Martin, Derek; Cockell, Charles S
2015-02-01
Investigations of other planetary bodies, including Mars and icy moons such as Enceladus and Europa, show that they may have hosted aqueous environments in the past and may do so even today. Therefore, a major challenge in astrobiology is to build facilities that will allow us to study the geochemistry and habitability of these extraterrestrial environments. Here, we describe a simulation facility (PELS: Planetary Environmental Liquid Simulator) with the capability for liquid input and output that allows for the study of such environments. The facility, containing six separate sample vessels, allows for statistical replication of samples. Control of pressure, gas composition, UV irradiation conditions, and temperature allows for the precise replication of aqueous conditions, including subzero brines under martian atmospheric conditions. A sample acquisition system allows for the collection of both liquid and solid samples from within the chamber without breaking the atmospheric conditions, enabling detailed studies of the geochemical evolution and habitability of past and present extraterrestrial environments. The facility we describe represents a new frontier in planetary simulation-continuous flow-through simulation of extraterrestrial aqueous environments.
NASA Technical Reports Server (NTRS)
Olson, S. L.; Beeson, H.; Haas, J. P.
2003-01-01
The objective of this project is to modify the standard oxygen consumption (cone) calorimeter (described in ASTM E 1354 and NASA STD 6001 Test 2) to provide a reproducible bench-scale test environment that simulates the buoyant or ventilation flow that would be generated by or around a burning surface in a spacecraft or extraterrestrial gravity level. This apparatus will allow us to conduct normal gravity experiments that accurately and quantitatively evaluate a material's flammability characteristics in the real-use environment of spacecraft or extra-terrestrial gravitational acceleration. The Equivalent Low Stretch Apparatus (ELSA) uses an inverted cone geometry with the sample burning in a ceiling fire configuration that provides a reproducible bench-scale test environment that simulates the buoyant or ventilation flow that would be generated by a flame in a spacecraft or extraterrestrial gravity level. Prototype unit testing results are presented in this paper. Ignition delay times and regression rates for PMMA are presented over a range of radiant heat flux levels and equivalent stretch rates which demonstrate the ability of ELSA to simulate key features of microgravity and extraterrestrial fire behavior.
Liberty and the Limits to the Extraterrestrial State
NASA Astrophysics Data System (ADS)
Cockell, C. S.
The physical conditions that inhere in extraterrestrial environments have a tendency to drive society toward collectivist mechanisms of political and economic order to successfully cope with, and prevent possible disaster caused by, the lethal external conditions. Liberty will therefore be eroded by deliberate human action, through extraterrestrial authorities, and through a natural restriction in concepts of liberty that will attend the development and behaviour of people in confined environments. The emergence of extraterrestrial governance that nurtures liberty in outer space will require the formation of many institutions that encourage competition and reduce political and economic monopolies - with the legal system to sustain them. This problem is most clearly manifest in oxygen production. These considerations allow the purpose and limits of the extraterrestrial state and precursor forms of governance to be circumscribed. Far from being a purely speculative enquiry, this discussion allows requirements in physical architecture and social organisation to be identified that can be considered from the earliest stages of space exploration and settlement.
The effects of extraterrestrial environments on high voltage distribution
NASA Technical Reports Server (NTRS)
Gordon, Lloyd B.
1990-01-01
The problems encountered in the transmission of high-power (kilowatts to megawatts) in extraterrestrial environments are reviewed. A summary of the work at Auburn University in the study of these problems is presented. These studies include high-voltage breakdown in the space environment as influenced by gas contamination and thermal stress, the modeling of lunar transmission lines, particle contamination, and material degradation by the hypervelocity impact of microparticles.
Subglacial environments and the search for life beyond the Earth
NASA Astrophysics Data System (ADS)
Cockell, Charles S.; Bagshaw, Elizabeth; Balme, Matt; Doran, Peter; McKay, Christopher P.; Miljkovic, Katarina; Pearce, David; Siegert, Martin J.; Tranter, Martyn; Voytek, Mary; Wadham, Jemma
One of the most remarkable discoveries resulting from the robotic and remote sensing exploration of space is the inferred presence of bodies of liquid water under ice deposits on other planetary bodies: extraterrestrial subglacial environments. Most prominent among these are the ice-covered ocean of the Jovian moon, Europa, and the Saturnian moon, Enceladus. On Mars, although there is no current evidence for subglacial liquid water today, conditions may have been more favorable for liquid water during periods of higher obliquity. Data on these extraterrestrial environments show that while they share similarities with some subglacial environments on the Earth, they are very different in their combined physicochemical conditions. Extraterrestrial environments may provide three new types of subglacial settings for study: (1) uninhabitable environments that are more extreme and life-limiting than terrestrial subglacial environments, (2) environments that are habitable but are uninhabited, which can be compared to similar biotically influenced subglacial environments on the Earth, and (3) environments with examples of life, which will provide new opportunities to investigate the interactions between a biota and glacial environments.
The moral status of extraterrestrial life.
Persson, Erik
2012-10-01
If we eventually discover extraterrestrial life, do we have any moral obligations for how to treat the life-forms we find; does it matter whether they are intelligent, sentient, or just microbial-and does it matter that they are extraterrestrial? In this paper, I examine these questions by looking at two of the basic questions in moral philosophy: What does it take to be a moral object? and What has value of what kind? I will start with the first of these questions by looking at the most important attempts to answer this question on our own planet and by asking whether and how they could be applied to extraterrestrial life. The results range from a very strong protection of all extraterrestrial life and all extraterrestrial environments, whether inhabited or not, to total exclusion of extraterrestrial life. Subsequently, I also examine whether extraterrestrial life that lacks moral status can have value to human or alien life with moral status, and if that could generate any obligations for how to treat extraterrestrial life. Based on this analysis, I conclude that extraterrestrial life-forms can have both instrumental value and end value to moral objects, which has strong implications for how to treat them.
Engaging space: extraterrestrial architecture and the human psyche
NASA Astrophysics Data System (ADS)
Marie Seguin, Angel
2005-05-01
The human fascination with exploring and inhabiting the space that lies beyond Earth's atmosphere continues to grow. Nevertheless, 40 years of experience to date have clearly established that humans in outer space routinely suffer significant psychological impairment arising from their stressful extraterrestrial living conditions. This paper explores those extraterrestrial conditions through the interactions between the extraordinarily harsh environment of outer space, the sensations that humans encounter in space, and the qualities of a habitat that physically interposes itself between the two. The objective of this paper is to develop a habitat that expresses the extraterrestrial condition while supporting the mental health of its inhabitants, so as to augment the success of prolonged extraterrestrial residence and interplanetary travel.
Engaging space: extraterrestrial architecture and the human psyche.
Sequin, Angel Marie
2005-01-01
The human fascination with exploring and inhabiting the space that lies beyond Earth's atmosphere continues to grow. Nevertheless, 40 years of experience to date have clearly established that humans in outer space routinely suffer significant psychological impairment arising from their stressful extraterrestrial living conditions. This paper explores those extraterrestrial conditions through the interactions between the extraordinarily harsh environment of outer space, the sensations that humans encounter in space, and the qualities of a habitat that physically interposes itself between the two. The objective of this paper is to develop a habitat that expresses the extraterrestrial condition while supporting the mental health of its inhabitants, so as to augment the success of prolonged extraterrestrial residence and interplanetary travel. c2005 Elsevier Ltd. All rights reserved.
Rockballer Sample Acquisition Tool
NASA Technical Reports Server (NTRS)
Giersch, Louis R.; Cook, Brant T.
2013-01-01
It would be desirable to acquire rock and/or ice samples that extend below the surface of the parent rock or ice in extraterrestrial environments such as the Moon, Mars, comets, and asteroids. Such samples would allow measurements to be made further back into the geologic history of the rock, providing critical insight into the history of the local environment and the solar system. Such samples could also be necessary for sample return mission architectures that would acquire samples from extraterrestrial environments for return to Earth for more detailed scientific investigation.
Inventing Life-Forms: The Creation of an Extraterrestrial Species.
ERIC Educational Resources Information Center
Science Activities, 1996
1996-01-01
Presents activities in which students play the role of cadets performing missions for the fictitious SETI (Search for Extraterrestrial Intelligence) Academy. Guides students toward an understanding of evolutionary forces and how they are affected by the physical environment. (JRH)
Man and his spaceships: Vehicles for extraterrestrial colonization?
Siefert, Janet L
2012-11-01
The resiliency and adaptive ability of microbial life in real time on Earth relies heavily upon horizontal gene transfer. Based on that knowledge, how likely is earth based microbial life to colonize extraterrestrial targets such as Mars? To address this question, we consider manned and unmanned space exploration, the resident microbiota that is likely to inhabit those vehicles, the adaptive potential of that microbiota in an extraterrestrial setting especially with regards to mobile genetic elements, and the likelihood that Mars like environments could initiate and sustain colonization.
The Search for Extraterrestrial Intelligence.
ERIC Educational Resources Information Center
Jones, Barrie W.
2003-01-01
Traces the efforts of Searching for Extraterrestrial Technological Intelligence (SETI) since 1960 when a radio-telescope was used to see if any messages were being sent from the vicinity of two nearby stars. Describes attempts to detect microwave/optical signals and technological modification of the cosmic environment. (Author/KHR)
The Ethical Implications for Discovery of Extraterrestrial Life
NASA Astrophysics Data System (ADS)
Stuart, Jill
2012-05-01
Ethical frameworks seek to normatively structure our behaviour and preconstitute expectations with regards to moral activity towards each other as well as other creatures and even non-sentient objects such as the environment. This paper considers how ongoing ethical discussions relating to earth-based interactions can be used as analogies to inform nascent conversations about potential future encounters with extraterrestrial life—while also highlighting where these geocentric conversations may fail to capture the unique dynamics of potential extraterrestrial encounters. The paper specifically considers the spectrum of ethical frameworks currently used in earth-based interactions and how they might apply outside the geocentric referent; from ethics towards non- sentient life on earth such as plants and the environment; to ethics towards sentient but ‘unintelligent' life; to intelligent life nonetheless deemed less intelligent than humans. Next the paper considers interactions that we have yet to (knowingly) have encountered here on earth: the ethics of interactions with life more intelligent than ourselves; and finally the ethics of interaction with robotic ‘post-biological' forms, which some specialists in extraterrestrial communications have speculated will likely be the form of ‘creatures' to be encountered should contact with extraterrestrials ever be made. Finally the paper will address deeper philosophical-ethical questions about the significance of such an exercise in shifting ethical frameworks from an anthropocentric perspective.
NASA Technical Reports Server (NTRS)
Olson, S. L.; Beeson, H. D.; Haas, J. P.; Baas, J. S.
2004-01-01
The objective of this research is to modify the well-instrumented standard cone configuration to provide a reproducible bench-scale test environment that simulates the buoyant or ventilation flow that would be generated by or around a burning surface in a spacecraft or extraterrestrial gravity level. We will then develop a standard test method with pass-fail criteria for future use in spacecraft materials flammability screening. (For example, dripping of molten material will be an automatic fail.)
Safi, Taqiyyah S; Munday, Jeremy N
2015-09-21
The method of detailed balance, introduced by Shockley and Queisser, is often used to find an upper theoretical limit for the efficiency of semiconductor pn-junction based photovoltaics. Typically the solar cell is assumed to be at an ambient temperature of 300 K. In this paper, we describe and analyze the use of radiative cooling techniques to lower the solar cell temperature below the ambient to surpass the detailed balance limit for a cell in contact with an ideal heat sink. We show that by combining specifically designed radiative cooling structures with solar cells, efficiencies higher than the limiting efficiency achievable at 300 K can be obtained for solar cells in both terrestrial and extraterrestrial environments. We show that our proposed structure yields an efficiency 0.87% higher than a typical PV module at operating temperatures in a terrestrial application. We also demonstrate an efficiency advantage of 0.4-2.6% for solar cells in an extraterrestrial environment in near-earth orbit.
Detection of Extraterrestrial Ecology (Exoecology)
NASA Technical Reports Server (NTRS)
Jones, Harry; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
Researchers in the Astrobiology Technology Branch at Ames Research Center have begun investigating alternate concepts for the detection of extraterrestrial life. We suggest searching for extraterrestrial ecology, exoecology, as well as for extraterrestrial biology, exobiology. Ecology describes the interactions of living things with their environment. All ecosystems are highly constrained by their environment and are constrained by well-known system design principles. Ecology could exist wherever there is an energy source and living I things have discovered some means to capture, store, and use the available energy. Terrestrial ecosystems use as energy sources, light, organic molecules, and in thermal vents and elsewhere, simple inorganic molecules. Ecosystem behavior is controlled by matter and energy conservation laws and can be described by linear and nonlinear dynamic systems theory. Typically in an ecosystem different molecules are not in chemical equilibrium and scarce material is conserved, stored, or recycled. Temporal cycles and spatial variations are often observed. These and other -eneral principles of exoecology can help guide the search for extraterrestrial life. The chemical structure observed in terrestrial biology may be highly contingent on evolutionary accidents. Oxygen was not always abundant on Earth. Primitive sulfur bacteria use hydrogen sulfide and sulfur to perform photosynthesis instead of water and oxygen. Astrobiologists have assumed, for the sake of narrowing and focusing our life detection strategies, that extraterrestrial life will have detailed chemical similarities with terrestrial life. Such assumptions appear very reasonable and they allow us to design specific and highly sensitive life detection experiments. But the fewer assumptions we make, the less chance we have of being entirely wrong The best strategy for the detection of extraterrestrial life could be a mixed strategy. We should use detailed assumptions based on terrestrial biology to guide some but not all future searches for alien life. The systems principles of exoecology seem much more fundamental and inescapable than the terrestrial biology analogies of exobiology. We should search for exoecology as well as exobiology.
An Essay on Extraterrestrial Liberty
NASA Astrophysics Data System (ADS)
Cockell, C. S.
The lethal environmental conditions in outer space and the surfaces of other planetary bodies will force a need for regulations to maintain safety to an extent hitherto not seen on the Earth, even in polar environments. The level of inter-dependence between individuals that will emerge will provide mechanisms for exerting substantial control. In extraterrestrial environ- ments traditional buffers to tyranny that exist on the Earth are either absent or much weaker. Legislative and political mechanisms used to protect freedom will be needed to such a degree that they themselves are likely to become a form of despotism. Thus, the most profound irony of the settlement of space is that the endless and apparently free expanses of interplanetary and interstellar space will in fact allow for, and nurture, some of the most appalling tyrannies that human society can contrive. Thwarting this tyranny will be the greatest social challenge in the successful establishment of extraterrestrial settlements.
McKay, Christopher P.
2014-01-01
Abstract In this paper, we examine a restricted subset of the question of possible alien biochemistries. That is, we look into how different life might be if it emerged in environments similar to that required for life on Earth. We advocate a principle of chance and necessity in biochemistry. According to this principle, biochemistry is in some fundamental way the sum of two processes: there is an aspect of biochemistry that is an endowment from prebiotic processes, which represents the necessity, plus an aspect that is invented by the process of evolution, which represents the chance. As a result, we predict that life originating in extraterrestrial Earth-like environments will share biochemical motifs that can be traced back to the prebiotic world but will also have intrinsic biochemical traits that are unlikely to be duplicated elsewhere as they are combinatorially path-dependent. Effective and objective strategies to search for biomarkers, and evidence for a second genesis, on planets with Earth-like environments can be built based on this principle. Key Words: Origin of life—Biomarkers—Exobiology—Extraterrestrial life—Prebiotic chemistry. Astrobiology 14, 534–540. PMID:24867145
Physical and Chemical Aspects of Fire Suppression in Extraterrestrial Environments
NASA Technical Reports Server (NTRS)
Takahashi, F.; Linteris, G. T.; Katta, V. R.
2001-01-01
A fire, whether in a spacecraft or in occupied spaces on extraterrestrial bases, can lead to mission termination or loss of life. While the fire-safety record of US space missions has been excellent, the advent of longer duration missions to Mars, the moon, or aboard the International Space Station (ISS) increases the likelihood of fire events, with more limited mission termination options. The fire safety program of NASA's manned space flight program is based largely upon the principles of controlling the flammability of on-board materials and greatly eliminating sources of ignition. As a result, very little research has been conducted on fire suppression in the microgravity or reduced-gravity environment. The objectives of this study are: to obtain fundamental knowledge of physical and chemical processes of fire suppression, using gravity and oxygen concentration as independent variables to simulate various extraterrestrial environments, including spacecraft and surface bases in Mars and moon missions; to provide rigorous testing of analytical models, which include comprehensive descriptions of combustion and suppression chemistry; and to provide basic research results useful for technological advances in fire safety, including the development of new fire-extinguishing agents and approaches, in the microgravity environment associated with ISS and in the partial-gravity Martian and lunar environments.
NASA Astrophysics Data System (ADS)
De la Torre, Gabriel G.
2014-02-01
This study presents a new approach to the concept of cosmic consciousness integrated in current neuroscience knowledge and discusses implications for the search for extraterrestrial intelligence. It also examines different aspects related to consciousness and how it may play a key role in the understanding of the search for extraterrestrial intelligence and life in the Universe and its implications. Subjects (n=116) were college students from Spain, the United States, and Italy. Subjects responded to a questionnaire comprising five different sections: (A) religious beliefs, (B) environment and general opinion, (C) astronomy, (D) contact, and (E) attention and perception. The results showed the importance of several modular aspects that affect Space awareness in humans. Preliminary results are discussed with regard to current neuroscience, factor analysis, and possible implications for the understanding of contact with extraterrestrial intelligence. The roles of education, new search strategies, and possible contact scenarios are also discussed.
Mining cosmic dust from the blue ice lakes of Greenland
NASA Technical Reports Server (NTRS)
Maurette, M.; Brownlee, D. E.; Fehrenback, L.; Hammer, C.; Jehano, C.; Thomsen, H. H.
1985-01-01
Extraterrestrial material, most of which invisible settles to Earth's surface as dust particles smaller than a millimeter in size were investigated. Particles of 1/10 millimeter size fall at a rate of one/sq m/yr collection of extraterrestrial dust is important because the recovered cosmic dust particles can provide important information about comets. Comets are the most important source of dust in the solar system and they are probably the major source of extraterrestrial dust that is collectable at the Earth's surface. A new collection site for cosmic dust, in an environment where degradation by weathering is minimal is reported. It is found that the blue ice lakes on the Greenland ice cap provide an ideal location for collection of extraterrestrial dust particles larger than 0.1 mm in size. It is found that the lakes contain large amounts of cosmic dust which is much better preserved than similar particles recovered from the ocean floor.
Technology Of Controlled-Environment Agriculture
NASA Technical Reports Server (NTRS)
Bubenheim, David L.; Bates, Maynard E.
1995-01-01
Report discusses controlled-environment agriculture (CEA) for commercial production of organisms, whether plants or animals. Practiced in greenhouses to produce food on nonarable lands. Describes conceptual regenerative system that incorporates biological, physical, and chemical processes to support humans in extraterrestrial environments.
The development of extraterrestrial civilizations and physical laws
NASA Astrophysics Data System (ADS)
Troitskii, V. S.
Consideration is given to the limiting characteristics of extraterrestrial civilizations as allowed by physical laws, and to the possible pathways and levels of development of such civilizations. The concept of an extraterrestrial civilization is defined in terms of the exchange of information, energy and matter both within a community of intelligent beings and between the community and its environment. The possible characteristics of such a civilization are then examined, including amount of populated space, population and population density, energy requirements and supply, information content, transportation capacity and lifetimes, and it is shown that the space occupiable by an extraterrestrial civilization is limited to the space around its star, due to the finite velocity of transport processes. The development of a type II civilization, making use of energy on the order of that put out by its star, is then examined, and constraints on energy production in such a civilization making impossible the establishment of an omnidirectional radio beacon detectable throughout the Galaxy are pointed out.
NASA Astrophysics Data System (ADS)
Bainbridge, William Sims
2010-01-01
This essay introduces the opportunity for theory development and even empirical research on some aspects of astrosociology through today's online virtual worlds. The examples covered present life on other planets or in space itself, in a manner that can be experienced by the user and where the user's reactions may simulate to some degree future human behavior in real extraterrestrial environments: Tabula Rasa, Anarchy Online, Entropia Universe, EVE Online, StarCraft and World of Warcraft. Ethnographic exploration of these computerized environments raises many questions about the social science both of space exploration and of direct contact with extraterrestrials. The views expressed in this essay do not necessarily represent the views of the National Science Foundation or the United States.
Siefert, Janet L.
2012-01-01
The resiliency and adaptive ability of microbial life in real time on Earth relies heavily upon horizontal gene transfer. Based on that knowledge, how likely is earth based microbial life to colonize extraterrestrial targets such as Mars? To address this question, we consider manned and unmanned space exploration, the resident microbiota that is likely to inhabit those vehicles, the adaptive potential of that microbiota in an extraterrestrial setting especially with regards to mobile genetic elements, and the likelihood that Mars like environments could initiate and sustain colonization. PMID:23481263
NASA Technical Reports Server (NTRS)
Westall, Frances; Steele, Andrew; Toporski, Jan; Walsh, Maud; Allen, Carlton; Guidry, Sean; McKay, David; Gibson, Everett; Chafetz, Henry
2000-01-01
Bacterial biofilms are almost ubiquitous in terrestrial environments, many similar to past or present Martian environments. Together with ToF-SIMS analysis of the in situ organics, fossil biofilms constitute reliable biomarkers.
Autonomous Assembly of Modular Structures in Space and on Extraterrestrial Locations
NASA Astrophysics Data System (ADS)
Alhorn, Dean C.
2005-02-01
The new U.S. National Vision for Space Exploration requires many new enabling technologies to accomplish the goals of space commercialization and returning humans to the moon and extraterrestrial environments. Traditionally, flight elements are complete sub-systems requiring humans to complete the integration and assembly. These bulky structures also require the use of heavy launch vehicles to send the units to a desired location. This philosophy necessitates a high degree of safety, numerous space walks at a significant cost. Future space mission costs must be reduced and safety increased to reasonably achieve exploration goals. One proposed concept is the autonomous assembly of space structures. This concept is an affordable, reliable solution to in-space and extraterrestrial assembly. Assembly is autonomously performed when two components join after determining that specifications are correct. Local sensors continue monitor joint integrity post assembly, which is critical for safety and structural reliability. Achieving this concept requires a change in space structure design philosophy and the development of innovative technologies to perform autonomous assembly. Assembly of large space structures will require significant numbers of integrity sensors. Thus simple, low-cost sensors are integral to the success of this concept. This paper addresses these issues and proposes a novel concept for assembling space structures autonomously. Core technologies required to achieve in space assembly are presented. These core technologies are critical to the goal of utilizing space in a cost efficient and safe manner. Additionally, these novel technologies can be applied to other systems both on earth and extraterrestrial environments.
Autonomous Assembly of Modular Structures in Space and on Extraterrestrial Locations
NASA Technical Reports Server (NTRS)
Alhorn, Dean C.
2005-01-01
The new U.S. National Vision for Space Exploration requires many new enabling technologies to accomplish the goals of space commercialization and returning humans to the moon and extraterrestrial environments. Traditionally, flight elements are complete subsystems requiring humans to complete the integration and assembly. These bulky structures also require the use of heavy launch vehicles to send the units to a desired location. This philosophy necessitates a high degree of safety, numerous space walks at a significant cost. Future space mission costs must be reduced and safety increased to reasonably achieve exploration goals. One proposed concept is the autonomous assembly of space structures. This concept is an affordable, reliable solution to in-space and extraterrestrial assembly. Assembly is autonomously performed when two components join after determining that specifications are correct. Local sensors continue monitor joint integrity post assembly, which is critical for safety and structural reliability. Achieving this concept requires a change in space structure design philosophy and the development of innovative technologies to perform autonomous assembly. Assembly of large space structures will require significant numbers of integrity sensors. Thus simple, low-cost sensors are integral to the success of this concept. This paper addresses these issues and proposes a novel concept for assembling space structures autonomously. Core technologies required to achieve in space assembly are presented. These core technologies are critical to the goal of utilizing space in a cost efficient and safe manner. Additionally, these novel technologies can be applied to other systems both on earth and extraterrestrial environments.
Extraterrestrial Organic Chemistry: From the Interstellar Medium to the Origins of Life
NASA Technical Reports Server (NTRS)
Pohorille, Andrew; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
Extraterrestrially delivered organics in the origin of cellular life. Various processes leading to the emergence of cellular life from organics delivered from space to earth or other planetary bodies in the solar system will be reviewed. The focus will be on: (1) self-assembly of amphiphilic material to vesicles and other structures, such as micelles and multilayers, and its role in creating environments suitable for chemical catalysis, (2) a possible role of extraterrestrial delivery of organics in the formation of the simplest bioenergetics (3) mechanisms leading from amino acids or their precursors to simple peptides and, subsequently, to the evolution of metabolism. These issues will be discussed from two opposite points of view: (1) Which molecules could have been particularly useful in the protobiological evolution; this may provide focus for searching for these molecules in interstellar media. (2) Assuming that a considerable part of the inventory of organic matter on the early earth was delivered extraterrestrially, what does relative abundance of different organics in space tell us about the scenario leading to the origin of life.
Estimation, modeling, and simulation of patterned growth in extreme environments.
Strader, B; Schubert, K E; Quintana, M; Gomez, E; Curnutt, J; Boston, P
2011-01-01
In the search for life on Mars and other extraterrestrial bodies or in our attempts to identify biological traces in the most ancient rock record of Earth, one of the biggest problems facing us is how to recognize life or the remains of ancient life in a context very different from our planet's modern biological examples. Specific chemistries or biological properties may well be inapplicable to extraterrestrial conditions or ancient Earth environments. Thus, we need to develop an arsenal of techniques that are of broader applicability. The notion of patterning created in some fashion by biological processes and properties may provide such a generalized property of biological systems no matter what the incidentals of chemistry or environmental conditions. One approach to recognizing these kinds of patterns is to look at apparently organized arrangements created and left by life in extreme environments here on Earth, especially at various spatial scales, different geologies, and biogeochemical circumstances.
NASA Technical Reports Server (NTRS)
Olson, S. L.
2004-01-01
NASA's current method of material screening determines fire resistance under conditions representing a worst-case for normal gravity flammability - the Upward Flame Propagation Test (Test 1). Its simple pass-fail criteria eliminates materials that burn for more than 12 inches from a standardized ignition source. In addition, if a material drips burning pieces that ignite a flammable fabric below, it fails. The applicability of Test 1 to fires in microgravity and extraterrestrial environments, however, is uncertain because the relationship between this buoyancy-dominated test and actual extraterrestrial fire hazards is not understood. There is compelling evidence that the Test 1 may not be the worst case for spacecraft fires, and we don t have enough information to assess if it is adequate at Lunar or Martian gravity levels.
NASA Technical Reports Server (NTRS)
Olson, S. L.
2004-01-01
NASA s current method of material screening determines fire resistance under conditions representing a worst-case for normal gravity flammability - the Upward Flame Propagation Test (Test 1[1]). Its simple pass-fail criteria eliminates materials that burn for more than 12 inches from a standardized ignition source. In addition, if a material drips burning pieces that ignite a flammable fabric below, it fails. The applicability of Test 1 to fires in microgravity and extraterrestrial environments, however, is uncertain because the relationship between this buoyancy-dominated test and actual extraterrestrial fire hazards is not understood. There is compelling evidence that the Test 1 may not be the worst case for spacecraft fires, and we don t have enough information to assess if it is adequate at Lunar or Martian gravity levels.
Essay on the Causes and Consequences of Extraterrestrial Tyranny
NASA Astrophysics Data System (ADS)
Cockell, C. S.
The construction of societies in space in which liberty can be preserved requires that the reasons for the emergence of despotism are identified. Tyranny will emerge from the historical origins of extraterrestrial society and the way in which early communities must be developed technically. It will receive encouragement from the imposing nature of the extraterrestrial environment - its extreme physical characteristics and vast spatial scales that encourage social isolation and autarky. It will flourish in the very culture of a new society in which the laws of physics force people to engage in the most traditional forms of revolutionary activity, such as inventing new calendars. Preventing the emergence of tyranny will not merely be essential for the freedom of people in such societies: the continuity of liberty on the Earth may depend ultimately upon the successful propagation of liberty in space.
NASA Technical Reports Server (NTRS)
Jamieson, C. S.; Guo, Y.; Gu, X.; Zhang, F.; Bennett, C. J.; Kaiser, R. I.
2006-01-01
A detailed knowledge of the formation of carbon-bearing molecules in interstellar ices and in the gas phase of the interstellar medium is of paramount interest to understand the astrochemical evolution of extraterrestrial environments (1). This research also holds strong implications to comprehend the chemical processing of Solar System environments such as icy planets and their moons together with the atmospheres of planets and their satellites (2). Since the present composition of each interstellar and Solar System environment reflects the matter from which it was formed and the processes which have changed the chemical nature since the origin (solar wind, planetary magnetospheres, cosmic ray exposure, photolysis, chemical reactions), a detailed investigation of the physicochemical mechanisms altering the pristine environment is of paramount importance to grasp the contemporary composition. Once these underlying processes have been unraveled, we can identify those molecules, which belonged to the nascent setting, distinguish molecular species synthesized in a later stage, and predict the imminent chemical evolution of, for instance, molecular clouds. Laboratory experiments under controlled physicochemical conditions (temperature, pressure, chemical composition, high energy components) present ideal tools for simulating the chemical evolution of interstellar and Solar System environments. Here, laboratory experiments can predict where and how (reaction mechanisms; chemicals necessary) in extraterrestrial environments and in the interstellar medium complex, carbon bearing molecules can be formed on interstellar grains and in the gas phase. This paper overviews the experimental setups utilized in our laboratory to mimic the chemical processing of gas phase and solid state (ices) environments. These are a crossed molecular beams machine (3) and a surface scattering setup (4). We also present typical results of each setup (formation of amino acids, aldehydes, epoxides; synthesis of hydrogen terminated carbon chains as precursors to complex PAHs and to carbonaceous dust grains in general; nitriles as precursor to amino acids).
Multidisciplinary research leading to utilization of extraterrestrial resources
NASA Technical Reports Server (NTRS)
1972-01-01
Progress of the research accomplished during fiscal year 1972 is reported. The summaries presented include: (1) background analysis and coordination, (2) surface properties of rock in simulated lunar environment, (3) rock failure processes, strength and elastic properties in simulated lunar environment, (4) thermal fragmentation, and thermophysical and optical properties in simulated lunar environment, and (5) use of explosives on the moon.
Cosmochemistry: Understanding the Solar System through analysis of extraterrestrial materials.
MacPherson, Glenn J; Thiemens, Mark H
2011-11-29
Cosmochemistry is the chemical analysis of extraterrestrial materials. This term generally is taken to mean laboratory analysis, which is the cosmochemistry gold standard because of the ability for repeated analysis under highly controlled conditions using the most advanced instrumentation unhindered by limitations in power, space, or environment. Over the past 40 y, advances in technology have enabled telescopic and spacecraft instruments to provide important data that significantly complement the laboratory data. In this special edition, recent advances in the state of the art of cosmochemistry are presented, which range from instrumental analysis of meteorites to theoretical-computational and astronomical observations.
Davila, Alfonso F; McKay, Christopher P
2014-06-01
In this paper, we examine a restricted subset of the question of possible alien biochemistries. That is, we look into how different life might be if it emerged in environments similar to that required for life on Earth. We advocate a principle of chance and necessity in biochemistry. According to this principle, biochemistry is in some fundamental way the sum of two processes: there is an aspect of biochemistry that is an endowment from prebiotic processes, which represents the necessity, plus an aspect that is invented by the process of evolution, which represents the chance. As a result, we predict that life originating in extraterrestrial Earth-like environments will share biochemical motifs that can be traced back to the prebiotic world but will also have intrinsic biochemical traits that are unlikely to be duplicated elsewhere as they are combinatorially path-dependent. Effective and objective strategies to search for biomarkers, and evidence for a second genesis, on planets with Earth-like environments can be built based on this principle.
Experimental methods for studying microbial survival in extraterrestrial environments.
Olsson-Francis, Karen; Cockell, Charles S
2010-01-01
Microorganisms can be used as model systems for studying biological responses to extraterrestrial conditions; however, the methods for studying their response are extremely challenging. Since the first high altitude microbiological experiment in 1935 a large number of facilities have been developed for short- and long-term microbial exposure experiments. Examples are the BIOPAN facility, used for short-term exposure, and the EXPOSE facility aboard the International Space Station, used for long-term exposure. Furthermore, simulation facilities have been developed to conduct microbiological experiments in the laboratory environment. A large number of microorganisms have been used for exposure experiments; these include pure cultures and microbial communities. Analyses of these experiments have involved both culture-dependent and independent methods. This review highlights and discusses the facilities available for microbiology experiments, both in space and in simulation environments. A description of the microorganisms and the techniques used to analyse survival is included. Finally we discuss the implications of microbiological studies for future missions and for space applications. Copyright 2009 Elsevier B.V. All rights reserved.
Extraterrestrial Radiation Chemistry and Molecular Astronomy
NASA Technical Reports Server (NTRS)
Hudson, Reggie L.; Moore, Marla H.
2009-01-01
Astronomical observations of both solar system and interstellar regions have revealed a rich chemical inventory that includes most classes of organic molecules and selected inorganics. For example, gas-phase ethylene glycol and SOz have been observed by astronomers, while solidphase detections include OCS, H2O2 , and the cyanate anion.' All of these are found in environments that are, by earthly standards, exceedingly hostile: temperatures of 10 - 100 K, miniscule densities, and near-ubiquitous ionizing-radiation fields. Beyond the simplest chemical species, these conditions have made it difficult-to-impassible to account for the observed molecular abundances using gas-phase chemistry, suggesting solid-phase reactions play an important role. In extraterrestrial environments, cosmic rays, UV photons, and magnetospheric radiation all drive chemical reactions, even at cryogenic temperatures. To study this chemistry, radiation astrochemists conduct experiments on icy materials, frozen under vacuum and exposed to sources such as keV electrons and MeV protons. Compositional changes usually are followed with IR spectroscopy and, in selected cases, more-sensitive mass-spectral techniques. This talk will review some recent results on known and suspected extraterrestrial molecules and ions. Spectra and reaction pathways will be presented, and predictions made for interstellar chemistry and the chemistry of selected solar system objects. Some past radiation-chemical contributions, and future needs, will be explored.
Stevenson, Andrew; Burkhardt, Jürgen; Cockell, Charles S; Cray, Jonathan A; Dijksterhuis, Jan; Fox-Powell, Mark; Kee, Terence P; Kminek, Gerhard; McGenity, Terry J; Timmis, Kenneth N; Timson, David J; Voytek, Mary A; Westall, Frances; Yakimov, Michail M; Hallsworth, John E
2015-02-01
Since a key requirement of known life forms is available water (water activity; aw ), recent searches for signatures of past life in terrestrial and extraterrestrial environments have targeted places known to have contained significant quantities of biologically available water. However, early life on Earth inhabited high-salt environments, suggesting an ability to withstand low water-activity. The lower limit of water activity that enables cell division appears to be ∼ 0.605 which, until now, was only known to be exhibited by a single eukaryote, the sugar-tolerant, fungal xerophile Xeromyces bisporus. The first forms of life on Earth were, though, prokaryotic. Recent evidence now indicates that some halophilic Archaea and Bacteria have water-activity limits more or less equal to those of X. bisporus. We discuss water activity in relation to the limits of Earth's present-day biosphere; the possibility of microbial multiplication by utilizing water from thin, aqueous films or non-liquid sources; whether prokaryotes were the first organisms able to multiply close to the 0.605-aw limit; and whether extraterrestrial aqueous milieux of ≥ 0.605 aw can resemble fertile microbial habitats found on Earth. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.
Astrobiological Research on Tardigrades: Implications for Extraterrestrial Life Forms
NASA Astrophysics Data System (ADS)
Horikawa, D. D.
2013-11-01
Tardigrades have been considered as a model for astrobiological studies based on their tolerance to extreme environments. Future research on tardigrades might provide important insight into the possibilities of existence of multicellular life forms.
Microbial Life in the Deep Subsurface: Deep, Hot and Radioactive
NASA Technical Reports Server (NTRS)
DeStefano, Andrea L.; Ford, Jill C.; Winsor, Seana K.; Allen, Carlton C.; Miller, Judith; McNamara, Karen M.; Gibson, Everett K., Jr.
2000-01-01
Recent studies, motivated in part by the search for extraterrestrial life, continue to expand the recognized limits of Earth's biosphere. This work explored evidence for life a high-temperature, radioactive environment in the deep subsurface.
Identification of Extraterrestrial Microbiology
NASA Technical Reports Server (NTRS)
Flynn, Michael; Rasky, Daniel J. (Technical Monitor)
1998-01-01
Many of the key questions addressed in the field of Astrobiology are based upon the assumption that life exists, or at one time existed, in locations throughout the universe. However, this assumption is just that, an assumption. No definitive proof exists. On Earth, life has been found to exist in many diverse environment. We believe that this tendency towards diversity supports the assumption that life could exists throughout the universe. This paper provides a summary of several innovative techniques for the detection of extraterrestrial life forms. The primary questions addressed are does life currently exist beyond Earth and if it does, is that life evolutionary related to life on Earth?
Cosmochemistry: Understanding the Solar System through analysis of extraterrestrial materials
MacPherson, Glenn J.; Thiemens, Mark H.
2011-01-01
Cosmochemistry is the chemical analysis of extraterrestrial materials. This term generally is taken to mean laboratory analysis, which is the cosmochemistry gold standard because of the ability for repeated analysis under highly controlled conditions using the most advanced instrumentation unhindered by limitations in power, space, or environment. Over the past 40 y, advances in technology have enabled telescopic and spacecraft instruments to provide important data that significantly complement the laboratory data. In this special edition, recent advances in the state of the art of cosmochemistry are presented, which range from instrumental analysis of meteorites to theoretical–computational and astronomical observations. PMID:22128323
Extremophiles and the search for extraterrestrial life.
Cavicchioli, Ricardo
2002-01-01
Extremophiles thrive in ice, boiling water, acid, the water core of nuclear reactors, salt crystals, and toxic waste and in a range of other extreme habitats that were previously thought to be inhospitable for life. Extremophiles include representatives of all three domains (Bacteria, Archaea, and Eucarya); however, the majority are microorganisms, and a high proportion of these are Archaea. Knowledge of extremophile habitats is expanding the number and types of extraterrestrial locations that may be targeted for exploration. In addition, contemporary biological studies are being fueled by the increasing availability of genome sequences and associated functional studies of extremophiles. This is leading to the identification of new biomarkers, an accurate assessment of cellular evolution, insight into the ability of microorganisms to survive in meteorites and during periods of global extinction, and knowledge of how to process and examine environmental samples to detect viable life forms. This paper evaluates extremophiles and extreme environments in the context of astrobiology and the search for extraterrestrial life.
NASA Technical Reports Server (NTRS)
Hutt, L. D.; Glavin, D. P.; Bada, J. L.; Mathies, R. A.
1999-01-01
Chiral separations of fluorescein isothiocyanate-labeled amino acids have been performed on a microfabricated capillary electrophoresis chip to explore the feasibility of using such devices to analyze for extinct or extant life signs in extraterrestrial environments. The test system consists of a folded electrophoresis channel (19.0 cm long x 150 microns wide x 20 microns deep) that was photolithographically fabricated in a 10-cm-diameter glass wafer sandwich, coupled to a laser-excited confocal fluorescence detection apparatus providing subattomole sensitivity. Using a sodium dodecyl sulfate/gamma-cyclodextrin pH 10.0 carbonate electrophoresis buffer and a separation voltage of 550 V/cm at 10 degrees C, baseline resolution was observed for Val, Ala, Glu, and Asp enantiomers and Gly in only 4 min. Enantiomeric ratios were determined for amino acids extracted from the Murchison meteorite, and these values closely matched values determined by HPLC. These results demonstrate the feasibility of using microfabricated lab-on-a-chip systems to analyze extraterrestrial samples for amino acids.
Miller, Thomas Martin; de Wet, Wouter C.; Patton, Bruce W.
2015-10-28
In this study, a computational assessment of the variation in terrestrial neutron and photon background from extraterrestrial sources is presented. The motivation of this assessment is to evaluate the practicality of developing a tool or database to estimate background in real time (or near–real time) during an experimental measurement or to even predict the background for future measurements. The extraterrestrial source focused on during this assessment is naturally occurring galactic cosmic rays (GCRs). The MCNP6 transport code was used to perform the computational assessment. However, the GCR source available in MCNP6 was not used. Rather, models developed and maintained bymore » NASA were used to generate the GCR sources. The largest variation in both neutron and photon background spectra was found to be caused by changes in elevation on Earth's surface, which can be as large as an order of magnitude. All other perturbations produced background variations on the order of a factor of 3 or less. The most interesting finding was that ~80% and 50% of terrestrial background neutrons and photons, respectively, are generated by interactions in Earth's surface and other naturally occurring and man-made objects near a detector of particles from extraterrestrial sources and their progeny created in Earth's atmosphere. In conclusion, this assessment shows that it will be difficult to estimate the terrestrial background from extraterrestrial sources without a good understanding of a detector's surroundings. Therefore, estimating or predicting background during a measurement environment like a mobile random search will be difficult.« less
Germination of Spores of Astrobiologically Relevant Bacillus Species in High-Salinity Environments
NASA Astrophysics Data System (ADS)
Nagler, Katja; Julius, Christina; Moeller, Ralf
2016-07-01
In times of increasing space exploration and search for extraterrestrial life, new questions and challenges for planetary protection, aiming to avoid forward contamination of different planets or moons with terrestrial life, are emerging. Spore-forming bacteria such as Bacillus species have a high contamination potential due to their spores' extreme resistance, enabling them to withstand space conditions. Spores require liquid water for their conversion into a growing cell (i.e., spore germination and subsequent growth). If present, water on extraterrestrial planets or moons is likely to be closely associated with salts (e.g., in salty oceans or brines), thus constituting high-salinity environments. Spores of Bacillus subtilis can germinate despite very high salt concentrations, although salt stress does exert negative effects on this process. In this study, germination and metabolic reactivation ("outgrowth") of spores of five astrobiologically relevant Bacillus species (B. megaterium, B. pumilus SAFR-032, B. nealsonii, B. mojavensis, and B. vallismortis) in high salinity (≤3.6 M NaCl) were investigated. Spores of different species exhibited different germination and outgrowth capabilities in high salinity, which strongly depended on germination conditions, especially the exact composition of the medium. In this context, a new "universal" germination trigger for Bacillus spores, named KAGE (KCl, L-alanine, D-glucose, ectoine), was identified, which will be very useful for future comparative germination and outgrowth studies on different Bacillus species. Overall, this study yielded interesting new insights on salt stress effects on spore germination and points out the difficulty of predicting the potential of spores to contaminate salty environments on extraterrestrial celestial bodies.
Wolff, Silje A; Coelho, Liz H; Karoliussen, Irene; Jost, Ann-Iren Kittang
2014-05-05
Due to logistical challenges, long-term human space exploration missions require a life support system capable of regenerating all the essentials for survival. Higher plants can be utilized to provide a continuous supply of fresh food, atmosphere revitalization, and clean water for humans. Plants can adapt to extreme environments on Earth, and model plants have been shown to grow and develop through a full life cycle in microgravity. However, more knowledge about the long term effects of the extraterrestrial environment on plant growth and development is necessary. The European Space Agency (ESA) has developed the Micro-Ecological Life Support System Alternative (MELiSSA) program to develop a closed regenerative life support system, based on micro-organisms and higher plant processes, with continuous recycling of resources. In this context, a literature review to analyze the impact of the space environments on higher plants, with focus on gravity levels, magnetic fields and radiation, has been performed. This communication presents a roadmap giving directions for future scientific activities within space plant cultivation. The roadmap aims to identify the research activities required before higher plants can be included in regenerative life support systems in space.
Wolff, Silje A.; Coelho, Liz H.; Karoliussen, Irene; Jost, Ann-Iren Kittang
2014-01-01
Due to logistical challenges, long-term human space exploration missions require a life support system capable of regenerating all the essentials for survival. Higher plants can be utilized to provide a continuous supply of fresh food, atmosphere revitalization, and clean water for humans. Plants can adapt to extreme environments on Earth, and model plants have been shown to grow and develop through a full life cycle in microgravity. However, more knowledge about the long term effects of the extraterrestrial environment on plant growth and development is necessary. The European Space Agency (ESA) has developed the Micro-Ecological Life Support System Alternative (MELiSSA) program to develop a closed regenerative life support system, based on micro-organisms and higher plant processes, with continuous recycling of resources. In this context, a literature review to analyze the impact of the space environments on higher plants, with focus on gravity levels, magnetic fields and radiation, has been performed. This communication presents a roadmap giving directions for future scientific activities within space plant cultivation. The roadmap aims to identify the research activities required before higher plants can be included in regenerative life support systems in space. PMID:25370192
AIAA/MSFC Symposium on Space Industrialization: Proceedings
NASA Technical Reports Server (NTRS)
1976-01-01
Current and projected technologies required for utilizing extraterrestrial environments to produce energy, information, or materials and provide services of value on Earth or to Earth are discussed. Topics include: space habitats, space transportation, materials processing, solar space power, and exoindustrial management concepts.
Publications of the exobiology program for 1984: A special bibliography
NASA Technical Reports Server (NTRS)
Wallace, J. S. (Compiler); Devincenzi, D. L. (Compiler)
1986-01-01
A bibliography of NASA exobiology programs is given. Planetary environments; chemical evolution; organic geochemistry; extraterrestrial intelligence; and the effect of planetary solar and astrophysical phenomena on the evolution of complex life in the universe are among the topics listed.
NASA Technical Reports Server (NTRS)
Jones, Harry
2001-01-01
Exobiochemistry is the putative biochemistry of extraterrestrial life. It suggests the possible energy and material bases of extraterrestrial life and could help detect it. The diverse biochemistry of Earth indicates that a wide range of exobiochemistry is possible on other planets. An exobiochemistry will probably use the same energy sources as Earths ecology, light, biological organic material, and more rarely abiotic chemicals. Extraterrestrial life will be based on familiar chemical principles and probably capture, store, and release energy using oxidation-reduction reactions. Extraterrestrial life will give chemical indications of its existence. Key elements will be concentrated, stored, and recycled, altering their availability and isotopic composition. Any significant departure from chemical equilibrium would be good evidence for exobiochemistry, but an integrated system of departures from the expected equilibrium would be better. Exobiochemistry can be expected to include closed biogeochemical cycles of the major life supporting elements and may well show the complex dynamic close-coupled interactions that characterize the terrestrial biosphere. Terrestrial biochemistry provides a basis for generalization and extrapolation but it does not set bounds on exobiochemistry. In exobiochemistry we can expect: 1. closed chemical cycles that recycle materials, nutrients, and catalysts, 2. organisms with complementary metabolisms that cooperate to close the chemical cycles, 3. a high probability of a carbon and water chemistry, but some possibility of a non-carbon or non-water chemistry in extreme environments, and, 4. life similar to bacteria more prevalent than higher plants and animals.
Aerospace Medicine and Biology: A Continuing Bibliography. Supplement 474
NASA Technical Reports Server (NTRS)
1998-01-01
This bibliography lists reports, articles and other documents recently introduced into the NASA scientific and technical information database. Subject coverage includes: Aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life and flightcrew behavior and performance.
ERIC Educational Resources Information Center
Maxey, E. Stanton
1977-01-01
Biometeorology is the study of the relations between meteorological factors, physico-chemical systems and living organisms, and the indirect effects of the physical, chemical, and physico-chemical environments of the earth's atmosphere and of similar extraterrestrial space upon physico-chemical systems and living organisms. This article discusses…
Handbook of human engineering design data for reduced gravity conditions
NASA Technical Reports Server (NTRS)
Marton, T.; Rudek, F. P.; Miller, R. A.; Norman, D. G.
1971-01-01
A Handbook is presented for the use of engineers, designers, and human factors specialists during the developmental and detailed design phases of manned spacecraft programs. Detailed and diverse quantified data on man's capabilities and tolerances for survival and productive effort in the extraterrestrial environment are provided. Quantified data and information on the space environment as well as the characteristics of the vehicular or residential environment required to support man in outer space are also given.
NASA Technical Reports Server (NTRS)
Olson, S. L.; Beeson, H. D.; Haas, J. P.; Baas, J. S.
2004-01-01
The standard oxygen consumption (cone) calorimeter (described in ASTM E 1354 and NASA STD 6001 Test 2) is modified to provide a bench-scale test environment that simulates the low velocity buoyant or ventilation flow generated by or around a burning surface in a spacecraft or extraterrestrial gravity level. The Equivalent Low Stretch Apparatus (ELSA) uses an inverted cone geometry with the sample burning in a ceiling fire (stagnation flow) configuration. For a fixed radiant flux, ignition delay times for characterization material PMMA are shown to decrease by a factor of three at low stretch, demonstrating that ignition delay times determined from normal cone tests significantly underestimate the risk in microgravity. The critical heat flux for ignition is found to be lowered at low stretch as the convective cooling is reduced. At the limit of no stretch, any heat flux that exceeds the surface radiative loss at the surface ignition temperature is sufficient for ignition. Regression rates for PMMA increase with heat flux and stretch rate, but regression rates are much more sensitive to heat flux at the low stretch rates, where a modest increase in heat flux of 25 kW/m2 increases the burning rates by an order of magnitude. The global equivalence ratio of these flames is very fuel rich, and the quantity of CO produced in this configuration is significantly higher than standard cone tests. These results [2] demonstrate the ELSA apparatus allows us to conduct normal gravity experiments that accurately and quantifiably evaluate a material s flammability characteristics in the real-use environment of spacecraft or extra-terrestrial gravitational acceleration. These results also demonstrate that current NASA STD 6001 Test 2 (standard cone) is not conservative since it evaluates materials flammability with a much higher inherent buoyant convective flow.
NASA Astrophysics Data System (ADS)
Qi, Bin; Guo, Linli; Zhang, Zhixian
2016-07-01
Space life science and life support engineering are prominent problems in manned deep space exploration mission. Some typical problems are discussed in this paper, including long-term life support problem, physiological effect and defense of varying extraterrestrial environment. The causes of these problems are developed for these problems. To solve these problems, research on space life science and space medical-engineering should be conducted. In the aspect of space life science, the study of space gravity biology should focus on character of physiological effect in long term zero gravity, co-regulation of physiological systems, impact on stem cells in space, etc. The study of space radiation biology should focus on target effect and non-target effect of radiation, carcinogenicity of radiation, spread of radiation damage in life system, etc. The study of basic biology of space life support system should focus on theoretical basis and simulating mode of constructing the life support system, filtration and combination of species, regulation and optimization method of life support system, etc. In the aspect of space medical-engineering, the study of bio-regenerative life support technology should focus on plants cultivation technology, animal-protein production technology, waste treatment technology, etc. The study of varying gravity defense technology should focus on biological and medical measures to defend varying gravity effect, generation and evaluation of artificial gravity, etc. The study of extraterrestrial environment defense technology should focus on risk evaluation of radiation, monitoring and defending of radiation, compound prevention and removal technology of dust, etc. At last, a case of manned lunar base is analyzed, in which the effective schemes of life support system, defense of varying gravity, defense of extraterrestrial environment are advanced respectively. The points in this paper can be used as references for intensive study on key technologies.
Germination of Spores of Astrobiologically Relevant Bacillus Species in High-Salinity Environments.
Nagler, Katja; Julius, Christina; Moeller, Ralf
2016-07-01
In times of increasing space exploration and search for extraterrestrial life, new questions and challenges for planetary protection, aiming to avoid forward contamination of different planets or moons with terrestrial life, are emerging. Spore-forming bacteria such as Bacillus species have a high contamination potential due to their spores' extreme resistance, enabling them to withstand space conditions. Spores require liquid water for their conversion into a growing cell (i.e., spore germination and subsequent growth). If present, water on extraterrestrial planets or moons is likely to be closely associated with salts (e.g., in salty oceans or brines), thus constituting high-salinity environments. Spores of Bacillus subtilis can germinate despite very high salt concentrations, although salt stress does exert negative effects on this process. In this study, germination and metabolic reactivation ("outgrowth") of spores of five astrobiologically relevant Bacillus species (B. megaterium, B. pumilus SAFR-032, B. nealsonii, B. mojavensis, and B. vallismortis) in high salinity (≤3.6 M NaCl) were investigated. Spores of different species exhibited different germination and outgrowth capabilities in high salinity, which strongly depended on germination conditions, especially the exact composition of the medium. In this context, a new "universal" germination trigger for Bacillus spores, named KAGE (KCl, L-alanine, D-glucose, ectoine), was identified, which will be very useful for future comparative germination and outgrowth studies on different Bacillus species. Overall, this study yielded interesting new insights on salt stress effects on spore germination and points out the difficulty of predicting the potential of spores to contaminate salty environments on extraterrestrial celestial bodies. Bacillus species-Spores-Germination-High salinity-Salt stress-NaCl-Inhibition. Astrobiology 16, 500-512.
NASA Technical Reports Server (NTRS)
Olson, S. L.; Beeson, H.; Haas, J.
2001-01-01
One of the performance goals for NASA's enterprise of Human Exploration and Development of Space (HEDS) is to develop methods, data bases, and validating tests for material flammability characterization, hazard reduction, and fire detection/suppression strategies for spacecraft and extraterrestrial habitats. This work addresses these needs by applying the fundamental knowledge gained from low stretch experiments to the development of a normal gravity low stretch material flammability test method. The concept of the apparatus being developed uses the low stretch geometry to simulate the conditions of the extraterrestrial environment through proper scaling of the sample dimensions to reduce the buoyant stretch in normal gravity. The apparatus uses controlled forced-air flow to augment the low stretch to levels which simulate Lunar or Martian gravity levels. In addition, the effect of imposed radiant heat flux on material flammability can be studied with the cone heater. After breadboard testing, the apparatus will be integrated into NASA's White Sands Test Facility's Atmosphere-Controlled Cone Calorimeter for evaluation as a new materials screening test method.
Cooperative Robotics and the Search for Extraterrestrial Life
NASA Technical Reports Server (NTRS)
Lupisella, M. L.
2000-01-01
If we think tenuous abodes of life may be hiding in remote extraterrestrial environmental niches, and if we want to assess the biological status of a given locale or entire planet before sending humans (perhaps because of contamination concerns or other motivations) then we face the challenge of robotically exploring a large space efficiently and in enough detail to have confidence in our assessment of the biological status of the environment in question. On our present schedule of perhaps two or so missions per opportunity, we will likely need a different exploratory approach than singular stationary landers or singular rover missions or sample return, because there appear to be fundamental limitations in these mission profiles to obtain the many samples we will likely need if we want to have confidence in assessing the biological status of an environment in which life could be hiding in remote environmental niches. Singular rover missions can potentially accommodate sampling over a fairly large area, but are still limited by range and can be a single point of failure. More importantly, such mission profiles have limited payload capabilities which are unlikely to meet the demanding requirements of life-detection. Sample return has the advantage of allowing sophisticated analysis of the sample, but also has the severe limitations associated with only being able to bring back a few samples. This presentation will suggest two cooperative robotic approaches for exploration that have the potential to overcome these difficulties and facilitate efficient and thorough life-detecting exploration of a large space. Given the two premises stated above, it appears at least two fundamental challenges have to be met simultaneously: (1) coverage of a large space and (2) bringing to bear a sophisticated suite of detection and experimental payloads on any specific location in order to address a major challenge in looking for extraterrestrial life: namely, executing a wide variety of detection scenarios and in situ experiments in order to gather the required data for a confident assessment that life has been detected and to, more generally, cover a wide range of extraterrestrial life possibilities. Cooperative robotics lends itself to this kind of problem because cooperation among the combined capabilities of a variety of simple single function agents can give rise to fairly complex task execution such as the search for and detection of extraterrestrial life.
Cooperative Robotics and the Search for Extraterrestrial Life
NASA Technical Reports Server (NTRS)
Lupisella, Mark L.
2000-01-01
If we think tenuous abodes of life may be hiding in remote extraterrestrial environmental niches, and if we want to assess the biological status of a given locale or entire planet before sending humans (perhaps because of contamination concerns or other motivations) then we face the challenge of robotically exploring a large space efficiently and in enough detail to have confidence in our assessment of the biological status of the environment in question. On our present schedule of perhaps two or so missions per opportunity, we will likely need a different exploratory approach than singular stationary landers or singular rover missions or sample return, because there appear to be fundamental limitations in these mission profiles to-obtain the many samples we will likely need if we want to have confidence in assessing the biological status of an environment in which life could be hiding in remote environmental niches. Singular rover missions can potentially accommodate sampling over a fairly large area, but are still limited by range and can be a single point of failure. More importantly, such mission profiles have limited payload capabilities which are unlikely to meet the demanding requirements of life-detection. Sample return has the advantage of allowing sophisticated analysis of the sample, but also has the severe limitations associated with only being able to bring back a few samples. This presentation will suggest two cooperative robotic approaches for exploration that have the potential to overcome these difficulties and facilitate efficient and thorough life-detecting exploration of a large space. Given the two premises state above, it appears at least two fundamental challenges have to be met simultaneously: coverage of a large space and bringing to bear a sophisticated suite of detection and experimental payloads on any specific location in order to address a major challenge in looking for extraterrestrial life: namely, executing a wide variety of detection scenarios and in situ experiments in order to gather the required data for a confident assessment that life has been detected and to, more generally, cover a wide range of extraterrestrial life possibilities. Cooperative robotics ]ends itself to this kind of problem because cooperation among the combined capabilities of a variety of simple single function agents can give rise to fairly complex task execution such as the search for and detection of extraterrestrial life.
Hydrogen-oxygen proton-exchange membrane fuel cells and electrolyzers
NASA Technical Reports Server (NTRS)
Baldwin, R.; Pham, M.; Leonida, A.; Mcelroy, J.; Nalette, T.
1990-01-01
A flight experiment is planned for the validation, in a microgravity environment, of several ground-proven simplification features relating to SPE fuel cells and SPE electrolyzers. With a successful experiment, these features can be incorporated into equipment designs for specific extraterrestrial energy storage applications.
Sea ice, extremophiles and life on extra-terrestrial ocean worlds
NASA Astrophysics Data System (ADS)
Martin, Andrew; McMinn, Andrew
2018-01-01
The primary aim of this review is to highlight that sea-ice microbes would be capable of occupying ice-associated biological niches on Europa and Enceladus. These moons are compelling targets for astrobiological exploration because of the inferred presence of subsurface oceans that have persisted over geological timescales. Although potentially hostile to life in general, Europa and Enceladus may still harbour biologically permissive domains associated with the ice, ocean and seafloor environments. However, validating sources of free energy is challenging, as is qualifying possible metabolic processes or ecosystem dynamics. Here, the capacity for biological adaptation exhibited by microorganisms that inhabit sea ice is reviewed. These ecosystems are among the most relevant Earth-based analogues for considering life on ocean worlds because microorganisms must adapt to multiple physicochemical extremes. In future, these organisms will likely play a significant role in defining the constraints on habitability beyond Earth and developing a mechanistic framework that contrasts the limits of Earth's biosphere with extra-terrestrial environments of interest.
Concepts of Life in the Contexts of Mars
NASA Technical Reports Server (NTRS)
Des Marais, D. J.
2014-01-01
The search for habitable environments and life requires a working concept of life's fundamental attributes. This concept helps to identify the "services" that an environment must provide to sustain life. We must consider the possibility that extraterrestrial life might differ fundamentally from our own, but it is still worthwhile to begin by hypothesizing attributes of life that might be universal versus ones that reflect local solutions to survival on Earth.
