Sample records for extragalactic uv background

  1. The Diffuse Radiation Field at High Galactic Latitudes

    NASA Astrophysics Data System (ADS)

    Akshaya, M. S.; Murthy, Jayant; Ravichandran, S.; Henry, R. C.; Overduin, James

    2018-05-01

    We have used GALEX observations of the north and south Galactic poles to study the diffuse ultraviolet background at locations where the Galactic light is expected to be at a minimum. We find offsets of 230–290 photon units in the far-UV (1531 Å) and 480–580 photon units in the near-UV (2361 Å). Of this, approximately 120 photon units can be ascribed to dust-scattered light and another 110 photon units (190 in the near-UV) to extragalactic radiation. The remaining radiation is, as yet, unidentified and amounts to 120–180 photon units in the far-UV and 300–400 photon units in the near-UV. We find that molecular hydrogen fluorescence contributes to the far-UV when the 100 μm surface brightness is greater than 1.08 MJy sr‑1.

  2. Extragalactic background light measurements and applications.

    PubMed

    Cooray, Asantha

    2016-03-01

    This review covers the measurements related to the extragalactic background light intensity from γ-rays to radio in the electromagnetic spectrum over 20 decades in wavelength. The cosmic microwave background (CMB) remains the best measured spectrum with an accuracy better than 1%. The measurements related to the cosmic optical background (COB), centred at 1 μm, are impacted by the large zodiacal light associated with interplanetary dust in the inner Solar System. The best measurements of COB come from an indirect technique involving γ-ray spectra of bright blazars with an absorption feature resulting from pair-production off of COB photons. The cosmic infrared background (CIB) peaking at around 100 μm established an energetically important background with an intensity comparable to the optical background. This discovery paved the way for large aperture far-infrared and sub-millimetre observations resulting in the discovery of dusty, starbursting galaxies. Their role in galaxy formation and evolution remains an active area of research in modern-day astrophysics. The extreme UV (EUV) background remains mostly unexplored and will be a challenge to measure due to the high Galactic background and absorption of extragalactic photons by the intergalactic medium at these EUV/soft X-ray energies. We also summarize our understanding of the spatial anisotropies and angular power spectra of intensity fluctuations. We motivate a precise direct measurement of the COB between 0.1 and 5 μm using a small aperture telescope observing either from the outer Solar System, at distances of 5 AU or more, or out of the ecliptic plane. Other future applications include improving our understanding of the background at TeV energies and spectral distortions of CMB and CIB.

  3. Extragalactic background light measurements and applications

    PubMed Central

    Cooray, Asantha

    2016-01-01

    This review covers the measurements related to the extragalactic background light intensity from γ-rays to radio in the electromagnetic spectrum over 20 decades in wavelength. The cosmic microwave background (CMB) remains the best measured spectrum with an accuracy better than 1%. The measurements related to the cosmic optical background (COB), centred at 1 μm, are impacted by the large zodiacal light associated with interplanetary dust in the inner Solar System. The best measurements of COB come from an indirect technique involving γ-ray spectra of bright blazars with an absorption feature resulting from pair-production off of COB photons. The cosmic infrared background (CIB) peaking at around 100 μm established an energetically important background with an intensity comparable to the optical background. This discovery paved the way for large aperture far-infrared and sub-millimetre observations resulting in the discovery of dusty, starbursting galaxies. Their role in galaxy formation and evolution remains an active area of research in modern-day astrophysics. The extreme UV (EUV) background remains mostly unexplored and will be a challenge to measure due to the high Galactic background and absorption of extragalactic photons by the intergalactic medium at these EUV/soft X-ray energies. We also summarize our understanding of the spatial anisotropies and angular power spectra of intensity fluctuations. We motivate a precise direct measurement of the COB between 0.1 and 5 μm using a small aperture telescope observing either from the outer Solar System, at distances of 5 AU or more, or out of the ecliptic plane. Other future applications include improving our understanding of the background at TeV energies and spectral distortions of CMB and CIB. PMID:27069645

  4. Dust in Extragalactic Reflection Nebulae

    NASA Astrophysics Data System (ADS)

    Lee, Chris H.; Hodges-Kluck, Edmund J.

    2017-08-01

    Observational evidence for extragalactic dust has been recently found in the form of UV extragalactic reflection nebulae around edge-on spiral galaxies, but the nature of the dust is largely unknown. To derive dust parameters, UV fluxes from the spacecrafts GALEX and Swift have been compared with model UV halo SEDs, which have been created from galaxy template spectra and a silicate-graphite dust model. The model contains two free parameters, which are fractional composition and maximum grain size. These analyses have been done for a sample of 8 nearby edge-on spiral galaxies with bright UV halos, where the dust properties can be spatially resolved, such as inside and outside of galactic winds or as a function of height from the galactic disc. The dust properties give insight into how dust is expelled from the galactic disc, which can also be applied to understanding gaseous outflows from the galaxies as well.

  5. Detecting the Attenuation of Blazar Gamma-ray Emission by Extragalactic Background Light with GLAST

    NASA Technical Reports Server (NTRS)

    Chen, Andrew; Ritz, Steven

    1999-01-01

    Gamma rays with energy above 10 GeV interact with optical-UV photons resulting in pair production. Therefore, a large sample of high redshift sources of these gamma rays can be used to probe the extragalactic background starlight (EBL) by examining the redshift dependence of the attenuation of the flux above 10 GeV. GLAST, the next generation high-energy gamma-ray telescope, will for the first time have the unique capability to detect thousands of gamma-ray blazars up to redshifts of at least z = 4, with enough angular resolution to allow identification of a large fraction of their optical counterparts. By combining recent determinations of the gamma-ray blazar luminosity function, recent calculations of the high energy gamma-ray opacity due to EBL absorption, and the expected GLAST instrument performance to produce simulated samples of blazars that GLAST would detect, including their redshifts and fluxes, we demonstrate that these blazars have the potential to be a highly effective probe of the EBL.

  6. Spectroscopic limits to an extragalactic far-ultraviolet background.

    PubMed

    Martin, C; Hurwitz, M; Bowyer, S

    1991-10-01

    We use a spectrum of the lowest intensity diffuse far-ultraviolet background obtained from a series of observations in a number of celestial view directions to constrain the properties of the extragalactic FUV background. The mean continuum level, IEG = 280 +/- 35 photons cm-2 s-1 angstrom-1 sr-1, was obtained in a direction with very low H I column density, and this represents a firm upper limit to any extragalactic background in the 1400-1900 angstroms band. Previous work has demonstrated that the far-ultraviolet background includes (depending on a view direction) contributions from dust-scattered Galactic light, high-ionization emission lines, two-photon emission from H II, H2 fluorescence, and the integrated light of spiral galaxies. We find no evidence in the spectrum of line or continuum features that would signify additional extragalactic components. Motivated by the observation of steep BJ and U number count distributions, we have made a detailed comparison of galaxy evolution models to optical and UV data. We find that the observations are difficult to reconcile with a dominant contribution from unclustered, starburst galaxies at low redshifts. Our measurement rules out large ionizing fluxes at z = 0, but cannot strongly constrain the QSO background light, which is expected to be 0.5%-4% of IEG. We present improved limits on radiative lifetimes of massive neutrinos. We demonstrated with a simple model that IGM radiation is unlikely to make a significant contribution to IEG. Since dust scattering could produce a significant part of the continuum in this lowest intensity spectrum, we carried out a series of tests to evaluate this possibility. We find that the spectrum of a nearby target with higher NH I, when corrected for H2 fluorescence, is very similar to the spectrum obtained in the low H I view direction. This is evidence that the majority of the continuum observed at low NH I is also dust reflection, indicating either the existence of a hitherto unidentified dust component, or of a large enhancement in dust scattering efficiency in low-density gas. We also review the effects of an additional dust component on the far-infrared background and on extragalactic FUV observations. We conclude that dust reflection, combined with modest contributions from H II two-photon emission and from the integrated light of late-type galaxies, may account for virtually all of the FUV background in low H I column density directions.

  7. The Science and Prospects of Astrophysical Observations with New Horizons

    NASA Astrophysics Data System (ADS)

    Nguyen, Chi; Zemcov, Michael; Cooray, Asantha; Lisse, Carey; Poppe, Andrew

    2018-01-01

    Astrophysical observation from the outer solar system provides a unique and quiet vantage point from which to understand our cosmos. If properly designed, such observations enable several niche science cases that are difficult or impossible to perform near Earth. NASA's New Horizons mission includes several instruments with ~10cm telescopes that provide imaging capability from UV to near-IR wavelengths with moderate spectral resolution. A carefully designed survey can optimize the expendable propellant and limited data telemetry bandwidth to allow several unique measurements, including a detailed understanding of the cosmic extragalactic background light in the optical and near-IR, studies of the local and extragalactic UV background, measurements of the properties of dust and ice in the outer solar system, searches for moons and other faint structures around exoplanets, and determinations of the mass of planets far from their parent stars using gravitational microlensing. New Horizons is currently in an extended mission, that will conclude in 2021, designed to survey distant objects in the Kuiper Belt at high phase angles and perform a close flyby of KBO 2014 MU69. Afterwards, the astrophysics community will have a unique, generational opportunity to use this mission for astronomical observations at heliocentric distances beyond 50 AU. In this poster, we present the science case for an extended 2021 - 2026 astrophysics mission, and discuss some of the practical considerations that must be addressed to maximize the potential science return.

  8. Imagery and spectroscopy of supernova remnants and H-2 regions

    NASA Technical Reports Server (NTRS)

    Dufour, R. J.

    1984-01-01

    Research activities relating to supernova remnants were summarized. The topics reviewed include: progenitor stars of supernova remnants, UV/optical/radio/X-ray imagery of selected regions in the Cygnus Loop, UV/optical spectroscopy of the Cygnus Loop spur, and extragalactic supernova remnant spectra.

  9. A New Determination of the Extragalactic Diffuse X-Ray Background from EGRET Data

    NASA Technical Reports Server (NTRS)

    Strong, Andrew W.; Moskalenko, Igor V.; Reimer, Olaf

    2004-01-01

    We use the GALPROP model for cosmic-ray propagation to obtain a new estimate of the Galactic component of gamma rays, and show that away from the Galactic plane it gives an accurate prediction of the observed EGRET intensities in the energy range 30 MeV - 50 GeV. On this basis we re-evaluate the extragalactic gamma-ray background. We find that for some energies previous work underestimated the Galactic contribution at high latitudes and hence overestimated the background. Our new background spectrum shows a positive curvature similar to that expected for models of the extragalactic emission based on the blazar population.

  10. A Determination of the Intergalactic Redshift Dependent UV-Optical-NIR Photon Density Using Deep Galaxy Survey Data and the Gamma-ray Opacity of the Universe

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.; Malkan, Matthew A.; Scully, Sean T.

    2012-01-01

    We calculate the intensity and photon spectrum of the intergalactic background light (IBL) as a function of redshift using an approach based on observational data obtained in many different wavelength bands from local to deep galaxy surveys. This allows us to obtain an empirical determination of the IBL and to quantify its observationally based uncertainties. Using our results on the IBL, we then place 68% confidence upper and lower limits on the opacity of the universe to gamma-rays, free of the theoretical assumptions that were needed for past calculations. We compare our results with measurements of the extragalactic background light and upper limits obtained from observations made by the Fermi Gamma-ray Space Telescope.

  11. The cosmic X-ray background. [heao observations

    NASA Technical Reports Server (NTRS)

    Boldt, E. A.

    1980-01-01

    The cosmic X-ray experiment carried out with the A2 Instrument on HEAO-1 made systematics-free measurements of the extra-galactic X-ray sky and yielded the broadband spectral characteristics for two extreme aspects of this radiation. For the apparently isotropic radiation of cosmological origin that dominates the extragalactic X-ray flux ( 3 keV), the spectrum over the energy band of maximum intensity is remarkably well described by a thermal model with a temperature of a half-billion degrees. At the other extreme, broadband observations of individual extragalactic X-ray sources with HEAO-1 are restricted to objects within the present epoch. While the non-thermal hard spectral components associated with unevolved X-ray emitting active galaxies could account for most of the gamma-ray background, the contribution of such sources to the X-ray background must be relatively small. In contrast, the 'deep-space' sources detected in soft X-rays with the HEAO-2 telescope probably represent a major portion of the extragalactic soft X-ray ( 3 keV) background.

  12. Probing the Intergalactic Magnetic Field with the Anisotropy of the Extragalactic Gamma-ray Background

    NASA Technical Reports Server (NTRS)

    Venters, T. M.; Pavlidou, V.

    2013-01-01

    The intergalactic magnetic field (IGMF) may leave an imprint on the angular anisotropy of the extragalactic gamma-ray background through its effect on electromagnetic cascades triggered by interactions between very high energy photons and the extragalactic background light. A strong IGMF will deflect secondary particles produced in these cascades and will thus tend to isotropize lower energy cascade photons, thereby inducing a modulation in the anisotropy energy spectrum of the gamma-ray background. Here we present a simple, proof-of-concept calculation of the magnitude of this effect and demonstrate that current Fermi data already seem to prefer nonnegligible IGMF values. The anisotropy energy spectrum of the Fermi gamma-ray background could thus be used as a probe of the IGMF strength.

  13. The Tarantula Nebula as a template for extragalactic star forming regions from VLT/MUSE and HST/STIS

    NASA Astrophysics Data System (ADS)

    Crowther, Paul A.; Caballero-Nieves, Saida M.; Castro, Norberto; Evans, Christopher J.

    2017-11-01

    We present VLT/MUSE observations of NGC 2070, the dominant ionizing nebula of 30 Doradus in the LMC, plus HST/STIS spectroscopy of its central star cluster R136. Integral Field Spectroscopy (MUSE) and pseudo IFS (STIS) together provides a complete census of all massive stars within the central 30×30 parsec2 of the Tarantula. We discuss the integrated far-UV spectrum of R136, of particular interest for UV studies of young extragalactic star clusters. Strong He iiλ1640 emission at very early ages (1-2 Myr) from very massive stars cannot be reproduced by current population synthesis models, even those incorporating binary evolution and very massive stars. A nebular analysis of the integrated MUSE dataset implies an age of ~4.5 Myr for NGC 2070. Wolf-Rayet features provide alternative age diagnostics, with the primary contribution to the integrated Wolf-Rayet bumps arising from R140 rather than the more numerous H-rich WN stars in R136. Caution should be used when interpreting spatially extended observations of extragalactic star-forming regions.

  14. Blazar Duty-Cycle at Gamma-Ray Frequecies: Constraints From Extragalactic Background Radiation And Prospects for AGILE And GLAST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pittori, Carlotta; Cavazzuti, Elisabetta; Colafrancesco, Sergio

    2011-11-29

    We take into account the constraints from the observed extragalactic {gamma}-ray background to estimate the maximum duty cycle allowed for a selected sample of WMAP Blazars, in order to be detectable by AGILE and GLAST {gamma}-ray experiments. For the nominal sensitivity values of both instruments, we identify a subset of sources which can in principle be detectable also in a steady state without over-predicting the extragalactic background. This work is based on the results of a recently derived Blazar radio LogN-LogS obtained by combining several multi-frequency surveys.

  15. Probing the Intergalactic Magnetic Field with the Anisotropy of the Extragalactic Gamma-Ray Background

    NASA Technical Reports Server (NTRS)

    Venters, T. M.; Pavlidou, V.

    2012-01-01

    The intergalactic magnetic field (IGMF) may leave an imprint on the anisotropy properties of the extragalactic gamma-ray background, through its effect on electromagnetic cascades triggered by interactions between very high energy photons and the extragalactic background light. A strong IGMF will deflect secondary particles produced in these cascades and will thus tend to isotropize lower energy cascade photons, thus inducing a modulation in the anisotropy energy spectrum of the gamma-ray background. Here we present a simple, proof-of-concept calculation of the magnitude of this effect and demonstrate that the two extreme cases (zero IGMF and IGMF strong enough to completely isotropize cascade photons) would be separable by ten years of Fermi observations and reasonable model parameters for the gamma-ray background. The anisotropy energy spectrum of the Fermi gamma-ray background could thus be used as a probe of the IGMF strength.

  16. The faint galaxy contribution to the diffuse extragalactic background light

    NASA Technical Reports Server (NTRS)

    Cole, Shaun; Treyer, Marie-Agnes; Silk, Joseph

    1992-01-01

    Models of the faint galaxy contribution to the diffuse extragalactic background light are presented, which are consistent with current data on faint galaxy number counts and redshifts. The autocorrelation function of surface brightness fluctuations in the extragalactic diffuse light is predicted, and the way in which these predictions depend on the cosmological model and assumptions of biasing is determined. It is confirmed that the recent deep infrared number counts are most compatible with a high density universe (Omega-0 is approximately equal to 1) and that the steep blue counts then require an extra population of rapidly evolving blue galaxies. The faintest presently detectable galaxies produce an interesting contribution to the extragalactic diffuse light, and still fainter galaxies may also produce a significant contribution. These faint galaxies still only produce a small fraction of the total optical diffuse background light, but on scales of a few arcminutes to a few degrees, they produce a substantial fraction of the fluctuations in the diffuse light.

  17. Small-Scale Spatial Fluctuations in the Soft X-Ray Background. Degree awarded by Maryland Univ., 2000

    NASA Technical Reports Server (NTRS)

    Kuntz, K. D.; White, Nicolas E. (Technical Monitor)

    2001-01-01

    In order to isolate the diffuse extragalactic component of the soft X-ray background, we have used a combination of ROSAT All-Sky Survey and IRAS 100 micron data to separate the soft X-ray background into five components. We find a Local Hot Bubble similar to that described by Snowden et al (1998). We make a first calculation of the contribution by unresolved Galactic stars to the diffuse background. We constrain the normalization of the Extragalactic Power Law (the contribution of the unresolved extragalactic point sources such as AGN, QSO'S, and normal galaxies) to 9.5 +/- 0.9 keV/(sq cm s sr keV), assuming a power-law index of 1.46. We show that the remaining emission, which is some combination of Galactic halo emission and the putative diffuse extragalactic emission, must be composed of at least two components which we have characterized by thermal spectra. The softer component has log T - 6.08 and a patchy distribution; thus it is most probably part of the Galactic halo. The harder component has log T - 6.46 and is nearly isotropic; some portion may be due to the Galactic halo and some portion may be due to the diffuse extragalactic emission. The maximum upper limit to the strength of the emission by the diffuse extragalactic component is the total of the hard component, approx. 7.4 +/- 1.0 keV/(sq cm s sr keV) in the 3/4 keV band. We have made the first direct measure of the fluctuations due to the diffuse extragalactic emission in the 3/4 keV band. Physical arguments suggest that small angular scale (approx. 10') fluctuations in the Local Hot Bubble or the Galactic halo will have very short dissipation times (about 10(exp 5) years). Therefore, the fluctuation spectrum of the soft X-ray background should measure the distribution of the diffuse extragalactic emission. Using mosaics of deep, overlapping PSPC pointings, we find an autocorrelation function value of approx. 0.0025 for 10' < theta < 20', and a value consistent with zero on larger scales. Measurement of the fluctuations with a delta I/I method produces consistent results.

  18. IUE observations of extragalactic objects

    NASA Technical Reports Server (NTRS)

    Boksenberg, A.; Snijders, M. A. J.; Wilson, R.; Benvenuti, P.; Clavell, J.; Macchetto, F.; Penston, M.; Boggess, A.; Gull, T. R.; Gondhalekar, P.

    1978-01-01

    During the commissioning phase of IUE several extragalactic objects were observed spectrally at low dispersion in the UV range lambda lambda 1150-3200: the Seyfert galaxies NGC4151 and NGC1068, the QSO 3C273, the BL Lacertae object B2 1101+38, the giant elliptical galaxy M87 and the spiral galaxy M81. The results obtained are presented and a preliminary analysis given for all six objects, discussing the continuous spectrum, extinction, emission line spectrum and absorption line spectrum, where possible for each case. Several new or confirmatory astrophysical results are obtained.

  19. Energy spectrum of extragalactic gamma-ray sources

    NASA Technical Reports Server (NTRS)

    Protheroe, R. J.

    1985-01-01

    The result of Monte Carlo electron photon cascade calculations for propagation of gamma rays through regions of extragalactic space containing no magnetic field are given. These calculations then provide upper limits to the expected flux from extragalactic sources. Since gamma rays in the 10 to the 14th power eV to 10 to the 17th power eV energy range are of interest, interactions of electrons and photons with the 3 K microwave background radiation are considered. To obtain an upper limit to the expected gamma ray flux from sources, the intergalactic field is assumed to be so low that it can be ignored. Interactions with photons of the near-infrared background radiation are not considered here although these will have important implications for gamma rays below 10 to the 14th power eV if the near infrared background radiation is universal. Interaction lengths of electrons and photons in the microwave background radiation at a temperature of 2.96 K were calculated and are given.

  20. Blazar Gamma-Rays, Shock Acceleration, and the Extragalactic Background Light

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.; Baring, Matthew G.; Summerlin, Errol J.

    2007-01-01

    The observed spectra of blazars, their intrinsic emission, and the underlying populations of radiating particles are intimately related. The use of these sources as probes of the extragalactic infrared background, a prospect propelled by recent advances in TeV-band telescopes, soon to be augmented by observations by NASA's upcoming Gamma-Ray Large Area Space Telescope (GLAST), has been a topic of great recent interest. Here, it is demonstrated that if particles in blazar jets are accelerated at relativistic shocks, then GAMMA-ray spectra with indices less than 1.5 can be produced. This, in turn, loosens the upper limits on the near infrared extragalactic background radiation previously proposed. We also show evidence hinting that TeV blazars with flatter spectra have higher intrinsic TeV GAMMA-ray luminosities and we indicate that there may be a correlation of flatness and luminosity with redshift.

  1. Diffuse Gamma Rays Galactic and Extragalactic Diffuse Emission

    NASA Technical Reports Server (NTRS)

    Moskalenko, Igor V.; Strong, Andrew W.; Reimer, Olaf

    2004-01-01

    Diffuse gamma rays consist of several components: truly diffuse emission from the interstellar medium, the extragalactic background, whose origin is not firmly established yet, and the contribution from unresolved and faint Galactic point sources. One approach to unravel these components is to study the diffuse emission from the interstellar medium, which traces the interactions of high energy particles with interstellar gas and radiation fields. Because of its origin such emission is potentially able to reveal much about the sources and propagation of cosmic rays. The extragalactic background, if reliably determined, can be used in cosmological and blazar studies. Studying the derived average spectrum of faint Galactic sources may be able to give a clue to the nature of the emitting objects.

  2. The JWST Extragalactic Mock Catalog: Modeling Galaxy Populations from the UV through the Near-IR over 13 Billion Years of Cosmic History

    NASA Astrophysics Data System (ADS)

    Williams, Christina C.; Curtis-Lake, Emma; Hainline, Kevin N.; Chevallard, Jacopo; Robertson, Brant E.; Charlot, Stephane; Endsley, Ryan; Stark, Daniel P.; Willmer, Christopher N. A.; Alberts, Stacey; Amorin, Ricardo; Arribas, Santiago; Baum, Stefi; Bunker, Andrew; Carniani, Stefano; Crandall, Sara; Egami, Eiichi; Eisenstein, Daniel J.; Ferruit, Pierre; Husemann, Bernd; Maseda, Michael V.; Maiolino, Roberto; Rawle, Timothy D.; Rieke, Marcia; Smit, Renske; Tacchella, Sandro; Willott, Chris J.

    2018-06-01

    We present an original phenomenological model to describe the evolution of galaxy number counts, morphologies, and spectral energy distributions across a wide range of redshifts (0.2< z< 15) and stellar masses [{log}(M/{M}ȯ )≥slant 6]. Our model follows observed mass and luminosity functions of both star-forming and quiescent galaxies, and reproduces the redshift evolution of colors, sizes, star formation, and chemical properties of the observed galaxy population. Unlike other existing approaches, our model includes a self-consistent treatment of stellar and photoionized gas emission and dust attenuation based on the BEAGLE tool. The mock galaxy catalogs generated with our new model can be used to simulate and optimize extragalactic surveys with future facilities such as the James Webb Space Telescope (JWST), and to enable critical assessments of analysis procedures, interpretation tools, and measurement systematics for both photometric and spectroscopic data. As a first application of this work, we make predictions for the upcoming JWST Advanced Deep Extragalactic Survey (JADES), a joint program of the JWST/NIRCam and NIRSpec Guaranteed Time Observations teams. We show that JADES will detect, with NIRCam imaging, 1000s of galaxies at z ≳ 6, and 10s at z ≳ 10 at {m}{AB}≲ 30 (5σ) within the 236 arcmin2 of the survey. The JADES data will enable accurate constraints on the evolution of the UV luminosity function at z > 8, and resolve the current debate about the rate of evolution of galaxies at z ≳ 8. Ready-to-use mock catalogs and software to generate new realizations are publicly available as the JAdes extraGalactic Ultradeep Artificial Realizations (JAGUAR) package.

  3. The Cosmic Infrared Background Experiment (CIBER): A Sounding Rocket Payload to Study the near Infrared Extragalactic Background Light

    NASA Astrophysics Data System (ADS)

    Zemcov, M.; Arai, T.; Battle, J.; Bock, J.; Cooray, A.; Hristov, V.; Keating, B.; Kim, M. G.; Lee, D. H.; Levenson, L. R.; Mason, P.; Matsumoto, T.; Matsuura, S.; Nam, U. W.; Renbarger, T.; Sullivan, I.; Suzuki, K.; Tsumura, K.; Wada, T.

    2013-08-01

    The Cosmic Infrared Background Experiment (CIBER) is a suite of four instruments designed to study the near infrared (IR) background light from above the Earth's atmosphere. The instrument package comprises two imaging telescopes designed to characterize spatial anisotropy in the extragalactic IR background caused by cosmological structure during the epoch of reionization, a low resolution spectrometer to measure the absolute spectrum of the extragalactic IR background, and a narrow band spectrometer optimized to measure the absolute brightness of the zodiacal light foreground. In this paper we describe the design and characterization of the CIBER payload. The detailed mechanical, cryogenic, and electrical design of the system are presented, including all system components common to the four instruments. We present the methods and equipment used to characterize the instruments before and after flight, and give a detailed description of CIBER's flight profile and configurations. CIBER is designed to be recoverable and has flown four times, with modifications to the payload having been informed by analysis of the first flight data. All four instruments performed to specifications during the subsequent flights, and the scientific data from these flights are currently being analyzed.

  4. Dissecting the Gamma-Ray Background in Search of Dark Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cholis, Ilias; Hooper, Dan; McDermott, Samuel D.

    2014-02-01

    Several classes of astrophysical sources contribute to the approximately isotropic gamma-ray background measured by the Fermi Gamma-Ray Space Telescope. In this paper, we use Fermi's catalog of gamma-ray sources (along with corresponding source catalogs at infrared and radio wavelengths) to build and constrain a model for the contributions to the extragalactic gamma-ray background from astrophysical sources, including radio galaxies, star-forming galaxies, and blazars. We then combine our model with Fermi's measurement of the gamma-ray background to derive constraints on the dark matter annihilation cross section, including contributions from both extragalactic and galactic halos and subhalos. The resulting constraints are competitivemore » with the strongest current constraints from the Galactic Center and dwarf spheroidal galaxies. As Fermi continues to measure the gamma-ray emission from a greater number of astrophysical sources, it will become possible to more tightly constrain the astrophysical contributions to the extragalactic gamma-ray background. We project that with 10 years of data, Fermi's measurement of this background combined with the improved constraints on the astrophysical source contributions will yield a sensitivity to dark matter annihilations that exceeds the strongest current constraints by a factor of ~ 5 - 10.« less

  5. THE COSMIC INFRARED BACKGROUND EXPERIMENT (CIBER): A SOUNDING ROCKET PAYLOAD TO STUDY THE NEAR INFRARED EXTRAGALACTIC BACKGROUND LIGHT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zemcov, M.; Bock, J.; Hristov, V.

    2013-08-15

    The Cosmic Infrared Background Experiment (CIBER) is a suite of four instruments designed to study the near infrared (IR) background light from above the Earth's atmosphere. The instrument package comprises two imaging telescopes designed to characterize spatial anisotropy in the extragalactic IR background caused by cosmological structure during the epoch of reionization, a low resolution spectrometer to measure the absolute spectrum of the extragalactic IR background, and a narrow band spectrometer optimized to measure the absolute brightness of the zodiacal light foreground. In this paper we describe the design and characterization of the CIBER payload. The detailed mechanical, cryogenic, andmore » electrical design of the system are presented, including all system components common to the four instruments. We present the methods and equipment used to characterize the instruments before and after flight, and give a detailed description of CIBER's flight profile and configurations. CIBER is designed to be recoverable and has flown four times, with modifications to the payload having been informed by analysis of the first flight data. All four instruments performed to specifications during the subsequent flights, and the scientific data from these flights are currently being analyzed.« less

  6. Large-scale anisotropy in the extragalactic gamma-ray background as a probe for cosmological antimatter

    NASA Technical Reports Server (NTRS)

    Gao, Yi-Tian; Stecker, Floyd W.; Gleiser, Marcelo; Cline, David B.

    1990-01-01

    Intrinsic anisotropies in the extragalactic gamma-ray background (EGB), which should be detectable with the forthcoming Gamma Ray Observatory, can be used to examine some of the mechanisms proposed to explain its origin, one of which, the baryon-symmetric big bang (BSBB) model, is investigated here. In this simulation, large domains containing matter and antimatter galaxies produce gamma rays by annihilation at the domain boundaries. This mechanism can produce mountain-chain-shaped angular fluctuations in the EGB flux.

  7. The isotropic radio background revisited

    NASA Astrophysics Data System (ADS)

    Fornengo, Nicolao; Lineros, Roberto A.; Regis, Marco; Taoso, Marco

    2014-04-01

    We present an extensive analysis on the determination of the isotropic radio background. We consider six different radio maps, ranging from 22 MHz to 2.3 GHz and covering a large fraction of the sky. The large scale emission is modeled as a linear combination of an isotropic component plus the Galactic synchrotron radiation and thermal bremsstrahlung. Point-like and extended sources are either masked or accounted for by means of a template. We find a robust estimate of the isotropic radio background, with limited scatter among different Galactic models. The level of the isotropic background lies significantly above the contribution obtained by integrating the number counts of observed extragalactic sources. Since the isotropic component dominates at high latitudes, thus making the profile of the total emission flat, a Galactic origin for such excess appears unlikely. We conclude that, unless a systematic offset is present in the maps, and provided that our current understanding of the Galactic synchrotron emission is reasonable, extragalactic sources well below the current experimental threshold seem to account for the majority of the brightness of the extragalactic radio sky.

  8. Cumulative Neutrino and Gamma-Ray Backgrounds from Halo and Galaxy Mergers

    NASA Astrophysics Data System (ADS)

    Yuan, Chengchao; Mészáros, Peter; Murase, Kohta; Jeong, Donghui

    2018-04-01

    The merger of dark matter halos and the gaseous structures embedded in them, such as protogalaxies, galaxies, and groups and clusters of galaxies, results in strong shocks that are capable of accelerating cosmic rays (CRs) to ≳10 PeV. These shocks will produce high-energy neutrinos and γ-rays through inelastic pp collisions. In this work, we study the contributions of these halo mergers to the diffuse neutrino flux and to the nonblazar portion of the extragalactic γ-ray background. We formulate the redshift dependence of the shock velocity, galactic radius, halo gas content, and galactic/intergalactic magnetic fields over the dark matter halo distribution up to a redshift z = 10. We find that high-redshift mergers contribute a significant amount of the CR luminosity density, and the resulting neutrino spectra could explain a large part of the observed diffuse neutrino flux above 0.1 PeV up to several PeV. We also show that our model can somewhat alleviate tensions with the extragalactic γ-ray background. First, since a larger fraction of the CR luminosity density comes from high redshifts, the accompanying γ-rays are more strongly suppressed through γγ annihilations with the cosmic microwave background and the extragalactic background light. Second, mildly radiative-cooled shocks may lead to a harder CR spectrum with spectral indices of 1.5 ≲ s ≲ 2.0. Our study suggests that halo mergers, a fraction of which may also induce starbursts in the merged galaxies, can be promising neutrino emitters without violating the existing Fermi γ-ray constraints on the nonblazar component of the extragalactic γ-ray background.

  9. A low level of extragalactic background light as revealed by gamma-rays from blazars.

    PubMed

    Aharonian, F; Akhperjanian, A G; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Bernlöhr, K; Boisson, C; Bolz, O; Borrel, V; Braun, I; Breitling, F; Brown, A M; Chadwick, P M; Chounet, L-M; Cornils, R; Costamante, L; Degrange, B; Dickinson, H J; Djannati-Ataï, A; Drury, L O'C; Dubus, G; Emmanoulopoulos, D; Espigat, P; Feinstein, F; Fontaine, G; Fuchs, Y; Funk, S; Gallant, Y A; Giebels, B; Gillessen, S; Glicenstein, J F; Goret, P; Hadjichristidis, C; Hauser, D; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hofmann, W; Holleran, M; Horns, D; Jacholkowska, A; de Jager, O C; Khélifi, B; Klages, S; Komin, Nu; Konopelko, A; Latham, I J; Le Gallou, R; Lemière, A; Lemoine-Goumard, M; Leroy, N; Lohse, T; Martin, J M; Martineau-Huynh, O; Marcowith, A; Masterson, C; McComb, T J L; de Naurois, M; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pühlhofer, G; Punch, M; Raubenheimer, B C; Raue, M; Raux, J; Rayner, S M; Reimer, A; Reimer, O; Ripken, J; Rob, L; Rolland, L; Rowell, G; Sahakian, V; Saugé, L; Schlenker, S; Schlickeiser, R; Schuster, C; Schwanke, U; Siewert, M; Sol, H; Spangler, D; Steenkamp, R; Stegmann, C; Tavernet, J-P; Terrier, R; Théoret, C G; Tluczykont, M; van Eldik, C; Vasileiadis, G; Venter, C; Vincent, P; Völk, H J; Wagner, S J

    2006-04-20

    The diffuse extragalactic background light consists of the sum of the starlight emitted by galaxies through the history of the Universe, and it could also have an important contribution from the 'first stars', which may have formed before galaxy formation began. Direct measurements are difficult and not yet conclusive, owing to the large uncertainties caused by the bright foreground emission associated with zodiacal light. An alternative approach is to study the absorption features imprinted on the gamma-ray spectra of distant extragalactic objects by interactions of those photons with the background light photons. Here we report the discovery of gamma-ray emission from the blazars H 2356 - 309 and 1ES 1101 - 232, at redshifts z = 0.165 and z = 0.186, respectively. Their unexpectedly hard spectra provide an upper limit on the background light at optical/near-infrared wavelengths that appears to be very close to the lower limit given by the integrated light of resolved galaxies. The background flux at these wavelengths accordingly seems to be strongly dominated by the direct starlight from galaxies, thus excluding a large contribution from other sources-in particular from the first stars formed. This result also indicates that intergalactic space is more transparent to gamma-rays than previously thought.

  10. The anatomy of the Orion B giant molecular cloud: A local template for studies of nearby galaxies

    NASA Astrophysics Data System (ADS)

    Pety, Jérôme; Guzmán, Viviana V.; Orkisz, Jan H.; Liszt, Harvey S.; Gerin, Maryvonne; Bron, Emeric; Bardeau, Sébastien; Goicoechea, Javier R.; Gratier, Pierre; Le Petit, Franck; Levrier, François; Öberg, Karin I.; Roueff, Evelyne; Sievers, Albrecht

    2017-01-01

    Context. Molecular lines and line ratios are commonly used to infer properties of extra-galactic star forming regions. The new generation of millimeter receivers almost turns every observation into a line survey. Full exploitation of this technical advancement in extra-galactic study requires detailed bench-marking of available line diagnostics. Aims: We aim to develop the Orion B giant molecular cloud (GMC) as a local template for interpreting extra-galactic molecular line observations. Methods: We use the wide-band receiver at the IRAM-30 m to spatially and spectrally resolve the Orion B GMC. The observations cover almost 1 square degree at 26'' resolution with a bandwidth of 32 GHz from 84 to 116 GHz in only two tunings. Among the mapped spectral lines are the , , C18O, C17O, HCN, HNC, , C2H, HCO+, N2H+(1-0), and , , SiO, c - C3H2, CH3OH (2-1) transitions. Results: We introduce the molecular anatomy of the Orion B GMC, including relationships between line intensities and gas column density or far-UV radiation fields, and correlations between selected line and line ratios. We also obtain a dust-traced gas mass that is less than approximately one third the CO-traced mass, using the standard XCO conversion factor. The presence of over-luminous CO can be traced back to the dependence of the CO intensity on UV illumination. As a matter of fact, while most lines show some dependence on the UV radiation field, CN and C2H are the most sensitive. Moreover, dense cloud cores are almost exclusively traced by N2H+. Other traditional high-density tracers, such as HCN(1-0), are also easily detected in extended translucent regions at a typical density of 500 H2 cm-3. In general, we find no straightforward relationship between line critical density and the fraction of the line luminosity coming from dense gas regions. Conclusions: Our initial findings demonstrate that the relationships between line (ratio) intensities and environment in GMCs are more complicated than often assumed. Sensitivity (I.e., the molecular column density), excitation, and, above all, chemistry contribute to the observed line intensity distributions, and they must be considered together when developing the next generation of extra-galactic molecular line diagnostics of mass, density, temperature, and radiation field.

  11. Extragalactic photon-ALP conversion at CTA energies

    DOE PAGES

    Kartavtsev, A.; Raffelt, G.; Vogel, H.

    2017-01-12

    Magnetic fields in extragalactic space between galaxy clusters may induce conversions between photons and axion-like particles (ALPs), thereby shielding the photons from absorption on the extragalactic background light. For TeV gamma rays, the oscillation length (l osc) of the photon-ALP system becomes inevitably of the same order as the coherence length of the magnetic field l and the length over which the field changes significantly (transition length l t) due to refraction on background photons. We derive exact statistical evolution equations for the mean and variance of the photon and ALP transfer functions in the non-adiabatic regime (l osc ~more » l >> l t). We also make analytical predictions for the transfer functions in the quasi-adiabatic regime (l osc

  12. Enhancing the Spectral Hardening of Cosmic TeV Photons by Mixing with Axionlike Particles in the Magnetized Cosmic Web.

    PubMed

    Montanino, Daniele; Vazza, Franco; Mirizzi, Alessandro; Viel, Matteo

    2017-09-08

    Large-scale extragalactic magnetic fields may induce conversions between very-high-energy photons and axionlike particles (ALPs), thereby shielding the photons from absorption on the extragalactic background light. However, in simplified "cell" models, used so far to represent extragalactic magnetic fields, this mechanism would be strongly suppressed by current astrophysical bounds. Here we consider a recent model of extragalactic magnetic fields obtained from large-scale cosmological simulations. Such simulated magnetic fields would have large enhancement in the filaments of matter. As a result, photon-ALP conversions would produce a significant spectral hardening for cosmic TeV photons. This effect would be probed with the upcoming Cherenkov Telescope Array detector. This possible detection would give a unique chance to perform a tomography of the magnetized cosmic web with ALPs.

  13. Ultraviolet luminosity density of the universe during the epoch of reionization.

    PubMed

    Mitchell-Wynne, Ketron; Cooray, Asantha; Gong, Yan; Ashby, Matthew; Dolch, Timothy; Ferguson, Henry; Finkelstein, Steven; Grogin, Norman; Kocevski, Dale; Koekemoer, Anton; Primack, Joel; Smidt, Joseph

    2015-09-08

    The spatial fluctuations of the extragalactic background light trace the total emission from all stars and galaxies in the Universe. A multiwavelength study can be used to measure the integrated emission from first galaxies during reionization when the Universe was about 500 million years old. Here we report arcmin-scale spatial fluctuations in one of the deepest sky surveys with the Hubble Space Telescope in five wavebands between 0.6 and 1.6 μm. We model-fit the angular power spectra of intensity fluctuation measurements to find the ultraviolet luminosity density of galaxies at redshifts greater than 8 to be log ρ(UV) = 27.4(+0.2)(-1.2) ergs(-1) Hz(-1) Mpc(-3) (1σ). This level of integrated light emission allows for a significant surface density of fainter primeval galaxies that are below the point-source detection level in current surveys.

  14. ULTRAVIOLET HALOS AROUND SPIRAL GALAXIES. I. MORPHOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodges-Kluck, Edmund; Cafmeyer, Julian; Bregman, Joel N., E-mail: hodgeskl@umich.edu

    2016-12-10

    We examine ultraviolet halos around a sample of highly inclined galaxies within 25 Mpc to measure their morphology and luminosity. Despite contamination from galactic light scattered into the wings of the point-spread function, we find that ultraviolet (UV) halos occur around each galaxy in our sample. Around most galaxies the halos form a thick, diffuse disk-like structure, but starburst galaxies with galactic superwinds have qualitatively different halos that are more extensive and have filamentary structure. The spatial coincidence of the UV halos above star-forming regions, the lack of consistent association with outflows or extraplanar ionized gas, and the strong correlationmore » between the halo and galaxy UV luminosity suggest that the UV light is an extragalactic reflection nebula. UV halos may thus represent 10{sup 6}–10{sup 7} M {sub ⊙} of dust within 2–10 kpc of the disk, whose properties may change with height in starburst galaxies.« less

  15. Cumulative neutrino background from quasar-driven outflows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiawei; Loeb, Abraham, E-mail: xiawei.wang@cfa.harvard.edu, E-mail: aloeb@cfa.harvard.edu

    2016-12-01

    Quasar-driven outflows naturally account for the missing component of the extragalactic γ-ray background through neutral pion production in interactions between protons accelerated by the forward outflow shock and interstellar protons. We study the simultaneous neutrino emission by the same protons. We adopt outflow parameters that best fit the extragalactic γ-ray background data and derive a cumulative neutrino background of ∼ 10{sup −7} GeV cm{sup −2} s{sup −1} sr{sup −1} at neutrino energies E {sub ν} ∼> 10 TeV, which naturally explains the most recent IceCube data without tuning any free parameters. The link between the γ-ray and neutrino emission frommore » quasar outflows can be used to constrain the high-energy physics of strong shocks at cosmological distances.« less

  16. A NEW RESULT ON THE ORIGIN OF THE EXTRAGALACTIC GAMMA-RAY BACKGROUND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou Ming; Wang Jiancheng, E-mail: mzhou@ynao.ac.cn

    2013-06-01

    In this paper, we repeatedly use the method of image stacking to study the origin of the extragalactic gamma-ray background (EGB) at GeV bands, and find that the Faint Images of the Radio Sky at Twenty centimeters (FIRST) sources undetected by the Large Area Telescope on the Fermi Gamma-ray Space Telescope can contribute about (56 {+-} 6)% of the EGB. Because FIRST is a flux-limited sample of radio sources with incompleteness at the faint limit, we consider that point sources, including blazars, non-blazar active galactic nuclei, and starburst galaxies, could produce a much larger fraction of the EGB.

  17. The Impact of Electromagnetic Cascades of Very-high Energy Gamma Rays on the Extragalactic Gamma-ray Background

    NASA Technical Reports Server (NTRS)

    Venters, Tonia

    2012-01-01

    As very high energy (VHE) photons propagate through the extragalactic background light (EBL), they interact with the soft photons of the EBL and initiate electromagnetic cascades of photons and electrons. The collective intensity of a cosmological population emitting at VHEs (such as blazars) will be attenuated at the highest energies through interactions with the EBL and enhanced at lower energies by the resulting cascade. As such, depending on the space density and spectra of the sources and the model of the EBL, cascade radiation can provide a significant contribution to the extragalactic gamma-ray background (EGB). Through deflections of the charged particles of the cascade, an intergalactic magnetic field (IGMF) may leave an imprint on the anisotropy properties of the EGB. The impact of a strong IGMF is to isotropize lower energy cascade photons, inducing a modulation in the anisotropy energy spectrum of the EGB. We discuss the implications of cascade radiation for the origins of the EGB and the nature of the IGMF, as well as insight that will be provided by data from the Fermi Large Area Telescope in the upcoming years.

  18. The diffuse infrared background - COBE and other observations

    NASA Technical Reports Server (NTRS)

    Hauser, M. G.; Kelsall, T.; Moseley, S. H., Jr.; Silverberg, R. F.; Murdock, T.; Toller, G.; Spiesman, W.; Weiland, J.

    1991-01-01

    The Diffuse Infrared Background Experiment (DIRBE) on the Cosmic Background Explorer (COBE) satellite is designed to conduct a sensitive search for an isotropic cosmic infrared background radiation over the spectral range from 1 to 300 micrometers. The cumulative emissions of pregalactic, protogalactic, and evolving galactic systems are expected to be recorded in this background. The DIRBE instrument, a 10 spectral band absolute photometer with an 0.7 deg field of view, maps the full sky with high redundancy at solar elongation angles ranging from 64 to 124 degrees to facilitate separation of interplanetary, Galactic, and extragalactic sources of emission. Initial sky maps show the expected character of the foreground emissions, with relative minima at wavelengths of 3.4 micrometers and longward of 100 micrometers. Extensive modelling of the foregrounds, just beginning, will be required to isolate the extragalactic component. In this paper, we summarize the status of diffuse infrared background observations from the DIRBE, and compare preliminary results with those of recent rocket and satellite instruments.

  19. The GALEX Time Domain Survey. I. Selection and Classification of Over a Thousand Ultraviolet Variable Sources

    NASA Astrophysics Data System (ADS)

    Gezari, S.; Martin, D. C.; Forster, K.; Neill, J. D.; Huber, M.; Heckman, T.; Bianchi, L.; Morrissey, P.; Neff, S. G.; Seibert, M.; Schiminovich, D.; Wyder, T. K.; Burgett, W. S.; Chambers, K. C.; Kaiser, N.; Magnier, E. A.; Price, P. A.; Tonry, J. L.

    2013-03-01

    We present the selection and classification of over a thousand ultraviolet (UV) variable sources discovered in ~40 deg2 of GALEX Time Domain Survey (TDS) NUV images observed with a cadence of 2 days and a baseline of observations of ~3 years. The GALEX TDS fields were designed to be in spatial and temporal coordination with the Pan-STARRS1 Medium Deep Survey, which provides deep optical imaging and simultaneous optical transient detections via image differencing. We characterize the GALEX photometric errors empirically as a function of mean magnitude, and select sources that vary at the 5σ level in at least one epoch. We measure the statistical properties of the UV variability, including the structure function on timescales of days and years. We report classifications for the GALEX TDS sample using a combination of optical host colors and morphology, UV light curve characteristics, and matches to archival X-ray, and spectroscopy catalogs. We classify 62% of the sources as active galaxies (358 quasars and 305 active galactic nuclei), and 10% as variable stars (including 37 RR Lyrae, 53 M dwarf flare stars, and 2 cataclysmic variables). We detect a large-amplitude tail in the UV variability distribution for M-dwarf flare stars and RR Lyrae, reaching up to |Δm| = 4.6 mag and 2.9 mag, respectively. The mean amplitude of the structure function for quasars on year timescales is five times larger than observed at optical wavelengths. The remaining unclassified sources include UV-bright extragalactic transients, two of which have been spectroscopically confirmed to be a young core-collapse supernova and a flare from the tidal disruption of a star by dormant supermassive black hole. We calculate a surface density for variable sources in the UV with NUV < 23 mag and |Δm| > 0.2 mag of ~8.0, 7.7, and 1.8 deg-2 for quasars, active galactic nuclei, and RR Lyrae stars, respectively. We also calculate a surface density rate in the UV for transient sources, using the effective survey time at the cadence appropriate to each class, of ~15 and 52 deg-2 yr-1 for M dwarfs and extragalactic transients, respectively.

  20. CANDELS: The Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey

    NASA Technical Reports Server (NTRS)

    Grogin, Norman A.; Koekemoer, anton M.; Faber, S. M.; Ferguson, Henry C.; Kocevski, Dale D.; Riess, Adam G.; Acquaviva, Viviana; Alexander, David M.; Almaini, Omar; Ashby, Matthew L. N.; hide

    2011-01-01

    The Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) is designed to document the first third of galactic evolution, from z approx. 8 - 1.5. It will image > 250,000 distant galaxies using three separate cameras on the Hubble Space Tele8cope, from the mid-UV to near-IR, and will find and measure Type Ia supernovae beyond z > 1.5 to test their accuracy as standard candles for cosmology. Five premier multi-wavelength sky regions are selected, each with extensive ancillary data. The use of five widely separated fields mitigates cosmic variance and yields statistically robust and complete samples of galaxies down to a stellar mass of 10(exp 9) solar mass to z approx. 2, reaching the knee of the UV luminosity function of galaxies to z approx. 8. The survey covers approximately 800 square arc minutes and is divided into two parts. The CANDELS/Deep survey (5(sigma) point-source limit H =27.7mag) covers approx. 125 square arcminutes within GOODS-N and GOODS-S. The CANDELS/Wide survey includes GOODS and three additional fields (EGS, COSMOS, and UDS) and covers the full area to a 50(sigma) point-source limit of H ? or approx. = 27.0 mag. Together with the Hubble Ultradeep Fields, the strategy creates a three-tiered "wedding cake" approach that has proven efficient for extragalactic surveys. Data from the survey are non-proprietary and are useful for a wide variety of science investigations. In this paper, we describe the basic motivations for the survey, the CANDELS team science goals and the resulting observational requirements, the field selection and geometry, and the observing design.

  1. UV astronomy throughout the ages: a historical perspective

    NASA Astrophysics Data System (ADS)

    Linsky, Jeffrey L.

    2018-05-01

    Astronomers have long recognized the critical need for ultraviolet imaging, photometry and spectroscopy of stars, planets, and galaxies, but this need could not be satisfied without access to space and the development of efficient instrumentation. When UV measurements became feasible, first with rockets and then with satellites, major discoveries came rapidly. It is true in the UV spectral region as in all others, that significant increases in sensitivity, spectral resolution, and time domain coverage have led to significant new understanding of astrophysical phenomena. I will describe a selection of these discoveries made in each of three eras: (1) the early history of rocket instrumentation and Copernicus, the first UV satellite, (2) the discovery phase pioneered by the IUE, FUSE and EUVE satellites, and (3) the full flowering of UV astronomy with the successful operation of HST and its many instruments. I will also mention a few areas where future UV instrumentation could lead to new discoveries. This review concentrates on developments in stellar and interstellar UV spectroscopy; the major discoveries in galactic, extragalactic, and solar system research are beyond the scope of this review. The important topic of UV technologies and detectors, which enable the remarkable advances in UV astronomy are also not included in this review.

  2. Assembling the Infrared Extragalactic Background Light with CIBER-2: Probing Inter-Halo Light and the Epoch of Reionization.

    NASA Astrophysics Data System (ADS)

    Bock, James

    We propose to carry out a program of observations with the Cosmic Infrared Background Experiment (CIBER-2). CIBER-2 is a near-infrared sounding rocket experiment designed to measure spatial fluctuations in the extragalactic background light. CIBER-2 scientifically follows on the detection of fluctuations with the CIBER-1 imaging instrument, and will use measurement techniques developed and successfully demonstrated by CIBER-1. With high-sensitivity, multi-band imaging measurements, CIBER-2 will elucidate the history of interhalo light (IHL) production and carry out a deep search for extragalactic background fluctuations associated with the epoch of reionization (EOR). CIBER-1 has made high-quality detections of large-scale fluctuations over 4 sounding rocket flights. CIBER-1 measured the amplitude and spatial power spectrum of fluctuations, and observed an electromagnetic spectrum that is close to Rayleigh-Jeans, but with a statistically significant turnover at 1.1 um. The fluctuations cross-correlate with Spitzer images and are significantly bluer than the spectrum of the integrated background derived from galaxy counts. We interpret the CIBER-1 fluctuations as arising from IHL, low-mass stars tidally stripped from their parent galaxies during galaxy mergers. The first generation of stars and their remnants are likely responsible for the for the reionization of the intergalactic medium, observed to be ionized out to the most distant quasars at a redshift of 6. The total luminosity produced by first stars is uncertain, but a lower limit can be placed assuming a minimal number of photons to produce and sustain reionization. This 'minimal' extragalactic background component associated with reionization is detectable in fluctuations at the design sensitivity of CIBER-2. The CIBER-2 instrument is optimized for sensitivity to surface brightness in a short sounding rocket flight. The instrument consists of a 28 cm wide-field telescope operating in 6 spectral bands between 0.5 and 2.0 um, cooled to a temperature of 77 K with a liquid nitrogen cryostat. Images are composed using 3 focal plane assemblies operating H2RG detector arrays. The instrument is currently being fabricated with expected delivery during summer 2014, and will be ready for its first flight in 2015. CIBER-2 will extend the CIBER-1 observations from the near-infrared into the optical, where the EOR and IHL components of the extragalactic background can be cleanly distinguished and separated. We will study the history of IHL production by implementing a multi-band cross-correlation analysis, and use this information to carry out a deep search for an EOR component. In subsequent flights we plan joint observations with weak lensing maps, with an optimized set of filter bands to measure spectral cross-correlations, to fully elucidate the history of IHL light production.

  3. The Imprint of the Extragalactic Background Light in the Gamma-Ray Spectra of Blazars

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Schady, P.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R; Blandford, R. D.; hide

    2012-01-01

    The light emitted by stars and accreting compact objects through the history of the universe is encoded in the intensity of the extragalactic background light (EBL). Knowledge of the EBL isimportant to understand the nature of star formation and galaxy evolution, but direct measurements of the EBL are limited by galactic and other foreground emissions. Here, we report an absorption feature seen in the combined spectra of a sample of gamma-ray blazars out to a redshift of z approx. 1.6. This feature is caused by attenuation of gamma rays by the EBL at optical to ultraviolet frequencies and allowed us to measure the EBL flux density in this frequency band.

  4. The diffuse gamma-ray background, light element abundances, and signatures of early massive star formation

    NASA Technical Reports Server (NTRS)

    Silk, Joseph; Schramm, David N.

    1992-01-01

    Attention is drawn to a potentially observable flux of diffuse extragalactic gamma rays produced by inelastic cosmic-ray interactions that is inevitably a by-product of spallation-synthesized Be. The epoch of cosmic ray-induced Population II light element nucleosynthesis is constrained to be at redshift greater than 0.5. A spectral feature in the diffuse extragalactic gamma-ray background with amplitude 0.1 above 10 MeV is predicted if the Be is synthesized at z less than 10. The possibility is discussed that the cosmic-ray flux responsible for Population II Be and B synthesis may be associated with a precursor hypothesized Population III.

  5. The grand unified photon spectrum: A coherent view of the diffuse extragalactic background radiation

    NASA Technical Reports Server (NTRS)

    Ressell, M. Ted; Turner, Michael S.

    1989-01-01

    The spectrum of diffuse extragalactic background radiation (DEBRA) at wavelengths from 10(exp 5) to 10(exp -24) cm is presented in a coherent fashion. Each wavelength region, from the radio to ultra-high energy photons and cosmic rays, is treated both separately and as part of the grand unified photon spectrum (GUPS). A discussion of, and references to, the relevant literature for each wavelength region is included. This review should provide a useful tool for those interested in diffuse backgrounds, the epoch of galaxy formation, astrophysical/cosmological constraints to particle properties, exotic early Universe processes, and many other astrophysical and cosmological enterprises. As a worked example, researchers derive the cosmological constraints to an unstable-neutrino spies (with arbitrary branching ratio to a radiative decay mode) that follow from the GUPS.

  6. CONSTRAINING THE EMISSIVITY OF ULTRAHIGH ENERGY COSMIC RAYS IN THE DISTANT UNIVERSE WITH THE DIFFUSE GAMMA-RAY EMISSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Xiangyu; Liu Ruoyu; Aharonian, Felix

    Ultrahigh cosmic rays (UHECRs) with energies {approx}> 10{sup 19} eV emitted at cosmological distances will be attenuated by cosmic microwave and infrared background radiation through photohadronic processes. Lower energy extragalactic cosmic rays ({approx}10{sup 18}-10{sup 19} eV) can only travel a linear distance smaller than {approx}Gpc in a Hubble time due to the diffusion if the extragalactic magnetic fields are as strong as nano-Gauss. These prevent us from directly observing most of the UHECRs in the universe, and thus the observed UHECR intensity reflects only the emissivity in the nearby universe within hundreds of Mpc. However, UHECRs in the distant universe,more » through interactions with the cosmic background photons, produce UHE electrons and gamma rays that in turn initiate electromagnetic cascades on cosmic background photons. This secondary cascade radiation forms part of the extragalactic diffuse GeV-TeV gamma-ray radiation and, unlike the original UHECRs, is observable. Motivated by new measurements of extragalactic diffuse gamma-ray background radiation by Fermi/Large Area Telescope, we obtained upper limit placed on the UHECR emissivity in the distant universe by requiring that the cascade radiation they produce not exceed the observed levels. By comparison with the gamma-ray emissivity of candidate UHECR sources (such as gamma-ray bursts (GRBs) and active galactic nuclei) at high redshifts, we find that the obtained upper limit for a flat proton spectrum is {approx_equal} 10{sup 1.5} times larger than the gamma-ray emissivity in GRBs and {approx_equal} 10 times smaller than the gamma-ray emissivity in BL Lac objects. In the case of iron nuclei composition, the derived upper limit of UHECR emissivity is a factor of 3-5 times higher. Robust upper limit on the cosmogenic neutrino flux is further obtained, which is marginally reachable by the Icecube detector and the next-generation detector JEM-EUSO.« less

  7. The lightest supersymmetric particle and the extragalactic gamma-ray background

    NASA Technical Reports Server (NTRS)

    Gao, Yi-Tian; Stecker, Floyd W.; Cline, David B.

    1991-01-01

    The possibility that cosmological photino annihilation is caused by the extragalactic gamma-ray background (EGB) is examined with particular attention given to the lightest supersymmetric particle (LSP). The LSP is considered a general type of the best-motivated candidates for cosmic dark matter (CDM). The theoretical analysis employs a corrected assumption for the annihilation cross section, and cosmological integrations are performed through the early phases of the universe. Romberg's method is used for numerical integration, and the total optical depth is developed for the gamma-ray region. The computed LSP-type annihilation fluxes are found to be negligible when compared to the total EGB observed, suggesting that the LSP candidates for CDM are not significant contributors to the EGB.

  8. The Imprint of the Extragalactic Background Light in the Gamma-Ray Spectra of Blazars

    DOE PAGES

    Ackermann, M.; Ajello, M.; Allafort, A.; ...

    2012-11-30

    The light emitted by stars and accreting compact objects through the history of the universe is encoded in the intensity of the extragalactic background light (EBL). Knowledge of the EBL is important to understand the nature of star formation and galaxy evolution, but direct measurements of the EBL are limited by galactic and other foreground emissions. In this paper, we report an absorption feature seen in the combined spectra of a sample of gamma-ray blazars out to a redshift of z ~ 1.6. Finally, this feature is caused by attenuation of gamma rays by the EBL at optical to ultravioletmore » frequencies and allowed us to measure the EBL flux density in this frequency band.« less

  9. Physics of cosmological cascades and observable properties

    NASA Astrophysics Data System (ADS)

    Fitoussi, T.; Belmont, R.; Malzac, J.; Marcowith, A.; Cohen-Tanugi, J.; Jean, P.

    2017-04-01

    TeV photons from extragalactic sources are absorbed in the intergalactic medium and initiate electromagnetic cascades. These cascades offer a unique tool to probe the properties of the universe at cosmological scales. We present a new Monte Carlo code dedicated to the physics of such cascades. This code has been tested against both published results and analytical approximations, and is made publicly available. Using this numerical tool, we investigate the main cascade properties (spectrum, halo extension and time delays), and study in detail their dependence on the physical parameters (extragalactic magnetic field, extragalactic background light, source redshift, source spectrum and beaming emission). The limitations of analytical solutions are emphasized. In particular, analytical approximations account only for the first generation of photons and higher branches of the cascade tree are neglected.

  10. Components of the Extragalactic Gamma-Ray Background

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.; Venters, Tonia M.

    2011-01-01

    We present new theoretical estimates of the relative contributions of unresolved blazars and star-forming galaxies to the extragalactic gamma-ray background (EGB) and discuss constraints on the contributions from alternative mechanisms such as dark matter annihilation and truly diffuse gamma-ray production. We find that the Fermi source count data do not rule out a scenario in which the EGB is dominated by emission from unresolved blazars, though unresolved star-forming galaxies may also contribute significantly to the background, within order-of-magnitude uncertainties. In addition, we find that the spectrum of the unresolved star-forming galaxy contribution cannot explain the EGB spectrum found by EGRET at energies between 50 and 200 MeV, whereas the spectrum of unresolved flat spectrum radio quasars, when accounting for the energy-dependent effects of source confusion, could be consistent with the combined spectrum of the low-energy EGRET EGB measurements and the Fermi-Large Area Telescope EGB measurements.

  11. The Galex Time Domain Survey. I. Selection And Classification of Over a Thousand Ultraviolet Variable Sources

    NASA Technical Reports Server (NTRS)

    Gezari, S.; Martin, D. C.; Forster, K.; Neill, J. D.; Huber, M.; Heckman, T.; Bianchi, L.; Morrissey, P.; Neff, S. G.; Seibert, M.; hide

    2013-01-01

    We present the selection and classification of over a thousand ultraviolet (UV) variable sources discovered in approximately 40 deg(exp 2) of GALEX Time Domain Survey (TDS) NUV images observed with a cadence of 2 days and a baseline of observations of approximately 3 years. The GALEX TDS fields were designed to be in spatial and temporal coordination with the Pan-STARRS1 Medium Deep Survey, which provides deep optical imaging and simultaneous optical transient detections via image differencing. We characterize the GALEX photometric errors empirically as a function of mean magnitude, and select sources that vary at the 5 sigma level in at least one epoch. We measure the statistical properties of the UV variability, including the structure function on timescales of days and years. We report classifications for the GALEX TDS sample using a combination of optical host colors and morphology, UV light curve characteristics, and matches to archival X-ray, and spectroscopy catalogs. We classify 62% of the sources as active galaxies (358 quasars and 305 active galactic nuclei), and 10% as variable stars (including 37 RR Lyrae, 53 M dwarf flare stars, and 2 cataclysmic variables). We detect a large-amplitude tail in the UV variability distribution for M-dwarf flare stars and RR Lyrae, reaching up to absolute value(?m) = 4.6 mag and 2.9 mag, respectively. The mean amplitude of the structure function for quasars on year timescales is five times larger than observed at optical wavelengths. The remaining unclassified sources include UV-bright extragalactic transients, two of which have been spectroscopically confirmed to be a young core-collapse supernova and a flare from the tidal disruption of a star by dormant supermassive black hole. We calculate a surface density for variable sources in the UV with NUV less than 23 mag and absolute value(?m) greater than 0.2 mag of approximately 8.0, 7.7, and 1.8 deg(exp -2) for quasars, active galactic nuclei, and RR Lyrae stars, respectively. We also calculate a surface density rate in the UV for transient sources, using the effective survey time at the cadence appropriate to each class, of approximately 15 and 52 deg(exp -2 yr-1 for M dwarfs and extragalactic transients, respectively.

  12. UV, optical and infrared properties of star forming galaxies

    NASA Technical Reports Server (NTRS)

    Huchra, John P.

    1987-01-01

    The UVOIR properties of galaxies with extreme star formation rates are examined. These objects seem to fall into three distinct classes which can be called (1) extragalactic H II regions, (2) clumpy irregulars, and (3) starburst galaxies. Extragalactic H II regions are dominated by recently formed stars and may be considered 'young' galaxies if the definition of young is having the majority of total integrated star formation occurring in the last billion years. Clumpy irregulars are bursts of star formation superposed on an old population and are probably good examples of stochastic star formation. It is possible that star formation in these galaxies is triggered by the infall of gas clouds or dwarf companions. Starburst galaxies are much more luminous, dustier and more metal rich than the other classes. These objects show evidence for shock induced star formation where shocks may be caused by interaction with massive companions or are the result of an extremely strong density wave.

  13. An optical view of extragalactic gamma-ray emitters

    NASA Astrophysics Data System (ADS)

    Paiano, Simona; Falomo, Renato; Landoni, Marco; Treves, Aldo; Scarpa, Riccardo

    2017-11-01

    The Fermi Gamma-ray Observatory discovered about a thousand extragalactic sources emitting energy from 100 MeV to 100 GeV. The majority of these sources belong to the class of blazars characterized by a quasi-featureless optical spectrum (BL Lac Objects). This hampers the determination of their redshift and therefore hinders the characterization of this class of objects. To investigate the nature of these sources and to determine their redshift, we are carrying out an extensive campaign at the 10m Gran Telescopio Canarias to secure high signal-to-noise ratio optical spectra. These observations allow us to confirm the blazar nature of the targets, to find new redshifts or to set stringent limits on the redshift based on the minimum equivalent width of absorption features expected from their host galaxy, assuming it is a massive elliptical galaxy.These results are of importance for the multi-frequencies emission models of the blazars, to test their extreme physics, to shed light on their cosmic evolution and abundance in the far Universe.These gamma emitters are also of great importance for the characterization of the extragalactic background light through the absorption by the IR-optical background photons.

  14. Low-redshift Lyman-alpha absorption lines and the dark matter halos of disk galaxies

    NASA Technical Reports Server (NTRS)

    Maloney, Philip

    1992-01-01

    Ultraviolet observations of the low-redshift quasar 3C 273 using the Hubble Space Telescope have revealed many more Lyman-alpha absorption lines than would be expected from extrapolation of the absorption systems seen toward QSOs at z about 2. It is shown here that these absorption lines can plausibly be produced by gas at large radii in the disks of spiral and irregular galaxies; the gas is confined by the dark matter halos and ionized and heated by the extragalactic radiation field. This scenario does not require the extragalactic ionizing radiation field to decline as rapidly with decreasing z as the QSO emissivity. Observations of Ly-alpha absorption through the halos of known galaxies at low redshift will constrain both the extragalactic background and the properties of galactic halos.

  15. An Empirical Decomposition of Near-IR Emission into Galactic and Extragalactic Components

    NASA Technical Reports Server (NTRS)

    Dwek, Eli; Arendt, Richard G.

    2002-01-01

    We decompose the COBE/DIRBE observations of the near-IR sky brightness (minus zodiacal light) into Galactic stellar and interstellar medium (ISM) components and an extragalactic background. This empirical procedure allows us to estimate the 4.9 micron cosmic infrared background (CIB) as a function of the CIB intensity at shorter wavelengths. A weak indication of a rising CIB intensity at wavelengths greater than 3.5$ microns hints at interesting astrophysics in the CIB spectrum, or warns that the foreground zodiacal emission may be incompletely subtracted. Subtraction of only the stellar component from the zodiacal-light-subtracted all--sky map reveals the clearest 3.5 micron ISM emission map, which is found to be tightly correlated with the ISM emission at far-IR wavelengths.

  16. Studying extragalactic background fluctuations with the Cosmic Infrared Background ExpeRiment 2 (CIBER-2)

    NASA Astrophysics Data System (ADS)

    Lanz, Alicia; Arai, Toshiaki; Battle, John; Bock, James; Cooray, Asantha; Hristov, Viktor; Korngut, Phillip; Lee, Dae Hee; Mason, Peter; Matsumoto, Toshio; Matsuura, Shuji; Morford, Tracy; Onishi, Yosuke; Shirahata, Mai; Tsumura, Kohji; Wada, Takehiko; Zemcov, Michael

    2014-08-01

    Fluctuations in the extragalactic background light trace emission from the history of galaxy formation, including the emission from the earliest sources from the epoch of reionization. A number of recent near-infrared measure- ments show excess spatial power at large angular scales inconsistent with models of z < 5 emission from galaxies. These measurements have been interpreted as arising from either redshifted stellar and quasar emission from the epoch of reionization, or the combined intra-halo light from stars thrown out of galaxies during merging activity at lower redshifts. Though astrophysically distinct, both interpretations arise from faint, low surface brightness source populations that are difficult to detect except by statistical approaches using careful observations with suitable instruments. The key to determining the source of these background anisotropies will be wide-field imaging measurements spanning multiple bands from the optical to the near-infrared. The Cosmic Infrared Background ExpeRiment 2 (CIBER-2) will measure spatial anisotropies in the extra- galactic infrared background caused by cosmological structure using six broad spectral bands. The experiment uses three 2048 x 2048 Hawaii-2RG near-infrared arrays in three cameras coupled to a single 28.5 cm telescope housed in a reusable sounding rocket-borne payload. A small portion of each array will also be combined with a linear-variable filter to make absolute measurements of the spectrum of the extragalactic background with high spatial resolution for deep subtraction of Galactic starlight. The large field of view and multiple spectral bands make CIBER-2 unique in its sensitivity to fluctuations predicted by models of lower limits on the luminosity of the first stars and galaxies and in its ability to distinguish between primordial and foreground anisotropies. In this paper the scientific motivation for CIBER-2 and details of its first flight instrumentation will be discussed, including detailed designs of the mechanical, cryogenic, and electrical systems. Plans for the future will also be presented.

  17. The planetary nebulae population in the nuclear regions of M31: the SAURON view

    NASA Astrophysics Data System (ADS)

    Pastorello, Nicola; Sarzi, Marc; Cappellari, Michele; Emsellem, Eric; Mamon, Gary A.; Bacon, Roland; Davies, Roger L.; de Zeeuw, P. Tim

    2013-04-01

    The study of extragalactic planetary nebulae (PNe) in the optical regions of galaxies, where the properties of their stellar population can be best characterized, is a promising ground to better understand the late evolution of stars across different galactic environments. Following a first study of the central regions of M32 that illustrated the power of integral field spectroscopy (IFS) in detecting and measuring the [O III] λ5007 emission of PNe against a strong stellar background, we turn to the very nuclear PN population of M31, within ˜80 pc of its centre. We show that PNe can also be found in the presence of emission from diffuse gas, as commonly observed in early-type galaxies and in the bulge of spirals, and further illustrate the excellent sensitivity of IFS in detecting extragalactic PNe through a comparison with narrow-band images obtained with the Hubble Space Telescope. Contrary to the case of the central regions of M32, the nuclear PNe population of M31 is only marginally consistent with the generally adopted form of the PNe luminosity function (PNLF). In particular, this is due to a lack of PNe with absolute magnitude M5007 brighter than -3, which would only result from a rather unfortunate draw from such a model PNLF. The nuclear stellar population of M31 is quite different from that of the central regions of M32, which is characterized in particular by a larger metallicity and a remarkable ultraviolet (UV) upturn. We suggest that the observed lack of bright PNe in the nuclear regions of M31 is due to a horizontal-branch population that is more tilted towards less massive and hotter He-burning stars, so that its progeny consists mostly of UV-bright stars that fail to climb back up the asymptotic giant branch (AGB) and only a few, if any, bright PNe powered by central post-AGB stars. These results are also consistent with recent reports on a dearth of bright post-AGB stars towards the nucleus of M31, and lend further support to the idea that the metallicity of a stellar population has an impact on the way the horizontal branch is populated and to the loose anticorrelation between the strength of the UV upturn and the specific number of PNe that is observed in early-type galaxies. Finally, our investigation also serves to stress the importance of considering the same spatial scales when comparing the PNe population of galaxies with the properties of their stellar populations.

  18. Confirmation of an Intermediate-Mass Black Hole in an Extragalactic Globular Cluster

    NASA Astrophysics Data System (ADS)

    Irwin, Jimmy

    2015-10-01

    The long and controversial search for black holes within globular clusters has reached the point where extragalactic globular clusters provide fertile hunting grounds for finding black holes of both stellar and intermediate-mass (IMBH) varieties. While a luminous X-ray point source within a cluster can indicate the presence of a black hole, little can generally be said of its mass without further observation. In the event that a black hole tidally disrupts a passing star in the cluster, optical/UV emission lines from the X-ray-illuminated debris can not only demonstrate the existence of a black hole in the cluster, but can also provide powerful constraints on the mass of the black hole, the composition of the disrupted star, and even the time since the tidal disruption event took place. We propose an HST COS G140L UV spectrum of a globular cluster within the Fornax elliptical galaxy NGC1399 that exhibits unusual optical [N II] and [O III] forbidden emission lines that are believed to result from such a tidal disruption event by a 100 solar mass black hole. Our models predict that the ratios of the expected emission lines from carbon, nitrogen, and oxygen that should be present in the UV spectrum of the source will be able to distinguish a stellar-mass black hole from an IMBH as the disruptor, as well as determine the nature of the disrupted star. If the mass of the black hole is constrained to be in excess of 100 solar masses, this would provide one of the most compelling pieces of evidence to date that IMBHs exist within globular clusters.

  19. Dynamics of Magnetized Plasma Jets and Bubbles Launched into a Background Magnetized Plasma

    NASA Astrophysics Data System (ADS)

    Wallace, B.; Zhang, Y.; Fisher, D. M.; Gilmore, M.

    2016-10-01

    The propagation of dense magnetized plasma, either collimated with mainly azimuthal B-field (jet) or toroidal with closed B-field (bubble), in a background plasma occurs in a number of solar and astrophysical cases. Such cases include coronal mass ejections moving in the background solar wind and extragalactic radio lobes expanding into the extragalactic medium. Understanding the detailed MHD behavior is crucial for correctly modeling these events. In order to further the understanding of such systems, we are investigating the injection of dense magnetized jets and bubbles into a lower density background magnetized plasma using a coaxial plasma gun and a background helicon or cathode plasma. In both jet and bubble cases, the MHD dynamics are found to be very different when launched into background plasma or magnetic field, as compared to vacuum. In the jet case, it is found that the inherent kink instability is stabilized by velocity shear developed due to added magnetic tension from the background field. In the bubble case, rather than directly relaxing to a minimum energy Taylor state (spheromak) as in vacuum, there is an expansion asymmetry and the bubble becomes Rayleigh-Taylor unstable on one side. Recent results will be presented. Work supported by the Army Research Office Award No. W911NF1510480.

  20. Characterizing Extragalactic Star Formation with GALEX Legacy Photometric Analysis of UV-Bright Stellar Complexes

    NASA Astrophysics Data System (ADS)

    Thilker, David

    At the close of nearly a decade of observing, GALEX has accumulated an unprecedented archive of ultraviolet (UV) images revealing both the scope and intricacy of star formation (SF) in many thousands of galaxies inhabiting the local universe. If the observed hierarchical SF morphology can be quantified systematically, and physically interpreted with multi-wavelength ancillary data and modeling, then the low redshift GALEX legacy will approach completion. However, the GALEX GR6 pipeline database contains a highly incomplete census of young stellar complexes even for very well-studied galaxies. We propose to apply a dedicated photometry algorithm that has been optimized for measuring the properties of irregularly shaped sources in crowded galaxy images containing spatially variant, diffuse intra-clump emission. Structures will be selected in the UV, but we will compile UV-visible-MIR SEDs for each detection utilizing Pan-STARRS1+SDSS and WISE data. These SEDs will then be fit using population-synthesis models to derive estimated stellar mass, age, and extinction. Processing will be completed for the entire diameter-limited GALEX Large Galaxy Atlas (GLGA) sample of 20,000+ galaxies, at a variety of standardized spatial resolutions. Although the precise categorization of the cataloged substructures will depend on galaxy distance, the outcome of our analysis will be a catalog similar to the stellar association surveys of past decades for very nearby galaxies based on resolved stars (e.g. van den Bergh 1964, Hodge 1986, Efremov et al. 1987), except that our investigation will probe a galaxy sample of dramatically larger size using the integrated UV light from such groupings of young stars. Our algorithm is multi-scale in nature and will thus preserve the hierarchical properties of the stellar distribution, by linking sub-clumps to their larger-scale parent feature(s). The resulting database will be a fundamental resource for follow-up multi-wavelength studies probing SF-driven galaxy evolution using both existing NASA databases and operating instruments, in addition to upcoming space telescopes. While a legacy of our project will be the hierarchical photometric database (disseminated via MAST and NED) which supports extragalactic community science, our own goals from the proposed comprehensive measurements address some vital issues: (i) Currently there is controversy regarding the power-law slope of the empirical star formation law (SFL). Is there constant star formation efficiency above the HI-to-H_2 transition gas surface density (implying ~unity slope, see papers by Bigiel et al. and Leroy et al.), or is the SFL relation a stronger function of gas density with a super-linear form (as observed by Kennicutt et al. 2007)? Liu et al. (2011) have shown that the answer may depend critically on whether or not diffuse emission underlying star-forming substructures is removed. Our analysis will allow firm resolution of this issue, as we will also apply our photometry algorithm to Spitzer imaging for a subset of our sample galaxies, thus providing background-subtracted L(UV) and L(IR) measurements for substructures which can then be compared to existing and forthcoming (ALMA) CO imaging. (ii) We will also verify/calibrate our SED-fit based determination of age, extinction, and mass for UV-bright structures via direct comparison to the ground-truth stemming from resolved stellar populations (e.g. in ANGST galaxies) and also high-resolution HST UV-optical star cluster surveys (further out in the Local Volume). (iii) Finally, we will measure the diffuse UV fraction in a few hundred of the nearest galaxies (accounting for variation tied only to spatial resolution), trying to ascertain the characteristic fraction in galaxies of different Hubble type and dust-to-gas ratio. Systematic local variations in diffuse fraction and color will also be quantified as a function of environment.

  1. Implications of Ultrahigh Energy Air Showers for Physics and Astrophysics

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    The primary ultrahigh energy particles which produce giant extensive air showers in the Earth atmosphere present an intriguing mystery from two points of view: (1) How are the base particles produced with such astounding energies, eight orders of magnitude higher than those produced by the best man-made terrestrial accelerators? (2) Since they are most likely extragalactic in origin, how do they reach us from extragalactic distances without suffering the severe losses expected from interactions with the 2.7 K thermal cosmic background photons, the so called GZK effect? The answers to these questions may involve new physics: violations of special relativity, grand unification theories, and quantum gravity theories involving large extra dimensions. They may involve new astrophysical sources, "zevatrons". Or some heretofore totally unknown physics or astrophysics may hold the answer. I will discuss here the mysteries involving the production and extragalactic propagation of ultrahigh energy cosmic rays and some suggested possible solutions.

  2. The Extragalactic Radio Background

    NASA Technical Reports Server (NTRS)

    Kogut, A.; Fixsen, D. J.; Levin, S. M.; Limon, M.; Lubin, P. M.; Seiffert, M.; Singal, J.; Villela, T.; Wollack, E.; Wuensche, C. A.

    2011-01-01

    The existence of an isotropic component of the high-latitude radio sky has been recognized for nearly fifty years, but has typically been assumed to be Galactic in origin. We use recent radio observations to test whether the observed high-latitude component could originate within either an extended Galactic halo or a more local "bubble" structure. The lack of significant polarization from the isotropic component, combined with the lack of significant correlation with the Galactic far-infrared emission, rule out an origin within the Galaxy. We conclude that an extragalactic origin is the only viable alternative for the bulk of the isotropic high-latitude emission. The extragalactic component is 2-3 times brighter than local (Galactic) emission towards the Galactic poles and is consistent with a power law in frequency with amplitude T(sub r) = 24.1 plus or minus 2.1 K and spectral index beta = -2.599 plus or minus 0.036 evaluated at reference frequency 310 MHz.

  3. A measurement of the z = 0 UV background from Hα fluorescence

    NASA Astrophysics Data System (ADS)

    Fumagalli, Michele; Haardt, Francesco; Theuns, Tom; Morris, Simon L.; Cantalupo, Sebastiano; Madau, Piero; Fossati, Matteo

    2017-06-01

    We report the detection of extended Hα emission from the tip of the H I disc of the nearby edge-on galaxy UGC 7321, observed with the Multi Unit Spectroscopic Explorer (MUSE) instrument at the Very Large Telescope. The Hα surface brightness fades rapidly where the H I column density drops below N_{H I}˜ 10^{19} cm-2, consistent with fluorescence arising at the ionization front from gas that is photoionized by the extragalactic ultraviolet background (UVB). The surface brightness measured at this location is (1.2 ± 0.5) × 10-19 erg s- 1 cm- 2 arcsec- 2, where the error is mostly systematic and results from the proximity of the signal to the edge of the MUSE field of view, and from the presence of a sky line next to the redshifted Hα wavelength. By combining the Hα and the H I 21 cm maps with a radiative transfer calculation of an exponential disc illuminated by the UVB, we derive a value for the H I photoionization rate of Γ _{H I} ˜ (6-8)× 10^{-14} s^{-1}. This value is consistent with transmission statistics of the Lyα forest and with recent models of a UVB that is dominated by quasars.

  4. The Extragalactic Background Light and the Gamma-ray Opacity of the Universe

    NASA Technical Reports Server (NTRS)

    Dwek, Eli; Krennrich, Frank

    2012-01-01

    The extragalactic background light (EBL) is one of the fundamental observational quantities in cosmology. All energy releases from resolved and unresolved extragalactic sources, and the light from any truly diffuse background, excluding the cosmic microwave background (CMB), contribute to its intensity and spectral energy distribution. It therefore plays a crucial role in cosmological tests for the formation and evolution of stellar objects and galaxies, and for setting limits on exotic energy releases in the universe. The EBL also plays an important role in the propagation of very high energy gamma-rays which are attenuated en route to Earth by pair producing gamma-gamma interactions with the EBL and CMB. The EBL affects the spectrum of the sources, predominantly blazars, in the approx 10 GeV to 10 TeV energy regime. Knowledge of the EBL intensity and spectrum will allow the determination of the intrinsic blazar spectrum in a crucial energy regime that can be used to test particle acceleration mechanisms and VHE gamma-ray production models. Conversely, knowledge of the intrinsic gamma-ray spectrum and the detection of blazars at increasingly higher redshifts will set strong limits on the EBL and its evolution. This paper reviews the latest developments in the determination of the EBL and its impact on the current understanding of the origin and production mechanisms of gamma-rays in blazars, and on energy releases in the universe. The review concludes with a summary and future directions in Cherenkov Telescope Array techniques and in infrared ground-based and space observatories that will greatly improve our knowledge of the EBL and the origin and production of very high energy gamma-rays.

  5. Filling the Void: A Comprehensive Survey of the Intergalactic Medium at z 1 Using STIS/COS Archival Spectra

    NASA Astrophysics Data System (ADS)

    Khaire, Vikram

    2017-08-01

    There exists a large void in our understanding of the intergalactic medium (IGM) at z=0.5-1.5, spanning a significant cosmic time of 4 Gyr. This hole resulted from a paucity of near-UV QSO spectra, which were historically very expensive to obtain. However, with the advent of COS and the HST UV initiative, sufficient STIS/COS NUV spectra have finally become available, enabling the first statistical analyses. We propose a comprehensive study of the z 1 IGM using the Ly-alpha forest of 26 archival QSO spectra. This analysis will: (1) measure the distribution of HI absorbers to several percent precision down to log NHI < 13 to test our model of the IGM, and determine the extragalactic UV background (UVB) at that epoch; (2) measure the Ly-alpha forest power spectrum to 12%, providing another precision test of LCDM and our theory of the IGM; (3) measure the thermal state of the IGM, which reflects the balance of heating (photoheating, HI/HeII reionization) and cooling (Hubble expansion) of cosmic baryons, and directly verify the predicted cooldown of IGM gas after reionization for the first time; (4) generate high-quality reductions, coadds, and continuum fits that will be released to the public to enable other science cases. These results, along with our state-of-the-art hydrodynamical simulations, and theoretical models of the UVB, will fill the 4 Gyr hole in our understanding of the IGM. When combined with existing HST and ground-based data from lower and higher z, they will lead to a complete, empirical description of the IGM from HI reionization to the present, spanning more than 10 Gyr of cosmic history, adding substantially to Hubble's legacy of discovery on the IGM.

  6. The VLBA Extragalactic Proper Motion Catalog and a Measurement of the Secular Aberration Drift

    NASA Astrophysics Data System (ADS)

    Truebenbach, Alexandra E.; Darling, Jeremy

    2017-11-01

    We present a catalog of extragalactic proper motions created using archival VLBI data and our own VLBA astrometry. The catalog contains 713 proper motions, with average uncertainties of ˜24 μas yr-1, including 40 new or improved proper motion measurements using relative astrometry with the VLBA. The observations were conducted in the X-band and yielded positions with uncertainties of ˜70 μas. We add 10 new redshifts using spectroscopic observations taken at Apache Point Observatory and Gemini North. With the VLBA Extragalactic Proper Motion Catalog, we detect the secular aberration drift—the apparent motion of extragalactic objects caused by the solar system’s acceleration around the Galactic center—at a 6.3σ significance. We model the aberration drift as a spheroidal dipole, with the square root of the power equal to 4.89 ± 0.77 μas yr-1, an amplitude of 1.69 ± 0.27 μas yr-1, and an apex at (275\\buildrel{\\circ}\\over{.} 2+/- 10\\buildrel{\\circ}\\over{.} 0, -29\\buildrel{\\circ}\\over{.} 4+/- 8\\buildrel{\\circ}\\over{.} 8). Our dipole model detects the aberration drift at a higher significance than some previous studies, but at a lower amplitude than expected or previously measured. The full aberration drift may be partially removed by the no-net-rotation constraint used when measuring archival extragalactic radio source positions. Like the cosmic microwave background dipole, which is induced by the observer’s motion, the aberration drift signal should be subtracted from extragalactic proper motions in order to detect cosmological proper motions, including the Hubble expansion, long-period stochastic gravitational waves, and the collapse of large-scale structure.

