange properties of such composites were strongly dependent on the size of the ionic polymers as well as on the conditions of the ionic coating of the solids with the ionic polymers (optimal conditions were 400 mg of sulfate-dextran 5000 kDa per gram of support). Around 80% of the proteins contained in crude extracts from Escherichia coli and Acetobacter turbidans could be adsorbed on these porous composites even at pH 7. This interaction was stronger than that using conventional carboxymethyl cellulose (CMC) and even others such as supports coated with aspartic-dextran polymer. By means of the sequential use of the new supports and supports coated with polyethyleneimine (PEI), all proteins from crude extracts could be immobilized. In fact, a large percentage (over 50%) could be immobilized on both supports. Finally, some industrially relevant enzymes (beta-galactosidases from Aspergillus oryzae, Kluyveromyces lactis, and Thermussp. strain T2, lipases from Candida antarctica A and B, Candida rugosa, Rhizomucor miehei, and Rhyzopus oryzae and bovine pancreas trypsin and chymotrypsin) have been immobilized on these supports with very high activity recoveries and immobilization rates. After enzyme inactivation, the protein could be fully desorbed from the support, and then the support could be reused for several cycles. Moreover, in some instances the enzyme stability was significantly improved, mainly in the presence of organic solvents, perhaps as a consequence of the highly hydrophilic microenvironment of the support.
New Pyrazolium Salts as a Support for Ionic Liquid Crystals and Ionic Conductors
Pastor, María Jesús; Sánchez, Ignacio; Schmidt, Rainer; Cano, Mercedes
2018-01-01
Ionic liquid crystals (ILCs) are a class of materials that combine the properties of liquid crystals (LCs) and ionic liquids (ILs). This type of materials is directed towards properties such as conductivity in ordered systems at different temperatures. In this work, we synthesize five new families of ILCs containing symmetrical and unsymmetrical substituted pyrazolium cations, with different alkyl long-chains, and anions such as Cl−, BF4−, ReO4−, p-CH3-6H4SO3− (PTS) and CF3SO3− (OTf). We study their thermal behavior by polarized light optical microscopy (POM) and differential scanning calorimetry (DSC). All of them, except those with OTf as counteranion, show thermotropic mesomorphism. The observations by POM reveal textures of lamellar mesophases. Those agree with the arrangement observed in the X-ray crystal structure of [H2pzR(4),R(4)][ReO4]. The nature of the mesophases is also confirmed by variable temperature powder X-ray diffraction. On the other hand, the study of the dielectric properties at variable temperature in mesomorphic (Cl− and BF4−) and non-mesomorphic (OTf) salts indicates that the supramolecular arrangement of the mesophase favors a greater ionic mobility and therefore ionic conductivity. PMID:29614030
The radiation chemistry of ionic liquids: A review
Mincher, Bruce J.; Wishart, James F.
2014-07-03
Ionic liquids have received increasing attention as media for radiochemical separations. Recent literature includes examinations of the efficiencies and mechanisms of the solvent extraction of lanthanides, actinides and fission products into ionic liquid solutions. For radiochemical applications, including as replacement solvents for nuclear fuel reprocessing, a thorough understanding of the radiation chemistry of ionic liquids will be required. Such an understanding can be achieved based on a combination of steady-state radiolysis experiments coupled with post-irradiation product identification and pulse-radiolysis experiments to acquire kinetic information. These techniques allow for the elucidation of radiolytic mechanisms. This contribution reviews the current ionic liquidmore » radiation chemistry literature as it affects separations, with these considerations in mind.« less
Hu, Yanxue; Yang, Xiumin; Wang, Zhi; Wang, Chun; Zhao, Jin
2005-11-01
A novel method for the determination of carbendazim (MBC) and thiabendazole (TBZ) in tomatoes by solid-phase microextraction (SPME) coupled with high performance liquid chromatography (HPLC) and fluorescence detection was developed. The experimental conditions of SPME, including extraction fiber, extraction time, extraction temperature, desorption time, desorption solvent, desorption mode, pH value, organic solvent and ionic strength, and HPLC conditions were optimized. The SPME for MBC and TBZ was performed on a 65 microm polydimethylsiloxane/divinylbenzene (PDMS/DVB) fibre for 50 min at room temperature with the solution being stirred at 1 100 r/min. The florescence detection was made at 315 nm with excitation wavelength at 280 nm. The method is linear for MBC and TBZ over the range assayed from 0.01 to 1.0 mg/kg tomatoes with the detection limits of 0.003 mg/kg and 0. 001 mg/kg and the correlation coefficients of 0.995 8 and 0.996 7, respectively. The average recoveries for MBC and TBZ were 83.5% and 85.6% with the relative standard deviations (RSDs) of 6.5% and 3.8%, respectively. The method is fast, simple, sensitive, solvent-free and suitable for the determination of MBC and TBZ in tomatoes.
Samandoulgou, Idrissa; Hammami, Riadh; Morales Rayas, Rocio; Fliss, Ismail; Jean, Julie
2015-11-01
Loss of ordered molecular structure in proteins is known to increase their adhesion to surfaces. The aim of this work was to study the stability of norovirus secondary and tertiary structures and its implications for viral adhesion to fresh foods and agrifood surfaces. The pH, ionic strength, and temperature conditions studied correspond to those prevalent in the principal vehicles of viral transmission (vomit and feces) and in the food processing and handling environment (pasteurization and refrigeration). The structures of virus-like particles representing GI.1, GII.4, and feline calicivirus (FCV) were studied using circular dichroism and intrinsic UV fluorescence. The particles were remarkably stable under most of the conditions. However, heating to 65°C caused losses of β-strand structure, notably in GI.1 and FCV, while at 75°C the α-helix content of GII.4 and FCV decreased and tertiary structures unfolded in all three cases. Combining temperature with pH or ionic strength caused variable losses of structure depending on the particle type. Regardless of pH, heating to pasteurization temperatures or higher would be required to increase GII.4 and FCV adhesion, while either low or high temperatures would favor GI.1 adhesion. Regardless of temperature, increased ionic strength would increase GII.4 adhesion but would decrease GI.1 adhesion. FCV adsorption would be greater at refrigeration, pasteurization, or high temperature combined with a low salt concentration or at a higher NaCl concentration regardless of temperature. Norovirus adhesion mediated by hydrophobic interaction may depend on hydrophobic residues normally exposed on the capsid surface at pH 3, pH 8, physiological ionic strength, and low temperature, while at pasteurization temperatures it may rely more on buried hydrophobic residues exposed upon structural rearrangement. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
NASA Astrophysics Data System (ADS)
Grover, Sameer; Joshi, Anupama; Tulapurkar, Ashwin; Deshmukh, Mandar
Electrolyic gating can induce large carrier densities in graphene and other 2D-materials. We demonstrate a technique for the formation of p-n junctions in graphene using a combination of electrostatic and electrolytic gating. This was done by patterning the negative resist hydrogen silsesquioxane (HSQ) to cover part of a bilayer graphene flake. We performed electrical and photoresponse measurements with the ionic liquid EMI-Im as the top gate and with a silicon back gate. The device characteristics were measured both at room temperature, where the ions are mobile, and at low temperatures, where the ionic liquid is frozen. We created p-n junctions that work at both room temperature and at low temperatures below the freezing point of the ionic liquid. This technique is suited for studying the photoresponse of graphene p-n junctions because of the larger transparency of ionic liquids compared to metallic gates as used in previous studies. We found that the photoresponse is dominated by the photo-thermoelectric effect, characterized by a six fold pattern in the photovoltage. The photovoltage increases as the temperature decreases which is indicative of hot electron thermalization by disorder assisted supercollisions. DST, DAE, Government of India.
He, Lijun; Cui, Wenhang; Wang, Yali; Zhao, Wenjie; Xiang, Guoqiang; Jiang, Xiuming; Mao, Pu; He, Juan; Zhang, Shusheng
2017-11-03
In this study, layer-by-layer assembly of polyelectrolyte multilayer films on magnetic silica provided a convenient and controllable way to prepare polymeric ionic liquid-based magnetic adsorbents. The resulting particles were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, and magnetic measurements. The data showed that the magnetic particles had more homogeneous spherical shapes with higher saturation magnetization when compared to those obtained by free radical polymerization method. This facilitated the convenient collection of magnetic particles, with higher extraction repeatability. The extraction performance of the multilayer polymeric ionic liquid-based adsorbents was evaluated by magnetic solid-phase extraction of four pesticides including quinalphos, fenthion, phoxim, and chlorpropham. The data suggested that the extraction efficiency depended on the number of layers in the film. The parameters affecting the extraction efficiency were optimized, and good linearity ranging from 2 to 250μgL -1 was obtained with correlation coefficients of 0.9994-0.9998. Moreover, the proposed method presented low limit of detection (0.5μgL -1 , S/N=3) and limit of quantification (1.5μgL -1 , S/N=10), and good repeatability expressed by the relative standard deviation (2.0%-4.6%, n=5). The extraction recoveries of four pesticides were found to range from 58.9% to 85.8%. The reliability of the proposed method was demonstrated by analyzing environmental water samples, and the results revealed satisfactory spiked recovery, relative standard deviation, and selectivity. Copyright © 2017 Elsevier B.V. All rights reserved.
Shirota, Hideaki; Kakinuma, Shohei
2015-07-30
In this study, the temperature dependence of the low-frequency spectra of liquid bis(trifluoromethylsulfonyl)amide salts of the monocations 1-methyl-3-propylimidazolium and 1-hexyl-3-methylimidazolium and the dications 1,6-bis(3-methylimidazolium-1-yl)hexane and 1,12-bis(3-methylimidazolium-1-yl)dodecane has been investigated by means of femtosecond optical heterodyne-detected Raman-induced Kerr effect spectroscopy. The intensity in the low-frequency region below 20 cm(-1) in the spectra of the four ionic liquids increases with rising temperature. From a line-shape analysis of the broadened low-frequency spectra of the ionic liquids, it is clear that the lowest-frequency component, which peaks at approximately 5 cm(-1), contributes to the temperature dependence of the spectra. This implies that the activity of the intermolecular translational vibrational motion is increasing with rising temperature. It is also possible that decoupling in the crossover process between intermolecular vibrational motion and structural relaxation occurs as a result of a deterioration of the non-Markovian feature or the loss of memory caused by the higher temperature. The peak of the highest-frequency component, which is due mainly to the imidazolium ring libration, shifts to lower frequency with increasing temperature. This is attributed to weaker interactions of the ionic liquids at higher temperatures. Temperature-dependent viscosities from 293 to 353 K of the four ionic liquids have also been characterized.
NASA Astrophysics Data System (ADS)
Das, S.; Ghosh, A.
2016-05-01
We have studied ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with polyethylene glycol (PEG). The temperature dependence of the ionic conductivity has been well interpreted using Vogel-Tamman-Fulcher equation. The maximum dielectric constant is observed for 30 wt. % of PEG content. To get further insights into the ion dynamics, the complex dielectric permittivity has been studied with Havriliak-Negami function. The variation of relaxation time with inverse temperature obtained from HN formalism follows VTF nature.
Lithium ion conducting ionic electrolytes
Angell, C.A.; Xu, K.; Liu, C.
1996-01-16
A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100 C or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors. 4 figs.
Lithium ion conducting ionic electrolytes
Angell, C. Austen; Xu, Kang; Liu, Changle
1996-01-01
A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors.
Nizamani, Sooraj; Kazi, Tasneem G; Afridi, Hassan I
2018-01-01
An efficient preconcentration technique based on ultrasonic-assisted ionic liquid-based dual microextraction (UA-ILDµE) method has been developed to preconcentrate the lead (Pb +2 ) in ground and stored rain water. In the current proposed method, Pb +2 was complexed with a chelating agent (dithizone), whereas an ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate) was used for extraction purpose. The ultrasonic irradiation and electrical shaking system were applied to enhance the dispersion and extraction of Pb +2 complex in aqueous samples. For second phase, dual microextraction (DµE phase), the enriched Pb +2 complex in ionic liquid, extracted back into the acidic aqueous solution and finally determined by flame atomic absorption spectrometry. Some major analytical parameters that influenced the extraction efficiency of developed method, such as pH, concentration of ligand, volume of ionic liquid and samples, time of shaking in thermostatic electrical shaker and ultrasonic bath, effect of back extracting HNO 3 volume, matrix effect, centrifugation time and rate were optimized. At the sample volume of 25mL, the calculated preconcentration factor was 62.2. The limit of detection of proposed procedure for Pb +2 ions was found to be 0.54μgL -1 . The validation of developed method was performed by the analysis of certified sample of water SRM 1643e and standard addition method in a real water sample. The extraction recovery of Pb +2 was enhanced≥2% with shaking time of 80s in ultrasonic bath as compared to used thermostatic electrical shaker, where for optimum recovery up to 10min was required. The developed procedure was successfully used for the enrichment of Pb +2 in ground and stored rain water (surface water) samples of an endemic region of Pakistan. The resulted data indicated that the ground water samples were highly contaminated with Pb +2 , while some of the surface water samples were also have higher values of Pb +2 than permissible limit of WHO. The concentration of Pb +2 in surface and ground water samples was found in the range of 17.5-24.5 and 25.6-99.1μgL - 1 respectively. Copyright © 2017 Elsevier B.V. All rights reserved.
Effect of various pH values, ionic strength, and temperature on papain hydrolysis of salivary film.
Yao, Jiang-Wu; Xiao, Yin; Lin, Feng
2012-04-01
Stimulated human whole saliva (WS) was used to study the dynamics of papain hydrolysis at defined pH, ionic strength, and temperature with the view of reducing an acquired pellicle. A quartz crystal microbalance with dissipation (QCM-D) was used to monitor the changes in frequency caused by enzyme hydrolysis of WS films, and the hydrolytic parameters were calculated using an empirical model. The morphological and conformational changes of the salivary films before and after enzymatic hydrolysis were characterized by atomic force microscopy (AFM) imaging and grazing-angle Fourier transform infrared (GA-FTIR ) spectra, respectively. The characteristics of papain hydrolysis of WS films were pH-, ionic strength-, and temperature-dependent. The WS films were partially removed by the action of papain, resulting in thinner and smoother surfaces. The infrared data suggested that hydrolysis-induced deformation did not occur on the remnants of salivary films. The processes of papain hydrolysis of WS films can be controlled by properly regulating pH, ionic strength, and temperature. © 2012 Eur J Oral Sci.
Coupled ion redistribution and electronic breakdown in low-alkali boroaluminosilicate glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Doo Hyun, E-mail: cooldoo@add.re.kr; Randall, Clive, E-mail: car4@psu.edu; Furman, Eugene, E-mail: euf1@psu.edu
2015-08-28
Dielectrics with high electrostatic energy storage must have exceptionally high dielectric breakdown strength at elevated temperatures. Another important consideration in designing a high performance dielectric is understanding the thickness and temperature dependence of breakdown strengths. Here, we develop a numerical model which assumes a coupled ionic redistribution and electronic breakdown is applied to predict the breakdown strength of low-alkali glass. The ionic charge transport of three likely charge carriers (Na{sup +}, H{sup +}/H{sub 3}O{sup +}, Ba{sup 2+}) was used to calculate the ionic depletion width in low-alkali boroaluminosilicate which can further be used for the breakdown modeling. This model predictsmore » the breakdown strengths in the 10{sup 8}–10{sup 9 }V/m range and also accounts for the experimentally observed two distinct thickness dependent regions for breakdown. Moreover, the model successfully predicts the temperature dependent breakdown strength for low-alkali glass from room temperature up to 150 °C. This model showed that breakdown strengths were governed by minority charge carriers in the form of ionic transport (mostly sodium) in these glasses.« less
Synthesis and characterization of ionic polymer networks in a room-temperature ionic liquid.
Stanzione, Joseph F; Jensen, Robert E; Costanzo, Philip J; Palmese, Giuseppe R
2012-11-01
Ionic liquid gels (ILGs) for potential use in ion transport and separation applications were generated via a free radical copolymerization of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and N,N'-methylene(bis)acrylamide (MBA) using 1-ethyl-3-methylimidazolium ethylsulfate (IL) as a room temperature ionic liquid solvent medium. The AMPS and MBA monomer solubility window in the IL in the temperature range of 25 to 65 °C was determined. In situ ATR-FTIR showed near complete conversion of monomers to a cross-linked polymer network. ILGs with glass transition temperatures (T(g)s) near -50 °C were generated with T(g) decreasing with increasing IL content. The elastic moduli in compression (200 to 6600 kPa) decreased with increasing IL content and increasing AMPS content while the conductivities (0.35 to 2.14 mS cm⁻¹) increased with increasing IL content and decreasing MBA content. The polymer-IL interaction parameter (χ) (0.48 to 0.55) was determined via a modified version of the Bray and Merrill equation.
Sa'adun, Nurul Nadiah; Subramaniam, Ramesh; Kasi, Ramesh
2014-01-01
Gel polymer electrolytes (GPEs) are developed using poly(1-vinylpyrrolidone-co-vinyl acetate) [P(VP-co-VAc)] as the host polymer, lithium bis(trifluoromethane) sulfonimide [LiTFSI] as the lithium salt and ionic liquid, and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [EMImTFSI] by using solution casting technique. The effect of ionic liquid on ionic conductivity is studied and the optimum ionic conductivity at room temperature is found to be 2.14 × 10−6 S cm−1 for sample containing 25 wt% of EMImTFSI. The temperature dependence of ionic conductivity from 303 K to 353 K exhibits Arrhenius plot behaviour. The thermal stability of the polymer electrolyte system is studied by using thermogravimetric analysis (TGA) while the structural and morphological properties of the polymer electrolyte is studied by using Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction analysis (XRD), respectively. PMID:25431781
Equations of state and transport properties of mixtures in the warm dense regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Yong; Dai, Jiayu; Kang, Dongdong
2015-02-15
We have performed average-atom molecular dynamics to simulate the CH and LiH mixtures in the warm dense regime, and obtained equations of state and the ionic transport properties. The electronic structures are calculated by using the modified average-atom model, which have included the broadening of energy levels, and the ion-ion pair potentials of mixtures are constructed based on the temperature-dependent density functional theory. The ionic transport properties, such as ionic diffusion and shear viscosity, are obtained through the ionic velocity correlation functions. The equations of state and transport properties for carbon, hydrogen and lithium, hydrogen mixtures in a wide regionmore » of density and temperature are calculated. Through our computing the average ionization degree, average ion-sphere diameter and transition properties in the mixture, it is shown that transport properties depend not only on the ionic mass but also on the average ionization degree.« less
In Situ Probing of Ion Ordering at an Electrified Ionic Liquid/Au Interface
Sitaputra, Wattaka; Stacchiola, Dario; Wishart, James F.; ...
2017-05-12
Charge transport at the interface of electrodes and ionic liquids is critical for the use of the latter as electrolytes. In this study, a room-temperature ionic liquid, 1-ethyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide (EMMIM TFSI), is investigated in situ under applied bias voltage with a novel method using low-energy electron and photoemission electron microscopy. Changes in photoelectron yield as a function of bias applied to electrodes provide a direct measure of the dynamics of ion reconfiguration and electrostatic responses of the EMMIM TFSI. Finally, long-range and correlated ionic reconfigurations that occur near the electrodes are found to be a function of temperature and thickness,more » which, in turn, relate to ionic mobility and different configurations for out-of-plane ordering near the electrode interfaces, with a critical transition in ion mobility for films thicker than three monolayers.« less
NASA Astrophysics Data System (ADS)
Lu, Teng; Studer, Andrew J.; Yu, Dehong; Withers, Ray L.; Feng, Yujun; Chen, Hua; Islam, S. S.; Xu, Zhuo; Liu, Yun
2017-12-01
This in situ neutron-diffraction study on antiferroelectric (AFE) P b0.99(N b0.02Z r0.65S n0.28T i0.05 ) O3 polycrystalline materials describes systematic structural and associated preferred orientation changes as a function of applied electric field and temperature. It is found that the pristine AFE phase can be poled into the metastable ferroelectric (FE) phase at room temperature. At this stage, both AFE and FE phases consist of modes associated with octahedral rotation and A -site ionic displacements. The temperature-induced phase transition indicates that the octahedral rotation and ionic displacements are weakly coupled in the room-temperature FE phase and decoupled in the high-temperature FE phase. However, both temperature and E -field-induced phase transitions between the AFE and high-temperature FE phase demonstrate the critical role of coupling between octahedral rotation and A -site ionic displacements in stabilizing the AFE structure, which provides not only experimental evidence to support previous theoretical calculations, but also an insight into the design and development of AFE materials. Moreover, the associated preferred orientation evolution in both AFE and FE phases is studied during the phase transitions. It is found that the formation of the preferred orientation can be controlled to tune the samples' FE and AFE properties.
Scaling-up and ionic liquid-based extraction of pectinases from Aspergillus flavipes cultures.
Wolf-Márquez, Vicente E; Martínez-Trujillo, M Aurora; Aguilar Osorio, Guillermo; Patiño, Faustino; Álvarez, María S; Rodríguez, Ana; Sanromán, M Ángeles; Deive, Francisco J
2017-02-01
The viability of the scaling-up of pectinases production by Aspergillus flavipes at 5L-bioreactor scale has been demonstrated by keeping constant the power input, and a drastic increase in the endo- and exopectinolytic enzyme production was recorded (7- and 40-fold, respectively). The main process variables were modelled by means of logistic and Gompertz equations. In order to overcome the limitations of the conventional downstream strategies, a novel extraction strategy was proposed on the basis of the adequate salting-out potential of two biocompatible cholinium-based ionic liquids (N 1112OH Cl and N 1112OH H 2 PO 4 ) in aqueous solutions of Tergitol, reaching more than 90% of extraction. Copyright © 2016 Elsevier Ltd. All rights reserved.
Unexpected Preferential Dehydration of Artemisinin in Ionic Liquids
NASA Astrophysics Data System (ADS)
Sanders, Marc W.; Wright, Lawrence; Tate, Lauren; Fairless, Gayle; Crowhurst, Lorna; Bruce, Neil C.; Walker, Adam J.; Hembury, Guy A.; Shimizu, Seishi
2009-09-01
Thermodynamic measurements (at 298 K) reveal that a crucial step in the extraction process of the key antimalarial drug artemisinin by ionic liquids (ILs), namely, precipitation through the addition of water, is driven by artemisinin dehydration due to the differences in the water's interaction with the bulk ILs, rather than with the artemisinin itself.
Yamaguchi, Tsuyoshi; Yonezawa, Takuya; Koda, Shinobu
2015-07-15
The frequency-dependent viscosity and conductivity of three imidazolium-based ionic liquids were measured at several temperatures in the MHz region, and the results are compared with the intermediate scattering functions determined by neutron spin echo spectroscopy. The relaxations of both the conductivity and the viscosity agree with that of the intermediate scattering function at the ionic correlation when the relaxation time is short. As the relaxation time increases, the relaxations of the two transport properties deviate to lower frequencies than that of the ionic structure. The deviation begins at a shorter relaxation time for viscosity than for conductivity, which explains the fractional Walden rule between the zero-frequency values of the shear viscosity and the molar conductivity.
Curvale, Rolando A; Debattista, Nora B; Pappano, Nora B
2012-04-01
UV-Vis spectroscopy was used to study the interaction between the 2',4- dihydroxychalcone, flavonoid which is known to have anti-tumor activity in vitro, and others biological properties, and the N, F and E conformers of bovine serum albumin at different ionic strengths and temperatures. The Klotz model was found to be adequate to determine the constants and number of binding sites. The reaction was found to be exothermic and spontaneous. The number of binding sites decreases and the reaction is more exergonic along with the increase in ionic strength and the conformational change of N to E. The reactions were necessarily hydrophobic and followed by a process of ionic character.
Non-haloaluminate room-temperature ionic liquids in electrochemistry--a review.