Fire Safety in Extraterrestrial Environments
NASA Technical Reports Server (NTRS)
Friedman, Robert
1998-01-01
Despite rigorous fire-safety policies and practices, fire incidents are possible during lunar and Martian missions. Fire behavior and hence preventive and responsive safety actions in the missions are strongly influenced by the low-gravity environments in flight and on the planetary surfaces. This paper reviews the understanding and key issues of fire safety in the missions, stressing flame spread, fire detection, suppression, and combustion performance of propellants produced from Martian resources.
Protection of the Lifeless Environment in the Solar System
NASA Astrophysics Data System (ADS)
Almar, I.
The main concern of planetary protection policy is how to protect the (hypothetical) extraterrestrial life against contamination and back-contamination. There is almost no interest in the preservation of the existing lifeless surfaces of extraterrestrial bodies, although some planetary transformation plans (in order to exploit hypothetical resources) were made public a long time ago. It should be remembered that planetary environments are practically unchanged since ages and damage caused by any human intervention would be irreversible. Our intention is not to prevent any commercial utilization of Solar System resources, but to make space exploration and exploitation of resources a controlled and well planned endeavor. The three main issues connected with the protection of the lifeless space environment are the following: 1/ The scientific aspect: a limited, well defined initiative to select by scientific investigation areas and objects of highest scientific priority on different celestial bodies. 2/ The legal aspect: to start the drafting of a declaration of principles supporting the protection of selected areas and objects on celestial bodies with a solid surface. It might evolve into an international legal instrument or treaty in order to limit the "free-for-all" intervention and use of Solar System resources. 3/ The societal aspect: to initiate a large scale discussion on the possible "ethical values" of the lifeless environment.
Skeleton growth under uniformly distributed force conditions: producing spherical sea urchins
NASA Astrophysics Data System (ADS)
Cheng, Polly; Kambli, Ankita; Stone, Johnny
2017-10-01
Sea urchin skeletons, or tests, comprise rigid calcareous plates, interlocked and sutured together with collagen fibres. The tests are malleable due to mutability in the collagen fibres that loosen during active feeding, yielding interplate gaps. We designed an extraterrestrial simulation experiment wherein we subjected actively growing sea urchins to one factor associated with zero-gravity environments, by growing them under conditions in which reactionary gravitational forces were balanced, and observed how their tests responded. Preventing tests from adhering to surfaces during active growth produced more-spherical bodies, realized as increased height-to-diameter ratios. Sea urchin tests constitute ideal systems for obtaining data that could be useful in extraterrestrial biology research, particularly in how skeletons grow under altered-gravity conditions.
The Preservation of "Non-Biological" Environments in the Solar System
NASA Astrophysics Data System (ADS)
Hargrove, Eugene
Nature preservation will be a central element of the exploration of the Solar System, whether this emphasis is initially planned for or not. Exploration of extraterrestrial environments will generate images and scientific information that will excite the imagination of the general public throughout the world and be supportive of more funding for exploration. However, damage to the environments visited, once made public, will likely generate a backlash against exploration programs that could inhibit exploration or even bring it completely to an end. The exploration in the nineteenth century of the western United States, with landscapes aesthetically very different from those found in Europe but very similar to those existing on the Moon and on Mars, provides an excellent indication of what will happen in off-planet exploration. Nearly every place painted by a major artist or photographed by a photographer on a geological survey during that time period is today a national park or national monument. If extraterrestrial environments are not protected, the major space societies that are currently enthusiastically supportive of space agencies around the world could become political opponents, much as the Sierra Club evolved into a serious and effective critic of the U.S. Forest Service and National Park Service in the United States. At a minimum, space agencies must be protective of the historical landing sites on the Moon, avoid strip mining on the Moon that may draw criticism, and protect major features on Mars from damage, such as the Cydonian Face on Mars, Valles Marineris, the grand canyon of Mars, and Olympus Mons, a mountain three times as tall as Mount Everest. A good first step might be to establish a world-heritage-style site to protect the visible side of the Moon. Although extraterrestrial sites may initially be labeled "non-biological," caution must be taken to be protective of possible extraterrestrial life, active or dormant, even in the most unlikely places. Such concern will not pose a great burden, given that such life will most likely be microbial, and the concern will be for the preservation of species, not for the protection of the individual members of those species (eliminating any need to deal with the animal liberation and animal rights movements). The battle cry will be about the "wanton destruction" of species, not about the "unnecessary suffering" of animals. Because nature preservation has been a political reality for nearly two centuries, concern for the preservation of off-planet environments can be expected to be more intense than it was in the late nineteenth and early twentieth centuries and more effective in its impact once it begins.
Polymerization of Building Blocks of Life on Europa and Other Icy Moons
Kitadai, Norio
2015-01-01
Abstract The outer Solar System may provide a potential habitat for extraterrestrial life. Remote sensing data from the Galileo spacecraft suggest that the jovian icy moons—Europa, Ganymede, and possibly Callisto—may harbor liquid water oceans underneath their icy crusts. Although compositional information required for the discussion of habitability is limited because of significantly restricted observation data, organic molecules are ubiquitous in the Universe. Recently, in situ spacecraft measurements and experiments suggest that amino acids can be formed abiotically on interstellar ices and comets. These amino acids could be continuously delivered by meteorite or comet impacts to icy moons. Here, we show that polymerization of organic monomers, in particular amino acids and nucleotides, could proceed spontaneously in the cold environment of icy moons, in particular the jovian icy moon Europa as a typical example, based on thermodynamic calculations, though kinetics of formation are not addressed. Observed surface temperature on Europa is 120 and 80 K in the equatorial region and polar region, respectively. At such low temperatures, Gibbs energies of polymerization become negative, and the estimated thermal structure of the icy crust should contain a shallow region (i.e., at a depth of only a few kilometers) favorable for polymerization. Investigation of the possibility of organic monomer polymerization on icy moons could provide good constraints on the origin and early evolution of extraterrestrial life. Key Words: Planetary science—Europa—Planetary habitability and biosignatures—Extraterrestrial life—Extraterrestrial organic compounds. Astrobiology 15, 430–441. PMID:26060981
Extraterrestrial Impact Episodes and Archaean to Early Proterozoic (3.8 2.4 Ga) Habitats of Life
NASA Astrophysics Data System (ADS)
Glikson, Andrew
The terrestrial record is punctuated by major clustered asteroid and comet impacts, which affected the appearance, episodic extinction, radiation, and reemergence of biogenic habitats. Here I examine manifest and potential extraterrestrial impact effects on the onset and evolution of Archaean to early Proterozoic (3.8- 2.4-Ga) habitats, with reference to the Pilbara (Western Australia) and Kaapvaal (eastern Transvaal) Cratons. The range of extraterrestrial connections of microbial habitats includes cometary contribution of volatiles and amino acids, sterilization by intense asteroid and comet bombardment, supernova and solar flares, and impacttriggered volcanic and hydrothermal activity, tectonic modifications, and tsunami effects. Whereas cometary dusting of planetary atmosphere may contribute littlemodi fied extraterrestrial organic components, large impact effects result in both incineration of organic molecules and shock synthesis of new components. From projected impact incidence, ~1.3% of craters >100 km and ~3.8% of craters >250 km have to date been identified for post-3.8-Ga events, due to the mm-scale of impact spherules and the difficulty in their identification in the field - only the tip of the iceberg is observed regarding the effects of large impacts on the Precambrian biosphere, to date no direct or genetic relations between impacts and the onset or extinction of early Precambrian habitats can be confirmed. However, potential relations include (1) ~3.5-3.43 Ga - intermittent appearance of stromatolite-like structures of possible biogenic origin on felsic volcanic shoals representing intervals between mafic volcanic episodes in rapidly subsiding basins, a period during which asteroid impacts are recorded; (2) ~3.26-3.225 Ga - impact-triggered crustal transformation from mafic-ultramafic volcanic environments to rifted troughs dominated by felsic volcanics and turbidites, marked by a major magmatic peak, resulting in extensive hydrothermal activity and development of sulphate-reducing microbes around anoxic submarine fumarole ("black smoker") environments; (3) ~2.63-2.47 Ga - impact-triggered tsunami effects in oxygenated carbonate-dominated epicontinental and intracratonic environments (Hamersley and Transvaal basins); (4) in at least three instances onset of ferruginous sedimentation closely following major impact events, possibly signifying hydrothermal Fe-enrichment related to impact-triggered volcanic activity. Due to limitations on the phylogenic speciation of Precambrian stromatolite and bacterial populations, major impact-extinction-radiation relations are identified only from the late Proterozoic, beginning with the ~0.
Aerospace medicine and biology: A continuing bibliography with indexes (supplement 355)
NASA Technical Reports Server (NTRS)
1991-01-01
This bibliography lists 147 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during October, 1991. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance.
Aerospace medicine and biology: A continuing bibliography with indexes (supplement 324)
NASA Technical Reports Server (NTRS)
1989-01-01
This bibliography lists 200 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during May, 1989. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance.
Aerospace medicine and biology: A continuing bibliography with indexes (supplement 342)
NASA Technical Reports Server (NTRS)
1990-01-01
This bibliography lists 208 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during October 1990. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance.
Aerospace medicine and biology: A continuing bibliography with indexes (supplement 325)
NASA Technical Reports Server (NTRS)
1989-01-01
This bibliography lists 192 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during June, 1989. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance.
Aerospace medicine and biology: A continuing bibliography with indexes (supplement 339)
NASA Technical Reports Server (NTRS)
1989-01-01
This bibliography lists 105 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during July 1990. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance.
Aerospace medicine and biology: A continuing bibliography with indexes (supplement 336)
NASA Technical Reports Server (NTRS)
1990-01-01
This bibliography lists 111 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during April 1990. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance.
Aerospace medicine and biology: A continuing bibliography with indexes (supplement 341)
NASA Technical Reports Server (NTRS)
1990-01-01
This bibliography lists 133 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during September 1990. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance.
Aerospace medicine and biology: A continuing bibliography with indexes (supplement 323)
NASA Technical Reports Server (NTRS)
1989-01-01
This bibliography lists 125 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during April, 1989. Subject coverage includes; aerospace medicine and psychology, life support systems and controlled environments, safety equipment exobiology and extraterrestrial life, and flight crew behavior and performance.
Aerospace medicine and biology: A continuing bibliography with indexes (supplement 333)
NASA Technical Reports Server (NTRS)
1990-01-01
This bibliography lists 122 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during January, 1990. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance.
Aerospace medicine and biology: A continuing bibliography with indexes (supplement 326)
NASA Technical Reports Server (NTRS)
1989-01-01
This bibliography lists 108 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during July, 1989. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance.
Aerospace medicine and biology: A continuing bibliography with indexes (supplement 347)
NASA Technical Reports Server (NTRS)
1989-01-01
This bibliography lists 166 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Feb. 1991. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance.
Aerospace medicine and biology: A continuing bibliography with indexes (supplement 351)
NASA Technical Reports Server (NTRS)
1991-01-01
This bibliography lists 255 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Jun. 1991. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance.
Aerospace Medicine and Biology: a Continuing Bibliography with Indexes (supplement 330)
NASA Technical Reports Server (NTRS)
1989-01-01
This bibliography lists 156 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System during November 1989. Subject coverage includes: aerospace medicine and psychology, life support system and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance.
Aerospace Medicine and Biology. Suppl-329; A Continuing Bibliography with Indexes
NASA Technical Reports Server (NTRS)
1989-01-01
This bibliography lists 184 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during October 1989. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance.
Aerospace Medicine and Biology: a Continuing Bibliography with Indexes (Supplement 328)
NASA Technical Reports Server (NTRS)
1989-01-01
This bibliography lists 104 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during September, 1989. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance.
Aerospace medicine and biology: A continuing bibliography with indexes (supplement 344)
NASA Technical Reports Server (NTRS)
1991-01-01
This bibliography lists 125 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during January, 1989. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance.
Aerospace medicine and biology: A continuing bibliography with indexes (supplement 343)
NASA Technical Reports Server (NTRS)
1990-01-01
This bibliography lists 125 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during January, 1989. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance.
Aerospace medicine and biology: A continuing bibliography with indexes (supplement 331)
NASA Technical Reports Server (NTRS)
1990-01-01
This bibliography lists 129 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during December, 1989. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance.
Aerospace medicine and biology: A continuing bibliography with indexes (supplement 356)
NASA Technical Reports Server (NTRS)
1991-01-01
This bibliography lists 192 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during November 1991. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance.
Aerospace medicine and biology: A continuing bibliography with indexes (supplement 338)
NASA Technical Reports Server (NTRS)
1990-01-01
This bibliography lists 139 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during June 1990. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance.
Aerospace medicine and biology: A continuing bibliography with indexes (supplement 337)
NASA Technical Reports Server (NTRS)
1990-01-01
This bibliography lists 400 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during May 1990. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance.
Aerospace medicine and biology: A continuing bibliography with indexes (supplement 327)
NASA Technical Reports Server (NTRS)
1989-01-01
This bibliography lists 127 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during August, 1989. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance.
Aerospace medicine and biology: A continuing bibliography with indexes (supplement 354)
NASA Technical Reports Server (NTRS)
1991-01-01
This bibliography lists 225 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during September, 1991. Subject coverage includes aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance.
Aerospace medicine and biology: A continuing bibliography with indexes (supplement 334)
NASA Technical Reports Server (NTRS)
1989-01-01
This bibliography lists 254 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during February, 1990. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance.
Aerospace medicine and biology: A continuing bibliography with indexes (supplement 346)
NASA Technical Reports Server (NTRS)
1989-01-01
This bibliography lists 134 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Jan. 1991. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance.
Aerospace medicine and biology: A continuing bibliography with indexes (supplement 349)
NASA Technical Reports Server (NTRS)
1991-01-01
This bibliography lists 149 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during April, 1991. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance.
Aerospace medicine and biology: A continuing bibliography with indexes (supplement 352)
NASA Technical Reports Server (NTRS)
1991-01-01
This bibliography lists 147 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during July 1991. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance.
Aerospace medicine and biology: A continuing bibliography with indexes (supplement 340)
NASA Technical Reports Server (NTRS)
1989-01-01
This bibliography lists 157 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during August 1990. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance.
Aerospace medicine and biology: A continuing bibliography with indexes (supplement 350)
NASA Technical Reports Server (NTRS)
1991-01-01
This bibliography lists 152 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during May 1991. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance.
Aerospace medicine and biology: A continuing bibliography with indexes (supplement 320)
NASA Technical Reports Server (NTRS)
1989-01-01
This bibliography lists 125 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during January, 1989. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance.
Aerospace medicine and biology: A continuing bibliography with indexes (supplement 335)
NASA Technical Reports Server (NTRS)
1989-01-01
This bibliography lists 143 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during March, 1990. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance.
Aerospace medicine and biology: A continuing bibliography with indexes (supplement 348)
NASA Technical Reports Server (NTRS)
1991-01-01
This bibliography lists 154 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during Mar. 1991. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance.
NASA Technical Reports Server (NTRS)
Akapo, S. O.; Dimandja, J. M.; Kojiro, D. R.; Valentin, J. R.; Carle, G. C.
1999-01-01
Gas chromatography has proven to be a very useful analytical technique for in situ analysis of extraterrestrial environments as demonstrated by its successful operation on spacecraft missions to Mars and Venus. The technique is also one of the six scientific instruments aboard the Huygens probe to explore Titan's atmosphere and surface. A review of gas chromatography in previous space missions and some recent developments in the current environment of fiscal constraints and payload size limitations are presented.
A search for extraterrestrial eukaryotes: physical and paleontological aspects.
Chela-Flores, J
1998-10-01
Physical and biochemical aspects of a proposed search for extraterrestrial eukaryotes (SETE) are considered. Such a program should approach the distinction between a primitive eukaryote and an archaebacteria. The emphasis on gene silencing suggests a possible assay suitable for a robotic investigation of eukaryoticity, so as to be able to decide whether the first steps towards eukaryogenesis have been taken in an extraterrestrial planet, or satellite. The experiment would consist of searching for cellular division and the systematic related delay in replication of heterochromatic chromosome segments. It should be noticed that the direct search for a membrane-bounded set of chromosomes does not necessarily determine eukaryotic identity, as there are prokaryotes that have membrane-bounded nucleoids. A closer look at the protein fraction of chromatin (mainly histones) does not help either, as there are some eukaryotes that may lack histones; there are also some bacteria as well as archaebacteria with histone-like proteins in their nucleoids. Comments on the recent suggestion of possible environments for a SETE program are discussed: the deep crust of Mars, and the Jovian satellite Europa, provided the existence of an ocean under its ice-covered surface is confirmed by the current Galileo mission.
Question 2: why an astrobiological study of titan will help us understand the origin of life.
Raulin, Francois
2007-10-01
For understanding the origin(s) of life on Earth it is essential to search for and study extraterrestrial environments where some of the processes which participated in the emergence of Life on our planet are still occurring. This is one of the goals of astrobiology. In that frame, the study of extraterrestrial organic matter is essential and is certainly not of limited interest regarding prebiotic molecular evolution. Titan, the largest satellite of Saturn and the only planetary body with an atmosphere similar to that of the Earth is one of the places of prime interest for these astrobiological questions. It presents many analogies with the primitive Earth, and is a prebiotic-like laboratory at the planetary scale, where a complex organic chemistry in is currently going on.
Swami, Viren; Furnham, Adrian; Haubner, Tanja; Stieger, Stefan; Voracek, Martin
2009-02-01
Previous investigators of extraterrestrial beliefs have relied on single-item scales, which limit the researchers' understanding of such beliefs. The present authors report responses to a 37-item scale about extraterrestrial beliefs from 320 participants in Austria and 257 participants in Britain. A factor analysis revealed 3 primary factors that were stable across sites: (a) belief that extraterrestrial life has visited Earth and that governmental agencies have knowledge of this fact, (b) scientific search for extraterrestrial life, and (c) general beliefs about the existence of extraterrestrial life. Participants rated only Factor 3 positively, suggesting that there is a distinction between paranormal-related beliefs and science-related beliefs. The authors found only political orientation and religiosity to be significantly correlated with factor scores. They discuss their results in relation to previous reports of extraterrestrial beliefs.
NASA Astrophysics Data System (ADS)
Race, Margaret
2012-07-01
As COSPAR scientists deliberate what types of frameworks and policy approaches may be applicable to future activities by various sectors in space exploration, it also needs to consider the challenging question of what ethical values and foundations should be used in dealing with life, objects and activities in outer space. A 2010 COSPAR Workshop Report on Ethical Considerations for Planetary Protection in Space Exploration recommended that it is appropriate to maintain the existing PP policy aimed at scientific concerns even as we begin to explore various practical approaches to future contamination avoidance policies. It is also appropriate to examine in parallel the ethical considerations applicable to potential indigenous extraterrestrial life, non-living extraterrestrial features and environments, and planned uses and activities involving diverse life from Earth. Since numerous sectors have begun to propose activities raising varied ethical concerns (e.g., protection and management on the moon, strip mining, space synthetic biology, space code of conduct, and commercial space transport), it is timely to initiate serious international discussions about the appropriate ethical foundations and questions applicable to future space exploration. Plans are underway for convening interdisciplinary work groups to explore and deliberate on the values (e.g., intrinsic and instrumental) and ethical foundations that are appropriate for use in deliberations involving potential indigenous extraterrestrial life and the different classes of target objects and environments in our solar system. More than ever, information on bioethics, environmental ethics and geoethics will provide helpful guidance and foundational approaches of relevance to future policy deliberations that seek to go beyond science protection per se.
Identification, Characterization, and Exploration of Environments for Life on Mars
NASA Technical Reports Server (NTRS)
Acevedo, Sara E.
2002-01-01
A bibliography (18 references) listing the publications during the current grant period of The Center for the Study of Life in the Universe, part of the SETI (Search for Extraterrestrial Intelligence) Institute is presented. The publications, from the Period of Performance September 1, 2000 to February 28, 2002, primarily cover Mars and its potential for life, as well as extreme environments and primitive life forms on Earth. One of the publications covers Europa and the Galileo spacecraft.
Aerospace medicine and biology: A continuing bibliography with indexes (supplement 353)
NASA Technical Reports Server (NTRS)
1989-01-01
This bibliography lists 238 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System in August 1991. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, biotechnology, human factors engineering, and flight crew behavior and performance.
Horneck, G
1995-01-01
The primary goal of exobiological research is to reach a better understanding of the processes leading to the origin, evolution and distribution of life on Earth or elsewhere in the universe. In this endeavour, scientists from a wide variety of disciplines are involved, such as astronomy, planetary research, organic chemistry, palaeontology and the various subdisciplines of biology including microbial ecology and molecular biology. Space technology plays an important part by offering the opportunity for exploring our solar system, for collecting extraterrestrial samples, and for utilizing the peculiar environment of space as a tool. Exobiological activities include comparison of the overall pattern of chemical evolution of potential precursors of life, in the interstellar medium, and on the planets and small bodies of our solar system; tracing the history of life on Earth back to its roots; deciphering the environments of the planets in our solar system and of their satellites, throughout their history, with regard to their habitability; searching for other planetary systems in our Galaxy and for signals of extraterrestrial civilizations; testing the impact of space environment on survivability of resistant life forms. This evolutionary approach towards understanding the phenomenon of life in the context of cosmic evolution may eventually contribute to a better understanding of the processes regulating the interactions of life with its environment on Earth.
NASA Astrophysics Data System (ADS)
Davis, Justin; Howard, Hillari; Hoover, Richard B.; Sabanayagam, Chandran R.
2010-09-01
Extremophiles are microorganisms that have adapted to severe conditions that were once considered devoid of life. The extreme settings in which these organisms flourish on Earth resemble many extraterrestrial environments. Identification and classification of extremophiles in situ (without the requirement for excessive handling and processing) can provide a basis for designing remotely operated instruments for extraterrestrial life exploration. An important consideration when designing such experiments is to prevent contamination of the environments. We are developing a reference spectral database of autofluorescence from microbial extremophiles using long-UV excitation (408 nm). Aromatic compounds are essential components of living systems, and biological molecules such as aromatic amino acids, nucleotides, porphyrins and vitamins can also exhibit fluorescence under long-UV excitation conditions. Autofluorescence spectra were obtained from a light microscope that additionally allowed observations of microbial geometry and motility. It was observed that all extremophiles studied displayed an autofluorescence peak at around 470 nm, followed by a long decay that was species specific. The autofluorescence database can potentially be used as a reference to identify and classify past or present microbial life in our solar system.
NASA Technical Reports Server (NTRS)
Sabanayagam, Chandran; Howard, Hillari; Hoover, Richard B.
2010-01-01
Extremophiles are microorganisms that have adapted to severe conditions that were once considered devoid of life. The extreme settings in which these organisms flourish on earth resemble many extraterrestrial environments. Identification and classification of extremophiles in situ (without the requirement for excessive handling and processing) can provide a basis for designing remotely operated instruments for extraterrestrial life exploration. An important consideration when designing such experiments is to prevent contamination of the environments. We are developing a reference spectral database of autofluorescence from microbial extremophiles using long-UV excitation (405 nm). Aromatic compounds are essential components of living systems, and biological molecules such as aromatic amino acids, nucleotides, porphyrins and vitamins can also exhibit fluorescence under long-UV excitation conditions. Autofluorescence spectra were obtained from a confocal microscope that additionally allowed observations of microbial geometry and motility. It was observed that all extremophiles studied displayed an autofluorescence peak at around 470 nm, followed by a long decay that was species specific. The autofluorescence database can potentially be used as a reference to identify and classify past or present microbial life in our solar system.
The Formation of Nucleobases from the UV Irradiation of Astrophysical Ice Analogs
NASA Technical Reports Server (NTRS)
Materese, C. K.; Nuevo, M.; Sandford, S. A.
2017-01-01
Nucleobases are the fundamental information bearing components of both RNA and DNA. They are central to all known terrestrial life and they are generally conserved between species. Biological nucleobases can be divided into two groups based on the N-heterocyclic molecules pyrimidine (uracil, cytosine, and thymine) and purine (adenine and guanine) respectively. Do date, no experimental conditions have been determined that could produce both pyrimidines and purines together, abiotically, in a ter-restrial environment or an early terrestrial analog. Organic materials produced in extraterrestrial envi-ronments may have been delivered to the primitive earth by comets and meteorites and may have contrib-uted to the emergence of life. To date, some, but not all nucleobases have been detected in meteorites and their isotopic signatures may be consistent with an extraterrestrial origin. Earlier work in our lab demonstrated that it is possible to produce all of the pyrimidine group nucleobases from the UV-irradiation of pyrimidine in astrophysically relevant ice analogs. Here we report our most recent work, which studied the formation of the purine group nucleobases under similar conditions.
The Role of Extraterrestrial Materials in the Origin of Life
NASA Technical Reports Server (NTRS)
Sandford, Scott A.
2016-01-01
It has been well established for some time now that C-rich organic materials are relatively common in a number of environments in space. This is known through the telescopic detection of these materials using spectroscopy techniques in the infrared and sub-millimeter wavelength ranges and through the identification of organics in extraterrestrial materials. Extraterrestrial materials in which organics have been found include collected meteorites and interplanetary dust particles, and samples returned by NASA spacecraft from comets. These organics are produced by a variety of astrochemical processes. Despite their abiotic origins, these organic materials of are considerable interest to astrobiology for several reasons. First, organic materials of any composition are important as a means of delivering the elements C, H, O, and N to the surfaces of newly formed planets, and these elements are likely critical to the origin and subsequent evolution of life (certainly for life as we know it). In addition, it is clear that at least a portion of the organics found in space are in the form of molecules that play important roles in modern biology - for example, molecules like amino acids, amphiphiles, quinones, etc. Thus, the delivery of extraterrestrial organics to planetary surfaces brings not only bulk C, H, O, and N, but also molecular complexity in forms that are potentially useful for the origin and early evolution of life. This suggests that the production and delivery of cosmic organic compounds may have played key roles in the origin of life on Earth and, by extension, on other planets in the universe.
Astromaterials Acquisition and Curation Office (KT) Overview
NASA Technical Reports Server (NTRS)
Allen, Carlton
2014-01-01
The Astromaterials Acquisition and Curation Office has the unique responsibility to curate NASA's extraterrestrial samples - from past and forthcoming missions - into the indefinite future. Currently, curation includes documentation, preservation, physical security, preparation, and distribution of samples from the Moon, asteroids, comets, the solar wind, and the planet Mars. Each of these sample sets has a unique history and comes from a unique environment. The curation laboratories and procedures developed over 40 years have proven both necessary and sufficient to serve the evolving needs of a worldwide research community. A new generation of sample return missions to destinations across the solar system is being planned and proposed. The curators are developing the tools and techniques to meet the challenges of these new samples. Extraterrestrial samples pose unique curation requirements. These samples were formed and exist under conditions strikingly different from those on the Earth's surface. Terrestrial contamination would destroy much of the scientific significance of extraterrestrial materials. To preserve the research value of these precious samples, contamination must be minimized, understood, and documented. In addition, the samples must be preserved - as far as possible - from physical and chemical alteration. The elaborate curation facilities at JSC were designed and constructed, and have been operated for many years, to keep sample contamination and alteration to a minimum. Currently, JSC curates seven collections of extraterrestrial samples: (a)) Lunar rocks and soils collected by the Apollo astronauts, (b) Meteorites collected on dedicated expeditions to Antarctica, (c) Cosmic dust collected by high-altitude NASA aircraft,t (d) Solar wind atoms collected by the Genesis spacecraft, (e) Comet particles collected by the Stardust spacecraft, (f) Interstellar dust particles collected by the Stardust spacecraft, and (g) Asteroid soil particles collected by the Japan Aerospace Exploration Agency (JAXA) Hayabusa spacecraft Each of these sample sets has a unique history and comes from a unique environment. We have developed specialized laboratories and practices over many years to preserve and protect the samples, not only for current research but for studies that may be carried out in the indefinite future.
NASA Astrophysics Data System (ADS)
Leuko, Stefan; Rettberg, Petra; De Waele, Jo; Sanna, Laura; Koskinen, Kaisa
2016-07-01
The quest of exploring and looking for life in new places is a human desire since centuries. Nowadays, we are not only looking on planet Earth any more, but our endeavours focus on nearby planets in our solar system. It is therefore of great importance to preserve the extra-terrestrial environment and not to contaminate it with terrestrial / human associated bacteria. At this point in time we are not able to send crewed missions to other planets; however, analysing the impact of human exploration on environments is of great planetary protection concern. This can be achieved by obtaining samples from a subterranean environment, where only expert speleologists have access and the human impact is considered very low. For this study, astronauts participating in the 2014 ESA CAVES (Cooperative Adventure for Valuing and Exercising human behaviour and performance Skills) training course, obtained samples from deep within a subterranean environment and returned them to the laboratory for molecular microbial analysis. The diversity of the returned soil samples was analysed by molecular means such as clone library and next-generation sequencing (NGS). It was found that humans have an immense impact on the microbial diversity in the environment. Although the cave system is sparsely entered by humans, a high relative abundance of Staphylococcus spp. and Propionibacteria spp., organisms that are characteristic for human skin, have been recovered. Some samples even showed the presence of human gut associated methanogenic archaea, Methanomassiliicoccus spp. The obtained data from this investigation indicate that human exploration is strongly polluting an environment and may lead to false-positive sign of life on other planets. It is therefore imperative to increase our awareness to this problem as well as work towards new protocols to protect a pristine extraterrestrial environment during exploration.
NASA Technical Reports Server (NTRS)
2010-01-01
The Program of the 2010 Astrobiology Science Conference: Evolution and Life: Surviving Catastrophes and Extremes on Earth and Beyond, included sessions on: 50 Years of Exobiology and Astrobiology: Greatest Hits; Extraterrestrial Molecular Evolution and Pre-Biological Chemistry: From the Interstellar Medium to the Solar System I; Human Exploration, Astronaut Health; Diversity in Astrobiology Research and Education; Titan: Past, Present, and Future; Energy Flow in Microbial Ecosystems; Extraterrestrial Molecular Evolution and Prebiological Chemistry: From the Interstellar Medium to the Solar System II; Astrobiology in Orbit; Astrobiology and Interdisciplinary Communication; Science from Rio Tinto: An Acidic Environment; Can We Rule Out Spontaneous Generation of RNA as the Key Step in the Origin of Life?; How Hellish Was the Hadean Earth?; Results from ASTEP and Other Astrobiology Field Campaigns I; Prebiotic Evolution: From Chemistry to Life I; Adaptation of Life in Hostile Space Environments; Extrasolar Terrestrial Planets I: Formation and Composition; Collaborative Tools and Technology for Astrobiology; Results from ASTEP and Other Astrobiology Field Campaigns II; Prebiotic Evolution: From Chemistry to Life II; Survival, Growth, and Evolution of Microrganisms in Model Extraterrestrial Environments; Extrasolar Terrestrial Planets II: Habitability and Life; Planetary Science Decadal Survey Update; Astrobiology Research Funding; Bioessential Elements Through Space and Time I; State of the Art in Life Detection; Terrestrial Evolution: Implications for the Past, Present, and Future of Life on Earth; Psychrophiles and Polar Environments; Life in Volcanic Environments: On Earth and Beyond; Geochronology and Astrobiology On and Off the Earth; Bioessential Elements Through Space and Time II; Origins and Evolution of Genetic Systems; Evolution of Advanced Life; Water-rich Asteroids and Moons: Composition and Astrobiological Potential; Impact Events and Evolution; A Warm, Wet Mars?; Titan Versus Europa - Potential for Astrobiology; Habitability Potential of Mars; Biosignatures: Tools and Development I; Origins of Molecular Asymmetry, Homochirality, and Life Detection; Deserts and Evaporite Basins and Associated Microbialite Systems; Ancient Life and Synthetic Biology: Crossroad of the Past and Future; Biosignatures: Tools and Development II; Free Oxygen: Proxies, Causes, and Consequences; Life in Modern Microbialite Systems - Function and Adaptation; Hydrothermal Systems and Organosynthesis Processes: Origin and Evolution of Life; Where Should We Go on Mars to Seek Signs of Life?; Search for Intelligent Life I. Innovative SETI Observing Programs and Future Directions; Integrating Astrobiology Research Across and Beyond the Community; Education in Astrobiology in K-12; Search for Intelligent Life II. Global Engagement and Interstellar Message Construction; Poster sessions included: Extraterrestrial Molecular Evolution and Pre-Biological Chemistry; Prebiotic Evolution: From Chemistry to Life; RNA World; Terrestrial Evolution: Implications for the Past, Present, and Future of Life on Earth; Hydrothermal Systems and Organosynthesis Processes: Origin and Evolution of Life; Virology and Astrobiology; Horizontal Genetic Transfer and Properties of Ancestral Organisms; Life in Volcanic Environments: On Earth and Beyond; Impact Events and Evolution; Evolution of Advanced Life; Evolution of Intelligent Life; Education in Astrobiology in K-12; Origins of Molecular Asymmetry, Homochirality, and Life Detection; Astrobiology and Interdisciplinary Communication; Diversity in Astrobiology Research and Education; Integrating Astrobiology Research Across and Beyond the Community; Policy and Societal Issues: Dealing with Potential Bumps in the Astrobiology Road Ahead; Results from ASTEP and Other Astrobiology Field Campaigns; Energy Flow in Microbial Ecosystems; Psychrophiles and Polar Environments; Deserts and Evaporite Basins and Associated Microbialite stems; Life in Modern Microbialite Systems - Function and Adaptation; Free Oxygen: Proxies, Causes, and Consequences; Bioessential Elements Through Space and Time; Water-rich Asteroids and Moons: Composition and Astrobiological Potential; Biosignatures: Tools and Developments; Robotics and Instrumentation for Astrobiology; State of the Art in Life Detection; Astrobiology in Orbit; Survival, Growth, and Evolution of Microrganisms in Model Extraterrestrial Evolution; Search for Intelligent Life; Habitability Potential of Mars; How and Where Should We Seek Signs of Life on Mars?; Titan: Past, Present, and Future; Extrasolar Terrestrial Planets: Formation, Composition, Diversity, Habitability and Life; Human Exploration, Astronaut Health; Science from Rio Tinto: An Acidic Environment and Adaptation of Life in Hostile Space Environments;
Curating NASA's Extraterrestrial Samples - Past, Present, and Future
NASA Technical Reports Server (NTRS)
Allen, Carlton; Allton, Judith; Lofgren, Gary; Righter, Kevin; Zolensky, Michael
2011-01-01
Curation of extraterrestrial samples is the critical interface between sample return missions and the international research community. The Astromaterials Acquisition and Curation Office at the NASA Johnson Space Center (JSC) is responsible for curating NASA s extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10E "Curation of Extraterrestrial Materials", JSC is charged with ". . . curation of all extraterrestrial material under NASA control, including future NASA missions." The Directive goes on to define Curation as including "documentation, preservation, preparation, and distribution of samples for research, education, and public outreach."
Curating NASA's Extraterrestrial Samples - Past, Present, and Future
NASA Technical Reports Server (NTRS)
Allen, Carlton; Allton, Judith; Lofgren, Gary; Righter, Kevin; Zolensky, Michael
2010-01-01
Curation of extraterrestrial samples is the critical interface between sample return missions and the international research community. The Astromaterials Acquisition and Curation Office at the NASA Johnson Space Center (JSC) is responsible for curating NASA's extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10E "Curation of Extraterrestrial Materials," JSC is charged with ". . . curation of all extraterrestrial material under NASA control, including future NASA missions." The Directive goes on to define Curation as including documentation, preservation, preparation, and distribution of samples for research, education, and public outreach.
Raulin, F; Kobayashi, K
2001-01-01
During COSPAR'00 in Warsaw, Poland, in the frame of Sub-Commission F.3 events (Planetary Biology and Origins of Life), part of COSPAR Commission F (Life Sciences as Related to Space), and Commission B events (Space Studies of the Earth-Moon System, Planets, and Small Bodies of the Solar System) a large joint symposium (F.3.4/B0.8) was held on extraterrestrial organic chemistry. Part 2 of this symposium was devoted to complex organic chemistry in the environment of planets and satellites. The aim of this event was to cover and review new data which have been recently obtained and to give new insights on data which are expected in the near future to increase our knowledge of the complex organic chemistry occurring in several planets and satellites of the Solar System, outside the earth, and their implications for exobiology and life in the universe. The event was composed of two main parts. The first part was mainly devoted to the inner planets and Europa and the search for signatures of life or organics in those environments. The second part was related to the study of the outer solar system.
NASA Astrophysics Data System (ADS)
Geffroy, Claude; Buch, Arnaud; David, Marc; Aissat, Lyes; El Mufleh, Amel; Papot, S.; Sternberg, Robert
Many organic molecules are present in interstellar clouds and might be carried to the early Earth by comets and meteorites during the heavy bombardment phase in the first few hundred million years of the solar system. It has been suggested that extraterrestrial organic material may well represent an important part of the organic material available for the origin of life. Until samples, brought by future space missions, are available on Earth, in situ measurements are one of the way to get unaltered and non-contaminated samples for analysis. The analytical technique has to be robust, sensitive and non-specific due to the large scope of targets molecules. The only currently flight qualified technique of analysis of organic molecules in space is gas chromatography (Viking, Cassini-Huygens, SAM-MSL, COSAC-Rosetta). The main objective of this work is to present a new approach with multi step analysis using derivatisation and thermochemolysis reagents for a one pot in situ analysis of volatile and refractory organics in surface or sub-surface samples (Mars, comets).Indeed, no single technology enables to identify all organic compounds because naturally occurring molecules have different polarities, molecular weights, being extractible or recalcitrant, bonded trapped or adsorbed on minerals. Thus, we propose to wider the scope of chemical reagent already validated for in situ wet chemistry such as MTBSTFA (Rodier et al. 2001, 2002), DMF-DMA (Rodier et al. 2002), or TMAH (Rodier et al, 2005, Geffroy-Rodier et al; 2009) to analyze enantiomers of amino acids, carbohydrates and lipids in a one pot several steps sub system using a multi reagent and multi step approach. Thus using a new derivatizing agent, we successfully identified twenty one amino acids including twelve of the twenty proteinic amino acids without inhibiting following multi step thermochemolysis. *Geffroy-Rodier C, Grasset L, Sternberg R. Buch A. Amblès A. (2009) Thermochemolysis in search for organics in extraterrestrial environments, Journal of Applied Pyrolysis 85: 454-459. *Rodier C, Sternberg R, Raulin F, Vidal-Madjar C (2001). In situ detection of organic molecules in extraterrestrial environment by gas chromatography / mass spectrometry. Journal of Chromatography A 915: 199-207. *Rodier C, Laurent C, Szopa C. Sternberg R, Raulin F (2002) Chirality and the origin of life: in situ enantiomeric separation for future space missions, Chirality 14: 527-532. *Rodier C. Sternberg R, Szopa C, Buch A, Cabane M and Raulin F (2005) Search for organics in extraterrestrial environments by in situ gas chromatography analysis. Advances in Space Research 36: 195-200. This work has been funded by CNES
Kölbl, Denise; Pignitter, Marc; Somoza, Veronika; Schimak, Mario P; Strbak, Oliver; Blazevic, Amir; Milojevic, Tetyana
2017-01-01
The biology of metal transforming microorganisms is of a fundamental and applied importance for our understanding of past and present biogeochemical processes on Earth and in the Universe. The extreme thermoacidophile Metallosphaera sedula is a metal mobilizing archaeon, which thrives in hot acid environments (optimal growth at 74°C and pH 2.0) and utilizes energy from the oxidation of reduced metal inorganic sources. These characteristics of M. sedula make it an ideal organism to further our knowledge of the biogeochemical processes of possible life on extraterrestrial planetary bodies. Exploring the viability and metal extraction capacity of M. sedula living on and interacting with synthetic extraterrestrial minerals, we show that M. sedula utilizes metals trapped in the Martian regolith simulants (JSC Mars 1A; P-MRS; S-MRS; MRS07/52) as the sole energy sources. The obtained set of microbiological and mineralogical data suggests that M. sedula actively colonizes synthetic Martian regolith materials and releases free soluble metals. The surface of bioprocessed Martian regolith simulants is analyzed for specific mineralogical fingerprints left upon M. sedula growth. The obtained results provide insights of biomining of extraterrestrial material as well as of the detection of biosignatures implementing in life search missions.
Reconfigurable Autonomy for Future Planetary Rovers
NASA Astrophysics Data System (ADS)
Burroughes, Guy
Extra-terrestrial Planetary rover systems are uniquely remote, placing constraints in regard to communication, environmental uncertainty, and limited physical resources, and requiring a high level of fault tolerance and resistance to hardware degradation. This thesis presents a novel self-reconfiguring autonomous software architecture designed to meet the needs of extraterrestrial planetary environments. At runtime it can safely reconfigure low-level control systems, high-level decisional autonomy systems, and managed software architecture. The architecture can perform automatic Verification and Validation of self-reconfiguration at run-time, and enables a system to be self-optimising, self-protecting, and self-healing. A novel self-monitoring system, which is non-invasive, efficient, tunable, and autonomously deploying, is also presented. The architecture was validated through the use-case of a highly autonomous extra-terrestrial planetary exploration rover. Three major forms of reconfiguration were demonstrated and tested: first, high level adjustment of system internal architecture and goal; second, software module modification; and third, low level alteration of hardware control in response to degradation of hardware and environmental change. The architecture was demonstrated to be robust and effective in a Mars sample return mission use-case testing the operational aspects of a novel, reconfigurable guidance, navigation, and control system for a planetary rover, all operating in concert through a scenario that required reconfiguration of all elements of the system.
Human utilization of subsurface extraterrestrial environments.
Boston, P J; Frederick, R D; Welch, S M; Werker, J; Meyer, T R; Sprungman, B; Hildreth-Werker, V; Thompson, S L; Murphy, D L
2003-06-01
Caves have been used in the ancient past as shelter or habitat by many organisms (including humans). Since antiquity, humans have explored caves for the minerals they contain and sometimes for ceremonial purposes. Over the past century, caves have become the target of increasing exploration, scientific research, and recreation. The use of caves on extraterrestrial bodies for human habitation has been suggested by several investigators. Lunar lava tube bases received early attention because lava tubes were clearly visible in lunar images from the Apollo Era. More recently, Mars Observer Camera data has shown us clear evidence of large tubes visible in a number of volcanic regions on Mars. The budding field of cave geomicrobiology has direct application to questions about subsurface life on other planets. Caves contain many unusual organisms making their living from unlikely materials like manganese, iron, and sulfur. This makes caves and other subsurface habitats prime targets for astrobiological missions to Mars and possibly other bodies. We present the results of a completed Phase I and on-going Phase II NASA Institute for Advanced Concepts (NIAC) study that intensively examines the possibilities of using extraterrestrial caves as both a resource for human explorers and as a highly promising scientific target for both robotic and future human missions to Mars and beyond.
Investigation of Supercritical Water Phenomena for Space and Extraterrestrial Application
NASA Technical Reports Server (NTRS)
Hicks, Michael C.; Hegde, Uday G.; Fisher, John W.
2012-01-01
The cost of carrying or resupplying life support resources for long duration manned space exploration missions such as a mission to Mars is prohibitive and requires the development of suitable recycling technologies. Supercritical Water Oxidation (SCWO) has been identified as an attractive candidate for these extended missions because (i) pre-drying of wet waste streams is not required, (ii) product streams are relatively benign, microbially inert, and easily reclaimed, (iii) waste conversion is complete and relatively fast, and (iv) with proper design and operation, reactions can be self-sustaining. Initial work in this area at NASA was carried out at the Ames Research Center in the 1990 s with a focus on understanding the linkages between feed stock preparation (i.e., particle size and distribution) of cellulosic based waste streams and destruction rates under a range of operating temperatures and pressures. More recently, work in SCWO research for space and extra-terrestrial application has been performed at NASA s Glenn Research Center where various investigations, with a particular focus in the gravitational effects on the thermo-physical processes occurring in the bulk medium, have been pursued. In 2010 a collaborative NASA/CNES (the French Space Agency) experiment on the critical transition of pure water was conducted in the long duration microgravity environment on the International Space Station (ISS). A follow-on experiment, to study the precipitation of salt in sub-critical, trans-critical and supercritical water is scheduled to be conducted on the ISS in 2013. This paper provides a brief history of NASA s earlier work in SCWO, discusses the potential for application of SCWO technology in extended space and extraterrestrial missions, describes related research conducted on the ISS, and provides a list of future research activities to advance this technology in both terrestrial and extra-terrestrial applications.
Mainstream Media and Social Media Reactions to the Discovery of Extraterrestrial Life
NASA Astrophysics Data System (ADS)
Jones, Morris
The rise of online social media (such as Facebook and Twitter) has overturned traditional top-down and stovepiped channels for mass communications. As social media have risen, traditional media sources have been steadily crippled by economic problems, resulting in a loss of capabilities and credibility. Information can propagate rapidly without the inclusion of traditional editorial checks and controls. Mass communications strategies for any type of major announcement must account for this new media landscape. Scientists announcing the discovery of extraterrestrial life will trigger a multifaceted and unpredictable percolation of the story through the public sphere. They will also potentially struggle with misinformation, rumours and hoaxes. The interplay of official announcements with the discussions of an extraterrestrial discovery on social media has parallels with traditional theories of mass communications. A wide spectrum of different messages is likely to be received by different segments of the community, based on their usage patterns of various media and online communications. The presentation and interpretation of a discovery will be hotly debated and contested within online media environments. In extreme cases, this could lead to "editorial wars" on collaborative media projects as well as cyber-attacks on certain online services and individuals. It is unlikely that a clear and coherent message can be propagated to a near-universal level. This has the potential to contribute to inappropriate reactions in some sectors of the community. Preventing unnecessary panic will be a priority. In turn, the monitoring of online and social media will provide a useful tool for assessing public reactions to a discovery of extraterrestrial life. This will help to calibrate public communications strategies following in the wake of an initial announcement.
Extraterrestrial civilizations: Problems of their evolution
NASA Technical Reports Server (NTRS)
Leskov, L. V.
1987-01-01
The problem of finding extraterrestrial civilizations and establishing contact with them is directly related to the problem of their evolution. Possible patterns in this evolution and the stages in the evolution of extraterrestrial civilizations are examined.
Chemical studies on the existence of extraterrestrial life.
Ponnamperuma, C; Honda, Y; Navarro-González, R
1992-01-01
Although the search for extraterrestrial intelligence has not produced any direct evidence of extraterrestrial life, the emergence of life on Earth, which appears to be controlled by universal laws of physics and chemistry, must have been repeated elsewhere in the universe. The experimental approaches in our laboratory to understand the origin of life on the Earth are summarized in an attempt to obtain a better insight into the chemical basis of extraterrestrial life.
A Center for Extraterrestrial Engineering and Construction (CETEC)
NASA Technical Reports Server (NTRS)
Leigh, Gerald G.
1992-01-01
A group of knowledgeable scientists and engineers in New Mexico has recognized the need for such a testing capability and has proposed a project to evelop an extraterrestrial surface simulation facility. A group of universities, national laboratories, and private industrial firms is proposing to establish a Center for Extraterrestrial Engineering and Construction (CETEC) and to develop large extraterrestrial surface simulation facilities in which this needed testing can be realistically performed. The CETEC is envisioned to be both a center of knowledge and data regarding engineering, construction, mining, and material process operations on extraterrestrial bodies and a set of extraterrestrial surface simulation facilities. The primary CETEC facility is proposed to be a large domed building made of steel reinforced concrete with more than one acre of test floor area covered with several feet of simulated lunar soil and dust. Various aspects of the project are presented in viewgraph form.
Relevance of antarctic microbial ecosystems to exobiology
NASA Technical Reports Server (NTRS)
Mckay, Christopher P.
1993-01-01
Antarctic microbial ecosystems which provide biological and physical analogs that can be used in exobiology are studied. Since the access to extraterrestrial habitats is extremely difficult, terrestrial analogs represent the best opportunity for both formulation and preliminary testing of hypothesis about life. Antarctica, as one of few suitable environments on earth is considered to be a major locus of progress in exobiology.
Guo, Y; Gu, X; Zhang, F; Sun, B J; Tsai, M F; Chang, A H H; Kaiser, R I
2007-05-03
The reaction between ground state carbon atoms, C(3P(j)), and phosphine, PH3(X(1)A1), was investigated at two collision energies of 21.1 and 42.5 kJ mol(-1) using the crossed molecular beam technique. The chemical dynamics extracted from the time-of-flight spectra and laboratory angular distributions combined with ab initio calculations propose that the reaction proceeds on the triplet surface via an addition of atomic carbon to the phosphorus atom. This leads to a triplet CPH3 complex. A successive hydrogen shift forms an HCPH2 intermediate. The latter was found to decompose through atomic hydrogen emission leading to the cis/trans-HCPH(X(2)A') reaction products. The identification of cis/trans-HCPH(X(2)A') molecules under single collision conditions presents a potential pathway to form the very first carbon-phosphorus bond in extraterrestrial environments like molecular clouds and circumstellar envelopes, and even in the postplume chemistry of the collision of comet Shoemaker-Levy 9 with Jupiter.
Short Gamma-ray Bursts: Observations and Physics
NASA Astrophysics Data System (ADS)
Janka, H.-Thomas
2007-04-01
The aim of the workshop, which will be held at the scenic Ringberg castle, is supposed to bring together astrophysicists, physicists, and astronomers from different fields in order to discuss recent observational and theoretical discoveries and developments on short gamma-ray bursts. In particular, we plan to address the following topics: * recent short GRB observations * environments and host galaxies of short GRBs * is there a 3rd class of GRBs? * modeling GRB engines and jet outflows * rate and redshift predictions for short GRBs * the fireball model and short GRBs * gravitational-wave signals from short GRBs * neutrino signals from short GRBs * microphysics needed for modeling short GRBs and their engines Scientific and Local organizing committee members: H.-Thomas Janka (Max Planck Institute for Astrophysics, Garching), Miguel Aloy (University of Valencia), Jochen Greiner (Max Planck Institute for Extraterrestrial Physics), Sandra Savaglio (Max Planck Institute for Extraterrestrial Physics), Shri Kulkarni (California Institute of Technology, Pasadena)
Amino acids in the Yamato carbonaceous chrondrite from Antarctica
NASA Technical Reports Server (NTRS)
Shimoyama, A.; Ponnamperuma, C.; Yanai, K.
1979-01-01
Evidence for the presence of amino acids of extraterrestrial origin in the Antarctic Yamato carbonaceous chrondrite is presented. Hydrolyzed and nonhydrolyzed water-extracted amino acid samples from exterior, middle and interior portions of the meteorite were analyzed by an amino acid analyzer and by gas chromatography of N-TFA-isopropyl amino acid derivatives. Nine protein and six nonprotein amino acids were detected in the meteorite at abundances between 34 and less than one nmole/g, with equal amounts in interior and exterior portions. Nearly equal abundances of the D and L enantiomers of alanine, aspartic acid and glutamic acid were found, indicating the abiotic, therefore extraterrestrial, origin of the amino acids. The Antarctic environment and the uniformity of protein amino acid abundances are discussed as evidence against the racemization of terrestrially acquired amino acids, and similarities between Yamato amino acid compositions and the amino acid compositions of the Murchison and Murray type II carbonaceous chrondrites are indicated.
IR Spectroscopy and Photo-Chemistry of Extraterrestrial Ices
NASA Technical Reports Server (NTRS)
Bernstein, Max P.; Mastrapa, Rachel; Elsila, Jamie; Sandford, Scott
2005-01-01
Dense molecular clouds from which planetary systems form and the outer Solar System are both cold environments dominated by ices. Infrared (IR) spectroscopy is used to probe these ices, but the IR absorptions of molecules depend on the conditions. As a result appropriate lab data is needed to correctly fit spectra of extraterrestrial ices. Such fits have shown that most of these ices are composed primarily of H2O, but also contain 1-10 percent of other simple molecules such as CO2, CO, CH4, & NH3;. We shall present near IR spectra of ice mixtures of relevance to icy outer Solar System bodies and show that they still hold surprises, such as the Cheshire cat-like CO2 (2v3) overtone near 2.134 micrometers (4685 cm-1) that is absent from spectra of pure CO2 but present in H2O-CO2 mixtures.
Processing of extraterrestrial materials by high temperature vacuum vaporization
NASA Technical Reports Server (NTRS)
Grimley, R. T.; Lipschutz, M. E.
1983-01-01
It is noted that problems associated with the extraction and concentration of elements and commpounds important for the construction and operation of space habitats have received little attention. High temperature vacuum vaporization is considered a promising approach; this is a technique for which the space environment offers advantages in the form of low ambient pressures and temperatures and the possibility of sustained high temperatures via solar thermal energy. To establish and refine this new technology, experimental determinations must be made of the material release profiles as a function of temperature, of the release kinetics and chemical forms of material being transported, and of the various means of altering release kinetics. Trace element data determined by neutron activation analysis of meteorites heated to 1400 C in vacuum is summarized. The principal tool, high temperature spectrometry, is used to examine the vaporization thermodynamics and kinetics of major and minor elements from complex multicomponent extraterrestrial materials.
ERIC Educational Resources Information Center
Giberson, Karl; Brown, Laura
1997-01-01
Presents an activity that begins with a discussion that leads into the rationale behind the techniques used in the Search for Extraterrestrial Intelligence (SETI) program. Students decode a message intended for extraterrestrials and consider a number of topics related to the possible existence of extraterrestrials. (DDR)
Triboelectric Charging in Simulated Mars Environment
NASA Technical Reports Server (NTRS)
Lee, R.; Barile, R.
1999-01-01
Triboelectric charging of nonconducting materials followed by sudden electrostatic discharge (ESD) can damage electronic equipment and become ignition hazard to combustible materials. Mars atmosphere has near zero humidity and therefore natural charge bleeding to surroundings is anticipated to be limited. Potential mitigation of ESD problems has been conjectured based upon strong extraterrestrial radiation on Mars compared to earth. A hypothesis was formulated that ESD problem is less significant in simulated Mars condition since strong radiation and presence of argon will generate an ionized environment; this will be conducive to rapid bleeding of static charge into the surroundings.
Siderophilic Cyanobacteria for the Development of Extraterrestrial Photoautotrophic Biotechnologies
NASA Technical Reports Server (NTRS)
Brown, I. I.; McKay, D. S.
2010-01-01
In-situ production of consumables (mainly oxygen) using local resources (In-Situ Resource Utilization-ISRU) will significantly facilitate current plans for human exploration and settlement of the solar system, starting with the Moon. With few exceptions, nearly all technologies developed to date have employed an approach based on inorganic chemistry. None of these technologies include concepts for integrating the ISRU system with a bioregenerative life support system and a food production system. Therefore, a new concept based on the cultivation of cyanobacteria (CB) in semi-closed biogeoreactor, linking ISRU, a biological life support system, and food production, has been proposed. The key feature of the biogeoreactor is to use lithotrophic CB to extract many needed elements such as Fe directly from the dissolved regolith and direct them to any technological loop at an extraterrestrial outpost. Our studies showed that siderophilic (Fe-loving) CB are capable to corrode lunar regolith stimulants because they secrete chelating agents and can tolerate [Fe] up to 1 mM. However, lunar and Martian environments are very hostile (very high UV and gamma-radiation, extreme temperatures, deficit of water). Thus, the selection of CB species with high potential for extraterrestrial biotechnologies that may be utilized in 15 years must be sponsored by NASA as soon as possible. The study of the genomes of candidate CB species and the metagenomes of the terrestrial environments which they inhabit is critical to make this decision. Here we provide preliminary results about peculiarities of the genomes of siderophilic CB revealed by analyzing the genome of siderophilic cyanobacterium JSC-1 and the metagenome of iron depositing hot spring (IDHS) Chocolate Pots (Yellowstone National Park, Wyoming, USA). It has been found that IDHS are richer with ferrous iron than the majority of hot springs around the world. Fe2+ is known to increase the magnitude of oxidative stress in prokaryotes through so called Fenton reaction. It is not surprising therefore that the CB inhabiting IDHS have larger sets of the proteins involved in the maintenance of Fe homeostasis and oxidative stress protection than non-siderophilic CB. This finding combined with our earlier results about the ability of some siderophilic CB to utilize chemical elements released from analogs of lunar and Martian regolith make them the most advanced candidates to be employed in advanced extraterrestrial biotechnologies.
Search for extraterrestrial intelligence (SETI)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrison, P.; Billingham, J.; Wolfe, J.
1977-01-01
Findings are presented of a series of workshops on the existence of extraterrestrial intelligent life and ways in which extraterrestrial intelligence might be detected. The coverage includes the cosmic and cultural evolutions, search strategies, detection of other planetary systems, alternate methods of communication, and radio frequency interference. 17 references. (JFP)
Extreme life on Earth--past, present and possibly beyond.
Javaux, Emmanuelle J
2006-01-01
Life may have been present on Earth since about 3.8 billion years ago or earlier. Multidisciplinary research, especially on the paleobiology and evolution of early microorganisms on Earth and the microbiology of extremophiles in the Earth's environments and under space conditions, enables the defining of strategies for the detection of potential extraterrestrial life by determining biosignatures and the environmental envelope of life.
Regolith Advanced Surface Systems Operations Robot (RASSOR)
NASA Technical Reports Server (NTRS)
Mueller, Robert P.; Smith, Jonathan D.; Cox, Rachel E.; Schuler, Jason M.; Ebert, Tom; Nick, Andrew J.
2012-01-01
Regolith is abundant on extra-terrestrial surfaces and is the source of many resources such as oxygen, hydrogen, titanium, aluminum, iron, silica and other valuable materials, which can be used to make rocket propellant, consumables for life support, radiation protection barrier shields, landing pads, blast protection berms, roads, habitats and other structures and devices. Recent data from the Moon also indicates that there are substantial deposits of water ice in permanently shadowed crater regions and possibly under an over burden of regolith. The key to being able to use this regolith and acquire the resources, is being able to manipulate it with robotic excavation and hauling machinery that can survive and operate in these very extreme extra-terrestrial surface environments. In addition, the reduced gravity on the Moon, Mars, comets and asteroids poses a significant challenge in that the necessary reaction force for digging cannot be provided by the robot's weight as is typically done on Earth. Space transportation is expensive and limited in capacity, so small, lightweight payloads are desirable, which means large traditional excavation machines are not a viable option. A novel, compact and lightweight excavation robot prototype for manipulating, excavating, acquiring, hauling and dumping regolith on extra-terrestrial surfaces has been developed and tested. Lessons learned and test results will be presented including digging in a variety of lunar regolith simulant conditions including frozen regolith mixed with water ice.
A search for extraterrestrial amino acids in carbonaceous Antarctic micrometeorites
NASA Technical Reports Server (NTRS)
Brinton, K. L.; Engrand, C.; Glavin, D. P.; Bada, J. L.; Maurette, M.
1998-01-01
Antarctic micrometeorites (AMMs) in the 100-400 microns size range are the dominant mass fraction of extraterrestrial material accreted by the Earth today. A high performance liquid chromatography (HPLC) based technique exploited at the limits of sensitivity has been used to search for the extraterrestrial amino acids alpha-aminoisobutyric acid (AIB) and isovaline in AMMs. Five samples, each containing about 30 to 35 grains, were analyzed. All the samples possess a terrestrial amino acid component, indicated by the excess of the L-enantiomers of common protein amino acids. In only one sample (A91) was AIB found to be present at a level significantly above the background blanks. The concentration of AIB (approximately 280 ppm), and the AIB/isovaline ratio (> or = 10), in this sample are both much higher than in CM chondrites. The apparently large variation in the AIB concentrations of the samples suggests that AIB may be concentrated in rare subset of micrometeorites. Because the AIB/isovaline ratio in sample A91 is much larger than in CM chondrites, the synthesis of amino acids in the micrometeorite parent bodies might have involved a different process requiring an HCN-rich environment, such as that found in comets. If the present day characteristics of the meteorite and micrometeorite fluxes can be extrapolated back in time, then the flux of large carbonaceous micrometeorites could have contributed to the inventory of prebiotic molecules on the early Earth.