  7. Contemporaneous broadband observations of three high-redshift BL Lac objects

    DOE PAGES

    Ackerman, M.

    2016-03-20

    We have collected broadband spectral energy distributions (SEDs) of three BL Lac objects, 3FGL J0022.1-1855 (z=0.689), 3FGL J0630.9-2406 (z > ~1.239), and 3FGL J0811.2-7529 (z=0.774), detected by Fermi with relatively flat GeV spectra. By observing simultaneously in the near-IR to hard X-ray band, we can well characterize the high end of the synchrotron component of the SED. Thus, fitting the SEDs to synchro-Compton models of the dominant emission from the relativistic jet, we can constrain the underlying particle properties and predict the shape of the GeV Compton component. Standard extragalactic background light (EBL) models explain the high-energy absorption well, withmore » poorer fits for high UV models. The fits show clear evidence for EBL absorption in the Fermi spectrum of our highest redshift source 3FGL J0630.9-2406. While synchrotron self-Compton models adequately describe the SEDs, the situation may be complicated by possible external Compton components.« less

  8. TeV gamma rays from 3C 279 - A possible probe of origin and intergalactic infrared radiation fields

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; De Jager, O. C.; Salamon, M. H.

    1992-01-01

    The gamma-ray spectrum of 3C 279 during 1991 June exhibited a near-perfect power law between 50 MeV and over 5 GeV with a differential spectral index of -(2.02 +/- 0.07). If extrapolated, the gamma-ray spectrum of 3C 279 should be easily detectable with first-generation air Cerenkov detectors operating above about 0.3 TeV provided there is no intergalactic absorption. However, by using model-dependent lower and upper limits for the extragalactic infrared background radiation field, a sharp cutoff of the 3C 279 spectrum is predicted at between about 0.1 and about 1 TeV. The sensitivity of present air Cerenkov detectors is good enough to measure such a cutoff, which would provide the first opportunity to obtain a measurement of the extragalactic background infrared radiation field.

  9. Radio Recombination Lines at Decametre Wavelengths. Prospects for the Future

    DTIC Science & Technology

    2010-09-15

    dark matter decay) can produce either an absorption or emission H  signal relative to the cosmic microwave background (CMB). At least three distinct...and 2). Most observations have focussed on sightlines towards known bright background sources or pass- ing through gas-rich regions along the inner...combina- tion of the Galactic synchrotron emission and the extragalactic background but is likely to be dominated by the former (Bridle, 1967). The

  10. The HyperLeda project en route to the astronomical virtual observatory

    NASA Astrophysics Data System (ADS)

    Golev, V.; Georgiev, V.; Prugniel, Ph.

    2002-07-01

    HyperLeda (Hyper-Linked Extragalactic Databases and Archives) is aimed to study the evolution of galaxies, their kinematics and stellar populations and the structure of Local Universe. HyperLeda is involved in catalogue and software production, data-mining and massive data processing. The products are serviced to the community through web mirrors. The development of HyperLeda is distributed between different sites and is based on the background experience of the LEDA and Hypercat databases. The HyperLeda project is focused both on the European iAstro colaboration and as a unique database for studies of the physics of the extragalactic objects.

  11. CUBES: cassegrain U-band Brazil-ESO spectrograph

    NASA Astrophysics Data System (ADS)

    Barbuy, B.; Bawden Macanhan, V.; Bristow, P.; Castilho, B.; Dekker, H.; Delabre, B.; Diaz, M.; Gneiding, C.; Kerber, F.; Kuntschner, H.; La Mura, G.; Maciel, W.; Meléndez, J.; Pasquini, L.; Pereira, C. B.; Petitjean, P.; Reiss, R.; Siqueira-Mello, C.; Smiljanic, R.; Vernet, J.

    2014-11-01

    CUBES is a high-efficiency, medium-resolution ( R˜20,000) ground based UV (300-400 nm) spectrograph, to be installed in the cassegrain focus of one of ESO's VLT unit telescopes in 2017/18. The CUBES project is a joint venture between ESO and IAG/USP, and LNA/MCTI. CUBES will provide access to a wealth of new and relevant information for stellar as well as extragalactic sources. Main science cases include the study of beryllium and heavy elements in metal-poor stars, the direct determination of carbon, nitrogen and oxygen abundances by study of molecular bands in the UV range, as well as the study of active galactic nuclei and the quasar absorption lines. With a streamlined modern instrument design, high efficiency dispersing elements and UV-sensitive detectors, it will give a significant gain in sensitivity over existing ground based medium-high resolution spectrographs, enabling vastly increased sample sizes accessible to the astronomical community. We present here a brief overview of the project including the status, science cases and a discussion of the design options.

  12. The Cosmological Impact of Luminous TeV Blazars. II. Rewriting the Thermal History of the Intergalactic Medium

    NASA Astrophysics Data System (ADS)

    Chang, Philip; Broderick, Avery E.; Pfrommer, Christoph

    2012-06-01

    The universe is opaque to extragalactic very high energy gamma rays (VHEGRs, E > 100 GeV) because they annihilate and pair produce on the extragalactic background light. The resulting ultrarelativistic pairs are commonly assumed to lose energy primarily through inverse Compton scattering of cosmic microwave background (CMB) photons, reprocessing the original emission from TeV to GeV energies. In Broderick et al., we argued that this is not the case; powerful plasma instabilities driven by the highly anisotropic nature of the ultrarelativistic pair distribution provide a plausible way to dissipate the kinetic energy of the TeV-generated pairs locally, heating the intergalactic medium (IGM). Here, we explore the effect of this heating on the thermal history of the IGM. We collate the observed extragalactic VHEGR sources to determine a local VHEGR heating rate. Given the pointed nature of VHEGR observations, we estimate the correction for the various selection effects using Fermi observations of high- and intermediate-peaked BL Lac objects. As the extragalactic component of the local VHEGR flux is dominated by TeV blazars, we then estimate the evolution of the TeV blazar luminosity density by tying it to the well-observed quasar luminosity density and producing a VHEGR heating rate as a function of redshift. This heating is relatively homogeneous for z <~ 4, but there is greater spatial variation at higher redshift (order unity at z ~ 6) because of the reduced number of blazars that contribute to local heating. We show that this new heating process dominates photoheating in the low-redshift evolution of the IGM and calculate the effect of this heating in a one-zone model. As a consequence, the inclusion of TeV blazar heating qualitatively and quantitatively changes the structure and history of the IGM. Due to the homogeneous nature of the extragalactic background light, TeV blazars produce a uniform volumetric heating rate. This heating is sufficient to increase the temperature of the mean density IGM by nearly an order of magnitude, and at low densities by substantially more. It also naturally produces the inverted temperature-density relation inferred by recent observations of the high-redshift Lyα forest, a feature that is difficult to reconcile with standard reionization models. Finally, we close with a discussion on the possibility of detecting this hot low-density IGM suggested by our model either directly or indirectly via the local Lyα forest, the Comptonized CMB, or free-free emission, but we find that such measurements are currently not feasible.

  13. Star-Forming Regions in Orion as a Dust Evolution Laboratory

    NASA Astrophysics Data System (ADS)

    Wiebe, D.; Murga, M.; Sivkova, E.

    2017-06-01

    Star-forming regions (SFR) represent a convenient opportunity to study various processes related both to dust growth and to dust destruction. While extragalactic SFRs allow considering these processes in a wide range of metallicities, UV field intensities, etc., the Orion star-forming complex opens up a possibility to observe dust evolution with an unprecedented angular resolution. We review various observations related to dust evolution in some most prominent Orion regions, paying special attention to organic dust evolution, and introduce a new model of organic dust evolution.

  14. The number counts and infrared backgrounds from infrared-bright galaxies

    NASA Technical Reports Server (NTRS)

    Hacking, P. B.; Soifer, B. T.

    1991-01-01

    Extragalactic number counts and diffuse backgrounds at 25, 60, and 100 microns are predicted using new luminosity functions and improved spectral-energy distribution density functions derived from IRAS observations of nearby galaxies. Galaxies at redshifts z less than 3 that are like those in the local universe should produce a minimum diffuse background of 0.0085, 0.038, and 0.13 MJy/sr at 25, 60, and 100 microns, respectively. Models with significant luminosity evolution predict backgrounds about a factor of 4 greater than this minimum.

  15. Studying the Evolution of the Contamination of the Sunyaev-Zel'dovich effect due to High-redshift (sub-)mm Galaxies

    NASA Astrophysics Data System (ADS)

    Montana, Alfredo; Aretxaga, I.; Austermann, J.; Bock, J.; Chapin, E.; Gaztanaga, E.; Hughes, D.; Lowenthal, J.; Mauskopf, P.; Perera, T.; Scott, K.; Wilson, G.; Yun, M.

    2007-05-01

    We present simulations of the submillimetre/millimetre (sub-mm) sky to study the environment of luminous starburst galaxies, radio galaxies and AGN towards biased-regions (large-scale over-densities) in the high-redshift universe. Guided by recent results from AzTEC extragalactic surveys at 1.1mm, we describe the impact of this population of galaxies, that dominate the sub-mm extragalactic background, on the detectability of the Sunyaev-Zel'dovich effect (SZE) as a function of redshift. These results will be presented in the context of the next generation of wide-area surveys to identify high-redshift clusters via the SZE.

  16. Legacy ExtraGalactic UV Survey with The Hubble Space Telescope: Stellar Cluster Catalogs and First Insights Into Cluster Formation and Evolution in NGC 628

    NASA Astrophysics Data System (ADS)

    Adamo, A.; Ryon, J. E.; Messa, M.; Kim, H.; Grasha, K.; Cook, D. O.; Calzetti, D.; Lee, J. C.; Whitmore, B. C.; Elmegreen, B. G.; Ubeda, L.; Smith, L. J.; Bright, S. N.; Runnholm, A.; Andrews, J. E.; Fumagalli, M.; Gouliermis, D. A.; Kahre, L.; Nair, P.; Thilker, D.; Walterbos, R.; Wofford, A.; Aloisi, A.; Ashworth, G.; Brown, T. M.; Chandar, R.; Christian, C.; Cignoni, M.; Clayton, G. C.; Dale, D. A.; de Mink, S. E.; Dobbs, C.; Elmegreen, D. M.; Evans, A. S.; Gallagher, J. S., III; Grebel, E. K.; Herrero, A.; Hunter, D. A.; Johnson, K. E.; Kennicutt, R. C.; Krumholz, M. R.; Lennon, D.; Levay, K.; Martin, C.; Nota, A.; Östlin, G.; Pellerin, A.; Prieto, J.; Regan, M. W.; Sabbi, E.; Sacchi, E.; Schaerer, D.; Schiminovich, D.; Shabani, F.; Tosi, M.; Van Dyk, S. D.; Zackrisson, E.

    2017-06-01

    We report the large effort that is producing comprehensive high-level young star cluster (YSC) catalogs for a significant fraction of galaxies observed with the Legacy ExtraGalactic UV Survey (LEGUS) Hubble treasury program. We present the methodology developed to extract cluster positions, verify their genuine nature, produce multiband photometry (from NUV to NIR), and derive their physical properties via spectral energy distribution fitting analyses. We use the nearby spiral galaxy NGC 628 as a test case for demonstrating the impact that LEGUS will have on our understanding of the formation and evolution of YSCs and compact stellar associations within their host galaxy. Our analysis of the cluster luminosity function from the UV to the NIR finds a steepening at the bright end and at all wavelengths suggesting a dearth of luminous clusters. The cluster mass function of NGC 628 is consistent with a power-law distribution of slopes ˜ -2 and a truncation of a few times 105 {M}⊙ . After their formation, YSCs and compact associations follow different evolutionary paths. YSCs survive for a longer time frame, confirming their being potentially bound systems. Associations disappear on timescales comparable to hierarchically organized star-forming regions, suggesting that they are expanding systems. We find mass-independent cluster disruption in the inner region of NGC 628, while in the outer part of the galaxy there is little or no disruption. We observe faster disruption rates for low mass (≤104 {M}⊙ ) clusters, suggesting that a mass-dependent component is necessary to fully describe the YSC disruption process in NGC 628. Based on observations obtained with the NASA/ESA Hubble Space Telescope, at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  17. Sources of GeV Photons and the Fermi Results

    NASA Astrophysics Data System (ADS)

    Dermer, Charles D.

    This chapter presents the elaborated lecture notes on Sources of GeV Photons and the Fermi Results given by Charles D. Dermer at the 40th Saas-Fee Advanced Course on "Astrophysics at Very High Energies". The Fermi Gamma-ray Space Telescope made important discoveries and established new results in various areas of astrophysics: from our solar system to remote gamma-ray bursts, from pulsar physics to limits on dark matter and Lorentz invariance violations. The author gives a broad overview of these results by discussing GeV instrumentation and the GeV sky as seen by Fermi, the Fermi catalogs on gamma-ray sources, pulsars and active galactic nuclei, relativistic jet physics and blazars, gamma-rays from cosmic rays in the Galaxy, from star-forming galaxies and from clusters of galaxies, the diffuse extra-galactic gamma-ray background, micro-quasars, radio galaxies, the extragalactic background light, gamma-ray bursts, Fermi acceleration, ultra-high energy cosmic rays, and black holes.

  18. Extragalactic chemistry of molecular gas: lessons from the local universe.

    PubMed

    García-Burillo, S; Fuente, A; Martín-Pintado, J; Usero, A; Graciá-Carpio, J; Planesas, P

    2006-01-01

    Observational constraints provided by high resolution and high sensitivity observations of external galaxies made in the millimetre and sub-millimetre range have started to put on a firm footing the study of the extragalactic chemistry of molecular gas. In particular, the availability of multi-species and multi-line surveys of nearby galaxies is central to the interpretation of existent and forthcoming millimetre observations of the high redshift universe. Probing the physical and chemical status of molecular gas in starbursts and active galaxies (AGN) requires the use of specific tracers of the relevant energetic phenomena that are known to be at play in these galaxies: large-scale shocks, strong UV fields, cosmic rays and X-rays. We present below the first results of an ongoing survey, allying the IRAM 30 m telescope with the Plateau de Bure interferometer (PdBI), devoted to the study of the chemistry of molecular gas in a sample of starbursts and AGN of the local universe. These observations highlight the existence of a strong chemical differentiation in the molecular disks of starbursts and AGN.

  19. Extinction Maps and Dust-to-gas Ratios in Nearby Galaxies with LEGUS

    NASA Astrophysics Data System (ADS)

    Kahre, L.; Walterbos, R. A.; Kim, H.; Thilker, D.; Calzetti, D.; Lee, J. C.; Sabbi, E.; Ubeda, L.; Aloisi, A.; Cignoni, M.; Cook, D. O.; Dale, D. A.; Elmegreen, B. G.; Elmegreen, D. M.; Fumagalli, M.; Gallagher, J. S., III; Gouliermis, D. A.; Grasha, K.; Grebel, E. K.; Hunter, D. A.; Sacchi, E.; Smith, L. J.; Tosi, M.; Adamo, A.; Andrews, J. E.; Ashworth, G.; Bright, S. N.; Brown, T. M.; Chandar, R.; Christian, C.; de Mink, S. E.; Dobbs, C.; Evans, A. S.; Herrero, A.; Johnson, K. E.; Kennicutt, R. C.; Krumholz, M. R.; Messa, M.; Nair, P.; Nota, A.; Pellerin, A.; Ryon, J. E.; Schaerer, D.; Shabani, F.; Van Dyk, S. D.; Whitmore, B. C.; Wofford, A.

    2018-03-01

    We present a study of the dust-to-gas ratios in five nearby galaxies: NGC 628 (M74), NGC 6503, NGC 7793, UGC 5139 (Holmberg I), and UGC 4305 (Holmberg II). Using Hubble Space Telescope broadband WFC3/UVIS UV and optical images from the Treasury program Legacy ExtraGalactic UV Survey (LEGUS) combined with archival HST/Advanced Camera for Surveys data, we correct thousands of individual stars for extinction across these five galaxies using an isochrone-matching (reddening-free Q) method. We generate extinction maps for each galaxy from the individual stellar extinctions using both adaptive and fixed resolution techniques and correlate these maps with neutral H I and CO gas maps from the literature, including the H I Nearby Galaxy Survey and the HERA CO-Line Extragalactic Survey. We calculate dust-to-gas ratios and investigate variations in the dust-to-gas ratio with galaxy metallicity. We find a power-law relationship between dust-to-gas ratio and metallicity, consistent with other studies of dust-to-gas ratio compared to metallicity. We find a change in the relation when H2 is not included. This implies that underestimation of {N}{{{H}}2} in low-metallicity dwarfs from a too-low CO-to-H2 conversion factor X CO could have produced too low a slope in the derived relationship between dust-to-gas ratio and metallicity. We also compare our extinctions to those derived from fitting the spectral energy distribution (SED) using the Bayesian Extinction and Stellar Tool for NGC 7793 and find systematically lower extinctions from SED fitting as compared to isochrone matching.

  20. The AGN fraction of submm-selected galaxies and contributions to the submm/mm-wave extragalactic background light

    NASA Astrophysics Data System (ADS)

    Serjeant, S.; Negrello, M.; Pearson, C.; Mortier, A.; Austermann, J.; Aretxaga, I.; Clements, D.; Chapman, S.; Dye, S.; Dunlop, J.; Dunne, L.; Farrah, D.; Hughes, D.; Lee, H.-M.; Matsuhara, H.; Ibar, E.; Im, M.; Jeong, W.-S.; Kim, S.; Oyabu, S.; Takagi, T.; Wada, T.; Wilson, G.; Vaccari, M.; Yun, M.

    2010-05-01

    We present a comparison of the SCUBA half degree extragalactic survey (SHADES) at 450 μm, 850 μm and 1100 μm with deep guaranteed time 15 μm AKARI FU-HYU survey data and Spitzer guaranteed time data at 3.6-24 μm in the Lockman hole east. The AKARI data was analysed using bespoke software based in part on the drizzling and minimum-variance matched filtering developed for SHADES, and was cross-calibrated against ISO fluxes. Our stacking analyses find AKARI 15 μm galaxies with ⪆200 μJy contribute >10% of the 450 μm background, but only <4% of the 1100 μm background, suggesting that different populations contribute at mm-wavelengths. We confirm our earlier result that the ultra-deep 450 μm SCUBA-2 cosmology survey will be dominated by populations already detected by AKARI and Spitzer mid-infrared surveys. The superb mid-infrared wavelength coverage afforded by combining Spitzer and AKARI photometry is an excellent diagnostic of AGN contributions, and we find that (23-52)% of submm-selected galaxies have AGN bolometric fractions fAGN > 0.3.

  1. SPECTRAL ANALYSIS OF FERMI -LAT BLAZARS ABOVE 50 GEV

    DOE PAGES

    Domínguez, Alberto; Ajello, Marco

    2015-11-04

    We present an analysis of the intrinsic (unattenuated by the extragalactic background light, EBL) power-law spectral indices of 128 extragalactic sources detected up to z ~ 2 with the Fermi-Large Area Telescope (LAT) at very high energies (VHEs, E ≥50 GeV). The median of the intrinsic index distribution is 2.20 (versus 2.54 for the observed distribution). We also analyze the observed spectral breaks (i.e., the difference between the VHE and high energy, HE, 100 MeV ≤ E ≤ 300 GeV, spectral indices). The Fermi-LAT has now provided a large sample of sources detected both at VHE and HE with comparablemore » exposure that allows us to test models of extragalactic γ-ray photon propagation. We find that our data are compatible with simulations that include intrinsic blazar curvature and EBL attenuation. There is also no evidence of evolution with redshift of the physics that drives the photon emission in high-frequency synchrotron peak (HSP) blazars. This makes HSP blazars excellent probes of the EBL.« less

  2. PeV Neutrinos Observed by IceCube from Cores of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.

    2013-01-01

    I show that the high energy neutrino flux predicted to arise from active galactic nuclei cores can explain the PeV neutrinos detected by IceCube without conflicting with the constraints from the observed extragalactic cosmic-ray and gamma-ray backgrounds.

  3. Probing the EBL Evolution at High Redshift Using GRBs Detected with the Fermi-LAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, A.; Ajello, M.; Omodei, N.

    The extragalactic background light (EBL), from ultraviolet to infrared wavelengths, is predominantly due to emission from stars, accreting black holes and reprocessed light due to Galactic dust. The EBL can be studied through the imprint it leaves, via γ–γ absorption of high-energy photons, in the spectra of distant γ-ray sources. The EBL has been probed through the search for the attenuation it produces in the spectra of BL Lacertae (BL Lac) objects and individual γ-ray bursts (GRBs). GRBs have significant advantages over blazars for the study of the EBL especially at high redshifts. Here we analyze a combined sample ofmore » 22 GRBs, detected by the Fermi Large Area Telescope between 65 MeV and 500 GeV. We report a marginal detection (at the ~2.8σ level) of the EBL attenuation in the stacked spectra of the source sample. This measurement represents a first constraint of the EBL at an effective redshift of ~1.8. Here, we combine our results with prior EBL constraints and conclude that Fermi-LAT is instrumental to constrain the UV component of the EBL. We discuss the implications on existing empirical models of EBL evolution.« less

  4. Probing the EBL Evolution at High Redshift Using GRBs Detected with the Fermi-LAT

    DOE PAGES

    Desai, A.; Ajello, M.; Omodei, N.; ...

    2017-11-17

    The extragalactic background light (EBL), from ultraviolet to infrared wavelengths, is predominantly due to emission from stars, accreting black holes and reprocessed light due to Galactic dust. The EBL can be studied through the imprint it leaves, via γ–γ absorption of high-energy photons, in the spectra of distant γ-ray sources. The EBL has been probed through the search for the attenuation it produces in the spectra of BL Lacertae (BL Lac) objects and individual γ-ray bursts (GRBs). GRBs have significant advantages over blazars for the study of the EBL especially at high redshifts. Here we analyze a combined sample ofmore » 22 GRBs, detected by the Fermi Large Area Telescope between 65 MeV and 500 GeV. We report a marginal detection (at the ~2.8σ level) of the EBL attenuation in the stacked spectra of the source sample. This measurement represents a first constraint of the EBL at an effective redshift of ~1.8. Here, we combine our results with prior EBL constraints and conclude that Fermi-LAT is instrumental to constrain the UV component of the EBL. We discuss the implications on existing empirical models of EBL evolution.« less

  5. The interstellar halo of spiral galaxies: NGC 891

    NASA Technical Reports Server (NTRS)

    Kulkarni, Shrinivas R.; Rand, R. J.; Hester, J. Jeff

    1990-01-01

    Researchers have detected the Warm Ionized Medium (WIM) phase in the galaxy NGC 891. They found that the radial distribution of the WIM follows the molecular or young star distribution - an expected dependence. The amount of the WIM in this galaxy exceeds that in our Galaxy. The major surprize is the large thickness of the WIM phase - about 9 kpc instead 3 kpc as in our Galaxy. Clearly, this is the most significant result of the observations. The presence of low ionization gas at high z as well as at large galactocentric radii (where young stars are rare) is an important clue to the origin of the halo and observations such as the one reported here provide important data on this crucial question. In particular, the ionization of gas at high absolute z implies that either the UV photons manage to escape from the disk of the galaxy or that the extragalactic UV background plays an important role. The bulk of the WIM in spiral galaxies is a result of star-formation activity and thus these results can be understood by invoking a high star formation rate in NGC 891. Only the concerted action of supernovae can get the gas to the large z-heights as is observed in this galaxy. Support for this view comes from our detection of many worms i.e., bits and pieces of supershells in the form of kilo-parsec long vertical filaments. Researchers also saw a 600-pc size supershell located nearly one kpc above the plane of the galaxy.

  6. Deep Extragalactic X-Ray Surveys

    NASA Astrophysics Data System (ADS)

    Brandt, W. N.; Hasinger, G.

    2005-09-01

    Deep surveys of the cosmic X-ray background are reviewed in the context of observational progress enabled by the Chandra X-Ray Observatory and the X-Ray Multi-Mirror Mission-Newton. The sources found by deep surveys are described along with their redshift and luminosity distributions, and the effectiveness of such surveys at selecting active galactic nuclei (AGN) is assessed. Some key results from deep surveys are highlighted, including (a) measurements of AGN evolution and the growth of supermassive black holes, (b) constraints on the demography and physics of high-redshift AGN, (c) the X-ray AGN content of infrared and submillimeter galaxies, and (d) X-ray emission from distant starburst and normal galaxies. We also describe some outstanding problems and future prospects for deep extragalactic X-ray surveys.

  7. Revisiting Absolute Radio Backgrounds in Light of Juno Cruise Data

    NASA Astrophysics Data System (ADS)

    Chang, Tzu-Ching

    Radio backgrounds have played a critical role in recent progress in astronomy and cosmology. Major amongst them, the Cosmic Microwave Background (CMB) is currently our most precise window on the physics of the early universe. Both its near perfect blackbody spectrum and its angular fluctuations led to unique cosmological inferences. Beyond the CMB, radio backgrounds have offered golden insights to Galactic and extragalactic astrophysics. In this proposal, we take note of the recently released "cruise data" collected over five years by the MicroWave Radiometer (MWR) instrument on board the Juno planetary mission to construct new, unprecedented and well-characterized full-sky maps at 6 frequencies ranging from 0.6 to 22 GHz. We propose to generate, validate and release these full-sky maps and investigate their rich and unique astrophysical implications. In particular, we expect the use of Juno data to shed light on the "ARCADE excess" and lead to new insights on Galactic and extragalactic radio signals. Over the past several years, evidence indicating the existence of a significant isotropic radio background has been hinted at by a number of instruments. In 2011, the Absolute Radiometer for Cosmology, Astrophysics and Diffuse Emission (ARCADE 2) collaboration reported measurements of the absolute sky temperature at a number of frequencies between 3 and 90 GHz (Fixsen et al. 2011). While these measurements are dominated by the CMB at frequencies above several GHz, they reveal the presence of significant excess power at the lowest measured frequencies (Seiffert et al. 2011). This conclusion is strengthened by a number of observations at lower frequencies, reported at 22 MHz, 45 MHz, 408 MHz and 1.42 GHz: the emission observed by each of these groups appears to be in significant excess to what can be attributed to Galactic emission, or to unresolved members of known extragalactic radio source populations. In addition, it appears to be anomalously spatially smooth to be extragalactic. Six years after the report of this excess, this situation remains unsettled and has not evolved due to the lack of new observations at these frequencies. For this reason, and for the intrinsic value of the unprecedented full-sky maps, the astrophysics impact of MWR Juno cruise observations will be very important. Our program will be articulated along five projects (labeled P1 to P5), loosely corresponding to research papers: (P1) We will generate well characterized full-sky maps at the Juno MWR six frequencies starting from the timestream data, released in September 2016 on the Planetary Data System (PDS) archive. We will validate these maps using cross-correlations with WMAP and Planck public maps at low frequencies. We will release our maps to the community via the NASA LAMBDA archive. This analysis will set the basis for the following projects. (P2) We will investigate the implication of these new maps for foreground modeling with a focus on CMB foreground separation. This analysis will be performed jointly with now standard WMAP and Planck component separation tools and products. (P3) We will investigate the implication of these new maps for foreground modeling with a focus on radio 21 cm intensity mapping signals, extending in the process current community foreground models. This analysis will be improve our understanding and characterization of radio foregrounds, and guide current and future redshifted 21 cm line mapping experiments. (P4) Using the above maps, we will revisit the ARCADE excess and perform absolute temperature measurement of the extragalactic radio backgrounds at multiple frequencies and angular positions over the sky. (P5) Using the above maps, we will revisit the ARCADE excess and perform absolute temperature measurement of the Galactic radio backgrounds at multiple frequencies and angular positions in the Galactic plane, using multiple other line surveys to guide our interpretation.

  8. The host galaxy and Fermi -LAT counterpart of HESS J1943+213

    DOE PAGES

    Peter, D.; Domainko, W.; Sanchez, D. A.; ...

    2014-11-06

    The very-high energy (VHE, E> 100 GeV) gamma-ray sky shows diverse Galactic and extragalactic source populations. For some sources the astrophysical object class could not be identified so far. The nature (Galactic or extragalactic) of the VHE gamma-ray source HESS J1943+213 is explored. We specifically investigate the proposed near-infrared counterpart 2MASS J19435624+2118233 of HESS J1943+213 and investigate the implications of a physical association. We present K-band imaging from the 3.5 m CAHA telescope of 2MASS J19435624+2118233. Furthermore, 5 years of Fermi-LAT data were analyzed to search for a high-energy (HE, 100 MeV stat ± 0.6 sys) × 10 -15 cmmore » -2 s -1 MeV -1 at the decorrelation energy Edec = 15.1 GeV and a spectral index of Γ = 1.59 ± 0.19stat ± 0.13sys. This gamma-ray spectrum shows a rather sharp break between the HE and VHE regimes of ΔΓ = 1.47 ± 0.36. In conclusion, the infrared and HE data strongly favor an extragalactic origin of HESS J1943+213, where the infrared counterpart traces the host galaxy of an extreme blazar and where the rather sharp spectral break between the HE and VHE regime indicates attenuation on extragalactic background light. The source is most likely located at a redshift between 0.03 and 0.45 according to extension and EBL attenuation arguments.« less

  9. New Theoretical Estimates of the Contribution of Unresolved Star-Forming Galaxies to the Extragalactic Gamma-Ray Background (EGB) as Measured by EGRET and the Fermi-LAT

    NASA Technical Reports Server (NTRS)

    Venters, Tonia M.

    2011-01-01

    We present new theoretical estimates of the contribution of unresolved star-forming galaxies to the extragalactic gamma-ray background (EGB) as measured by EGRET and the Fermi-LAT. We employ several methods for determining the star-forming galaxy contribution the the EGB, including a method positing a correlation between the gamma-ray luminosity of a galaxy and its rate of star formation as calculated from the total infrared luminosity, and a method that makes use of a model of the evolution of the galaxy gas mass with cosmic time. We find that depending on the model, unresolved star-forming galaxies could contribute significantly to the EGB as measured by the Fermi-LAT at energies between approx. 300 MeV and approx. few GeV. However, the overall spectrum of unresolved star-forming galaxies can explain neither the EGRET EGB spectrum at energies between 50 and 200 MeV nor the Fermi-LAT EGB spectrum at energies above approx. few GeV.

  10. Initial results from the extreme ultraviolet explorer

    NASA Technical Reports Server (NTRS)

    Bowyer, S.; Malina, R. F.

    1993-01-01

    Data obtained during the first five months of calibration and science operation of the Extreme Ultraviolet Explorer (EUVE) are presented. Spectra of an extragalactic object were obtained; the object is detectable to wavelenghts longer than 100 A, demonstrating that extragalactic EUV astronomy is possible. Spectra of a hot white dwarf, and a late-type star in quiescence and flaring are shown as examples of the type of spectrographic data obtainable with EUVE. Other objects for which broad band photometric mode data have been obtained and analyzed include an RS CVn star and several late-type stars. The backgrounds in the EUVE detectors are quite low and the character of the diffuse astronomical EUV background has been investigated using these very low rates. Evidence is presented showing that, contrary to previously published reports, EUVE is about three times more sensitive than the English Wide Field Camera in the short wavelength bandpass covered by both instruments. Only limited information has been extracted from the longer bandpasses coered only by EUVE. Nonetheless, the brightest EUV source in the sky, a B star, has been discovered and is detected only in these longer bandpasses.

  11. A Targeted Search for Point Sources of EeV Photons with the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Barreira Luz, R. J.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Chavez, A. G.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; Deligny, O.; Di Giulio, C.; Di Matteo, A.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.; Dorosti, Q.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Fick, B.; Figueira, J. M.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; Gaior, R.; García, B.; Garcia-Pinto, D.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gorgi, A.; Gorham, P.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kemp, J.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; LaHurd, D.; Lauscher, M.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Mockler, D.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Müller, A. L.; Müller, G.; Muller, M. A.; Müller, S.; Mussa, R.; Naranjo, I.; Nellen, L.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, H.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pȩkala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pereira, L. A. S.; Perlín, M.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollan, R.; Rautenberg, J.; Ravignani, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rogozin, D.; Roncoroni, M. J.; Roth, M.; Roulet, E.; Rovero, A. C.; Ruehl, P.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarmento, R.; Sarmiento, C. A.; Sato, R.; Schauer, M.; Scherini, V.; Schieler, H.; Schimp, M.; Schmidt, D.; Scholten, O.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanič, S.; Stasielak, J.; Stassi, P.; Strafella, F.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Swain, J.; Szadkowski, Z.; Taboada, A.; Taborda, O. A.; Tapia, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Torralba Elipe, G.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Vergara Quispe, I. D.; Verzi, V.; Vicha, J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wirtz, M.; Wittkowski, D.; Wundheiler, B.; Yang, L.; Yelos, D.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.

    2017-03-01

    Simultaneous measurements of air showers with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for EeV photon point sources. Several Galactic and extragalactic candidate objects are grouped in classes to reduce the statistical penalty of many trials from that of a blind search and are analyzed for a significant excess above the background expectation. The presented search does not find any evidence for photon emission at candidate sources, and combined p-values for every class are reported. Particle and energy flux upper limits are given for selected candidate sources. These limits significantly constrain predictions of EeV proton emission models from non-transient Galactic and nearby extragalactic sources, as illustrated for the particular case of the Galactic center region.

  12. New Astrometric Limits on the Stochastic Gravitational Wave Background

    NASA Astrophysics Data System (ADS)

    Darling, Jeremiah K.; Truebenbach, Alexandra; Paine, Jennie

    2018-06-01

    We present new limits on the low frequency (f < 10-8 Hz) stochastic gravitational wave background using correlated extragalactic proper motions. The familiar methods for gravitational wave detection are ground- and space-based laser interferometry, pulsar timing, and polarization of the cosmic microwave background. Astrometry offers an additional path to gravitational wave detection because gravitational waves deflect the light rays of extragalactic objects, creating apparent proper motions in a quadrupolar (and higher order modes) pattern. Astrometry is sensitive to gravitational waves with frequencies between roughly 10-18 Hz and 10-8 Hz (between H0 and 1/3 yr-1), which overlaps and bridges the pulsar timing and CMB polarization regimes. We present the methods and results of two complementary approaches to astrometric gravitational wave detection: (1) a small ~500-object radio interferometric sample with low per-source proper motion uncertainty but large intrinsic proper motions caused by radio jets, and (2) a thousand-fold larger sample with large per-source uncertainties that has small intrinsic proper motions (Gaia active galactic nuclei). Both approaches produce limits on ΩGW, the energy density of gravitational waves as a fraction of the cosmological critical energy density.The authors acknowledge support from the NSF grant AST-1411605 and the NASA grant 14-ATP14-0086.

  13. Detection of very high energy gamma-ray emission from the gravitationally lensed blazar QSO B0218+357 with the MAGIC telescopes

    NASA Astrophysics Data System (ADS)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Arcaro, C.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Buson, S.; Carosi, A.; Chatterjee, A.; Clavero, R.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; López-Coto, R.; Majumdar, P.; Makariev, M.; Mallot, K.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Toyama, T.; Treves, A.; Vanzo, G.; Verguilov, V.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zanin, R.; Desiante, R.

    2016-11-01

    Context. QSO B0218+357 is a gravitationally lensed blazar located at a redshift of 0.944. The gravitational lensing splits the emitted radiation into two components that are spatially indistinguishable by gamma-ray instruments, but separated by a 10-12 day delay. In July 2014, QSO B0218+357 experienced a violent flare observed by the Fermi-LAT and followed by the MAGIC telescopes. Aims: The spectral energy distribution of QSO B0218+357 can give information on the energetics of z 1 very high energy gamma-ray sources. Moreover the gamma-ray emission can also be used as a probe of the extragalactic background light at z 1. Methods: MAGIC performed observations of QSO B0218+357 during the expected arrival time of the delayed component of the emission. The MAGIC and Fermi-LAT observations were accompanied by quasi-simultaneous optical data from the KVA telescope and X-ray observations by Swift-XRT. We construct a multiwavelength spectral energy distribution of QSO B0218+357 and use it to model the source. The GeV and sub-TeV data obtained by Fermi-LAT and MAGIC are used to set constraints on the extragalactic background light. Results: Very high energy gamma-ray emission was detected from the direction of QSO B0218+357 by the MAGIC telescopes during the expected time of arrival of the trailing component of the flare, making it the farthest very high energy gamma-ray source detected to date. The observed emission spans the energy range from 65 to 175 GeV. The combined MAGIC and Fermi-LAT spectral energy distribution of QSO B0218+357 is consistent with current extragalactic background light models. The broadband emission can be modeled in the framework of a two-zone external Compton scenario, where the GeV emission comes from an emission region in the jet, located outside the broad line region.

  14. Detection of very high energy gamma-ray emission from the gravitationally lensed blazar QSO B0218+357 with the MAGIC telescopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.

    QSO B0218+357 is a gravitationally lensed blazar located at a redshift of 0.944. The gravitational lensing splits the emitted radiation into two components that are spatially indistinguishable by gamma-ray instruments, but separated by a 10–12 day delay. In July 2014, QSO B0218+357 experienced a violent flare observed by the Fermi-LAT and followed by the MAGIC telescopes. The spectral energy distribution of QSO B0218+357 can give information on the energetics of z ~ 1 very high energy gamma-ray sources. Furthermore, the gamma-ray emission can also be used as a probe of the extragalactic background light at z ~ 1. MAGIC performedmore » observations of QSO B0218+357 during the expected arrival time of the delayed component of the emission. The MAGIC and Fermi-LAT observations were accompanied by quasi-simultaneous optical data from the KVA telescope and X-ray observations by Swift-XRT. We construct a multiwavelength spectral energy distribution of QSO B0218+357 and use it to model the source. The GeV and sub-TeV data obtained by Fermi-LAT and MAGIC are used to set constraints on the extragalactic background light. We detected very high energy gamma-ray emission from the direction of QSO B0218+357 by the MAGIC telescopes during the expected time of arrival of the trailing component of the flare, making it the farthest very high energy gamma-ray source detected to date. We also observed emission spans the energy range from 65 to 175 GeV. The combined MAGIC and Fermi-LAT spectral energy distribution of QSO B0218+357 is consistent with current extragalactic background light models. The broadband emission can be modeled in the framework of a two-zone external Compton scenario, where the GeV emission comes from an emission region in the jet, located outside the broad line region.« less

  15. Detection of very high energy gamma-ray emission from the gravitationally lensed blazar QSO B0218+357 with the MAGIC telescopes

    DOE PAGES

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; ...

    2016-11-04

    QSO B0218+357 is a gravitationally lensed blazar located at a redshift of 0.944. The gravitational lensing splits the emitted radiation into two components that are spatially indistinguishable by gamma-ray instruments, but separated by a 10–12 day delay. In July 2014, QSO B0218+357 experienced a violent flare observed by the Fermi-LAT and followed by the MAGIC telescopes. The spectral energy distribution of QSO B0218+357 can give information on the energetics of z ~ 1 very high energy gamma-ray sources. Furthermore, the gamma-ray emission can also be used as a probe of the extragalactic background light at z ~ 1. MAGIC performedmore » observations of QSO B0218+357 during the expected arrival time of the delayed component of the emission. The MAGIC and Fermi-LAT observations were accompanied by quasi-simultaneous optical data from the KVA telescope and X-ray observations by Swift-XRT. We construct a multiwavelength spectral energy distribution of QSO B0218+357 and use it to model the source. The GeV and sub-TeV data obtained by Fermi-LAT and MAGIC are used to set constraints on the extragalactic background light. We detected very high energy gamma-ray emission from the direction of QSO B0218+357 by the MAGIC telescopes during the expected time of arrival of the trailing component of the flare, making it the farthest very high energy gamma-ray source detected to date. We also observed emission spans the energy range from 65 to 175 GeV. The combined MAGIC and Fermi-LAT spectral energy distribution of QSO B0218+357 is consistent with current extragalactic background light models. The broadband emission can be modeled in the framework of a two-zone external Compton scenario, where the GeV emission comes from an emission region in the jet, located outside the broad line region.« less

  16. A Real-Time Ultraviolet Radiation Imaging System Using an Organic Photoconductive Image Sensor†

    PubMed Central

    Okino, Toru; Yamahira, Seiji; Yamada, Shota; Hirose, Yutaka; Odagawa, Akihiro; Kato, Yoshihisa; Tanaka, Tsuyoshi

    2018-01-01

    We have developed a real time ultraviolet (UV) imaging system that can visualize both invisible UV light and a visible (VIS) background scene in an outdoor environment. As a UV/VIS image sensor, an organic photoconductive film (OPF) imager is employed. The OPF has an intrinsically higher sensitivity in the UV wavelength region than those of conventional consumer Complementary Metal Oxide Semiconductor (CMOS) image sensors (CIS) or Charge Coupled Devices (CCD). As particular examples, imaging of hydrogen flame and of corona discharge is demonstrated. UV images overlapped on background scenes are simply made by on-board background subtraction. The system is capable of imaging weaker UV signals by four orders of magnitude than that of VIS background. It is applicable not only to future hydrogen supply stations but also to other UV/VIS monitor systems requiring UV sensitivity under strong visible radiation environment such as power supply substations. PMID:29361742

  17. The O VI Mystery: Mismatch between X-Ray and UV Column Densities

    NASA Astrophysics Data System (ADS)

    Mathur, S.; Nicastro, F.; Gupta, A.; Krongold, Y.; McLaughlin, B. M.; Brickhouse, N.; Pradhan, A.

    2017-12-01

    The UV spectra of Galactic and extragalactic sightlines often show O VI absorption lines at a range of redshifts, and from a variety of sources from the Galactic circumgalactic medium to active galactic nuclei (AGN) outflows. Inner shell O VI absorption is also observed in X-ray spectra (at λ =22.03 Å), but the column density inferred from the X-ray line was consistently larger than that from the UV line. Here we present a solution to this discrepancy for the z = 0 systems. The O II Kβ line {}4{S}0\\to {(}3D)3{p}4P at 562.40 eV (≡22.04 Å) is blended with the O VI Kα line in X-ray spectra. We estimate the strength of this O II line in two different ways, and show that in most cases the O II line accounts for the entire blended line. The small amount of O VI equivalent width present in some cases has column density entirely consistent with the UV value. This solution to the O VI discrepancy, however, does not apply to high column-density systems like AGN outflows. We discuss other possible causes to explain their UV/X-ray mismatch. The O VI and O II lines will be resolved by gratings on board the proposed mission Arcus and the concept mission Lynx, and would allow the detection of weak O VI lines not just at z = 0, but also at higher redshift.

  18. Probing Extragalactic Planets Using Quasar Microlensing

    NASA Astrophysics Data System (ADS)

    Dai, Xinyu; Guerras, Eduardo

    2018-02-01

    Previously, planets have been detected only in the Milky Way galaxy. Here, we show that quasar microlensing provides a means to probe extragalactic planets in the lens galaxy, by studying the microlensing properties of emission close to the event horizon of the supermassive black hole of the background quasar, using the current generation telescopes. We show that a population of unbound planets between stars with masses ranging from Moon to Jupiter masses is needed to explain the frequent Fe Kα line energy shifts observed in the gravitationally lensed quasar RXJ 1131–1231 at a lens redshift of z = 0.295 or 3.8 billion lt-yr away. We constrain the planet mass-fraction to be larger than 0.0001 of the halo mass, which is equivalent to 2000 objects ranging from Moon to Jupiter mass per main-sequence star.

  19. A Targeted Search for Point Sources of EeV Photons with the Pierre Auger Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aab, A.; Abreu, P.; Aglietta, M.

    Simultaneous measurements of air showers with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for EeV photon point sources. Several Galactic and extragalactic candidate objects are grouped in classes to reduce the statistical penalty of many trials from that of a blind search and are analyzed for a significant excess above the background expectation. The presented search does not find any evidence for photon emission at candidate sources, and combined p-values for every class are reported. Particle and energy flux upper limits are given for selected candidate sources. Lastly, these limits significantly constrain predictionsmore » of EeV proton emission models from non-transient Galactic and nearby extragalactic sources, as illustrated for the particular case of the Galactic center region.« less

  20. A Targeted Search for Point Sources of EeV Photons with the Pierre Auger Observatory

    DOE PAGES

    Aab, A.; Abreu, P.; Aglietta, M.; ...

    2017-03-09

    Simultaneous measurements of air showers with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for EeV photon point sources. Several Galactic and extragalactic candidate objects are grouped in classes to reduce the statistical penalty of many trials from that of a blind search and are analyzed for a significant excess above the background expectation. The presented search does not find any evidence for photon emission at candidate sources, and combined p-values for every class are reported. Particle and energy flux upper limits are given for selected candidate sources. Lastly, these limits significantly constrain predictionsmore » of EeV proton emission models from non-transient Galactic and nearby extragalactic sources, as illustrated for the particular case of the Galactic center region.« less

  1. A Targeted Search for Point Sources of EeV Photons with the Pierre Auger Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aab, A.; Abreu, P.; Aglietta, M.

    Simultaneous measurements of air showers with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for EeV photon point sources. Several Galactic and extragalactic candidate objects are grouped in classes to reduce the statistical penalty of many trials from that of a blind search and are analyzed for a significant excess above the background expectation. The presented search does not find any evidence for photon emission at candidate sources, and combined p -values for every class are reported. Particle and energy flux upper limits are given for selected candidate sources. These limits significantly constrain predictionsmore » of EeV proton emission models from non-transient Galactic and nearby extragalactic sources, as illustrated for the particular case of the Galactic center region.« less

  2. ON ULTRA-HIGH-ENERGY COSMIC RAYS AND THEIR RESULTANT GAMMA-RAYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavish, Eyal; Eichler, David

    2016-05-01

    The Fermi Large Area Telescope collaboration has recently reported on 50 months of measurements of the isotropic extragalactic gamma-ray background (EGRB) spectrum between 100 MeV and 820 GeV. Ultra-high-energy cosmic ray (UHECR) protons interact with the cosmic microwave background photons and produce cascade photons of energies 10 MeV–1 TeV that contribute to the EGRB flux. We examine seven possible evolution models for UHECRs and find that UHECR sources that evolve as the star formation rate (SFR), medium low luminosity active galactic nuclei type-1 ( L = 10{sup 43.5} erg s{sup −1} in the [0.5–2] KeV band), and BL Lacertae objectsmore » (BL Lacs) are the most acceptable given the constraints imposed by the observed EGRB. Other possibilities produce too much secondary γ -radiation. In all cases, the decaying dark matter (DM) contribution improves the fit at high energy, but the contribution of still unresolved blazars, which would leave the smallest role for decaying DM, may yet provide an alternative improvement. The possibility that the entire EGRB can be fitted with resolvable but not-yet-resolved blazars, as recently claimed by Ajello et al., would leave little room in the EGRB to accommodate γ -rays from extragalactic UHECR production, even for many source evolution rates that would otherwise be acceptable. We find that under the assumption of UHECRs being mostly protons, there is not enough room for producing extragalactic UHECRs with active galactic nucleus, gamma-ray burst, or even SFR source evolution. Sources that evolve as BL Lacs, on the other hand, would produce much less secondary γ -radiation and would remain a viable source of UHECRs, provided that they dominate.« less

  3. The Diffuse Interstellar Bands: an Elderly Astro-Puzzle Rejuvenated

    NASA Astrophysics Data System (ADS)

    Cox, Nick L. J.

    2011-12-01

    The interstellar medium constitutes a physically and chemically complex component of galaxies and is important in the cycle of matter and the evolution of stars. From various spectroscopic clues we now know that the interstellar medium is rich in organic compounds. However, identifying the exact nature of all these components remains a challenge. In particular the identification of the so-called diffuse band carriers has been alluding astronomers for almost a century. In recent decades, observational, experimental and theoretical advances have rapidly lead to renewed interest in the diffuse interstellar bands (DIBs). This has been instigated partly by their perceived relation to the infrared aromatic emission bands, the UV extinction bump and far-UV rise, and the growing number of (small) organic molecules identified in space. This chapter gives an overview of the observational properties and behaviour of the DIBs, and their presence throughout the Universe. I will highlight recent progress in identifying their carriers and discuss their potential as tracers and probes of (extra)-Galactic ISM conditions.

  4. Constraining the redshift distribution of ultrahigh-energy-cosmic-ray sources by isotropic gamma-ray background

    NASA Astrophysics Data System (ADS)

    Liu, Ruo-Yu; Taylor, Andrew; Wang, Xiang-Yu; Aharonian, Felix

    2017-01-01

    By interacting with the cosmic background photons during their propagation through intergalactic space, ultrahigh energy cosmic rays (UHECRs) produce energetic electron/positron pairs and photons which will initiate electromagnetic cascades, contributing to the isotropic gamma-ray background (IGRB). The generated gamma-ray flux level highly depends on the redshift evolution of the UHECR sources. Recently, the Fermi-LAT collaboration reported that 86-14+16 of the total extragalactic gamma-ray flux comes from extragalactic point sources including those unresolved ones. This leaves a limited room for the diffusive gamma ray generated via UHECR propagation, and subsequently constrains their source distribution in the Universe. Normalizing the total cosmic ray energy budget with the observed UHECR flux in the energy band of (1-4)×1018 eV, we calculate the diffuse gamma-ray flux generated through UHECR propagation. We find that in order to not overshoot the new IGRB limit, these sub-ankle UHECRs should be produced mainly by nearby sources, with a possible non-negligible contribution from our Galaxy. The distance for the majority of UHECR sources can be further constrained if a given fraction of the observed IGRB at 820 GeV originates from UHECR. We note that our result should be conservative since there may be various other contributions to the IGRB that is not included here.

  5. Spectral determinations for discrete sources with EGRET

    NASA Technical Reports Server (NTRS)

    Hughes, E. B.; Nolan, P. L.

    1990-01-01

    The ability of the EGRET (Energetic Gamma-Ray Experimental Telescope) to determine the spectral parameters of point sources in 14-day exposures, as planned for the initial survey phase of the GRO (Gamma Ray Observatory) mission, is explored by numerical simulation. Results are given for both galactic and extragalactic objects as a function of source strength and for representative levels of diffuse background emission.

  6. Reconstructing the Gamma-Ray Photon Optical Depth of the Universe To Z Approx. 4 from Multiwavelength Galaxy Survey Data

    NASA Technical Reports Server (NTRS)

    Helgason, Kari; Kashlinsky, Alexander

    2012-01-01

    Reconstructing the Gamma-Ray Photon Optical Depth of the Universe To Z Approx. 4fFrom Multiwavelength Galaxy Survey Data We reconstruct the gamma-ray opacity of the universe out to z approx. < 3–4 using an extensive library of 342 observed galaxy luminosity function (LF) surveys extending to high redshifts .We cover the whole range from UV to mid-IR (0.15–25 micron ) providing for the first time a robust empirical calculation of the gamma gamma optical depth out to several TeV. Here, we use the same database as Helgason et al. where the extragalactic background light was reconstructed from LFs out to 4.5 micron and was shown to recover observed galaxy counts to high accuracy. We extend our earlier library Of LFs to 25micron such that it covers the energy range of pair production with gamma -rays (1) in the entire Fermi/LAT energy range, and (2) at higher TeV energies probed by ground-based Cherenkov telescopes. In the absence of significant contributions to the cosmic diffuse background from unknown populations, such as the putative Population III era sources, the universe appears to be largely transparent to gamma-rays at all Fermi/LAT energies out to z approx.. 2 whereas it becomes opaque to TeV photons already at z approx. < 0.2 and reaching tau approx 10 at z = 1. Comparing with the currently available Fermi/LAT gamma-ray burst and blazar data shows that there is room for significant emissions originating in the first stars era.

  7. Fermi-LAT high-z active galactic nuclei and the extragalactic background light

    NASA Astrophysics Data System (ADS)

    Armstrong, Thomas; Brown, Anthony M.; Chadwick, Paula M.

    2017-10-01

    Observations of distant gamma-ray sources are hindered by the presence of the extragalactic background light (EBL). In order to understand the physical processes that result in the observed spectrum of sources, it is imperative that a good understanding of the EBL is included. In this work, an investigation into the imprint of the EBL on the observed spectra of high-redshift Fermi-LAT active galactic nuclei is presented. By fitting the spectrum below ˜10 GeV, an estimation of the unabsorbed intrinsic source spectrum is obtained; by applying this spectrum to data up to 300 GeV, it is then possible to derive a scaling factor for different EBL models. A second approach uses five sources (PKS 0426-380, 4C +55.17, Ton 116, PG 1246+586 and RBS 1432) that were found to exhibit very high energy (VHE) emission (Eγ > 100 GeV). Through Monte Carlo simulations, it is shown that the observation of VHE photons, despite the large distances of these objects, is consistent with current EBL models. Many of these sources would be observable with the upcoming ground-based observatory, the Cherenkov Telescope Array, leading to a better understanding of the EBL.

  8. A morphological filter for removing 'Cirrus-like' emission from far-infrared extragalactic IRAS fields

    NASA Technical Reports Server (NTRS)

    Appleton, P. N.; Siqueira, P. R.; Basart, J. P.

    1993-01-01

    The presence of diffuse extended IR emission from the Galaxy in the form of the so called 'Galactic Cirrus' emission has hampered the exploration of the extragalactic sky at long IR wavelengths. We describe the development of a filter based on mathematical morphology which appears to be a promising approach to the problem of cirrus removal. The method of Greyscale Morphology was applied to a 100 micron IRAS image of the M81 group of galaxies. This is an extragalactic field which suffers from serious contamination from foreground Galactic 'cirrus'. Using a technique called 'sieving', it was found that the cirrus emission has a characteristic behavior which can be quantified in terms of an average spatial structure spectrum or growth function. This function was then used to attempt to remove 'cirrus' from the entire image. The result was a significant reduction of cirrus emission by an intensity factor of 15 compared with the original input image. The method appears to preserve extended emission in the spatially extended IR disks of M81 and M82 as well as distinguishing fainter galaxies within bright regions of galactic cirrus. The techniques may also be applicable to IR databases obtained with the Cosmic Background Explorer.

  9. The impact of background organic matter and alkalinity on the degradation of the pesticide metaldehyde by two advanced oxidation processes: UV/H₂O₂ and UV/TiO₂.

    PubMed

    Autin, Olivier; Hart, Julie; Jarvis, Peter; MacAdam, Jitka; Parsons, Simon A; Jefferson, Bruce

    2013-04-15

    The impact of background constituents on the degradation of trace levels of micropollutants by two advanced oxidation processes: UV/H₂O₂ and UV/TiO₂ was studied. Experimental results demonstrated that the background scavenging rate rather than the concentration of micropollutant controls the required UV irradiation dose. The character of the natural organic matter had a limited impact on scavenging when the water source remains unchanged, however, a periodic bleed of hydrophobic material may substantially increase the minimum UV dose required to reach the desired micropollutant concentration. Moreover, in the case of UV/TiO₂, high concentrations of background organic matter do not only act as scavengers but also saturate the TiO₂ surface. Alkalinity inhibits the efficacy of UV/TiO₂ photocatalysis due to the formation of large TiO₂ aggregates. The study also demonstrated that the use of synthetic waters for treatability test purposes was an acceptable approach as long as both the background organic matter and the alkalinity were matched to that of the projected application. Finally spiking micropollutants at higher concentrations does not alter the significance of the findings as long as the background constituents represent more than 85% of the total scavenging rate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Extragalactic Ultra-High Energy Cosmic-Rays - Part One - Contribution from Hot Spots in Fr-II Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Rachen, J. P.; Biermann, P. L.

    1993-05-01

    The hot spots of Fanaroff-Riley class II radio galaxies, considered as working surfaces of highly collimated plasma jets, are proposed to be the dominant sources of the cosmic rays at energies above 1 EeV^a^. We apply the model of first order Fermi acceleration at strong, nonrelativistic shock waves to the hot spot region. The strength of the model has been demonstrated by Biermann & Strittmatter (1987) and by Meisenheimer et al. (1989), who explain their radio-to optical spectra and infer the physical conditions of the radiating plasma. Using synchrotron radiating electrons as a trace, we can calculate the spectrum and the maximum energy of protons accelerated under the same conditions. For simplicity, we disregard heavy nuclei, but their probable role is discussed. The normalization of proton flux injected in extragalactic space is performed by using estimates from Rawlings & Saunders (1991) for the total energy stored in relativistic particles inside the jets and radio galaxy evolution models given by Peacock (1985). We calculate the spectral modifications due to interactions of the protons with the microwave background photons in an evolving universe, following Berezinsky & Grigor'eva (1988). Constraints on the extragalactic magnetic field can be imposed, since it must permit an almost homogeneous filling of the universe with energetic protons. The observed ultra-high energy cosmic ray spectrum is reproduced in slope and flux, limited at high energies by the Greisen-cutoff at about 80 EeV. The requirements on the content of relativistic protons in jets and the constraints to the extragalactic magnetic field are consistent with common estimates. The data beyond the Greisen cutoff for protons may be explained by including heavy nuclei in our model, since they can propagate over cosmological distances up to more than 100 EeV.

  11. Spitzer Observations of the North Ecliptic Pole

    NASA Astrophysics Data System (ADS)

    Nayyeri, H.; Ghotbi, N.; Cooray, A.; Bock, J.; Clements, D. L.; Im, M.; Kim, M. G.; Korngut, P.; Lanz, A.; Lee, H. M.; Lee, D. H.; Malkan, M.; Matsuhara, H.; Matsumoto, T.; Matsuura, S.; Nam, U. W.; Pearson, C.; Serjeant, S.; Smidt, J.; Tsumura, K.; Wada, T.; Zemcov, M.

    2018-02-01

    We present a photometric catalog for Spitzer Space Telescope warm mission observations of the North Ecliptic Pole (NEP; centered at R.A. = 18h00m00s, decl. = 66d33m38.ˢ552). The observations are conducted with IRAC in the 3.6 and 4.5 μm bands over an area of 7.04 deg2, reaching 1σ depths of 1.29 μJy and 0.79 μJy in the 3.6 μm and 4.5 μm bands, respectively. The photometric catalog contains 380,858 sources with 3.6 and 4.5 μm band photometry over the full-depth NEP mosaic. Point-source completeness simulations show that the catalog is 80% complete down to 19.7 AB. The accompanying catalog can be used for constraining the physical properties of extragalactic objects, studying the AGN population, measuring the infrared colors of stellar objects, and studying the extragalactic infrared background light.

  12. CRPropa 2.0 - A public framework for propagating high energy nuclei, secondary gamma rays and neutrinos

    NASA Astrophysics Data System (ADS)

    Kampert, Karl-Heinz; Kulbartz, Jörg; Maccione, Luca; Nierstenhoefer, Nils; Schiffer, Peter; Sigl, Günter; van Vliet, Arjen René

    2013-02-01

    Version 2.0 of CRPropa [CRPropa is published under the 3rd version of the GNU General Public License (GPLv3). It is available, together with a detailed documentation of the code, at https://crpropa.desy.de.] is public software to model the extra-galactic propagation of ultra-high energy nuclei of atomic number Z⩽26 through structured magnetic fields and ambient photon backgrounds taking into account all relevant particle interactions. CRPropa covers the energy range 7×1016

  13. Extragalactic Hard X-ray Surveys: From INTEGRAL to Simbol-X

    NASA Astrophysics Data System (ADS)

    Paltani, S.; Dwelly, T.; Walter, R.; McHardy, I. M.; Courvoisier, T. J.-L.

    2009-05-01

    We present some results of the deepest extragalactic survey performed by the INTEGRAL satellite. The fraction of very absorbed AGN is quite large. The sharp decrease in the absorption fraction with X-ray luminosity observed at lower-energy X-rays is not observed. The current lack of truly Compton-thick objects, with an upper limit of 14% to the size of this population, is just compatible with recent modeling of the cosmic X-ray background. We also study the prospects for a future hard X-ray serendipitous survey with Simbol-X. We show that Simbol-X will easily detect a large number of serendipitous AGN, allowing us to study the evolution of AGN up to redshifts about 2, opening the door to the cosmological study of hard X-ray selected AGN, which is barely possible with existing satellites like Swift and INTEGRAL.

  14. The galactic contribution to IceCube's astrophysical neutrino flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denton, Peter B.; Marfatia, Danny; Weiler, Thomas J., E-mail: peterbd1@gmail.com, E-mail: dmarf8@hawaii.edu, E-mail: tom.weiler@vanderbilt.edu

    2017-08-01

    High energy neutrinos have been detected by IceCube, but their origin remains a mystery. Determining the sources of this flux is a crucial first step towards multi-messenger studies. In this work we systematically compare two classes of sources with the data: galactic and extragalactic. We assume that the neutrino sources are distributed according to a class of Galactic models. We build a likelihood function on an event by event basis including energy, event topology, absorption, and direction information. We present the probability that each high energy event with deposited energy E {sub dep}>60 TeV in the HESE sample is Galactic,more » extragalactic, or background. For Galactic models considered the Galactic fraction of the astrophysical flux has a best fit value of 1.3% and is <9.5% at 90% CL. A zero Galactic flux is allowed at <1σ.« less

  15. Can Winds Driven by Active Galactic Nuclei Account for the Extragalactic Gamma-Ray and Neutrino Backgrounds?

    NASA Astrophysics Data System (ADS)

    Liu, Ruo-Yu; Murase, Kohta; Inoue, Susumu; Ge, Chong; Wang, Xiang-Yu

    2018-05-01

    Various observations are revealing the widespread occurrence of fast and powerful winds in active galactic nuclei (AGNs) that are distinct from relativistic jets, likely launched from accretion disks and interacting strongly with the gas of their host galaxies. During the interaction, strong shocks are expected to form that can accelerate nonthermal particles to high energies. Such winds have been suggested to be responsible for a large fraction of the observed extragalactic gamma-ray background (EGB) and the diffuse neutrino background, via the decay of neutral and charged pions generated in inelastic pp collisions between protons accelerated by the forward shock and the ambient gas. However, previous studies did not properly account for processes such as adiabatic losses that may reduce the gamma-ray and neutrino fluxes significantly. We evaluate the production of gamma rays and neutrinos by AGN-driven winds in detail by modeling their hydrodynamic and thermal evolution, including the effects of their two-temperature structure. We find that they can only account for less than ∼30% of the EGB flux, as otherwise the model would violate the independent upper limit derived from the diffuse isotropic gamma-ray background. If the neutrino spectral index is steep with Γ ≳ 2.2, a severe tension with the isotropic gamma-ray background would arise as long as the winds contribute more than 20% of the IceCube neutrino flux in the 10–100 TeV range. At energies ≳ 100 TeV, we find that the IceCube neutrino flux may still be accountable by AGN-driven winds if the spectral index is as small as Γ ∼ 2.0–2.1.

  16. The cosmic infrared background experiment-2 (CIBER-2) for studying the near-infrared extragalactic background light

    NASA Astrophysics Data System (ADS)

    Shirahata, Mai; Arai, Toshiaki; Battle, John; Bock, James; Cooray, Asantha; Enokuchi, Akito; Hristov, Viktor; Kanai, Yoshikazu; Kim, Min Gyu; Korngut, Phillip; Lanz, Alicia; Lee, Dae-Hee; Mason, Peter; Matsumoto, Toshio; Matsuura, Shuji; Morford, Tracy; Ohnishi, Yosuke; Park, Won-Kee; Sano, Kei; Takeyama, Norihide; Tsumura, Kohji; Wada, Takehiko; Wang, Shiang-Yu; Zemcov, Michael

    2016-07-01

    We present the current status of the Cosmic Infrared Background ExpeRiment-2 (CIBER-2) project, whose goal is to make a rocket-borne measurement of the near-infrared Extragalactic Background Light (EBL), under a collaboration with U.S.A., Japan, South Korea, and Taiwan. The EBL is the integrated light of all extragalactic sources of emission back to the early Universe. At near-infrared wavelengths, measurement of the EBL is a promising way to detect the diffuse light from the first collapsed structures at redshift z˜10, which are impossible to detect as individual sources. However, recently, the intra-halo light (IHL) model is advocated as the main contribution to the EBL, and our new result of the EBL fluctuation from CIBER-1 experiment is also supporting this model. In this model, EBL is contributed by accumulated light from stars in the dark halo regions of low- redshift (z<2) galaxies, those were tidally stripped by the interaction of satellite dwarf galaxies. Thus, in order to understand the origin of the EBL, both the spatial fluctuation observations with multiple wavelength bands and the absolute spectroscopic observations for the EBL are highly required. After the successful initial CIBER- 1 experiment, we are now developing a new instrument CIBER-2, which is comprised of a 28.5-cm aluminum telescope and three broad-band, wide-field imaging cameras. The three wide-field (2.3×2.3 degrees) imaging cameras use the 2K×2K HgCdTe HAWAII-2RG arrays, and cover the optical and near-infrared wavelength range of 0.5-0.9 μm, 1.0-1.4 μm and 1.5-2.0 μm, respectively. Combining a large area telescope with the high sensitivity detectors, CIBER-2 will be able to measure the spatial fluctuations in the EBL at much fainter levels than those detected in previous CIBER-1 experiment. Additionally, we will use a linear variable filter installed just above the detectors so that a measurement of the absolute spectrum of the EBL is also possible. In this paper, the scientific motivation and the expected performance for CIBER-2 will be presented. The detailed designs of the telescope and imaging cameras will also be discussed, including the designs of the mechanical, cryogenic, and electrical systems.

  17. New Spectral Evidence of an Unaccounted Component of the Near-infrared Extragalactic Background Light from the CIBER

    NASA Astrophysics Data System (ADS)

    Matsuura, Shuji; Arai, Toshiaki; Bock, James J.; Cooray, Asantha; Korngut, Phillip M.; Kim, Min Gyu; Lee, Hyung Mok; Lee, Dae Hee; Levenson, Louis R.; Matsumoto, Toshio; Onishi, Yosuke; Shirahata, Mai; Tsumura, Kohji; Wada, Takehiko; Zemcov, Michael

    2017-04-01

    The extragalactic background light (EBL) captures the total integrated emission from stars and galaxies throughout the cosmic history. The amplitude of the near-infrared EBL from space absolute photometry observations has been controversial and depends strongly on the modeling and subtraction of the zodiacal light (ZL) foreground. We report the first measurement of the diffuse background spectrum at 0.8-1.7 μm from the CIBER experiment. The observations were obtained with an absolute spectrometer over two flights in multiple sky fields to enable the subtraction of ZL, stars, terrestrial emission, and diffuse Galactic light. After subtracting foregrounds and accounting for systematic errors, we find the nominal EBL brightness, assuming the Kelsall ZL model, is {42.7}-10.6+11.9 nW m-2 sr-1 at 1.4 μm. We also analyzed the data using the Wright ZL model, which results in a worse statistical fit to the data and an unphysical EBL, falling below the known background light from galaxies at λ < 1.3 μm. Using a model-independent analysis based on the minimum EBL brightness, we find an EBL brightness of {28.7}-3.3+5.1 nWm-2 sr-1 at 1.4 μm. While the derived EBL amplitude strongly depends on the ZL model, we find that we cannot fit the spectral data to ZL, Galactic emission, and EBL from solely integrated galactic light from galaxy counts. The results require a new diffuse component, such as an additional foreground or an excess EBL with a redder spectrum than that of ZL.

  18. The Ultraviolet Sky: final catalogs of unique UV sources from GALEX, and characterization of the UV-emitting sources across the sky, and of the Milky Way extinction

    NASA Astrophysics Data System (ADS)

    Bianchi, Luciana; Conti, A.; Shiao, B.; Keller, G. R.; Thilker, D. A.

    2014-01-01

    The legacy of the Galaxy Evolution Explorer (GALEX), which imaged the sky at Ultraviolet (UV) wavelengths for about 9 years, is its unprecedented database with more than 200 million source measurements in far-UV (FUV) and near-UV (NUV), as well as wide-field imaging of extended objects. GALEX's data, the first substantial sky surveys at UV wavelengths, offer an unprecedented view of the sky and a unique opportunity for an unbiased characterization of several classes of astrophysical objects, such as hot stars, QSOs at red-shift about 1, UV-peculiar QSOs, star-forming galaxies, among others. Bianchi et al. (2013, J. Adv. Space Res. (2013), DOI: http://dx.doi.org/10.1016/j.asr.2013.07.045) have constructed final catalogs of UV sources, with homogeneous quality, eliminating duplicate measurements of the same source ('unique' source catalogs), and excluding rim artifacts and bad photometry. The catalogs are constructed improving on the recipe of Bianchi et al. 2011 (MNRAS, 411, 2770, which presented the earlier version of these catalogs) and include all data for the major surveys, AIS and MIS. Considering the fields where both FUV and NUV detectors were exposed, the catalogs contain about 71 and 16.6 million unique sources respectively. We show several maps illustrating the content of UV sources across the sky, globally, and separately for bright/faint, hot, stellar/extragalactic objects. We matched the UV-source catalogs with optical-IR data from the SDSS, GSC2, 2MASS surveys. We are also in the process of matching the catalogs with preliminary PanSTARRS1 (PS1) 3pi survey photometry which already provides twice the sky coverage of SDSS, at slightly fainter magnitude limits. The sources' SED from FUV to optical wavelengths enables classification, derivation of the object physical parameters, and ultimately also a map of the Milky Way extinction. The catalogs will be available on MAST, Vizier (where the previous version already is), and in reduced form (for agile downloading), with related tools, from the author web site " http://dolomiti.pha.jhu.edu/uvsky "

  19. Introducing CUBES: the Cassegrain U-band Brazil-ESO spectrograph

    NASA Astrophysics Data System (ADS)

    Bristow, Paul; Barbuy, Beatriz; Macanhan, Vanessa B.; Castilho, Bruno; Dekker, Hans; Delabre, Bernard; Diaz, Marcos; Gneiding, Clemens; Kerber, Florian; Kuntschner, Harald; La Mura, Giovanni; Reiss, Roland; Vernet, J.

    2014-07-01

    CUBES is a high-efficiency, medium-resolution (R ≃ 20, 000) spectrograph dedicated to the "ground based UV" (approximately the wavelength range from 300 to 400nm) destined for the Cassegrain focus of one of ESO's VLT unit telescopes in 2018/19. The CUBES project is a joint venture between ESO and Instituto de Astronomia, Geofísica e Ciências Atmosféricas (IAG) at the Universidade de São Paulo and the Brazilian Laboratório Nacional de Astrofísica (LNA). CUBES will provide access to a wealth of new and relevant information for stellar as well as extra-galactic sources. Principle science cases include the study of heavy elements in metal-poor stars, the direct determination of carbon, nitrogen and oxygen abundances by study of molecular bands in the UV range and the determination of the Beryllium abundance as well as the study of active galactic nuclei and the inter-galactic medium. With a streamlined modern instrument design, high efficiency dispersing elements and UV-sensitive detectors, it will enable a significant gain in sensitivity over existing ground based medium-high resolution spectrographs enabling vastly increased sample sizes accessible to the astronomical community. We present here a brief overview of the project, introducing the science cases that drive the design and discussing the design options and technological challenges.

  20. Using the XMM-Newton Optical Monitor to Study Cluster Galaxy Evolution

    NASA Technical Reports Server (NTRS)

    Miller, Neal A.; O'Steen, Richard; Yen, Steffi; Kuntz, K. D.; Hammer, Derek

    2012-01-01

    We explore the application of XMM Newton Optical Monitor (XMM-OM) ultraviolet (UV) data to study galaxy evolution. Our sample is constructed as the intersection of all Abell clusters with z < 0.05 and having archival XMM-OM data in either the UVM2 or UVW1 filters, plus optical and UV photometry from the Sloan Digital Sky Survey and GALEX, respectively. The 11 resulting clusters include 726 galaxies with measured redshifts, 520 of which have redshifts placing them within their parent Abell clusters. We develop procedures for manipulating the XMM-OM images and measuring galaxy photometry from them, and we confirm our results via comparison with published catalogs. Color-magnitude diagrams (CMDs) constructed using the XMM-OM data along with SDSS optical data show promise for evolutionary studies, with good separation between red and blue sequences and real variation in the width of the red sequence that is likely indicative of differences in star formation history. This is particularly true for UVW1 data, as the relative abundance of data collected using this filter and its depth make it an attractive choice. Available tools that use stellar synthesis libraries to fit the UV and optical photometric data may also be used, thereby better describing star formation history within the past billion years and providing estimates of total stellar mass that include contributions from young stars. Finally, color-color diagrams that include XMM-OM UV data appear useful to the photometric identification of both extragalactic and stellar sources.

  1. Using the XMM-Newton Optical Monitor to Study Cluster Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Miller, Neal A.; O'Steen, Richard; Yen, Steffi; Kuntz, K. D.; Hammer, Derek

    2012-02-01

    We explore the application of XMM-Newton Optical Monitor (XMM-OM) ultraviolet (UV) data to study galaxy evolution. Our sample is constructed as the intersection of all Abell clusters with z < 0.05 and having archival XMM-OM data in either the UVM2 or UVW1 filters, plus optical and UV photometry from the Sloan Digital Sky Survey and GALEX, respectively. The 11 resulting clusters include 726 galaxies with measured redshifts, 520 of which have redshifts placing them within their parent Abell clusters. We develop procedures for manipulating the XMM-OM images and measuring galaxy photometry from them, and we confirm our results via comparison with published catalogs. Color-magnitude diagrams (CMDs) constructed using the XMM-OM data along with SDSS optical data show promise for evolutionary studies, with good separation between red and blue sequences and real variation in the width of the red sequence that is likely indicative of differences in star formation history. This is particularly true for UVW1 data, as the relative abundance of data collected using this filter and its depth make it an attractive choice. Available tools that use stellar synthesis libraries to fit the UV and optical photometric data may also be used, thereby better describing star formation history within the past billion years and providing estimates of total stellar mass that include contributions from young stars. Finally, color-color diagrams that include XMM-OM UV data appear useful to the photometric identification of both extragalactic and stellar sources.

  2. What Do We Know About the Ultraviolet Extinction Curve, Fifty Years After the Discovery of the Bump?

    NASA Astrophysics Data System (ADS)

    Clayton, Geoffrey C.

    2012-05-01

    It is almost 50 years since Ted Stecher reported the discovery of the 2175 A bump, and almost 25 years since CCM characterized the UV extinction curve as a one-parameter function of R(V), the ratio of total-to-selective extinction. Great strides have been made since then in laboratory, theory, and observation but many questions still remain. The bump is still an unidentified feature, and CCM is not a reliable guide to the wavelength dependence of dust extinction beyond the Milky Way. In fact, the average extinction curve of SMC dust, which has little or no evidence for a 2175 A bump, may be more common in extragalactic environments than Milky Way type dust. The UV extinction curve has been extended to the Lyman limit without any sign in a turnover in the far-UV rise. The old standbys, silicates, graphite, amorphous carbon, and PAH's are still the go-to grain types. But many questions remain about how global properties such as metallicity may lead to large variations in the extinction properties from one galaxy to another. Also of great interest is how dust grains are created, evolve and are destroyed, and in particular, what fraction comes from sources such as evolved stars and supernovae, and what fraction is grown in the ISM. I plan to summarize the role of laboratory and theory can play in better understanding the interstellar dust grains responsible UV extinction.

  3. Unstable matter and the 1-0 MeV gamma-ray background

    NASA Technical Reports Server (NTRS)

    Daly, Ruth A.

    1988-01-01

    The spectrum of photons produced by an unstable particle which decayed while the universe was young is calculated. This spectrum is compared to that of the 1-10 MeV shoulder, a feature of the high-energy, extragalactic gamma-ray background, whose origin has not yet been determined. The calculated spectrum contains two parameters which are adjusted to obtain a maximal fit to the observed spectrum; the fit thus obtained is accurate to the 99 percent confidence level. The implications for the mass, lifetime, initial abundance, and branching ratio of the unstable particle are discussed.

  4. HOW FAR AWAY ARE THE SOURCES OF ICECUBE NEUTRINOS? CONSTRAINTS FROM THE DIFFUSE TERAELECTRONVOLT GAMMA-RAY BACKGROUND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Xiao-Chuan; Liu, Ruo-Yu; Wang, Xiang-Yu, E-mail: xywang@nju.edu.cn

    The nearly isotropic distribution of teraelectronvolt to petaelectronvolt neutrinos recently detected by the IceCube Collaboration suggests that they come from sources at a distance beyond our Galaxy, but how far away they are is largely unknown because of a lack of any associations with known sources. In this paper, we propose that the cumulative TeV gamma-ray emission accompanying the production of neutrinos can be used to constrain the distance of these neutrino sources, since the opacity of TeV gamma rays due to absorption by the extragalactic background light depends on the distance these TeV gamma rays have traveled. As themore » diffuse extragalactic TeV background measured by Fermi is much weaker than the expected cumulative flux associated with IceCube neutrinos, the majority of IceCube neutrinos, if their sources are transparent to TeV gamma rays, must come from distances larger than the horizon of TeV gamma rays. We find that above 80% of the IceCube neutrinos should come from sources at redshift z > 0.5. Thus, the chance of finding nearby sources correlated with IceCube neutrinos would be small. We also find that, to explain the flux of neutrinos under the TeV gamma-ray emission constraint, the redshift evolution of neutrino source density must be at least as fast as the cosmic star formation rate.« less

  5. The estimation of background production by cosmic rays in high-energy gamma ray telescopes

    NASA Technical Reports Server (NTRS)

    Edwards, H. L.; Nolan, P. L.; Lin, Y. C.; Koch, D. G.; Bertsch, D. L.; Fichtel, C. E.; Hartman, R. C.; Hunter, S. D.; Kniffen, D. A.; Hughes, E. B.

    1991-01-01

    A calculational method of estimating instrumental background in high-energy gamma-ray telescopes, using the hadronic Monte Carlo code FLUKA87, is presented. The method is applied to the SAS-2 and EGRET telescope designs and is also used to explore the level of background to be expected for alternative configurations of the proposed GRITS telescope, which adapts the external fuel tank of a Space Shuttle as a gamma-ray telescope with a very large collecting area. The background produced in proton-beam tests of EGRET is much less than the predicted level. This discrepancy appears to be due to the FLUKA87 inability to transport evaporation nucleons. It is predicted that the background in EGRET will be no more than 4-10 percent of the extragalactic diffuse gamma radiation.

  6. The Nature of the Unresolved Extragalactic Cosmic Soft X-Ray Background

    NASA Technical Reports Server (NTRS)

    Cappelluti, N.; Ranalli, P.; Roncarelli, M.; Arevalo, P.; Zamorani, G.; Comastri, A.; Gilli, R.; Rovilos, E.; Vignali, C.; Allevato, V.; hide

    2013-01-01

    In this paper we investigate the power spectrum of the unresolved 0.5-2 keV cosmic X-ray background (CXB) with deep Chandra 4-Msec (Ms) observations in the Chandra Deep Field South (CDFS). We measured a signal that, on scales >30 arcsec, is significantly higher than the shot noise and is increasing with angular scale. We interpreted this signal as the joint contribution of clustered undetected sources like active galactic nuclei (AGN), galaxies and the intergalactic medium (IGM). The power of unresolved cosmic source fluctuations accounts for approximately 12 per cent of the 0.5-2 keV extragalactic CXB. Overall, our modelling predicts that approximately 20 per cent of the unresolved CXB flux is produced by low-luminosity AGN, approximately 25 per cent by galaxies and approximately 55 per cent by the IGM. We do not find any direct evidence of the so-called 'warm hot intergalactic medium' (i.e. matter with 10(exp 5) less than T less than 10(exp 7) K and density contrast delta less than 1000), but we estimated that it could produce about 1/7 of the unresolved CXB. We placed an upper limit on the space density of postulated X-ray-emitting early black holes at z greater than 7.5 and compared it with supermassive black hole evolution models.

  7. Evidence of Cross-correlation between the CMB Lensing and the γ-Ray Sky

    NASA Astrophysics Data System (ADS)

    Fornengo, Nicolao; Perotto, Laurence; Regis, Marco; Camera, Stefano

    2015-03-01

    We report the measurement of the angular power spectrum of cross-correlation between the unresolved component of the Fermi-LAT γ-ray sky maps and the cosmic microwave background lensing potential map reconstructed by the Planck satellite. The matter distribution in the universe determines the bending of light coming from the last scattering surface. At the same time, the matter density drives the growth history of astrophysical objects, including their capability at generating non-thermal phenomena, which in turn give rise to γ-ray emissions. The Planck lensing map provides information on the integrated distribution of matter, while the integrated history of γ-ray emitters is imprinted in the Fermi-LAT sky maps. We report here the first evidence of their correlation. We find that the multipole dependence of the cross-correlation measurement is in agreement with current models of the γ-ray luminosity function for active galactic nuclei and star-forming galaxies, with a statistical evidence of 3.0σ. Moreover, its amplitude can in general be matched only assuming that these extragalactic emitters are also the bulk contribution of the measured isotopic γ-ray background (IGRB) intensity. This leaves little room for a big contribution from galactic sources to the IGRB measured by Fermi-LAT, pointing toward direct evidence of the extragalactic origin of the IGRB.

  8. Interpretation of the Arcade 2 Absolute Sky Brightness Measurement

    NASA Technical Reports Server (NTRS)

    Seiffert, M.; Fixsen, D. J.; Kogut, A.; Levin, S. M.; Limon, M.; Lubin, P. M.; Mirel, P.; Singal, J.; Villela, T.; Wollack, E.; hide

    2011-01-01

    We use absolutely calibrated data between 3 and 90 GHz from the 2006 balloon flight of the ARCADE 2 instrument, along with previous measurements at other frequencies to constrain models of extragalactic emission. Such emission is a combination of the cosmic microwave background (CMB) monopole, Galactic foreground emission, the integrated contribution of radio emission from external galaxies, any spectral distortions present in the CMB, and any other extragalactic source. After removal of estimates of foreground emission from our own Galaxy, and an estimated contribution of external galaxies, we present fits to a combination of the flat-spectrum CMB and potential spectral distortions in the CMB. We find 217 upper limits to CMB spectral distortions of u < 6x10(exp -4) and [Y(sub ff)] < 1x10(exp -4). We also find a significant detection of a residual signal beyond that, which can be explained by the CMB plus the integrated radio emission from galaxies estimated from existing surveys. This residual signal may be due to an underestimated galactic foreground contribution, an unaccounted for contribution of a background of radio sources, or some combination of both. The residual signal is consistent with emission in the form of a power law with amplitUde 18.4 +/- 2.1 K at 0.31 GHz and a spectral index of -2.57 +/- 0.05.

  9. Star formation in Herschel's Monsters versus semi-analytic models

    NASA Astrophysics Data System (ADS)

    Gruppioni, C.; Calura, F.; Pozzi, F.; Delvecchio, I.; Berta, S.; De Lucia, G.; Fontanot, F.; Franceschini, A.; Marchetti, L.; Menci, N.; Monaco, P.; Vaccari, M.

    2015-08-01

    We present a direct comparison between the observed star formation rate functions (SFRFs) and the state-of-the-art predictions of semi-analytic models (SAMs) of galaxy formation and evolution. We use the PACS Evolutionary Probe Survey and Herschel Multi-tiered Extragalactic Survey data sets in the COSMOS and GOODS-South fields, combined with broad-band photometry from UV to sub-mm, to obtain total (IR+UV) instantaneous star formation rates (SFRs) for individual Herschel galaxies up to z ˜ 4, subtracted of possible active galactic nucleus (AGN) contamination. The comparison with model predictions shows that SAMs broadly reproduce the observed SFRFs up to z ˜ 2, when the observational errors on the SFR are taken into account. However, all the models seem to underpredict the bright end of the SFRF at z ≳ 2. The cause of this underprediction could lie in an improper modelling of several model ingredients, like too strong (AGN or stellar) feedback in the brighter objects or too low fallback of gas, caused by weak feedback and outflows at earlier epochs.

  10. Hubble Scopes Out a Galaxy of Stellar Birth

    NASA Image and Video Library

    2017-12-08

    This image displays a galaxy known as ESO 486-21 (with several other background galaxies and foreground stars visible in the field as well). ESO 486-21 is a spiral galaxy — albeit with a somewhat irregular and ill-defined structure — located some 30 million light-years from Earth. The NASA/ESA (European Space Agency) Hubble Space Telescope observed this object while performing a survey — the Legacy ExtraGalactic UV Survey (LEGUS) — of 50 nearby star-forming galaxies. The LEGUS sample was selected to cover a diverse range of galactic morphologies, star formation rates, galaxy masses and more. Astronomers use such data to understand how stars form and evolve within clusters, and how these processes affect both their home galaxy and the wider universe. ESO 486-21 is an ideal candidate for inclusion in such a survey because it is known to be in the process of forming new stars, which are created when large clouds of gas and dust (seen here in pink) within the galaxy crumple inwards upon themselves. Credit: NASA/ESA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. Resolving the Extragalactic γ-Ray Background above 50 GeV with the Fermi Large Area Telescope.