Buzzeo, Marisa C; Evans, Russell G; Compton, Richard G
2004-08-20
Some twenty-five years after they first came to prominence as alternative electrochemical solvents, room temperature ionic liquids (RTILs) are currently being employed across an increasingly wide range of chemical fields. This review examines the current state of ionic liquid-based electrochemistry, with particular focus on the work of the last decade. Being composed entirely of ions and possesing wide electrochemical windows (often in excess of 5 volts), it is not difficult to see why these compounds are seen by electrochemists as attractive potential solvents. Accordingly, an examination of the pertinent properties of ionic liquids is presented, followed by an assessment of their application to date across the various electrochemical disciplines, concluding with an outlook viewing current problems and directions.
Uysal, Deniz; Karadaş, Cennet; Kara, Derya
2017-05-01
A new, simple, efficient, and environmentally friendly ionic liquid dispersive liquid-liquid microextraction method was developed for the determination of irinotecan, an anticancer drug, in water and urine samples using UV-Vis spectrophotometry. The ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate was used as the extraction solvent, and ethanol was used as the disperser solvent. The main parameters affecting the extraction efficiency, including sample pH, volume of the ionic liquid, choice of the dispersive solvent and its volume, concentration of NaCl, and extraction and centrifugation times, were investigated and optimized. The effect of interfering species on the recovery of irinotecan was also examined. Under optimal conditions, the LOD (3σ) was 48.7 μg/L without any preconcentration. Because the urine sample was diluted 10-fold, the LOD for urine would be 487 μg/L. However, this could be improved 16-fold if preconcentration using a 40 mL aliquot of the sample is used. The proposed method was successfully applied to the determination of irinotecan in tap water, river water, and urine samples spiked with 10.20 mg/L for the water samples and 8.32 mg/L for the urine sample. The average recovery values of irinotecan determined were 99.1% for tap water, 109.4% for river water, and 96.1% for urine.
Fast Conversion of Ionic Liquids and Poly(Ionic Liquid)s into Porous Nitrogen-Doped Carbons in Air
Men, Yongjun; Ambrogi, Martina; Han, Baohang; Yuan, Jiayin
2016-01-01
Ionic liquids and poly(ionic liquid)s have been successfully converted into nitrogen-doped porous carbons with tunable surface area up to 1200 m2/g at high temperatures in air. Compared to conventional carbonization process conducted under inert gas to produce nitrogen-doped carbons, the new production method was completed in a rather shorter time without noble gas protection. PMID:27070588
Fast Conversion of Ionic Liquids and Poly(Ionic Liquid)s into Porous Nitrogen-Doped Carbons in Air.
Men, Yongjun; Ambrogi, Martina; Han, Baohang; Yuan, Jiayin
2016-04-08
Ionic liquids and poly(ionic liquid)s have been successfully converted into nitrogen-doped porous carbons with tunable surface area up to 1200 m²/g at high temperatures in air. Compared to conventional carbonization process conducted under inert gas to produce nitrogen-doped carbons, the new production method was completed in a rather shorter time without noble gas protection.
Cao, Jun; Peng, Li-Qing; Du, Li-Jing; Zhang, Qi-Dong; Xu, Jing-Jing
2017-04-22
An ionic liquid-(IL) based micellar extraction combined with microcrystalline cellulose- (MCC) assisted dispersive micro solid-phase extraction method was developed to extract phenolic compounds from propolis. A total of 20 target compounds were identified by ultra-high- performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. The main extraction parameters were optimized and included the ultrasonic power, ultrasonic time, sample pH, type of IL, the concentration of [C12mim]Br, extraction time, concentration of MCC, type of sorbent and type of elution solvents. Under the optimum conditions, the proposed method exhibited good linearities (r 2 ≥ 0.999) for all plant phenolic compounds with the lower limits of detection in the range of 0.21-0.41 ng/mL. The recoveries ranged from 82.74% to 97.88% for pinocembrin, chrysin and galangin. Compared with conventional solvent extraction, the present method was simpler and more efficient and required less organic solvent and a shorter extraction time. Finally, the methodology was successfully used for the extraction and enrichment of phenolic compounds in propolis. Copyright © 2017 Elsevier B.V. All rights reserved.
Hosseinzadeh, Reza; Khorsandi, Khatereh; Hemmaty, Syavash
2013-01-01
Micelle/water mixed solutions of different surface active agents were studied for their effectiveness in the extraction of polyphenolic compounds from various varieties of apples from west Azerbaijan province in Iran. The total content of polyphenolic compound in fruit extracts were determined using ferrous tartrate and Folin–Ciocalteu assays methods and chromatographic methods and compared with theme. High performance liquid chromatography is one of the most common and important methods in biochemical compound identification. The effect of pH, ionic strength, surfactant type, surfactant concentration, extraction time and common organic solvent in the apple polyphenolics extractions was studied using HPLC-DAD. Mixtures of surfactants, water and methanol at various ratios were examined and micellar-water solutions of Brij surfactant showed the highest polyphenol extraction efficiency. Optimum conditions for the extraction of polyphenolic compounds from apple occurred at 7 mM Brij35, pH 3. Effect of ionic strength on extraction was determined and 2% (W/V) potassium Chloride was determined to be the optimum salt concentration. The procedure worked well with an ultrasound bath. Total antioxidant capacity also was determined in this study. The method can be safely scaled up for pharmaceutical applications. PMID:23472082
Fang, Yingtong; Li, Quan; Shao, Qian; Wang, Binghai; Wei, Yun
2017-07-21
The alkaloids from lotus (Nelumbo nucifera Gaertn) are effective in lowering hyperlipemia and level of cholesterol. However, there is not a general method for their separation. In this work, a general ionic liquid pH-zone-refining countercurrent chromatography method for isolation and purification of six alkaloids from the whole lotus plant was successfully established by using ionic liquids as the modifier of the two-phase solvent system. The conditions of ionic liquid pH-zone-refining countercurrent chromatography, involving solvent systems, concentration of retainer and eluter, types of ionic liquids, the content of ionic liquids as well as ionic liquids posttreatment, were optimized to improve extraction efficiency. Finally, the separation of these six alkaloids was performed with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water-[C 4 mim][PF 6 ] at a volume ratio of 5:2:2:8:0.1, where 10mM TEA was added to the organic stationary phase as a retainer and 3mM HCl was added to the aqueous mobile phase as an eluter. As a result, six alkaloids including N-nornuciferine, liensinine, nuciferine, isoliensinine, roemerine and neferine were successfully separated with the purities of 97.0%, 90.2%, 94.7%, 92.8%, 90.4% and 95.9%, respectively. The established general method has been respectively applied to the crude samples of lotus leaves and lotus plumules. A total of 37.3mg of liensinine, 57.7mg of isoliensinine and 179.9mg of neferine were successfully purified in one run from 1.00g crude extract of lotus plumule with the purities of 93.2%, 96.5% and 98.8%, respectively. Amount of 45.6mg N-nornuciferine, 21.6mg nuciferine and 11.7mg roemerine was obtained in one step separation from 1.05g crude extract of lotus leaves with the purity of 96.9%, 95.6% and 91.33%, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.
Xu, Wei; Chu, Kedan; Li, Huang; Zhang, Yuqin; Zheng, Haiyin; Chen, Ruilan; Chen, Lidian
2012-12-03
An ionic liquids (IL)-based microwave-assisted approach for extraction and determination of flavonoids from Bauhinia championii (Benth.) Benth. was proposed for the first time. Several ILs with different cations and anions and the microwave-assisted extraction (MAE) conditions, including sample particle size, extraction time and liquid-solid ratio, were investigated. Two M 1-butyl-3-methylimidazolium bromide ([bmim] Br) solution with 0.80 M HCl was selected as the optimal solvent. Meanwhile the optimized conditions a ratio of liquid to material of 30:1, and the extraction for 10 min at 70 °C. Compared with conventional heat-reflux extraction (CHRE) and the regular MAE, IL-MAE exhibited a higher extraction yield and shorter extraction time (from 1.5 h to 10 min). The optimized extraction samples were analysed by LC-MS/MS. IL extracts of Bauhinia championii (Benth.)Benth consisted mainly of flavonoids, among which myricetin, quercetin and kaempferol, β-sitosterol, triacontane and hexacontane were identified. The study indicated that IL-MAE was an efficient and rapid method with simple sample preparation. LC-MS/MS was also used to determine the chemical composition of the ethyl acetate/MAE extract of Bauhinia championii (Benth.) Benth, and it maybe become a rapid method to determine the composition of new plant extracts.
Physical gelation of chitosan in the presence of beta-glycerophosphate: the effect of temperature.
Cho, Jaepyoung; Heuzey, Marie-Claude; Bégin, André; Carreau, Pierre J
2005-01-01
When adding beta-glycerophosphate (beta-GP), a weak base, to chitosan aqueous solutions, the polymer remains in solution at neutral pH and room temperature, while homogeneous gelation of this system can be triggered upon heating. It is therefore one of the rare true physical chitosan hydrogels. In this study, physicochemical and rheological properties of chitosan solutions in the presence of acetic acid and beta-GP were investigated as a function of temperature in order to gain a better understanding of the gelation mechanisms. The gel structure formed at high temperature was only partially thermoreversible upon cooling to 5 degrees C because of the existence of remaining associations, confirmed by the spontaneous recovery of the gel after breakup at low temperature. Increasing temperature had no effect on the pH values of this system, while conductivity (and calculated ionic strength) increased. Values from the pH measurements were used to estimate the degree of protonation of each species as a function of temperature. The decreasing ratio of -NH3+ in chitosan and -OPO(O-)2 in beta-GP suggested reduced chitosan solubility along with a diminution of ionic interactions such as ionic bridging with increasing temperature. On the other hand, the increased ionic strength as a function of temperature, in the presence of beta-GP, enhanced screening of electrostatic repulsion and increased hydrophobic effect, resulting in favorable conditions for gel formation. Therefore, our study suggests that hydrophobic interactions and reduced solubility are the main driving force for chitosan gelation at high temperature in the presence of beta-GP.
Malaei, Reyhane; Ramezani, Amir M; Absalan, Ghodratollah
2018-05-04
A sensitive and reliable ultrasound-assisted dispersive liquid-liquid microextraction (UA-DLLME) procedure was developed and validated for extraction and analysis of malondialdehyde (MDA) as an important lipids-peroxidation biomarker in human plasma. In this methodology, to achieve an applicable extraction procedure, the whole optimization processes were performed in human plasma. To convert MDA into readily extractable species, it was derivatized to hydrazone structure-base by 2,4-dinitrophenylhydrazine (DNPH) at 40 °C within 60 min. Influences of experimental variables on the extraction process including type and volume of extraction and disperser solvents, amount of derivatization agent, temperature, pH, ionic strength, sonication and centrifugation times were evaluated. Under the optimal experimental conditions, the enhancement factor and extraction recovery were 79.8 and 95.8%, respectively. The analytical signal linearly (R 2 = 0.9988) responded over a concentration range of 5.00-4000 ng mL -1 with a limit of detection of 0.75 ng mL -1 (S/N = 3) in the plasma sample. To validate the developed procedure, the recommend guidelines of Food and Drug Administration for bioanalytical analysis have been employed. Copyright © 2018. Published by Elsevier B.V.
Saljooqi, Asma; Shamspur, Tayebeh; Mohamadi, Maryam; Mostafavi, Ali
2014-07-01
Here, task-specific ionic liquid solid-phase extraction is proposed for the first time. In this approach, a thiourea-functionalized ionic liquid is immobilized on the solid sorbent, multiwalled carbon nanotubes. These modified nanotubes packed into a solid-phase extraction column are used for the selective extraction and preconcentration of ultra-trace amounts of lead(II) from aqueous samples prior to electrothermal atomic absorption spectroscopy determination. The thiourea functional groups act as chelating agents for lead ions retaining them and so, give the selectivity to the sorbent. Elution of the retained ions can be performed using an acidic thiourea solution. The effects of experimental parameters including pH of the aqueous solution, type and amount of eluent, and the flow rates of sample and eluent solutions on the separation efficiency are investigated. The linear dependence of absorbance of lead on its concentration in the initial solution is in the range of 0.5-40.0 ng/mL with the detection limit of 0.13 ng/mL (3(Sb)/m, n = 10). The proposed method is applicable to the analysis of red lipstick, pine leaves, and water samples for their lead contents. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hydrogen fluoride capture by imidazolium acetate ionic liquid
NASA Astrophysics Data System (ADS)
Chaban, Vitaly
2015-04-01
Extraction of hydrofluoric acid (HF) from oils is a drastically important problem in petroleum industry, since HF causes quick corrosion of pipe lines and brings severe health problems to humanity. Some ionic liquids (ILs) constitute promising scavenger agents thanks to strong binding to polar compounds and tunability. PM7-MD simulations and hybrid density functional theory are employed here to consider HF capture ability of ILs. Discussing the effects and impacts of the cation and the anion separately and together, we evaluate performance of imidazolium acetate and outline systematic search guidelines for efficient adsorption and extraction of HF.
Paluch, Marian; Wojnarowska, Zaneta; Goodrich, Peter; Jacquemin, Johan; Pionteck, Jürgen; Hensel-Bielowka, Stella
2015-08-28
Electrical conductivity of the supercooled ionic liquid [C8MIM][NTf2], determined as a function of temperature and pressure, highlights strong differences in its ionic transport behavior between low and high temperature regions. To date, the crossover effect which is very well known for low molecular van der Waals liquids has been rarely described for classical ionic liquids. This finding highlights that the thermal fluctuations could be dominant mechanisms driving the dramatic slowing down of ion motions near Tg. An alternative way to analyze separately low and high temperature dc-conductivity data using a density scaling approach was then proposed. Based on which a common value of the scaling exponent γ = 2.4 was obtained, indicating that the applied density scaling is insensitive to the crossover effect. By comparing the scaling exponent γ reported herein along with literature data for other ionic liquids, it appears that γ decreases by increasing the alkyl chain length on the 1-alkyl-3-methylimidazolium-based ionic liquids. This observation may be related to changes in the interaction between ions in solution driven by an increase in the van der Waals type interaction by increasing the alkyl chain length on the cation. This effect may be related to changes in the ionic liquid nanostructural organization with the alkyl chain length on the cation as previously reported in the literature based on molecular dynamic simulations. In other words, the calculated scaling exponent γ may be then used as a key parameter to probe the interaction and/or self-organizational changes in solution with respect to the ionic liquid structure.
Molecular mobility, morphology, and ion conduction in ionomers for electroactive devices
NASA Astrophysics Data System (ADS)
Tudryn, Gregory J.
A sequential study of ion-containing polymers capable of ion solvation with varied ion content, dielectric constant, and counterions is presented in this dissertation in order to compare ion transport properties in ionomers with various ionic interactions. Structure-property relationships in these ion containing polymers are defined using x-ray scattering, rheology and dielectric spectroscopy, enabling the quantification of ion transport dynamics. Poly(ethylene oxide), (PEO) based ionomers are investigated in order to probe the relation between ion conduction and segmental relaxation, and copolymers of PEO and Poly(tetramethylene oxide), (PTMO) further develop an understanding of the trade-off between ion solvation and segmental dynamics. Ionomers with ionic liquid counterions probe diffuse charge interactions and steric effects on ion transport, and incorporation of ionic liquids into ionomer membranes such as Nafion provides desirable thermal and ion conducting properties which extend the use of such membranes for electroactive devices. PEO ionomers exhibit a strong relation between ionic conductivity and segmental dynamics, providing insight that the glass transition temperature, Tg, dominates the ion conduction mechanism. Increasing temperature induces aggregation of ionic groups as evidenced by the static dielectric constant and X-ray scattering as a function of temperature, revealing the contribution of ionic dipoles in the measured dielectric constant. The trade-off between ion solvation and fast polymer segmental dynamics are quantified in copolymer ionomers of PEO and lower Tg PTMO. While conducting ion content remains nearly unchanged, conductivity is lowered upon incorporation of PTMO, because the vast majority of the PTMO microphase separates from the PEO-rich microdomain that remains continuous and contributes most of the ion conduction. Dielectric constants and X-ray scattering show consistent changes with temperature that suggest a cascading aggregation process in Na ionomers as ionic dipoles thermally randomize and lower the measured dielectric constant of the medium, leading to further aggregation. We observe amplified microphase-separation through ionic groups preferentially solvated by PEO chains, as seen in block copolymers with added salt. Even at 25%PEO / 75%PTMO the ionomers have VFT temperature dependence of conducting ion mobility, meaning that the 25% PEO/ion microphase is still continuous A model is developed to describe the frequency dependent storage and loss modulus and the delay in Rouse motion due to ion association lifetime, as functions of ion content and molecular weight for our low molecular weight ionomers. The ion rearrangement relaxation in dielectric spectroscopy is clearly the ion association lifetime that controls terminal dynamics in linear viscoelasticity, allowing a simple sticky Rouse model, using the most-probable distribution based on NMR Mn, to fully describe master curves of the frequency dependent storage and loss modulus. Using insight from ionic interaction strength, ionic liquids are used as counterions, effectively plasticizing the ionomers without added solvent. Ionic interactions were weakened with increasing counterion size, and with modification of cations using ether-oxygen, promoting self-solvation, which increases conducting ion density by an order of magnitude. Room temperature ionic liquids were subsequently used in combination with NafionRTM membranes as electroactive substrates to correlate ion transport to morphology as a function of volume fraction of ionic liquid. This study illuminated the critical volume uptake of ionic liquid in Nafion, identifying percolation of ionic pathways and a significant increase in dielectric constant at low frequencies, indicating an increase in the number density of ions capable of polarizing at the electrode surface. Consequently, the fundamental information obtained about the structure-property relations of ionomers can be used to predict and design advanced ion-containing polymers to be used in battery membranes and a variety of electroactive devices, including actuators and electromechanical sensors.
Lin, Xinrong; Chapman Varela, Jennifer; Grinstaff, Mark W
2016-12-20
The chemical instability of the traditional electrolyte remains a safety issue in widely used energy storage devices such as Li-ion batteries. Li-ion batteries for use in devices operating at elevated temperatures require thermally stable and non-flammable electrolytes. Ionic liquids (ILs), which are non-flammable, non-volatile, thermally stable molten salts, are an ideal replacement for flammable and low boiling point organic solvent electrolytes currently used today. We herein describe the procedures to: 1) synthesize mono- and di-phosphonium ionic liquids paired with chloride or bis(trifluoromethane)sulfonimide (TFSI) anions; 2) measure the thermal properties and stability of these ionic liquids by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA); 3) measure the electrochemical properties of the ionic liquids by cyclic voltammetry (CV); 4) prepare electrolytes containing lithium bis(trifluoromethane)sulfonamide; 5) measure the conductivity of the electrolytes as a function of temperature; 6) assemble a coin cell battery with two of the electrolytes along with a Li metal anode and LiCoO2 cathode; and 7) evaluate battery performance at 100 °C. We additionally describe the challenges in execution as well as the insights gained from performing these experiments.
Petersen, Jesper; Poulsen, Lena; Birgens, Henrik; Dufva, Martin
2009-01-01
The development of DNA microarray assays is hampered by two important aspects: processing of the microarrays is done under a single stringency condition, and characteristics such as melting temperature are difficult to predict for immobilized probes. A technical solution to these limitations is to use a thermal gradient and information from melting curves, for instance to score genotypes. However, application of temperature gradients normally requires complicated equipment, and the size of the arrays that can be investigated is restricted due to heat dissipation. Here we present a simple microfluidic device that creates a gradient comprising zones of defined ionic strength over a glass slide, in which each zone corresponds to a subarray. Using this device, we demonstrated that ionic strength gradients function in a similar fashion as corresponding thermal gradients in assay development. More specifically, we noted that (i) the two stringency modulators generated melting curves that could be compared, (ii) both led to increased assay robustness, and (iii) both were associated with difficulties in genotyping the same mutation. These findings demonstrate that ionic strength stringency buffers can be used instead of thermal gradients. Given the flexibility of design of ionic gradients, these can be created over all types of arrays, and encompass an attractive alternative to temperature gradients, avoiding curtailment of the size or spacing of subarrays on slides associated with temperature gradients. PMID:19277213
Petersen, Jesper; Poulsen, Lena; Birgens, Henrik; Dufva, Martin
2009-01-01
The development of DNA microarray assays is hampered by two important aspects: processing of the microarrays is done under a single stringency condition, and characteristics such as melting temperature are difficult to predict for immobilized probes. A technical solution to these limitations is to use a thermal gradient and information from melting curves, for instance to score genotypes. However, application of temperature gradients normally requires complicated equipment, and the size of the arrays that can be investigated is restricted due to heat dissipation. Here we present a simple microfluidic device that creates a gradient comprising zones of defined ionic strength over a glass slide, in which each zone corresponds to a subarray. Using this device, we demonstrated that ionic strength gradients function in a similar fashion as corresponding thermal gradients in assay development. More specifically, we noted that (i) the two stringency modulators generated melting curves that could be compared, (ii) both led to increased assay robustness, and (iii) both were associated with difficulties in genotyping the same mutation. These findings demonstrate that ionic strength stringency buffers can be used instead of thermal gradients. Given the flexibility of design of ionic gradients, these can be created over all types of arrays, and encompass an attractive alternative to temperature gradients, avoiding curtailment of the size or spacing of subarrays on slides associated with temperature gradients.
Shekibi, Youssof; Rüther, Thomas; Huang, Junhua; Hollenkamp, Anthony F
2012-04-07
Replacement of volatile and combustible electrolytes in conventional lithium batteries is desirable for two reasons: safety concerns and increase in specific energy. In this work we consider the use of an ionic organic plastic crystal material (IOPC), N-ethyl-N-methylpyrrolidinium tetrafluoroborate, [C2mpyr][BF(4)], as a solid-state electrolyte for lithium battery applications. The effect of inclusion of 1 to 33 mol% lithium tetrafluoroborate, LiBF(4), into [C2mpyr][BF(4)] has been investigated over a wide temperature range by differential scanning calorimetry (DSC), impedance spectroscopy, cyclic voltammetry and cycling of full Li|LiFePO(4) batteries. The increases in ionic conductivity by orders of magnitude observed at higher temperature are most likely associated with an increase in Li ion mobility in the highest plastic phase. At concentrations >5 mol% LiBF(4) the ionic conductivity of these solid-state composites is comparable to the ionic conductivity of room temperature ionic liquids. Galvanostatic cycling of Li|Li symmetrical cells showed that the reversibility of the lithium metal redox reaction at the interface of this plastic crystal electrolyte is sufficient for lithium battery applications. For the first time we demonstrate an all solid state lithium battery incorporating solid electrolytes based on IOPC as opposed to conventional flammable organic solvents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El Moudane, M., E-mail: m.elmoudane@gmail.com; El Maniani, M.; Sabbar, A.
2015-12-15
Highlights: • Results of ionic conductivities of Li{sub 3}PO{sub 4}–Pb{sub 3}(PO{sub 4}){sub 2}–BiPO{sub 4} phosphate glasses. • Determination of glass transition temperature using DSC method. • Study of temperature and frequency on ionic conductivity of Li{sub 3}PO{sub 4}–Pb{sub 3}(PO{sub 4}){sub 2}–BiPO{sub 4} phosphate glasses. - Abstract: Lithium–Lead–Bismuth phosphates glasses having, a composition 30Li{sub 3}PO{sub 4}–(70 − x)Pb{sub 3}(PO{sub 4}){sub 2}–xBiPO{sub 4} (45 ≤ x ≤ 60 mol%) were prepared by using the melt quenching method 1000 °C. The thermal stability of theses glasses increases with the substitution of Bi{sub 2}O{sub 3} with PbO. The ionic conductivity of all compositions havemore » been measured over a wide temperature (200–500 °C) and frequency range (1–106 Hz). The ionic conductivity data below and above T{sub g} follows Arrhenius and Vogel–Tamman–Fulcher (VTF) relationship, respectively. The activation energies are estimated and discussed. The dependence in frequency of AC conductivity is found to obey Jonscher’s relation.« less
Sun, Liyuan; Morales-Collazo, Oscar; Xia, Han; Brennecke, Joan F
2016-06-30
A series of room-temperature ionic liquids (ILs) composed of triethyl(alkyl)phosphonium cations paired with three different aprotic heterocyclic anions (AHAs) (alkyl = butyl ([P2224](+)) and octyl ([P2228](+))) were prepared to investigate the effect of cationic alkyl chain length on transport properties. The transport properties and density of these ILs were measured from 283.15 to 343.15 K at ambient pressure. The dependence of the transport properties (viscosity, ionic conductivity, diffusivity, and molar conductivity) on temperature can be described by the Vogel-Fulcher-Tamman (VFT) equation. The ratio of the molar conductivity obtained from the molar concentration and ionic conductivity measurements to that calculated from self-diffusion coefficients (measured by pulsed gradient spin-echo nuclear magnetic resonance spectroscopy) using the Nernst-Einstein equation was used to quantify the ionicity of these ILs. The molar conductivity ratio decreases with increasing number of carbon atoms in the alkyl chain, indicating that the reduced Coulombic interactions resulting from lower density are more than balanced by the increased van der Waals interactions between the alkyl chains. The results of this study may provide insight into the design of ILs with enhanced dynamics that may be suitable as electrolytes in lithium ion batteries and other electrochemical applications.