A search for extraterrestrial amino acids in carbonaceous Antarctic micrometeorites.
Brinton, K L; Engrand, C; Glavin, D P; Bada, J L; Maurette, M
1998-10-01
Antarctic micrometeorites (AMMs) in the 100-400 microns size range are the dominant mass fraction of extraterrestrial material accreted by the Earth today. A high performance liquid chromatography (HPLC) based technique exploited at the limits of sensitivity has been used to search for the extraterrestrial amino acids alpha-aminoisobutyric acid (AIB) and isovaline in AMMs. Five samples, each containing about 30 to 35 grains, were analyzed. All the samples possess a terrestrial amino acid component, indicated by the excess of the L-enantiomers of common protein amino acids. In only one sample (A91) was AIB found to be present at a level significantly above the background blanks. The concentration of AIB (approximately 280 ppm), and the AIB/isovaline ratio (> or = 10), in this sample are both much higher than in CM chondrites. The apparently large variation in the AIB concentrations of the samples suggests that AIB may be concentrated in rare subset of micrometeorites. Because the AIB/isovaline ratio in sample A91 is much larger than in CM chondrites, the synthesis of amino acids in the micrometeorite parent bodies might have involved a different process requiring an HCN-rich environment, such as that found in comets. If the present day characteristics of the meteorite and micrometeorite fluxes can be extrapolated back in time, then the flux of large carbonaceous micrometeorites could have contributed to the inventory of prebiotic molecules on the early Earth.
Predicting what extra-terrestrials will be like: and preparing for the worst.
Morris, Simon Conway
2011-02-13
It is difficult to imagine evolution in alien biospheres operating in any manner other than Darwinian. Yet, it is also widely assumed that alien life-forms will be just that: strange, un-nerving and probably repulsive. There are two reasons for this view. First, it is assumed that the range of habitable environments available to extra-terrestrial life is far wider than on Earth. I suggest, however, that terrestrial life is close to the physical and chemical limits of life anywhere. Second, it is a neo-Darwinian orthodoxy that evolution lacks predictability; imagining what extra-terrestrial life would look like in any detail is a futile exercise. To the contrary, I suggest that the outcomes of evolution are remarkably predictable. This, however, leads us to consider two opposites, both of which should make our blood run cold. The first, and actually extremely unlikely, is that alien biospheres will be strikingly similar to our terrestrial equivalent and that in such biospheres intelligence will inevitably emerge. The reasons for this revolve around the ubiquity of evolutionary convergence, the determinate structure of the Tree of Life and molecular inherency. But if something like a human is an inevitability, why do I also claim that the first possibility is 'extremely unlikely'? Simply because the other possibility is actually the correct answer. Paradoxically, we and our biosphere are completely alone. So which is worse? Meeting ourselves or meeting nobody?
A bibliography on the search for extraterrestrial intelligence
NASA Technical Reports Server (NTRS)
Mallove, E. F.; Connors, M. M.; Forward, R. L.; Paprotny, Z.
1978-01-01
This report presents a uniform compilation of works dealing with the search for extraterrestrial intelligence. Entries are by first author, with cross-reference by topic index and by periodical index. This bibliography updates earlier bibliographies on this general topic while concentrating on research related to listening for signals from extraterrestrial intelligence.
Searching for extra-terrestrial civilizations
NASA Technical Reports Server (NTRS)
Gindilis, L. M.
1974-01-01
The probability of radio interchange with extraterrestrial civilizations is discussed. Difficulties constitute absorption, scattering, and dispersion of signals by the rarified interstellar medium as well as the deciphering of received signals and convergence of semantic concept. A cybernetic approach considers searching for signals that develop from astroengineering activities of extraterrestrial civilizations.
On the plurality of inhabited worlds: a brief history of extraterrestrialism
NASA Astrophysics Data System (ADS)
Brake, Mark
2006-10-01
This paper delineates the cultural evolution of the ancient idea of a plurality of inhabited worlds, and traces its development through to contemporary extraterrestrialism, with its foundation in the physical determinism of cosmology, and its attendant myths of alien contact drawn from examples of British film and fiction. We shall see that, in the evolving debate of the existence of extraterrestrial life and intelligence, science and science fiction have benefited from an increasingly symbiotic relationship. Modern extraterrestrialism has influenced both the scientific searches for extraterrestrial intelligence (SETI), and become one of the most pervasive cultural myths of the 20th century. Not only has pluralism found a voice in fiction through the alien, but fiction has also inspired science to broach questions in the real world.
NASA Astrophysics Data System (ADS)
Singer, C. E.
1982-03-01
The possibility that extraterrestrial intelligence might settle the Galaxy by interstellar travel is investigated. The existence of this possibility is shown to be incompatible with the existence of a large number of potential sources of communication from extraterrestrial intelligences in the Galaxy. A detailed examination of suggested resolutions of this contradiction is presented. These include physical, temporal and sociological explanations. The sociological explanations include the so-called disinterest, self-destruction, fizzle, ZPG, taboo, and private zoo hypotheses. Each of these is carefully shown to require incredible universal ad hoc assumptions about the nature of extraterrestrial intelligence. It is concluded that proposed serial search modes for communication from extraterrestrial intelligence have negligible chance of success. A mathematical formalism for evaluating other search modes is also developed.
The Extraterrestrial Life Debate from Antiquity to 1900
NASA Astrophysics Data System (ADS)
Crowe, Michael J.; Dowd, Matthew F.
This chapter provides an overview of the Western historical debate regarding extraterrestrial life from antiquity to the beginning of the twentieth century. Though schools of thought in antiquity differed on whether extraterrestrial life existed, by the Middle Ages, the Aristotelian worldview of a unified, finite cosmos without extraterrestrials was most influential, though there were such dissenters as Nicholas of Cusa. That would change as the Copernican revolution progressed. Scholars such as Bruno, Kepler, Galileo, and Descartes would argue for a Copernican system of a moving Earth. Cartesian and Newtonian physics would eventually lead to a view of the universe in which the Earth was one of many planets in one of many solar systems extended in space. As this cosmological model was developing, so too were notions of extraterrestrial life. Popular and scientific writings, such as those by Fontenelle and Huygens, led to a reversal of fortunes for extraterrestrials, who by the end of the century were gaining recognition. From 1700 to 1800, many leading thinkers discussed extraterrestrial intelligent beings. In doing so, they relied heavily on arguments from analogy and such broad principles and ideas as the Copernican Principle, the Principle of Plenitude, and the Great Chain of Being. Physical evidence for the existence of extraterrestrials was minimal, and was always indirect, such as the sighting of polar caps on Mars, suggesting similarities between Earth and other places in the universe. Nonetheless, the eighteenth century saw writers from a wide variety of genres—science, philosophy, theology, literature—speculate widely on extraterrestrials. In the latter half of the century, increasing research in stellar astronomy would be carried out, heavily overlapping with an interest in extraterrestrial life. By the end of the eighteenth century, belief in intelligent beings on solar system planets was nearly universal and certainly more common than it would be by 1900, or even today. Moreover, natural theology led to most religious thinkers being comfortable with extraterrestrials, at least until 1793 when Thomas Paine vigorously argued that although belief in extraterrestrial intelligence was compatible with belief in God, it was irreconcilable with belief in God becoming incarnate and redeeming Earth's sinful inhabitants. In fact, some scientific analyses, such as Newton's determination of the comparative masses and densities of planets, as well as the application of the emerging recognition of the inverse square law for light and heat radiation, might well have led scientists to question whether all planets are fully habitable. Criticism would become more prevalent throughout the nineteenth century, and especially after 1860, following such events as the "Moon Hoax" and Whewell's critique of belief in extraterrestrials. Skepticism about reliance on arguments from analogy and on such broad metaphysical principles as the Principle of Plenitude also led scientists to be cautious about claims for higher forms of life elsewhere in the universe. At the start of the twentieth century, the controversy over the canals of Mars further dampened enthusiasm for extraterrestrials. By 1915 astronomers had largely rejected belief in higher forms of life anywhere in our solar system and were skeptical about the island universe theory.
NASA Astrophysics Data System (ADS)
Horneck, Gerda; Moeller, Ralf
Spore-forming microbes are of particular concern in the context of planetary protection, be-cause their endospores are highly resistant to a variety of environmental extremes, including certain sterilization procedures and the harsh environment of outer space or planetary sur-faces (Nicholson et al., 2000; Horneck et al. 2009). Furthermore, isolates from space craft and space craft assembly facilities have been identified that form spores of an elevated resistance to various physical and chemical conditions, such as ionizing and UV radiation, desiccation and oxidative stress (La Duc et al., 2007). This observation led to the supposition that the spe-cial conditions of ultraclean spacecraft assembly facilities and the applied spacecraft cleaning and decontamination measures cause a selection of the most resistant organisms as survivors. To test this hypothesis, spores of B. pumilus SAFR-032 isolated from these environments as well as spores of the laboratory strain B. subtilis 168 were subjected to selected parameters of space in the experiment PROTECT during the EXPOSE-E mission (February 7, 2008 -September 12, 2009), attached to the EuTEF platform outside of the Columbus module of the International Space Station. The spores were mounted as dry layers onto spacecraft-qualified material (aluminum coupons) and exposed to the following parameters of space, applied sep-arately or in selected combinations: (i) space vacuum, (ii) solar extraterrestrial UV radiation including vacuum-UV, (iii) simulated Mars atmosphere and UV radiation climate, and (iv) galactic cosmic radiation. After recovery, visual inspection showed color changes of the sun-exposed spore samples from white to brownish demonstrating photochemical damage caused by solar extraterrestrial UV radiation. On-going analyses include studies of viability and capabil-ity of repair of damage, mutagenic spectrum, e.g. trp-revertants, rifampicin-resistant mutants, DNA lesion, global gene expression, and genomic and proteomic characterizations using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). First viability studies gave the following survival rates: 20 -30 References: Horneck,G., D.M. Klaus, R.L. Mancinelli (2010) Space microbiology, Microb. Mol. Biol. Rev. (in press) La Duc MT, Dekas A, Osman S, Moissl C, Newcombe D, Venkateswaran K. (2007) Isolation and character-ization of bacteria capable of tolerating the extreme conditions of clean room environments. Appl Environ Microbiol. 73, 2600-11. Nicholson WL, Munakata N, Horneck G, Melosh HJ, and Setlow P (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments, Microb. Mol. Biol. Rev. 64, 548-572.
The Scientific Search for Extraterrestrial Intelligence: a Sociological Analysis.
NASA Astrophysics Data System (ADS)
Romesberg, Daniel Ray
1992-01-01
This study examines the search for extraterrestrial intelligence, as it has been conducted by scientists over the past century. The following questions are explored: (1) What are the historical patterns of American scientific interest in extraterrestrial intelligence? From a sociology of science perspective, how can these patterns of interest be explained? (2) Who are the most prominent scientists involved in SETI? What are their academic backgrounds? (3) How has the rather exotic idea of extraterrestrial intelligence managed to penetrate the realm of respectable science?. In order to measure the historical fluctuations of scientific interest in extraterrestrial intelligence, a frequency distribution of relevant articles published in American scientific journals over the past century has been constructed. The core scholars of the "extraterrestrial" field have been determined via citation analysis, in a selected portion of the scientific literature. An analysis of recent scientific literature on the Search for Extraterrestrial Intelligence (SETI) has revealed a number of tactics of legitimation and de-legitimation used by SETI proponents, as well as opponents. This study has generated the following findings: (1) Historically, there are three factors which tend to stimulate general scientific interest in extraterrestrial intelligence: First, the strong demonstration of the plausibility of extraterrestrial intelligence, or life, especially in a tangible, and therefore studiable location. Scientific laboratories are primary agents of plausibility here. Second, the organized political activity of SETI scientists. Third, the availability of government funding for searches for extraterrestrial intelligence, or life. (2) Statistically, the leading scholars of modern SETI are Sagan, Drake and Morrison. The field itself tends to be dominated by astronomers and physicists. (3) Because SETI has no concrete data, and is easily stigmatized as an illegitimate scientific activity, it must engage in an intense campaign of scientific legitimation. Most importantly, SETI scientists must try to resemble scientists who are engaged in "normal," respectable scientific activities. (4) The sociological study of SETI's history demonstrates the strengths and limits of the constructivist and realist approaches to the sociology of science. It suggests that sociological analyses of science should attempt to incorporate both analytical perspectives.
Sediment-dispersed extraterrestrial chromite traces a major asteroid disruption event.
Schmitz, Birger; Häggström, Therese; Tassinari, Mario
2003-05-09
Abundant extraterrestrial chromite grains from decomposed meteorites occur in middle Ordovician (480 million years ago) marine limestone over an area of approximately 250,000 square kilometers in southern Sweden. The chromite anomaly gives support for an increase of two orders of magnitude in the influx of meteorites to Earth during the mid-Ordovician, as previously indicated by fossil meteorites. Extraterrestrial chromite grains in mid-Ordovician limestone can be used to constrain in detail the temporal variations in flux of extraterrestrial matter after one of the largest asteroid disruption events in the asteroid belt in late solar-system history.
[Current considerations around the search for extraterrestrial life].
González de Posada, F
2000-01-01
In this paper, the current cosmological topics are considered: a) The fourth centenary celebration of Giordano Bruno's death at the Roman's inquisition stake. This eminent philosopher, based on the Coppernican Revolution, concibed the Cosmos as a infinite universe with innumerable inhabited worlds. He acted on reason to believe not only in extraterrestrial life but in extraterrestrial intelligent life. Here we write a few words in his memory and honour. b) The active project SETI@home in the framework of today's classic program "Search for Extra-Terrestrial Intelligence", by means of the reception of radioelectrical signals. c) Search for extrasolar planets.
Curating NASA's Past, Present, and Future Extraterrestrial Sample Collections
NASA Technical Reports Server (NTRS)
McCubbin, F. M.; Allton, J. H.; Evans, C. A.; Fries, M. D.; Nakamura-Messenger, K.; Righter, K.; Zeigler, R. A.; Zolensky, M.; Stansbery, E. K.
2016-01-01
The Astromaterials Acquisition and Curation Office (henceforth referred to herein as NASA Curation Office) at NASA Johnson Space Center (JSC) is responsible for curating all of NASA's extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10E "Curation of Extraterrestrial Materials", JSC is charged with "...curation of all extra-terrestrial material under NASA control, including future NASA missions." The Directive goes on to define Curation as including "...documentation, preservation, preparation, and distribution of samples for research, education, and public outreach." Here we describe some of the past, present, and future activities of the NASA Curation Office.
NASA Astrophysics Data System (ADS)
Marcantonio, Franco; Thomas, Deborah J.; Woodard, Stella; McGee, David; Winckler, Gisela
2009-09-01
We attempt to constrain the variability of the flux of extraterrestrial 3He in the Paleocene by studying sediments from Shatsky Rise (Ocean Drilling Program, ODP Leg 198) that have tight orbital age control. 3He concentrations in Shatsky Rise sediments vary periodically at high frequency by about a factor of 6 over the 800-ka record analyzed. Virtually all of the sedimentary 3He (> 99.98%) is of extraterrestrial origin. The total helium in the sediments can be explained as a binary mixture of terrestrial and extraterrestrial components. We calculate an average 3He/ 4He ratio for the extraterrestrial endmember of 2.41 ± 0.29 × 10 - 4 , which is, remarkably, equal to that measured in present-day interplanetary dust particles. We determine a constant extraterrestrial 3He flux of 5.9 ± 0.9 × 10 - 13 cm 3STP .cm - 2 ka - 1 for our 800-ka Paleocene record at ~ 58 Ma. This value is identical within error to those for the late Paleocene in sediments from the northern Pacific and the Weddell Sea. Bulk sediment MARs (derived using a constant extraterrestrial 3He flux) respond to climate-forced carbonate preservation cycles and changes in eolian flux over the late Paleocene. This is the first direct evidence for significant changes in dust accumulation in response to eccentricity forcing during a greenhouse climate interval.
Paul, Anna-Lisa; Bamsey, Matthew; Berinstain, Alain; Braham, Stephen; Neron, Philip; Murdoch, Trevor; Graham, Thomas; Ferl, Robert J
2008-04-18
The use of engineered plants as biosensors has made elegant strides in the past decades, providing keen insights into the health of plants in general and particularly in the nature and cellular location of stress responses. However, most of the analytical procedures involve laboratory examination of the biosensor plants. With the advent of the green fluorescence protein (GFP) as a biosensor molecule, it became at least theoretically possible for analyses of gene expression to occur telemetrically, with the gene expression information of the plant delivered to the investigator over large distances simply as properly processed fluorescence images. Spaceflight and other extraterrestrial environments provide unique challenges to plant life, challenges that often require changes at the gene expression level to accommodate adaptation and survival. Having previously deployed transgenic plant biosensors to evaluate responses to orbital spaceflight, we wished to develop the plants and especially the imaging devices required to conduct such experiments robotically, without operator intervention, within extraterrestrial environments. This requires the development of an autonomous and remotely operated plant GFP imaging system and concomitant development of the communications infrastructure to manage dataflow from the imaging device. Here we report the results of deploying a prototype GFP imaging system within the Arthur Clarke Mars Greenhouse (ACMG) an autonomously operated greenhouse located within the Haughton Mars Project in the Canadian High Arctic. Results both demonstrate the applicability of the fundamental GFP biosensor technology and highlight the difficulties in collecting and managing telemetric data from challenging deployment environments.
Radio frequency interference at Jodrell Bank Observatory within the protected 21 cm band
NASA Technical Reports Server (NTRS)
Tarter, J.
1989-01-01
Radio frequency interference (RFI) will provide one of the most difficult challenges to systematic Searches for Extraterrestrial Intelligence (SETI) at microwave frequencies. The SETI-specific equipment is being optimized for the detection of signals generated by a technology rather than those generated by natural processes in the universe. If this equipment performs as expected, then it will inevitably detect many signals originating from terrestrial technology. If these terrestrial signals are too numerous and/or strong, the equipment will effectively be blinded to the (presumably) weaker extraterrestrial signals being sought. It is very difficult to assess how much of a problem RFI will actually represent to future observations, without employing the equipment and beginning the search. In 1983 a very high resolution spectrometer was placed at the Nuffield Radio Astronomy Laboratories at Jodrell Bank, England. This equipment permitted an investigation of the interference environment at Jodrell Bank, at that epoch, and at frequencies within the 21 cm band. This band was chosen because it has long been "protected" by international agreement; no transmitters should have been operating at those frequencies. The data collected at Jodrell Bank were expected to serve as a "best case" interference scenario and provide the minimum design requirements for SETI equipment that must function in the real and noisy environment. This paper describes the data collection and analysis along with some preliminary conclusions concerning the nature of the interference environment at Jodrell Bank.
Radio frequency interference at Jodrell Bank Observatory within the protected 21 cm band.
Tarter, J
1989-01-01
Radio frequency interference (RFI) will provide one of the most difficult challenges to systematic Searches for Extraterrestrial Intelligence (SETI) at microwave frequencies. The SETI-specific equipment is being optimized for the detection of signals generated by a technology rather than those generated by natural processes in the universe. If this equipment performs as expected, then it will inevitably detect many signals originating from terrestrial technology. If these terrestrial signals are too numerous and/or strong, the equipment will effectively be blinded to the (presumably) weaker extraterrestrial signals being sought. It is very difficult to assess how much of a problem RFI will actually represent to future observations, without employing the equipment and beginning the search. In 1983 a very high resolution spectrometer was placed at the Nuffield Radio Astronomy Laboratories at Jodrell Bank, England. This equipment permitted an investigation of the interference environment at Jodrell Bank, at that epoch, and at frequencies within the 21 cm band. This band was chosen because it has long been "protected" by international agreement; no transmitters should have been operating at those frequencies. The data collected at Jodrell Bank were expected to serve as a "best case" interference scenario and provide the minimum design requirements for SETI equipment that must function in the real and noisy environment. This paper describes the data collection and analysis along with some preliminary conclusions concerning the nature of the interference environment at Jodrell Bank.
Phospholipid and Respiratory Quinone Analyses From Extreme Environments
NASA Astrophysics Data System (ADS)
Pfiffner, S. M.
2008-12-01
Extreme environments on Earth have been chosen as surrogate sites to test methods and strategies for the deployment of space craft in the search for extraterrestrial life. Surrogate sites for many of the NASA astrobiology institutes include the South African gold mines, Canadian subpermafrost, Atacama Desert, and acid rock drainage. Soils, sediments, rock cores, fracture waters, biofilms, and service and drill waters represent the types of samples collected from these sites. These samples were analyzed by gas chromatography mass spectrometry for phospholipid fatty acid methyl esters and by high performance liquid chromatography atmospheric pressure chemical ionization tandem mass spectrometry for respiratory quinones. Phospholipid analyses provided estimates of biomass, community composition, and compositional changes related to nutritional limitations or exposure to toxic conditions. Similar to phospholipid analyses, respiratory quinone analyses afforded identification of certain types of microorganisms in the community based on respiration and offered clues to in situ redox conditions. Depending on the number of samples analyzed, selected multivariate statistical methods were applied to relate membrane lipid results with site biogeochemical parameters. Successful detection of life signatures and refinement of methodologies at surrogate sites on Earth will be critical for the recognition of extraterrestrial life. At this time, membrane lipid analyses provide useful information not easily obtained by other molecular techniques.
Venturing into new realms? Microorganisms in space.
Moissl-Eichinger, Christine; Cockell, Charles; Rettberg, Petra
2016-09-01
One of the biggest challenges of science is the determination of whether extraterrestrial life exists. Although potential habitable areas might be available for complex life, it is more likely that microbial life could exist in space. Many extremotolerant and extremophilic microbes have been found to be able to withstand numerous, combined environmental factors, such as high or low temperatures and pressures, high-salt conditions, high doses of radiation, desiccation or nutrient limitations. They may even survive the transit from one planet to another. Terrestrial Mars-analogue sites are one focus of researchers, in order to understand the microbial diversity in preparation for upcoming space missions aimed at the detection of life. However, such missions could also pose a risk with respect to contamination of the extraterrestrial environment by accidentally transferred terrestrial microorganisms. Closer to the Earth, the International Space Station is the most enclosed habitat, where humans work and live-and with them numerous microorganisms. It is still unknown how microbes adapt to this environment, possibly even creating a risk for the crew. Information on the microbiology of the ISS will have an impact on the planning and implementation of long-term human spaceflights in order to ensure a safe, stable and balanced microbiome on board. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Volcanic ash - Terrestrial versus extraterrestrial
NASA Technical Reports Server (NTRS)
Okeefe, J. A.
1976-01-01
A principal difference between terrestrial and extraterrestrial lavas may consist in the greater ability of terrestrial lavas to form thin films (like those of soap bubbles) and hence foams. It would follow that, in place of the pumice and spiny shards found in terrestrial volcanic ash, an extraterrestrial ash should contain minute spherules. This hypothesis may help to explain lunar microspherules.
Advanced Curation of Current and Future Extraterrestrial Samples
NASA Technical Reports Server (NTRS)
Allen, Carlton C.
2013-01-01
Curation of extraterrestrial samples is the critical interface between sample return missions and the international research community. Curation includes documentation, preservation, preparation, and distribution of samples. The current collections of extraterrestrial samples include: Lunar rocks / soils collected by the Apollo astronauts Meteorites, including samples of asteroids, the Moon, and Mars "Cosmic dust" (asteroid and comet particles) collected by high-altitude aircraft Solar wind atoms collected by the Genesis spacecraft Comet particles collected by the Stardust spacecraft Interstellar dust collected by the Stardust spacecraft Asteroid particles collected by the Hayabusa spacecraft These samples were formed in environments strikingly different from that on Earth. Terrestrial contamination can destroy much of the scientific significance of many extraterrestrial materials. In order to preserve the research value of these precious samples, contamination must be minimized, understood, and documented. In addition the samples must be preserved - as far as possible - from physical and chemical alteration. In 2011 NASA selected the OSIRIS-REx mission, designed to return samples from the primitive asteroid 1999 RQ36 (Bennu). JAXA will sample C-class asteroid 1999 JU3 with the Hayabusa-2 mission. ESA is considering the near-Earth asteroid sample return mission Marco Polo-R. The Decadal Survey listed the first lander in a Mars sample return campaign as its highest priority flagship-class mission, with sample return from the South Pole-Aitken basin and the surface of a comet among additional top priorities. The latest NASA budget proposal includes a mission to capture a 5-10 m asteroid and return it to the vicinity of the Moon as a target for future sampling. Samples, tools, containers, and contamination witness materials from any of these missions carry unique requirements for acquisition and curation. Some of these requirements represent significant advances over methods currently used. New analytical and screening techniques will increase the value of current sample collections. Improved web-based tools will make information on all samples more accessible to researchers and the public. Advanced curation of current and future extraterrestrial samples includes: Contamination Control - inorganic / organic Temperature of preservation - subfreezing / cryogenic Non-destructive preliminary examination - X-ray tomography / XRF mapping / Raman mapping Microscopic samples - handling / sectioning / transport Special samples - unopened lunar cores Informatics - online catalogs / community-based characterization.
NASA Astrophysics Data System (ADS)
Geller, Harold A.
2014-01-01
I will discuss my research into the issues associated with the nature of any extraterrestrials that may be encountered in the future in our galaxy. This research was sparked by statements made by Stephen Hawking in 2010 regarding his fear of emitting radiation from our Earth so that an extraterrestrial intelligent civilization may be alerted to our existence in the galaxy today. While addressing issues of extraterrestrial altruism, a probabilistic equation was developed which addresses the number of extraterrestrial intelligent life forms that may exist in our galaxy today, who could use our bodies for nourishment or reproductive purposes. The equation begins with the results from a Drake Equation calculation, and proceeds by addressing such biochemical parameters as the fraction of ETIs with: dextro sugar stereo-isomers; levo amino acid stereo-isomers; similar codon interpretation; chromosomal length and, similar cell membrane structure to allow egg penetration.
Grimaldi, Claudio
2017-04-12
The lack of evidence for the existence of extraterrestrial life, even the simplest forms of animal life, makes it is difficult to decide whether the search for extraterrestrial intelligence (SETI) is more a high-risk, high-payoff endeavor than a futile attempt. Here we insist that even if extraterrestrial civilizations do exist and communicate, the likelihood of detecting their signals crucially depends on whether the Earth lies within a region of the galaxy covered by such signals. By considering possible populations of independent emitters in the galaxy, we build a statistical model of the domain covered by hypothetical extraterrestrial signals to derive the detection probability that the Earth is within such a domain. We show that for general distributions of the signal longevity and directionality, the mean number of detectable emitters is less than one even for detection probabilities as large as 50%, regardless of the number of emitters in the galaxy.
NASA Astrophysics Data System (ADS)
Grimaldi, Claudio
2017-04-01
The lack of evidence for the existence of extraterrestrial life, even the simplest forms of animal life, makes it is difficult to decide whether the search for extraterrestrial intelligence (SETI) is more a high-risk, high-payoff endeavor than a futile attempt. Here we insist that even if extraterrestrial civilizations do exist and communicate, the likelihood of detecting their signals crucially depends on whether the Earth lies within a region of the galaxy covered by such signals. By considering possible populations of independent emitters in the galaxy, we build a statistical model of the domain covered by hypothetical extraterrestrial signals to derive the detection probability that the Earth is within such a domain. We show that for general distributions of the signal longevity and directionality, the mean number of detectable emitters is less than one even for detection probabilities as large as 50%, regardless of the number of emitters in the galaxy.
The recognition of extraterrestrial artificial signals
NASA Technical Reports Server (NTRS)
Seeger, C. L.
1980-01-01
Considerations in the design of receivers for the detection and recognition of artificial microwave signals of extraterrestrial origin are discussed. Following a review of the objectives of SETI and the probable reception and detection characteristics of extraterrestrial signals, means for the improvement of the sensitivity, signal-to-noise ratios and on-line data processing capabilities of SETI receivers are indicated. The characteristics of the signals likely to be present at the output of an ultra-low-noise microwave receiver are then examined, including the system background noise, terrestrial radiations, astrophysical radiations, accidental artificial radiations of terrestrial origin, and intentional radiations produced by humans and by extraterrestrial intelligence. The classes of extraterrestrial signals likely to be detected, beacons and leakage signals, are considered, and options in the specification of gating and thresholding for a high-spectral resolution, high-time-resolution signal discriminator are indicated. Possible tests for the nonhuman origin of a received signal are also pointed out.
The quest for extraterrestrial life: what about the viruses?
Griffin, Dale Warren
2013-01-01
Recently, viruses have been recognized as the most numerous entities and the primary drivers of evolution on Earth. Historically, viruses have been mostly ignored in the field of astrobiology due to the view that they are not alive in the classical sense and if encountered would not present risk due to their host-specific nature. What we currently know of viruses is that we are most likely to encounter them on other life-bearing planets; that while some are exquisitely host-specific, many viruses can utilize hundreds of different host species; that viruses are known to exist in our planet's most extreme environments; and that while many do not survive long outside their hosts, some can survive for extended periods, especially in the cold. In our quest for extraterrestrial life, we should be looking for viruses; and while any encountered may pose no risk, the possibility of an encounter with a virus capable of accessing multiple cell types exists, and any prospective contact with such an organism should be treated accordingly.
The quest for extraterrestrial life: what about the viruses?
Griffin, Dale Warren
2013-08-01
Recently, viruses have been recognized as the most numerous entities and the primary drivers of evolution on Earth. Historically, viruses have been mostly ignored in the field of astrobiology due to the view that they are not alive in the classical sense and if encountered would not present risk due to their host-specific nature. What we currently know of viruses is that we are most likely to encounter them on other life-bearing planets; that while some are exquisitely host-specific, many viruses can utilize hundreds of different host species; that viruses are known to exist in our planet's most extreme environments; and that while many do not survive long outside their hosts, some can survive for extended periods, especially in the cold. In our quest for extraterrestrial life, we should be looking for viruses; and while any encountered may pose no risk, the possibility of an encounter with a virus capable of accessing multiple cell types exists, and any prospective contact with such an organism should be treated accordingly.
The limits of extremophilic life expanded under extraterrestrial environment-simulated experiments
NASA Astrophysics Data System (ADS)
Lage, C.; Dalmaso, G.; Teixeira, L.; Bendia, A.; Rosado, A.
2012-09-01
Astrobiology is a brand new area of science that seeks to understand the origin and dynamics of life in the universe. Several hypotheses to explain life in the cosmic context have been developed throughout human history, but only now technology has allowed many of them to be tested. Laboratory experiments have been able to show how chemical elements essential to life, carbon, nitrogen, oxygen and hydrogen combine in biologically important compounds. Interestingly, these compounds are found universally. As these compounds were combined to the point of originating cells and complex organisms is still a challenge to be unveiled by science. However, our 4.5 billion years-old solar system was born within a 10-billion years-old universe. Thus, simple cells like microorganisms may have had time to form in planets older than ours or other suitable molecular places in the universe. One hypothesis to explain the origin of life on Earth is called panspermia, which predicts that microbial life could have been formed in the universe billions of years ago, traveling between planets, and inseminating units of life that could have become more complex in habitable planets like ours. A project designed to test the viability of extremophile microorganisms exposed to simulated extraterrestrial environments is ongoing at the Carlos Chagas Filho Institute of Biophysics to test whether microbial life could withstand those inhospitable environments. Ultra-resistant (known or novel ones) microorganisms collected from terrestrial extreme environments, extremophiles, have been exposed to intense radiation sources simulating solar radiation (at synchrotron accelerators), capable of emitting in a few hours radiation equivalent of million years accumulated doses. The results obtained in these experiments reveal the interesting possibility of the existence of microbial life beyond Earth.
NASA Astrophysics Data System (ADS)
Lage, Claudia A. S.; Dalmaso, Gabriel Z. L.; Teixeira, Lia C. R. S.; Bendia, Amanda G.; Paulino-Lima, Ivan G.; Galante, Douglas; Janot-Pacheco, Eduardo; Abrevaya, Ximena C.; Azúa-Bustos, Armando; Pelizzari, Vivian H.; Rosado, Alexandre S.
2012-10-01
Astrobiology is a relatively recent scientific field that seeks to understand the origin and dynamics of life in the Universe. Several hypotheses have been proposed to explain life in the cosmic context throughout human history, but only now, technology has allowed many of them to be tested. Laboratory experiments have been able to show how chemical elements essential to life, such as carbon, nitrogen, oxygen and hydrogen combine in biologically important compounds. Interestingly, these compounds are ubiquitous. How these compounds were combined to the point of originating cells and complex organisms is still to be unveiled by science. However, our 4.5 billion years old Solar system appeared in a 10 billion years old Universe. Thus, simple cells such as micro-organisms may have had time to form in planets older than ours or in other suitable places in the Universe. One hypothesis related to the appearance of life on Earth is called panspermia, which predicts that microbial life could have been formed in the Universe billions of years ago, travelling between planets, and inseminating units of life that could have become more complex in habitable planets such as Earth. A project designed to test the viability of extremophile micro-organisms exposed to simulated extraterrestrial environments is in progress at the Carlos Chagas Filho Institute of Biophysics (UFRJ, Brazil) to test whether microbial life could withstand inhospitable environments. Radiation-resistant (known or novel ones) micro-organisms collected from extreme terrestrial environments have been exposed (at synchrotron accelerators) to intense radiation sources simulating Solar radiation, capable of emitting radiation in a few hours equivalent to many years of accumulated doses. The results obtained in these experiments reveal an interesting possibility of the existence of microbial life beyond Earth.
Anticipating the reaction: public concern about sample return missions
NASA Technical Reports Server (NTRS)
Race, M. S.
1994-01-01
Shifts in public attitude that may affect extraterrestrial sample return include increased public participation in the legal and regulatory environment, institutionalized public vigilance, politicization of technological debates and shifts in the nature of public decision-making, and a risk-averse public accustomed to mass media coverage that focuses on hazards and disasters. The ice-minus recombinant DNA experiment is used as an example of the effects of public opinion on scientific experimentation.
Study for identification of beneficial uses of space, phase 1. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1972-01-01
The technological effects of the Space Shuttle Program are considered in terms of the development of improved products, processes, and services aimed at benefitting the public from economic and sociological points of view. As such, an outline is provided for a large number of private organizations to suggest and identify specific areas of research and development which can most effectively be exploited in an extraterrestrial environment.
Autonomous Assembly of Modular Structures in Space and on Extraterrestrial Locations
NASA Technical Reports Server (NTRS)
Alhorn, Dean C.
2005-01-01
The fulfillment of the new US. National Vision for Space Exploration requires many new enabling technologies to accomplish the goal of utilizing space for commercial activities and for returning humans to the moon and extraterrestrial environments. Traditionally, flight structures are manufactured as complete systems and require humans to complete the integration and assembly in orbit. These structures are bulky and require the use of heavy launch vehicles to send the units to the desired location, e.g. International Space Station (ISS). This method requires a high degree of safety, numerous space walks and significant cost for the humans to perform the assembly in orbit. For example, for assembly and maintenance of the ISS, 52 Extravehicular Activities (EVA's) have been performed so far with a total EVA time of approximately 322 hours. Sixteen (16) shuttle flights haw been to the ISS to perform these activities with an approximate cost of $450M per mission. For future space missions, costs have to be reduced to reasonably achieve the exploration goals. One concept that has been proposed is the autonomous assembly of space structures. This concept is an affordable, reliable solution to in-space and extraterrestrial assembly operations. Assembly is autonomously performed when two components containing onboard electronics join after recognizing that the joint is appropriate and in the precise position and orientation required for assembly. The mechanism only activates when the specifications are correct and m a nominal range. After assembly, local sensors and electronics monitor the integrity of the joint for feedback to a master controller. To achieve this concept will require a shift in the methods for designing space structures. In addition, innovative techniques will be required to perform the assembly autonomously. Monitoring of the assembled joint will be necessary for safety and structural integrity. If a very large structure is to be assembled in orbit, then the number of integrity sensors will be significant. Thus simple, low cost sensors are integral to the success of this concept. This paper will address these issues and will propose a novel concept for assembling space structures autonomously. The paper will present Several autonomous assembly methods. Core technologies required to achieve in space assembly will be discussed and novel techniques for communicating, sensing, docking and assembly will be detailed. These core technologies are critical to the goal of utilizing space in a cost efficient and safe manner. Finally, these technologies can also be applied to other systems both on earth and extraterrestrial environments.
Curating NASA's Future Extraterrestrial Sample Collections: How Do We Achieve Maximum Proficiency?
NASA Technical Reports Server (NTRS)
McCubbin, Francis; Evans, Cynthia; Zeigler, Ryan; Allton, Judith; Fries, Marc; Righter, Kevin; Zolensky, Michael
2016-01-01
The Astromaterials Acquisition and Curation Office (henceforth referred to herein as NASA Curation Office) at NASA Johnson Space Center (JSC) is responsible for curating all of NASA's extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10E "Curation of Extraterrestrial Materials", JSC is charged with "The curation of all extraterrestrial material under NASA control, including future NASA missions." The Directive goes on to define Curation as including "... documentation, preservation, preparation, and distribution of samples for research, education, and public outreach." Here we describe some of the ongoing efforts to ensure that the future activities of the NASA Curation Office are working towards a state of maximum proficiency.
NASA Technical Reports Server (NTRS)
Townes, C. H.
1979-01-01
Searches for extraterrestrial intelligence concentrate on attempts to receive signals in the microwave region, the argument being given that communication occurs there at minimum broadcasted power. Such a conclusion is shown to result only under a restricted set of assumptions. If generalized types of detection are considered, in particular photon detection rather than linear detection alone, and if advantage is taken of the directivity of telescopes at short wavelengths, then somewhat less power is required for communication at infrared wavelengths than in the microwave region. Furthermore, a variety of parameters other than power alone can be chosen for optimization by an extraterrestrial civilization.
Grimaldi, Claudio
2017-01-01
The lack of evidence for the existence of extraterrestrial life, even the simplest forms of animal life, makes it is difficult to decide whether the search for extraterrestrial intelligence (SETI) is more a high-risk, high-payoff endeavor than a futile attempt. Here we insist that even if extraterrestrial civilizations do exist and communicate, the likelihood of detecting their signals crucially depends on whether the Earth lies within a region of the galaxy covered by such signals. By considering possible populations of independent emitters in the galaxy, we build a statistical model of the domain covered by hypothetical extraterrestrial signals to derive the detection probability that the Earth is within such a domain. We show that for general distributions of the signal longevity and directionality, the mean number of detectable emitters is less than one even for detection probabilities as large as 50%, regardless of the number of emitters in the galaxy. PMID:28401943
Pros and cons in the search for extraterrestrial intelligence.
Kantha, S S
1996-03-01
I propose a new term, 'galactic organism with distinct intelligence', for the extraterrestrial forms, with which humans can make contact. This is because, among the three existing terms: (a) 'the search for extraterrestrial intelligence' 'excludes biology and is inelegant'; (b) 'extraterrestrial' does not distinguish between the micro-organisms and highly-evolved intelligent life-forms; and (c) 'unidentified flying object' projects a sense of mysticism. On the presence of galactic organisms with distinct intelligence, scientists belong to three camps. Astronomers, physicists and some biochemists belong to the believers group. Evolutionists are in the doubters category. The third camp is represented by the 'uncommitted'. Approaches for contacting galactic organisms with distinct intelligence would take three steps. These are: (a) radioastronomical observations in the galaxy and interstellar space for the presence of organic matter; (b) initiating radio contact and listening to any transmitted message, as set out by the search for extraterrestrial intelligence program, and (c) landing instruments and humans in the galaxy.
Implications of extraterrestrial material on the origin of life
NASA Astrophysics Data System (ADS)
Pasek, Matthew A.
Meteoritic organic material may provide the best perspective on prebiotic chemistry. Meteorites have also been invoked as a source of prebiotic material. This study suggests a caveat to extraterrestrial organic delivery: that prebiotic meteoritic organics were too dilute to promote prebiotic reactions. However, meteoritic material provides building material for endogenous synthesis of prebiotic molecules, such as by hydrolysis of extraterrestrial organic tars, and corrosion of phosphide minerals.
NASA Astrophysics Data System (ADS)
Finney, B.
1986-10-01
Scenarios of the impact on human society of radio contact with an extraterrestrial civilization are presented. Some believe that contact with advanced extraterrestrials would quickly devastate the human spirit, while others believe that these super-intelligent beings would show the inhabitants of the earth how to live in peace. It is proposed that the possible existence of extraterrestrial civilizations and the development of means of studying and communicating with them need to be considered.
How Will We React to the Discovery of Extraterrestrial Life?
Kwon, Jung Yul; Bercovici, Hannah L; Cunningham, Katja; Varnum, Michael E W
2017-01-01
How will humanity react to the discovery of extraterrestrial life? Speculation on this topic abounds, but empirical research is practically non-existent. We report the results of three empirical studies assessing psychological reactions to the discovery of extraterrestrial life using the Linguistic Inquiry and Word Count (LIWC) text analysis software. We examined language use in media coverage of past discovery announcements of this nature, with a focus on extraterrestrial microbial life (Pilot Study). A large online sample ( N = 501) was asked to write about their own and humanity's reaction to a hypothetical announcement of such a discovery (Study 1), and an independent, large online sample ( N = 256) was asked to read and respond to a newspaper story about the claim that fossilized extraterrestrial microbial life had been found in a meteorite of Martian origin (Study 2). Across these studies, we found that reactions were significantly more positive than negative, and more reward vs. risk oriented. A mini-meta-analysis revealed large overall effect sizes (positive vs. negative affect language: g = 0.98; reward vs. risk language: g = 0.81). We also found that people's forecasts of their own reactions showed a greater positivity bias than their forecasts of humanity's reactions (Study 1), and that responses to reading an actual announcement of the discovery of extraterrestrial microbial life showed a greater positivity bias than responses to reading an actual announcement of the creation of man-made synthetic life (Study 2). Taken together, this work suggests that our reactions to a future confirmed discovery of microbial extraterrestrial life are likely to be fairly positive.
How Will We React to the Discovery of Extraterrestrial Life?
Kwon, Jung Yul; Bercovici, Hannah L.; Cunningham, Katja; Varnum, Michael E. W.
2018-01-01
How will humanity react to the discovery of extraterrestrial life? Speculation on this topic abounds, but empirical research is practically non-existent. We report the results of three empirical studies assessing psychological reactions to the discovery of extraterrestrial life using the Linguistic Inquiry and Word Count (LIWC) text analysis software. We examined language use in media coverage of past discovery announcements of this nature, with a focus on extraterrestrial microbial life (Pilot Study). A large online sample (N = 501) was asked to write about their own and humanity’s reaction to a hypothetical announcement of such a discovery (Study 1), and an independent, large online sample (N = 256) was asked to read and respond to a newspaper story about the claim that fossilized extraterrestrial microbial life had been found in a meteorite of Martian origin (Study 2). Across these studies, we found that reactions were significantly more positive than negative, and more reward vs. risk oriented. A mini-meta-analysis revealed large overall effect sizes (positive vs. negative affect language: g = 0.98; reward vs. risk language: g = 0.81). We also found that people’s forecasts of their own reactions showed a greater positivity bias than their forecasts of humanity’s reactions (Study 1), and that responses to reading an actual announcement of the discovery of extraterrestrial microbial life showed a greater positivity bias than responses to reading an actual announcement of the creation of man-made synthetic life (Study 2). Taken together, this work suggests that our reactions to a future confirmed discovery of microbial extraterrestrial life are likely to be fairly positive. PMID:29367849
AEM of extraterrestrial materials
NASA Technical Reports Server (NTRS)
Mackinnon, I. D. R.
1982-01-01
Modifications to and maintenance of the JEOL 100 CX electron microscope are discussed. Research activity involving extraterrestrial matter, cosmic dust, stratosphere dust, and meteorites is summarized.
Exploration of Subglacial Lake Ellsworth
NASA Astrophysics Data System (ADS)
Ross, N.
2012-12-01
Antarctic subglacial lakes are thought to be extreme habitats for microbial life and may contain important records of ice sheet history within their lake-floor sediments. To find if this is true, and to answer the science questions that would follow, direct measurement and sampling of these environments is required. Ever since the water depth of Vostok Subglacial Lake in East Antarctica was shown to be >500 m, attention has been given to how these unique, ancient and pristine subglacial environments may be entered without contamination and adverse disturbance. Several organizations have offered guidelines on the desirable cleanliness and sterility requirements for direct sampling experiments, including the US National Academy of Sciences and the Scientific Committee on Antarctic Research. The aims, design and implementation of subglacial lake access experiments have direct relevance for the exploration of extra-terrestrial ice-covered bodies (e.g. Europa) and the search for microbial life elsewhere in the Solar System. This presentation summarizes the scientific protocols and methods being developed for the exploration of Ellsworth Subglacial Lake in West Antarctica, and provides an up-to-date summary of the status of the project. The proposed exploration, planned for December 2012, involves accessing the lake using a hot-water drill and deploying a sampling probe and sediment corer to allow in situ measurement and sample collection. Details are presented on how this can be undertaken with minimal environmental impact that maximizes scientific return without compromising the environment for future experiments. The implications of this experiment for the search for extra-terrestrial life will be discussed.
Amato, Pierre; Doyle, Shawn M; Battista, John R; Christner, Brent C
2010-10-01
The survival of microorganisms over extended time frames in frozen subsurface environments may be limited by chemical (i.e., via hydrolysis and oxidation) and ionizing radiation-induced damage to chromosomal DNA. In an effort to improve estimates for the survival of bacteria in icy terrestrial and extraterrestrial environments, we determined rates of macromolecular synthesis at temperatures down to -15°C in bacteria isolated from Siberian permafrost (Psychrobacter cryohalolentis K5 and P. arcticus 273-4) and the sensitivity of P. cryohalolentis to ionizing radiation. Based on experiments conducted over ≈400 days at -15°C, the rates of protein and DNA synthesis in P. cryohalolentis were <1 to 16 proteins cell(-1) d(-1) and 83 to 150 base pairs (bp) cell(-1) d(-1), respectively; P. arcticus synthesized DNA at rates of 20 to 1625 bp cell(-1) d(-1) at -15°C under the conditions tested. The dose of ionizing radiation at which 37% of the cells survive (D(37)) of frozen suspensions of P. cryohalolentis was 136 Gy, which was ∼2-fold higher (71 Gy) than identical samples exposed as liquid suspensions. Laboratory measurements of [(3)H]thymidine incorporation demonstrate the physiological potential for DNA metabolism at -15°C and suggest a sufficient activity is possible to offset chromosomal damage incurred in near-subsurface terrestrial and martian permafrost. Thus, our data imply that the longevity of microorganisms actively metabolizing within permafrost environments is not constrained by chromosomal DNA damage resulting from ionizing radiation or entropic degradation over geological time.
Universalist ethics in extraterrestrial encounter
NASA Astrophysics Data System (ADS)
Baum, Seth D.
2010-02-01
If humanity encounters an extraterrestrial civilization, or if two extraterrestrial civilizations encounter each other, then the outcome may depend not only on the civilizations' relative strength to destroy each other but also on what ethics are held by one or both civilizations. This paper explores outcomes of encounter scenarios in which one or both civilizations hold a universalist ethical framework. Several outcomes are possible in such scenarios, ranging from one civilization destroying the other to both civilizations racing to be the first to commit suicide. Thus, attention to the ethics of both humanity and extraterrestrials is warranted in human planning for such an encounter. Additionally, the possibility of such an encounter raises profound questions for contemporary human ethics, even if such an encounter never occurs.
Olah, George A; Mathew, Thomas; Prakash, G K Surya; Rasul, Golam
2016-02-10
Astrophysically observed extraterrestrial molecular matter contains, besides hydrogen and water, methane and methanol as the most abundant species. Feasible pathways and chemical aspects of their formation as well as of derived hydrocarbon homologues and their ions (carbocations and carbanions) are discussed on the basis of observed similarities with our studied terrestrial chemistry. The preferred pathway for converting extraterrestrial methane according to Ali et al. is based on CH5(+) and Olah's related nonclassical carbonium ion chemistry. On the basis of the observed higher reactivity of methanol compared with methane in various chemical reactions, a feasible new pathway is proposed for the conversion of extraterrestrial methanol to hydrocarbons, their derivatives, and carbocations together with a possible connection with methonium ion-based chemistry.
NASA Technical Reports Server (NTRS)
Klein, M. J.
1993-01-01
Extraterrestrial Intelligence is intelligent life that developed somewhere other than the earth. Such life has not yet been discovered. However, scientific research, including astronomy, biology, planetary science and studies of fossils here on earth have led many scientists to conclude that such life may exist on planets orbiting at least some of the hundreds of billions of stars in our Milky Way Galaxy. Today, some researchers are trying to find evidence for extraterrestrial intelligence. This effort is often called SETI, which stands for Search for Extraterrestrial Intelligence. SETI researchers decided that looking for evidence of their technology might be the best way to discover other intelligent life in the Galaxy. They decided to use large radio telescopes to search the sky over a wide range of radio frequencies...
Do potential SETI signals need to be decontaminated?
NASA Astrophysics Data System (ADS)
Carrigan, Richard A., Jr.
2006-01-01
Biological contamination from space samples is a remote but accepted possibility. Signals received by searches for extraterrestrial intelligence (SETI) could also contain harmful information in the spirit of a computer virus, the so-called "SETI Hacker" hypothesis. Over the last four decades extraterrestrial intelligence searches have given little consideration to this possibility. Some argue that information in an extraterrestrial signal could not attack a terrestrial computer because the computer logic and code is idiosyncratic and constitutes an impenetrable firewall. Suggestions are given on how to probe these arguments. Measures for decontaminating extraterrestrial intelligence signals (ETI) are discussed. Modifications to the current SETI detection protocol may be appropriate. Beyond that, the potential character of ETI message content requires much broader discussion.
Uncooled long-wave infrared hyperspectral imaging
NASA Technical Reports Server (NTRS)
Lucey, Paul G. (Inventor)
2006-01-01
A long-wave infrared hyperspectral sensor device employs a combination of an interferometer with an uncooled microbolometer array camera to produce hyperspectral images without the use of bulky, power-hungry motorized components, making it suitable for UAV vehicles, small mobile platforms, or in extraterrestrial environments. The sensor device can provide signal-to-noise ratios near 200 for ambient temperature scenes with 33 wavenumber resolution at a frame rate of 50 Hz, with higher results indicated by ongoing component improvements.
Medusa Sea Floor Monitoring System
NASA Technical Reports Server (NTRS)
Flynn, Michael
2004-01-01
The objective of the research described in this poster presentation is to develop technologies to enable fundamental research into understanding the potential for and limits to chemolithoautotrophic life. The Medusa Isosampler (isobaric sampler), for sampling fluids eminating from deep sea hydrothermal vents and cold seep sites analogous to extraterrestrial environments, is described by the presentation. The following instruments are integrated with the isosampler, and also described: in situ flow-through chemical sensor, intrinsic fluorescent-based microbial detector, isotope ratio spectral detector.
NASA Technical Reports Server (NTRS)
Hammond, Ernest C., Jr.
1987-01-01
The results of these studies have implications for the utilization of the IIaO spectroscopic film on the future shuttle and space lab missions. These responses to standard photonic energy sources will have immediate application for the uneven responses of the film photographing a star field in a terrestrial or extraterrestrial environment with associated digital imaging equipment.
Organic matter in carbonaceous meteorites: past, present and future research.
Sephton, Mark A
2005-12-15
Carbonaceous meteorites are fragments of ancient asteroids that have remained relatively unprocessed since the formation of the Solar System. These carbon-rich objects provide a record of prebiotic chemical evolution and a window on the early Solar System. Many compound classes are present reflecting a rich organic chemical environment during the formation of the planets. Recent theories suggest that similar extraterrestrial organic mixtures may have acted as the starting materials for life on Earth.
Identification and Characterization of Extremophile Microorganisms with Significance to Astrobiology
NASA Technical Reports Server (NTRS)
Bej, Asim K.
2003-01-01
It is now well recognized that microorganisms thrive in extreme ecological conditions such as geothermal vents, polar region, acid and alkaline lakes, and the cold pressurized depth of the ocean floor of this planet. Morphological, physiological, biochemical and genetic adaptations to extreme environments by these extremophile microorganisms have generated immense interest amongst astrobiologists who increasingly believe in the existence of extraterrestrial life. The evidence collected by NASA's space probe Galileo suggested the presence of liquid water and volcanic activity on Mars and Jupiter's satellite Europa. Volcanic activity provides some of the heat necessary to keep the water on Europa from freezing that could provide important dissolved chemicals needed by living organisms. The possibility of the existence of hypersaline alkaline lakes and evaporites confined within closed volcanic basins and impact craters on Mars, and a layer of liquid water under the ice on Europa provide sufficient 'raison d'etre' to study microorganisms in similar extreme environments on Earth, which could provide us with a model that would help establish the existence of extraterrestrial life on other planetary bodies. The objectives of the summer research project were as follows: (1) application of molecular approaches to help establish new species of extremophile microorganisms isolated from a hypersaline alkaline lake; and (2) identification of a major cold-shock gene (cspA) homolog from a psychrotolerant microorganism, PmagG1.
An Intelligent Pinger Network for Solid Glacier Environments
NASA Astrophysics Data System (ADS)
Schönitz, S.; Reuter, S.; Henke, C.; Jeschke, S.; Ewert, D.; Eliseev, D.; Heinen, D.; Linder, P.; Scholz, F.; Weinstock, L.; Wickmann, S.; Wiebusch, C.; Zierke, S.
2016-12-01
This talk presents a novel approach for an intelligent, agent-based pinger network in an extraterrestrial glacier environment. Because of recent findings of the Cassini spacecraft, a mission to Saturn's moon Enceladus is planned in order search for extraterrestrial life within the ocean beneath Enceladus' ice crust. Therefore, a maneuverable melting probe, the EnEx probe, was developed to melt into Enceladus' ice and take liquid samples from water-filled crevasses. Hence, the probe collecting the samples has to be able to navigate in ice which is a hard problem, because neither visual nor gravitational methods can be used. To enhance the navigability of the probe, a network of autonomous pinger units (APU) is in development that is able to extract a map of the ice environment via ultrasonic soundwaves. A network of these APUs will be deployed on the surface of Enceladus, melt into the ice and form a network to help guide the probe safely to its destination. The APU network is able to form itself fully autonomously and to compensate system failures of individual APUs. The agents controlling the single APU are realized by rule-based expert systems implemented in CLIPS. The rule-based expert system evaluates available information of the environment, decides for actions to take to achieve the desired goal (e.g. a specific network topology), and executes and monitors such actions. In general, it encodes certain situations that are evaluated whenever an APU is currently idle, and then decides for a next action to take. It bases this decision on its internal world model that is shared with the other APUs. The optimal network topology that defines each agents position is iteratively determined by mixed-integer nonlinear programming. Extensive simulations studies show that the proposed agent design enables the APUs to form a robust network topology that is suited to create a reliable 3D map of the ice environment.
Preservation of extraterrestrial 3He in 480-Ma-old marine limestones.
Patterson, D B; Farley, K A; Schmitz, B
1998-11-01
We have measured the helium abundance and isotopic composition of a suite of Lower Ordovician marine limestones and associated fossil meteorites from Kinnekulle, Sweden. Limestone 3He/4He ratios as high as 11.5 times the atmospheric value in fused samples and up to 23 times atmospheric in a single step-heat fraction indicate the presence of extraterrestrial helium, and demonstrate that at least a fraction of the extraterrestrial 3He carried by interplanetary dust particles must be retained against diffusive and diagenetic losses for up to 480 Ma. The carrier phase has not been identified but is not magnetic. Extrapolation of high-temperature 3He diffusivities in these sediments is consistent with strong retention of extraterrestrial 3He under ambient Earth-surface conditions. Combination of the observed helium concentrations with sedimentation rates estimated from conodont biostratigraphy suggest that the flux of extraterrestrial 3He in the Early Ordovician was about 0.5 x 10(-12) cm3 STP cm-2 ka-1, ignoring potential post-deposition helium loss. This value is indistinguishable from the average 3He flux estimated for the Cenozoic Era. In contrast, previous studies of fossil meteorites, Ir abundances, and Os isotopic ratios in the limestone suggest that the total accretion rate of extraterrestrial material during the studied interval was at least an order of magnitude higher than the Cenozoic average. This disparity may reflect significant post-depositional loss of 3He from IDPs within these old limestones; if so, the match between the Ordovician flux and the Cenozoic average would be fortuitous. Alternatively, the size distribution of infalling objects during the Early Ordovician may have been enriched only in extraterrestrial material too large to retain 3He during atmospheric entry heating (> approximately 30 micrometers). The fossil meteorites themselves also preserve extraterrestrial helium. Meteorite 3He concentrations of 2 to 9 x 10(-12) cm3 STP g-1 are several orders of magnitude lower than found in most modern meteorites, suggesting very substantial helium loss (probably >99.9%) from these chemically altered objects. The Meteorites carry 3He concentrations only a factor of a few higher than the host limestones. The meteorites themselves cannot be the source of the extraterrestrial 3He observed in the limestones.
A Parameter Space as an Improved Tool for Investigating Extraterrestrial Intelligence
NASA Astrophysics Data System (ADS)
Ashworth, S.
2014-06-01
For the past half century the Drake Equation and the Fermi Paradox have provided the intellectual foundation for investigating the possible existence of extraterrestrial intelligence. But both the Equation and the Paradox are flawed and of questionable scientific utility. A replacement needs to be found, based on a different principle, and a parameter space for extraterrestrial intelligence is proposed as an improved tool of thought. This generates six distinct scenarios, whose implications for SETI are discussed.
NASA Astrophysics Data System (ADS)
Marcantonio, Franco; Turekian, Karl K.; Higgins, Sean; Anderson, Robert F.; Stute, Martin; Schlosser, Peter
1999-07-01
In the eastern equatorial Indian Ocean, the flux of extraterrestrial 3He, a proxy of interplanetary dust particles (IDPs), has been relatively constant over the past 200 ka. The flux is equal to (1.1±0.4)×10 -12 cm 3 STP cm -2 ka -1, a value obtained using the xs 230Th profiling method. Variations in mass accumulation rates (MARs) derived assuming a constant extraterrestrial 3He flux have a 40-ka periodicity similar to that observed in the δ 18O-derived MARs. This frequency is similar to that of the Earth's obliquity. Measured 187Os/ 188Os ratios are less radiogenic than present-day seawater (0.49-0.98), reflecting the mixing of Os derived from extraterrestrial, terrigenous and hydrogenous sources. When coupled with He data measured on the same samples, Os isotope data yield important information about the terrigenous component supplied to the eastern equatorial Indian Ocean. The amount of Os in the sample derived from the extraterrestrial component can be deduced with the help of the helium systematics. Once corrected for the extraterrestrial component of Os, Os isotope signatures, in conjunction with the 4He concentrations, suggest a supply of terrigenous material from Indonesian ultramafic and Himalayan crustal sources that clearly varies through time.
No evidence of extraterrestrial noble metal and helium anomalies at Marinoan glacial termination
NASA Astrophysics Data System (ADS)
Peucker-Ehrenbrink, Bernhard; Waters, Christine A.; Kurz, Mark D.; Hoffman, Paul F.