    PubMed

    Ackermann, M; Ajello, M; Albert, A; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Bissaldi, E; Blandford, R D; Bloom, E D; Bonino, R; Bregeon, J; Britto, R J; Bruel, P; Buehler, R; Caliandro, G A; Cameron, R A; Caragiulo, M; Caraveo, P A; Cavazzuti, E; Cecchi, C; Charles, E; Chekhtman, A; Chiang, J; Chiaro, G; Ciprini, S; Cohen-Tanugi, J; Cominsky, L R; Costanza, F; Cutini, S; D'Ammando, F; de Angelis, A; de Palma, F; Desiante, R; Digel, S W; Di Mauro, M; Di Venere, L; Domínguez, A; Drell, P S; Favuzzi, C; Fegan, S J; Ferrara, E C; Franckowiak, A; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Giglietto, N; Giommi, P; Giordano, F; Giroletti, M; Godfrey, G; Green, D; Grenier, I A; Guiriec, S; Hays, E; Horan, D; Iafrate, G; Jogler, T; Jóhannesson, G; Kuss, M; La Mura, G; Larsson, S; Latronico, L; Li, J; Li, L; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Magill, J; Maldera, S; Manfreda, A; Mayer, M; Mazziotta, M N; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Negro, M; Nuss, E; Ohsugi, T; Okada, C; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Perkins, J S; Pesce-Rollins, M; Petrosian, V; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Reposeur, T; Romani, R W; Sánchez-Conde, M; Schmid, J; Schulz, A; Sgrò, C; Simone, D; Siskind, E J; Spada, F; Spandre, G; Spinelli, P; Suson, D J; Takahashi, H; Thayer, J B; Tibaldo, L; Torres, D F; Troja, E; Vianello, G; Yassine, M; Zimmer, S

    2016-04-15

    The Fermi Large Area Telescope (LAT) Collaboration has recently released a catalog of 360 sources detected above 50 GeV (2FHL). This catalog was obtained using 80 months of data re-processed with Pass 8, the newest event-level analysis, which significantly improves the acceptance and angular resolution of the instrument. Most of the 2FHL sources at high Galactic latitude are blazars. Using detailed Monte Carlo simulations, we measure, for the first time, the source count distribution, dN/dS, of extragalactic γ-ray sources at E>50  GeV and find that it is compatible with a Euclidean distribution down to the lowest measured source flux in the 2FHL (∼8×10^{-12}  ph cm^{-2} s^{-1}). We employ a one-point photon fluctuation analysis to constrain the behavior of dN/dS below the source detection threshold. Overall, the source count distribution is constrained over three decades in flux and found compatible with a broken power law with a break flux, S_{b}, in the range [8×10^{-12},1.5×10^{-11}]  ph cm^{-2} s^{-1} and power-law indices below and above the break of α_{2}∈[1.60,1.75] and α_{1}=2.49±0.12, respectively. Integration of dN/dS shows that point sources account for at least 86_{-14}^{+16}% of the total extragalactic γ-ray background. The simple form of the derived source count distribution is consistent with a single population (i.e., blazars) dominating the source counts to the minimum flux explored by this analysis. We estimate the density of sources detectable in blind surveys that will be performed in the coming years by the Cherenkov Telescope Array.

  12. Resolving the Extragalactic γ -Ray Background above 50 GeV with the Fermi Large Area Telescope

    DOE PAGES

    Ackermann, M.; Ajello, M.; Albert, A.; ...

    2016-04-14

    The Fermi Large Area Telescope (LAT) Collaboration has recently released a catalog of 360 sources detected above 50 GeV (2FHL). This catalog was obtained using 80 months of data re-processed with Pass 8, the newest event-level analysis, which significantly improves the acceptance and angular resolution of the instrument. Most of the 2FHL sources at high Galactic latitude are blazars. In this paper, using detailed Monte Carlo simulations, we measure, for the first time, the source count distribution, dN/dS, of extragalactic γ-ray sources at E > 50 GeV and find that it is compatible with a Euclidean distribution down to the lowest measured source flux in the 2FHL (~8 x 10 -12 ph cm -2s -1). We employ a one-point photon fluctuation analysis to constrain the behavior of dN/dS below the source detection threshold. Overall, the source count distribution is constrained over three decades in flux and found compatible with a broken power law with a break flux, S b, in the range [8 x 10 -12, 1.5 x 10 -11] ph cm -2s -1 and power-law indices below and above the break of α 2 ϵ [1.60, 1.75] and α 1 = 2.49 ± 0.12, respectively. Integration of dN/dS shows that point sources account for at least 86more » $$+16\\atop{-14}$$ % of the total extragalactic γ-ray background. The simple form of the derived source count distribution is consistent with a single population (i.e., blazars) dominating the source counts to the minimum flux explored by this analysis. Finally, we estimate the density of sources detectable in blind surveys that will be performed in the coming years by the Cherenkov Telescope Array.« less

  13. Further comparison of MODTRAN 5 to measured data in the UV band

    NASA Astrophysics Data System (ADS)

    Smith, Leon; Richardson, Mark; Ayling, Richard; Barlow, Nick

    2014-10-01

    The ability to accurately model background radiation from the sun is important in understanding the operation of missile systems with ultraviolet (UV) guard channels. In theory a missile system's UV channel detects a target's silhouette, caused by its `negative contrast' with respect to background UV radiation. The variation in background levels of UV will therefore have an effect on the operability of a missile system that utilises a UV channel. In this paper an update on the measurement and comparison of background UV-A radiation to data produced by Moderate Resolution Atmospheric Transmission 5 (MODTRAN®5) is given. In the past surface flux and radiance data calculated using MODTRAN®5 has been compared to data from the World Ozone and Ultraviolet Data Centre (WOUDC) archive, and measurements taken by the author at the Defence Academy of the UK. With the aid of spectral measurement equipment, new measurements have been made and compared with the radiance profiles produced by MODTRAN®5, including measurements made throughout both winter and summer months. Also discussed are the effects of scattering and absorption by different cloud types on the amount of radiation observed at the Earth's surface.

  14. Principles of stray light suppression and conceptual application to the design of the Diffuse Infrared Background Experiment for NASA's Cosmic Background Explorer

    NASA Technical Reports Server (NTRS)

    Evans, D. C.

    1983-01-01

    The Diffuse Infrared Background Experiment (DIRBE) is a 10 band filter photometer that will operate at superfluid helium temperatures. Diffuse galactic and extragalactic infrared radiation in the 1-300 micrometer wavelength region will be measured by the instrument. Polarization measurements will be made for 3 bands in the 1-4 micrometer spectral region. The main sources of unwanted radiation are the sun, earth, thermal radiation from an external sun shield, the moon, the brighter planets and stars, and sky light itself from outside the instrument's nominal one degree square field of view. The system level engineering concepts and the principles of stray light suppression that resulted in the instrument design are presented.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imara, Nia; Loeb, Abraham, E-mail: nimara@cfa.harvard.edu

    Infrared emission from intergalactic dust might compromise the ability of future experiments to detect subtle spectral distortions in the Cosmic Microwave Background (CMB) from the early universe. We provide the first estimate of foreground contamination of the CMB signal due to diffuse dust emission in the intergalactic medium. We use models of the extragalactic background light to calculate the intensity of intergalactic dust emission and find that emission by intergalactic dust at z ≲ 0.5 exceeds the sensitivity of the planned Primordial Inflation Explorer to CMB spectral distortions by 1–3 orders of magnitude. In the frequency range ν = 150–2400more » GHz, we place an upper limit of 0.06% on the contribution to the far-infrared background from intergalactic dust emission.« less

  16. High-Energy Cosmic Ray Self-Confinement Close to Extra-Galactic Sources.

    PubMed

    Blasi, Pasquale; Amato, Elena; D'Angelo, Marta

    2015-09-18

    The ultrahigh-energy cosmic rays observed on the Earth are most likely accelerated in extra-Galactic sources. For the typical luminosities invoked for such sources, the electric current associated to the flux of cosmic rays that leave them is large. The associated plasma instabilities create magnetic fluctuations that can efficiently scatter particles. We argue that this phenomenon forces cosmic rays to be self-confined in the source proximity for energies E

  17. Measurement of the EBL spectral energy distribution using the VHE γ-ray spectra of H.E.S.S. blazars

    NASA Astrophysics Data System (ADS)

    H. E. S. S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Tjus, J. Becker; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Coffaro, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; de Wilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Richter, S.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stycz, K.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.

    2017-10-01

    Very high-energy γ rays (VHE, E ≳ 100 GeV) propagating over cosmological distances can interact with the low-energy photons of the extragalactic background light (EBL) and produce electron-positron pairs. The transparency of the Universe to VHE γ rays is then directly related to the spectral energy distribution (SED) of the EBL. The observation of features in the VHE energy spectra of extragalactic sources allows the EBL to be measured, which otherwise is very difficult. An EBL model-independent measurement of the EBL SED with the H.E.S.S. array of Cherenkov telescopes is presented. It was obtained by extracting the EBL absorption signal from the reanalysis of high-quality spectra of blazars. From H.E.S.S. data alone the EBL signature is detected at a significance of 9.5σ, and the intensity of the EBL obtained in different spectral bands is presented together with the associated γ-ray horizon.

  18. Electronic Catalog Of Extragalactic Objects

    NASA Technical Reports Server (NTRS)

    Helou, George; Madore, Barry F.

    1993-01-01

    NASA/IPAC Extragalactic Database (NED) is publicly accessible computerized catalog of published information about extragalactic observations. Developed to accommodate increasingly large sets of data from surveys, exponentially growing literature, and trend among astronomers to take multispectral approach to astrophysical problems. Accessible to researchers and librarians.

  19. Second dip as a signature of ultrahigh energy proton interactions with cosmic microwave background radiation.

    PubMed

    Berezinsky, V; Gazizov, A; Kachelrieb, M

    2006-12-08

    We discuss as a new signature for the interaction of extragalactic ultrahigh energy protons with cosmic microwave background radiation a spectral feature located at E= 6.3 x 10(19) eV in the form of a narrow and shallow dip. It is produced by the interference of e+e(-)-pair and pion production. We show that this dip and, in particular, its position are almost model-independent. Its observation by future ultrahigh energy cosmic ray detectors may give the conclusive confirmation that an observed steepening of the spectrum is caused by the Greisen-Zatsepin-Kuzmin effect.

  20. H.E.S.S. discovery of VHE γ-rays from the quasar PKS 1510-089

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker Tjus, J.; Behera, B.; Bernlöhr, K.; Birsin, E.; Biteau, J.; Bochow, A.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Chaves, R. C. G.; Cheesebrough, A.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; O'C. Drury, L.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Gast, H.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Göring, D.; Grondin, M.-H.; Grudzińska, M.; Häffner, S.; Hague, J. D.; Hahn, J.; Hampf, D.; Harris, J.; Hauser, M.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lefaucheur, J.; Lemoine-Goumard, M.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Masbou, J.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Menzler, U.; Moderski, R.; Mohamed, M.; Moulin, E.; Naumann, C. L.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nguyen, N.; Niemiec, J.; Nolan, S. J.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Raue, M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sheidaei, F.; Skilton, J. L.; Sol, H.; Spengler, G.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorobiov, S.; Vorster, M.; Wagner, S. J.; Ward, M.; White, R.; Wierzcholska, A.; Wouters, D.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H. S.

    2013-06-01

    The quasar PKS 1510-089 (z = 0.361) was observed with the H.E.S.S. array of imaging atmospheric Cherenkov telescopes during high states in the optical and GeV bands, to search for very high energy (VHE, defined as E ≥ 0.1 TeV) emission. VHE γ-rays were detected with a statistical significance of 9.2 standard deviations in 15.8 h of H.E.S.S. data taken during March and April 2009. A VHE integral flux of I(0.15 TeV < E < 1.0 TeV)= (1.0 ± 0.2stat ± 0.2sys) × 10-11 cm-2 s-1 is measured. The best-fit power law to the VHE data has a photon index of Γ = 5.4 ± 0.7stat ± 0.3sys. The GeV and optical light curves show pronounced variability during the period of H.E.S.S. observations. However, there is insufficient evidence to claim statistically significant variability in the VHE data. Because of its relatively high redshift, the VHE flux from PKS 1510-089 should suffer considerable attenuation in the intergalactic space due to the extragalactic background light (EBL). Hence, the measured γ-ray spectrum is used to derive upper limits on the opacity due to EBL, which are found to be comparable with the previously derived limits from relatively-nearby BL Lac objects. Unlike typical VHE-detected blazars where the broadband spectrum is dominated by nonthermal radiation at all wavelengths, the quasar PKS 1510-089 has a bright thermal component in the optical to UV frequency band. Among all VHE detected blazars, PKS 1510-089 has the most luminous broad line region. The detection of VHE emission from this quasar indicates a low level of γ - γ absorption on the internal optical to UV photon field.

  1. Influence of synchrotron self-absorption on 21-cm experiments

    NASA Astrophysics Data System (ADS)

    Zheng, Qian; Wu, Xiang-Ping; Gu, Jun-Hua; Wang, Jingying; Xu, Haiguang

    2012-08-01

    The presence of spectral curvature resulting from the synchrotron self-absorption of extragalactic radio sources could break down the spectral smoothness feature. This leads to the premise that the bright radio foreground can be successfully removed in 21-cm experiments that search for the epoch of reionization (EoR). We present a quantitative estimate of the effect of the spectral curvature resulting from the synchrotron self-absorption of extragalactic radio sources on the measurement of the angular power spectrum of the low-frequency sky. We incorporate a phenomenological model, which is characterized by the fraction (f) of radio sources with turnover frequencies in the range of 100-1000 MHz and by a broken power law for the spectral transition around the turnover frequencies νm, into simulated radio sources over a small sky area of 10° × 10°. We compare statistically the changes in their residual maps with and without the inclusion of the synchrotron self-absorption of extragalactic radio sources after the bright sources of S150 MHz ≥100 mJy are excised. Furthermore, the best-fitting polynomials in the frequency domain on each pixel are subtracted. It has been shown that the effect of synchrotron self-absorption on the detection of the EoR depends sensitively on the spectral profiles of the radio sources around the turnover frequencies νm. A hard transition model, described by the broken power law with the turnover of spectral index at νm, would leave pronounced imprints on the residual background and would therefore cause serious confusion with the cosmic EoR signal. However, the spectral signatures on the angular power spectrum of the extragalactic foreground, generated by a soft transition model in which the rising and falling power laws of the spectral distribution around νm are connected through a smooth transition spanning ≥200 MHz in a characteristic width, can be fitted and consequently subtracted by the use of polynomials to an acceptable degree (δT < 1 mK). As this latter scenario seems to be favoured in both theoretical expectations and radio spectral observations, we conclude that the contamination of extragalactic radio sources by synchrotron self-absorption in 21-cm experiments is probably very minor.

  2. The host galaxy and Fermi-LAT counterpart of HESS J1943+213

    NASA Astrophysics Data System (ADS)

    Peter, D.; Domainko, W.; Sanchez, D. A.; van der Wel, A.; Gässler, W.

    2014-11-01

    Context. The very-high energy (VHE, E> 100 GeV) gamma-ray sky shows diverse Galactic and extragalactic source populations. For some sources the astrophysical object class could not be identified so far. Aims: The nature (Galactic or extragalactic) of the VHE gamma-ray source HESS J1943+213 is explored. We specifically investigate the proposed near-infrared counterpart 2MASS J19435624+2118233 of HESS J1943+213 and investigate the implications of a physical association. Methods: We present K-band imaging from the 3.5 m CAHA telescope of 2MASS J19435624+2118233. Furthermore, 5 years of Fermi-LAT data were analyzed to search for a high-energy (HE, 100 MeV

  3. Probing Jupiter's Radiation Environment with Juno-UVS

    NASA Astrophysics Data System (ADS)

    Kammer, J.; Gladstone, R.; Greathouse, T. K.; Hue, V.; Versteeg, M. H.; Davis, M. W.; Santos-Costa, D.; Becker, H. N.; Bolton, S. J.; Connerney, J. E. P.; Levin, S.

    2017-12-01

    While primarily designed to observe photon emission from the Jovian aurora, Juno's Ultraviolet Spectrograph (Juno-UVS) has also measured background count rates associated with penetrating high-energy radiation. These background counts are distinguishable from photon events, as they are generally spread evenly across the entire array of the Juno-UVS detector, and as the spacecraft spins, they set a baseline count rate higher than the sky background rate. During eight perijove passes, this background radiation signature has varied significantly on both short (spin-modulated) timescales, as well as longer timescales ( minutes to hours). We present comparisons of the Juno-UVS data across each of the eight perijove passes, with a focus on the count rate that can be clearly attributed to radiation effects rather than photon events. Once calibrated to determine the relationship between count rate and penetrating high-energy radiation (e.g., using existing GEANT models), these in situ measurements by Juno-UVS will provide additional constraints to radiation belt models close to the planet.

  4. KSWAGS: A Swift X-Ray and UV Survey of the Kepler Field 1

    NASA Technical Reports Server (NTRS)

    Smith, Krista Lynne; Boyd, Patricia T.; Mushotzky, Richard F.; Gehrels, Neil; Edelson, Rick; Howell, Steve B.; Gelino, Dawn M.; Brown, Alexander; Young, Steve

    2015-01-01

    We introduce the first phase of the Kepler-Swift Active Galaxies and Stars survey (KSwAGS), a simultaneous X-ray and UV survey of approximately 6 square degrees of the Kepler field using the Swift XRT and UVOT. We detect 93 unique X-ray sources with S/N greater or equal to 3 with the XRT, of which 60 have UV counterparts. We use the Kepler Input Catalog (KIC) to obtain the optical counterparts of these sources, and construct the fX / fV ratio as a first approximation of the classification of the source. The survey produces a mixture of stellar sources, extragalactic sources, and sources which we are not able to classify with certainty. We have obtained optical spectra for thirty of these targets, and are conducting an ongoing observing campaign to fully identify the sample. For sources classified as stellar or AGN with certainty, we construct SEDs using the 2MASS, UBV and GALEX data supplied for their optical counterparts by the KIC, and show that the SEDs differ qualitatively between the source types, and so can offer a method of classification in absence of a spectrum. Future papers in this series will analyze the timing properties of the stars and AGN in our sample separately. Our survey provides the first X-ray and UV data for a number of known variable stellar sources, as well as a large number of new X-ray detections in this well-studied portion of the sky. The KSwAGS survey is currently ongoing in the K2 ecliptic plane fields.

  5. The Effect of Blazar Spectral Breaks on the Blazar Contribution to the Extragalactic Gamma-Ray Background

    NASA Technical Reports Server (NTRS)

    Venters, Tonia M.; Pavlidou, Vasiliki

    2011-01-01

    The spectral shapes of the contributions of different classes of unresolved gamma-ray emitters can provide insight into their relative contributions to the extragalactic gamma-ray background (EGB) and the natures of their spectra at GeV energies, We calculate the spectral shapes of the contributions to the EGB arising from BL Lacertae type objects (BL Lacs) and flat-spectrum radio quasars (FSRQs) assuming blazar spectra can be described as broken power laws, We fit the resulting total blazar spectral shape to the Fermi Large Area Telescope measurements of the EGB, finding that the best-fit shape reproduces well the shape of the Fermi EGB for various break scenarios. We conclude that a scenario in which the contribution of blazars is dominant cannot be excluded on spectral grounds alone, even if spectral breaks are shown to be common among Fermi blazars. We also find that while the observation of a featureless (within uncertainties) power-law EGB spectrum by Fermi does not necessarily imply a single class of contributing unresolved sources with featureless individual spectra, such an observation and the collective spectra of the separate contributing populations determine the ratios of their contributions. As such, a comparison with studies including blazar gamma-ray luminosity functions could have profound implications for the blazar contribution to the EGB, blazar evolution, and blazar gamma-ray spectra and emission.

  6. UV-optical from space

    NASA Technical Reports Server (NTRS)

    Illingworth, Garth; Savage, Blair; Angel, J. Roger; Blandford, Roger D.; Boggess, Albert; Bowyer, C. Stuart; Carruthers, George R.; Cowie, Lennox L.; Doschek, George A.; Dupree, Andrea K.

    1991-01-01

    The following subject areas are covered: (1) the science program (star formation and origins of planetary systems; structure and evolution of the interstellar medium; stellar population; the galactic and extragalactic distance scale; nature of galaxy nuclei, AGNs, and QSOs; formation and evolution of galaxies at high redshifts; and cosmology); (2) implementation of the science program; (3) the observatory-class missions (HST; LST - the 6m successor to HST; and next-generation 16m telescope); (4) moderate and small missions (Delta-class Explorers; imaging astrometric interferometer; small Explorers; optics development and demonstrations; and supporting ground-based capabilities); (5) prerequisites - the current science program (Lyman-FUSE; HTS optimization; the near-term science program; data analysis, modeling, and theory funding; and archives); (6) technologies for the next century; and (7) lunar-based telescopes and instruments.

  7. Astrophysics of Reference Frame Tie Objects

    NASA Technical Reports Server (NTRS)

    Johnston, Kenneth J.; Boboltz, David; Fey, Alan Lee; Gaume, Ralph A.; Zacharias, Norbert

    2004-01-01

    The Astrophysics of Reference Frame Tie Objects Key Science program will investigate the underlying physics of SIM grid objects. Extragalactic objects in the SIM grid will be used to tie the SIM reference frame to the quasi-inertial reference frame defined by extragalactic objects and to remove any residual frame rotation with respect to the extragalactic frame. The current realization of the extragalactic frame is the International Celestial Reference Frame (ICRF). The ICRF is defined by the radio positions of 212 extragalactic objects and is the IAU sanctioned fundamental astronomical reference frame. This key project will advance our knowledge of the physics of the objects which will make up the SIM grid, such as quasars and chromospherically active stars, and relates directly to the stability of the SIM reference frame. The following questions concerning the physics of reference frame tie objects will be investigated.

  8. Searching for Extragalactic Sources in the VISTA Variables in the Vía Láctea Survey

    NASA Astrophysics Data System (ADS)

    Baravalle, Laura D.; Alonso, M. Victoria; Nilo Castellón, José Luis; Beamín, Juan Carlos; Minniti, Dante

    2018-01-01

    We search for extragalactic sources in the VISTA Variables in the Vía Láctea survey that are hidden by the Galaxy. Herein, we describe our photometric procedure to find and characterize extragalactic objects using a combination of SExtractor and PSFEx. It was applied in two tiles of the survey: d010 and d115, without previous extragalactic IR detections, in order to obtain photometric parameters of the detected sources. The adopted criteria to define extragalactic candidates include CLASSSTAR< 0.3; 1.0 < R1/2< 5.0 arcsec; 2.1 < C < 5 and Φ > 0.002 and the colors: 0.5 < (J–K s ) < 2.0 mag; 0.0 < (J–H) < 1.0 mag; 0.0 < (H–K s ) < 2.0 mag and (J–H) + 0.9 (H–K s ) > 0.44 mag. We detected 345 and 185 extragalactic candidates in the d010 and d115 tiles, respectively. All of them were visually inspected and confirmed to be galaxies. In general, they are small and more circular objects, due to the near-IR sensitivity to select more compact objects with higher surface brightness. The procedure will be used to identify extragalactic objects in other tiles of the VVV disk, which will allow us to study the distribution of galaxies and filaments hidden by the Milky Way.

  9. The Radio Synchrotron Background: Conference Summary and Report

    NASA Astrophysics Data System (ADS)

    Singal, J.; Haider, J.; Ajello, M.; Ballantyne, D. R.; Bunn, E.; Condon, J.; Dowell, J.; Fixsen, D.; Fornengo, N.; Harms, B.; Holder, G.; Jones, E.; Kellermann, K.; Kogut, A.; Linden, T.; Monsalve, R.; Mertsch, P.; Murphy, E.; Orlando, E.; Regis, M.; Scott, D.; Vernstrom, T.; Xu, L.

    2018-03-01

    We summarize the radio synchrotron background workshop that took place 2017 July 19–21 at the University of Richmond. This first scientific meeting dedicated to the topic was convened because current measurements of the diffuse radio monopole reveal a surface brightness that is several times higher than can be straightforwardly explained by known Galactic and extragalactic sources and processes, rendering it by far the least well understood photon background at present. It was the conclusion of a majority of the participants that the radio monopole level is at or near that reported by the ARCADE 2 experiment and inferred from several absolutely calibrated zero-level lower frequency radio measurements, and unanimously agreed that the production of this level of surface brightness, if confirmed, represents a major outstanding question in astrophysics. The workshop reached a consensus on the next priorities for investigations of the radio synchrotron background.

  10. The nature of luminous Lyα emitters at z ˜ 2-3: maximal dust-poor starbursts and highly ionising AGN

    NASA Astrophysics Data System (ADS)

    Sobral, David; Matthee, Jorryt; Darvish, Behnam; Smail, Ian; Best, Philip N.; Alegre, Lara; Röttgering, Huub; Mobasher, Bahram; Stroe, Ana Paulino-Afonso Andra; Oteo, Iván

    2018-03-01

    Deep narrow-band surveys have revealed a large population of faint Lyα emitters (LAEs) in the distant Universe, but relatively little is known about the most luminous sources (L_Lyα {≳} 10^{42.7} erg s-1; L_Lyα {≳} L^*_{Lyα }). Here we present the spectroscopic follow-up of 21 luminous LAEs at z ˜ 2 - 3 found with panoramic narrow-band surveys over five independent extragalactic fields (≈4 × 106 Mpc3 surveyed at z ˜ 2.2 and z ˜ 3.1). We use WHT/ISIS, Keck/DEIMOS and VLT/X-SHOOTER to study these sources using high ionisation UV lines. Luminous LAEs at z ˜ 2-3 have blue UV slopes (β =-2.0^{+0.3}_{-0.1}), high Lyα escape fractions (50^{+20}_{-15}%) and span five orders of magnitude in UV luminosity (M_{UV}≈ -19 to -24). Many (70%) show at least one high ionisation rest-frame UV line such as CIV, NV, CIII], HEII or OIII], typically blue-shifted by ≈100 - 200 km s-1 relative to Lyα. Their Lyα profiles reveal a wide variety of shapes, including significant blue-shifted components and widths from 200 to 4000 km s-1. Overall, 60 ± 11 % appear to be AGN dominated, and at L_{Lyα }>10^{43.3} erg s-1 and/or M_{UV}<-21.5 virtually all LAEs are AGN with high ionisation parameters (log U = 0.6 ± 0.5) and with metallicities of ≈0.5 - 1 Z⊙. Those lacking signatures of AGN (40 ± 11 %) have lower ionisation parameters (log U=-3.0^{+1.6}_{-0.9} and log ξion = 25.4 ± 0.2) and are apparently metal-poor sources likely powered by young, dust-poor "maximal" starbursts. Our results show that luminous LAEs at z ˜ 2-3 are a diverse population and that 2 × L^*_{Lyα } and 2 × M_UV^* mark a sharp transition in the nature of LAEs, from star formation dominated to AGN dominated.

  11. HerMES: dust attenuation and star formation activity in ultraviolet-selected samples from z˜ 4 to ˜ 1.5

    NASA Astrophysics Data System (ADS)

    Heinis, S.; Buat, V.; Béthermin, M.; Bock, J.; Burgarella, D.; Conley, A.; Cooray, A.; Farrah, D.; Ilbert, O.; Magdis, G.; Marsden, G.; Oliver, S. J.; Rigopoulou, D.; Roehlly, Y.; Schulz, B.; Symeonidis, M.; Viero, M.; Xu, C. K.; Zemcov, M.

    2014-01-01

    We study the link between observed ultraviolet (UV) luminosity, stellar mass and dust attenuation within rest-frame UV-selected samples at z ˜ 4, ˜ 3 and ˜1.5. We measure by stacking at 250, 350 and 500 μm in the Herschel/Spectral and Photometric Imaging Receiver images from the Herschel Multi-Tiered Extragalactic Survey (HerMES) program the average infrared luminosity as a function of stellar mass and UV luminosity. We find that dust attenuation is mostly correlated with stellar mass. There is also a secondary dependence with UV luminosity: at a given UV luminosity, dust attenuation increases with stellar mass, while at a given stellar mass it decreases with UV luminosity. We provide new empirical recipes to correct for dust attenuation given the observed UV luminosity and the stellar mass. Our results also enable us to put new constraints on the average relation between star formation rate (SFR) and stellar mass at z ˜ 4, ˜3 and ˜1.5. The SFR-stellar mass relations are well described by power laws (SFR∝ M_*^{0.7}), with the amplitudes being similar at z ˜ 4 and ˜3, and decreasing by a factor of 4 at z ˜ 1.5 at a given stellar mass. We further investigate the evolution with redshift of the specific SFR. Our results are in the upper range of previous measurements, in particular at z ˜ 3, and are consistent with a plateau at 3 < z < 4. Current model predictions (either analytic, semi-analytic or hydrodynamic) are inconsistent with these values, as they yield lower predictions than the observations in the redshift range we explore. We use these results to discuss the star formation histories of galaxies in the framework of the main sequence of star-forming galaxies. Our results suggest that galaxies at high redshift (2.5 < z < 4) stay around 1 Gyr on the main sequence. With decreasing redshift, this time increases such that z = 1 main-sequence galaxies with 108

  12. Charges on Strange Quark Nuggets in Space

    NASA Technical Reports Server (NTRS)

    Abers, E. S.; Bhatia, A. K.; Dicus, D. A.; Repko, W. W.; Rosenbaum, D. C.; Teplitz, V. L.

    2007-01-01

    Since Witten's seminal 1984 paper on the subject, searches for evidence of strange quark nuggets (SQNs) have proven unsuccessful. In the absence of experimental evidence ruling out SQNs, the validity of theories introducing mechanisms that increase their stability should continue to be tested. To stimulate electromagnetic SQN searches, particularly space searches, we estimate the net charge that would develop on an SQN in space exposed to various radiation baths (and showers) capable of liberating their less strongly bound electrons, taking into account recombination with ambient electrons. We consider, in particular, the cosmic background radiation, radiation from the sun, and diffuse galactic and extragalactic gamma-ray backgrounds. A possible dramatic signal of SQNs in explosive astrophysical events is noted.

  13. Transparency of the Universe to VHE Gamma rays and EBL Models

    NASA Astrophysics Data System (ADS)

    Singh, Krishna Kumar; Sahayanathan, Sunder; Bhatt, Nilay; Tickoo, Avtar K.

    2012-07-01

    GeV/TeV emission spectrum coming from distant blazars is modified en route due to absorption via pair production in presence of extragalactic background (EBL) photons. Hence the knowledge of EBL spectrum from IR to optical-UV band is important to estimate the intrinsic spectra of VHE blazars. Also, this information will help in understanding the evolution of galaxies. Here we study the opacity of VHE gamma rays at different redshifts by considering different EBL models available in the literature. The optical depth values corresponding to different gamma ray energies at a given redshift, are approximated as a fifth order polynomial and a table of the coefficients at different redshifts is produced. We use these estimates to find the intrinsic VHE spectra of the FSRQ 3C279 (z=0.536) and BL Lac object PKS 2155-304 (z=0.116) corresponding to different EBL models. The inferred intrinsic VHE spectra along with the broadband data available for these sources are then modelled using one zone models involving synchrotron and inverse Compton emission mechanisms. For PKS 2155-304 we considered synchrotron and synchrotron self Compton (SSC) emission where as for 3C 279, external Compton (EC) scattering of IR photons from dusty torus is considered in addition to these emission processes. The broadband spectrum including the VHE spectra corresponding to different EBL models is fitted to obtain the parameters using chi-square minimisation. We then compare the EBL models on the basis of minimum chi-square obtained.

  14. Photometry-based estimation of the total number of stars in the Universe.

    PubMed

    Manojlović, Lazo M

    2015-07-20

    A novel photometry-based estimation of the total number of stars in the Universe is presented. The estimation method is based on the energy conservation law and actual measurements of the extragalactic background light levels. By assuming that every radiated photon is kept within the Universe volume, i.e., by approximating the Universe as an integrating cavity without losses, the total number of stars in the Universe of about 6×1022 has been obtained.

  15. Legacy Extragalactic UV Survey (LEGUS) With the Hubble Space Telescope. I. Survey Description

    NASA Astrophysics Data System (ADS)

    Calzetti, D.; Lee, J. C.; Sabbi, E.; Adamo, A.; Smith, L. J.; Andrews, J. E.; Ubeda, L.; Bright, S. N.; Thilker, D.; Aloisi, A.; Brown, T. M.; Chandar, R.; Christian, C.; Cignoni, M.; Clayton, G. C.; da Silva, R.; de Mink, S. E.; Dobbs, C.; Elmegreen, B. G.; Elmegreen, D. M.; Evans, A. S.; Fumagalli, M.; Gallagher, J. S., III; Gouliermis, D. A.; Grebel, E. K.; Herrero, A.; Hunter, D. A.; Johnson, K. E.; Kennicutt, R. C.; Kim, H.; Krumholz, M. R.; Lennon, D.; Levay, K.; Martin, C.; Nair, P.; Nota, A.; Östlin, G.; Pellerin, A.; Prieto, J.; Regan, M. W.; Ryon, J. E.; Schaerer, D.; Schiminovich, D.; Tosi, M.; Van Dyk, S. D.; Walterbos, R.; Whitmore, B. C.; Wofford, A.

    2015-02-01

    The Legacy ExtraGalactic UV Survey (LEGUS) is a Cycle 21 Treasury program on the Hubble Space Telescope aimed at the investigation of star formation and its relation with galactic environment in nearby galaxies, from the scales of individual stars to those of ˜kiloparsec-size clustered structures. Five-band imaging from the near-ultraviolet to the I band with the Wide-Field Camera 3 (WFC3), plus parallel optical imaging with the Advanced Camera for Surveys (ACS), is being collected for selected pointings of 50 galaxies within the local 12 Mpc. The filters used for the observations with the WFC3 are F275W(λ2704 Å), F336W(λ3355 Å), F438W(λ4325 Å), F555W(λ5308 Å), and F814W(λ8024 Å) the parallel observations with the ACS use the filters F435W(λ4328 Å), F606W(λ5921 Å), and F814W(λ8057 Å). The multiband images are yielding accurate recent (≲50 Myr) star formation histories from resolved massive stars and the extinction-corrected ages and masses of star clusters and associations. The extensive inventories of massive stars and clustered systems will be used to investigate the spatial and temporal evolution of star formation within galaxies. This will, in turn, inform theories of galaxy evolution and improve the understanding of the physical underpinning of the gas-star formation relation and the nature of star formation at high redshift. This paper describes the survey, its goals and observational strategy, and the initial scientific results. Because LEGUS will provide a reference survey and a foundation for future observations with the James Webb Space Telescope and with ALMA, a large number of data products are planned for delivery to the community. Based on observations obtained with the NASA/ESA Hubble Space Telescope at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy under NASA Contract NAS 5-26555.

  16. Search for gamma-rays from M31 and other extragalactic objects

    NASA Technical Reports Server (NTRS)

    Cawley, M. F.; Fegan, D. J.; Gibbs, K.; Gorham, P. W.; Lamb, R. C.; Liebing, D. F.; Porter, N. A.; Stenger, V. J.; Weeles, T. C.

    1985-01-01

    Although the existence of fluxes of gamma-rays of energies 10 to the 12th power eV is now established for galactic sources, the detection of such gamma-rays from extragalactic sources has yet to be independently confirmed in any case. The detection and confirmation of such energetic photons is of great astrophysical importance in the study of production mechanisms for cosmic rays, and other high energy processes in extragalactic objects. Observations of m31 are discussed. It is reported as a 10 to the 12th power eV gamma-ray source. Flux limits on a number of other extragalactic objects chosen for study are given.

  17. Fermi Large Area Telescope Constraints On The Gamma-Ray Opacity Of The Universe

    DOE PAGES

    Abdo, A. A.

    2010-10-19

    The extragalactic background light (EBL) includes photons with wavelengths from ultraviolet to infrared, which are effective at attenuating gamma rays with energy above ~10 GeV during propagation from sources at cosmological distances. This results in a redshift- and energy-dependent attenuation of the γ-ray flux of extragalactic sources such as blazars and gamma-ray bursts (GRBs). The Large Area Telescope on board Fermi detects a sample of γ-ray blazars with redshift up to z ~ 3, and GRBs with redshift up to z ~ 4.3. Using photons above 10 GeV collected by Fermi over more than one year of observations for thesemore » sources, we investigate the effect of γ-ray flux attenuation by the EBL. We place upper limits on the γ-ray opacity of the universe at various energies and redshifts and compare this with predictions from well-known EBL models. We find that an EBL intensity in the optical-ultraviolet wavelengths as great as predicted by the "baseline" model of Stecker et al. can be ruled out with high confidence.« less

  18. Intergalactic Extinction of High Energy Gamma-Rays

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1998-01-01

    We discuss the determination of the intergalactic pair-production absorption coefficient as derived by Stecker and De Jager by making use of a new empirically based calculation of the spectral energy distribution of the intergalactic infrared radiation field as given by Malkan and Stecker. We show that the results of the Malkan and Stecker calculation agree well with recent data on the infrared background. We then show that Whipple observations of the flaring gamma-ray spectrum of Mrk 421 hint at extragalactic absorption and that the HEGRA observations of the flaring spectrum of Mrk 501 appear to strongly indicate extragalactic absorption. We also discuss the determination of the y-ray opacity at higher redshifts, following the treatment of Salamon and Stecker. We give a predicted spectrum, with absorption included for PKS 2155-304. This XBL lies at a redshift of 0.12, the highest redshift source yet observed at an energy above 0.3 TeV. This source should have its spectrum steepened by approx. 1 in its spectral index between approx. 0.3 and approx. 3 TeV and should show an absorption cutoff above approx. 6 TeV.

  19. Secular Extragalactic Parallax and Geometric Distances with Gaia Proper Motions

    NASA Astrophysics Data System (ADS)

    Paine, Jennie; Darling, Jeremiah K.

    2018-06-01

    The motion of the Solar System with respect to the cosmic microwave background (CMB) rest frame creates a well measured dipole in the CMB, which corresponds to a linear solar velocity of about 78 AU/yr. This motion causes relatively nearby extragalactic objects to appear to move compared to more distant objects, an effect that can be measured in the proper motions of nearby galaxies. An object at 1 Mpc and perpendicular to the CMB apex will exhibit a secular parallax, observed as a proper motion, of 78 µas/yr. The relatively large peculiar motions of galaxies make the detection of secular parallax challenging for individual objects. Instead, a statistical parallax measurement can be made for a sample of objects with proper motions, where the global parallax signal is modeled as an E-mode dipole that diminishes linearly with distance. We present preliminary results of applying this model to a sample of nearby galaxies with Gaia proper motions to detect the statistical secular parallax signal. The statistical measurement can be used to calibrate the canonical cosmological “distance ladder.”

  20. SPHEREx: Understanding the Origin and Evolution of Galaxies Through the Extragalactic Background Light

    NASA Astrophysics Data System (ADS)

    Zemcov, Michael; SPHEREx Science Team

    2018-01-01

    The near IR extragalactic background light (EBL) encodes the integrated light production over cosmic history, so traces the total emission from all galaxies along the line of sight up to the ancient first-light objects responsible for the epoch of reionization (EOR). The EBL can be constrained through measurements of anisotropies, taking advantage of the fact that extragalactic populations produce fluctuations with distinct spatial and spectral characteristics from local foregrounds. In particular, EBL anisotropies trace the underlying clustering of faint emission sources, such as stars, galaxies and accreting black holes present during the EOR, dwarf galaxies, and intra-halo light (IHL), all of which are components not readily detected in point source surveys. The fluctuation amplitude observed independently by a number of recent measurements exceeds that expected from the large-scale clustering of known galaxy populations, indicating the presence of a large integrated brightness from these faint and diffuse components. Improved large-area measurements covering the entire near-IR are required to constrain the possible models for the history of emission from stars back to the EOR.SPHEREx brings new capabilities to EBL fluctuation measurements, employing 96 spectral channels covering 0.75 to 5 microns with spectral resolving power R = 41 to 135 that enable SPHEREx to carry out a multi-frequency separation of the integrated light from galaxies, IHL, and EOR components using the rich auto- and cross-correlation information available from two 45 square degree surveys of the ecliptic poles. SPHEREx is an ideal intensity mapping machine, and has the sensitivity to disentangle the history of light production associated with EBL fluctuations. SPHEREx will search for an EOR component its to minimum required level through component separation and spectral fitting techniques optimized for the near-IR. In addition to broad-band intensity mapping that enhances and extends the Euclid survey, uniquely SPHEREx will enable tomography of cosmic large scale structure using line tracers such as Lya, Ha, Hb, O[II] and O[III], as highlighted in community workshops and AAS special sessions over the past several years.

  1. Extragalactic sources in Cosmic Microwave Background maps

    NASA Astrophysics Data System (ADS)

    De Zotti, G.; Castex, G.; González-Nuevo, J.; Lopez-Caniego, M.; Negrello, M.; Cai, Z.-Y.; Clemens, M.; Delabrouille, J.; Herranz, D.; Bonavera, L.; Melin, J.-B.; Tucci, M.; Serjeant, S.; Bilicki, M.; Andreani, P.; Clements, D. L.; Toffolatti, L.; Roukema, B. F.

    2015-06-01

    We discuss the potential of a next generation space-borne CMB experiment for studies of extragalactic sources with reference to COrE+, a project submitted to ESA in response to the call for a Medium-size mission (M4). We consider three possible options for the telescope size: 1 m, 1.5 m and 2 m (although the last option is probably impractical, given the M4 boundary conditions). The proposed instrument will be far more sensitive than Planck and will have a diffraction-limited angular resolution. These properties imply that even the 1 m telescope option will perform substantially better than Planck for studies of extragalactic sources. The source detection limits as a function of frequency have been estimated by means of realistic simulations taking into account all the relevant foregrounds. Predictions for the various classes of extragalactic sources are based on up-to-date models. The most significant improvements over Planck results are presented for each option. COrE+ will provide much larger samples of truly local star-forming galaxies (by about a factor of 8 for the 1 m telescope, of 17 for 1.5 m, of 30 for 2 m), making possible analyses of the properties of galaxies (luminosity functions, dust mass functions, star formation rate functions, dust temperature distributions, etc.) across the Hubble sequence. Even more interestingly, COrE+ will detect, at |b| > 30°, thousands of strongly gravitationally lensed galaxies (about 2,000, 6,000 and 13,000 for the 1 m, 1.5 m and 2 m options, respectively). Such large samples are of extraordinary astrophysical and cosmological value in many fields. Moreover, COrE+ high frequency maps will be optimally suited to pick up proto-clusters of dusty galaxies, i.e. to investigate the evolution of large scale structure at larger redshifts than can be reached by other means. Thanks to its high sensitivity COrE+ will also yield a spectacular advance in the blind detection of extragalactic sources in polarization: we expect that it will detect up to a factor of 40 (1 m option) or of 160 (1.5 m option) more radio sources than can be detected by Planck and, for the first time, from several tens (1 m option) to a few hundreds (1.5 m option) of star forming galaxies. This will open a new window for studies of the global properties of magnetic fields in star forming galaxies and of their relationships with star formation rates.

  2. Measures of star formation rates from infrared (Herschel) and UV (GALEX) emissions of galaxies in the HerMES fields

    NASA Astrophysics Data System (ADS)

    Buat, V.; Giovannoli, E.; Burgarella, D.; Altieri, B.; Amblard, A.; Arumugam, V.; Aussel, H.; Babbedge, T.; Blain, A.; Bock, J.; Boselli, A.; Castro-Rodríguez, N.; Cava, A.; Chanial, P.; Clements, D. L.; Conley, A.; Conversi, L.; Cooray, A.; Dowell, C. D.; Dwek, E.; Eales, S.; Elbaz, D.; Fox, M.; Franceschini, A.; Gear, W.; Glenn, J.; Griffin, M.; Halpern, M.; Hatziminaoglou, E.; Heinis, S.; Ibar, E.; Isaak, K.; Ivison, R. J.; Lagache, G.; Levenson, L.; Lonsdale, C. J.; Lu, N.; Madden, S.; Maffei, B.; Magdis, G.; Mainetti, G.; Marchetti, L.; Morrison, G. E.; Nguyen, H. T.; O'Halloran, B.; Oliver, S. J.; Omont, A.; Owen, F. N.; Page, M. J.; Pannella, M.; Panuzzo, P.; Papageorgiou, A.; Pearson, C. P.; Pérez-Fournon, I.; Pohlen, M.; Rigopoulou, D.; Rizzo, D.; Roseboom, I. G.; Rowan-Robinson, M.; Sánchez Portal, M.; Schulz, B.; Seymour, N.; Shupe, D. L.; Smith, A. J.; Stevens, J. A.; Strazzullo, V.; Symeonidis, M.; Trichas, M.; Tugwell, K. E.; Vaccari, M.; Valiante, E.; Valtchanov, I.; Vigroux, L.; Wang, L.; Ward, R.; Wright, G.; Xu, C. K.; Zemcov, M.

    2010-11-01

    The reliability of infrared (IR) and ultraviolet (UV) emissions to measure star formation rates (SFRs) in galaxies is investigated for a large sample of galaxies observed with the Spectral and Photometric Imaging Receiver (SPIRE) and the Photodetector Array Camera and Spectrometer (PACS) instruments on Herschel as part of the Herschel Multi-Tiered Extragalactic Survey (HerMES) project. We build flux-limited 250-μm samples of sources at redshift z < 1, cross-matched with the Spitzer/MIPS and GALEX catalogues. About 60 per cent of the Herschel sources are detected in UV. The total IR luminosities, LIR, of the sources are estimated using a spectral energy distribution (SED) fitting code that fits to fluxes between 24 and 500 μm. Dust attenuation is discussed on the basis of commonly used diagnostics: the LIR/LUV ratio and the slope, β, of the UV continuum. A mean dust attenuation AUV of mag is measured in the samples. LIR/LUV is found to correlate with LIR. Galaxies with and 0.5 < z < 1 exhibit a mean dust attenuation AUV of about 0.7 mag lower than that found for their local counterparts, although with a large dispersion. Our galaxy samples span a large range of β and LIR/LUV values which, for the most part, are distributed between the ranges defined by the relations found locally for starburst and normal star-forming galaxies. As a consequence the recipe commonly applied to local starbursts is found to overestimate the dust attenuation correction in our galaxy sample by a factor of ~2-3. The SFRs deduced from LIR are found to account for about 90 per cent of the total SFR; this percentage drops to 71 per cent for galaxies with (or ). For these faint objects, one needs to combine UV and IR emissions to obtain an accurate measure of the SFR.

  3. Infrared fluorescence from PAHs in the laboratory

    NASA Technical Reports Server (NTRS)

    Cherchneff, Isabelle; Barker, John R.

    1989-01-01

    Several celestial objects, including UV rich regions of planetary and reflection nebulae, stars, H II regions, and extragalactic sources, are characterized by the unidentified infrared emission bands (UIR bands). A few years ago, it was proposed that polycyclic aromatic hydrocarbon species (PAHs) are responsible for most of the UIR bands. This hypothesis is based on a spectrum analysis of the observed features. Comparisons of observed IR spectra with lab absorption spectra of PAHs support the PAH hypothesis. An example spectrum is represented, where the Orion Bar 3.3 micron spectrum is compared with the absorption frequencies of the PAHs Chrysene, Pyrene, and Coronene. The laser excited 3.3 micron emission spectrum is presented from a gas phase PAH (azulen). The infrared fluorescence theory (IRF) is briefly explained, followed by a description of the experimental apparatus, a report of the results, and discussion.

  4. Properties of LEGUS Clusters Obtained with Different Massive-Star Evolutionary Tracks

    NASA Astrophysics Data System (ADS)

    Wofford, A.; Charlot, S.; Eldridge, J. J.

    We compute spectral libraries for populations of coeval stars using state-of-the-art massive-star evolutionary tracks that account for different astrophysics including rotation and close-binarity. Our synthetic spectra account for stellar and nebular contributions. We use our models to obtain E(B - V ), age, and mass for six clusters in spiral galaxy NGC 1566, which have ages of < 50 Myr and masses of > 5 x 104M⊙ according to standard models. NGC 1566 was observed from the NUV to the I-band as part of the imaging Treasury HST program LEGUS: Legacy Extragalactic UV Survey. We aim to establish i) if the models provide reasonable fits to the data, ii) how well the models and photometry are able to constrain the cluster properties, and iii) how different the properties obtained with different models are.

  5. X-Ray Constraints on the Warm-Hot Intergalactic Medium

    NASA Technical Reports Server (NTRS)

    Kuntz, K. D.; Snowden, S. I.; Mushotzky, R. F.; White, Nicholas E. (Technical Monitor)

    2000-01-01

    Three observational constraints can be placed on a warm-hot intergalactic medium (WHIM) using ROSAT Position Sensitive Proportional Counter (PSPC) pointed and survey data, the emission strength, the energy spectrum, and the fluctuation spectrum. The upper limit to the emission strength of the WHIM is 7.5 +/- 1.0 keV/(s*sq cm*sr*keV) in the 3/4 keV band, an unknown portion of which value may be due to our own Galactic halo. The spectral stape of the WHIM emission can be described as thermal emission with logT = 6.42, although the true spectrum is more likely to come from a range of temperatures. The values of emission strength and spectral shape are in reasonable agreement with hydrodynamical cosmological models. The autocorrelation function in the 0.44 keV < E < 1.21 keV band range, w(theta), for the extragalactic soft X-ray background (SXRB) which includes both the WHIM and contributions due to point sources, is approx. < 0.002 for 10 min < 0 < 20 min in the 3/4 keV band. This value is lower than the Croft et al. (2000) cosmological model by a factor of approx. 5, but is still not inconsistent with cosmological models. It is also found that the normalization of the extragalactic power law component of the soft X-ray background spectrum must be 9.5 +/- 0.9 keV/(s*sq cm*sr*keV) to be consistent with the ROSAT All-Sky Survey.

  6. The Atacama Cosmology Telescope: Likelihood for Small-Scale CMB Data

    NASA Technical Reports Server (NTRS)

    Dunkley, J.; Calabrese, E.; Sievers, J.; Addison, G. E.; Battaglia, N.; Battistelli, E. S.; Bond, J. R.; Das, S.; Devlin, M. J.; Dunner, R.; hide

    2013-01-01

    The Atacama Cosmology Telescope has measured the angular power spectra of microwave fluctuations to arcminute scales at frequencies of 148 and 218 GHz, from three seasons of data. At small scales the fluctuations in the primordial Cosmic Microwave Background (CMB) become increasingly obscured by extragalactic foregounds and secondary CMB signals. We present results from a nine-parameter model describing these secondary effects, including the thermal and kinematic Sunyaev-Zel'dovich (tSZ and kSZ) power; the clustered and Poisson-like power from Cosmic Infrared Background (CIB) sources, and their frequency scaling; the tSZ-CIB correlation coefficient; the extragalactic radio source power; and thermal dust emission from Galactic cirrus in two different regions of the sky. In order to extract cosmological parameters, we describe a likelihood function for the ACT data, fitting this model to the multi-frequency spectra in the multipole range 500 < l < 10000. We extend the likelihood to include spectra from the South Pole Telescope at frequencies of 95, 150, and 220 GHz. Accounting for different radio source levels and Galactic cirrus emission, the same model provides an excellent fit to both datasets simultaneously, with ?2/dof= 675/697 for ACT, and 96/107 for SPT. We then use the multi-frequency likelihood to estimate the CMB power spectrum from ACT in bandpowers, marginalizing over the secondary parameters. This provides a simplified 'CMB-only' likelihood in the range 500 < l < 3500 for use in cosmological parameter estimation

  7. Bulk Comptonization of the Cosmic Microwave Background by Extragalactic Jets as a Probe of their Matter Content

    NASA Technical Reports Server (NTRS)

    Georganopoulos, Markos; Kazanas, Demosthenes; Perlman, Eric; Stecker, Floyd W.

    2004-01-01

    We propose a method for estimating the composition, i.e. the relative amounts of leptons and protons, of extragalactic jets which exhibit Chandra - detected knots in their kpc scale jets. The method relies on measuring, or setting upper limits on, the component of the Cosmic Microwave Background (CMB) radiation that is bulk-Comptonized by the cold electrons in the relativistically flowing jet. These measurements, along with modeling of the broadband knot emission that constrain the bulk Lorentz factor GAMMA of the jets, can yield estimates of the jet power carried by protons and leptons. We provide an explicit calculation of the spectrum of the bulk-Comptonized (BC) CMB component and apply these results to PKS 0637 - 752 and 3C 273, two superluminal quasars with Chandra - detected large scale jets. What makes these sources particularly suited for such a procedure is the absence of significant non-thermal jet emission in the 'bridge', the region between the core and the first bright jet knot, which guarantees that most of the electrons are cold there, leaving the BC scattered CMB radiation as the only significant source of photons in this region. At lambda = 3.6 - 8.0 microns, the most likely band to observe the BC scattered CMB emission, the Spitzer angular resolution (approximately 1" - 3") is considerably smaller than the the 'bridges' of these jets (approximately 10"), making it possible to both measure and resolve this emission.

  8. Origin of the Galaxy Mass-Metallicity-Star Formation Relation

    NASA Astrophysics Data System (ADS)

    Harwit, Martin; Brisbin, Drew

    2015-02-01

    We describe an equilibrium model that links the metallicity of low-redshift galaxies to stellar evolution models. It enables the testing of different stellar initial mass functions and metal yields against observed galaxy metallicities. We show that the metallicities of more than 80,000 Sloan Digital Sky Survey galaxies in the low-redshift range 0.07 <= z <= 0.3 considerably constrain stellar evolution models that simultaneously relate galaxy stellar mass, metallicity, and star formation rates to the infall rate of low-metallicity extragalactic gas and outflow of enriched matter. A feature of our model is that it encompasses both the active star forming phases of a galaxy and epochs during which the same galaxy may lie fallow. We show that the galaxy mass-metallicity-star formation relation can be traced to infall of extragalactic gas mixing with native gas from host galaxies to form stars of observed metallicities, the most massive of which eject oxygen into extragalactic space. Most consequential among our findings is that, on average, extragalactic infall accounts for one half of the gas required for star formation, a ratio that is remarkably constant across galaxies with stellar masses ranging at least from M* = 2 × 109 to 6 × 1010 M ⊙. This leads us to propose that star formation is initiated when extragalactic infall roughly doubles the mass of marginally stable interstellar clouds. The processes described may also account quantitatively for the metallicity of extragalactic space, though to check this the fraction of extragalactic baryons will need to be more firmly established.

  9. COBE - New sky maps of the early universe

    NASA Technical Reports Server (NTRS)

    Smoot, G. F.

    1991-01-01

    This paper presents early results obtained from the first six months of measurements of the cosmic microwave background (CMB) by instruments aboard NASA's Cosmic Background Explorer (COBE) satellite and discusses the implications for cosmology. The three instruments: FIRAS, DMR, and DIRBE have operated well and produced significant new results. The FIRAS measurement of the CMB spectrum supports the standard big bang nucleosynthesis model. The maps made from the DMR instrument measurements show a surprisingly smooth early universe. The measurements are sufficiently precise that we must pay careful attention to potential systematic errors. The maps of galactic and local emission produced by the DIRBE instrument will be needed to identify foregrounds from extragalactic emission and thus to interpret the terms of events in the early universe.

  10. Ultraviolet radiation induces dose-dependent pigment dispersion in crustacean chromatophores.

    PubMed

    Gouveia, Glauce Ribeiro; Lopes, Thaís Martins; Neves, Carla Amorim; Nery, Luiz Eduardo Maia; Trindade, Gilma Santos

    2004-10-01

    Pigment dispersion in chromatophores as a response to UV radiation was investigated in two species of crustaceans, the crab Chasmagnathus granulata and the shrimp Palaemonetes argentinus. Eyestalkless crabs and shrimps maintained on either a black or a white background were irradiated with different UV bands. In eyestalkless crabs the significant minimal effective dose inducing pigment dispersion was 0.42 J/cm(2) for UVA and 2.15 J/cm(2) for UVB. Maximal response was achieved with 10.0 J/cm(2) UVA and 8.6 J/cm(2) UVB. UVA was more effective than UVB in inducing pigment dispersion. Soon after UV exposure, melanophores once again reached the initial stage of pigment aggregation after 45 min. Aggregated erythrophores of shrimps adapted to a white background showed significant pigment dispersion with 2.5 J/cm(2) UVA and 0.29 J/cm(2) UVC. Dispersed erythrophores of shrimps adapted to a black background did not show any significant response to UVA, UVB or UVC radiation. UVB did not induce any significant pigment dispersion in shrimps adapted to either a white or a black background. As opposed to the tanning response, which only protects against future UV exposure, the pigment dispersion response could be an important agent protecting against the harmful effects of UV radiation exposure.

  11. Voids as alternatives to dark energy and the propagation of γ rays through the universe.

    PubMed

    DeLavallaz, Arnaud; Fairbairn, Malcolm

    2012-04-27

    We test the opacity of a void universe to TeV energy γ rays having obtained the extragalactic background light in that universe using a simple model and the observed constraints on the star formation rate history. We find that the void universe has significantly more opacity than a Λ cold dark matter universe, putting it at odds with observations of BL-Lac objects. We argue that while this method of distinguishing between the two cosmologies contains uncertainties, it circumvents any debates over fine-tuning.

  12. Concluding Thoughts on New Directions in Infrared Astronomy

    NASA Astrophysics Data System (ADS)

    Harwit, Martin

    Currently planned infrared space missions are ambitious and bound to be rewarding. We ask whether design criteria of the past still hold for these projects, and suggest that accumulating experience dictates new engineering guidelines for these increasingly sophisticated missions. Striking spectroscopic advances presented at this symposium indicate that generally held beliefs about the chemical evolution of galaxies may need to be revised. Similar changes in attitude may be required by the results of deep infrared surveys and the recent detectedion of a diffuse far-infrared (FIR) extragalactic background

  13. Getting Astrophysical Information from LISA Data

    NASA Technical Reports Server (NTRS)

    Stebbins, R. T.; Bender, P. L.; Folkner, W. M.

    1997-01-01

    Gravitational wave signals from a large number of astrophysical sources will be present in the LISA data. Information about as many sources as possible must be estimated from time series of strain measurements. Several types of signals are expected to be present: simple periodic signals from relatively stable binary systems, chirped signals from coalescing binary systems, complex waveforms from highly relativistic binary systems, stochastic backgrounds from galactic and extragalactic binary systems and possibly stochastic backgrounds from the early Universe. The orbital motion of the LISA antenna will modulate the phase and amplitude of all these signals, except the isotropic backgrounds and thereby give information on the directions of sources. Here we describe a candidate process for disentangling the gravitational wave signals and estimating the relevant astrophysical parameters from one year of LISA data. Nearly all of the sources will be identified by searching with templates based on source parameters and directions.

  14. COBE's search for structure in the Big Bang

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald (Editor); Guerny, Gene (Editor); Keating, Thomas (Editor); Moe, Karen (Editor); Sullivan, Walter (Editor); Truszkowski, Walt (Editor)

    1989-01-01

    The launch of Cosmic Background Explorer (COBE) and the definition of Earth Observing System (EOS) are two of the major events at NASA-Goddard. The three experiments contained in COBE (Differential Microwave Radiometer (DMR), Far Infrared Absolute Spectrophotometer (FIRAS), and Diffuse Infrared Background Experiment (DIRBE)) are very important in measuring the big bang. DMR measures the isotropy of the cosmic background (direction of the radiation). FIRAS looks at the spectrum over the whole sky, searching for deviations, and DIRBE operates in the infrared part of the spectrum gathering evidence of the earliest galaxy formation. By special techniques, the radiation coming from the solar system will be distinguished from that of extragalactic origin. Unique graphics will be used to represent the temperature of the emitting material. A cosmic event will be modeled of such importance that it will affect cosmological theory for generations to come. EOS will monitor changes in the Earth's geophysics during a whole solar color cycle.

  15. A catalogue of AKARI FIS BSC extragalactic objects

    NASA Astrophysics Data System (ADS)

    Marton, Gabor; Toth, L. Viktor; Gyorgy Balazs, Lajos

    2015-08-01

    We combined photometric data of about 70 thousand point sources from the AKARI Far-Infrared Surveyor Bright Source Catalogue with AllWISE catalogue data to identify galaxies. We used Quadratic Discriminant Analysis (QDA) to classify our sources. The classification was based on a 6D parameter space that contained AKARI [F65/F90], [F90/F140], [F140/F160] and WISE W1-W2 colours along with WISE W1 magnitudes and AKARI [F140] flux values. Sources were classified into 3 main objects types: YSO candidates, evolved stars and galaxies. The training samples were SIMBAD entries of the input point sources wherever an associated SIMBAD object was found within a 30 arcsecond search radius. The QDA resulted more than 5000 AKARI galaxy candidate sources. The selection was tested cross-correlating our AKARI extragalactic catalogue with the Revised IRAS-FSC Redshift Catalogue (RIFSCz). A very good match was found. A further classification attempt was also made to differentiate between extragalactic subtypes using Support Vector Machines (SVMs). The results of the various methods showed that we can confidently separate cirrus dominated objects (type 1 of RIFSCz). Some of our “galaxy candidate” sources are associated with 2MASS extended objects, and listed in the NASA Extragalactic Database so far without clear proofs of their extragalactic nature. Examples will be presented in our poster. Finally other AKARI extragalactic catalogues will be also compared to our statistical selection.

  16. Redshift-Independent Distances in the NASA/IPAC Extragalactic Database Surpass 166,000 Estimates for 77,000 Galaxies

    NASA Astrophysics Data System (ADS)

    Steer, Ian

    2017-01-01

    Redshift-independent extragalactic distance estimates are used by researchers to establish the extragalactic distance scale, to underpin estimates of the Hubble constant, and to study peculiar velocities induced by gravitational attractions that perturb the motions of galaxies with respect to the “Hubble flow” of universal expansion. In 2006, the NASA/IPAC Extragalactic Database (NED) began providing users with a comprehensive tabulation of the redshift-independent extragalactic distance estimates published in the astronomical literature since 1980. A decade later, this compendium of distances (NED-D) surpassed 100,000 estimates for 28,000 galaxies, as reported in our recent journal article (Steer et al. 2016). Here, we are pleased to report NED-D has surpassed 166,000 distance estimates for 77,000 galaxies. Visualizations of the growth in data and of the statistical distributions of the most used distance indicators will be presented, along with an overview of the new data responsible for the most recent growth. We conclude with an outline of NED’s current plans to facilitate extragalactic research further by making greater use of redshift-independent distances. Additional information about other extensive updates to NED is presented at this meeting by Mazzarella et al. (2017). NED is operated by and this research is funded by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  17. Spitzer Imaging of Strongly lensed Herschel-selected Dusty Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Ma, Brian; Cooray, Asantha; Calanog, J. A.; Nayyeri, H.; Timmons, N.; Casey, C.; Baes, M.; Chapman, S.; Dannerbauer, H.; da Cunha, E.; De Zotti, G.; Dunne, L.; Farrah, D.; Fu, Hai; Gonzalez-Nuevo, J.; Magdis, G.; Michałowski, M. J.; Oteo, I.; Riechers, D. A.; Scott, D.; Smith, M. W. L.; Wang, L.; Wardlow, J.; Vaccari, M.; Viaene, S.; Vieira, J. D.

    2015-11-01

    We present the rest-frame optical spectral energy distribution (SED) and stellar masses of six Herschel-selected gravitationally lensed dusty, star-forming galaxies (DSFGs) at 1 < z < 3. These galaxies were first identified with Herschel/SPIRE imaging data from the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) and the Herschel Multi-tiered Extragalactic Survey (HerMES). The targets were observed with Spitzer/IRAC at 3.6 and 4.5 μm. Due to the spatial resolution of the IRAC observations at the level of 2″, the lensing features of a background DSFG in the near-infrared are blended with the flux from the foreground lensing galaxy in the IRAC imaging data. We make use of higher resolution Hubble/WFC3 or Keck/NIRC2 Adaptive Optics imaging data to fit light profiles of the foreground lensing galaxy (or galaxies) as a way to model the foreground components, in order to successfully disentangle the foreground lens and background source flux densities in the IRAC images. The flux density measurements at 3.6 and 4.5 μm, once combined with Hubble/WFC3 and Keck/NIRC2 data, provide important constraints on the rest-frame optical SED of the Herschel-selected lensed DSFGs. We model the combined UV- to millimeter-wavelength SEDs to establish the stellar mass, dust mass, star formation rate, visual extinction, and other parameters for each of these Herschel-selected DSFGs. These systems have inferred stellar masses in the range 8 × 1010-4 × 1011 M⊙ and star formation rates of around 100 M⊙ yr-1. This puts these lensed submillimeter systems well above the SFR-M* relation observed for normal star-forming galaxies at similar redshifts. The high values of SFR inferred for these systems are consistent with a major merger-driven scenario for star formation.

  18. PROBING THE STRUCTURE AND KINEMATICS OF THE TRANSITION LAYER BETWEEN THE MAGELLANIC STREAM AND THE HALO IN H I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigra, Lou; Stanimirovic, Snezana; Gallagher, John S. III

    2012-11-20

    The Magellanic Stream (MS) is a nearby laboratory for studying the fate of cool gas streams injected into a gaseous galactic halo. We investigate properties of the boundary layer between the cool MS gas and the hot Milky Way halo with 21 cm H I observations of a relatively isolated cloud having circular projection in the northern MS. Through averaging and modeling techniques, our observations, obtained with the Robert C. Byrd Green Bank Telescope, reach unprecedented 3{sigma} sensitivity of {approx}1 Multiplication-Sign 10{sup 17} cm{sup -2}, while retaining the telescope's 9.'1 resolution in the essential radial dimension. We find an envelopemore » of diffuse neutral gas with FWHM of 60 km s{sup -1}, associated in velocity with the cloud core having FWHM of 20 km s{sup -1}, extending to 3.5 times the core radius with a neutral mass seven times that of the core. We show that the envelope is too extended to represent a conduction-dominated layer between the core and the halo. Its observed properties are better explained by a turbulent mixing layer driven by hydrodynamic instabilities. The fortuitous alignment of the NGC 7469 background source near the cloud center allows us to combine UV absorption and H I emission data to determine a core temperature of 8350 {+-} 350 K. We show that the H I column density and size of the core can be reproduced when a slightly larger cloud is exposed to Galactic and extragalactic background ionizing radiation. Cooling in the large diffuse turbulent mixing layer envelope extends the cloud lifetime by at least a factor of two relative to a simple hydrodynamic ablation case, suggesting that the cloud is likely to reach the Milky Way disk.« less

  19. A correlation between hard gamma-ray sources and cosmic voids along the line of sight

    DOE PAGES

    Furniss, A.; Sutter, P. M.; Primack, J. R.; ...

    2014-11-25

    We estimate the galaxy density along lines of sight to hard extragalactic gamma-ray sources by correlating source positions on the sky with a void catalog based on the Sloan Digital Sky Survey (SDSS). Extragalactic gamma-ray sources that are detected at very high energy (VHE; E > 100 GeV) or have been highlighted as VHE-emitting candidates in the Fermi Large Area Telescope hard source catalog (together referred to as “VHE-like” sources) are distributed along underdense lines of sight at the 2.4σ level. There is a less suggestive correlation for the Fermi hard source population (1.7σ). A correlation between 10-500 GeV fluxmore » and underdense fraction along the line of sight for VHE-like and Fermi hard sources is found at 2.4σ and 2.6σ, calculated from the Pearson correlation coefficients of r = 0.57 and 0.47, respectively. The preference for underdense sight lines is not displayed by gamma-ray emitting galaxies within the second Fermi catalog, containing sources detected above 100 MeV, or the SDSS DR7 quasar catalog. We investigate whether this marginal correlation might be a result of lower extragalactic background light (EBL) photon density within the underdense regions and find that, even in the most extreme case of a entirely underdense sight line, the EBL photon density is only 2% less than the nominal EBL density. Translating this into gamma-ray attenuation along the line of sight for a highly attenuated source with opacity τ(E, z) ~ 5, we estimate that the attentuation of gamma-rays decreases no more than 10%. This decrease, although non-neglible, is unable to account for the apparent hard source correlation with underdense lines of sight.« less

  20. Statistics of the fractional polarization of extragalactic dusty sources in Planck HFI maps

    NASA Astrophysics Data System (ADS)

    Bonavera, L.; González-Nuevo, J.; De Marco, B.; Argüeso, F.; Toffolatti, L.

    2017-11-01

    We estimate the average fractional polarization at 143, 217 and 353 GHz of a sample of 4697 extragalactic dusty sources by applying stacking technique. The sample is selected from the second version of the Planck Catalogue of Compact Sources at 857 GHz, avoiding the region inside the Planck Galactic mask (fsky ∼ 60 per cent). We recover values for the mean fractional polarization at 217 and 353 GHz of (3.10 ± 0.75) per cent and (3.65 ± 0.66) per cent, respectively, whereas at 143 GHz we give a tentative value of (3.52 ± 2.48) per cent. We discuss the possible origin of the measured polarization, comparing our new estimates with those previously obtained from a sample of radio sources. We test different distribution functions and we conclude that the fractional polarization of dusty sources is well described by a log-normal distribution, as determined in the radio band studies. For this distribution we estimate μ217GHz = 0.3 ± 0.5 [that would correspond to a median fractional polarization of Πmed = (1.3 ± 0.7) per cent] and μ353GHz = 0.7 ± 0.4 (Πmed = (2.0 ± 0.8) per cent), σ217GHz = 1.3 ± 0.2 and σ353GHz = 1.1 ± 0.2. With these values we estimate the source number counts in polarization and the contribution given by these sources to the Cosmic Microwave Background B-mode angular power spectrum at 217, 353, 600 and 800 GHz. We conclude that extragalactic dusty sources might be an important contaminant for the primordial B-mode at frequencies >217 GHz.

  1. Milagro Observations of Potential TeV Emitters

    NASA Technical Reports Server (NTRS)

    Abdo, A. A.; Abeysekara, A. U.; Allen, B. T.; Aune, T.; Barber, A. S.; Berley, D.; Braun, J.; Chen, C.; Christopher, G. E.; DeYoung, T.; hide

    2014-01-01

    This paper reports the results from three targeted searches of Milagro TeV sky maps: two extragalactic point source lists and one pulsar source list. The first extragalactic candidate list consists of 709 candidates selected from the Fermi-LAT 2FGL catalog. The second extragalactic candidate list contains 31 candidates selected from the TeVCat source catalog that have been detected by imaging atmospheric Cherenkov telescopes (IACTs). In both extragalactic candidate lists Mkn 421 was the only source detected by Milagro. This paper presents the Milagro TeV flux for Mkn 421 and flux limits for the brighter Fermi- LAT extragalactic sources and for all TeVCat candidates. The pulsar list extends a previously published Milagro targeted search for Galactic sources. With the 32 new gamma-ray pulsars identified in 2FGL, the number of pulsars that are studied by both Fermi-LAT and Milagro is increased to 52. In this sample, we find that the probability of Milagro detecting a TeV emission coincident with a pulsar increases with the GeV flux observed by the Fermi-LAT in the energy range from 0.1 GeV to 100 GeV.

  2. The Pearson-Readhead Survey of Compact Extragalactic Radio Sources from Space. I. The Images

    NASA Astrophysics Data System (ADS)

    Lister, M. L.; Tingay, S. J.; Murphy, D. W.; Piner, B. G.; Jones, D. L.; Preston, R. A.

    2001-06-01

    We present images from a space-VLBI survey using the facilities of the VLBI Space Observatory Programme (VSOP), drawing our sample from the well-studied Pearson-Readhead survey of extragalactic radio sources. Our survey has taken advantage of long space-VLBI baselines and large arrays of ground antennas, such as the Very Long Baseline Array and European VLBI Network, to obtain high-resolution images of 27 active galactic nuclei and to measure the core brightness temperatures of these sources more accurately than is possible from the ground. A detailed analysis of the source properties is given in accompanying papers. We have also performed an extensive series of simulations to investigate the errors in VSOP images caused by the relatively large holes in the (u,v)-plane when sources are observed near the orbit normal direction. We find that while the nominal dynamic range (defined as the ratio of map peak to off-source error) often exceeds 1000:1, the true dynamic range (map peak to on-source error) is only about 30:1 for relatively complex core-jet sources. For sources dominated by a strong point source, this value rises to approximately 100:1. We find the true dynamic range to be a relatively weak function of the difference in position angle (P.A.) between the jet P.A. and u-v coverage major axis P.A. For regions with low signal-to-noise ratios, typically located down the jet away from the core, large errors can occur, causing spurious features in VSOP images that should be interpreted with caution.

  3. Efficacy of Inactivation of Legionella pneumophila by Multiple-Wavelength UV LEDs

    EPA Science Inventory

    Background: Ultraviolet (UV) light has been successfully used for treating a broad suite of pathogens without the concomitant formation of carcinogenic disinfection by-products (DBPs). However, conventional mercury UV lamps have some practical limitations in water treatment appli...

  4. Astrophysics from the moon; Proceedings of the Workshop, Annapolis, MD, Feb. 5-7, 1990

    NASA Technical Reports Server (NTRS)

    Mumma, Michael J. (Editor); Smith, Harlan J. (Editor)

    1990-01-01

    The present conference on astrophysics from the moon encompasses the study of the Galaxy, external planetary systems, solar physics, stars and stellar evolution, the frontiers of Galactic, extragalactic, and cosmological astronomy, an introduction to lunar-based astronomy, concepts for lunar observatories including high-energy observatories, solar observatories, and observatories for particle astrophysics and gravitational studies. Specific issues addressed include the dynamics of Jovian atmospheres, planetary magnetospheres, flare physics, exobiology and SETI from the lunar farside, and the study of interactive stars, star formation, H II regions in absorption at low frequencies, and normal galaxies. Also addressed are the potential lunar investigation of quasars, the formation epoch, and the large-scale structure of the universe, and observational issues related to X-ray large arrays, optical interferometers, VLF radio astronomy, a UV-solar reflecting coronagraph, and a heavy-nucleus detector.

  5. VizieR Online Data Catalog: Slug analysis of star clusters in NGC 628 & 7793 (Krumholz+, 2015)

    NASA Astrophysics Data System (ADS)

    Krumholz, M. R.; Adamo, A.; Fumagalli, M.; Wofford, A.; Calzetti, D.; Lee, J. C.; Whitmore, B. C.; Bright, S. N.; Grasha, K.; Gouliermis, D. A.; Kim, H.; Nair, P.; Ryon, J. E.; Smith, L. J.; Thilker, D.; Ubeda, L.; Zackrisson, E.

    2016-02-01

    In this paper we use slug, the Stochastically Lighting Up Galaxies code (da Silva et al. 2012ApJ...745..145D, 2014MNRAS.444.3275D; Krumholz et al. 2015MNRAS.452.1447K), and its post-processing tool for analysis of star cluster properties, cluster_slug, to analyze an initial sample of clusters from the LEGUS (Calzetti et al. 2015AJ....149...51C). A description of the steps required to produce final cluster catalogs of the Legacy Extragalactic UV Survey (LEGUS) targets can be found in Calzetti et al. (2015AJ....149...51C), and in A. Adamo et al. (2015, in preparation). LEGUS is an HST Cycle 21 Treasury program that is imaging 50 nearby galaxies in five broadbands with the WFC3/UVIS, from the NUV to the I band. (1 data file).

  6. Review: Magnetic Fields of O-Type Stars

    NASA Astrophysics Data System (ADS)

    Wade, G. A.; MiMeS Collaboration

    2015-04-01

    Since 2002, strong, organized magnetic fields have been firmly detected at the surfaces of about 10 Galactic O-type stars. In this paper I will review the characteristics of the inferred fields of individual stars as well as the overall population. I will discuss the extension of the “magnetic desert,” first inferred among the A-type stars, to O stars up to 60 M⊙. I will discuss the interaction of the winds of the magnetic stars with the fields above their surfaces, generating complex “dynamical magnetosphere” structures detected in optical and UV lines, and in X-ray lines and continuum. Finally, I will discuss the detection of a small number of variable O stars in the LMC and SMC that exhibit spectral characteristics analogous to the known Galactic magnetic stars, and that almost certainly represent the first known examples of extragalactic magnetic stars.

  7. Particle Dark Matter Searches Outside the Local Group.

    PubMed

    Regis, Marco; Xia, Jun-Qing; Cuoco, Alessandro; Branchini, Enzo; Fornengo, Nicolao; Viel, Matteo

    2015-06-19

    If dark matter (DM) is composed by particles which are nongravitationally coupled to ordinary matter, their annihilations or decays in cosmic structures can result in detectable radiation. We show that the most powerful technique to detect a particle DM signal outside the Local Group is to study the angular cross-correlation of nongravitational signals with low-redshift gravitational probes. This method allows us to enhance the signal to noise from the regions of the Universe where the DM-induced emission is preferentially generated. We demonstrate the power of this approach by focusing on GeV-TeV DM and on the recent cross-correlation analysis between the 2MASS galaxy catalogue and the Fermi-LAT γ-ray maps. We show that this technique is more sensitive than other extragalactic γ-ray probes, such as the energy spectrum and angular autocorrelation of the extragalactic background, and emission from clusters of galaxies. Intriguingly, we find that the measured cross-correlation can be well fitted by a DM component, with a thermal annihilation cross section and mass between 10 and 100 GeV, depending on the small-scale DM properties and γ-ray production mechanism. This solicits further data collection and dedicated analyses.

  8. A Public Outreach Blog for the CANDELS Project

    NASA Astrophysics Data System (ADS)

    Kartaltepe, Jeyhan S.; Pforr, J.; CANDELS Collaboration

    2013-01-01

    In May 2012 the CANDELS collaboration launched a public outreach blog, aimed at the general public, where we discuss CANDELS related science. CANDELS (the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey) is a large Hubble Space Telescope Multi-Cycle Treasury Program to image portions of the five most commonly studied deep fields in the near-infrared with WFC3. This large collaboration encompasses a wide range of science topics including galaxy evolution and observational cosmology. We seek to understand how galaxies in the early universe formed and evolved to become the galaxies we see today. We post on a wide variety of topics including general background discussion on many issues in extragalactic astronomy, current science results and papers, highlights from meetings that we have attended, and what life as an astronomer is like (going on observing runs, writing proposals, and how we became interested in astronomy). The posts are written by a large number of collaboration members at different career stages (including students, postdocs, and permanent staff/faculty members) and is widely read and advertised on Facebook, Twitter, and Google+. Our blog can be found here: http://candels-collaboration.blogspot.com

  9. Particle Dark Matter Searches Outside the Local Group

    NASA Astrophysics Data System (ADS)

    Regis, Marco; Xia, Jun-Qing; Cuoco, Alessandro; Branchini, Enzo; Fornengo, Nicolao; Viel, Matteo

    2015-06-01

    If dark matter (DM) is composed by particles which are nongravitationally coupled to ordinary matter, their annihilations or decays in cosmic structures can result in detectable radiation. We show that the most powerful technique to detect a particle DM signal outside the Local Group is to study the angular cross-correlation of nongravitational signals with low-redshift gravitational probes. This method allows us to enhance the signal to noise from the regions of the Universe where the DM-induced emission is preferentially generated. We demonstrate the power of this approach by focusing on GeV-TeV DM and on the recent cross-correlation analysis between the 2MASS galaxy catalogue and the Fermi-LAT γ -ray maps. We show that this technique is more sensitive than other extragalactic γ -ray probes, such as the energy spectrum and angular autocorrelation of the extragalactic background, and emission from clusters of galaxies. Intriguingly, we find that the measured cross-correlation can be well fitted by a DM component, with a thermal annihilation cross section and mass between 10 and 100 GeV, depending on the small-scale DM properties and γ -ray production mechanism. This solicits further data collection and dedicated analyses.

  10. The Hawaii SCUBA-2 Lensing Cluster Survey: Number Counts and Submillimeter Flux Ratios

    NASA Astrophysics Data System (ADS)

    Hsu, Li-Yen; Cowie, Lennox L.; Chen, Chian-Chou; Barger, Amy J.; Wang, Wei-Hao

    2016-09-01

    We present deep number counts at 450 and 850 μm using the SCUBA-2 camera on the James Clerk Maxwell Telescope. We combine data for six lensing cluster fields and three blank fields to measure the counts over a wide flux range at each wavelength. Thanks to the lensing magnification, our measurements extend to fluxes fainter than 1 mJy and 0.2 mJy at 450 μm and 850 μm, respectively. Our combined data highly constrain the faint end of the number counts. Integrating our counts shows that the majority of the extragalactic background light (EBL) at each wavelength is contributed by faint sources with L IR < 1012 L ⊙, corresponding to luminous infrared galaxies (LIRGs) or normal galaxies. By comparing our result with the 500 μm stacking of K-selected sources from the literature, we conclude that the K-selected LIRGs and normal galaxies still cannot fully account for the EBL that originates from sources with L IR < 1012 L ⊙. This suggests that many faint submillimeter galaxies may not be included in the UV star formation history. We also explore the submillimeter flux ratio between the two bands for our 450 μm and 850 μm selected sources. At 850 μm, we find a clear relation between the flux ratio and the observed flux. This relation can be explained by a redshift evolution, where galaxies at higher redshifts have higher luminosities and star formation rates. In contrast, at 450 μm, we do not see a clear relation between the flux ratio and the observed flux.

  11. Efficacy of Inactivation of Human Enteroviruses by Multiple-Wavelength UV LEDs - abstract

    EPA Science Inventory

    Background: Ultraviolet (UV) light has been successfully used for treating a broad suite of pathogens without the concomitant formation of carcinogenic disinfection by-products (DBPs). However, conventional mercury UV lamps have some practical limitations in water treatment appli...

  12. Sco X-1 - A galactic radio source with an extragalactic radio morphology

    NASA Technical Reports Server (NTRS)

    Geldzahler, B. J.; Corey, B. E.; Fomalont, E. B.; Hilldrup, K.

    1981-01-01

    VLA observations of radio emissions at 1465 and 4885 MHz, of Sco X-1 confirm the existence of a colinear triple structure. Evidence that the three components of Sco X-1 are physically associated is presented, including the morphology, spectrum, variability, volume emissivity and magnetic field strength. The possibility of a physical phenomenon occurring in Sco X-1 similar to that occurring in extragalactic radio sources is discussed, and two galactic sources are found having extended emission similar to that in extragalactic objects. The extended structure of Sco X-1 is also observed to be similar to that of the hot spots in luminous extragalactic sources, and a radio source 20 arcmin from Sco X-1 is found to lie nearly along the radio axis formed by the components of Sco X-1.

  13. New Limits on Extragalactic Magnetic Fields from Rotation Measures

    NASA Astrophysics Data System (ADS)

    Pshirkov, M. S.; Tinyakov, P. G.; Urban, F. R.

    2016-05-01

    We take advantage of the wealth of rotation measures data contained in the NRAO VLA Sky Survey catalog to derive new, statistically robust, upper limits on the strength of extragalactic magnetic fields. We simulate the extragalactic magnetic field contribution to the rotation measures for a given field strength and correlation length, by assuming that the electron density follows the distribution of Lyman-α clouds. Based on the observation that rotation measures from distant radio sources do not exhibit any trend with redshift, while the extragalactic contribution instead grows with distance, we constrain fields with Jeans' length coherence length to be below 1.7 nG at the 2 σ level, and fields coherent across the entire observable Universe below 0.65 nG. These limits do not depend on the particular origin of these cosmological fields.

  14. Deriving the Contribution of Blazars to the Fermi-LAT Extragalactic γ-ray Background at E > 10 GeV with Efficiency Corrections and Photon Statistics

    NASA Astrophysics Data System (ADS)

    Di Mauro, M.; Manconi, S.; Zechlin, H.-S.; Ajello, M.; Charles, E.; Donato, F.