The presence of functional groups key for biodegradation in ionic liquids: effect on gas solubility.
Deng, Yun; Morrissey, Saibh; Gathergood, Nicholas; Delort, Anne-Marie; Husson, Pascale; Costa Gomes, Margarida F
2010-03-22
The effect of the incorporation of either ester or ester and ether functions into the side chain of an 1-alkyl-3-methylimidazolium cation on the physico-chemical properties of ionic liquids containing bis(trifluoromethylsulfonyl)imide or octylsulfate anions is studied. It is believed that the introduction of an ester function into the cation of the ionic liquids greatly increases their biodegradability. The density of three such ionic liquids is measured as a function of temperature, and the solubility of four gases-carbon dioxide, ethane, methane, and hydrogen-is determined between 303 K and 343 K and at pressures close to atmospheric level. Carbon dioxide is the most soluble gas, followed by ethane and methane; the mole fraction solubilities vary from 1.8 x 10(-3) to 3.7 x 10(-2). These solubilities are of the same order of magnitude as those determined for alkylimidazolium-based ionic liquids. The chemical modification of the alkyl side chain does not result in a significant change of the solvation properties of the ionic liquid. All of the solubilities decrease with increasing temperature, corresponding to an exothermal solvation process. From the variation of this property with temperature, the thermodynamic functions of solvation (Gibbs energy, enthalpy, and entropy) are calculated and provide information about the solute-solvent interactions and the molecular structure of the solutions.
Solid state ionics: a Japan perspective
NASA Astrophysics Data System (ADS)
Yamamoto, Osamu
2017-12-01
The 70-year history of scientific endeavor of solid state ionics research in Japan is reviewed to show the contribution of Japanese scientists to the basic science of solid state ionics and its applications. The term 'solid state ionics' was defined by Takehiko Takahashi of Nagoya University, Japan: it refers to ions in solids, especially solids that exhibit high ionic conductivity at a fairly low temperature below their melting points. During the last few decades of exploration, many ion conducting solids have been discovered in Japan such as the copper-ion conductor Rb4Cu16I7Cl13, proton conductor SrCe1-xYxO3, oxide-ion conductor La0.9Sr0.9Ga0.9Mg0.1O3, and lithium-ion conductor Li10GeP2S12. Rb4Cu16I7Cl13 has a conductivity of 0.33 S cm-1 at 25 °C, which is the highest of all room temperature ion conductive solid electrolytes reported to date, and Li10GeP2S12 has a conductivity of 0.012 S cm-1 at 25 °C, which is the highest among lithium-ion conductors reported to date. Research on high-temperature proton conducting ceramics began in Japan. The history, the discovery of novel ionic conductors and the story behind them are summarized along with basic science and technology.
Elucidating the correlation between morphology and ion dynamics in polymerized ionic liquids.
NASA Astrophysics Data System (ADS)
Heres, Maximilian; Cosby, Tyler; Iacob, Ciprian; Runt, James; Benson, Roberto; Liu, Hongjun; Paddison, Stephen; Sangoro, Joshua
Charge transport and dynamics are investigated for a series of poly-ammonium and poly-imidazolium-based polymerized ionic liquids (polyIL) with a common bis(trifluoromethylsulfonyl)imide anion using broadband dielectric spectroscopy and temperature modulated differential scanning calorimetry. A significant enhancement of the Tg independent ionic conductivity is observed for ammonium based polyIL with shorter pendant groups, in comparison to imidazolium based systems. These results emphasize the importance of polymer backbone spacing as well as counter-ion size on ionic conductivity in polymerized ionic liquids. NSF DMR 1508394.
Ionic liquid electrolytes for dye-sensitized solar cells.
Gorlov, Mikhail; Kloo, Lars
2008-05-28
The potential of room-temperature molten salts (ionic liquids) as solvents for electrolytes for dye-sensitized solar cells has been investigated during the last decade. The non-volatility, good solvent properties and high electrochemical stability of ionic liquids make them attractive solvents in contrast to volatile organic solvents. Despite this, the relatively high viscosity of ionic liquids leads to mass-transport limitations. Here we review recent developments in the application of different ionic liquids as solvents or components of liquid and quasi-solid electrolytes for dye-sensitized solar cells.
Zhang, Liyuan; Wang, Changyuan; Li, Zuotong; Zhao, Changjiang; Zhang, Hanqi; Zhang, Dongjie
2018-04-15
Ionic liquid-based matrix solid phase dispersion-solvent flotation coupled with high performance liquid chromatography was developed for the determination of the acetanilide herbicides, including metazachlor, propanil, alachlor, propisochlor, pretilachlor, and butachlor in rice samples. Some experimental parameters, including the type of dispersant, the mass ratio of dispersant to sample, pH of sample solution, the type of extraction solvent, the type of ionic liquid, flotation time, and flow rate of N 2 were optimized. The average recoveries of the acetanilide herbicides at spiked concentrations of 50, 125, and 250 µg/kg ranged from 89.4% to 108.7%, and relative standard deviations were equal to or lower than 7.1%, the limits of quantification were in the range of 38.0 to 84.7 µg/kg. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zaid, Hayyiratul Fatimah Mohd; Kait, Chong Fai; Mutalib, Mohamed Ibrahim Abdul
2016-11-01
A series of metal doped TiO2 namely Fe/TiO2, Cu/TiO2 and Cu-Fe/TiO2 were synthesized and characterized, to be used as a photocatalyst in the integrated photooxidative extractive deep desulfurization for model oil (dodecane) and diesel fuel. The order of the photocatalytic activity was Cu-Fe/TiO2 followed by Cu/TiO2 and then Fe/TiO2. Cu-Fe/TiO2 was an effective photocatalyst for sulfur conversion at ambient atmospheric pressure. Hydrogen peroxide was used as the source of oxidant and eutectic-based ionic liquid as the extractant. Sulfur conversion in model oil reached 100%. Removal of sulfur from model oil was done by two times extraction with a removal of 97.06% in the first run and 2.94% in the second run.
Development of deep eutectic solvents applied in extraction and separation.
Li, Xiaoxia; Row, Kyung Ho
2016-09-01
Deep eutectic solvents, as an alternative to ionic liquids, have greener credentials than ionic liquids, and have attracted considerable attention in related chemical research. Deep eutectic solvents have attracted increasing attention in chemistry for the extraction and separation of various target compounds from natural products. This review highlights the preparation of deep eutectic solvents, unique properties of deep eutectic solvents, and synthesis of deep-eutectic-solvent-based materials. On the other hand, application in the extraction and separation of deep eutectic solvents is also included in this report. In this paper, the available data and references in this field are reviewed to summarize the applications and developments of deep eutectic solvents. Based on the development of deep eutectic solvents, an exploitation of new deep eutectic solvents and deep eutectic solvents-based materials is expected to diversify into extraction and separation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Benzyl-Functionalized Room Temperature Ionic Liquids for CO2/N2 Separation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahurin, Shannon Mark; Dai, Thomas N; Yeary, Joshua S
2011-01-01
In this work, three classes of room temperature ionic liquids (RTILs), including imidazolium, pyridinium, and pyrrolidinium ionic liquids with a benzyl group appended to the cation, were synthesized and tested for their performance in separating CO{sub 2} and N{sub 2}. All RTILs contained the bis(trifluoromethylsulfonyl)imide anion, permitting us to distinguish the impact of the benzyl moiety attached to the cation on gas separation performance. In general, the attachment of the benzyl group increased the viscosity of the ionic liquid compared with the unfunctionalized analogs and decreased the CO{sub 2} permeability. However, all of the benzyl-modified ionic liquids exhibited enhanced CO{submore » 2}/N{sub 2} selectivities compared with alkyl-based ionic liquids, with values ranging from 22.0 to 33.1. In addition, CO{sub 2} solubilities in the form of Henry's constants were also measured and compared with unfunctionalized analogs. Results of the membrane performance tests and CO{sub 2} solubility measurements demonstrate that the benzyl-functionalized RTILs have significant potential for use in the separation of carbon dioxide from combustion products.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, S.; Ghosh, A., E-mail: sspag@iacs.res.in
We have studied ionic conductivity and dielectric permittivity of PEO-LiClO{sub 4} solid polymer electrolyte plasticized with propylene carbonate. Differential scanning calorimetry and X-ray diffraction studies confirm minimum volume fraction of crystalline phase for the polymer electrolyte with 40 wt. % propylene carbonate. The ionic conductivity exhibits a maximum for the same composition. The temperature dependence of the ionic conductivity has been well interpreted using Vogel-Tamman-Fulcher equation. Ion-ion interactions in the polymer electrolytes have been studied using Raman spectra and the concentrations of free ions, ion-pairs and ion-aggregates have been determined. The ionic conductivity increases due to the increase of freemore » ions with the increase of propylene carbonate content. But for higher content of propylene carbonate, the ionic conductivity decreases due to the increase of concentrations of ion-pairs and ion-aggregates. To get further insights into the ion dynamics, the experimental data for the complex dielectric permittivity have been studied using Havriliak–Negami function. The variation of relaxation time with temperature obtained from this formalism follows Vogel-Tamman-Fulcher equation similar to the ionic conductivity.« less
Albishri, Hassan M; El-Hady, Deia Abd
2014-01-01
Acrylamide in food has drawn worldwide attention since 2002 due to its neurotoxic and carcinogenic effects. These influences brought out the dual polar and non-polar characters of acrylamide as they enabled it to dissolve in aqueous blood medium or penetrate the non-polar plasma membrane. In the current work, a simple HPLC/UV system was used to reveal that the penetration of acrylamide in non-polar phase was stronger than its dissolution in polar phase. The presence of phosphate salts in the polar phase reduced the acrylamide interaction with the non-polar phase. Furthermore, an eco-friendly and costless coupling of the HPLC/UV with ionic liquid based ultrasonic assisted extraction (ILUAE) was developed to determine the acrylamide content in food samples. ILUAE was proposed for the efficient extraction of acrylamide from bread and potato chips samples. The extracts were obtained by soaking of potato chips and bread samples in 1.5 mol L(-1) 1-butyl-3-methylimmidazolium bromide (BMIMBr) for 30.0 and 60.0 min, respectively and subsequent chromatographic separation within 12.0 min using Luna C18 column and 100% water mobile phase with 0.5 mL min(-1) under 25 °C column temperature at 250 nm. The extraction and analysis of acrylamide could be achieved within 2h. The mean extraction efficiency of acrylamide showed adequate repeatability with relative standard deviation (RSD) of 4.5%. The limit of detection and limit of quantitation were 25.0 and 80.0 ng mL(-1), respectively. The accuracy of the proposed method was tested by recovery in seven food samples giving values ranged between 90.6% and 109.8%. Therefore, the methodology was successfully validated by official guidelines, indicating its reliability to be applied to analysis of real samples, proven to be useful for its intended purpose. Moreover, it served as a simple, eco-friendly and costless alternative method over hitherto reported ones. © 2013 Elsevier B.V. All rights reserved.
An unusual slowdown of fast diffusion in a room temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chathoth,; Mamontov, Eugene; Fulvio, Pasquale F
2013-01-01
Using quasielastic neutron scattering in the temperature range from 290 to 350 K, we show that the diffusive motions in a room temperature ionic liquid [H2NC(dma)2][BETI] become faster for a fraction of cations when the liquid is confined in a mesoporous carbon. This applies to both the localized and long-range translational diffusive motions of the highly mobile cations, although the former exhibit an unusual trend of slowing-down as the temperature is increased, until the localized diffusivity is reduced to the bulk ionic liquid value at a temperature of 350 K.
Jagannath, Badrinath; Muthukumar, Sriram; Prasad, Shalini
2018-08-03
We have investigated the role of kosmotropic anionic moieties and chaotropic cationic moieties of room temperature hydrophilic ionic liquids in enhancing the biosensing performance of affinity based immunochemical biosensors in human sweat. Two ionic liquids, 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM[BF 4 ]) and choline dihydrogen phosphate (Choline[DHP]) were investigated in this study with Choline[DHP] being more kosmotropic in nature having a more protein stabilizing effect based on the hofmeister series. Non-faradaic interfacial charge transfer has been employed as the mechanism for evaluating the formation and the biosensing of capture probe antibodies in room temperature ionic liquids (RTILs)/aqueous human sweat interface. The charge of the ionic moieties were utilized to form compact electrical double layers around the antibodies for enhancing the stability of the antibody capture probes, which was evaluated through zeta potential measurements. The zeta potential measurements indicated stability of antibodies due to electrostatic repulsion of the RTIL charged moieties encompassing the antibodies, thus preventing any aggregation. Here, we report for the first time of non-faradaic electrochemical impedance spectroscopy equivalent circuit model analysis for analyzing and interpreting affinity based biosensing at hybrid electrode/ionic liquid-aqueous sweat buffer interface guided by the choice of the ionic liquid. Interleukin-6 (IL-6) and cortisol two commonly occurring biomarkers in human sweat were evaluated using this method. The limit of detection (LOD) obtained using both ionic liquids for IL-6 was 0.2 pg mL -1 with cross-reactivity studies indicating better performance of IL-6 detection using Choline[DHP] and no response to cross-reactive molecule. The LOD of 0.1 ng/mL was achieved for cortisol and the cross-reactivity studies indicated that cortisol antibody in BMIM[BF 4 ] did not show any signal response to cross-reactive molecules. Furthermore, improved sensitivity and LOD was achieved using ionic liquids as compared to capture probes in aqueous buffer. Copyright © 2018 Elsevier B.V. All rights reserved.
Shell structures in aluminum nanocontacts at elevated temperatures
2012-01-01
Aluminum nanocontact conductance histograms are studied experimentally from room temperature up to near the bulk melting point. The dominant stable configurations for this metal show a very early crossover from shell structures at low wire diameters to ionic subshell structures at larger diameters. At these larger radii, the favorable structures are temperature-independent and consistent with those expected for ionic subshell (faceted) formations in face-centered cubic geometries. When approaching the bulk melting temperature, these local stability structures become less pronounced as shown by the vanishing conductance histogram peak structure. PMID:22325572
Ionic Ckonductivity and Glass Transition of Phosphoric Acids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yangyang; Lane, Nathan A; Sun, Che-Nan
2013-01-01
Here we report the low-temperature dielectric and viscoelastic properties of phosphoric acids in the range of H2O:P2O5 1.5 5. Both dielectric and viscosity measurements allow us to determine the glass-transition temperatures of phosphoric acids. The obtained glass-transition temperatures are in good agreement with previous differential scanning calorimetric measurements. Moreover, our analysis reveals moderate decoupling of ionic conductivity from structural relaxation in the vicinity of the glass transition.
Ionic conductivity and glass transition of phosphoric acids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yangyang; Lane, Nathan A; Sun, Che-Nan
2013-01-01
Here we report the low-temperature dielectric and viscoelastic properties of phosphoric acids in the range of H2O:P2O5 1.5 5. Both dielectric and viscosity measurements allow us to determine the glass-transition temperatures of phosphoric acids. The obtained glass-transition temperatures are in good agreement with previous differential scanning calorimetric measurements. Moreover, our analysis reveals moderate decoupling of ionic conductivity from structural relaxation in the vicinity of the glass transition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samara, G.A.
1981-01-15
Detailed studies of the pressure and temperature dependences of the ionic conductivities of TlCl and TlBr have allowed determination of the lattice volume relaxations and energies associated with the formation and motion of Schottky defects in these crystals. The volume relaxations deduced from the conductivity are found to be comparable in magnitude with values calculated from the strain energy model and a dynamical model. The association energy of Tl/sup +/ vacancies and divalent impurities was also determined for TlBr. A particularly important result is the finding that for these CsCl-type crystals the relaxation of the lattice associated with vacancy formationmore » is outward. Earlier studies on ionic crystals having the NaCl structure have yielded a similar result. This outward relaxation thus appears to be a general result for ionic crystals of both the NaCl and CsCl types (and possibly other ionic lattice types), in disagreement with earlier theoretical calculations which show that the relaxation should be inward for all models of ionic vacancies investigated. The conductivity of TlI was studied in both the (low temperature and pressure) orthorhombic phase as well as in the cubic CsCl-type phase. There is a large electronic contribution to the conductivity in the orthorhombic phase. An interesting result for all three materials is the observation in the cubic phase of a pressure-induced transition from ionic to electronic conduction. This is in qualitative agreement with what is known about the pressure dependences of the electronic structure of these materials.« less
Application of ionic liquid for extraction and separation of bioactive compounds from plants.
Tang, Baokun; Bi, Wentao; Tian, Minglei; Row, Kyung Ho
2012-09-01
In recent years, ionic liquids (ILs), as green and designer solvents, have accelerated research in analytical chemistry. This review highlights some of the unique properties of ILs and provides an overview of the preparation and application of IL or IL-based materials to extract bioactive compounds in plants. IL or IL-based materials in conjunction with liquid-liquid extraction (LLE), ultrasonic-assisted extraction (UAE), microwave-assisted extraction (MAE), high performance liquid chromatography (HPLC) and solid-phase extraction (SPE) analytical technologies etc., have been applied successfully to the extraction or separation of bioactive compounds from plants. This paper reviews the available data and references to examine the advantages of IL and IL-based materials in these applications. In addition, the main target compounds reviewed in this paper are bioactive compounds with multiple therapeutic effects and pharmacological activities. Based on the importance of the targets, this paper reviews the applications of ILs, IL-based materials or co-working with analytical technologies. The exploitation of new applications of ILs on the extraction of bioactive compounds from plant samples is expected to increase. Copyright © 2012 Elsevier B.V. All rights reserved.
High temperature lithium cells with solid polymer electrolytes
Yang, Jin; Eitouni, Hany Basam; Singh, Mohit
2017-03-07
Electrochemical cells that use electrolytes made from new polymer compositions based on poly(2,6-dimethyl-1,4-phenylene oxide) and other high-softening-temperature polymers are disclosed. These materials have a microphase domain structure that has an ionically-conductive phase and a phase with good mechanical strength and a high softening temperature. In one arrangement, the structural block has a softening temperature of about 210.degree. C. These materials can be made with either homopolymers or with block copolymers. Such electrochemical cells can operate safely at higher temperatures than have been possible before, especially in lithium cells. The ionic conductivity of the electrolytes increases with increasing temperature.
Sobhi, Hamid Reza; Yamini, Yadollah; Esrafili, Ali; Abadi, Reza Haji Hosseini Baghdad
2008-07-04
A simple, rapid and efficient microextraction method for the extraction and determination of some fat-soluble vitamins (A, D2, D3) in aqueous samples was developed. For the first time orthogonal array designs (OADs) were employed to screen the liquid-phase microextraction (LPME) method in which few microliters of 1-undecanol were delivered to the surface of the aqueous sample and it was agitated for a selected time. Then sample vial was cooled by inserting it into an ice bath for 5 min. The solidified solvent was transferred into a suitable vial and immediately melted. Then, the extract was directly injected into a high-performance liquid chromatography (HPLC) for analysis. Several factors affecting the microextraction efficiency such as sample solution temperature, stirring speed, volume of the organic solvent, ionic strength and extraction time were investigated and screened using an OA16 (4(5)) matrix. Under the best conditions (temperature, 55 degrees C; stirring speed, 1000 rpm; the volume of extracting solvent, 15.0 microL; no salt addition and extraction time, 60 min), detection limits of the method were in the range of 1.0-3.5 microgL(-1). The relative standard deviations (RSDs) to determine the vitamins at microg L(-1) levels by applying the proposed method varied in the range of 5.1-10.7%. Dynamic linear ranges of 5-500 mugL(-1) with good correlation coefficients (0.9984
Biological Activity of Ionic Liquids and Their Application in Pharmaceutics and Medicine.
Egorova, Ksenia S; Gordeev, Evgeniy G; Ananikov, Valentine P
2017-05-24
Ionic liquids are remarkable chemical compounds, which find applications in many areas of modern science. Because of their highly tunable nature and exceptional properties, ionic liquids have become essential players in the fields of synthesis and catalysis, extraction, electrochemistry, analytics, biotechnology, etc. Apart from physical and chemical features of ionic liquids, their high biological activity has been attracting significant attention from biochemists, ecologists, and medical scientists. This Review is dedicated to biological activities of ionic liquids, with a special emphasis on their potential employment in pharmaceutics and medicine. The accumulated data on the biological activity of ionic liquids, including their antimicrobial and cytotoxic properties, are discussed in view of possible applications in drug synthesis and drug delivery systems. Dedicated attention is given to a novel active pharmaceutical ingredient-ionic liquid (API-IL) concept, which suggests using traditional drugs in the form of ionic liquid species. The main aim of this Review is to attract a broad audience of chemical, biological, and medical scientists to study advantages of ionic liquid pharmaceutics. Overall, the discussed data highlight the importance of the research direction defined as "Ioliomics", studies of ions in liquids in modern chemistry, biology, and medicine.
NASA Astrophysics Data System (ADS)
Misenan, M. S. M.; Isa, M. I. N.; Khiar, A. S. A.
2018-05-01
In this study, blended polymer electrolyte of methylcellulose (MC)/chitosan (CS) was prepared with different weight percentage of 1-butyl-3-methylimidazolium bis(trifluoromethyl sulfonyl) imide (BMIMTFSI) which acts as ion donor. This polymer blend was prepared by solution casting technique. The micro structure was observed by Field Emission Scanning Electron Microscopy (FESEM) where the multilayer could possibly be ascribed to the limited chain mobility. Sample having 60 wt% CS: 40 wt% MC was determined to have the most amorphous morphology extracted using deconvoluted data from x-ray Diffractography (XRD). Fourier Transform Infrared Spectroscopy (FTIR) peaks analysis shows the significant shift indicates complexation between ionic liquid and polymer backbone. The film was also characterized by impedance spectroscopy to measure its ionic conductivity. Samples with 45% of BMITFSI exhibit the highest conductivity of (1.51 ± 0.13) × 10‑6 S cm‑1 at ambient. Conductivity at elevated temperature was also studied, and the electrolytes obeys the Arrhenius behaviour. The conduction mechanism was best presented by small polaron hopping model.
Ionic liquids for metal extraction from chalcopyrite: solid, liquid and gas phase studies.
Kuzmina, O; Symianakis, E; Godfrey, D; Albrecht, T; Welton, T
2017-08-16
We studied leaching of Cu and Fe from naturally occurring chalcopyrite ore using aqueous solutions of ionic liquids (ILs) based on imidazolium and ethylammonium cations and hydrogensulfate, nitrate, acetate or dicyanamide anions. Liquid, solid and gas phases of the leaching systems were characterised. We have shown that nonoxidative leaching is greatly dependant not only on temperature and pH, but on the anion species of the IL. Solutions of 1-butylimidazolium hydrogen sulfate exhibited the best leaching performance among hydrogen sulphate ILs. We have suggested that the formation of an oxide layer in some ILs may be responsible for a reduced leaching ability. The analysis of the gas phase showed the production of CO 2 and CS 2 in all leached samples. Our results suggested that the CS 2 produced upon leaching could be responsible for decreasing the sulfur, but not oxide, layer on the surface of chalcopyrite samples and therefore more efficient leaching. This is the first study, to our knowledge, to provide a systematic comparison of the leaching performance of ILs composed of different anions and cations and without added oxidants.