2016-03-01
High concentrations of extraterrestrial iridium have been reported in terminal Sturtian and Marinoan glacial marine sediments and are used to argue for long (likely 3-12 Myr) durations of these Cryogenian glaciations. Reanalysis of the Marinoan sedimentary rocks used in the original study, supplemented by sedimentary rocks from additional terminal Marinoan sections, however, does not confirm the initial report. New platinum group element concentrations, and 187Os/188Os and 3He/4He signatures are consistent with crustal origin and minimal extraterrestrial contributions. The discrepancy is likely caused by different sample masses used in the two studies, with this study being based on much larger samples that better capture the stochastic distribution of extraterrestrial particles in marine sediments. Strong enrichment of redox-sensitive elements, particularly rhenium, up-section in the basal postglacial cap carbonates, may indicate a return to more fully oxygenated seawater in the aftermath of the Marinoan snowball earth. Sections dominated by hydrogenous osmium indicate increasing submarine hydrothermal sources and/or continental inputs that are increasingly dominated by young mantle-derived rocks after deglaciation. Sedimentation rate estimates for the basal cap carbonates yield surprisingly slow rates of a few centimeters per thousand years. This study highlights the importance of using sedimentary rock samples that represent sufficiently large area-time products to properly sample extraterrestrial particles representatively, and demonstrates the value of using multiple tracers of extraterrestrial matter.
Telling, Jon; Lacrampe-Couloume, Georges; Sherwood Lollar, Barbara
2013-05-01
The low-molecular-weight alkanes--methane, ethane, propane, and butane--are found in a wide range of terrestrial and extraterrestrial settings. The development of robust criteria for distinguishing abiogenic from biogenic alkanes is essential for current investigations of Mars' atmosphere and for future exobiology missions to other planets and moons. Here, we show that alkanes synthesized during gas-phase radical recombination reactions in electrical discharge experiments have values of δ(2)H(methane)>δ(2)H(ethane)>δ(2)H(propane), similar to those of the carbon isotopes. The distribution of hydrogen isotopes in gas-phase radical reactions is likely due to kinetic fractionations either (i) from the preferential incorporation of (1)H into longer-chain alkanes due to the more rapid rate of collisions of the smaller (1)H-containing molecules or (ii) by secondary ion effects. Similar δ(13)C(C1-C2+) and δ(2)H(C1-C2+) patterns may be expected in a range of extraterrestrial environments where gas-phase radical reactions dominate, including interstellar space, the atmosphere and liquid hydrocarbon lakes of Saturn's moon Titan, and the outer atmospheres of Jupiter, Saturn, Neptune, and Uranus. Radical recombination reactions at high temperatures and pressures may provide an explanation for the combined reversed δ(13)C(C1-C2+) and δ(2)H(C1-C2+) patterns of terrestrial alkanes documented at a number of high-temperature/pressure crustal sites.
Olsson-Francis, Karen; de la Torre, Rosa; Towner, Martin C; Cockell, Charles S
2009-12-01
Cyanobacteria are photosynthetic organisms that have been considered for space applications, such as oxygen production in bioregenerative life support systems, and can be used as a model organism for understanding microbial survival in space. Akinetes are resting-state cells of cyanobacteria that are produced by certain genera of heterocystous cyanobacteria to survive extreme environmental conditions. Although they are similar in nature to endospores, there have been no investigations into the survival of akinetes in extraterrestrial environments. The aim of this work was to examine the survival of akinetes from Anabaena cylindrica in simulated extraterrestrial conditions and in Low Earth Orbit (LEO). Akinetes were dried onto limestone rocks and sent into LEO for 10 days on the ESA Biopan VI. In ground-based experiments, the rocks were exposed to periods of desiccation, vacuum (0.7×10(-3) kPa), temperature extremes (-80 to 80°C), Mars conditions (-27°C, 0.8 kPa, CO(2)) and UV radiation (325-400 nm). A proportion of the akinete population was able to survive a period of 10 days in LEO and 28 days in Mars simulated conditions, when the rocks were not subjected to UV radiation. Furthermore, the akinetes were able to survive 28 days of exposure to desiccation and low temperature with high viability remaining. Yet long periods of vacuum and high temperature were lethal to the akinetes. This work shows that akinetes are extreme-tolerating states of cyanobacteria that have a practical use in space applications and yield new insight into the survival of microbial resting-state cells in space conditions.
NASA Technical Reports Server (NTRS)
Calaway, M. J.; Allton, J. H.; Zeigler, R. A.; McCubbin, F. M.
2017-01-01
The Apollo program's Lunar Receiving Laboratory (LRL), building 37 at NASA's Manned Spaceflight Center (MSC), now Johnson Space Center (JSC), in Houston, TX, was the world's first astronaut and extraterrestrial sample quarantine facility (Fig. 1). It was constructed by Warrior Construction Co. and Warrior-Natkin-National at a cost of $8.1M be-tween August 10, 1966 and June 26, 1967. In 1969, the LRL received and curated the first collection of extra-terrestrial samples returned to Earth; the rock and soil samples of the Apollo 11 mission. This year, the JSC Astromaterials Acquisition and Curation Office (here-after JSC curation) celebrates 50 years since the opening of the LRL and its legacy of laying the foundation for modern curation of extraterrestrial samples.
NASA Astrophysics Data System (ADS)
Tipler, F. J.
1982-10-01
An assessment is presented of the probability of the existence of intelligent extraterrestrial life in view of biological evolutionary constraints, in order to furnish some perspective for the hopes and claims of search of extraterrestrial intelligence (SETI) enthusiasts. Attention is given to a hypothetical extraterrestrial civilization's exploration/colonization of interstellar space by means of von Neumann machine-like, endlessly self-replicating space probes which would eventually reach the planetary systems of all stars in the Galaxy. These probes would be able to replicate the biology of their creator species, upon reaching a hospitable planet. It is suggested that the fundamental technological feasibility of such schemes, and their geometrically progressive comprehension of the Galaxy, would make actual colonization of the earth by extraterrestrials so probable as to destroy the hopes of SETI backers for occasional contact.
A Review of Extra-Terrestrial Mining Robot Concepts
NASA Technical Reports Server (NTRS)
Mueller, Robert P.; Van Susante, Paul J.
2011-01-01
Outer space contains a vast amount of resources that offer virtually unlimited wealth to the humans that can access and use them for commercial purposes. One of the key technologies for harvesting these resources is robotic mining of regolith, minerals, ices and metals. The harsh environment and vast distances create challenges that are handled best by robotic machines working in collaboration with human explorers. Humans will benefit from the resources that will be mined by robots. They will visit outposts and mining camps as required for exploration, commerce and scientific research, but a continuous presence is most likely to be provided by robotic mining machines that are remotely controlled by humans. There have been a variety of extra-terrestrial robotic mining concepts proposed over the last 100 years and this paper will attempt to summarize and review concepts in the public domain (government, industry and academia) to serve as an informational resource for future mining robot developers and operators. The challenges associated with these concepts will be discussed and feasibility will be assessed. Future needs associated with commercial efforts will also be investigated.
A Review of Extra-Terrestrial Mining Concepts
NASA Technical Reports Server (NTRS)
Mueller, R. P.; van Susante, P. J.
2012-01-01
Outer space contains a vast amount of resources that offer virtually unlimited wealth to the humans that can access and use them for commercial purposes. One of the key technologies for harvesting these resources is robotic mining of regolith, minerals, ices and metals. The harsh environment and vast distances create challenges that are handled best by robotic machines working in collaboration with human explorers. Humans will benefit from the resources that will be mined by robots. They will visit outposts and mining camps as required for exploration, commerce and scientific research, but a continuous presence is most likely to be provided by robotic mining machines that are remotely controlled by humans. There have been a variety of extra-terrestrial robotic mining concepts proposed over the last 40 years and this paper will attempt to summarize and review concepts in the public domain (government, industry and academia) to serve as an informational resource for future mining robot developers and operators. The challenges associated with these concepts will be discussed and feasibility will be assessed. Future needs associated with commercial efforts will also be investigated.
NASA Technical Reports Server (NTRS)
Mcdonnell, J. A. M.; Stevenson, T. J.
1992-01-01
The Microabrasion Foil Experiment comprises arrays of frames, each supporting two layers of closely spaced metallic foils and a back-stop plate. The arrays, deploying aluminum and brass foil ranging from 1.5 to some 30 microns were exposed for 5.78 years on NASA's LDEF at a mean altitude of 458 km. They were deployed on the North, South, East, West, and Space pointing faces; results presented comprise the perforation rates for each location as a function of foil thickness. Initial results refer primarily to aluminum of 5 microns thickness or greater. This penetration distribution, comprising 2,342 perforations in total, shows significantly differing characteristics for each detector face. The anisotropy confirms, incorporating the dynamics of particulate orbital mechanics, the dominance of incorporating extraterrestrial particulates penetrating thicknesses greater than 20 microns in Al foil, yielding fluxes compatible with hyperbolic geocentric velocities. For thinner foils, a disproportionate increase in flux of particles on the East, North, and South faces shows the presence of orbital particulates which exceed the extraterrestrial component perforation rate at 5 micron foil thickness by a factor of approx. 4.
NASA Technical Reports Server (NTRS)
Ostro, S.
1999-01-01
Discussion of extraterrestrial life (ETL) and extraterrestrial intelligent life (ETI) is extraordinarily complex and mulitidisciplinary, in part because relevant questions involve both the origin/evolution of terrestrial life and the future of human civilization.
L factor: hope and fear in the search for extraterrestrial intelligence
NASA Astrophysics Data System (ADS)
Rubin, Charles T.
2001-08-01
The L factor in the Drake equation is widely understood to account for most of the variance in estimates of the number of extraterrestrial intelligences that might be contacted by the search for extraterrestrial intelligence (SETI). It is also among the hardest to quantify. An examination of discussions of the L factor in the popular and technical SETI literature suggests that attempts to estimate L involve a variety of potentially conflicting assumptions about civilizational lifespan that reflect hopes and fears about the human future.
Preparing to Receive and Handle Martian Samples When They Arrive on Earth
NASA Technical Reports Server (NTRS)
McCubbin, Francis M.
2017-01-01
The Astromaterials Acquisition and Curation Office at NASA Johnson Space Center (JSC) is responsible for curating all of NASA's extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10F+ derivative NPR 'Curation of Extraterrestrial Materials', JSC is charged with 'The curation of all extraterrestrial material under NASA control, including future NASA missions. 'The Directive goes on to define Curation as including'...documentation, preservation, preparation, and distribution of samples for research, education, and public outreach."
The Impact of Discovering Life beyond Earth
NASA Astrophysics Data System (ADS)
Dick, Steven J.
2016-01-01
Introduction: astrobiology and society Steven J. Dick; Part I. Motivations and Approaches. How Do We Frame the Problems of Discovery and Impact?: Introduction; 1. Current approaches to finding life beyond earth, and what happens if we do Seth Shostak; 2. The philosophy of astrobiology: the Copernican and Darwinian presuppositions Iris Fry; 3. History, discovery, analogy: three approaches to the impact of discovering life beyond earth Steven J. Dick; 4. Silent impact: why the discovery of extraterrestrial life should be silent Clément Vidal; Part II. Transcending Anthropocentrism. How Do We Move beyond our Own Preconceptions of Life, Intelligence and Culture?: Introduction; 5. The landscape of life Dirk Schulze-Makuch; 6. The landscape of intelligence Lori Marino; 7. Universal biology: assessing universality from a single example Carlos Mariscal; 8. Equating culture, civilization, and moral development in imagining extraterrestrial intelligence: anthropocentric assumptions? John Traphagan; 9. Communicating with the other: infinity, geometry, and universal math and science Douglas Vakoch; Part III. Philosophical, Theological, and Moral Impact. How Do We Comprehend the Cultural Challenges Raised by Discovery?: Introduction; 10. Life, intelligence and the pursuit of value in cosmic evolution Mark Lupisella; 11. 'Klaatu barada nikto' - or, do they really think like us? Michael Ruse; 12. Alien minds Susan Schneider; 13. The moral subject of astrobiology: guideposts for exploring our ethical and political responsibilities towards extraterrestrial life Elspeth Wilson and Carol Cleland; 14. Astrobiology and theology Robin Lovin; 15. Would you baptize an extraterrestrial? Guy Consolmagno, SJ; Part IV. Practical Considerations: How Should Society Prepare for Discovery - and Non-Discovery?: Introduction; 16. Is there anything new about astrobiology and society? Jane Maienschein; 17. Evaluating preparedness for the discovery of extraterrestrial life: considering potential risks, impacts and plans Margaret Race; 18. Searching for extraterrestrial intelligence: preparing for an expected paradigm break Michael A. G. Michaud; 19. SETI in non-western perspective John Traphagan and Julian W. Traphagan; 20. The allure of alien life: public and media framings of extraterrestrial life Linda Billings; 21. Internalizing null extraterrestrial 'signals': an astrobiological app for a technological society Eric Chaisson; Index.
NASA Astrophysics Data System (ADS)
Tsapin, A.; McDonald, G.
2002-12-01
Permafrost occupies a significant part of North America and Eurasia, and accounts for around 20% of Earth?s land surface. Permafrost represents a temperature-stable environment that allows the prolonged survival of microbial lineages at subzero temperatures. Microorganisms from ancient permafrost have been revived and isolated in pure cultures. Permafrost is a unique environment serving as a "natural gene bank", with many species frozen in time (i.e. preserved in an unchanging evolutionary state). Permafrost presents a golden niche for future biotechnology, and is also a unique environment for studying longevity and survivability microorganisms (pro- and eukaryotes). Permafrost, alone among cold environments, offers a sedimentary column in which, in one borehole made in the thick permafrost, we can observe in the preserved genetic material the history of biological evolution during the last several hundred thousand or maybe even a few million years. A thorough study of the phylogenetic relationships of organisms at each depth, as well as comparisons between different depths of permafrost, using molecular evolution techniques, will give us a unique window into the process of evolution of microbial communities over geologic time. The longevity of (micro)organisms in cold environments is of great interest to astrobiology since cryospheres are common phenomena in the solar system, particularly on satellites, comets and asteroids, and on some of the planets. Recent data from the Mars Global Surveyor mission suggest the possibility of permafrost or perhaps even liquid water under the Martian surface. The probability of finding life on Mars, if it exists, is probably higher in such environments. In addition, the evaluation of the possibility of transfer of living organisms between planets via impact ejecta needs the information on the maximum time over which microorganisms in cold environments can remain dormant and subsequently revive and reproduce. Our strategy for the search for extraterrestrial life or its remnants is based on studying the most probable environments in which life (extant or extinct) may be found, and determining the maximum period of time over which such life could be preserved. The terrestrial permafrost, inhabited by cold adapted microbes, can be considered as an extraterrestrial analog environment. The cells and their metabolic end-products in Earth's permafrost can be used in the search for possible ecosystems and potential inhabitants on extraterrestrial cryogenic bodies. The study of microorganisms (or their remnants) that were buried for a few million years in permafrost provides us with a unique opportunity to determine the long-term viability of (micro)organisms. We have analyzed the degree of racemization of aspartic acid in permafrost samples from Northern Siberia (Brinton et al. 2002, Astrobiology 2, 77), an area from which microorganisms of apparent ages up to a few million years have previously been isolated and cultured. We find that the extent of aspartic acid racemization in permafrost cores increases very slowly up to an age of approximately 25,000 years (around 5 m depth). The apparent temperature of racemization over the age range 0-25,000 years, determined using measured aspartic acid racemization rate constants, is ?19 C. This apparent racemization temperature is significantly lower than the measured environmental temperature (?11 to ?13 C), and suggests active recycling of D-aspartic acid in Siberian permafrost up to an age of around 25,000 years. This indicates that permafrost organisms are capable of repairing some molecular damage incurred while they are in a ?dormant? state over geologic time.
Liquid Chromatography-Mass Spectrometry Interface for Detection of Extraterrestrial Organics
NASA Technical Reports Server (NTRS)
Southard, Adrian E.; Getty, Stephanie A.; Balvin, Manuel; Cook, Jamie E.; Espiritu, Ana Mellina; Kotecki, Carl; Towner, Deborah W.; Dworkin, J. P.; Glavin, Daniel P.; Mahaffy, Paul R.;
2014-01-01
The OASIS (Organics Analyzer for Sampling Icy surfaces) microchip enables electrospray or thermospray of analyte for subsequent analysis by the OASIS time-of-flight mass spectrometer. Electrospray of buffer solution containing the nucleobase adenine was performed using the microchip and detected by a commercial time-of-flight mass spectrometer. Future testing of thermospray and electrospray capability will be performed using a test fixture and vacuum chamber developed especially for optimization of ion spray at atmosphere and in low pressure environments.
Resistance of Bacillus Endospores to Extreme Terrestrial and Extraterrestrial Environments
Nicholson, Wayne L.; Munakata, Nobuo; Horneck, Gerda; Melosh, Henry J.; Setlow, Peter
2000-01-01
Endospores of Bacillus spp., especially Bacillus subtilis, have served as experimental models for exploring the molecular mechanisms underlying the incredible longevity of spores and their resistance to environmental insults. In this review we summarize the molecular laboratory model of spore resistance mechanisms and attempt to use the model as a basis for exploration of the resistance of spores to environmental extremes both on Earth and during postulated interplanetary transfer through space as a result of natural impact processes. PMID:10974126
NASA Technical Reports Server (NTRS)
Morris, Penny A.; Wentworth, Susan J.; Nelman, Mayra; Byrne, Monica; Longazo, Teresa; Galindo, Charles; McKay, David S.; Sams, Clarence
2003-01-01
Terrestrial biotas from microbially dominated hypersaline environments will help us understand microbial fossilization processes. Hypersaline tolerant biota from Storr's Lake, San Salvador Island (Bahamas), Mono Lake (California), and the Dead Sea (Israel) represent marine and nonmarine sites for comparative studies of potential analogs for interpreting some Mars meteorites and Mars sample return rocks [1,2,3,4,5,6]. The purpose of this study is to compare microbial fossilization processes, the dominant associated minerals, and potential diagenic implications.
Radiation-Shielding Polymer/Soil Composites
NASA Technical Reports Server (NTRS)
Sen, Subhayu
2007-01-01
It has been proposed to fabricate polymer/ soil composites primarily from extraterrestrial resources, using relatively low-energy processes, with the original intended application being that habitat structures constructed from such composites would have sufficient structural integrity and also provide adequate radiation shielding for humans and sensitive electronic equipment against the radiation environment on the Moon and Mars. The proposal is a response to the fact that it would be much less expensive to fabricate such structures in situ as opposed to transporting them from Earth.
NASA Technical Reports Server (NTRS)
Greenberg, J. M. (Editor); Oro, J. (Editor); Brack, A. (Editor); Devincenzi, D. L. (Editor); Banin, A. (Editor); Friedmann, E. I. (Editor); Rummel, J. D. (Editor); Raulin, F. (Editor); Mckay, C. P. (Editor); Baltscheffsky, H. (Editor)
1995-01-01
The proceedings include sessions on extraterrestrial organic chemistry and the origins of life; life on Mars: past, present and future; planetary protection of Mars missions; chemical evolution on Titan; origins and early evolution of biological (a) energy transduction and membranes (b) information and catalysis; and carbon chemistry and isotopic fractionations in astrophysical environments.
NASA Astrophysics Data System (ADS)
Journaux, B.; Brown, J. M.; Bollengier, O.; Abramson, E.
2017-12-01
As in Earth arctic and Antarctic regions, suspected extraterrestrial deep oceans in icy worlds (i.e. icy moons and water-rich exoplanets) chemistry and thermodynamic state will strongly depend on their equilibrium with H2O ice and present solutes. Na-Mg-Cl-SO4 salt species are currently the main suspected ionic solutes to be present in deep oceans based on remote sensing, magnetic field measurements, cryovolcanism ice grains chemical analysis and chondritic material aqueous alteration chemical models. Unlike on our planet, deep extraterrestrial ocean might also be interacting at depth with high pressure ices (e.g. III, V, VI, VI, X) which have different behavior compared to ice Ih. Unfortunately, the pressures and temperatures inside these hydrospheres differ significantly from the one found in Earth aqueous environments, so most of our current thermodynamic databases do not cover the range of conditions relevant for modeling realistically large icy worlds interiors. Recent experimental results have shown that the presence of solutes, and more particularly salts, in equilibrium with high pressure ices have large effects on the stability, buoyancy and chemistry of all the phases present at these extreme conditions. High pressure in-situ measurements using diamond anvil cell apparatus were operated both at the University of washington and at the European Synchrotron Radiation Facility on aqueous systems phase diagrams with Na-Mg-Cl-SO4 species, salt incorporation in high pressure ices and density inversions between the solid and the fluids. These results suggest a more complex picture of the interior structure, dynamic and chemical evolution of large icy worlds hydrospheres when solutes are taken into account, compared to current models mainly using pure water. Based on our in-situ experimental measurements, we propose the existence of new liquid environments at greater depths and the possibility of solid state transport of solute through the high pressure ices(s) layers suggesting that large icy worlds like Enceladus, Titan or water-rich exoplanets could have habitable deep oceans, even when high pressure ices are present.
NASA Technical Reports Server (NTRS)
Ehricke, K. A.
1972-01-01
The future benefits of extraterrestrial space to man and his problems, both personal and environmental, are discussed. Particular attention was given to space manufacturing, development of space power plants, mineral exploration, and transportation costs of such activities.
At what wavelengths should we search for signals from extraterrestrial intelligence?
Townes, C. H.
1983-01-01
It has often been concluded that searches for extraterrestrial intelligence (SETI) should concentrate on attempts to receive signals in the microwave region, the argument being given that communication can occur there at minimum broadcasted power. Such a conclusion is shown to result only under a restricted set of assumptions. If generalized types of detection are considered—in particular, photon detection rather than linear detection alone—and if advantage is taken of the directivity of telescopes at short wavelengths, then somewhat less power is required for communication at infrared wavelengths than in the microwave region. Furthermore, a variety of parameters other than power alone may be chosen for optimization by an extraterrestrial civilization. Hence, while partially satisfying arguments may be given about optimal wavelengths for a search for signals from extraterrestrial intelligence, considerable uncertainty must remain. PMID:16593279
At what wavelengths should we search for signals from extraterrestrial intelligence?
Townes, C H
1983-02-01
It has often been concluded that searches for extraterrestrial intelligence (SETI) should concentrate on attempts to receive signals in the microwave region, the argument being given that communication can occur there at minimum broadcasted power. Such a conclusion is shown to result only under a restricted set of assumptions. If generalized types of detection are considered-in particular, photon detection rather than linear detection alone-and if advantage is taken of the directivity of telescopes at short wavelengths, then somewhat less power is required for communication at infrared wavelengths than in the microwave region. Furthermore, a variety of parameters other than power alone may be chosen for optimization by an extraterrestrial civilization. Hence, while partially satisfying arguments may be given about optimal wavelengths for a search for signals from extraterrestrial intelligence, considerable uncertainty must remain.
NASA Technical Reports Server (NTRS)
Ahmadi, Mashid; Bottelli, Alejandro Horacio; Brave, Fernando Luis; Siddiqui, Muhammad Ali
1988-01-01
The notion of using Antarctica as a planetary analog is not new. Ever since the manned space program gained serious respect in the 1950's, futurists have envisioned manned exploration and ultimate colonization of the moon and other extraterrestrial bodies. In recent years, much attention has been focused on a permanently manned U.S. space station, a manned Lunar outpost and a manned mission to Mars and its vicinity. When such lofty goals are set, it is only prudent to research, plan and rehearse as many aspects of such a mission as possible. The concept of the Antarctic Planetary Testbed (APT) project is intended to be a facility that will provide a location to train and observe potential mission crews under conditions of isolation and severity, attempting to simulate an extraterrestrial environment. Antarctica has been considered as an analog by NASA for Lunar missions and has also been considered by many experts to be an excellent Mars analog. Antarctica contains areas where the environment and terrain are more similar to regions on the Moon and Mars than any other place on Earth. These features offer opportunities for simulations to determine performance capabilities of people and machines in harsh, isolated environments. The initial APT facility, conceived to be operational by the year 1991, will be constructed during the summer months by a crew of approximately twelve. Between six and eight of these people will remain through the winter. As in space, structures and equipment systems will be modular to facilitate efficient transport to the site, assembly, and evolutionary expansion. State of the art waste recovery/recycling systems are also emphasized due to their importance in space.
Assessing Planetary Habitability: Don't Forget Exotic Life!
NASA Astrophysics Data System (ADS)
Schulze-Makuch, Dirk
2012-05-01
With the confirmed detection of more than 700 exoplanets, the temptation looms large to constrain the search for extraterrestrial life to Earth-type planets, which have a similar distance to their star, a similar radius, mass and density. Yet, a look even within our Solar System points to a variety of localities to which life could have adapted to outside of the so-called Habitable Zone (HZ). Examples include the hydrocarbon lakes on Titan, the subsurface ocean environment of Europa, the near- surface environment of Mars, and the lower atmosphere of Venus. Recent Earth analog work and extremophile investigations support this notion, such as the discovery of a large microbial community in a liquid asphalt lake in Trinidad (as analog to Titan) or the discovery of a cryptoendolithic habitat in the Antarctic desert, which exists inside rocks, such as beneath sandstone surfaces and dolerite clasts, and supports a variety of eukaryotic algae, fungi, and cyanobacteria (as analog to Mars). We developed a Planetary Habitability Index (PHI, Schulze-Makuch et al., 2011), which was developed to prioritize exoplanets not based on their similarity to Earth, but whether the extraterrestrial environment could, in principle, be a suitable habitat for life. The index includes parameters that are considered to be essential for life such as the presence of a solid substrate, an atmosphere, energy sources, polymeric chemistry, and liquids on the planetary surface. However, the index does not require that this liquid is water or that the energy source is light (though the presence of light is a definite advantage). Applying the PHI to our Solar System, Earth comes in first, with Titan second, and Mars third.
An ESA roadmap for geobiology in space exploration
NASA Astrophysics Data System (ADS)
Cousins, Claire R.; Cockell, Charles S.
2016-01-01
Geobiology, and in particular mineral-microbe interactions, has a significant role to play in current and future space exploration. This includes the search for biosignatures in extraterrestrial environments, and the human exploration of space. Microorganisms can be exploited to advance such exploration, such as through biomining, maintenance of life-support systems, and testing of life-detection instrumentation. In view of these potential applications, a European Space Agency (ESA) Topical Team "Geobiology in Space Exploration" was developed to explore these applications, and identify research avenues to be investigated to support this endeavour. Through community workshops, a roadmap was produced, with which to define future research directions via a set of 15 recommendations spanning three key areas: Science, Technology, and Community. These roadmap recommendations identify the need for research into: (1) new terrestrial space-analogue environments; (2) community level microbial-mineral interactions; (3) response of biofilms to the space environment; (4) enzymatic and biochemical mineral interaction; (5) technical refinement of instrumentation for space-based microbiology experiments, including precursor flight tests; (6) integration of existing ground-based planetary simulation facilities; (7) integration of fieldsite biogeography with laboratory- and field-based research; (8) modification of existing planetary instruments for new geobiological investigations; (9) development of in situ sample preparation techniques; (10) miniaturisation of existing analytical methods, such as DNA sequencing technology; (11) new sensor technology to analyse chemical interaction in small volume samples; (12) development of reusable Lunar and Near Earth Object experimental platforms; (13) utility of Earth-based research to enable the realistic pursuit of extraterrestrial biosignatures; (14) terrestrial benefits and technological spin-off from existing and future space-based geobiology investigations; and (15) new communication avenues between space agencies and terrestrial research organisations to enable this impact to be developed.
NASA Astrophysics Data System (ADS)
Webb, S.
2013-09-01
Until relatively recently, many authors have assumed that if extraterrestrial life is discovered it will be via the discovery of extraterrestrial intelligence: we can best try to detect life by adopting the SETI approach of trying to detect beacons or artefacts. The Rio Scale, proposed by Almár and Tarter in 2000, is a tool for quantifying the potential significance for society of any such reported detection. However, improvements in technology and advances in astrobiology raise the possibility that the discovery of extraterrestrial life will instead be via the detection of atmospheric biosignatures. The London Scale, proposed by Almár in 2010, attempts to quantify the potential significance of the discovery of extraterrestrial life rather than extraterrestrial intelligence. What might be the consequences of the announcement of a discovery that ranks low on the London Scale? In other words, what might be society's reaction if 'first contact' is via the remote sensing of the byproducts of unicellular organisms rather than with the products of high intelligence? Here, I examine some possible reactions to that question; in particular, I discuss how such an announcement might affect our views of life here on Earth and of humanity's place in the universe.
QESA: Quarantine Extraterrestrial Sample Analysis Methodology
NASA Astrophysics Data System (ADS)
Simionovici, A.; Lemelle, L.; Beck, P.; Fihman, F.; Tucoulou, R.; Kiryukhina, K.; Courtade, F.; Viso, M.
2018-04-01
Our nondestructive, nm-sized, hyperspectral analysis methodology of combined X-rays/Raman/IR probes in BSL4 quarantine, renders our patented mini-sample holder ideal for detecting extraterrestrial life. Our Stardust and Archean results validate it.
The search for extraterrestrial intelligence: Telecommunications technology
NASA Technical Reports Server (NTRS)
Edelson, R. E.; Levy, G. S.
1980-01-01
Efforts to discover evidence of intelligent extraterrestrial life have become not only feasible, but respectable. Fledgling observational projects have begun that will use state-of-the-art hardware to develop sophisticated receiving and data processing systems. The rationale behind the Search for Extraterrestrial Intelligence, the manner in which the program is taking shape, and the implications for telecommunications are described. It is concluded that the breadth of technological development required for the detection of signals from galactic brethren has particular relevance for the future of telecommunications in Earth oriented uses.
NASA Astrophysics Data System (ADS)
Carstairs, Ian R.
2002-12-01
Ian R Carstairs reports on efforts to extend the search for extraterrestrial intelligence to X and γ-ray regions. Traditional Search for Extra-Terrestrial Intelligence (SETI) strategies have used radio, microwave and, to a limited extent, optical searches. But this ignores the higher energy X and γ-ray regions that a technologically advanced extraterrestrial civilization might use to attract our attention - using messages encoded in discrete photon-counting exchange, much like the signals seen from pulsars. Here, the methods used in high-energy pulsar detection and analysis are reviewed and applied to this new SETI initiative.
Searching for extraterrestrial civilizations
NASA Technical Reports Server (NTRS)
Kuiper, T. B. H.; Morris, M.
1977-01-01
Three interrelated assumptions are critically examined in an attempt to outline a productive strategy for a search for extraterrestrial intelligence. Questions concerning the feasibility of interstellar travel are investigated. It is concluded that the probability of interstellar travel is high enough that, given a modest number of advanced civilizations, at least one of them will engage in interstellar voyages and colonize the galaxy. Assuming, however, that technological civilizations are rare the galaxy would be essentially unpopulated. Attention is given to the present lack of contact with extraterrestrial beings and frequencies for interstellar beacons.
Anthropomorphism in the search for extra-terrestrial intelligence - The limits of cognition?
NASA Astrophysics Data System (ADS)
Bohlmann, Ulrike M.; Bürger, Moritz J. F.
2018-02-01
The question "Are we alone?" lingers in the human mind since ancient times. Early human civilisations populated the heavens above with a multitude of Gods endowed with some all too human characteristics - from their outer appearance to their innermost motivations. En passant they created thereby their own cultural founding myths on which they built their understanding of the world and its phenomena and deduced as well rules for the functioning of their own society. Advancing technology has enabled us to conduct this human quest for knowledge with more scientific means: optical and radio-wavelengths are being monitored for messages by an extra-terrestrial intelligence and active messaging attempts have also been undertaken. Scenarios have been developed for a possible detection of extra-terrestrial intelligence and post-detection guidelines and protocols have been elaborated. The human responses to the whole array of questions concerning the potential existence, discovery of and communication/interaction with an extra-terrestrial intelligence share as one clear thread a profound anthropomorphism, which ascribes classical human behavioural patterns also to an extra-terrestrial intelligence in much the same way as our ancestors attributed comparable conducts to mythological figures. This paper aims at pinpointing this thread in a number of classical reactions to basic questions related to the search for extra-terrestrial intelligence. Many of these reactions are based on human motives such as curiosity and fear, rationalised by experience and historical analogy and modelled in the Science Fiction Culture by literature and movies. Scrutinising the classical hypothetical explanations of the Fermi paradox under the angle of a potentially undue anthropomorphism, this paper intends to assist in understanding our human epistemological limitations in the search for extra-terrestrial intelligence. This attempt is structured into a series of questions: I. Can we be alone? II. Who are we looking for? III. Or what are we looking for? IV. Where is everybody? V. What if we make contact and VI. So, what now?
NASA Astrophysics Data System (ADS)
Way, M. J.; Aleinov, I.; Amundsen, David S.; Chandler, M. A.; Clune, T. L.; Del Genio, A. D.; Fujii, Y.; Kelley, M.; Kiang, N. Y.; Sohl, L.; Tsigaridis, K.
2017-07-01
Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) is a three-dimensional General Circulation Model (GCM) developed at the NASA Goddard Institute for Space Studies for the modeling of atmospheres of solar system and exoplanetary terrestrial planets. Its parent model, known as ModelE2, is used to simulate modern Earth and near-term paleo-Earth climates. ROCKE-3D is an ongoing effort to expand the capabilities of ModelE2 to handle a broader range of atmospheric conditions, including higher and lower atmospheric pressures, more diverse chemistries and compositions, larger and smaller planet radii and gravity, different rotation rates (from slower to more rapid than modern Earth’s, including synchronous rotation), diverse ocean and land distributions and topographies, and potential basic biosphere functions. The first aim of ROCKE-3D is to model planetary atmospheres on terrestrial worlds within the solar system such as paleo-Earth, modern and paleo-Mars, paleo-Venus, and Saturn’s moon Titan. By validating the model for a broad range of temperatures, pressures, and atmospheric constituents, we can then further expand its capabilities to those exoplanetary rocky worlds that have been discovered in the past, as well as those to be discovered in the future. We also discuss the current and near-future capabilities of ROCKE-3D as a community model for studying planetary and exoplanetary atmospheres.
NASA Astrophysics Data System (ADS)
Terzian, Yervant; Bilson, Elizabeth
1997-10-01
Preface; Carl Sagan at sixty; Part I. Planetary Exploration: 1. On the occasion of Carl Sagan's sixtieth birthday Wesley T. Huntress, Jr.; 2. The search for the origins of life: U.S. Solar system exploration, 1962-1994 Edward C. Stone; 3. Highlights of the Russian planetary program Roald Sageev; 4. From the eyepiece to the footpad: The search for life on Mars Bruce Murray; Part II. Life in the Cosmos: 5. Environments of Earth and other worlds Owen B. Toon; 6. The origin of life in a cosmic context Christopher F. Chyba; 7. Impacts and life: Living in a risky planetary system David Morrison; 8. Extraterrestrial intelligence: The significance of the search Frank D. Drake; 9. Extraterrestrial intelligence: The search programs Paul Horowitz; 10. Do the laws of physics permit wormholes for interstellar travel and machines for time travel? Kip S. Thorne; Public Address: 11. The age of exploration Carl Sagan; Part III. Science Education: 12. Does science need to be popularized? Ann Druyen; 13. Science and pseudo-science James Randi; 14. Science education in a democracy Philip Morrison; 15. The visual presentation of science Jon Lomberg; 16. Science and the press Walter Anderson; 17. Science and teaching Bill G. Aldridge; Part IV. Science, Environment and Public Policy: 18. The relationship of science and power Richard L. Garwin; 19. Nuclear-free world? Georgi Arbatov; 20. Carl Sagan and nuclear winter Richard P. Turco; 21. Public understanding of global climate change James Hansen; 22. Science and religion Joan B. Campbell; 23. Speech in honor of Carl Sagan Frank Press.
NASA Technical Reports Server (NTRS)
Way, M. J.; Aleinov, I.; Amundsen, David S.; Chandler, M. A.; Clune, T. L.; Del Genio, A.; Fujii, Y.; Kelley, M.; Kiang, N. Y.; Sohl, L.;
2017-01-01
Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) is a three-dimensional General Circulation Model (GCM) developed at the NASA Goddard Institute for Space Studies for the modeling of atmospheres of solar system and exoplanetary terrestrial planets. Its parent model, known as ModelE2, is used to simulate modern Earth and near-term paleo-Earth climates. ROCKE-3D is an ongoing effort to expand the capabilities of ModelE2 to handle a broader range of atmospheric conditions, including higher and lower atmospheric pressures, more diverse chemistries and compositions, larger and smaller planet radii and gravity, different rotation rates (from slower to more rapid than modern Earth's, including synchronous rotation), diverse ocean and land distributions and topographies, and potential basic biosphere functions. The first aim of ROCKE-3D is to model planetary atmospheres on terrestrial worlds within the solar system such as paleo-Earth, modern and paleo-Mars, paleo-Venus, and Saturn's moon Titan. By validating the model for a broad range of temperatures, pressures, and atmospheric constituents, we can then further expand its capabilities to those exoplanetary rocky worlds that have been discovered in the past, as well as those to be discovered in the future. We also discuss the current and near-future capabilities of ROCKE-3D as a community model for studying planetary and exoplanetary atmospheres.
NASA Astrophysics Data System (ADS)
Quitté, Ghylaine; Robin, Eric; Levasseur, Sylvain; Capmas, Françoise; Rocchia, Robert; Birck, Jean-Louis; Allègre, Claude Jean
It is now established that a large extraterrestrial object hit the Earth at the end of the Cretaceous period, about 65 Ma ago. We have investigated Re-Os, Hf-W, and Mn-Cr isotope systems in sediments from the Cretaceous and the Paleogene in order to characterize the type of impactor. Within the Cretaceous-Tertiary (K-T) boundary layer, extraterrestrial material is mixed with terrestrial material, causing a dilution of the extraterrestrial isotope signature that is difficult to quantify. A phase essentially composed of Ni-rich spinel, formed in the atmosphere mainly from melted projectile material, is likely to contain the extraterrestrial isotopic signature of the impactor. We show that the analysis of spinel is indeed the best approach to determine the initial isotope composition of the impactor, and that W and Cr isotopes confirm that the projectile was a carbonaceous chondrite.
The Societal Impact of Extraterrestrial Life: The Relevance of History and the Social Sciences
NASA Astrophysics Data System (ADS)
Dick, Steven J.
This chapter reviews past studies on the societal impact of extraterrestrial life and offers four related ways in which history is relevant to the subject: the history of impact thus far, analogical reasoning, impact studies in other areas of science and technology, and studies on the nature of discovery and exploration. We focus particularly on the promise and peril of analogical arguments, since they are by necessity widespread in the field. This chapter also summarizes the relevance of the social sciences, particularly anthropology and sociology, and concludes by taking a closer look at the possible impact of the discovery of extraterrestrial life on theology and philosophy. In undertaking this study we emphasize three bedrock principles: (1) we cannot predict the future; (2) society is not monolithic, implying many impacts depending on religion, culture and worldview; (3) the impact of any discovery of extraterrestrial life is scenario-dependent.
Spencer, Maegan K.; Hammond, Matthew R.; Zare, Richard N.
2008-01-01
Laser mass spectrometry is a powerful tool for the sensitive, selective, and spatially resolved analysis of organic compounds in extraterrestrial materials. Using microprobe two-step laser mass spectrometry (μL2MS), we have explored the organic composition of many different exogenous materials, including meteorites, interplanetary dust particles, and interstellar ice analogs, gaining significant insight into the nature of extraterrestrial materials. Recently, we applied μL2MS to analyze the effect of heating caused by hypervelocity particle capture in aerogel, which was used on the NASA Stardust Mission to capture comet particles. We show that this material exhibits complex organic molecules upon sudden heating. Similar pulsed heating of carbonaceous materials is shown to produce an artifactual fullerene signal. We review the use of μL2MS to investigate extraterrestrial materials, and we discuss its recent application to characterize the effect of pulsed heating on samples of interest. PMID:18687897
Spencer, Maegan K; Hammond, Matthew R; Zare, Richard N
2008-11-25
Laser mass spectrometry is a powerful tool for the sensitive, selective, and spatially resolved analysis of organic compounds in extraterrestrial materials. Using microprobe two-step laser mass spectrometry (muL(2)MS), we have explored the organic composition of many different exogenous materials, including meteorites, interplanetary dust particles, and interstellar ice analogs, gaining significant insight into the nature of extraterrestrial materials. Recently, we applied muL(2)MS to analyze the effect of heating caused by hypervelocity particle capture in aerogel, which was used on the NASA Stardust Mission to capture comet particles. We show that this material exhibits complex organic molecules upon sudden heating. Similar pulsed heating of carbonaceous materials is shown to produce an artifactual fullerene signal. We review the use of muL(2)MS to investigate extraterrestrial materials, and we discuss its recent application to characterize the effect of pulsed heating on samples of interest.
Radio propagation through solar and other extraterrestrial ionized media
NASA Technical Reports Server (NTRS)
Smith, E. K.; Edelson, R. E.
1980-01-01
The present S- and X-band communications needs in deep space are addressed to illustrate the aspects which are affected by propagation through extraterrestrial plasmas. The magnitude, critical threshold, and frequency dependence of some eight propagation effects for an S-band propagation path passing within 4 solar radii of the Sun are described. The theory and observation of propagation in extraterrestrial plasmas are discussed and the various plasma states along a near solar propagation path are illustrated. Classical magnetoionic theory (cold anisotropic plasma) is examined for its applicability to the path in question. The characteristics of the plasma states found along the path are summarized and the errors in some of the standard approximations are indicated. Models of extraterrestrial plasmas are included. Modeling the electron density in the solar corona and solar wind, is emphasized but some cursory information on the terrestrial planets plus Jupiters is included.
NASA Technical Reports Server (NTRS)
Kleteschka, Gunther; Taylor, Patrick T.; Wasilewski, Peter J.; Hill, Hugh G. M.
2000-01-01
Carbonados are a type of diamond, which are made up of many aggregrates of small crystalline diamonds or microdiamonds. The term "carbonado" comes from the Portuguese word carbonated. They are only found in sedimentary deposits in the Central African Republic (CAR) and the Bahia Province of Brazil. They were once the source of the world's supply of industrial diamonds. Their origin is uncertain but several mutually exclusive hypotheses have been proposed. This theories are: (1) extraterrestrial, that is they formed from the dust cloud of original solar nebulae; (2) produced by the high temperatures and pressures of the Earth's mantle; (3) or as the result of an extra-terrestrial impact into a carbon rich layer of sediment. Our study was done to further the understanding of their origin. We measured the magnetic properties on some twenty samples from the CAR. An earlier study was done on whole samples of carbonados and the "common" or kimberlitic diamond. Our work differed in that we started at the surface and subsequently removed the surface layers (by days of acid immersion) into the interior; measuring the magnetic properties at each interval. This procedure permits us to monitor the distribution of magnetic substances within the samples. Our results showed that the magnetic carriers are distributed on the surface including the open pores and that the carbonado interior is essentially non-magnetic. This result suggests that the initial formation environment was deficient in magnetic particles. Such a situation could indicate that their formation was the result of an extra-terrestrial body impacting carbon-rich sediment. Obviously, more work will be required on isotopic and chemical analyses before a more detailed ori-in can be determined.
Exobiology and the origin of life
NASA Technical Reports Server (NTRS)
Sagan, C.; Khare, B. N.
1976-01-01
Abstracts on planetary studies and the search for extraterrestrial life are presented. Studies of the Jovian atmosphere were conducted. An assessment of the prospects for life on Mars is presented. And, the the means of contacting extraterrestrial civilizations is discussed.
Mapping the Universe: Slices and Bubbles.
ERIC Educational Resources Information Center
Geller, Margaret J.
1990-01-01
Map making is described in the context of extraterrestrial areas. An analogy to terrestrial map making is used to provide some background. The status of projects designed to map extraterrestrial areas are discussed including problems unique to this science. (CW)
Extraterrestrial research in the Federal Republic of Germany
NASA Technical Reports Server (NTRS)
1986-01-01
This German program for basic extraterrestrial research is an essential, successful, and worldwide recognized part of the space program and has the same attributes for basic research in the Federal Republic of Germany. It covers all major scientific disciplines.
CCIR paper on the radiocommunications requirements for systems to search for extraterrestrial life
NASA Technical Reports Server (NTRS)
Nightingale, D.
1978-01-01
The allocation and propagation of radio frequency bands to be used in the search for extraterrestrial intelligence is considered. Topics discussed include: propagation factors; preferred frequency bands; system characteristics and requirements; and interference.
NASA Astrophysics Data System (ADS)
Brucato, John Robert
2016-07-01
A mature European planetary exploration program and evolving sample return mission plans gathers the interest of a wider scientific community. The interest is generated from studying extraterrestrial samples in the laborato-ry providing new opportunities to address fundamental issues on the origin and evolution of the Solar System, on the primordial cosmochemistry, and on the nature of the building blocks of terrestrial planets and on the origin of life. Major space agencies are currently planning for missions that will collect samples from a variety of Solar Sys-tem environments, from primitive (carbonaceous) small bodies, from the Moon, Mars and its moons and, final-ly, from icy moons of the outer planets. A dedicated sample return curation facility is seen as an essential re-quirement for the receiving, assessment, characterization and secure preservation of the collected extraterrestrial samples and potentially their safe distribution to the scientific community. EURO-CARES is a European Commission study funded under the Horizon-2020 program. The strategic objec-tive of EURO-CARES is to create a roadmap for the implementation of a European Extraterrestrial Sample Cu-ration Facility. The facility has to provide safe storage and handling of extraterrestrial samples and has to enable the preliminary characterization in order to achieve the required effectiveness and collaborative outcomes for the whole international scientific community. For example, samples returned from Mars could pose a threat on the Earth's biosphere if any living extraterrestrial organism are present in the samples. Thus planetary protection is an essential aspect of all Mars sample return missions that will affect the retrival and transport from the point of return, sample handling, infrastructure methodology and management of a future curation facility. Analysis of the state of the art of Planetary Protection technology shows there are considerable possibilities to define and develop technical and scientific features in a sample return mission and the infrastructural, procedur-al and legal issues that consequently rely on a curation facility. This specialist facility will be designed with con-sideration drawn from highcontainment laboratories and cleanroom facilities to protect the Earth from contami-nation with potential Martian organisms and the samples from Earth contaminations. This kind of integrated facility does not currently exist and this emphasises the need for an innovative design approach with an integrat-ed and multidisciplinary design to enable the ultimate science goals of such exploration. The issues of how the Planetary Protection considerations impact on the system technologies and scientific meaurements, with a final aim to prioritize outstanding technology needs is presented in the framework of sam-ple return study missions and the Horizon-2020 EURO-CARES project.
The search for extraterrestrial intelligence.
Wilson, T L
2001-02-22
As far as we know, humanity is alone in the Universe: there is no definite evidence for the existence of extraterrestrial life, let alone extraterrestrial civilizations (ETCs) capable of communicating or travelling over interstellar distances. Yet popular speculation about the existence of ETCs abounds, including reports of alien visitations either now or in the past. But there is a middle way. It is now possible to put limits on the existence of ETCs of varying capabilities, within arbitrary distances from the Solar System, and conceive of real-world strategies whereby we might communicate with ETCs, or they with us.
Othman, Mazlan
2011-02-13
The United Nations briefly considered the issue of extra-terrestrial intelligence at the 32nd session of the General Assembly in 1977. As a result, the Office of Outer Space Affairs was tasked to prepare a document on issues related to 'messages to extra-terrestrial civilizations', but this area has not been followed through in more recent times. This discussion paper describes the United Nations' activities in the field of near-Earth objects in some detail, and suggests that this might be used as a model of how Member States could proceed with dealing with this issue in case the existence of extra-terrestrial life/intelligence is established.
Duties to Extraterrestrial Microscopic Organisms
NASA Astrophysics Data System (ADS)
Cockell, C. S.
Formulating a normative axiology for the treatment of extraterrestrial microscopic organisms, should they ever be found, requires an extension of environmental ethics to beyond the Earth. Using an ethical framework for the treatment of terrestrial micro-organisms, this paper elaborates a similar ethic for the treatment of extraterrestrial microscopic organisms. An ethic of `teloempathy' allows for the moral considerability of any organism that has `interests', based on rudimentary qualities of conativism, and therefore allows for an identical treatment of all life, related or not related to life on Earth. Although, according to this ethic, individual extraterrestrial microscopic organisms have a good of their own and even `rights', at this level the ethic can only be theoretical, allowing for the inevitable destruction of many individual organisms during the course of human exploratory missions, similarly to the daily destruction of microbes by humans on Earth. A holistic teloempathy, an operative ethic, not only provides a framework for human exploration, but it also has important implications for planetary protection and proposals to implement planetary-scale atmospheric alterations on other bodies. Even prior to the discovery of extraterrestrial life, or the discovery of a complete absence of such life, this exercise yields important insights into the moral philosophy that guides our treatment of terrestrial micro-organisms.
Communicating Concepts about Altruism in Interstellar Messages
NASA Astrophysics Data System (ADS)
Vakoch, Douglas A.
2002-01-01
This project identifies key principles of altruism that can be translated into interstellar messages for communication with extraterrestrial intelligence. The message contents will focus specifically on the evolution of altruism, drawing on recent insights in evolutionary biology, with particular emphasis on sociobiological accounts of kin selection and reciprocal altruism. This focus on altruism for message contents has several advantages. First, the subject can be translated into interstellar messages both via an existing formal interstellar language and via pictorial messages. For example, aspects of reciprocal altruism can be described through mathematical modeling, such as game theoretic approaches, which in turn can be described readily in the interstellar language Lincos. Second, concentrating on altruism as a message content may facilitate communications with extraterrestrial intelligence. Some scientists have argued that humans may be expected to communicate something about their moral status and development in an exchange with extraterrestrials. One of the most salient ways that terrestrial and extraterrestrial civilizations might be expected to evaluate one another is in terms of ethical motivations. Indeed, current search strategies assume some measure of altruism on the part of transmitting civilizations; with no guarantee of a response, the other civilization would be providing information to us with no direct payoff. Thus, concepts about altruism provide an appropriate content for interstellar messages, because the concepts themselves might be understood by extraterrestrial civilizations.
Biomedical Monitoring By A Novel Noncontact Radio Frequency Technology Project
NASA Technical Reports Server (NTRS)
Oliva-Buisson, Yvette J. (Compiler)
2014-01-01
The area of Space Health and Medicine is one of the NASA's Space Technology Grand Challenges. Space is an extreme environment which is not conducive to human life. The extraterrestrial environment can result in the deconditioning of various human physiological systems and thus require easy to use physiological monitoring technologies in order to better monitor space crews for appropriate health management and successful space missions and space operations. Furthermore, the Space Technology Roadmap's Technology Area Breakdown Structure calls for improvements in research to support human health and performance (Technology Area 06). To address these needs, this project investigated a potential noncontact and noninvasive radio frequency-based technique of monitoring central hemodynamic function in human research subjects in response to orthostatic stress.
Extremely halophilic archaea and the issue of long-term microbial survival
2011-01-01
Halophilic archaebacteria (haloarchaea) thrive in environments with salt concentrations approaching saturation, such as natural brines, the Dead Sea, alkaline salt lakes and marine solar salterns; they have also been isolated from rock salt of great geological age (195–250 million years). An overview of their taxonomy, including novel isolates from rock salt, is presented here; in addition, some of their unique characteristics and physiological adaptations to environments of low water activity are reviewed. The issue of extreme long-term microbial survival is considered and its implications for the search for extraterrestrial life. The development of detection methods for subterranean haloarchaea, which might also be applicable to samples from future missions to space, is presented. PMID:21984879
NASA Technical Reports Server (NTRS)
Hirsch, David B.; Williams, James H.; Harper, Susan A.; Beeson, Harold; Pedley, Michael D.
2007-01-01
Materials selection for spacecraft is based on an upward flammability test conducted in a quiescent environment in the highest expected oxygen concentration environment. The test conditions and its pass/fail test logic do not provide sufficient quantitative materials flammability information for an advanced space exploration program. A modified approach has been suggested determination of materials self-extinguishment limits. The flammability threshold information will allow NASA to identify materials with increased flammability risk from oxygen concentration and total pressure changes, minimize potential impacts, and allow for development of sound requirements for new spacecraft and extraterrestrial landers and habitats. This paper provides data on oxygen concentration self-extinguishment limits under quiescent conditions for selected materials considered for the Constellation Program.
The Definition Study for Implementation of the IMAP Mission
NASA Technical Reports Server (NTRS)
Frank, L. A.
1997-01-01
The Small Explorer Mission in intended to provide the first global visualization of Earth's inner magnetosphere. IMAP promises to greatly advance our knowledge of the global distributions and dynamics of near-Earth radiation environment by obtaining first simultaneous images of the plasmasphere at extreme ultraviolet wavelengths, of the extraterrestrial ring current and the earthward portions of the plasma sheet as seen in their emissions of neutral atoms from charge exchange of plasma hot ions with geocoronal hydrogen atoms, and of the aurora in its far-ultraviolet emissions.
Calibrating the ChemCam LIBS for Carbonate Minerals on Mars
DOE R&D Accomplishments Database
Wiens, Roger C.; Clegg, Samuel M.; Ollila, Ann M.; Barefield, James E.; Lanza, Nina; Newsom, Horton E.
2009-01-01
The ChemCam instrument suite on board the NASA Mars Science Laboratory (MSL) rover includes the first LIBS instrument for extraterrestrial applications. Here we examine carbonate minerals in a simulated martian environment using the LIDS technique in order to better understand the in situ signature of these materials on Mars. Both chemical composition and rock type are determined using multivariate analysis (MVA) techniques. Composition is confirmed using scanning electron microscopy (SEM) techniques. Our initial results suggest that ChemCam can recognize and differentiate between carbonate materials on Mars.
Astrophysics with Extraterrestrial Materials
NASA Astrophysics Data System (ADS)
Nittler, Larry R.; Ciesla, Fred
2016-09-01
Extraterrestrial materials, including meteorites, interplanetary dust, and spacecraft-returned asteroidal and cometary samples, provide a record of the starting materials and early evolution of the Solar System. We review how laboratory analyses of these materials provide unique information, complementary to astronomical observations, about a wide variety of stellar, interstellar and protoplanetary processes. Presolar stardust grains retain the isotopic compositions of their stellar sources, mainly asymptotic giant branch stars and Type II supernovae. They serve as direct probes of nucleosynthetic and dust formation processes in stars, galactic chemical evolution, and interstellar dust processing. Extinct radioactivities suggest that the Sun's birth environment was decoupled from average galactic nucleosynthesis for some tens to hundreds of Myr but was enriched in short-lived isotopes from massive stellar winds or explosions shortly before or during formation of the Solar System. Radiometric dating of meteorite components tells us about the timing and duration over which solar nebula solids were assembled into the building blocks of the planets. Components of the most primitive meteoritical materials provide further detailed constraints on the formation, processing, and transport of material and associated timescales in the Sun's protoplanetary disk as well as in other forming planetary systems.
The evolution of organic matter in space.
Ehrenfreund, Pascale; Spaans, Marco; Holm, Nils G
2011-02-13
Carbon, and molecules made from it, have already been observed in the early Universe. During cosmic time, many galaxies undergo intense periods of star formation, during which heavy elements like carbon, oxygen, nitrogen, silicon and iron are produced. Also, many complex molecules, from carbon monoxide to polycyclic aromatic hydrocarbons, are detected in these systems, like they are for our own Galaxy. Interstellar molecular clouds and circumstellar envelopes are factories of complex molecular synthesis. A surprisingly high number of molecules that are used in contemporary biochemistry on the Earth are found in the interstellar medium, planetary atmospheres and surfaces, comets, asteroids and meteorites and interplanetary dust particles. Large quantities of extra-terrestrial material were delivered via comets and asteroids to young planetary surfaces during the heavy bombardment phase. Monitoring the formation and evolution of organic matter in space is crucial in order to determine the prebiotic reservoirs available to the early Earth. It is equally important to reveal abiotic routes to prebiotic molecules in the Earth environments. Materials from both carbon sources (extra-terrestrial and endogenous) may have contributed to biochemical pathways on the Earth leading to life's origin. The research avenues discussed also guide us to extend our knowledge to other habitable worlds.
NASA Technical Reports Server (NTRS)
Cockell, C. S.
2004-01-01
Impact-shocked gneiss shocked to greater than 10 GPa in the Haughton impact structure in the Canadian High Arctic has an approximately 25-times greater pore surface area than unshocked rocks. These pore spaces provide microhabitats for a diversity of heterotrophic microorganisms and in the near-surface environment of the rocks, where light levels are sufficient, cyanobacteria. Shocked rocks provide a moisture retaining, UV protected microenvironment. During the Archean, when impact fluxes were more than two orders of magnitude higher than today, the shocked-rock habitat was one of the most common terrestrial habitats and might have provided a UV-shielded refugium for primitive life. These potential habitats are in high abundance on Mars where impact crater habitats could have existed over geologic time periods of billions of years, suggesting that impact-shocked rocks are important sites to search for biomolecules in extraterrestrial life detection strategies. In addition to being favourable sites for life, during the prebiotic period of planetary history impact-shocked rocks might have acted as a site for the concentration of reactants for prebiotic syntheses. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
New Fiber Reinforced Waterless Concrete for Extraterrestrial Structural Applications
NASA Technical Reports Server (NTRS)
Toutanji, H.; Tucker, D.; Ethridge, E.
2005-01-01
Commercial use of sulfur concrete on Earth is well established, particularly in corrosive, e.g., acid and salt, environments. Having found troilite (FeS) on the Moon raises the question of using extracted sulfur as a lunar construction mate: iii an attractive alternative to conventional concrete as it does not require water For the purpose of this paper it is assumed that lunar ore is mined, refined, and the raw sulfur processed with appropriate lunar regolith to form, for example, brick and beam elements. Glass fibers produced from regolith were used as a reinforcement to improve the mechanical properties of the sulfur concrete. Glass fibers and glass rebar were produced by melting the lunar regolith simulant. Lunar regolith stimulant was melted in a 25 cc Pt-Rh crucible in a Sybron Thermoline 46100 high temperature MoSi2 furnace at melting temperatures of 1450 to 1600G. The glass melt wets the ceramic rod and long continuous glass fibers were easily hand drawn. The glass fibers were immediately coated with a protective polymer to maintain the mechanical strength. The viability of sulfur concrete as a construction material for extraterrestrial application is presented. The mechanical properties of the glass fiber reinforced sulfur concrete were investigated.
Astrobiology in culture: the search for extraterrestrial life as "science".
Billings, Linda
2012-10-01
This analysis examines the social construction of authority, credibility, and legitimacy for exobiology/astrobiology and, in comparison, the search for extraterrestrial intelligence (SETI), considering English-language conceptions of these endeavors in scientific culture and popular culture primarily in the United States. The questions that define astrobiology as a scientific endeavor are multidisciplinary in nature, and this endeavor is broadly appealing to public audiences as well as to the scientific community. Thus, it is useful to examine astrobiology in culture-in scientific culture, official culture, and popular culture. A researcher may explore science in culture, science as culture, by analyzing its rhetoric, the primary means that people use to construct their social realities-their cultural environment, as it were. This analysis follows this path, considering scientific and public interest in astrobiology and SETI and focusing on scientific and official constructions of the two endeavors. This analysis will also consider whether and how scientific and public conceptions of astrobiology and SETI, which are related but at the same time separate endeavors, converge or diverge and whether and how these convergences or divergences affect the scientific authority, credibility, and legitimacy of these endeavors.
Exobiology and SETI from the lunar farside
NASA Technical Reports Server (NTRS)
Tarter, Jill C.; Rummel, John
1990-01-01
Within the Life Sciences Division of NASA, the Exobiology Program seeks to understand the origin, evolution and distribution of life in the universe. There are two feasible methods of searching for life beyond the earth. The first is to return to Mars and systematically explore its surface and subsurface with instrumentation capable of identifying extinct as well as extant life. The second is to search for advanced forms of life in other planetary systems that have developed a technology capable of modifying their environment in ways that make it detectable across the vast interstellar distances. The Exobiology Program is currently pursuing both of these options. If NASA's SETI (search for extraterrestrial intelligence) Microwave Observing Project of the 1990s fails to detect evidence of radio signals generated by an extraterrestrial technology, what might be the next step? The establishment of a permanent lunar base early in the next century may enable the construction of large aperture radio telescopes that can extend both the sensitivity and the frequency range of SETI observations. A lunar base may also provide the opportunity for construction of optical and IR telescopes intended for the direct detection of extrasolar planetary systems.