    2018-04-01

    The Fermi Large Area Telescope (LAT) Collaboration has recently released the Third Catalog of Hard Fermi-LAT Sources (3FHL), which contains 1556 sources detected above 10 GeV with seven years of Pass 8 data. Building upon the 3FHL results, we investigate the flux distribution of sources at high Galactic latitudes (| b| > 20^\\circ ), which are mostly blazars. We use two complementary techniques: (1) a source-detection efficiency correction method and (2) an analysis of pixel photon count statistics with the one-point probability distribution function (1pPDF). With the first method, using realistic Monte Carlo simulations of the γ-ray sky, we calculate the efficiency of the LAT to detect point sources. This enables us to find the intrinsic source-count distribution at photon fluxes down to 7.5 × 10‑12 ph cm‑2 s‑1. With this method, we detect a flux break at (3.5 ± 0.4) × 10‑11 ph cm‑2 s‑1 with a significance of at least 5.4σ. The power-law indexes of the source-count distribution above and below the break are 2.09 ± 0.04 and 1.07 ± 0.27, respectively. This result is confirmed with the 1pPDF method, which has a sensitivity reach of ∼10‑11 ph cm‑2 s‑1. Integrating the derived source-count distribution above the sensitivity of our analysis, we find that (42 ± 8)% of the extragalactic γ-ray background originates from blazars.

  15. A Deep Extragalactic Survey with the ART-XC Telescope of the Spectrum-RG Observatory: Simulations and Expected Results

    NASA Astrophysics Data System (ADS)

    Mereminskiy, I. A.; Filippova, E. V.; Burenin, R. A.; Sazonov, S. Yu.; Pavlinsky, M. N.; Tkachenko, A. Yu.; Lapshov, I. Yu.; Shtykovskiy, A. E.; Krivonos, R. A.

    2018-02-01

    To choose the best strategy for conducting a deep extragalactic survey with the ART-XC X-ray telescope onboard the Spectrum-Röntgen-Gamma (SRG) observatory and to estimate the expected results, we have simulated the observations of a 1.1° × 1.1° field in the 5-11 and 8-24 keV energy bands. For this purpose, we have constructed a model of the active galactic nuclei (AGN) population that reflects the properties of the X-ray emission from such objects. The photons that "arrived" from these sources were passed through a numerical model of the telescope, while the resulting data were processed with the standard ART-XC data processing pipeline. We show that several hundred AGNs at redshifts up to z ≈ 3 will be detected in such a survey over 1.2 Ms of observations with the expected charged particle background levels. Among them there will be heavily obscured AGNs, which will allow a more accurate estimate of the fraction of such objects in the total population to be made. Source confusion is expected at fluxes below 2 × 10-14 erg s-1 cm-2 (5-11 keV). Since this value can exceed the source detection threshold in a deep survey at low particle background levels, it may turn out to be more interesting to conduct a survey of larger area (several square degrees) but smaller depth, obtaining a sample of approximately four hundred bright AGNs as a result.

  16. Exploring cosmic origins with CORE: Extragalactic sources in cosmic microwave background maps

    NASA Astrophysics Data System (ADS)

    De Zotti, G.; González-Nuevo, J.; Lopez-Caniego, M.; Negrello, M.; Greenslade, J.; Hernández-Monteagudo, C.; Delabrouille, J.; Cai, Z.-Y.; Bonato, M.; Achúcarro, A.; Ade, P.; Allison, R.; Ashdown, M.; Ballardini, M.; Banday, A. J.; Banerji, R.; Bartlett, J. G.; Bartolo, N.; Basak, S.; Bersanelli, M.; Biesiada, M.; Bilicki, M.; Bonaldi, A.; Bonavera, L.; Borrill, J.; Bouchet, F.; Boulanger, F.; Brinckmann, T.; Bucher, M.; Burigana, C.; Buzzelli, A.; Calvo, M.; Carvalho, C. S.; Castellano, M. G.; Challinor, A.; Chluba, J.; Clements, D. L.; Clesse, S.; Colafrancesco, S.; Colantoni, I.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; de Bernardis, P.; de Gasperis, G.; Diego, J. M.; Di Valentino, E.; Errard, J.; Feeney, S. M.; Fernández-Cobos, R.; Ferraro, S.; Finelli, F.; Forastieri, F.; Galli, S.; Génova-Santos, R. T.; Gerbino, M.; Grandis, S.; Hagstotz, S.; Hanany, S.; Handley, W.; Hervias-Caimapo, C.; Hills, M.; Hivon, E.; Kiiveri, K.; Kisner, T.; Kitching, T.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamagna, L.; Lasenby, A.; Lattanzi, M.; Le Brun, A.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lindholm, V.; Luzzi, G.; Maffei, B.; Mandolesi, N.; Martinez-Gonzalez, E.; Martins, C. J. A. P.; Masi, S.; Massardi, M.; Matarrese, S.; McCarthy, D.; Melchiorri, A.; Melin, J.-B.; Molinari, D.; Monfardini, A.; Natoli, P.; Notari, A.; Paiella, A.; Paoletti, D.; Partridge, R. B.; Patanchon, G.; Piat, M.; Pisano, G.; Polastri, L.; Polenta, G.; Pollo, A.; Poulin, V.; Quartin, M.; Remazeilles, M.; Roman, M.; Rossi, G.; Roukema, B. F.; Rubiño-Martín, J.-A.; Salvati, L.; Scott, D.; Serjeant, S.; Tartari, A.; Toffolatti, L.; Tomasi, M.; Trappe, N.; Triqueneaux, S.; Trombetti, T.; Tucci, M.; Tucker, C.; Väliviita, J.; van de Weygaert, R.; Van Tent, B.; Vennin, V.; Vielva, P.; Vittorio, N.; Young, K.; Zannoni, M.

    2018-04-01

    We discuss the potential of a next generation space-borne Cosmic Microwave Background (CMB) experiment for studies of extragalactic sources. Our analysis has particular bearing on the definition of the future space project, CORE, that has been submitted in response to ESA's call for a Medium-size mission opportunity as the successor of the Planck satellite. Even though the effective telescope size will be somewhat smaller than that of Planck, CORE will have a considerably better angular resolution at its highest frequencies, since, in contrast with Planck, it will be diffraction limited at all frequencies. The improved resolution implies a considerable decrease of the source confusion, i.e. substantially fainter detection limits. In particular, CORE will detect thousands of strongly lensed high-z galaxies distributed over the full sky. The extreme brightness of these galaxies will make it possible to study them, via follow-up observations, in extraordinary detail. Also, the CORE resolution matches the typical sizes of high-z galaxy proto-clusters much better than the Planck resolution, resulting in a much higher detection efficiency; these objects will be caught in an evolutionary phase beyond the reach of surveys in other wavebands. Furthermore, CORE will provide unique information on the evolution of the star formation in virialized groups and clusters of galaxies up to the highest possible redshifts. Finally, thanks to its very high sensitivity, CORE will detect the polarized emission of thousands of radio sources and, for the first time, of dusty galaxies, at mm and sub-mm wavelengths, respectively.

  17. Constraining dark matter annihilation with the isotropic γ-ray background: Updated limits and future potential

    NASA Astrophysics Data System (ADS)

    Bringmann, Torsten; Calore, Francesca; Di Mauro, Mattia; Donato, Fiorenza

    2014-01-01

    The nature of the isotropic γ-ray background (IGRB) measured by the Large Area Telescope (LAT) on the Fermi γ-ray space telescope (Fermi) remains partially unexplained. Non-negligible contributions may originate from extragalactic populations of unresolved sources such as blazars, star-forming galaxies or galactic millisecond pulsars. A recent prediction of the diffuse γ-ray emission from active galactic nuclei (AGN) with a large viewing angle with respect to the line of sight has demonstrated that this faint but numerous population is also expected to contribute significantly to the total IGRB intensity. A more exotic contribution to the IGRB invokes the pair annihilation of dark matter (DM) weakly interacting massive particles (WIMPs) into γ rays. In this work, we evaluate the room left for galactic DM at high latitudes (>10∘) by including photons from both prompt emission and inverse Compton scattering, emphasizing the impact of the newly discovered contribution from misaligned AGN (MAGN) for such an analysis. Summing up all significant galactic and extragalactic components of the IGRB, we find that an improved understanding of the associated astrophysical uncertainties is still mandatory to put stringent bounds on thermally produced DM. On the other hand, we also demonstrate that the IGRB has the potential to be one of the most competitive future ways to test the DM WIMP hypothesis, once the present uncertainties are even slightly reduced. In fact, if MAGN contribute even at 90% of the maximal level consistent with our current understanding, thermally produced WIMPs would be severely constrained as DM candidates for masses up to several TeV.

  18. Constraints on dark matter from intergalactic radiation

    NASA Technical Reports Server (NTRS)

    Overduin, J. M.; Wesson, P. S.

    1992-01-01

    Several of the dark matter candidates that have been proposed are believed to be unstable to decay, which would contribute photons to the radiation field between galaxies. The main candidates of this type are light neutrinos and axions, primordial mini-black holes, and a nonzero 'vacuum' energy. All of these can be constrained in nature by observational data on the extragalactic background light and the microwave background radiation. Black holes and the vacuum can be ruled out as significant contributors to the 'missing mass'. Light axions are also unlikely candidates; however, those with extremely small rest energies (the so-called 'invisible' axions) remain feasible. Light neutrinos, like those proposed by Sciama, are marginally viable. In general, we believe that the intergalactic radiation field is an important way of constraining all types of dark matter.

  19. Science Results From The ARCADE Open-Aperture Cryogenic Balloon Payload

    NASA Technical Reports Server (NTRS)

    Kogut, Alan J.

    2010-01-01

    The Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission (ARCADE) is a balloon-borne instrument to measure the frequency spectrum of the cosmic microwave background and diffuse Galactic foregrounds at centimeter wavelengths. ARCADE greatly reduces measurement uncertainties compared to previous balloon-borne or ground-based instrument using a double-nulled design that features fully cryogenic optics with no windows between the atmosphere and the 2.7 K instrument. A four-hour flight in 2006 achieved sensitivity comparable to the COBE/FIRAS satellite measurement while providing new insights for emission ranging from spinning dust in the interstellar medium to an unexpectedly bright extragalactic radio background. I will discuss scientific results from the ARCADE program and implications of the ARCADE cold optics for millimeter and sub-mm astronomy.

  20. The soft X-ray diffuse background

    NASA Technical Reports Server (NTRS)

    Mccammon, D.; Burrows, D. N.; Sanders, W. T.; Kraushaar, W. L.

    1982-01-01

    Maps of the diffuse X-ray background intensity covering essentially the entire sky with approx. 7 deg spatial resolution are presented for seven energy bands. The data were obtained on a series of ten sounding rocket flights conducted over a seven-year period. The different nature of the spatial distributions in different bands implies at least three distinct origins for the diffuse X-rays, none of which is well-understood. At energies or approx. 2000 eV, an isotropic and presumably extraglalactic 500 and 1000 eV, an origin which is at least partially galactic seems called for. At energies 284 eV, the observed intensity is anticorrelated with neutral hydrogen column density, but we find it unlikely that this anticorrelation is simply due to absorption of an extragalactic or halo source.

  1. Fermi gamma-ray imaging of a radio galaxy.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cavazzuti, E; Cecchi, C; Celik, O; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Colafrancesco, S; Cominsky, L R; Conrad, J; Costamante, L; Cutini, S; Davis, D S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Finke, J; Focke, W B; Fortin, P; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Georganopoulos, M; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hughes, R E; Jackson, M S; Jóhannesson, G; Johnson, A S; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sambruna, R; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Stawarz, Ł; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wallace, E; Wang, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M; Hardcastle, M J; Kazanas, D

    2010-05-07

    The Fermi Gamma-ray Space Telescope has detected the gamma-ray glow emanating from the giant radio lobes of the radio galaxy Centaurus A. The resolved gamma-ray image shows the lobes clearly separated from the central active source. In contrast to all other active galaxies detected so far in high-energy gamma-rays, the lobe flux constitutes a considerable portion (greater than one-half) of the total source emission. The gamma-ray emission from the lobes is interpreted as inverse Compton-scattered relic radiation from the cosmic microwave background, with additional contribution at higher energies from the infrared-to-optical extragalactic background light. These measurements provide gamma-ray constraints on the magnetic field and particle energy content in radio galaxy lobes, as well as a promising method to probe the cosmic relic photon fields.

  2. In situ measurement of VUV/UV radiation from low-pressure microwave-produced plasma in Ar/O2 gas mixtures

    NASA Astrophysics Data System (ADS)

    Iglesias, E. J.; Mitschker, F.; Fiebrandt, M.; Bibinov, N.; Awakowicz, P.

    2017-08-01

    Ultraviolet (UV) and vacuum ultraviolet (VUV) spectral irradiance is determined in low-pressure microwave-produced plasma, which is regularly used for polymer surface treatment. The re-emitted fluorescence in the UV/VIS spectral range from a sodium salicylate layer is measured. This fluorescence is related to VUV/UV radiation in different spectral bands based on cut-off filters. The background produced by direct emitted radiation in the fluorescence spectral region is quantified using a specific background filter, thus enabling the use of the whole fluorescence spectral range. A novel procedure is applied to determine the absolute value of the VUV/UV irradiance on a substrate. For that, an independent measurement of the absolute spectral emissivity of the plasma in the UV is performed. The measured irradiances on a substrate from a 25 Pa Ar/O2-produced plasma are in the range of 1015-1016 (photon~ s-1 cm-2). These values include the contribution from impurities present in the discharge.

  3. An Evaluation of UV-Monitoring Enhanced Skin Cancer Prevention among Farm Youth in Rural Virginia

    ERIC Educational Resources Information Center

    Chen, Yi-Chun; Ohanehi, Donatus C.; Redican, Kerry J.

    2015-01-01

    Background: Health districts in southwest Virginia have one of the highest ultraviolet (UV) radiation exposure and sunburn rate. Due to higher levels of UV exposure, rural farm youth are at higher risk for skin cancer than non-farm youth. Few studies have been published that explore best practices for decreasing UV exposure among this population.…

  4. Study of UV imaging technology for noninvasive detection of latent fingerprints

    NASA Astrophysics Data System (ADS)

    Li, Hong-xia; Cao, Jing; Niu, Jie-qing; Huang, Yun-gang

    2013-09-01

    Using UV imaging technology, according to the special absorption 、reflection 、scattering and fluorescence characterization of the various residues in fingerprints (fatty acid ester, protein, and carboxylic acid salts etc) to the UV light, weaken or eliminate the background disturbance to increase the brightness contrast of fingerprints with the background, and design、setup the illumination optical system and UV imaging system, the noninvasive detection of latent fingerprints remaining on various object surface are studied. In the illumination optical system, using the 266nm UV Nd:YAG solid state laser as illumination light source, by calculating the best coupling conditions of the laser beam with UV liquid core fiber and analyzing the beam transforming characterizations, we designed and setup the optical system to realize the UV imaging uniform illumination. In the UV imaging system, the UV lens is selected as the fingerprint imaging element, and the UV intensified CCD (ICCD) which consists of a second-generation UV image intensifier and a CCD coupled by fiber plate and taper directly are used as the imaging sensing element. The best imaging conditions of the UV lens with ICCD were analyzed and the imaging system was designed and setup. In this study, by analyzing the factors which influence the detection effect, optimal design and setup the illumination system and imaging system, latent fingerprints on the surface of the paint tin box、plastic、smooth paper、notebook paper and print paper were noninvasive detected and appeared, and the result meet the fingerprint identification requirements in forensic science.

  5. The impact of clustering and angular resolution on far-infrared and millimeter continuum observations

    NASA Astrophysics Data System (ADS)

    Béthermin, Matthieu; Wu, Hao-Yi; Lagache, Guilaine; Davidzon, Iary; Ponthieu, Nicolas; Cousin, Morgane; Wang, Lingyu; Doré, Olivier; Daddi, Emanuele; Lapi, Andrea

    2017-11-01

    Follow-up observations at high-angular resolution of bright submillimeter galaxies selected from deep extragalactic surveys have shown that the single-dish sources are comprised of a blend of several galaxies. Consequently, number counts derived from low- and high-angular-resolution observations are in tension. This demonstrates the importance of resolution effects at these wavelengths and the need for realistic simulations to explore them. We built a new 2 deg2 simulation of the extragalactic sky from the far-infrared to the submillimeter. It is based on an updated version of the 2SFM (two star-formation modes) galaxy evolution model. Using global galaxy properties generated by this model, we used an abundance-matching technique to populate a dark-matter lightcone and thus simulate the clustering. We produced maps from this simulation and extracted the sources, and we show that the limited angular resolution of single-dish instruments has a strong impact on (sub)millimeter continuum observations. Taking into account these resolution effects, we are reproducing a large set of observables, as number counts and their evolution with redshift and cosmic infrared background power spectra. Our simulation consistently describes the number counts from single-dish telescopes and interferometers. In particular, at 350 and 500 μm, we find that the number counts measured by Herschel between 5 and 50 mJy are biased towards high values by a factor 2, and that the redshift distributions are biased towards low redshifts. We also show that the clustering has an important impact on the Herschel pixel histogram used to derive number counts from P(D) analysis. We find that the brightest galaxy in the beam of a 500 μm Herschel source contributes on average to only 60% of the Herschel flux density, but that this number will rise to 95% for future millimeter surveys on 30 m-class telescopes (e.g., NIKA2 at IRAM). Finally, we show that the large number density of red Herschel sources found in observations but not in models might be an observational artifact caused by the combination of noise, resolution effects, and the steepness of color- and flux density distributions. Our simulation, called Simulated Infrared Dusty Extragalactic Sky (SIDES), is publicly available. Our simulation Simulated Infrared Dusty Extragalactic Sky (SIDES) is available at http://cesam.lam.fr/sides.

  6. Extragalactic gamma-ray background from AGN winds and star-forming galaxies in cosmological galaxy-formation models

    NASA Astrophysics Data System (ADS)

    Lamastra, A.; Menci, N.; Fiore, F.; Antonelli, L. A.; Colafrancesco, S.; Guetta, D.; Stamerra, A.

    2017-10-01

    We derive the contribution to the extragalactic gamma-ray background (EGB) from active galactic nuclei (AGN) winds and star-forming galaxies by including a physical model for the γ-ray emission produced by relativistic protons accelerated by AGN-driven and supernova-driven shocks into a state-of-the-art semi-analytic model of galaxy formation. This is based on galaxy interactions as triggers of AGN accretion and starburst activity and on expanding blast waves as the mechanism to communicate outwards the energy injected into the interstellar medium by the active nucleus. We compare the model predictions with the latest measurement of the EGB spectrum performed by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) in the range between 100 MeV and 820 GeV. We find that AGN winds can provide 35 ± 15% of the observed EGB in the energy interval Eγ = 0.1-1 GeV, for 73 ± 15% at Eγ = 1-10 GeV, and for 60 ± 20% at Eγ ≳10 GeV. The AGN wind contribution to the EGB is predicted to be larger by a factor of 3-5 than that provided by star-forming galaxies (quiescent plus starburst) in the hierarchical clustering scenario. The cumulative γ-ray emission from AGN winds and blazars can account for the amplitude and spectral shape of the EGB, assuming the standard acceleration theory, and AGN wind parameters that agree with observations. We also compare the model prediction for the cumulative neutrino background from AGN winds with the most recent IceCube data. We find that for AGN winds with accelerated proton spectral index p = 2.2-2.3, and taking into account internal absorption of γ-rays, the Fermi-LAT and IceCube data could be reproduced simultaneously.

  7. The NuSTAR Extragalactic Surveys: The Number Counts of Active Galactic Nuclei and The Resolved Fraction of The Cosmic X-Ray Background

    DOE PAGES

    Harrison, F. A.; Aird, J.; Civano, F.; ...

    2016-11-07

    Here, we present the 3–8 keV and 8–24 keV number counts of active galactic nuclei (AGNs) identified in the Nuclear Spectroscopic Telescope Array (NuSTAR) extragalactic surveys. NuSTAR has now resolved 33%–39% of the X-ray background in the 8–24 keV band, directly identifying AGNs with obscuring columns up tomore » $$\\sim {10}^{25}\\,{\\mathrm{cm}}^{-2}$$. In the softer 3–8 keV band the number counts are in general agreement with those measured by XMM-Newton and Chandra over the flux range $$5\\times {10}^{-15}\\,\\lesssim $$ S(3–8 keV)/$$\\mathrm{erg}\\,{{\\rm{s}}}^{-1}\\,{\\mathrm{cm}}^{-2}\\,\\lesssim \\,{10}^{-12}$$ probed by NuSTAR. In the hard 8–24 keV band NuSTAR probes fluxes over the range $$2\\times {10}^{-14}\\,\\lesssim $$ S(8–24 keV)/$$\\mathrm{erg}\\,{{\\rm{s}}}^{-1}\\,{\\mathrm{cm}}^{-2}\\,\\lesssim \\,{10}^{-12}$$, a factor ~100 fainter than previous measurements. The 8–24 keV number counts match predictions from AGN population synthesis models, directly confirming the existence of a population of obscured and/or hard X-ray sources inferred from the shape of the integrated cosmic X-ray background. The measured NuSTAR counts lie significantly above simple extrapolation with a Euclidian slope to low flux of the Swift/BAT 15–55 keV number counts measured at higher fluxes (S(15–55 keV) gsim 10-11 $$\\mathrm{erg}\\,{{\\rm{s}}}^{-1}\\,{\\mathrm{cm}}^{-2}$$), reflecting the evolution of the AGN population between the Swift/BAT local ($$z\\lt 0.1$$) sample and NuSTAR's $$z\\sim 1$$ sample. CXB synthesis models, which account for AGN evolution, lie above the Swift/BAT measurements, suggesting that they do not fully capture the evolution of obscured AGNs at low redshifts.« less

  8. Infrared-faint radio sources: a cosmological view. AGN number counts, the cosmic X-ray background and SMBH formation

    NASA Astrophysics Data System (ADS)

    Zinn, P.-C.; Middelberg, E.; Ibar, E.

    2011-07-01

    Context. Infrared-faint radio sources (IFRS) are extragalactic emitters clearly detected at radio wavelengths but barely detected or undetected at optical and infrared wavelengths, with 5σ sensitivities as low as 1 μJy. Aims: Spectral energy distribution (hereafter SED) modelling and analyses of their radio properties indicate that IFRS are consistent with a population of (potentially extremely obscured) high-redshift AGN at 3 ≤ z ≤ 6. We demonstrate some astrophysical implications of this population and compare them to predictions from models of galaxy evolution and structure formation. Methods: We compiled a list of IFRS from four deep extragalactic surveys and extrapolated the IFRS number density to a survey-independent value of (30.8 ± 15.0) deg-2. We computed the IFRS contribution to the total number of AGN in the Universe to account for the cosmic X-ray background. By estimating the black hole mass contained in IFRS, we present conclusions for the SMBH mass density in the early universe and compare it to relevant simulations of structure formation after the Big Bang. Results: The number density of AGN derived from the IFRS density was found to be ~310 deg-2, which is equivalent to a SMBH mass density of the order of 103 M⊙ Mpc-3 in the redshift range 3 ≤ z ≤ 6. This produces an X-ray flux of 9 × 10-16 W m-2 deg-2 in the 0.5-2.0 keV band and 3 × 10-15 W m-2 deg-2 in the 2.0-10 keV band, in agreement with the missing unresolved components of the Cosmic X-ray Background. To address SMBH formation after the Big Bang we invoke a scenario involving both halo gas accretion and major mergers.

  9. Anisotropies in the diffuse gamma-ray background from dark matter with Fermi LAT: A closer look

    DOE PAGES

    Cuoco, A.; Sellerholm, A.; Conrad, J.; ...

    2011-06-21

    We perform a detailed study of the sensitivity to the anisotropies related to dark matter (DM) annihilation in the isotropic gamma-ray background (IGRB) as measured by the Fermi Large Area Telescope ( Fermi LAT). For the first time, we take into account the effects of the Galactic foregrounds and use a realistic representation of the Fermi LAT. We implement an analysis pipeline which simulates Fermi LAT data sets starting from model maps of the Galactic foregrounds, the Fermi-resolved point sources, the extragalactic diffuse emission and the signal from DM annihilation. The effects of the detector are taken into account bymore » convolving the model maps with the Fermi LAT instrumental response. We then use the angular power spectrum to characterize the anisotropy properties of the simulated data and to study the sensitivity to DM. We consider DM anisotropies of extragalactic origin and of Galactic origin (which can be generated through annihilation in the Milky Way substructures) as opposed to a background of anisotropies generated by sources of astrophysical origin, blazars for example. We find that with statistics from 5 yr of observation, Fermi is sensitive to a DM contribution at the level of 1–10 per cent of the measured IGRB depending on the DM mass m χ and annihilation mode. In terms of the thermally averaged cross-section , this corresponds to ~10 –25 cm 3 s –1, i.e. slightly above the typical expectations for a thermal relic, for low values of the DM mass m χ≲ 100 GeV. As a result, the anisotropy method for DM searches has a sensitivity comparable to the usual methods based only on the energy spectrum and thus constitutes an independent and complementary piece of information in the DM puzzle.« less

  10. Very-High-Energy γ-Ray Observations of the Blazar 1ES 2344+514 with VERITAS

    NASA Astrophysics Data System (ADS)

    Allen, C.; Archambault, S.; Archer, A.; Benbow, W.; Bird, R.; Bourbeau, E.; Brose, R.; Buchovecky, M.; Buckley, J. H.; Bugaev, V.; Cardenzana, J. V.; Cerruti, M.; Chen, X.; Christiansen, J. L.; Connolly, M. P.; Cui, W.; Daniel, M. K.; Eisch, J. D.; Falcone, A.; Feng, Q.; Fernandez-Alonso, M.; Finley, J. P.; Fleischhack, H.; Flinders, A.; Fortson, L.; Furniss, A.; Gillanders, G. H.; Griffin, S.; Grube, J.; Hütten, M.; Håkansson, N.; Hanna, D.; Hervet, O.; Holder, J.; Hughes, G.; Humensky, T. B.; Johnson, C. A.; Kaaret, P.; Kar, P.; Kelley-Hoskins, N.; Kertzman, M.; Kieda, D.; Krause, M.; Krennrich, F.; Kumar, S.; Lang, M. J.; Maier, G.; McArthur, S.; McCann, A.; Meagher, K.; Moriarty, P.; Mukherjee, R.; Nguyen, T.; Nieto, D.; O'Brien, S.; de Bhróithe, A. O'Faoláin; Ong, R. A.; Otte, A. N.; Park, N.; Petrashyk, A.; Pichel, A.; Pohl, M.; Popkow, A.; Pueschel, E.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Rovero, A. C.; Rulten, C.; Sadeh, I.; Santander, M.; Sembroski, G. H.; Shahinyan, K.; Telezhinsky, I.; Tucci, J. V.; Tyler, J.; Wakely, S. P.; Weinstein, A.; Wilhelm, A.; Williams, D. A.

    2017-10-01

    We present very-high-energy γ-ray observations of the BL Lac object 1ES 2344+514 taken by the Very Energetic Radiation Imaging Telescope Array System between 2007 and 2015. 1ES 2344+514 is detected with a statistical significance above the background of 20.8σ in 47.2 h (livetime) of observations, making this the most comprehensive very-high-energy study of 1ES 2344+514 to date. Using these observations, the temporal properties of 1ES 2344+514 are studied on short and long times-scales. We fit a constant-flux model to nightly and seasonally binned light curves and apply a fractional variability test to determine the stability of the source on different time-scales. We reject the constant-flux model for the 2007-2008 and 2014-2015 nightly binned light curves and for the long-term seasonally binned light curve at the >3σ level. The spectra of the time-averaged emission before and after correction for attenuation by the extragalactic background light are obtained. The observed time-averaged spectrum above 200 GeV is satisfactorily fitted (χ2/NDF = 7.89/6) by a power-law function with an index Γ = 2.46 ± 0.06stat ± 0.20sys and extends to at least 8 TeV. The extragalactic-background-light-deabsorbed spectrum is adequately fit (χ2/NDF = 6.73/6) by a power-law function with an index Γ = 2.15 ± 0.06stat ± 0.20sys while an F-test indicates that the power law with an exponential cut-off function provides a marginally better fit (χ2/NDF = 2.56/5) at the 2.1σ level. The source location is found to be consistent with the published radio location and its spatial extent is consistent with a point source.

  11. The diffuse soft X-ray background as seen with the Einstein Observatory

    NASA Technical Reports Server (NTRS)

    Micela, G.; Sciortino, S.; Vaiana, G. S.; Harnden, F. R., Jr.; Rosner, R.

    1991-01-01

    A systematic survey of the diffuse soft X-ray background as seen directly with the Einstein Observatory is presented. With the aid of 1633 selected 1 x 1 deg fields of view obtained by the IPC to provide about 5-percent sky coverage, with some bias toward the Galactic plane, the background in the 0.16-3.5 keV spectral region was spatially resolved on this angular scale. Maps of the background are characterized and produced at different energies within the Einstein passband. It is confirmed that the Galactic ridge is not present at energies below 0.33 keV and it is demonstrated that the appearance of the ridge above this energy is not due to hard Galactic sources with a flux above 10 exp -13 ergs/sq cm/s. A southern Galactic region is identified, with l between 80 and 180 deg and b less than -5 deg, where the mean background intensity has the lowest value and is homogeneous within better than 9 percent. The implications of these results for the Galactic structure and for the nature of the extragalactic X-ray background are discussed.

  12. The NuSTAR Extragalactic Surveys: The Number Counts Of Active Galactic Nuclei And The Resolved Fraction Of The Cosmic X-ray Background

    NASA Technical Reports Server (NTRS)

    Harrison, F. A.; Aird, J.; Civano, F.; Lansbury, G.; Mullaney, J. R.; Ballentyne, D. R.; Alexander, D. M.; Stern, D.; Ajello, M.; Barret, D.; hide

    2016-01-01

    We present the 3-8 kiloelectronvolts and 8-24 kiloelectronvolts number counts of active galactic nuclei (AGNs) identified in the Nuclear Spectroscopic Telescope Array (NuSTAR) extragalactic surveys. NuSTAR has now resolved 33 percent -39 percent of the X-ray background in the 8-24 kiloelectronvolts band, directly identifying AGNs with obscuring columns up to approximately 10 (exp 25) per square centimeter. In the softer 3-8 kiloelectronvolts band the number counts are in general agreement with those measured by XMM-Newton and Chandra over the flux range 5 times 10 (exp -15) less than or approximately equal to S (3-8 kiloelectronvolts) divided by ergs per second per square centimeter less than or approximately equal to 10 (exp -12) probed by NuSTAR. In the hard 8-24 kiloelectronvolts band NuSTAR probes fluxes over the range 2 times 10 (exp -14) less than or approximately equal to S (8-24 kiloelectronvolts) divided by ergs per second per square centimeter less than or approximately equal to 10 (exp -12), a factor approximately 100 times fainter than previous measurements. The 8-24 kiloelectronvolts number counts match predictions from AGN population synthesis models, directly confirming the existence of a population of obscured and/or hard X-ray sources inferred from the shape of the integrated cosmic X-ray background. The measured NuSTAR counts lie significantly above simple extrapolation with a Euclidian slope to low flux of the Swift/BAT15-55 kiloelectronvolts number counts measured at higher fluxes (S (15-55 kiloelectronvolts) less than or approximately equal to 10 (exp -11) ergs per second per square centimeter), reflecting the evolution of the AGN population between the Swift/BAT local (redshift is less than 0.1) sample and NuSTAR's redshift approximately equal to 1 sample. CXB (Cosmic X-ray Background) synthesis models, which account for AGN evolution, lie above the Swift/BAT measurements, suggesting that they do not fully capture the evolution of obscured AGNs at low redshifts

  13. Molecular transitions as probes of the physical conditions of extragalactic environments

    NASA Astrophysics Data System (ADS)

    Viti, Serena

    2017-11-01

    Aims: We present a method to interpret molecular observations and molecular line ratios in nearby extragalactic regions. Methods: Ab initio grids of time dependent chemical models, varying in gas density, temperature, cosmic ray ionization rate, and radiation field, are used as inputs into RADEX calculations. Tables of abundances, column densities, theoretical line intensities, and line ratios for some of the most used dense gas tracers are provided. The degree of correlation as well as degeneracy inherent in molecular ratios is discussed. Comparisons of the theoretical intensities with example observations are also provided. Results: We find that, within the parameters space explored, chemical abundances can be constrained by a well-defined set of gas density, gas temperature, and cosmic ray ionization rates for the species we investigate here. However, line intensities, and more importantly line ratios, from different chemical models can be very similar, thereby leading to a clear degeneracy. We also find that the gas subjected to a galactic cosmic ray ionization rate will not necessarily have reached steady state in 1 million years. The species most affected by time dependency effects are HCN and CS, which are both high density tracers. We use our ab initio method to fit an example set of data from two galaxies, I.e. M 82 and NGC 253. We find that (I) molecular line ratios can be easily matched even with erroneous individual line intensities; (II) no set of species can be matched by a one-component interstellar medium (ISM); and (III) a species may be a good tracer of an energetic process but only under specific density and temperature conditions. Conclusions: We provide tables of chemical abundances and line intensities ratios for some of the most commonly observed extragalactic tracers of dense gas for a grid of models. We show that by taking the chemistry behind each species and the individual line intensities into consideration, many degeneracies that arise by just using molecular line ratios can be avoided. Finally we show that using a species or a ratio as a tracer of an individual energetic process, such as cosmic rays and UV, ought to be done with caution. Tables 2-11 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A118

  14. Must is a Four Letter Word: The Role of Plasma Instabilities in the Intergalactic Magnetic Field Story

    NASA Astrophysics Data System (ADS)

    Broderick, Avery

    2014-06-01

    The detection of inverse Compton halos from cosmological TeV sources provide a direct means to constrain the putative intergalactic magnetic field. However, the converse may not be the case! The fate of the pairs generated by TeV gamma rays annihilating on the extragalactic background light is presently unclear, clouded by the possibility that cosmological scale plasma instabilities may dominate their energetic evolution. I will briefly motivate these plasma instabilities theoretically, summarize some empirical evidence that they may be occurring in practice, and assess their potential impact upon studies of intergalactic magnetic fields.

  15. The Strong Gravitationally Lensed Herschel Galaxy HLock01: Optical Spectroscopy Reveals a Close Galaxy Merger with Evidence of Inflowing Gas

    NASA Astrophysics Data System (ADS)

    Marques-Chaves, Rui; Pérez-Fournon, Ismael; Gavazzi, Raphael; Martínez-Navajas, Paloma I.; Riechers, Dominik; Rigopoulou, Dimitra; Cabrera-Lavers, Antonio; Clements, David L.; Cooray, Asantha; Farrah, Duncan; Ivison, Rob J.; Jiménez-Ángel, Camilo E.; Nayyeri, Hooshang; Oliver, Seb; Omont, Alain; Scott, Douglas; Shu, Yiping; Wardlow, Julie

    2018-02-01

    The submillimeter galaxy (SMG) HERMES J105751.1+573027 (hereafter HLock01) at z = 2.9574 ± 0.0001 is one of the brightest gravitationally lensed sources discovered in the Herschel Multi-tiered Extragalactic Survey. Apart from the high flux densities in the far-infrared, it is also extremely bright in the rest-frame ultraviolet (UV), with a total apparent magnitude m UV ≃ 19.7 mag. We report here deep spectroscopic observations with the Gran Telescopio Canarias of the optically bright lensed images of HLock01. Our results suggest that HLock01 is a merger system composed of the Herschel-selected SMG and an optically bright Lyman break-like galaxy (LBG), separated by only 3.3 kpc in projection. While the SMG appears very massive (M * ≃ 5 × 1011 M ⊙), with a highly extinguished stellar component (A V ≃ 4.3 ), the LBG is a young, lower-mass (M * ≃ 1 × 1010 M ⊙), but still luminous (10× {L}UV}* ) satellite galaxy. Detailed analysis of the high signal-to-noise ratio (S/N) rest-frame UV spectrum of the LBG shows complex kinematics of the gas, exhibiting both blueshifted and redshifted absorption components. While the blueshifted component is associated with strong galactic outflows from the massive stars in the LBG, as is common in most star-forming galaxies, the redshifted component may be associated with gas inflow seen along a favorable sightline to the LBG. We also find evidence of an extended gas reservoir around HLock01 at an impact parameter of 110 kpc, through the detection of C II λλ1334 absorption in the red wing of a bright Lyα emitter at z ≃ 3.327. The data presented here highlight the power of gravitational lensing in high S/N studies to probe deeply into the physics of high-z star-forming galaxies.

  16. Variations in Canonical Star-Forming Laws at Low Metallicity

    NASA Astrophysics Data System (ADS)

    Monkiewicz, Jacqueline; Bowman, Judd D.; Scowen, Paul

    2018-01-01

    Empirically-determined star formation relations link observed galaxy luminosities to extrapolated star formation rates at almost every observable wavelength range. These laws are a cornerstone of extragalactic astronomy, and will be critically important for interpreting upcoming observations of early high-redshift protogalaxies with JWST and WFIRST. There are indications at a variety of wavelengths that these canonical relations may become unreliable at the lowest metallicities observed. This potentially complicates interpretation of the earliest protogalaxies, which are expected to be pristine and largely unenriched by stellar nucleosynthesis. Using a sample of 15 local dwarf galaxies with 12+[O/H] < 8.2, I focus on two of these relations: the far-infrared/radio relation and the H-alpha/ultraviolet relation. The sample is chosen to have pre-existing far-IR and UV observations, and to span the full spread of the galaxy mass-metallicity relationship at low luminosity, so that luminosity and metallicity may be examined separately. Radio continuum observations of low metallicity dwarf galaxies 1 Zw 18 and SBS 0335-052E suggest that the far-IR/radio relation probably deviates at low metallicities, but the low luminosity end of the relation is not well sampled. The upgraded Jansky Very Large Array has the sensitivity to fill in this gap. I have obtained 45 hours of L- and C-band continuum data of my dwarf galaxy sample. I present radio continuum imaging of an initial sub-sample of Local Group dwarfs, some of which have never before been detected in radio continuum. The H-alpha/UV relationship is likewise known to become unreliable for dwarf galaxies, though this has been attributed to dwarf galaxy "bursty-ness" rather than metallicity effects. I have conducted a parallel survey of emission line imaging to study the underlying astrophysics of the H-alpha/UV relation. Using Balmer decrement imaging, I map out the pixel-to-pixel dust distribution and geometry within the nearest galaxies in my sample. I compare this to GALEX UV imaging. I discuss implications for UV escape fraction, and present initial results of the canonical star-forming relations at low galaxy luminosity and metallicity. THIS IS A POSTER AND WILL BE LOCATED IN THE AAS BOOTH.

  17. Sunscreen for Fish: Co-Option of UV Light Protection for Camouflage

    PubMed Central

    Mueller, Kaspar P.; Neuhauss, Stephan C. F.

    2014-01-01

    Many animals change their body pigmentation according to illumination of their environment. In aquatic vertebrates, this reaction is mediated through aggregation or dispersion of melanin-filled vesicles (melanosomes) in dermal pigment cells (melanophores). The adaptive value of this behavior is usually seen in camouflage by allowing the animal to visually blend into the background. When exposed to visible light from below, however, dark-adapted zebrafish embryos at the age of 2 days post fertilization (dpf) surprisingly display dispersal instead of aggregation of melanosomes, i.e. their body coloration becomes dark on a bright background. Melanosomes of older embryos and early larvae (3–5 dpf) on the other hand aggregate as expected under these conditions. Here we provide an explanation to this puzzling finding: Melanosome dispersion in larvae 3 dpf and older is efficiently triggered by ultraviolet (UV) light, irrespective of the visual background, suggesting that the extent of pigmentation is a trade-off between threats from predation and UV irradiation. The UV light-induced dispersion of melanosomes thereby is dependent on input from retinal short wavelength-sensitive (SWS) cone photoreceptors. In young embryos still lacking a functional retina, protection from UV light predominates, and light triggers a dispersal of melanosomes via photoreceptors intrinsic to the melanophores, regardless of the actual UV content. In older embryos and early larvae with functional retinal photoreceptors in contrast, this light-induced dispersion is counteracted by a delayed aggregation in the absence of UV light. These data suggest that the primary function of melanosome dispersal has evolved as a protective adaption to prevent UV damage, which was only later co-opted for camouflage. PMID:24489905

  18. The Constant Average Relationship between Dust-obscured Star Formation and Stellar Mass from z = 0 to z = 2.5

    NASA Astrophysics Data System (ADS)

    Whitaker, Katherine E.; Pope, Alexandra; Cybulski, Ryan; Casey, Caitlin M.; Popping, Gergö; Yun, Min S.

    2017-12-01

    The total star formation budget of galaxies consists of the sum of the unobscured star formation, as observed in the rest-frame ultraviolet (UV), together with the obscured component that is absorbed and re-radiated by dust grains in the infrared. We explore how the fraction of obscured star formation depends on stellar mass for mass-complete samples of galaxies at 0< z< 2.5. We combine GALEX and WISE photometry for SDSS-selected galaxies with the 3D-HST treasury program and Spitzer/MIPS 24 μm photometry in the well-studied five extragalactic Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) fields. We find a strong dependence of the fraction of obscured star formation (f obscured = SFRIR/SFRUV+IR) on stellar mass, with remarkably little evolution in this fraction with redshift out to z = 2.5. 50% of star formation is obscured for galaxies with log(M/M ⊙) = 9.4 although unobscured star formation dominates the budget at lower masses, there exists a tail of low-mass, extremely obscured star-forming galaxies at z> 1. For log(M/M ⊙) > 10.5, >90% of star formation is obscured at all redshifts. We also show that at fixed total SFR, {f}{obscured} is lower at higher redshift. At fixed mass, high-redshift galaxies are observed to have more compact sizes and much higher star formation rates, gas fractions, and hence surface densities (implying higher dust obscuration), yet we observe no redshift evolution in {f}{obscured} with stellar mass. This poses a challenge to theoretical models, where the observed compact sizes at high redshift seem in tension with lower dust obscuration.

  19. EoR Foregrounds: the Faint Extragalactic Radio Sky

    NASA Astrophysics Data System (ADS)

    Prandoni, Isabella

    2018-05-01

    A wealth of new data from upgraded and new radio interferometers are rapidly improving and transforming our understanding of the faint extra-galactic radio sky. Indeed the mounting statistics at sub-mJy and μJy flux levels is finally allowing us to get stringent observational constraints on the faint radio population and on the modeling of its various components. In this paper I will provide a brief overview of the latest results in areas that are potentially important for an accurate treatment of extra-galactic foregrounds in experiments designed to probe the Epoch of Reionization.

  20. Cosmic-ray antimatter - A primary origin hypothesis

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Protheroe, R. J.; Kazanas, D.

    1983-01-01

    The present investigation is concerned with the possibility that the observed cosmic-ray protons are of primary extragalactic origin, taking into account the significance of the current antiproton data. Attention is given to questions regarding primary antiprotons, antihelium fluxes, and the propagation of extragalactic cosmic rays. It is concluded that the primary origin hypothesis should be considered as a serious alternative explanation for the cosmic-ray antiproton fluxes. Such extragalactic primary origin can be considered in the context of a baryon symmetric domain cosmology. The fluxes and propagation characteristics suggested are found to be in rough agreement with the present antiproton data.

  1. Extragalactic astronomy: The universe beyond our galaxy

    NASA Technical Reports Server (NTRS)

    Jacobs, K. C.

    1976-01-01

    This single-topic brochure is for high school physical science teachers to use in introducing students to extragalactic astronomy. The material is presented in three parts: the fundamental content of extragalactic astronomy; modern discoveries delineated in greater detail; and a summary of the earlier discussions within the structure of the Big-Bang Theory of evolution. Each of the three sections is followed by student exercises (activities, laboratory projects, and questions-and-answers). The unit close with a glossary which explains unfamilar terms used in the text and a collection of teacher aids (literature references and audiovisual materials for utilization in further study).

  2. Mapping extragalactic dark matter annihilation with galaxy surveys: A systematic study of stacked group searches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisanti, Mariangela; Mishra-Sharma, Siddharth; Rodd, Nicholas L.

    Dark matter in the halos surrounding galaxy groups and clusters can annihilate to high-energy photons. Recent advancements in the construction of galaxy group catalogs provide many thousands of potential extragalactic targets for dark matter. In this paper, we outline a procedure to infer the dark matter signal associated with a given galaxy group. Applying this procedure to a catalog of sources, one can create a full-sky map of the brightest extragalactic dark matter targets in the nearby Universe (z≲0.03), supplementing sources of dark matter annihilation from within the local group. As with searches for dark matter in dwarf galaxies, thesemore » extragalactic targets can be stacked together to enhance the signals associated with dark matter. We validate this procedure on mock Fermi gamma-ray data sets using a galaxy catalog constructed from the DarkSky N-body cosmological simulation and demonstrate that the limits are robust, at O(1) levels, to systematic uncertainties on halo mass and concentration. We also quantify other sources of systematic uncertainty arising from the analysis and modeling assumptions. Lastly, our results suggest that a stacking analysis using galaxy group catalogs provides a powerful opportunity to discover extragalactic dark matter and complements existing studies of Milky Way dwarf galaxies.« less

  3. Mapping extragalactic dark matter annihilation with galaxy surveys: A systematic study of stacked group searches

    NASA Astrophysics Data System (ADS)

    Lisanti, Mariangela; Mishra-Sharma, Siddharth; Rodd, Nicholas L.; Safdi, Benjamin R.; Wechsler, Risa H.

    2018-03-01

    Dark matter in the halos surrounding galaxy groups and clusters can annihilate to high-energy photons. Recent advancements in the construction of galaxy group catalogs provide many thousands of potential extragalactic targets for dark matter. In this paper, we outline a procedure to infer the dark matter signal associated with a given galaxy group. Applying this procedure to a catalog of sources, one can create a full-sky map of the brightest extragalactic dark matter targets in the nearby Universe (z ≲0.03 ), supplementing sources of dark matter annihilation from within the local group. As with searches for dark matter in dwarf galaxies, these extragalactic targets can be stacked together to enhance the signals associated with dark matter. We validate this procedure on mock Fermi gamma-ray data sets using a galaxy catalog constructed from the DarkSky N -body cosmological simulation and demonstrate that the limits are robust, at O (1 ) levels, to systematic uncertainties on halo mass and concentration. We also quantify other sources of systematic uncertainty arising from the analysis and modeling assumptions. Our results suggest that a stacking analysis using galaxy group catalogs provides a powerful opportunity to discover extragalactic dark matter and complements existing studies of Milky Way dwarf galaxies.

  4. Mapping extragalactic dark matter annihilation with galaxy surveys: A systematic study of stacked group searches

    DOE PAGES

    Lisanti, Mariangela; Mishra-Sharma, Siddharth; Rodd, Nicholas L.; ...

    2018-03-09

    Dark matter in the halos surrounding galaxy groups and clusters can annihilate to high-energy photons. Recent advancements in the construction of galaxy group catalogs provide many thousands of potential extragalactic targets for dark matter. In this paper, we outline a procedure to infer the dark matter signal associated with a given galaxy group. Applying this procedure to a catalog of sources, one can create a full-sky map of the brightest extragalactic dark matter targets in the nearby Universe (z≲0.03), supplementing sources of dark matter annihilation from within the local group. As with searches for dark matter in dwarf galaxies, thesemore » extragalactic targets can be stacked together to enhance the signals associated with dark matter. We validate this procedure on mock Fermi gamma-ray data sets using a galaxy catalog constructed from the DarkSky N-body cosmological simulation and demonstrate that the limits are robust, at O(1) levels, to systematic uncertainties on halo mass and concentration. We also quantify other sources of systematic uncertainty arising from the analysis and modeling assumptions. Lastly, our results suggest that a stacking analysis using galaxy group catalogs provides a powerful opportunity to discover extragalactic dark matter and complements existing studies of Milky Way dwarf galaxies.« less

  5. Fermi Gamma-Ray Imaging of a Radio Galaxy

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2010-04-01

    The Fermi Gamma-ray Space Telescope has detected the γ-ray glow emanating from the giant radio lobes of the radio galaxy Centaurus A. The resolved γ-ray image shows the lobes clearly separated from the central active source. In contrast to all other active galaxies detected so far in high-energy γ-rays, the lobe flux constitutes a considerable portion (greater than one-half) of the total source emission. The γ-ray emission from the lobes is interpreted as inverse Compton–scattered relic radiation from the cosmic microwave background, with additional contribution at higher energies from the infrared-to-optical extragalactic background light. In conclusion, these measurements provide γ-raymore » constraints on the magnetic field and particle energy content in radio galaxy lobes, as well as a promising method to probe the cosmic relic photon fields.« less

  6. A DETERMINATION OF THE INTERGALACTIC REDSHIFT-DEPENDENT ULTRAVIOLET-OPTICAL-NIR PHOTON DENSITY USING DEEP GALAXY SURVEY DATA AND THE GAMMA-RAY OPACITY OF THE UNIVERSE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stecker, Floyd W.; Malkan, Matthew A.; Scully, Sean T., E-mail: Floyd.W.Stecker@nasa.gov, E-mail: malkan@astro.ucla.edu, E-mail: scullyst@jmu.edu

    2012-12-20

    We calculate the intensity and photon spectrum of the intergalactic background light (IBL) as a function of redshift using an approach based on observational data obtained in many different wavelength bands from local to deep galaxy surveys. This allows us to obtain an empirical determination of the IBL and to quantify its observationally based uncertainties. Using our results on the IBL, we then place 68% confidence upper and lower limits on the opacity of the universe to {gamma}-rays, free of the theoretical assumptions that were needed for past calculations. We compare our results with measurements of the extragalactic background lightmore » and upper limits obtained from observations made by the Fermi Gamma-ray Space Telescope.« less

  7. The cosmic infrared background experiment (CIBER): instrumentation and first results

    NASA Astrophysics Data System (ADS)

    Zemcov, M.; Battle, J.; Bock, J.; Cooray, A.; Hristov, V.; Keating, B.; Lee, D. H.; Levenson, L.; Mason, P.; Matsumoto, T.; Matsuura, S.; Nam, U. W.; Renbarger, T.; Sullivan, I.; Tsumura, K.; Wada, T.

    2010-07-01

    Ultraviolet emission from the first generation of stars in the Universe ionized the intergalactic medium in a process which was completed by z ~ 6; the wavelength of these photons has been redshifted by (1 + z) into the near infrared today and can be measured using instruments situated above the Earth's atmosphere. First flying in February 2009, the Cosmic Infrared Background ExpeRiment (CIBER) comprises four instruments housed in a single reusable sounding rocket borne payload. CIBER will measure spatial anisotropies in the extragalactic IR background caused by cosmological structure from the epoch of reionization using two broadband imaging instruments, make a detailed characterization of the spectral shape of the IR background using a low resolution spectrometer, and measure the absolute brightness of the Zodiacal light foreground with a high resolution spectrometer in each of our six science fields. The scientific motivation for CIBER and details of its first and second flight instrumentation will be discussed. First flight results on the color of the zodiacal light around 1 μm and plans for the future will also be presented.

  8. Extraterrestrial high energy neutrino fluxes

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1979-01-01

    Using the most recent cosmic ray spectra up to 2x10 to the 20th power eV, production spectra of high energy neutrinos from cosmic ray interactions with interstellar gas and extragalactic interactions of ultrahigh energy cosmic rays with 3K universal background photons are presented and discussed. Estimates of the fluxes from cosmic diffuse sources and the nearby quasar 3C273 are made using the generic relationship between secondary neutrinos and gammas and using recent gamma ray satellite data. These gamma ray data provide important upper limits on cosmological neutrinos. Quantitative estimates of the observability of high energy neutrinos from the inner galaxy and 3C273 above atmospheric background for a DUMAND type detector are discussed in the context of the Weinberg-Salam model with sq sin theta omega = 0.2 and including the atmospheric background from the decay of charmed mesons. Constraints on cosmological high energy neutrino production models are also discussed. It appears that important high energy neutrino astronomy may be possible with DUMAND, but very long observing times are required.

  9. PAH-Mineral Interactions. A Laboratory Approach to Astrophysical Catalysis

    NASA Astrophysics Data System (ADS)

    Adolfo Cruz Diaz, Gustavo; Mattioda, Andrew

    2017-06-01

    Polycyclic Aromatic Hydrocarbon (PAH) molecules carry the infrared emission features which dominate the spectra of most galactic and extragalactic sources. Our study investigates the chemical evolution, chemical properties, physical properties, thermal stability, and photostability of samples produced from the UV-irradiation of simulated mineral dust grains coated with aromatics and astrobiologically relevant ices, using infrared spectroscopy. We investigate the chemical evolution of aromatic organics via anhydrous (no H2O ice) and hydrous (H2O ice) mechanisms. The anhydrous mechanism involves UV-induced catalytic reactions between organics and dense-cloud mineral grains, whereas the hydrous mechanism incorporates H2O-rich ice mixtures with the minerals and organics. These investigations identify the chemical and physical interactions occurring between the organic species, the dust grains and water-rich ices.These laboratory simulations also generate observable IR spectroscopic parameters for future astronomical observations with infrared telescopes such as SOFIA and JWST as well as provide empirical parameters for input into astronomical models of the early stages of planetary formation. These studies give us a deeper understanding of the potential catalytic pathways mineral surfaces provide and a deeper understanding of the role of ice-organic compositions in the chemical reaction pathways and how these processes fit into the formation of new planetary systems.In order to achieve these goals we use the Harrick ‘Praying Mantis’ Diffuse Reflectance Accessory (DRIFTS), which allows FTIR measurements of dust samples under ambient conditions by measuring the light scattered by the dust sample. We have also incorporated a low -temperature reaction chamber permitting the DRIFTS measurements at low temperatures and high-vacuum. This set-up permits the analysis of the solid particles surfaces revealing the chemical species adsorbed as well as their chemical evolution via the introduction of reactant gases, UV irradiation, temperature change, etc.

  10. The Resolved Stellar Populations in the LEGUS Galaxies1

    NASA Astrophysics Data System (ADS)

    Sabbi, E.; Calzetti, D.; Ubeda, L.; Adamo, A.; Cignoni, M.; Thilker, D.; Aloisi, A.; Elmegreen, B. G.; Elmegreen, D. M.; Gouliermis, D. A.; Grebel, E. K.; Messa, M.; Smith, L. J.; Tosi, M.; Dolphin, A.; Andrews, J. E.; Ashworth, G.; Bright, S. N.; Brown, T. M.; Chandar, R.; Christian, C.; Clayton, G. C.; Cook, D. O.; Dale, D. A.; de Mink, S. E.; Dobbs, C.; Evans, A. S.; Fumagalli, M.; Gallagher, J. S., III; Grasha, K.; Herrero, A.; Hunter, D. A.; Johnson, K. E.; Kahre, L.; Kennicutt, R. C.; Kim, H.; Krumholz, M. R.; Lee, J. C.; Lennon, D.; Martin, C.; Nair, P.; Nota, A.; Östlin, G.; Pellerin, A.; Prieto, J.; Regan, M. W.; Ryon, J. E.; Sacchi, E.; Schaerer, D.; Schiminovich, D.; Shabani, F.; Van Dyk, S. D.; Walterbos, R.; Whitmore, B. C.; Wofford, A.

    2018-03-01

    The Legacy ExtraGalactic UV Survey (LEGUS) is a multiwavelength Cycle 21 Treasury program on the Hubble Space Telescope. It studied 50 nearby star-forming galaxies in 5 bands from the near-UV to the I-band, combining new Wide Field Camera 3 observations with archival Advanced Camera for Surveys data. LEGUS was designed to investigate how star formation occurs and develops on both small and large scales, and how it relates to the galactic environments. In this paper we present the photometric catalogs for all the apparently single stars identified in the 50 LEGUS galaxies. Photometric catalogs and mosaicked images for all filters are available for download. We present optical and near-UV color–magnitude diagrams for all the galaxies. For each galaxy we derived the distance from the tip of the red giant branch. We then used the NUV color–magnitude diagrams to identify stars more massive than 14 M ⊙, and compared their number with the number of massive stars expected from the GALEX FUV luminosity. Our analysis shows that the fraction of massive stars forming in star clusters and stellar associations is about constant with the star formation rate. This lack of a relation suggests that the timescale for evaporation of unbound structures is comparable or longer than 10 Myr. At low star formation rates this translates to an excess of mass in clustered environments as compared to model predictions of cluster evolution, suggesting that a significant fraction of stars form in unbound systems. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA Inc., under NASA contract NAS 5-26555.

  11. Bright Young Star Clusters in NGC5253 with LEGUS

    NASA Astrophysics Data System (ADS)

    Calzetti, Daniela; Johnson, Kelsey E.; Adamo, Angela; Gallagher, John S.; Andrews, Jennifer E.; Smith, Linda J.; Clayton, Geoffrey C.; Lee, Janice C.; Sabbi, Elena; Ubeda, Leonardo; Kim, Hwihyun; Ryon, Jenna E.; Thilker, David A.; Bright, Stacey N.; Zackrisson, Erik; Kennicutt, Robert; de Mink, Selma E.; Whitmore, Bradley C.; Aloisi, Alessandra; Chandar, Rupali; Cignoni, Michele; Cook, David; Dale, Daniel A.; Elmegreen, Bruce; Elmegreen, Debra M.; Evans, Aaron S.; Fumagalli, Michele; Gouliermis, Dimitrios; Grasha, Kathryn; Grebel, Eva; Krumholz, Mark R.; Walterbos, Rene A. M.; Wofford, Aida; Brown, Thomas M.; Christian, Carol A.; Dobbs, Claire; Herrero-Davo`, Artemio; Kahre, Lauren; Messa, Matteo; Nair, Preethi; Nota, Antonella; Östlin, Göran; Pellerin, Anne; Sacchi, Elena; Schaerer, Daniel; Tosi, Monica

    2016-01-01

    Using UV-to-H broad and narrow-band HST imaging, we derive the ages and masses of the 11 brightest star clusters in the dwarf galaxy NGC5253. This galaxy, located at ~3 Mpc, hosts an intense starburst, which includes a centrally-concentrated dusty region with strong thermal radio emission (the `radio nebula'). The HST imaging includes data from the Cycle 21 Treasury Program LEGUS (Legacy ExtraGalactic UV Survey), in addition to narrow--band H-alpha (6563 A), P-beta (12820 A), and P-alpha (18756 A). The bright clusters have ages ~1-15 Myr and masses ~1E4 - 2.5E5 Msun. Two of the 11 star clusters are located within the radio nebula, and suffer from significant dust attenuation. Both are extremely young, with a best-fit age around 1 Myr, and masses ~7.5E4 and ~2.5E5 Msun, respectively. The most massive of the two `radio nebula' clusters is 2-4 times less massive than previously estimated and is embedded within a cloud of dust with A_V~50 mag. The two clusters account for about half of the ionizing photon rate in the radio nebula, and will eventually supply about 2/3 of the mechanical energy in present-day shocks. Additional sources are required to supply the remaining ionizing radiation, and may include very massive stars.

  12. Extragalactic background light: a measurement at 400 nm using dark cloud shadow*†- I. Low surface brightness spectrophotometry in the area of Lynds 1642

    NASA Astrophysics Data System (ADS)

    Mattila, K.; Lehtinen, K.; Väisänen, P.; von Appen-Schnur, G.; Leinert, Ch.

    2017-09-01

    We present the method and observations for the measurement of the Extragalactic Background Light (EBL) utilizing the shadowing effect of a dark cloud. We measure the surface brightness difference between the opaque cloud core and its unobscured surroundings. In the difference the large atmospheric and Zodiacal light components are eliminated and the only remaining foreground component is the scattered starlight from the cloud itself. Although much smaller, its separation is the key problem in the method. For its separation we use spectroscopy. While the scattered starlight has the characteristic Fraunhofer lines and 400 nm discontinuity, the EBL spectrum is smooth and without these features. Medium resolution spectrophotometry at λ = 380-580 nm was performed with VLT/FORS at ESO of the surface brightness in and around the high-galactic-latitude dark cloud Lynds 1642. Besides the spectrum for the core with AV ≳ 15 mag, further spectra were obtained for intermediate-opacity cloud positions. They are used as proxy for the spectrum of the impinging starlight spectrum and to facilitate the separation of the scattered starlight (cf. Paper II; Mattila et al.). Our spectra reach a precision of ≲ 0.5 × 10-9 erg cm-2 s-1 sr-1 Å-1 as required to measure an EBL intensity in range of ˜1 to a few times 10-9 erg cm-2 s-1 sr-1 Å-1. Because all surface brightness components are measured using the same equipment, the method does not require unusually high absolute calibration accuracy, a condition that has been a problem for some previous EBL projects.

  13. Deriving the Contribution of Blazars to the Fermi-LAT Extragalactic γ-ray Background at E > 10 GeV with Efficiency Corrections and Photon Statistics

    DOE PAGES

    Di Mauro, M.; Manconi, S.; Zechlin, H. -S.; ...

    2018-03-29

    Here, the Fermi Large Area Telescope (LAT) Collaboration has recently released the Third Catalog of Hard Fermi-LAT Sources (3FHL), which contains 1556 sources detected above 10 GeV with seven years of Pass 8 data. Building upon the 3FHL results, we investigate the flux distribution of sources at high Galactic latitudes (more » $$|b| \\gt 20^\\circ $$), which are mostly blazars. We use two complementary techniques: (1) a source-detection efficiency correction method and (2) an analysis of pixel photon count statistics with the one-point probability distribution function (1pPDF). With the first method, using realistic Monte Carlo simulations of the γ-ray sky, we calculate the efficiency of the LAT to detect point sources. This enables us to find the intrinsic source-count distribution at photon fluxes down to 7.5 × 10 –12 ph cm –2 s –1. With this method, we detect a flux break at (3.5 ± 0.4) × 10 –11 ph cm –2 s –1 with a significance of at least 5.4σ. The power-law indexes of the source-count distribution above and below the break are 2.09 ± 0.04 and 1.07 ± 0.27, respectively. This result is confirmed with the 1pPDF method, which has a sensitivity reach of ~10 –11 ph cm –2 s –1. Integrating the derived source-count distribution above the sensitivity of our analysis, we find that (42 ± 8)% of the extragalactic γ-ray background originates from blazars.« less

  14. Deriving the Contribution of Blazars to the Fermi-LAT Extragalactic γ-ray Background at E > 10 GeV with Efficiency Corrections and Photon Statistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Mauro, M.; Manconi, S.; Zechlin, H. -S.

    Here, the Fermi Large Area Telescope (LAT) Collaboration has recently released the Third Catalog of Hard Fermi-LAT Sources (3FHL), which contains 1556 sources detected above 10 GeV with seven years of Pass 8 data. Building upon the 3FHL results, we investigate the flux distribution of sources at high Galactic latitudes (more » $$|b| \\gt 20^\\circ $$), which are mostly blazars. We use two complementary techniques: (1) a source-detection efficiency correction method and (2) an analysis of pixel photon count statistics with the one-point probability distribution function (1pPDF). With the first method, using realistic Monte Carlo simulations of the γ-ray sky, we calculate the efficiency of the LAT to detect point sources. This enables us to find the intrinsic source-count distribution at photon fluxes down to 7.5 × 10 –12 ph cm –2 s –1. With this method, we detect a flux break at (3.5 ± 0.4) × 10 –11 ph cm –2 s –1 with a significance of at least 5.4σ. The power-law indexes of the source-count distribution above and below the break are 2.09 ± 0.04 and 1.07 ± 0.27, respectively. This result is confirmed with the 1pPDF method, which has a sensitivity reach of ~10 –11 ph cm –2 s –1. Integrating the derived source-count distribution above the sensitivity of our analysis, we find that (42 ± 8)% of the extragalactic γ-ray background originates from blazars.« less

  15. Cannibalization of Dwarf Galaxies by the Milky Way: Distance to the Leading Arm of the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Antwi-Danso, Jacqueline; Barger, Kathleen; Haffner, L. Matthew

    2016-01-01

    Tidal interactions between two dwarf galaxies near the Milky Way, the Large and Small Magellanic Clouds, have caused large quantities of gas to be flung into the halo of the Milky Way. Much of this tidal debris, known as the Magellanic System, is currently headed towards the disk of the Milky Way, spearheaded by the Leading Arm, with the Bridge connecting the two dwarf galaxies, and the trailing Magellanic Stream at the end. Estimates for the amount of gas that the Magellanic System contains are in the range of (2 - 4) × 109 M⊙ and this could supply our Galaxy with (3.7 - 6.7) M⊙ yr-1 (Fox et al. 2014). Although this is higher than the present star-formation rate of the Galaxy, the position of the tidal debris predisposes it to ionizing radiation from the extragalactic background and Galactic disk, as well as ram-pressure stripping from the halo, hindering gas accretion. Some parts of the Leading Arm, however, appear to have already survived the trip to the disk as their morphology is indicative of interaction with the interstellar medium of the Galaxy. The exact amount of gas that this structure contains is uncertain because of weak constrains in its distance. In this study, we made seven pointed Hα observations using the Wisconsin Hα Mapper Telescope and then compared the Hα intensity we obtained to models of the anticipated ionizing flux from the Milky Way and extragalactic background. From this, we calculated the distance from the Sun to the Leading Arm of the Magellanic System at the locations of our observations.

  16. Optical variability of extragalactic objects used to tie the HIPPARCOS reference frame to an extragalactic system using Hubble space telescope observations

    NASA Technical Reports Server (NTRS)

    Bozyan, Elizabeth P.; Hemenway, Paul D.; Argue, A. Noel

    1990-01-01

    Observations of a set of 89 extragalactic objects (EGOs) will be made with the Hubble Space Telescope Fine Guidance Sensors and Planetary Camera in order to link the HIPPARCOS Instrumental System to an extragalactic coordinate system. Most of the sources chosen for observation contain compact radio sources and stellarlike nuclei; 65 percent are optical variables beyond a 0.2 mag limit. To ensure proper exposure times, accurate mean magnitudes are necessary. In many cases, the average magnitudes listed in the literature were not adequate. The literature was searched for all relevant photometric information for the EGOs, and photometric parameters were derived, including mean magnitude, maximum range, and timescale of variability. This paper presents the results of that search and the parameters derived. The results will allow exposure times to be estimated such that an observed magnitude different from the tabular magnitude by 0.5 mag in either direction will not degrade the astrometric centering ability on a Planetary Camera CCD frame.

  17. Microchannel detector array for X-rays and UV

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Bybee, R. L.

    1976-01-01

    Device employs sensitive photoelectric electrodes and solid-state memory, can be used at visible UV and X ray wavelengths, includes nonmagnetic proximity focusing, and is immune to high energy charged-particle background.

  18. Gamma-ray Monitoring of Active Galactic Nuclei with HAWC

    NASA Astrophysics Data System (ADS)

    Lauer, Robert; HAWC Collaboration

    2016-03-01

    Active Galactic Nuclei (AGN) are extra-galactic sources that can exhibit extreme flux variability over a wide range of wavelengths. TeV gamma rays have been observed from about 60 AGN and can help to diagnose emission models and to study cosmic features like extra-galactic background light or inter-galactic magnetic fields. The High Altitude Water Cherenkov (HAWC) observatory is a new extensive air shower array that can complement the pointed TeV observations of imaging air Cherenkov telescopes. HAWC is optimized for studying gamma rays with energies between 100 GeV and 100 TeV and has an instantaneous field of view of ~2 sr and a duty cycle >95% that allow us to scan 2/3 of the sky every day. By performing an unbiased monitoring of TeV emissions of AGN over most of the northern and part of the southern sky, HAWC can provide crucial information and trigger follow-up observations in collaborations with pointed TeV instruments. Furthermore, HAWC coverage of AGN is complementary to that provided by the Fermi satellite at lower energies. In this contribution, we will present HAWC flux light curves of TeV gamma rays from various sources, notably the bright AGN Markarian 421 and Markarian 501, and highlight recent results from multi-wavelengths and multi-instrument studies.

  19. CENTAURUS A: THE EXTRAGALACTIC SOURCE OF COSMIC RAYS WITH ENERGIES ABOVE THE KNEE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biermann, Peter L.; De Souza, Vitor, E-mail: plbiermann@mpifr-bonn.mpg.de, E-mail: vitor@ifsc.usp.br

    2012-02-10

    The origin of cosmic rays at all energies is still uncertain. In this paper, we present and explore an astrophysical scenario to produce cosmic rays with energy ranging from below 10{sup 15} to 3 Multiplication-Sign 10{sup 20} eV. We show here that just our Galaxy and the radio galaxy Cen A, each with their own galactic cosmic-ray particles but with those from the radio galaxy pushed up in energy by a relativistic shock in the jet emanating from the active black hole, are sufficient to describe the most recent data in the PeV to near ZeV energy range. Data aremore » available over this entire energy range from the KASCADE, KASCADE-Grande, and Pierre Auger Observatory experiments. The energy spectrum calculated here correctly reproduces the measured spectrum beyond the knee and, contrary to widely held expectations, no other extragalactic source population is required to explain the data even at energies far below the general cutoff expected at 6 Multiplication-Sign 10{sup 19} eV, the Greisen-Zatsepin-Kuz'min turnoff due to interaction with the cosmological microwave background. We present several predictions for the source population, the cosmic-ray composition, and the propagation to Earth which can be tested in the near future.« less

  20. Forecasting the Contribution of Polarized Extragalactic Radio Sources in CMB Observations

    NASA Astrophysics Data System (ADS)

    Puglisi, G.; Galluzzi, V.; Bonavera, L.; Gonzalez-Nuevo, J.; Lapi, A.; Massardi, M.; Perrotta, F.; Baccigalupi, C.; Celotti, A.; Danese, L.

    2018-05-01

    We combine the latest data sets obtained with different surveys to study the frequency dependence of polarized emission coming from extragalactic radio sources (ERS). We consider data over a very wide frequency range starting from 1.4 GHz up to 217 GHz. This range is particularly interesting since it overlaps the frequencies of the current and forthcoming cosmic microwave background (CMB) experiments. Current data suggest that at high radio frequencies (ν ≥ 20 GHz) the fractional polarization of ERS does not depend on the total flux density. Conversely, recent data sets indicate a moderate increase of polarization fraction as a function of frequency, physically motivated by the fact that Faraday depolarization is expected to be less relevant at high radio frequencies. We compute ERS number counts using updated models based on recent data, and we forecast the contribution of unresolved ERS in CMB polarization spectra. Given the expected sensitivities and the observational patch sizes of forthcoming CMB experiments, about ∼200 (up to ∼2000) polarized ERS are expected to be detected. Finally, we assess that polarized ERS can contaminate the cosmological B-mode polarization if the tensor-to-scalar ratio is <0.05 and they have to be robustly controlled to de-lens CMB B-modes at the arcminute angular scales.

  1. Neutrinos as a diagnostic of cosmic ray galactic-extragalactic transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahlers, Markus; Ringwald, Andreas; Anchordoqui, Luis A.

    2005-07-15

    Motivated by a recent change in viewing the onset of the extragalactic component in the cosmic ray spectrum, we have fitted the observed data down to 10{sup 8.6} GeV and have obtained the corresponding power emissivity. This transition energy is well below the threshold for resonant p{gamma} absorption on the cosmic microwave background, and thus source evolution is an essential ingredient in the fitting procedure. Two-parameter fits in the spectral and redshift evolution indices show that a standard Fermi E{sub i}{sup -2} source spectrum is excluded at larger than 95% confidence level (CL). Armed with the primordial emissivity, we followmore » Waxman and Bahcall to derive the associated neutrino flux on the basis of optically thin sources. For pp interactions as the generating mechanism, the neutrino flux exceeds the AMANDA-B10 90% CL upper limits. In the case of p{gamma} dominance, the flux is consistent with AMANDA-B10 data. In the new scenario the source neutrino flux is considerably enhanced, especially below 10{sup 9} GeV. Should data from AMANDA-II prove consistent with the model, we show that IceCube can measure the characteristic power law of the neutrino spectrum, and thus provide a window on the source dynamics.« less

  2. Gas and dust spectral analysis of galactic and extragalactic symbiotic stars

    NASA Astrophysics Data System (ADS)

    Angeloni, Rodolfo

    2009-02-01

    Symbiotic stars are recognized as unique laboratories for studying a large variety of phenomena that are relevant to a number of important astro-physical problems. This PhD thesis deals with a spectral analysis of galactic and extragalactic symbiotic stars. The former are mainly D-type symbiotic stars for which a comprehensive study, from radio to X-ray spectral region, has been performed. With the latter, we refer to symbiotic stars in the Magellanic Clouds, to be analyzed mainly in the IR range. The common theoretical scenario that lies in the background of this work is the colliding-wind model, developed already during the 80's, supported by first observational evidence at the beginning of 90's (mainly thanks to Nussbaumer and collaborators), and finally completed with detailed and powerful hydrodynamical simulations by various authors in these recent years. In the light of this scenario, we have tried to interpret gas and dust spectra of our targets in a unique and self-consistent way. The spectral analysis has been performed by means of the numerical code SUMA, developed at the Instituto Astronomico e Geofisico of the University of Sao Paulo by Sueli M. Viegas (Aldrovandi) and Marcella Contini from the School of Physics and Astronomy of the Tel-Aviv University.

  3. Association of UV Index and Sunscreen Use among White High School Students in the United States

    ERIC Educational Resources Information Center

    Everett Jones, Sherry; O'Malley Olsen, Emily; Michael, Shannon L.; Saraiya, Mona

    2013-01-01

    Background: When used appropriately, sunscreen decreases the amount of ultraviolet (UV) radiation exposure to the skin and is recommended to prevent skin cancer. This study examined the association between annual average UV index and sunscreen use among White, non-Hispanic youth. Methods: The 2007 and 2009 national Youth Risk Behavior Survey…

  4. Extragalactic Astronomy: The Universe Beyond Our Galaxy.

    ERIC Educational Resources Information Center

    Jacobs, Kenneth Charles

    This booklet is part of an American Astronomical Society curriculum project designed to provide teaching materials to teachers of secondary school chemistry, physics, and earth science. The material is presented in three parts: one section provides the fundamental content of extragalactic astronomy, another section discusses modern discoveries in…

  5. THE HAWAII SCUBA-2 LENSING CLUSTER SURVEY: NUMBER COUNTS AND SUBMILLIMETER FLUX RATIOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Li-Yen; Cowie, Lennox L.; Barger, Amy J.

    2016-09-20

    We present deep number counts at 450 and 850 μ m using the SCUBA-2 camera on the James Clerk Maxwell Telescope. We combine data for six lensing cluster fields and three blank fields to measure the counts over a wide flux range at each wavelength. Thanks to the lensing magnification, our measurements extend to fluxes fainter than 1 mJy and 0.2 mJy at 450 μ m and 850 μ m, respectively. Our combined data highly constrain the faint end of the number counts. Integrating our counts shows that the majority of the extragalactic background light (EBL) at each wavelength ismore » contributed by faint sources with L {sub IR} < 10{sup 12} L {sub ⊙}, corresponding to luminous infrared galaxies (LIRGs) or normal galaxies. By comparing our result with the 500 μ m stacking of K -selected sources from the literature, we conclude that the K -selected LIRGs and normal galaxies still cannot fully account for the EBL that originates from sources with L {sub IR} < 10{sup 12} L {sub ⊙}. This suggests that many faint submillimeter galaxies may not be included in the UV star formation history. We also explore the submillimeter flux ratio between the two bands for our 450 μ m and 850 μ m selected sources. At 850 μ m, we find a clear relation between the flux ratio and the observed flux. This relation can be explained by a redshift evolution, where galaxies at higher redshifts have higher luminosities and star formation rates. In contrast, at 450 μ m, we do not see a clear relation between the flux ratio and the observed flux.« less

  6. Detecting and Characterizing Exoplanets with the WFIRST Coronagraph: Colors of Planets in Standard and Designer Bandpasses-SETI

    NASA Astrophysics Data System (ADS)

    Turnbull, Margaret

    The WFIRST mission is now envisioned to include a coronagraph for the purpose of direct detection of nearby exoplanets, including planets known to exist via radial velocity detection and new discoveries. Assuming that starlight rejection sufficient for planet detection (~1e-9) can be achieved, what can be learned about these planets given a realistic spectral resolution and signal-to-noise ratio? We propose to investigate the potential for WFIRST to efficiently discriminate planets from background sources, and to characterize planets in terms of important diagnostic atmospheric features, using broad- and intermediate band color data. We will map out this capability as a function of signal-to-noise ratio, bandpass location, and bandpass width. Our investigation will place emphasis on gas giants, ice giants, and mini-Neptunes (compatible with current AFTA-C baseline performance specifications), as well as a variety of super-Earths (an AFTA-C "stretch" goal). We will explore a variety of compositions, cloud types, phase angles, and (in the case of super-Earths with semi-transparent atmospheres) surface types. Noiseless spectra generated for these model planets will be passed through (a) standard bandpasses for comparison to prior work and (b) filter transmission curves corresponding to bandpasses of 5-20% over the full range of WFIRST's expected bandpass (400 - 1,000 nm). From this, filter combinations will be used to generate planet colors and find filter sets that most efficiently discriminate between planets and background sources, and between planets of different type. We will then repeat this exercise for S/N levels of 1-1,000 in order to (1) explore the true efficacy of broadband measurements in exoplanet studies, and (2) provide an estimate of total required integration time for a compelling WFIRST exoplanet program. To accomplish this, we will use model spectra for mini-Neptunes, and ice and gas giants of varying composition (Hu et al. 2013), and observed spectra for Solar System objects (Jupiter, Saturn, Uranus, Neptune, and Titan; Karcoschka 1994). We will also use observed SCIAMACHY spectra for the desert, ocean, forest, and icy Earth, in order to build a diverse set of spatially integrated super-Earth spectra, plus variations in atmospheric composition. Simulated observed spectra will be generated for planets placed under the irradiance of stellar spectral types corresponding to WFIRST's highest priority targets for exoplanet imaging (approximately K5V through F5V). The colors extracted from these spectra will be compared to colors extracted from spectra for a wide range of likely extragalactic sources (Bruzual & Charlott 2003) and extincted stellar background sources. Finally, we will assess the "background threat" for the 100 most favorable targets for exoplanet imaging with WFIRST. This flag will be assigned based on number and type of background sources expected at various galactic latitudes, and the above results indicating how readily such sources can be discriminated from exoplanets. As a result of this intensive, three year effort, we will deliver to the community a library of planet spectra and colors in standard and proposed "designer" passbands for planets of all types under stars of varying spectral type, plus colors for a wide range of expected stellar and extragalactic background sources. These data will be available for future work in simulating images and eventual "double blind" studies in extracting planet sources and atmospheric signatures. We expect that our investigation will inform WFIRST and all future direct imaging missions of (1) how different planets will appear at "first glance" from the likely sea of background of stars and unresolved extragalactic sources, and (2) the necessary performance specifications required to characterize the most important atmospheric constituents and discriminate between planets of varying type.

  7. The LAMOST Complete Spectroscopic Survey of Pointing Area (LaCoSSPAr) in the Southern Galactic Cap. I. The Spectroscopic Redshift Catalog

    NASA Astrophysics Data System (ADS)

    Yang, Ming; Wu, Hong; Yang, Fan; Lam, Man I.; Cao, Tian-Wen; Wu, Chao-Jian; Zhao, Pin-Song; Zhang, Tian-Meng; Zhou, Zhi-Min; Wu, Xue-Bing; Zhang, Yan-Xia; Shao, Zheng-Yi; Jing, Yi-Peng; Shen, Shi-Yin; Zhu, Yi-Nan; Du, Wei; Lei, Feng-Jie; He, Min; Jin, Jun-Jie; Shi, Jian-Rong; Zhang, Wei; Wang, Jian-Ling; Wu, Yu-Zhong; Zhang, Hao-Tong; Luo, A.-Li; Yuan, Hai-Long; Bai, Zhong-Rui; Kong, Xu; Gu, Qiu-Sheng; Zhou, Xu; Ma, Jun; Hu, Zou; Nie, Jun-Dan; Wang, Jia-Li; Zhang, Yong; Hou, Yong-Hui; Zhao, Yong-Heng

    2018-01-01

    We present a spectroscopic redshift catalog from the LAMOST Complete Spectroscopic Survey of Pointing Area (LaCoSSPAr) in the Southern Galactic Cap (SGC), which is designed to observe all sources (Galactic and extragalactic) by using repeating observations with a limiting magnitude of r=18.1 {mag} in two 20 {\\deg }2 fields. The project is mainly focusing on the completeness of LAMOST ExtraGAlactic Surveys (LEGAS) in the SGC, the deficiencies of source selection methods, and the basic performance parameters of the LAMOST telescope. In both fields, more than 95% of galaxies have been observed. A post-processing has been applied to the LAMOST 1D spectrum to remove the majority of remaining sky background residuals. More than 10,000 spectra have been visually inspected to measure the redshift by using combinations of different emission/absorption features with an uncertainty of {σ }z/(1+z)< 0.001. In total, 1528 redshifts (623 absorption and 905 emission line galaxies) in Field A and 1570 redshifts (569 absorption and 1001 emission line galaxies) in Field B have been measured. The results show that it is possible to derive redshift from low S/N galaxies with our post-processing and visual inspection. Our analysis also indicates that up to one-fourth of the input targets for a typical extragalactic spectroscopic survey might be unreliable. The multi-wavelength data analysis shows that the majority of mid-infrared-detected absorption (91.3%) and emission line galaxies (93.3%) can be well separated by an empirical criterion of W2-W3=2.4. Meanwhile, a fainter sequence paralleled to the main population of galaxies has been witnessed both in M r /W2-W3 and M */W2-W3 diagrams, which could be the population of luminous dwarf galaxies but contaminated by the edge-on/highly inclined galaxies (∼ 30 % ).

  8. Extragalactic Gravitational Collapse

    NASA Astrophysics Data System (ADS)

    Rees, Martin J.

    After some introductory "numerology", routes towards black hole formation are briefly reviewed; some properties of black holes relevant to theories for active galactic nuclei are then described. Applications are considered to specific models for energy generation and the production of relativistic beams. The paper concludes with a discussion of extragalactic sources of gravitational waves.

  9. Cosmic PeV neutrinos and the sources of ultrahigh energy protons

    NASA Astrophysics Data System (ADS)

    Kistler, Matthew D.; Stanev, Todor; Yüksel, Hasan

    2014-12-01

    The IceCube experiment recently detected the first flux of high-energy neutrinos in excess of atmospheric backgrounds. We examine whether these neutrinos originate from within the same extragalactic sources as ultrahigh energy cosmic rays. Starting from rather general assumptions about spectra and flavors, we find that producing a neutrino flux at the requisite level through pion photoproduction leads to a flux of protons well below the cosmic-ray data at ˜1 018 eV , where the composition is light, unless pions/muons cool before decaying. This suggests a dominant class of accelerator that allows for cosmic rays to escape without significant neutrino yields.

  10. Cosmic neutrino pevatrons: A brand new pathway to astronomy, astrophysics, and particle physics

    NASA Astrophysics Data System (ADS)

    Anchordoqui, Luis A.; Barger, Vernon; Cholis, Ilias; Goldberg, Haim; Hooper, Dan; Kusenko, Alexander; Learned, John G.; Marfatia, Danny; Pakvasa, Sandip; Paul, Thomas C.; Weiler, Thomas J.

    2014-05-01

    The announcement by the IceCube Collaboration of the observation of 28 cosmic neutrino candidates has been greeted with a great deal of justified excitement. The data reported so far depart by 4.3σ from the expected atmospheric neutrino background, which raises the obvious question: “Where in the Cosmos are these neutrinos coming from?” We review the many possibilities which have been explored in the literature to address this question, including origins at either Galactic or extragalactic celestial objects. For completeness, we also briefly discuss new physical processes which may either explain or be constrained by IceCube data.

  11. COBE DMR results and implications. [Differential Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Smoot, George F.

    1992-01-01

    This lecture presents early results obtained from the first six months of measurements of the Cosmic Microwave Background (CMB) by Differential Microwave Radiometers (DMR) aboard COBE and discusses significant cosmological implications. The DMR maps show the dipole anisotropy and some galactic emission but otherwise a spatially smooth early universe. The measurements are sufficiently precise that we must pay careful attention to potential systematic errors. Maps of galactic and local emission such as those produced by the FIRAS and DIRBE instruments will be needed to identify foregrounds from extragalactic emission and thus to interpret the results in terms of events in the early universe. The current DMR results are significant for Cosmology.

  12. Suppression of cucumber powdery mildew by UV-B is affected by background light quality

    USDA-ARS?s Scientific Manuscript database

    Brief (5-10 min) exposure to UV-B radiation (280-300 nm) suppressed powdery mildew (Podosphaera xanthii) on Cucumis sativus. The effect was enhanced by red light (600-660 nm), but offset by blue light (420-500 nm) and UV-A (300-420 nm). Compared to untreated controls, 2 h red light from specific lig...