Arain, Salma Aslam; Kazi, Tasneem Gul; Afridi, Hassan Imran; Arain, Mariam Shahzadi; Panhwar, Abdul Haleem; Khan, Naeemullah; Baig, Jameel Ahmed; Shah, Faheem
2016-04-01
A simple and rapid dispersive liquid-liquid microextraction procedure based on ionic liquid assisted microemulsion (IL-µE-DLLME) combined with cloud point extraction has been developed for preconcentration copper (Cu(2+)) in drinking water and serum samples of adolescent female hepatitits C (HCV) patients. In this method a ternary system was developed to form microemulsion (µE) by phase inversion method (PIM), using ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([C4mim][PF6]) and nonionic surfactant, TX-100 (as a stabilizer in aqueous media). The Ionic liquid microemulsion (IL-µE) was evaluated through visual assessment, optical light microscope and spectrophotometrically. The Cu(2+) in real water and aqueous acid digested serum samples were complexed with 8-hydroxyquinoline (oxine) and extracted into IL-µE medium. The phase separation of stable IL-µE was carried out by the micellar cloud point extraction approach. The influence of of different parameters such as pH, oxine concentration, centrifugation time and rate were investigated. At optimized experimental conditions, the limit of detection and enhancement factor were found to be 0.132 µg/L and 70 respectively, with relative standard deviation <5%. In order to validate the developed method, certified reference materials (SLRS-4 Riverine water) and human serum (Sero-M10181) were analyzed. The resulting data indicated a non-significant difference in obtained and certified values of Cu(2+). The developed procedure was successfully applied for the preconcentration and determination of trace levels of Cu(2+) in environmental and biological samples. Copyright © 2015 Elsevier Inc. All rights reserved.
Zhu, Pingting; Long, Guoyu; Ni, Jinren; Tong, Meiping
2009-08-01
The deposition kinetics of extracellular polymeric substances (EPS) on silica surfaces were examined in both monovalent and divalent solutions under a variety of environmentally relevant ionic strength and pH conditions by employing a quartz crystal microbalance with dissipation (DCM-D). Soluble EPS (SEPS) and bound EPS (BEPS) were extracted from four bacterial strains with different characteristics. Maximum favorable deposition rates (k(fa)) were observed for all EPS at low ionic strengths in both NaCl and CaCl2 solutions. With the increase of ionic strength, k(fa) decreased due to the simultaneous occurrence of EPS aggregation in solutions. Deposition efficiency (alpha; the ratio of deposition rates obtained under unfavorable versus corresponding favorable conditions) for all EPS increased with increasing ionic strength in both NaCl and CaCl2 solutions, which agreed with the trends of zeta potentials and was consistent with the classic Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Comparison of alpha for SEPS and BEPS extracted from the same strain showed that the trends of alpha did not totally agree with trends of zeta potentials, indicating the deposition kinetics of EPS on silica surfaces were not only controlled by DLVO interactions, but also non-DLVO forces. Close comparison of alpha for EPS extracted from different sources showed alpha increased with increasing proteins to polysaccharides ratio. Subsequent experiments for EPS extracted from the same strain but with different proteins to polysaccharides ratios and from activated sludge also showed that alpha were largest for EPS with greatest proteins to polysaccharides ratio. Additional experiments for pure protein and solutions with different pure proteins to pure saccharides ratios further corroborated that larger proteins to polysaccharides ratio resulted in greater EPS deposition.
The effect of DC voltage polarity on ionic wind in ambient air for cooling purposes
NASA Astrophysics Data System (ADS)
Chen, She; van den Berg, R. G. W.; Nijdam, S.
2018-05-01
Gas flows can be induced by gas discharges like DC coronas because neutral molecules gain momentum by ion-neutral collisions. This can be used for active cooling and has advantages over mechanical fans. We investigate ionic wind by a DC corona discharge under different conditions with an emphasis on the effects of voltage polarity and the transition between different discharge regimes. We also consider the gas temperature of a DC corona which is important when it is to be used for cooling purposes. Although DC coronas are usually characterized as low temperature plasmas, gas heating can have a significant impact on flow generation, especially at higher operating voltages. In this paper, a 5–20 kV DC voltage of positive and negative polarity is applied to a needle–cylinder electrode. The ionic wind velocity at the exit of the cylinder electrode is measured by hot wire anemometry and the emission spectrum is used to study the gas temperature. It is found that the flow velocity induced by positive coronas is higher than that by negative coronas for voltages above 10–15 kV, which is also demonstrated by a phenomenological EHD force model. Furthermore, a heated column is observed by Schlieren technique for both voltage polarities. An improved self-consistent ionic wind model considering heat transfer is built to study the temperature distribution. The simulation results indicate that the gas flow velocity is lower on the symmetry axis when the temperature gradient is taken into account, something which is usually ignored in ionic wind simulations.
NASA Astrophysics Data System (ADS)
Givan, A.; Loewenschuss, A.
1990-12-01
Raman spectra of zero-pressure-formed N2O4 solid layers are reported. Sample composition is extremely dependent upon deposition conditions. For ordered and pure solid N2O4(D2h), produced by slow NO2 deposition, temperature cycling over the range in which the solid is stable shows no significant spectral changes and does not result in autoionization, as argued in a previous Raman study. Fast and low temperature deposited layers are amorphous and multicomponent, showing bands of disordered and isomeric molecular N2O4 and of ionic NO + NO3, nitrosonium nitrate. For nitrosonium nitrate, three solid modifications can be characterized spectroscopically. In the amorphous phase, a light induced, temperature dependent, reversible transition between molecular and ionic nitrogen tetroxide is observed below 150 K. The paths leading to nitrosonium nitrate formation are examined.
New membranes based on ionic liquids for PEM fuel cells at elevated temperatures
NASA Astrophysics Data System (ADS)
Ye, H.; Huang, J.; Xu, J. J.; Kodiweera, N. K. A. C.; Jayakody, J. R. P.; Greenbaum, S. G.
Proton exchange membrane (PEM) fuel cells operating at elevated temperature, above 120 °C, will yield significant benefits but face big challenges for the development of suitable PEMs. The objectives of this research are to demonstrate the feasibility of the concept and realize [acid/ionic liquid/polymer] composite gel-type membranes as such PEMs. Novel membranes consisting of anhydrous proton solvent H 3PO 4, the protic ionic liquid PMIH 2PO 4, and polybenzimidazole (PBI) as a matrix have been prepared and characterized for PEM fuel cells intended for operation at elevated temperature (120-150 °C). Physical and electrochemical analyses have demonstrated promising characteristics of these H 3PO 4/PMIH 2PO 4/PBI membranes at elevated temperature. The proton transport mechanism in these new membranes has been investigated by Fourier transform infrared and nuclear magnetic resonance spectroscopic methods.
Mohamad Hanapi, Nor Suhaila; Sanagi, Mohd Marsin; Ismail, Abd Khamim; Wan Ibrahim, Wan Aini; Saim, Nor'ashikin; Wan Ibrahim, Wan Nazihah
2017-03-01
The aim of this study was to investigate and apply supported ionic liquid membrane (SILM) in two-phase micro-electrodriven membrane extraction combined with high performance liquid chromatography-ultraviolet detection (HPLC-UV) for pre-concentration and determination of three selected antidepressant drugs in water samples. A thin agarose film impregnated with 1-hexyl-3-methylimidazolium hexafluorophosphate, [C 6 MIM] [PF 6 ], was prepared and used as supported ionic liquid membrane between aqueous sample solution and acceptor phase for extraction of imipramine, amitriptyline and chlorpromazine. Under the optimized extraction conditions, the method provided good linearity in the range of 1.0-1000μgL -1 , good coefficients of determination (r 2 =0.9974-0.9992) and low limits of detection (0.1-0.4μgL -1 ). The method showed high enrichment factors in the range of 110-150 and high relative recoveries in the range of 88.2-111.4% and 90.9-107.0%, for river water and tap water samples, respectively with RSDs of ≤7.6 (n=3). This method was successfully applied to the determination of the drugs in river and tap water samples. It is envisaged that the SILM improved the perm-selectivity by providing a pathway for targeted analytes which resulted in rapid extraction with high degree of selectivity and high enrichment factor. Copyright © 2017 Elsevier B.V. All rights reserved.
Tripathy, Satya N; Wojnarowska, Zaneta; Knapik, Justyna; Shirota, Hideaki; Biswas, Ranjit; Paluch, Marian
2015-05-14
A detailed investigation on the molecular dynamics of ionic deep eutectic solvents (acetamide + lithium nitrate/sodium thiocyanate) is reported. The study was carried out employing dielectric relaxation spectroscopy covering seven decades in frequency (10(-1)-10(6) Hz) and in a wide temperature range from 373 K down to 173 K, accessing the dynamic observables both in liquid and glassy state. The dielectric response of the ionic system has been presented in the dynamic window of modulus formalism to understand the conductivity relaxation and its possible connection to the origin of localized motion. Two secondary relaxation processes appear below glass transition temperature. Our findings provide suitable interpretation on the nature of secondary Johari-Goldstein process describing the ion translation and orientation of dipoles in a combined approach using Ngai's coupling model. A nearly constant loss feature is witnessed at shorter times/lower temperatures. We also discuss the ac conductivity scaling behavior using Summerfield approach and random free energy barrier model which establish the time-temperature superposition principle. These experimental observations have fundamental importance on theoretical elucidation of the conductivity relaxation and glass transition phenomena in molten ionic conductors.
Ionic switch controls the DNA state in phage λ
Li, Dong; Liu, Ting; Zuo, Xiaobing; Li, Tao; Qiu, Xiangyun; Evilevitch, Alex
2015-01-01
We have recently found that DNA packaged in phage λ undergoes a disordering transition triggered by temperature, which results in increased genome mobility. This solid-to-fluid like DNA transition markedly increases the number of infectious λ particles facilitating infection. However, the structural transition strongly depends on temperature and ionic conditions in the surrounding medium. Using titration microcalorimetry combined with solution X-ray scattering, we mapped both energetic and structural changes associated with transition of the encapsidated λ-DNA. Packaged DNA needs to reach a critical stress level in order for transition to occur. We varied the stress on DNA in the capsid by changing the temperature, packaged DNA length and ionic conditions. We found striking evidence that the intracapsid DNA transition is ‘switched on’ at the ionic conditions mimicking those in vivo and also at the physiologic temperature of infection at 37°C. This ion regulated on-off switch of packaged DNA mobility in turn affects viral replication. These results suggest a remarkable adaptation of phage λ to the environment of its host bacteria in the human gut. The metastable DNA state in the capsid provides a new paradigm for the physical evolution of viruses. PMID:26092697
Ionic switch controls the DNA state in phage λ
Li, Dong; Liu, Ting; Zuo, Xiaobing; ...
2015-06-19
We have recently found that DNA packaged in phage λ undergoes a disordering transition triggered by temperature, which results in increased genome mobility. This solid-to-fluid like DNA transition markedly increases the number of infectious λ particles facilitating infection. However, the structural transition strongly depends on temperature and ionic conditions in the surrounding medium. Using titration microcalorimetry combined with solution X-ray scattering, we mapped both energetic and structural changes associated with transition of the encapsidated λ-DNA. Packaged DNA needs to reach a critical stress level in order for transition to occur. We varied the stress on DNA in the capsid bymore » changing the temperature, packaged DNA length and ionic conditions. We found striking evidence that the intracapsid DNA transition is ‘switched on’ at the ionic conditions mimicking those in vivo and also at the physiologic temperature of infection at 37°C. This ion regulated on-off switch of packaged DNA mobility in turn affects viral replication. The results suggest a remarkable adaptation of phage λ to the environment of its host bacteria in the human gut. The metastable DNA state in the capsid provides a new paradigm for the physical evolution of viruses.« less
Ionic switch controls the DNA state in phage λ
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Dong; Liu, Ting; Zuo, Xiaobing
We have recently found that DNA packaged in phage λ undergoes a disordering transition triggered by temperature, which results in increased genome mobility. This solid-to-fluid like DNA transition markedly increases the number of infectious λ particles facilitating infection. However, the structural transition strongly depends on temperature and ionic conditions in the surrounding medium. Using titration microcalorimetry combined with solution X-ray scattering, we mapped both energetic and structural changes associated with transition of the encapsidated λ-DNA. Packaged DNA needs to reach a critical stress level in order for transition to occur. We varied the stress on DNA in the capsid bymore » changing the temperature, packaged DNA length and ionic conditions. We found striking evidence that the intracapsid DNA transition is ‘switched on’ at the ionic conditions mimicking those in vivo and also at the physiologic temperature of infection at 37°C. This ion regulated on-off switch of packaged DNA mobility in turn affects viral replication. The results suggest a remarkable adaptation of phage λ to the environment of its host bacteria in the human gut. The metastable DNA state in the capsid provides a new paradigm for the physical evolution of viruses.« less
Thermal Decomposition Mechanisms of Alkylimidazolium Ionic Liquids with CN-containing Anions
2014-11-01
anion calculated at the M06/6-31+G(d,p) level of theory and using the generic ionic liquid (GIL) model to simulate the condensed phase methyl...decomposition mechanisms of alkylimidazolium ionic liquids with CN-containing anions 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...perform, display, or disclose the work. 14. ABSTRACT Due to the unusually high heats of vaporization of room-temperature ionic liquids (RTILs
Thermodynamics of interaction of ionic liquids with lipid monolayer.
Bhattacharya, G; Mitra, S; Mandal, P; Dutta, S; Giri, R P; Ghosh, S K
2018-06-01
Understanding the interaction of ionic liquids with cellular membrane becomes utterly important to comprehend the activities of these liquids in living organisms. Lipid monolayer formed at the air-water interface is employed as a model system to follow this interaction by investigating important thermodynamic parameters. The penetration kinetics of the imidazolium-based ionic liquid 1-decyl-3-methylimidazolium tetrafluoroborate ([DMIM][BF4]) into the zwitterionic 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid layer is found to follow the Boltzmann-like equation that reveals the characteristic time constant which is observed to be the function of initial surface pressure. The enthalpy and entropy calculated from temperature-dependent pressure-area isotherms of the monolayer show that the added ionic liquids bring about a disordering effect in the lipid film. The change in Gibbs free energy indicates that an ionic liquid with longer chain has a far greater disordering effect compared to an ionic liquid with shorter chain. The differential scanning calorimetric measurement on a multilamellar vesicle system shows the main phase transition temperature to shift to a lower value, which, again, indicates the disordering effect of the ionic liquid on lipid membrane. All these studies fundamentally point out that, when ionic liquids interact with lipid molecules, the self-assembled structure of a cellular membrane gets perturbed, which may be the mechanism of these molecules having adverse effects on living organisms.
Reverse Stability Kinetics of Meat Pigment Oxidation in Aqueous Extract from Fresh Beef.
Frelka, John C; Phinney, David M; Wick, Macdonald P; Heldman, Dennis R
2017-12-01
The use of kinetic models is an evolving approach to describing quality changes in foods during processes, including storage. Previous studies indicate that the oxidation rate of myoglobin is accelerated under frozen storage conditions, a phenomenon termed reverse stability. The goal of this study was to develop a model for meat pigment oxidation to incorporate the phenomenon of reverse stability. In this investigation, the model system was an aqueous extract from beef which was stored under a range of temperatures, both unfrozen and frozen. The kinetic analysis showed that in unfrozen solutions, the temperature dependence of oxidation rate followed Arrhenius kinetics. However, under in frozen solutions the rate of oxidation increased with decreasing temperature until reaching a local maximum around -20 °C. The addition of NaCl to the model system increased oxidation rates at all temperatures, even above the initial freezing temperature. This observation suggests that this reaction is dependent on the ionic strength of the solution as well as temperature. The mechanism of this deviant kinetic behavior is not fully understood, but this study shows that the interplay of temperature and composition on the rate of oxidation of meat pigments is complicated and may involve multiple mechanisms. A better understanding of the kinetics of quality loss in a meat system allows for a re-examination of the current recommendations for frozen storage. The deviant kinetic behavior observed in this study indicates that the relationship between quality loss and temperature in a frozen food is not as simple as once thought. Product-specific recommendations could be implemented in the future that would allow for a decrease in energy consumption without a significant loss of quality. © 2017 Institute of Food Technologists®.
Phosphonium-based ionic liquids and uses
Del Sesto, Rico E; Koppisch, Andrew T; Lovejoy, Katherine S; Purdy, Geraldine M
2014-12-30
Phosphonium-based room temperature ionic liquids ("RTILs") were prepared. They were used as matrices for Matrix-Assisted Laser Desorption Ionization (MALDI) mass spectrometry and also for preparing samples of dyes for analysis.
NASA Astrophysics Data System (ADS)
Katsura, T.; Fei, H.; Koizumi, S.; Sakamoto, N.; Yurimoto, H.
2016-12-01
Although the water corporation has been considered to enhance the electrical conductivity of olivine by the proton conduction, the magnitude of the proton conduction is relatively small at asthenospheric temperatures because of its smaller activation energy than those of the small polaron and ionic conductions. However, the water incorporation could enhance the ionic conduction, because it should increase the defect density in the Mg sites. Since the ionic conductivity is proportional to the diffusivity, we have measured the self-diffusion coefficients of Mg in forsterite as a function of pressure, temperature and water content. We annealed fine-grained polycrystalline aggregates of forsterite with water contents up to 300 ppm, on whose polished plane a 25Mg-enriched Mg2SiO4 thin film was made, at pressures of 1 to 13 GPa and temperatures of 1100 to 1300 K. The lattice and grain-boundary diffusion coefficients were calculated simultaneously using profiles obtained by the depth analysis of SIMS. Experimental results gave the activation energy of 280 ± 30 and 360 ± 30 kJ/mol, activation volumes of 4.3 ± 0.3 and 3.9 ± 0.7 cm3/mol, and water content exponents of 1.2 ± 0.2 and 1.0 ± 0.1 for the lattice and grain-boundary diffusions, respectively. Using the ionic conduction data by Constable [2006] and Yoshino et al. [2009], and the water and pressure effects on Mg diffusivity in this study, the ionic conduction is found by 2 orders of magnitude higher than the small polaron and proton conductions under oceanic-asthenosphere conditions. Thus, the high conductivity of the oceanic asthenosphere will be governed by the water-enhanced ionic conduction. The negative pressure dependence of the Mg diffusivity and the gradual temperature increase in the asthenosphere will produce a conductivity maximum at the top of the asthenosphere. The high-conductivity layer at the top of the asthenosphere observed under very young oceanic plates can be attributed to this ionic conduction maximum.
Effect of Aprotic Solvents on the Dynamics of a Room Temperature Ionic Liquid
NASA Astrophysics Data System (ADS)
Osti, Naresh; van Aken, Katherine; Thompson, Matthew; Tiet, Felix; Jiang, De-En; Cummings, Peter; Gogotsi, Yury; Mamontov, Eugene
Room temperature ionic liquids (RTILs) have attracted much attention as electrolytes in energy storage devices because of their peculiar physical and chemical characteristics. However, their remarkably high viscosity, which results in low conductivity and diffusivity, may adversely affect the charging and discharging rates. Despite changing molecular configurations, use of aprotic solvent allows to enhance the transport properties of ionic liquids by disrupting the cation-anion interactions. We explore the impact of dipole moment of aprotic solvents on the cation-anion interaction and transport in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [BMIM +][Tf2N-], RTIL using molecular dynamics (MD) simulations and quasi-elastic neutrons scattering (QENS) measurements. We observed an increase in cation diffusivity with the increasing dipole moment of the solvent. This effect is due to a decrease in the solvation free energy induced by the increasing solvent polarity. A clear nano-phase separation into ionic liquid-rich and ionic liquid-poor phases as observed by QENS will be also discussed.
Xu, Junhua; Zhao, Shen; Chen, Wei; Wang, Miao; Song, Yu-Fei
2012-04-10
Highly efficient, deep desulfurization of model oil containing dibenzothiophene (DBT), benzothiophene (BT), or 4,6-dimethyldibenzothiophene (4,6-DMDBT) has been achieved under mild conditions by using an extraction and catalytic oxidative desulfurization system (ECODS) in which a lanthanide-containing polyoxometalate Na(7)H(2)LnW(10)O(36)⋅32 H(2)O (LnW(10); Ln = Eu, La) acts as catalyst, [bmim]BF(4) (bmim = 1-butyl-3-methylimidazolium) as extractant, and H(2)O(2) as oxidant. Sulfur removal follows the order DBT>4,6-DMDBT>BT at 30 °C. DBT can be completely oxidized to the corresponding sulfone in 25 min under mild conditions, and the LaW(10)/[bmim]BF(4) system could be recycled for ten times with only slight decrease in activity. Thus, LaW(10) in [bmim]BF(4) is one of the most efficient systems for desulfurization using ionic liquids as extractant reported so far. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xing, Rongrong; Hu, Shuang; Chen, Xuan; Bai, Xiaohong
2014-09-01
A novel graphene-sensitized microporous membrane/solvent microextraction method named microporous membrane/graphene/solvent synergistic microextraction, coupled with high-performance liquid chromatography and UV detection, was developed and introduced for the extraction and determination of three cinnamic acid derivatives in Rhizoma Typhonii. Several factors affecting performance were investigated and optimized, including the types of graphene and extraction solvent, concentration of graphene dispersed in octanol, sample phase pH, ionic strength, stirring rate, extraction time, extraction temperature, and sample volume. Under optimized conditions, the enrichment factors of cinnamic acid derivatives ranged from 75 to 269. Good linearities were obtained from 0.01 to 10 μg/mL for all analytes with regression coefficients between 0.9927 and 0.9994. The limits of quantification were <1 ng/mL, and satisfactory recoveries (99-104%) and precision (1.1-10.8%) were also achieved. The synergistic microextraction mechanism based on graphene sensitization was analyzed and described. The experimental results showed that the method was simple, sensitive, practical, and effective for the preconcentration and determination of cinnamic acid derivatives in Rhizoma Typhonii. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Patel, Salin Gupta; Bummer, Paul M
2017-01-10
This report examines the energetics of aggregate formation between hydroxypropyl methylcellulose (HPMC) and model ionic surfactants including sodium dodecyl sulfate (SDS) at pharmaceutically relevant concentrations using the isothermal titration calorimetry (ITC) technique and a novel treatment of calorimetric data that accounts for the various species formed. The influence of molecular weight of HPMC, temperature and ionic strength of solution on the aggregate formation process was explored. The interaction between SDS and HPMC was determined to be an endothermic process and initiated at a critical aggregation concentration (CAC). The SDS-HPMC interactions were observed to be cooperative in nature and dependent on temperature and ionic strength of the solution. Molecular weight of HPMC significantly shifted the interaction parameters between HPMC and SDS such that at the highest molecular weight (HPMC K-100M;>240kDa), although the general shape of the titration curve (enthalpogram) was observed to remain similar, the critical concentration parameters (CAC, polymer saturation concentration (C sat ) and critical micelle concentration (CMC)) were significantly altered and shifted to lower concentrations of SDS. Ionic strength was also observed to influence the critical concentration parameters for the SDS-HPMC aggregation and decreased to lower SDS concentrations with increasing ionic strength for both anionic and cationic surfactant-HPMC systems. From these data, other thermodynamic parameters of aggregation such as ΔH agg ° , ΔG agg ° , H agg ° , ΔS agg ° , and ΔC p were calculated and utilized to postulate the hydrophobic nature of SDS-HPMC aggregate formation. The type of ionic surfactant head group (anionic vs. cationic i.e., dodecyltrimethylammonium bromide (DTAB)) was found to influence the strength of HPMC-surfactant interactions wherein a distinct CAC signifying the strength of HPMC-DTAB interactions was not observed. The interpretation of the microcalorimetric data at different temperatures and ionic strengths while varying properties of polymer and surfactant was a very effective tool in investigating the nature and energetics of HPMC and ionic surfactant interactions. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Leif, Roald N.