Remote Sensing of Extraterrestrial life: Complexity as the key characteristicsof living systems
NASA Astrophysics Data System (ADS)
Wolf, Sebastian
2015-07-01
Motivated by the detection of planetary candidates around more than one thousand stars since 1995 and the beginning characterization of their major properties (orbit, mass, physical conditions and chemical composition of their atmosphere), the quest for understanding the origin and evolution of life from the broadest possible perspective comes into reach of scientific exploration. Due to the apparent lack of a better starting point, the search for life outside Earth is strongly influenced and guided by biological and biochemical studies of life on our planet so far. Furthermore, this search is built on the assumption that life - in the sense of animated matter - is qualitatively different from inanimate matter. However, the first constraint might unnecessarily limit our search, while the latter underlying assumption is not justified. In this study, a more general approach to search for life in the universe with astrophysical means is proposed, which is not based on the above constraint and assumption. More specifically, the property of living systems to possess a high degree of complexity in structure and its response to the environment is discussed in view of its potential to be used for remote sensing of extraterrestrial life.
Cockell, C S
2004-01-01
Impact-shocked gneiss shocked to greater than 10 GPa in the Haughton impact structure in the Canadian High Arctic has an approximately 25-times greater pore surface area than unshocked rocks. These pore spaces provide microhabitats for a diversity of heterotrophic microorganisms and in the near-surface environment of the rocks, where light levels are sufficient, cyanobacteria. Shocked rocks provide a moisture retaining, UV protected microenvironment. During the Archean, when impact fluxes were more than two orders of magnitude higher than today, the shocked-rock habitat was one of the most common terrestrial habitats and might have provided a UV-shielded refugium for primitive life. These potential habitats are in high abundance on Mars where impact crater habitats could have existed over geologic time periods of billions of years, suggesting that impact-shocked rocks are important sites to search for biomolecules in extraterrestrial life detection strategies. In addition to being favourable sites for life, during the prebiotic period of planetary history impact-shocked rocks might have acted as a site for the concentration of reactants for prebiotic syntheses. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
Tracers of the Extraterrestrial Component in Sediments and Inferences for Earth's Accretion History
NASA Technical Reports Server (NTRS)
Kyte, Frank T.
2003-01-01
The study of extraterrestrial matter in sediments began with the discovery of cosmic spherules during the HMS Challenger Expedition (1873-1876), but has evolved into a multidisciplinary study of the chemical, physical, and isotopic study of sediments. Extraterrestrial matter in sediments comes mainly from dust and large impactors from the asteroid belt and comets. What we know of the nature of these source materials comes from the study of stratospheric dust particles, cosmic spherules, micrometeorites, meteorites, and astronomical observations. The most common chemical tracers of extraterrestrial matter in sediments are the siderophile elements, most commonly iridium and other platinum group elements. Physical tracers include cosmic and impact spherules, Ni-rich spinels, meteorites, fossil meteorites, and ocean-impact melt debris. Three types of isotopic systems have been used to trace extraterrestrial matter. Osmium isotopes cannot distinguish chondritic from mantle sources, but provide a useful tool in modeling long-term accretion rates. Helium isotopes can be used to trace the long-term flux of the fine fraction of the interplanetary dust complex. Chromium isotopes can provide unequivocal evidence of an extraterrestrial source for sediments with high concentrations of meteoritic Cr. The terrestrial history of impacts, as recorded in sediments, is still poorly understood. Helium isotopes, multiple Ir anomalies, spherule beds, and craters all indicate a comet shower in the late Eocene. The Cretaceous-Tertiary boundary impact event appears to have been caused by a single carbonaceous chondrite projectile, most likely of asteroid origin. Little is known of the impact record in sediments from the rest of the Phanerozoic. Several impact deposits are known in the Precambrian, including several possible mega-impacts in the Early Archean.
Sources and sinks of methane beneath polar ice
NASA Astrophysics Data System (ADS)
Priscu, J. C.; Adams, H. E.; Hand, K. P.; Dore, J. E.; Matheus-Carnevali, P.; Michaud, A. B.; Murray, A. E.; Skidmore, M. L.; Vick-Majors, T.
2014-12-01
Several icy moons of the outer solar system carry subsurface oceans containing many times the volume of liquid water on Earth and may provide the greatest volume of habitable space in our solar system. Functional sub-ice polar ecosystems on Earth provide compelling models for the habitability of extraterrestrial sub-ice oceans. A key feature of sub-ice environments is that most of them receive little to no solar energy. Consequently, organisms inhabiting these environments must rely on chemical energy to assimilate either carbon dioxide or organic molecules to support their metabolism. Methane can be utilized by certain bacteria as both a carbon and energy source. Isotopic data show that methane in Earth's polar lakes is derived from both biogenic and thermogenic sources. Thermogenic sources of methane in the thermokarst lakes of the north slope of Alaska yield supersaturated water columns during winter ice cover that support active populations of methanotrophs during the polar night. Methane in the permanently ice-covered lakes of the McMurdo Dry Valleys, Antarctica varies widely in concentration and is produced either by contemporary methanogenesis or is a relic from subglacial flow. Rate measurements revealed that microbial methane oxidation occurs beneath the ice in both the arctic and Antarctic lakes. The first samples collected from an Antarctic subglacial environment beneath 800 m of ice (Subglacial Lake Whillans) revealed an active microbial ecosystem that has been isolated from the atmosphere for many thousands of years. The sediments of Lake Whillans contained high levels of methane with an isotopic signature that indicates it was produced via methanogenesis. The source of this methane appears to be from the decomposition of organic carbon deposited when this region of Antarctica was covered by the sea. Collectively, data from these sub-ice environments show that methane transformations play a key role in microbial community metabolism. The discovery of functional microbial ecosystems in Earth's sub-ice aquatic environments together with what we know about the geochemistry of extraterrestrial ice-covered water worlds provide a compelling case that sub-ice oceans, such as those on Europa and Enceladus, may support microbial life.
Conway Morris: Extraterrestrials: Aliens like us?
NASA Astrophysics Data System (ADS)
Morris, Simon Conway
2005-08-01
So what are they going to be like, those long-expected extraterrestrials? Hideous hydrocarbon arachnoids, waving laser cannons as they chase screaming humans, repulsively surveying the scene through empathy-free compound eyes? Or maybe laughing bipeds, chatting away, holding a glass of wine, a bit like us?
Extraterrestrial Samples at JSC
NASA Technical Reports Server (NTRS)
Allen, Carlton C.
2007-01-01
A viewgraph presentation on the curation of extraterrestrial samples at NASA Johnson Space Center is shown. The topics include: 1) Apollo lunar samples; 2) Meteorites from Antarctica; 3) Cosmic dust from the stratosphere; 4) Genesis solar wind ions; 5) Stardust comet and interstellar grains; and 5) Space-Exposed Hardware.
Extraterrestrial Communications.
ERIC Educational Resources Information Center
Deardorff, James W.
1987-01-01
Discusses the embargo hypothesis--the theory that Earth is apparently free from alien exploitation because of a presumed cosmic quarantine against this planet--which implies that, instead of being only a few hundred years technologically in advance of earthly civilization, extraterrestrials in charge are likely tens of thousands of years in…
Human evolution in the age of the intelligent machine
NASA Technical Reports Server (NTRS)
Mclaughlin, W. I.
1983-01-01
A systems analysis of the future evolution of man can be conducted by analyzing the biological material of the galaxy into three subsystems: man, intelligent machines, and intelligent extraterrestrial organisms. A binomial interpretation is applied to this system wherein each of the subsystems is assigned a designation of success or failure. For man the two alternatives are, respectively, 'decline' or 'flourish', for machine they are 'become intelligent' or 'stay dumb', while for extraterrestrial intelligence the dichotomy is that of 'existence' or 'nonexistence'. The choices for each of three subsystems yield a total of eight possible states for the system. The relative lack of integration between brain components makes man a weak evolutionary contestant compared to machines. It is judged that machines should become dominant on earth within 100 years, probably by means of continuing development of existing man-machine systems. Advanced forms of extraterrestrial intelligence may exist but are too difficult to observe. The prospects for communication with extraterrestrial intelligence are reviewed.
NASA Astrophysics Data System (ADS)
Teodorani, M.
2003-02-01
In the ambit of the SETI Project, a new branch named SETV (Search for Extraterrestrial Visitation) was born very recently due to the international effort of some engineers, astronomers and other researchers, and it is now in a development phase with several monitoring projects. SETV is aimed at investigating, by using well-tested means of physical and technological sciences, the possible evidence of extraterrestrial visitations inside our solar system. On the basis of statistical calculations of galactic migration, and of models coming from standard stellar evolution, Dyson theory and advanced possibilities invoked by theoretical physics, the historical excursus which turned the SETA hypothesis (Search for Extraterrestrial Artifacts), developed in the 80', into the present SETV definition, is presented in detail. The possibility that extraterrestrial intelligences are present inside our solar system with inhabited and/or robotic probes is discussed, including the possibility that our planet is one of their targets. A proposal concerning instrumented multi-wavelength surveys and identification of such exogenous probes is presented.
NASA Astrophysics Data System (ADS)
Dick, Steven J.
Throughout the twentieth century, from the furor over Percival Lowell's claim of canals on Mars to the sophisticated Search for Extraterrestrial Intelligence, otherworldly life has often intrigued and occasionally consumed science and the public. Does `biological law' reign throughout the universe? Are there other histories, religions, and philosophies outside of those on Earth? Do extraterrestrial minds ponder the mysteries of the universe? The attempts toanswer these often asked questions form one of the most interesting chapters in the history of science and culture, and The Biological Universe is the first book to provide a rich and colorful history of those attempts during the twentieth century. Covering a broad range of topics, including the search for life in the solar system, the origins of life, UFOs, and aliens in science fiction, Steven J. Dick shows how the concept of extraterrestrial intelligence is a world view of its own, a `biophysical cosmology' that seeks confirmation no less than physical views of the universe.
NASA Astrophysics Data System (ADS)
Dick, S. J.
Throughout the twentieth century, from the furor over Percival Lowell's claim of canals on Mars to the sophisticated Search for Extraterrestrial Intelligence, otherworldly life has often intrigued and occasionally consumed science and the public. Does 'biological law' reign throughout the universe? Are there other histories, religions, and philosophies outside of those on Earth? Do extraterrestrial minds ponder the mysteries of the universe? The attempts to answer these often asked questions form one of the most interesting chapters in the history of science and culture, and this is the first book to provide a rich and colorful history of those attempts during the twentieth century. Covering a broad range of topics, including the search for life in the solar system, the origins of life, UFOs, and aliens in science fiction, the author shows how the concept of extraterrestrial intelligence is a world view of its own, a 'biophysical cosmology' that seeks confirmation no less than physical views of the universe.
Tejada, M L G; Ravizza, G; Suzuki, K; Paquay, F S
2012-01-01
The Early Cretaceous Greater Ontong Java Event in the Pacific Ocean may have covered ca. 1% of the Earth's surface with volcanism. It has puzzled scientists trying to explain its origin by several mechanisms possible on Earth, leading others to propose an extraterrestrial trigger to explain this event. A large oceanic extraterrestrial impact causing such voluminous volcanism may have traces of its distal ejecta in sedimentary rocks around the basin, including the paleo-Tethys Ocean which was then contiguous with the Pacific Ocean. The contemporaneous marine sequence at central Italy, containing the sedimentary expression of a global oceanic anoxic event (OAE1a), may have recorded such ocurrence as indicated by two stratigraphic intervals with (187)Os/(188)Os indicative of meteoritic influence. Here we show, for the first time, that platinum group element abundances and inter-element ratios in this paleo-Tethyan marine sequence provide no evidence for an extraterrestrial trigger for the Early Cretaceous massive volcanism.
Tejada, M. L. G.; Ravizza, G.; Suzuki, K.; Paquay, F. S.
2012-01-01
The Early Cretaceous Greater Ontong Java Event in the Pacific Ocean may have covered ca. 1% of the Earth's surface with volcanism. It has puzzled scientists trying to explain its origin by several mechanisms possible on Earth, leading others to propose an extraterrestrial trigger to explain this event. A large oceanic extraterrestrial impact causing such voluminous volcanism may have traces of its distal ejecta in sedimentary rocks around the basin, including the paleo-Tethys Ocean which was then contiguous with the Pacific Ocean. The contemporaneous marine sequence at central Italy, containing the sedimentary expression of a global oceanic anoxic event (OAE1a), may have recorded such ocurrence as indicated by two stratigraphic intervals with 187Os/188Os indicative of meteoritic influence. Here we show, for the first time, that platinum group element abundances and inter-element ratios in this paleo-Tethyan marine sequence provide no evidence for an extraterrestrial trigger for the Early Cretaceous massive volcanism. PMID:22355780
Human evolution in the age of the intelligent machine
NASA Astrophysics Data System (ADS)
McLaughlin, W. I.
A systems analysis of the future evolution of man can be conducted by analyzing the biological material of the galaxy into three subsystems: man, intelligent machines, and intelligent extraterrestrial organisms. A binomial interpretation is applied to this system wherein each of the subsystems is assigned a designation of success or failure. For man the two alternatives are, respectively, 'decline' or 'flourish', for machine they are 'become intelligent' or 'stay dumb', while for extraterrestrial intelligence the dichotomy is that of 'existence' or 'nonexistence'. The choices for each of three subsystems yield a total of eight possible states for the system. The relative lack of integration between brain components makes man a weak evolutionary contestant compared to machines. It is judged that machines should become dominant on earth within 100 years, probably by means of continuing development of existing man-machine systems. Advanced forms of extraterrestrial intelligence may exist but are too difficult to observe. The prospects for communication with extraterrestrial intelligence are reviewed.
Fear, pandemonium, equanimity and delight: human responses to extra-terrestrial life.
Harrison, Albert A
2011-02-13
How will people respond to the discovery of extra-terrestrial life? Potentially useful resources for addressing this question include historical prototypes, disaster studies and survey research. Reactions will depend on the interplay of the characteristics of the newly found life, the unfolding of the discovery, the context and content of the message and human information processing as shaped by biology, culture and psychology. Pre-existing images of extra-terrestrials as god-like, demonic, or artificial will influence first impressions that may prove highly resistant to change. Most probably people will develop comprehensive images based on minimal information and assess extra-terrestrials in the same ways that they assess one another. Although it is easy to develop frightening scenarios, finding microbial life in our Solar System or intercepting a microwave transmission from many light years away are less likely to be met with adverse reactions such as fear and pandemonium than with positive reactions such as equanimity and delight.
Supercritical fluid extraction of the non-polar organic compounds in meteorites
NASA Astrophysics Data System (ADS)
Sephton, M. A.; Pillinger, C. T.; Gilmour, I.
2001-01-01
The carbonaceous chondrite meteorites contain a variety of extraterrestrial organic molecules. These organic components provide a valuable insight into the formation and evolution of the solar system. Attempts at obtaining and interpreting this information source are hampered by the small sample sizes available for study and the interferences from terrestrial contamination. Supercritical fluid extraction represents an efficient and contamination-free means of isolating extraterrestrial molecules. Gas chromatography-mass spectrometry analyses of extracts from Orgueil and Cold Bokkeveld reveal a complex mixture of free non-polar organic molecules which include normal alkanes, isoprenoid alkanes, tetrahydronaphthalenes and aromatic hydrocarbons. These organic assemblages imply contributions from both terrestrial and extraterrestrial sources.
Christian Soteriology and Extraterrestrial Intelligence
NASA Astrophysics Data System (ADS)
Weidemann, C.
The paper presents an argument for the incompatibility of classical Christian soteriology (doctrine of salvation) with belief in numerous extraterrestrial intelligent life forms (ETI). Four popular answers to the problem are discussed and rejected: a) unlike humanity, extraterrestrial intelligent species are not in need of salvation; b) Jesus of Nazareth has reconciled the entire cosmos to God; c) God or the second person of the Trinity has incarnated (or will incarnate) himself multiple times; d) alien sinners have been or are going to be saved by means different from a divine incarnation. The final section deals with remaining options for rational Christian believers and speculates briefly about consequences for interstellar space flight.
The Roswell Report: Case Closed,
1997-01-01
extraterrestrial vehicle and its alien occupants near Roswell, N.M. in July 1947. Reports of flying saucers and alien bodies allegedly sighted in the...explains that what was recovered by the Army Air Forces was not the remnants of an extraterrestrial spacecraft and its alien crew, but debris from an
Astrobiological Effects of Stellar Radiation in Circumstellar Environments
NASA Astrophysics Data System (ADS)
Cuntz, Manfred; Gurdemir, Levent; Guinan, Edward F.; Kurucz, Robert L.
2006-10-01
The centerpiece of all life on Earth is carbon-based biochemistry. Previous scientific research has suggested that biochemistry based on carbon may also play a decisive role in extraterrestrial life forms, i.e., alien life outside of Earth, if existent. In the following, we explore if carbon-based macromolecules (such as DNA) in the environments of stars other than the Sun are able to survive the effects of energetic stellar radiation, such as UV-C in the wavelength band between 200 and 290 nm. We focus on main-sequence stars akin to the Sun, but of hotter (F-type stars) and cooler (K- and M-type stars) surface temperature. Emphasis is placed on investigating the radiative environment in stellar habitable zones (HZs). Stellar habitable zones have an important relevance in astrobiology because they constitute circumstellar regions in which a planet of suitable size can have surface temperatures for water to exist in liquid form.
Cosmic Rays Variation Before Changes in Sun-Earth Environment
NASA Astrophysics Data System (ADS)
Mukherjee, S.
2011-12-01
Influence of cosmic rays variations on the Sun-Earth Environment has been observed before the changes in the atmospheric temperature, outbreak of influenza, cyclone, earthquake and tsunami. It has been recorded by Sun Observatory Heleospheric Observatory (SOHO) satellite data. Before the earthquake and tsunami the planetary indices (Kp) and Electron flux (E-flux) shows sudden changes followed by the atmospheric perturbations including very high temperature rise to sudden fall resulting snowfall in high altitude and rainfall in tropical areas. The active fault zones shows sudden faulting after the sudden drop in cosmic ray intensity and rise in Kp and E-flux. Besides the geo-environment the extraterrestrial influence on outbreak of H1N1 influenza has also been recorded based on the Mexico Cosmic ray data and its correlation with SOHO records. Distant stars have the potential to influence the heliophysical parameters by showering cosmic rays.
Horneck, Gerda; Moeller, Ralf; Cadet, Jean; Douki, Thierry; Mancinelli, Rocco L; Nicholson, Wayne L; Panitz, Corinna; Rabbow, Elke; Rettberg, Petra; Spry, Andrew; Stackebrandt, Erko; Vaishampayan, Parag; Venkateswaran, Kasthuri J
2012-05-01
Spore-forming bacteria are of particular concern in the context of planetary protection because their tough endospores may withstand certain sterilization procedures as well as the harsh environments of outer space or planetary surfaces. To test their hardiness on a hypothetical mission to Mars, spores of Bacillus subtilis 168 and Bacillus pumilus SAFR-032 were exposed for 1.5 years to selected parameters of space in the experiment PROTECT during the EXPOSE-E mission on board the International Space Station. Mounted as dry layers on spacecraft-qualified aluminum coupons, the "trip to Mars" spores experienced space vacuum, cosmic and extraterrestrial solar radiation, and temperature fluctuations, whereas the "stay on Mars" spores were subjected to a simulated martian environment that included atmospheric pressure and composition, and UV and cosmic radiation. The survival of spores from both assays was determined after retrieval. It was clearly shown that solar extraterrestrial UV radiation (λ≥110 nm) as well as the martian UV spectrum (λ≥200 nm) was the most deleterious factor applied; in some samples only a few survivors were recovered from spores exposed in monolayers. Spores in multilayers survived better by several orders of magnitude. All other environmental parameters encountered by the "trip to Mars" or "stay on Mars" spores did little harm to the spores, which showed about 50% survival or more. The data demonstrate the high chance of survival of spores on a Mars mission, if protected against solar irradiation. These results will have implications for planetary protection considerations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Way, M. J.; Aleinov, I.; Amundsen, David S.
Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) is a three-dimensional General Circulation Model (GCM) developed at the NASA Goddard Institute for Space Studies for the modeling of atmospheres of solar system and exoplanetary terrestrial planets. Its parent model, known as ModelE2, is used to simulate modern Earth and near-term paleo-Earth climates. ROCKE-3D is an ongoing effort to expand the capabilities of ModelE2 to handle a broader range of atmospheric conditions, including higher and lower atmospheric pressures, more diverse chemistries and compositions, larger and smaller planet radii and gravity, different rotation rates (from slower tomore » more rapid than modern Earth’s, including synchronous rotation), diverse ocean and land distributions and topographies, and potential basic biosphere functions. The first aim of ROCKE-3D is to model planetary atmospheres on terrestrial worlds within the solar system such as paleo-Earth, modern and paleo-Mars, paleo-Venus, and Saturn’s moon Titan. By validating the model for a broad range of temperatures, pressures, and atmospheric constituents, we can then further expand its capabilities to those exoplanetary rocky worlds that have been discovered in the past, as well as those to be discovered in the future. We also discuss the current and near-future capabilities of ROCKE-3D as a community model for studying planetary and exoplanetary atmospheres.« less
NASA Technical Reports Server (NTRS)
Flynn, G. J.; Sutton, S. R.; Horz, F.
2000-01-01
Using in-situ x-ray fluorescence, we determined the Cr/Fe, Mn/Fe and Ni/Fe of a particle captured in aerogel on MIR are approximately chondritic, indicating an extraterrestrial origin. Impurity of the aerogel precluded determining the Cu and Zn.
Search for and investigation of extraterrestrial forms of life
NASA Technical Reports Server (NTRS)
Rubin, A. B.
1975-01-01
Correct combinations of remote, analytic, and functional methods and measuring devices for detecting extraterrestrial life are elaborated. Considered are techniques and instruments available both on earth and aboard spacecraft and artificial planetary satellites. Emphasis is placed on the abiogenetic synthesis of organic compounds formed in photosynthesis on Mars.
Project Haystack: The Search for Life in the Galaxy.
ERIC Educational Resources Information Center
Search for Extraterrestrial Intelligence Inst., Mountain View, CA.
Produced by the Search for Extraterrestrial Intelligence (SETI), Project Haystack presents scenarios that depict various aspects of the search for extraterrestrial intelligence. Students conduct hands-on and minds-on activities while exploring what it means to send and receive a message across interstellar distances. Students explore and map vast…
Extremophiles may be irrelevant to the origin of life.
Cleaves, H James; Chalmers, John H
2004-01-01
In recent years, Bacteria and Archaea have been discovered living in practically every conceivable terrestrial environment, including some previously thought to be too extreme for survival. Exploration of our solar system has revealed a number of extraterrestrial bodies that harbor environments analogous to many of the terrestrial environments in which extremophiles flourish. The recent discovery of more than 105 extrasolar planets suggests that planetary systems are quite common. These three findings have led some to speculate that life is therefore common in the universe, as life as we know it can seemingly survive almost anywhere there is liquid water. It is suggested here that while environments capable of supporting life may be common, this does not in itself support the notion that life is common in the universe. Given that interplanetary transfer of life may be unlikely, the actual origin of life may require specific environmental and geological conditions that may be much less common than the mere existence of liquid water.
NASA Astrophysics Data System (ADS)
Reitschuler, Christoph; Lins, Philipp; Illmer, Paul
2014-05-01
Archaea - besides bacteria and eukaryota constituting the third big domain of life - were so far regarded as typical inhabitants of extreme environments, as indicated by the name (Archaeon, Greek: 'original', 'primal'). Previous research and cultivation successes were basically carried out in habitats characterized by extreme temperature, pH and salinity regimes. Such extreme conditions, as expected at the beginning of the Earth's evolution, are occasionally also prevalent on extraterrestrial planets and moons and make the Archaeal domain a key group to be studied concerning life's evolution and the most likely pioneer organisms to colonize environments that are regarded as hostile. However, in recent years it became obvious that Archaea, in particular non-extremophilic species, can be found almost ubiquitously in marine, freshwater, terrestrial and also subsurface habitats and occasionally outnumber other microbial domains and hold key positions in globally relevant energy and nutrient cycles. Besides extreme environments - the big question remains how to define a parameter as extreme - subsurface and cave environments present a window to the past, where adaptions to early life's conditions can be studied and how microbiomes may be structured in a habitat that represents a refugium on extraterrestrial celestial bodies, were surface conditions might be at first sight too extreme for life. The lower part of the alpine Hundsalm cave in Tyrol (Austria) offered a unique opportunity to study an almost pristine cave habitat, which is separated from the touristic part of the ice cave. The main focus of our research was laid on the microbial communities that were supposed to be in connection with secondary carbonate precipitations ('moonmilk'). For the ascertainment of these so far poorly evaluated structures a multiple approach assessment was chosen to generate a virtually complete picture of these subsurface microbiomes. Thereby, a combination of different cultivation strategies was applied as well as physiological analyses, comprising HPLC and GC analyses, and molecular approaches, covering end-point and quantitative PCRs, DGGE, cloning, and sequencing analyses. Outstanding in the course of this research was that assumed non-extremophilic Archaea clearly outnumbered bacteria within the different moonmilk deposits, while fungi were only of minor importance. Moreover, the Archaeal species formed a constant element within the investigated samples, while bacteria and fungi showed a much more diverse and inhomogeneous community pattern. This indicates that the Archaea might constitute the central element within the microbial communities, holding key positions in nutrient and energy-cycles. Furthermore, it was possible to cultivate the Archaeal community over a certain time period, demonstrating that so far uncultured or as 'not cultivable' regarded organisms are accessible with certain cultivation strategies. On the other hand the vast majority of bacterial and fungal representatives are in close relation to species, which are valuable concerning biotechnological or medical applications. Summing up, further research on cave microbiomes, especially Archaea, might be reasonable with regards to life's evolution, global nutrient cycles, requirements for possible refuges of extraterrestrial life forms and also concerning new technological applications.
NASA Technical Reports Server (NTRS)
Thompson, R. L.; Ramler, J. R.; Stevenson, S. M.
1974-01-01
A feasibility study of extraterrestrial disposal of radioactive waste is reported. This report covers the initial work done on only one part of the NASA study, that evaluates and compares possible space destinations and space transportation systems. The currently planned space shuttle was found to be more cost effective than current expendable launch vehicles by about a factor of 2. The space shuttle requires a third stage to perform the waste disposal missions. Depending on the particular mission, this third stage could be either a reusable space tug or an expendable stage such as a Centaur.
Introduction to Space Resource Mining
NASA Technical Reports Server (NTRS)
Mueller, Robert P.
2013-01-01
There are vast amounts of resources in the solar system that will be useful to humans in space and possibly on Earth. None of these resources can be exploited without the first necessary step of extra-terrestrial mining. The necessary technologies for tele-robotic and autonomous mining have not matured sufficiently yet. The current state of technology was assessed for terrestrial and extraterrestrial mining and a taxonomy of robotic space mining mechanisms was presented which was based on current existing prototypes. Terrestrial and extra-terrestrial mining methods and technologies are on the cusp of massive changes towards automation and autonomy for economic and safety reasons. It is highly likely that these industries will benefit from mutual cooperation and technology transfer.
Philosophical issues in the search for extraterrestrial life and intelligence
NASA Astrophysics Data System (ADS)
Schneider, Jean
2013-07-01
In the search for extraterrestrial life and intelligence, it is essential to clarify what is to be meant by `life' and `intelligence'. I first analyse what it means to `define' these words. I will show that some philosophical prejudice is unavoidable. As a working hypothesis, I consider two types of philosophy: `natural philosophy', seeking for some essence of things, and `critical (or analytical) philosophy', devoted to the analysis of the procedures by which we claim to construct a reality. An extension of critical philosophy, epistemo-analysis (i.e. the psycho-analysis of concepts) is presented and applied to the definition of exolife and to extraterrestrial `intelligence'. Some pragmatic conclusions are finally drawn for future search strategies.
Relevance and Significance of Extraterrestrial Abiological Hydrocarbon Chemistry.
Olah, George A; Mathew, Thomas; Prakash, G K Surya
2016-06-08
Astrophysical observations show similarity of observed abiological "organics"-i.e., hydrocarbons, their derivatives, and ions (carbocations and carbanions)-with studied terrestrial chemistry. Their formation pathways, their related extraterrestrial hydrocarbon chemistry originating from carbon and other elements after the Big Bang, their parent hydrocarbon and derivative (methane and methanol, respectively), and transportation of derived building blocks of life by meteorites or comets to planet Earth are discussed in this Perspective. Their subsequent evolution on Earth under favorable "Goldilocks" conditions led to more complex molecules and biological systems, and eventually to humans. The relevance and significance of extraterrestrial hydrocarbon chemistry to the limits of science in relation to the physical aspects of evolution on our planet Earth are also discussed.
Searching for extraterrestrial intelligence - The ultimate exploration
NASA Technical Reports Server (NTRS)
Black, D.; Tarter, J.; Cuzzi, J. N.; Conners, M.; Clark, T. A.
1977-01-01
A survey highlighting the central issues of the SETI program (Search for Extraterrestrial Intelligence), including its rationale, scope, search problems, and goals is presented. Electromagnetic radiation is suggested as the most likely means via which knowledge of extraterrestrial intelligence will be obtained, and the variables governing these signals are discussed, including: signal frequency and polarization, state, possible coordinates, and signal duration. The modern history of SETI and NASA's involvement is briefly reviewed, and the search strategies used by the Jet Propulsion Laboratory and the Ames Research Center are discussed and compared. Some of the potential scientific and cultural impacts of the SETI program are mentioned, noting advancements in technological, biological, and chemical research.
The search for extra-terrestrial intelligence.
Drake, Frank
2011-02-13
Modern history of the search for extra-terrestrial intelligence is reviewed. The history of radio searches is discussed, as well as the major advances that have occurred in radio searches and prospects for new instruments and search strategies. Recent recognition that searches for optical and infrared signals make sense, and the reasons for this are described, as well as the equipment and special detection methods used in optical searches. The long-range future of the search for extra-terrestrial intelligence (SETI) is discussed in the context of the history of rapid change, on the cosmic and even the human time scale, of the paradigms guiding SETI searches. This suggests that SETI searches be conducted with a very open mind.
NASA Technical Reports Server (NTRS)
Hagedorn, Norman H. (Inventor)
1993-01-01
An alkali metal, such as lithium, is the anodic reactant; carbon dioxide or a mixture of carbon dioxide and carbon monoxide is the cathodic reactant; and carbonate of the alkali metal is the electrolyte in an electrochemical cell for the storage and delivery of electrical energy. Additionally, alkali metal-carbon dioxide battery systems include a plurality of such electrochemical cells. Gold is a preferred catalyst for reducing the carbon dioxide at the cathode. The fuel cell of the invention produces electrochemical energy through the use of an anodic reactant which is extremely energetic and light, and a cathodic reactant which can be extracted from its environment and therefore exacts no transportation penalty. The invention is, therefore, especially useful in extraterrestrial environments.
Temporal Variability in the Accretion Rate of Interplanetary Dust Using (3)He as a Tracer
NASA Technical Reports Server (NTRS)
Farley, K. A.
2005-01-01
The research supported by this grant falls under three topics: 1) Weekly Interplanetary Dust Sampling via (3)He; 2) Extraterrestrial (3)He at Major Impact Boundaries; 3) Completing a Moderately-High Resolution Record of Extraterrestrial (3)He Flux: A Major Asteroidal Break up Event at 8.2 Ma.
Possible Existence of Extra-Terrestrial Technology in the Solar System
NASA Astrophysics Data System (ADS)
Burke-Ward, R.
Potential features of the design and function of extra-terrestrial probes are discussed with the aim of establishing criteria for search, detection and contact. Probes are categorised according to three primary areas of function - data-gathering, direct action, and sentient entities. Conclusions are drawn about possible probe technologies and modes of behaviour.
Extraterrestrial Life: Processes, Implications, and Applications.
ERIC Educational Resources Information Center
Molyson, Joseph T.
Provided are background materials relating the study of extraterrestrial life to common biological principles. A history of the creation of the sun and earth is included, as well as a summary of one current theory regarding the origin of life on earth. Relationships are identified regarding possible origins of life on other planets. Factors…
Search for extraterrestrial intelligence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrison, P.; Billingham, J.; Wolfe, J.
1979-01-01
The findings of a series of workshops on the search for extraterrestrial intelligence are presented. The major conclusions of the deliberations are presented. Six of the most interesting and significant elements of the debate are presented in the form of Colloquies. A selection of detailed technical arguments about various aspects of the SETI endeavor is documented. (GHT)
The Future, Extraterrestrial Space Humanization and Sociology.
ERIC Educational Resources Information Center
MacDaniel, William E.
This paper suggests that sociologists should become actively involved with the study of the future as a means for revitalizing the profession of sociology. One aspect of the future that may be most exciting and challenging is the development of human society and culture in extraterrestrial human communities. A unique combination of technological…
NASA Technical Reports Server (NTRS)
Vontiesenhausen, G. F.
1977-01-01
A program implementation model is presented which covers the in-space construction of certain large space systems from extraterrestrial materials. The model includes descriptions of major program elements and subelements and their operational requirements and technology readiness requirements. It provides a structure for future analysis and development.
NASA Technical Reports Server (NTRS)
Bonner, J.
1976-01-01
A highly sensitive fluorometric technique is developed for the determination of biological and geo-organic compounds in ancient sediments and extraterrestrial samples. This technique is used to establish chemical evidence for fossil pigments in an extraterrestrial sample. Also developed is a highly sensitive and specific fluorometric method for the determination of total primary amine nitrogen in soil samples.
Influence of Extraterrestrial Radiation on Radiation Portal Monitors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, Paul E.; Kouzes, Richard T.
2009-06-01
Cosmic radiation and solar flares can be a major source of background radiation at the Earth’s surface. This paper examines the relationship between extraterrestrial radiation and the detectable background in radiation portal monitors used for homeland security applications. Background radiation data from 13 radiation portal monitor facilities are examined and compared against external sources of data related to extraterrestrial radiation, including measurements at neutron monitors located at 53 cosmic-ray observatories around the Earth, four polar orbiting satellites, three geostationary satellites, ground-based geomagnetic field data from observatories around the Earth, a solar magnetic index, solar radio flux data, and sunspot activitymore » data. Four-years (January 2003 through December 2006) of data are used in this study, which include the latter part of Solar Cycle 23 as solar activity was on the decline. The analysis shows a significant relationship between some extraterrestrial radiation and the background detected in the radiation portal monitors. A demonstrable decline is shown in the average gamma ray and neutron background at the radiation portal monitors as solar activity declined over the period of the study.« less
Extraterrestrial flux of potentially prebiotic C, N, and P to the early Earth.
Pasek, Matthew; Lauretta, Dante
2008-02-01
With growing evidence for a heavy bombardment period ending 4-3.8 billion years ago, meteorites and comets may have been an important source of prebiotic carbon, nitrogen, and phosphorus on the early Earth. Life may have originated shortly after the late-heavy bombardment, when concentrations of organic compounds and reactive phosphorus were enough to "kick life into gear". This work quantifies the sources of potentially prebiotic, extraterrestrial C, N, and P and correlates these fluxes with a comparison to total Ir fluxes, and estimates the effect of atmosphere on the survival of material. We find (1) that carbonaceous chondrites were not a good source of organic compounds, but interplanetary dust particles provided a constant, steady flux of organic compounds to the surface of the Earth, (2) extraterrestrial metallic material was much more abundant on the early Earth, and delivered reactive P in the form of phosphide minerals to the Earth's surface, and (3) large impacts provided substantial local enrichments of potentially prebiotic reagents. These results help elucidate the potential role of extraterrestrial matter in the origin of life.
The use of biochemical methods in extraterrestrial life detection
NASA Astrophysics Data System (ADS)
McDonald, Gene
2006-08-01
Instrument development for in situ extraterrestrial life detection focuses primarily on the ability to distinguish between biological and non-biological material, mostly through chemical analysis for potential biosignatures (e.g., biogenic minerals, enantiomeric excesses). In constrast, biochemical analysis techniques commonly applied to Earth life focus primarily on the exploration of cellular and molecular processes, not on the classification of a given system as biological or non-biological. This focus has developed because of the relatively large functional gap between life and non-life on Earth today. Life on Earth is very diverse from an environmental and physiological point of view, but is highly conserved from a molecular point of view. Biochemical analysis techniques take advantage of this similarity of all terrestrial life at the molecular level, particularly through the use of biologically-derived reagents (e.g., DNA polymerases, antibodies), to enable analytical methods with enormous sensitivity and selectivity. These capabilities encourage consideration of such reagents and methods for use in extraterrestrial life detection instruments. The utility of this approach depends in large part on the (unknown at this time) degree of molecular compositional differences between extraterrestrial and terrestrial life. The greater these differences, the less useful laboratory biochemical techniques will be without significant modification. Biochemistry and molecular biology methods may need to be "de-focused" in order to produce instruments capable of unambiguously detecting a sufficiently wide range of extraterrestrial biochemical systems. Modern biotechnology tools may make that possible in some cases.
Helium isotopes in ferromanganese crusts from the central Pacific Ocean
Basu, S.; Stuart, F.M.; Klemm, V.; Korschinek, G.; Knie, K.; Hein, J.R.
2006-01-01
Helium isotopes have been measured in samples of two ferromanganese crusts (VA13/2 and CD29-2) from the central Pacific Ocean. With the exception of the deepest part of crust CD29-2 the data can be explained by a mixture of implanted solar- and galactic cosmic ray-produced (GCR) He, in extraterrestrial grains, and radiogenic He in wind-borne continental dust grains. 4He concentrations are invariant and require retention of less than 12% of the in situ He produced since crust formation. Loss has occurred by recoil and diffusion. High 4He in CD29-2 samples older than 42 Ma are correlated with phosphatization and can be explained by retention of up to 12% of the in situ-produced 4He. 3He/4He of VA13/2 samples varies from 18.5 to 1852 Ra due almost entirely to variation in the extraterrestrial He contribution. The highest 3He/4He is comparable to the highest values measured in interplanetary dust particles (IDPs) and micrometeorites (MMs). Helium concentrations are orders of magnitude lower than in oceanic sediments reflecting the low trapping efficiency for in-falling terrestrial and extraterrestrial grains of Fe-Mn crusts. The extraterrestrial 3He concentration of the crusts rules out whole, undegassed 4–40 μm diameter IDPs as the host. Instead it requires that the extraterrestrial He inventory is carried by numerous particles with significantly lower He concentrations, and occasional high concentration GCR-He-bearing particles.
Denning, Kathryn
2011-02-13
Although astrobiological or SETI detections are possible, actual invasions of sentient extra-terrestrials or plagues of escaped alien microbes are unlikely. Therefore, an anthropological perspective on the question suggests that in the event of a detection, the vast majority of humanity will be dealing not with extra-terrestrial life itself (whether intelligent or not, local or distant), but with human perceptions and representations of that alien life. These will, inevitably, derive from the powerful influences of culture and individual psychology, as well as from science. It may even be argued that in most detection scenarios, the scientific data (and debates about their interpretation) will be nigh-irrelevant to the unfolding of international public reaction. 'Extra-terrestrial life' will, in short, go wild. From this premise, some key questions emerge, including: what can scientists reasonably do to prepare, and what should their responsibilities be, particularly with respect to information dissemination and public discussions about policy? Then, moving beyond the level of immediate practicalities, we might also ask some more anthropological questions: what are the cultural substrates underneath the inquiries of Western science into extra-terrestrial life? In particular, what are the stories we have been told about discovery of rare life, and about contact with other beings, and do these stories really mean what we think they do? Might a closer look at those narratives help us gain perspective on the quest to find extra-terrestrial life, and on our quest to prepare for the consequences of detection?
Control of Space-Based Electron Beam Free Form Fabrication
NASA Technical Reports Server (NTRS)
Seifzer. W. J.; Taminger, K. M.
2007-01-01
Engineering a closed-loop control system for an electron beam welder for space-based additive manufacturing is challenging. For earth and space based applications, components must work in a vacuum and optical components become occluded with metal vapor deposition. For extraterrestrial applications added components increase launch weight, increase complexity, and increase space flight certification efforts. Here we present a software tool that closely couples path planning and E-beam parameter controls into the build process to increase flexibility. In an environment where data collection hinders real-time control, another approach is considered that will still yield a high quality build.
NASA Technical Reports Server (NTRS)
Rodgers, Erica M.; Simon, Matthew A.; Antol, Jeffrey; Chai, Patrick R.; Jones, Christopher A.; Klovstad, Jordan J.; Neilan, James H.; Stillwagen, Frederic H.; Williams, Phillip A.; Bednara, Michael;
2015-01-01
The path from Earth to Mars requires exploration missions to be increasingly Earth-independent as the foundation is laid for a sustained human presence in the following decades. NASA pioneering of Mars will expand the boundaries of human exploration, as a sustainable presence on the surface requires humans to successfully reproduce in a partial gravity environment independent from Earth intervention. Before significant investment is made in capabilities leading to such pioneering efforts, the challenges of multigenerational mammalian reproduction in a partial gravity environment need be investigated. The Multi-generational Independent Colony for Extraterrestrial Habitation, Autonomy, and Behavior health is designed to study these challenges. The proposed concept is a conceptual, long duration, autonomous habitat designed to house rodents in a partial gravity environment with the goal of understanding the effects of partial gravity on mammalian reproduction over multiple generations and how to effectively design such a facility to operate autonomously while keeping the rodents healthy in order to achieve multiple generations. All systems are designed to feed forward directly to full-scale human missions to Mars. This paper presents the baseline design concept formulated after considering challenges in the mission and vehicle architectures such as: vehicle automation, automated crew health management/medical care, unique automated waste disposal and hygiene, handling of deceased crew members, reliable long-duration crew support systems, and radiation protection. This concept was selected from an architectural trade space considering the balance between mission science return and robotic and autonomy capabilities. The baseline design is described in detail including: transportation and facility operation constraints, artificial gravity system design, habitat design, and a full-scale mock-up demonstration of autonomous rodent care facilities. The proposed concept has the potential to integrate into existing mission architectures in order to achieve exploration objectives, and to demonstrate and mature common capabilities that enable a range of destinations and missions.
Methanogens in the Solar System
NASA Astrophysics Data System (ADS)
Taubner, Ruth-Sophie; Schleper, Christa; Firneis, Maria G.; Rittmann, Simon
2015-04-01
The last decade of space science revealed that potential habitats in the Solar System may not be limited to the classical habitable zone supporting life as we know it. These microorganisms were shown to thrive under extremophilic growth conditions. Here, we outline the main eco-physiological characteristics of methanogens like their response on temperature, pressure, or pH changes or their resistance against radiation or desiccation. They can withstand extreme environmental conditions which makes them intriguing organisms for astrobiological studies. On Earth, they are found for example in wetlands, in arctic and antarctic subglacial environments, in ruminants, and even in the environment surrounding the Mars Desert Research Station in Utah. These obligate anaerobic chemolithoautotrophs or chemolithoheterotrophs are able to use e.g. hydrogen and C1 compounds like CO2, formate, or methanol as energy source and carbon source, respectively. We point out their capability to be able to habitat potential extraterrestrial biospheres all over the planetary system. We will give an overview about these possible environments on Mars, icy moons like Europa or Enceladus, and minor planets. We present an overview about studies of methanogens with an astrobiological relevance and we show our conclusions about the role of methanogens for the search for extraterrestrial life in the Solar System. We will present first results of our study about the possibility to cultivate methanogens under Enceladus-like conditions. For that, based on the observations obtained by the Cassini spacecraft concerning the plume compounds, we produce a medium with a composition similar to the ocean composition of this icy moon which is far more Enceladus-like than in any (published) experiment before. Eventually, we give an outlook on the feasibility and the necessity of future astrobiological studies with these microbes. We point out the importance of future in-situ or even sample and return missions to the mentioned potential habitats.
Ethical issues in astrobiology: a Christian perspective (Invited)
NASA Astrophysics Data System (ADS)
Randolph, R. O.
2009-12-01
With its focus on the origin, extent, and future of life, Astrobiology raises exciting, multidisciplinary questions for science. At the same time, Astrobiology raises important questions for the humanities. For instance, the prospect of discovering extraterrestrial life - either intelligent or unintelligent - raises questions about humans’ place in the universe and our relationship with nature on planet Earth. Fundamentally, such questions are rooted in our understanding of what it means to be human. From a Christian perspective, the foundational claim about human nature is that all persons bear the "imago dei", the image of God. This concept forms the basis for how humans relate to one another (dignity) and how humans relate to nature (stewardship). For many Christians the "imago dei" also suggests that humans are at the center of the universe. The discovery of extraterrestrial life would be another scientific development - similar to evolution - that essentially de-centers humanity. For some Christian perspectives this de-centering may be problematic, but I will argue that the discovery of extraterrestrial life would actually offer a much needed theological corrective for contemporary Christians’ understanding of the "imago dei". I will make this argument by examining two clusters of ethical issues confronting Astrobiology: 1. What ethical obligations would human explorers owe to extraterrestrial life? Are there ethical obligations to protect extraterrestrial ecosystems from harm or exploitation by human explorers? Do our ethical considerations change, if the extraterrestrial life is a “second genesis;” in other words a form of life completely different and independent from the carbon-based life that we know on Earth? 2. Do we have an ethical obligation to promote life as much as we can? If human explorers discover extraterrestrial life and through examination determine that it is struggling to survive, do we have an ethical obligation to assist that ecological community to become stronger? If after a thorough investigation we determine that no life exists and that a planet is nothing more than a lifeless body of rocks and dust, do we have an ethical obligation to attempt the creation of life through a process called planetary ecosynthesis? Or, do we have the opposite obligation to respect the rocks and dust for what they are, and refrain from any attempts to engineer life on a lifeless planet? While these two clusters of issues pose new ethical questions, I will argue that from a Christian perspective the framework for responding to these challenges would remain the Genesis Creation stories and the concept of the "imago dei". However, the new ethical challenges posed by Astrobiology require a re-framing of the "imago dei" that is closer to the intent of the original scriptures and that predicts simultaneously the presence of extraterrestrial life and the de-centering of humanity.
NASA Astrophysics Data System (ADS)
Faltys, J. P.; Wielicki, M. M.; Sizemore, T. M.
2017-12-01
Due to the discovery and subsequent geochemical analysis of Hadean terrestrial material (e.g. detrital zircon from Jack Hills, Western Australia), a dramatic paradigm shift has occurred in the hypothesized near surface conditions of the first 500 million years of Earth's evolution. From a hellish setting riddled with impactors and not fit for life to a much milder environment that may have been uniquely suitable for the origin of life. Geochemical analyses of these ancient materials have been used to suggest the presence of water at or near the surface as well as the existence of continental crust during the Hadean, both of which have been suggested as necessary for the origin of life. However, the intensity of extraterrestrial bombardment during the Hadean and the effects of such events on the origin of life remains poorly understood. Clearly, as evidenced by Phanerozoic impact events, extraterrestrial impactors have the potential to dramatically effect the environment, particularly the biosphere. Early Earth likely experienced multiple large impact events, as evidenced by the lunar record, however whether those impacts were sufficient to frustrate the origin of life remains an open question. Although multiple lines of evidence, including the inclusion population, suggest the formation of Hadean zircon from Jack Hills as crystallizing in an under-thrust environment from S-type magmas, a recent study has suggested their formation in an impact melt environment analogous to a portion of the Sudbury Igneous Complex at the Sudbury impact structure. To determine between these two formation scenarios we have under-taken an inclusion study of terrestrial impact formed zircon from four of the largest terrestrial impact structures (Sudbury, Canada; Manicouagan, Canada; Vredefort, South Africa; Morokweng, South Africa), to compare to the vast inclusion dataset that exists for Jack Hills zircon. Preliminary data suggests a different inclusion population, from Hadean zircon, associated with impact formed zircon; however, if certain populations of the Jack Hills record appear to share inclusion assemblages with impact formed zircon, this could provide a tool to constrain the frequency and timing of large impactors on early Earth and their possible effects on conditions conducive for the origin of life.
NASA Astrophysics Data System (ADS)
Lockard, Elizabeth Song
As humans embark upon the next phase of Space exploration---establishing human outposts in low-Earth orbit, on the Moon, and on Mars---the scope of human factors must expand beyond the meager requirements for short-term missions to Space to include issues of comfort and well-being necessary for long-term durations. However, to habitate---to dwell in a place---implies more than creature comforts in order to adapt. Human factors research must also include a phenomenological perspective---an understanding of how we experience the places we live in---in order for a community to be robust and to thrive. The first phase of migration will be an especially tenuous one requiring intensive technological intervention. The modes by which those technologies are implemented will have significant bearing on the process of human adaptation: the nature of the mediation can be either one of domination, subordination, avoidance, or integration. Ultimately, adaptation is best ensured if symbiotic processes of negotiation and cooperation between subject and environment are espoused over acts of conquest or acquiescence. The adaptive mechanisms we choose to develop and employ will have wider implications for long-range human evolution. The transformations we will undergo will be influenced by both the initial decision to migrate to Space (technological), as well as the actual conditions of Space (environmental). Migration to extraterrestrial environments will be unequivocally the most profound catalyst for evolution in the history of humankind---not only for the human species itself but also for the new environments we will eventually inhabit. At the same time, we also find ourselves---via a new generation of bio-, nano-, and digital technologies---in the position to consciously and willfully direct our own evolution. Technology has always been transformative, but in the not-so-distant future, we will soon possess the capacity to radically re-invent ourselves in almost any way conceivable. The discourse on human evolution in Space must be situated in the confluence of these two variables.
ERIC Educational Resources Information Center
Beals, Kevin; Erickson, John; Sneider, Cary
Building on collaborative work between the Search for Extraterrestrial Intelligence (SETI) Institute and the Lawrence Hall of Science, this curriculum takes advantage of humans' fascination with extraterrestrials to catalyze the study of the solar system and beyond. The unit begins when students attempt to decode a fictitious message from outer…
Recent progress and future plans on the search for extraterrestrial intelligence
NASA Technical Reports Server (NTRS)
Papagiannis, M. D.
1985-01-01
The history and present status of the search for extraterrestrial intelligence (ETI) are surveyed. Individual search projects and NASA searches for ETI in the radio band are discussed, giving the targets and wavebands used in the investigations. The arguments about the existence of ETI and the usefulness of looking for it are reviewed.
State-of-the-art Instruments for Detecting Extraterrestrial Life
NASA Technical Reports Server (NTRS)
Bada, Jeffrey L.
2003-01-01
In the coming decades, state-of-the-art spacecraft-based instruments that can detect key components associated with life as we know it on Earth will directly search for extinct or extant extraterrestrial life in our solar system. Advances in our analytical and detection capabilities, especially those based on microscale technologies, will be important in enhancing the abilities of these instruments. Remote sensing investigations of the atmospheres of extrasolar planets could provide evidence of photosynthetic-based life outside our solar system, although less advanced life will remain undetectable by these methods. Finding evidence of extraterrestrial life would have profound consequences both with respect to our understanding of chemical and biological evolution, and whether the biochemistry on Earth is unique in the universe.
The Search for Extraterrestrial Intelligence (SETI)
NASA Astrophysics Data System (ADS)
Tarter, Jill
The search for evidence of extraterrestrial intelligence is placed in the broader astronomical context of the search for extrasolar planets and biomarkers of primitive life elsewhere in the universe. A decision tree of possible search strategies is presented as well as a brief history of the search for extraterrestrial intelligence (SETI) projects since 1960. The characteristics of 14 SETI projects currently operating on telescopes are discussed and compared using one of many possible figures of merit. Plans for SETI searches in the immediate and more distant future are outlined. Plans for success, the significance of null results, and some opinions on deliberate transmission of signals (as well as listening) are also included. SETI results to date are negative, but in reality, not much searching has yet been done.
Alien Mindscapes—A Perspective on the Search for Extraterrestrial Intelligence
NASA Astrophysics Data System (ADS)
Cabrol, Nathalie A.
2016-09-01
Advances in planetary and space sciences, astrobiology, and life and cognitive sciences, combined with developments in communication theory, bioneural computing, machine learning, and big data analysis, create new opportunities to explore the probabilistic nature of alien life. Brought together in a multidisciplinary approach, they have the potential to support an integrated and expanded Search for Extraterrestrial Intelligence (SETI1), a search that includes looking for life as we do not know it. This approach will augment the odds of detecting a signal by broadening our understanding of the evolutionary and systemic components in the search for extraterrestrial intelligence (ETI), provide more targets for radio and optical SETI, and identify new ways of decoding and coding messages using universal markers.
First search for extraterrestrial neutrino-induced cascades with IceCube
DOE Office of Scientific and Technical Information (OSTI.GOV)
IceCube Collaboration; Kiryluk, Joanna
2009-05-22
We report on the first search for extraterrestrial neutrino-induced cascades in IceCube.The analyzed data were collected in the year 2007 when 22 detector strings were installed and operated. We will discuss the analysis methods used to reconstruct cascades and to suppress backgrounds. Simulated neutrino signal events with a E-2 energy spectrum, which pass the background rejection criteria, are reconstructed with a resolution Delta(log E) ~;; 0.27 in the energy range from ~;; 20 TeV to a few PeV. We present the range of the diffuse flux of extra-terrestrial neutrinos in the cascade channel in IceCube within which we expect tomore » be able to put a limit.« less
An independent evaluation of the Younger Dryas extraterrestrial impact hypothesis.
Surovell, Todd A; Holliday, Vance T; Gingerich, Joseph A M; Ketron, Caroline; Haynes, C Vance; Hilman, Ilene; Wagner, Daniel P; Johnson, Eileen; Claeys, Philippe
2009-10-27
Based on elevated concentrations of a set of "impact markers" at the onset of the Younger Dryas stadial from sedimentary contexts across North America, Firestone, Kennett, West, and others have argued that 12.9 ka the Earth experienced an impact by an extraterrestrial body, an event that had devastating ecological consequences for humans, plants, and animals in the New World [Firestone RB, et al. (2007) Proc. Natl. Acad. Sci. USA 104:16016-16021]. Herein, we report the results of an independent analysis of magnetic minerals and microspherules from seven sites of similar age, including two examined by Firestone et al. We were unable to reproduce any results of the Firestone et al. study and find no support for Younger Dryas extraterrestrial impact.
Isolation of Purines and Pyrimidines from the Murchison Meteorite
NASA Technical Reports Server (NTRS)
Glavin, D. P.; Bada, J. K.
2003-01-01
The origin of life on Earth, and possibly on other planets such as Mars, would have required the presence of liquid water and a continuous supply of prebiotic organic compounds. The delivery of organic matter by asteroids, comets, and carbonaceous meteorites could have contributed to the early Earth's prebiotic inventory by seeding the planet with biologically important organic compounds. A wide variety of prebiotic organic compounds have previously been detected in the Murchison CM type carbonaceous chondrite including amino acids, purines and pyrimidines'. These compounds play a major role in terrestrial biochemistry and are integral components of proteins, DNA and RNA. In this study we developed a new extraction technique using sublimation in order to isolate purines and pyrimidines from Murchison2, which is cleaner and more time efficient that traditional methods3. Several purines including adenine, guanine, hypoxanthine and xanthine were positively identified by high performance liquid chromatography and ultraviolet absorption detection in our Murchison extracts. The purines detected in Murchison do not correlate with the distribution of nucleobases found in geological environments on Earth4. Moreover, the abundance of extraterrestrial amino acids and the low level of terrestrial amino acid contaminants found in Murchison', support the idea that the purines in t h s meteorite are extraterrestrial in origin.
NASA Astrophysics Data System (ADS)
Turner, Andrew M.; Abplanalp, Matthew J.; Blair, Tyler J.; Dayuha, Remwilyn; Kaiser, Ralf I.
2018-01-01
The only known phosphorus-containing organic compounds of extraterrestrial origin, alkylphosphonic acids, were discovered in the Murchison meteorite and have accelerated the hypothesis that reduced oxidation states of phosphorus were delivered to early Earth and served as a prebiotic source of phosphorus. While previous studies looking into the formation of these alkylphosphonic acids have focused on the iron–nickel phosphide mineral schreibersite and phosphorous acid as a source of phosphorus, this work utilizes phosphine (PH3), which has been discovered in the circumstellar envelope of IRC +10216, in the atmosphere of Jupiter and Saturn, and believed to be the phosphorus carrier in comet 67P/Churyumov–Gerasimenko. Phosphine ices prepared with interstellar molecules such as carbon dioxide, water, and methane were subjected to electron irradiation, which simulates the secondary electrons produced from galactic cosmic rays penetrating the ice, and probed using infrared spectroscopy to understand the possible formation of alkylphosphonic acids and their precursors on interstellar icy grains that could become incorporated into meteorites such as Murchison. We present the first study and results on the possible synthesis of alkylphosphonic acids produced from phosphine-mixed ices under interstellar conditions. All functional groups of alkylphosphonic acids were detected through infrared spectroscopically, suggesting that this class of molecules can be formed in interstellar ices.
Pigati, Jeffrey S; Latorre, Claudio; Rech, Jason A; Betancourt, Julio L; Martínez, Katherine E; Budahn, James R
2012-05-08
The Younger Dryas impact hypothesis contends that an extraterrestrial object exploded over North America at 12.9 ka, initiating the Younger Dryas cold event, the extinction of many North American megafauna, and the demise of the Clovis archeological culture. Although the exact nature and location of the proposed impact or explosion remain unclear, alleged evidence for the fallout comes from multiple sites across North America and a site in Belgium. At 6 of the 10 original sites (excluding the Carolina Bays), elevated concentrations of various "impact markers" were found in association with black mats that date to the onset of the Younger Dryas. Black mats are common features in paleowetland deposits and typically represent shallow marsh environments. In this study, we investigated black mats ranging in age from approximately 6 to more than 40 ka in the southwestern United States and the Atacama Desert of northern Chile. At 10 of 13 sites, we found elevated concentrations of iridium in bulk and magnetic sediments, magnetic spherules, and/or titanomagnetite grains within or at the base of black mats, regardless of their age or location, suggesting that elevated concentrations of these markers arise from processes common to wetland systems, and not a catastrophic extraterrestrial impact event.
Advanced Water Recovery Technologies for Long Duration Space Exploration Missions
NASA Technical Reports Server (NTRS)
Liu, Scan X.
2005-01-01
Extended-duration space travel and habitation require recovering water from wastewater generated in spacecrafts and extraterrestrial outposts since the largest consumable for human life support is water. Many wastewater treatment technologies used for terrestrial applications are adoptable to extraterrestrial situations but challenges remain as constraints of space flights and habitation impose severe limitations of these technologies. Membrane-based technologies, particularly membrane filtration, have been widely studied by NASA and NASA-funded research groups for possible applications in space wastewater treatment. The advantages of membrane filtration are apparent: it is energy-efficient and compact, needs little consumable other than replacement membranes and cleaning agents, and doesn't involve multiphase flow, which is big plus for operations under microgravity environment. However, membrane lifespan and performance are affected by the phenomena of concentration polarization and membrane fouling. This article attempts to survey current status of membrane technologies related to wastewater treatment and desalination in the context of space exploration and quantify them in terms of readiness level for space exploration. This paper also makes specific recommendations and predictions on how scientist and engineers involving designing, testing, and developing space-certified membrane-based advanced water recovery technologies can improve the likelihood of successful development of an effective regenerative human life support system for long-duration space missions.
Pigati, Jeffrey S.; Latorre, Claudio; Rech, Jason A.; Betancourt, Julio L.; Martínez, Katherine E.; Budahn, James R.