  13. Single-strand breakage of DNA in UV-irradiated uvrA, uvrB, and uvrC mutants of Escherichia coli.

    PubMed Central

    Tang, M S; Ross, L

    1985-01-01

    We transduced the uvrA6, uvrB5, uvrC34, and uvrC56 markers from the original mutagenized strains into an HF4714 background. Although in the original mutagenized strains uvrA6 cells are more UV sensitive than uvrB5 and uvrC34 cells, in the new background no significant difference in UV sensitivity is observed among uvrA6, uvrB5, and uvrC34 cells. No DNA single-strand breaks are detected in UV-irradiated uvrA6 or uvrB5 cells, whereas in contrast a significant number of single-strand breaks are detected in both UV-irradiated uvrC34 and uvrC56 cells. The number of single-strand breaks in these cells reaches a plateau at 20-J/m2 irradiation. Since these single-strand breaks can be detected by both alkaline sucrose and neutral formamide-sucrose gradient sedimentation, we concluded that the single-strand breaks observed in UV-irradiated uvrC cells are due to phosphodiester bond interruptions in DNA and are not due to apurinic/apyrimidinic sites. PMID:3882671

  14. Multi-scale, Hierarchically Nested Young Stellar Structures in LEGUS Galaxies

    NASA Astrophysics Data System (ADS)

    Thilker, David A.; LEGUS Team

    2017-01-01

    The study of star formation in galaxies has predominantly been limited to either young stellar clusters and HII regions, or much larger kpc-scale morphological features such as spiral arms. The HST Legacy ExtraGalactic UV Survey (LEGUS) provides a rare opportunity to link these scales in a diverse sample of nearby galaxies and obtain a more comprehensive understanding of their co-evolution for comparison against model predictions. We have utilized LEGUS stellar photometry to identify young, resolved stellar populations belonging to several age bins and then defined nested hierarchical structures as traced by these subsamples of stars. Analagous hierarchical structures were also defined using LEGUS catalogs of unresolved young stellar clusters. We will present our emerging results concerning the physical properties (e.g. area, star counts, stellar mass, star formation rate, ISM characteristics), occupancy statistics (e.g. clusters per substructure versus age and scale, parent/child demographics) and relation to overall galaxy morphology/mass for these building blocks of hierarchical star-forming structure.

  15. Planck constraint on relic primordial black holes

    NASA Astrophysics Data System (ADS)

    Clark, Steven J.; Dutta, Bhaskar; Gao, Yu; Strigari, Louis E.; Watson, Scott

    2017-04-01

    We investigate constraints on the abundance of primordial black holes (PBHs) in the mass range 1015- 1017 g using data from the cosmic microwave background (CMB) and MeV extragalactic gamma-ray background (EGB). Hawking radiation from PBHs with lifetime greater than the age of the Universe leaves an imprint on the CMB through modification of the ionization history and the damping of CMB anisotropies. Using a model for redshift-dependent energy injection efficiencies, we show that a combination of temperature and polarization data from Planck provides the strongest constraint on the abundance of PBHs for masses ˜1015- 1016 g , while the EGB dominates for masses ≳1016 g . Both the CMB and EGB now rule out PBHs as the dominant component of dark matter for masses ˜1016- 1017 g . Planned MeV gamma-ray observatories are ideal for further improving constraints on PBHs in this mass range.

  16. THE ARECIBO LEGACY FAST ALFA SURVEY. VIII. H I SOURCE CATALOG OF THE ANTI-VIRGO REGION AT {delta} = +25 DEG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Ann M.; Giovanelli, Riccardo; Haynes, Martha P.

    We present a fourth catalog of H I sources from the Arecibo Legacy Fast ALFA (ALFALFA) Survey. We report 541 detections over 136 deg{sup 2}, within the region of the sky having 22{sup h} < {alpha} < 03{sup h} and 24 deg. < {delta} < 26 deg. This complements a previous catalog in the region 26 deg. < {delta} < 28 deg. We present here the detections falling into three classes: (1) extragalactic sources with signal-to-noise ratio (S/N)>6.5, where the reliability of the catalog is better than 95%; (2) extragalactic sources 5.0 < S/N < 6.5 and a previously measuredmore » optical redshift that corroborates our detection; or (3) High Velocity Clouds (HVCs), or subcomponents of such clouds, in the periphery of the Milky Way. Of the 541 objects presented here, 90 are associated with HVCs, while the remaining 451 are identified as extragalactic objects. Optical counterparts have been matched with all but one of the extragalactic objects.« less

  17. “Real-Time” Cosmology with Extragalactic Proper Motions: the Secular Aberration Drift and Evolution of Large-Scale Structure

    NASA Astrophysics Data System (ADS)

    Truebenbach, Alexandra; Darling, Jeremy

    2018-01-01

    We present the VLBA Extragalactic Proper Motion Catalog, a catalog of extragalactic proper motions created using archival VLBI data and our own VLBA astrometry. The catalog contains 713 proper motions, with average uncertainties of ~ 24 microarcsec/yr, including 40 new or improved proper motion measurements using relative astrometry with the VLBA. We detect the secular aberration drift – the apparent motion of extragalactic objects caused by the solar system's acceleration around the Galactic Center – at 6.3 sigma significance with an amplitude of 1.69 +/- 0.27 microarcsec/yr and an apex consistent with the Galactic Center (275.2 +/- 10.0 deg, -29.4 +/- 8.8 deg). Our dipole model detects the aberration drift at a higher significance than some previous studies (e.g., Titov & Lambert 2013), but at a lower amplitude than expected or previously measured. We then use the correlated relative proper motions of extragalactic objects to place upper limits on the rate of large-scale structure collapse (e.g., Quercellini et al. 2009; Darling 2013). Pairs of small separation objects that are in gravitationally interacting structures such as filaments of large-scale structure will show a net decrease in angular separation (> - 15.5 microarcsec/yr) as they move towards each other, while pairs of large separation objects that are gravitationally unbound and move with the Hubble expansion will show no net change in angular separation. With our catalog, we place a 3 sigma limit on the rate of convergence of large-scale structure of -11.4 microarcsec/yr for extragalactic objects within 100 comoving Mpc of each other. We also confirm that large separation objects (> 800 comoving Mpc) move with the Hubble flow to within ~ 2.2 microarcsec/yr. In the future, we plan to incorporate the upcoming Gaia proper motions into our catalog to achieve a higher precision measurement of the average relative proper motion of gravitationally interacting extragalactic objects and to refine our measurement of the collapse of large-scale structure. This research was performed with support from the NSF grant AST-1411605.Darling, J. 2013, AJ, 777, L21; Quercellini et al. 2009. Phys. Rev. Lett., 102, 151302; Titov, O. & Lambert, S. 2013, A&A, 559, A95

  18. Wide extragalactic (sub-)millimeter surveys with SCUBA and AzTEC

    NASA Astrophysics Data System (ADS)

    Aretxaga, I.; Hughes, D. H.; SHADES Collaboration; AzTEC Collaboration

    2009-05-01

    We summarize the present status of our knowledge of the millimeter galaxy population derived from extensive (sub-) millimeter extragalactic surveys like the SCUBA HAlf Degree Survey (SHADES), and the current status of the next generation of surveys traced with the AzTEC camera, that has, so far, surveyed more than 2 degrees at 1.1wavelengths.

  19. The CfA Einstein Observatory extended deep X-ray survey

    NASA Technical Reports Server (NTRS)

    Primini, F. A.; Murray, S. S.; Huchra, J.; Schild, R.; Burg, R.

    1991-01-01

    All IPC exposures in the Einstein Extended Deep X-ray Survey program have been reanalyzed. The current survey covers about 2.3 sq deg with a typical limiting sensitivity of about 5 x 10 to the -14th ergs/sq cm/s in the energy range from 0.8-3.5 keV. A total of 25 IPC sources are detected above a threshold of 4.5 sigma. A total of 18 are detected independently in the HRI, leading to the identification of six with stars and 11 with extragalactic objects. The remaining sources are classified as extragalactic. The population of identified extragalactic objects is dominated by QSOs, with one or two possible clusters. The basic conclusions of the original survey remain unchanged.

  20. The nature of luminous Ly α emitters at z ˜ 2-3: maximal dust-poor starbursts and highly ionizing AGN

    NASA Astrophysics Data System (ADS)

    Sobral, David; Matthee, Jorryt; Darvish, Behnam; Smail, Ian; Best, Philip N.; Alegre, Lara; Röttgering, Huub; Mobasher, Bahram; Paulino-Afonso, Ana; Stroe, Andra; Oteo, Iván

    2018-06-01

    Deep narrow-band surveys have revealed a large population of faint Ly α emitters (LAEs) in the distant Universe, but relatively little is known about the most luminous sources ({L}_{Lyα } ≳ 10^{42.7} erg s-1; L_{Lyα }≳ L^*_{Lyα }). Here we present the spectroscopic follow-up of 21 luminous LAEs at z ˜ 2-3 found with panoramic narrow-band surveys over five independent extragalactic fields (≈4 × 106 Mpc3 surveyed at z ˜ 2.2 and z ˜ 3.1). We use WHT/ISIS, Keck/DEIMOS, and VLT/X-SHOOTER to study these sources using high ionization UV lines. Luminous LAEs at z ˜ 2-3 have blue UV slopes (β =-2.0^{+0.3}_{-0.1}) and high Ly α escape fractions (50^{+20}_{-15} per cent) and span five orders of magnitude in UV luminosity (MUV ≈ -19 to -24). Many (70 per cent) show at least one high ionization rest-frame UV line such as C IV, N V, C III], He II or O III], typically blue-shifted by ≈100-200 km s-1 relative to Ly α. Their Ly α profiles reveal a wide variety of shapes, including significant blue-shifted components and widths from 200 to 4000 km s-1. Overall, 60 ± 11 per cent appear to be active galactic nucleus (AGN) dominated, and at LLyα > 1043.3 erg s-1 and/or MUV < -21.5 virtually all LAEs are AGNs with high ionization parameters (log U = 0.6 ± 0.5) and with metallicities of ≈0.5 - 1 Z⊙. Those lacking signatures of AGNs (40 ± 11 per cent) have lower ionization parameters (log U=-3.0^{+1.6}_{-0.9} and log ξion = 25.4 ± 0.2) and are apparently metal-poor sources likely powered by young, dust-poor `maximal' starbursts. Our results show that luminous LAEs at z ˜ 2-3 are a diverse population and that 2× L^*_{Lyα } and 2× M_UV^* mark a sharp transition in the nature of LAEs, from star formation dominated to AGN dominated.

  1. Use of UV Sources for Detection and Identification of Explosives

    NASA Technical Reports Server (NTRS)

    Hug, William; Reid, Ray; Bhartia, Rohit; Lane, Arthur

    2009-01-01

    Measurement of Raman and native fluorescence emission using ultraviolet (UV) sources (<400 nm) on targeted materials is suitable for both sensitive detection and accurate identification of explosive materials. When the UV emission data are analyzed using a combination of Principal Component Analysis (PCA) and cluster analysis, chemicals and biological samples can be differentiated based on the geometric arrangement of molecules, the number of repeating aromatic rings, associated functional groups (nitrogen, sulfur, hydroxyl, and methyl), microbial life cycles (spores vs. vegetative cells), and the number of conjugated bonds. Explosive materials can be separated from one another as well as from a range of possible background materials, which includes microbes, car doors, motor oil, and fingerprints on car doors, etc. Many explosives are comprised of similar atomic constituents found in potential background samples such as fingerprint oils/skin, motor oil, and soil. This technique is sensitive to chemical bonds between the elements that lead to the discriminating separability between backgrounds and explosive materials.

  2. BLAST: The Balloon-Borne Large Aperture Submillimeter Telescope

    NASA Technical Reports Server (NTRS)

    Devlin, Mark; Ade, Peter; Bock, Jamie; Dicker, Simon; Griffin, Matt; Gunderson, Josh; Halpern, Mark; Hargrave, Peter; Hughes, David; Klein, Jeff

    2004-01-01

    BLAST is the Balloon-borne Large-Aperture Sub-millimeter Telescope. It will fly from a Long Duration Balloon (LDB) platform from Antarctica. The telescope design incorporates a 2 m primary mirror with large-format bolometer arrays operating at 250, 350 and 500 microns. By providing the first sensitive large-area (10 sq. deg.) sub-mm surveys at these wavelengths, BLAST will address some of the most important galactic and cosmological questions regarding the formation and evolution of stars, galaxies and clusters. Galactic and extragalactic BLAST surveys will: (1) identify large numbers of high-redshift galaxies; (2) measure photometric redshifts, rest-frame FIR luminosities and star formation rates thereby constraining the evolutionary history of the galaxies that produce the FIR and sub-mm background; (3) measure cold pre-stellar sources associated with the earliest stages of star and planet formation; (4) make high-resolution maps of diffuse galactic emission over a wide range of galactic latitudes. In addition to achieving the above scientific goals, the exciting legacy of the BLAST LDB experiment will be a catalogue of 3000-5000 extragalactic sub-mm sources and a 100 sq. deg. sub-mm galactic plane survey. Multi-frequency follow-up observations from SIRTF, ASTRO-F, and Herschel, together with spectroscopic observations and sub-arcsecond imaging from ALMA are essential to understand the physical nature of the BLAST sources.

  3. The Gould's Belt Very Large Array Survey. I. The Ophiuchus Complex

    NASA Astrophysics Data System (ADS)

    Dzib, Sergio A.; Loinard, Laurent; Mioduszewski, Amy J.; Rodríguez, Luis F.; Ortiz-León, Gisela N.; Pech, Gerardo; Rivera, Juana L.; Torres, Rosa M.; Boden, Andrew F.; Hartmann, Lee; Evans, Neal J., II; Briceño, Cesar; Tobin, John

    2013-09-01

    We present large-scale (~2000 arcmin2), deep (~20 μJy), high-resolution (~1'') radio observations of the Ophiuchus star-forming complex obtained with the Karl G. Jansky Very Large Array at λ = 4 and 6 cm. In total, 189 sources were detected, 56 of them associated with known young stellar sources, and 4 with known extragalactic objects; the other 129 remain unclassified, but most of them are most probably background quasars. The vast majority of the young stars detected at radio wavelengths have spectral types K or M, although we also detect four objects of A/F/B types and two brown dwarf candidates. At least half of these young stars are non-thermal (gyrosynchrotron) sources, with active coronas characterized by high levels of variability, negative spectral indices, and (in some cases) significant circular polarization. As expected, there is a clear tendency for the fraction of non-thermal sources to increase from the younger (Class 0/I or flat spectrum) to the more evolved (Class III or weak line T Tauri) stars. The young stars detected both in X-rays and at radio wavelengths broadly follow a Güdel-Benz relation, but with a different normalization than the most radioactive types of stars. Finally, we detect a ~70 mJy compact extragalactic source near the center of the Ophiuchus core, which should be used as gain calibrator for any future radio observations of this region.

  4. Improved sensing using simultaneous deep-UV Raman and fluorescence detection-II

    NASA Astrophysics Data System (ADS)

    Hug, W. F.; Bhartia, R.; Sijapati, K.; Beegle, L. W.; Reid, R. D.

    2014-05-01

    Photon Systems in collaboration with JPL is continuing development of a new technology robot-mounted or hand-held sensor for reagentless, short-range, standoff detection and identification of trace levels chemical, biological, and explosive (CBE) materials on surfaces. This deep ultraviolet CBE sensor is the result of Army STTR and DTRA programs. The evolving 10 to 15 lb, 20 W, sensor can discriminate CBE from background clutter materials using a fusion of deep UV excited resonance Raman (RR) and laser induced native fluorescence (LINF) emissions collected is less than 1 ms. RR is a method that provides information about molecular bonds, while LINF spectroscopy is a much more sensitive method that provides information regarding the electronic configuration of target molecules. Standoff excitation of suspicious packages, vehicles, persons, and other objects that may contain hazardous materials is accomplished using excitation in the deep UV where there are four main advantages compared to near-UV, visible or near-IR counterparts. 1) Excited between 220 and 250 nm, Raman emission occur within a fluorescence-free region of the spectrum, eliminating obscuration of weak Raman signals by fluorescence from target or surrounding materials. 2) Because Raman and fluorescence occupy separate spectral regions, detection can be done simultaneously, providing an orthogonal set of information to improve both sensitivity and lower false alarm rates. 3) Rayleigh law and resonance effects increase Raman signal strength and sensitivity of detection. 4) Penetration depth into target in the deep UV is short, providing spatial/spectral separation of a target material from its background or substrate. 5) Detection in the deep UV eliminates ambient light background and enable daylight detection.

  5. Photon underproduction crisis and the redshift evolution of escape fraction of hydrogen ionizing photons from galaxies

    NASA Astrophysics Data System (ADS)

    Khaire, Vikram; Srianand, Raghunathan

    2016-01-01

    In the standard picture, the only sources of cosmic UV background are the quasars and the star forming galaxies. The hydrogen ionizing emissivity from galaxies depends on a parameter known as escape fraction (fesc). It is the ratio of the escaping hydrogen ionizing photons from galaxies to the total produced by their stellar population. Using available multi-wavelength and multi-epoch galaxy luminosity function measurements, we update the galaxy emissivity by estimating a self-consistent combination of the star formation rate density and dust attenuation. Using the recent quasar luminosity function measurements, we present an updated hydrogen ionizing emissivity from quasars which shows a factor of ~2 increase as compared to the previous estimates at z<2. We use these in a cosmological radiative transfer code developed by us to generate the UV background and show that the recently inferred high values of hydrogen photoionization rates at low redshifts can be easily obtained with reasonable values of fesc. This resolves the problem of 'photon underproduction crisis' and shows that there is no need to invoke non-standard sources of the UV background such as decaying dark matter particles. We will present the implications of this updated quasar and galaxy emissivity on the values of fesc at high redshifts and on the cosmic reionization. We will also present the effect of the updated UV background on the inferred properties of the intergalactic medium, especially on the Lyman alpha forest and the metal line absorption systems.

  6. A Census of the LyC Photons that Form the UV Background During Reionization

    NASA Astrophysics Data System (ADS)

    Katz, Harley; Kimm, Taysun; Haehnelt, Martin; Sijacki, Debora; Rosdahl, Joakim; Blaizot, Jeremy

    2018-05-01

    We present a new, on-the-fly photon flux and absorption tracer algorithm designed to directly measure the contribution of different source populations to the metagalactic UV background and to the ionisation fraction of gas in the Universe. We use a suite of multifrequency radiation hydrodynamics simulations that are carefully calibrated to reproduce a realistic reionization history and galaxy properties at z ≥ 6, to disentangle the contribution of photons emitted by different mass haloes and by stars with different metallicities and ages to the UV background during reionization. While at very early cosmic times low mass, metal poor haloes provide most of the LyC photons, their contribution decreases steadily with time. At z = 6 it is the photons emitted by massive systems (Mhalo/M⊙ > 1010 h-1) and by the metal enriched stars (10-3 < Z/Z⊙ < 10-1.5) that provide the largest contribution to the ionising UV background. We demonstrate that there are large variations in the escape fraction depending on the source, with the escape fraction being highest (˜45 - 60%) for photons emitted by the oldest stars that penetrate into the IGM via low opacity channels carved by the ionising photons and supernova from younger stars. Before HII regions begin to overlap, the photoionisation rate strongly fluctuates between different, isolated HII bubbles, depending on the embedded ionising source, which we suggest may result in spatial variations in the properties of dwarf galaxies.

  7. The Spatial Distribution of the Young Stellar Clusters in the Star-forming Galaxy NGC 628

    NASA Astrophysics Data System (ADS)

    Grasha, K.; Calzetti, D.; Adamo, A.; Kim, H.; Elmegreen, B. G.; Gouliermis, D. A.; Aloisi, A.; Bright, S. N.; Christian, C.; Cignoni, M.; Dale, D. A.; Dobbs, C.; Elmegreen, D. M.; Fumagalli, M.; Gallagher, J. S., III; Grebel, E. K.; Johnson, K. E.; Lee, J. C.; Messa, M.; Smith, L. J.; Ryon, J. E.; Thilker, D.; Ubeda, L.; Wofford, A.

    2015-12-01

    We present a study of the spatial distribution of the stellar cluster populations in the star-forming galaxy NGC 628. Using Hubble Space Telescope broadband WFC3/UVIS UV and optical images from the Treasury Program LEGUS (Legacy ExtraGalactic UV Survey), we have identified 1392 potential young (≲ 100 Myr) stellar clusters within the galaxy using a combination of visual inspection and automatic selection. We investigate the clustering of these young stellar clusters and quantify the strength and change of clustering strength with scale using the two-point correlation function. We also investigate how image boundary conditions and dust lanes affect the observed clustering. The distribution of the clusters is well fit by a broken power law with negative exponent α. We recover a weighted mean index of α ∼ -0.8 for all spatial scales below the break at 3.″3 (158 pc at a distance of 9.9 Mpc) and an index of α ∼ -0.18 above 158 pc for the accumulation of all cluster types. The strength of the clustering increases with decreasing age and clusters older than 40 Myr lose their clustered structure very rapidly and tend to be randomly distributed in this galaxy, whereas the mass of the star cluster has little effect on the clustering strength. This is consistent with results from other studies that the morphological hierarchy in stellar clustering resembles the same hierarchy as the turbulent interstellar medium.

  8. The Hierarchical Distribution of the Young Stellar Clusters in Six Local Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Grasha, K.; Calzetti, D.; Adamo, A.; Kim, H.; Elmegreen, B. G.; Gouliermis, D. A.; Dale, D. A.; Fumagalli, M.; Grebel, E. K.; Johnson, K. E.; Kahre, L.; Kennicutt, R. C.; Messa, M.; Pellerin, A.; Ryon, J. E.; Smith, L. J.; Shabani, F.; Thilker, D.; Ubeda, L.

    2017-05-01

    We present a study of the hierarchical clustering of the young stellar clusters in six local (3-15 Mpc) star-forming galaxies using Hubble Space Telescope broadband WFC3/UVIS UV and optical images from the Treasury Program LEGUS (Legacy ExtraGalactic UV Survey). We identified 3685 likely clusters and associations, each visually classified by their morphology, and we use the angular two-point correlation function to study the clustering of these stellar systems. We find that the spatial distribution of the young clusters and associations are clustered with respect to each other, forming large, unbound hierarchical star-forming complexes that are in general very young. The strength of the clustering decreases with increasing age of the star clusters and stellar associations, becoming more homogeneously distributed after ˜40-60 Myr and on scales larger than a few hundred parsecs. In all galaxies, the associations exhibit a global behavior that is distinct and more strongly correlated from compact clusters. Thus, populations of clusters are more evolved than associations in terms of their spatial distribution, traveling significantly from their birth site within a few tens of Myr, whereas associations show evidence of disruption occurring very quickly after their formation. The clustering of the stellar systems resembles that of a turbulent interstellar medium that drives the star formation process, correlating the components in unbound star-forming complexes in a hierarchical manner, dispersing shortly after formation, suggestive of a single, continuous mode of star formation across all galaxies.

  9. Legacy ExtraGalactic UV Survey (LEGUS): The HST View of Star Formation in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Calzetti, Daniela; Lee, J. C.; Adamo, A.; Aloisi, A.; Andrews, J. E.; Brown, T. M.; Chandar, R.; Christian, C. A.; Cignoni, M.; Clayton, G. C.; Da Silva, R. L.; de Mink, S. E.; Dobbs, C.; Elmegreen, B.; Elmegreen, D. M.; Evans, A. S.; Fumagalli, M.; Gallagher, J. S.; Gouliermis, D.; Grebel, E.; Herrero-Davo`, A.; Hilbert, B.; Hunter, D. A.; Johnson, K. E.; Kennicutt, R.; Kim, H.; Krumholz, M. R.; Lennon, D. J.; Martin, C. D.; Nair, P.; Nota, A.; Pellerin, A.; Prieto, J.; Regan, M. W.; Sabbi, E.; Schaerer, D.; Schiminovich, D.; Smith, L. J.; Thilker, D. A.; Tosi, M.; Van Dyk, S. D.; Walterbos, R. A.; Whitmore, B. C.; Wofford, A.

    2014-01-01

    The Treasury program LEGUS (HST/GO-13364) is the first HST UV Atlas of nearby galaxies, and is aimed at the thorough investigation of star formation and its relation with galaxy environment, from the scales of individual stars to those of ~kpc clustered structures. The 154-orbits program is obtaining NUV,U,B,V,I images of 50 star-forming galaxies in the distance range 4-12 Mpc, covering the full range of morphology, star formation rate (SFR), mass, metallicity, internal structure, and interaction state found in the local Universe. The imaging survey will yield accurate recent (<50 Myr) star formation histories (SFHs) from resolved massive stars, and the extinction-corrected ages and masses of star clusters and associations. These extensive inventories of massive stars, clustered systems, and SFHs will be used to: (1) quantify how the clustering of star formation evolves both in space and in time; (2) discriminate among models of star cluster evolution; (3) investigate the effects of SFH on the UV SFR calibrations; (4) explore the impact of environment on star formation and cluster evolution across the full range of galactic and ISM properties. LEGUS observations will inform theories of star formation and galaxy evolution, and improve the understanding of the physical underpinning of the gas-star formation relation and the nature of the clumpy star formation at high redshift. LEGUS will generate the most homogeneous high-resolution, wide-field UV dataset to date, building and expanding on the GALEX legacy. Data products that will be delivered to the community include: catalogs of massive stars and star clusters, catalogs of star cluster properties (ages, masses, extinction), and a one-stop shop for all the ancillary data available for this well-studied galaxy sample. LEGUS will provide the reference survey and the foundation for future observations with JWST and with ALMA. This abstract accompanies another one from the same project, and presents the status of the project, its structure, and the data products that will be delivered to the community; the other abstract presents the science goals of LEGUS and how these will be addressed by the HST observations.

  10. Determination of the extragalactic-planetary frame tie from joint analysis of radio interferometric and lunar laser ranging measurements

    NASA Technical Reports Server (NTRS)

    Folkner, W. M.; Charlot, P.; Finger, M. H.; Williams, J. G.; Sovers, O. J.; Newhall, XX; Standish, E. M., Jr.

    1994-01-01

    Very Long Baseline Interferometry (VLBI) observations of extragalactic radio sources provide the basis for defining an accurate non-rotating reference frame in terms of angular positions of the sources. Measurements of the distance from the Earth to the Moon and to the inner planets provide the basis for defining an inertial planetary ephemeris reference frame. The relative orientation, or frame tie, between these two reference frames is of interest for combining Earth orientation measurements, for comparing Earth orientation results with theories referred to the mean equator and equinox, and for determining the positions of the planets with respect to the extragalactic reference frame. This work presents an indirect determination of the extragalactic-planetary frame tie from a combined reduction of VLBI and Lunar Laser Ranging (LLR) observations. For this determination, data acquired by LLR tracking stations since 1969 have been analyzed and combined with 14 years of VLBI data acquired by NASA's Deep Space Network since 1978. The frame tie derived from this joint analysis, with an accuracy of 0.003 sec, is the most accurate determination obtained so far. This result, combined with a determination of the mean ecliptic (defined in the rotating sense), shows that the mean equinox of epoch J2000 is offset from the x-axis of the extragalactic frame adopted by the International Earth Rotation Service for astrometric and geodetic applications by 0.078 sec +/- 0.010 sec along the y-direction and y 0.019 sec +/- 0.001 sec. along the z-direction.

  11. Neutrino diagnostics of ultrahigh energy cosmic ray protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahlers, Markus; Sarkar, Subir; Anchordoqui, Luis A.

    2009-04-15

    The energy at which cosmic rays from extra-galactic sources begin to dominate over those from galactic sources is an important open question in astroparticle physics. A natural candidate is the energy at the 'ankle' in the approximately power-law energy spectrum which is indicative of a crossover from a falling galactic component to a flatter extra-galactic component. The transition can occur without such flattening but this requires some degree of conspiracy of the spectral shapes and normalizations of the two components. Nevertheless, it has been argued that extra-galactic sources of cosmic ray protons that undergo interactions on the CMB can reproducemore » the energy spectrum below the ankle if the crossover energy is as low as the 'second knee' in the spectrum. This low crossover model is constrained by direct measurements by the Pierre Auger Observatory, which indicate a heavier composition at these energies. We demonstrate that upper limits on the cosmic diffuse neutrino flux provide a complementary constraint on the proton fraction in ultra-high energy extra-galactic cosmic rays and forthcoming data from IceCube will provide a definitive test of this model.« less

  12. Resolving the structure of the Galactic foreground using Herschel measurements and the Kriging technique

    NASA Astrophysics Data System (ADS)

    Pinter, S.; Bagoly, Z.; Balázs, L. G.; Horvath, I.; Racz, I. I.; Zahorecz, S.; Tóth, L. V.

    2018-05-01

    Investigating the distant extragalactic Universe requires a subtraction of the Galactic foreground. One of the major difficulties deriving the fine structure of the galactic foreground is the embedded foreground and background point sources appearing in the given fields. It is especially so in the infrared. We report our study subtracting point sources from Herschel images with Kriging, an interpolation method where the interpolated values are modelled by a Gaussian process governed by prior covariances. Using the Kriging method on Herschel multi-wavelength observations the structure of the Galactic foreground can be studied with much higher resolution than previously, leading to a better foreground subtraction at the end.

  13. Understanding nature's particle accelerators using high energy gamma-ray survey instruments

    NASA Astrophysics Data System (ADS)

    Abeysekara, Anushka Udara

    Nature's particle accelerators, such as Pulsars, Pulsar Wind Nebulae, Active Galactic Nuclei and Supernova Remnants accelerate charged particles to very high energies that then produce high energy photons. The particle acceleration mechanisms and the high energy photon emission mechanisms are poorly understood phenomena. These mechanisms can be understood either by studying individual sources in detail or, alternatively, using the collective properties of a sample of sources. Recent development of GeV survey instruments, such as Fermi-LAT, and TeV survey instruments, such as Milagro, provides a large sample of high energy gamma-ray flux measurements from galactic and extra-galactic sources. In this thesis I provide constraints on GeV and TeV radiation mechanisms using the X-ray-TeV correlations and GeV-TeV correlations. My data sample was obtained from three targeted searches for extragalactic sources and two targeted search for galactic sources, using the existing Milagro sky maps. The first extragalactic candidate list consists of Fermi-LAT GeV extragalactic sources, and the second extragalactic candidate list consists of TeVCat extragalactic sources that have been detected by Imaging Atmospheric Cerenkov Telescopes (IACTs). In both extragalactic candidate lists Markarian 421 was the only source detected by Milagro. A comparison between the Markarian 421 time-averaged flux, measured by Milagro, and the flux measurements of transient states, measured by IACTs, is discussed. The third extragalactic candidate list is a list of potential TeV emitting BL Lac candidates that was synthesized using X-ray observations of BL Lac objects and a Synchrotron Self-Compton model. Milagro's sensitivity was not sufficient to detect any of those candidates. However, the 95% confidence flux upper limits of those sources were above the predicted flux. Therefore, these results provide evidence to conclude that the Synchrotron Self-Compton model for BL Lac objects is still a viable model. Targeted searches for galactic candidates were able to measure TeV emission associated with 14 Fermi-LAT GeV pulsars. In this thesis I also presented a new multi-wavelength technique that I developed to isolate the flux correlation factor (fΩ ) of pulsars as a function of pulsar spin down luminosity. The correlation between fΩ and pulsar spin-down luminosity for a Fermi-LAT GeV pulsar sample was measured using the measurements obtained in the Milagro targeted search performed for galactic sources and from the literature. The measured correlation has some features that favor the Outer Gap model over the Polar Cap, Slot Gap and One Pole Caustic models for pulsar emission in the energy range of 0.1 to 100 GeV. However, these simulated models failed to explain many other important pulsar population characteristics. Therefore, further improvements on the galactic pulsar population simulations are needed to provide tighter constraints.

  14. FIREBall, CHaS, and the diffuse universe

    NASA Astrophysics Data System (ADS)

    Hamden, Erika Tobiason

    The diffuse universe, consisting of baryons that have not yet collapsed into structures such as stars, galaxies, etc., has not been well studied. While the intergalactic and circumgalactic mediums (IGM & CGM) may contain 30-40% of the baryons in the universe, this low density gas is difficult to observe. Yet it is likely a key driver of the evolution of galaxies and star formation through cosmic time. The IGM provides a reservoir of gas that can be used for star formation, if it is able to accrete onto a galaxy. The CGM bridges the IGM and the galaxy itself, as a region of both inflows from the IGM and outflows from galactic star formation and feedback. The diffuse interstellar medium (ISM) gas and dust in the galaxy itself may also be affected by the CGM of the galaxy. Careful observations of the ISM of our own Galaxy may provide evidence of interaction with the CGM. These three regions of low density, the IGM, CGM, and ISM, are arbitrary divisions of a continuous flow of low density material into and out of galaxies. My thesis focuses on observations of this low density material using existing telescopes as well as on the development of technology and instruments that will increase the sensitivity of future missions. I used data from the Galaxy Evolution Explorer (GALEX) to create an all sky map of the diffuse Galactic far ultraviolet (FUV) background, probing the ISM of our own galaxy and comparing to other Galactic all sky maps. The FUV background is primarily due to dust scattered starlight from bright stars in the Galactic plane, and the changing intensity across the sky can be used to characterize dust scattering asymmetry and albedo. We measure a consistent low level non-scattered isotropic component to the diffuse FUV, which may be due in small part to an extragalactic component. There are also several regions of unusually high FUV intensity given other Galactic quantities. Such regions may be the location of interactions between Galactic super-bubbles and the CGM. Other ways of probing the CGM including direct detection via emission lines. I built a proto-type of the Circumgalactic Halpha Spectrograph (CHalphaS), a wide-field, low-cost, narrow-band integral field unit (IFU) that is designed to observe Halpha emission from the CGM of nearby, low-z galaxies. This proto-type has had two recent science runs, with preliminary data on several nearby galaxies. Additional probes of the CGM are emission lines in the rest ultra-violet. These include OVI, Lyalpha, CIV, SiIII, CIII, CII, FeII, and MgII. Such lines are accessible for low redshift galaxies in the space UV, historically a difficult wavelength range in which to work due in part to low efficiency of the available detectors. I have worked with NASA's Jet Propulsion Laboratory to develop advanced anti-reflection (AR) coatings for use on thinned, delta-doped charge coupled device (CCD) detectors. These detectors have achieved world record quantum efficiency (QE) at UV wavelengths (>50% between 130 nm and 300nm), with the potential for even greater QE with a more complex coating. One of these AR coated detectors will be used on the Faint Intergalactic Redshifted Emission Balloon (FIREBall-2), a balloon-born UV spectrograph designed to observe the CGM at 205 nm via redshifted Lyalpha (at z=0.7), CIV (at z=0.3), and OVI (at z=1.0). FIREBall-2 will launch in the fall of 2015.

  15. Vacuum ultraviolet imagery of the Virgo cluster region

    NASA Astrophysics Data System (ADS)

    Onaka, T.; Tanaka, W.; Watanabe, T.; Watanabe, J.; Yamaguchi, A.; Nakagiri, M.; Kodaira, K.; Nakano, M.; Sasaki, M.; Tsujimura, T.; Yamashita, K.

    1989-07-01

    The results are reported of an experiment using the UV imager aboard an attitude-controlled S520 type sounding rocket. The total UV fluxes of galaxies in the Virgo Cluster as well as the flux level of the diffuse UV background around the cluster were measured. The data on NGC 4486 and NGC 4472 confirm the variation in the degree of the 'turnup' below 200 nm in the energy spectrum of the total light of elliptical galaxies. At two-color diagram of galaxies of visual/near-UV/vacuum UV indicates that colors of spiral galaxies are distributed within a strip and well-correlated with the morphological type, while elliptical galaxies are located differently from spiral galaxies.

  16. Some remarks on extragalactic globular clusters

    NASA Astrophysics Data System (ADS)

    Richtler, Tom

    2006-03-01

    I comment (in a review fashion) on a few selected topics in the field of extragalactic globular clusters with strong emphasis on recent work. The topics are: bimodality in the colour distribution of cluster systems, young massive clusters, and the brightest old clusters. Globular cluster research, per- haps more than ever, has lead to important (at least to astronomers) progress and problems in galaxy structure and formation.

  17. Dark Matter and Extragalactic Gas Clouds in the NGC 4532/DDO 137 System

    NASA Technical Reports Server (NTRS)

    Hoffman, G. L.; Lu, N. Y.; Salpeter, E. E.; Connell, B. M.

    1998-01-01

    H I synthesis mapping of NGC 4532 and DDO 137, a pair of Sm galaxies on the edge of the Virgo cluster, is used to determine rotation curves for each of the galaxies and to resolve the structure and kinematics of three extragalactic H I clouds embedded in an extended envelope of diffuse HI discovered in earlier Arecibo studies of the system.

  18. Evaluation of State-of-the-Art High Speed Deluge Systems Presently in Service at Various U.S. Army Ammunition Plants

    DTIC Science & Technology

    1993-09-01

    designed to respond to. No data exists on spectral irradiances in the IR or UV spectral bands where the current detectors operate. A need exists to...appropriate fire/explosion detection spectral bands. Setting a pyrotechnic fire and testing the responses of commercial UV and IR detectors that are designed...PNZ B. DETECTOR BACKGROUND ............... 30 C. UV DETECTORS . . ............ . . . 32 D. IR DETECTORS . . . ......... . . ... 34 E. MACHINE VISION

  19. Ultraviolet-B component of sunlight stimulates photosynthesis and flavonoid accumulation in variegated Plectranthus coleoides leaves depending on background light.

    PubMed

    Vidović, Marija; Morina, Filis; Milić, Sonja; Zechmann, Bernd; Albert, Andreas; Winkler, Jana Barbro; Veljović Jovanović, Sonja

    2015-05-01

    We used variegated Plectranthus coleoides as a model plant with the aim of clarifying whether the effects of realistic ultraviolet-B (UV-B) doses on phenolic metabolism in leaves are mediated by photosynthesis. Plants were exposed to UV-B radiation (0.90 W m(-2) ) combined with two photosynthetically active radiation (PAR) intensities [395 and 1350 μmol m(-2)  s(-1) , low light (LL) and high light (HL)] for 9 d in sun simulators. Our study indicates that UV-B component of sunlight stimulates CO2 assimilation and stomatal conductance, depending on background light. UV-B-specific induction of apigenin and cyanidin glycosides was observed in both green and white tissues. However, all the other phenolic subclasses were up to four times more abundant in green leaf tissue. Caffeic and rosmarinic acids, catechin and epicatechin, which are endogenous peroxidase substrates, were depleted at HL in green tissue. This was correlated with increased peroxidase and ascorbate peroxidase activities and increased ascorbate content. The UV-B supplement to HL attenuated antioxidative metabolism and partly recovered the phenolic pool indicating stimulation of the phenylpropanoid pathway. In summary, we propose that ortho-dihydroxy phenolics are involved in antioxidative defence in chlorophyllous tissue upon light excess, while apigenin and cyanidin in white tissue have preferentially UV-screening function. © 2014 John Wiley & Sons Ltd.

  20. The Herschel-SPIRE Point Source Catalog Version 2

    NASA Astrophysics Data System (ADS)

    Schulz, Bernhard; Marton, Gábor; Valtchanov, Ivan; María Pérez García, Ana; Pintér, Sándor; Appleton, Phil; Kiss, Csaba; Lim, Tanya; Lu, Nanyao; Papageorgiou, Andreas; Pearson, Chris; Rector, John; Sánchez Portal, Miguel; Shupe, David; Tóth, Viktor L.; Van Dyk, Schuyler; Varga-Verebélyi, Erika; Xu, Kevin

    2018-01-01

    The Herschel-SPIRE instrument mapped about 8% of the sky in Submillimeter broad-band filters centered at 250, 350, and 500 microns (1199, 857, 600 GHz) with spatial resolutions of 17.9”, 24.2”, and 35.4” respectively. We present here the 2nd version of the SPIRE Point Source Catalog (SPSC). Stacking on WISE 22 micron catalog sources led to the identification of 108 maps, out of 6878, that had astrometry offsets of greater than 5”. After fixing these deviations and re-derivation of all affected map-mosaics, we repeated the systematic and homogeneous source extraction performed on all maps, using an improved version of the 4 different photometry extraction methods that were already employed in the generation of the first version catalog. Only regions affected by strong Galactic emission, mostly in the Galactic Plane, were excluded, as they exceeded the limits of the available source extraction methods. Aimed primarily at point sources, that allow for the best photometric accuracy, the catalog contains also significant fractions of slightly extended sources. With most SPIRE maps being confusion limited, uncertainties in flux densities were established as a function of structure noise and flux density, based on the results of artificial source insertion experiments into real data along a range of celestial backgrounds. Many sources have been rejected that do not pass the imposed SNR threshold, especially at flux densities approaching the extragalactic confusion limit. A range of additional flags provide information on the reliability of the flux information, as well as the spatial extent and orientation of a source. The catalog should be particularly helpful for determining cold dust content in extragalactic and galactic sources with low to moderate background confusion. We present an overview of catalog construction, detailed content, and validation results, with focus on the improvements achieved in the second version that is soon to be released.

  1. Predicting Avoidance of Skin Damage Feedback among College Students

    PubMed Central

    Dwyer, Laura A.; Shepperd, James A.; Stock, Michelle L.

    2015-01-01

    Background Showing people a personal ultraviolet (UV) photograph depicting skin damage can be an effective method for changing sun protection cognitions and behaviors. Purpose We examined whether people opt not to see their UV photograph if given a choice. We also examined predictors of avoidance of skin damage feedback. Methods College students (N = 257) completed questionnaires, viewed example UV photographs, and received the opportunity to see a UV photograph of their face. Results Over one-third of participants opted not to see their UV photograph. Greater perceived risk of sun damage and having fewer coping resources corresponded with greater avoidance, particularly among participants who reported infrequent sun protection behavior. Conclusion The health benefits of UV photography are realized only if people are willing to view the photograph. Our findings suggest the need for interventions that increase receptivity to viewing one’s UV photograph. PMID:25894276

  2. The UV Survey Mission Concept, CETUS

    NASA Astrophysics Data System (ADS)

    Heap, Sara; and the CETUS Team

    2018-01-01

    In March 2017, NASA selected CETUS for study of a Probe-class mission concept. W. Danchi is the CETUS PI, and S. Heap is the Science PI. CETUS is primarily a UV survey telescope to complement survey telescopes of the 2020’s including E-ROSITA, Subaru Hyper Suprime Cam and Prime-Focus Spectrograph, WFIRST, and the Square Kilometer Array. CETUS comprises a 1.5-m wide-field telescope and three science instruments: a wide-field (1045” on a side) far-UV and near-UV camera; a similarly wide-field near-UV multi-object spectrograph utilizing a next-generation micro-shutter array; and a single-object spectrograph with options of spectral region (far-UV or near-UV) and spectral resolving power (2,000 or 40,000). The survey instruments will operate simultaneously thereby producing wide-field images in the near-UV and far-UV and a spectrogram containing near-UV spectra of up to 100 sources free of spectral overlap and astronomical background. ln concert with other survey telescopes, CETUS will focus on understanding galaxy evolution at cosmic noon (z~1-2).

  3. Extragalactic optical and near-infrared foregrounds to 21-cm epoch of reionisation experiments

    NASA Astrophysics Data System (ADS)

    Jarvis, Matt J.; Bowler, Rebecca A. A.; Hatfield, Peter W.

    2018-05-01

    Foreground contamination is one of the most important limiting factors in detecting the neutral hydrogen in the epoch of reionisation. These foregrounds can be roughly split into galactic and extragalactic foregrounds. In these proceedings we highlight information that can be gleaned from multi-wavelength extragalactic surveys in order to overcome this issue. We discuss how clustering information from the lower-redshift, foreground galaxies, can be used as additional information in accounting for the noise associated with the foregrounds. We then go on to highlight the expected contribution of future optical and near-infrared surveys for detecting the galaxies responsible for ionising the Universe. We suggest that these galaxies can also be used to reduce the systematics in the 21-cm epoch of reionisation signal through cross-correlations if enough common area is surveyed.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, Yoshiyuki; Tanaka, Yasuyuki T., E-mail: yinoue@astro.isas.jaxa.jp

    The Fermi gamma-ray space telescope has revolutionized our understanding of the cosmic gamma-ray background radiation in the GeV band. However, investigation on the cosmic TeV gamma-ray background radiation still remains sparse. Here, we report the lower bound on the cosmic TeV gamma-ray background spectrum placed by the cumulative flux of individual detected extragalactic TeV sources including blazars, radio galaxies, and starburst galaxies. The current limit on the cosmic TeV gamma-ray background above 0.1 TeV is obtained as 2.8 × 10{sup −8}(E/100 GeV){sup −0.55} exp(−E/2100GeV)[GeV cm{sup −2} s{sup −1} sr{sup −1}] < E{sup 2}dN/dE < 1.1 × 10{sup −7}(E/100 GeV){sup −0.49} [GeV cm{sup −2} s{sup −1} sr{sup −1}], wheremore » the upper bound is set by requirement that the cascade flux from the cosmic TeV gamma-ray background radiation can not exceed the measured cosmic GeV gamma-ray background spectrum. Two nearby blazars, Mrk 421 and Mrk 501, explain ∼70% of the cumulative background flux at 0.8–4 TeV, while extreme blazars start to dominate at higher energies. We also provide the cumulative background flux from each population, i.e., blazars, radio galaxies, and starburst galaxies which will be the minimum requirement for their contribution to the cosmic TeV gamma-ray background radiation.« less

  5. Definition and dynamic control of a continuous chromatography process independent of cell culture titer and impurities.

    PubMed

    Chmielowski, Rebecca A; Mathiasson, Linda; Blom, Hans; Go, Daniel; Ehring, Hanno; Khan, Heera; Li, Hong; Cutler, Collette; Lacki, Karol; Tugcu, Nihal; Roush, David

    2017-12-01

    Advances in cell culture technology have enabled the production of antibody titers upwards of 30g/L. These highly productive cell culture systems can potentially lead to productivity bottlenecks in downstream purification due to lower column loadings, especially in the primary capture chromatography step. Alternative chromatography solutions to help remedy this bottleneck include the utilization of continuous processing systems such as periodic counter-current chromatography (PCC). Recent studies have provided methods to optimize and improve the design of PCC for cell culture titers up to about 3g/L. This paper defines a continuous loading strategy for PCC that is independent of cell culture background and encompasses cell culture titers up to about 31g/L. Initial experimentation showed a challenge with determining a difference in change in UV280nm signal (ie. ΔUV) between cell culture feed and monoclonal antibody (mAb) concentration. Further investigation revealed UV280nm absorbance of the cell culture feedstock without antibody was outside of the linear range of detection for a given cell pathlength. Additional experimentation showed the difference in ΔUV for various cell culture feeds can be either theoretically predicted by Beer's Law given a known absorbance of the media background and impurities or experimentally determined using various UV280nm cell pathlengths. Based on these results, a 0.35mm pathlength at UV280nm was chosen for dynamic control to overcome the background signal. The pore diffusion model showed good agreement with the experimental frontal analysis data, which resulted in definition of a ΔUV setpoint range between 20 and 70% for 3C-PCC experiments. Product quality of the elution pools was acceptable between various cell culture feeds and titers up to about 41g/L. Results indicated the following ΔUV setpoints to achieve robust dynamic control and maintain 3C-PCC yield: ∼20-45% for titers greater than 10g/L depending on UV absorbance of the HCCF and ∼45-70% for titers of up to 10g/L independent of UV absorbance of the HCCF. The strategy and results presented in this paper show column loading in a continuous chromatography step can be dynamically controlled independent of the cell culture feedstock and titer, and allow for enhanced process control built into the downstream continuous operations. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Deep Extragalactic VIsible Legacy Survey (DEVILS): Motivation, Design and Target Catalogue

    NASA Astrophysics Data System (ADS)

    Davies, L. J. M.; Robotham, A. S. G.; Driver, S. P.; Lagos, C. P.; Cortese, L.; Mannering, E.; Foster, C.; Lidman, C.; Hashemizadeh, A.; Koushan, S.; O'Toole, S.; Baldry, I. K.; Bilicki, M.; Bland-Hawthorn, J.; Bremer, M. N.; Brown, M. J. I.; Bryant, J. J.; Catinella, B.; Croom, S. M.; Grootes, M. W.; Holwerda, B. W.; Jarvis, M. J.; Maddox, N.; Meyer, M.; Moffett, A. J.; Phillipps, S.; Taylor, E. N.; Windhorst, R. A.; Wolf, C.

    2018-06-01

    The Deep Extragalactic VIsible Legacy Survey (DEVILS) is a large spectroscopic campaign at the Anglo-Australian Telescope (AAT) aimed at bridging the near and distant Universe by producing the highest completeness survey of galaxies and groups at intermediate redshifts (0.3 < z < 1.0). Our sample consists of ˜60,000 galaxies to Y<21.2 mag, over ˜6 deg2 in three well-studied deep extragalactic fields (Cosmic Origins Survey field, COSMOS, Extended Chandra Deep Field South, ECDFS and the X-ray Multi-Mirror Mission Large-Scale Structure region, XMM-LSS - all Large Synoptic Survey Telescope deep-drill fields). This paper presents the broad experimental design of DEVILS. Our target sample has been selected from deep Visible and Infrared Survey Telescope for Astronomy (VISTA) Y-band imaging (VISTA Deep Extragalactic Observations, VIDEO and UltraVISTA), with photometry measured by PROFOUND. Photometric star/galaxy separation is done on the basis of NIR colours, and has been validated by visual inspection. To maximise our observing efficiency for faint targets we employ a redshift feedback strategy, which continually updates our target lists, feeding back the results from the previous night's observations. We also present an overview of the initial spectroscopic observations undertaken in late 2017 and early 2018.

  7. REDSHIFT-INDEPENDENT DISTANCES IN THE NASA/IPAC EXTRAGALACTIC DATABASE: METHODOLOGY, CONTENT, AND USE OF NED-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steer, Ian; Madore, Barry F.; Mazzarella, Joseph M.

    Estimates of galaxy distances based on indicators that are independent of cosmological redshift are fundamental to astrophysics. Researchers use them to establish the extragalactic distance scale, to underpin estimates of the Hubble constant, and to study peculiar velocities induced by gravitational attractions that perturb the motions of galaxies with respect to the “Hubble flow” of universal expansion. In 2006 the NASA/IPAC Extragalactic Database (NED) began making available a comprehensive compilation of redshift-independent extragalactic distance estimates. A decade later, this compendium of distances (NED-D) now contains more than 100,000 individual estimates based on primary and secondary indicators, available for more thanmore » 28,000 galaxies, and compiled from over 2000 references in the refereed astronomical literature. This paper describes the methodology, content, and use of NED-D, and addresses challenges to be overcome in compiling such distances. Currently, 75 different distance indicators are in use. We include a figure that facilitates comparison of the indicators with significant numbers of estimates in terms of the minimum, 25th percentile, median, 75th percentile, and maximum distances spanned. Brief descriptions of the indicators, including examples of their use in the database, are given in an appendix.« less

  8. Night Vision

    NASA Astrophysics Data System (ADS)

    Rowan-Robinson, Michael

    2013-05-01

    Preface; 1. Introduction; 2. William Herschel opens up the invisible universe; 3. 1800-1950: slow progress - the moon, planets, bright stars, and the discovery of interstellar dust; 4. Dying stars shrouded in dust and stars being born: the emergence of infrared astronomy in the 60s and 70s; 5. Birth of far infrared and submillimetre astronomy: clouds of dust and molecules in our Galaxy; 6. The cosmic microwave background, echo of the Big Bang; 7. The Infrared Astronomical Satellite and the opening up of extragalactic infrared astronomy: starbursts and active galactic nuclei; 8. The Cosmic Background Explorer and the ripples, the Wilkinson Microwave Anisotropy Explorer, and dark energy; 9. Giant ground-based infrared and submillimetre telescopes; 10. The Infrared Space Observatory and the Spitzer Space Telescope: the star-formation history of the universe and infrared galaxy populations; 11. Our dusty Solar System, debris disks and the search for exoplanets; 12. The future: pioneering space missions and giant ground-based telescopes; Notes; Credits for illustrations; Further reading; Bibliography; Glossary; Index of names; Index.

  9. New results and techniques in space radio astronomy.

    NASA Technical Reports Server (NTRS)

    Alexander, J. K.

    1971-01-01

    The methods and results of early space radioastronomy experiments are reviewed, with emphasis on the RAE 1 spacecraft which was designed specifically and exclusively for radio astronomical studies. The RAE 1 carries two gravity-gradient-stabilized 229-m traveling-wave V-antennas, a 37-m dipole antenna, and a number of radiometer systems to provide measurements over the 0.2 to 9.2 MHz frequency range with a time resolution of 0.5 sec and an absolute accuracy of plus or minus 25%. Observations of solar bursts at frequencies down to 0.2 MHz provide new information on the density, plasma velocity, and dynamics of coronal streamers out to distances greater than 50 solar radii. New information on the distribution of the ionized component of the interstellar medium is being obtained from galactic continuum background maps at frequencies around 4 MHz. Cosmic noise background spectra measured down to 0.5 MHz produce new estimates on the interstellar flux of cosmic rays, on magnetic fields in the galactic halo, and on distant extragalactic radio sources.

  10. Gamma-ray luminosity and photon index evolution of FSRQ blazars and contribution to the gamma-ray background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singal, J.; Ko, A.; Petrosian, V., E-mail: jsingal@richmond.edu

    We present the redshift evolutions and distributions of the gamma-ray luminosity and photon spectral index of flat spectrum radio quasar (FSRQ) type blazars, using non-parametric methods to obtain the evolutions and distributions directly from the data. The sample we use for analysis consists of almost all FSRQs observed with a greater than approximately 7σ detection threshold in the first-year catalog of the Fermi Gamma-ray Space Telescope's Large Area Telescope, with redshifts as determined from optical spectroscopy by Shaw et al. We find that FSQRs undergo rapid gamma-ray luminosity evolution, but negligible photon index evolution, with redshift. With these evolutions accountedmore » for we determine the density evolution and luminosity function of FSRQs and calculate their total contribution to the extragalactic gamma-ray background radiation, resolved and unresolved, which is found to be 16(+10/–4)%, in agreement with previous studies.« less

  11. Sensitivity of the Cherenkov Telescope Array to the Detection of Intergalactic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Meyer, Manuel; Conrad, Jan; Dickinson, Hugh

    2016-08-01

    Very high energy (VHE; energy E ≳ 100 GeV) γ-rays originating from extragalactic sources undergo pair production with low-energy photons of background radiation fields. These pairs can inverse-Compton-scatter background photons, initiating an electromagnetic cascade. The spatial and temporal structure of this secondary γ-ray signal is altered as the {e}+{e}- pairs are deflected in an intergalactic magnetic field (IGMF). We investigate how VHE observations with the future Cherenkov Telescope Array, with its high angular resolution and broad energy range, can potentially probe the IGMF. We identify promising sources and simulate γ-ray spectra over a wide range of values of the IGMF strength and coherence length using the publicly available ELMAG Monte Carlo code. Combining simulated observations in a joint likelihood approach, we find that current limits on the IGMF can be significantly improved. The projected sensitivity depends strongly on the time a source has been γ-ray active and on the emitted maximum γ-ray energy.

  12. Photoionization in the halo of the Galaxy

    NASA Technical Reports Server (NTRS)

    Bregman, Joel N.; Harrington, J. Patrick

    1986-01-01

    The ionizing radiation field in the halo is calculated and found to be dominated in the 13.6-45 eV range by light from O-B stars that escapes the disk, by planetary nebulae at 45-54 eV, by quasars and the Galactic soft X-ray background at 54-2000 eV, and by the extragalactic X-ray background at higher energies. Photoionization models are calculated with this radiation field incident on halo clouds of constant density for a variety of densities, for normal and depleted abundances, and with variations of the incident spectrum. For species at least triply ionized, such as Si IV, C IV, N V, and O VI, the line ratios are determined by intervening gas with the greatest volume, which is not necessarily the greatest mass component. Column densities from doubly ionized species like Si III should be greater than from triply ionized species. The role of photoionized gas in cosmic ray-supported halos and Galactic fountains is discussed. Observational tests of photoionization models are suggested.

  13. The ISM From the Soft X-ray Background Perspective

    NASA Technical Reports Server (NTRS)

    Snowden, S. L.

    2003-01-01

    In the past few years progress in understanding the local and Galactic ISM in terms of the diffuse X-ray background has been as much about what hasn't been seen as it has been about detections. High resolution spectra of the local SXRB have been observed, but are inconsistent with current thermal emission models. An excess over the extrapolation of the high-energy (most clearly visible at E greater than 1.5 keV) extragalactic power law down to 3/4 keV has been observed but only at the level consistent with cosmological models, implying the absence of at least a bright hot Galactic halo. A very recent FUSE result indicates that O VI emission from the Local Hot Bubble is insignificant, if it exists at all, a result which is also inconsistent with current thermal emission models. A short review of the current status of our (well, at least my) understanding of the Galactic SXRB and ISM is presented here.

  14. Nonlinear electrodynamics and CMB polarization

    NASA Astrophysics Data System (ADS)

    Mosquera Cuesta, Herman J.; Lambiase, G.

    2011-03-01

    Recently WMAP and BOOMERanG experiments have set stringent constraints on the polarization angle of photons propagating in an expanding universe: Δα = (-2.4±1.9)°. The polarization of the Cosmic Microwave Background radiation (CMB) is reviewed in the context of nonlinear electrodynamics (NLED). We compute the polarization angle of photons propagating in a cosmological background with planar symmetry. For this purpose, we use the Pagels-Tomboulis (PT) Lagrangian density describing NLED, which has the form L ~ (X/Λ4)δ-1 X, where X = ¼FαβFαβ, and δ the parameter featuring the non-Maxwellian character of the PT nonlinear description of the electromagnetic interaction. After looking at the polarization components in the plane orthogonal to the (x)-direction of propagation of the CMB photons, the polarization angle is defined in terms of the eccentricity of the universe, a geometrical property whose evolution on cosmic time (from the last scattering surface to the present) is constrained by the strength of magnetic fields over extragalactic distances.

  15. BOW TIES IN THE SKY. I. THE ANGULAR STRUCTURE OF INVERSE COMPTON GAMMA-RAY HALOS IN THE FERMI SKY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broderick, Avery E.; Shalaby, Mohamad; Tiede, Paul

    2016-12-01

    Extended inverse Compton halos are generally anticipated around extragalactic sources of gamma rays with energies above 100 GeV. These result from inverse Compton scattered cosmic microwave background photons by a population of high-energy electron/positron pairs produced by the annihilation of the high-energy gamma rays on the infrared background. Despite the observed attenuation of the high-energy gamma rays, the halo emission has yet to be directly detected. Here, we demonstrate that in most cases these halos are expected to be highly anisotropic, distributing the upscattered gamma rays along axes defined either by the radio jets of the sources or oriented perpendicularmore » to a global magnetic field. We present a pedagogical derivation of the angular structure in the inverse Compton halo and provide an analytic formalism that facilitates the generation of mock images. We discuss exploiting this fact for the purpose of detecting gamma-ray halos in a set of companion papers.« less

  16. Extending the data rate of non-line-of-sight UV communication with polarization modulation

    NASA Astrophysics Data System (ADS)

    Yin, Hongwei; Jia, Honghui; Zhang, Hailiang; Wang, Xiaofeng; Chang, Shengli; Yang, Juncai

    2012-10-01

    With low radiation background of solar-blind UV and strong scattering of UV photons by atmospheric particles, UV communication can be made use of to set up a non-line-of-sight (NLOS) free-space optical communication link. Polarization modulation, besides the traditional intensity modulation, is presented to enhance the data rate of the UV communication system. The configuration and the working process of the dually modulated UV communication system with intensity modulation and polarization, the theoretical evaluation of polarization modulation, and a numerical of the scattering matrix are presented, with the conclusion that polarization modulation is achievable. By adding the polarizing devices and changing the coding procedures, the existing singly-modulated UV communication systems with intensity modulation are easily modified to be dually-modulated ones with polarization modulation and intensity modulation. Ideally speaking, the data rate of the dually-modulated UV communication system is the product of the data rate of the singly modulated system and the number of polarization modulation.

  17. Effect of UV-B light on total soluble phenolic contents of various whole and fresh-cut specialty crops

    USDA-ARS?s Scientific Manuscript database

    BACKGROUND: The effect of ultraviolet-B (UV-B) light treatment on total soluble phenolic contents (TSP) of various whole and fresh-cut specialty crops was evaluated. Whole fruits (strawberries, blueberries, grapes), vegetables (cherry tomatoes, white sweet corn) and root crops (sweet potatoes, colo...

  18. Study of noninvasive detection of latent fingerprints using UV laser

    NASA Astrophysics Data System (ADS)

    Li, Hong-xia; Cao, Jing; Niu, Jie-qing; Huang, Yun-gang; Mao, Lin-jie; Chen, Jing-rong

    2011-06-01

    Latent fingerprints present a considerable challenge in forensics, and noninvasive procedure that captures a digital image of the latent fingerprints is significant in the field of criminal investigation. The capability of photography technologies using 266nm UV Nd:YAG solid state laser as excitation light source to provide detailed images of unprocessed latent fingerprints is demonstrated. Unprocessed latent fingerprints were developed on various non-absorbent and absorbing substrates. According to the special absorption, reflection, scattering and fluorescence characterization of the various residues in fingerprints (fatty acid ester, protein, and carbosylic acid salts etc) to the UV light to weaken or eliminate the background disturbance and increase the brightness contrast of fingerprints with the background, and using 266nm UV laser as excitation light source, fresh and old latent fingerprints on the surface of four types of non-absorbent objects as magazine cover, glass, back of cellphone, wood desktop paintwork and two types of absorbing objects as manila envelope, notebook paper were noninvasive detected and appeared through reflection photography and fluorescence photography technologies, and the results meet the fingerprint identification requirements in forensic science.

  19. Astronomical Surveys, Catalogs, Databases, and Archives

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.

    2016-06-01

    All-sky and large-area astronomical surveys and their cataloged data over the whole range of electromagnetic spectrum are reviewed, from γ-ray to radio, such as Fermi-GLAST and INTEGRAL in γ-ray, ROSAT, XMM and Chandra in X-ray, GALEX in UV, SDSS and several POSS I and II based catalogues (APM, MAPS, USNO, GSC) in optical range, 2MASS in NIR, WISE and AKARI IRC in MIR, IRAS and AKARI FIS in FIR, NVSS and FIRST in radio and many others, as well as most important surveys giving optical images (DSS I and II, SDSS, etc.), proper motions (Tycho, USNO, Gaia), variability (GCVS, NSVS, ASAS, Catalina, Pan-STARRS) and spectroscopic data (FBS, SBS, Case, HQS, HES, SDSS, CALIFA, GAMA). Most important astronomical databases and archives are reviewed as well, including Wide-Field Plate DataBase (WFPDB), ESO, HEASARC, IRSA and MAST archives, CDS SIMBAD, VizieR and Aladin, NED and HyperLEDA extragalactic databases, ADS and astro-ph services. They are powerful sources for many-sided efficient research using Virtual Observatory tools. Using and analysis of Big Data accumulated in astronomy lead to many new discoveries.

  20. Is the Universe More Transparent to Gamma Rays than Previously Thought?

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.; Scully, Sean T.

    2009-01-01

    The MAGIC collaboration has recently reported the detection of the strong gamma-ray blazar 3C279 during a 1-2 day flare. They have used their spectral observations to draw conclusions regarding upper limits on the opacity of the Universe to high energy gamma-rays and, by implication, upper limits on the extragalactic mid-infrared background radiation. In this paper we examine the effect of gamma-ray absorption by the extragalactic infrared radiation on intrinsic spectra for this blazar and compare our results with the observational data on 3C279. We find agreement with our previous results, contrary to the recent assertion of the MAGIC group that the Universe is more transparent to gamma-rays than our calculations indicate. Our analysis indicates that in the energy range between approx. 80 and approx. 500 GeV, 3C279 has a best-fit intrinsic spectrum with a spectral index approx. 1.78 using our fast evolution model and approx. 2.19 using our baseline model. However, we also find that spectral indices in the range of 1.0 to 3.0 are almost as equally acceptable as the best fit spectral indices. Assuming the same intrinsic spectral index for this flare as for the 1991 flare from 3C279 observed by EGRET, viz., 2.02, which lies between our best fit indeces, we estimate that the MAGIC flare was approx.3 times brighter than the EGRET flare observed 15 years earlier.

  1. Science Questions for the Post-SIRTF and Herschel Era

    NASA Technical Reports Server (NTRS)

    Werner, Michael

    2004-01-01

    The contents include the following: 1. SIRTF. Long wavelength surveys planned for SIRTF. Galaxy Discovery Rates for Future Missions. Impact of SIRTF s Improved Resolution at 160um: Resolving the Background. 2. Polarimetry. Submillimeter Polarimetry - The State of Play. Magnetic Vectors Across the Orion Molecular Cloud Core. Neutral and Ionized Molecular Spectral Lines. Variation of Polarization With Wavelength. The Polarization Spectrum. Submillimeter Polarimetry - Looking Ahead. 3.Confusion. Confusion at 500, 600 micron. 4. Extragalactic Science. Do Massive Black Holes and Galaxy Bulges form Together? 5. Galactic Science. Can We See the First Generations of Stars and Metal Formation? The Birth of Planets and the Origins of Life. Spatial Resolution at 100 microns. Far-ir/Sub-mm Transitions of Linear Carbon Clusters. Predicted Spectra of Glycine.

  2. A Three-Dimensional Analysis of the Galactic Gamma-Ray Emission Resulting from Cosmic-Ray Interactions with the Interstellar Gas and Radiation Fields

    NASA Technical Reports Server (NTRS)

    Sodroski, Thomas J.; Dwek, Eli

    2000-01-01

    The primary task objective is to construct a 3-D model for the distribution of high-energy (20 MeV - 30 GeV) gamma-ray emission in the Galactic disk. Under this task the contractor will utilize data from the EGRET instrument on the Compton Gamma-Ray Observatory, H I and CO surveys, radio-continuum surveys at 408 MHz, 1420 MHz, 5 GHz, and 19 GHz, the COBE Diffuse Infrared Background Experiment (DIRBE) all-sky maps from 1 to 240 microns, and ground-based B, V, J, H, and K photometry. The respective contributions to the gamma-ray emission from cosmic ray/matter interactions, inverse Compton scattering, and extragalactic emission will be determined.

  3. Constraints on the cosmological parameters from BICEP2, Planck, and WMAP

    NASA Astrophysics Data System (ADS)

    Cheng, Cheng; Huang, Qing-Guo

    2014-11-01

    In this paper we constrain the cosmological parameters, in particular the tilt of tensor power spectrum, by adopting Background Imaging of Cosmic Extragalactic Polarization (B2), Planck released in 2013 and Wilkinson Microwaves Anisotropy Probe 9-year Polarization data. We find that a blue tilted tensor power spectrum is preferred at more than confidence level if the data from B2 are assumed to be totally interpreted as the relic gravitational waves, but a scale-invariant tensor power spectrum is consistent with the data once the polarized dust is taken into account. The recent Planck 353 GHz HFI dust polarization data imply that the B2 data are perfectly consistent with there being no gravitational wave signal.

  4. A Near-Infrared Spectrometer to Measure Zodiacal Light Absorption Spectrum

    NASA Technical Reports Server (NTRS)

    Kutyrev, A. S.; Arendt, R.; Dwek, E.; Kimble, R.; Moseley, S. H.; Rapchun, D.; Silverberg, R. F.

    2010-01-01

    We have developed a high throughput infrared spectrometer for zodiacal light fraunhofer lines measurements. The instrument is based on a cryogenic dual silicon Fabry-Perot etalon which is designed to achieve high signal to noise Fraunhofer line profile measurements. Very large aperture silicon Fabry-Perot etalons and fast camera optics make these measurements possible. The results of the absorption line profile measurements will provide a model free measure of the zodiacal Light intensity in the near infrared. The knowledge of the zodiacal light brightness is crucial for accurate subtraction of zodiacal light foreground for accurate measure of the extragalactic background light after the subtraction of zodiacal light foreground. We present the final design of the instrument and the first results of its performance.

  5. A-3 scientific results - extragalactic

    NASA Technical Reports Server (NTRS)

    Schwartz, D. A.

    1979-01-01

    The results of the HEAO A-3 experiment are summarized. Specific contributions of the experiment to extragalactic astronomy are emphasized. The discovery of relatively condensed X-ray emission in the cores of those clusters of galaxies which are dominated by a giant elliptical or cD galaxy, the discovery of extended X-ray emitting plasma in groups of galaxies, and the demonstration that BL Lac objects are a class of X-ray sources are among the topics discussed.

  6. Fixing the reference frame for PPMXL proper motions using extragalactic sources

    DOE PAGES

    Grabowski, Kathleen; Carlin, Jeffrey L.; Newberg, Heidi Jo; ...

    2015-05-27

    In this study, we quantify and correct systematic errors in PPMXL proper motions using extragalactic sources from the first two LAMOST data releases and the Vèron-Cetty & Vèron Catalog of Quasars. Although the majority of the sources are from the Vèron catalog, LAMOST makes important contributions in regions that are not well-sampled by previous catalogs, particularly at low Galactic latitudes and in the south Galactic cap. We show that quasars in PPMXL have measurable and significant proper motions, which reflect the systematic zero-point offsets present in the catalog. We confirm the global proper motion shifts seen by Wu et al.,more » and additionally find smaller-scale fluctuations of the QSO-derived corrections to an absolute frame. Finally, we average the proper motions of 158 106 extragalactic objects in bins of 3° × 3° and present a table of proper motion corrections.« less

  7. A galactic microquasar mimicking winged radio galaxies.

    PubMed

    Martí, Josep; Luque-Escamilla, Pedro L; Bosch-Ramon, Valentí; Paredes, Josep M

    2017-11-24

    A subclass of extragalactic radio sources known as winged radio galaxies has puzzled astronomers for many years. The wing features are detected at radio wavelengths as low-surface-brightness radio lobes that are clearly misaligned with respect to the main lobe axis. Different models compete to account for these peculiar structures. Here, we report observational evidence that the parsec-scale radio jets in the Galactic microquasar GRS 1758-258 give rise to a Z-shaped radio emission strongly reminiscent of the X and Z-shaped morphologies found in winged radio galaxies. This is the first time that such extended emission features are observed in a microquasar, providing a new analogy for its extragalactic relatives. From our observations, we can clearly favour the hydrodynamic backflow interpretation against other possible wing formation scenarios. Assuming that physical processes are similar, we can extrapolate this conclusion and suggest that this mechanism could also be at work in many extragalactic cases.

  8. Observations of the diffuse near-UV radiation field

    NASA Technical Reports Server (NTRS)

    Murthy, J.; Henry, R. C.; Feldman, P. D.; Tennyson, P. D.

    1990-01-01

    The diffuse radiation field from 1650-3100 A has been observed by spectrometer aboard the Space Shuttle, and the contributions of the zodiacal light an the diffuse cosmic background to the signal have been derived. Colors ranging from 0.65 to 1.2 are found for the zodiacal light with an almost linear increase in the color with ecliptic latitude. This rise in color is due to UV brightness remaining almost constant while the visible brightnesses drop by almost a factor of two. This is interpreted as evidence that the grains responsible for the UV scattering have much more uniform distribution with distance from the ecliptic plane than do those grains responsible for the visible scattering. Intensities for the cosmic diffuse background ranging from 300 units to 900 units are found which are not consistent with either a correlation with N(H I) or with spatial isotropy.

  9. The young star cluster population of M51 with LEGUS - I. A comprehensive study of cluster formation and evolution

    NASA Astrophysics Data System (ADS)

    Messa, M.; Adamo, A.; Östlin, G.; Calzetti, D.; Grasha, K.; Grebel, E. K.; Shabani, F.; Chandar, R.; Dale, D. A.; Dobbs, C. L.; Elmegreen, B. G.; Fumagalli, M.; Gouliermis, D. A.; Kim, H.; Smith, L. J.; Thilker, D. A.; Tosi, M.; Ubeda, L.; Walterbos, R.; Whitmore, B. C.; Fedorenko, K.; Mahadevan, S.; Andrews, J. E.; Bright, S. N.; Cook, D. O.; Kahre, L.; Nair, P.; Pellerin, A.; Ryon, J. E.; Ahmad, S. D.; Beale, L. P.; Brown, K.; Clarkson, D. A.; Guidarelli, G. C.; Parziale, R.; Turner, J.; Weber, M.

    2018-01-01

    Recently acquired WFC3 UV (F275W and F336W) imaging mosaics under the Legacy Extragalactic UV Survey (LEGUS), combined with archival ACS data of M51, are used to study the young star cluster (YSC) population of this interacting system. Our newly extracted source catalogue contains 2834 cluster candidates, morphologically classified to be compact and uniform in colour, for which ages, masses and extinction are derived. In this first work we study the main properties of the YSC population of the whole galaxy, considering a mass-limited sample. Both luminosity and mass functions follow a power-law shape with slope -2, but at high luminosities and masses a dearth of sources is observed. The analysis of the mass function suggests that it is best fitted by a Schechter function with slope -2 and a truncation mass at 1.00 ± 0.12 × 105 M⊙. Through Monte Carlo simulations, we confirm this result and link the shape of the luminosity function to the presence of a truncation in the mass function. A mass limited age function analysis, between 10 and 200 Myr, suggests that the cluster population is undergoing only moderate disruption. We observe little variation in the shape of the mass function at masses above 1 × 104 M⊙ over this age range. The fraction of star formation happening in the form of bound clusters in M51 is ∼ 20 per cent in the age range 10-100 Myr and little variation is observed over the whole range from 1 to 200 Myr.

  10. The Hierarchical Distribution of the Young Stellar Clusters in Six Local Star-forming Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grasha, K.; Calzetti, D.; Adamo, A.

    We present a study of the hierarchical clustering of the young stellar clusters in six local (3–15 Mpc) star-forming galaxies using Hubble Space Telescope broadband WFC3/UVIS UV and optical images from the Treasury Program LEGUS (Legacy ExtraGalactic UV Survey). We identified 3685 likely clusters and associations, each visually classified by their morphology, and we use the angular two-point correlation function to study the clustering of these stellar systems. We find that the spatial distribution of the young clusters and associations are clustered with respect to each other, forming large, unbound hierarchical star-forming complexes that are in general very young. Themore » strength of the clustering decreases with increasing age of the star clusters and stellar associations, becoming more homogeneously distributed after ∼40–60 Myr and on scales larger than a few hundred parsecs. In all galaxies, the associations exhibit a global behavior that is distinct and more strongly correlated from compact clusters. Thus, populations of clusters are more evolved than associations in terms of their spatial distribution, traveling significantly from their birth site within a few tens of Myr, whereas associations show evidence of disruption occurring very quickly after their formation. The clustering of the stellar systems resembles that of a turbulent interstellar medium that drives the star formation process, correlating the components in unbound star-forming complexes in a hierarchical manner, dispersing shortly after formation, suggestive of a single, continuous mode of star formation across all galaxies.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Wei; Li Hui; Li Shengtai

    Nonlinear ideal magnetohydrodynamic (MHD) simulations of the propagation and expansion of a magnetic ''bubble'' plasma into a lower density, weakly magnetized background plasma, are presented. These simulations mimic the geometry and parameters of the Plasma Bubble Expansion Experiment (PBEX) [A. G. Lynn, Y. Zhang, S. C. Hsu, H. Li, W. Liu, M. Gilmore, and C. Watts, Bull. Am. Phys. Soc. 52, 53 (2007)], which is studying magnetic bubble expansion as a model for extragalactic radio lobes. The simulations predict several key features of the bubble evolution. First, the direction of bubble expansion depends on the ratio of the bubble toroidalmore » to poloidal magnetic field, with a higher ratio leading to expansion predominantly in the direction of propagation and a lower ratio leading to expansion predominantly normal to the direction of propagation. Second, a MHD shock and a trailing slow-mode compressible MHD wavefront are formed ahead of the bubble as it propagates into the background plasma. Third, the bubble expansion and propagation develop asymmetries about its propagation axis due to reconnection facilitated by numerical resistivity and to inhomogeneous angular momentum transport mainly due to the background magnetic field. These results will help guide the initial experiments and diagnostic measurements on PBEX.« less

  12. An Einstein survey of the 1 keV soft X-ray background in the Galactic plane

    NASA Technical Reports Server (NTRS)

    Stanford, John M.; Caillault, Jean-Pierre

    1994-01-01

    We have analyzed 56 Einstein Observatory Imaging Proportional Counter (IPC) observations within +/- 3 deg of the Galactic plane in order to determine the low-latitude soft X-ray background flux in the 0.56-1.73 keV band. Any detected X-ray point source which fell within our regions of study was removed from the image, enabling us to present maps of the background flux as a function of Galactic latitude along 18 meridians. These maps reveal considerable structure to the background in the Galactic plane on an angular scale of approximately 1 deg. Our results are compared with those of an earlier study of the 1 keV X-ray background along l = 25 deg by Kahn & Caillault. The double-peaked structure they found is not discernible in our results, possibly because of the presence of solar backscattered flux in their data. A model which takes into account contributions to the background by extragalactic and stellar sources, the distribution of both atomic and molecular absorbing material with the Galaxy, the energy dependence of the cross section for absorption of X-rays, and the energy dependence of the detector has been constructed and fitted to these new data to derive constraints on the scale height, temperature, and volume emissivity of the unaccounted-for X-ray-emitting material. The results of this model along l = 25 deg are roughly similar to those of the model of Kahn & Caillault along the same meridian.

  13. Ultraviolet light propagation under low visibility atmospheric conditions and its application to aircraft landing aid.

    PubMed

    Lavigne, Claire; Durand, Gérard; Roblin, Antoine

    2006-12-20

    Light scattering in the atmosphere by particles and molecules gives rise to an aureole surrounding the source image that tends to reduce the contrast of the source with respect to the background. However, UV scattering phase functions of the haze droplets present a very important forward peak. The spreading of a detected signal in the UV is not as important as in the case of a clear atmosphere where Rayleigh scattering predominates. This physical property has to be taken into account to evaluate the potential of UV radiation as an aircraft landing aid under low visibility conditions. Different results characterizing UV runway lights, simulations of UV radiation propagation in the atmosphere, and the use of a simple detection algorithm applied to one particular sensor are presented.

  14. Design of p-type cladding layers for tunnel-injected UV-A light emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuewei; Krishnamoorthy, Sriram; Akyol, Fatih

    Here, we discuss the engineering of p-AlGaN cladding layers for achieving efficient tunnel-injected III-Nitride ultraviolet light emitting diodes (UV LEDs) in the UV-A spectral range. We show that the capacitance-voltage measurements can be used to estimate the compensation and doping in the p-AlGaN layers located between the multi-quantum well region and the tunnel junction layer. By increasing the p-type doping concentration to overcome the background compensation, on-wafer external quantum efficiency and wall-plug efficiency of 3.37% and 1.62%, respectively, were achieved for the tunnel-injected UV LEDs emitting at 325 nm. We also show that interband tunneling hole injection can be usedmore » to realize UV LEDs without any acceptor doping. The work discussed here provides new understanding of hole doping and transport in AlGaN-based UV LEDs and demonstrates the excellent performance of tunnel-injected LEDs for the UV-A wavelength range.« less

  15. Design of p-type cladding layers for tunnel-injected UV-A light emitting diodes

    DOE PAGES

    Zhang, Yuewei; Krishnamoorthy, Sriram; Akyol, Fatih; ...

    2016-11-09

    Here, we discuss the engineering of p-AlGaN cladding layers for achieving efficient tunnel-injected III-Nitride ultraviolet light emitting diodes (UV LEDs) in the UV-A spectral range. We show that the capacitance-voltage measurements can be used to estimate the compensation and doping in the p-AlGaN layers located between the multi-quantum well region and the tunnel junction layer. By increasing the p-type doping concentration to overcome the background compensation, on-wafer external quantum efficiency and wall-plug efficiency of 3.37% and 1.62%, respectively, were achieved for the tunnel-injected UV LEDs emitting at 325 nm. We also show that interband tunneling hole injection can be usedmore » to realize UV LEDs without any acceptor doping. The work discussed here provides new understanding of hole doping and transport in AlGaN-based UV LEDs and demonstrates the excellent performance of tunnel-injected LEDs for the UV-A wavelength range.« less

  16. A cross-correlation study of the Fermi-LAT γ-ray diffuse extragalactic signal

    DOE PAGES

    Xia, Jun -Qing; Cuoco, Alessandro; Branchini, Enzo; ...

    2011-09-12

    In this work, starting from 21 months of data from the Fermi Large Area Telescope (LAT), we derive maps of the residual isotropic γ-ray emission, a relevant fraction of which is expected to be contributed by the extragalactic diffuse γ-ray background (EGB). We search for the auto-correlation signals in the above γ-ray maps and for the cross-correlation signal with the angular distribution of different classes of objects that trace the large-scale structure of the Universe. We compute the angular two-point auto-correlation function of the residual Fermi-LAT maps at energies E > 1 GeV, E > 3 GeV and E >more » 30 GeV well above the Galactic plane and find no significant correlation signal. This is, indeed, what is expected if the EGB were contributed by BL Lacertae (BLLacs), Flat Spectrum Radio Quasars (FSRQs) or star-forming galaxies, since, in this case, the predicted signal is very weak. Then, we search for the Integrated Sachs–Wolfe (ISW) signature by cross-correlating the Fermi-LAT maps with the 7-year Wilkinson Microwave Anisotropy Probe ( WMAP7) cosmic microwave background map. We find a cross-correlation consistent with zero, even though the expected signal is larger than that of the EGB auto-correlation. Lastly, in an attempt to constrain the nature of the γ-ray background, we cross-correlate the Fermi-LAT maps with the angular distributions of objects that may contribute to the EGB: quasi-stellar objects (QSOs) in the Sloan Digital Sky Survey Data Release 6 (SDSS-DR6) catalogue, NRAO VLA Sky Survey (NVSS) galaxies, Two Micron All Sky Survey (2MASS) galaxies and Luminous Red Galaxies (LRGs) in the SDSS catalogue. The cross-correlation is always consistent with zero, in agreement with theoretical expectations, but we find (with low statistical significance) some interesting features that may indicate that some specific classes of objects contribute to the EGB. A χ 2 analysis confirms that the correlation properties of the 21-month data do not provide strong constraints of the EGB origin. However, the results suggest that the situation will significantly improve with the 5- and 10-yr Fermi-LAT data. In future, the EGB analysis will then allow placing significant constraints on the nature of the EGB and might provide, in addition, a detection of the ISW signal.« less

  17. 340nm UV LED excitation in time-resolved fluorescence system for europium-based immunoassays detection

    NASA Astrophysics Data System (ADS)

    Rodenko, Olga; Fodgaard, Henrik; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2017-02-01

    In immunoassay analyzers for in-vitro diagnostics, Xenon flash lamps have been widely used as excitation light sources. Recent advancements in UV LED technology and its advantages over the flash lamps such as smaller footprint, better wall-plug efficiency, narrow emission spectrum, and no significant afterglow, have made them attractive light sources for gated detection systems. In this paper, we report on the implementation of a 340 nm UV LED based time-resolved fluorescence system based on europium chelate as a fluorescent marker. The system performance was tested with the immunoassay based on the cardiac marker, TnI. The same signal-to-noise ratio as for the flash lamp based system was obtained, operating the LED below specified maximum current. The background counts of the system and its main contributors were measured and analyzed. The background of the system of the LED based unit was improved by 39% compared to that of the Xenon flash lamp based unit, due to the LEDs narrower emission spectrum and longer pulse width. Key parameters of the LED system are discussed to further optimize the signal-to-noise ratio and signal-to-background, and hence the sensitivity of the instrument.

  18. FE Line Diagnostics of Multiply Shocked Stellar Atmospheres: The Mira S. Carinae

    NASA Technical Reports Server (NTRS)

    Bookbinder, Jay

    1997-01-01

    Extensive LWP-HI spectra were obtained of the Mira S Car at a rapid time cadence as compared with the shock cycle time of S Car. These spectra were obtained in an attempt to understand the velocity structures in the shocked wind using the fluoresced iron lines. Data analysis of the IUE observations, which included the primary calibration of all of the IUE spectra obtained of S Car, was carried out. In addition, line identifications, flux calculations, background subtractions, and line profile analysis as a function of S Car's pulsational phase were performed. The database incorporated all line identifications as a function of pulsation phase for all IUE LWP-HI observations to date of S Car. At least 45 separate iron line features are identified in the S Car spectrum at one or more phases of the shock cycle, including those due to Fe II (UV 161) which is pumped by three different iron lines; Fe I(UV 44) which is pumped by the Mg II k line. Other strong multiplets that have been identified include UV(1), UV(2), UV(5), UV(32), UV(60), UV(63), UV(161), UV(207), and UV(399). Over 300 weaker lines have also been tentatively identified with Fe line transitions.