1993-01-01
High temperature alteration of sedimentary organic matter associated with marine hydrothermal systems involves complex physical and chemical processes that are not easily measured in most natural systems. Many of these processes can be evaluated indirectly by examining the geochemistry of the hydrothermal system in the laboratory. In this investigation, an experimental organic geochemical approach to studying pyrolysis of sedimentary organic matter is applied to the hydrothermal system in the Guaymas Basin, Gulf of California. A general survey of hydrothermal oils and extractable organic matter (bitumen) in hydrothermally altered sediments identified several homologous series of alkanones associated with a high temperature hydrothermal origin. The alkanones range in carbon number from C11 to C30 with no carbon number preference. Alkan-2-ones are in highest concentrations, with lower amounts of 3-, 4-, 5- (and higher) homologs. The alkanones appear to be pyrolysis products synthesized under extreme hydrothermal conditions. Hydrous pyrolysis and confinement pyrolysis experiments were performed to simulate thermally enhanced diagenetic and catagenetic changes in the immature sedimentary organic matter. The extent of alteration was measured by monitoring the n-alkanes, acyclic isoprenoids, steroid and triterpenoid biomarkers, polycyclic aromatic hydrocarbons and alkanones. The results were compared to bitumen extracts from sediments which have been naturally altered by a sill intrusion and accompanied hydrothermal fluid flow. These pyrolysis experiments duplicated many of the organic matter transformations observed in the natural system. Full hopane and sterane maturation occurred after 48 hr in experiments at 330 deg C with low water/rock mass ratios (0.29). A variety of radical and ionic reactions are responsible for the organic compound conversions which occur under extreme hydrothermal conditions. Short duration pyrolysis experiments revealed that a portion of the hydrocarbons generated from kerogen was observed to go through alkene intermediates, and the rate of alkene isomerization was influenced by the ionic strength and catalytic mineral phases. Confinement of the organic pyrolysate to the bulk sediment accelerated the rates of the biomarker epimerization reactions, suggesting that these reactions are influenced strongly by the association of the inorganic matrix, and that the relative rates of some ionic and radical reactions can be influenced by the water/rock ratio during the pyrolysis experiments.
Biochemical thermodynamics: applications of Mathematica.
Alberty, Robert A
2006-01-01
The most efficient way to store thermodynamic data on enzyme-catalyzed reactions is to use matrices of species properties. Since equilibrium in enzyme-catalyzed reactions is reached at specified pH values, the thermodynamics of the reactions is discussed in terms of transformed thermodynamic properties. These transformed thermodynamic properties are complicated functions of temperature, pH, and ionic strength that can be calculated from the matrices of species values. The most important of these transformed thermodynamic properties is the standard transformed Gibbs energy of formation of a reactant (sum of species). It is the most important because when this function of temperature, pH, and ionic strength is known, all the other standard transformed properties can be calculated by taking partial derivatives. The species database in this package contains data matrices for 199 reactants. For 94 of these reactants, standard enthalpies of formation of species are known, and so standard transformed Gibbs energies, standard transformed enthalpies, standard transformed entropies, and average numbers of hydrogen atoms can be calculated as functions of temperature, pH, and ionic strength. For reactions between these 94 reactants, the changes in these properties can be calculated over a range of temperatures, pHs, and ionic strengths, and so can apparent equilibrium constants. For the other 105 reactants, only standard transformed Gibbs energies of formation and average numbers of hydrogen atoms at 298.15 K can be calculated. The loading of this package provides functions of pH and ionic strength at 298.15 K for standard transformed Gibbs energies of formation and average numbers of hydrogen atoms for 199 reactants. It also provides functions of temperature, pH, and ionic strength for the standard transformed Gibbs energies of formation, standard transformed enthalpies of formation, standard transformed entropies of formation, and average numbers of hydrogen atoms for 94 reactants. Thus loading this package makes available 774 mathematical functions for these properties. These functions can be added and subtracted to obtain changes in these properties in biochemical reactions and apparent equilibrium constants.
Zeeb, Mohsen; Farahani, Hadi; Papan, Mohammad Kazem
2016-06-01
An efficient analytical method called ionic-liquid-based ultrasound-assisted in situ solvent formation microextraction followed by high-performance liquid chromatography was developed for the determination of atenolol in human plasma. A hydrophobic ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate) was formed by the addition of a hydrophilic ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate) to a sample solution containing an ion-pairing agent during microextraction. The analyte was extracted into the ionic liquid phase while the microextraction solvent was dispersed throughout the sample by utilizing ultrasound. The sample was then centrifuged, and the extracting phase retracted into the microsyringe and injected to liquid chromatography. After optimization, the calibration curve showed linearity in the range of 2-750 ng/mL with the regression coefficient corresponding to 0.998. The limits of detection (S/N = 3) and quantification (S/N = 10) were 0.5 and 2 ng/mL, respectively. A reasonable relative recovery range of 90-96.7% and satisfactory intra-assay (4.8-5.1%, n = 6) and interassay (5.0-5.6%, n = 9) precision along with a substantial sample clean-up demonstrated good performance of the procedure. It was applied for the determination of atenolol in human plasma after oral administration and some pharmacokinetic data were obtained. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Du, Kunze; Li, Jin; Bai, Yun; An, Mingrui; Gao, Xiu-Mei; Chang, Yan-Xu
2018-04-01
A simple and green ionic liquid-based vortex-forced matrix solid phase dispersion (IL-VFMSPD) method was presented to simultaneously extract 5-hydroxymethyl furfurol (5-HMF) and iridoid glycosides in Fructus Corni by ultra-high performance liquid chromatography. Ionic liquid was used as a green elution reagent in vortex-forced MSPD process. A few parameters such as the type of ionic liquid, the type of sorbent, ratio of sample to sorbent, the concentration and volume of ionic liquid, grinding time and vortex time, were investigated in detail and an orthogonal design experiment was introduced to confirm the best conditions in this procedure. With the final optimized method, the recoveries of the target compounds in Fructus Corni were in the range of 95.2-103% (RSD<5.0%) and the method displayed a good linearity within the range of 0.8-200 μg mL -1 for morroniside, sweroside, loganin, cornuside and 1.2-300 μg mL -1 for 5-HMF. The limits of detection ranged from 0.02 to 0.08 μg mL -1 for all compounds. The results showed that the newly established method was efficiently applied to extract and determine iridoid glycosides and 5-HMF for quality control of Fructus Corni. Copyright © 2017 Elsevier Ltd. All rights reserved.
Farajzadeh, Mir Ali; Dehghani, Hamideh; Yadeghari, Adeleh; Khoshmaram, Leila
2017-02-01
The present study describes a microextraction and determination method for analyzing residual solvents in pharmaceutical products using dynamic headspace-liquid phase microextraction technique followed by gas chromatography-flame ionization detection. In this method dimethyl sulfoxide (μL level) placed into a GC liner-shaped extraction vessel is used as a collection/extraction solvent. Then the liner is exposed to the headspace of a vial containing the sample solution. The effect of different parameters influencing the microextraction procedure including collection/extraction solvent type and its volume, ionic strength, extraction time, extraction temperature and concentration of NaOH solution used in dissolving the studied pharmaceuticals are investigated and optimized. Under the optimum extraction conditions, the method showed wide linear ranges between 0.5 and 5000 mg L -1 . The other analytical parameters were obtained in the following ranges: enrichment factors 240-327, extraction recoveries 72-98% and limits of detection 0.1-0.8 mg L -1 in solution and 0.6-3.2 μg g -1 in solid. Relative standard deviations for the extraction of 100 mg L -1 of each analyte were obtained in the ranges of 4-7 and 5-8% for intra-day (n = 6) and inter-day (n = 4) respectively. Finally the target analytes were determined in different samples such as erythromycin, azithromycin, cefalexin, amoxicillin and co-amoxiclav by the proposed method. Copyright © 2016 John Wiley & Sons, Ltd.
The electrode/ionic liquid interface: electric double layer and metal electrodeposition.
Su, Yu-Zhuan; Fu, Yong-Chun; Wei, Yi-Min; Yan, Jia-Wei; Mao, Bing-Wei
2010-09-10
The last decade has witnessed remarkable advances in interfacial electrochemistry in room-temperature ionic liquids. Although the wide electrochemical window of ionic liquids is of primary concern in this new type of solvent for electrochemistry, the unusual bulk and interfacial properties brought about by the intrinsic strong interactions in the ionic liquid system also substantially influence the structure and processes at electrode/ionic liquid interfaces. Theoretical modeling and experimental characterizations have been indispensable in reaching a microscopic understanding of electrode/ionic liquid interfaces and in elucidating the physics behind new phenomena in ionic liquids. This Minireview describes the status of some aspects of interfacial electrochemistry in ionic liquids. Emphasis is placed on high-resolution and molecular-level characterization by scanning tunneling microscopy and vibrational spectroscopies of interfacial structures, and the initial stage of metal electrodeposition with application in surface nanostructuring.
Use of ionic liquids as coordination ligands for organometallic catalysts
Li, Zaiwei [Moreno Valley, CA; Tang, Yongchun [Walnut, CA; Cheng,; Jihong, [Arcadia, CA
2009-11-10
Aspects of the present invention relate to compositions and methods for the use of ionic liquids with dissolved metal compounds as catalysts for a variety of chemical reactions. Ionic liquids are salts that generally are liquids at room temperature, and are capable of dissolving a many types of compounds that are relatively insoluble in aqueous or organic solvent systems. Specifically, ionic liquids may dissolve metal compounds to produce homogeneous and heterogeneous organometallic catalysts. One industrially-important chemical reaction that may be catalyzed by metal-containing ionic liquid catalysts is the conversion of methane to methanol.
Bi, Wentao; Wang, Man; Yang, Xiaodi; Row, Kyung Ho
2014-07-01
Poly(ionic liquid)-bonded magnetic nanospheres were easily synthesized and applied to the pretreatment and determination of phenolic compounds in water samples, which have detrimental effects on water quality and the health of living beings. The high affinity of poly(ionic liquid)s toward the target compounds as well as the magnetic behavior of Fe3 O4 were combined in this material to provide an efficient and simple magnetic solid-phase extraction approach. The adsorption behavior of the poly(ionic liquid)-bonded magnetic nanospheres was examined to optimize the synthesis. Different parameters affecting the magnetic solid-phase extraction of phenolic compounds were assessed in terms of adsorption and recovery. Under the optimal conditions, the proposed method showed excellent detection sensitivity with limits of detection in the range of 0.3-0.8 ng/mL and precision in the range of 1.2-3.3%. This method was also applied successfully to the analysis of real water samples; good spiked recoveries over the range of 82.5-99.2% were obtained. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Yamamuro, O.; Kofu, M.
2017-05-01
Glass transition is one of the central research issues of ionic liquids (ILs). In particular, the most typical ILs, imidazolium-basedones (ImILs) are readily supercooled and exhibit glass transitions below room temperature. We have measured the heat capacities of several ImILs, encoded as CnmimX (n: alkyl carbon number, n = 2-8, X: anion, X = Cl, I, FeCl4, TFSI) using an adiabatic calorimeter. We found that most of ImILs exhibit glass transitions with large Cp jumps in a temperature range between 170 K and 230 K. The large Cp jumps reflect that these ILs are fragile liquids that exhibit large structural change depending on temperature near the glass transition temperature T g. It is also revealed that T g does not depend much on n but on the anion radius. We have investigated the dynamics of CnmimX (n = 2-8, X = Cl, NO3, PF6, TF, FSI, TFSI) by means of a quasielastic neutron scattering (QENS) technique. It was clarified that the ionic diffusion is directly associated with the viscosity and glass transition. The activation energy ΔE a of the ionic diffusion increases with decreasing anion size but remains almost unchanged with n as found for T g. These systematic change of T g and ΔE a can be explained well by taking account the nano-domain structure which is the most characteristic feature of ImILs.
Dispersions of polymer ionomers: I.
Capek, Ignác
2004-12-31
The principal subject discussed in the current paper is the effect of ionic functional groups in polymers on the formation of nontraditional polymer materials, polymer blends or polymer dispersions. Ionomers are polymers that have a small amount of ionic groups distributed along a nonionic hydrocarbon chain. Specific interactions between components in a polymer blend can induce miscibility of two or more otherwise immiscible polymers. Such interactions include hydrogen bonding, ion-dipole interactions, acid-base interactions or transition metal complexation. Ion-containing polymers provide a means of modifying properties of polymer dispersions by controlling molecular structure through the utilization of ionic interactions. Ionomers having a relatively small number of ionic groups distributed usually along nonionic organic backbone chains can agglomerate into the following structures: (1) multiplets, consisting of a small number of tightly packed ion pairs; and (2) ionic clusters, larger aggregates than multiplets. Ionomers exhibit unique solid-state properties as a result of strong associations among ionic groups attached to the polymer chains. An important potential application of ionomers is in the area of thermoplastic elastomers, where the associations constitute thermally reversible cross-links. The ionic (anionic, cationic or polar) groups are spaced more or less randomly along the polymer chain. Because in this type of ionomer an anionic group falls along the interior of the chain, it trails two hydrocarbon chain segments, and these must be accommodated sterically within any domain structure into which the ionic group enters. The primary effects of ionic functionalization of a polymer are to increase the glass transition temperature, the melt viscosity and the characteristic relaxation times. The polymer microstructure is also affected, and it is generally agreed that in most ionomers, microphase-separated, ion-rich aggregates form as a result of strong ion-dipole attractions. As a consequence of this new phase, additional relaxation processes are often observed in the viscoelastic behavior of ionomers. Light functionalization of polymers can increase the glass transition temperature and gives rise to two new features in viscoelastic behavior: (1) a rubbery plateau above T(g) and (2) a second loss process at elevated temperatures. The rubbery plateau was due to the formation of a physical network. The major effect of the ionic aggregate was to increase the longer time relaxation processes. This in turn increases the melt viscosity and is responsible for the network-like behavior of ionomers above the glass transition temperature. Ionomers rich in polar groups can fulfill the criteria for the self-assembly formation. The reported phenomenon of surface micelle formation has been found to be very general for these materials.
Rao, Vishal Govind; Banerjee, Chiranjib; Ghosh, Surajit; Mandal, Sarthak; Kuchlyan, Jagannath; Sarkar, Nilmoni
2013-06-20
Owing to their fascinating properties and wide range of potential applications, interest in nonaqueous microemulsions has escalated in the past decade. In the recent past, nonaqueous microemulsions containing ionic liquids (ILs) have been utilized in performing chemical reactions, preparation of nanomaterials, synthesis of nanostructured polymers, and drug delivery systems. The most promising fact about IL-in-oil microemulsions is their high thermal stability compared to that of aqueous microemulsions. Recently, surfactant-like properties of surface active ionic liquids (SAILs) have been used for preparation of microemulsions with high-temperature stability and temperature insensitivity. However, previously described methods present a limited possibility of developing IL-in-oil microemulsions with a wide range of thermal stability. With our previous work, we introduced a novel method of creating a huge number of IL-in-oil microemulsions (Rao, V. G.; Ghosh, S.; Ghatak, C.; Mandal, S.; Brahmachari, U.; Sarkar, N. J. Phys. Chem. B2012, 116, 2850-2855), composed of a SAIL as a surfactant, room-temperature ionic liquids as a polar phase, and benzene as a nonpolar phase. The use of benzene as a nonpolar solvent limits the application of the microemulsions to temperatures below 353 K. To overcome this limitation, we have synthesized N,N-dimethylethanolammonium 1,4-bis(2-ethylhexyl) sulfosuccinate (DAAOT), which was used as a surfactant. DAAOT in combination with isopropyl myristate (IPM, as an oil phase) and ILs (as a polar phase) produces a huge number of high-temperature stable IL-in-oil microemulsions. By far, this is the first report of a huge number of high-temperature stable IL-in-oil microemulsions. In particular, we demonstrate the wide range of thermal stability of [C6mim][TF2N]/DAAOT/IPM microemulsions by performing a phase behavior study, dynamic light scattering measurements, and (1)H NMR measurements and by using coumarin-480 (C-480) as a fluorescent probe molecule.
Comparison of methods for extracting DNA from formalin-fixed paraffin sections for nonisotopic PCR.
Frank, T S; Svoboda-Newman, S M; Hsi, E D
1996-09-01
DNA was extracted from unstained 5-microns sections of neutral buffered 10% formalin-fixed paraffin-embedded tissue by proteinase K digestion without detergents followed by boiling, proteinase K digestion with ionic detergents with and without phenol chloroform extraction and ethanol precipitation, sonication with proteinase K followed by boiling, or boiling alone. Serial 1:10 dilutions of the extracted DNA were subject to polymerase chain reaction (PCR) amplification of a 255-bp portion of the p53 gene. Digestion with proteinase K without ionic detergents followed by boiling (without phenol chloroform extraction) gave the best yield, enabling visualization of ethidium bromide-stained PCR product from a DNA dilution corresponding to 0.1 mm2 of tissue containing of the order of 10(3) nuclear profiles. Proteinase K digestion with detergents followed by phenol-chloroform extraction was no more effective than simple boiling. Although the success of PCR from preserved tissue will vary with the fixative and size of the amplified fragment, DNA extracted with this optimized method can be used for identification of viruses, loss of heterozygosity, and immunoglobulin gene rearrangements in paraffin-embedded tissue without radioisotopes.
Ghasemi, Ensieh; Farahani, Hadi
2012-10-05
A novel and efficient speciation method based on the nano-structured lead dioxide as stationary phase of head space solid phase microextraction combined with gas chromatography mass spectrometry (GC-MS) was developed for the determination of volatile organoselenium compounds (dimethylselenide (DMSe) and dimethyldiselenide (DMDSe)) in different biological and environmental samples. PbO(2) particles with a diameter in the range of 50-70 nm have been grown on platinum wire via elechtrochemical deposition. The effect of different variables on the extraction efficiency was studied simultaneously using an experimental design. The variables of interest in the HS-SPME were condition of coating preparation, desorption time, stirring rate, desorption temperature, ionic strength, time and temperature of extraction. A Plackett-Burman design was performed for screening in order to determine the significant variables affecting the extraction efficiency. Then, the significant factors were optimized by a Box-Behnken design (BBD) and the response surface equations were derived. The detection limit and relative standard deviation (RSD) (n=5, c=50 μgL(-1)) for DMSe were 16 ngL(-1) and 4.3%, respectively. They were also obtained for DMDSe as 11ngL(-1) and 4.6%, respectively. The developed technique was found to be applicable to spiked environmental and biological samples. Copyright © 2012 Elsevier B.V. All rights reserved.
Temperature dependence of electrical conduction in PEMA-EMITFSI film
NASA Astrophysics Data System (ADS)
Zain, N. F.; Megat Hasnan, M. M. I.; Sabri, M. F. M.; Said, S. M.; Mohamed, N. S.; Salleh, F.
2018-04-01
Transparent and flexible film of poly (ethyl methacrylate) incorporated with 1-ethyl-3-methyl imidazolium bis(trifluorosulfonyl) imide ionic liquid (PEMA-EMITFSI) with thickness between 100 and 200 µm was fabricated by using solution casting technique. From the ionic transport measurement, it is confirmed that the electrical conduction in PEMA-EMITFSI film is mainly contributed by ionic transport. Moreover, the temperature-dependence of electrical conductivity measurement for 7 days reveals that the electrical properties of PEMA-EMITFSI film could be able to withstand a number of thermal cycles and be lasting for a period of time for potentially used as thermoelectric material through thermal heating.
Ghosh, Anup; Chatterjee, Tanmay; Mandal, Prasun K
2012-06-25
An excitation and emission wavelength dependent non-exponential fluorescence decay behaviour of room temperature ionic liquids (RTILs) has been noted. Average fluorescence lifetimes have been found to vary by a factor of three or more. Red emitting dyes dissolved in RTILs are found to follow hitherto unobserved single exponential fluorescence decay behaviour.
Tanaka, Kazuo; Ishiguro, Fumiyasu; Chujo, Yoshiki
2010-12-22
We report the synthesis of a stable room-temperature ionic liquid consisting of an octacarboxy polyhedral oligomeric silsesquioxane (POSS) anion and an imidazolium cation. The introduction of the POSS moiety enhances the thermal stability and reduces the melting temperature. From an evaluation of the thermodynamic parameters during the melting, it was found that the rigidity and cubic structure of POSS can contribute to the enhancement of these thermal properties.
Ionic Liquids as templating agents in formation of uranium-containing nanomaterials
Visser, Ann E; Bridges, Nicholas J
2014-06-10
A method for forming nanoparticles containing uranium oxide is described. The method includes combining a uranium-containing feedstock with an ionic liquid to form a mixture and holding the mixture at an elevated temperature for a period of time to form the product nanoparticles. The method can be carried out at low temperatures, for instance less than about 300.degree. C.
State-resolved Thermal/Hyperthermal Dynamics of Atmospheric Species
2015-06-23
gas -room temperature ionic liquid (RTIL) interfaces. 2) Large scale trajectory simulations for theoretical analysis of gas - liquid scattering studies...areas: 1) Diode laser and LIF studies of hyperthermal CO2 and NO collisions at the gas -room temperature ionic liquid (RTIL) interfaces. 2) Large...scale trajectory simulations for theoretical analysis of gas - liquid scattering studies, 3) LIF data for state-resolved scattering of hyperthermal NO at
Martinis, Estefanía M; Olsina, Roberto A; Altamirano, Jorgelina C; Wuilloud, Rodolfo G
2009-05-15
A novel on-line preconcentration method based on liquid-liquid (L-L) extraction with room temperature ionic liquids (RTILs) coupled to flame atomic absorption spectrometry (FAAS) was developed for cadmium determination in plastic food packaging materials. The methodology is based on the complexation of Cd with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) reagent after sample digestion followed by extraction of the complex with the RTIL 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim][PF(6)]). The mixture was loaded into a flow injection analysis (FIA) manifold and the RTIL rich-phase was retained in a microcolumn filled with silica gel. The RTIL rich-phase was then eluted directly into FAAS. A enhancement factor of 35 was achieved with 20 mL of sample. The limit of detection (LOD), obtained as IUPAC recommendation, was 6 ng g(-1) and the relative standard deviation (R.S.D.) for 10 replicates at 10 microg L(-1) Cd concentration level was 3.9%, calculated at the peak heights. The calibration graph was linear and a correlation coefficient of 0.9998 was achieved. The accuracy of the method was evaluated by both a recovery study and comparison of results with direct determination by electrothermal atomic absorption spectrometry (ETAAS). The method was successfully applied for Cd determination in plastic food packaging materials and Cd concentrations found were in the range of 0.04-10.4 microg g(-1).
Gao, Man; Qu, Jingang; Chen, Kai; Jin, Lide; Dahlgren, Randy Alan; Wang, Huili; Tan, Chengxia; Wang, Xuedong
2017-11-01
In real aquatic environments, many occupational pollutants with a wide range of polarities coexist at nanogram to milligram per liter levels. Most reported microextraction methods focus on extracting compounds with similar properties (e.g., polarity or specific functional groups). Herein, we developed a salting-out-enhanced ionic liquid microextraction based on a dual-role solvent (SILM-DS) for simultaneous detection of tetracycline, doxycycline, bisphenol A, triclosan, and methyltriclosan, with log K ow ranging from -1.32 to 5.40 in complex milk and environmental water matrices. The disperser in the ionic-liquid-based dispersive liquid-liquid microextraction was converted to the extraction solvent in the subsequent salting-out-assisted microextraction procedures, and thus a single solvent performed a dual role as both extractant and disperser in the SILM-DS process. Acetonitrile was selected as the dual-role solvent because of its strong affinity for both ionic liquids and water, as well as the extractant in the salting-out step. Optimized experimental conditions were 115 μL [C 8 MIM][PF 6 ] as extractor, 1200 μL acetonitrile as dual-role solvent, pH 2.0, 5.0 min ultrasound extraction time, 3.0 g Na 2 SO 4 , and 3.0 min vortex extraction time. Under optimized conditions, the recoveries of the five pollutants ranged from 74.5 to 106.9%, and their LODs were 0.12-0.75 μg kg -1 in milk samples and 0.11-0.79 μg L -1 in environmental waters. Experimental precision based on relative standard deviation was 1.4-6.4% for intraday and 2.3-6.5% for interday analyses. Compared with previous methods, the prominent advantages of the newly developed method are simultaneous determination of pollutants with a wide range of polarities and a substantially reduced workload for ordinary environmental monitoring and food tests. Therefore, the new method has great application potential for simultaneous determination of trace pollutants with strongly contrasting polarities in several analytical fields. Graphical Abstract A salting-out-enhanced ionic liquid microextraction based on a dual-role solvent (SILM-DS) was developed for simultaneous detection of tetracycline, doxycycline, bisphenol A, triclosan and methyltriclosan, with log K ow ranging from -1.32 to 5.40. The novelty of SILM-DS method lies in (1) simultaneous quantification of pollutants with contrasting polarity; (2) microextraction based on a dual-role solvent (as a disperser and extractant); (3) giving high recoveries for analytes with a wide range of polarities; and (4) reducing workload for ordinary environmental monitoring and food tests.