2012-01-01
The Younger Dryas impact hypothesis contends that an extraterrestrial object exploded over North America at 12.9 ka, initiating the Younger Dryas cold event, the extinction of many North American megafauna, and the demise of the Clovis archeological culture. Although the exact nature and location of the proposed impact or explosion remain unclear, alleged evidence for the fallout comes from multiple sites across North America and a site in Belgium. At 6 of the 10 original sites (excluding the Carolina Bays), elevated concentrations of various “impact markers” were found in association with black mats that date to the onset of the Younger Dryas. Black mats are common features in paleowetland deposits and typically represent shallow marsh environments. In this study, we investigated black mats ranging in age from approximately 6 to more than 40 ka in the southwestern United States and the Atacama Desert of northern Chile. At 10 of 13 sites, we found elevated concentrations of iridium in bulk and magnetic sediments, magnetic spherules, and/or titanomagnetite grains within or at the base of black mats, regardless of their age or location, suggesting that elevated concentrations of these markers arise from processes common to wetland systems, and not a catastrophic extraterrestrial impact event. PMID:22529347
Pigati, Jeffrey S.; Latorre, Claudio; Rech, Jason A.; Betancourt, Julio L.; Martinez, Katherine E.; Budahn, James R.
2012-01-01
The Younger Dryas impact hypothesis contends that an extraterrestrial object exploded over North America at 12.9 ka, initiating the Younger Dryas cold event, the extinction of many North American megafauna, and the demise of the Clovis archeological culture. Although the exact nature and location of the proposed impact or explosion remain unclear, alleged evidence for the fallout comes from multiple sites across North America and a site in Belgium. At 6 of the 10 original sites (excluding the Carolina Bays), elevated concentrations of various "impact markers" were found in association with black mats that date to the onset of the Younger Dryas. Black mats are common features in paleowetland deposits and typically represent shallow marsh environments. In this study, we investigated black mats ranging in age from approximately 6 to more than 40 ka in the southwestern United States and the Atacama Desert of northern Chile. At 10 of 13 sites, we found elevated concentrations of iridium in bulk and magnetic sediments, magnetic spherules, and/or titanomagnetite grains within or at the base of black mats, regardless of their age or location, suggesting that elevated concentrations of these markers arise from processes common to wetland systems, and not a catastrophic extraterrestrial impact event.
The Breakthrough Listen Search for Intelligent Life: 1.1-1.9 GHz Observations of 692 Nearby Stars
NASA Astrophysics Data System (ADS)
Enriquez, J. Emilio; Siemion, Andrew; Foster, Griffin; Gajjar, Vishal; Hellbourg, Greg; Hickish, Jack; Isaacson, Howard; Price, Danny C.; Croft, Steve; DeBoer, David; Lebofsky, Matt; MacMahon, David H. E.; Werthimer, Dan
2017-11-01
We report on a search for engineered signals from a sample of 692 nearby stars using the Robert C. Byrd Green Bank Telescope, undertaken as part of the Breakthrough Listen Initiative search for extraterrestrial intelligence. Observations were made over 1.1-1.9 GHz (L band), with three sets of five-minute observations of the 692 primary targets, interspersed with five-minute observations of secondary targets. By comparing the “ON” and “OFF” observations, we are able to identify terrestrial interference and place limits on the presence of engineered signals from putative extraterrestrial civilizations inhabiting the environs of the target stars. During the analysis, 11 events passed our thresholding algorithm, but a detailed analysis of their properties indicates that they are consistent with known examples of anthropogenic radio-frequency interference. We conclude that, at the time of our observations, none of the observed systems host high-duty-cycle radio transmitters emitting between 1.1 and 1.9 GHz with an Equivalent Isotropic Radiated Power of ˜1013 W, which is readily achievable by our own civilization. Our results suggest that fewer than ˜0.1% of the stellar systems within 50 pc possess the type of transmitters searched in this survey.
Blake, Ruth E.; Alt, Jeffrey C.; Martini, Anna M.
2001-01-01
The distinctive relations between biological activity and isotopic effect recorded in biomarkers (e.g., carbon and sulfur isotope ratios) have allowed scientists to suggest that life originated on this planet nearly 3.8 billion years ago. The existence of life on other planets may be similarly identified by geochemical biomarkers, including the oxygen isotope ratio of phosphate (δ18Op) presented here. At low near-surface temperatures, the exchange of oxygen isotopes between phosphate and water requires enzymatic catalysis. Because enzymes are indicative of cellular activity, the demonstration of enzyme-catalyzed PO4–H2O exchange is indicative of the presence of life. Results of laboratory experiments are presented that clearly show that δ18OP values of inorganic phosphate can be used to detect enzymatic activity and microbial metabolism of phosphate. Applications of δ18Op as a biomarker are presented for two Earth environments relevant to the search for extraterrestrial life: a shallow groundwater reservoir and a marine hydrothermal vent system. With the development of in situ analytical techniques and future planned sample return strategies, δ18Op may provide an important biosignature of the presence of life in extraterrestrial systems such as that on Mars. PMID:11226207
Blake, R E; Alt, J C; Martini, A M
2001-02-27
The distinctive relations between biological activity and isotopic effect recorded in biomarkers (e.g., carbon and sulfur isotope ratios) have allowed scientists to suggest that life originated on this planet nearly 3.8 billion years ago. The existence of life on other planets may be similarly identified by geochemical biomarkers, including the oxygen isotope ratio of phosphate (delta(18)O(p)) presented here. At low near-surface temperatures, the exchange of oxygen isotopes between phosphate and water requires enzymatic catalysis. Because enzymes are indicative of cellular activity, the demonstration of enzyme-catalyzed PO(4)-H(2)O exchange is indicative of the presence of life. Results of laboratory experiments are presented that clearly show that delta(18)O(P) values of inorganic phosphate can be used to detect enzymatic activity and microbial metabolism of phosphate. Applications of delta(18)O(p) as a biomarker are presented for two Earth environments relevant to the search for extraterrestrial life: a shallow groundwater reservoir and a marine hydrothermal vent system. With the development of in situ analytical techniques and future planned sample return strategies, delta(18)O(p) may provide an important biosignature of the presence of life in extraterrestrial systems such as that on Mars.
Raman spectroscopy and the search for life signatures in the ExoMars Mission*
NASA Astrophysics Data System (ADS)
Edwards, Howell G. M.; Hutchinson, Ian B.; Ingley, Richard
2012-10-01
The survival strategies of extremophilic organisms in terrestrially stressed locations and habitats are critically dependent on the production of protective chemicals in response to desiccation, low wavelength radiation insolation, temperature and the availability of nutrients. The adaptation of life to these harsh prevailing conditions involves the control of the substratal geology; the interaction between the rock and the organisms is critical and the biological modification of the geological matrix plays a very significant role in the overall survival strategy. Identification of these biological and biogeological chemical molecular signatures in the geological record is necessary for the recognition of the presence of extinct or extant life in terrestrial and extraterrestrial scenarios. Raman spectroscopic techniques have been identified as valuable instrumentation for the detection of life extra-terrestrially because of the use of non-invasive laser-based excitation of organic and inorganic molecules, and molecular ions with high discrimination characteristics; the interactions effected between biological organisms and their environments are detectable through the molecular entities produced at the interfaces, for which the vibrational spectroscopic band signatures are unique. A very important attribute of Raman spectroscopy is the acquisition of molecular experimental data non-destructively without the need for chemical or mechanical pre-treatment of the specimen; this has been a major factor in the proposal for the adoption of Raman instrumentation on robotic landers and rovers for planetary exploration, particularly for the forthcoming European Space Agency (ESA)/National Aeronautics and Space Administration (NASA) ExoMars mission. In this paper, the merits of using Raman spectroscopy for the recognition of key molecular biosignatures from several terrestrial extremophile specimens will be illustrated. The data and specimens used in this presentation have been acquired from Arctic and Antarctic cold deserts and a meteorite crater, from which it will be possible to assess spectral data relevant for the detection of extra-terrestrial extremophilic life signatures.
An Answer to Fermi’s Paradox In the Prevalence of Ocean Worlds?
NASA Astrophysics Data System (ADS)
Stern, S. Alan
2017-10-01
The Fermi Paradox (e.g., [1]) asks the question about extraterrestrial civilizations, “Where are they?” Given speculations based on numerical evaluations of the Drake Equation that would seem to indicate that the likelihood of precisely N=1 communicating extraterrestrial civilizations in the Universe is small, i.e., that we are unique, the Fermi Paradox remains a puzzle. Many possible explanations have been proffered. We suggest another—namely that the great majority of worlds with biology and civilizations are interior water ocean worlds (WOWs). Interior WOWs appear to be particularly conducive to the development of life owing to several key advantages, including these two: (1) Environmental Independence to Stellar Type, Multiplicity, and Distance. Owing to the several to hundreds of kilometers depth of typical Type II liquid water oceans, and the overlying thermal insulation provided by the planetary lid atop these oceans, the energy balance, temperature, pressure, and toxicity in Type II ocean worlds is only weakly coupled to their host star’s stellar type, stellar multiplicity, stellar distance, and stellar evolutionary stage (i.e., from protostars with winds and high activity through the main sequence to stellar remnants). (2) Environmental Stability. Again owing to the depth of typical Type II oceans and the overlaying thermal insulation provided by the planetary lid atop these oceans, these environments are protected from numerous kinds of external risks to life, such as impacts, radiation, surface climate and obliquity cycles, poisonous atmospheres, and nearby deleterious astrophysical events such as novae and supernovae, hazards stellar flares, and even phenomena like the Faint Early Sun. Interior WOWs are naturally cut off from communication by their interior nature below a thick roof of ice or rock and ice, therefore do not easily reveal themselves. In this talk I will examine this new idea in more detail. [1] Hart, M.H., 1975. Explanation for the Absence of Extraterrestrials on Earth. Quarterly Journal of the Royal Astronomical Society, Vol. 16, p.128-135.
Molecular Spectroscopy in Astrophysics: Interstellar PAHs
NASA Technical Reports Server (NTRS)
Salama, Farid; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
Polycyclic aromatic hydrocarbons (PAHs) are now considered to be an important and ubiquitous component of the organic material in space. PAHs are found in a large variety of extraterrestrial materials such as interplanetary dust particles (IDPs) and meteoritic materials. PAHs are also good candidates to account for the infrared emission bands (UIRs) and the diffuse interstellar optical absorption bands (DIBs) detected in various regions of the interstellar medium. The recent observations made with the Infrared Space Observatory (ISO) have confirmed the ubiquitous nature of the UIR bands and their carriers. PAHs are thought to form through chemical reactions in the outflow from carbon-rich stars in a process similar to soot formation. Once injected in the interstellar medium, PAHs are further processed by the interstellar radiation field, interstellar shocks and energetic particles. A long-term laboratory effort has been undertaken to measure the physical and chemical characteristics of these carbon molecules and their ions under experimental conditions that mimic the interstellar conditions. These measurements require collision-free conditions where the molecules and ions are cold and chemically isolated. The spectroscopy of PAHs under controlled conditions represents an essential diagnostic tool to study the evolution of extraterrestrial PAHs. The laboratory results will be discussed as well as the implications for astronomy and for molecular spectroscopy. A review of the data generated through laboratory simulations of space environments and the role these data have played in our current understanding of the properties of interstellar PAHs will be presented. We will also present the new generation of laboratory experiments that are currently being developed in order to provide a closer simulation of space environments and a better support to space missions.
Moeller, Ralf; Cadet, Jean; Douki, Thierry; Mancinelli, Rocco L.; Nicholson, Wayne L.; Panitz, Corinna; Rabbow, Elke; Rettberg, Petra; Spry, Andrew; Stackebrandt, Erko; Vaishampayan, Parag; Venkateswaran, Kasthuri J.
2012-01-01
Abstract Spore-forming bacteria are of particular concern in the context of planetary protection because their tough endospores may withstand certain sterilization procedures as well as the harsh environments of outer space or planetary surfaces. To test their hardiness on a hypothetical mission to Mars, spores of Bacillus subtilis 168 and Bacillus pumilus SAFR-032 were exposed for 1.5 years to selected parameters of space in the experiment PROTECT during the EXPOSE-E mission on board the International Space Station. Mounted as dry layers on spacecraft-qualified aluminum coupons, the “trip to Mars” spores experienced space vacuum, cosmic and extraterrestrial solar radiation, and temperature fluctuations, whereas the “stay on Mars” spores were subjected to a simulated martian environment that included atmospheric pressure and composition, and UV and cosmic radiation. The survival of spores from both assays was determined after retrieval. It was clearly shown that solar extraterrestrial UV radiation (λ≥110 nm) as well as the martian UV spectrum (λ≥200 nm) was the most deleterious factor applied; in some samples only a few survivors were recovered from spores exposed in monolayers. Spores in multilayers survived better by several orders of magnitude. All other environmental parameters encountered by the “trip to Mars” or “stay on Mars” spores did little harm to the spores, which showed about 50% survival or more. The data demonstrate the high chance of survival of spores on a Mars mission, if protected against solar irradiation. These results will have implications for planetary protection considerations. Key Words: Planetary protection—Bacterial spores—Space experiment—Simulated Mars mission. Astrobiology 12, 445–456. PMID:22680691
Laboratory Studies of Methane and Its Relationship to Prebiotic Chemistry.
Kobayashi, Kensei; Geppert, Wolf D; Carrasco, Nathalie; Holm, Nils G; Mousis, Olivier; Palumbo, Maria Elisabetta; Waite, J Hunter; Watanabe, Naoki; Ziurys, Lucy M
2017-08-01
To examine how prebiotic chemical evolution took place on Earth prior to the emergence of life, laboratory experiments have been conducted since the 1950s. Methane has been one of the key molecules in these investigations. In earlier studies, strongly reducing gas mixtures containing methane and ammonia were used to simulate possible reactions in the primitive atmosphere of Earth, producing amino acids and other organic compounds. Since Earth's early atmosphere is now considered to be less reducing, the contribution of extraterrestrial organics to chemical evolution has taken on an important role. Such organic molecules may have come from molecular clouds and regions of star formation that created protoplanetary disks, planets, asteroids, and comets. The interstellar origin of organics has been examined both experimentally and theoretically, including laboratory investigations that simulate interstellar molecular reactions. Endogenous and exogenous organics could also have been supplied to the primitive ocean, making submarine hydrothermal systems plausible sites of the generation of life. Experiments that simulate such hydrothermal systems where methane played an important role have consequently been conducted. Processes that occur in other Solar System bodies offer clues to the prebiotic chemistry of Earth. Titan and other icy bodies, where methane plays significant roles, are especially good targets. In the case of Titan, methane is both in the atmosphere and in liquidospheres that are composed of methane and other hydrocarbons, and these have been studied in simulation experiments. Here, we review the wide range of experimental work in which these various terrestrial and extraterrestrial environments have been modeled, and we examine the possible role of methane in chemical evolution. Key Words: Methane-Interstellar environments-Submarine hydrothermal systems-Titan-Origin of life. Astrobiology 17, 786-812.
3 EXPOSE Missions - overview and lessons learned
NASA Astrophysics Data System (ADS)
Rabbow, E.; Willnekcer, R.; Reitz, G.; Aman, A.; Bman, B.; Cman, C.
2011-10-01
The International Space Station ISS provides a variety of external research platforms for experiments aiming at the utilization of space parameters like vacuum, temperature oscillation and in particular extraterrestrial short wavelength UV and ionizing radiation which cannot be simulated accurately in the laboratory. Three Missions, two past and one upcoming, will be presented. A family of astrobiological experimental ESA facilities called "EXPOSE" were and will be accommodated on these outside exposure platforms: on one of the external balconies of the European Columbus Module (EXPOSE-E) and on the URM-D platform on the Russian Zvezda Module (EXPOSE-R and EXPOSE-R2). Exobiological and radiation experiments, exposing chemical, biological and dosimetric samples to the harsh space environment are - and will be - accommodated on these facilities to increase our knowledge on the origin, evolution and distribution of life, on Earth and possibly beyond. The biological experiments investigate resistance and adaptation of organisms like bacteria, Achaea, fungi, lichens, plant seeds and small animals like mosquito larvae to extreme environmental conditions and underlying mechanisms like DNA repair. The organic chemical experiments analyse chemical reactions triggered by the extraterrestrial environment, especially short wavelength UV radiation, to better understand prebiotic chemistry. The facility is optimized to allow exposure of biological specimen and material samples under a variety of conditions, using optical filter systems. Environmental parameters like temperature and radiation are regularly recorded and down linked by telemetry. Two long term missions named according to their facility - EXPOSE-E and EXPOSE-R - are completed and a third mission is planned and currently prepared. Operations of all three missions including sample accommodation are performed by DLR. An overview of the two completed missions will be given including lessons learned as well as an outlook and short introduction to the next mission, EXPSOE-R2
Laboratory Astrochemistry: Interstellar PAH Analogs
NASA Technical Reports Server (NTRS)
Salama, Farid; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
Polycyclic aromatic hydrocarbons (PAHs) are now considered to be an important and ubiquitous component of the organic material in space. PAHs are found in a large variety of extraterrestrial materials such as interplanetary dust particles (IDPs) and meteoritic materials. PAHs are also good candidates to account for the infrared emission bands (UIRs) and the diffuse interstellar optical absorption bands (DIBs) detected in various regions of the interstellar medium. The recent observations made with the Infrared Space Observatory (ISO) have confirmed the ubiquitous nature of the UIR bands and their carriers. PAHs are though to form through chemical reactions in the outflow from carbon-rich stars in a process similar to soot formation. Once injected in the interstellar medium, PAHs are further processed by the interstellar radiation field, interstellar shocks and energetic particles. A major, dedicated, laboratory effort has been undertaken over the past years to measure the physical and chemical characteristics of these complex molecules and their ions under experimental conditions that mimic the interstellar conditions. These measurements require collision-free conditions where the molecules and ions are cold and chemically isolated. The spectroscopy of PAHs under controlled conditions represents an essential diagnostic tool to study the evolution of extraterrestrial PAHs. The Astrochemistry Laboratory program will be discussed through its multiple aspects: objectives, approach and techniques adopted, adaptability to the nature of the problem(s), results and implications for astronomy as well as for molecular spectroscopy. A review of the data generated through laboratory simulations of space environments and the role these data have played in our current understanding of the properties of interstellar PAHs will be presented. The discussion will also introduce the newest generation of laboratory experiments that are currently being developed in order to provide a closer simulation of space environments and a better support to space missions.
Laboratory Studies of Interstellar PAH Analogs
NASA Technical Reports Server (NTRS)
Salama, Farid; DeVincenzi, Donald (Technical Monitor)
2000-01-01
Polycyclic aromatic hydrocarbons (PAHs) are now considered to be an important and ubiquitous component of the organic material in space. PAHs are found in a large variety of extraterrestrial materials such as interplanetary dust particles (IDPs) and meteoritic materials. PAHs are also good candidates to account for the infrared emission bands (UIRs) and the diffuse interstellar optical absorption bands (DIBs) detected in various regions of the interstellar medium. The recent observations made with the Infrared Space Observatory (ISO) have confirmed the ubiquitous nature of the UIR bands and their carriers. PAHs are though to form through chemical reactions in the outflow from carbon-rich stars in a process similar to soot formation. Once injected in the interstellar medium, PAHs are further processed by the interstellar radiation field, interstellar shocks and energetic particles. A major, dedicated, laboratory effort has been undertaken over the past years to measure the physical and chemical characteristics of these complex molecules and their ions under experimental conditions that mimic the interstellar conditions. These measurements require collision-free conditions where the molecules and ions are cold and chemically isolated. The spectroscopy of PAHs under controlled conditions represents an essential diagnostic tool to study the evolution of extraterrestrial PAHs. The Astrochemistry Laboratory program will be discussed through its multiple aspects: objectives, approach and techniques adopted, adaptability to the nature of the problem(s), results and implications for astronomy as well as for molecular spectroscopy. A review of the data generated through laboratory simulations of space environments and the role these data have played in our current understanding of the properties of interstellar PAHs will be presented. The discussion will also introduce the newest generation of laboratory experiments that are currently being developed in order to provide a closer simulation of space environments and a better support to space missions.
Radio Searches for Signatures of Advanced Extraterrestrial Life
NASA Astrophysics Data System (ADS)
Siemion, Andrew
Over the last several decades, observational astronomy has produced a flood of discoveries that suggest that the building blocks and circumstances that gave rise to life on Earth may be the rule rather than the exception. It has now been conclusively shown that planets are common and that some 5-15% of FGKM stars host planets existing in their host star's habitable zone. Further, terrestrial biology has demonstrated that life on our own planet can thrive in extraordinarily extreme environments, dramatically extending our notion of what constitutes habitability. The deeper question, yet unanswered, is whether or not life in any form has ever existed in an environment outside of the Earth. As humans, we are drawn to an even more profound question, that of whether or not extraterrestrial life may have evolved a curiosity about the universe similar to our own and the technology with which to explore it. Radio astronomy has long played a prominent role in searches for extraterrestrial intelligence (SETI), beginning with the first suggestions by Cocconi and Morrison (1959) that narrow-band radio signals near 1420 MHz might be effective tracers of advanced technology and early experiments along these lines by Frank Drake in 1961, continuing through to more recent investigations searching for several types of coherent radio signals indicative of technology at a wider range of frequencies. The motivations for radio searches for extraterrestrial intelligence have been throughly discussed in the literature, but the salient arguments are the following: 1. coherent radio emission is commonly produced by advanced technology (judging by Earth’s technological development), 2. electromagnetic radiation can convey information at the maximum velocity currently known to be possible, 3. radio photons are energetically cheap to produce, 4. certain types of coherent radio emissions are easily distinguished from astrophysical background sources, especially within the so-called ``terrestrial microwave window'' and 5. these emissions can transit vast regions of interstellar space relatively unaffected by gas, plasma and dust. Our group is conducting a variety of radio SETI at a wide range of frequencies, from 50 MHz to 230 GHz, using several facilities: the Dutch/European Low-Frequency Array (LOFAR), Arecibo Observatory, the Green Bank Telescope and the Combined Array for Research in Millimeter-wave Astronomy (CARMA). Our experiments employ a variety of strategies, including searches of nearby stars, stars with known exoplanets and the galactic center. We have also developed an observing pipeline that targets systems of multiple exoplanets at epochs in which two or more planets are aligned relative to Earth, which we have dubbed exoplanetary interplanetary communication (EPIC) SETI. Our detection algorithms are sensitive to a wide range of signal types, and we have developed numerous radio interference rejection techniques. Many of our experiments operate ``commensally'' with other science projects, providing thousands of hours of observations with the largest telescopes in the world. Here we present the status of our radio SETI efforts, discuss observations conducted to-date and review the various regions of parameter space probed by each experiment.
The Center for the Study of Terrestrial and Extraterrestrial Atmospheres (CSTEA)
NASA Technical Reports Server (NTRS)
Thorpe, Arthur N.; Morris, Vernon R.
1997-01-01
The Center for the Study of Terrestrial and Extraterrestrial Atmospheres (CSTEA) was established in 1992. The center began with 14 active Principal Investigators (PI's). The research of the Center's PIs has, for the most part, continued in the same four areas as presented in the original proposal: Remote Sensing, Atmospheric Chemistry, Sensors and Detectors, and Spacecraft Dynamics.
Alien Contact: Proof Positive or a Case of Let's Play Pretend?
ERIC Educational Resources Information Center
DiSpezio, Michael A.
2011-01-01
Explore claims of extraterrestrial life and our efforts to communicate with inhabitants of worlds outside our solar system. Even though there's no "proof positive" for extraterrestrial life-forms of any flavor, we've set the stage for applying a battery of critical-thinking skills to the valid analysis of scientific data. (Contains 3 figures and 5…
The SERENDIP 2 SETI project: Current status
NASA Technical Reports Server (NTRS)
Bowyer, C. S.; Werthimer, D.; Donnelly, C.; Herrick, W.; Lampton, M.
1991-01-01
Over the past 30 years, interest in extraterrestrial intelligence has progressed from philosophical discussion to rigorous scientific endeavors attempting to make contact. Since it is impossible to assess the probability of success and the amount of telescope time needed for detection, Search for Extraterrestrial Intelligence (SETI) Projects are plagued with the problem of attaining the large amounts of time needed on the world's precious few large radio telescopes. To circumvent this problem, the Search for Extraterrestrial Radio Emissions from Nearby Developed Intelligent Populations (SERENDIP) instrument operates autonomously in a piggyback mode utilizing whatever observing plan is chosen by the primary observer. In this way, large quantities of high-quality data can be collected in a cost-effective and unobtrusive manner. During normal operations, SERENDIP logs statistically significant events for further offline analysis. Due to the large number of terrestrial and near-space transmitters on earth, a major element of the SERENDIP project involves identifying and rejecting spurious signals from these sources. Another major element of the SERENDIP Project (as well as most other SETI efforts) is detecting extraterrestrial intelligence (ETI) signals. Events selected as candidate ETI signals are studied further in a targeted search program which utilizes between 24 to 48 hours of dedicated telescope time each year.
NASA Astrophysics Data System (ADS)
Vakoch, Douglas A.
2011-02-01
With recently growing interest in the Active Search for Extraterrestrial Intelligence (SETI), in which humankind would send intentional signals to extraterrestrial civilizations, there have been increased concerns about appropriate policy, as well as the role of space law and ethics in guiding such activities. Implicit in these discussions are notions of responsibility and capability that affect judgments about whether humans or other civilizations should initiate transmissions. Existing protocols that guide SETI research address transmissions from Earth, but there is debate over whether these guidelines should inform de novo transmissions as well. Relevant responsibilities to address include (1) looking out for the interests of humankind as a whole, (2) being truthful in interstellar messages, and (3) benefiting extraterrestrial civilizations. Our capabilities as a species and a civilization affect how well we can fulfill responsibilities, as seen when we consider whether we will be able to reach consensus about message contents (and whether that would be desirable), and whether we have the capacity to decode messages from beings that rely on different sensory modalities. The interplay of these responsibilities and capabilities suggests that humankind should place increased emphasis on Active SETI.
Properties of the moon, Mars, Martian satellites, and near-earth asteroids
NASA Technical Reports Server (NTRS)
Taylor, Jeffrey G.
1989-01-01
Environments and surface properties of the moon, Mars, Martian satellites, and near-earth asteroids are discussed. Topics include gravity, atmospheres, surface properties, surface compositions, seismicity, radiation environment, degradation, use of robotics, and environmental impacts. Gravity fields vary from large fractions of the earth's field such as 1/3 on Mars and 1/6 on the moon to smaller fractions of 0.0004 g on an asteroid 1 km in diameter. Spectral data and the analogy with meteor compositions suggest that near-earth asteroids may contain many resources such as water-rich carbonaceous materials and iron-rich metallic bodies. It is concluded that future mining and materials processing operations from extraterrestrial bodies require an investment now in both (1) missions to the moon, Mars, Phobos, Deimos, and near-earth asteroids and (2) earth-based laboratory research in materials and processing.
NASA Technical Reports Server (NTRS)
Mautner, M. N.; Leonard, R. L.; Deamer, D. W.
1995-01-01
Up to 50% of the organics in the Murchison meteorite, possibly including some of the polymer, is released in high temperature and pressure aqueous environments, to 350 degrees C and 250 bar, that simulate submarine volcanic, hydrothermal or impact-induced conditions. Meteorite organics of prebiotic significance, such as nonanoic acid, glycine, and pyrene survive the hydrothermal conditions. The released material is surface active with surface pressures up to 19.8 x 10(-3) N m-1, and exhibits an extended surface tension isotherm which suggests a mixture of amphiphilic components. One component, nonanoic acid, is shown to form vesicles. The materials extracted under mild conditions, at 120 degrees C, are nutrients for the humic acid bacterium Pseudomonas maltophilia and efficient nutrients for the oligotroph Flavobacterium oryzihabitans, demonstrating the capability of microorganisms to metabolize extraterrestrial organics.
Lead and uranium group abundances in cosmic rays
NASA Technical Reports Server (NTRS)
Yadav, J. S.; Perelygin, V. P.
1985-01-01
The importance of Lead and Uranium group abundances in cosmic rays is discussed in understanding their evolution and propagation. The electronic detectors can provide good charge resolution but poor data statistics. The plastic detectors can provide somewhat better statistics but charge resolution deteriorates. The extraterrestrial crystals can provide good statistics but with poor charge resolution. Recent studies of extraterrestrial crystals regarding their calibration to accelerated uranium ion beam and track etch kinetics are discussed. It is hoped that a charge resolution of two charge units can be achieved provided an additional parameter is taken into account. The prospects to study abundances of Lead group, Uranium group and superheavy element in extraterrestrial crystals are discussed, and usefulness of these studies in the light of studies with electronic and plastic detectors is assessed.
Possible extraterrestrial strategy for earth
NASA Astrophysics Data System (ADS)
Deardorff, J. W.
1986-03-01
A hypothesis concerning the nature of extraterrestrial messages to the earth is proposed. The hypothesis is based on the following assumptions about (1) that they exist in abundance in the Galaxy; (2) that they are benevolent toward earth-based life forms, and (3) that the lack of any human detection of extraterrestrials is due to an embargo designed to prevent any premature disclosure of their existence. It is argued that any embargo not involving alien force must be a leaky one designed to allow a gradual disclosure of the alien message and its gradual acceptance on the part of the general public over a very long time-scale. The communication may take the form of what is now considered magic, and may therefore be misinterpreted as 'magic' by or a hoax by contemporary governments and scientists.
The Problem of Extraterrestrial Civilizations and Extrasolar Planets
NASA Astrophysics Data System (ADS)
Mickaelian, A. M.
2015-07-01
The problem of extraterrestrial intelligence is the best example of multidisciplinary science. Here philosophy and religion, astronomy, radiophysics, spectrography, space flights and astronautics, geology and planetology, astroecology, chemistry and biology, history and archaeology, psychology, sociology, linguistics, diplomacy, UFOs and peculiar phenomena are involved. Among these many-sided studies, astronomers have probably displayed the most progress by discovering thousands of extrasolar planets. At present, a number of search programs are being accomplished, including those with space telescopes, and planets in so-called "habitable zone" are considered as most important ones, for which various orbital and physical parameters are being calculated. As the discovery of extraterrestrial life is the final goal, a special attention is given to Earth-like planets, for the discovery of which most sensitive technical means are necessary.
A new family of extraterrestrial amino acids in the Murchison meteorite.
Koga, Toshiki; Naraoka, Hiroshi
2017-04-04
The occurrence of extraterrestrial organic compounds is a key for understanding prebiotic organic synthesis in the universe. In particular, amino acids have been studied in carbonaceous meteorites for almost 50 years. Here we report ten new amino acids identified in the Murchison meteorite, including a new family of nine hydroxy amino acids. The discovery of mostly C 3 and C 4 structural isomers of hydroxy amino acids provides insight into the mechanisms of extraterrestrial synthesis of organic compounds. A complementary experiment suggests that these compounds could be produced from aldehydes and ammonia on the meteorite parent body. This study indicates that the meteoritic amino acids could be synthesized by mechanisms in addition to the Strecker reaction, which has been proposed to be the main synthetic pathway to produce amino acids.
An independent evaluation of the Younger Dryas extraterrestrial impact hypothesis
Surovell, Todd A.; Holliday, Vance T.; Gingerich, Joseph A. M.; Ketron, Caroline; Haynes, C. Vance; Hilman, Ilene; Wagner, Daniel P.; Johnson, Eileen; Claeys, Philippe
2009-01-01
Based on elevated concentrations of a set of “impact markers” at the onset of the Younger Dryas stadial from sedimentary contexts across North America, Firestone, Kennett, West, and others have argued that 12.9 ka the Earth experienced an impact by an extraterrestrial body, an event that had devastating ecological consequences for humans, plants, and animals in the New World [Firestone RB, et al. (2007) Proc. Natl. Acad. Sci. USA 104:16016–16021]. Herein, we report the results of an independent analysis of magnetic minerals and microspherules from seven sites of similar age, including two examined by Firestone et al. We were unable to reproduce any results of the Firestone et al. study and find no support for Younger Dryas extraterrestrial impact. PMID:19822748
Studies of Life on Earth are Important for Mars Exploration
NASA Technical Reports Server (NTRS)
DesMarais, D. J.
1998-01-01
The search for evidence of the early martian environment and a martian biosphere is benefitted by diverse studies of life on Earth. Most fundamentally, origin-of-life research highlights the challenge in formulating a rigorous definition of life. Because such definitions typically list several of life's most basic properties, they also help to define those observable features that distinguish life and thus might be sought through telescopes, spacecraft, and analyses of extraterrestrial samples. Studies of prebiotic chemistry also help by defining the range of environments and processes that sustain prebiotic organic synthesis. These studies might indicate if and where prebiotic processes occur today on Earth and elsewhere. Such studies should also help to identify which localities are good candidates for the origin of life. A better understanding of the most fundamental principles by which molecules are assembled into living systems will help us to appreciate possible alternatives to the path followed by life on Earth. These perspectives will sharpen our ability to recognize exotic life and/or those environments that can sustain it.
Microgravity Effects on Microbiology In Space Laboratories
NASA Technical Reports Server (NTRS)
Nelson, Emily S.; Juergensmeyer, Elizabeth; Juergensmeyer, Margaret
2000-01-01
Here we present a review of the effects of residual acceleration on microorganisms in space Laboratories. Residual acceleration in the microgravity environment is frequently ignored by microbiologists, although their experiments may be as sensitive to this acceleration as those designed by materials scientists and fluid physicists. Furthermore, analysis to date has been largely empirical and/or based on very simple theoretical models. As a result, the responses of single cells to the space environment are widely assumed to be taking place in "pure" microgravity. These responses vary widely and are not well understood. Some of this variation may be due to the range of microgravity conditions experience by organisms. In the future, as we move from visiting orbital environments to living and working there, we will undoubtedly bring microorganisms with us. It is also quite likely that the first extraterrestrial life we encounter will be single-celled organisms. Therefore, we would like to present a summary of the current knowledge base, and to challenge the space community to develop new approaches in understanding this important field.
Pax: A permanent base for human habitation of Mars
NASA Technical Reports Server (NTRS)
Moore, Gary T.; Rebholz, Patrick J.; Fieber, Joseph P.; Huebner-Moths, Janis; Paruleski, Kerry L.
1992-01-01
The Advanced Design Program in Space Architecture at the University of Wisconsin-Milwaukee supported the synthesis report and two of its scenarios - 'Architecture 1' and 'Architecture 4' - and the Weaver ExPO report on near-term extraterrestrial explorations during the spring of 1992. The project investigated the implications of different mission scenarios, the Martian environment, supporting technologies, and especially human factors and environment-behavior considerations for the design of the first permanent Martian base. This paper presents the results of that investigation. The paper summarizes site selection, development of habitability design requirements based on environment-behavior research, construction sequencing, and a full concept design and design development for a first permanent Martian base and habitat. The proposed design is presented in terms of an integrative mission scenario and master plan phased through initial operational configuration, base site plan, and design development details of a complete Martian habitat for 18 crew members including all laboratory, mission control, and crew support spaces.
Extraterrestrial accretion and glacial cycles
NASA Technical Reports Server (NTRS)
Muller, R. A.
1994-01-01
We propose that the approx. 100-k.y. cycle seen in terrestrial glaciation is due to changes in meteor flux that come from changes in the Earth's orbit. This model can explain a 70-k.y. 'anomalous' period in climate data and the apparent discrepancy between present extraterrestrial fluxes and those in oceanic sediments. It can be tested by measuring Ir densities in sediments and ice during glacials and interglacials.
Preface: New challenges for planetary protection
NASA Astrophysics Data System (ADS)
Kminek, Gerhard
2016-05-01
Planetary protection as a discipline goes back to the advent of the space age and the formation of the Committee on Space Research (COSPAR). Planetary protection constraints are in place to ensure that scientific investigations related to the search for extraterrestrial life are not compromised and that the Earth is protected from the potential hazard posed by extraterrestrial matter carried by a spacecraft returning from an interplanetary mission.
Extraction of volatile and metals from extraterrestrial materials
NASA Technical Reports Server (NTRS)
Lewis, John S.
1990-01-01
Since March 1, 1989, attention was concentrated on the extraction of ilmenite from extraterrestrial materials and on the planning and development of laboratory facilities for carbonyl extraction of ferrous metal alloys. Work under three subcontracts was administered by this project: (1) electrolytic production of oxygen from molten lunar materials; (2) microwave processing of lunar materials; and (3) production of a resource-oriented space science data base.
NASA Technical Reports Server (NTRS)
Mcelroy, J. F.
1990-01-01
Viewgraphs on SPE regenerative hydrogen/oxygen fuel cells for extraterrestrial surface and microgravity applications are presented. Topics covered include: hydrogen-oxygen regenerative fuel cell energy storage system; electrochemical cell reactions; SPE cell voltage stability; passive water removal SPE fuel cell; fuel cell performance; SPE water electrolyzers; hydrophobic oxygen phase separator; hydrophilic/electrochemical hydrogen phase separator; and unitized regenerative fuel cell.
NASA Technical Reports Server (NTRS)
Hirsch, David; Williams, Jim; Beeson, Harold
2006-01-01
Spacecraft materials selection is based on an upward flammability test conducted in a quiescent environment in the highest-expected oxygen-concentration environment. However, NASA s advanced space exploration program is anticipating using various habitable environments. Because limited data is available to support current program requirements, a different test logic is suggested to address these expanded atmospheric environments through the determination of materials self-extinguishment limits. This paper provides additional pressure effects data on oxygen concentration and partial pressure self-extinguishment limits under quiescent conditions. For the range of total pressures tested, the oxygen concentration and oxygen partial pressure flammability thresholds show a near linear function of total pressure. The oxygen concentration/oxygen partial pressure flammability thresholds depend on the total pressure and appear to increase with increasing oxygen concentration (and oxygen partial pressure). For the Constellation Program, the flammability threshold information will allow NASA to identify materials with increased flammability risk because of oxygen concentration and total pressure changes, minimize potential impacts, and allow for development of sound requirements for new spacecraft and extraterrestrial landers and habitats.
DeVincenzi, D L
1984-01-01
The goal of NASA's Exobiology Program is to understand the origin, evolution, and distribution of life, and life-related molecules, on Earth and throughout the universe. Emphasis is focused on determining how the rate and direction of these processes were affected by the chemical and physical environment of the evolving planet, as well as by planetary, solar, and astrophysical phenomena. This is accomplished by a multi-disciplinary program of research conducted by over 60 principal investigators in both NASA and university laboratories. Major program thrusts are in the following research areas: biogenic elements; chemical evolution; origin of life; organic geochemistry; evolution of higher life forms; solar system exploration; and the search for extraterrestrial intelligence (SETI).
Multiplicity of inhabited worlds and the problem of setting up contacts among them
NASA Technical Reports Server (NTRS)
Shklovskiy, I. S.
1974-01-01
The numerous planetary systems in our galaxy appear to a high degree of probability to contain some planets with a biosphere similar to earth' environment. The possibility of communicating with those extraterrestrial alien planetary civilizations centers on the high level of technological development that is required to overcome the problem of distance. It is conceivable that advanced civilizations can produce energy at a level of 10 to the 43rd power erg/year and that an artificial biosphere can be developed within the limits of 10 to the 22nd power to 10 to the 23rd power cm.
Organic matter in meteorites and comets - Possible origins
NASA Technical Reports Server (NTRS)
Anders, Edward
1991-01-01
At least six extraterrestrial environments may have contributed organic compounds to meteorites and comets: solar nebula, giant-planet subnebulae, asteroid interiors containing liquid water, carbon star atmospheres, and diffuse or dark interstellar clouds. The record in meteorites is partly obscured by pervasive reheating that transformed much of the organic matter to kerogen; nonetheless, it seems that all six formation sites contributed. For comets, the large abundance of HCHO, HCN, and unsaturated hydrocarbons suggests an interstellar component of 50 percent or more, but the contributions of various interstellar processes, and of a solar-nebula component, are hard to quantify. A research program is outlined that may help reduce these uncertainties.
Iron-tolerant Cyanobacteria as a Tool to Study Terrestrial and Extraterrestrial Iron Deposition
NASA Technical Reports Server (NTRS)
Brown, I. I.; Mummey, D.; Cooksey, K. E.; McKay, D. S.
2005-01-01
We are investigating biological mechanisms of terrestrial iron deposition as analogs for Martian hematite recently confirmed by. Possible terrestrial analogs include iron oxide hydrothermal deposits, rock varnish, iron-rich laterites, ferricrete soils, moki balls, and banded iron formations (BIFs). With the discovery of recent volcanic activity in the summit craters of five Martian volcanoes, renewed interest in the iron dynamics of terrestrial hydrothermal environments and associated microorganisms is warranted. In this study we describe a new genus and species of CB exhibiting elevated dissolved iron tolerance and the ability to precipitate hematite on the surface of their exopolymeric sheathes.
Porphyrin as an ideal biomarker in the search for extraterrestrial life.
Suo, Zhiyong; Avci, Recep; Schweitzer, Mary Higby; Deliorman, Muhammedin
2007-08-01
A key issue in astrobiological research is identifying target molecules that are unambiguously biological in origin and can be easily detected and recognized. We suggest porphyrin derivatives as an ideal target, because these chromophores are global in distribution and found in virtually all living organisms on Earth, including microorganisms that may approximate the early evolution of life on Earth. We discuss the inherent qualities that make porphyrin ideally suited for astrobiological research and discuss methods for detecting porphyrin molecules in terrestrial sedimentary environments. We present preliminary data to support the use of ToFSIMS as a powerful technique in the identification of porphyrins.
Balucani, Nadia; Casavecchia, Piergiorgio
2006-12-01
We have investigated gas-phase reactions of N((2)D) with the most abundant hydrocarbons in the atmosphere of Titan by the crossed molecular beam technique. In all cases, molecular products containing a novel CN bond are formed, thus suggesting possible routes of formation of gas-phase nitriles in the atmosphere of Titan and primordial Earth. The same approach has been recently extended to the study of radical-radical reactions, such as the reaction of atomic oxygen with the CH(3) and C(3)H(5) radicals. Products other than those already considered in the modeling of planetary atmospheres and interstellar medium have been identified.
The weak force and SETH: The search for Extra-Terrestrial Homochirality
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDermott, A.J.
We propose that a search for extra-terrestrial life can be approached as a Search for Extra-Terrestrial Homochirality{emdash}SETH. Homochirality is probably a pre-condition for life, so a chiral influence may be required to get life started. We explain how the weak force mediated by the {ital Z}{sup 0} boson gives rise to a small parity-violating energy difference (PVED) between enantiomers, and discuss how the resulting small excess of the more stable enantiomer may be amplified to homochirality. Titan and comets are good places to test for emerging pre-biotic homochirality, while on Mars there may be traces of homochirality as a relicmore » of extinct life. Our calculations of the PVED show that the natural L-amino acids are indeed more stable than their enantiomers, as are several key D-sugars and right-hand helical DNA. Thiosubstituted DNA analogues show particularly large PVEDs. L-quartz is also more stable than D-quartz, and we believe that further crystal counts should be carried out to establish whether reported excesses of L quartz are real. Finding extra-terrestrial molecules of the same hand as on Earth would lend support to the universal chiral influence of the weak force. We describe a novel miniaturized space polarimeter, called the SETH Cigar, which we hope to use to detect optical rotation on other planets. Moving parts are avoided by replacing the normal rotating polarizer by multiple fixed polarizers at different angles as in the eye of the bee. Even if we do not find the same hand as on Earth, finding extra-terrestrial optical rotation would be of enormous importance as it would still be the homochiral signature of life. {copyright} {ital 1996 American Institute of Physics.}« less
The weak force and SETH: The search for Extra-Terrestrial Homochirality
NASA Astrophysics Data System (ADS)
MacDermott, Alexandra J.
1996-07-01
We propose that a search for extra-terrestrial life can be approached as a Search for Extra-Terrestrial Homochirality-SETH. Homochirality is probably a pre-condition for life, so a chiral influence may be required to get life started. We explain how the weak force mediated by the Z0 boson gives rise to a small parity-violating energy difference (PVED) between enantiomers, and discuss how the resulting small excess of the more stable enantiomer may be amplified to homochirality. Titan and comets are good places to test for emerging pre-biotic homochirality, while on Mars there may be traces of homochirality as a relic of extinct life. Our calculations of the PVED show that the natural L-amino acids are indeed more stable than their enantiomers, as are several key D-sugars and right-hand helical DNA. Thiosubstituted DNA analogues show particularly large PVEDs. L-quartz is also more stable than D-quartz, and we believe that further crystal counts should be carried out to establish whether reported excesses of L quartz are real. Finding extra-terrestrial molecules of the same hand as on Earth would lend support to the universal chiral influence of the weak force. We describe a novel miniaturized space polarimeter, called the SETH Cigar, which we hope to use to detect optical rotation on other planets. Moving parts are avoided by replacing the normal rotating polarizer by multiple fixed polarizers at different angles as in the eye of the bee. Even if we do not find the same hand as on Earth, finding extra-terrestrial optical rotation would be of enormous importance as it would still be the homochiral signature of life.
Information theory, animal communication, and the search for extraterrestrial intelligence
NASA Astrophysics Data System (ADS)
Doyle, Laurance R.; McCowan, Brenda; Johnston, Simon; Hanser, Sean F.
2011-02-01
We present ongoing research in the application of information theory to animal communication systems with the goal of developing additional detectors and estimators for possible extraterrestrial intelligent signals. Regardless of the species, for intelligence (i.e., complex knowledge) to be transmitted certain rules of information theory must still be obeyed. We demonstrate some preliminary results of applying information theory to socially complex marine mammal species (bottlenose dolphins and humpback whales) as well as arboreal squirrel monkeys, because they almost exclusively rely on vocal signals for their communications, producing signals which can be readily characterized by signal analysis. Metrics such as Zipf's Law and higher-order information-entropic structure are emerging as indicators of the communicative complexity characteristic of an "intelligent message" content within these animals' signals, perhaps not surprising given these species' social complexity. In addition to human languages, for comparison we also apply these metrics to pulsar signals—perhaps (arguably) the most "organized" of stellar systems—as an example of astrophysical systems that would have to be distinguished from an extraterrestrial intelligence message by such information theoretic filters. We also look at a message transmitted from Earth (Arecibo Observatory) that contains a lot of meaning but little information in the mathematical sense we define it here. We conclude that the study of non-human communication systems on our own planet can make a valuable contribution to the detection of extraterrestrial intelligence by providing quantitative general measures of communicative complexity. Studying the complex communication systems of other intelligent species on our own planet may also be one of the best ways to deprovincialize our thinking about extraterrestrial communication systems in general.
Contour Crafting Simulation Plan for Lunar Settlement Infrastructure Build-Up
NASA Technical Reports Server (NTRS)
Khoshnevis, B.; Carlson, A.; Leach N.; Thangavelu, M.
2016-01-01
Economically viable and reliable building systems and tool sets are being sought, examined and tested for extraterrestrial infrastructure buildup. This project focused on a unique architecture weaving the robotic building construction technology with designs for assisting rapid buildup of initial operational capability Lunar and Martian bases. The project aimed to study new methodologies to construct certain crucial infrastructure elements in order to evaluate the merits, limitations and feasibility of adapting and using such technologies for extraterrestrial application. Current extraterrestrial settlement buildup philosophy holds that in order to minimize the materials needed to be flown in, at great transportation costs, strategies that maximize the use of locally available resources must be adopted. Tools and equipment flown as cargo from Earth are proposed to build required infrastructure to support future missions and settlements on the Moon and Mars.
Alien Mindscapes—A Perspective on the Search for Extraterrestrial Intelligence
2016-01-01
Abstract Advances in planetary and space sciences, astrobiology, and life and cognitive sciences, combined with developments in communication theory, bioneural computing, machine learning, and big data analysis, create new opportunities to explore the probabilistic nature of alien life. Brought together in a multidisciplinary approach, they have the potential to support an integrated and expanded Search for Extraterrestrial Intelligence (SETI1), a search that includes looking for life as we do not know it. This approach will augment the odds of detecting a signal by broadening our understanding of the evolutionary and systemic components in the search for extraterrestrial intelligence (ETI), provide more targets for radio and optical SETI, and identify new ways of decoding and coding messages using universal markers. Key Words: SETI—Astrobiology—Coevolution of Earth and life—Planetary habitability and biosignatures. Astrobiology 16, 661–676. PMID:27383691
Alien Mindscapes-A Perspective on the Search for Extraterrestrial Intelligence.
Cabrol, Nathalie A
2016-09-01
Advances in planetary and space sciences, astrobiology, and life and cognitive sciences, combined with developments in communication theory, bioneural computing, machine learning, and big data analysis, create new opportunities to explore the probabilistic nature of alien life. Brought together in a multidisciplinary approach, they have the potential to support an integrated and expanded Search for Extraterrestrial Intelligence (SETI (1) ), a search that includes looking for life as we do not know it. This approach will augment the odds of detecting a signal by broadening our understanding of the evolutionary and systemic components in the search for extraterrestrial intelligence (ETI), provide more targets for radio and optical SETI, and identify new ways of decoding and coding messages using universal markers. SETI-Astrobiology-Coevolution of Earth and life-Planetary habitability and biosignatures. Astrobiology 16, 661-676.
Environmental effects of human exploration of the Moon
NASA Astrophysics Data System (ADS)
Mendell, Wendell
Aerospace engineers use the term Environment to designate a set of externally imposed bound-ary conditions under which a device must operate. Although the parameters may be time-varying, the engineer thinks of the operating environment as being fixed. Any effect the device might have on the environment generally is neglected. In the case where the device is intended to measure the environment, its effect on the measured quantities must be considered. For example, a magnetometer aboard a spacecraft must be extended on a boom to minimize the disturbing influence of the spacecraft on the magnetic field, particularly if the field is weak. In contrast, Environment has taken on political and even ethical connotations in modern Western society, referring to human-induced alterations to those aspects of the terrestrial environment that are required for a healthy and productive life. The so-called Green Movement takes preservation of the environment as its mantra. Scientists are at the center of the debate on environmental issues. However, the concern of scientists over irreversible consequences of hu-man activity extend beyond ecology to preservation of cultural artifacts and to effects that alter the ability to conduct investigations such as light pollution in astronomy. The policy of Planetary Protection applied to science and exploration missions to other bodies in the solar system arises from the concern for deleterious effects in terrestrial ecology from hypothetical extraterrestrial life forms as well as overprints of extraterrestrial environments by terrestrial biology. Some in the scientific community are advocating extension of the planetary protection concept beyond exobiology to include fragile planetary environments by might be permanently altered by human activity e.g., the lunar exosphere. Beyond the scientific community, some environmentalists argue against any changes to the Moon at all, including formation of new craters or the alteration of the natural moonscape by human activities. On the flip side of this concern, others want to preserve historical elements of early lunar exploration, including foot-prints and emplaced equipment. At the present time, the cloud of orbital debris in low Earth orbit is a prime example of an ignored source of space pollution that now poses measurable and not insubstantial risk to a wide variety of space activities. Within the former Constellation program, planners of lunar surface activities had begun to identify self-generated risks such as ejecta from landings and ascents in the vicinity of a human base. Of course, the object of their concern was their own planned operations; and no serious discussions of possible modifications to the lunar environment had taken place. Any future balance between space exploration, space development, scientific investigation, and environmental activism will be decided in the policy arena in the political process. Such debates must incorporate as much factual material as possible concerning the consequences of various proposals. That is only possible when the lunar environment is better understood than at present and when those proposing activities present their plans in as much detail as possible.
NASA Technical Reports Server (NTRS)
Gunasekara, Onalli; Wong, Uland Y.; Furlong, Michael P.; Dille, Michael
2017-01-01
Current technologies of exploring habitable areas of icy moons are limited to flybys of space probes. This research project addresses long-term navigation of icy moons by developing a MATLAB adjustable trajectory based on the volume of plume material observed. Plumes expose materials from the sub-surface without accessing the subsurface. Aerial vehicles capable of scouting vapor plumes and detecting maximum plume material volumes, which are considered potentially habitable in inhospitable environments, would enable future deep-space missions to search for extraterrestrial organisms on the surface of icy moons. Although this platform is still a prototype, it demonstrates the potential aerial vehicles can have in improving the capabilities of long-term space navigation and enabling technology for detecting life in extreme environments. Additionally, this work is developing the capabilities that could be utilized as a platform for space biology research. For example, aerial vehicles that are sent to map extreme environments of icy moons or the planet Mars, could also carry small payloads with automated cell-biology experiments, designed to probe the biological response of low-gravity and high-radiation planetary environments, serving as a pathfinder for future human missions.
Risk and value analysis of SETI
NASA Technical Reports Server (NTRS)
Billingham, J.
1990-01-01
This paper attempts to apply a traditional risk and value analysis to the Search for Extraterrestrial Intelligence--SETI. In view of the difficulties of assessing the probability of success, a comparison is made between SETI and a previous search for extraterrestrial life, the biological component of Project Viking. Our application of simple Utility Theory, given some reasonable assumptions, suggests that SETI is at least as worthwhile as the biological experiment on Viking.
A lunar base for SETI (Search for Extraterrestrial Intelligence)
NASA Technical Reports Server (NTRS)
Oliver, Bernard M.
1988-01-01
The possibilities of using lanar based radio antennas in search of intelligent extraterrestrial communications is explored. The proposed NASA search will have two search modes: (1) An all sky survey covering the frequency range from 1 to 10 GHz; and (2) A high sensitivity targeted search listening for signals from the approx. 800 solar type stars within 80 light years of the Sun, and covering 1 to 3 GHz.
Back to the future: SETI before the space age
NASA Astrophysics Data System (ADS)
Dick, Steven J.
1995-02-01
In the late 1890s and early 1900s, before the advent of formalized search for extraterrestrial intelligence (SETI) programs, scientists such as Nikola Tesla and Gulielmo Marconi reported evidence of extraterrestrial radio signals. This paper reviews the history of 'interstellar/interplanetary radio communication'. The investigations of David P. Todd and Donald Menzel are discussed, and the fields of radio communication and radio astronomy are mentioned briefly.
Risk and value analysis of SETI.
Billingham, J
1990-01-01
This paper attempts to apply a traditional risk and value analysis to the Search for Extraterrestrial Intelligence--SETI. In view of the difficulties of assessing the probability of success, a comparison is made between SETI and a previous search for extraterrestrial life, the biological component of Project Viking. Our application of simple Utility Theory, given some reasonable assumptions, suggests that SETI is at least as worthwhile as the biological experiment on Viking.
The demography of extraterrestrial civilizations
NASA Technical Reports Server (NTRS)
Billingham, J.
1981-01-01
Studies carried out within the last ten years on the nature and distribution of extraterrestrial intelligent life are reviewed. Arguments for the absence of intelligent life in the Galaxy based on the assumption that at least some of these would have engaged in colonization and for the presence of colonies of extraterrestrials in some undiscovered location in the solar system are presented, and it is noted that both these views rest on the notion that interstellar travel can be achieved at high velocities in very large vehicles, which has been questioned. Alternative suggestions concerning interstellar exploration by automated probes and the possible extended time scale and motivation for galactic colonization are pointed out. Attention is then given to arguments for the extreme smallness of one of the factors in the Drake equation used to estimate the number of communicative extraterrestrial civilizations in the Galaxy, including the frequency of single stars, the likelihood that planets with the correct initial composition and conditions for life are at the proper distance from their stars, the probability of the formation of DNA and the origin of life, and the time for the evolution of intelligence. It is concluded that it seems likely that other civilizations exist in the Galaxy, although the number and distribution of such civilizations may only be determined by the detection of one or more examples.
A figure-of-merit approach to extraterrestrial resource utilization
NASA Technical Reports Server (NTRS)
Ramohalli, K.; Kirsch, T.
1990-01-01
A concept is developed for interrelated optimizations in space missions that utilize extraterrestrial resources. It is shown that isolated (component) optimizations may not result in the best mission. It is shown that substantial benefits can be had through less than the best propellants, propellant combinations, propulsion hardware, and actually, some waste in the traditional sense. One ready example is the possibility of discarding hydrogen produced extraterrestrially by water splitting and using only the oxygen to burn storable fuels. The gains in refrigeration and leak-proof equipment mass (elimination) outweigh the loss in specific impulse. After a brief discussion of this concept, the synthesis of the four major components of any future space mission is developed. The four components are: orbital mechanics of the transportation; performance of the rocket motor; support systems that include power; thermal and process controls, and instruments; and in situ resource utilization plant equipment. This paper's main aim is to develop the concept of a figure-of-merit for the mission. The Mars Sample Return Mission is used to illustrate the new concept. At this time, a popular spreadsheet is used to quantitatively indicate the interdependent nature of the mission optimization. Future prospects are outlined that promise great economy through extraterrestrial resource utilization and a technique for quickly evaluating the same.
Paleoindian demography and the extraterrestrial impact hypothesis
NASA Astrophysics Data System (ADS)
Buchanan, Briggs; Collard, Mark; Edinborough, Kevan
2008-08-01
Recently it has been suggested that one or more large extraterrestrial (ET) objects struck northern North America 12,900 ± 100 calendar years before present (calBP) [Firestone RB, et al. (2007) Proc Natl Acad Sci USA 104: 16016-16021]. This impact is claimed to have triggered the Younger Dryas major cooling event and resulted in the extinction of the North American megafauna. The impact is also claimed to have caused major cultural changes and population decline among the Paleoindians. Here, we report a study in which ≈1,500 radiocarbon dates from archaeological sites in Canada and the United States were used to test the hypothesis that the ET resulted in population decline among the Paleoindians. Following recent studies [e.g., Gamble C, Davies W, Pettitt P, Hazelwood L, Richards M (2005) Camb Archaeol J 15:193-223), the summed probability distribution of the calibrated dates was used to identify probable changes in human population size between 15,000 and 9,000 calBP. Subsequently, potential biases were evaluated by modeling and spatial analysis of the dated occupations. The results of the analyses were not consistent with the predictions of extraterrestrial impact hypothesis. No evidence of a population decline among the Paleoindians at 12,900 ± 100 calBP was found. Thus, minimally, the study suggests the extraterrestrial impact hypothesis should be amended.
NASA Astrophysics Data System (ADS)
Bérces, A.; Egyeki, M.; Fekete, A.; Horneck, G.; Kovács, G.; Panitz, C.
2015-01-01
The aim of our experiment Phage and Uracil Response was to extend the use of bacteriophage T7 and uracil biological dosimeters for measuring the biologically effective ultraviolet (UV) dose in the harsh extraterrestrial radiation conditions. The biological detectors were exposed in vacuum-tightly cases in the European Space Agency (ESA) astrobiological exposure facility attached to the external platform of Zvezda (EXPOSE-R). EXPOSE-R took off to the International Space Station (ISS) in November 2008 and was installed on the External platform of the Russian module Zvezda of the ISS in March 2009. Our goal was to determine the dose-effect relation for the formation of photoproducts (i.e. damage to phage DNA and uracil, respectively). The extraterrestrial solar UV radiation ranges over the whole spectrum from vacuum-UV (λ<200 nm) to UVA (315 nm<λ<400 nm), which causes photolesions (photoproducts) in the nucleic acids/their components either by photoionization or excitation. However, these wavelengths cause not only photolesions but in a wavelength-dependent efficiency the reversion of some photolesions, too. Our biological detectors measured in situ conditions the resultant of both reactions induced by the extraterrestrial UV radiation. From this aspect the role of the photoreversion in the extension of the biological UV dosimetry are discussed.
Paleoindian demography and the extraterrestrial impact hypothesis.