  19. On Gauge Invariant Cosmological Perturbations in UV-modified Hořava Gravity: A Brief Introduction

    NASA Astrophysics Data System (ADS)

    Park, Mu-In

    2018-01-01

    We revisit gauge invariant cosmological perturbations in UV-modified, z = 3 Hořava gravity with one scalar matter field, which has been proposed as a renormalizable gravity theory without the ghost problem in four dimensions. We confirm that there is no extra graviton modes and general relativity is recovered in IR, which achieves the consistency of the model. From the UV-modification terms which break the detailed balance condition in UV, we obtain scale-invariant power spectrums for non-inflationary backgrounds, like the power-law expansions, without knowing the details of early expansion history of Universe. This could provide a new framework for the Big Bang cosmology.

  20. Magic discovery of very high energy emission from the FSRQ PKS 1222+21

    DOE PAGES

    Aleksić, J.; Antonelli, L. A.; Antoranz, P.; ...

    2011-02-25

    Very high energy (VHE) γ-ray emission from the flat spectrum radio quasar (FSRQ) PKS 1222+21 (4C 21.35, z = 0.432) was detected with the MAGIC Cherenkov telescopes during a short observation (~0.5 hr) performed on 2010 June 17. The MAGIC detection coincides with high-energy MeV/GeV γ-ray activity measured by the Large Area Telescope (LAT) on board the Fermi satellite. The VHE spectrum measured by MAGIC extends from about 70 GeV up to at least 400 GeV and can be well described by a power-law dN/dE ∝ E –Γ with a photon index Γ = 3.75 ± 0.27 stat ± 0.2more » syst. The averaged integral flux above 100 GeV is (4.6 ± 0.5) × 10–10 cm–2 s–1 (~1 Crab Nebula flux). The VHE flux measured by MAGIC varies significantly within the 30 minute exposure implying a flux doubling time of about 10 minutes. The VHE and MeV/GeV spectra, corrected for the absorption by the extragalactic background light (EBL), can be described by a single power law with photon index 2.72 ± 0.34 between 3 GeV and 400 GeV, and is consistent with emission belonging to a single component in the jet. The absence of a spectral cutoff constrains the γ-ray emission region to lie outside the broad-line region, which would otherwise absorb the VHE γ-rays. Together with the detected fast variability, this challenges present emission models from jets in FSRQs. Furthermore, the combined Fermi/LAT and MAGIC spectral data yield constraints on the density of the EBL in the UV-optical to near-infrared range that are compatible with recent models.« less

  1. VERITAS Observations of the BL Lac Object PG 1553+113

    NASA Astrophysics Data System (ADS)

    Aliu, E.; Archer, A.; Aune, T.; Barnacka, A.; Behera, B.; Beilicke, M.; Benbow, W.; Berger, K.; Bird, R.; Buckley, J. H.; Bugaev, V.; Byrum, K.; Cardenzana, J. V.; Cerruti, M.; Chen, X.; Ciupik, L.; Connolly, M. P.; Cui, W.; Dickinson, H. J.; Dumm, J.; Eisch, J. D.; Errando, M.; Falcone, A.; Federici, S.; Feng, Q.; Finley, J. P.; Fortin, P.; Fortson, L.; Furniss, A.; Galante, N.; Gillanders, G. H.; Griffin, S.; Griffiths, S. T.; Grube, J.; Gyuk, G.; Håkansson, N.; Hanna, D.; Holder, J.; Hughes, G.; Humensky, T. B.; Johnson, C. A.; Kaaret, P.; Kar, P.; Kertzman, M.; Khassen, Y.; Kieda, D.; Krawczynski, H.; Krennrich, F.; Kumar, S.; Lang, M. J.; Madhavan, A.; McArthur, S.; McCann, A.; Meagher, K.; Millis, J.; Moriarty, P.; Nieto, D.; O'Faoláin de Bhróithe, A.; Ong, R. A.; Orr, M.; Otte, A. N.; Park, N.; Perkins, J. S.; Pohl, M.; Popkow, A.; Prokoph, H.; Pueschel, E.; Quinn, J.; Ragan, K.; Rajotte, J.; Reyes, L. C.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Sembroski, G. H.; Shahinyan, K.; Staszak, D.; Telezhinsky, I.; Tucci, J. V.; Tyler, J.; Varlotta, A.; Vassiliev, V. V.; Wakely, S. P.; Weinstein, A.; Welsing, R.; Wilhelm, A.; Williams, D. A.; Zitzer, B.

    2015-01-01

    We present results from VERITAS observations of the BL Lac object PG 1553+113 spanning the years 2010, 2011, and 2012. The time-averaged spectrum, measured between 160 and 560 GeV, is well described by a power law with a spectral index of 4.33 ± 0.09. The time-averaged integral flux above 200 GeV measured for this period was (1.69 ± 0.06) × 10-11 photons cm-2 s-1, corresponding to 6.9% of the Crab Nebula flux. We also present the combined γ-ray spectrum from the Fermi Large Area Telescope and VERITAS covering an energy range from 100 MeV to 560 GeV. The data are well fit by a power law with an exponential cutoff at 101.9 ± 3.2 GeV. The origin of the cutoff could be intrinsic to PG 1553+113 or be due to the γ-ray opacity of our universe through pair production off the extragalactic background light (EBL). Given lower limits to the redshift of z > 0.395 based on optical/UV observations of PG 1553+113, the cutoff would be dominated by EBL absorption. Conversely, the small statistical uncertainties of the VERITAS energy spectrum have allowed us to provide a robust upper limit on the redshift of PG 1553+113 of z <= 0.62. A strongly elevated mean flux of (2.50 ± 0.14) × 10-11 photons cm-2 s-1 (10.3% of the Crab Nebula flux) was observed during 2012, with the daily flux reaching as high as (4.44 +/- 0.71) × 10-11 {photons} {cm}-2 {s}-1 (18.3% of the Crab Nebula flux) on MJD 56048. The light curve measured during the 2012 observing season is marginally inconsistent with a steady flux, giving a χ2 probability for a steady flux of 0.03%.

  2. A UV-independent pathway to melanoma carcinogenesis in the redhair-fairskin background

    PubMed Central

    Mitra, Devarati; Luo, Xi; Morgan, Ann; Wang, Jin; Hoang, Mai P.; Lo, Jennifer; Guerrero, Candace R.; Lennerz, Jochen K.; Mihm, Martin C.; Wargo, Jennifer A.; Robinson, Kathleen C.; Devi, Suprabha P.; Vanover, Jillian C.; D’Orazio, John A.; McMahon, Martin; Bosenberg, Marcus W.; Haigis, Kevin M.; Haber, Daniel A.; Wang, Yinsheng; Fisher, David E.

    2012-01-01

    People with pale skin, red hair, freckles, and an inability to tan—the “redhair/fairskin” phenotype— are at highest risk of developing melanoma, compared to all other pigmentation types1. Genetically, this phenotype is frequently the product of inactivating polymorphisms in the Melanocortin 1 receptor (MC1R) gene. MC1R encodes a cAMP stimulating G-protein coupled receptor that controls pigment production. Minimal receptor activity, as in redhair/fairskin polymorphisms, produces red/yellow pheomelanin pigment, while increasing MC1R activity stimulates production of black/brown eumelanin2. Pheomelanin has weak UV shielding capacity relative to eumelanin and has been shown to amplify UVA-induced reactive oxygen species (ROS) 3–5. Several observations, however, complicate the assumption that melanoma risk is completely UV dependent. For example, unlike non-melanoma skin cancers, melanoma is not restricted to sun-exposed skin and UV signature mutations are infrequently oncogenic drivers6. While linkage of melanoma risk to UV exposure is beyond doubt, UV-independent events are also likely to play a significant role1,7. Here, we introduced into mice carrying an inactivating mutation in the Mc1r gene (who exhibit a phenotype analogous to redhair/fairskin humans), a conditional, melanocyte-targeted allele of the most commonly mutated melanoma oncogene, BRafV600E. We observed a high incidence of invasive melanomas without providing additional gene aberrations or UV exposure. To investigate the mechanism of UV-independent carcinogenesis, we introduced an albino allele, which ablates all pigment production on the Mc1r e/e background. Selective absence of pheomelanin synthesis was protective against melanoma development. In addition, normal Mc1re/e mouse skin was found to have significantly greater oxidative DNA and lipid damage than albino-Mc1re/e mouse skin. These data suggest that the pheomelanin pigment pathway produces UV-independent carcinogenic contributions to melanomagenesis by a mechanism of oxidative damage. While UV protection remains important, additional strategies may be required for optimal melanoma prevention. PMID:23123854

  3. The Effect of Clustering on Estimations of the UV Ionizing Background from the Proximity Effect

    NASA Astrophysics Data System (ADS)

    Pascarelle, S. M.; Lanzetta, K. M.; Chen, H. W.

    1999-09-01

    There have been several determinations of the ionizing background using the proximity effect observed in the distibution of Lyman-alpha absorption lines in the spectra of QSOs at high redshift. It is usually assumed that the distribution of lines should be the same at very small impact parameters to the QSO as it is at large impact parameters, and any decrease in line density at small impact parameters is due to ionizing radiation from the QSO. However, if these Lyman-alpha absorption lines arise in galaxies (Lanzetta et al. 1995, Chen et al. 1998), then the strength of the proximity effect may have been underestimated in previous work, since galaxies are known to cluster around QSOs. Therefore, the UV background estimations have likely been overestimated by the same factor.

  4. Astrophysical targets of the Fresnel diffractive imager

    NASA Astrophysics Data System (ADS)

    Koechlin, L.; Deba, P.; Raksasataya, T.

    2017-11-01

    The Fresnel Diffractive imager is an innovative concept of distributed space telescope, for high resolution (milli arc-seconds) spectro-imaging in the IR, visible and UV domains. This paper presents its optical principle and the science that can be done on potential astrophysical targets. The novelty lies in the primary optics: a binary Fresnel array, akin to a binary Fresnel zone plate. The main interest of this approach is the relaxed manufacturing and positioning constraints. While having the resolution and imaging capabilities of lens or mirrors of equivalent size, no optical material is involved in the focusing process: just vacuum. A Fresnel array consists of millions void subapertures punched into a large and thin opaque membrane, that focus light by diffraction into a compact and highly contrasted image. The positioning law of the aperture edges drives the image quality and contrast. This optical concept allows larger and lighter apertures than solid state optics, aiming to high angular resolution and high dynamic range imaging, in particular for UV applications. Diffraction focusing implies very long focal distances, up to dozens of kilometers, which requires at least a two-vessel formation flying in space. The first spacecraft, "the Fresnel Array spacecraft", holds the large punched foil: the Fresnel Array. The second, the "Receiver spacecraft" holds the field optics and focal instrumentation. A chromatism correction feature enables moderately large (20%) relative wavebands, and fields of a few to a dozen arc seconds. This Fresnel imager is adapted to high contrast stellar environments: dust disks, close companions and (we hope) exoplanets. Specific to the particular grid-like pattern of the primary focusing zone plate, is the very high dynamic range achieved in the images, in the case of compact objects. Large stellar photospheres may also be mapped with Fresnel arrays of a few meters opertaing in the UV. Larger and more complex fields can be imaged with a lesser dynamic range: galactic or extragalactic, or at the opposite distance scale: small solar system bodies. This paper will briefly address the optical principle, and in more detail the astrophysical missions and targets proposed for a 4-meter class demonstrator: - Exoplanet imaging, Exoplanet spectroscopic analysis in the visible and UV, - Stellar environments, young stellar systems, disks, - Galactic clouds, astrochemistry, - IR observation of the galactic center, - Small objects of our solar system.

  5. Infrared coronal emission lines and the possibility of their maser emission in Seyfert nuclei

    NASA Technical Reports Server (NTRS)

    Greenhouse, Matthew A.; Feldman, Uri; Smith, Howard A.; Klapisch, Marcel; Bhatia, Anand K.; Bar-Shalom, Abi

    1993-01-01

    Energetic emitting regions have traditionally been studied via x-ray, UV and optical emission lines of highly ionized intermediate mass elements. Such lines are often referred to as 'coronal lines' since the ions, when produced by collisional ionization, reach maximum abundance at electron temperatures of approx. 10(exp 5) - 10(exp 6) K typical of the sun's upper atmosphere. However, optical and UV coronal lines are also observed in a wide variety of Galactic and extragalactic sources including the Galactic interstellar medium, nova shells, supernova remnants, galaxies and QSOs. Infrared coronal lines are providing a new window for observation of energetic emitting regions in heavily dust obscured sources such as infrared bright merging galaxies and Seyfert nuclei and new opportunities for model constraints on physical conditions in these sources. Unlike their UV and optical counterparts, infrared coronal lines can be primary coolants of collisionally ionized plasmas with 10(exp 4) less than T(sub e)(K) less than 10(exp 6) which produce little or no optical or shorter wavelength coronal line emission. In addition, they provide a means to probe heavily dust obscured emitting regions which are often inaccessible to optical or UV line studies. In this poster, we provide results from new model calculations to support upcoming Infrared Space Observatory (ISO) and current ground-based observing programs involving infrared coronal emission lines in AGN. We present a complete list of infrared (lambda greater than 1 micron) lines due to transitions within the ground configurations 2s(2)2p(k) and 3s(2)3p(k) (k = 1 to 5) or the first excited configurations 2s2p and 3s3p of highly ionized (x greater than or equal to 100 eV) astrophysically abundant (n(X)/n(H) greater than or equal to 10(exp -6)) elements. Included are approximately 74 lines in ions of O, Ne, Na, Mg, Al, Si, S, Ar, Ca, Fe, and Ni spanning a wavelength range of approximately 1 - 280 microns. We present new results from detailed balance calculations, new critical densities for collisional de-excitation, intrinsic photon rates, branching ratios, and excitation temperatures for the majority of the compiled transitions. The temperature and density parameter space for dominant cooling via infrared coronal lines is presented, and the relationship of infrared to optical coronal lines is discussed.

  6. Milagro Observations of Potential TeV Emitters

    NASA Astrophysics Data System (ADS)

    Abeysekara, Anushka; Linnemann, James

    2012-03-01

    We searched for point sources in Milagro sky maps at the locations in four catalogs of potential TeV emitting sources. Our candidates are selected from the Fermi 2FGL pulsars, Fermi 2FGL extragalactic sources, TeVCat extragalactic sources, and from the BL Lac TeV Candidate list published by Costamante and Ghisellini in 2002. The False Discovery Rate (FDR) statistical procedure is used to select the sources. The FDR procedure controls the fraction of false detections. Our results are presented in this talk.

  7. Extragalactic radio sources - Accurate positions from very-long-baseline interferometry observations

    NASA Technical Reports Server (NTRS)

    Rogers, A. E. E.; Counselman, C. C., III; Hinteregger, H. F.; Knight, C. A.; Robertson, D. S.; Shapiro, I. I.; Whitney, A. R.; Clark, T. A.

    1973-01-01

    Relative positions for 12 extragalactic radio sources have been determined via wide-band very-long-baseline interferometry (wavelength of about 3.8 cm). The standard error, based on consistency between results from widely separated periods of observation, appears to be no more than 0.1 sec for each coordinate of the seven sources that were well observed during two or more periods. The uncertainties in the coordinates determined for the other five sources are larger, but in no case exceed 0.5 sec.

  8. 22 GHz VLBI Survey: Status Report and Preliminary Results

    NASA Technical Reports Server (NTRS)

    Moellenbrock, G.; Fujisawa, K.; Preston, R.; Gurvits, L.; Dewey, R.; Hirabayashi, H.; Inoue, M.; Jauncey, D.; Migenes, V.; Roberts, D.; hide

    1994-01-01

    A ground-based VLBI survey to measure the visibilities and correlated flux densities in continuum at 22 GHz of more than 140 extragalactic radio sources has been conducted with baselines up to approximately 11 000 km. The project has been designed to help in preparation of target lists for VSOP and Radioastron Space VLBI missions as well as providing observational data for statistical study of structural properties at 22 GHz on sub-milliarcsecond scales for this large sample of extragalactic sources.

  9. Constraints on small-scale primordial power by annihilation signals from extragalactic dark matter minihalos

    NASA Astrophysics Data System (ADS)

    Nakama, Tomohiro; Suyama, Teruaki; Kohri, Kazunori; Hiroshima, Nagisa

    2018-01-01

    We revisit constraints on small-scale primordial power from annihilation signals from dark matter minihalos. Using gamma rays and neutrinos from extragalactic minihalos and assuming the delta-function primordial spectrum, we show the dependence of the constraints on annihilation modes, the mass of dark matter, and the annihilation cross section. We report conservative constraints by assuming minihalos are fully destructed when becoming part of halos originating from the standard almost-scale invariant primordial spectrum and optimistic constraints by neglecting destruction.

  10. DNA repair properties of Escherichia coli tif-1, recAo281 and lexA1 strains deficient in single-strand DNA binding protein.

    PubMed

    Whittier, R F; Chase, J W

    1983-01-01

    Mutations affecting single-strand DNA binding protein (SSB) impair induction of mutagenic (SOS) repair. To further investigate the role of SSB in SOS induction and DNA repair, isogenic strains were constructed combining the ssb+, ssb-1 or ssb-113 alleles with one or more mutations known to alter regulation of damage inducible functions. As is true in ssb+ strains tif-1 (recA441) was found to allow thermal induction of prophage lambda + and Weigle reactivation in ssb-1 and ssb-113 strains. Furthermore, tif-1 decreased the UV sensitivity of the ssb-113 strain slightly and permitted UV induction of prophage lambda + at 30 degrees C. Strains carrying the recAo281 allele were also constructed. This mutation causes high constitutive levels of RecA protein synthesis and relieves much of the UV sensitivity conferred by lexA- alleles without restoring SOS (error-prone) repair. In contrast, the recAo281 allele failed to alleviate the UV sensitivity associated with either ssb- mutation. In a lexA1 recAo281 background the ssb-1 mutation increased the extent of postirradiation DNA degradation and concommitantly increased UV sensitivity 20-fold to the level exhibited by a recA1 strain. The ssb-113 mutation also increased UV sensitivity markedly in this background but did so without greatly increasing postirradiation DNA degradation. These results suggest a direct role for SSB in recombinational repair apart from and in addition to its role in facilitating induction of the recA-lexA regulon.

  11. The Astronomy Workshop Extragalactic: Web Tools for Use by Students

    NASA Astrophysics Data System (ADS)

    Hayes-Gehrke, Melissa N.; Bolatto, A. D.

    2014-01-01

    The Astronomy Workshop Extragalactic (http://carma.astro.umd.edu/AWE) is a collection of interactive web tools that were developed for use in undergraduate and high school classes and by the general public. The focus of the tools is on concepts encountered in extragalactic astronomy, which are typically quite difficult for students to understand. Current tools explore Olbers' Paradox; the appearance of galaxies in different wavelengths of light; the Doppler Effect; cosmological redshift; gravitational lensing; Hubble's Law; cosmological parameters; and measuring masses of black holes by observing stellar orbits. The tools have been developed by undergraduate students under our supervision and we are planning to continue to add more tools. This project was inspired by the Astronomy Workshop (http://janus.astro.umd.edu) by Doug Hamilton which has web tools exploring more general astronomical concepts. We would like to thank the NSF for support through the CAREER grant NSF-AST0955836, and the Research Corporation for Science Advancement for a Cottrell Scholar award.

  12. Fast Radio Bursts from Extragalactic Light Sails

    NASA Astrophysics Data System (ADS)

    Lingam, Manasvi; Loeb, Abraham

    2017-03-01

    We examine the possibility that fast radio bursts (FRBs) originate from the activity of extragalactic civilizations. Our analysis shows that beams used for powering large light sails could yield parameters that are consistent with FRBs. The characteristic diameter of the beam emitter is estimated through a combination of energetic and engineering constraints, and both approaches intriguingly yield a similar result that is on the scale of a large rocky planet. Moreover, the optimal frequency for powering the light sail is shown to be similar to the detected FRB frequencies. These “coincidences” lend some credence to the possibility that FRBs might be artificial in origin. Other relevant quantities, such as the characteristic mass of the light sail, and the angular velocity of the beam, are also derived. By using the FRB occurrence rate, we infer upper bounds on the rate of FRBs from extragalactic civilizations in a typical galaxy. The possibility of detecting fainter signals is briefly discussed, and the wait time for an exceptionally bright FRB event in the Milky Way is estimated.

  13. VizieR Online Data Catalog: Extragalactic peaked-spectrum radio sources (Callingham+, 2017)

    NASA Astrophysics Data System (ADS)

    Callingham, J. R.; Ekers, R. D.; Gaensler, B. M.; Line, J. L. B.; Hurley-Walker, N.; Sadler, E. M.; Tingay, S. J.; Hancock, P. J.; Bell, M. E.; Dwarakanath, K. S.; For, B.-Q.; Franzen, T. M. O.; Hindson, L.; Johnston-Hollitt, M.; Kapinska, A. D.; Lenc, E.; McKinley, B.; Morgan, J.; Offringa, A. R.; Procopio, P.; Staveley-Smith, L.; Wayth, R. B.; Wu, C.; Zheng, Q.

    2017-09-01

    The GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) extragalactic catalog represents a significant advance in selecting peaked-spectrum sources, since it is constituted of sources that were contemporaneously surveyed with the widest fractional radio bandwidth to date, with 20 flux density measurements between 72 and 231MHz. We also use the NRAO VLA Sky Survey (NVSS; Condon+ 1998, VIII/65) and the Sydney University Molonglo Sky Survey (SUMSS; See Mauch+ 2008, VIII/81). Since the combination of NVSS and SUMSS cover the entire GLEAM survey and are an order of magnitude more sensitive, this study is sensitive to peaked-spectrum sources that peak anywhere between 72MHz and 843MHz/1.4GHz. The GLEAM survey was formed from observations conducted by the Murchison Widefield Array (MWA), which surveyed the sky between 72 and 231MHz from 2013 August to 2014 July (Wayth+ 2015PASA...32...25W - see also VIII/100). (5 data files).

  14. Probing the properties of extragalactic SNRs

    NASA Astrophysics Data System (ADS)

    Leonidaki, Ioanna

    2016-06-01

    The investigation of extragalactic SNRs gives us the advantage of surmounting the challenges we are usually confronted with when observing Galactic SNRs, most notably Galactic extinction and distance uncertainties. At the same time, by obtaining larger samples of SNRs, we are allowed to cover a wider range of environments and ISM parameters than our Galaxy, providing us a more complete and representative picture of SNR populations. I will outline the recent progress on extragalactic surveys of SNR populations focusing on the optical, radio, and X-ray bands. Multi-wavelength surveys can provide several key aspects of the physical processes taking place during the evolution of SNRs while at the same time can overcome possible selection effects that are inherent from monochromatic surveys. I will discuss the properties derived in each band (e.g. line ratios, luminosities, densities, temperatures) and their connection in order to yield information on various aspects of their behaviour and evolution. For example their interplay with the surrounding medium, their correlation with star formation activity, their luminosity distributions and their dependence on galaxy types.

  15. Ultraviolet luminosity density of the universe during the epoch of reionization

    PubMed Central

    Mitchell-Wynne, Ketron; Cooray, Asantha; Gong, Yan; Ashby, Matthew; Dolch, Timothy; Ferguson, Henry; Finkelstein, Steven; Grogin, Norman; Kocevski, Dale; Koekemoer, Anton; Primack, Joel; Smidt, Joseph

    2015-01-01

    The spatial fluctuations of the extragalactic background light trace the total emission from all stars and galaxies in the Universe. A multiwavelength study can be used to measure the integrated emission from first galaxies during reionization when the Universe was about 500 million years old. Here we report arcmin-scale spatial fluctuations in one of the deepest sky surveys with the Hubble Space Telescope in five wavebands between 0.6 and 1.6 μm. We model-fit the angular power spectra of intensity fluctuation measurements to find the ultraviolet luminosity density of galaxies at redshifts greater than 8 to be . This level of integrated light emission allows for a significant surface density of fainter primeval galaxies that are below the point-source detection level in current surveys. PMID:26348033

  16. An unusually strong Einstein ring in the radio source PKS1830 - 211

    NASA Technical Reports Server (NTRS)

    Jauncey, D. L.; Reynolds, J. E.; Tzioumis, A. K.; Murphy, D. W.; Preston, R. A.; Jones, D. L.; Meier, D. L.; Hoard, D. W.; Lobdell, E. T.; Skjerve, L.

    1991-01-01

    High-resolution radio images of PKS1830 - 211 are obtained to study the possibility that the double structure is a gravitationally lensed object. The VLBI observations, taken from interferometric radiotelescope networks, reveal an elliptical ring that connects two bright spots of similar composition. Because the lens and the lensed object are closely aligned, and because of the structure of the two spots, the source is concluded to be a radio Einstein ring. The source is found to be close to the galactic plane, and the lens and the lensed object are extragalactic. The source is also found to be unusually bright, suggesting that it is aligned with a bright background source or amplified by some mechanism related to a source that is not so bright.

  17. LISA Mission Concept Study, Laser Interferometer Space Antenna for the Detection and Observation of Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Folkner, W. M.; Bender, P. L.; Stebbins, R. T.

    1998-01-01

    This document presents the results of a design feasibility study for LISA (Laser Interferometer Space Antenna). The goal of LISA is to detect and study low-frequency astrophysical gravitational radiation from strongly relativistic regions. Astrophysical sources potentially visible to LISA include extra-galactic massive black hole binaries at cosmological distances, binary systems composed of a compact star and a massive black hole, galactic neutron star-black hole binaries, and background radiation from the Big Bang. The LISA mission will comprise three spacecraft located five million kilometers apart forming an equilateral triangle in an Earth-trailing orbit. Fluctuations in separation between shielded test masses located within each spacecraft will be determined by optical interferometry which determines the phase shift of laser light transmitted between the test masses.

  18. Ultraviolet luminosity density of the universe during the epoch of reionization

    NASA Astrophysics Data System (ADS)

    Mitchell-Wynne, Ketron; Cooray, Asantha; Gong, Yan; Ashby, Matthew; Dolch, Timothy; Ferguson, Henry; Finkelstein, Steven; Grogin, Norman; Kocevski, Dale; Koekemoer, Anton; Primack, Joel; Smidt, Joseph

    2015-09-01

    The spatial fluctuations of the extragalactic background light trace the total emission from all stars and galaxies in the Universe. A multiwavelength study can be used to measure the integrated emission from first galaxies during reionization when the Universe was about 500 million years old. Here we report arcmin-scale spatial fluctuations in one of the deepest sky surveys with the Hubble Space Telescope in five wavebands between 0.6 and 1.6 μm. We model-fit the angular power spectra of intensity fluctuation measurements to find the ultraviolet luminosity density of galaxies at redshifts greater than 8 to be . This level of integrated light emission allows for a significant surface density of fainter primeval galaxies that are below the point-source detection level in current surveys.

  19. Smooth H I Low Column Density Outskirts in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Ianjamasimanana, R.; Walter, Fabian; de Blok, W. J. G.; Heald, George H.; Brinks, Elias

    2018-06-01

    The low column density gas at the outskirts of galaxies as traced by the 21 cm hydrogen line emission (H I) represents the interface between galaxies and the intergalactic medium, i.e., where galaxies are believed to get their supply of gas to fuel future episodes of star formation. Photoionization models predict a break in the radial profiles of H I at a column density of ∼5 × 1019 cm‑2 due to the lack of self-shielding against extragalactic ionizing photons. To investigate the prevalence of such breaks in galactic disks and to characterize what determines the potential edge of the H I disks, we study the azimuthally averaged H I column density profiles of 17 nearby galaxies from the H I Nearby Galaxy Survey and supplemented in two cases with published Hydrogen Accretion in LOcal GAlaxieS data. To detect potential faint H I emission that would otherwise be undetected using conventional moment map analysis, we line up individual profiles to the same reference velocity and average them azimuthally to derive stacked radial profiles. To do so, we use model velocity fields created from a simple extrapolation of the rotation curves to align the profiles in velocity at radii beyond the extent probed with the sensitivity of traditional integrated H I maps. With this method, we improve our sensitivity to outer-disk H I emission by up to an order of magnitude. Except for a few disturbed galaxies, none show evidence of a sudden change in the slope of the H I radial profiles: the alleged signature of ionization by the extragalactic background.

  20. Is There Evidence for X-Ray Emitting Plasma Very Close to the Photospheres of O Stars?

    NASA Technical Reports Server (NTRS)

    Leutenegger, Maurice A.

    2008-01-01

    Aims. We reexamine the implications of the recent HESS observations of the blazar 1ES0229+200 for constraining the extragalactic mid-infrared background radiation. Methods. We examine the effect of gamma-ray absorption by the extragalactic infrared radiation on predicted intrinsic spectra for this blazar and compare our results with the observational data. Results. We find agreement with our previous results on the shape of the infrared spectral energy distribution, contrary to the recent assertion of the HESS group. Our analysis indicates that 1ES0229+200 has a very hard intrinsic spectrum with a spectral index between 1.1 +/- 0.3 and 1.5 +/- 0.3 in the energy range between approx.0.5 TeV and approx.15 TeV. Conclusions. Under the assumptions that (1) the models of Stecker et al. (2006, ApJ, 648, 774) as derived from numerous detailed infrared observations are reasonable, and (2) spectral indexes in the range 1 < gamma < 1.5 are obtainable from relativistic shock acceleration under the astrophysical conditions extant in blazar flares (Stecker et al. 2007, ApJ, 667, L29), the fits to the observations of 1ES0229+200 using our previous infrared spectral energy distributions are consistent with both the infrared and gamma-ray observations. Our analysis presents evidence indicating that the energy spectrum of relativistic particles in 1ES0229+200 is produced by relativistic shock acceleration, producing an intrinsic -ray spectrum with index 1 < gamma < 1.5 and with no evidence of a peak in the spectral energy distribution up to energies approx.15 TeV.

  1. Possible connection between the location of the cutoff in the cosmic microwave background spectrum and the equation of state of dark energy.

    PubMed

    Enqvist, Kari; Sloth, Martin S

    2004-11-26

    We investigate a possible connection between the suppression of the power at low multipoles in the cosmic microwave background (CMB) spectrum and the late time acceleration. We show that, assuming a cosmic IR/UV duality between the UV cutoff and a global infrared cutoff given by the size of the future event horizon, the equation of state of the dark energy can be related to the apparent cutoff in the CMB spectrum. The present limits on the equation of state of dark energy are shown to imply an IR cutoff in the CMB multipole interval of 9>l>8.5.

  2. Human Retinal Transmitochondrial Cybrids with J or H mtDNA Haplogroups Respond Differently to Ultraviolet Radiation: Implications for Retinal Diseases

    PubMed Central

    Malik, Deepika; Hsu, Tiffany; Falatoonzadeh, Payam; Cáceres-del-Carpio, Javier; Tarek, Mohamed; Chwa, Marilyn; Atilano, Shari R.; Ramirez, Claudio; Nesburn, Anthony B.; Boyer, David S.; Kuppermann, Baruch D.; Jazwinski, S. Michal; Miceli, Michael V.; Wallace, Douglas C.; Udar, Nitin; Kenney, M. Cristina

    2014-01-01

    Background It has been recognized that cells do not respond equally to ultraviolet (UV) radiation but it is not clear whether this is due to genetic, biochemical or structural differences of the cells. We have a novel cybrid (cytoplasmic hybrids) model that allows us to analyze the contribution of mitochondrial DNA (mtDNA) to cellular response after exposure to sub-lethal dose of UV. mtDNA can be classified into haplogroups as defined by accumulations of specific single nucleotide polymorphisms (SNPs). Recent studies have shown that J haplogroup is high risk for age-related macular degeneration while the H haplogroup is protective. This study investigates gene expression responses in J cybrids versus H cybrids after exposure to sub-lethal doses of UV-radiation. Methodology/Principal Findings Cybrids were created by fusing platelets isolated from subjects with either H (n = 3) or J (n = 3) haplogroups with mitochondria-free (Rho0) ARPE-19 cells. The H and J cybrids were cultured for 24 hours, treated with 10 mJ of UV-radiation and cultured for an additional 120 hours. Untreated and treated cybrids were analyzed for growth rates and gene expression profiles. The UV-treated and untreated J cybrids had higher growth rates compared to H cybrids. Before treatment, J cybrids showed lower expression levels for CFH, CD55, IL-33, TGF-A, EFEMP-1, RARA, BCL2L13 and BBC3. At 120 hours after UV-treatment, the J cybrids had decreased CFH, RARA and BBC3 levels but increased CD55, IL-33 and EFEMP-1 compared to UV-treated H cybrids. Conclusion/Significance In cells with identical nuclei, the cellular response to sub-lethal UV-radiation is mediated in part by the mtDNA haplogroup. This supports the hypothesis that differences in growth rates and expression levels of complement, inflammation and apoptosis genes may result from population-specific, hereditary SNP variations in mtDNA. Therefore, when analyzing UV-induced damage in tissues, the mtDNA haplogroup background may be important to consider. PMID:24919117

  3. Optical properties of the uropygial gland secretion: no evidence for UV cosmetics in birds

    NASA Astrophysics Data System (ADS)

    Delhey, Kaspar; Peters, Anne; Biedermann, Peter H. W.; Kempenaers, Bart

    2008-10-01

    Ultraviolet (UV) reflectance of the plumage is common in birds and plays an important role in sexual signalling. Recently, it has been proposed that birds are able to modify plumage UV reflectance by the application of uropygial gland secretion. Based on a survey of the optical properties of this secretion from 51 species belonging to 12 avian orders, we show that two main types of uropygial secretions exist, one predominantly found in passerines and one in non-passerines, both reducing relative UV reflectance of a white background (Teflon™ tape). We quantified how each type of secretion (exemplified by blue tit and mallard) affected feather UV reflectance. Both secretions reduced overall brightness and relative UV reflectance of white mallard feathers but hardly affected the reflectance of UV/blue blue tit crown feathers. According to models of avian colour vision, changes in reflectance due to application of the secretion were at or below the discrimination threshold of most birds. We conclude that the uropygial secretion is unlikely to play a major role in modifying plumage UV reflectance. However, the optical properties of the uropygial secretion may have been selected to interfere as little as possible with visual signaling through plumage reflectance.

  4. Testing Lorentz Invariance with Neutrinos from Ultrahigh Energy Cosmic Ray Interactions

    NASA Technical Reports Server (NTRS)

    Scully, Sean T.; Stecker, Floyd W.

    2010-01-01

    We have previously shown that a very small amount of Lorentz invariance violation (UV), which suppresses photomeson interactions of ultrahigh energy cosmic rays (UHECRs) with cosmic background radiation (CBR) photons, can produce a spectrum of cosmic rays that is consistent with that currently observed by the Pierre Auger Observatory (PAO) and HiRes experiments. Here, we calculate the corresponding flux of high energy neutrinos generated by the propagation of UHECR protons through the CBR in the presence of UV. We find that UV produces a reduction in the flux of the highest energy neutrinos and a reduction in the energy of the peak of the neutrino energy flux spectrum, both depending on the strength of the UV. Thus, observations of the UHE neutrino spectrum provide a clear test for the existence and amount of UV at the highest energies. We further discuss the ability of current and future proposed detectors make such observations.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Globus, Noemie; Piran, Tsvi; Allard, Denis

    GeV–TeV gamma-rays and PeV–EeV neutrino backgrounds provide a unique window on the nature of the ultra-high-energy cosmic rays (UHECRs). We discuss the implications of the recent Fermi -LAT data regarding the extragalactic gamma-ray background and related estimates of the contribution of point sources as well as IceCube neutrino data on the origin of the UHECRs. We calculate the diffuse flux of cosmogenic γ -rays and neutrinos produced by the UHECRs and derive constraints on the possible cosmological evolution of UHECR sources. In particular, we show that the mixed-composition scenario considered in Globus et al., which is in agreement with bothmore » (i) Auger measurements of the energy spectrum and composition up to the highest energies and (ii) the ankle-like feature in the light component detected by KASCADE-Grande, is compatible with both the Fermi -LAT measurements and with current IceCube limits. We also discuss the possibility for future experiments to detect associated cosmogenic neutrinos and further constrain the UHECR models, including possible subdominant UHECR proton sources.« less

  6. Tomographic Constraints on High-Energy Neutrinos of Hadronuclear Origin

    NASA Astrophysics Data System (ADS)

    Ando, Shin'ichiro; Tamborra, Irene; Zandanel, Fabio

    2015-11-01

    Mounting evidence suggests that the TeV-PeV neutrino flux detected by the IceCube telescope has mainly an extragalactic origin. If such neutrinos are primarily produced by a single class of astrophysical sources via hadronuclear (p p ) interactions, a similar flux of gamma-ray photons is expected. For the first time, we employ tomographic constraints to pinpoint the origin of the IceCube neutrino events by analyzing recent measurements of the cross correlation between the distribution of GeV gamma rays, detected by the Fermi satellite, and several galaxy catalogs in different redshift ranges. We find that the corresponding bounds on the neutrino luminosity density are up to 1 order of magnitude tighter than those obtained by using only the spectrum of the gamma-ray background, especially for sources with mild redshift evolution. In particular, our method excludes any hadronuclear source with a spectrum softer than E-2.1 as a main component of the neutrino background, if its evolution is slower than (1 +z )3. Starburst galaxies, if able to accelerate and confine cosmic rays efficiently, satisfy both spectral and tomographic constraints.

  7. Transparency of the Universe to gamma-rays

    NASA Astrophysics Data System (ADS)

    De Angelis, A.; Galanti, G.; Roncadelli, M.

    2013-07-01

    Using the most recent observational data concerning the extragalactic background light and the radio background for a source at an arbitrary redshift in the range zs ≤ 3, we compute the energy E0 of an observed γ-ray photon in the range 10 ≤ E0 ≤ 1013 GeV such that the resulting optical depth τγ(E0, zs) takes the values 1, 2, 3 and 4.6 corresponding to an observed flux dimming of e-1 ≃ 0.37, e-2 ≃ 0.14, e-3 ≃ 0.05 and e-4.6 ≃ 0.01, respectively. Below a distance D ≃ 8 kpc, we find that τγ(E0, DH0/c) < 1 for any value of E0. In the limiting case of a local Universe (zs ≃ 0), we compare our result with the one derived in 1997 by Coppi and Aharonian. The present achievement is of paramount relevance for the planned ground-based detectors like Cherenkov Telescope Array, High Altitude Water Cherenkov Experiment and Hundred Square-km Cosmic ORigin Explorer.

  8. Tomographic Constraints on High-Energy Neutrinos of Hadronuclear Origin.

    PubMed

    Ando, Shin'ichiro; Tamborra, Irene; Zandanel, Fabio

    2015-11-27

    Mounting evidence suggests that the TeV-PeV neutrino flux detected by the IceCube telescope has mainly an extragalactic origin. If such neutrinos are primarily produced by a single class of astrophysical sources via hadronuclear (pp) interactions, a similar flux of gamma-ray photons is expected. For the first time, we employ tomographic constraints to pinpoint the origin of the IceCube neutrino events by analyzing recent measurements of the cross correlation between the distribution of GeV gamma rays, detected by the Fermi satellite, and several galaxy catalogs in different redshift ranges. We find that the corresponding bounds on the neutrino luminosity density are up to 1 order of magnitude tighter than those obtained by using only the spectrum of the gamma-ray background, especially for sources with mild redshift evolution. In particular, our method excludes any hadronuclear source with a spectrum softer than E^{-2.1} as a main component of the neutrino background, if its evolution is slower than (1+z)^{3}. Starburst galaxies, if able to accelerate and confine cosmic rays efficiently, satisfy both spectral and tomographic constraints.

  9. A LUMINOUS, FAST RISING UV-TRANSIENT DISCOVERED BY ROTSE: A TIDAL DISRUPTION EVENT?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinkó, J.; Wheeler, J. C.; Chatzopoulos, E.

    2015-01-01

    We present follow-up observations of an optical transient (OT) discovered by ROTSE on 2009 January 21. Photometric monitoring was carried out with ROTSE-IIIb in the optical and Swift in the UV up to +70 days after discovery. The light curve showed a fast rise time of ∼10 days followed by a steep decline over the next 60 days, which was much faster than that implied by {sup 56}Ni—{sup 56}Co radioactive decay. The Sloan Digital Sky Survey Data Release 10 database contains a faint, red object at the position of the OT, which appears slightly extended. This and other lines ofmore » evidence suggest that the OT is of extragalactic origin, and this faint object is likely the host galaxy. A sequence of optical spectra obtained with the 9.2 m Hobby-Eberly Telescope between +8 and +45 days after discovery revealed a hot, blue continuum with no visible spectral features. A few weak features that appeared after +30 days probably originated from the underlying host. Fitting synthetic templates to the observed spectrum of the host galaxy revealed a redshift of z = 0.19. At this redshift, the peak magnitude of the OT is close to –22.5, similar to the brightest super-luminous supernovae; however, the lack of identifiable spectral features makes the massive stellar death hypothesis less likely. A more plausible explanation appears to be the tidal disruption of a Sun-like star by the central supermassive black hole. We argue that this transient likely belongs to a class of super-Eddington tidal disruption events.« less

  10. ULTRAVIOLET ESCAPE FRACTIONS FROM GIANT MOLECULAR CLOUDS DURING EARLY CLUSTER FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, Corey; Pudritz, Ralph; Klessen, Ralf

    2017-01-01

    The UV photon escape fraction from molecular clouds is a key parameter for understanding the ionization of the interstellar medium and extragalactic processes such as cosmic reionization. We present the ionizing photon flux and the corresponding photon escape fraction ( f {sub esc}) arising as a consequence of star cluster formation in a turbulent, 10{sup 6} M {sub ⊙} giant molecular cloud, simulated using the code FLASH. We make use of sink particles to represent young, star-forming clusters coupled with a radiative transfer scheme to calculate the emergent UV flux. We find that the ionizing photon flux across the cloudmore » boundary is highly variable in time and space due to the turbulent nature of the intervening gas. The escaping photon fraction remains at ∼5% for the first 2.5 Myr, followed by two pronounced peaks at 3.25 and 3.8 Myr with a maximum f {sub esc} of 30% and 37%, respectively. These peaks are due to the formation of large H ii regions that expand into regions of lower density, some of which reaching the cloud surface. However, these phases are short-lived, and f {sub esc} drops sharply as the H ii regions are quenched by the central cluster passing through high-density material due to the turbulent nature of the cloud. We find an average f {sub esc} of 15% with factor of two variations over 1 Myr timescales. Our results suggest that assuming a single value for f {sub esc} from a molecular cloud is in general a poor approximation, and that the dynamical evolution of the system leads to large temporal variation.« less

  11. The Constant Average Relationship Between Dust-obscured Star Formation and Stellar Mass from z=0 to z=2.5

    NASA Astrophysics Data System (ADS)

    Whitaker, Katherine E.; Pope, Alexandra; Cybulski, Ryan; Casey, Caitlin M.; Popping, Gergo; Yun, Min; 3D-HST Collaboration

    2018-01-01

    The total star formation budget of galaxies consists of the sum of the unobscured star formation, as observed in the rest-frame ultraviolet (UV), together with the obscured component that is absorbed and re-radiated by dust grains in the infrared. We explore how the fraction of obscured star formation depends (SFR) and stellar mass for mass-complete samples of galaxies at 0 < z < 2.5. We combine GALEX and WISE photometry for SDSS-selected galaxies with the 3D-HST treasury program and Spitzer/MIPS 24μm photometry in the well-studied 5 extragalactic CANDELS fields. We find a strong dependence of the fraction of obscured star formation (f_obscured=SFR_IR/SFR_UV+IR) on stellar mass, with remarkably little evolution in this fraction with redshift out to z=2.5. 50% of star formation is obscured for galaxies with log(M/M⊙)=9.4 although unobscured star formation dominates the budget at lower masses, there exists a tail of low mass extremely obscured star-forming galaxies at z > 1. For log(M/M⊙)>10.5, >90% of star formation is obscured at all redshifts. We also show that at fixed total SFR, f_obscured is lower at higher redshift. At fixed mass, high-redshift galaxies are observed to have more compact sizes and much higher star formation rates, gas fractions and hence surface densities (implying higher dust obscuration), yet we observe no redshift evolution in f_obscured with stellar mass. This poses a challenge to theoretical models to reproduce, where the observed compact sizes at high redshift seem in tension with lower dust obscuration.

  12. Arcsecond positions for milliarcsecond VLBI nuclei of extragalactic radio sources. IV - Seventeen sources

    NASA Technical Reports Server (NTRS)

    Morabito, D. D.; Preston, R. A.; Linfield, R. P.; Slade, M. A.; Jauncey, D. L.

    1986-01-01

    VLBI measurements of time delay and delay rate at 2.29 and 8.42 GHz on baselines of 10,000 km have been used to determine the positions of the milliarcsecond nuclei in 17 extragalactic radio sources with estimated accuracies of 0.1 to 0.3 arcsec. The observed sources are part of an all-sky VLBI catalog of milliarcsecond radio sources. In addition, slightly improved positions are presented for 101 sources originally reported by Morabito et al. (1983). Arcsecond positions have now been determined for 836 sources.

  13. The Herschel ATLAS

    NASA Technical Reports Server (NTRS)

    Eales, S.; Dunne, L.; Clements, D.; Cooray, A.; De Zotti, G.; Dye, S.; Ivison, R.; Jarvis, M.; Lagache, G.; Maddox, S.; hide

    2010-01-01

    The Herschel ATLAS is the largest open-time key project that will be carried out on the Herschel Space Observatory. It will survey 570 sq deg of the extragalactic sky, 4 times larger than all the other Herschel extragalactic surveys combined, in five far-infrared and submillimeter bands. We describe the survey, the complementary multiwavelength data sets that will be combined with the Herschel data, and the six major science programs we are undertaking. Using new models based on a previous submillimeter survey of galaxies, we present predictions of the properties of the ATLAS sources in other wave bands.

  14. Extragalactic radio surveys in the pre-Square Kilometre Array era

    PubMed Central

    2017-01-01

    The era of the Square Kilometre Array is almost upon us, and pathfinder telescopes are already in operation. This brief review summarizes our current knowledge of extragalactic radio sources, accumulated through six decades of continuum surveys at the low-frequency end of the electromagnetic spectrum and the extensive complementary observations at other wavelengths necessary to gain this understanding. The relationships between radio survey data and surveys at other wavelengths are discussed. Some of the outstanding questions are identified and prospects over the next few years are outlined. PMID:28791175

  15. The Hard X-ray 20-40 keV AGN Luminosity Function

    NASA Technical Reports Server (NTRS)

    Beckmann, V.; Soldi, S.; Shrader, C. R.; Gehrels, N.; Produit, N.

    2006-01-01

    We have compiled a complete, significance limited extragalactic sample based on approximately 25,000 deg(sup 2) to a limiting flux of 3 x 10(exp -11) ergs per square centimeter per second. (approximately 7,000 deg(sup 2)) to a flux limit of 10(exp -11) ergs per square centimeter per second)) in the 20 - 40 keV band with INTEGRAL. We have constructed a detailed exposure map to compensate for effects of non-uniform exposure. The flux-number relation is best described by a power-law with a slope of alpha = 1.66 plus or minus 0.11. The integration of the cumulative flux per unit area leads to f(sub 20-40 keV) = 2.6 x 10(exp -10) ergs per square centimeter per second per sr(sup -1) which is about 1% of the known 20-40 keV X-ray background. We present the first luminosity function of AGN in the 20-40 keV energy range, based on 68 extragalactic objects detected by the imager IBIS/ISGRI on-board INTEGRAL. The luminosity function shows a smoothly connected two power-law form, with an index of gamma (sub 1) = 0.9 below, and gamma (sub 2) = 2.2 above the turn-over luminosity of L(sub *), = 4.6 x 10(sup 43) ergs per second. The emissivity of all INTEGRAL AGNs per unit volume is W(sub 20-40keV)(greater than 10(sup 41) ergs per second) = 2.8 x 10(sup 38) ergs per second h(sup 3)(sub 70) Mpc(sup -3). These results are consistent with those derived in the 2-20keV energy band and do not show a significant contribution by Compton-thick objects. Because the sample used in this study is truly local (z(raised bar) = 0.022)), only limited conclusions can be drawn for the evolution of AGNs in this energy band. But the objects explaining the peak in the cosmic X-ray background are likely to be either low luminosity AGN (L(sub x) less than 10(sup 41) ergs per second) or of other type, such as intermediate mass black holes, clusters, and star forming regions.

  16. The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Continuum Number Counts, Resolved 1.2 mm Extragalactic Background, and Properties of the Faintest Dusty Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Aravena, M.; Decarli, R.; Walter, F.; Da Cunha, E.; Bauer, F. E.; Carilli, C. L.; Daddi, E.; Elbaz, D.; Ivison, R. J.; Riechers, D. A.; Smail, I.; Swinbank, A. M.; Weiss, A.; Anguita, T.; Assef, R. J.; Bell, E.; Bertoldi, F.; Bacon, R.; Bouwens, R.; Cortes, P.; Cox, P.; Gónzalez-López, J.; Hodge, J.; Ibar, E.; Inami, H.; Infante, L.; Karim, A.; Le Le Fèvre, O.; Magnelli, B.; Ota, K.; Popping, G.; Sheth, K.; van der Werf, P.; Wagg, J.

    2016-12-01

    We present an analysis of a deep (1σ = 13 μJy) cosmological 1.2 mm continuum map based on ASPECS, the ALMA Spectroscopic Survey in the Hubble Ultra Deep Field. In the 1 arcmin2 covered by ASPECS we detect nine sources at \\gt 3.5σ significance at 1.2 mm. Our ALMA-selected sample has a median redshift of z=1.6+/- 0.4, with only one galaxy detected at z > 2 within the survey area. This value is significantly lower than that found in millimeter samples selected at a higher flux density cutoff and similar frequencies. Most galaxies have specific star formation rates (SFRs) similar to that of main-sequence galaxies at the same epoch, and we find median values of stellar mass and SFRs of 4.0× {10}10 {M}⊙ and ˜ 40 {M}⊙ yr-1, respectively. Using the dust emission as a tracer for the interstellar medium (ISM) mass, we derive depletion times that are typically longer than 300 Myr, and we find molecular gas fractions ranging from ˜0.1 to 1.0. As noted by previous studies, these values are lower than those using CO-based ISM estimates by a factor of ˜2. The 1 mm number counts (corrected for fidelity and completeness) are in agreement with previous studies that were typically restricted to brighter sources. With our individual detections only, we recover 55% ± 4% of the extragalactic background light (EBL) at 1.2 mm measured by the Planck satellite, and we recover 80% ± 7% of this EBL if we include the bright end of the number counts and additional detections from stacking. The stacked contribution is dominated by galaxies at z˜ 1{--}2, with stellar masses of (1-3) × 1010 M {}⊙ . For the first time, we are able to characterize the population of galaxies that dominate the EBL at 1.2 mm.

  17. Ice Mapping Observations in Galactic Star-Forming Regions: the AKARI Legacy

    NASA Astrophysics Data System (ADS)

    Fraser, Helen Jane; Suutarinnen, Aleksi; Noble, Jennifer

    2015-08-01

    It is becoming increasingly clear that explaining the small-scale distribution of many gas-phase molecules relies on our interpretation of the complex inter-connectivity between gas- and solid-phase interstellar chemistries. Inputs to proto-stellar astrochemical models are required that exploit ice compositions reflecting the historical physical conditions in pre-stellar environments when the ices first formed. Such data are required to translate the near-universe picture of ice-composition to our understanding of the role of extra-galactic ices in star-formation at higher redshifts.Here we present the first attempts at multi-object ice detections, and the subsequent ice column density mapping. The AKARI space telescope was uniquely capable of observing all the ice features between 2 and 5 microns, thereby detecting H2O, CO and CO2 ices concurrently, through their stretching vibrational features. Our group has successfully extracted an unprecedented volume of ice spectra from AKARI, including sources with not more than 2 mJy flux at 3 microns, showing:(a) H2O CO and CO2 ices on 30 lines of sight towards pre-stellar and star-forming cores, which when combined with laboratory experiments indicate how the chemistries of these three ices are interlinked (Noble et al (2013)),(b) ice maps showing the spatial distribution of water ice across 12 pre-stellar cores, in different molecular clouds (Suutarinnen et al (2015)), and the distribution of ice components within these cores on 1000 AU scales (Noble et al (2015)),(c) over 200 new detections of water ice, mostly on lines of sight towards background sources (> 145), indicating that water ice column density has a minimum value as a function of Av, but on a cloud-by-cloud basis typically correlates with Av, and dust emissivity at 250 microns (Suutarinnen et al (2015)),(d) the first detections of HDO ice towards background stars (Fraser et al (2015)).We discuss whether these results support the picture of a generic chemical evolutionary scenario for interstellar ice chemistry, ranging from pre-stellar to extra-galactic scales.

  18. Ideal Magnetohydrodynamic Simulations of Magnetic Bubble Expansion as a Model for Extragalactic Radio Lobes

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Hsu, Scott; Li, Hui; Li, Shengtai; Lynn, Alan

    2009-05-01

    Recent astronomical observations indicate that radio lobes are gigantic relaxed magnetized plasmas with kilo-to-megaparsec scale jets providing a source of magnetic energy from the galaxy to the lobes. Therefore we are conducting a laboratory plasma experiment, the Plasma Bubble Expansion Experiment (PBEX) in which a higher pressure magnetized plasma bubble (i.e., the lobe) is injected into a lower pressure background plasma (i.e., the intergalactic medium) to study key nonlinear plasma physics issues. Here we present detailed ideal magnetohydrodynamic (MHD) three-dimensional simulations of PBEX. First, the direction of bubble expansion depends on the ratio of the bubble toroidal to poloidal magnetic field, with a higher ratio leading to expansion predominantly in the direction of propagation and a lower ratio leading to expansion predominantly normal to the direction of propagation. Second, a leading MHD shock and a trailing slow-mode compressible MHD wave front are formed ahead of the bubble as it propagates into the background plasma. Third, the bubble expansion and propagation develop asymmetries about its propagation axis due to reconnection arising from numerical resistivity and to inhomogeneous angular momentum transport due to the background magnetic field. These results will help guide the initial experiments and diagnostic measurements on PBEX.

  19. Probing the diffuse optical-IR background with TeV blazars detected with the MAGIC Telescopes

    NASA Astrophysics Data System (ADS)

    Prandini, Elisa; Domínguez, Alberto; Fallah Ramazani, Vandad; Hassan, Tarek; Mazin, Daniel; Moralejo, Abelardo; Nievas Rosillo, Mireia; Vanzo, Gaia; Vazquez Acosta, Monica

    2017-11-01

    Blazars are radio loud quasars whose jet points toward the observer. The observed emission is mostly non-thermal, dominated by the jet emission, and in some cases extends up to the very high energy gamma rays (VHE; E > 100 GeV). To date, more than 60 blazars have been detected at VHE mainly with ground-based imaging atmospheric Cherenkov telescopes (IACTs) such as MAGIC, H.E.S.S. and VERITAS. Energetic photons from a blazar may interact with the diffuse optical and IR background (the extragalactic background light, EBL) leaving an imprint on the blazar energy spectrum. This effect can be used to constrain the EBL, with basic assumptions on the intrinsic energy spectrum. Current generation of IACTs is providing valuable measurements of the EBL density and energy spectrum from optical to infrared frequencies. In this contribution, we present the latest results obtained with the data taken with the MAGIC telescopes: using 32 spectra from 12 blazars, the scale factor of the optical density predicted by the EBL model from Domínguez et al. (2011) is constrained to be 0.95 (+0.11, -0.12)_{stat} (+0.16, -0.07)_{sys}, where a value of 1 means the perfect match with the model.

  20. Non-LTE model calculations for SN 1987A and the extragalactic distance scale

    NASA Technical Reports Server (NTRS)

    Schmutz, W.; Abbott, D. C.; Russell, R. S.; Hamann, W.-R.; Wessolowski, U.

    1990-01-01

    This paper presents model atmospheres for the first week of SN 1987A, based on the luminosity and density/velocity structure from hydrodynamic models of Woosley (1988). The models account for line blanketing, expansion, sphericity, and departures from LTE in hydrogen and helium and differ from previously published efforts because they represent ab initio calculations, i.e., they contain essentially no free parameters. The formation of the UV spectrum is dominated by the effects of line blanketing. In the absorption troughs, the Balmer line profiles were fit well by these models, but the observed emissions are significantly stronger than predicted, perhaps due to clumping. The generally good agreement between the present synthetic spectra and observations provides independent support for the overall accuracy of the hydrodynamic models of Woosley. The question of the accuracy of the Baade-Wesselink method is addressed in a detailed discussion of its approximations. While the application of the standard method produces a distance within an uncertainty of 20 percent in the case of SN 1987A, systematic errors up to a factor of 2 are possible, particularly if the precursor was a red supergiant.

  1. Explosive Growth and Advancement of the NASA/IPAC Extragalactic Database (NED)

    NASA Astrophysics Data System (ADS)

    Mazzarella, Joseph M.; Ogle, P. M.; Fadda, D.; Madore, B. F.; Ebert, R.; Baker, K.; Chan, H.; Chen, X.; Frayer, C.; Helou, G.; Jacobson, J. D.; LaGue, C.; Lo, T. M.; Pevunova, O.; Schmitz, M.; Terek, S.; Steer, I.

    2014-01-01

    The NASA/IPAC Extragalactic Database (NED) is continuing to evolve in lock-step with the explosive growth of astronomical data and advancements in information technology. A new methodology is being used to fuse data from very large surveys. Selected parameters are first loaded into a new database layer and made available in areal searches before they are cross-matched with prior NED objects. Then a programmed, rule-based statistical approach is used to identify new objects and compute cross-identifications with existing objects where possible; otherwise associations between objects are derived based on positional uncertainties or spatial resolution differences. Approximately 62 million UV sources from the GALEX All-Sky Survey and Medium Imaging Survey catalogs have been integrated into NED using this new process. The December 2013 release also contains nearly half a billion sources from the 2MASS Point Source Catalog accessible in cone searches, while the large scale cross-matching is in progress. Forthcoming updates will fuse data from All-WISE, SDSS DR12, and other very large catalogs. This work is progressing in parallel with the equally important integration of data from the literature, which is also growing rapidly. Recent updates have also included H I and CO channel maps (data cubes), as well as substantial growth in redshifts, classifications, photometry, spectra and redshift-independent distances. The By Parameters search engine now incorporates a simplified form for entry of constraints, and support for long-running queries with machine-readable output. A new tool for exploring the environments of galaxies with measured radial velocities includes informative graphics and a method to assess the incompleteness of redshift measurements. The NED user interface is also undergoing a major transformation, providing more streamlined navigation and searching, and a modern development framework for future enhancements. For further information, please visit our poster (Fadda et al. 2014) and stop by the NED exhibit for a demo. NED is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  2. Statistical image segmentation for the detection of skin lesion borders in UV fluorescence excitation

    NASA Astrophysics Data System (ADS)

    Ortega-Martinez, Antonio; Padilla-Martinez, Juan Pablo; Franco, Walfre

    2016-04-01

    The skin contains several fluorescent molecules or fluorophores that serve as markers of structure, function and composition. UV fluorescence excitation photography is a simple and effective way to image specific intrinsic fluorophores, such as the one ascribed to tryptophan which emits at a wavelength of 345 nm upon excitation at 295 nm, and is a marker of cellular proliferation. Earlier, we built a clinical UV photography system to image cellular proliferation. In some samples, the naturally low intensity of the fluorescence can make it difficult to separate the fluorescence of cells in higher proliferation states from background fluorescence and other imaging artifacts -- like electronic noise. In this work, we describe a statistical image segmentation method to separate the fluorescence of interest. Statistical image segmentation is based on image averaging, background subtraction and pixel statistics. This method allows to better quantify the intensity and surface distributions of fluorescence, which in turn simplify the detection of borders. Using this method we delineated the borders of highly-proliferative skin conditions and diseases, in particular, allergic contact dermatitis, psoriatic lesions and basal cell carcinoma. Segmented images clearly define lesion borders. UV fluorescence excitation photography along with statistical image segmentation may serve as a quick and simple diagnostic tool for clinicians.

  3. The role of colour in signalling and male choice in the agamid lizard Ctenophorus ornatus.

    PubMed Central

    LeBas, N R; Marshall, N J

    2000-01-01

    Bright coloration and complex visual displays are frequent and well described in many lizard families. Reflectance spectrometry which extends into the ultraviolet (UV) allows measurement of such coloration independent of our visual system. We examined the role of colour in signalling and mate choice in the agamid lizard Ctenophorus ornatus. We found that throat reflectance strongly contrasted against the granite background of the lizards' habitat. The throat may act as a signal via the head-bobbing and push-up displays of C. ornatus. Dorsal coloration provided camouflage against the granite background, particularly in females. C. ornatus was sexually dichromatic for all traits examined including throat UV reflectance which is beyond human visual perception. Female throats were highly variable in spectral reflectance and males preferred females with higher throat chroma between 370 and 400 nm. However, female throat UV chroma is strongly correlated to both throat brightness and chest UV chroma and males may choose females on a combination of these colour variables. There was no evidence that female throat or chest coloration was an indicator of female quality. However, female brightness significantly predicted a female's laying date and, thus, may signal receptivity. One function of visual display in this species appears to be intersexual signalling, resulting in male choice of females. PMID:10737400

  4. UV spectroscopy with the CETUS multi-object spectrometer

    NASA Astrophysics Data System (ADS)

    Kendrick, Stephen E.; Woodruff, Robert; Hull, Anthony; Heap, Sara; Kutyrev, Alexander; Purves, Lloyd; Danchi, William

    2018-01-01

    The ultraviolet multi-object spectrograph (MOS) for the Cosmic Evolution Through UV Spectroscopy (CETUS) concept is a slit-based instrument allowing multiple simultaneous observations over a wide field of view. The UV MOS will be able to target up to 100 objects at a time without the issues of confusion with nearby sources or unwanted background like zodiacal stray light. The multiplexing will allow over 100,000 galaxies to be observed over a typical mission lifetime which greatly enhances the scientific yield. The MOS utilizes a next-generation micro-shutter array, an efficient aspheric Offner-like spectrometer design with a convex grating, and nanotube light traps for suppressing unwanted wavelengths. The optical coatings are also designed for optimizing the UV throughput while minimizing out-of-band signal at the detector.

  5. Multiplexing in astrophysics with a UV multi-object spectrometer on CETUS, a probe-class mission study

    NASA Astrophysics Data System (ADS)

    Kendrick, Stephen E.; Woodruff, Robert A.; Hull, Tony; Heap, Sara R.; Kutyrev, Alexander; Danchi, William; Purves, Lloyd

    2017-09-01

    The ultraviolet multi-object spectrograph (MOS) for the Cosmic Evolution Through UV Spectroscopy (CETUS) concept1,2 is a slit-based instrument allowing multiple simultaneous observations over a wide field of view. It utilizes a next-generation micro-shutter array, an efficient aspheric Offner spectrometer design with a convex grating, and carbon nanotube light traps for suppressing unwanted wavelengths. The optical coatings are also designed to optimize the UV throughput while minimizing out-of-band signal at the detector. The UV MOS will be able to target up to 100 objects at a time without the issues of confusion with nearby sources or unwanted background like zodiacal stray light. With this multiplexing, the scientific yield of both Probe and Great Observatories will be greatly enhanced.

  6. The determination of ultraviolet extinction from the optical and near-infrared

    NASA Technical Reports Server (NTRS)

    Cardelli, Jason A.; Clayton, Geoffrey C.; Mathis, John S.

    1988-01-01

    The correlation of optical-near-infrared photometry for a sample of stars with well-determined ultraviolet extinction is examined. A good correlation is found; in particular, it is found that the value of total-to-selective extinction correlates well with the level of linear UV background extinction found from the UV curve parameterization of Fitzpatrick and Massa. An analytic expression is given for an improved estimate for the UV extinction law that can be obtained from optically determined values of R. For R values outside the range R = 3.1 -3.5, use of the analytic expressions given here will result in a more accurate representation of the applicable UV extinction than using the standard techniques of assuming the average curve or 'ironing out' the bump.

  7. Rocket and spacecraft studies of ultraviolet emissions from astrophysical targets

    NASA Technical Reports Server (NTRS)

    Fastie, W. G.; Moos, H. W.; Feldman, P. D.; Henry, R. C.

    1975-01-01

    Rocket and spacecraft far-UV spectral measurements of several astrophysical targets are reviewed. These include observations of Ly-alpha emissions from Arcturus, Apollo-17 far-UV spectrometry of eta UMa and five other stars, Apollo-17 observations of the lunar atmosphere and the diffuse UV background, and far-UV spectral studies of Venus, Jupiter, and Comet Kohoutek. The Arcturus observations indicated a chromosphere with neutral atomic-hydrogen and atomic-oxygen emissions as well as a very weak atomic-carbon line. The planetary studies revealed O I and C I emissions in the Venusian spectrum as well as large Ly-alpha emissions and possible molecular-hydrogen emissions in that of Jupiter. The lunar observations demonstrated that solar protons do not produce an atomic-hydrogen atmosphere on the moon.

  8. Milky Way scattering properties and intrinsic sizes of active galactic nuclei cores probed by very long baseline interferometry surveys of compact extragalactic radio sources

    NASA Astrophysics Data System (ADS)

    Pushkarev, A. B.; Kovalev, Y. Y.

    2015-10-01

    We have measured the angular sizes of radio cores of active galactic nuclei (AGNs) and analysed their sky distributions and frequency dependences to study synchrotron opacity in AGN jets and the strength of angular broadening in the interstellar medium. We have used archival very long baseline interferometry (VLBI) data of more than 3000 compact extragalactic radio sources observed at frequencies, ν, from 2 to 43 GHz to measure the observed angular size of VLBI cores. We have found a significant increase in the angular sizes of the extragalactic sources seen through the Galactic plane (|b| ≲ 10°) at 2, 5 and 8 GHz, about one-third of which show significant scattering. These sources are mainly detected in directions to the Galactic bar, the Cygnus region and a region with galactic longitudes 220° ≲ l ≲ 260° (the Fitzgerald window). The strength of interstellar scattering of the AGNs is found to correlate with the Galactic Hα intensity, free-electron density and Galactic rotation measure. The dependence of scattering strengths on source redshift is insignificant, suggesting that the dominant scattering screens are located in our Galaxy. The observed angular size of Sgr A* is found to be the largest among thousands of AGNs observed over the sky; we discuss possible reasons for this strange result. Excluding extragalactic radio sources with significant scattering, we find that the angular size of opaque cores in AGNs scales typically as ν-1, confirming predictions of a conical synchrotron jet model with equipartition.

  9. Transformations of dissolved organic matter induced by UV photolysis, Hydroxyl radicals, chlorine radicals, and sulfate radicals in aqueous-phase UV-Based advanced oxidation processes.

    PubMed

    Varanasi, Lathika; Coscarelli, Erica; Khaksari, Maryam; Mazzoleni, Lynn R; Minakata, Daisuke

    2018-05-15

    Considering the increasing identification of trace organic contaminants in natural aquatic environments, the removal of trace organic contaminants from water or wastewater discharge is an urgent task. Ultraviolet (UV) and UV-based advanced oxidation processes (AOPs), such as UV/hydrogen peroxide (UV/H 2 O 2 ), UV/free chlorine and UV/persulfate, are attractive and promising approaches for the removal of these contaminants due to the high reactivity of active radical species produced in these UV-AOPs with a wide variety of organic contaminants. However, the removal efficiency of trace contaminants is greatly affected by the presence of background dissolved organic matter (DOM). In this study, we use ultrahigh resolution mass spectrometry to evaluate the transformation of a standard Suwanee River fulvic acid DOM isolate in UV photolysis and UV-AOPs. The use of probe compounds allows for the determination of the steady-state concentrations of active radical species in each UV-AOP. The changes in the H/C and O/C elemental ratios, double bond equivalents, and the low-molecular-weight transformation product concentrations of organic acids reveal that different DOM transformation patterns are induced by each UV-AOP. By comparison with the known reactivities of each radical species with specific organic compounds, we mechanistically and systematically elucidate the molecular-level DOM transformation pathways induced by hydroxyl, chlorine, and sulfate radicals in UV-AOPs. We find that there is a distinct transformation in the aliphatic components of DOM due to HO• in UV/H 2 O 2 and UV/free chlorine. Cl• induced transformation of olefinic species is also observed in the UV/free chlorine system. Transformation of aromatic and olefinic moieties by SO 4 •- are the predominant pathways in the UV/persulfate system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Submillimetric study of nearby galaxies: A tool for new extragalactic molecules

    NASA Astrophysics Data System (ADS)

    Villicana Pedraza, Ilhuiyolitzin; Guesten, Rolf; Armijos Abendaño, Jairo; Carreto, Francisco; Martin, Sergio; Martin-Pintado, Jesus; Requena-Torres, Miguel; Perez-Beaupuits, Juan Pablo

    2016-07-01

    We present the first submillimetre line survey of extragalactic sources carried out by APEX, the results were presented inside of Villicana-Pedraza phd thesis in 2015. The surveys cover the 0.8 mm atmospheric window toward NGC253, NGC4945 and Arp220. We found HCN, C2H, CN, CS, C34S, HCO+, HNC, CO, N2H+, CH3OH are presents in all the sources, while 13CO,C18O and C17O, HNCO, H2CO, H2CS, SO, NO, SO2 were detected toward NGC253 and NGC4945, 13CN, *CO+, OCS, H2S in Arp220, 13CS, NH2CN, SiO in NGC253, and c-C3H2 in NGC4945 were detected. Column densities and rotation temperatures have been determinate using the Local Thermodinamical Equilibrium(LTE) line profile simulation and fitting in the MADCUBA IJ software. The differences found in the 32S/34S and 18O/17O ratios between the GC and the starburst galaxies NGC 4945 and NGC 253 suggest that the gas is less processed in the latter than in the GC. The high 18O/17O ratios in the galaxies NGC 4945 and NGC 253 suggest also material less processed in the nuclei of these galaxies than in the GC. This is consistent with the claim that 17O is a more representative primary product than 18O in stellar nucleosynthesis (Wilson and Rood 1994); Also, we did a Multitransitions study of H3O+ at 307GHz, 364GHz, 388GHz and 396GHz. From our non-LTE analysis of H3O+ in NGC253 with RADEX we found that the collisional excitation cannot explain the observed intensity of the ortho 396 GHz line. Excitation by radiation from the dust in the Far-IR can roughly explain the observations if the H2 densities are relatively low. From the derived H3O+ column densities we conclude that the chemistry of this molecule is dominated by ionization produce by the starburst in NGC253 (UV radiation from the O stars) and Arp 220 (cosmic rays from the supernovae) and likely from the AGN in NGC4549 (X-rays ); We report, for the first time, the tentative detection of the molecular ion HCNH+ (precursor of HCN and HNC) toward a galaxy, NGC4945, the abundance is much larger than the Galactic center in the Milky Way, abundance explain the claimed enhancement of HCN abundance in the AGN, due to the enhancement of the ionization rate by X-rays. The survey help us to find a lot of molecules including the tentative detection of *CH2NH, CH3C2H, HCNH+ in NGC253 and NGC4945 by first time in the extragalactic medium.

  11. Use of a Reflective Ultraviolet Imaging System (RUVIS) on Two-Dimensional Dust Impressions Created with Footwear on Multiple Substrates

    NASA Astrophysics Data System (ADS)

    Engelson, Brian Aaron

    Footwear impression evidence in dust is often difficult to locate in ambient light and is a fragile medium that both collection and enhancement techniques can destroy or distort. The collection of footwear impression evidence always begins with non-destructive photographic techniques; however, current methods are limited to oblique lighting of the impression followed by an attempt to photograph in situ. For the vast majority of footwear impressions, an interactive collection method, and thus a potentially destructive procedure, is subsequently carried out to gather the evidence. Therefore, alternative non-destructive means for the preservation and enhancement of footwear impressions in dust merits further attention. Previous research performed with reflected ultraviolet (UV) photography and reflected ultraviolet imaging systems (RUVIS) has shown that there are additional non-destructive methodologies that can be applied to the search for and documentation of footwear impressions in dust. Unfortunately, these prior studies did not include robust comparisons to traditional oblique white light, instead choosing to focus on different UV wavelengths. This study, however, seeks to evaluate the use of a RUVIS device paired with a 254 nanometer (nm) UV light source to locate 2-D footwear impressions in dust on multiple substrates against standard oblique white light techniques and assess the visibility of the impression and amount of background interference present. The optimal angle of incident UV light for each substrate was also investigated. Finally, this study applied an image enhancement technique in order to evaluate its usefulness when looking at the visibility of a footwear impression and the amount of background interference present for enhanced white light and RUVIS pictures of footwear impressions in dust. A collection of eight different substrate types was gathered for investigation, including vinyl composition tile (VCT), ceramic tile, marble tile, magazine paper, steel sheet metal, vinyl flooring, wood flooring, and carpet. Heel impressions were applied to the various substrates utilizing vacuum collected dust and normal walking pressure. Each substrate was then explored and photographed in ambient fluorescent light, oblique white light at 0°, 15°, 30°, and 0° with the light source below the surface plane of the substrate, and 254 nm UV light at 0°, 15°, 30°, 45°, 60°, 75°, 90° and 0° with the light source below the surface plane of the substrate. All pictures were evaluated for clarity and visible detail of the footwear impression and the amount of background interference present, selecting for the best images within a lighting condition group. Additional intra- and intergroup comparisons were carried out to explore differences created by the various lighting conditions. Enhanced images were then created with the best scored pictures and evaluated for additional modifications in impression visibility and background interference. Photographs of footwear impressions in dust illuminated with ambient fluorescent light proved to be the most difficult conditions under which a footwear impression could be visualized. However, both oblique white light and 254 nm UV light lighting conditions showed improvements in either visualization or background dropout, or both, over ambient light conditions. An assessment of the white light and 254 nm UV light RUVIS images also demonstrated that the best angles for the light source for all substrates were oblique 0 and oblique 0° below the surface plane of the substrate lighting. It was found that white light photographs generally provided higher visibility ratings, while RUVIS 254 nm UV light photographs provided better grades for reducing background interference. Enhanced images of white light conditions provided generally poorer quality and quantity of details, while enhanced RUVIS images seemed to improve upon these areas. The use of a RUVIS to capture photographs of footwear impression evidence in dust was found to be a successful secondary non-destructive technique that can be paired with traditional oblique white light procedures. Additionally, the use of below the surface plane of the substrate lighting techniques were found to improve either visibility or background dropout, or both, over standard 0 oblique lighting, depending on the light source, and should be employed, when applicable. Finally, further investigation into digital photo-editing enhancement techniques for footwear impression evidence in dust is needed.

  12. Dust and molecules in extra-galactic planetary nebulae

    NASA Astrophysics Data System (ADS)

    Garcia-Hernandez, Domingo Aníbal

    2015-08-01

    Extra-galactic planetary nebulae (PNe) permit the study of dust and molecules in metallicity environments other than the Galaxy. Their known distances lower the number of free parameters in the observations vs. models comparison, providing strong constraints on the gas-phase and solid-state astrochemistry models. Observations of PNe in the Galaxy and other Local Group galaxies such as the Magellanic Clouds (MC) provide evidence that metallicity affects the production of dust as well as the formation of complex organic molecules and inorganic solid-state compounds in their circumstellar envelopes. In particular, the lower metallicity MC environments seem to be less favorable to dust production and the frequency of carbonaceous dust features and complex fullerene molecules is generally higher with decreasing metallicity. Here, I present an observational review of the dust and molecular content in extra-galactic PNe as compared to their higher metallicity Galactic counterparts. A special attention is given to the level of dust processing and the formation of complex organic molecules (e.g., polycyclic aromatic hydrocarbons, fullerenes, and graphene precursors) depending on metallicity.

  13. Planck 2015 results: XXII. A map of the thermal Sunyaev-Zeldovich effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aghanim, N.; Arnaud, M.; Ashdown, M.

    In this article, we have constructed all-sky Compton parameters maps, y-maps, of the thermal Sunyaev-Zeldovich (tSZ) effect by applying specifically tailored component separation algorithms to the 30 to 857 GHz frequency channel maps from the Planck satellite. These reconstructed y-maps are delivered as part of the Planck 2015 release. The y-maps are characterized in terms of noise properties and residual foreground contamination, mainly thermal dust emission at large angular scales, and cosmic infrared background and extragalactic point sources at small angular scales. Specific masks are defined to minimize foreground residuals and systematics. Using these masks, we compute the y-map angularmore » power spectrum and higher order statistics. From these we conclude that the y-map is dominated by tSZ signal in the multipole range, 20« less

  14. Planck 2015 results: XXII. A map of the thermal Sunyaev-Zeldovich effect

    DOE PAGES

    Aghanim, N.; Arnaud, M.; Ashdown, M.; ...

    2016-09-20

    In this article, we have constructed all-sky Compton parameters maps, y-maps, of the thermal Sunyaev-Zeldovich (tSZ) effect by applying specifically tailored component separation algorithms to the 30 to 857 GHz frequency channel maps from the Planck satellite. These reconstructed y-maps are delivered as part of the Planck 2015 release. The y-maps are characterized in terms of noise properties and residual foreground contamination, mainly thermal dust emission at large angular scales, and cosmic infrared background and extragalactic point sources at small angular scales. Specific masks are defined to minimize foreground residuals and systematics. Using these masks, we compute the y-map angularmore » power spectrum and higher order statistics. From these we conclude that the y-map is dominated by tSZ signal in the multipole range, 20« less

  15. Condensate of massive graviton and dark matter

    NASA Astrophysics Data System (ADS)

    Aoki, Katsuki; Maeda, Kei-ichi

    2018-02-01

    We study coherently oscillating massive gravitons in the ghost-free bigravity theory. This coherent field can be interpreted as a condensate of the massive gravitons. We first define the effective energy-momentum tensor of the coherent massive gravitons in a curved spacetime. We then study the background dynamics of the Universe and the cosmic structure formation including the effects of the coherent massive gravitons. We find that the condensate of the massive graviton behaves as a dark matter component of the Universe. From the geometrical point of view the condensate is regarded as a spacetime anisotropy. Hence, in our scenario, dark matter is originated from the tiny deformation of the spacetime. We also discuss a production of the spacetime anisotropy and find that the extragalactic magnetic field of a primordial origin can yield a sufficient amount for dark matter.

  16. Modelling a man-portable air-defence (MANPAD) system with a rosette scan two-colour infrared (IR) and ultraviolet (UV) seeker

    NASA Astrophysics Data System (ADS)

    Kumar, Devinder; Smith, Leon; Richardson, Mark A.; Ayling, Richard; Barlow, Nick

    2014-10-01

    The Ultraviolet (UV) band of the electromagnetic (EM) spectrum has the potential to be used as the host medium for the operation of guided weapons. Unlike in the Infrared (IR), a target propelled by an air breathing jet engine produces no detectable radiation in the UV band, and is opaque to the background UV produced by the Sun. Successful engineering of spectral airborne IR countermeasures (CM) against existing two colour IR seekers has encouraged missile counter-countermeasure (CCM) designers to utilise the silhouette signature of an aircraft in the UV as a means of distinguishing between a true target and a flare CM. In this paper we describe the modelling process of a dual band IR and UV rosette scan seeker using CounterSim, a missile engagement and countermeasure simulation software package developed by Chemring Countermeasures Ltd. Results are shown from various simulated engagements of the dual band MANPAD with a C-130 Hercules modelled by Chemring Countermeasures. These results have been used to estimate the aircrafts' vulnerability to this MANPAD threat. A discussion on possible future optical countermeasures against dual band IR-UV seekers is given in conclusion to the simulation results.

  17. Communication using eye roll reflective signalling

    USGS Publications Warehouse

    Flamarique, I.N.; Mueller, G.A.; Cheng, C.L.; Figiel, C.R.

    2007-01-01

    Body reflections in the ultraviolet (UV) are a common occurrence in nature. Despite the abundance of such signals and the presence of UV cones in the retinas of many vertebrates, the function of UV cones in the majority of taxa remains unclear. Here, we report on an unusual communication system in the razorback sucker, Xyrauchen texanus, that involves flash signals produced by quick eye rolls. Behavioural experiments and field observations indicate that this form of communication is used to signal territorial presence between males. The flash signal shows highest contrast in the UV region of fhe visual spectrum (??max???380 nm), corresponding to the maximum wavelength of absorption of the UV cone mechanism in suckers. Furthermore, these cones are restricted to the dorsal retina of the animal and the upwelling light background is such that their relative sensitivity would be enhanced by chromatic adaptation of the other cone mechanisms. Thus, the UV cones in the sucker have optimal characteristics (both in terms of absorbance and retinal topography) to constitute the main detectors of the flash signal. Our findings provide the first ecological evidence for restricted distribution of UV cones in the retina of a vertebrate. ?? 2007 The Royal Society.

  18. Ultraviolet-ozone treatment reduces levels of disease-associated prion protein and prion infectivity

    USGS Publications Warehouse

    Johnson, C.J.; Gilbert, P.; McKenzie, D.; Pedersen, J.A.; Aiken, Judd M.

    2009-01-01

    Background. Transmissible spongiform encephalopathies (TSEs) are a group of fatal neurodegenerative diseases caused by novel infectious agents referred to as prions. Prions appear to be composed primarily, if not exclusively, of a misfolded isoform of the cellular prion protein. TSE infectivity is remarkably stable and can resist many aggressive decontamination procedures, increasing human, livestock and wildlife exposure to TSEs. Findings. We tested the hypothesis that UV-ozone treatment reduces levels of the pathogenic prion protein and inactivates the infectious agent. We found that UV-ozone treatment decreased the carbon and prion protein content in infected brain homogenate to levels undetectable by dry-ashing carbon analysis or immunoblotting, respectively. After 8 weeks of ashing, UV-ozone treatment reduced the infectious titer of treated material by a factor of at least 105. A small amount of infectivity, however, persisted despite UV-ozone treatment. When bound to either montmorillonite clay or quartz surfaces, PrPTSE was still susceptible to degradation by UV-ozone. Conclusion. Our findings strongly suggest that UV-ozone treatment can degrade pathogenic prion protein and inactivate prions, even when the agent is associated with surfaces. Using larger UV-ozone doses or combining UV-ozone treatment with other decontaminant methods may allow the sterilization of TSE-contaminated materials. ?? 2009 Aiken et al; licensee BioMed Central Ltd.

  19. Twomey Effect in Subtropical Stratocumulus Clouds from UV Depolarization LIDAR

    NASA Astrophysics Data System (ADS)

    de Graaf, Martin; Brown, Jessica; Donovan, David

    2018-04-01

    Marine stratocumulus clouds are important climate regulators, reflecting sunlight over a dark ocean background. A UV-depolarization lidar on Ascension, a small remote island in the south Atlantic, measured cloud droplet sizes and number concentration using an inversion method based on Monte Carlo (MC) modelling of multiple scattering in idealised semiadiabatic clouds. The droplet size and number concentration weremodulated due to smoke from the African continent, measured by the same instrument.

  20. Identificación de objetos extensos en el VVV

    NASA Astrophysics Data System (ADS)

    Baravalle, L.; Alonso, M. V.; Nilo Castellón, J. L.; Minniti, D.

    2017-10-01

    The Vista Variables en la Via Lactea (VVV) is an ESO public survey in the near infrared of the bulge and southern mid-plane of the Milky Way. The main goal of the VVV is the study of the stellar population and variable stars but it can also be useful for extragalactic investigations behind the Galaxy. Using the VVV images and the combination of SExtractor + PSFEx, we have obtained astrometric and photometric data of two peripheric regions of the Galactic disk. Our goal is to identify and characterise the extragalactic sources. In this work we show our detection algorithm and adopted methodology.

  1. SR90, strontium shaped-charge critical ionization velocity experiment

    NASA Technical Reports Server (NTRS)

    Wescott, Eugene M.; Stenbaek-Nielsen, Hans; Swift, Daniel W.; Valenzuela, Arnoldo; Rees, David

    1990-01-01

    In May 1986 an experiment was performed to test Alfven's critical ionization velocity (CIV) effect in free space, using the first high explosive shaped charge with a conical liner of strontium metal. The release, made at 540 km altitude at dawn twilight, was aimed at 48 deg to B. The background electron density was 1.5 x 10(exp 4) cu cm. A faint field-aligned Sr(+) ion streak with tip velocity of 2.6 km/s was observed from two optical sites. Using two calibration methods, it was calculated that between 4.5 x 10(exp 20) and 2 x 10(exp 21) ions were visible. An ionization time constant of 1920 s was calculated for Sr from the solar UV spectrum and ionization cross section which combined with a computer simulation of the injection predicts 1.7 x 10(exp 21) solar UV ions in the low-velocity part of the ion streak. Thus all the observed ions are from solar UV ionization of the slow (less than critical) velocity portion of the neutral jet. The observed neutral Sr velocity distribution and computer simulations indicate that 2 x 10(exp 21) solar UV ions would have been created from the fast (greater than critical) part of the jet. They would have been more diffuse, and were not observed. Using this fact it was estimated that any CIV ions created were less than 10(exp 21). It was concluded that future Sr CIV free space experiments should be conducted below the UV shadow height and in much larger background plasma density.