Sadeghi, Rahmat; Ebrahimi, Nosaibah
2011-11-17
A systematic study of osmotic coefficient, conductivity, volumetric and acoustic properties of solutions of ionic liquid 1-hexyl-3-methylimidazolium chloride ([C(6)mim][Cl]) in various molecular solvents has been made at different temperatures in order to study of ionic association and solvation behavior of [C(6)mim][Cl] in different solutions. Precise measurements on electrical conductances of solutions of [C(6)mim][Cl] in water, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, and acetonitrile at 293.15, 298.15, and 303.15 K are reported and analyzed with Barthel's low-concentration chemical model (lcCM) to obtain the limiting molar conductivities and association constants of this ionic liquid in the investigated solvents. Strong ion pairing was found for the ionic liquid in 2-propanol, 1-butanol, and 1-propanol, whereas ion association in acetonitrile, methanol and ethanol is rather weak and in water the ionic liquid is fully dissociated. In the second part of this work, the apparent molar volumes and isentropic compressibilities of [C(6)mim][Cl] in water, methanol, ethanol, acetonitrile, 1-propanol, 2-propanol, and 1-butanol are obtained at the 288.15-313.15 K temperature range at 5 K intervals at atmospheric pressure from the precise measurements of density and sound velocity. The infinite dilution apparent molar volume and isentropic compressibility values of the free ions and ion pairs of [C(6)mim][Cl] in the investigated solvents as well as the excess molar volume of the investigated solutions are determined and their variations with temperature and type of solvents are also studied. Finally, the experimental measurements of osmotic coefficient at 318.15 K for binary solutions of [C(6)mim][Cl] in water, methanol, ethanol, 2-propanol, and acetonitrile are taken using the vapor pressure osmometry (VPO) method and from which the values of the solvent activity, vapor pressure, activity coefficients, and Gibbs free energies are calculated. The results are interpreted in terms of ion association, ion-dipole interactions, and structural factors of the ionic liquid and investigated organic solvents. The ionic liquid is solvated to a different extent by the molecular solvents, and ionic association is affected significantly by ionic solvation.
NASA Astrophysics Data System (ADS)
Chaurasia, S. K.; Saroj, A. L.; Shalu, Singh, V. K.; Tripathi, A. K.; Gupta, A. K.; Verma, Y. L.; Singh, R. K.
2015-07-01
Preparation and characterization of polymer electrolyte films of PEO+10wt.% LiPF6 + xwt.% BMIMPF6 (1-butyl-3-methylimidazolium hexafluorophosphate) containing dopant salt lithium hexafluorophosphate (LiPF6) and ionic liquid (BMIMPF6) having common anion PF6 - are reported. The ionic conductivity of the polymer electrolyte films has been found to increase with increasing concentration of BMIMPF6 in PEO+10 wt.% LiPF6 due to the plasticization effect of ionic liquid. DSC and XRD results show that the crystallinity of polymer electrolyte decreases with BMIMPF6 concentration which, in turn, is responsible for the increase in ionic conductivity. FTIR spectroscopic study shows the complexation of salt and/or ionic liquid cations with the polymer backbone. Ion dynamics behavior of PEO+LiPF6 as well as PEO+LiPF6 + BMIMPF6 polymer electrolytes was studied by frequency dependent conductivity, σ(f) measurements. The values σ(f) at various temperatures have been analyzed in terms of Jonscher power law (JPL) and scaled with respect to frequency which shows universal power law characteristics at all temperatures.
Use of Ionic Liquids in Rod-Coil Block Copolyimides for Improved Lithium Ion Conduction
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B.; Tigelaar, Dean M.; Chapin, Kara; Bennett, William R.
2007-01-01
Solvent-free, solid polymer electrolytes (SPE) have the potential to improve safety, increase design flexibility and enhance performance of rechargeable lithium batteries. Solution based electrolytes are flammable and typically incompatible with lithium metal anodes, limiting energy density. We have previously demonstrated use of polyimide rod coil block copolymers doped with lithium salts as electrolytes for lithium polymer batteries. The polyimide rod blocks provide dimensional stability while the polyethylene oxide (PEO) coil portions conduct ions. Phase separation of the rods and coils in these highly branched polymers provide channels with an order of magnitude improvement in lithium conduction over polyethylene oxide itself at room temperature. In addition, the polymers have been demonstrated in coin cells to be compatible with lithium metal. For practical use at room temperature and below, however, at least an order of magnitude improvement in ion conduction is still required. The addition of nonvolatile, room temperature ionic liquids has been shown to improve the ionic conductivity of high molecular weight PEO. Herein we describe use of these molten salts to improve ionic conductivity in the rod-coil block copolymers.
Aluminium electrodeposition in chloroaluminate ionic liquid.
Zhang, Lipeng; Wang, Enqi; Mu, Jiechen; Yu, Xianjin; Wang, Qiannan; Yang, Lina; Zhao, Zengdian
2014-08-01
An efficient microwave enhanced synthesis of ambient temperature chloroaluminate ionic liquid ([EMIM]Br) that preceeds reaction of 1-methylimidazolium with bromoethane in a closed vessel, was described in our work. The reaction time was drastically reduced as compared to the conventional methods. The electrochemical techniques of impedance spectroscopy, cyclic voltammetry and chronoamperometry were used to investigate the mechanism of Al electrodeposition from 2:1 (molar ratio) AlCl3/[EMIM]Br ionic liquid at room temperature. Results indicated that Al electrode- position from this ionic liqud was a quasi-reversible process, and the kinetic complications during the reaction was probably attributed to the electron transfer or mass transport cooperative controlled processes, instantaneous nucleation with diffusion-controlled growth was also investigated. Electrodepositon experiment was conducted using constant current density of 40 mA·cm(-2) for 20 minutes at room temperature and the qualitative analysis of the deposits were performed using X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and energy dispersive spectroscope (EDS). The deposits obtained on copper cathode were dense and compact and most Al crystal shows granular structure spherical with high purity.
Sorption-desorption of fipronil in some soils, as influenced by ionic strength, pH and temperature.
Singh, Anand; Srivastava, Anjana; Srivastava, Prakash C
2016-08-01
The sorption-desorpion of fipronil insecticide is influenced by soil properties and variables such as pH, ionic strength, temperature, etc. A better understanding of soil properties and these variables in sorption-desorption processes by quantification of fipronil using liquid chromatography may help to optimise suitable soil management to reduce contamination of surface and groundwaters. In the present investigation, the sorption-desorption of fipronil was studied in some soils at varying concentrations, ionic strengths, temperatures and pH values, and IR specta of fipronil sorbed onto soils were studied. The sorption of fipronil onto soils conformed to the Freundlich isotherm model. The sorption-desorption of fipronil varied with ionic strength in each of the soils. Sorption decreased but desorption increased with temperature. Sorption did not change with increasing pH, but for desorption there was no correlation. The cumulative desorption of fipronil from soil was significantly and inversely related to soil organic carbon content. IR spectra of sorbed fipronil showed the involvement of amino, nitrile, sulfone, chloro and fluoro groups and the pyrazole nucleus of the fipronil molecule. The sorption of fipronil onto soils appeared to be a physical process with the involvement of hydrogen bonding. An increase in soil organic carbon may help to reduce desorption of fipronil. High-temperature regimes are more conducive to the desorption. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Elucidating interactions of ionic liquids with polymer films using confocal Raman spectroscopy.
Schäfer, Thomas; Di Paolo, Roberto E; Franco, Ricardo; Crespo, João G
2005-05-28
We report on the molecular interactions between room-temperature ionic liquids (RTILs) and Nafion and PDMS membranes, proving that in contact with these polymers RTILs behave like electrolytes rather than solvents.
Is the boundary layer of an ionic liquid equally lubricating at higher temperature?
Hjalmarsson, Nicklas; Atkin, Rob; Rutland, Mark W
2016-04-07
Atomic force microscopy has been used to study the effect of temperature on normal forces and friction for the room temperature ionic liquid (IL) ethylammonium nitrate (EAN), confined between mica and a silica colloid probe at 25 °C, 50 °C, and 80 °C. Force curves revealed a strong fluid dynamic influence at room temperature, which was greatly reduced at elevated temperatures due to the reduced liquid viscosity. A fluid dynamic analysis reveals that bulk viscosity is manifested at large separation but that EAN displays a nonzero slip, indicating a region of different viscosity near the surface. At high temperatures, the reduction in fluid dynamic force reveals step-like force curves, similar to those found at room temperature using much lower scan rates. The ionic liquid boundary layer remains adsorbed to the solid surface even at high temperature, which provides a mechanism for lubrication when fluid dynamic lubrication is strongly reduced. The friction data reveals a decrease in absolute friction force with increasing temperature, which is associated with increased thermal motion and reduced viscosity of the near surface layers but, consistent with the normal force data, boundary layer lubrication was unaffected. The implications for ILs as lubricants are discussed in terms of the behaviour of this well characterised system.
Tao, Yong; Liu, Jing-Fu; Hu, Xia-Lin; Li, Hong-Cheng; Wang, Thanh; Jiang, Gui-Bin
2009-08-28
By using ionic liquid as membrane liquid and tri-n-octylphosphine oxide (TOPO) as additive, hollow fiber supported liquid phase microextraction (HF-LPME) was developed for the determination of five sulfonamides in environmental water samples by high-performance liquid chromatography with ultraviolet detection The extraction solvent and the parameters affecting the extraction enrichment factor such as the type and amount of carrier, pH and volume ratio of donor phase and acceptor phase, extraction time, salt-out effect and matrix effect were optimized. Under the optimal extraction conditions (organic liquid membrane phase: [C(8)MIM][PF(6)] with 14% TOPO (w/v); donor phase: 4mL, pH 4.5 KH(2)PO(4) with 2M Na(2)SO(4); acceptor phase: 25microL, pH 13 NaOH; extraction time: 8 h), low detection limits (0.1-0.4microg/L, RSD
Olivella, M À; Bazzicalupi, C; Bianchi, A; Fiol, N; Villaescusa, I
2015-01-01
The role of chemical components of cork in the sorption of several pesticides has been investigated. For this purpose raw cork and three cork extracted fractions (i.e. cork free of aliphatic extractives, cork free of all extractives and cork free of all extractives and suberin) were used as sorbent of three ionic pesticides (propazine, 2,4-dichlorophenoxy acetic acid (2,4-D) and alachlor) and five non-ionic pesticides (chlorpyrifos, isoproturon, metamitron, methomyl and oxamyl) with a logKow within the range -0.47 to 4.92. The effect of cations on the ionic pesticides, propazine and 2,4-D sorption was also analyzed. Results indicated that the highest yields were obtained for chlorpyrifos and alachlor sorption onto raw cork (>55%). After removal of aliphatic extractives sorption of all pesticides increased that ranged from 3% for propazine to 31% for alachlor. In contrast, removal of phenolic extractives caused a sorption decrease. Low sorption yields were obtained for hydrophobic pesticides such as metamitron, oxamyl and methomyl (<11%) by using all cork fractions and extremely low when using raw cork (<1%). FTIR analysis was useful to indicate that lignin moieties were the main components involved on the sorption process. Modelling calculations evidenced that π-stacking interactions with the aromatic groups of lignin play a major role in determining the adsorption properties of cork toward aromatic pesticides. Results presented in this paper gain insights into the cork affinities for pesticides and the interactions involved in the sorption process and also enables to envisage sorption affinity of cork for other organic pollutants. Copyright © 2014 Elsevier Ltd. All rights reserved.
Jin, Hui; O'Hare, Bernie; Dong, Jing; Arzhantsev, Sergei; Baker, Gary A; Wishart, James F; Benesi, Alan J; Maroncelli, Mark
2008-01-10
Physical properties of 4 room-temperature ionic liquids consisting of the 1-butyl-3-methylimidazolium cation with various perfluorinated anions and the bis(trifluoromethylsulfonyl)imide (Tf2N-) anion with 12 pyrrolidinium-, ammonium-, and hydroxyl-containing cations are reported. Electronic structure methods are used to calculate properties related to the size, shape, and dipole moment of individual ions. Experimental measurements of phase-transition temperatures, densities, refractive indices, surface tensions, solvatochromic polarities based on absorption of Nile Red, 19F chemical shifts of the Tf2N- anion, temperature-dependent viscosities, conductivities, and cation diffusion coefficients are reported. Correlations among the measured quantities as well as the use of surface tension and molar volume for estimating Hildebrand solubility parameters of ionic liquids are also discussed.
Heydari, Rouhollah; Elyasi, Najmeh S
2014-10-01
A novel, simple, and effective ion-pair cloud-point extraction coupled with a gradient high-performance liquid chromatography method was developed for determination of thiamine (vitamin B1 ), niacinamide (vitamin B3 ), pyridoxine (vitamin B6 ), and riboflavin (vitamin B2 ) in plasma and urine samples. The extraction and separation of vitamins were achieved based on an ion-pair formation approach between these ionizable analytes and 1-heptanesulfonic acid sodium salt as an ion-pairing agent. Influential variables on the ion-pair cloud-point extraction efficiency, such as the ion-pairing agent concentration, ionic strength, pH, volume of Triton X-100, extraction temperature, and incubation time have been fully evaluated and optimized. Water-soluble vitamins were successfully extracted by 1-heptanesulfonic acid sodium salt (0.2% w/v) as ion-pairing agent with Triton X-100 (4% w/v) as surfactant phase at 50°C for 10 min. The calibration curves showed good linearity (r(2) > 0.9916) and precision in the concentration ranges of 1-50 μg/mL for thiamine and niacinamide, 5-100 μg/mL for pyridoxine, and 0.5-20 μg/mL for riboflavin. The recoveries were in the range of 78.0-88.0% with relative standard deviations ranging from 6.2 to 8.2%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Extraction of Biomolecules Using Phosphonium-Based Ionic Liquids + K3PO4 Aqueous Biphasic Systems
Louros, Cláudia L. S.; Cláudio, Ana Filipa M.; Neves, Catarina M. S. S.; Freire, Mara G.; Marrucho, Isabel M.; Pauly, Jérôme; Coutinho, João A. P.
2010-01-01
Aqueous biphasic systems (ABS) provide an alternative and efficient approach for the extraction, recovery and purification of biomolecules through their partitioning between two liquid aqueous phases. In this work, the ability of hydrophilic phosphonium-based ionic liquids (ILs) to form ABS with aqueous K3PO4 solutions was evaluated for the first time. Ternary phase diagrams, and respective tie-lines and tie-lines length, formed by distinct phosphonium-based ILs, water, and K3PO4 at 298 K, were measured and are reported. The studied phosphonium-based ILs have shown to be more effective in promoting ABS compared to the imidazolium-based counterparts with similar anions. Moreover, the extractive capability of such systems was assessed for distinct biomolecules (including amino acids, food colourants and alkaloids). Densities and viscosities of both aqueous phases, at the mass fraction compositions used for the biomolecules extraction, were also determined. The evaluated IL-based ABS have been shown to be prospective extraction media, particularly for hydrophobic biomolecules, with several advantages over conventional polymer-inorganic salt ABS. PMID:20480041
Wang, Lingling; Zhang, Danfeng; Xu, Xu; Zhang, Lei
2016-04-15
Ionic liquid (IL) dispersive liquid-liquid microextraction (DLLME) method was successfully developed for extracting three endocrine disrupting compounds (EDCs) (bisphenol A, bisphenol AF and bisphenol AP) from the food packaging. 1-Octyl-3-methylimidazoliumhexafluorophosphate ([C8MIM][PF6]) was selected as extraction solution. The extraction procedure did not require a dispersive solvent. Three EDCs extraction kinetics were found to be very fast and the equilibrium was attained within 3.0 min following the pseudo-first-order model. The H-bonding and hydrophobic interactions play an important role in the partitioning of EDCs into IL from aqueous solution. The recovered IL could be reused for three runs without significant loss of extraction efficiencies. The spiked recoveries of three targets in food packaging were in the range of 97.8-103.1%. The limits of detection ranged from 0.50 to 1.50 ng mL(-1) (S/N=3). As a result, this method has been successfully applied for the sensitive detection of three EDCs in real samples. Copyright © 2015 Elsevier Ltd. All rights reserved.
Petrowsky, Matt; Frech, Roger
2010-07-08
Self-diffusion coefficients are measured from -5 to 80 degrees C in a series of linear alcohols using pulsed field gradient NMR. The temperature dependence of these data is studied using a compensated Arrhenius formalism that assumes an Arrhenius-like expression for the diffusion coefficient; however, this expression includes a dielectric constant dependence in the exponential prefactor. Scaling temperature-dependent diffusion coefficients to isothermal diffusion coefficients so that the exponential prefactors cancel results in calculated energies of activation E(a). The exponential prefactor is determined by dividing the temperature-dependent diffusion coefficients by the Boltzmann term exp(-E(a)/RT). Plotting the prefactors versus the dielectric constant places the data on a single master curve. This procedure is identical to that previously used to study the temperature dependence of ionic conductivities and dielectric relaxation rate constants. The energies of activation determined from self-diffusion coefficients in the series of alcohols are strikingly similar to those calculated for the same series of alcohols from both dielectric relaxation rate constants and ionic conductivities of dilute electrolytes. The experimental results are described in terms of an activated transport mechanism that is mediated by relaxation of the solution molecules. This microscopic picture of transport is postulated to be common to diffusion, dielectric relaxation, and ionic transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tripathy, Satya N., E-mail: satyanarayantripathy@gmail.com; Wojnarowska, Zaneta; Knapik, Justyna
2015-05-14
A detailed investigation on the molecular dynamics of ionic deep eutectic solvents (acetamide + lithium nitrate/sodium thiocyanate) is reported. The study was carried out employing dielectric relaxation spectroscopy covering seven decades in frequency (10{sup −1}-10{sup 6} Hz) and in a wide temperature range from 373 K down to 173 K, accessing the dynamic observables both in liquid and glassy state. The dielectric response of the ionic system has been presented in the dynamic window of modulus formalism to understand the conductivity relaxation and its possible connection to the origin of localized motion. Two secondary relaxation processes appear below glass transitionmore » temperature. Our findings provide suitable interpretation on the nature of secondary Johari-Goldstein process describing the ion translation and orientation of dipoles in a combined approach using Ngai’s coupling model. A nearly constant loss feature is witnessed at shorter times/lower temperatures. We also discuss the ac conductivity scaling behavior using Summerfield approach and random free energy barrier model which establish the time-temperature superposition principle. These experimental observations have fundamental importance on theoretical elucidation of the conductivity relaxation and glass transition phenomena in molten ionic conductors.« less
On the Extraction of Aromatic Compounds from Hydrocarbons by Imidazolium Ionic Liquids
Cassol, Cláudia C.; Umpierre, Alexandre P.; Ebeling, Günter; Ferrera, Bauer; Chiaro, Sandra S. X.; Dupont, Jairton
2007-01-01
The liquid-liquid equilibrium for the ternary system formed by n-octane and aromatic (alkylbenzenes) and heteroaromatic compounds (nitrogen and sulfur containing heterocyles) and 1-alkyl-3-methylimidazolium ionic liquids (ILs) associated with various anions has been investigated. The selectivity on the extraction of a specific aromatic compound is influenced by anion volume, hydrogen bond strength between the anion and the imidazolium cation and the length of the 1-methyl-3-alkylimidazolium alkyl side chain. The interaction of alkylbenzenes and sulfur heterocyles with the IL is preferentially through CH-π hydrogen bonds and the quantity of these aromatics in the IL phase decreases with the increase of the steric hindrance imposed by the substituents on the aromatic nucleus. In the case of nitrogen heterocycles the interaction occurs preferentially through N(heteroaromatic)-H(imidazolium) hydrogen bonds and the extraction process is largely controlled by the nitrogen heterocycle pKa. Competitive extraction experiments suggest that benzene, pyridine and dibenzothiophene do not compete for the same hydrogen bond sites of the IL.
Nazar, Muhammad Faizan; Shah, Syed Sakhawat; Eastoe, Julian; Khan, Asad Muhammad; Shah, Afzal
2011-11-15
A viable cost-effective approach employing mixtures of non-ionic surfactants Triton X-114/Triton X-100 (TX-114/TX-100), and subsequent cloud point extraction (CPE), has been utilized to concentrate and recycle inorganic nanoparticles (NPs) in aqueous media. Gold Au- and palladium Pd-NPs have been pre-synthesized in aqueous phases and stabilized by sodium 2-mercaptoethanesulfonate (MES) ligands, then dispersed in aqueous non-ionic surfactant mixtures. Heating the NP-micellar systems induced cloud point phase separations, resulting in concentration of the NPs in lower phases after the transition. For the Au-NPs UV/vis absorption has been used to quantify the recovery and recycle efficiency after five repeated CPE cycles. Transmission electron microscopy (TEM) was used to investigate NP size, shape, and stability. The results showed that NPs are preserved after the recovery processes, but highlight a potential limitation, in that further particle growth can occur in the condensed phases. Copyright © 2011 Elsevier Inc. All rights reserved.
Aguilera-Herrador, Eva; Lucena, Rafael; Cárdenas, Soledad; Valcárcel, Miguel
2008-08-01
The direct coupling between ionic liquid-based single-drop microextraction and gas chromatography/mass spectrometry is proposed for the rapid and simple determination of benzene, toluene, ethylbenzene and xylenes isomers (BTEX) in water samples. The extraction procedure exploits not only the high affinity of the selected ionic liquid (1-methyl-3-octyl-imidazolium hexaflourophosphate) to these aromatic compounds but also its special properties like viscosity, low vapour pressure and immiscibility with water. All the variables involved in the extraction process have been studied in depth. The developed method allows the determination of these single-ring compounds in water under the reference concentration level fixed by the international legislation. In this case, limits of detection were in the range 20 ng L(-1) (obtained for benzene) and 91 ng L(-1) (for o-xylene). The repeatability of the proposed method, expressed as RSD (n=5), varied between 3.0% (o-xylene) and 5.2% (toluene).
Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools.
Maton, Cedric; De Vos, Nils; Stevens, Christian V
2013-07-07
The increasing amount of papers published on ionic liquids generates an extensive quantity of data. The thermal stability data of divergent ionic liquids are collected in this paper with attention to the experimental set-up. The influence and importance of the latter parameters are broadly addressed. Both ramped temperature and isothermal thermogravimetric analysis are discussed, along with state-of-the-art methods, such as TGA-MS and pyrolysis-GC. The strengths and weaknesses of the different methodologies known to date demonstrate that analysis methods should be in line with the application. The combination of data from advanced analysis methods allows us to obtain in-depth information on the degradation processes. Aided with computational methods, the kinetics and thermodynamics of thermal degradation are revealed piece by piece. The better understanding of the behaviour of ionic liquids at high temperature allows selective and application driven design, as well as mathematical prediction for engineering purposes.
Polymer Ni-MH battery based on PEO-PVA-KOH polymer electrolyte
NASA Astrophysics Data System (ADS)
Yang, Chun-Chen
An alkaline polymer electrolyte film has been prepared by a solvent-casting method. Poly(vinyl alcohol), PVA is added to improve the ionic conductivity of the electrolyte. The ionic conductivity increases from 10 -7 to 10 -2 S cm -1 at room temperature when the weight percent ratio of poly(ethylene oxide), PEO to PVA is increased from 10:0 to 5:5. The activation energy of the ionic conductivity for the PEO-PVA-KOH polymer electrolyte is 3-8 kJ mol -1. The properties of the electrolyte film are characterized by a wide variety of techniques and it is found that the film exhibits good mechanical stability and high ionic conductivity at room temperature. The application of such electrolyte films to nickel-metal-hydride (Ni-MH) batteries is examined and the electrochemical characteristics of a polymer Ni-MH battery are obtained.