Buchanan, Briggs; Collard, Mark; Edinborough, Kevan
2008-08-19
Recently it has been suggested that one or more large extraterrestrial (ET) objects struck northern North America 12,900 +/- 100 calendar years before present (calBP) [Firestone RB, et al. (2007) Proc Natl Acad Sci USA 104: 16016-16021]. This impact is claimed to have triggered the Younger Dryas major cooling event and resulted in the extinction of the North American megafauna. The impact is also claimed to have caused major cultural changes and population decline among the Paleoindians. Here, we report a study in which approximately 1,500 radiocarbon dates from archaeological sites in Canada and the United States were used to test the hypothesis that the ET resulted in population decline among the Paleoindians. Following recent studies [e.g., Gamble C, Davies W, Pettitt P, Hazelwood L, Richards M (2005) Camb Archaeol J 15:193-223), the summed probability distribution of the calibrated dates was used to identify probable changes in human population size between 15,000 and 9,000 calBP. Subsequently, potential biases were evaluated by modeling and spatial analysis of the dated occupations. The results of the analyses were not consistent with the predictions of extraterrestrial impact hypothesis. No evidence of a population decline among the Paleoindians at 12,900 +/- 100 calBP was found. Thus, minimally, the study suggests the extraterrestrial impact hypothesis should be amended.
The fermi paradox is neither Fermi's nor a paradox.
Gray, Robert H
2015-03-01
The so-called Fermi paradox claims that if technological life existed anywhere else, we would see evidence of its visits to Earth--and since we do not, such life does not exist, or some special explanation is needed. Enrico Fermi, however, never published anything on this topic. On the one occasion he is known to have mentioned it, he asked "Where is everybody?"--apparently suggesting that we do not see extraterrestrials on Earth because interstellar travel may not be feasible, but not suggesting that intelligent extraterrestrial life does not exist or suggesting its absence is paradoxical. The claim "they are not here; therefore they do not exist" was first published by Michael Hart, claiming that interstellar travel and colonization of the Galaxy would be inevitable if intelligent extraterrestrial life existed, and taking its absence here as proof that it does not exist anywhere. The Fermi paradox appears to originate in Hart's argument, not Fermi's question. Clarifying the origin of these ideas is important, because the Fermi paradox is seen by some as an authoritative objection to searching for evidence of extraterrestrial intelligence--cited in the U.S. Congress as a reason for killing NASA's SETI program on one occasion. But evidence indicates that it misrepresents Fermi's views, misappropriates his authority, deprives the actual authors of credit, and is not a valid paradox.
Sandford, Scott A.; Engrand, Cecile; Rotundi, Alessandra
2018-01-01
Organics are observed to be a significant component of cosmic dust in nearly all environments were dust is observed. In many cases only remote telescope observations of these materials are obtainable and our knowledge of the nature of these materials is very basic. However, it is possible to obtain actual samples of extraterrestrial dust in the Earth’s stratosphere, in Antarctic ice and snow, in near-Earth orbit, and via spacecraft missions to asteroids and comets. It is clear that cosmic dust contains a diverse population of organic materials that owe their origins to a variety of chemical processes occurring in many different environments. The presence of isotopic enrichments of D and 15N suggests that many of these organic materials have an interstellar/protosolar heritage. The study of these samples is of considerable importance since they are the best preserved materials of the early Solar System available. PMID:29422977
Plant microfossil record of the terminal Cretaceous event in the western United States and Canada
NASA Technical Reports Server (NTRS)
Nichols, D. J.; Fleming, R. F.
1988-01-01
Plant microfossils, principally pollen grains and spores produced by land plants, provide an excellent record of the terminal Cretaceous event in nonmarine environments. The record indicates regional devastation of the latest Cretaceous vegetation with the extinction of many groups, followed by a recolonization of the earliest Tertiary land surface, and development of a permanently changed land flora. The regional variations in depositional environments, plant communities, and paleoclimates provide insight into the nature and effects of the event, which were short-lived but profound. The plant microfossil data support the hypothesis that an abruptly initiated, major ecological crisis occurred at the end of the Cretaceous. Disruption of the Late Cretaceous flora ultimately contributred to the rise of modern vegetation. The plant microfossils together with geochemical and mineralogical data are consistent with an extraterrestrial impact having been the cause of the terminal Cretaceous event.
The Cosmic Habitat for Earth-Life and the Issue of Sustainable Development
NASA Astrophysics Data System (ADS)
Piątek, Zdzisława
2017-12-01
The subjects under consideration here are the philosophical consequences arising as the cosmic dimension to ecology is taken into account. If the habitat for Earthlife is a part of the cosmic environment, then cosmology and astrophysics become a part of ecology. The human species is furthermore a participant in a vast process of cosmic evolution, with sustainable-development strategy thus defi ning the conditions for - and time needed to achieve - a technological civilisation allowing Earth-life to be evacuated to another part of the galaxy as and when the further existence of life on this planet becomes (or threatens to become) an impossibility. In the context of such a cosmic perspective, the value ascribable to our scientifi c and technological civilisation (and future versions thereof) changes, given that only this kind of civilisation offers a chance for Earth-life to persist in an extra-terrestrial environment.
Polymerization of Building Blocks of Life on Europa and Other Icy Moons.
Kimura, Jun; Kitadai, Norio
2015-06-01
The outer Solar System may provide a potential habitat for extraterrestrial life. Remote sensing data from the Galileo spacecraft suggest that the jovian icy moons--Europa, Ganymede, and possibly Callisto--may harbor liquid water oceans underneath their icy crusts. Although compositional information required for the discussion of habitability is limited because of significantly restricted observation data, organic molecules are ubiquitous in the Universe. Recently, in situ spacecraft measurements and experiments suggest that amino acids can be formed abiotically on interstellar ices and comets. These amino acids could be continuously delivered by meteorite or comet impacts to icy moons. Here, we show that polymerization of organic monomers, in particular amino acids and nucleotides, could proceed spontaneously in the cold environment of icy moons, in particular the jovian icy moon Europa as a typical example, based on thermodynamic calculations, though kinetics of formation are not addressed. Observed surface temperature on Europa is 120 and 80 K in the equatorial region and polar region, respectively. At such low temperatures, Gibbs energies of polymerization become negative, and the estimated thermal structure of the icy crust should contain a shallow region (i.e., at a depth of only a few kilometers) favorable for polymerization. Investigation of the possibility of organic monomer polymerization on icy moons could provide good constraints on the origin and early evolution of extraterrestrial life.
NASA Technical Reports Server (NTRS)
Abyzov, S. S.; Duxbury, N. S.; Bobin, N. E.; Fukuchi, M.; Hoover, R. B.; Kanda, H.; Mitskevich, I. N.; Mulyukin, A. L.; Naganuma, T.; Poglazova, M. N.;
2007-01-01
Successful missions to Mars, Europe and other bodies of the Solar system have created a prerequisite to search for extraterrestrial life. The first attempts of microbial life detection on the Martian surface by the Viking landed missions gave no biological results. Microbiological investigations of the Martian subsurface ground ice layers seem to be more promising. It is well substantiated to consider the Antarctic ice sheet and the Antarctic and Arctic permafrost as terrestrial analogues of Martian habitats. The results of our long-standing microbiological studies of the Antarctic ice would provide the basis for detection of viable microbial cells on Mars. Our microbiological investigations of the deepest and thus most ancient strata of the Antarctic ice sheet for the first time gave evidence for the natural phenomenon of long-term anabiosis (preservation of viability and vitality for millennia years). A combination of classical microbiological methods, epifluorescence microscopy, SEM, TEM, molecular diagnostics, radioisotope labeling and other techniques made it possible for us to obtain convincing proof of the presence of pro- and eukaryotes in the Antarctic ice sheet. In this communication, we will review and discuss some critical issues related to the detection of viable microorganisms in cold terrestrial environments with regard to future searches for microbial life and/or its biological signatures on extraterrestrial objects.
Microbial fuel cells applied to the metabolically based detection of extraterrestrial life.
Abrevaya, Ximena C; Mauas, Pablo J D; Cortón, Eduardo
2010-12-01
Since the 1970s, when the Viking spacecrafts carried out experiments to detect microbial metabolism on the surface of Mars, the search for nonspecific methods to detect life in situ has been one of the goals of astrobiology. It is usually required that a methodology detect life independently from its composition or form and that the chosen biological signature point to a feature common to all living systems, such as the presence of metabolism. In this paper, we evaluate the use of microbial fuel cells (MFCs) for the detection of microbial life in situ. MFCs are electrochemical devices originally developed as power electrical sources and can be described as fuel cells in which the anode is submerged in a medium that contains microorganisms. These microorganisms, as part of their metabolic process, oxidize organic material, releasing electrons that contribute to the electric current, which is therefore proportional to metabolic and other redox processes. We show that power and current density values measured in MFCs that use microorganism cultures or soil samples in the anode are much larger than those obtained with a medium free of microorganisms or sterilized soil samples, respectively. In particular, we found that this is true for extremophiles, which have been proposed as potential inhabitants of extraterrestrial environments. Therefore, our results show that MFCs have the potential to be used for in situ detection of microbial life.
Vollmer, Christian; Kepaptsoglou, Demie; Leitner, Jan; Busemann, Henner; Spring, Nicole H; Ramasse, Quentin M; Hoppe, Peter; Nittler, Larry R
2014-10-28
Isotopically anomalous carbonaceous grains in extraterrestrial samples represent the most pristine organics that were delivered to the early Earth. Here we report on gentle aberration-corrected scanning transmission electron microscopy investigations of eight (15)N-rich or D-rich organic grains within two carbonaceous Renazzo-type (CR) chondrites and two interplanetary dust particles (IDPs) originating from comets. Organic matter in the IDP samples is less aromatic than that in the CR chondrites, and its functional group chemistry is mainly characterized by C-O bonding and aliphatic C. Organic grains in CR chondrites are associated with carbonates and elemental Ca, which originate either from aqueous fluids or possibly an indigenous organic source. One distinct grain from the CR chondrite NWA 852 exhibits a rim structure only visible in chemical maps. The outer part is nanoglobular in shape, highly aromatic, and enriched in anomalous nitrogen. Functional group chemistry of the inner part is similar to spectra from IDP organic grains and less aromatic with nitrogen below the detection limit. The boundary between these two areas is very sharp. The direct association of both IDP-like organic matter with dominant C-O bonding environments and nanoglobular organics with dominant aromatic and C-N functionality within one unique grain provides for the first time to our knowledge strong evidence for organic synthesis in the early solar system activated by an anomalous nitrogen-containing parent body fluid.
Microbial Fuel Cells Applied to the Metabolically Based Detection of Extraterrestrial Life
NASA Astrophysics Data System (ADS)
Abrevaya, Ximena C.; Mauas, Pablo J. D.; Cortón, Eduardo
2010-12-01
Since the 1970s, when the Viking spacecrafts carried out experiments to detect microbial metabolism on the surface of Mars, the search for nonspecific methods to detect life in situ has been one of the goals of astrobiology. It is usually required that a methodology detect life independently from its composition or form and that the chosen biological signature point to a feature common to all living systems, such as the presence of metabolism. In this paper, we evaluate the use of microbial fuel cells (MFCs) for the detection of microbial life in situ. MFCs are electrochemical devices originally developed as power electrical sources and can be described as fuel cells in which the anode is submerged in a medium that contains microorganisms. These microorganisms, as part of their metabolic process, oxidize organic material, releasing electrons that contribute to the electric current, which is therefore proportional to metabolic and other redox processes. We show that power and current density values measured in MFCs that use microorganism cultures or soil samples in the anode are much larger than those obtained with a medium free of microorganisms or sterilized soil samples, respectively. In particular, we found that this is true for extremophiles, which have been proposed as potential inhabitants of extraterrestrial environments. Therefore, our results show that MFCs have the potential to be used for in situ detection of microbial life.
Sugahara, Haruna; Meinert, Cornelia; Nahon, Laurent; Jones, Nykola C; Hoffmann, Søren V; Hamase, Kenji; Takano, Yoshinori; Meierhenrich, Uwe J
2018-07-01
Living organisms on the Earth almost exclusively use l-amino acids for the molecular architecture of proteins. The biological occurrence of d-amino acids is rare, although their functions in various organisms are being gradually understood. A possible explanation for the origin of biomolecular homochirality is the delivery of enantioenriched molecules via extraterrestrial bodies, such as asteroids and comets on early Earth. For the asymmetric formation of amino acids and their precursor molecules in interstellar environments, the interaction with circularly polarized photons is considered to have played a potential role in causing chiral asymmetry. In this review, we summarize recent progress in the investigation of chirality transfer from chiral photons to amino acids involving the two major processes of asymmetric photolysis and asymmetric synthesis. We will discuss analytical data on cometary and meteoritic amino acids and their potential impact delivery to the early Earth. The ongoing and future ambitious space missions, Hayabusa2, OSIRIS-REx, ExoMars 2020, and MMX, are scheduled to provide new insights into the chirality of extraterrestrial organic molecules and their potential relation to the terrestrial homochirality. This article is part of a Special Issue entitled: d-Amino acids: biology in the mirror, edited by Dr. Loredano Pollegioni, Dr. Jean-Pierre Mothet and Dr. Molla Gianluca. Copyright © 2018 Elsevier B.V. All rights reserved.
Wassmann, Marko; Moeller, Ralf; Rabbow, Elke; Panitz, Corinna; Horneck, Gerda; Reitz, Günther; Douki, Thierry; Cadet, Jean; Stan-Lotter, Helga; Cockell, Charles S; Rettberg, Petra
2012-05-01
In the space experiment "Molecular adaptation strategies of microorganisms to different space and planetary UV climate conditions" (ADAPT), bacterial endospores of the highly UV-resistant Bacillus subtilis strain MW01 were exposed to low-Earth orbit (LEO) and simulated martian surface conditions for 559 days on board the European Space Agency's exposure facility EXPOSE-E, mounted outside the International Space Station. The survival of B. subtilis MW01 spores from both assays (LEO and simulated martian conditions) was determined by a colony-formation assay after retrieval. It was clearly shown that solar extraterrestrial UV radiation (λ≥110 nm) as well as the martian UV spectrum (λ≥200 nm) was the most deleterious factor applied; in some samples only a few spore survivors were recovered from B. subtilis MW01 spores exposed in monolayers. However, if shielded from solar irradiation, about 8% of MW01 spores survived in LEO conditions, and 100% survived in simulated martian conditions, compared to the laboratory controls. The results demonstrate the effect of shielding against the high inactivation potential of extraterrestrial solar UV radiation, which limits the chances of survival of even the highly UV-resistant strain of B. subtilis MW01 in the harsh environments of outer space and the martian surface.
Fendrihan, Sergiu; Musso, Maurizio; Stan-Lotter, Helga
2011-01-01
Evidence for the widespread occurrence of extraterrestrial halite, particularly on Mars, has led to speculations on the possibility of halophilic microbial forms of life; these ideas have been strengthened by reports of viable haloarchaea from sediments of geological age (millions of years). Raman spectroscopy, being a sensitive detection method for future astrobiological investigations onsite, has been used in the current study for the detection of nine different extremely halophilic archaeal strains which had been embedded in laboratory-made halite crystals in order to simulate evaporitic conditions. The cells accumulated preferentially in tiny fluid inclusions, in simulation of the precipitation of salt in natural brines. FT-Raman spectroscopy using laser excitation at 1064 nm and dispersive micro Raman spectroscopy at 514.5 nm were applied. The spectra showed prominent peaks at 1507, 1152 and 1002 cm−1 which are attributed to haloarchaeal C50 carotenoid compounds (mainly bacterioruberins). Their intensity varied from strain to strain at 1064-nm laser excitation. Other distinguishable features were peaks due to peptide bonds (amide I, amide III) and to nucleic acids. No evidence for fatty acids was detected, consistent with their general absence in all archaea. These results contribute to a growing database on Raman spectra of terrestrial microorganisms from hypersaline environments and highlight the influence of the different macromolecular composition of diverse strains on these spectra. PMID:22058585
Fendrihan, Sergiu; Musso, Maurizio; Stan-Lotter, Helga
2009-12-01
Evidence for the widespread occurrence of extraterrestrial halite, particularly on Mars, has led to speculations on the possibility of halophilic microbial forms of life; these ideas have been strengthened by reports of viable haloarchaea from sediments of geological age (millions of years). Raman spectroscopy, being a sensitive detection method for future astrobiological investigations onsite, has been used in the current study for the detection of nine different extremely halophilic archaeal strains which had been embedded in laboratory-made halite crystals in order to simulate evaporitic conditions. The cells accumulated preferentially in tiny fluid inclusions, in simulation of the precipitation of salt in natural brines. FT-Raman spectroscopy using laser excitation at 1064 nm and dispersive micro Raman spectroscopy at 514.5 nm were applied. The spectra showed prominent peaks at 1507, 1152 and 1002 cm(-1) which are attributed to haloarchaeal C(50) carotenoid compounds (mainly bacterioruberins). Their intensity varied from strain to strain at 1064-nm laser excitation. Other distinguishable features were peaks due to peptide bonds (amide I, amide III) and to nucleic acids. No evidence for fatty acids was detected, consistent with their general absence in all archaea.These results contribute to a growing database on Raman spectra of terrestrial microorganisms from hypersaline environments and highlight the influence of the different macromolecular composition of diverse strains on these spectra.
NASA Astrophysics Data System (ADS)
Crawford, I. A.
2018-01-01
Astrobiology is usually defined as the study of the origin, evolution, distribution and future of life in the Universe. As such it is inherently interdisciplinary and cannot help but engender a worldview infused by cosmic and evolutionary perspectives. Both these attributes of the study of astrobiology are, and will increasingly prove to be, beneficial to society regardless of whether extraterrestrial life is discovered or not.
Regolith-Derived Heat Shield for Planetary Body Entry and Descent System with In-Situ Fabrication
NASA Technical Reports Server (NTRS)
Hogue, Michael D.; Mueller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Rasky, Daniel J.
2012-01-01
High-mass planetary surface access is one of NASA's Grand Challenges involving entry, descent, and landing (EDL). Heat shields fabricated in-situ can provide a thermal protection system for spacecraft that routinely enter a planetary atmosphere. Fabricating the heat shield from extraterrestrial regolith will avoid the costs of launching the heat shield mass from Earth. This project will investigate three methods to fabricate heat shield using extraterrestrial regolith.
Vandenabeele-Trambouze, O; Claeys-Bruno, M; Dobrijevic, M; Rodier, C; Borruat, G; Commeyras, A; Garrelly, L
2005-02-01
The need for criteria to compare different analytical methods for measuring extraterrestrial organic matter at ultra-trace levels in relatively small and unique samples (e.g., fragments of meteorites, micrometeorites, planetary samples) is discussed. We emphasize the need to standardize the description of future analyses, and take the first step toward a proposed international laboratory network for performance testing.
2006-06-01
angle Imaging SpectroRadiometer MODIS Moderate Resolution Imaging Spectroradiometer NGA National Geospatial Intelligence Agency POI Principles of...and µ , the cosine of the viewing zenith angle and the effect of the variation of each of these variables on total optical depth. Extraterrestrial ...Eq. (34). Additionally, solar zenith angle also plays a role in the third term on the RHS of Eq. (34) by modifying extraterrestrial spectral solar
A collection of diverse micrometeorites recovered from 100 tonnes of Antarctic blue ice
NASA Technical Reports Server (NTRS)
Maurette, M.; Olinger, C.; Michel-Levy, M. C.; Kurat, G.; Pourchet, M.
1991-01-01
A new type of meteoritic material, intermediate in size between meteorites and interplanetary dust particles (IDPs), is described. Melting and filtering of about 100 tons of blue ice near Cap Prudhomme, Antarctica, yielded 7500 or more irregular, friable particles and about 1500 melted spherules, about 100 microns in size, both showing a 'chondritic' composition suggestive of an extraterrestrial origin. Analyzed irregular particles appear to be unmelted and have similarities with the fine-grained matrix of primitive carbonaceous chondrites, but are extremely diverse in composition. Isotopic analysis of trapped neon confirms an extraterrestrial origin for 16 of 47 irregular particles and 2 of 19 spherules studied and strongly suggests that they were exposed in space as micrometeoroids. These large Antarctic micrometeorites constitute a new family, or at least a new population, of solar system objects, in a mass range corresponding to the bulk of extraterrestrial material accreted by the earth today.
NASA Technical Reports Server (NTRS)
Steele, A.; Whitby, C.; Griffin, C.; Toporski, J. K. W.; Westall, F.; Saunders, J. R.; McKay, D. S.
2001-01-01
The arguments used to refute the McKay et al., (1996) hypothesis of possible Martian life in ALH84001 failed to use contamination of the meteorite as a source. This has worrying implications for our ability to detect terrestrial microbiota in meteorites and therefore any potential extraterrestrial biosignatures in both meteorites and possible returned samples. We report on imaging and microbial culturing of both Allende and Murchison carbonaceous chondrites and on the use of molecular biology techniques on a sample of Allende. Contaminating fungi and bacteria were observed (in the case of Murchison) and cultured from both meteorites. DNA was successfully extracted and subsequent PCR showed the presence of both bacterial and fungal DNA although no Archaea were detected. These results show that it is possible to use molecular biological techniques on very small quantities (300 mg) of extraterrestrial material.
NASA Astrophysics Data System (ADS)
Shostak, Seth
2011-02-01
While modern SETI experiments are often highly sensitive, reaching detection limits of 10 -25 W/m 2 Hz in the radio, interstellar distances imply that if extraterrestrial societies are using isotropic or broad-beamed transmitters, the power requirements for their emissions are enormous. Indeed, isotropic transmissions to the entire Galaxy, sufficiently intense to be detectable by our current searches, would consume power comparable to the stellar insolation of an Earth-size planet. In this paper we consider how knowledge can be traded for power, and how, and to what degree, astronomical accuracy can reduce the energy costs of a comprehensive transmission program by putative extraterrestrials. Indeed, an exploration of how far this trade-off might be taken suggests that extraterrestrial transmitting strategies of civilizations only modestly more advanced than our own would be, as are our SETI receiving experiments, inexpensive enough to allow multiple efforts. We explore the consequences this supposition has for our SETI listening experiments.
Limits on diffuse fluxes of high energy extraterrestrial neutrinos with the AMANDA-B10 detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahrens, J.; Bai, X.; Barwick, S.W.
2003-03-11
Data from the AMANDA-B10 detector taken during the austral winter of 1997 have been searched for a diffuse flux of high energy extraterrestrial muon-neutrinos, as predicted from, e.g., the sum of all active galaxies in the universe. This search yielded no excess events above those expected from the background atmospheric neutrinos, leading to upper limits on the extraterrestrial neutrino flux. For an assumed E{sup -2} spectrum, a 90 percent classical confidence level upper limit has been placed at a level E{sup 2} Phi(E) = 8.4 x 10{sup -7} GeV cm{sup -2} s{sup -1}1 sr{sup -1} (for a predominant neutrino energymore » range 6-1000 TeV) which is the most restrictive bound placed by any neutrino detector. When specific predicted spectral forms are considered, it is found that some are excluded.« less
NASA Astrophysics Data System (ADS)
Lemarchand, Guillermo A.
1996-06-01
A review of the different proposals made to establish contact with hypothetical planetary neighbors is done. For almost 100 years (approximately 1822-1921) the dominant paradigm for signaling extraterrestrial beings, were based in the exchange of light beam signals. After the success of wireless transatlantic communications and the discovery of radio signals from the cosmos, the main scientific proposals to contact extraterrestrials were based on radio signals. Nevertheless, the development of lasers and other nonlinear optical devices, led into a new set of proposals to use them for interplanetary and interstellar communication means. A review of these proposals and the detection of extraterrestrial technological activities in the optical domain is made. A summary of the requirements needed to explore the astrophysics of shortest timescales is described, in order to develop the nano and sub-nanosecond detectors that could be used to detect interstellar pulsed laser signals.
The implications of the discovery of extra-terrestrial life for religion.
Peters, Ted
2011-02-13
This paper asks about the future of religion: (i) Will confirmation of extra-terrestrial intelligence (ETI) cause terrestrial religion to collapse? 'No' is the answer based upon a summary of the 'Peters ETI Religious Crisis Survey'. Then the paper examines four specific challenges to traditional doctrinal belief likely to be raised at the detection of ETI: (ii) What is the scope of God's creation? (iii) What can we expect regarding the moral character of ETI? (iv) Is one earthly incarnation in Jesus Christ enough for the entire cosmos, or should we expect multiple incarnations on multiple planets? (v) Will contact with more advanced ETI diminish human dignity? More than probable contact with extra-terrestrial intelligence will expand the Bible's vision so that all of creation--including the 13.7 billion year history of the universe replete with all of God's creatures--will be seen as the gift of a loving and gracious God.
NASA Technical Reports Server (NTRS)
Michaud, Michael; Billingham, John; Tarter, Jill
1990-01-01
The question of the formulation of a proper response to the detection of an extraterrestrial civilization is considered. It is proposed that an international agreement or declaration of principles establishing procedures enabling international participation in the making of such decisions be developed and that the SETI Committee of the International Academy of Aeronautics, in cooperation with other interested bodies, draft an agreement or declaration of principles that would set up these procedures; and that the draft be presented to the United Nations for consideration through the Committee on Peaceful Uses of Outer Space. A suggested outline of the agreement or declaration is presented and proposes that a response to the detection of extraterrestrial intelligence should be on behalf of all humankind; that this decision should be made by an appropriately representative international body; and that the content of the reply should reflect an international consensus.
Protection of celestial environments and the law of outer space
NASA Astrophysics Data System (ADS)
Tennen, Leslie; Race, Margaret
The law of outer space expressly addresses the matter of preservation and protection of natural celestial environments from harmful contamination and disruption by mankind in the explo-ration and use of outer space, including the moon and other celestial bodies. The Outer Space Treaty, however, does not prohibit all human impact to an extraterrestrial environment, but rather permits a wide range of activities that could have significant environmental ramifications. This legal regime may be in conflict with the interests of preserving celestial environments for scientific research, especially when considered in relation to activities conducted for commercial purposes. Nevertheless, the Moon Agreement provides a mechanism by which special protective measures can be implemented to protect particular areas of the moon and other celestial bodies for scientific investigation. This paper examines the current status of the law of outer space vis-a-vis the protection and preservation of natural celestial environments. Particular emphasis is placed on the policies on which the legal obligations are based, together with consideration of the non-appropriation principle, and the commercial use of lunar and other celestial resources and areas. In addition, the concepts of international scientific preserves, special regions, keep out zones, and planetary parks are compared and evaluated as potential means to limit the disturbance to celestial environments caused by the activities of mankind.
The episodic influx of tin-rich cosmic dust particles during the last ice age
NASA Astrophysics Data System (ADS)
LaViolette, Paul A.
2015-12-01
This paper presents evidence of the first detection of interstellar dust in ice age polar ice. Neutron activation analysis (NAA) results are reported for 15 elements found in dust filtered from eight samples of Camp Century Greenland ice dating from 40 to 78 kyrs BP. High concentrations of Sn, Sb, Au, Ag, Ir, and Ni were found to be present in three out of these eight samples. One compositionally anomalous dust sample from an ice core depth of 1230.5 m (age ∼49 kyrs BP, near the beginning of D/O stadial No. 13) was found to contain tin with an average weight percent of 49% as determined by energy dispersive X-ray analysis (EDS). This sample was also found to contain high concentrations of Pb with an average weight abundance of 8.4% and matching the Sn:Pb ratio observed in interstellar spectra. Dust particles in this sample generally have a platy morphology and range from submicron size up to a size as large as 120 μm, a particle consisting almost entirely of SnO2 and being the largest monomineralic extraterrestrial dust particle so far discovered. One porous aggregate tin-bearing particle was found to contain nanometer sized chondrules indicating an extraterrestrial origin. The extraterrestrial origin for the tin is also indicated by the presence of isotopic anomalies in the 114Sn, 115Sn and 117Sn isotopes. Follow up isotopic measurements of this tin-rich dust need to be performed to improve confidence in the anomalies reported here. High abundances of the low melting point elements Ag, Au, and Sb are also present in this tin-rich sample along with elevated abundances of the siderophiles Ir, Ni, Fe, and Co, the latter being present in chondritic proportions and indicating that about 9% of the dust has a C1 chondrite component. Measurements indicate that about 97% of this dust is of extraterrestrial origin with a 3% residual being composed of terrestrial windblown dust. EDS analysis of another tin-rich Camp Century ice core dust sample dating to ∼130 kyrs BP was found to contain tin-rich particles with a similar platy morphology and to have Sn and Pb weight abundances averaging 39% and 7.5% respectively, again approximating the interstellar Sn:Pb ratio. The relative absence of cosmic microspheres and the unmelted appearance of the tin-rich particles in both of these samples suggests that these particles entered the Earth's atmosphere at low velocity, implicating a gradual accumulation of dust from a dispersed state in the near Earth space environment. The unusual enhancement of Sn and Pb could be explained if these dust particles were originally present in the solar system's interstellar environment in a superconducting native metal state and were preferentially concentrated through Meissner effect forces by the passage of cosmic ray driven hydromagnetic shocks which may also have transported them into the solar system. The 49 kyrs BP event is estimated to have lasted over 6 years and to have deposited dust onto the Earth at a rate 104-105 times higher than present rates. This had a significant cooling effect on climate and resulted in a transient 33 fold increase in snow accumulation. Future discovery of these events in ice cores at other locations should void any lingering thoughts that this heavy metal enhancement may be due to sample contamination.
Telemetric Technologies for the Assay of Gene Expression
NASA Astrophysics Data System (ADS)
Paul, Anna-Lisa; Bamsey, Matthew; Berinstain, Alain; Neron, Philip; Graham, Thomas; Ferl, Robert
Telemetric data collection has been widely used in spaceflight applications where human participation is limited (orbital mission payloads) or unfeasible (planetary landers, satellites, and probes). The transmission of digital data from electronic sensors of typical environmental parameters, growth patterns and physical properties of materials is routine telemetry, and even the collection and transmission of deep space images is a standard tool of astrophysics. But telemetric imaging for current biological payloads has thus far been limited to the collection of standard white-light photography that is largely confined to reporting the surface characteristics of the specimens involved. Advances in imaging technologies that facilitate the collection of a variety of light wavelengths will expand the science return on biological payloads to include evaluations of the molecular genetic response of organisms to the spaceflight or extraterrestrial environment, with minimal or no human intervention. Advanced imaging technology in combination with biologically engineered sensor organisms can create a system that can report via telemetry on the patterns of gene expression required to adapt to a novel environment. The utilization of genetically engineered plants as biosensors has made elegant strides in the recent years, providing keen insights into the health of plants in general and particularly in the nature and cellular location of stress responses. Moreover, molecular responses to gravitational vectors have been elegantly analyzed with fluorescent tools. Green Fluorescence Protein (GFP) and other fluorophores have made it possible for analyses of gene expression and biological responses to occur telemetrically, with the information potentially delivered to the investigator over large distances as simple, preprocessed fluorescence images. Having previously deployed transgenic plant biosensors to evaluate responses to orbital spaceflight, we wish to develop both the plants and the imaging devices required to conduct such fluorescence imaging experiments robotically, without direct operator intervention, within the operational constraints of extraterrestrial environments. This requires the development of an autonomous and remotely operated plant fluorescence imaging system and concomitant development of the infrastructure to manage dataflow. Here we report the results of the deployment of our spaceflight prototype GFP imaging system within the Arthur Clarke Mars Greenhouse (ACMG), an autonomously operated greenhouse located within the Haughton Mars Project in the High Canadian Arctic (75° 22'N Latitude: 89° 41'W Longitude). Results demonstrate both the applicability of the fundamental GFP biosensor technology and highlight the difficulties in collecting and managing telemetric data from challenging deployment environments.
NASA Astrophysics Data System (ADS)
Finney, Ben; Bentley, Jerry
The transmission of ancient Greek learning and science to medieval western Europe via the translation of Greek and Arab texts is often cited as a terrestrial example of "learning at a distance" that could occur by means of the decipherment of radio messages from advanced extraterrestrial civilizations. However, the translation between such closely related languages as Greek, Latin and Arabic and the decipherment of radio messages from an extraterrestrial civilization to the point where humans could understand them are only nominally analogous tasks. A terrestrial example of such "learning at a distance" from an ancient civilization that perhaps better prepares us for thinking about the immense task inherent in any interstellar knowledge transmission is provided by the lengthy and troubled efforts of western scholars to decipher the inscriptions left by the ancient Maya and to learn from them about this ancient civilization. Only recently, with the rejection of the ideographic fallacy that Maya glyphs symbolized ideas directly without the mediation of language and with the application of linguistic knowledge of Maya languages has it been possible to decipher the Maya inscriptions and learn from them about their science and culture. This experience suggests that without any knowledge of languages in which extraterrestrial messages might be composed, their decipherment could be most problematic. The Maya case is also relevant to the common suggestion that advanced extraterrestrials would deliberately compose messages not in their own natural languages but in artificial ones using logic, numbers, and scientific constants presumably shared among all intelligent civilizations, or at least those in their radio-communicative phases. Numbers and calendrical dating system were the first parts of the Mayan inscriptions to be translated, albeit with the aid of partial "Rosetta stones" left by the Spanish conquerors. This success served, however, to reinforce the ideographic fallacy, and led to rather fantastic notions that the inscriptions dealt only with mathematical, astronomical and mystical domains, when in fact most deal with dynastic history. Examination of the Maya case suggests that if we are to employ terrestrial examples to help us think about extraterrestrial knowledge transmission, we should explore the range of human experience and not just focus upon those examples which support our hopes.
Cultural Resources and Cognitive Frames: Keys to an Anthropological Approach to Prediction
NASA Astrophysics Data System (ADS)
Lowrie, Ian
In this chapter, I suggest a methodological and theoretical framework for preliminary investigations designed to gauge the potential societal response to the discovery of either microbial or intelligent extraterrestrial life. The uncritical use of analogies to the ethnographic record of contact between societies and the discovery of extraterrestrial life has been, rightfully, the target of sharp criticism since the earliest days of the scientific search for this life. However, I argue that by approaching this record with different epistemological premises, and shifting the focus from the material to the symbolic and cognitive dimensions of this contact, one can avoid many of the pitfalls of the analogical mode of argumentation, and provide a solid conceptual basis for the development of an adequate heuristic. Specifically, I draw upon the germinal debate between Sahlins and Obeyesekere over the nature of human meaning-making in the face of radically other societies and their meanings to treat the discovery of an intelligent civilization. In parallel, I draw upon Sharp's discussion of the relationship between the changes in the symbolic order and the material organization of society to suggest that much of this analysis also applies to the discovery of extraterrestrial microbial life. In both cases, I do not argue for a one-to-one correspondence between the historical and the contemporary, but rather use these arguments as illustrations of what I see as particularly profitable modes of conceptualizing the universal human processes of making sense out of novel objects and phenomena. Finally, this chapter argues for a mixed-methods quantitative-qualitative investigation into the character and distribution of societal resources for understanding life and intelligence, rather than the extraterrestrial as such. The qualitative is advanced as a necessary adjunct to the quantitative, as the best method for gaining access to the repertoire of cultural frames upon which people more or less unconsciously draw in forming their understandings of the world. The focus on life and intelligence is justified both insofar as they are the categories which will be brought to bear on the extraterrestrial in terms of integrating it into people's worldviews, and insofar as these categories are substantially more implicated in both societal and personal stability than that of the extraterrestrial as such.
NASA Technical Reports Server (NTRS)
Bowyer, S.; Werthimer, D.; Lindsay, V.
1988-01-01
The SERENDIP (Search for Extraterrestrial Radio Emission from Nearby Developed Intelligent Populations) II system is currently operating at NRAO's 300-ft telescope in Greenbank, WV. The paper reports on the characteristics of this system in combination with this telescope, as well as elements of an off-line analysis program which are intended to identify signals of special interest. The sensitivity and relative probability of acquisition are evaluated.
Project Cyclops: a Design Study of a System for Detecting Extraterrestrial Intelligent Life
NASA Technical Reports Server (NTRS)
1972-01-01
The requirements in hardware, manpower, time and funding to conduct a realistic effort aimed at detecting the existence of extraterrestrial intelligent life are examined. The methods used are limited to present or near term future state-of-the-art techniques. Subjects discussed include: (1) possible methods of contact, (2) communication by electromagnetic waves, (3) antenna array and system facilities, (4) antenna elements, (5) signal processing, (6) search strategy, and (7) radio and radar astronomy.
Extraterrestrial intelligence? The search is on
NASA Technical Reports Server (NTRS)
Coulter, Gary R.
1991-01-01
NASA's SETI-Microwave Observing Project, beginning on October 12, 1992, will search the closest solar-type stars for radio signals from extraterrestrial civilizations. When completed in the year 2000, the NASA search will have surpassed the search volume of all prior searches by a factor of 10 exp 10. The world's largest radio telescopes will be employed, in conjunction with the NASA Deep Space Network communications antennas. The program will be led by NASA-Ames, with substantial contribution by JPL.
Orbital Debris: Technical and Legal Issues and Solutions
2006-08-01
States will seek to minimize the creation of space debris. NASA, the intelligence community, and DoD, in cooperation with the private sector, will...205 and accompanying text. 388 Raymond T. Swenson, “Pollution of the Extraterrestrial Environment” (1985) 25 A.F. L. Rev. 70 at 79. “Article IX is...Hastings Int’l & Comp. L. Rev. 125. Swenson, Raymond T. “Pollution of the Extraterrestrial Environment” (1985) 25 A.F. L. Rev. 70. Tan, David
The Quest for Contact: NASA's Search for Extraterrestrial Intelligence
NASA Technical Reports Server (NTRS)
1992-01-01
This video details the history and current efforts of NASA's Search for Extraterrestrial Intelligence program. The video explains the use of radiotelescopes to monitor electromagnetic frequencies reaching the Earth, and the analysis of this data for patterns or signals that have no natural origin. The video presents an overview of Frank Drake's 1960 'Ozma' experiment, the current META experiment, and planned efforts incorporating an international Deep Space Network of radiotelescopes that will be trained on over 800 stars.
NASA Astrophysics Data System (ADS)
Narusawa, Shin-ya; Aota, Tatusya; Kishimoto, Ryo
2018-04-01
In the case of radio SETI, there are predicted frequencies which extraterrestrial beings select to send messages to other civilizations. Those are called ;magic frequencies. Considering the optical region, terrestrial technologies can not transmit arbitrary wavelengths of high-power optical lasers, easily. In this article, we discuss communications among civilizations with the same level of technology as us to enhance the persuasive power. It might be possible to make a reasonable assumption about the laser wavelengths transmitted by extraterrestrial intelligences to benefit optical SETI (OSETI) methods. Therefore, we propose some ;magic wavelengths; for spectroscopic OSETI observations in this article. From the senders point of view, we argue that the most favorable wavelength used for interstellar communication would be the one of YAG lasers, at 1.064 μm or its Second Harmonic Generation (532.1 nm). On the contrary, there are basic absorption lines in the optical spectra, which are frequently observed by astrophysicists on Earth. It is possible that the extraterrestrials used lasers, which wavelengths are tuned to such absorption lines for sending messages. In that case, there is a possibility that SHG and/or Sum Frequency Generation of YAG and YLF lasers are used. We propose three lines at, 393.8 nm (near the Ca K line), 656.5 nm (near the Hα line) and 589.1 nm (Na D2 line) as the magic wavelengths.
Paleoindian demography and the extraterrestrial impact hypothesis
Buchanan, Briggs; Collard, Mark; Edinborough, Kevan
2008-01-01
Recently it has been suggested that one or more large extraterrestrial (ET) objects struck northern North America 12,900 ± 100 calendar years before present (calBP) [Firestone RB, et al. (2007) Proc Natl Acad Sci USA 104: 16016–16021]. This impact is claimed to have triggered the Younger Dryas major cooling event and resulted in the extinction of the North American megafauna. The impact is also claimed to have caused major cultural changes and population decline among the Paleoindians. Here, we report a study in which ≈1,500 radiocarbon dates from archaeological sites in Canada and the United States were used to test the hypothesis that the ET resulted in population decline among the Paleoindians. Following recent studies [e.g., Gamble C, Davies W, Pettitt P, Hazelwood L, Richards M (2005) Camb Archaeol J 15:193–223), the summed probability distribution of the calibrated dates was used to identify probable changes in human population size between 15,000 and 9,000 calBP. Subsequently, potential biases were evaluated by modeling and spatial analysis of the dated occupations. The results of the analyses were not consistent with the predictions of extraterrestrial impact hypothesis. No evidence of a population decline among the Paleoindians at 12,900 ± 100 calBP was found. Thus, minimally, the study suggests the extraterrestrial impact hypothesis should be amended. PMID:18697936
NASA Technical Reports Server (NTRS)
Edelson, R. E.
1976-01-01
It is argued that a substantial portion of the capability for detecting microwave signals from extraterrestrial civilizations lies not in the application of ever larger antenna collecting areas but rather in the application of millions or billions of simultaneous frequency-channel observations combined with rapid and powerful data processing techniques. The application of these methods to existing facilities is discussed in terms of a program of modest expense and duration which will seek to discover certain classes of extraterrestrial signals of intelligent origin while defining boundaries to the search problem throughout the range of interest. This program will investigate radio-astronomical phenomena of interest and simultaneously define the background of environmental radiation in order to determine physical limitations on both the search strategies and the potential for deep-space communications. Signal parameters that must be determined are examined along with the potential of existing radio-astronomical facilities for detecting narrow-band signals. A seven-year program is described which will carry out a search for extraterrestrial intelligence over 80% of the sky and over the entire frequency range from 1 to 25 GHz with a sensitivity limit varying from 10 to the -21st power W/sq cm at the lowest frequencies to 10 to the -19th power W/sq cm at the higher frequencies.
Proceedings of the 8th Annual Summer Conference: NASA/USRA Advanced Design Program
NASA Technical Reports Server (NTRS)
1992-01-01
Papers presented at the 8th Annual Summer Conference are categorized as Space Projects and Aeronautics projects. Topics covered include: Systematic Propulsion Optimization Tools (SPOT), Assured Crew Return Vehicle Post Landing Configuration Design and Test, Autonomous Support for Microorganism Research in Space, Bioregenerative System Components for Microgravity, The Extended Mission Rover (EMR), Planetary Surface Exploration MESUR/Autonomous Lunar Rover, Automation of Closed Environments in Space for Human Comfort and Safety, Walking Robot Design, Extraterrestrial Surface Propulsion Systems, The Design of Four Hypersonic Reconnaissance Aircraft, Design of a Refueling Tanker Delivering Liquid Hydrogen, The Design of a Long-Range Megatransport Aircraft, and Solar Powered Multipurpose Remotely Powered Aircraft.
Planetary exploration in the time of astrobiology: Protecting against biological contamination
Rummel, John D.
2001-01-01
These are intriguing times in the exploration of other solar-system bodies. Continuing discoveries about life on Earth and the return of data suggesting the presence of liquid water environments on or under the surfaces of other planets and moons have combined to suggest the significant possibility that extraterrestrial life may exist in this solar system. Similarly, not since the Viking missions of the mid-1970s has there been as great an appreciation for the potential for Earth life to contaminate other worlds. Current plans for the exploration of the solar system include constraints intended to prevent biological contamination from being spread by solar-system exploration missions. PMID:11226203
[Research advances on anaerobic ferrous-oxidizing microorganisms].
Zhang, Meng; Zheng, Ping; Ji, Jun-yuan
2013-08-01
Anaerobic ferrous-oxidizing microorganisms (AFOM) are one of the important discoveries in microbiology, geology and environmental science. The study of AFOM is of significance to make clear the banded iron formations (BIFs), promote the biogeochemical cycles of iron, nitrogen and carbon, enrich the microbiological content, develop new biotechnologies for anaerobic iron oxidation, and explore the ancient earth environment and extraterrestrial life. This paper summarized the research advances on AFOM, introduced the habitats of AFOM, discussed the biodiversity and the nutritive and metabolic characteristics of AFOM, and assessed the potential functions of AFOM. An outlook was made on the future researches of new species AFOM, their microbial metabolism mechanisms, and their development and applications.
NASA Astrophysics Data System (ADS)
Haqq-Misra, J.
2014-04-01
The idea that a planet or its biota may be intrinsically valuable, apart from its usefulness to humans, is contentious among ethicists, while difficulties abound in attempting to decide what is objectively better or worse for a planet or life. As a way of dissecting the issue of value and life, I present a two-axis comparative tool for ethical frameworks that considers the intrinsic or instrumental value placed upon organisms, environments, planetary systems, and space. I discuss ethical considerations relevant to contemporary space exploration, near-future human exploration of Solar System bodies, and long-term possibilities of interplanetary colonization. This allows for more transparent discussions of value with regard to future space exploration or the discovery of extraterrestrial life.
The EXTASE thermal probe: Laboratory investigation and modelling of thermal properties
NASA Astrophysics Data System (ADS)
Kaufmann, E.; Knollenberg, J.; Kargl, G.; Koemle, N. I.
2011-10-01
In recent years space missions including landing devices are getting more important. These missions allow in-situ measurements and lead therefore to information on the structure and behavior of extraterrestrial surface and subsurface layers. Sensors used for this kind of missions have to be adapted to the non-terrestrial environment conditions. The better the properties of the single elements of each sensor are known, the more precise are the results from the data evaluation of in-situ measurements. We present the results of thermal conductivity measurements and simulations done for the fiber compound tube used as structural element for the heating segments of the MUPUS-PEN and EXTASE - a spin-off project of Rosetta/MUPUS.
NASA Astrophysics Data System (ADS)
Zafar, R.
2017-12-01
The relationship between minerals and organics is an essential factor in comprehending the origin of life on extraterrestrial bodies. So far organic molecules have been detected on meteorites, comets, interstellar medium and interplanetary dust particles. While on Mars, organic molecules may also be present as indicated by the Sample Analysis at Mars (SAM) instrument suite on the Curiosity Rover in Martian sediments. Minerals including hydrated phyllosilicate, carbonate, and sulfate minerals have been confirmed in carbonaceous chondrites. The presence of phyllosilicate minerals on Mars has been indicated by in situ elemental analysis by the Viking Landers, remote sensing infrared observations and the presence of smectites in meteorites. Likewise, the presence of carbonate minerals on the surface of Mars has been indicated by both Phoenix Lander and Spirit Rover. Considering the fact that both mineral and organic matter are present on the surface of extraterrestrial bodies including Mars, a comprehensive work is required to understand the interaction of minerals with specific organic compounds. The adsorption of the organic molecule at water/mineral surface is a key process of concentrating organic molecules on the surface of minerals. Carboxylic acids are abundantly observed in extraterrestrial material such as meteorites and interstellar space. It is highly suspected that carboxylic acids are also present on Mars due to the average organic carbon infall rate of 108 kg/yr. Further aromatic organic acids have also been observed in carbonaceous chondrite meteorites. This work presents the adsorption of an aromatic carboxylic acid at the water/calcite interface and characterization of the products formed after adsorption via on-line pyrolysis. Adsorption and online pyrolysis results are used to gain insight into adsorbed aromatic organic acid-calcite interaction. Adsorption and online pyrolysis results are related to the interpretation of organic compounds identified on extraterrestrial bodies including meteorites and Mars.
NASA Astrophysics Data System (ADS)
Menang, K. P.
A high resolution extraterrestrial solar spectrum (CAVIAR solar spectrum) and water vapour continuum have been derived in near infrared windows from 2000-10000 cm-1 (105μm), by applying the Langley technique to calibrated ground-based high-resolution Fourier transform spectrometer measurements, made under clear-sky conditions. The effect of the choice of an extraterrestrial solar spectrum for radiative transfer calculations of clear-sky absorption and heating rates in the near infrared was also studied. There is a good agreement between the solar lines strengths and positions of the CAVIAR solar spectrum and those from both high-resolution satellite and ground-based measurements in their regions of spectral overlap. However, there are significant differences between the structure of the CAVIAR solar spectrum and spectra from models. Many of the detected lines are missing from widely-used modelled extraterrestrial solar spectrum. The absolute level and hence wavenumber-integrated solar irradiance of the CAVIAR solar spectrum was also found to be 8% lower than the satellite-based Thuillier et al spectra from 5200-10000 cm-1. Using different extraterrestrial solar spectra for radiative transfer calculations in the near infrared led to differences of up to about 11 W m-2 (8.2%) in the absorbed solar irradiance while the tropospheric and stratospheric heating rates could respectively differ by up to about 0.13K day-1 (8.1%) and 0.19 K day-1 (7.6%) for an overhead Sun and mid-latitude summer atmosphere. This work has shown that the widely-used empirically modelled continuum may be underestimating the strength of the water vapour continuum from 2000-10000 cm-1, with the derived continuum up to more than 2 orders of magnitude stronger at some wavenumbers in the windows. The derived continuum is also stronger than that implied by laboratory measurements, by a factor of up to 40 in some spectral regions.
Cockell, C S; Andrady, A L
1999-01-01
The Martian surface is exposed to both UVC radiation (<280 nm) and higher doses of UVB (280-315 nm) compared to the surface of the Earth. Terrestrial organisms have not evolved to cope with such high levels of UVC and UVB and thus any attempts to introduce organisms to Mars, particularly in closed-loop life support systems that use ambient sunlight, must address this problem. Here we examine the UV radiation environment of Mars with respect to biological systems. Action spectra and UV surface fluxes are used to estimate the UV stress that both DNA and chloroplasts would experience. From this vantage point it is possible to consider appropriate measures to address the problem of the Martian UV environment for future long term human exploration and settlement strategies. Some prospects for improving the UV tolerance of organisms are also discussed. Existing artificial ecosystems such as Biosphere 2 can provide some insights into design strategies pertinent to high UV environments. Some prospects for improving the UV tolerance of organisms are also discussed. The data also have implications for the establishment of closed-loop ecosystems using natural sunlight on the lunar surface and elsewhere in the Solar System.
Dragonfly: Exploring Titan's Surface with a New Frontiers Relocatable Lander
NASA Astrophysics Data System (ADS)
Barnes, Jason W.; Turtle, Elizabeth P.; Trainer, Melissa G.; Lorenz, Ralph
2017-10-01
We proposed to the NASA New Frontiers 4 mission call a lander to assess Titan's prebiotic chemistry, evaluate its habitability, and search for biosignatures on its surface. Titan as an Ocean World is ideal for the study of prebiotic chemical processes and the habitability of an extraterrestrial environment due to its abundant complex carbon-rich chemistry and because both liquid water and liquid hydrocarbons can occur on its surface. Transient liquid water surface environments can be created by both impacts and cryovolcanic processes. In both cases, the water could mix with surface organics to form a primordial soup. The mission would sample both organic sediments and water ice to measure surface composition, achieving surface mobility by using rotors to take off, fly, and land at new sites. The Dragonfly rotorcraft lander can thus convey a single capable instrument suite to multiple locations providing the capability to explore diverse locations 10s to 100s of kilometers apart to characterize the habitability of Titan's environment, investigate how far prebiotic chemistry has progressed, and search for chemical signatures indicative of water- and/or hydrocarbon-based life.
NASA Technical Reports Server (NTRS)
Fernandez-Moran, H.; Pritzker, A. N.
1974-01-01
Improved instrumentation and preparation techniques for high resolution, high voltage cryo-electron microscopic and diffraction studies on terrestrial and extraterrestrial specimens are reported. Computer correlated ultrastructural and biochemical work on hydrated and dried cell membranes and related biological systems provided information on membrane organization, ice crystal formation and ordered water, RNA virus linked to cancer, lunar rock samples, and organometallic superconducting compounds. Apollo 11, 12, 14, and 15 specimens were analyzed
Imaging the Alien - The Portrayal of Extraterrestrial Intelligence and SETI in Science Fiction
NASA Astrophysics Data System (ADS)
Baxter, S.
Concepts of extraterrestrial intelligence as explored in science fiction are reviewed. In particular, modern fiction based on the scenarios envisaged in SETI methodologies is described. The intention is to help make this work accessible to specialists such as the SETI and astrobiology communities. While SF is primarily fiction and is meant to entertain, the more thoughtful of such works may serve as a bank of thought experiments to assist in the development of future SETI strategies and policies.
A Search for Extraterrestrial Amino Acids in Polar Ice: A Progress Report
NASA Technical Reports Server (NTRS)
Bada, Jeffrey L.; Brinton, Karen L. F.; McDonald, Gene D.; Wang, Xueyun
1996-01-01
Fifteen polar ice samples-fourteen from Greenland and one from Antarctica-have been analyzed for the extraterrestrial amino acid alpha-aminoisobutyric acid (AIB) in an effort to estimate the flux of interplanetary organic material to the Earth's surface. Only one sample (Greenland GISP II, 4270-4440 years old) contains detectable amounts of AIB, apparently the signature of a transient delivery event. The maximum oceanic concentration of AIB from such an event would be less than 10(exp-9) M.
Life from the stars?. [extraterrestrial sources contributing to chemical evolution on Earth
NASA Technical Reports Server (NTRS)
Pendleton, Yvonne J.; Cruikshank, Dale P.
1994-01-01
Scientists are now seriously considering the possibility that organic matter from interstellar space could have influenced, or even spurred, the origin of life on Earth. Various aspects of chemical evolution are discussed along with possible extraterrestrial sources responsible for contributing to Earth's life-producing, chemical composition. Specific topics covered include the following: interstellar matter, molecular clouds, asteroid dust, organic molecules in our solar system, interplanetary dust and comets, meteoritic composition, and organic-rich solar-system bodies.
Periodicity of mass extinctions without an extraterrestrial cause.
Lipowski, Adam
2005-05-01
We study a lattice model of a multispecies prey-predator system. Numerical results show that for a small mutation rate the model develops irregular long-period oscillatory behavior with sizeable changes in a number of species. The periodicity of extinctions on Earth was suggested by Raup and Sepkoski [Proc. Natl. Acad. Sci. 81, 801 (1984)], but thus far is lacking a satisfactory explanation. Our model indicates that this might be a natural consequence of the ecosystem dynamics and not the result of any extraterrestrial cause.
Extraterrestrial intelligence? Not likely.
DeVore, I
2001-12-01
The possibility that there exist extraterrestrial creatures with advanced intelligence is considered by examining major events in mammalian, primate, and human evolution on earth. The overwhelming evidence is that the evolution of intelligence in creatures elsewhere who have the capability to communicate with us is vanishingly small. The history of the evolution of advanced forms of life on this planet is so beset by adventitious, unpredictable events and multiple contingencies that the evolution of human-level intelligence is highly unlikely on any planet, including earth.
Regolith-Derived Heat Shield for Planetary Body Entry and Descent System with In-Situ Fabrication
NASA Technical Reports Server (NTRS)
Hogue, Michael D.; Mueller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Rasky, Daniel J.
2012-01-01
High-mass planetary surface access is one of NASA's Grand Challenges involving entry, descent, and landing (EDL). Heat shields fabricated in-situ can provide a thermal protection system for spacecraft that routinely enter a planetary atmosphere. Fabricating the heat shield from extraterrestrial regolith will avoid the costs of launching the heat shield mass from Earth. This project investigated three methods to fabricate heat shield using extraterrestrial regolith and performed preliminary work on mission architectures.
A quarantine protocol for analysis of returned extraterrestrial samples
NASA Technical Reports Server (NTRS)
Bagby, J. R.; Sweet, H. C.; Devincenzi, D. L.
1983-01-01
A protocol is presented for the analysis at an earth-orbiting quarantine facility of return samples of extraterrestrial material that might contain (nonterrestrial) life forms. The protocol consists of a series of tests designed to determine whether the sample, conceptualized as a 1-kg sample of Martian soil, is free from nonterrestrial biologically active agents and so may safely be sent to a terrestrial containment facility, or it exhibits biological activity requiring further (second-order) testing outside the biosphere. The first-order testing procedure seeks to detect the presence of any replicating organisms or toxic substances through a series of experiments including gas sampling, analysis of radioactivity, stereomicroscopic inspection, chemical analysis, microscopic examination, the search for metabolic products under growth conditions, microbiologicl assays, and the challenge of cultured cells with any agents found or with the extraterrestrial material as is. Detailed plans for the second-order testing would be developed in response to the actual data received from primary testing.
NASA Technical Reports Server (NTRS)
King, Trude V. V.; Ridley, W. Ian
1987-01-01
High-resolution visible and near-IR diffuse spectral reflectance are used to systematically investigate apparent wavelength shifts as a function of mineral chemistry in the Fe/Mg olivine series from Fo(11) to Fo(91). The study also shows that trace amounts of nickel can be spectrally detected in the olivine structure. Significant compositional information can only be extracted at relatively high resolution, because the overall spectral characteristics of the olivines change only subtly as a function of the Fe/Mg ratio. This laboratory study is expected to aid in the interpretation of remotely sensed data from both terrestrial and extraterrestrial bodies. Terrestrial applications may include the recognition of ultramafic, ultrabasic, and basaltic terrains which in themselves may have mineral potential. Among extraterrestrial applications, the asteroids are obvious candidates for further examination. Some permutations of Fe-Mg-Ni relations in olivines are discussed as they apply to the interpretation of asteroid surfaces and other extraterrestrial bodies.
Anthropological Contributions to the Search for Extraterrestrial Intelligence
NASA Astrophysics Data System (ADS)
Vakoch, D. A.
2009-12-01
Three recent annual conferences of the American Anthropological Association (AAA) have included symposia on the Search for Extraterrestrial Intelligence (SETI). This paper reviews these symposia, which dealt with themes associated with the overarching AAA conference themes for each year: in 2004, the SETI session addressed Anthropology, Archaeology, and Interstellar Communication: Science and the Knowledge of Distant Worlds; in 2005, it dealt with Historical Perspectives on Anthropology and SETI; and in 2006, the session examined Culture, Anthropology, and SETI. Among the topics considered in these symposia were analogues for contact with extraterrestrial intelligence (ETI), examining anthropologists’ experience in the field encountering other cultures-past and present. Similarly, the methodologies of archaeologists provide analogies for making contact with temporally distant civilizations, based on reconstructions from fragmentary information. Case studies helped make such analogies concrete in the symposia. The challenges of comprehending intelligences with different mental worlds was explored through a study of the meetings of Neanderthals and Homo sapiens, for example, while the decryption of Mayan hieroglyphics provided lessons on understanding others of own species.
The Search for Extraterrestrial Intelligence in the 1960s: Science in Popular Culture
NASA Astrophysics Data System (ADS)
Smith, Sierra
2012-01-01
Building upon the advancement of technology during the Second World War and the important scientific discoveries which have been made about the structure and components of the universe, scientists, especially in radio astronomy and physics, began seriously addressing the possibility of extraterrestrial intelligence in the 1960s. The Search for Extraterrestrial Intelligence (SETI) quickly became one of the most controversial scientific issues in the post Second World War period. The controversy played out, not only in scientific and technical journals, but in newspapers and in popular literature. Proponents for SETI, including Frank Drake, Carl Sagan, and Philip Morrison, actively used a strategy of engagement with the public by using popular media to lobby for exposure and funding. This paper will examine the use of popular media by scientists interested in SETI to popularize and heighten public awareness and also to examine the effects of popularization on SETI's early development. My research has been generously supported by the National Radio Astronomy Observatory.
Do extraterrestrials have sex (and intelligence)?
Barkow, J H
2000-04-01
This thought experiment addresses the range of possible evolved psychologies likely to be associated with extraterrestrial (ET) intelligence. The analysis rests on: (1) a number of assumptions shared by the SETI project; (2) recent arguments concerning convergent evolution; and (3) current theories of how intelligence evolved in our own species. It concludes that, regardless of how and which cognitive abilities arise initially, extraterrestrially they can develop into intelligence only if an amplification process involving a form of predation and/or sexual selection occurs. Depending on the amplification process, ETs may be xenophobic; however, it is more probable that they will be ethnocentric. Their ideas of reciprocity and fairness are likely to at least overlap with our own. They will definitely be culture-bearing and probably have two sexes, both of which are intelligent. Regardless of the degree of physical similarity of ETs to ourselves, convergence makes it likely that we will at least find their evolved psychology similar enough to our own for comprehension.