  2. A CMB foreground study in WMAP data: Extragalactic point sources and zodiacal light emission

    NASA Astrophysics Data System (ADS)

    Chen, Xi

    The Cosmic Microwave Background (CMB) radiation is the remnant heat from the Big Bang. It serves as a primary tool to understand the global properties, content and evolution of the universe. Since 2001, NASA's Wilkinson Microwave Anisotropy Probe (WMAP) satellite has been napping the full sky anisotropy with unprecedented accuracy, precision and reliability. The CMB angular power spectrum calculated from the WMAP full sky maps not only enables accurate testing of cosmological models, but also places significant constraints on model parameters. The CMB signal in the WMAP sky maps is contaminated by microwave emission from the Milky Way and from extragalactic sources. Therefore, in order to use the maps reliably for cosmological studies, the foreground signals must be well understood and removed from the maps. This thesis focuses on the separation of two foreground contaminants from the WMAP maps: extragalactic point sources and zodiacal light emission. Extragalactic point sources constitute the most important foreground on small angular scales. Various methods have been applied to the WMAP single frequency maps to extract sources. However, due to the limited angular resolution of WMAP, it is possible to confuse positive CMB excursions with point sources or miss sources that are embedded in negative CMB fluctuations. We present a novel CMB-free source finding technique that utilizes the spectrum difference of point sources and CMB to form internal linear combinations of multifrequency maps to suppress the CMB and better reveal sources. When applied to the WMAP 41, 64 and 94 GHz maps, this technique has not only enabled detection of sources that are previously cataloged by independent methods, but also allowed disclosure of new sources. Without the noise contribution from the CMB, this method responds rapidly with the integration time. The number of detections varies as 0( t 0.72 in the two-band search and 0( t 0.70 in the three-band search from one year to five years, separately, in comparison to t 0.40 from the WMAP catalogs. Our source catalogs are a good supplement to the existing WMAP source catalogs, and the method itself is proven to be both complementary to and competitive with all the current source finding techniques in WMAP maps. Scattered light and thermal emission from the interplanetary dust (IPD) within our Solar System are major contributors to the diffuse sky brightness at most infrared wavelengths. For wavelengths longer than 3.5 mm, the thermal emission of the IPD dominates over scattering, and the emission is often referred to as the Zodiacal Light Emission (ZLE). To set a limit of ZLE contribution to the WMAP data, we have performed a simultaneous fit of the yearly WMAP time-ordered data to the time variation of ZLE predicted by the DIRBE IPD model (Kelsallet al. 1998) evaluated at 240 mm, plus [cursive l] = 1 - 4 CMB components. It is found that although this fitting procedure can successfully recover the CMB dipole to a 0.5% accuracy, it is not sensitive enough to determine the ZLE signal nor the other multipole moments very accurately.

  3. Holographic corrections to the Veneziano amplitude

    NASA Astrophysics Data System (ADS)

    Armoni, Adi; Ireson, Edwin

    2017-08-01

    We propose a holographic computation of the 2 → 2 meson scattering in a curved string background, dual to a QCD-like theory. We recover the Veneziano amplitude and compute a perturbative correction due to the background curvature. The result implies a small deviation from a linear trajectory, which is a requirement of the UV regime of QCD.

  4. Angular power spectrum of the diffuse gamma-ray emission as measured by the Fermi Large Area Telescope and constraints on its dark matter interpretation

    DOE PAGES

    Fornasa, Mattia; Cuoco, Alessandro; Zavala, Jesús; ...

    2016-12-09

    The isotropic gamma-ray background arises from the contribution of unresolved sources, including members of confirmed source classes and proposed gamma-ray emitters such as the radiation induced by dark matter annihilation and decay. Clues about the properties of the contributing sources are imprinted in the anisotropy characteristics of the gamma-ray background. We use 81 months of Pass 7 Reprocessed data from the Fermi Large Area Telescope to perform a measurement of the anisotropy angular power spectrum of the gamma-ray background. Here, we analyze energies between 0.5 and 500 GeV, extending the range considered in the previous measurement based on 22 monthsmore » of data. We also compute, for the first time, the cross-correlation angular power spectrum between different energy bins. The derived angular spectra are compatible with being Poissonian, i.e. constant in multipole. Furthermore, the energy dependence of the anisotropy suggests that the signal is due to two populations of sources, contributing, respectively, below and above ~ 2 GeV . Finally, using data from state-of-the-art numerical simulations to model the dark matter distribution, we constrain the contribution from dark matter annihilation and decay in Galactic and extra-Galactic structures to the measured anisotropy. These constraints are competitive with those that can be derived from the average intensity of the isotropic gamma-ray background.« less

  5. Search for extended γ-ray emission around AGN with H.E.S.S. and Fermi-LAT

    NASA Astrophysics Data System (ADS)

    H. E. S. S. Collaboration; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E.; Anton, G.; Backes, M.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker Tjus, J.; Bernlöhr, K.; Birsin, E.; Bissaldi, E.; Biteau, J.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Carrigan, S.; Casanova, S.; Chadwick, P. M.; Chalme-Calvet, R.; Chaves, R. C. G.; Cheesebrough, A.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Cui, Y.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Dickinson, H. J.; Djannati-Atäı, A.; Domainko, W.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Grondin, M.-H.; Grudzińska, M.; Häffner, S.; Hahn, J.; Harris, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lefaucheur, J.; Lemie`re, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Méhault, J.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Moderski, R.; Mohamed, M.; Moulin, E.; Murach, T.; Naumann, C. L.; de Naurois, M.; Niemiec, J.; Nolan, S. J.; Oakes, L.; Odaka, H.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Raue, M.; Reichardt, I.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Rob, L.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sol, H.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorster, M.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; Ward, M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.; Malyshev, D.

    2014-02-01

    Context. Very-high-energy (VHE; E > 100 GeV) γ-ray emission from blazars inevitably gives rise to electron-positron pair production through the interaction of these γ-rays with the extragalactic background light (EBL). Depending on the magnetic fields in the proximity of the source, the cascade initiated from pair production can result in either an isotropic halo around an initially beamed source or a magnetically broadened cascade flux. Aims: Both extended pair-halo (PH) and magnetically broadened cascade (MBC) emission from regions surrounding the blazars 1ES 1101-232, 1ES 0229+200, and PKS 2155-304 were searched for using VHE γ-ray data taken with the High Energy Stereoscopic System (H.E.S.S.) and high-energy (HE; 100 MeV < E < 100 GeV) γ-ray data with the Fermi Large Area Telescope (LAT). Methods: By comparing the angular distributions of the reconstructed γ-ray events to the angular profiles calculated from detailed theoretical models, the presence of PH and MBC was investigated. Results: Upper limits on the extended emission around 1ES 1101-232, 1ES 0229+200, and PKS 2155-304 are found to be at a level of a few per cent of the Crab nebula flux above 1 TeV, depending on the assumed photon index of the cascade emission. Assuming strong extra-Galactic magnetic field (EGMF) values, >10-12 G, this limits the production of pair haloes developing from electromagnetic cascades. For weaker magnetic fields, in which electromagnetic cascades would result in MBCs, EGMF strengths in the range (0.3-3)× 10-15 G were excluded for PKS 2155-304 at the 99% confidence level, under the assumption of a 1 Mpc coherence length.

  6. Dark Matter Searches in the Gamma-ray Extragalactic Background via Cross-correlations with Galaxy Catalogs

    NASA Astrophysics Data System (ADS)

    Cuoco, Alessandro; Xia, Jun-Qing; Regis, Marco; Branchini, Enzo; Fornengo, Nicolao; Viel, Matteo

    2015-12-01

    We compare the measured angular cross-correlation between the Fermi-Large Area Telescope γ-ray sky and catalogs of extragalactic objects with the expected signal induced by weakly interacting massive particle (WIMP) dark matter (DM). We include a detailed description of the contribution of astrophysical γ-ray emitters such as blazars, misaligned active galactic nucleus (AGN), and star-forming galaxies, and perform a global fit to the measured cross-correlation. Five catalogs are considered: Sloan Digital Sky Survey (SDSS)-DR6 quasars, Two Micron All Sky Survey galaxies, NRAO VLA Sky Survey radio galaxies, SDSS-DR8 Luminous Red Galaxies, and the SDSS-DR8 main galaxy sample. To model the cross-correlation signal, we use the halo occupation distribution formalism to estimate the number of galaxies of a given catalog in DM halos and their spatial correlation properties. We discuss uncertainties in the predicted cross-correlation signal arising from the DM clustering and WIMP microscopic properties, which set the DM γ-ray emission. The use of different catalogs probing objects at different redshifts significantly reduces, though not completely, the degeneracy among the different γ-ray components. We find that the presence of a significant WIMP DM signal is allowed by the data but not significantly preferred by the fit, although this is mainly due to a degeneracy with the misaligned AGN component. With modest substructure boost, the sensitivity of this method excludes thermal annihilation cross sections at 95% level for WIMP masses up to few tens of GeV. Constraining the low-redshift properties of astrophysical populations with future data will further improve the sensitivity to DM.

  7. HELP: XID+, the probabilistic de-blender for Herschel SPIRE maps

    NASA Astrophysics Data System (ADS)

    Hurley, P. D.; Oliver, S.; Betancourt, M.; Clarke, C.; Cowley, W. I.; Duivenvoorden, S.; Farrah, D.; Griffin, M.; Lacey, C.; Le Floc'h, E.; Papadopoulos, A.; Sargent, M.; Scudder, J. M.; Vaccari, M.; Valtchanov, I.; Wang, L.

    2017-01-01

    We have developed a new prior-based source extraction tool, XID+, to carry out photometry in the Herschel SPIRE (Spectral and Photometric Imaging Receiver) maps at the positions of known sources. XID+ is developed using a probabilistic Bayesian framework that provides a natural framework in which to include prior information, and uses the Bayesian inference tool Stan to obtain the full posterior probability distribution on flux estimates. In this paper, we discuss the details of XID+ and demonstrate the basic capabilities and performance by running it on simulated SPIRE maps resembling the COSMOS field, and comparing to the current prior-based source extraction tool DESPHOT. Not only we show that XID+ performs better on metrics such as flux accuracy and flux uncertainty accuracy, but we also illustrate how obtaining the posterior probability distribution can help overcome some of the issues inherent with maximum-likelihood-based source extraction routines. We run XID+ on the COSMOS SPIRE maps from Herschel Multi-Tiered Extragalactic Survey using a 24-μm catalogue as a positional prior, and a uniform flux prior ranging from 0.01 to 1000 mJy. We show the marginalized SPIRE colour-colour plot and marginalized contribution to the cosmic infrared background at the SPIRE wavelengths. XID+ is a core tool arising from the Herschel Extragalactic Legacy Project (HELP) and we discuss how additional work within HELP providing prior information on fluxes can and will be utilized. The software is available at https://github.com/H-E-L-P/XID_plus. We also provide the data product for COSMOS. We believe this is the first time that the full posterior probability of galaxy photometry has been provided as a data product.

  8. Radiative and Kinetic Feedback by Low-Mass Primordial Stars

    NASA Astrophysics Data System (ADS)

    Whalen, Daniel; Hueckstaedt, Robert M.; McConkie, Thomas O.

    2010-03-01

    Ionizing UV radiation and supernova (SN) flows amidst clustered minihalos at high redshift regulated the rise of the first stellar populations in the universe. Previous studies have addressed the effects of very massive primordial stars on the collapse of nearby halos into new stars, but the absence of the odd-even nucleosynthetic signature of pair-instability SNe in ancient metal-poor stars suggests that Population III stars may have been less than 100 M sun. We extend our earlier survey of local UV feedback on star formation to 25-80 M sun stars and include kinetic feedback by SNe for 25-40 M sun stars. We find radiative feedback to be relatively uniform over this mass range, primarily because the larger fluxes of more massive stars are offset by their shorter lifetimes. Our models demonstrate that prior to the rise of global UV backgrounds, Lyman-Werner (LW) photons from nearby stars cannot prevent halos from forming new stars. These calculations also reveal that violent dynamical instabilities can erupt in the UV radiation front enveloping a primordial halo, but that they ultimately have no effect on the formation of a star. Finally, our simulations suggest that relic H II regions surrounding partially evaporated halos may expel LW backgrounds at lower redshifts, allowing stars to form that were previously suppressed. We provide fits to radiative and kinetic feedback on star formation for use in both semianalytic models and numerical simulations.

  9. Studying The Spectral Shape And The X-ray/uv Variability Of Active Galactic Nuclei With Data From Swift And Xmm Archives

    NASA Astrophysics Data System (ADS)

    Turriziani, Sara

    2011-01-01

    Many efforts have been made in understanding the underlying origin of variability in Active Galactic Nuclei (AGN), but at present they could give still no conclusive answers. Since a deeper knowledge of variability will enable to understand better the accretion process onto supermassive black holes, I built the first ensemble struction function analysis of the X-ray variability of samples of quasars with data from Swift and XMM-Newton archives in order to study the average properties of their variability. Moreover, it is known that UV and X-ray luminosities of quasars are correlated and recent studies quantified this relation across 5 orders of magnitude. In this context, I presents results on the X-ray/UV ratio from simultaneous observations in UV and X-ray bands of a sample of quasars with data from XMM-Newton archive. Lastly, I will present a complete sample of Swift/SDSS faint blazars and other non-thermal dominated AGNs. I used this sample to calculate the general statistical properties of faint blazars and radio galaxies and in particular their Radio LogN-LogS with fluxes down to 10 mJy, in order to gain knowledge on the contribution to Cosmic Microwave Background (CMB) and gamma-ray background radiation from the faint tail of the radio population. I acknowledge financial support through Grant ASI I/088/06/0.

  10. Observations of the diffuse UV radiation field

    NASA Technical Reports Server (NTRS)

    Murthy, Jayant; Henry, R. C.; Feldman, P. D.; Tennyson, P. D.

    1989-01-01

    Spectra are presented for the diffuse UV radiation field between 1250 to 3100 A from eight different regions of the sky, which were obtained with the Johns Hopkins UVX experiment. UVX flew aboard the Space Shuttle Columbia (STS-61C) in January 1986 as part of the Get-Away Special project. The experiment consisted of two 1/4 m Ebert-Fastie spectrometers, covering the spectral range 1250 to 1700 A at 17 A resolution and 1600 to 3100 A at 27 A resolution, respectively, with a field of view of 4 x .25 deg, sufficiently small to pick out regions of the sky with no stars in the line of sight. Values were found for the diffuse cosmic background ranging in intensity from 300 to 900 photons/sq cm/sec/sr/A. The cosmic background is spectrally flat from 1250 to 3100 A, within the uncertainties of each spectrometer. The zodiacal light begins to play a significant role in the diffuse radiation field above 2000 A, and its brightness was determined relative to the solar emission. Observed brightnesses of the zodiacal light in the UV remain almost constant with ecliptic latitude, unlike the declining visible brightnesses, possibly indicating that those (smaller) grains responsible for the UV scattering have a much more uniform distribution with distance from the ecliptic plane than do those grains responsible for the visible scattering.

  11. Research and technology, 1990: Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Goddard celebrates 1990 as a banner year in space based astronomy. From above the Earth's obscuring atmosphere, four major orbiting observatories examined the heavens at wavelengths that spanned the electromagnetic spectrum. In the infrared and microwave, the Cosmic Background Explorer (COBE), measured the spectrum and angular distribution of the cosmic background radiation to extraordinary precision. In the optical and UV, the Hubble Space Telescope has returned spectacular high resolution images and spectra of a wealth of astronomical objects. The Goddard High Resolution Spectrograph has resolved dozens of UV spectral lines which are as yet unidentified because they have never before been seen in any astronomical spectrum. In x rays, the Roentgen Satellite has begun returning equally spectacular images of high energy objects within our own and other galaxies.

  12. The 3CR Chandra Snapshot Survey: Extragalactic Radio Sources with Redshifts between 1 and 1.5

    NASA Astrophysics Data System (ADS)

    Stuardi, C.; Missaglia, V.; Massaro, F.; Ricci, F.; Liuzzo, E.; Paggi, A.; Kraft, R. P.; Tremblay, G. R.; Baum, S. A.; O’Dea, C. P.; Wilkes, B. J.; Kuraszkiewicz, J.; Forman, W. R.; Harris, D. E.

    2018-04-01

    The aim of this paper is to present an analysis of newly acquired X-ray observations of 16 extragalactic radio sources listed in the Third Cambridge Revised (3CR) catalog and not previously observed by Chandra. Observations were performed during Chandra Cycle 17, extending X-ray coverage for the 3CR extragalactic catalog up to z = 1.5. Among the 16 targets, two lie at z < 0.5 (3CR 27 at z = 0.184 and 3CR 69 at z = 0.458) all of the remaining 14 have redshifts between 1.0 and 1.5. In the current sample, there are three compact steep spectrum (CSS) sources, three quasars, and an FR I radio galaxy, while the other nine are FR II radio galaxies. All radio sources have an X-ray counterpart. We measured nuclear X-ray fluxes as well as X-ray emission associated with radio jet knots, hotspots, or lobes in three energy bands: soft (0.5–1 keV), medium (1–2 keV), and hard (2–7 keV). We also performed standard X-ray spectral analysis for the four brightest nuclei. We discovered X-ray emission associated with the radio lobe of 3CR 124, a hotspot of the quasar 3CR 220.2, another hotspot of the radio galaxy 3CR 238, and the jet knot of 3CR 297. We also detected extended X-ray emission around the nuclear region of 3CR 124 and 3CR 297 on scales of several tens of kiloparsecs. Finally, we present an update on the X-ray observations performed with Chandra and XMM-Newton on the entire 3CR extragalactic catalog.

  13. Photoionization of disk galaxies: An explanation of the sharp edges in the H I distribution

    NASA Technical Reports Server (NTRS)

    Dove, James B.; Shull, J. Michael

    1994-01-01

    We have reproduced the observed radial truncation of the H I distribution in isolated spiral galaxies with a model in which extragalactic radiation photoionizes the gaseous disk. For a galactic mass distribution model that reproduces the observed rotation curves, including dark matter in the disk and halo, the vertical structure of the gas is determined self-consistently. The ionization structure and column densities of H and He ions are computed by solving the radiation transfer equation for both continuum and lines. Our model is similar to that of Maloney, and the H I structure differs by less than 10%. The radial structure of the column density of H I is found to be more sensitive to the extragalactic radiation field than to the distribution of mass. For this reason, considerable progress can be made in determining the extragalactic flux of ionizing photons, phi(sub ex), with more 21 cm observations of isolated galaxies. However, owing to the uncertainty of the radial distribution of total hydrogen at large radii, inferring the extragalactic flux by comparing the observed edges to photoionization models is somewhat subjective. We find 1 x 10(exp 4)/sq cm/s is less than or approximately phi(sub ex) is less than or approximately 5 x 10(exp 4)/sq cm/s, corresponding to 2.1 is less than or approximately iota(sub 0) is less than or approximately 10.5 x 10(exp -23) ergs/sq cm/s/Hz/sr for a 1/nu spectrum. Although somewhat higher, our inferred range of iota(sub 0) is consistent with the large range of values obtained by Kulkarni & Fall from the 'proximity effect' toward Quasi-Stellar Objects (QSOs) at approximately 0.5.

  14. Different levels of UV-B resistance in Vaccinium corymbosum cultivars reveal distinct backgrounds of phenylpropanoid metabolites.

    PubMed

    Luengo Escobar, Ana; Magnum de Oliveira Silva, Franklin; Acevedo, Patricio; Nunes-Nesi, Adriano; Alberdi, Miren; Reyes-Díaz, Marjorie

    2017-09-01

    UV-B radiation induces several physiological and biochemical effects that can influence regulatory plant processes. Vaccinium corymbosum responds differently to UV-B radiation depending on the UV-B resistance of cultivars, according to their physiological and biochemical features. In this work, the effect of two levels of UV-B radiation during long-term exposure on the phenylpropanoid biosynthesis, and the expression of genes associated with flavonoid biosynthesis as well as the absolute quantification of secondary metabolites were studied in two contrasting UV-B-resistant cultivars (Legacy, resistant and Bluegold, sensitive). Multivariate analyses were performed to understand the role of phenylpropanoids in UV-B defense mechanisms. The amount of phenylpropanoid compounds was generally higher in Legacy than in Bluegold. Different expression levels of flavonoid biosynthetic genes for both cultivars were transiently induced, showing that even in longer period of UV-B exposure; plants are still adjusting their phenylpropanoids at the transcription levels. Multivariate analysis in Legacy indicated no significant correlation between gene expression and the levels of the flavonoids and phenolic acids. By contrast, in the Bluegold cultivar higher number of correlations between secondary metabolite and transcript levels was found. Taken together, the results indicated different adjustments between the cultivars for a successful UV-B acclimation. While the sensitive cultivar depends on metabolite adjustments to respond to UV-B exposure, the resistant cultivar also possesses an intrinsically higher antioxidant and UV-B screening capacity. Thus, we conclude that UV-B resistance involves not only metabolite level adjustments during the acclimation period, but also depends on the intrinsic metabolic status of the plant and metabolic features of the phenylpropanoid compounds. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Rapid transcriptome responses of maize (Zea mays) to UV-B in irradiated and shielded tissues

    PubMed Central

    Casati, Paula; Walbot, Virginia

    2004-01-01

    Background Depletion of stratospheric ozone has raised terrestrial levels of ultraviolet-B radiation (UV-B), an environmental change linked to an increased risk of skin cancer and with potentially deleterious consequences for plants. To better understand the processes of UV-B acclimation that result in altered plant morphology and physiology, we investigated gene expression in different organs of maize at several UV-B fluence rates and exposure times. Results Microarray hybridization was used to assess UV-B responses in directly exposed maize organs and organs shielded by a plastic that absorbs UV-B. After 8 hours of high UV-B, the abundance of 347 transcripts was altered: 285 were increased significantly in at least one organ and 80 were downregulated. More transcript changes occurred in directly exposed than in shielded organs, and the levels of more transcripts were changed in adult compared to seedling tissues. The time course of transcript abundance changes indicated that the response kinetics to UV-B is very rapid, as some transcript levels were altered within 1 hour of exposure. Conclusions Most of the UV-B regulated genes are organ-specific. Because shielded tissues, including roots, immature ears, and leaves, displayed altered transcriptome profiles after exposure of the plant to UV-B, some signal(s) must be transmitted from irradiated to shielded tissues. These results indicate that there are integrated responses to UV-B radiation above normal levels. As the same total UV-B irradiation dose applied at three intensities elicited different transcript profiles, the transcriptome changes exhibit threshold effects rather than a reciprocal dose-effect response. Transcriptome profiling highlights possible signaling pathways and molecules for future research. PMID:15003119

  16. Occupational Sunlight Exposure and Risk of Renal Cell Carcinoma

    PubMed Central

    Karami, Sara; Boffetta, Paolo; Stewart, Patricia; Rothman, Nathaniel; Hunting, Katherine L.; Dosemeci, Mustafa; Berndt, Sonja I.; Brennan, Paul; Chow, Wong-Ho; Moore, Lee E.; Zaridze, David; Mukeria, Anush; Janout, Vladimir; Kollarova, Helena; Bencko, Vladimir; Holcatova, Ivana; Navritalova, Marie; Szeszenia-Dabrowska, Neonila; Mates, Dana; Gromiec, Jan P.

    2010-01-01

    Background Recent findings indicate that vitamin D obtained from ultraviolet (UV) exposure may reduce the risk of a number of different cancers. Vitamin D is metabolized to its active form within the kidney, the major organ for vitamin D metabolism and activity. Since both the incidence of renal cell cancer and prevalence of vitamin D deficiency have increased over the past few decades, this study sought to explore whether occupational UV exposure was associated with renal cell carcinoma (RCC) risk. Methods A hospital-based case-control study of 1,097 RCC cases and 1,476 controls was conducted in four Central and Eastern European countries. Demographic and occupational information was collected to examine the association between occupational UV exposure and RCC risk. Results A significant (24%-38%) reduction in RCC risk was observed with increasing occupational UV exposure among male participants. No association between UV exposure and RCC risk was observed among female participants. When analyses were stratified by latitude as another estimate of sunlight intensity, a stronger (71%-73%) reduction in RCC risk was observed between UV exposure and cancer risk among males residing at the highest latitudes. Conclusion The results of this study suggest that among males there is an inverse association between occupational UV exposure and renal cancer risk. Replication studies are warranted to confirm these results. PMID:20213683

  17. Production of a Novel Mineral-based Sun Lotion for Protecting the Skin from Biohazards of Electromagnetic Radiation in the UV Region

    PubMed Central

    Movahedi, M M; Alipour, A; Mortazavi, S A R; Tayebi, M

    2014-01-01

    Background: Sun protection materials have been one of the major concerns in pharmaceutical in­dustry since almost one century ago. Various materials have been found to have such an effect but there are still many unknown substances that have not been discovered. Objective: To introduce a novel mineral-based sun lotion with considerable UV absorption properties compared to commercially available sunscreens. Method:  UV absorption properties of transparent plas­tic sheets covered by a uniform cream layer of different mineral-based sun lotions and a commercially available sun lotion were tested. Results: Sun lotions containing specific proportion of bentonite and zeolite minerals were capable of absorbing the highest level of UV light com­pared to that of the commercially available sun lotion. Conclusion: Mineral-based sun lotions can be considered as cost effective alternatives for current commercial sunscreens. PMID:25505763

  18. Inconstant sun: how solar evolution has affected cosmic and ultraviolet radiation exposure over the history of life on Earth.

    PubMed

    Karam, P Andrew

    2003-03-01

    Four billion years ago, sea-level UV exposure was more than 400 times as intense as today, the dose from solar cosmic rays was five times present levels, and galactic cosmic rays accounted for only about 10% their current contribution to sea-level radiation doses. Exposure to cosmic radiation accounts for about 10% of natural background radiation exposure today and includes dose from galactic cosmic rays and solar charged particles. There is little exposure to ionizing wavelengths of UV due to absorption by ozone. The sun has evolved significantly over its life; in the past there were higher levels of particulate radiation and lower UV emissions from the sun, and a stronger solar wind reduced radiation dose in the inner solar system from galactic cosmic rays. Finally, since the early atmosphere contained little to no oxygen, surface levels of UV radiation were far higher in the past.

  19. VLBI astrometry and the Hipparcos link to the extragalactic reference frame

    NASA Technical Reports Server (NTRS)

    Lestrade, J.-F.; Preston, R. A.; Gabuzda, D. C.; Phillips, R. B.

    1991-01-01

    Intermediate results are reported from a program of VLBI radio observations designed to establish a link between the rotating reference frame of the ESA Hipparcos astrometric satellite and the extragalactic VLBI frame being developed by the International Earth Rotation Service. A group of 12 link stars have been observed at various epochs since 1982, and more observations are being undertaken during the 3-yr Hipparcos mission (1989-1992). Analysis of data on Algol indicates that phase-reference VLBI can determine an expected sky displacement of 4 marcsec with an uncertainty of 0.5 marcsec, even when the activity is only a few mJy.

  20. Extragalactic magnetic fields unlikely generated at the electroweak phase transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagstaff, Jacques M.; Banerjee, Robi, E-mail: jwagstaff@hs.uni-hamburg.de, E-mail: banerjee@hs.uni-hamburg.de

    2016-01-01

    In this paper we show that magnetic fields generated at the electroweak phase transition are most likely too weak to explain the void magnetic fields apparently observed today unless they have considerable helicity. We show that, in the simplest estimates, the helicity naturally produced in conjunction with the baryon asymmetry is too small to explain observations, which require a helicity fraction at least of order 10{sup −14}–10{sup −10} depending on the void fields constraint used. Therefore new mechanisms to generate primordial helicity are required if magnetic fields generated during the electroweak phase transition should explain the extragalactic fields.

  1. Fine structure of 25 extragalactic radio sources. [interferometric observations of quasars

    NASA Technical Reports Server (NTRS)

    Wittels, J. J.; Knight, C. A.; Shapiro, I. I.; Hinteregger, H. F.; Rogers, A. E. E.; Whitney, A. R.; Clark, T. A.; Hutton, L. K.; Marandino, G. E.; Niell, A. E.

    1975-01-01

    Interferometric observations taken at 7.8 GHz (gamma approximately = 3.8 cm) with five pairings of antennae of 25 extragalactic radio sources between April, 1972 and May, 1973 are reported. These sources exhibit a broad variety of fine structure from very simple to complex. The total flux and the correlated flux of some of the sources underwent large changes in a few weeks, while the structure and total power of others remained constant during the entire period of observation. Some aspects of the data processing and a discussion of errors are presented. Numerous figures are provided and explained. The individual radio sources are described in detail.

  2. A catalog of selected compact radio sources for the construction of an extragalactic radio/optical reference frame (Argue et al. 1984): Documentation for the machine-readable version

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This document describes the machine readable version of the Selected Compact Radio Source Catalog as it is currently being distributed from the international network of astronomical data centers. It is intended to enable users to read and process the computerized catalog. The catalog contains 233 strong, compact extragalactic radio sources having identified optical counterparts. The machine version contains the same data as the published catalog and includes source identifications, equatorial positions at J2000.0 and their mean errors, object classifications, visual magnitudes, redshift, 5-GHz flux densities, and comments.

  3. Peering Through the Muck: Notes on the the Influence of the Galactic Interstellar Medium on Extragalactic Observations

    NASA Astrophysics Data System (ADS)

    Lockman, Felix J.

    This paper considers some effects of foreground Galactic gas on radiation received from extragalactic objects, with an emphasis on the use of the 21cm line to determine the total N(HI). In general, the opacity of the 21cm line makes it impossible to derive an accurate value of N(HI) by simply applying a formula to the observed emission, except in directions where there is very little interstellar matter. The 21cm line can be used to estimate the likelihood that there is significant molecular hydrogen in a particular direction, but carries little or no information on the amount of ionized gas, which can be a major source of foreground effects. Considerable discussion is devoted to the importance of small-scale angular structure in HI, with the conclusion that it will rarely contribute significantly to the total error compared to other factors (such as the effects of ionized gas) for extragalactic sight lines at high Galactic latitude. The direction of the Hubble/Chandra Deep Field North is used as an example of the complexities that might occur even in the absence of opacity or molecular gas.

  4. Radio outbursts in extragalactic sources

    NASA Astrophysics Data System (ADS)

    Kinzel, Wayne Morris

    Three aspects of the flux density variability of extragalactic radio sources were examined: millimeter wavelength short timescale variability, the spectral evolution of outbursts, and whether the outbursts are periodically spaced. Observations of extragalactic radio sources were conducted using the Five College Radio Astronomy Observatory between January and June 1985 at 88.2 GHz and during June and July 1985 at 40.0 GHz. Many of the sources exhibited significant flux density variations during the observing span. In addition, the most rapid variations observed were comparable with those reported in previous works. Two sources, 0355+50 and OJ287, both exhibited outbursts whose rise and fall timescales were less than a month. An anomalous flux density dropout was observed in 3C446 and was interpreted as an occultation event. Data at five frequencies between 2.7 and 89.6 GHz from the Dent-Balonek monitoring program were used to investigate the spectral evolution of eight outbursts. Outburst profile fitting was used to deconvolve the individual outbursts from one another at each frequency. The fit profiles were used to generate multiple epoch spectra to investigate the evolution of the outbursts. A phase residual minimization method was used to examine four sources for periodic behavior.

  5. Archival Investigation of Outburst Sites and Progenitors of Extragalactic Intermediate-Luminosity Mid-IR Transients

    NASA Astrophysics Data System (ADS)

    Bond, Howard

    2017-08-01

    Our team is using Spitzer in a long-term search for extragalactic mid-infrared (MIR) variable stars and transients-the SPIRITS project (SPitzer InfraRed Intensive Transients Survey). In this first exploration of luminous astrophysical transients in the infrared, we have discovered a puzzling new class. We call them SPRITEs: eSPecially Red Intermediate-luminosity Transient Events. They have maximum MIR luminosities between supernovae and classical novae, but are not detected in the optical to deep limits. To date, we have discovered more than 50 SPRITEs in galaxies out to 17 Mpc. In this Archival Research proposal, we request support in order to investigate the pre-eruption sites in HST images of some 3 dozen SPRITEs discovered to date, and an additional 2 dozen that we are likely to find until the end of Spitzer observing in late 2018. Our aims are (1) characterize the pre-outburst environments at HST resolution in the visible and near-IR, to understand the stellar populations, stellar ages and masses, and interstellar medium at the outburst sites; (2) search for progenitors; (3) help prepare the way for a better understanding of the nature of extragalactic IR transients that will be investigated by JWST.

  6. Space Infrared Extragalactic Surveys : Results from ISO and Future Prospects

    NASA Astrophysics Data System (ADS)

    Vaccari, Mattia

    2004-02-01

    This Thesis deals with the exploitation of space infrared extragalactic surveys as a powerful tool for astronomical investigation. More precisely, it deals with the development of a new method (LARI Method) for the reduction and analysis of data obtained by an infrared satellite (ISO), the application of this method to data obtained within the most ambitious extragalactic survey carried out with this satellite (ELAIS), the first scientific results obtained through this application, and finally the possible applications of such technical and scientific contributions to an infrared satellite which has recently started operations (Spitzer) as well as to future infrared missions. As a testimony to the particularly heterogeneous nature of the skills that are necessary in order to realize a successful space project, the Thesis stands at the boundary between several significantly different disciplines, such as detector physics, signal analysis and image processing, software engineering, galaxy formation and evolution and observational cosmology. Although focusing on a particular mission (ISO), throughout an attempt was made at putting the work into an "historical" perspective, with a keen eye both for the efforts of the "pioneers" of infrared astronomy and for the exciting prospects that space missions will offer to this dicipline in the years to come.

  7. The SUrvey for Pulsars and Extragalactic Radio Bursts III: Polarization properties of FRBs 160102 & 151230

    NASA Astrophysics Data System (ADS)

    Caleb, M.; Keane, E. F.; van Straten, W.; Kramer, M.; Macquart, J. P.; Bailes, M.; Barr, E. D.; Bhat, N. D. R.; Bhandari, S.; Burgay, M.; Farah, W.; Jameson, A.; Jankowski, F.; Johnston, S.; Petroff, E.; Possenti, A.; Stappers, B.; Tiburzi, C.; Krishnan, V. Venkatraman

    2018-05-01

    We report on the polarization properties of two fast radio bursts (FRBs): 151230 and 160102 discovered in the SUrvey for Pulsars and Extragalactic Radio Bursts (SUPERB) at the Parkes radio telescope. FRB 151230 is observed to be 6 ± 11% circularly polarized and 35 ± 13 % linearly polarized with a rotation measure (RM) consistent with zero. Conversely, FRB 160102 is observed to have a circular polarization fraction of 30 ± 11 %, linear polarization fraction of 84 ± 15 % for RM =-221(6) rad m-2 and the highest measured DM (2596.1 ± 0.3 pc cm-3) for an FRB to date. We examine possible progenitor models for FRB 160102 in extragalactic, non-cosmological and cosmological scenarios. After accounting for the Galactic foreground contribution, we estimate the intrinsic RM to be -256(9) rad m-2 in the low-redshift case and ˜-2.4 × 102 rad m-2 in the high-redshift case. We assess the relative likeliness of these scenarios and how each can be tested. We also place constraints on the scattering measure and study the impact of scattering on the signal's polarization position angle.

  8. New Self-lensing Models of the Small Magellanic Cloud: Can Gravitational Microlensing Detect Extragalactic Exoplanets?

    NASA Astrophysics Data System (ADS)

    Mróz, Przemek; Poleski, Radosław

    2018-04-01

    We use three-dimensional distributions of classical Cepheids and RR Lyrae stars in the Small Magellanic Cloud (SMC) to model the stellar density distribution of a young and old stellar population in that galaxy. We use these models to estimate the microlensing self-lensing optical depth to the SMC, which is in excellent agreement with the observations. Our models are consistent with the total stellar mass of the SMC of about 1.0× {10}9 {M}ȯ under the assumption that all microlensing events toward this galaxy are caused by self-lensing. We also calculate the expected event rates and estimate that future large-scale surveys, like the Large Synoptic Survey Telescope (LSST), will be able to detect up to a few dozen microlensing events in the SMC annually. If the planet frequency in the SMC is similar to that in the Milky Way, a few extragalactic planets can be detected over the course of the LSST survey, provided significant changes in the SMC observing strategy are devised. A relatively small investment of LSST resources can give us a unique probe of the population of extragalactic exoplanets.

  9. A Physical Model for the Evolving Ultraviolet Luminosity Function of High Redshift Galaxies and their Contribution to the Cosmic Reionization

    NASA Astrophysics Data System (ADS)

    Cai, Zhen-Yi; Lapi, Andrea; Bressan, Alessandro; De Zotti, Gianfranco; Negrello, Mattia; Danese, Luigi

    2014-04-01

    We present a physical model for the evolution of the ultraviolet (UV) luminosity function of high-redshift galaxies, taking into account in a self-consistent way their chemical evolution and the associated evolution of dust extinction. Dust extinction is found to increase fast with halo mass. A strong correlation between dust attenuation and halo/stellar mass for UV selected high-z galaxies is thus predicted. The model yields good fits of the UV and Lyman-α (Lyα) line luminosity functions at all redshifts at which they have been measured. The weak observed evolution of both luminosity functions between z = 2 and z = 6 is explained as the combined effect of the negative evolution of the halo mass function; of the increase with redshift of the star formation efficiency due to the faster gas cooling; and of dust extinction, differential with halo mass. The slope of the faint end of the UV luminosity function is found to steepen with increasing redshift, implying that low luminosity galaxies increasingly dominate the contribution to the UV background at higher and higher redshifts. The observed range of the UV luminosities at high z implies a minimum halo mass capable of hosting active star formation M crit <~ 109.8 M ⊙, which is consistent with the constraints from hydrodynamical simulations. From fits of Lyα line luminosity functions, plus data on the luminosity dependence of extinction, and from the measured ratios of non-ionizing UV to Lyman-continuum flux density for samples of z ~= 3 Lyman break galaxies and Lyα emitters, we derive a simple relationship between the escape fraction of ionizing photons and the star formation rate. It implies that the escape fraction is larger for low-mass galaxies, which are almost dust-free and have lower gas column densities. Galaxies already represented in the UV luminosity function (M UV <~ -18) can keep the universe fully ionized up to z ~= 6. This is consistent with (uncertain) data pointing to a rapid drop of the ionization degree above z ~= 6, such as indications of a decrease of the comoving emission rate of ionizing photons at z ~= 6, a decrease of sizes of quasar near zones, and a possible decline of the Lyα transmission through the intergalactic medium at z > 6. On the other hand, the electron scattering optical depth, τes, inferred from cosmic microwave background (CMB) experiments favor an ionization degree close to unity up to z ~= 9-10. Consistency with CMB data can be achieved if M crit ~= 108.5 M ⊙, implying that the UV luminosity functions extend to M UV ~= -13, although the corresponding τes is still on the low side of CMB-based estimates.

  10. HerMES: Redshift Evolution of the Cosmic Infrared Background from Herschel/SPIRE

    NASA Astrophysics Data System (ADS)

    Vieira, Joaquin; HerMES

    2013-01-01

    We report on the redshift evolution of the cosmic infrared background (CIB) at wavelengths of 70-1100 microns. Using data from the Herschel Multi-tiered Extragalactic Survey (HerMES) of the GOODS-N field, we statistically correlate fluctuations in the CIB with external catalogs. We use a deep Spitzer-MIPS 24 micron flux-limited catalog complete with redshifts and stack on MIPS 70 and 160 micron, Herschel-SPIRE 250, 350, and 500 micron, and JCMT-AzTEC 1100 micron maps. We measure the co-moving infrared luminosity density at 0.14 and provides important constraints for models of galaxy formation and evolution.

  11. The Influence of Plasma Effects of Pair Beams on the Intergalactic Cascade Emission of Blazars

    NASA Astrophysics Data System (ADS)

    Menzler, Ulf; Schlickeiser, Reinhard

    2014-03-01

    The attenuation of TeV γ-rays from distant blazars by the extragalactic background light (EBL) produces relativistic electron-positron pair beams. It has been shown by Broderick et. al. (2012) and Schlickeiser et. al (2012) that a pair beam traversing the intergalactic medium is unstable to linear two-stream instabilities of both electrostatic and electromagnetic nature. While for strong blazars all free pair energy is dissipated in heating the intergalactic medium and a potential electromagnetic cascade via inverse-Compton scattering with the cosmic microwave background is suppressed, we investigate the case of weak blazars where the back reaction of generated electrostatic turbulence leads to a plateauing of the electron energy spectrum. In the ultra-relativistic Thomson limit we analytically calculate the inverse-Compton spectral energy distribution for both an unplateaued and a plateaued beam scenario, showing a peak reduction factor of Rpeak ≈ 0.345. This is consistent with the FERMI non-measurements of a GeV excess in the spectrum of EBL attenuated TeV blazars. Claims on the lower bound of the intergalactic magnetic field strengths, made by several authors neglecting plasma effects, are thus put into question.

  12. X-ray astronomy from Uhuru to HEAO-1

    NASA Technical Reports Server (NTRS)

    Clark, G. W.

    1981-01-01

    The nature of galactic and extragalactic X-ray sources is investigated using observations made with nine satellites and several rockets. The question of X-ray pulsars being neutron stars or white dwarfs is considered, as is the nature of Population II and low-luminosity X-ray stars, the diffuse X-ray emission from clusters of galaxies, the unidentified high-galactic-latitude (UHGL) sources, and the unresolved soft X-ray background. The types of sources examined include binary pulsars, Population II X-ray stars (both nonbursters and bursters) inside and outside globular clusters, coronal X-ray emitters, and active galactic nuclei. It is concluded that: (1) X-ray pulsars are strongly magnetized neutron stars formed in the evolution of massive close binaries; (2) all Population II X-ray stars are weakly magnetized or nonmagnetic neutron stars accreting from low-mass companions in close binary systems; (3) the diffuse emission from clusters is thermal bremsstrahlung of hot matter processed in stars and swept out by ram pressure exerted by the intergalactic gas; (4) most or all of the UHGL sources are active galactic nuclei; and (5) the soft X-ray background is emission from a hot component of the interstellar medium.

  13. Search for Magnetically Broadened Cascade Emission from Blazars with VERITAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archambault, S.; Griffin, S.; Archer, A.

    2017-02-01

    We present a search for magnetically broadened gamma-ray emission around active galactic nuclei (AGNs), using VERITAS observations of seven hard-spectrum blazars. A cascade process occurs when multi-TeV gamma-rays from an AGN interact with extragalactic background light (EBL) photons to produce electron–positron pairs, which then interact with cosmic microwave background photons via inverse-Compton scattering to produce gamma-rays. Due to the deflection of the electron–positron pairs, a non-zero intergalactic magnetic field (IGMF) would potentially produce detectable effects on the angular distribution of the cascade emission. In particular, an angular broadening compared to the unscattered emission could occur. Through non-detection of angularly broadenedmore » emission from 1ES 1218+304, the source with the largest predicted cascade fraction, we exclude a range of IGMF strengths around 10{sup −14} G at the 95% confidence level. The extent of the exclusion range varies with the assumptions made about the intrinsic spectrum of 1ES 1218+304 and the EBL model used in the simulation of the cascade process. All of the sources are used to set limits on the flux due to extended emission.« less

  14. MURI: An Integrated Multi-Scale Approach for Understanding Ion Transport in Complex Heterogeneous Organic Materials

    DTIC Science & Technology

    2017-09-30

    characterization of PS-b-PVBC block copolymer and corresponding blends A micrometer blade film applicator was used to cast consistent films of various...means the titration is under tested. cMeasured at 20 °C in 18 MW water. Teflon stripe was running as background. The films were suspended in...overnight in the dark. Cross-linking of the membranes was achieved by exposure to UV light (Fusion UV systems, Inc. belt speed at 122 3, 7 runs

  15. MURI: An Integrated Multi-Scale Approach for Understanding Ion Transport in Complex Heterogeneous Organic Materials

    DTIC Science & Technology

    2018-01-12

    characterization of PS-b-PVBC block copolymer and corresponding blends A micrometer blade film applicator was used to cast consistent films of various...means the titration is under tested. cMeasured at 20 °C in 18 MW water. Teflon stripe was running as background. The films were suspended in...overnight in the dark. Cross-linking of the membranes was achieved by exposure to UV light (Fusion UV systems, Inc. belt speed at 122 3, 7 runs

  16. Varicella-Zoster Virus in Perth, Western Australia: Seasonality and Reactivation

    PubMed Central

    Korostil, Igor A.; Regan, David G.

    2016-01-01

    Background Identification of the factors affecting reactivation of varicella-zoster virus (VZV) largely remains an open question. Exposure to solar ultra violet (UV) radiation is speculated to facilitate reactivation. Should the role of UV in reactivation be significant, VZV reactivation patterns would generally be expected to be synchronous with seasonal UV profiles in temperate climates. Methods We analysed age and gender specific VZV notification time series data from Perth, Western Australia (WA). This city has more daily sunshine hours than any other major Australian city. Using the cosinor and generalized linear models, we tested these data for seasonality and correlation with UV and temperature. Results We established significant seasonality of varicella notifications and showed that while herpes-zoster (HZ) was not seasonal it had a more stable seasonal component in males over 60 than in any other subpopulation tested. We also detected significant association between HZ notifications and UV for the entire Perth population as well as for females and males separately. In most cases, temperature proved to be a significant factor as well. Conclusions Our findings suggest that UV radiation may be important for VZV reactivation, under the assumption that notification data represent an acceptably accurate qualitative measure of true VZV incidence. PMID:26963841

  17. Pterin pigments amplify iridescent ultraviolet signal in males of the orange sulphur butterfly, Colias eurytheme

    PubMed Central

    Rutowski, R.L; Macedonia, J.M; Morehouse, N; Taylor-Taft, L

    2005-01-01

    Animal colouration is typically the product of nanostructures that reflect or scatter light and pigments that absorb it. The interplay between these colour-producing mechanisms may influence the efficacy and potential information content of colour signals, but this notion has received little empirical attention. Wing scales in the male orange sulphur butterfly (Colias eurytheme) possess ridges with lamellae that produce a brilliant iridescent ultraviolet (UV) reflectance via thin-film interference. Curiously, these same scales contain pterin pigments that strongly absorb wavelengths below 550 nm. Given that male UV reflectance functions as a sexual signal in C. eurytheme, it is paradoxical that pigments in the wing scales are highly UV absorbing. We present spectrophotometric analyses of the wings before and after pterin removal that show that pterins both depress the amplitude of UV iridescence and suppress a diffuse UV reflectance that emanates from the scales. This latter effect enhances the directionality and spectral purity of the iridescence, and increases the signal's chromaticity and potential signal content. Our findings also suggest that pterins amplify the contrast between iridescent UV reflectance and scale background colour as a male's wings move during flight. PMID:16191648

  18. Pterin pigments amplify iridescent ultraviolet signal in males of the orange sulphur butterfly, Colias eurytheme.

    PubMed

    Rutowski, R L; Macedonia, J M; Morehouse, N; Taylor-Taft, L

    2005-11-07

    Animal colouration is typically the product of nanostructures that reflect or scatter light and pigments that absorb it. The interplay between these colour-producing mechanisms may influence the efficacy and potential information content of colour signals, but this notion has received little empirical attention. Wing scales in the male orange sulphur butterfly (Colias eurytheme) possess ridges with lamellae that produce a brilliant iridescent ultraviolet (UV) reflectance via thin-film interference. Curiously, these same scales contain pterin pigments that strongly absorb wavelengths below 550 nm. Given that male UV reflectance functions as a sexual signal in C. eurytheme, it is paradoxical that pigments in the wing scales are highly UV absorbing. We present spectrophotometric analyses of the wings before and after pterin removal that show that pterins both depress the amplitude of UV iridescence and suppress a diffuse UV reflectance that emanates from the scales. This latter effect enhances the directionality and spectral purity of the iridescence, and increases the signal's chromaticity and potential signal content. Our findings also suggest that pterins amplify the contrast between iridescent UV reflectance and scale background colour as a male's wings move during flight.

  19. Proof-of-principle that a decoy virus protects oncolytic measles virus against neutralizing antibodies

    PubMed Central

    Dorneburg, Carmen; Debatin, Klaus-Michael; Wei, Jiwu; Beltinger, Christian

    2018-01-01

    Background Attenuated oncolytic measles virus (OMV) is a promising antitumor agent in early-phase clinical trials. However, pre-existing immunity against measles might be a hurdle for OMV therapy. Methods OMV was inactivated with short-wavelength ultraviolet light (UV-C). Loss of replication and oncolytic activity of UV-inactivated OMV were confirmed by tissue culture infective dose 50 (TCID50) assay using Vero cells and by flow cytometry using Jurkat cells. An enzyme-linked immunosorbent assay was performed to verify that UV-inactivated OMV remained antigenic. Different doses of UV-inactivated OMV were pre-cultured in media supplemented with measles immune serum. The mixture was transferred to Jurkat cells and active OMV was added. Active OMV-induced death of Jurkat cells was monitored by flow cytometry. Results UV-inactivation abrogates OMV replication while maintaining its antigenicity. UV-inactivated OMV sequesters pre-existing anti-MV antibodies in Jurkat cell culture, thereby protecting active OMV from neutralization and preserving oncolytic activity. Conclusion We prove the principle that a non-replicating OMV can serve as a “decoy” for neutralizing anti-MV antibodies, thereby allowing antitumor activity of OMV. PMID:29750140

  20. Gamma ray astrophysics and signatures of axion-like particles

    NASA Astrophysics Data System (ADS)

    Serpico, Pasquale D.

    2009-02-01

    We propose that axion-like particles (ALPs) with a two-photon vertex, consistent with all astrophysical and laboratory bounds, may lead to effects in the spectra of high-energy gamma-ray sources detectable by satellite or ground-based telescopes. We discuss two kinds of signatures: (i) a peculiar spectral depletion due to gamma rays being converted into ALPs in the magnetic fields of efficient astrophysical accelerators according to the “Hillas criterion”, such as jets of active galactic nuclei or hot spots of radio galaxies; (ii) an appearance of otherwise invisible sources in the GeV or TeV sky due to back-conversion of an ALP flux (associated with gamma-ray emitters suffering some attenuation) in the magnetic field of the Milky Way. These two mechanisms might also provide an exotic way to avoid the exponential cutoff of very high energy gamma-rays expected due to the pair production onto the extragalactic background light.

  1. Confusion Noise Due To Asteroids: From Mid-infrared To Millimetre Wavelengths

    NASA Astrophysics Data System (ADS)

    Kelemen, Janos; Kiss, C.; Pal, A.; Muller, T.; Abraham, P.

    2006-12-01

    We developed a statistical model for the asteroid component of the infrared sky for wavelengths 5 μm <= λ <= 1000 μm based on the Statistical Asteroid Model (Tedesco et al., 2005). Far-infrared fluxes of 1.9 million asteroids -derived with the help of the Standard Thermal Model -are used to calculate confusion noise values and expected asteroid counts for infrared space instruments in operation or in the near future (e.g. Akari, Herschel and Planck). Our results show that the confusion noise due to asteroids will not increase the detection threshold for most of the sky. However, there are specific areas near the ecliptic plane where the effect of asteroids can be comparable to the contribution of Galactic cirrus emission and that of the extragalactic background. This work was supported by the European Space Agency (PECS #98011) and by the Hungarian Space Office (TP286)

  2. Astronomy Laboratory Exercise on Olbers’ Paradox and the Age of the Universe

    NASA Astrophysics Data System (ADS)

    Glazer, Kelsey Samantha; Edwards, Charlotte; Overduin, James; Storrs, Alex

    2018-01-01

    We describe the development of a new laboratory exercise for undergraduate introductory astronomy courses. Students begin by estimating the intensity of the extragalactic background light using a simple Newtonian cosmological model that agrees with recent measurements to within a factor of two. They then use the 0.5m Towson University telescope to image a dark patch of sky such as the Hubble Deep Field near or during new Moon, and compare the intensity actually observed with that predicted. This comparison leads to a new appreciation of foreground contributions such as light pollution, airglow, zodiacal light, starlight and others. Students pick up important skills in uncertainty analysis and astronomical unit conversion. But the most valuable aspect of the exercise in our view is that it enables students to draw a direct connection between the evidence of their own eyes and the age of the Universe.

  3. EBL constraints with VERITAS gamma-ray observations

    NASA Astrophysics Data System (ADS)

    Fernandez Alonso, M.; VERITAS Collaboration

    2017-10-01

    The extragalactic background light (EBL) contains all the radiation emitted by nuclear and accretion processes since the epoch of recombination. Direct measurements of the EBL in the near-IR to mid-IR waveband are extremely difficult due mainly to the zodiacal light foreground. Instead, gamma-ray astronomy offers the possibility to indirectly set limits to the EBL by studying the effects of gamma-ray absorption in the spectra of detected sources in the very high energy range (VHE: 100 GeV). These effects can be generally seen in the spectra of VHE blazars as a softening (steepening) of the spectrum and/or abrupt changes in the spectral index or breaks. In this work, we use recent VERITAS data of a group of blazars and apply two methods to derive constraints for the EBL spectral properties. We present preliminary results that will be completed with new observations in the near future to enhance the calculated restrictions to the EBL.

  4. Photohadronic scenario in interpreting the February-March 2014 flare of 1ES 1011+496

    NASA Astrophysics Data System (ADS)

    Sahu, Sarira; de León, Alberto Rosales; Miranda, Luis Salvador

    2017-11-01

    The extraordinary multi-TeV flare from 1ES 1011+496 during February-March 2014 was observed by the MAGIC telescopes for 17 nights and the average spectrum of the whole period has a non-trivial shape. We have used the photohadronic model and a template extragalactic background light model to explain the average spectrum which fits the flare data well. The spectral index α is the only free parameter in our model. We have also shown that the non-trivial nature of the spectrum is due to the change in the behavior of the optical depth above ˜ 600 GeV γ -ray energy accompanied with the high SSC flux. This corresponds to an almost flat intrinsic flux for the multi-TeV γ -rays. Our model prediction can constrain the SSC flux of the leptonic models in the quiescent state.

  5. Time Projection Chamber Polarimeters for X-ray Astrophysics

    NASA Astrophysics Data System (ADS)

    Hill, Joanne; Black, Kevin; Jahoda, Keith

    2015-04-01

    Time Projection Chamber (TPC) based X-ray polarimeters achieve the sensitivity required for practical and scientifically significant astronomical observations, both galactic and extragalactic, with a combination of high analyzing power and good quantum efficiency. TPC polarimeters at the focus of an X-ray telescope have low background and large collecting areas providing the ability to measure the polarization properties of faint persistent sources. TPCs based on drifting negative ions rather than electrons permit large detector collecting areas with minimal readout electronics enabling wide field of view polarimeters for observing unpredictable, bright transient sources such as gamma-ray bursts. We described here the design and expected performance of two different TPC polarimeters proposed for small explorer missions: The PRAXyS (Polarimetry of Relativistic X-ray Sources) X-ray Polarimeter Instrument, optimized for observations of faint persistent sources and the POET (Polarimetry of Energetic Transients) Low Energy Polarimeter, designed to detect and measure bright transients. also NASA/GSFC.

  6. Constraints on violation of Lorentz invariance from atmospheric showers initiated by multi-TeV photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubtsov, Grigory; Satunin, Petr; Sibiryakov, Sergey, E-mail: grisha@ms2.inr.ac.ru, E-mail: satunin@ms2.inr.ac.ru, E-mail: Sergey.Sibiryakov@cern.ch

    2017-05-01

    Parameterizing hypothetical violation of Lorentz invariance at high energies using the framework of effective quantum field theory, we discuss its effect on the formation of atmospheric showers by very-high-energy gamma rays. In the scenario where Lorentz invariance violation leads to a decrease of the photon velocity with energy the formation of the showers is suppressed compared to the Lorentz invariant case. Absence of such suppression in the high-energy part of spectrum of the Crab nebula measured independently by HEGRA and H.E.S.S. collaborations is used to set lower bounds on the energy scale of Lorentz invariance violation. These bounds are competitivemore » with the strongest existing constraints obtained from timing of variable astrophysical sources and the absorption of TeV photons on the extragalactic background light. They will be further improved by the next generation of multi-TeV gamma-ray observatories.« less

  7. A 3-Dimensional Analysis of the Galactic Gamma-Ray Emission Resulting from Cosmic-Ray Interactions with the Interstellar Gas and Radiation Fields

    NASA Technical Reports Server (NTRS)

    Sodroski, Thomas J.; Dwek, Eli (Technical Monitor)

    2001-01-01

    The contractor will provide support for the analysis of data under ADP (NRA 96-ADP- 09; Proposal No . 167-96adp). The primary task objective is to construct a 3-D model for the distribution of high-energy (20 MeV - 30 GeV) gamma-ray emission in the Galactic disk. Under this task the contractor will utilize data from the EGRET instrument on the Compton Gamma-Ray Observatory, H I and CO surveys, radio-continuum surveys at 408 MHz, 1420 MHz, 5 GHz, and 19 GHz, the COBE Diffuse Infrared Background Experiment (DIME) all-sky maps from 1 to 240 p, and ground-based B, V, J, H, and K photometry. The respective contributions to the gamma-ray emission from cosmic ray/matter interactions, inverse Compton scattering, and extragalactic emission will be determined.

  8. VizieR Online Data Catalog: LAMOST quasar survey: quasar properties from the DR1 (Ai+, 2016)

    NASA Astrophysics Data System (ADS)

    Ai, Y. L.; Wu, X.-B.; Yang, J.; Yang, Q.; Wang, F.; Guo, R.; Zuo, W.; Dong, X.; Zhang, Y.-X.; Yuan, H.-L.; Song, Y.-H.; Wang, J.; Dong, X.; Yang, M.; Wu, H.; Shen, S.-Y.; Shi, J.-R.; He, B.-L.; Lei, Y.-J.; Li, Y.-B.; Luo, A.-L.; Zhao, Y.-H.; Zhang, H.-T.

    2018-03-01

    LAMOST began a pilot survey in 2011 October and a regular survey in 2012 September. The regular survey, carried out over five to six years, has two major components: the LAMOST Experiment for Galactic Understanding and Exploration (LEGUE) and the LAMOST Extragalactic Survey (LEGAS; Zhao et al. 2012RAA....12..723Z). LEGAS only uses a small part of the available observing time due to the limitations of the LAMOST site, especially the bright sky background and poor seeing. The first data release (DR1) contains spectra taken before 2013 June (Luo et al. 2015, Cat. V/146). In this paper we present the results of the quasar survey from LEGAS. LAMOST LEGAS spectroscopic observations are taken in a series of at least three 30 minute exposures. There are 70290 quasar candidates observed, with 82625 spectra in DR1. (2 data files).

  9. Constraining the CMB optical depth through the dispersion measure of cosmological radio transients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fialkov, A.; Loeb, A., E-mail: anastasia.fialkov@cfa.harvard.edu, E-mail: aloeb@cfa.harvard.edu

    2016-05-01

    The dispersion measure of extragalactic radio transients can be used to measure the column density of free electrons in the intergalactic medium. The same electrons also scatter the Cosmic Microwave Background (CMB) photons, affecting precision measurements of cosmological parameters. We explore the connection between the dispersion measure of radio transients existing during the Epoch of Reionization (EoR) and the total optical depth for the CMB showing that the existence of such transients would provide a new sensitive probe of the CMB optical depth. As an example, we consider the population of FRBs. Assuming they exist during the EoR, we showmore » that: (i) such sources can probe the reionization history by measuring the optical depth to sub-percent accuracy, and (ii) they can be detected with high significance by an instrument such as the Square Kilometer Array.« less

  10. Measuring cosmological parameters

    PubMed Central

    Freedman, Wendy L.

    1998-01-01

    In this review, the status of measurements of the matter density (Ωm), the vacuum energy density or cosmological constant (ΩΛ), the Hubble constant (H0), and the ages of the oldest measured objects (t0) are summarized. Three independent types of methods for measuring the Hubble constant are considered: the measurement of time delays in multiply imaged quasars, the Sunyaev–Zel’dovich effect in clusters, and Cepheid-based extragalactic distances. Many recent independent dynamical measurements are yielding a low value for the matter density (Ωm ≈ 0.2–0.3). A wide range of Hubble constant measurements appear to be converging in the range of 60–80 km/sec per megaparsec. Areas where future improvements are likely to be made soon are highlighted—in particular, measurements of anisotropies in the cosmic microwave background. Particular attention is paid to sources of systematic error and the assumptions that underlie many of the measurement methods. PMID:9419315

  11. Energy spectra of cosmic gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Cline, T. L.; Desai, U. D.; Klebesadel, R. W.; Strong, I. B.

    1973-01-01

    Spectral measurements of six cosmic gamma-ray bursts in the energy region of 0.1 to 1.2 MeV, made using a semi-omnidirectional X-ray detector on IMP-6 are reported. These measurements confirm the hard X-ray or gamma-ray nature of the bursts, as inferred from the original observations by Klebesadel et al., (1973), and show that their maximum energy release is in this several hundred keV region. Each burst consists of several 1 or 2-second pulses each with the characteristic spectrum of approximately 150-keV exponential, followed by a softer decay. There is no evidence of line structure in this energy region, or for a marked change in the energy spectrum within a given pulse. Event size spectra are estimated for galactic and extragalactic models; the total emission is consistent with present measurements of the diffuse background, and unlikely to account for any spectral feature in the few-MeV region.

  12. Transformation efficiency and formation of transformation products during photochemical degradation of TCE and PCE at micromolar concentrations

    PubMed Central

    2014-01-01

    Background Trichloroethene and tetrachloroethene are the most common pollutants in groundwater and two of the priority pollutants listed by the U.S. Environmental Protection Agency. In previous studies on TCE and PCE photolysis and photochemical degradation, concentration ranges exceeding environmental levels by far with millimolar concentrations of TCE and PCE have been used, and it is not clear if the obtained results can be used to explain the degradation of these contaminants at more realistic environmental concentration levels. Methods Experiments with micromolar concentrations of TCE and PCE in aqueous solution using direct photolysis and UV/H2O2 have been conducted and product formation as well as transformation efficiency have been investigated. SPME/GC/MS, HPLC/UV and ion chromatography with conductivity detection have been used to determine intermediates of degradation. Results The results showed that chloride was a major end product in both TCE and PCE photodegradation. Several intermediates such as formic acid, dichloroacetic acid, dichloroacetaldehyede, chloroform, formaldehyde and glyoxylic acid were formed during both, UV and UV/H2O2 treatment of TCE. However chloroacetaldehyde and chloroacetic acid were only detected during direct UV photolysis of TCE and oxalic acid was only formed during the UV/H2O2 process. For PCE photodegradation, formic acid, di- and trichloroacetic acids were detected in both UV and UV/H2O2 systems, but formaldehyde and glyoxylic acid were only detected during direct UV photolysis. Conclusions For water treatment UV/H2O2 seems to be favorable over direct UV photolysis because of its higher degradation efficiency and lower risk for the formation of harmful intermediates. PMID:24401763

  13. Roles for the yeast RAD18 and RAD52 DNA repair genes in UV mutagenesis.

    PubMed

    Armstrong, J D; Chadee, D N; Kunz, B A

    1994-11-01

    Experimental evidence indicates that although the Saccharomyces cerevisiae RAD18 and RAD52 genes are not required for nucleotide excision repair, they function in the processing of UV-induced DNA damage in yeast. Conflicting statements regarding the UV mutability of strains deleted for RAD18 prompted us to re-examine the influence of RAD18, and RAD52, on UV mutagenesis. To do so, we characterized mutations induced by UV in SUP4-o, a yeast suppressor tRNA gene. SUP4-o was maintained on a plasmid in isogenic strains that either carried one of two different rad18 deletions (rad18 delta) or had RAD52 disrupted. Both rad18 deletions decreased the frequency of UV-induced SUP4-o mutations to levels close to those for spontaneous mutagenesis in the rad18 delta backgrounds, and prevented a net increase in mutant yield. A detailed analysis of mutations isolated after UV irradiation of one of the rad18 delta strains uncovered little evidence of the specificity features typical for UV mutagenesis in the isogenic repair-proficient (RAD) parent (e.g., predominance of G.C-->A.T transitions). Evidently, UV induction of SUP4-o mutations is highly dependent on the RAD18 gene. Compared to the RAD strain, disruption of RAD52 reduced the frequency and yield of UV mutagenesis by about two-thirds. Closer inspection revealed that 80% of this reduction was due to a decrease in the frequency of G.C-->A.T transitions. In addition, there were differences in the distributions and site specificities of single base-pair substitutions. Thus, RAD52 also participates in UV mutagenesis of a plasmid-borne gene in yeast, but to a lesser extent than RAD18.

  14. Capillary ion electrophoresis of inorganic anions and uric acid in human saliva using a polyvinyl alcohol coated capillary column and hexamethonium chloride as additive of background electrolyte.

    PubMed

    Mori, Masanobu; Yamamoto, Tsukasa; Kaseda, Maki; Yamada, Sachiko; Itabashi, Hideyuki

    2012-03-01

    A combination of polyvinyl alcohol chemically coated capillary (PVA capillary) and background electrolyte (BGE) with ion-pair reagent (hexamethonium dichloride, HMC) was used on capillary ion electrophoresis-UV detection (CIE-UV) for analysis of Br⁻, I⁻, NO₂⁻, NO₃⁻, SCN⁻ and uric acid in human saliva. The PVA capillary prepared in our laboratory minimized electro-osmotic flow (EOF) at the BGE in pH 3-10, and did not affect the UV detection at 210 nm by the PVA-layer on capillary wall. Therefore, use of the PVA capillary was suitable for sensitive UV detection for analyte anions, as well as suppression of protein adsorption. In this study, we optimized the BGE of 10 mM phosphate plus 10 mM HMC with applying a voltage of -15 kV. HMC as an additive to BGE could manipulate the electrophoretic mobility of anions, without electrostatic adsorption to the PVA capillary. The CIE-UV could separate and determine analyte anions in human saliva containing proteins by the direct injection without pretreatments such as dilution or deproteinization within 13 min. The relative standard deviations (n=10) were ranged of 0.5-1.6% in migration times, 2.2-6.8% in peak heights and 2.8-8.4% in peak areas. The limits of detection (S/N=3) were ranged of 3.42-6.87 μM. The peak height of anions in this system was gradually decreased through the successive injections of saliva samples, but the problem was successfully solved by periodically conditioning the PVA capillary. The quantifiability of anions in human saliva samples by the CIE-UV was evaluated through the recoveries by standard addition methods and comparison of other representative analytical methods, as well as identification by ion chromatography (IC). From the anion analyses in 12 different saliva samples, the CIE-UV demonstrated that can obtain obvious differences in concentrations of SCN⁻ between of smoker and non-smoker and those of uric acid between male and female with satisfactory results. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Foraging performance of two fishes, the threespine stickleback and the Cumaná guppy, under different light backgrounds.

    PubMed

    Zukoshi, Reo; Savelli, Ilaria; Novales Flamarique, Iñigo

    2018-04-01

    Many vertebrates have cone photoreceptors that are most sensitive to ultraviolet (UV) light termed UV cones. The ecological functions that these cones contribute to are seldom known though they are suspected of improving foraging and communication in a variety of fishes. In this study, we used several spectral backgrounds to assess the contribution of UV and violet cones, or long wavelength (L) cones, in the foraging performance of juvenile Cumaná guppy, Poecilia reticulata, or marine stickleback, Gasterosteus aculeatus. Regardless of whether the light spectrum contained or not wavelengths below 450 nm (the limiting wavelength for UV cone stimulation), the foraging performance of both species was statistically the same, as judged by the mean distance and angle associated with attacks on prey (Daphnia magna). Our experiments also showed that the foraging performance of sticklebacks when only the double cones (and, almost exclusively, the L cones) were active was similar to that when all cones were functional, demonstrating that the double cone was sufficient for prey detection. This result indicates that foraging potentially relied on an achromatic channel serving prey motion detection, as the two spectral cone types that make up the double cone [maximally sensitive to middle (M) and long (L) wavelengths, respectively] form the input to the achromatic channel in cyprinid fishes and double cones are widely associated with achromatic tasks in other vertebrates including reptiles and birds. Stickleback performance was also substantially better when foraging under a 100% linearly polarized light field than when under an unpolarized light field. Together, our results suggest that in some teleost species UV cones exert visually-mediated ecological functions different from foraging, and furthermore that polarization sensitivity could improve the foraging performance of sticklebacks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Understanding the strong intervening O VI absorber at zabs ˜ 0.93 towards PG1206+459

    NASA Astrophysics Data System (ADS)

    Rosenwasser, B.; Muzahid, S.; Charlton, J. C.; Kacprzak, G. G.; Wakker, B. P.; Churchill, C. W.

    2018-05-01

    We have obtained new observations of the partial Lyman limit absorber at zabs=0.93 towards quasar PG 1206+459, and revisit its chemical and physical conditions. The absorber, with N({H I})˜ 10^{17.0} cm-2 and absorption lines spread over ≳1000 km s-1 in velocity, is one of the strongest known O VI absorbers at \\log N({{O VI}})= 15.54 ± 0.17. Our analysis makes use of the previously known low- (e.g. Mg II), intermediate- (e.g. Si IV), and high-ionization (e.g. C IV, N V, Ne VIII) metal lines along with new Hubble Space Telescope (HST)/Cosmic Origins Spectrograph (COS) observations that cover O VI and an HST/ACS image of the quasar field. Consistent with previous studies, we find that the absorber has a multiphase structure. The low-ionization phase arises from gas with a density of \\log (n_H/cm^{-3})˜ -2.5 and a solar to supersolar metallicity. The high-ionization phase stems from gas with a significantly lower density, i.e. \\log (n_H/cm^{-3}) ˜ -3.8, and a near-solar to solar metallicity. The high-ionization phase accounts for all of the absorption seen in C IV, N V, and O VI. We find the the detected Ne VIII, reported by Tripp et al. (2011), is best explained as originating in a stand-alone collisionally ionized phase at T˜ 10^{5.85} K, except in one component in which both O VI and Ne VIII can be produced via photoionization. We demonstrate that such strong O VI absorption can easily arise from photoionization at z ≳ 1, but that, due to the decreasing extragalactic UV background radiation, only collisional ionization can produce large O VI features at z ˜ 0. The azimuthal angle of ˜88° of the disc of the nearest (68 kpc) luminous (1.3L*) galaxy at zgal = 0.9289, which shows signatures of recent merger, suggests that the bulk of the absorption arises from metal enriched outflows.

  17. VERITAS OBSERVATIONS OF THE BL LAC OBJECT PG 1553+113

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aliu, E.; Archer, A.; Beilicke, M.

    2015-01-20

    We present results from VERITAS observations of the BL Lac object PG 1553+113 spanning the years 2010, 2011, and 2012. The time-averaged spectrum, measured between 160 and 560 GeV, is well described by a power law with a spectral index of 4.33 ± 0.09. The time-averaged integral flux above 200 GeV measured for this period was (1.69 ± 0.06) × 10{sup –11} photons cm{sup –2} s{sup –1}, corresponding to 6.9% of the Crab Nebula flux. We also present the combined γ-ray spectrum from the Fermi Large Area Telescope and VERITAS covering an energy range from 100 MeV to 560 GeV.more » The data are well fit by a power law with an exponential cutoff at 101.9 ± 3.2 GeV. The origin of the cutoff could be intrinsic to PG 1553+113 or be due to the γ-ray opacity of our universe through pair production off the extragalactic background light (EBL). Given lower limits to the redshift of z > 0.395 based on optical/UV observations of PG 1553+113, the cutoff would be dominated by EBL absorption. Conversely, the small statistical uncertainties of the VERITAS energy spectrum have allowed us to provide a robust upper limit on the redshift of PG 1553+113 of z ≤ 0.62. A strongly elevated mean flux of (2.50 ± 0.14) × 10{sup –11} photons cm{sup –2} s{sup –1} (10.3% of the Crab Nebula flux) was observed during 2012, with the daily flux reaching as high as (4.44±0.71)×10{sup −11} photons cm{sup −2} s{sup −1} (18.3% of the Crab Nebula flux) on MJD 56048. The light curve measured during the 2012 observing season is marginally inconsistent with a steady flux, giving a χ{sup 2} probability for a steady flux of 0.03%.« less

  18. The COS-Halos Survey: Metallicities in the Low-redshift Circumgalactic Medium

    NASA Astrophysics Data System (ADS)

    Prochaska, J. Xavier; Werk, Jessica K.; Worseck, Gábor; Tripp, Todd M.; Tumlinson, Jason; Burchett, Joseph N.; Fox, Andrew J.; Fumagalli, Michele; Lehner, Nicolas; Peeples, Molly S.; Tejos, Nicolas

    2017-03-01

    We analyze new far-ultraviolet spectra of 13 quasars from the z˜ 0.2 COS-Halos survey that cover the H I Lyman limit of 14 circumgalactic medium (CGM) systems. These data yield precise estimates or more constraining limits than previous COS-Halos measurements on the H I column densities {N}{{H}{{I}}}. We then apply a Monte-Carlo Markov chain approach on 32 systems from COS-Halos to estimate the metallicity of the cool (T˜ {10}4 K) CGM gas that gives rise to low-ionization state metal lines, under the assumption of photoionization equilibrium with the extragalactic UV background. The principle results are: (1) the CGM of field L* galaxies exhibits a declining H I surface density with impact parameter {R}\\perp (at > 99.5 % confidence), (2) the transmission of ionizing radiation through CGM gas alone is 70 ± 7% (3) the metallicity distribution function of the cool CGM is unimodal with a median of {10}-0.51 {Z}⊙ and a 95% interval ≈ 1/50 {Z}⊙ to > 3 {Z}⊙ ; the incidence of metal-poor (< 1/100 {Z}⊙ ) gas is low, implying any such gas discovered along quasar sightlines is typically unrelated to L* galaxies; (4) we find an unexpected increase in gas metallicity with declining {N}{{H}{{I}}} (at > 99.9 % confidence) and, therefore, also with increasing {R}\\perp ; the high metallicity at large radii implies early enrichment; and (5) a non-parametric estimate of the cool CGM gas mass is {M}{CGM}{cool}=(9.2+/- 4.3)× {10}10 {M}⊙ , which together with new mass estimates for the hot CGM may resolve the galactic missing baryons problem. Future analyses of halo gas should focus on the underlying astrophysics governing the CGM, rather than processes that simply expel the medium from the halo. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs 13033 and 11598.

  19. On gauge invariant cosmological perturbations in UV-modified Hořava gravity

    NASA Astrophysics Data System (ADS)

    Shin, Sunyoung; Park, Mu-In

    2017-12-01

    We consider gauge invariant cosmological perturbations in UV-modified, z = 3 (non-projectable) Hořava gravity with one scalar matter field, which has been proposed as a renormalizable gravity theory without the ghost problem in four dimensions. In order to exhibit its dynamical degrees of freedom, we consider the Hamiltonian reduction method and find that, by solving all the constraint equations, the degrees of freedom are the same as those of Einstein gravity: one scalar and two tensor (graviton) modes when a scalar matter field presents. However, we confirm that there is no extra graviton modes and general relativity is recovered in IR, which achieves the consistency of the model. From the UV-modification terms which break the detailed balance condition in UV, we obtain scale-invariant power spectrums for non-inflationary backgrounds, like the power-law expansions, without knowing the details of early expansion history of Universe. This could provide a new framework for the Big Bang cosmology. Moreover, we find that tensor and scalar fluctuations travel differently in UV, generally. We present also some clarifying remarks about confusing points in the literatures.

  20. Reduced MHC Alloimmunization and Partial Tolerance Protection With Pathogen Reduction Of Whole Blood

    PubMed Central

    Jackman, Rachael P.; Muench, Marcus O.; Inglis, Heather; Heitman, John W.; Marschner, Susanne; Goodrich, Raymond P.; Norris, Philip J.

    2017-01-01

    BACKGROUND Allogeneic blood transfusion can result in an immune response against major histocompatibility complex (MHC) antigens, potentially complicating future transfusions or transplants. We have previously shown that pathogen reduction of platelet-rich plasma (PRP) with riboflavin and UV light (UV+R) can prevent alloimmunization in mice. A similar pathogen reduction treatment is currently under development for the treatment of whole blood using riboflavin and a higher dose of UV light. We sought to determine the effectiveness of this treatment in prevention of alloimmunization. STUDY DESIGN AND METHODS BALB/c mice were transfused with untreated or UV+R treated allogeneic C57Bl/6 whole blood with or without leukoreduction. Mice were evaluated for donor specific antibodies and ex vivo splenocyte cytokine responses, as well as for changes in the frequency of regulatory T (Treg) cells. RESULTS UV+R treatment blocked cytokine priming and reduced anti-MHC alloantibody responses to transfused whole blood. Leukoreduction reduced alloantibody levels in both the untreated and UV+R groups. Mice transfused with UV+R treated whole blood had reduced alloantibody and cytokine responses when subsequently transfused with untreated blood from the same donor type. This reduction in responses was not associated with increased Treg cells. CONCLUSIONS Pathogen reduction of whole blood with UV+R significantly reduces, but does not eliminate the alloimmune response. Exposure to UV+R treated whole blood transfusion does appear to induce tolerance to alloantigens resulting in reduced anti-MHC alloantibody and cytokine responses to subsequent exposures to the same alloantigens. This tolerance does not appear to be driven by an increase in Treg cells. PMID:27859333

  1. The XXL Survey I. Scientific Motivations - Xmm-Newton Observing Plan - Follow-up Observations and Simulation Programme

    NASA Technical Reports Server (NTRS)

    Pierre, M.; Pacaud, F.; Adami, C.; Alis, S.; Altieri, B.; Baran, N.; Benoist, C.; Birkinshaw, M.; Bongiorno, A.; Bremer, M. N.; hide

    2016-01-01

    The quest for the cosmological parameters that describe our universe continues to motivate the scientific community to undertake very large survey initiatives across the electromagnetic spectrum. Over the past two decades, the Chandra and XMM-Newton observatories have supported numerous studies of X-ray-selected clusters of galaxies, active galactic nuclei (AGNs), and the X-ray background. The present paper is the first in a series reporting results of the XXL-XMM survey; it comes at a time when the Planck mission results are being finalized. Aims. We present the XXL Survey, the largest XMM programme totaling some 6.9 Ms to date and involving an international consortium of roughly 100 members. The XXL Survey covers two extragalactic areas of 25 deg2 each at a point-source sensitivity of approx. 5 x 10(exp 15) erg/s/sq cm in the [0.5-2] keV band (completeness limit). The surveys main goals are to provide constraints on the dark energy equation of state from the space-time-distribution of clusters of galaxies and to serve as a pathfinder for future, wide-area X-ray missions. We review science objectives, including cluster studies, AGN evolution, and large-scale structure, that are being conducted with the support of approximately 30 follow-up programs. Methods. We describe the 542 XMM observations along with the associated multi- and numerical simulation programmes. We give a detailed account of the X-ray processing steps and describe innovative tools being developed for the cosmological analysis. Results. The paper provides a thorough evaluation of the X-ray data, including quality controls, photon statistics, exposure and background maps, and sky coverage. Source catalogue construction and multi-associations are briefly described. This material will be the basis for the calculation of the cluster and AGN selection functions, critical elements of the cosmological and science analyses. Conclusions. The XXL multi- data set will have a unique lasting legacy value for cosmological and extragalactic studies and will serve asa calibration resource for future dark energy studies with clusters and other X-ray selected sources. With the present article, we release the XMM XXL photon and smoothed images along with the corresponding exposure maps.

  2. Effects of Radon and UV Exposure on Skin Cancer Mortality in Switzerland

    PubMed Central

    de Hoogh, Kees; Hauri, Dimitri; Vicedo-Cabrera, Ana M.; Schindler, Christian; Huss, Anke; Röösli, Martin

    2017-01-01

    Background: Skin cancer incidence in Switzerland is among the highest in the world. In addition to exposure to ultraviolet (UV) radiation, radon alpha particles attached to aerosols can adhere to the skin and potentially cause carcinogenic effects. Objectives: We investigated the effects of radon and UV exposure on skin cancer mortality. Methods: Cox proportional hazard regression was used to study the association between exposures and skin cancer mortality in adults from the Swiss National Cohort. Modeled radon exposure and erythemal-weighted UV dose were assigned to addresses at baseline. Effect estimates were adjusted for sex, civil status, mother tongue, education, job position, neighborhood socioeconomic position, and UV exposure from outdoor occupation. Results: The study included 5.2 million adults (mean age 48 y) and 2,989 skin cancer deaths, with 1,900 indicating malignant melanoma (MM) as the primary cause of death. Adjusted hazard ratios (HR) for MM at age 60 were 1.16 (95% CI: 1.04, 1.29) per 100Bq/m3 radon and 1.11 (1.01, 1.23) per W/m2 in UV dose. Radon effects decreased with age. Risk of MM death associated with residential UV exposure was higher for individuals engaged in outdoor work with UV exposure (HR 1.94 [1.17, 3.23]), though not statistically significantly different compared to not working outdoors (HR 1.09 [0.99, 1.21], p=0.09). Conclusions: There is considerable variation in radon and UV exposure across Switzerland. Our study suggests both are relevant risk factors for skin cancer mortality. A better understanding of the role of the UV radiation and radon exposure is of high public health relevance. https://doi.org/10.1289/EHP825 PMID:28686556

  3. AURORA on MEGSAT 1: a photon counting observatory for the Earth UV night-sky background and Aurora emission

    NASA Astrophysics Data System (ADS)

    Monfardini, A.; Trampus, P.; Stalio, R.; Mahne, N.; Battiston, R.; Menichelli, M.; Mazzinghi, P.

    2001-08-01

    A low-mass, low-cost photon-counting scientific payload has been developed and launched on a commercial microsatellite in order to study the near-UV night-sky background emission with a telescope nicknamed ``Notte'' and the Aurora emission with ``Alba''. AURORA, this is the name of the experiment, will determine, with the ``Notte'' channel, the overall night-side photon background in the 300-400nm spectral range, together with a particular 2+N2 line (λc=337nm). The ``Alba'' channel, on the other hand, will study the Aurora emissions in four different spectral bands (FWHM=8.4-9.6nm) centered on: 367nm (continuum evaluation), 391nm (1-N+2), 535nm (continuum evaluation), 560nm (OI). The instrument has been launched on the 26 September, 2000 from the Baikonur cosmodrome on a modified SS18 Dnepr-1 ``Satan'' rocket. The satellite orbit is nearly circular (hapogee=648km, /e=0.0022), and the inclination of the orbital plane is 64.56°. An overview of the techniques adopted is given in this paper.

  4. ANA: Astrophysical Neutrino Anisotropy

    NASA Astrophysics Data System (ADS)

    Denton, Peter

    2017-08-01

    ANA calculates the likelihood function for a model comprised of two components to the astrophysical neutrino flux detected by IceCube. The first component is extragalactic. Since point sources have not been found and there is increasing evidence that one source catalog cannot describe the entire data set, ANA models the extragalactic flux as isotropic. The second component is galactic. A variety of catalogs of interest are also provided. ANA takes the galactic contribution to be proportional to the matter density of the universe. The likelihood function has one free parameter fgal that is the fraction of the astrophysical flux that is galactic. ANA finds the best fit value of fgal and scans over 0

  5. A Clustered Extragalactic Foreground Model for the EoR

    NASA Astrophysics Data System (ADS)

    Murray, S. G.; Trott, C. M.; Jordan, C. H.

    2018-05-01

    We review an improved statistical model of extra-galactic point-source foregrounds first introduced in Murray et al. (2017), in the context of the Epoch of Reionization. This model extends the instrumentally-convolved foreground covariance used in inverse-covariance foreground mitigation schemes, by considering the cosmological clustering of the sources. In this short work, we show that over scales of k ~ (0.6, 40.)hMpc-1, ignoring source clustering is a valid approximation. This is in contrast to Murray et al. (2017), who found a possibility of false detection if the clustering was ignored. The dominant cause for this change is the introduction of a Galactic synchrotron component which shadows the clustering of sources.

  6. The Acceleration of the Barycenter of Solar System Obtained from VLBI Observations and Its Impact on the ICRS

    NASA Astrophysics Data System (ADS)

    Xu, M. H.