Shao, Qunfeng; Jia, Jingjing; Guan, Yongji; He, Xiaodong; Zhang, Xiaoping
2016-03-28
In this work, the phenomenon of the voltage generation is explored by using the molecular dynamics simulations, which is performed by driving a nano-sized droplet of room temperature ionic liquids moving along the monolayer graphene sheet for the first time. The studies show that the cations and anions of the droplet will move with velocity nonlinearly increasing to saturation arising by the force balance. The traditional equation for calculating the induced voltage is developed by taking the charge density into consideration, and larger induced voltages in μV-scale are obtained from the nano-size simulation systems based on the ionic liquids (ILs) for its enhanced ionic drifting velocities. It is also derived that the viscosity acts as a reduction for the induced voltage by comparing systems composed of two types of ILs with different viscosity and temperature.
Ionic conductors for solid oxide fuel cells
Krumpelt, Michael; Bloom, Ira D.; Pullockaran, Jose D.; Myles, Kevin M.
1993-01-01
An electrolyte that operates at temperatures ranging from 600.degree. C. to 800.degree. C. is provided. The electrolyte conducts charge ionically as well as electronically. The ionic conductors include molecular framework structures having planes or channels large enough to transport oxides or hydrated protons and having net-positive or net-negative charges. Representative molecular framework structures include substituted aluminum phosphates, orthosilicates, silicoaluminates, cordierites, apatites, sodalites, and hollandites.
NASA Astrophysics Data System (ADS)
Grishina, E. P.; Ramenskaya, L. M.; Pimenova, A. M.
2009-11-01
The physicochemical properties of the low-temperature ionic liquid based on 1-butyl-3-methylimidazolium bromide (BMImBr) and silver bromide were studied. Differential scanning calorimetry, Fourier transform IR spectroscopy, densimetry, viscometry, and conductometry measurements were performed to determine the dependences of the parameters under study on the concentration of AgBr. It was shown that the temperature and concentration behavior of the physicochemical properties of BMImBr-AgBr melts characterized the interaction between the system components with the formation of complex particles.
Complex hydrides as room-temperature solid electrolytes for rechargeable batteries
NASA Astrophysics Data System (ADS)
de Jongh, P. E.; Blanchard, D.; Matsuo, M.; Udovic, T. J.; Orimo, S.
2016-03-01
A central goal in current battery research is to increase the safety and energy density of Li-ion batteries. Electrolytes nowadays typically consist of lithium salts dissolved in organic solvents. Solid electrolytes could facilitate safer batteries with higher capacities, as they are compatible with Li-metal anodes, prevent Li dendrite formation, and eliminate risks associated with flammable organic solvents. Less than 10 years ago, LiBH4 was proposed as a solid-state electrolyte. It showed a high ionic conductivity, but only at elevated temperatures. Since then a range of other complex metal hydrides has been reported to show similar characteristics. Strategies have been developed to extend the high ionic conductivity of LiBH4 down to room temperature by partial anion substitution or nanoconfinement. The present paper reviews the recent developments in complex metal hydrides as solid electrolytes, discussing in detail LiBH4, strategies towards for fast room-temperature ionic conductors, alternative compounds, and first explorations of implementation of these electrolytes in all-solid-state batteries.
NASA Astrophysics Data System (ADS)
Ramenskaya, L. M.; Grishina, E. P.; Kudryakova, N. O.
2018-01-01
Thermochemical properties of the 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ionic liquid [EMim]NTf2 containing moisture absorbed from the atmosphere (0.242 wt %) are investigated. The phase behavior and thermal stability relative to salt dried in vacuum are studied by means of thermogravimetry and differential scanning calorimetry at different heating and cooling rates. The glass transition, crystallization, and melting temperatures, the enthalpies of phase transitions, and the changes in heat capacity during the formation of glass are determined. It is established that the absorbed water crystallizes at a temperature of around -40.6°C and has virtually no effect on the thermal stability and phase behavior of the salt. Rapid cooling results in the ionic liquid transitioning into the glass state at -91.7 °C and the formation of three mesophases with different melting temperatures; one crystalline modification that melts at a temperature of -19.3°C forms upon slow cooling.
Ionic liquid-based reagents improve the stability of midterm fecal sample storage.
Hao, Lilan; Xia, Zhongkui; Yang, Huanming; Wang, Jian; Han, Mo
2017-08-01
Fecal samples are widely used in metagenomic research, which aims to elucidate the relationship between human health and the intestinal microbiota. However, the best conditions for stable and reliable storage and transport of these samples at room temperature are still unknown, and whether samples stored at room temperature for several days will maintain their microbiota composition is still unknown. Here, we established and tested a preservation method using reagents containing imidazolium- or pyridinium-based ionic liquids. We stored human fecal samples in these reagents for up to 7 days at different temperatures. Subsequently, all samples were sequenced and compared with fresh samples and/or samples treated under other conditions. The 16S rRNA sequencing results suggested that ionic liquid-based reagents could stabilize the composition of the microbiota in fecal samples during a 7-day storage period, particularly when stored at room temperature. Thus, this method may have implications in the storage of fecal samples for metagenomic research. Copyright © 2017 Elsevier B.V. All rights reserved.
Exploration of a Metastable Normal Spinel Phase Diagram for the Quaternary Li–Ni–Mn–Co–O System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kan, Wang Hay; Huq, Ashfia; Manthiram, Arumugam
2016-02-27
In an attempt to enlarge the normal spinel phase diagram for the quaternary Li-Ni-Mn-Co-O system, the transformation at moderate temperatures (150-210 °C) of layered Li 0.5(Ni 1-y-zMn yCo z)O 2 (Rmore » $$\\bar{3}$$m), which were obtained by an ambient-temperature extraction of lithium from Li 0.5(Ni 1-y-zMn yCo z)O 2, into normal spinel-like (Fd$$\\bar{3}$$m) Li(Ni 1-y-zMn yCo z) 2O 4 has been investigated. The phase-conversion mechanism has been studied by joint time-of-flight (TOF) neutron and X-ray diffractions, thermogravimetric analysis, and bond valence sum map. The ionic diffusion of lithium (3a, 6c) and nickel (3a, 3b) ions has been quantified as a function of temperature. The investigated spinel phases are metastable, and they are subject to change into rock-salt phases at higher temperatures. The phases have been characterized as cathodes in lithium-ion cells. Finally, the study may serve as a strategic model to access other metastable phases by low-temperature synthesis approaches.« less
Thawarkar, Sachin; Khupse, Nageshwar D; Kumar, Anil
2016-04-04
Electrical conductivity (σ), viscosity (η), and self-diffusion coefficient (D) measurements of binary mixtures of aprotic and protic imidazolium-based ionic liquids with water, dimethyl sulfoxide, and ethylene glycol were measured from 293.15 to 323.15 K. The temperature dependence study reveals typical Arrhenius behavior. The ionicities of aprotic ionic liquids were observed to be higher than those of protic ionic liquids in these solvents. The aprotic ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, [bmIm][BF4 ], displays 100 % ionicity in both water and ethylene glycol. The protic ionic liquids in both water and ethylene glycol are classed as good ionic candidates, whereas in DMSO they are classed as having a poor ionic nature. The solvation dynamics of the ionic species of the ionic liquids are illustrated on the basis of the (1) H NMR chemical shifts of the ionic liquids. The self-diffusion coefficients D of the cation and anion of [HmIm][CH3 COO] in D2 O and in [D6 ]DMSO are determined by using (1) H nuclei with pulsed field gradient spin-echo NMR spectroscopy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Souquet, Jean Louis
2006-06-01
Ionocovalent crystals or glasses as well as molten salts or salt polymer complexes are currently studied as electrolytes for high energy density batteries. Their large Red/Ox stability range results from their thermodynamic or kinetic characteristics. For all these electrolytes, charge carriers are the consequence of local deviations from electroneutrality, identified as point defects for ionic crystals or partial dissociation in disordered structures. The charge carriers formation derives from a similar activated process. The main difference comes from the migration process, which depends on the dynamic properties of the surrounding medium. When the structural relaxation time is large, an activated process, mainly enthalpic, prevails for charge carriers migration. It is the usual case for ionic crystals or glasses. In the liquid or overcooled liquid states, the structural relaxation time of the medium is shorter that the time required for the activated migration process to occur and a local reorganization of the medium vanishes the energy barrier and provides the free volume necessary to ionic migration. In that case, the migration is mainly an entropic process. The configurational entropy necessary to this process decreases with temperature and vanishes at the so called ideal glass transition temperature which can be estimated by extrapolation of the transport properties or of the thermodynamic characteristics of the medium. However, at the experiment time scale, this configurational entropy disappears at a somewhat higher temperature, the glass transition temperature at which the structural relaxation time corresponds to the measurement time. Some glass forming ionic melts studied in a large temperature scale, over and below the glass transition temperature, evidence the two, enthalpic and entropic, migration mechanisms, allowing the determination of the thermodynamic characteristics of the charge carriers formation and migration. Some recent results indicate that entropic process, associated to long scale deformations, may also exist in crystalline structures.
Industrial uses and applications of ionic liquids
NASA Astrophysics Data System (ADS)
Gutowski, Keith E.
2018-02-01
Ionic liquids are salts that melt at low temperatures (usually defined as less than 100 °C) and have a number of interesting properties that make them useful for industrial applications. Typical ionic liquid properties include high thermal stabilities, negligible vapor pressures, wide liquidus ranges, broad electrochemical windows, and unique solvation properties. Furthermore, the potential combinations of cations and anions provide nearly unlimited chemical tunability. This article will describe the diverse industrial uses of ionic liquids and how their unique properties are leveraged, with examples ranging from chemical processing to consumer packaged goods.
On the origin of high ionic conductivity in Na-doped SrSiO 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chien, Po-Hsiu; Jee, Youngseok; Huang, Chen
Understanding the local structure and ion dynamics is at the heart of ion conductor research. This paper reports on high-resolution solid-state 29Si, 23Na, and 17O NMR investigation of the structure, chemical composition, and ion dynamics of a newly discovered fast ion conductor, Na-doped SrSiO 3, which exhibited a much higher ionic conductivity than most of current oxide ion conductors. Quantitative analyses reveal that with a small dose (<10 mol%) of Na, the doped Na integrates into the SrSiO 3 structure to form Na xSr 1-xSiO 3-0.5x, and with >10 mol% Na doping, phase separation occurs, leading to the formation ofmore » an amorphous phase β-Na 2Si 2O 5 and a crystalline Sr-rich phase. Variable-temperature 23Na and 17O magic-angle-spinning NMR up to 618 °C have shown significant changes in Na ion dynamics at high temperatures but little oxide ion motion, suggesting that Na ions are responsible for the observed high ionic conductivity. In addition, β-Na 2Si 2O 5 starts to crystallize at temperatures higher than 480 °C with prolonged heating, resulting in reduction in Na+ motion, and thus degradation of ionic conductivity. This study has contributed critical evidence to the understanding of ionic conduction in Na-doped SrSiO 3 and demonstrated that multinuclear high-resolution and high-temperature solid-state NMR is a uniquely useful tool for investigating ion conductors at their operating conditions.« less
On the origin of high ionic conductivity in Na-doped SrSiO 3
Chien, Po-Hsiu; Jee, Youngseok; Huang, Chen; ...
2016-02-17
Understanding the local structure and ion dynamics is at the heart of ion conductor research. This paper reports on high-resolution solid-state 29Si, 23Na, and 17O NMR investigation of the structure, chemical composition, and ion dynamics of a newly discovered fast ion conductor, Na-doped SrSiO 3, which exhibited a much higher ionic conductivity than most of current oxide ion conductors. Quantitative analyses reveal that with a small dose (<10 mol%) of Na, the doped Na integrates into the SrSiO 3 structure to form Na xSr 1-xSiO 3-0.5x, and with >10 mol% Na doping, phase separation occurs, leading to the formation ofmore » an amorphous phase β-Na 2Si 2O 5 and a crystalline Sr-rich phase. Variable-temperature 23Na and 17O magic-angle-spinning NMR up to 618 °C have shown significant changes in Na ion dynamics at high temperatures but little oxide ion motion, suggesting that Na ions are responsible for the observed high ionic conductivity. In addition, β-Na 2Si 2O 5 starts to crystallize at temperatures higher than 480 °C with prolonged heating, resulting in reduction in Na+ motion, and thus degradation of ionic conductivity. This study has contributed critical evidence to the understanding of ionic conduction in Na-doped SrSiO 3 and demonstrated that multinuclear high-resolution and high-temperature solid-state NMR is a uniquely useful tool for investigating ion conductors at their operating conditions.« less
Prabhu, Sugosh R; Dutt, G B
2014-11-20
The rotational dynamics of 1-alkyl-3-methylimidazolium-based ionic liquids has been investigated by monitoring their inherent fluorescence with the intent to unravel the characteristics of the emitting species. For this purpose, temperature-dependent fluorescence anisotropies of 1-alkyl-3-methylimidazolium (alkyl = ethyl and hexyl) ionic liquids with anions such as tris(pentafluoroethyl)trifluorophosphate ([FAP]), bis(trifluoromethylsulfonyl)imide ([Tf2N]), tetrafluoroborate ([BF4]), and hexafluorophosphate ([PF6]) have been measured. It has been observed that the reorientation times (τr) of the ionic liquids with an ethyl chain scale linearly with viscosity and were found to be independent of the nature of the anion. The experimentally measured τr values are a factor of 3 longer than the ones calculated for 1-ethyl-3-methylimidazolium cation using the Stokes-Einstein-Debye (SED) hydrodynamic theory with stick boundary condition, which suggests that the emitting species is not the imidazolium moiety but some kind of associated species. The reorientation times of ionic liquids with a hexyl chain, in contrast, follow the trend τr([FAP]) > τr([Tf2N]) = τr([BF4]) > τr([PF6]) at a given viscosity (η) and temperature (T). The ability of the ionic liquids with longer alkyl chains to form the organized structure appears to be responsible for the observed behavior considering the fact that significant deviations from linearity have been noticed in the τr versus η/T plots for strongly associating anions [BF4] and [PF6], especially at ambient temperatures.
Ionomer Design, Synthesis and Characterization for Ion-Conducting Energy Materials
NASA Astrophysics Data System (ADS)
Colby, Ralph H.
2013-03-01
For ionic actuators and battery separators, it is vital to utilize single-ion conductors that avoid the detrimental polarization of other ions; the commonly studied dual-ion conductors simply will not be used in the next generation of materials for these applications. Ab initio quantum chemistry calculations at 0 K in vacuum characterize ion interactions and ion solvation by various functional groups, allowing identification of constituents with weak interactions to be incorporated in ionomers for facile ion transport. Simple ideas for estimating the ion interactions and solvation at practical temperatures and dielectric constants are presented that indicate the rank ordering observed at 0 K in vacuum should be preserved. Hence, such ab initio calculations are useful for screening the plethora of combinations of polymer-ion, counterion and polar functional groups, to decide which are worthy of synthesis for new ionomers. Single-ion conducting ionomers are synthesized based on these calculations, with low glass transition temperatures (facile dynamics) to prepare ion-conducting membranes for ionic actuators and battery separators. Characterization by X-ray scattering, dielectric spectroscopy, NMR and linear viscoelasticity collectively develop a coherent picture of ionic aggregation and both counterion and polymer dynamics. Examples are shown of how ab initio calculations can be used to understand experimental observations of dielectric constant, glass transition temperature and conductivity of polymerized ionic liquids with counterions being either lithium, sodium, fluoride, hydroxide (for batteries) or bulky ionic liquids (for ionic actuators). This work was supported by the Department of Energy under Grant BES-DE-FG02-07ER46409.
NASA Astrophysics Data System (ADS)
Benedetto, Antonio; Ballone, Pietro
2018-05-01
Increasing attention is being devoted to the interaction of a new class of organic ionic liquids known as room-temperature ionic liquids (RTILs) with biomolecules, partly because of health and environment concerns, and, even more, for the prospect of exciting new applications in biomedicine, sensing and energy technologies. Here we focus on the interaction between RTILs and phospholipid bilayers that are well-accepted models for bio-membranes. We discuss how neutron scattering has been used to probe both the structure and the dynamics of these systems, and how its integration with molecular dynamics simulation has allowed the determination of the microscopic details of their interaction.
NASA Astrophysics Data System (ADS)
Sharma, Samriti; Sandarve, Sharma, Amit K.; Sharma, Meena
2018-05-01
For the investigation of interactions of L-leucine in aqueous solutions of an ionic liquid (1-butyl-3-methylimidazolium tetra fluoroborate [Bmim][BF4]) at atmospheric pressure over a temperature range of (293.15K to 313.16K), we use the volumetric approach. By using the density data we have calculated the apparent molar volume, VΦ, limiting apparent molar volume, V0Φ, the slope, Sv, partial molar volume of transfer, V0Φ,tr. The values of these acoustical parameters have been used for the interpretation of different interactions like hydrophilic-hydrophilic, hydrophilic-hydrophobic, ion hydrophilic, solute-solvent and solute-solute interactions in the amino acid and ionic liquid solutions.
Kowalski, Cláudia Hoffmann; da Silva, Gilmare Antônia; Poppi, Ronei Jesus; Godoy, Helena Teixeira; Augusto, Fabio
2007-02-28
Polychlorinated biphenyls (PCB) can eventually contaminate breast milk, which is a serious issue to the newborn due to their high vulnerability. Solid phase microextraction (SPME) can be a very convenient technique for their isolation and pre-concentration prior chromatographic analysis. Here, a simultaneous multioptimization strategy based on a neuro-genetic approach was applied to a headspace SPME method for determination of 12 PCB in human milk. Gas chromatography with electron capture detection (ECD) was adopted for the separation and detection of the analytes. Experiments according to a Doehlert design were carried out with varied extraction time and temperature, media ionic strength and concentration of the methanol (co-solvent). To find the best model that simultaneously correlate all PCB peak areas and SPME extraction conditions, a multivariate calibration method based on a Bayesian Neural Network (BNN) was applied. The net output from the neural network was used as input in a genetic algorithm (GA) optimization operation (neuro-genetic approach). The GA pointed out that the best values of the overall SPME operational conditions were the saturation of the media with NaCl, extraction temperature of 95 degrees C, extraction time of 60 min and addition of 5% (v/v) methanol to the media. These optimized parameters resulted in the decrease of the detection limits and increase on the sensitivity for all tested analytes, showing that the use of neuro-genetic approach can be a promising way for optimization of SPME methods.
Padró, Juan M; Pellegrino Vidal, Rocío B; Echevarria, Romina N; Califano, Alicia N; Reta, Mario R
2015-05-01
Chagas disease constitutes a major public health problem in Latin America. Human breast milk is a biological sample of great importance for the analysis of therapeutic drugs, as unwanted exposure through breast milk could result in pharmacological effects in the nursing infant. Thus, the goal of breast milk drug analysis is to inquire to which extent a neonate may be exposed to a drug during lactation. In this work, we developed an analytical technique to quantify benznidazole and nifurtimox (the two antichagasic drugs currently available for medical treatment) in human breast milk, with a simple sample pretreatment followed by an ionic-liquid-based dispersive liquid-liquid microextraction combined with high-performance liquid chromatography and UV detection. For this technique, the ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate has been used as the "extraction solvent." A central composite design was used to find the optimum values for the significant variables affecting the extraction process: volume of ionic liquid, volume of dispersant solvent, ionic strength, and pH. At the optimum working conditions, the average recoveries were 77.5 and 89.7%, the limits of detection were 0.06 and 0.09 μg/mL and the interday reproducibilities were 6.25 and 5.77% for benznidazole and nifurtimox, respectively. The proposed methodology can be considered sensitive, simple, robust, accurate, and green. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Zhibing; He, Mengyu; Jiang, Chunzhu; Zhang, Fengqing; Du, Shanshan; Feng, Wennan; Zhang, Hanqi
2015-12-01
Matrix solid-phase dispersion coupled with homogeneous ionic liquid microextraction was developed and applied to the extraction of some sulfonamides, including sulfamerazine, sulfamethazine, sulfathiazole, sulfachloropyridazine, sulfadoxine, sulfisoxazole, and sulfaphenazole, in animal tissues. High-performance liquid chromatography was applied to the separation and determination of the target analytes. The solid sample was directly treated by matrix solid-phase dispersion and the eluate obtained was treated by homogeneous ionic liquid microextraction. The ionic liquid was used as the extraction solvent in this method, which may result in the improvement of the recoveries of the target analytes. To avoid using organic solvent and reduce environmental pollution, water was used as the elution solvent of matrix solid-phase dispersion. The effects of the experimental parameters on recoveries, including the type and volume of ionic liquid, type of dispersant, ratio of sample to dispersant, pH value of elution solvent, volume of elution solvent, amount of salt in eluate, amount of ion-pairing agent (NH4 PF6 ), and centrifuging time, were evaluated. When the present method was applied to the analysis of animal tissues, the recoveries of the analytes ranged from 85.4 to 118.0%, and the relative standard deviations were lower than 9.30%. The detection limits for the analytes were 4.3-13.4 μg/kg. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
SOLVENT-FREE SONOCHEMICAL PREPARATION OF IONIC LIQUIDS
An ultrasound-assisted preparation of a series of ambient temperature ionic liquids, 1-alkyl-3-methylimidazolium (AMIM) halides, that proceeds via efficient reaction of 1-methyl imidazole with alkyl halides/terminal dihalides under solvent-free conditions, is described.
Jacquemin, Johan; Feder-Kubis, Joanna; Zorębski, Michał; Grzybowska, Katarzyna; Chorążewski, Mirosław; Hensel-Bielówka, Stella; Zorębski, Edward; Paluch, Marian; Dzida, Marzena
2014-02-28
During this research, we present a study on the thermal properties, such as the melting, cold crystallization, and glass transition temperatures as well as heat capacities from 293.15 K to 323.15 K of nine in-house synthesized protic ionic liquids based on the 3-(alkoxymethyl)-1H-imidazol-3-ium salicylate ([H-Im-C1OC(n)][Sal]) with n = 3-11. The 3D structures, surface charge distributions and COSMO volumes of all investigated ions are obtained by combining DFT calculations and the COSMO-RS methodology. The heat capacity data sets as a function of temperature of the 3-(alkoxymethyl)-1H-imidazol-3-ium salicylate are then predicted using the methodology originally proposed in the case of ionic liquids by Ge et al. 3-(Alkoxymethyl)-1H-imidazol-3-ium salicylate based ionic liquids present specific heat capacities higher in many cases than other ionic liquids that make them suitable as heat storage media and in heat transfer processes. It was found experimentally that the heat capacity increases linearly with increasing alkyl chain length of the alkoxymethyl group of 3-(alkoxymethyl)-1H-imidazol-3-ium salicylate as was expected and predicted using the Ge et al. method with an overall relative absolute deviation close to 3.2% for temperatures up to 323.15 K.
Chapela, Gustavo A; Guzmán, Orlando; Díaz-Herrera, Enrique; del Río, Fernando
2015-04-21
A model of a room temperature ionic liquid can be represented as an ion attached to an aliphatic chain mixed with a counter ion. The simple model used in this work is based on a short rigid tangent square well chain with an ion, represented by a hard sphere interacting with a Yukawa potential at the head of the chain, mixed with a counter ion represented as well by a hard sphere interacting with a Yukawa potential of the opposite sign. The length of the chain and the depth of the intermolecular forces are investigated in order to understand which of these factors are responsible for the lowering of the critical temperature. It is the large difference between the ionic and the dispersion potentials which explains this lowering of the critical temperature. Calculation of liquid-vapor equilibrium orthobaric curves is used to estimate the critical points of the model. Vapor pressures are used to obtain an estimate of the triple point of the different models in order to calculate the span of temperatures where they remain a liquid. Surface tensions and interfacial thicknesses are also reported.