Secondary Electrons as an Energy Source for Life
NASA Astrophysics Data System (ADS)
Stelmach, Kamil B.; Neveu, Marc; Vick-Majors, Trista J.; Mickol, Rebecca L.; Chou, Luoth; Webster, Kevin D.; Tilley, Matt; Zacchei, Federica; Escudero, Cristina; Flores Martinez, Claudio L.; Labrado, Amanda; Fernández, Enrique J. G.
2018-01-01
Life on Earth is found in a wide range of environments as long as the basic requirements of a liquid solvent, a nutrient source, and free energy are met. Previous hypotheses have speculated how extraterrestrial microbial life may function, among them that particle radiation might power living cells indirectly through radiolytic products. On Earth, so-called electrophilic organisms can harness electron flow from an extracellular cathode to build biomolecules. Here, we describe two hypothetical mechanisms, termed "direct electrophy" and "indirect electrophy" or "fluorosynthesis," by which organisms could harness extracellular free electrons to synthesize organic matter, thus expanding the ensemble of potential habitats in which extraterrestrial organisms might be found in the Solar System and beyond. The first mechanism involves the direct flow of secondary electrons from particle radiation to a microbial cell to power the organism. The second involves the indirect utilization of impinging secondary electrons and a fluorescing molecule, either biotic or abiotic in origin, to drive photosynthesis. Both mechanisms involve the attenuation of an incoming particle's energy to create low-energy secondary electrons. The validity of the hypotheses is assessed through simple calculations showing the biomass density attainable from the energy supplied. Also discussed are potential survival strategies that could be used by organisms living in possible habitats with a plentiful supply of secondary electrons, such as near the surface of an icy moon. While we acknowledge that the only definitive test for the hypothesis is to collect specimens, we also describe experiments or terrestrial observations that could support or nullify the hypotheses.
Vollmer, Christian; Kepaptsoglou, Demie; Leitner, Jan; Busemann, Henner; Spring, Nicole H.; Ramasse, Quentin M.; Hoppe, Peter; Nittler, Larry R.
2014-01-01
Isotopically anomalous carbonaceous grains in extraterrestrial samples represent the most pristine organics that were delivered to the early Earth. Here we report on gentle aberration-corrected scanning transmission electron microscopy investigations of eight 15N-rich or D-rich organic grains within two carbonaceous Renazzo-type (CR) chondrites and two interplanetary dust particles (IDPs) originating from comets. Organic matter in the IDP samples is less aromatic than that in the CR chondrites, and its functional group chemistry is mainly characterized by C–O bonding and aliphatic C. Organic grains in CR chondrites are associated with carbonates and elemental Ca, which originate either from aqueous fluids or possibly an indigenous organic source. One distinct grain from the CR chondrite NWA 852 exhibits a rim structure only visible in chemical maps. The outer part is nanoglobular in shape, highly aromatic, and enriched in anomalous nitrogen. Functional group chemistry of the inner part is similar to spectra from IDP organic grains and less aromatic with nitrogen below the detection limit. The boundary between these two areas is very sharp. The direct association of both IDP-like organic matter with dominant C–O bonding environments and nanoglobular organics with dominant aromatic and C–N functionality within one unique grain provides for the first time to our knowledge strong evidence for organic synthesis in the early solar system activated by an anomalous nitrogen-containing parent body fluid. PMID:25288736
Theoretical studies of the extraterrestrial chemistry of biogenic elements and compounds
NASA Technical Reports Server (NTRS)
Defrees, D. J.
1991-01-01
Organic compounds, molecules related to those in living systems, are found in many different extraterrestrial environments. The study of organic astrochemistry is important to exobiology both because it demonstrates the ubiquity of processes which led to life on Earth and because the dust clouds where molecules are found are analogs of the solar nebula from which the Earth formed. In the long chain of events leading from the Big Bang, and a universe composed of atomic hydrogen and helium, to the emergence of life on Earth, molecular interstellar clouds are an early link, the most primitive objects which display any significant organic chemistry. One such cloud was the direct precursor to the solar system and to all objects which it contains. Theoretical methods are ideally suited to studying interstellar cloud chemistry. They have been applied to determine spectroscopic constants of candidate interstellar molecules, mechanisms of ion-molecule reactions, and composition of dust grains. Accurate predictions of rotational constants and dipole moments of long-chain carbon molecules HC13N, HC15N, and C5O have been made to aid in determining the size limit of gas-phase interstellar molecules. Models of gas-phase interstellar chemistry use reaction rate constants measured at room temperature and extrapolated to interstellar temperatures. The temperature dependence of NH3(+)+H2 yields NH4(+)+H is anomalous, however, with a minimum rate at about 100K, casting doubt on the extrapolation procedures. The temperature dependence has now been explained.
The Strengthening Effect of Ice on Two Extraterrestrial Analogs: A Cautionary Tale
NASA Astrophysics Data System (ADS)
Atkinson, J.; Durham, W. B.; Seager, S.
2016-12-01
Sample retrieval from extraterrestrial bodies and in situ resource utilization (ISRU) activities have been identified as some of the most important scientific endeavors of the coming decade. With the failure of Rosetta's Philae lander to penetrate the surface of comet 67P and obtain a sample due to the high compressive strength of the surface, it is becoming obvious that knowledge of the mechanical properties of materials that might be encountered in such environments and under such conditions is critical to future mission success. Two comet/asteroid analogs (Indiana limestone and Bishop tuff), selected based on their contrasting mechanical properties and porosities, were tested under constant displacement to failure (in most cases) at low temperatures (295 K to 77 K) and low confining pressures (1 to 5 MPa). The compressive strength of both materials was determined under varied conditions of saturation, from oven-dried ( 0% water content) to fully saturated, and both brittle and ductile behavior was observed. The saturated limestone increased in strength from 30 MPa (at 295 K) to >200 MPa (at 77 K), while the Bishop tuff increased in strength from 13 MPa at 295 K to 165 MPa at 150 K. The results of this study will be useful to future sample retrieval missions or ISRU maneuvers. The large increase in compressive strength of these saturated materials at cryogenic temperatures means that future missions will need to prepare technology that has the energetic and mechanical capability to penetrate very hard substrates as they are likely to encounter.
Thermal Design for Extra-Terrestrial Regenerative Fuel Cell System
NASA Technical Reports Server (NTRS)
Gilligan, R.; Guzik, M.; Jakupca, I.; Bennett, W.; Smith, P.; Fincannon, J.
2017-01-01
The Advanced Exploration Systems (AES) Advanced Modular Power Systems (AMPS) Project is investigating different power systems for various lunar and Martian mission concepts. The AMPS Fuel Cell (FC) team has created two system-level models to evaluate the performance of regenerative fuel cell (RFC) systems employing different fuel cell chemistries. Proton Exchange Membrane fuel cells PEMFCs contain a polymer electrolyte membrane that separates the hydrogen and oxygen cavities and conducts hydrogen cations (protons) across the cell. Solid Oxide fuel cells (SOFCs) operate at high temperatures, using a zirconia-based solid ceramic electrolyte to conduct oxygen anions across the cell. The purpose of the modeling effort is to down select one fuel cell chemistry for a more detailed design effort. Figures of merit include the system mass, volume, round trip efficiency, and electrolyzer charge power required. PEMFCs operate at around 60 C versus SOFCs which operate at temperatures greater than 700 C. Due to the drastically different operating temperatures of the two chemistries the thermal control systems (TCS) differ. The PEM TCS is less complex and is characterized by a single pump cooling loop that uses deionized water coolant and rejects heat generated by the system to the environment via a radiator. The solid oxide TCS has its own unique challenges including the requirement to reject high quality heat and to condense the steam produced in the reaction. This paper discusses the modeling of thermal control systems for an extraterrestrial RFC that utilizes either a PEM or solid oxide fuel cell.
NASA Technical Reports Server (NTRS)
Billingham, J.; Brocker, D. H.
1991-01-01
In 1959, it was proposed that a sensible way to conduct interstellar communication would be to use radio at or near the frequency of hydrogen. In 1960, the first Search for Extraterrestrial Intelligence (SETI) was conducted using a radiotelescope at Green Bank in West Virginia. Since 1970, NASA has systematically developed a definitive program to conduct a sophisticated search for evidence of extraterrestrial intelligent life. The basic hypothesis is that life may be widespread in the univers, and that in many instances extraterrestrial life may have evolved into technological civilizations. The underlying scientific arguments are based on the continuously improving knowledge of astronomy and astrophysics, especially star system formation, and of planetary science, chemical evolution, and biological evolution. If only one in a million sun-like stars in our galaxy harbors species with cognitive intelligence, then there are 100,000 civilizations in the Milky Way alone. The fields of radioastronomy digital electronic engineering, spectrum analysis, and signal detection have advanced rapidly in the last twenty years and now allow for sophisticated systems to be built in order to attempt the detection of extraterrestrial intelligence signals. In concert with the scientific and engineering communities, NASA has developed, over the last several years, a Microwave Observing Project whose goal is to design, build, and operate SETI systems during the decade of the nineties in pursuit of the goal signal detection. The Microwave Observing Project is now approved and underway. There are two major components in the project: the Target Search Element and the Sky Survey Element.
NASA Technical Reports Server (NTRS)
Thangavelu, Madhu
1994-01-01
Traditional concepts of lunar bases describe scenarios where components of the bases are landed on the lunar surface, one at a time, and then put together to form a complete stationary lunar habitat. Recently, some concepts have described the advantages of operating a mobile or 'roving' lunar base. Such a base vastly improves the exploration range from a primary lunar base. Roving bases would also allow the crew to first deploy, test, operationally certify, and then regularly maintain, service, and evolve long life-cycle facilities like observatories or other science payload platforms that are operated far apart from each other across the extraterrestrial surface. The Nomad Explorer is such a mobile lunar base. This paper describes the architectural program of the Nomad Explorer, its advantages over a stationary lunar base, and some of the embedded system concepts which help the roving base to speedily establish a global extraterrestrial infrastructure. A number of modular autonomous logistics landers will carry deployable or erectable payloads, service, and logistically resupply the Nomad Explorer at regular intercepts along the traverse. Starting with the deployment of science experiments and telecommunication networks, and the manned emplacement of a variety of remote outposts using a unique EVA Bell system that enhances manned EVA, the Nomad Explorer architecture suggests the capability for a rapid global development of the extraterrestrial body. The Moon and Mars are candidates for this 'mission oriented' strategy. The lunar case is emphasized in this paper.
NASA Technical Reports Server (NTRS)
Lupisella, Mark; Powers, Edward I. (Technical Monitor)
2001-01-01
The extent to which extraterrestrial life questions can be addressed, in the absence of an actual example, rests in some measure on the extent to which terrestrial life is representative of life in general since we will likely have to draw heavily, if not completely, from terrestrial life research. One example of a practical question involving extraterrestrial life that arises in preparing for a human mission to another planet such as Mars, is trying to assess and minimize the possible adverse effects of the presence of humans on possible indigenous extraterrestrial life-forms. This paper will present some key planetary protection challenges for a human Mars mission and then focus on one possible approach for assessing the extent to which terrestrial life is representative of biological phenomena in general, informing perhaps, the level of confidence we might have in applying terrestrial research - to extraterrestrial life issues. The approach involves appealing to the relatively new field of Artificial Life (A-Life) to: (1) use what might be the most basic minimal set of life-defining characteristics in (2) a large number of open-ended Artificial Life simulations to generate a "life possibility space" (3) the products of which can be examined for their plausibility within the context of relevant constraining knowledge, so that (4) the remaining possibility space can be examined for its variability relative to terrestrial life, where low variability might suggest that terrestrial life is representative of life in general, and high variability would indicate otherwise.
NASA Astrophysics Data System (ADS)
Meier, M. M. M.; Steele, R. C. J.; Schmitz, B.; Piani, L.; Maden, C.; Plant, A. A.; Schönbächler, M.; Busemann, H.
2017-12-01
A temporarily increased flux of extraterrestrial dust to Earth can lead to tell-tale clues in sediments of the same age. A common example is peaks of 3He in sediments, which occur because extraterrestrial material is rich in implanted solar wind that has a high 3He/4He ratio compared to the atmosphere. One of two known 3He-peaks in Cenozoic sediments is found within the Miocene, at an age of about 8 Ma (Tortonian stage). This peak has been tied to the asteroid break-up event which formed the Veritas family (Farley et al., Nature, 2006). The Global Boundary Stratotype Section and Point for the Tortonian is located near Monte Dei Corvi, in Ancona, Italy. It has previously been well characterized using both magneto- and cyclostratigraphy (Hüsing et al., EPSL, 2009), and can thus provide excellent time-constraints on the age of the event, now dated to have started at 8.47±0.05 Ma (Montanari et al., GSA Bulletin, 2017). In this project, we study these sediments with the primary goal of determining the meteoritic type of the extraterrestrial dust. We have been following three different avenues towards that goal: (1) light noble gas (He, Ne) analyses of bulk sediments (Meier et al., Annual Meeting of the Meteoritical Society, 2016), which are used as tracers of dust flux. The measured He vs. Ne allows us to characterize the preservation state of the extraterrestrial noble gases in the sediments (see Chavrit et al., EPSL, 2016); (2) Cr abundance and isotope analysis of bulk sediments and residues, which should allow us to determine the meteoritic type of the deposited dust (e.g., Rotaru et al., Nature, 1992); (3) an attempt to isolate and characterize potentially surviving meteoritic organic matter in the bulk sediments from Monte Dei Corvi. Insoluble organic matter, which contributes 1-2% of the mass in some carbonaceous chondrites (tied to C- and D-type asteroids, like the ones found abundantly in the Veritas family; Ziffer et al., Icarus, 2011) is strongly acid- and temperature-resistant, and shows D/H and 14N/15N isotopic anomalies (e.g., Piani et al., EPSL, 2015). It thus has potential as a new tracer for dust deposition events from carbonaceous chondrite parent asteroids. We will provide an update for all three projects at the conference.
Planetary Protection Knowledge Gaps for Human Extraterrestrial Missions: Workshop Report
NASA Technical Reports Server (NTRS)
Race, Margaret S. (Editor); Johnson, James E. (Editor); Spry, James A. (Editor); Siegel, Bette; Conley, Catharine A.
2015-01-01
This report on Planetary Protection Knowledge Gaps for Human Extraterrestrial Missions summarizes the presentations, deliberations and findings of a workshop at NASA Ames Research Center, March 24-26, 2015, which was attended by more than 100 participants representing a diverse mix of science, engineering, technology, and policy areas. The main objective of the three-day workshop was to identify specific knowledge gaps that need to be addressed to make incremental progress towards the development of NASA Procedural Requirements (NPRs) for Planetary Protection during human missions to Mars.
Musical Structures and Search for Extraterrestrials
NASA Astrophysics Data System (ADS)
Lefebvre, Vladimir A.
Recent findings in cognitive phsychology indicate connections between human feelings and musical scales, on the one hand, and the laws of thermodynamics, on the other. The existence of such a deep correlations allows us to suggest the hypothesis that music is inherent not only to the human beings but to other sapient creatures as well. It is worth, thus, in our search for extraterrestrial civilizations to conduct a "musical" analysis of the spectra of "suspicious" objects. The results of such analysis of the Doppler spectrum of SS 433 will be presented in this paper.
Policy model for space economy infrastructure
NASA Astrophysics Data System (ADS)
Komerath, Narayanan; Nally, James; Zilin Tang, Elizabeth
2007-12-01
Extraterrestrial infrastructure is key to the development of a space economy. Means for accelerating transition from today's isolated projects to a broad-based economy are considered. A large system integration approach is proposed. The beginnings of an economic simulation model are presented, along with examples of how interactions and coordination bring down costs. A global organization focused on space infrastructure and economic expansion is proposed to plan, coordinate, fund and implement infrastructure construction. This entity also opens a way to raise low-cost capital and solve the legal and public policy issues of access to extraterrestrial resources.
Energy use, entropy and extra-terrestrial civilizations
NASA Astrophysics Data System (ADS)
Hetesi, Zsolt
2010-03-01
The possible number of extra-terrestrial civilizations is estimated by the Drake-equation. Many articles pointed out that there are missing factors and over-estimations in the original equation. In this article we will point out that assuming some axioms there might be several limits for a technical civilization. The key role of the energy use and the problem of the centres and periphery strongly influence the value of the Llifetime of a civilization. Our development have several edifications of the investigations of the growth of an alien civilization.
NASA Technical Reports Server (NTRS)
Roberts, Barney B.
1987-01-01
The rationale for a manned Mars mission and the establishment of a base is divided into three areas: science, resource utilization, and strategic issues. The effects of a Mars mission on the objectives of near-term NASA programs, and the applications of these programs to a Mars mission are examined. The use of extraterrestrial resources to supply space settlements and thereby reduce transportation costs is studied; the development of systems for extraterrestrial materials processing will need to be researched. The possibility of a joint U.S./Soviet Mars mission is discussed by the symposium participants.
Experimental support for an immunological approach to the search for life on other planets.
Schweitzer, Mary Higby; Wittmeyer, Jennifer; Avci, Recep; Pincus, Seth
2005-02-01
We propose a three-phase approach to test for evidence of life in extraterrestrial samples. The approach capitalizes on the flexibility, sensitivity, and specificity of antibody-antigen interactions. Data are presented to support the first phase, in which various extraction protocols are compared for efficiency, and in which a preliminary suite of antibodies are tested against various antigens. The antigens and antibodies were chosen on the basis of criteria designed to optimize the detection of extraterrestrial biomarkers unique to living or once-living organisms.
Options in Extraterrestrial Sample Handling and Study
NASA Technical Reports Server (NTRS)
Papanastassiou, Dimitri A.
2000-01-01
This presentation mentions important service functions such as: sample preservation, hazard assessment, and handling. It also discuss how preliminary examination of samples is necessary for sample hazard assessment and for sample allocations. Clean facilities and clean sample handling are required. Conflicts, cross contamination issues will be present and need to be resolved. Extensive experience is available for extraterrestrial samples and must be sought and applied. Extensive experience is available in studies of pathogenicity and must be sought and applied as necessary. Advisory and oversight structures must also be in place
Survey of 25 years of observations with the aim of detecting intelligent extraterrestrial beings
NASA Astrophysics Data System (ADS)
Vallee, J. P.
1985-02-01
Observational programs intended to detect the presence of intelligent extraterrestrial life or to locate stars with potentially life-supporting planets are surveyed for the period 1960-1985. The astrometric, spectroscopic, photometric, and linear-polarimetric techniques employed are explained; the 45 programs undertaken are listed in tables; a typical observation at Algonquin Radioastronomy Observatory is described; theoretical computations of the number of life-supporting planets are summarized; and hypotheses advanced to explain the fact that no contact appears to have been made are discussed.
On the improbability of intelligent extraterrestrials
NASA Astrophysics Data System (ADS)
Bond, A.
1982-05-01
Discussions relating to the prevalence of extraterrestrial life generally remain ambiguous due to the lack of a suitable model for the development of biology. In this paper a simple model is proposed based on neutral evolution theory which leads to quantitative values for the genome growth rate within a biosphere. It is hypothesised that the genome size is a measure of organism complexity and hence an indicator of the likelihood of intelligence. The calculations suggest that organisms with the complexity of human beings may be rare and only occur with a probability below once per galaxy.
NASA Astrophysics Data System (ADS)
Melia, F.; Frisch, D. H.
1985-06-01
Techniques to establish communication between earth and extraterrestrial intelligent beings are examined analytically, emphasizing that the success of searches for extraterrestrial intelligence (SETIs) depends on the selection by both sender and receiver of one of a few mutually helpful SETI strategies. An equation for estimating the probability that an SETI will result in the recognition of an ETI signal is developed, and numerical results for various SETI strategies are presented in tables. A minimum approach employing 10 40-m 20-kW dish antennas for a 30-yr SETI in a 2500-light-year disk is proposed.
NASA Technical Reports Server (NTRS)
Seeger, C. L.
1977-01-01
Plausible options in the search for extraterrestrial intelligence (SETI), and the need to reserve a suitable portion of the EM (microwave) spectrum for SETI research, are discussed. Reasons for selection of a portion of the spectrum, specifically the 'water hole' near 1.5 GHz in the terrestrial microwave window (1-25 GHz), are presented, and competition with various emitters for that band (existing satellite downlink transmissions) is discussed. SETI search policies and options are summarized in a table. Speculative considerations guiding initial phases of the SETI pursuit are discussed.
Hydrogen cyanide polymerization: a preferred cosmochemical pathway.
Matthews, C N
1992-01-01
Current research in cosmochemistry shows that crude organic solids of high molecular weight are readily formed in planetary, interplanetary and interstellar environments. Underlying much of this ubiquitous chemistry is a low energy route leading directly to the synthesis of hydrogen cyanide and its polymers. Evidence from laboratory and extraterrestrial investigations suggests that these polymers plus water yield heteropolypeptides, a truly universal process that accounts not only for the past synthesis of protein ancestors on Earth but also for reactions proceeding elsewhere today within our solar system, on planetary bodies and satellites around other stars and in the dusty molecular clouds of spiral galaxies. The existence of this preferred pathway - hydrogen cyanide polymerization - surely increases greatly the probability that carbon-based life is widespread in the universe.
The evolution of complex life.
Billingham, J
1989-01-01
In considering the probabilities that intelligent life might exist elsewhere in the Universe, it is important to ask questions about the factors governing the emergence of complex living organisms in the context of evolutionary biology, planetary environments and events in space. Two important problems arise. First, what can be learned about the general laws governing the evolution of complex life anywhere in space by studying its history on the Earth? Second, how is the evolution of complex life affected by events in space? To address these problems, a series of Science Workshops on the Evolution of Complex Life was held at the Ames Research Center. Included in this paper are highlights of those workshops, with particular emphasis on the first question, namely the evolution of complex extraterrestrial life.
On the Isolation of Halophilic Microorganisms from Salt Deposits of Great Geological Age
NASA Technical Reports Server (NTRS)
Stan-Lotter, Helga; Denner, Ewald; Orans, Robin (Editor)
1993-01-01
From salt sediments of Triassic or Permian ace from various locations in the world halophilic microorganisms were isolated. Molecular characteristics of several of the isolates suggested they belong to the archaebacteriae. One group appears to represent novel strains; several properties or one such isolate, strain BIp, are described here. The existence of viable microorganisms in ancient sediments would have great implications with respect to our notions on evolution, the search for life in extraterrestrial environments and the long- term survival of functional biological structures. Of crucial importance is thus the question if these microorganisms existed in the salt since the time of deposition or invaded at some later date. Some suggestions to address these issues experimentally are discussed.
On the isolation of halophilic microorganisms from salt deposits of great geological age
NASA Technical Reports Server (NTRS)
Stan-Lotter, Helga; Denner, Ewald
1993-01-01
From salt sediments of Triassic or Permian age from various locations in the world halophilic microorganisms were isolated. Molecular characteristics of several of the isolates suggested they belong to the archaebacteria. One group appears to represent novel strains; several properties of one such isolate, strain BIp, are described here. The existence of viable microorganisms in ancient sediment would have great implications with respect to our notions on evolution, the research for life in extraterrestrial environments, and the longterm survival of functional biological structures. Of crucial importance is thus the question if these microorganisms existed in the salt since the time of deposition or invaded at some later date. Some suggestions to address these issues experimentally are discussed.
Overview of Radiation Environments and Human Exposures
NASA Technical Reports Server (NTRS)
Wilson, John W.
2004-01-01
Human exposures to ionizing radiation have been vastly altered by developing technology in the last century. This has been most obvious in the development of radiation generating devices and the utilization of nuclear energy. But even air travel has had its impact on human exposure. Human exposure increases with advancing aircraft technology as a result of the higher operating altitudes reducing the protective cover provided by the Earth s atmosphere from extraterrestrial radiations. This increase in operating altitudes is taken to a limit by human operations in space. Less obvious is the changing character of the radiations at higher altitudes. The associated health risks are less understood with increasing altitude due to the increasing complexity and new field components found in high altitude and space operations.
NASA Technical Reports Server (NTRS)
Ho, D.; Sobon, L. E.
1979-01-01
A conceptual design is presented for fiberglass production systems in both lunar and space environments. The raw material, of lunar origin, will be plagioclase concentrate, high silica content slag, and calcium oxide. Glass will be melted by solar energy. The multifurnace in the lunar plant and the spinning cylinder in the space plant are unique design features. Furnace design appears to be the most critical element in optimizing system performance. A conservative estimate of the total power generated by solar concentrators is 1880 kW; the mass of both plants is 120 tons. The systems will reproduce about 90 times their total mass in fiberglass in 1 year. A new design concept would be necessary if glass rods were produced in space.
Generation and Evaluation of Lunar Dust Adhesion Mitigating Materials
NASA Technical Reports Server (NTRS)
Wohl, Christopher J.; Connell, John W.; Lin, Yi; Belcher, Marcus A.; Palmieri, Frank L.
2011-01-01
Particulate contamination is of concern in a variety of environments. This issue is especially important in confined spaces with highly controlled atmospheres such as space exploration vehicles involved in extraterrestrial surface missions. Lunar dust was a significant challenge for the Apollo astronauts and will be of greater concern for longer duration, future missions. Passive mitigation strategies, those not requiring external energy, may decrease some of these concerns, and have been investigated in this work. A myriad of approaches to modify the surface chemistry and topography of a variety of substrates was investigated. These involved generation of novel materials, photolithographic techniques, and other template approaches. Additionally, single particle and multiple particle methods to quantitatively evaluate the particle-substrate adhesion interactions were developed.
In-Situ Measurements of the Radiation Stability of Amino Acids at 15-140 K
NASA Technical Reports Server (NTRS)
Gerakines, Perry A.; Hudson, Reggie L.; Moore, Marla H.; Bell, Jan-Luca
2012-01-01
We present new kinetics data on the radiolytic destruction of amino acids measured in situ with infrared spectroscopy. Samples were irradiated at 15, 100, and 140 K with D.8-MeV protons, and amino-acid decay was followed at each temperature with and without H2O present. Observed radiation products included CO2 and amines, consistent with amino-acid decarboxylation. The half-lives of glycine, alanine, and phenylalanine were estimated for various extraterrestrial environments. Infrared spectral changes demonstrated the conversion from the non-zwitterion structure NH2-CH2(R)-COOH at 15 K to the zwitterion structure +NH3-CH2(R)-COO- at 140 K for each amino acid studied.
Integration of planetary protection activities
NASA Technical Reports Server (NTRS)
Race, Margaret S.
1995-01-01
For decades, NASA has been concerned about the protection of planets and other solar system bodies from biological contamination. Its policies regarding biological contamination control for outbound and inbound planetary spacecraft have evolved to focus on three important areas: (1) the preservation of celestial objects and the space environment; (2) protection of Earth from extraterrestrial hazards; and (3) ensuring the integrity of its scientific investigations. Over the years as new information has been obtained from planetary exploration and research, planetary protection parameters and policies have been modified accordingly. The overall focus of research under this cooperative agreement has been to provide information about non-scientific and societal factors related to planetary protection and use it in the planning and implementation phases of future Mars sample return missions.
Ice Chemistry in Interstellar Dense Molecular Clouds, Protostellar Disks, and Comets
NASA Technical Reports Server (NTRS)
Sandford, Scott A.
2015-01-01
Despite the low temperatures (T less than 20K), low pressures, and low molecular densities found in much of the cosmos, considerable chemistry is expected to occur in many astronomical environments. Much of this chemistry happens in icy grain mantles on dust grains and is driven by ionizing radiation. This ionizing radiation breaks chemical bonds of molecules in the ices and creates a host of ions and radicals that can react at the ambient temperature or when the parent ice is subsequently warmed. Experiments that similar these conditions have demonstrated a rich chemistry associated with these environments that leads to a wide variety of organic products. Many of these products are of considerable interest to astrobiology. For example, the irradiation of simple ices has been shown to abiotically produce amino acids, nucleobases, quinones, and amphiphiles, all compounds that play key roles in modern biochemistry. This suggests extraterrestrial chemistry could have played a role in the origin of life on Earth and, by extension, do so on planets in other stellar systems.
The Organic Composition of Carbonaceous Meteorites: The Evolutionary Story Ahead of Biochemistry
Pizzarello, Sandra; Shock, Everett
2010-01-01
Carbon-containing meteorites provide a natural sample of the extraterrestrial organic chemistry that occurred in the solar system ahead of life's origin on the Earth. Analyses of 40 years have shown the organic content of these meteorites to be materials as diverse as kerogen-like macromolecules and simpler soluble compounds such as amino acids and polyols. Many meteoritic molecules have identical counterpart in the biosphere and, in a primitive group of meteorites, represent the majority of their carbon. Most of the compounds in meteorites have isotopic compositions that date their formation to presolar environments and reveal a long and active cosmochemical evolution of the biogenic elements. Whether this evolution resumed on the Earth to foster biogenesis after exogenous delivery of meteoritic and cometary materials is not known, yet, the selective abundance of biomolecule precursors evident in some cosmic environments and the unique L-asymmetry of some meteoritic amino acids are suggestive of their possible contribution to terrestrial molecular evolution. PMID:20300213
NASA Technical Reports Server (NTRS)
Manak, Michael S.; Paul, Anna-Lisa; Sehnke, Paul C.; Ferl, Robert J.
2002-01-01
Transgenic arabidopsis plants containing the alcohol dehydrogenase (Adh) gene promoter fused to the green fluorescent protein (GFP) reporter gene were developed as biological sensors for monitoring physiological responses to unique environments. Plants were monitored in vivo during exposure to hypoxia, high salt, cold, and abcissic acid in experiments designed to characterize the utility and responses of the Adh/GFP biosensors. Plants in the presence of environmental stimuli that induced the Adh promoter responded by expressing GFP, which in turn generated a detectable fluorescent signal. The GFP signal degraded when the inducing stimulus was removed. Digital imaging of the Adh/GFP plants exposed to each of the exogenous stresses demonstrated that the stress-induced gene expression could be followed in real time. The experimental results established the feasibility of using a digital monitoring system for collecting gene expression data in real time from Transgenic Arabidopsis Gene Expression System (TAGES) biosensor plants during space exploration experiments.
Orbital debris and meteoroids: Results from retrieved spacecraft surfaces
NASA Astrophysics Data System (ADS)
Mandeville, J. C.
1993-08-01
Near-Earth space contains natural and man-made particles, whose size distribution ranges from submicron sized particles to cm sized objects. This environment causes a grave threat to space missions, mainly for future manned or long duration missions. Several experiments devoted to the study of this environment have been recently retrieved from space. Among them several were located on the NASA Long Duration Exposure Facility (LDEF) and on the Russian MIR Space Station. Evaluation of hypervelocity impact features gives valuable information on size distribution of small dust particles present in low Earth orbit. Chemical identification of projectile remnants is possible in many instances, thus allowing a discrimination between extraterrestrial particles and man-made orbital debris. A preliminary comparison of flight data with current modeling of meteoroids and space debris shows a fair agreement. However impact of particles identified as space debris on the trailing side of LDEF, not predicted by the models, could be the result of space debris in highly excentric orbits, probably associated with GTO objects.
[Psycrophilic organisms in snow and ice].
Kohshima, S
2000-12-01
Psychrophilic and psycrotrophic organisms are important in global ecology as a large proportion of our planet is cold. Two-third of sea-water covering more than 70% of Earth is cold deep sea water with temperature around 2 degrees C, and more than 90% of freshwater is in polar ice-sheets and mountain glaciers. Though biological activity in snow and ice had been believed to be extremely limited, various specialized biotic communities were recently discovered at glaciers of various part of the world. The glacier is relatively simple and closed ecosystem with special biotic community containing various psychrophilic and psycrotrophic organisms. Since psychrophilic organisms was discovered in the deep ice-core recovered from the antarctic ice-sheet and a lake beneath it, snow and ice environments in Mars and Europa are attracting a great deal of scientific attention as possible extraterrestrial habitats of life. This paper briefly reviews the results of the studies on ecology of psychrophilic organisms living in snow and ice environments and their physiological and biochemical adaptation to low temperature.
NASA Astrophysics Data System (ADS)
Vakoch, D. A.; Lee, Y.-S.
2000-06-01
If we ever receive a message from extraterrestrial intelligence (ETI), the societal impact may be significant. To date, several authors have speculated on factors that may predict people's reactions, but there have been no systematic empirical studies on the range of responses. One obstacle to conducting such studies is that there has been no questionnaire to assess such reactions. In the current study we have designed a psychometrically sound set of scales to assess six beliefs: (1) that extraterrestrial life exists, (2) that ETI would be benevolent and that we should respond to a message, (3) that ETI would be malevolent, (4) that message receipt would be unsettling, (5) that message receipt would be religiously significant and (6) that experts should determine the content of a reply. We report on the construction and use of these new scales, drawing on data gathered from American and Chinese undergraduate students. Respondents also completed measures of alienation, optimism, anthropocentrism and religiosity. This allowed us to predict beliefs about ETI based on personal characteristics and beliefs of the respondents.
A Statistical Approach to Illustrate the Challenge of Astrobiology for Public Outreach.
Foucher, Frédéric; Hickman-Lewis, Keyron; Westall, Frances; Brack, André
2017-10-26
In this study, we attempt to illustrate the competition that constitutes the main challenge of astrobiology, namely the competition between the probability of extraterrestrial life and its detectability. To illustrate this fact, we propose a simple statistical approach based on our knowledge of the Universe and the Milky Way, the Solar System, and the evolution of life on Earth permitting us to obtain the order of magnitude of the distance between Earth and bodies inhabited by more or less evolved past or present life forms, and the consequences of this probability for the detection of associated biosignatures. We thus show that the probability of the existence of evolved extraterrestrial forms of life increases with distance from the Earth while, at the same time, the number of detectable biosignatures decreases due to technical and physical limitations. This approach allows us to easily explain to the general public why it is very improbable to detect a signal of extraterrestrial intelligence while it is justified to launch space probes dedicated to the search for microbial life in the Solar System.
NASA Astrophysics Data System (ADS)
Papagiannis, M. D.
The conference presents papers on the history of the search for extraterrestrial life, the scientific rationale and methods used in the search for other planetary systems, the detection of distant planets with the Space Telescope, planetary searches using optical astrometric interferometers, and infrared spectral identification of complex organic molecules in interstellar grains. Also considered are universal protein ancestors from hydrogen cyanide and water, astronomical sources of polarized light and their role in determining molecular chirality on earth, the universal diagrams and life in the universe, the precambrian evolution of terrestrial life and a thermodynamic approach to the occurrance and appearance of galactic life forms. Papers are also presented on the Ohio Seti program, lunar reflections of terrestrial radio leakage, the multichannel spectrum analyzer, software implementation of detection algorithms for the MCSA, the Serendip II design, galactic colonization and competition in a young galactic disk, implications of ancient and future migrations, extraterrestrial intelligence, the inevitability and the possible structures of supercivilizations, planetary, interplanetary and interstellar organic matter, and universal aspects of biological evolution.
NASA Technical Reports Server (NTRS)
Hyland, R. E.; Wohl, M. L.; Thompson, R. L.; Finnegan, P. M.
1972-01-01
The results are reported of a preliminary feasibility screening study for providing long-term solutions to the problems of handling and managing radioactive wastes by extraterrestrial transportation of the wastes. Matrix materials and containers are discussed along with payloads, costs, and destinations for candidate space vehicles. The conclusions reached are: (1) Matrix material such as spray melt can be used without exceeding temperature limits of the matrix. (2) The cost in mills per kw hr electric, of space disposal of fission products is 4, 5, and 28 mills per kw hr for earth escape, solar orbit, and solar escape, respectively. (3) A major factor effecting cost is the earth storage time. Based on a normal operating condition design for solar escape, a storage time of more than sixty years is required to make the space disposal charge less than 10% of the bus-bar electric cost. (4) Based on a 10 year earth storage without further processing, the number of shuttle launches required would exceed one per day.
SEARCHING FOR EXTRATERRESTRIAL INTELLIGENCE SIGNALS IN ASTRONOMICAL SPECTRA, INCLUDING EXISTING DATA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borra, Ermanno F., E-mail: borra@phy.ulaval.ca
The main purpose of this article is to make astronomers aware that Searches for Extraterrestrial Intelligence (SETIs) can be carried out by analyzing standard astronomical spectra, including those they have already taken. Simplicity is the outstanding advantage of a search in spectra. The spectra can be analyzed by simple eye inspection or a few lines of code that uses Fourier transform software. Theory, confirmed by published experiments, shows that periodic signals in spectra can be easily generated by sending light pulses separated by constant time intervals. While part of this article, like all articles on SETIs, is highly speculative themore » basic physics is sound. In particular, technology now available on Earth could be used to send signals having the required energy to be detected at a target located 1000 lt-yr away. Extraterrestrial Intelligence (ETI) could use these signals to make us aware of their existence. For an ETI, the technique would also have the advantage that the signals could be detected both in spectra and searches for intensity pulses like those currently carried out on Earth.« less
Rose, Christopher; Wright, Gregory
2004-09-02
It is well known that electromagnetic radiation-radio waves-can in principle be used to communicate over interstellar distances. By contrast, sending physical artefacts has seemed extravagantly wasteful of energy, and imagining human travel between the stars even more so. The key consideration in earlier work, however, was the perceived need for haste. If extraterrestrial civilizations existed within a few tens of light years, radio could be used for two-way communication on timescales comparable to human lifetimes (or at least the longevities of human institutions). Here we show that if haste is unimportant, sending messages inscribed on some material can be strikingly more energy efficient than communicating by electromagnetic waves. Because messages require protection from cosmic radiation and small messages could be difficult to find among the material clutter near a recipient, 'inscribed matter' is most effective for long archival messages (as opposed to potentially short "we exist" announcements). The results suggest that our initial contact with extraterrestrial civilizations may be more likely to occur through physical artefacts-essentially messages in a bottle-than via electromagnetic communication.
NASA Technical Reports Server (NTRS)
Papagiannis, M. D. (Editor)
1985-01-01
The conference presents papers on the history of the search for extraterrestrial life, the scientific rationale and methods used in the search for other planetary systems, the detection of distant planets with the Space Telescope, planetary searches using optical astrometric interferometers, and infrared spectral identification of complex organic molecules in interstellar grains. Also considered are universal protein ancestors from hydrogen cyanide and water, astronomical sources of polarized light and their role in determining molecular chirality on earth, the universal diagrams and life in the universe, the precambrian evolution of terrestrial life and a thermodynamic approach to the occurrance and appearance of galactic life forms. Papers are also presented on the Ohio Seti program, lunar reflections of terrestrial radio leakage, the multichannel spectrum analyzer, software implementation of detection algorithms for the MCSA, the Serendip II design, galactic colonization and competition in a young galactic disk, implications of ancient and future migrations, extraterrestrial intelligence, the ineviability and the possible structures of supercivilizations, planetary, interplanetary and interstellar organic matter, and universal aspects of biological evolution.
NASA Astrophysics Data System (ADS)
Bertka, Constance M.
The question of whether or not extraterrestrial life exists and its potential impact for religions, especially Christianity, is an ancient one addressed in numerous historical publications. The contemporary discussion has been dominated by a few notable scientists from the SETI and astrobiology communities, and by a few Christian theologians active in the science and religion field. This discussion amounts to scientists outside of the faith tradition predicting the demise of Christianity if extraterrestrial intelligent life is discovered and theologians within the tradition predicting the enrichment and reformulation of Christian doctrine. Missing from this discussion is insight drawn more broadly from the science and religion field and from the sociology of religion. A consideration of how possibilities for relating science and religion are reflected in the US public's varied acceptance of the theory of evolution; the growth of Christianity in the Global South; and a revised theory of secularization which inversely correlates religiosity to existential security, gives credence to the proposal that the response from those outside of academia would be much more varied and uncertain.
NASA Technical Reports Server (NTRS)
Fuller, M.; Huang, Y.
2003-01-01
The Antarctic Meteorite Program has returned over 16,000 meteorites from the ice sheets of the Antarctic. This more than doubles the number of preexisting meteorite collection and adds important and rare specimens to the assemblage. The CM carbonaceous chondrites are of particular interest because of their high organic component. The Antarctic carbonaceous chondrites provide a large, previously uninvestigated suite of meteorites. Of the 161 CM chondrites listed in the Catalogue of Meteorites 138 of them have been recovered from the Antarctic ice sheets,. However, these meteorites have typically been exposed to Earth s conditions for long periods of time. The extent of terrestrial organic contamination and weathering that has taken place on these carbonaceous chondrites is unknown. In the past, stable isotope analysis was used to identify bulk organics that were extraterrestrial in origin. Although useful, this method could not exclude the possibility of terrestrial contamination contributing to the isotopic measurement. Compound specific isotope analysis of organic meteorite material has provided the opportunity to discern the terrestrial contamination from extraterrestrial organic compounds on the molecular level.
Positive consequences of SETI before detection
NASA Astrophysics Data System (ADS)
Tough, A.
Even before a signal is detected, six positive consequences will result from the scientific search for extraterrestrial intelligence, usually called SETI. (1) Humanity's self-image: SETI has enlarged our view of ourselves and enhanced our sense of meaning. Increasingly, we feel a kinship with the civilizations whose signals we are trying to detect. (2) A fresh perspective: SETI forces us to think about how extraterrestrials might perceive us. This gives us a fresh perspective on our society's values, priorities, laws and foibles. (3) Questions: SETI is stimulating thought and discussion about several fundamental questions. (4) Education: some broad-gage educational programs have already been centered around SETI. (5) Tangible spin-offs: in addition to providing jobs for some people, SETI provides various spin-offs, such as search methods, computer software, data, and international scientific cooperation. (6) Future scenarios: SETI will increasingly stimulate us to think carefully about possible detection scenarios and their consequences, about our reply, and generally about the role of extraterrestrial communication in our long-term future. Such thinking leads, in turn, to fresh perspectives on the SETI enterprise itself.
A Statistical Approach to Illustrate the Challenge of Astrobiology for Public Outreach
Westall, Frances; Brack, André
2017-01-01
In this study, we attempt to illustrate the competition that constitutes the main challenge of astrobiology, namely the competition between the probability of extraterrestrial life and its detectability. To illustrate this fact, we propose a simple statistical approach based on our knowledge of the Universe and the Milky Way, the Solar System, and the evolution of life on Earth permitting us to obtain the order of magnitude of the distance between Earth and bodies inhabited by more or less evolved past or present life forms, and the consequences of this probability for the detection of associated biosignatures. We thus show that the probability of the existence of evolved extraterrestrial forms of life increases with distance from the Earth while, at the same time, the number of detectable biosignatures decreases due to technical and physical limitations. This approach allows us to easily explain to the general public why it is very improbable to detect a signal of extraterrestrial intelligence while it is justified to launch space probes dedicated to the search for microbial life in the Solar System. PMID:29072614
The G-HAT Search for Advanced Extraterrestrial Civilizations: The Reddest Extended WISE Sources
NASA Astrophysics Data System (ADS)
Maldonado, Jessica; Povich, Matthew S.; Wright, Jason; Griffith, Roger; Sigurdsson, Steinn; Mullan, Brendan L.
2015-01-01
Freeman Dyson (1960) theorized how to identify possible signatures of advanced extra-terrestrial civilizations by their waste heat, an inevitable byproduct of a civilization using a significant fraction of the luminosity from their host star. If a civilizations could tap the starlight throughout their host galaxy their waste heat would be easily detectable by recent infrared surveys. The Glimpsing Heat from Alien Technologies (G-HAT) pilot project aims to place limits on the existence of extraterrestrial civilizations at pan-galactic scales. We present results from the G-HAT cleaned catalog of 563 extremely red, extended high Galactic latitude (|b| ≥ 10) sources from the WISE All-Sky Catalog. Our catalog includes sources new to the scientific literature along with well-studied objects (e.g. starburst galaxies, AGN, and planetary nebulae) that exemplify extreme WISE colors. Objects of particular interest include a supergiant Be star (48 Librae) surrounded by a resolved, mid-infrared nebula, possibly indicating dust in the stellar wind ejecta, and a curious cluster of seven extremely red WISE sources (associated with IRAS 04287+6444) that have no optical counterparts.
NASA Astrophysics Data System (ADS)
Losh, Susan Carol; Nzekwe, Brandon
2011-05-01
Faculty have long expressed concern about pseudoscience belief among students. Most US research on such beliefs examines evolution-creation issues among liberal arts students, the general public, and occasionally science educators. Because of their future influence on youth, we examined basic science knowledge and several pseudoscience beliefs among 540 female and 123 male upperclass preservice teachers, comparing them with representative samples of comparably educated American adults. Future teachers resembled national adults on basic science knowledge. Their scores on evolution; creationism; intelligent design; fantastic beasts; magic; and extraterrestrials indices depended on the topic. Exempting science education, preservice teachers rejected evolution, accepting Biblical creation and intelligent design accounts. Sizable minorities "awaited more evidence" about fantastic beasts, magic, or extraterrestrials. Although gender, disciplinary major, grade point average, science knowledge, and two religiosity measures related to beliefs about evolution-creation, these factors were generally unassociated with the other indices. The findings suggest more training is needed for preservice educators in the critical evaluation of material evidence. We also discuss the judicious use of pseudoscience beliefs in such training.
Transport of extraterrestrial biomolecules to the Earth: problem of thermal stability.
Basiuk, V A; Douda, J; Navarro-Gonzalez, R
1999-01-01
The idea of extraterrestrial delivery of organic matter to the early Earth is especially attractive at present and is strongly supported by the detection of a large variety of organic compounds, including amino acids and nucleobases, in carbonaceous chondrites. Whether these compounds can be delivered by other space bodies is unclear and depends primarily on capability of the biomolecules to survive high temperatures during atmospheric deceleration and impacts to the terrestrial surface. In the present study we estimated survivability of simple amino acids (alpha-aminoisobutyric acid, L-alanine, L-valine and L-leucine), purines (adenine and guanine) and pyrimidines (uracil and cytosine) under rapid heating to temperatures of 400 to 1000 degrees C under N2 or CO2 atmosphere. We have found that most of the compounds studied cannot survive the temperatures substantially higher than 700 degrees C; however at 500-600 degrees C, the recovery can be at a per cent level (or even 10%-level for adenine, uracil, alanine, and valine). Implications of the data for extraterrestrial delivery of the biomolecules are discussed.
Bennett, Chris J; Jamieson, Corey S; Kaiser, Ralf I
2009-06-07
Binary ice mixtures of two carbon monoxide isotopomers, (13)C(16)O and (12)C(18)O, were subjected at 10 K to energetic electrons to investigate the interaction of ionizing radiation with extraterrestrial, carbon monoxide bearing ices. The chemical modifications were monitored on line and in situ via absorption-reflection-absorption Fourier transform infrared spectroscopy as well as in the gas-phase via a quadrupole mass spectrometer. Detected products include two newly formed carbon monoxide isotopomers ((12)C(16)O and (13)C(18)O), carbon dioxide ((12)C(16)O(2), (12)C(18)O(16)O, (12)C(18)O(2), (13)C(16)O(2), (13)C(18)O(16)O, and (13)C(18)O(2)), and dicarbon monoxide ((12)C(13)C(16)O and (13)C(13)C(16)O). Kinetic profiles of carbon monoxide and of carbon dioxide were extracted and fit to derive reaction mechanisms and information on the decomposition of carbon monoxide and on the formation of carbon dioxide in extraterrestrial ice analog samples.
Exploring the Human Ecology of the Younger Dryas Extraterrestrial Impact Event
NASA Astrophysics Data System (ADS)
Kennett, D. J.; Erlandson, J. M.; Braje, T. J.; Culleton, B. J.
2007-05-01
Several lines of evidence now exist for a major extraterrestrial impact event in North America at 12.9 ka (the YDB). This impact partially destabilized the Laurentide and Cordilleran ice sheets, triggered abrupt Younger Dryas cooling and extensive wildfires, and contributed to megafaunal extinction. This event also occurred soon after the well established colonization of the Americas by anatomically modern humans. Confirmation of this event would represent the first near-time extraterrestrial impact with significant effects on human populations. These likely included widespread, abrupt human mortality, population displacement, migration into less effected or newly established habitats, loss of cultural traditions, and resource diversification in the face of the massive megafaunal extinction and population reductions in surviving animal populations. Ultimately, these transformations established the context for the special character of plant and animal domestication and the emergence of agricultural economies in North America. We explore the Late Pleistocene archaeological record in North America within the context of documented major biotic changes associated with the YDB in North America and of the massive ecological affects hypothesized for this event.
NASA Astrophysics Data System (ADS)
Kozlova, Tatiana; Karol Seweryn, D..; Grygorczuk, Jerzy; Kozlov, Oleg
The sample return missions have made a very significant progress to understanding of geology, the extra-terrestrial materials, processes occurring on surface and subsurface level, as well as of interactions between such materials and mechanisms operating there. The various sample return missions in the past (e.g. Apollo missions, Luna missions, Hayabusa mission) have provided scientists with samples of extra-terrestrial materials allowing to discover answers to critical scientific questions concerning the origin and evolution of the Solar System. Several new missions are currently planned: sample return missions, e.g Russian Luna-28, ESA Phootprint and MarcoPolo-R as well as both robotic and manned exploration missions to the Moon and Mars. One of the key challenges in such missions is the reliable sampling process which can be achieved by using many different techniques, e.g. static excavating technique (scoop), core drilling, sampling using dynamic mechanisms (penetrators), brushes and pneumatic systems. The effectiveness of any sampling strategy depends on many factors, including the required sample size, the mechanical and chemical soil properties (cohesive, hard or porous regolith, stones), the environment conditions (gravity, temperature, pressure, radiation). Many sampling mechanism have been studied, designed and built in the past, two techniques to collect regolith samples were chosen for the Phobos-Grunt mission. The proposed system consisted of a robotic arm with a 1,2m reach beyond the lander (IKI RAN); a tubular sampling device designed for collecting both regolith and small rock fragments (IKI RAN); the CHOMIK device (CBK PAN) - the low velocity penetrator with a single-sample container for collecting samples from the rocky surface. The functional tests were essential step in robotic arm, sampling device and CHOMIK device development process in the frame of Phobos-Grunt mission. Three major results were achieved: (i) operation scenario for autonomous sampling; (ii) technical characteristics of both devices, i.e. progress cycles of CHOMIK device in different materials and torque in the manipulator joints during sampling operations; (iii) confirmation of applicability of both devices to perform such type of tasks. The phases in operational scenario were prepared to meet mission and system requirements mainly connected with: (i) environment (near zero gravity, vacuum, dust), (ii) safety and (iii) to avoid common operation of both devices at the same time.
Organic compounds in the Murchison meteorite.
NASA Technical Reports Server (NTRS)
Ponnamperuma, C.
1972-01-01
Impressive supporting evidence for the concept of the chemical evolution of life has appeared in the discovery of biologically important compounds in extraterrestrial samples. The approaches pursued to detect extraterrestrial organic compounds include the study of interstellar space by radioastronomy, the evaluation of the Apollo lunar samples, and the analysis of meteorites, both ancient and recent. It has been found that the clouds of gas in the interstellar medium contain a wide variety of molecules, most of which are organic in nature. The carbonaceous chondrites contain polymeric organic matter. Amino acids have been detected in the Murchison meteorite.
NASA Space Engineering Research Center for utilization of local planetary resources
NASA Technical Reports Server (NTRS)
Ramohalli, Kumar; Lewis, John S.
1990-01-01
The University of Arizona and NASA have joined to form the UA/NASA Space Engineering Research Center. The purpose of the Center is to discover, characterize, extract, process, and fabricate useful products from the extraterrestrial resources available in the inner solar system (the moon, Mars, and nearby asteroids). Individual progress reports covering the center's research projects are presented and emphasis is placed on the following topics: propellant production, oxygen production, ilmenite, lunar resources, asteroid resources, Mars resources, space-based materials processing, extraterrestrial construction materials processing, resource discovery and characterization, mission planning, and resource utilization.
NASA Technical Reports Server (NTRS)
Holt, S. S. (Editor)
1974-01-01
The proceedings of a conference to investigate the effects of extraterrestrial radiation and particle contamination of X-ray astronomical data are presented. The subjects discussed include the following: (1) electrons at low altitudes which affect soft X-ray astronomy, (2) the geographical distribution of 100 keV electrons above the earth's atmosphere, (3) midlatitude electron precipitation, (4) particle background observed by X-ray detectors on board Copernicus satellite, and (5) a survey of trapped low energy electrons near the inner boundary of the inner radiation zone as determined by OSO-7.
Data on total and spectral solar irradiance
NASA Technical Reports Server (NTRS)
Mecherikunnel, A. T.; Gatlin, J. A.; Richmond, J. C.
1983-01-01
This paper presents a brief survey of the data available on solar constant and extraterrestrial solar spectral irradiance. The spectral distribution of solar radiation at ground surface, computed from extraterrestrial solar spectral irradiance for several air mass values and for four levels of atmospheric pollution, is also presented. The total irradiance at ground level is obtained by integration of the area under the spectral irradiance curves. It is significant that, as air mass increases or as turbidity increases, the amount of energy in the infrared relative to the total increases and that the energy in the UV and visible decreases.
Extraterrestrial applications of solar optics for interior illumination
NASA Technical Reports Server (NTRS)
Eijadi, David A.; Williams, Kyle D.
1992-01-01
Solar optics is a terrestrial technology that has potential extraterrestrial applications. Active solar optics (ASO) and passive solar optics (PSO) are two approaches to the transmission of sunlight to remote interior spaces. Active solar optics is most appropriate for task illumination, while PSO is most appropriate for general illumination. Research into solar optics, motivated by energy conservation, has produced lightweight and low-cost materials, products that have applications to NASA's Controlled Ecological Life Support System (CELSS) program and its lunar base studies. Specifically, prism light guides have great potential in these contexts. Several applications of solar optics to lunar base concepts are illustrated.
New theories about ancient extinctions
Spall, H.
1986-01-01
But all this may be changing. Mass extinctions have been very much in the news in the last few years, triggered in large part by the proposal that the extinction of the dinosaurs and marine animals was caused by a catastrophic collision between the Earth and an extra-terrestrial body (bolide). Recently an equally contentious suggestion has been made that mass extinctions have swept the Earth every 26 to 31 million years for at least the last 250 million years-caused by encounters with some kind of extra-terrestrial object such as one of the asteroids or the comets.
The detection of extra-terrestrial life and the consequences for science and society.
Dominik, Martin; Zarnecki, John C
2011-02-13
Astronomers are now able to detect planets orbiting stars other than the Sun where life may exist, and living generations could see the signatures of extra-terrestrial life being detected. Should it turn out that we are not alone in the Universe, it will fundamentally affect how humanity understands itself--and we need to be prepared for the consequences. A Discussion Meeting held at the Royal Society in London, 6-9 Carlton House Terrace, on 25-26 January 2010, addressed not only the scientific but also the societal agenda, with presentations covering a large diversity of topics.
Studies on the Processing Methods for Extraterrestrial Materials
NASA Technical Reports Server (NTRS)
Grimley, R. T.; Lipschutz, M. E.
1984-01-01
The literature was surveyed for high temperature mass spectrometric research on single oxides, complex oxides, and minerals in an effort to develop a means of separating elements and compounds from lunar and other extraterrestrial materials. A data acquisition system for determining vaporization rates as a function of time and temperature and software for the IEEE-488 Apple-ORTEC interface are discussed. Experimental design information from a 1000 C furnace were used with heat transfer calculations to develop the basic design for a 1600 C furnace. A controller was built for the higher temperature furnace and drawings are being made for the furnace.
Extraterrestrial consumables production and utilization
NASA Technical Reports Server (NTRS)
Sanders, A. P.
1972-01-01
Potential oxygen requirements for lunar-surface, lunar-orbit, and planetary missions are presented with emphasis on: (1) emergency survival of the crew, (2) provision of energy consumables for vehicles, and (3) nondependency on an earth supply of oxygen. Although many extraterrestrial resource processes are analytically feasible, this study has considered hydrogen and fluorine processing concepts to obtain oxygen or water (or both). The results are quite encouraging and are extrapolatable to other processes. Preliminary mission planning and sequencing analysis has enabled the programmatic evaluation of using lunar-derived oxygen relative to transportation cost as a function of vehicle delivery and operational capability.
NASA Technical Reports Server (NTRS)
Coulter, Gary R.; O'Sullivan, Kathleen; Milne, David; Stoneburner, Cara
1993-01-01
Students, young and old, find extraterrestrial life one of the most intriguing of all science topics. A curriculum development project co-funded by the National Science Foundation and NASA, and administered by the SETI Institute, is underway to develop and test third through ninth grade science lessons that draw upon this fascination to focus student interest on science and mathematics. Individual lessons are designed by teachers and curriculum developers, tested in classrooms, revised and re-tested prior to distribution. A series of guides, each containing 10 to 15 lessons, will be finished by late summer 1994.
Optical search for extraterrestrial intelligence with Air Cerenkov telescopes.
Eichler, D; Beskin, G
2001-01-01
We propose using large Air Cerenkov telescopes (ACTs) to search for optical, pulsed signals from extraterrestrial intelligence. Such dishes collect tens of photons from a nanosecond-scale pulse of isotropic equivalent power of tens of solar luminosities at a distance of 100 pc. The field of view for giant ACTs can be on the order of 10 square degrees, and they will be able to monitor 10-100 stars simultaneously for nanosecond pulses of about 6th magnitude or brighter. Using the Earth's diameter as a baseline, orbital motion of the planet could be detected by timing the pulse arrivals.
Extraterrestrial intelligence: an observational approach.
Murray, B; Gulkis, S; Edelson, R E
1978-02-03
The microwave region of the electromagnetic spectrum, a plausible regime for signals from extraterrestrial intelligences, is largely unexplored. With new technology, particularly in data processing and low-noise reception, surveys can be conducted over broad regions of frequency and space with existing antennas at flux densities plausible for interstellar signals. An all-sky, broad-band survey lasting perhaps 5 years can be structured so that even negative results would establish significant boundaries on the regime in which such signals may be found. The technology and techniques developed and much of the data acquired would be applicable to radio astronomy and deep-space communications.
A design study of a signal detection system. [for search of extraterrestrial radio sources
NASA Technical Reports Server (NTRS)
Healy, T. J.
1980-01-01
A system is described which can aid in the search for radio signals from extraterrestrial sources, or in other applications characterized by low signal-to-noise ratios and very high data rates. The system follows a multichannel (16 million bin) spectrum analyzer, and has critical processing, system control, and memory fuctions. The design includes a moderately rich set of algorithms to be used in parallel to detect signals of unknown form. A multi-threshold approach is used to obtain high and low signal sensitivities. Relatively compact and transportable memory systems are specified.
Iron microbial mats in modern and phanerozoic environments
NASA Astrophysics Data System (ADS)
Baele, Jean-Marc; Bouvain, Frédéric; De Jong, Jeroen; Matielli, Nadine; Papier, Séverine; Préat, Alain
2008-08-01
The recognition of iron microbial mats in terrestrial environments is of great relevance for the search for extraterrestrial life, especially on mars where significant iron minerals were identified in the subsurface. Most researches focused on very ancient microbial mats (e.g. BIFs) since they formed on Earth at a time where similar conditions are supposed to have prevailed on Mars too. However, environmental proxies are often difficult to use for these deposits on Earth which, in addition, may be heavily transformed due to diagenesis or even metamorphism. Here we present modern and phanerozoic iron microbial mats occurrences illustrating the wide variety of environments in which they form, including many marine settings, ponds, creeks, caves, volcanoes, etc. Contrarily to their Precambrian counterparts, Modern and Phanerozoic deposits are usually less affected by diagenesis and the environmental conditions likely to be better constrained. Therefore, their investigation may help for the search for morphological and geochemical biosignatures (e.g. iron isotopes) in ancient iron microbial occurrences on Earth but also on other Planets. In particular, many of the case studies presented here show that microstromatolithe-like morphologies may be valuable targets for screening potential biosignatures in various rock types.