    2016-03-01

    Since 1998 January 1, instead of the traditional stellar reference system, the International Celestial Reference System (ICRS) has been realized by an ensemble of extragalactic radio sources that are located at hundreds of millions of light years away (if we accept their cosmological distances), so that the reference frame realized by extragalactic radio sources is assumed to be space-fixed. The acceleration of the barycenter of solar system (SSB), which is the origin of the ICRS, gives rise to a systematical variation in the directions of the observed radio sources. This phenomenon is called the secular aberration drift. As a result, the extragalactic reference frame fixed to the space provides a reference standard for detecting the secular aberration drift, and the acceleration of the barycenter with respect to the space can be determined from the observations of extragalactic radio sources. In this thesis, we aim to determine the acceleration of the SSB from astrometric and geodetic observations obtained by Very Long Baseline Interferometry (VLBI), which is a technique using the telescopes globally distributed on the Earth to observe a radio source simultaneously, and with the capacity of angular positioning for compact radio sources at 10-milliarcsecond level. The method of the global solution, which allows the acceleration vector to be estimated as a global parameter in the data analysis, is developed. Through the formal error given by the solution, this method shows directly the VLBI observations' capability to constrain the acceleration of the SSB, and demonstrates the significance level of the result. In the next step, the impact of the acceleration on the ICRS is studied in order to obtain the correction of the celestial reference frame (CRF) orientation. This thesis begins with the basic background and the general frame of this work. A brief review of the realization of the CRF based on the kinematical and the dynamical methods is presented in Chapter 2, along with the definition of the CRF and its relationship with the inertial reference frame. Chapter 3 is divided into two parts. The first part describes various effects that modify the geometric direction of an object, especially the parallax, the aberration, and the proper motion. Then the derivative model and the principle of determination of the acceleration are introduced in the second part. The VLBI data analysis method, including VLBI data reduction (solving the ambiguity, identifying the clock break, and determining the ionospheric effect), theoretical delay model, parameterization, and datum definition, is discussed in detail in Chapter 4. The estimation of the acceleration by more than 30-year VLBI observations and the results are then described in Chapter 5. The evaluation and the robust check of our results by different solutions and the comparison to that from another research group are performed. The error sources for the estimation of the acceleration, such as the secular parallax caused by the velocity of the barycenter in space, are quantitatively studied by simulation and data analysis in Chapter 6. The two main impacts of the acceleration on the CRF, the apparent proper motion with the magnitude of the μ as\\cdot yr^{-1} level and the global rotation in the CRF due to the un-uniformed distribution of radio sources on the sky, are discussed in Chapter 7. The definition and the realization of the epoch CRF are presented as well. The future work concerning the explanation of the estimated acceleration and potential research on several main problems in modern astrometry are discussed in the last chapter.

  7. Treatment of blood with a pathogen reduction technology using UV light and riboflavin inactivates Ebola virus in vitro

    PubMed Central

    Cap, Andrew P.; Pidcoke, Heather F.; Keil, Shawn D.; Staples, Hilary M.; Anantpadma, Manu; Carrion, Ricardo; Davey, Robert A.; Frazer-Abel, Ashley; Taylor, Audra L.; Gonzales, Richard; Patterson, Jean L.; Goodrich, Raymond P.

    2018-01-01

    BACKGROUND Transfusion of plasma from recovered patients after Ebolavirus (EBOV) infection, typically called ‘convalescent plasma,’ is an effective treatment for active disease available in endemic areas, but carries the risk of introducing other pathogens, including other strains of EBOV. A pathogen reduction technology using ultraviolet light and riboflavin (UV + RB) is effective against multiple enveloped, negative-sense, single-stranded RNA viruses that are similar in structure to EBOV. We hypothesized that UV + RB is effective against EBOV in blood products without activating complement or reducing protective immunoglobulin titers that are important for the treatment of ebolavirus disease (EVD). STUDY DESIGN AND METHODS Four in vitro experiments were conducted to evaluate effects of UV + RB on green fluorescent protein EBOV (EBOV-GFP), wild-type EBOV in serum and whole blood, respectively, and on immunoglobulins and complement in plasma. Initial titers for Experiments 1–3 were: 4.21 log10 GFP units/mL, 4.96 log10 infectious units per mL, and 4.23 log10 plaque forming units per mL (PFU/mL). Conditions tested in the first three experiments included: 1. EBOV-GFP + UV + RB; 2. EBOV-GFP + RB only; 3 EBOV-GFP + UV only; 4. EBOV-GFP without RB or UV; 5. Virus-free control + UV only; and 6. Virus-free control without RB or UV. RESULTS UV + RB reduced EBOV titers to non-detectable levels in both non-human primate serum (≥ 2.8 to 3.2 log reduction) and human whole blood (≥ 3.0 log reduction) without decreasing protective antibody titers in human plasma. CONCLUSION Our in vitro results demonstrate that the UV + RB treatment efficiently reduces EBOV titers to below limits of detection in both serum and whole blood. In vivo testing to determine whether UV + RB can improve convalescent blood product safety is indicated. PMID:27001363

  8. Topical or oral treatment of peach flower extract attenuates UV-induced epidermal thickening, matrix metalloproteinase-13 expression and pro-inflammatory cytokine production in hairless mice skin

    PubMed Central

    Yang, Jiwon; Shin, Chang-Yup; Chung, Jin Ho

    2018-01-01

    BACKGROUND/OBJECTIVES Ultraviolet radiation (UV) is a major cause of skin photoaging. Previous studies reported that ethanol extract (PET) of Prunus persica (L.) Batsch flowers (PPF, peach flowers) and its subfractions, particularly the ethylacetate (PEA) and n-butanol extracts (PBT), have potent antioxidant activity and attenuate the UV-induced matrix metalloproteinase (MMP) expression in human skin cells. In this study, we investigated the protective activity of PPF extract against UV-induced photoaging in a mouse model. MATERIALS/METHODS Hairless mice were treated with PET or a mixture of PEA and PBT either topically or orally along with UV irradiation. Histological changes and biochemical alterations of mouse skin were examined. Major phenolic compounds in PPF extract were analyzed using an ACQUITY UPLC system. RESULTS The overall effects of topical and oral treatments with PPF extract on the UV-induced skin responses exhibited similar patterns. In both experiments, the mixture of PEA and PBT significantly inhibited the UV-induced skin and epidermal thickening, while PET inhibited only the UV-induced epidermal thickening. Treatment of PET or the mixture of PEA and PBT significantly inhibited the UV-induced MMP-13 expression, but not typeⅠ collagen expression. Topical treatment of the mixture of PEA and PBT with UV irradiation significantly elevated catalase, superoxide dismutase (SOD) and glutathione-peroxidase (GPx) activities in the skin compared to those in the UV irradiated control group, while oral treatment of the mixture of PEA and PBT or PET elevated only catalase and SOD activities, but not GPx. Thirteen phytochemical compounds including 4-O-caffeoylquinic acid, cimicifugic acid E and B, quercetin-3-O-rhamnoside and kaempferol glycoside derivatives were identified in the PPF extract. CONCLUSIONS These results demonstrate that treatment with PET or the mixture of PEA and PBT, both topically or orally, attenuates UV-induced photoaging via the cooperative interactions of phenolic components having anti-oxidative and collagen-protective activities. PMID:29399294

  9. 207-nm UV Light—A Promising Tool for Safe Low-Cost Reduction of Surgical Site Infections. II: In-Vivo Safety Studies

    PubMed Central

    Buonanno, Manuela; Stanislauskas, Milda; Ponnaiya, Brian; Bigelow, Alan W.; Randers-Pehrson, Gerhard; Xu, Yanping; Shuryak, Igor; Smilenov, Lubomir; Owens, David M.; Brenner, David J.

    2016-01-01

    Background UVC light generated by conventional germicidal lamps is a well-established anti-microbial modality, effective against both bacteria and viruses. However, it is a human health hazard, being both carcinogenic and cataractogenic. Earlier studies showed that single-wavelength far-UVC light (207 nm) generated by excimer lamps kills bacteria without apparent harm to human skin tissue in vitro. The biophysical explanation is that, due to its extremely short range in biological material, 207 nm UV light cannot penetrate the human stratum corneum (the outer dead-cell skin layer, thickness 5–20 μm) nor even the cytoplasm of individual human cells. By contrast, 207 nm UV light can penetrate bacteria and viruses because these cells are physically much smaller. Aims To test the biophysically-based hypothesis that 207 nm UV light is not cytotoxic to exposed mammalian skin in vivo. Methods Hairless mice were exposed to a bactericidal UV fluence of 157 mJ/cm2 delivered by a filtered Kr-Br excimer lamp producing monoenergetic 207-nm UV light, or delivered by a conventional 254-nm UV germicidal lamp. Sham irradiations constituted the negative control. Eight relevant cellular and molecular damage endpoints including epidermal hyperplasia, pre-mutagenic UV-associated DNA lesions, skin inflammation, and normal cell proliferation and differentiation were evaluated in mice dorsal skin harvested 48 h after UV exposure. Results While conventional germicidal UV (254 nm) exposure produced significant effects for all the studied skin damage endpoints, the same fluence of 207 nm UV light produced results that were not statistically distinguishable from the zero exposure controls. Conclusions As predicted by biophysical considerations and in agreement with earlier in vitro studies, 207-nm light does not appear to be significantly cytotoxic to mouse skin. These results suggest that excimer-based far-UVC light could potentially be used for its anti-microbial properties, but without the associated hazards to skin of conventional germicidal UV lamps. PMID:27275949

  10. Correction of MSL/REMS UV data from dust deposition and sensor's angular response

    NASA Astrophysics Data System (ADS)

    Martinez, German; Vicente-Retortillo, Alvaro; Renno, Nilton; Gomez-Elvira, Javier

    2017-04-01

    The Rover Environmental Monitoring Station (REMS) onboard the Mars Science Laboratory (MSL) mission has a UV sensor (UVS) that for the first time is measuring the UV radiation flux at the surface of Mars. The UVS is comprised of six photodiodes to measure the UV flux in different bands of the spectral range 200-380 nm [1]. The highest-level UVS data archived in the NASA Planetary Data System (PDS) are the ENVRDR and MODRDR products. The ENVRDR products contain UV fluxes in units of W/m2 for each UVS channel, while the MODRDR products contain identical data but with values of UV fluxes removed when θ is between 20° and 55° and when the rover or its arm are moving. Due to its location on the rover deck, the UVS has been exposed to dust deposition. Nominal UVS operations lasted until sol 154, when for the first time degradation of the UVS due to dust deposition led to deviations from nominal values above 10%, with increasing deviations in time. In addition, discrepancies between measured and physically-consistent UV fluxes are found when the solar zenith angle (θ) relative to the rover frame is between 20° and 55°. In particular, derived UVS fluxes present a non-physical discontinuity at θ = 30° caused by a discontinuity in the calibration function. We have developed a methodology to correct the ENVRDR data set from the effects of dust degradation and inconsistencies in the angular response for each of the six UVS channels and to complete the MODRDR products when 20° < θ < 55° for each of the six UVS channels. To perform this correction, we use photodiode output currents (available in the NASA PDS as lower-level TELRDR products), ancillary data records containing the geometry of the rover and the Sun (available in the NASA PDS as ADR products) and dust opacity values obtained from Mastcam [2]. Data products generated by this study will allow to assess risks of UV radiation to the health of human explorers, to analyze the relationship between seasonal changes in UV radiation at Gale Crater and seasonal patterns discovered in the background methane concentration [3], and to compare the UV radiation environment at different locations (ExoMars mission in 2020 and NASA's Mars 2020 mission carry UV sensors in their payloads). References: [1] Gómez-Elvira, J. et al. (2012), Space Science Reviews, 170, 583-640. [2] Smith, M. et al. (2016), Icarus, 280, 234-248 [3] Webster, C.R. et al. (2016), AGU Fall Meeting.

  11. Simulations of extragalactic magnetic fields and of their observables

    NASA Astrophysics Data System (ADS)

    Vazza, F.; Brüggen, M.; Gheller, C.; Hackstein, S.; Wittor, D.; Hinz, P. M.

    2017-12-01

    The origin of extragalactic magnetic fields is still poorly understood. Based on a dedicated suite of cosmological magneto-hydrodynamical simulations with the ENZO code we have performed a survey of different models that may have caused present-day magnetic fields in galaxies and galaxy clusters. The outcomes of these models differ in cluster outskirts, filaments, sheets and voids and we use these simulations to find observational signatures of magnetogenesis. With these simulations, we predict the signal of extragalactic magnetic fields in radio observations of synchrotron emission from the cosmic web, in Faraday rotation, in the propagation of ultra high energy cosmic rays, in the polarized signal from fast radio bursts at cosmological distance and in spectra of distant blazars. In general, primordial scenarios in which present-day magnetic fields originate from the amplification of weak (⩽nG ) uniform seed fields result in more homogeneous and relatively easier to observe magnetic fields than astrophysical scenarios, in which present-day fields are the product of feedback processes triggered by stars and active galaxies. In the near future the best evidence for the origin of cosmic magnetic fields will most likely come from a combination of synchrotron emission and Faraday rotation observed at the periphery of large-scale structures.

  12. Multiwavelength and parsec-scale properties of extragalactic jets. Doctoral Thesis Award Lecture 2015

    NASA Astrophysics Data System (ADS)

    Müller, C.

    2016-07-01

    Extragalactic jets originating from the central supermassive black holes of active galaxies are powerful, highly relativistic plasma outflows, emitting light from the radio up to the γ-ray regime. The details of their formation, composition and emission mechanisms are still not completely clear. The combination of high-resolution observations using very long baseline interferometry (VLBI) and multiwavelength monitoring provides the best insight into these objects. Here, such a combined study of sources of the TANAMI sample is presented, investigating the parsec-scale and high-energy properties. The TANAMI program is a multiwavelength monitoring program of a sample of the radio and γ-ray brightest extragalactic jets in the southern sky, below -30o declination. We obtain the first-ever VLBI images for most of the sources, providing crucial information on the jet kinematics and brightness distribution at milliarcsecond resolution. Two particular sources are discussed in detail: PMN J1603-4904 , which can be classified either as an atypical blazar or a γ-ray loud (young) radio galaxy, and Centaurus A, the nearest radio-loud active galaxy. The VLBI kinematics of the innermost parsec of Centaurus A's jet result in a consistent picture of an accelerated jet flow with a spine-sheath like structure.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palladino, Andrea; Vissani, Francesco; Spurio, Maurizio, E-mail: andrea.palladino@gssi.infn.it, E-mail: maurizio.spurio@bo.infn.it, E-mail: francesco.vissani@lngs.infn.it

    Recently it was noted that different IceCube datasets are not consistent with the same power law spectrum of the cosmic neutrinos: this is the IceCube spectral anomaly , that suggests that they observe a multicomponent spectrum. In this work, the main possibilities to enhance the description in terms of a single extragalactic neutrino component are examined. The hypothesis of a sizable contribution of Galactic high-energy neutrino events distributed as E {sup −2.7} [ Astrophys. J. 826 (2016) 185] is critically analyzed and its natural generalization is considered. The stability of the expectations is studied by introducing free parameters, motivated bymore » theoretical considerations and observational facts. The upgraded model here examined has 1) a Galactic component with different normalization and shape E {sup −2.4}; 2) an extragalactic neutrino spectrum based on new data; 3) a non-zero prompt component of atmospheric neutrinos. The two key predictions of the model concern the 'high-energy starting events' collected from the Southern sky. The Galactic component produces a softer spectrum and a testable angular anisotropy. A second, radically different class of models, where the second component is instead isotropic, plausibly extragalactic and with a relatively soft spectrum, is disfavored instead by existing observations of muon neutrinos from the Northern sky and below few 100 TeV.« less

  14. ANATOMY OF HELICAL EXTRAGALACTIC JETS: THE CASE OF S5 0836+710

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perucho, M.; Kovalev, Y. Y.; Lobanov, A. P.

    Helical structures are common in extragalactic jets. They are usually attributed in the literature to periodical phenomena in the source (e.g., precession). In this work, we use very long baseline interferometry data of the radio jet in the quasar S5 0836+710 and hypothesize that the ridgeline of helical jets like this corresponds to a pressure maximum in the jet and assume that the helically twisted pressure maximum is the result of a helical wave pattern. For our study, we use observations of the jet in S5 0836+710 at different frequencies and epochs. The results show that the structures observed aremore » physical and not generated artificially by the observing arrays. Our hypothesis that the observed intensity ridgeline can correspond to a helically twisted pressure maximum is confirmed by our observational tests. This interpretation allows us to explain jet misalignment between parsec and kiloparsec scales when the viewing angle is small, and also brings us to the conclusion that high-frequency observations may show only a small region of the jet flow concentrated around the maximum pressure ridgeline observed at low frequencies. Our work provides a potential explanation for the apparent transversal superluminal speeds observed in several extragalactic jets by means of transversal shift of an apparent core position with time.« less

  15. On the IceCube spectral anomaly

    NASA Astrophysics Data System (ADS)

    Palladino, Andrea; Spurio, Maurizio; Vissani, Francesco

    2016-12-01

    Recently it was noted that different IceCube datasets are not consistent with the same power law spectrum of the cosmic neutrinos: this is the IceCube spectral anomaly, that suggests that they observe a multicomponent spectrum. In this work, the main possibilities to enhance the description in terms of a single extragalactic neutrino component are examined. The hypothesis of a sizable contribution of Galactic high-energy neutrino events distributed as E-2.7 [Astrophys. J. 826 (2016) 185] is critically analyzed and its natural generalization is considered. The stability of the expectations is studied by introducing free parameters, motivated by theoretical considerations and observational facts. The upgraded model here examined has 1) a Galactic component with different normalization and shape E-2.4 2) an extragalactic neutrino spectrum based on new data; 3) a non-zero prompt component of atmospheric neutrinos. The two key predictions of the model concern the `high-energy starting events' collected from the Southern sky. The Galactic component produces a softer spectrum and a testable angular anisotropy. A second, radically different class of models, where the second component is instead isotropic, plausibly extragalactic and with a relatively soft spectrum, is disfavored instead by existing observations of muon neutrinos from the Northern sky and below few 100 TeV.

  16. The LBA Calibrator Survey of Southern Compact Extragalactic Radio Sources - LCS1

    NASA Technical Reports Server (NTRS)

    Petrov, Leonid; Phillips, Chris; Bertarini, Alessandra; Murphy, Tara; Sadler, Elaine M.

    2011-01-01

    We present a catalogue of accurate positions and correlated flux densities for 410 flat-spectrum, compact extragalactic radio sources previously detected in the Australia Telescope 20 GHz (AT20G) survey. The catalogue spans the declination range [-90deg, -40deg] and was constructed from four 24-h very long baseline interferometry (VLBI) observing sessions with the Australian Long Baseline Array at 8.3 GHz. The VLBI detection rate in these experiments is 97 per cent, the median uncertainty of the source positions is 2.6 mas and the median correlated flux density on projected baselines longer than 1000 km is 0.14 Jy. The goals of this work are (1) to provide a pool of southern sources with positions accurate to a few milliarcsec, which can be used for phase-referencing observations, geodetic VLBI and space navigation; (2) to extend the complete flux-limited sample of compact extragalactic sources to the Southern hemisphere; and (3) to investigate the parsec-scale properties of high-frequency selected sources from the AT20G survey. As a result of this VLBI campaign, the number of compact radio sources south of declination -40deg which have measured VLBI correlated flux densities and positions known to milliarcsec accuracy has increased by a factor of 3.5.

  17. VizieR Online Data Catalog: Optically Bright extragalactic Radio Sources II (Petrov, 2013)

    NASA Astrophysics Data System (ADS)

    Petrov, L.

    2014-06-01

    The first VLBI (Very Long Baseline Interferometry) observing campaign in 2007 resulted in the detection of 398 targets with the European VLBI Network (EVN; Bourda et al., 2010, cat. J/A+A/520/A113). During the second observing campaign, a subset of 105 sources detected in the previous campaign was observed (Bourda et al., 2011, cat. J/A+A/526/A102). Their positions were derived by Petrov (2011, cat. J/AJ/142/105) and formed the OBRS-1 (Optically Bright extragalactic Radio Sources) catalog. The remaining sources were observed in the third campaign, called OBRS-2. During the OBRS-2 campaign, there were three observing sessions with 10 VLBA (Very Long Baseline Array) stations and 5-6 EVN stations from this list: EFLSBERG, MEDICINA, ONSALA60, YEBES40M, DSS63, HARTRAO, and NOTO. Observations were made on 2010 Mar 23 (session ID gc034a), on 2011 Nov 8 (gc034bcd), and on 2011 Mar 15 (gc034ef). The OBRS-2 catalog presents precise positions of the 295 extragalactic radio sources as well as median correlated flux densities at 8.4 and 2.2GHz at baseline lengths shorter than 900km and at baseline lengths longer than 5000km. (1 data file).

  18. The Effect of UV-C Pasteurization on Bacteriostatic Properties and Immunological Proteins of Donor Human Milk

    PubMed Central

    Christen, Lukas; Lai, Ching Tat; Hartmann, Ben; Hartmann, Peter E.; Geddes, Donna T.

    2013-01-01

    Background Human milk possesses bacteriostatic properties, largely due to the presence of immunological proteins. Heat treatments such as Holder pasteurization reduce the concentration of immunological proteins in human milk and consequently increase the bacterial growth rate. This study investigated the bacterial growth rate and the immunological protein concentration of ultraviolet (UV-C) irradiated, Holder pasteurized and untreated human milk. Methods Samples (n=10) of untreated, Holder pasteurized and UV-C irradiated human milk were inoculated with E. coli and S. aureus and the growth rate over 2 hours incubation time at 37°C was observed. Additionally, the concentration of sIgA, lactoferrin and lysozyme of untreated and treated human milk was analyzed. Results The bacterial growth rate of untreated and UV-C irradiated human milk was not significantly different. The bacterial growth rate of Holder pasteurized human milk was double compared to untreated human milk (p<0.001). The retention of sIgA, lactoferrin and lysozyme after UV-C irradiation was 89%, 87%, and 75% respectively, which were higher than Holder treated with 49%, 9%, and 41% respectively. Conclusion UV-C irradiation of human milk preserves significantly higher levels of immunological proteins than Holder pasteurization, resulting in bacteriostatic properties similar to those of untreated human milk. PMID:24376898

  19. Quasinormal modes of a strongly coupled nonconformal plasma and approach to criticality

    NASA Astrophysics Data System (ADS)

    Betzios, Panagiotis; Gürsoy, Umut; Järvinen, Matti; Policastro, Giuseppe

    2018-04-01

    We study fluctuations around equilibrium in a class of strongly interacting nonconformal plasmas using holographic techniques. In particular, we calculate the quasinormal mode spectrum of black hole backgrounds that approach Chamblin-Reall plasmas in the IR. In a specific limit, related to the exact linear-dilaton background in string theory, we observe that the plasma approaches criticality and we obtain the quasinormal spectrum analytically. We regulate the critical limit by gluing the IR geometry that corresponds to the nonconformal plasma to a part of AdS space-time in the UV. Near criticality, the spectrum can still be computed analytically and we find two sets of quasinormal modes, related to the IR and UV parts of the geometry. In the critical limit, the quasinormal modes accumulate to form a branch cut in the correlators of the energy-momentum tensor on the real axis of the complex frequency plane.

  20. UV-B light contributes directly to the synthesis of chiloglottone floral volatiles

    PubMed Central

    Amarasinghe, Ranamalie; Poldy, Jacqueline; Matsuba, Yuki; Barrow, Russell A.; Hemmi, Jan M.; Pichersky, Eran; Peakall, Rod

    2015-01-01

    Background and Aims Australian sexually deceptive Chiloglottis orchids attract their specific male wasp pollinators by means of 2,5-dialkylcyclohexane-1,3-diones or ‘chiloglottones’, representing a newly discovered class of volatiles with unique structures. This study investigated the hypothesis that UV-B light at low intensities is directly required for chiloglottone biosynthesis in Chiloglottis trapeziformis. Methods Chiloglottone production occurs only in specific tissue (the callus) of the labellum. Cut buds and flowers, and whole plants with buds and flowers, sourced from the field, were kept in a growth chamber and interactions between growth stage of the flowers and duration and intensity of UV-B exposure on chiloglottone production were studied. The effects of the protein synthesis inhibitor cycloheximide were also examined. Key Results Chiloglottone was not present in buds, but was detected in buds that were manually opened and then exposed to sunlight, or artificial UV-B light for ≥5 min. Spectrophotometry revealed that the sepals and petals blocked UV-B light from reaching the labellum inside the bud. Rates of chiloglottone production increased with developmental stage, increasing exposure time and increasing UV-B irradiance intensity. Cycloheximide did not inhibit the initial production of chiloglottone within 5 min of UV-B exposure. However, inhibition of chiloglottone production by cycloheximide occurred over 2 h of UV-B exposure, indicating a requirement for de novo protein synthesis to sustain chiloglottone production under UV-B. Conclusions The sepals and petals of Chiloglottis orchids strongly block UV-B wavelengths of light, preventing chiloglottone production inside the bud. While initiation of chiloglottone biosynthesis requires only UV-B light, sustained chiloglottone biosynthesis requires both UV-B and de novo protein biosynthesis. The internal amounts of chiloglottone in a flower reflect the interplay between developmental stage, duration and intensity of UV-B exposure, de novo protein synthesis, and feedback loops linked to the starting amount of chiloglottone. It is concluded that UV-B light contributes directly to chiloglottone biosynthesis. These findings suggest an entirely new and unexpected biochemical reaction that might also occur in taxa other than these orchids. PMID:25649114

  1. 207-nm UV Light - A Promising Tool for Safe Low-Cost Reduction of Surgical Site Infections. I: In Vitro Studies

    PubMed Central

    Buonanno, Manuela; Randers-Pehrson, Gerhard; Bigelow, Alan W.; Trivedi, Sheetal; Lowy, Franklin D.; Spotnitz, Henry M.; Hammer, Scott M.; Brenner, David J.

    2013-01-01

    Background 0.5% to 10% of clean surgeries result in surgical-site infections, and attempts to reduce this rate have had limited success. Germicidal UV lamps, with a broad wavelength spectrum from 200 to 400 nm are an effective bactericidal option against drug-resistant and drug-sensitive bacteria, but represent a health hazard to patient and staff. By contrast, because of its limited penetration, ∼200 nm far-UVC light is predicted to be effective in killing bacteria, but without the human health hazards to skin and eyes associated with conventional germicidal UV exposure. Aims The aim of this work was to test the biophysically-based hypothesis that ∼200 nm UV light is significantly cytotoxic to bacteria, but minimally cytotoxic or mutagenic to human cells either isolated or within tissues. Methods A Kr-Br excimer lamp was used, which produces 207-nm UV light, with a filter to remove higher-wavelength components. Comparisons were made with results from a conventional broad spectrum 254-nm UV germicidal lamp. First, cell inactivation vs. UV fluence data were generated for methicillin-resistant S. aureus (MRSA) bacteria and also for normal human fibroblasts. Second, yields of the main UV-associated pre-mutagenic DNA lesions (cyclobutane pyrimidine dimers and 6-4 photoproducts) were measured, for both UV radiations incident on 3-D human skin tissue. Results We found that 207-nm UV light kills MRSA efficiently but, unlike conventional germicidal UV lamps, produces little cell killing in human cells. In a 3-D human skin model, 207-nm UV light produced almost no pre-mutagenic UV-associated DNA lesions, in contrast to significant yields induced by a conventional germicidal UV lamp. Conclusions As predicted based on biophysical considerations, 207-nm light kills bacteria efficiently but does not appear to be significantly cytotoxic or mutagenic to human cells. Used appropriately, 207-nm light may have the potential for safely and inexpensively reducing surgical-site infection rates, including those of drug-resistant origin. PMID:24146947

  2. Toxicity of cobalt-complexed cyanide to Oncorhynchus mykiss, Daphnia magna, and Ceriodaphnia dubia: Potentiation by ultraviolet radiation and attenuation by dissolved organic carbon and adaptive UV tolerance

    USGS Publications Warehouse

    Little, Edward E.; Calfee, Robin D.; Theodorakos, Peter M.; Brown, Zoe Ann; Johnson, Craig A.

    2007-01-01

    BackgroundCobalt cyanide complexes often result when ore is treated with cyanide solutions to extract gold and other metals. These have recently been discovered in low but significant concentrations in effluents from gold leach operations. This study was conducted to determine the potential toxicity of cobalt-cyanide complexes to freshwater organisms and the extent to which ultraviolet radiation (UV) potentiates this toxicity. Tests were also conducted to determine if humic acids or if adaptation to UV influenced sensitivity to the cyanide complexes.MethodsRainbow trout (Oncorhynchus mykiss), Daphnia magna, and Ceriodaphnia dubia were exposed to potassium hexacyanocobaltate in the presence and absence of UV radiation, in the presence and absence of humic acids. Cyano-cobalt exposures were also conducted with C. dubia from cultures adapted to elevated UV.ResultsWith an LC50 concentration of 0.38 mg/L, cyanocobalt was over a 1000 times more toxic to rainbow trout in the presence of UV at a low, environmentally relevant irradiance level (4 μW/cm2 as UVB) than exposure to this compound in the absence of UV with an LC50 of 112.9 mg/L. Toxicity was immediately apparent, with mortality occurring within an hour of the onset of exposure at the highest concentration. Fish were unaffected by exposure to UV alone. Weak-acid dissociable cyanide concentrations were observed in irradiated aqueous solutions of cyanocobaltate within hours of UV exposure and persisted in the presence of UV for at least 96 hours, whereas negligible concentrations were observed in the absence of UV. The presence of humic acids significantly diminished cyanocobalt toxicity to D. magna and reduced mortality from UV exposure. Humic acids did not significantly influence survival among C. dubia. C. dubia from UV-adapted populations were less sensitive to metallocyanide compounds than organisms from unadapted populations.ConclusionsThe results indicate that metallocyanide complexes may pose a hazard to aquatic life through photochemically induced processes. Factors that decrease UV exposure such as dissolved organic carbon or increased pigmentation would diminish toxicity.

  3. New look on the origin of cosmic rays

    NASA Astrophysics Data System (ADS)

    Istomin, Ya. N.

    2017-06-01

    From the analysis of the flux of high energy particles, E > 3 · 1018 eV, it is shown that the distribution of the power density of extragalactic rays over energy is of the power law, q̅(E) ∝ E-2.7, with the same index of 2.7 that has the distribution of Galactic cosmic rays before the so called `knee', E < 3 · 1015 eV. However, the average power of extragalactic sources, which is of ɛ ≃ 1043 erg s-1, exceeds by at least two orders the power emitted by the Galaxy in cosmic rays, assuming that the density of galaxies is estimated as Ng ≃ 1 Mpc-3. Considering that such power can be provided by relativistic jets from active galactic nuclei with the power ɛ ≃ 1045 - 1046 erg s-1, we estimate the density of extragalactic sources of cosmic rays as Ng ≃ 10-2 - 10-3 Mpc-3. Assuming the same nature of Galactic and extragalactic rays, we conclude that the Galactic rays were produced by a relativistic jet emitted from the Galactic center during the period of its activity in the past. The remnants of a bipolar jet are now observed in the form of bubbles of relativistic gas above and below the Galactic plane. The break, observed in the spectrum of Galactic rays (`knee'), is explained by fast escape of energetic particles, E > 3 · 1015 eV, from the Galaxy because of the dependence of the coefficient of diffusion of cosmic rays on energy, D∝E0.7. The obtained index of the density distribution of particles over energy, N(E)∝E-2.7-0.7/2=E-3.05, for E > 3 · 1015 eV agrees well with the observed one, N(E)∝E-3.1. The estimated time of the termination of the jet in the Galaxy is 4.2 · 104 years ago.

  4. Star Formation Histories of the LEGUS Dwarf Galaxies. I. Recent History of NGC 1705, NGC 4449, and Holmberg II

    NASA Astrophysics Data System (ADS)

    Cignoni, M.; Sacchi, E.; Aloisi, A.; Tosi, M.; Calzetti, D.; Lee, J. C.; Sabbi, E.; Adamo, A.; Cook, D. O.; Dale, D. A.; Elmegreen, B. G.; Gallagher, J. S., III; Gouliermis, D. A.; Grasha, K.; Grebel, E. K.; Hunter, D. A.; Johnson, K. E.; Messa, M.; Smith, L. J.; Thilker, D. A.; Ubeda, L.; Whitmore, B. C.

    2018-03-01

    We use Hubble Space Telescope observations from the Legacy Extragalactic UV Survey to reconstruct the recent star formation histories (SFHs) of three actively star-forming dwarf galaxies, NGC 4449, Holmberg II, and NGC 1705, from their UV color–magnitude diagrams (CMDs). We apply a CMD fitting technique using two independent sets of stellar isochrones, PARSEC-COLIBRI and MIST, to assess the uncertainties related to stellar evolution modeling. Irrespective of the adopted stellar models, all three dwarfs are found to have had almost constant star formation rates (SFRs) in the last 100–200 Myr, with modest enhancements (a factor of ∼2) above the 100 Myr averaged SFR. Significant differences among the three dwarfs are found in terms of the overall SFR, the timing of the most recent peak, and the SFR/area. The initial mass function of NGC 1705 and Holmberg II is consistent with a Salpeter slope down to ≈5 M ⊙, whereas it is slightly flatter, s = ‑2.0, in NGC 4449. The SFHs derived with the two different sets of stellar models are consistent with each other, except for some quantitative details, attributable to their input assumptions. They also share the drawback that all synthetic diagrams predict a clear separation in color between the upper main-sequence and helium-burning stars, which is not apparent in the data. Since neither differential reddening, which is significant in NGC 4449, nor unresolved binaries appear to be sufficient to fill the gap, we suggest this calls for a revision of both sets of stellar evolutionary tracks. Based on observations obtained with the NASA/ESA Hubble Space Telescope at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy under NASA Contract NAS 5-26555.

  5. Ultraviolet signals in birds are special.

    PubMed

    Hausmann, Franziska; Arnold, Kathryn E; Marshall, N Justin; Owens, Ian P F

    2003-01-07

    Recent behavioural experiments have shown that birds use ultraviolet (UV)-reflective and fluorescent plumage as cues in mate choice. It remains controversial, however, whether such UV signals play a special role in sexual communication, or whether they are part of general plumage coloration. We use a comparative approach to test for a general association between sexual signalling and either UV-reflective or fluorescent plumage. Among the species surveyed, 72% have UV colours and there is a significant positive association between UV reflectance and courtship displays. Among parrots (Psittaciformes), 68% of surveyed species have fluorescent plumage, and again there is a strong positive association between courtship displays and fluorescence. These associations are not artefacts of the plumage used in courtship displays, being generally more 'colourful' because there is no association between display and colours lacking UV reflectance or fluorescence. Equally, these associations are not phylogenetic artefacts because all results remain unchanged when families or genera, rather than species, are used as independent data points. We also find that, in parrots, fluorescent plumage is usually found adjacent to UV-reflective plumage. Using a simple visual model to examine one parrot, the budgerigar Melopsittacus undulatus, we show that the juxtaposition of UV-reflective and fluorescent plumage leads to a 25-fold increase in chromatic contrast to the budgerigar's visual system. Taken together, these results suggest that signals based on UV contrast are of special importance in the context of active sexual displays. We review briefly six hypotheses on why this may be the case: suitability for short-range signalling; high contrast with backgrounds; invisibility to predators; exploitation of pre-existing sensory biases; advertisement of feather structure; and amplification of behavioural signals.

  6. Ultraviolet signals in birds are special.

    PubMed Central

    Hausmann, Franziska; Arnold, Kathryn E; Marshall, N Justin; Owens, Ian P F

    2003-01-01

    Recent behavioural experiments have shown that birds use ultraviolet (UV)-reflective and fluorescent plumage as cues in mate choice. It remains controversial, however, whether such UV signals play a special role in sexual communication, or whether they are part of general plumage coloration. We use a comparative approach to test for a general association between sexual signalling and either UV-reflective or fluorescent plumage. Among the species surveyed, 72% have UV colours and there is a significant positive association between UV reflectance and courtship displays. Among parrots (Psittaciformes), 68% of surveyed species have fluorescent plumage, and again there is a strong positive association between courtship displays and fluorescence. These associations are not artefacts of the plumage used in courtship displays, being generally more 'colourful' because there is no association between display and colours lacking UV reflectance or fluorescence. Equally, these associations are not phylogenetic artefacts because all results remain unchanged when families or genera, rather than species, are used as independent data points. We also find that, in parrots, fluorescent plumage is usually found adjacent to UV-reflective plumage. Using a simple visual model to examine one parrot, the budgerigar Melopsittacus undulatus, we show that the juxtaposition of UV-reflective and fluorescent plumage leads to a 25-fold increase in chromatic contrast to the budgerigar's visual system. Taken together, these results suggest that signals based on UV contrast are of special importance in the context of active sexual displays. We review briefly six hypotheses on why this may be the case: suitability for short-range signalling; high contrast with backgrounds; invisibility to predators; exploitation of pre-existing sensory biases; advertisement of feather structure; and amplification of behavioural signals. PMID:12590772

  7. Low levels of iron enhance UV/H2O2 efficiency at neutral pH.

    PubMed

    Ulliman, Sydney L; McKay, Garrett; Rosario-Ortiz, Fernando L; Linden, Karl G

    2018-03-01

    While the presence of iron is generally not seen as favorable for UV-based treatment systems due to lamp fouling and decreased UV transmittance, we show that low levels of iron can lead to improvements in the abatement of chemicals in the UV-hydrogen peroxide advanced oxidation process. The oxidation potential of an iron-assisted UV/H 2 O 2 (UV 254  + H 2 O 2  + iron) process was evaluated at neutral pH using iron levels below USEPA secondary drinking water standards (<0.3 mg/L). Para-chlorobenzoic acid (pCBA) was used as a hydroxyl radical (HO) probe to quantify HO steady state concentrations. Compounds degraded by different mechanisms including, carbamazepine (CBZ, HO oxidation) and N-nitrosodimethylamine (NDMA, direct photolysis), were used to investigate the effect of iron on compound degradation for UV/H 2 O 2 systems. The effects of iron species (Fe 2+ and Fe 3+ ), iron concentration (0-0.3 mg/L), H 2 O 2 concentration (0-10 mg/L) and background water matrix (low-carbon tap (LCT) and well water) on HO production and compound removal were examined. Iron-assisted UV/H 2 O 2 efficiency was most influenced by the target chemical and the water matrix. Added iron to UV/H 2 O 2 was shown to increase the steady-state HO concentration by approximately 25% in all well water scenarios. While CBZ removal was unchanged by iron addition, 0.3 mg/L iron improved NDMA removal rates in both LCT and well water matrices by 15.1% and 4.6% respectively. Furthermore, the combination of UV/Fe without H 2 O 2 was also shown to enhance NDMA removal when compared to UV photolysis alone indicating the presence of degradation pathways other than HO oxidation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The research on a novel type of the solar-blind UV head-mounted displays

    NASA Astrophysics Data System (ADS)

    Zhao, Shun-long

    2011-08-01

    Ultraviolet technology of detecting is playing a more and more important role in the field of civil application, especially in the corona discharge detection, in modern society. Now the UV imaging detector is one of the most important equipments in power equipment flaws detection. And the modern head-mounted displays (HMDs) have shown the applications in the fields of military, industry production, medical treatment, entertainment, 3D visualization, education and training. We applied the system of head-mounted displays to the UV image detection, and a novel type of head-mounted displays is presented: the solar-blind UV head-mounted displays. And the structure is given. By the solar-blind UV head-mounted displays, a real-time, isometric and visible image of the corona discharge is correctly displayed upon the background scene where it exists. The user will see the visible image of the corona discharge on the real scene rather than on a small screen. Then the user can easily find out the power equipment flaws and repair them. Compared with the traditional UV imaging detector, the introducing of the HMDs simplifies the structure of the whole system. The original visible spectrum optical system is replaced by the eye in the solar-blind UV head-mounted displays. And the optical image fusion technology would be used rather than the digital image fusion system which is necessary in traditional UV imaging detector. That means the visible spectrum optical system and digital image fusion system are not necessary. This makes the whole system cheaper than the traditional UV imaging detector. Another advantage of the solar-blind UV head-mounted displays is that the two hands of user will be free. So while observing the corona discharge the user can do some things about it. Therefore the solar-blind UV head-mounted displays can make the corona discharge expose itself to the user in a better way, and it will play an important role in corona detection in the future.

  9. Occupational Exposure to Ultraviolet Radiation and Risk of Non-Melanoma Skin Cancer in a Multinational European Study

    PubMed Central

    Surdu, Simona; Fitzgerald, Edward F.; Bloom, Michael S.; Boscoe, Francis P.; Carpenter, David O.; Haase, Richard F.; Gurzau, Eugen; Rudnai, Peter; Koppova, Kvetoslava; Févotte, Joëlle; Leonardi, Giovanni; Vahter, Marie; Goessler, Walter; Kumar, Rajiv; Fletcher, Tony

    2013-01-01

    Background Studies suggest that ambient sunlight plays an important role in the pathogenesis of non-melanoma skin cancers (NMSC). However, there is ongoing controversy regarding the relevance of occupational exposure to natural and artificial ultraviolet radiation (UV) radiation. Objectives We investigated potential associations between natural and artificial UV radiation exposure at work with NMSC in a case-control study conducted in Hungary, Romania, and Slovakia. Methods Occupational exposures were classified by expert assessment for 527 controls and 618 NMSC cases (515 basal cell carcinoma, BCC). Covariate information was collected via interview and multiple logistic regression models were used to assess associations between UV exposure and NMSC. Results Lifetime prevalence of occupational exposure in the participants was 13% for natural UV radiation and 7% for artificial UV radiation. Significant negative associations between occupational exposure to natural UV radiation and NMSC were detected for all who had ever been exposed (odds ratio (OR) 0.47, 95% confidence interval (CI) 0.27–0.80); similar results were detected using a semi-quantitative metric of cumulative exposure. The effects were modified by skin complexion, with significantly decreased risks of BCC among participants with light skin complexion. No associations were observed in relation to occupational artificial UV radiation exposure. Conclusions The protective effect of occupational exposure to natural UV radiation was unexpected, but limited to light-skinned people, suggesting adequate sun-protection behaviors. Further investigations focusing on variations in the individual genetic susceptibility and potential interactions with environmental and other relevant factors are planned. PMID:23638051

  10. CANDELS: THE EVOLUTION OF GALAXY REST-FRAME ULTRAVIOLET COLORS FROM z = 8 TO 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finkelstein, Steven L.; Papovich, Casey; Salmon, Brett

    2012-09-10

    We study the evolution of galaxy rest-frame ultraviolet (UV) colors in the epoch 4 {approx}< z {approx}< 8. We use new wide-field near-infrared data in the Great Observatories Origins Deep Survey-South field from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, Hubble Ultra Deep Field (HUDF) 2009, and Early Release Science programs to select galaxies via photometric redshift measurements. Our sample consists of 2812 candidate galaxies at z {approx}> 3.5, including 113 at z {approx_equal} 7-8. We fit the observed spectral energy distribution to a suite of synthetic stellar population models and measure the value of the UV spectral slopemore » ({beta}) from the best-fit model spectrum. We run simulations to show that this measurement technique results in a smaller scatter on {beta} than other methods, as well as a reduced number of galaxies with catastrophically incorrect {beta} measurements (i.e., {Delta}{beta} > 1). We find that the median value of {beta} evolves significantly from -1.82{sup +0.00}{sub -0.04} at z = 4 to -2.37{sup +0.26}{sub -0.06} at z = 7. Additionally, we find that faint galaxies at z = 7 have {beta} -2.68{sup +0.39}{sub -0.24} ({approx} -2.4 after correcting for observational bias); this is redder than previous claims in the literature and does not require 'exotic' stellar populations (e.g., very low metallicities or top-heavy initial mass functions) to explain their colors. This evolution can be explained by an increase in dust extinction, from low amounts at z = 7 to A{sub V} {approx} 0.5 mag at z = 4. The timescale for this increase is consistent with low-mass asymptotic giant branch stars forming the bulk of the dust. We find no significant (<2{sigma}) correlation between {beta} and M{sub UV} when measuring M{sub UV} at a consistent rest-frame wavelength of 1500 A. This is particularly true at bright magnitudes, though our results do show evidence for a weak correlation at faint magnitudes when galaxies in the HUDF are considered separately, hinting that dynamic range in sample luminosities may play a role. We do find a strong correlation between {beta} and the stellar mass at all redshifts, in that more massive galaxies exhibit redder colors. The most massive galaxies in our sample have similarly red colors at each redshift, implying that dust can build up quickly in massive galaxies and that feedback is likely removing dust from low-mass galaxies at z {>=} 7. Thus, the stellar-mass-metallicity relation, previously observed up to z {approx} 3, may extend out to z = 7-8.« less

  11. Status of the GAMMA-400 Project

    NASA Technical Reports Server (NTRS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Gusakov, Yu. V.; Farber, M. O.; hide

    2013-01-01

    The preliminary design of the new space gamma-ray telescope GAMMA-400 for the energy range 100 MeV-3 TeV is presented. The angular resolution of the instrument, 1-2 deg at E(gamma) approximately 100 MeV and approximately 0.01 at E(gamma) greater than 100 GeV, its energy resolution is approximately 1% at E(gamma) greater than 100 GeV, and the proton rejection factor is approximately 10(exp 6) are optimized to address a broad range of science topics, such as search for signatures of dark matter, studies of Galactic and extragalactic gamma-ray sources, Galactic and extragalactic diffuse emission, gamma-ray bursts, as well as high-precision measurements of spectra of cosmic-ray electrons, positrons, and nuclei.

  12. Precision Geodesy via Radio Interferometry.

    PubMed

    Hinteregger, H F; Shapiro, I I; Robertson, D S; Knight, C A; Ergas, R A; Whitney, A R; Rogers, A E; Moran, J M; Clark, T A; Burke, B F

    1972-10-27

    Very-long-baseline interferometry experiments, involving observations of extragalactic radio sources, were performed in 1969 to determine the vector separations between antenna sites in Massachusetts and West Virginia. The 845.130-kilometer baseline was estimated from two separate experiments. The results agreed with each other to within 2 meters in all three components and with a special geodetic survey to within 2 meters in length; the differences in baseline direction as determined by the survey and by interferometry corresponded to discrepancies of about 5 meters. The experiments also yielded positions for nine extragalactic radio sources, most to within 1 arc second, and allowed the hydrogen maser clocks at the two sites to be synchronized a posteriori with an uncertainty of only a few nanoseconds.

  13. Structural Variability of 3C 111 on Parsec Scales

    NASA Technical Reports Server (NTRS)

    Grossberger, C.; Kadler, M.; Wilms, J.; Muller, C.; Beuchert, T.; Ros, E.; Ojha, R.; Aller, M.; Aller, H.; Angelakis, E.; hide

    2011-01-01

    We discuss the parsec-scale structural variability of the extragalactic jet 3C 111 related to a major radio flux density outburst in 2007, The data analyzed were taken within the scope of the MOJAVE, UMRAO, and F-GAMMA programs, which monitor a large sample of the radio brightest compact extragalactic jets with the VLBA, the University of Michigan 26 m, the Effelsberg 100 m, and the IRAM 30 m radio telescopes. The analysis of the VLBA data is performed by fitting Gaussian model components in the visibility domain, We associate the ejection of bright features in the radio jet with a major flux-density outburst in 2007, The evolution of these features suggests the formation of a leading component and multiple trailing components

  14. The Advanced Gamma-ray Imaging System (AGIS): Extragalactic Science

    NASA Astrophysics Data System (ADS)

    Coppi, Paolo S.; Extragalactic Science Working Group; AGIS Collaboration

    2010-03-01

    The Advanced Gamma-ray Imaging System (AGIS), a proposed next-generation array of Cherenkov telescopes, will provide an unprecedented view of the high energy universe. We discuss how AGIS, with its larger effective area, improved angular resolution, lower threshold, and an order of magnitude increase in sensitivity, impacts the extragalactic science possible in the very high energy domain. Likely source classes detectable by AGIS include AGN, GRBs, clusters, star-forming galaxies, and possibly the cascade radiation surrounding powerful cosmic accelerators. AGIS should see many of the sources discovered by Fermi. With its better sensitivity and angular resolution, AGIS then becomes a key instrument for identifying and characterizing Fermi survey sources, the majority of which will have limited Fermi photon statistics and localizations.

  15. Astrophysics of Red Supergiants

    NASA Astrophysics Data System (ADS)

    Levesque, Emily M.

    2017-12-01

    'Astrophysics of Red Supergiants' is the first book of its kind devoted to our current knowledge of red supergiant stars, a key evolutionary phase that is critical to our larger understanding of massive stars. It provides a comprehensive overview of the fundamental physical properties of red supergiants, their evolution, and their extragalactic and cosmological applications. It serves as a reference for researchers from a broad range of fields (including stellar astrophysics, supernovae, and high-redshift galaxies) who are interested in red supergiants as extreme stages of stellar evolution, dust producers, supernova progenitors, extragalactic metallicity indicators, members of massive binaries and mergers, or simply as compelling objects in their own right. The book is accessible to a range of experience levels, from graduate students up to senior researchers.

  16. Cosmic ray antimatter and baryon symmetric cosmology

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Protheroe, R. J.; Kazanas, D.

    1982-01-01

    The relative merits and difficulties of the primary and secondary origin hypotheses for the observed cosmic-ray antiprotons, including the new low-energy measurement of Buffington, et al. We conclude that the cosmic-ray antiproton data may be evidence for antimatter galaxies and baryon symmetric cosmology. The present bar P data are consistent with a primary extragalactic component having /p=/equiv 1+/- 3.2/0.7x10 = to the -4 independent of energy. We propose that the primary extragalactic cosmic ray antiprotons are most likely from active galaxies and that expected disintegration of bar alpha/alpha ban alpha/alpha. We further predict a value for ban alpha/alpha =/equiv 10 to the -5, within range of future cosmic ray detectors.

  17. Visual outdoor response of multiple wild bee species: highly selective stimulation of a single photoreceptor type by sunlight-induced fluorescence.

    PubMed

    Rao, Sujaya; Ostroverkhova, Oksana

    2015-07-01

    Bees have ultraviolet (UV), blue and green photoreceptor types in their compound eyes with which they locate food sources in landscapes that change continuously in cues emanating from plants and backgrounds against which they are perceived. The complexity of bee vision has been elucidated through studies examining individual species under laboratory conditions. Here, we used a bee-attractive fluorescent blue trap as a model for analyzing visual signals in operation outdoors, and across bee species. We manipulated trap color (appearance to humans under light with weak UV component) and UV-induced fluorescence emission, and aligned field capture results with bee vision models. Our studies show that the bees were attracted to traps that under solar illumination exhibited strong fluorescence emission exclusively in the blue spectral region. Through quantitative analysis, we established that strong spectral overlap of trap emittance with the photosensitivity characteristic of the blue receptor type and minimal overlap with those of the other two receptor types is the most critical property of attractive traps. A parameter has been identified which predicts the degree of attractiveness of the traps and which captures trends in the field data across wild bee species and for a diversity of backgrounds.

  18. VizieR Online Data Catalog: GUViCS. Ultraviolet Source Catalogs (Voyer+, 2014)

    NASA Astrophysics Data System (ADS)

    Voyer, E. N.; Boselli, A.; Boissier, S.; Heinis, S.; Cortese, L.; Ferrarese, L.; Cote, P.; Cuillandre, J.-C.; Gwyn, S. D. J.; Peng, E. W.; Zhang, H.; Liu, C.

    2014-07-01

    These catalogs are based on GALEX NUV and FUV source detections in and behind the Virgo Cluster. The detections are split into catalogs of extended sources and point-like sources. The UV Virgo Cluster Extended Source catalog (UV_VES.fit) provides the deepest and most extensive UV photometric data of extended galaxies in Virgo to date. If certain data is not available for a given source then a null value is entered (e.g. -999, -99). UV point-like sources are matched with SDSS, NGVS, and NED and the relevant photometry and further data from these databases/catalogs are provided in this compilation of catalogs. The primary GUViCS UV Virgo Cluster Point-Like Source catalog is UV_VPS.fit. This catalog provides the most useful GALEX pipeline NUV and FUV photometric parameters, and categorizes sources as stars, Virgo members, and background sources, when possible. It also provides identifiers for optical matches in the SDSS and NED, and indicates if a match exists in the NGVS, only if GUViCS-optical matches are one-to-one. NED spectroscopic redshifts are also listed for GUViCS-NED one-to-one matches. If certain data is not available for a given source a null value is entered. Additionally, the catalog is useful for quick access to optical data on one-to-one GUViCS-SDSS matches.The only parameter available in the catalog for UV sources that have multiple SDSS matches is the total number of multiple matches, i.e. SDSSNUMMTCHS. Multiple GUViCS sources matched to the same SDSS source are also flagged given a total number of matches, SDSSNUMMTCHS, of one. All other fields for multiple matches are set to a null value of -99. In order to obtain full optical SDSS data for multiply matched UV sources in both scenarios, the user can cross-correlate the GUViCS ID of the sources of interest with the full GUViCS-SDSS matched catalog in GUV_SDSS.fit. The GUViCS-SDSS matched catalog, GUV_SDSS.fit, provides the most relevant SDSS data on all GUViCS-SDSS matches, including one-to-one matches and multiply matched sources. The catalog gives full SDSS identification information, complete SDSS photometric measurements in multiple aperture types, and complete redshift information (photometric and spectroscopic). It is ideal for large statistical studies of galaxy populations at multiple wavelengths in the background of the Virgo Cluster. The catalog can also be used as a starting point to study and search for previously unknown UV-bright point-like objects within the Virgo Cluster. If certain data is not available for a given source that field is given a null value. (6 data files).

  19. Medicinal plants used by traditional healers from South-West Algeria: An ethnobotanical study

    PubMed Central

    Benarba, Bachir

    2016-01-01

    Background/Aim: This study aimed to document and analyzes the local knowledge of medicinal plants’ use by traditional healers in South-west Algeria. Methods: The ethnobotanical survey was conducted in two Saharian regions of South-west of Algeria: Adrar and Bechar. In total, 22 local traditional healers were interviewed using semi-structured questionnaire and open questions. Use value (UV), fidelity level (FL), and informant consensus factor (FIC) were used to analyze the obtained data. Results: Our results showed that 83 medicinal plants species belonging to 38 families are used by traditional healers from South-west of Algeria to treat several ailments. Lamiaceae, Asteraceae, Apiaceae, and Fabaceae were the most dominant families with 13, 8, 6, and 4 species, respectively. Leaves were the plant parts mostly used (36%), followed by seeds (18%), aerial parts (17%) and roots (12%). Furthermore, a decoction was the major mode of preparation (49%), and oral administration was the most preferred (80%). Thymus vulgaris L. (UV = 1.045), Zingiber officinale Roscoe (UV = 0.863), Trigonella foenum-graecum L. (UV=0.590), Rosmarinus officinalis L. (UV = 0.545), and Ruta chalepensis L. (UV = 0.5) were the most frequently species used by local healers. A great informant consensus has been demonstrated for kidney (0.727), cancer (0.687), digestive (0.603), and respiratory diseases. Conclusion: This study revealed rich ethnomedicinal knowledge in South-west Algeria. The reported species with high UV, FL, and FIC could be of great interest for further pharmacological studies. PMID:27757260

  20. Component separation for cosmic microwave background radiation

    NASA Astrophysics Data System (ADS)

    Fernández-Cobos, R.; Vielva, P.; Barreiro, R. B.; Martínez-González, E.

    2011-11-01

    Cosmic microwave background (CMB) radiation data obtained by different experiments contains, besides the desired signal, a superposition of microwave sky contributions mainly due to, on the one hand, synchrotron radiation, free-free emission and re-emission of dust clouds in our galaxy; and, on the other hand, extragalactic sources. We present an analytical method, using a wavelet decomposition on the sphere, to recover the CMB signal from microwave maps. Being applied to both temperature and polarization data, it is shown as a significant powerful tool when it is used in particularly polluted regions of the sky. The applied wavelet has the advantages of requiring little computering time in its calculations being adapted to the HEALPix pixelization scheme (which is the format that the community uses to report the CMB data) and offering the possibility of multi-resolution analysis. The decomposition is implemented as part of a template fitting method, minimizing the variance of the resulting map. The method was tested with simulations of WMAP data and results have been positive, with improvements up to 12% in the variance of the resulting full sky map and about 3% in low contaminate regions. Finally, we also present some preliminary results with WMAP data in the form of an angular cross power spectrum C_ℓ^{TE}, consistent with the spectrum offered by WMAP team.

  1. CONSTRAINTS ON THE INTERGALACTIC MAGNETIC FIELD WITH GAMMA-RAY OBSERVATIONS OF BLAZARS

    DOE PAGES

    Finke, Justin D.; Reyes, Luis C.; Georganopoulos, Markos; ...

    2015-11-12

    Distant BL Lacertae objects emit γ rays which interact with the extragalactic background light (EBL), creating electron-positron pairs, and reducing the flux measured by ground-based imaging atmospheric Cherenkov telescopes (IACTs) at very-high energies (VHE). These pairs can Comptonscatter the cosmic microwave background, creating a γ-ray signature at slightly lower energies observable by the Fermi Large Area Telescope (LAT). This signal is strongly dependent on the intergalactic magnetic field (IGMF) strength (B) and its coherence length (LB). We use IACT spectra taken from the literature for 5 VHE-detected BL Lac objects, and combine it with LAT spectra for these sources tomore » constrain these IGMF parameters. Low B values can be ruled out by the constraint that the cascade flux cannot exceed that observed by the LAT. High values of B can be ruled out from the constraint that the EBL-deabsorbed IACT spectrum cannot be greater than the LAT spectrum extrapolated into the VHE band, unless the cascade spectrum contributes a sizable fraction of the LAT flux. We rule out low B values (B . 10 -19 G for LB ≥ 1 Mpc) at > 5σ in all trials with different EBL models and data selection, except when« less

  2. Radiative decays of massive relic particles and the submillimeter background

    NASA Technical Reports Server (NTRS)

    Field, George B.; Walker, Terry P.

    1989-01-01

    The interaction of the decay photons of an unstable relic particle species with the microwave background radiation is considered. The radiative decays of these particles delay recombination and serve as an energy source for the resultant plasma. Nonrelativistic Compton scattering by these electrons couples the decay photons to the microwave background, producing submillimeter distortions. If the decay products close the universe, they must decay with a radiative branching ratio larger than 2.5 x 10 to the -5th in order to produce recently observed excess submillimeter background radiation. To be consistent with measurements of the UV background, their mass m is much greater than 114 keV and their decay redshift z is much greater than 5200.

  3. Photoelectrochromism in Tungsten Trioxide Colloidal Solutions

    ERIC Educational Resources Information Center

    Chenthamarakshan, C. R.; Tacconi, N. R. de; Xu, Lucy; Rajeshwar, Krishnan

    2004-01-01

    Photophysical and photochemical properties of semiconductor metal oxide colloids are studied in the context of photoelectrochemical conversion and storage of solar energy. The experiment teaches the instrumental principles of UV-visible spectrophotometry, spectral acquisition and background subtraction strategies and diode array spectrometers.

  4. Satellite estimation of incident photosynthetically active radiation using ultraviolet reflectance

    NASA Technical Reports Server (NTRS)

    Eck, Thomas F.; Dye, Dennis G.

    1991-01-01

    A new satellite remote sensing method for estimating the amount of photosynthetically active radiation (PAR, 400-700 nm) incident at the earth's surface is described and tested. Potential incident PAR for clear sky conditions is computed from an existing spectral model. A major advantage of the UV approach over existing visible band approaches to estimating insolation is the improved ability to discriminate clouds from high-albedo background surfaces. UV spectral reflectance data from the Total Ozone Mapping Spectrometer (TOMS) were used to test the approach for three climatically distinct, midlatitude locations. Estimates of monthly total incident PAR from the satellite technique differed from values computed from ground-based pyranometer measurements by less than 6 percent. This UV remote sensing method can be applied to estimate PAR insolation over ocean and land surfaces which are free of ice and snow.

  5. Genetic Diversity in the UV Sex Chromosomes of the Brown Alga Ectocarpus.

    PubMed

    Avia, Komlan; Lipinska, Agnieszka P; Mignerot, Laure; Montecinos, Alejandro E; Jamy, Mahwash; Ahmed, Sophia; Valero, Myriam; Peters, Akira F; Cock, J Mark; Roze, Denis; Coelho, Susana M

    2018-06-06

    Three types of sex chromosome system exist in nature: diploid XY and ZW systems and haploid UV systems. For many years, research has focused exclusively on XY and ZW systems, leaving UV chromosomes and haploid sex determination largely neglected. Here, we perform a detailed analysis of DNA sequence neutral diversity levels across the U and V sex chromosomes of the model brown alga Ectocarpus using a large population dataset. We show that the U and V non-recombining regions of the sex chromosomes (SDR) exhibit about half as much neutral diversity as the autosomes. This difference is consistent with the reduced effective population size of these regions compared with the rest of the genome, suggesting that the influence of additional factors such as background selection or selective sweeps is minimal. The pseudoautosomal region (PAR) of this UV system, in contrast, exhibited surprisingly high neutral diversity and there were several indications that genes in this region may be under balancing selection. The PAR of Ectocarpus is known to exhibit unusual genomic features and our results lay the foundation for further work aimed at understanding whether, and to what extent, these structural features underlie the high level of genetic diversity. Overall, this study fills a gap between available information on genetic diversity in XY/ZW systems and UV systems and significantly contributes to advancing our knowledge of the evolution of UV sex chromosomes.

  6. Science with the ASTRI mini-array for the Cherenkov Telescope Array: blazars and fundamental physics

    NASA Astrophysics Data System (ADS)

    Bonnoli, Giacomo; Tavecchio, Fabrizio; Giuliani, Andrea; Bigongiari, Ciro; Di Pierro, Federico; Stamerra, Antonio; Pareschi, Giovanni; Vercellone, Stefano; ASTRI Collaboration; CTA Consortium

    2016-05-01

    ASTRI (“Astronomia a Specchi con Tecnologia Replicante Italiana”) is a flagship project of the Italian Ministry of Research (MIUR), devoted to the realization, operation and scientific validation of an end-to-end prototype for the Small Size Telescope (SST) envisaged to become part of the Cherenkov Telescope Array (CTA). The ASTRI SST-2M telescope prototype is characterized by a dual mirror, Schwarzschild-Couder optical design and a compact camera based on silicon photo-multipliers. It will be sensitive to multi-TeV very high energy (VHE) gamma rays up to 100 TeV, with a PSF ~ 6’ and a wide (9.6°) unaberrated optical field of view. Right after validation of the design in single-dish observations at the Serra La Nave site (Sicily, Italy) during 2015, the ASTRI collaboration will be able to start deployment, at the final CTA southern site, of the ASTRI mini-array, proposed to constitute the very first CTA precursor. Counting 9 ASTRI SST-2M telescopes, the ASTRI mini-array will overtake current IACT systems in differential sensitivity above 5 TeV, thus allowing unprecedented observations of known and predicted bright TeV emitters in this band, including some extragalactic sources such as extreme high-peaked BL Lacs with hard spectra. We exploited the ASTRI scientific simulator ASTRIsim in order to understand the feasibility of observations tackling blazar and cosmic ray physics, including discrimination of hadronic and leptonic scenarios for the VHE emission from BL Lac relativistic jets and indirect measurements of the intergalactic magnetic field and of the extragalactic background light. We selected favorable targets, outlining observation modes, exposure times, multi-wavelength coverage needed and the results expected. Moreover, the perspectives for observation of effects due to the existence of axion-like particles or to Lorentz invariance violations have been investigated.

  7. Laboratory Plasma Source as an MHD Model for Astrophysical Jets

    NASA Technical Reports Server (NTRS)

    Mayo, Robert M.

    1997-01-01

    The significance of the work described herein lies in the demonstration of Magnetized Coaxial Plasma Gun (MCG) devices like CPS-1 to produce energetic laboratory magneto-flows with embedded magnetic fields that can be used as a simulation tool to study flow interaction dynamic of jet flows, to demonstrate the magnetic acceleration and collimation of flows with primarily toroidal fields, and study cross field transport in turbulent accreting flows. Since plasma produced in MCG devices have magnetic topology and MHD flow regime similarity to stellar and extragalactic jets, we expect that careful investigation of these flows in the laboratory will reveal fundamental physical mechanisms influencing astrophysical flows. Discussion in the next section (sec.2) focuses on recent results describing collimation, leading flow surface interaction layers, and turbulent accretion. The primary objectives for a new three year effort would involve the development and deployment of novel electrostatic, magnetic, and visible plasma diagnostic techniques to measure plasma and flow parameters of the CPS-1 device in the flow chamber downstream of the plasma source to study, (1) mass ejection, morphology, and collimation and stability of energetic outflows, (2) the effects of external magnetization on collimation and stability, (3) the interaction of such flows with background neutral gas, the generation of visible emission in such interaction, and effect of neutral clouds on jet flow dynamics, and (4) the cross magnetic field transport of turbulent accreting flows. The applicability of existing laboratory plasma facilities to the study of stellar and extragalactic plasma should be exploited to elucidate underlying physical mechanisms that cannot be ascertained though astrophysical observation, and provide baseline to a wide variety of proposed models, MHD and otherwise. The work proposed herin represents a continued effort on a novel approach in relating laboratory experiments to astrophysical jet observation. There exists overwhelming similarity among these flows that has already produced some fascinating results and is expected to continue a high pay off in future flow similarity studies.

  8. S4EI (Spectral Sampling with Slicer for Stellar and Extragalactical Instrumentation), a new-generation of 3D spectro-imager dedicated to night astronomy

    NASA Astrophysics Data System (ADS)

    Sayède, Frédéric; Puech, Mathieu; Mein, Pierre; Bonifacio, Piercarlo; Malherbe, Jean-Marie; Galicher, Raphaël.; Amans, Jean-Philippe; Fasola, Gilles

    2014-07-01

    Multichannel Subtractive Double Pass (MSDP) spectrographs have been widely used in solar spectroscopy because of their ability to provide an excellent compromise between field of view and spatial and spectral resolutions. Compared with other types of spectrographs, MSDP can deliver simultaneous monochromatic images at higher spatial and spectral resolutions without any time-scanning requirement (as with Fabry-Perot spectrographs), and with limited loss of flux. These performances are obtained thanks to a double pass through the dispersive element. Recent advances with VPH (Volume phase holographic) Grisms as well as with image slicers now make MSDP potentially sensitive to much smaller fluxes. We present S4EI (Spectral Sampling with Slicer for Stellar and Extragalactical Instrumentation), which is a new concept for extending MSDP to night-time astronomy. It is based on new generation reflecting plane image slicers working with large apertures specific to night-time telescopes. The resulting design could be potentially very attractive and innovative for different domains of astronomy, e.g., the simultaneous spatial mapping of accurately flux-calibrated emission lines between OH sky lines in extragalactic astronomy or the simultaneous imaging of stars, exoplanets and interstellar medium. We present different possible MSDP/S4EI configurations for these science cases and expected performances on telescopes such as the VLT.

  9. The Spitzer-IRAC/MIPS Extragalactic Survey (SIMES) in the South Ecliptic Pole Field

    NASA Astrophysics Data System (ADS)

    Baronchelli, I.; Scarlata, C.; Rodighiero, G.; Franceschini, A.; Capak, P. L.; Mei, S.; Vaccari, M.; Marchetti, L.; Hibon, P.; Sedgwick, C.; Pearson, C.; Serjeant, S.; Menéndez-Delmestre, K.; Salvato, M.; Malkan, M.; Teplitz, H. I.; Hayes, M.; Colbert, J.; Papovich, C.; Devlin, M.; Kovacs, A.; Scott, K. S.; Surace, J.; Kirkpatrick, J. D.; Atek, H.; Urrutia, T.; Scoville, N. Z.; Takeuchi, T. T.

    2016-03-01

    We present the Spitzer-IRAC/MIPS Extragalactic survey (SIMES) in the South Ecliptic Pole field. The large area covered (7.7 deg2), together with one of the lowest Galactic cirrus emissions in the entire sky and a very extensive coverage by Spitzer, Herschel, Akari, and GALEX, make the SIMES field ideal for extragalactic studies. The elongated geometry of the SIMES area (≈4:1), allowing for significant cosmic variance reduction, further improves the quality of statistical studies in this field. Here we present the reduction and photometric measurements of the Spitzer/IRAC data. The survey reaches depths of 1.93 and 1.75 μJy (1σ) at 3.6 and 4.5 μm, respectively. We discuss the multiwavelength IRAC-based catalog, completed with optical, mid-, and far-IR observations. We detect 341,000 sources with {F}3.6μ {{m}}≥slant 3σ . Of these, 10% have an associated 24 μm counterpart, while 2.7% have an associated SPIRE source. We release the catalog through the NASA/IPAC Infrared Science Archive. Two scientific applications of these IRAC data are presented in this paper. First, we compute integral number counts at 3.6 μm. Second, we use the [3.6]-[4.5] color index to identify galaxy clusters at z > 1.3. We select 27 clusters in the full area, a result consistent with previous studies at similar depth.

  10. VizieR Online Data Catalog: The VLBA Extragalactic Proper Motion Catalog (Truebenbach+, 2017)

    NASA Astrophysics Data System (ADS)

    Truebenbach, A. E.; Darling, J.

    2017-11-01

    We created our catalog of extragalactic radio proper motions using the 2017a Goddard VLBI global solution. The 2017a solution is computed from more than 30 years of dual-band VLBI observations --1979 August 3 to 2017 March 27. We also observed 28 objects with either no redshift or a "questionable" Optical Characteristic of Astrometric Radio Sources (OCARS; Malkin 2016ARep...60..996M) redshift at the Apache Point Observatory (APO) 3.5m telescope and/or at Gemini North. We conducted observations on the 3.5m telescope at Apache Point Observatory with the Dual Imaging Spectrograph (DIS) from 2015 April 18 to 2016 June 30. We chose two objects for additional observations with the Gemini Multi-Object Spectrograph-North (GMOS-N) at Gemini North Observatory. 2021+317 was observed on 2016 June 26 and 28, while 0420+417 was observed on 2016 November 8 and 26. We also observed 42 radio sources with the Very Long Baseline Array (VLBA) in the X-band (3.6cm/8.3GHz). Our targets had all been previously observed by VLBI. Our VLBA observations were conducted in two campaigns from 2015 September to 2016 January and 2016 October to November. The final extragalactic proper motion catalog (created primarily from archival Goddard VLBI data, with redshifts obtained from OCARS) contains 713 proper motions with average uncertainties of 24μas/yr. (5 data files).

  11. Validation of large-scale, monochromatic UV disinfection systems for drinking water using dyed microspheres.

    PubMed

    Blatchley, E R; Shen, C; Scheible, O K; Robinson, J P; Ragheb, K; Bergstrom, D E; Rokjer, D

    2008-02-01

    Dyed microspheres have been developed as a new method for validation of ultraviolet (UV) reactor systems. When properly applied, dyed microspheres allow measurement of the UV dose distribution delivered by a photochemical reactor for a given operating condition. Prior to this research, dyed microspheres had only been applied to a bench-scale UV reactor. The goal of this research was to extend the application of dyed microspheres to large-scale reactors. Dyed microsphere tests were conducted on two prototype large-scale UV reactors at the UV Validation and Research Center of New York (UV Center) in Johnstown, NY. All microsphere tests were conducted under conditions that had been used previously in biodosimetry experiments involving two challenge bacteriophage: MS2 and Qbeta. Numerical simulations based on computational fluid dynamics and irradiance field modeling were also performed for the same set of operating conditions used in the microspheres assays. Microsphere tests on the first reactor illustrated difficulties in sample collection and discrimination of microspheres against ambient particles. Changes in sample collection and work-up were implemented in tests conducted on the second reactor that allowed for improvements in microsphere capture and discrimination against the background. Under these conditions, estimates of the UV dose distribution from the microspheres assay were consistent with numerical simulations and the results of biodosimetry, using both challenge organisms. The combined application of dyed microspheres, biodosimetry, and numerical simulation offers the potential to provide a more in-depth description of reactor performance than any of these methods individually, or in combination. This approach also has the potential to substantially reduce uncertainties in reactor validation, thereby leading to better understanding of reactor performance, improvements in reactor design, and decreases in reactor capital and operating costs.

  12. Induction of wound-periderm-like tissue in Kalanchoe pinnata (Lam.) Pers. (Crassulaceae) leaves as a defence response to high UV-B radiation levels

    PubMed Central

    Nascimento, Luana Beatriz dos Santos; Moreira, Nattacha dos Santos; Leal-Costa, Marcos Vinícius; Costa, Sônia Soares; Tavares, Eliana Schwartz

    2015-01-01

    Background and Aims UV-B radiation can be stressful for plants and cause morphological and biochemical changes. Kalanchoe pinnata is a CAM leaf-succulent species distributed in hot and dry regions, and is rich in flavonoids, which are considered to be protective against UV-B radiation. This study aims to verify if K. pinnata has morphological or anatomical responses as a strategy in response to high UV-B levels. Methods Kalanchoe pinnata plants of the same age were grown under white light (control) or white light plus supplemental UV-B radiation (5 h d–1). The plants were treated with the same photoperiod, photosynthetically active radiation, temperature and daily watering system. Fragments of the middle third of the leaf blade and petiole were dehydrated and then embedded in historesin and sectioned in a rotary microtome. Sections were stained with toluidine blue O and mounted in Entellan®. Microchemical analyses by optical microscopy were performed on fresh material with Sudan III, Sudan IV and phloroglucinol, and analysed using fluorescence microscopy. Key Results Supplemental UV-B radiation caused leaf curling and the formation of brown areas on the leaves. These brown areas developed into a protective tissue on the adaxial side of the leaf, but only in directly exposed regions. Anatomically, this protective tissue was similar to a wound-periderm, with outer layer cell walls impregnated with suberin and lignin. Conclusions This is the first report of wound-periderm formation in leaves in response to UV-B radiation. This protective tissue could be important for the survival of the species in desert regions under high UV-B stress conditions. PMID:26346722

  13. Calibration of the Voyager Ultraviolet Spectrometers and the Composition of the Heliosphere Neutrals: Reassessment

    NASA Astrophysics Data System (ADS)

    Ben-Jaffel, Lotfi; Holberg, J. B.

    2016-06-01

    The data harvest from the Voyagers’ (V 1 and V 2) Ultraviolet Spectrometers (UVS) covers encounters with the outer planets, measurements of the heliosphere sky-background, and stellar spectrophotometry. Because their period of operation overlaps with many ultraviolet missions, the calibration of V1 and V2 UVS with other spectrometers is invaluable. Here we revisit the UVS calibration to assess the intriguing sensitivity enhancements of 243% (V1) and 156% (V2) proposed recently. Using the Lyα airglow from Saturn, observed in situ by both Voyagers, and remotely by International Ultraviolet Explorer (IUE), we match the Voyager values to IUE, taking into account the shape of the Saturn Lyα line observed with the Goddard High Resolution Spectrograph on board the Hubble Space Telescope. For all known ranges of the interplanetary hydrogen density, we show that the V1 and V2 UVS sensitivities cannot be enhanced by the amounts thus far proposed. The same diagnostic holds for distinct channels covering the diffuse He I 58.4 nm emission. Our prescription is to keep the original calibration of the Voyager UVS with a maximum uncertainty of 30%, making both instruments some of the most stable EUV/FUV spectrographs in the history of space exploration. In that frame, we reassess the excess Lyα emission detected by Voyager UVS deep in the heliosphere, to show its consistency with a heliospheric but not galactic origin. Our finding confirms results obtained nearly two decades ago—namely, the UVS discovery of the distortion of the heliosphere and the corresponding obliquity of the local interstellar magnetic field (˜ 40^\\circ from upwind) in the solar system neighborhood—without requiring any revision of the Voyager UVS calibration.

  14. Search for diffuse neutrino flux from astrophysical sources with MACRO

    NASA Astrophysics Data System (ADS)

    MACRO Collaboration; Ambrosio, M.; Antolini, R.; Auriemma, G.; Bakari, D.; Baldini, A.; Barbarino, G. C.; Barish, B. C.; Battistoni, G.; Becherini, Y.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bloise, C.; Bower, C.; Brigida, M.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Carboni, M.; Caruso, R.; Cecchini, S.; Cei, F.; Chiarella, V.; Choudhary, B. C.; Coutu, S.; Cozzi, M.; de Cataldo, G.; Dekhissi, H.; de Marzo, C.; de Mitri, I.; Derkaoui, J.; de Vincenzi, M.; di Credico, A.; Erriquez, O.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Giorgini, M.; Grassi, M.; Grillo, A.; Guarino, F.; Gustavino, C.; Habig, A.; Hanson, K.; Heinz, R.; Iarocci, E.; Katsavounidis, E.; Katsavounidis, I.; Kearns, E.; Kim, H.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Levin, D. S.; Lipari, P.; Longley, N. P.; Longo, M. J.; Loparco, F.; Maaroufi, F.; Mancarella, G.; Mandrioli, G.; Margiotta, A.; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M. N.; Michael, D. G.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicolò, D.; Nolty, R.; Orth, C.; Osteria, G.; Palamara, O.; Patera, V.; Patrizii, L.; Pazzi, R.; Peck, C. W.; Perrone, L.; Petrera, S.; Pistilli, P.; Popa, V.; Rainò, A.; Reynoldson, J.; Ronga, F.; Rrhioua, A.; Satriano, C.; Scapparone, E.; Scholberg, K.; Sciubba, A.; Serra, P.; Sioli, M.; Sirri, G.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J. L.; Sulak, L. R.; Surdo, A.; Tarlè, G.; Togo, V.; Vakili, M.; Walter, C. W.; Webb, R.

    2003-04-01

    Many galactic and extragalactic astrophysical sources are currently considered promising candidates as high-energy neutrino emitters. Astrophysical neutrinos can be detected as upward-going muons produced in charged-current interactions with the medium surrounding the detector. The expected neutrino fluxes from various models start to dominate on the atmospheric neutrino background at neutrino energies above some tens of TeV. We present the results of a search for an excess of high-energy upward-going muons among the sample of data collected by MACRO during ~5.8 years of effective running time. No significant evidence for this signal was found. As a consequence, an upper limit on the flux of upward-going muons from high-energy neutrinos was set at the level of 1.7×10-14 cm-2s-1sr-1. The corresponding upper limit for the diffuse neutrino flux was evaluated assuming a neutrino power law spectrum. Our result was compared with theoretical predictions and upper limits from other experiments.

  15. Scientific Verification of Faraday Rotation Modulators: Detection of Diffuse Polarized Galactic Emission

    NASA Technical Reports Server (NTRS)

    Moyerman, S.; Bierman, E.; Ade, P. A. R.; Aiken, R.; Barkats, D.; Bischoff, C.; Bock, J. J.; Chiang, H. C.; Dowell, C. D.; Duband, L.; hide

    2012-01-01

    The design and performance of a wide bandwidth linear polarization-modulator based on the Faraday effect is described. Faraday Rotation Modulators (FRMs) are solid-state polarization switches that are capable of modulation up to approx 10 kHz. Six FRMs were utilized during the 2006 observing season in the Background Imaging of Cosmic Extragalactic Polarization (BICEP) experiment; three FRMs were used at each of BICEP fs 100 and 150 GHz frequency bands. The technology was verified through high signal-to-noise detection of Galactic polarization using two of the six FRMs during four observing runs in 2006. The features exhibit strong agreement with BICEP fs measurements of the Galaxy using non-FRM pixels and with the Galactic polarization models. This marks the first detection of high signal-to-noise mm-wave celestial polarization using fast, active optical modulation. The performance of the FRMs during periods when they were not modulated was also analyzed and compared to results from BICEP fs 43 pixels without FRMs.

  16. The Origin of the Excess Near-Infrared Diffuse Sky Brightness: Population III Stars or Zodiacal Light?

    NASA Technical Reports Server (NTRS)

    Dwek, Eli

    2006-01-01

    The intensity of the diffuse 1 to 5 micron sky emission from which solar system and Galactic foregrounds have been subtracted is in excess of that expected from energy released by galaxies and stars that formed during the z < 5 redshift interval. The spectral signature of this excess near-infrared background light (NIRBL) component is almost identical to that of reflected sunlight from the interplanetary dust cloud, and could therefore be the result of the incomplete subtraction of this foreground emission component from the diffuse sky maps. Alternatively, this emission component could be extragalactic. Its spectral signature is consistent with that of redshifted continuum and recombination line emission from H-II regions formed by the first generation of very massive stars. In this talk I will present the implications of this excess emission for our understanding of the zodiacal dust cloud, the formation rate of Pop III stars, and the TeV gamma-ray opacity to nearby blazars.

  17. Planck 2015 results. XXII. A map of the thermal Sunyaev-Zeldovich effect

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Battye, R.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chiang, H. C.; Christensen, P. R.; Churazov, E.; Clements, D. L.; Colombo, L. P. L.; Combet, C.; Comis, B.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Holmes, W. A.; Hornstrup, A.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lacasa, F.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Macías-Pérez, J. F.; Maffei, B.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Melchiorri, A.; Melin, J.-B.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Noviello, F.; Novikov, D.; Novikov, I.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Sauvé, A.; Savelainen, M.; Savini, G.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tramonte, D.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    We have constructed all-sky Compton parameters maps, y-maps, of the thermal Sunyaev-Zeldovich (tSZ) effect by applying specifically tailored component separation algorithms to the 30 to 857 GHz frequency channel maps from the Planck satellite. These reconstructed y-maps are delivered as part of the Planck 2015 release. The y-maps are characterized in terms of noise properties and residual foreground contamination, mainly thermal dust emission at large angular scales, and cosmic infrared background and extragalactic point sources at small angular scales. Specific masks are defined to minimize foreground residuals and systematics. Using these masks, we compute the y-map angular power spectrum and higher order statistics. From these we conclude that the y-map is dominated by tSZ signal in the multipole range, 20 <ℓ< 600. We compare the measured tSZ power spectrum and higher order statistics to various physically motivated models and discuss the implications of our results in terms of cluster physics and cosmology.

  18. Discovery of γ-ray Emission from the Strongly Lobe-dominated Quasar 3C 275.1

    NASA Astrophysics Data System (ADS)

    Liao, Neng-Hui; Xin, Yu-Liang; Li, Shang; Jiang, Wei; Liang, Yun-Feng; Li, Xiang; Zhang, Peng-Fei; Chen, Liang; Bai, Jin-Ming; Fan, Yi-Zhong

    2015-07-01

    We systematically analyze the 6 year Fermi/Large Area Telescope (LAT) data on lobe-dominated quasars (LDQs) in the complete LDQ sample from the Revised third Cambridge Catalogue of Radio Sources (3CRR) survey and report the discovery of high-energy γ-ray emission from 3C 275.1. The γ-ray emission of 3C 207 is confirmed and significant variability of the light curve is identified. We do not find statistically significant γ-ray emission from other LDQs. 3C 275.1 is the known γ-ray quasar with the lowest core dominance parameter (i.e., R = 0.11). We also show that both the northern radio hotspot and parsec jet models can reasonably reproduce the γ-ray data. The parsec jet model, however, is favored by the potential γ-ray variability on a timescale of months. We suggest that some dimmer γ-ray LDQs will be detected in the future and LDQs could contribute non-ignorably to the extragalactic γ-ray background.

  19. Photometric Redshifts of High-z BL Lacs from 3FGL Catalog

    NASA Astrophysics Data System (ADS)

    Kaur, A.; Rau, Arne; Ajello, Marco; Paliya, Vaidehi; Hartmann, Dieter; Greiner, Jochen; Bolmer, Jan; Schady, Patricia

    2017-08-01

    Determining redshifts for BL Lacertae (BL Lac) objects using the traditional spectroscopic method is challenging due to the absence of strong emission lines in their optical spectra. We employ the photometric dropout technique to determine redshifts for this class of blazars using the combined 13 broad-band filters from Swift-UVOT and the multi-channel imager GROND at the MPG 2.2 m telescope at ESO's La Silla Observatory. The wavelength range covered by these 13 filters extends from far ultraviolet to the near-Infrared. We report results on 40 new Fermi detected BL Lacs with the photometric redshifts determinations for 5 sources, with 3FGL J1918.2-4110 being the most distance in our sample at z=2.16. Reliable upper limits are provided for 20 sources in this sample. Using the highest energy photons for these Fermi-LAT sources, we evaluate the consistency with the Gamma-ray horizon due to the extragalactic background light.

  20. Seeing Beyond the Naked Eye in a Planetarium

    NASA Astrophysics Data System (ADS)

    Fairall, A.

    2005-12-01

    I have a philosophy that the traditional naked-eye sky, as usually shown in planetariums, should only be an introductory step in portraying the Universe. Consequently, over the years I have produced 'inter alia' various versions of an enhanced Milky Way (the latest based on Axel Mellenger's panorama), the extragalactic sky and the radio sky for projection on planetarium domes. I also put together a three-dimensional planetarium show-the audience being equipped with ChromDepth(tm) spectacles- which stepped from the Solar System to the cosmic microwave background. The advent of digital technology now makes all this much easier. Currently, Labyrinth, a visualization program developed in-house, serves much the same function as the Hayden Planetarium's Partiview, but also permits rendering and fl y-throughs of large-scale structures. It allows viewers to explore local cosmography. Labyrinth can produce images that operate with the 3-D spectacles; we have also produced a version of Partiview that does the same.

Top