Inverse Coarse-Graining: A New Tool for Molecular Design
2010-12-16
simulations. When compared with the more general multiscale coarse-graining (MS-CG) method, the EF-CG method retains the transferable part of the CG...Y.; Yan, T.; Voth, G. A., A Multiscale coarse-graining study of liquid/vacuum interface of room-temperature ionic liquids with alkyl substituents of...Energetic Room Temperature Ionic Liquid 1-Hydroxyethyl-4Amino-1, 2, 4-Triazolium Nitrate (HEATN). J. Phys. Chem. B 2008, 112, 3121-3131. 6. Liu, P
Comparing two tetraalkylammonium ionic liquids. II. Phase transitions.
Lima, Thamires A; Paschoal, Vitor H; Faria, Luiz F O; Ribeiro, Mauro C C; Ferreira, Fabio F; Costa, Fanny N; Giles, Carlos
2016-06-14
Phase transitions of the ionic liquids n-butyl-trimethylammonium bis(trifluoromethanesulfonyl)imide, [N1114][NTf2], and methyl-tributylammonium bis(trifluoromethanesulfonyl)imide, [N1444][NTf2], were investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD) measurements, and Raman spectroscopy. XRD and Raman spectra were obtained as a function of temperature at atmospheric pressure, and also under high pressure at room temperature using a diamond anvil cell (DAC). [N1444][NTf2] experiences glass transition at low temperature, whereas [N1114][NTf2] crystallizes or not depending on the cooling rate. Both the ionic liquids exhibit glass transition under high pressure. XRD and low-frequency Raman spectra provide a consistent physical picture of structural ordering-disordering accompanying the thermal events of crystallization, glass transition, cold crystallization, pre-melting, and melting. Raman spectra in the high-frequency range of some specific cation and anion normal modes reveal conformational changes of the molecular structures along phase transitions.
Wang, Hanlu; Xu, Mingsheng; Zhou, Rujin
2017-02-01
The dual role of the ionic liquid 1-butyl-3-methyl-imidazolium trifluoroacetic acid ([C 4 mim]TFA) as an extractant for thiophene (TH) and a catalyst for the oxidation of TH was explored at the molecular level by performing density functional theory (DFT) calculations. The calculated interaction energies demonstrated why [C 4 mim]TFA is a better extractant for thiophene sulfone (THO 2 ) than for TH. Two pathways were proposed for the oxidation of TH to THO 2 with [C 4 mim]TFA acting as a catalyst. In the dominant pathway, a peracid is formed which then oxidizes TH to the sulfoxide and sulfones. The presence of [C 4 mim]TFA was found to greatly reduce the barrier to the oxidative desulfurization (ODS) of TH using H 2 O 2 as an oxidant. Graphical Abstract Possible reaction mechanisms of TH with the aid of [C4mim]TFAᅟ.
Rapid conversion of sorbitol to isosorbide in hydrophobic ionic liquids under microwave irradiation.
Kamimura, Akio; Murata, Kengo; Tanaka, Yoshiki; Okagawa, Tomoki; Matsumoto, Hiroshi; Kaiso, Kouji; Yoshimoto, Makoto
2014-12-01
Sorbitol was effectively converted to isosorbide by treatment with [TMPA][NTf2 ] in the presence of catalytic amounts of TsOH under microwave heating at 180 °C. The reaction completed within 10 min and isosorbide was isolated to about 60%. Ionic liquids were readily recovered by an extraction treatment and reused several times. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Friesen, Cody A.; Krishnan, Ramkumar; Tang, Toni; Wolfe, Derek
2014-08-19
An electrochemical cell comprising an electrolyte comprising water and a hydrophobic ionic liquid comprising positive ions and negative ions. The electrochemical cell also includes an air electrode configured to absorb and reduce oxygen. A hydrophilic or hygroscopic additive modulates the hydrophobicity of the ionic liquid to maintain a concentration of the water in the electrolyte is between 0.001 mol % and 25 mol %.
Chen, Chunyan; Liang, Xiaotong; Wang, Jianping; Zou, Ying; Hu, Huiping; Cai, Qingyun; Yao, Shouzhuo
2014-06-27
A novel solid-phase microextraction (SPME) fiber was developed by chemical binding of a crosslinked polymeric ionic liquid (PIL) on the surface of an anodized Ti wire, and was applied in direct-immersion mode for the extraction of perfluorinated compounds (PFCs) from water samples coupled with high performance liquid chromatography-tandem mass spectrometry analysis. The PIL coatings were synthesized by using 1-vinyl-3-hexylimidazolium hexafluorophosphate as monomer and methylacryloyl-substituted polyhedral oligomeric silsesquioxane (POSS) as cross-linker via free radical reaction. The proposed fiber coating exhibited high mechanical stability due to the chemical bonding between the coating and the Ti wire surface. The integration of POSS reagent enhanced the organic solvent resistance of the coating. The parameters affecting the extraction performance of the fiber coating including extraction time, pH of solution, ionic strength and desorption conditions were optimized. The developed PIL-POSS fiber showed good linearity (R<0.998) between 0.1 and 50ngmL(-1) with method detection limits ranging from 0.005 to 0.08ngmL(-1) depending on the analyte, and with relative standard deviation for single-fiber repeatability and fiber-to-fiber reproducibility less than 8.6% and 9.5%, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.
Dario, Michelli Ferrera; Pahl, Richard; de Castro, Jordana Rodrigues; de Lima, Fernando Soares; Kaneko, Telma Mary; Pinto, Claudinéia A S O; Baby, André Rolim; Velasco, Maria Valéria Robles
2013-03-05
The solar radiation promotes color fading of natural and dyed hair by free radical generation, which oxidize the pigments, and it has been proposed the incorporation of antioxidants in order to reduce the alterations of hair color. Due to its high content of polyphenols and tannins, which are potent antioxidants, the hydroalcoholic extract of Punica granatum L. (pomegranate) was used in this research. Hair care formulations containing pomegranate extract were applied to red dyed hair tresses, and these were exposed to UVA radiation. Non-ionic silicone emulsion presenting color protection properties were also used for comparison purpose between the results obtained with different treatments, including silicone in combination with the pomegranate extract. The pomegranate extract at 5.0% and 10.0%w/w was effective in preventing the hair color fading in 37.6% and 60.8%, respectively, but the association of hydroalcoholic extract and non-ionic silicone emulsion is not encouraged. Mechanical properties were not affected by UVA radiation, since significant differences in breaking strength were not observed. Considering the conditions which the tresses have been exposed, it was concluded that the pomegranate extract at 10.0% w/w in hair care formulations are effective in reducing color fading of red dyed hair. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castillo, M.; Alonso, M.C.; Riu, J.
1999-04-15
This paper presents a generic protocol for the determination of polar, ionic, and highly water soluble organic pollutants on untreated industrial wastewaters involving the use of two different solid-phase extraction (SPE) methodologies followed by liquid chromatography-mass spectrometry (LC-MS). Untreated industrial wastewaters might contain natural and synthetic dissolved organic compounds with total organic carbon (TOC) values varying between 100 and 3000 mg/L. All polar, ionic and highly water soluble compounds comprising more than 95% of the organic content and with major contribution to the total toxicity of the sample cannot be analyzed by conventional gas chromatography-mass spectrometry (GC-MS), and LC-MS ismore » a good alternative. In this work two extraction procedures were used to obtain fractionated extracts of the nonionic polar compounds: a polymeric Isolute ENV + SPE cartridge for the preconcentration of anionic analytes and a sequential solid-phase extraction (SSPE) method percolating the samples first in octadecylsilica cartridge in series with the polymeric Lichrolut EN cartridge. Average recoveries ranging from 72% to 103% were obtained for a variety of 23 different analytes. Determination of nonionic pollutants was accomplished by reverse-phase liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (LC-APCI-MS), while anionic compounds were analyzed by ion pair chromatography-electrospray-mass spectrometry (IP-ESI-MS) and LC-ESI-MS. This protocol was applied to a pilot survey of textile and tannery wastewaters leading to the identification and quantification of 33 organic pollutants.« less
Hu, Allen H; Kuo, Chien-Hung; Huang, Lance H; Su, Chao-Chin
2017-02-01
Rare earth elements are key raw materials in high-technology industries. Mining activities and manufacturing processes of such industries have caused considerable environmental impacts, such as soil erosion, vegetation destruction, and various forms of pollution. Sustaining the long-term supply of rare earth elements is difficult because of the global shortage of rare earth resources. The diminishing supply of rare earth elements has attracted considerable concern because many industrialized countries regarded such elements as important strategic resources for economic growth. This study aims to explore the carbon footprints of yttrium and europium recovery techniques from phosphor. Two extraction recovery methods, namely, acid extraction and solvent extraction, were selected for the analysis and comparison of carbon footprints. The two following functional units were used: (1) the same phosphor amounts for specific Y and Eu recovery concentrations, and (2) the same phosphor amounts for extraction. For acid extraction method, two acidic solutions (H 2 SO 4 and HCl) were used at two different temperatures (60 and 90°C). For solvent extraction method, acid leaching was performed followed by ionic liquid extraction. Carbon footprints from acid and solvent extraction methods were estimated to be 10.1 and 10.6kgCO 2 eq, respectively. Comparison of the carbon emissions of the two extraction methods shows that the solvent extraction method has significantly higher extraction efficiency, even though acid extraction method has a lower carbon footprint. These results may be used to develop strategies for life cycle management of rare earth resources to realize sustainable usage. Copyright © 2016 Elsevier Ltd. All rights reserved.
Huang, Yanhua; Wang, Yuzhi; Pan, Qi; Wang, Ying; Ding, Xueqin; Xu, Kaijia; Li, Na; Wen, Qian
2015-06-02
Four kinds of green deep eutectic solvents (DESs) based on choline chloride (ChCl) have been synthesized and coated on the surface of magnetic graphene oxide (Fe3O4@GO) to form Fe3O4@GO-DES for the magnetic solid-phase extraction of protein. X-ray diffraction (XRD), vibrating sample magnetometer (VSM), Fourier transform infrared spectrometry (FTIR), field emission scanning electron microscopy (FESEM) and thermal gravimetric analysis (TGA) were employed to characterize Fe3O4@GO-DES, and the results indicated the successful preparation of Fe3O4@GO-DES. The UV-vis spectrophotometer was used to measure the concentration of protein after extraction. Single factor experiments proved that the extraction amount was influenced by the types of DESs, solution temperature, solution ionic strength, extraction time, protein concentration and the amount of Fe3O4@GO-DES. Comparison of Fe3O4@GO and Fe3O4@GO-DES was carried out by extracting bovine serum albumin, ovalbumin, bovine hemoglobin and lysozyme. The experimental results showed that the proposed Fe3O4@GO-DES performs better than Fe3O4@GO in the extraction of acidic protein. Desorption of protein was carried out by eluting the solid extractant with 0.005 mol L(-1) Na2HPO4 contained 1 mol L(-1) NaCl. The obtained elution efficiency was about 90.9%. Attributed to the convenient magnetic separation, the solid extractant could be easily recycled. Copyright © 2015 Elsevier B.V. All rights reserved.
AN EXPEDITIOUS SOLVENT-FREE ROUTE TO IONIC LIQUIDS USING MICROWAVES
A microwave-assisted preparation of a series of ambient temperature ionic liquids, 1-alkyl-3-methyl imidazolium (IMIM) halides, that proceeds via efficient raction of 1-methyl imidazole with alkylhalides/terminal dihalides under solvent-free conditions, is described.
Fluorescent probe studies of polarity and solvation within room temperature ionic liquids: a review.
Pandey, Shubha; Baker, Sheila N; Pandey, Siddharth; Baker, Gary A
2012-09-01
Ionic liquids display an array of useful and sometimes unconventional, solvent features and have attracted considerable interest in the field of green chemistry for the potential they hold to significantly reduce environmental emissions. Some of these points have a bearing on the chemical reactivity of these systems and have also generated interest in the physical and theoretical aspects of solvation in ionic liquids. This review presents an introduction to the field of ionic liquids, followed by discussion of investigations into the solvation properties of neat ionic liquids or mixed systems including ionic liquids as a major or minor component. The ionic liquid based multicomponent systems discussed are composed of other solvents, other ionic liquids, carbon dioxide, surfactants or surfactant solutions. Although we clearly focus on fluorescence spectroscopy as a tool to illuminate ionic liquid systems, the issues discussed herein are of general relevance to discussions of polarity and solvent effects in ionic liquids. Transient solvation measurements carried out by means of time-resolved fluorescence measurements are particularly powerful for their ability to parameterize the kinetics of the solvation process in ionic liquids and are discussed as well.
Thermal expansion of silver iodide-silver molybdate glasses at low temperatures
NASA Astrophysics Data System (ADS)
Mandanici, A.; Raimondo, A.; Cutroni, M.; Ramos, M. A.; Rodrigo, J. G.; Vieira, S.; Armellini, C.; Rocca, F.
2009-05-01
Ionic glasses obtained combining silver iodide and silver molybdate are characterized by quite low values of the glass transition temperature Tg around 320-350 K, by high values of the dc ionic conductivity even at room temperature and by a peculiar behavior of the mechanical response at ultrasonic frequencies. In fact, at temperatures well below their glass transition temperature, these glasses exhibit an intense peak of acoustic attenuation well described by two different and almost overlapping relaxational contributions. Considering also that negative thermal expansion has been reported for some molybdate crystalline compounds, we have investigated in this work the thermal expansion of two silver iodomolybdate glasses (AgI)1-x(Ag2MoO4)x for x =0.25 and x =0.33 in a wide temperature range (4.2-300 K) from cryogenic temperatures up to some 20 K below Tg using a precision capacitance dilatometer aiming to understand whether the expansivity shows some possible fingerprint corresponding to the above-mentioned mechanical response. Two different measuring methods, a quasiadiabatic and a continuous one, have been used for the thermal expansion measurements. The results are discussed in comparison with the information obtained from previous investigations based on the extended x-ray absorption fine structure (EXAFS) technique and with the behavior of other ionic glasses.
NASA Astrophysics Data System (ADS)
Orellana, Sandra; Soto, César; Toral, M. Inés
2010-01-01
The present study shows the formation and characterization of the ionic-pair between the antibiotic oxytetracycline and the dye crystal violet in ammonia solution pH 9.0 ± 0.2 extracted into chloroform. The characterization was demonstrated using UV-vis spectrophotometry, 1H NMR, measurement of relaxation times T1 and IR spectroscopy, using a comparison between the signals of individual pure compounds with the signals with the mixture CV-OTC in different alkaline media. The formation of ionic-pair was also corroborated by new signals and chemical shifts. (2D) NMR spectroscopy experiments show that the interaction is electrostatic.
Poly(Ionic Liquid) Semi-Interpenetrating Network Multi-Responsive Hydrogels
Tudor, Alexandru; Florea, Larisa; Gallagher, Simon; Burns, John; Diamond, Dermot
2016-01-01
Herein we describe poly(ionic liquid) hydrogel actuators that are capable of responding to multiple stimuli, namely temperature, ionic strength and white light irradiation. Using two starting materials, a crosslinked poly ionic liquid (PIL) and a linear poly(N-isopropylacrylamide-co-spiropyran-co-acrylic acid), several semi-interpenetrating (sIPN) hydrogels were synthesised. The dimensions of hydrogels discs were measured before and after applying the stimuli, to quantify their response. Samples composed of 100% crosslinked PIL alone showed an average area reduction value of ~53% when the temperature was raised from 20 °C to 70 °C, ~24% when immersed in 1% w/w NaF salt solution and no observable photo-response. In comparison, sIPNs containing 300% w/w linear polymer showed an average area reduction of ~45% when the temperature was raised from 20 °C to 70 °C, ~36% when immersed in 1% NaF w/w salt solution and ~10% after 30 min exposure to white light irradiation, respectively. Moreover, by varying the content of the linear component, fine-control over the photo-, thermo- and salt response, swelling-deswelling rate and mechanical properties of the resulting sIPN was achieved. PMID:26861339
Gandolfi, F; Malleret, L; Sergent, M; Doumenq, P
2015-08-07
The water framework directives (WFD 2000/60/EC and 2013/39/EU) force European countries to monitor the quality of their aquatic environment. Among the priority hazardous substances targeted by the WFD, short chain chlorinated paraffins C10-C13 (SCCPs), still represent an analytical challenge, because few laboratories are nowadays able to analyze them. Moreover, an annual average quality standards as low as 0.4μgL(-1) was set for SCCPs in surface water. Therefore, to test for compliance, the implementation of sensitive and reliable analysis method of SCCPs in water are required. The aim of this work was to address this issue by evaluating automated solid phase micro-extraction (SPME) combined on line with gas chromatography-electron capture negative ionization mass spectrometry (GC/ECNI-MS). Fiber polymer, extraction mode, ionic strength, extraction temperature and time were the most significant thermodynamic and kinetic parameters studied. To determine the suitable factors working ranges, the study of the extraction conditions was first carried out by using a classical one factor-at-a-time approach. Then a mixed level factorial 3×2(3) design was performed, in order to give rise to the most influent parameters and to estimate potential interactions effects between them. The most influent factors, i.e. extraction temperature and duration, were optimized by using a second experimental design, in order to maximize the chromatographic response. At the close of the study, a method involving headspace SPME (HS-SPME) coupled to GC/ECNI-MS is proposed. The optimum extraction conditions were sample temperature 90°C, extraction time 80min, with the PDMS 100μm fiber and desorption at 250°C during 2min. Linear response from 0.2ngmL(-1) to 10ngmL(-1) with r(2)=0.99 and limits of detection and quantification, respectively of 4pgmL(-1) and 120pgmL(-1) in MilliQ water, were achieved. The method proved to be applicable in different types of waters and show key advantages, such as simplicity, automation and sensitivity, required for the monitoring programs linked to the WFD. Copyright © 2015 Elsevier B.V. All rights reserved.
Wang, Huili; Gao, Ming; Gao, Jiajia; Yu, Nana; Huang, Hong; Yu, Qing; Wang, Xuedong
2016-09-01
In conventional microextraction procedures, the disperser (organic solvent or ionic liquid) is left in the aqueous phase and discarded after finishing the microextraction process. Because the disperser is water-soluble, it results in low extraction recovery for polar compounds. In this investigation, an ionic-liquid-based microextraction (ILBME) was integrated with salting-out assisted liquid-liquid microextraction (SALLME) to build an ionic-liquid-based, salt-induced, dual microextraction (ILSDME) for isolation of five fluoroquinolone antibiotics (FQs) with high polarity (log P, -1.0 to 1.0). The proposed ILSDME method incorporates a dual microextraction by converting the disperser in the ILBME to the extractor in the SALLME. Optimization of key factors was conducted by integrating single-factor experiments and central composite design. The optimized experimental parameters were 80 μL [C8MIM][PF6] as extractor, 505 μL acetone as disperser, pH = 2.0, 4.1 min extraction time, and 4.2 g of Na2SO4. Under optimized conditions, high ERs (90.6-103.2 %) and low LODs (0.07-0.61 μg kg(-1)) were determined for five FQs in swine feed. Experimental precision based on RSDs was 1.4-5.2 % for intra-day and 2.4-6.9 % for inter-day analyses. The combination of ILBME with SALLME increased FQ recoveries by 15-20 % as compared with SALLME, demonstrating that the ILSDME method can enhance extraction efficiency for polar compounds compared to single-step microextraction. Therefore, the ILSDME method developed in this study has wide application for pretreatment of moderately to highly polar pollutants in complex matrices. Graphical Abstract A dual microextraction was developed by integrating ionic-liquid-based microextraction with salting-out assisted liquid-liquid microextraction for isolation of five fluoroquinolone antibiotics (FQs) with high polarity (log P = -1.0 to 1.0). The principle of dual microextraction is based on converting the remaining disperser from the first microextraction into an extractor in the second microextraction. Single-factor experiment and central composite design were applied for optimizing operational parameters using 3D response surfaces and contour lines. Under optimized conditions, the method provided high extraction recoveries and low LODs for five FQs in swine feed. The prominent advantage of the dual microextraction is rapid and highly efficient extraction of moderately to highly polar fluoroquinolones from complex matrices.
Hawker, Rebecca R; Haines, Ronald S; Harper, Jason B
2018-05-09
A variety of ionic liquids, each containing the same cation but a different anion, were examined as solvents for a nucleophilic aromatic substitution reaction. Varying the proportion of ionic liquid was found to increase the rate constant as the mole fraction of ionic liquid increased demonstrating that the reaction outcome could be controlled through varying the ionic liquid. The solvent effects were correlated with the hydrogen bond accepting ability (β) of the ionic liquid anion allowing for qualitative prediction of the effect of changing this component of the solute. To determine the microscopic origins of the solvent effects, activation parameters were determined through temperature-dependent kinetic analyses and shown to be consistent with previous studies. With the knowledge of the microscopic interactions in solution, an ionic liquid was rationally chosen to maximise rate enhancement demonstrating that an ionic solvent can be selected to control reaction outcome for this reaction type.
Wu, Haoran; Yao, Shun; Qian, Guofei; Song, Hang
2016-08-26
A novel aqueous two-phase systems (ATPS) composed of a small molecule organic compound tropine and an organic or inorganic salt aqueous solution has been developed for the first time. The phase behavior of tropine-salt ATPS was systemically investigated and the phase equilibrium data were measured in different temperatures and concentrations and correlated by the Merchuk equation with satisfactory results. The detection of the conductivity and particle size proved the formation of micelle in the process of forming tropine-salt ATPS. The separation application of the ATPS was assessed with the removal of hydrophilic benzothiazolium-based ionic liquids (ILs) from aqueous solution. The result showed that ILs were effectively extracted into the top tropine-rich phase. Finally, ILs in the top tropine-rich phase were further separated by the means of adsorption-desorption with DM301 macroporous resin and ethanol. The method of novel tropine-salt ATPS combined with adsorption-desorption is demonstrated a promising alternative thought and approach for the removal or recovery of hydrophilic compounds from aqueous media and also could provide a potential application for bio-separation. Copyright © 2016. Published by Elsevier B.V.
Structural and superionic properties of Ag+-rich ternary phases within the AgI-MI2 systems
NASA Astrophysics Data System (ADS)
Hull, S.; Keen, D. A.; Berastegui, P.
2002-12-01
The effects of temperature on the crystal structure and ionic conductivity of the compounds Ag2CdI4, Ag2ZnI4 and Ag3SnI5 have been investigated by powder diffraction and impedance spectroscopy techniques. varepsilon-Ag2CdI4 adopts a tetragonal crystal structure under ambient conditions and abrupt increases in the ionic conductivity are observed at 407(2), 447(3) and 532(4) K, consistent with the sequence of transitions varepsilon-Ag2CdI 4 rightarrow beta-Ag2CdI 4 + beta-AgI + CdI2 rightarrow alpha-AgI + CdI2 rightarrow alpha-Ag2CdI4. Hexagonal beta-Ag2CdI4 is metastable at ambient temperature. The ambient-temperature beta phase of Ag2ZnI4 is orthorhombic and the structures of beta-Ag2CdI4 and beta-Ag2ZnI4 can, respectively, be considered as ordered derivatives of the wurtzite (beta) and zincblende (gamma) phases of AgI. On heating Ag2ZnI4, there is a 12-fold increase in ionic conductivity at 481(1) K and a further eightfold increase at 542(3) K. These changes result from decomposition of beta-Ag2ZnI4 into alpha-AgI + ZnI2, followed by the appearance of superionic alpha-Ag2ZnI4 at the higher temperature. The hexagonal crystal structure of alpha-Ag2ZnI4 is a dynamically disordered counterpart to the beta modification. Ag3SnI5 is only stable at temperatures in excess of 370(3) K and possesses a relatively high ionic conductivity (sigma approx 0.19Omega-1 cm-1 at 420 K) due to dynamic disorder of the Ag+ and Sn2+ within a cubic close packed I- sublattice. The implications of these findings for the wider issue of high ionic conductivity in AgI-MI2 compounds is discussed, with reference to recently published studies of Ag4PbI6 and Ag2HgI4 and new data for the temperature dependence of the ionic conductivity of the latter compound.